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Chapter 1

Introduction: Understanding R0
and Infectious Disease Modeling

1.1 General Overview of Infectious Disease Modeling

Infectious diseases are a pressing issue for civilization today. In recent years a num-

ber of significant disease out breaks have affected human populations [20] [59] [23].

Additionally, outbreaks in domestic animal populations have consequences for the

livelihoods of farmers [28][55] and epidemics in wildlife populations can alter en-

tire ecosystems [19]. To combat these infections one must first understand how they

spread and determine the optimal strategies to control them. Infectious disease mod-
eling uses different forms of mathematical equations and tools to build a quantitative
picture of various infectious agents and how they spread in different populations.

1.1.1 History of Disease Modeling

Daniel Bernoulli developed one of the earliest examples of a model for an infectious
disease in the 1760s. He attempted to determine the increase in life expectancy from
birth for an individual inoculated against smallpox. At the time the procedure to
inoculate was extremely controversial and the quantitative understanding of the risks

versus rewards provided by his work helped increase acceptance of the procedure [18].

His work was one of the first examples of a compartmental model as he divided the
population into susceptible and infectious states and applied an age-specified force

of infection [8].

In its early forms disease modeling also involved using statistics to understand
disease patterns and their affects. Two pioneers in this field were William Farr
and John Snow. They both examined the cholera epidemics occurring in London
during the mid 1800s. Farr, a qualified doctor, helped pioneer the use of statistics
to understand disease spread. His analysis of clinical cohorts was much ahead of its
time . He tracked cases from beginning to end without losing site of a case. This
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specificity allowed him to accurately determine mortality for smallpox by correctly
ascertaining the probability of recovery or death based on full tracking of a large

number of cases [24]. While his use of statistical analysis was ahead of its time, his

conclusion that incidence of cholera was related to elevation and belief that the cause
was airborne would not stand up to further testing.

John Snow disagreed with Farr’s assessment of cholera as an airborne infection.
He used Farr’s statistics to support his theory that the cause of cholera was tainted
water. Farr was not converted to Snow’s view until 1866 when Snow definitively

traced the source of an outbreak to a tainted well [22].

Dynamical Systems Based Model

Dynamical systems were first applied to the problem of disease modeling at the
beginning of the 20th century, laying the foundations of modern disease modeling

[15]. Kermack and McKendrick (1927) [37] proposed the most famous of these early

dynamical systems models in their landmark series of papers titled, “A Contribution

to the Mathematical Theory of Epidemics” [15]. A special case of their model remains

one of the most commonly studied examples of a basic infectious disease model.
Further descriptions of models based on their original appear in Section 1.1.3.

Stochastic Model

Shortly after Kermack and McKendrick developed their model, another approach to
disease modeling was developed by two professors at John Hopkins University, Reed
and Frost. Their model focused on the idea that events in nature, while controlled by
overlying principles are inherently random. They did not consider their model worthy
of publication, and neither of the original authors ever published on it. Instead they
used the model in a course jointly taught by the departments of epidemiology and

biostatistics [53].

The Reed-Frost model as it became known is a chain binomial model that pre-
dicts the number of individuals infectious in the next generation of a disease based on
the number infectious in the current generation. As in the Kermack and McKendrick
model, every individual in the population is in one of three states: infectious, sus-
ceptible, immune. The following expression describes the distribution of successive
generations in the model:

Ct+1 ∼ Binomial(St, 1− qCt)[1].

In this expression Ct denotes the number of infectious individuals at time t and St
is the number of susceptible individuals at the same time [17]. The q is equal to

1 − p, where p is the probability that any two individuals selected at random will
make an infectious contact, a contact sufficient to pass on infection, in a given time
step. The model assumes the infection possesses a short infectious period relative to
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the latent stage. During the latent stage an individual has been infected, but is not
yet infectious to other individuals. This assumption allows for the models definition
of distinct generations to be defined because the latent period creates a seperation

between successive generations [17].

At the very beginning of an epidemic it is reasonable to simplify this model to
an approximate birth death problem, which allows for an estimation of the fraction
of seeded epidemics that will actually take-off. The full explanation and derivation
of this process is discussed further in Section 1.3.2 and provides a part of the basis
for the work disscussed in Section 3.1. Stochastic models can also be examined with
contact processes especially dealing with how they take off [27].

The model developed by Reed and Frost resembles work done thirty five years
earlier by a Russian mathematician P. D. En’ko. En’ko developed a chain binomial
model to which he fit predictions to years of observations with strikingly good results

[16]. The model he developed in 1889 is represented by three equations written here

in the same notation as used by Reed and Frost:

Ct+1 = St

{
1−

(
1− Ct

Nt − 1

)kNt

}

St+1 = St

(
1− Ct

Nt − 1

)kNt

Nt+1 = Nt − Ct

where again Ct represents the number of infectious individuals at time t, St provides
the number of susceptible individuals and Nt is the size of the population. The k

parameter provides the number of contacts made by each susceptible individual [17].

The model is based around the binomial distribution, which requires the exponent
to be an integer and thus requires that each susceptible make the same number of
contacts. Reed and Frost developed their model independently of En’ko as his work

was not well known in the west until the past 30 years [16].

1.1.2 Criss Cross Model

Finally, no discussion of the general history of infectious disease modeling would be
complete without mentioning two other individuals who worked independently on a
model examining the prevalence and persistence of malaria. Ross and Macdonald
developed a deterministic, differential equation based model to represent the spread
of malaria. Their model is of particular significance because it was one of the first

examples of a multi-species model [40].

Malaria infects both humans and mosquitoes, but infection only occurs from
human to mosquito and vice versus. In order to model the system one needs to use
two sets of equations one for the mosquito population and another for the human
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population. As with all of the models discussed previously the model can be adjusted
for varying degrees of complexity and corresponding accuracy.

1.1.3 Basic Deterministic Models

As stated above the Kermack and McKendrick model is still in use today. Individuals
in the model exist in three categories based on disease status. They are susceptible

to disease, infectious, or recovered from the infection (no longer able to be infected).

These classes, represented with the letters S, I and R respectively, give rise to the
name of the model S-I-R.

Since Kermack and McKendrick first published their paper in 1927, many vari-
ations and additions to this model have been developed. Researchers now work on
models where individuals return to the suseptible class after infection called S-I-S
models and additional states have been added to the original S-I-R model to make
the models better reflect real life diseases. Examples of these variations are found in
Section 1.1.4.

Susceptible-Infectious-Recovered

Kermack and McKendrick’s original model was an S-I-R model, which used differen-
tial equations to represent the changing numbers of individuals within a population.
The model using current notation is represented by three equations:

dS

dt
= −βS(t)I(t) (1.1)

dI

dt
= βS(t)I(t)− gI(t) (1.2)

dR

dt
= gI(t). (1.3)

The S, I, and R represent the fraction of a population that is in each of the states
susceptible, infectious, or resistant at any given point in time. The other two pa-
rameters β and g relate to the specific infection and population being modeled. The
rate of recovery is g and β is the transmission parameter.

While this model appears simple, due to the non-linear term βS(t)I(t) it lacks

an explicit analytic solution and numerical methods are necessary to solve it. An
approximate solution was offered by Kermack and McKendrick at the time using a
Taylor expansion to the second degree. They did some work fitting their model to

data and achieved quite a good fits considering the simplicity of the model [17].

Their main case study remains one of the most commonly used illustrations of a
model fitted to data and is shown in Figure 1.1. It involves an outbreak of plague
in Bombay from December 1905 to January 1906. In order to solve the model they
had to make several significant assumptions about the population and size of the
epidemic. By assuming the population is a closed system and all individuals in one
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Figure 1.1: One of the most commonly used illustrations of a model fitted to data
from a report of the Advisory Committee appointed by the Secretary of State for
India [5].

of the three states the model can in fact be defined by two of the three equations.
Therefore, it is possible to remove the I class of individuals from consideration if one

divides S(t) by R(t) to obtain:

dS

dR
=
−βS(t)

g

= −R0S(t),

where R0 is the basic reproductive number equal to β/g and explained in detail in

Section 1.1.3 and all other values are the same as described for the original model.
This equation represents the rate of change of susceptible versus recovered individ-
uals. By further integrating, one can obtain a value for S in terms of R:

S(t) = S(0) exp(−R(t)R0). (1.4)

Then returning to the original equations and using the assumption of S(t) + I(t) +

R(t) = 1, the system is closed and all individuals are in one of three states, Equation

1.3 can be rewritten in terms of S and R, and then solely in terms of R by using
Equation 1.4:

dR

dt
= g(1− S(t)−R(t)) (1.5)

dR

dt
= g(1− S(0) exp(−R(t)R0 −R(t))). (1.6)
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While Equation 1.6 cannot be solved outright, if one assumes that the R0R(t) term

is small then a Taylor expansion can be performed for the exponential term and after
some somewhat messy calculations an approximate solution is obtained:

R(t) =
1

R2
0S(0)

(
S(0)R0 − 1 + αtanh

(
1

2
αgt− φ

))
,

where

α = [(S(0)R0 − 1)2 + 2S(0)I(0)R2
0]

1
2 ,

and

φ = tanh−1
[

1

α
(S(0)R0 − 1)

]
.

This solution can then be used to obtain the epidemic curve of the number of re-
covered individuals with respect to time, which is how Kermack and Mckendrick
obtained their approximate solution for the Bombay plague. For the curve in Figure

1.1 the solution is 890/cosh2(0.2t− 3.4) [5].

Significant assumptions are required to obtain this solution. The requirement of

R0R(t) to be small, means that this solution is not likely to be valid for a number

of infections where the R0 value is high. Additionally, the solution will be most

accurate at the beginning of an epidemic when the value of R(t) is also very small.

Furthermore, as commented by Bacaer in a recent article it is important to
consider the assumptions made in the conditions of the model. He makes the case
that while the 1905 plague epidemic is a famous example of the application of the
Kermack and McKendrick model, it is not necessarily a good one. Plague at that
time in Bombay had a remarkable pattern of seasonal epidemics from 1897 through

to 1911. So it is more likely that the 1905 epidemic was seasonal in nature [5].

Another classic case study for the basic SIR model comes from an outbreak of
Influenza in an English boarding school in 1978. This case fits the assumptions of
the basic model very well. All but a few of the boys resided at the boarding school,
which made the school a relatively closed system. Additionally, none of the boys had
been previously exposed to the virus making the entire school susceptible, and one
sick boy initiated the infection. This epidemic was reported in the “British Medical
Journal”, and fits very well to the pattern predicted by the basic SIR model. By
the end of the epidemic 512 boys had become ill over the course of the epidemic,

which lasted approximately two weeks [4]. The size and course of the model fits well

with the predictions of the basic SIR model. This epidemic was severe so the weak
epidemic assumptions applied to the plague model cannot be used and numerical

methods are required to analyze the full system [43].
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The Basic Reproduction Number (R0) for the S-I-R Model

Kermack and Mckendrick first introduced the idea of the basic reproduction num-
ber as the threshold theorem. It provided a quantitative measure for determining
whether an epidemic would take-off in a population. The phenomenon occurs be-

cause for an epidemic to progress the differential equation, dI/dt = βS(t)I(t)−gI(t),

must be positive. The number of infectious individuals must be growing. Therefore,

βS(t) > g and S(0) > g/β in order for an epidemic to spread in a population. The

relative removal rate g/β must be small enough to permit the infection to take-off.

The inverse of the relative removal rate at the start of an epidemic is the formula
for the basic reproduction number, R0, for the given model. It approximates the
number of secondary cases per a primary case in an entirely susceptible population

[35]. When R0 is known then the likelihood of an epidemic can be ascertained. The

basic reproduction number represents the maximum reproductive potential for an

infectious agent in a population [14]. It also can inform about a number of other

properties of an infection, such as what level of vaccination would be required to
prevent an outbreak and the likely severity of an outbreak.

1.1.4 Variations of the Basic Model

Susceptible-Infectious-Susceptible

In one variation of the S-I-R model individuals recover from infection and return to
the susceptible class. This model requires one less equation than the S-I-R model.
It is defined by:

dS

dt
= −βS(t)I(t) + gI(t)

dI

dt
= βS(t)I(t)− gI(t),

where S and I again represent the portion of the population in the susceptible and
infectious states, β is the transmission parameter, and g is the recovery rate.

Basic assumptions of the model include a closed population, S(t) + I(t) = 1,

making every individual either susceptible or infectious. The model can then be

written with a single equation. Assuming, S(t) = 1− I(t):

dI

dt
= (β − βI(t)− g)I(t) = βI(t)((1− 1/R0)− I(t)), (1.7)

where R0 = β/g as in the S-I-R model. The formula of R0 is derived from the

equation representing infectious individuals in the model and as the equation is
identical to the S-I-R model, its derivation is the same as seen in Section 1.1.3.

Equation 1.7 is a logistic equation which can be solved by equilibrium analysis [9].
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The equation dI/dt is set to zero to determine the steady state values of the

system. Thus the two steady states of the system are the disease free equilibrium

where, I(∗) = 0, and endemic equilibrium, I(∗) = 1− 1/R0. While the zero equilib-

rium is relatively uninteresting, the second equilibrium relates the prevalence of an
infection in a population directly to the basic reproduction number. This analysis
further illustrates the requirement for R0 to be greater than one for the infection to
remain in the population. For R0 less than one the endemic equilibrium is negative
making it infeasible. Thus in order for an infection to persist in a population R0

must be greater than one.
This type of model has applications in any number of infections where immu-

nity is not conferred after an infection. Sexually transmitted infections (STIs) are

one of the major applications of SIS models currently. Most STIs do not impart
immunity and individuals return to the susceptible class when they recover from
infection. Additionally, many bacterial and parasitic infections fit within the SIS
mold as individuals can continue to be infected with subsequent exposures.

Models with Additional States

As more knowledge has entered the field of epidemiology about the biological char-
acteristics of specific infections, models have been adapted to account for these char-
acteristics. One of the most common examples is the inclusion of a latent period in
the S-I-R model. The latent period accounts for the delay, present in many common
infections such as flu, between the contact with the infective virus and the onset of
symptoms when an individual generally becomes infectious. The addition of a state
to the system requires the addition of an equation:

dS

dt
= −βS(t)I(t)

dE

dt
= βS(t)I(t)− aE(t)

dI

dt
= aE(t)− gI(t)

dR

dt
= gI(t).

All the variables for this equation are the same as for the original S-I-R model, but
with the addition of the latent state, E, and the rate of transition from latency to
infection,a.

The expression for R0 remains the same as for the S-I-R model and one might
assume that the inclusion of the latent class is an unnecessary complication of the
S-I-R model because the basic dynamics of the model remain the same. However, the
inclusion of the latent period causes the model to behave differently at the outset of

an epidemic, with the latent class slowing the dynamics [35]. Most forms of influenza
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possess a latent period, so inclusion in the model is important to accurately match
the model to data. One example of this type of model was used to determine the

basic reproduction number for the 1918 pandemic influenza [12] and in models for

the recent outbreak of Swine Flu [51].

Another model with an additional state reflects infections where not all individ-
uals recover. Some retain chronic infections and continue to transmit infection for a
long period of time. This model can be written as:

dS

dt
= −βS(t)I(t)− εβC(t)S(t)

dI

dt
= βS(t)I(t) + εβC(t)S(t)− gI(t)

dC

dt
= gqI(t)− ΓC(t)

dR

dt
= gI(t)− gqI(t) + ΓC(t).

The new carrier state is represented by C, with q determining the proportion of
infecteds that enter the carrier state, ε accounting for the decreased rate of trans-
mission from individuals in the carrier state and Γ determining the rate of recovery
from the carrier state. This model has a different formula for the basic reproduction
number as it must account for both the number of individuals entering the carrier
state and the affect of additional infections from carriers. The formula for R0 for
this model is:

R0 =
β

g
+
qg

g

εβ

Γ
=
β

g

(
1 +

qgε

Γ

)
).

The first term mirrors the original form of R0, while the second part accounts for
the carriers. Examples of infection models that might include a carrier state would

be herpes or hepatitis B [60]. Additionally, many STIs might be effectively modeled

with a carrier state because if individuals do not present symptoms and are not
tested then they can continue to pass on the infection for long periods of time.

Models with waning immunity

Some infections are best represented with a hybrid of the S-I-R and S-I-S models.
In these models called S-I-R-S immunity is conferred from an infection, but over
time the immunity is lost and the individual returns to the susceptible class. As one
might expect the dynamics of this model fall in-between the S-I-R and S-I-S models.
The level of infection does eventually reach an endemic equilibrium when R0 > 1 as
seen for the S-I-S model.

However, in moving toward this equilibrium the population will experience var-
ious epidemics, with dynamics that more closely mirror the classic S-I-R model.
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After an epidemic the pool of susceptible individuals will be diminished, but it is
replenished with the loss of immunity over time such that another large outbreak
can occur. The equations for this model are very similar to the original SIR model,
but with the addition of one term ω representing the rate at which immunity is lost:

dS

dt
= ωR(t)− βS(t)I(t)

dI

dt
= βS(t)I(t)− gI(t)

dR

dt
= gI(t)− ωR(t).

One example of a model with waning immunity was developed by Grassly et al.

2005 [26]. They use an S-I-R-S model to show that the 8-11 year period between

major outbreaks of syphilis is due to the natural dynamics of the disease where
immunity is obtained for a period of time after infection. Previously the periodicity
of epidemics had been attributed to changes in sexual behavior over the previous
50 years. They compared the pattern of major outbreaks of syphilis to the lack of
oscillations observed for gonorrhea cases, which do not offer any period of immunity
.

Including Demography

Further adaptations of the basic model can be used to even better reflect reality. In
the simple S-I-R model, the population is a closed system thus when an infection
invades causing an epidemic, then a large portion of the population is removed and
would not be susceptible to further infection. However, data from measles, mumps,
rubella, and chicken pox show that epidemics of these infections occur repeatedly
in the same population. This pattern occurs because the population itself is not a
closed system. Instead babies are born and individuals migrate renewing both the
number of susceptibles and the possibility of a pathogen being introduced from the

outside [13]. At the same time some in the population are passing away decreasing

the number of individuals in all states. Incorporating these values into the model
allows it to better reflect the true dynamics of the system.

The basic demographic model is nearly identical to the S-I-R model, but with the
addition of a parameter to account for new births in a population and deaths. For
simplicity in many models, to keep the size of the population constant, the death
rate is assumed to equal the birth rate although this condition is not necessary.
Additionally for simplicity, the most basic model assumes that individuals die at
equal rates proportional to the number of individuals in their given state. Thus the
assumption that the infection does not increase the chance of dying is incorporated
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into the model. The simple demographic model:

dS

dt
= µ− βS(t)I(t)− µS(t)

dI

dt
= βS(t)I(t)− gI(t)− µI(t)

dR

dt
= gI(t)− µR(t)

represents the birth rate with a constant, µ, and assumes that all individuals are
susceptible at birth. In some cases, such as with measles immunity may be conferred
to newborns through the birth process, which can last approximately six months to

a year after birth [39]. This immunity could be accounted for with an additional

parameter in the model, however, in the case of measles where the average age of

infection is school age (approximately five or six years old) the limited immunity at

birth is unlikely to significantly affect the outcomes of the model [3].

One of the simplest and most common methods for approximating µ is to assume

that 1/µ is the mean lifespan for the population. Thus individuals suffer natural

mortality, independent of infection status at a total rate of µ. As illustrated by
the model the number of deaths from each category is scaled to the portion of the
population in that infection state. The population birth rate is then assumed to be
µ in order to keep the population size constant.

With the inclusion of demography the formula for R0 must be adjusted to account
for the additional deaths. The new formula is:

R0 =
β

g + µ
.

With the reseeding of susceptible individuals over time, the dynamics of the model
begin to appear similar to the S-I-S model from Section 1.1.4. If R0 is greater
than zero than the level of infection in the population will tend toward an endemic
equilibrium. However, its path toward that equilibrium is quite different from the
S-I-S model and involves a number of epidemics of decreasing size. Generally, the
inclusion of demography will generate an oscillatory pattern of epidemics as was the
case for the plague in Bombay, which Kermack and McKendrick modeled. If one
looks at the course of epidemics over years than clear oscillatory dynamics emerge

[5]. Alternatively, in the absence of infection, the demographic SIR model is an

Immigration-Death process.
One important quantity that is unique to demographic models is the ability to

determine average age at infection. For a basic demographic model the mean age of
infection is:

A ≈ 1

µ(R0 − 1)
[35]. (1.8)
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This relationship can be very useful in that it relates the parameters of the model to
a measure of infection that is relatively easy to obtain. Age stratified seroprevalence
data can be obtained from a careful sampling of the population. This information
can then be used with Equation 1.8 to approximate the value of R0 for the infection.
Obtaining parameters based on population data improves the accuracy of the model.

Including Population Structure

Additionally, in attempting to make models more realistic one can incorporate pop-
ulation structure. This component is important because general mean-field mixing
models treat the whole population as a collection of particles interacting at random
where any individual in the population is equally likely to interact with any other in-
dividual. While this type of model is useful, it is not generally a good representation
of real world behavior. Animals as varied as Tasmanian devils and humans display

structure in their contact patterns [29]. When modeling human infections, account-

ing for this population structure improves the accuracy of the model. While these
models still utilize mean-field mixing assumptions, with the inclusion of structure
the mixing occurs within smaller groups in the population.

In human populations, individuals tend to interact primarily with a portion of
the population, such as within their age demographic and much less outside of it.
Therefore school age children are most likely to interact with other children their
own age, with limited contact to adults primarily their parents and teachers. Alter-
natively, adults are more likely to interact and have close contact with other adults.
Work has been done by a number of different groups to quantify these patterns with

the development of social contact networks [42] [33]. These networks have been very

useful in revealing tendencies in contact patterns, but they also have limitations
based on the sample used to create the network.

One method for exploiting these tendencies in models is to create sub-groups
within the models for different groups. Individuals interact with their demographic
counterparts at different rates than they interact with other groups in the population.
In these models children interact with other children their own age at a much greater

level than they interact with adults and vice versus [11].

1.1.5 Pair Approximations

Another type of deterministic model that has seen increasing use involves incorpo-
rating the probabilities of the system being in a given state at any time. This type
of model, which makes use of Kolmogorov forward equations, also known as master
equations, is deterministic. It produces the same results every time as the differential
equation based model does. However, models based on master equations can provide
additional insight into the system because they do not provide a single solution for
the state of the system, but instead offer a distribution of the likelihood of a given
state of the model for any point in time.
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The pair-approximation model focuses on pairs of individuals. The S-I-R formu-
lation for the basic pair approximation model appears below

.

[SS] = −2τ [SSI]
.

[SI] = τ([SSI]− [ISI]− [SI])− g[SI]
.

[SR] = −τ [RSI] + g[SI]
.

[II] = 2τ([ISI] + [SI])− 2g[II]
.

[IR] = τ [RSI] + g([II]− [IR]).[36]

In this model the S, I, and R represent susceptible, infectious, and recovered indi-
viduals respectively. The symbol τ is the transmission rate across an edge equal to

β/n where n is the mean number of connections per an individual. The recovery rate

is represented by g. While there are nine distinct types of pairs in this model, on

a symmetric network pairs such as[SI] and [IS] are equivalent. Additionally, since

the sum over all pairs is constant the model is fully defined by just five pair-wise
equations. The values of individuals within the model can still be defined in the
pair-wise model

.

[S] = −τ [SI]
.

[I] = τ [SI]− g[I]
.

[R] = g[I].

The resemblances to the basic mean-field pair based model should be clear from
looking at the equations for individuals. However, the pair equations show that
significantly more equations are required to represent this model than the basic
model because of the need to define each potential pair. Thus where the addition of
a state in the basic model requires only one additional equation, for the pair-based
model additional states have a multiplicative affect.

Additionally, in the pair approximation model, one must know or assume facts
about the structure of the population in order to solve the model. As can be seen
above, this model includes not only relationships of pairs of individuals, but relation-
ships of three individuals. In order to ‘solve’ the model, one must define these triples
and potential correlations in terms of pairs and individuals. One technique for do-
ing this is a moment closure approximation. With a moment closure approximation
the ratio of open and closed triples, triangular clustering, must be considered. This
relationship is important to the model because closed triples will have stronger cor-
relations between the states of individuals than open triples. The use of the moment
closure approximation incorporates the structure of the network into the model and
allows for the definition of the triples in terms of pairs.
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While the pair approximation model shows significant improvement in fit, which
has helped prompt its more wide-spread use, it also requires assumptions which may
not always prove to be accurate. The moment closure approximation requires an
estimate of triangular clustering, which may not always be accurate or known. The
model is closed at the level of triples and may not accurately represent infections on
networks with strong degrees of quadratic or higher order clustering.

1.1.6 Stochastic Mean-field Models

While deterministic models are important for their ability to define a system clearly
with a set of equations and the analysis that this allows, they also have significant
limitations. Deterministic models produce the same answer every time they are run.
They predict the same size epidemic and peak time, but in real life these values
are not always reached and sometimes they are exceeded. The real-world offers
variability in the exact course of an epidemic, it will be different every time. To
incorporate this realism into mathematical representations of outbreaks, researchers
incorporate stochasticity into models.

Noisy Deterministic Models

There exist several different methods for mimicking the uncertainty present in real-
world systems. One method is to incorporate noise into the deterministic equations
described in the earlier sections. This noise can be incorporated through observa-
tional uncertainty, that is recognizing the uncertainty inherent in the parameters
selected for the model and the values it could be fitted to. In a real system the
values for β and g will never be exact, but instead can vary within the epidemic and
possess a degree of experimental uncertainty. Cases are often missed for infections
in the real world, which can be asymptomatic or individuals can be misdiagnosed

[31]. While these cases become unimportant in large systems, when populations are

small they can have a significant impact.
The problem with these types of models is that they tend to differ significantly

from their pure mean-field counterparts only at the beginning of an epidemic or
when a population is small. However, in both of these circumstances the accuracy of
the model itself is questionable. Thus the paradigm that when these noise inclusive
deterministic models are most useful they are also the least accurate.

Gillespie’s Algorithm

Variations of Gillespie’s algorithm for simulating an epidemic are the most common
form of stochastic model in use today. In this method probabilities are generated for
certain events based on transition rates that appear very similar to the differential
equation based models disscussed earlier. In this model random numbers are drawn
to determine the time until the next event and what the event will be.
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This type of model incorporates the uncertainty inherent in real-life systems.
While a system may possess a value for the basic reproduction number much greater
than one, a chance always exists that the epidemic never takes-off because the first
individual recovers before passing on infection to anyone else. For small populations
or at the beginning of an epidemic this type of model possesses the greatest degree
of similarity to real life systems.

Additionally, this method is relatively flexible in incorporating additional states
into the system. It is able to include latent states and other such modifications
without drastically changing the computational power required for the model. In
small populations it is a very feasible method for modeling.

However, when one wishes to build the model for very large populations, then it
can become computationally expensive. The need to draw two random numbers for
every event can become a drag on the model. With the computer power available
today, however, this barrier is becoming less of a problem, which should allow for
more complex models of large populations.

1.2 Limitations of mean-field models

As discussed earlier deterministic mean-field models have produced tremendous re-
sults in epidemiological research. They have provided insight into the basic dynamics
of infection and sometimes produce very counterintuitive results as evidenced by the

work on Rubella and the vaccination threshold [2]. However, they also have signif-

icant limitations in the ability to represent epidemics in small populations or the
beginning of an outbreak. Differential equation based deterministic models also
possess only a limited ability to address underlying relationships and structures in
systems. With the increasing computational power available today stochastic mod-
els and pair based deterministic models developed from master equations have been
able to overcome many of these limitations.

Both types of models can be run on networks that provide a complete underlying
structure for a population. The inclusion of networks in models, however, has pre-
sented problems of its own. The concept of the basic reproduction number, which is
very thoroughly developed for mean-field models does not translate easily to network
based models.

1.2.1 Finding a threshold on a network

The basic reproduction number is a fundamental quantity in epidemiology that rep-
resents the threshold for when an epidemic will take-off. For the majority of work in
disease modeling, determining the likelihood of an epidemic is a crucial point. This
threshold is important in evaluating control measures and predicting final size. The
formulation for R0 in mean-field models is well settled, along with the formulation

for the basic S-I-R and S-I-S models of R0 = β/g, with modifications for models

with additional states and parameters.
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While the basic reproduction number has been well defined for mean-field models,
its definition on network models is much less clear. As discussed in Section 2.1.3 the
basic reproduction number for a basic S-I-R model on a simple network is different
than the mean-field model. Furthermore, application of this work to the S-I-S model
shows that unlike the mean-field case on a network the simple S-I-R and S-I-S models
have different thresholds.

1.3 Further characteristics of R0 on mean-field models

The goal of this work is to use characteristics of the basic reproduction number on
mean-field models to investigate the threshold for when an epidemic will take off on
different networks. Two specific characteristics of the mean-field definition of R0 are
of interest in this work.

1.3.1 Endemic level of infection

The first of these characteristics relates to the level of the endemic state of the S-I-S
model and can be related to the system value of R0. The endemic level of infection
in an S-I-S system is related to the value of the basic reproduction number.

The endemic state is associated with the steady state of the system and thus
the differential equations defining the system are each equal to zero. One can then

rearrange the equation for dI/dt and set it equal to zero to get, 0 = (−βS + g)I. If

I were to equal zero there would be no disease in the population so the interest is
in the alternative solution when −βS + g = 0. This equation can be rearranged to

obtain a value for the number of susceptible individuals in the population, S = g/β.

Substituting this value back into the definition of R0 with a population size N , one

obtains R0 = N/S [41]. A rearrangement of this equation produces, 1/R0 = S/N .

Further rearrangement reveals the relationship R0 = 1/S∞ when S∞ is defined as a

fraction of the population.

1.3.2 Fraction of epidemics that take-off

The other characteristic of the mean-field mixing model that is of interest in this work
is the fraction of epidemics that take off in a stochastic system. When a stochastic
model is seeded with a single infectious individual there is a significant probability
that the infectious individual could recover, never pass on the infection and the
epidemic would fail to take off. At the beginning of an epidemic the stochastic
dynamics dominate and any set threshold is suspect. However, one can examine
what happens near this threshold.

To do this one examines the probability of infection and removal events occurring
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in a small time interval (t, t+ h). This probability is represented as:

Pr{(S, I) → (S − 1, I + 1)} = βSIh

Pr{(S, I) → (S + 1, I − 1)} = gIh.

An approximate solution for the early stages of an epidemic can be obtained by
noting that in the beginning of an epidemic with one initial infective the transition

probabilities of βSI are β(N − 1), β(N − 2)2, β(N − 3)3, . . . , where N = S +

I. For small numbers of infectious individuals, I, these transition probabilities are
approximately βNI. At the beginning of an epidemic these transition probabilities
can be represented by a birth-death process. The “birth” rate is λ = βN , an infection
event, and the “death” or recovery event rate is µ = g. For a birth-death process
the probability of extinction is:

q =

{
µ
λ = g

βN = 1
R0

if λ > µ, i.e. if R0 > 1

1 if λ ≤ µ, i.e. if R0 ≤ 1.

Based on this approximation of extinction in the early stages of an epidemic a
stochastic threshold is approximated. If R0 ≤ 1 than a major outbreak cannot

occur. For R0 > 1 the probability of a major epidemic, 1 − 1
R0

. [50] The proba-

bility of a major outbreak is equivalent to the fraction of epidemics that take off
when many simulations are run. Thus the fraction that take off of a large number

of simulations is F = 1− 1
R0

so R0 = 1
1−F [50].
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Chapter 2

Networks in Disease Modeling

2.1 Overview of Networks

Human and animal populations include structure and thus mass action models are
limited. In order to develop models that accurately predict outbreaks in struc-
tured populations then that structure must be included in the model. One method
currently being developed and increasingly used to incorporate this structure into
models is network based models.

In the modern world networks appear just about everywhere. They appear in

information systems, wildlife studies, food chains, and human behavior [29] [42] [33]

[32]. Models built around understanding the spread of diseases on networks could

have far reaching applications. Models developed to understand the spread of a
human infection might be relevant to tracking a computer virus.

One of the chief advantages networks offer in modeling is that they limit the
number of contacts an individual can have in the population which better reflects
reality. Infections can only spread across pairs of susceptible and infectious individ-
uals. This limitation changes some of the base values that one might derive from
the mass action models.

2.1.1 Network Types

There are a number of different networks used in disease modeling. In this work six
general network types are investigated. Each of these network types are described
in detail below.

Poisson Distributed Random Networks

A poisson distributed random network is a random network with a binomial dis-
tribution, which is Poisson in the limit of a large number of nodes. This type of
network was first discovered by Solomonoff and Rapoport and later independently

by Erdos and Renyi [47].
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In there 1951 paper Solomonoff and Rapoport postulated about ‘random nets’

[56]. They describe several problems in mathematical biology where random nets

could occur and one of those problems was epidemiological modeling. Their dis-
cussion begins by considering the probability of transmission between each pair of
individuals. Then they consider the number of individuals infected at a specific time
t, in infinite time, or the probability that the entire population will be infected. If
the probability of transmission is constant for all pairs of individuals, the same con-
dition applied to the S-I-R mass action model, then the problem can be defined with
a random net.

The paper describes ‘weak connectivity’ versus ‘strong connectivity’ in an epi-
demiological network. Weak connectivity represents the likely number of individuals
who will contract the infection eventually, while strong connectivity is the probability
that starting from a random point on the network every individual will ultimately

succumb to infection [56]. These ideas relate to the ultimate connectivity of the

network, with strong connectivity relating to a fully connected network and weak
connectivity representing the size of the component associated with the node upon
which the infection began.

Rapoport conducted further work in which he collected data on a model of stu-
dents in a high school and created acquaintance chains based on the students re-
sponses. He then used random nets to trace the acquaintance network. The original
data was then replicated with a random net trace. Rapoport also extended his work
to nonrandom nets by incorporating “biases”, the preference for certain type nodes
to connect to like types, his results for both attempts show that only two parameters

are enough to build a good fit to the original data [49].

Alternatively Erdos and Renyi developed a simple method to produce the net-
work by taking a predetermined number of nodes n and connecting each pair with
probability p. They define Gn,p as the ensemble of all networks with these val-

ues where the probability of a given graph with m edges is pm(1 − p)M−m where

M = n(n−1)/2 or the maximum number of edges that could be connected to a given

node [47]. Thus when a random graph is created with n vertices and m edges, one is

in fact choosing uniformly at random from all networks that possess this property.

The probability of choosing a specific network is P (G) = 1/Ω, where Ω is the

total number of simple graphs with n nodes and m edges. This fact is useful in

determining generic properties of these networks. For example the diameter (the

largest number of connections separating any two nodes on a network) of a random

network with these conditions would be:

〈l〉 =
∑
G

P (G)l(G) =
1

Ω

∑
G

l(G).

This definition represents the mean diameter across all networks with n nodes and
m edges. While some individual networks, might possess extremely large or small
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diameters this calculation recovers the mean value [45]. It is useful for analytic

formulation and addressing the most represenative scenario, which is useful in inter-
preting model results.

Poisson random networks are the most closely related network to the traditional
mass action models of epidemiological modeling. By simply changing the probability
p of connecting any pair of nodes in the network to one then the network is fully
connected and a model run on it will recover the results of the mean-field model.
All individuals have equal probability of interacting with any other individual in the
population. Random graphs then should maintain some degree of similar results
even when they are created to be sparser. This similarity is also a weakness of this
type of network because like the mass action model it cannot incorporate complex
structure, which is common in natural and human networks.

Poisson random graphs are not generally considered the best representations of
networks that occur in the natural world. The distribution of edges across the net-
work tends to be normal and lacks the extremes that are more common in networks,
which appear in the real world. Additionally, their random distribution does not
reflect the contact biases generally found between contacts on different networks.

Small-world

The small-world effect is most often associated in the popular mind to the idea of
“six degrees of separation” discovered by Milgram in a famous series of experiments
conducted in the 1960s. In Milgram’s experiments individuals were asked to pass
on a letter to an acquaintance in an attempt to get it to an ultimate target individ-
ual that was unknown to the original sender. While many of the letters were lost
approximately a quarter of the letters reached their target individual. On average
the letters that reached their target passed through only six individuals to reach the

final recipient [57]. Thus the term “six degrees of separation” was coined years later

by a playwright J. Guare [47].

Milgram was operating in the field of psychology, but his work illustrates a very
significant property of many networks found in nature and human society, the mix
of local and long-range connections. In small-world networks the majority of con-
nections are local. However, if only local connections were present then the path
length of the network would be extremely large. Small-world networks incorporate
a few long range connections, which drastically reduce the path length across the
networks. These long range connections allow an infection to skip to an entirely new
part of a network or a letter to be passed to an individual in only a few steps. The

network is both globally and locally efficient [38].

In a follow up to his original 1967 study, Miligram partnered with Travers to
conduct a similar study, where participants were in two different geographical regions.
One group was based in Nebraska, while another group lived in Boston. Both groups
of participants were attempting to get a letter to an individual based in Boston.
While the mean chain length was longer for letters being sent from Nebraska than
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from Boston, on average only an extra 1.5 links was necessary to transport a letter
more than 1,300 miles. This study shows even more firmly the effects of long-range
jumps that are present in many networks. While the letters that began in the
Boston area were generally within a 25 mile radius of the ultimate recipient, the
highly local nature that characterizes most social contacts still required an average

of 4.6 intermediaries before reaching the final recipient [58].

A systematic methodology for creating a network with the specific small-world

properties was first put forth by Watts and Strogatz in 1998 [61]. They propose a

network that can be oscillated between order and disorder by changing the probabil-
ity of rewiring connections. The network starts as ring lattice of size n where each
node has k edges. The ring lattice, also called a great circle, is discussed further
in Section 2.1.1. In brief it is a circular shaped network where each individual is
connected to its k nearest neighbors. Edges in the network are then rewired with
probability p and the network can then be toggled between order and disorder by
changing p. For p = 0 the network remains a ring lattice or great circle. Alterna-
tively, p = 1 returns the network to a Poisson random graph with no underlying
structure. Watts and Strogatz investigated the values of p between one and zero,

which had previously not been studied [61].

To quantify their results Watts and Strogatz choose two measures of network

connectivity, average path length L(p) and the clustering coefficient C(p). The

average path length is the number of steps required to reach any two nodes in the
network, while the clustering coefficient measures how interconnected local areas of
the network are. In a highly clustered network individuals are very likely connected
to their nearest neighbors. They then vary the value of p beginning with small values
close to zero and moving toward one.

Even for very small values of p dramatic decreases in L(p) occur. This effect

shows that even a few long range connections in a network can have a dramatic affect.

Conversely, the clustering coefficient, C(p), showed very little decrease initially. As

the initial ring lattice is highly clustered, the clustering coefficient can only decrease

as its edges are removed and thus it can only scale linearly [61]. The result of this

is that L(p) drops rapidly while C(p) remains practically unchanged. At the local

level then, the small-world effect can be imperceptible, while having a large affect on
a global scale. Based on their published results for this type of network structure,
a value for p of approximately 0.01 appears to cause a large drop in average path
length while maintaining a high level of clustering.

Further work conducted by Newman, Moore and Watts in 2000 developed an
analytic formula which is exact in the case of large networks for determining the
effect of adding connections or “short cuts” on the average path length in a small
world network. A short cut is a connection randomly added between two points in
the network. Their final scaling function appears as:

f(x) =
1

2
√
x2 + 2x

tanh−1
x√

x2 + 2x
,
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where x is the number of connections added to the network [46]. This result is

particularly relevant because it allows for a network creator to determine the exact
decrease in path length desired and choose the number of “short cuts” required.

Scale-free Random Networks

Scale-free networks are extremely common in nature. Networks often appear random,
but rarely do they follow the Poisson distribution discussed earlier. Instead real world
networks generally exhibit a selection bias as they form. One of the earliest identified
examples of this type of network, is a study of scientific citations conducted by Derek
de Solla Price in 1965. He showed that papers with a larger number of citations at a
given point in time are more likely to be cited later than a paper with fewer citations

[48]. The papers with large numbers of citations are likely better papers, or simply

more well known, but either way these few papers will garner many more citations
than the majority of papers that receive only a few.

Scale-free networks generally possess a power law or exponential degree distribu-

tion of edges [47]. The majority of nodes in the network are only connected to a few

other nodes, but certain key nodes possess a large number of edges.
In idealized form these networks possess some convenient properties that make

them attractive for mathematical study. One example presented by Newman in his

2003 survey paper involves a scale-free network [47], with a power law distribution:

pk =

{
0 for k = 0

k−α/ζ(α) for k ≥ 1.

This network is defined by the degree distribution pk, which is the fraction of nodes

in the network with degree k, the constant α, and ζ(α) is the Riemann function used

as a normalizing constant. With this definition the phase transition point can be
determined for the network, for when a giant component will occur. In this example
the phase transition occurs at:

ζ(α− 2) = 2ζ(α− 1),

which solves to a critical value for α of αc = 3.4788... Using this value the point
at which a giant component will appear in the network can be determined. A
giant component is when majority of the points in a network are joined together
so that any point in the component can be reached from any other point. Further

calculations found in Newman’s paper [47] show that for values of α below two, the

giant component encompasses the whole network. However, for values between α = 2
and αc = 3.4788... a giant component exists, but does not necessarily encompass the
whole network, thus the network could be disconnected. The affect of this disconnect
could be relevant for modeling an infection on the network, as some individuals could
be inherently protected from infection by virtue of having no contact path from the
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original infected individual. This type of disconnect could effect population level
results for an infection model.

Price first recognized this type of network in his paper on scientific paper citations

[48], but his work was not well known in the scientific community. It was not until

a method for the development of generalized random networks was developed by
Albert-Laszlo Barabasi years later that his method of network development now

known as ‘preferential attachment’ was widely acknowledged [47].

Barabasi proposed a model for a network that removes two characteristics of pre-
vious networks, constant size and random attachment. In the previously discussed
Erdos Renyi random network and even the small-world network of Watts and Stro-
gatz, population sizes are held constant and individuals are connected or reconnected
at random. In nature by contrast, networks are generally growing as new individuals
are added to the population. Additionally, a new node added to a network is more
likely to be connected to a well connected node than to a node with only a few edges.

To build this network he began with a small number of nodes m0 and add a
new node possessing m edges at every time step, with m ≤ m0. The ‘preferential
attachment’ of the network is brought in by defining the probability, Π, of a new
vertex connecting to a preexisting vertex i as dependent on the number of contacts,
ki, of vertex i so:

Π(ki) =
ki∑
j kj

.

Over time this network develops a power-law distribution of edges, which is inde-

pendent of the scale of the network [7]. Additionally, with his algorithm for creating

a scale free network, it is easy to create a network of a specified size or with a set
number of edges as the size of the network is simply m0 + t with mt edges.

One area of current research with these types of networks and particularly rele-
vant to disease modeling is the resilience of the networks to attack. Networks with a
highly skewed distribution of contacts are unique in being both resilient and vulner-
able. Networks of this type such as the World Wide Web are very resilient against
the random removal of nodes. However, they are quite vulnerable to the targeted

removal of a few key nodes [10].

With epidemic prevention, one desires to break up the network. Techniques such
as vaccination to remove nodes or social isolation to remove links could be targeted to
specific key points instead of random. The use of scale-free networks that reflect real
life systems to determine the affects of random or targeted vaccination is important
for potential strategic implementation in the case of an outbreak.

K-regular Local Networks

Thus far the discussion of networks has tended from a purely random graph, to-
ward more heterogeneous networks represented by the small-world and scale-free
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networks. At the other end of the spectrum are highly structured, local networks.
These networks are generally k-regular, all individuals have the same number of con-
nections, and complete homogeneity. They are generally referred to as lattices. The
great circle or ring lattice was mentioned earlier as a commonly used starting point
for the small-world network. Other common lattice structures include a triangular
lattice where each individual has three contacts or square lattice with four contacts
per an individual. Occasionally these networks are constructed such that they are
not homogeneous or k-regular on the boundaries, but in the limit of large networks
this effect is negligible.

Square Lattice

The square lattice is a k-regular network and completely homogeneous, with the
same degree of clustering for every node in the network. It has four contacts per a
node. The only exception to it homogeneity would be when boundaries are present
that would only be connected to two or three nodes instead of four.

Great Circle

A great circle network, is a network where every node is connected to its nearest
neighbors. For the network to be a connected network every individual must be
connected to at least its nearest neighbor. If more than two connections per a node
are desired than edges can be added connecting each individual to its next nearest

neighbors, repeating the process until the desired degree is reached [6].

K-regular Random Networks

K-regular random networks have the k-regular contact distribution of the lattice
networks. However, instead of the pattern of contacts being completely local as with
the various lattice networks, the contacts are randomly assigned across the network.
This type of network is the only k-regular network type which can incorporate het-
erogeneity, but it can also be structured to approximately maintain homogeneity
across the network. It can be described quite succinctly, as compared to the other
random networks and does not have the same highly localized transmission that
exists in the various lattice networks.

These types of networks are open to the same criticisms as the Poisson random
because their regular distribution of contacts is not common in nature. However,
they are useful mathematical tools for analytic analysis of the spread of an infection.

2.1.2 Other Characteristics of Networks

The networks described above represent a sampling of basic networks commonly
used in disease modeling. They possess varying degrees of heterogeneity, structure,
and clustering. While these are important characteristics there are a number of
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other traits that can be considered in analyzing and creating networks that are not
represented in these networks.

First, all of the networks described above are undirected, all contacts are bi-
directional. Many networks are instead directed, with contacts traveling from one
individual to another. Price’s original model for scientific paper citations is such at

network [48].

Additionally, in the physical world, rarely will a network have uniform strength
across all edges. Instead edges possess varying weights with stronger and weaker
connections. Weighting has been used in network models for a number of years.
With the inclusion of weights, a simple homogeneous network such as the square
lattice can be made extremely heterogeneous. The weighted lattice network can
simply represent many of the trends seen in networks with more complex connection
patterns. Heterogeneity in the weight of edges can cause patchiness in the spread of
an epidemic and cause it to have a qualitatively different epidemic pattern than the

fully connected network model would predict [52].

Additionally, in the networks considered above, all nodes are of the same type. In
the natural world, many networks involve nodes of different types. The inclusion of
multiple node types opens up a number of other characteristics that can be considered
on a network. One example is the mixing pattern between different node types.
The degree of mixing has a special name in social networks, it is called assortative

mixing or homophily [47]. This term describes the amount that individuals in a

social network interact with others of a different type. Types can be anything from
age, race, or gender to income level, education status, occupation or any number of
other determinants.

This type of mixing can be quantified with the “assortativity coefficient” Q:

Q =

∑
i P (i|i)− 1

N − 1

where N is the number of individuals in the population and P (j|i) is a conditional

probability representing the likelihood that a neighbor is of type j if a node is type
i. When contacts in a network only interact with their own type, then the coefficient

is zero. If they are randomly mixing than it is one [47].

The “preferential attachment” tendency of scale-free networks also mimics a spe-
cial kind of assortative mixing, called degree correlations. These correlations develop
in one of two ways. High degree individuals either prefer to associate with other high
degree individuals or alternatively they prefer individuals with only a few contacts.

Both situations lead to interesting network dynamics [47].

Finally, in networks with distinct social characteristics where individuals prefer
to interact with like kinds, sub communities can develop within the larger population
of the network.
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2.1.3 Disease Modeling on Networks

A lot of work has been done in modeling epidemics on different types of networks.
The following is a survey of a sampling of that work.

Correcting R0 on the K-regular Random Network

In a 1999 paper Keeling presented a correction to the traditional formula for R0 for

an S-I-R epidemic on a K-regular random network [36]. His work illustrated the

importance of the limiting nature of a sparse contact network in the ability of an
epidemic to take-off. In mean field models infectious individuals have access to every
other individual in the network, but in networks they have direct access only to their
immediate contacts. If an individual has three contacts then once one neighbor is
infected only two individuals are available to be infected by the second generation.
Furthermore, after the initial generation of infection each new infected contact has
at best one less contact available for infection. Thus the correlations in the contact
network limit the spread of the infection.

In a network where triangular clustering is assumed to be zero throughout the
network he finds a value for R0 of:

R0 =

(
1− 2

n

)
β

g
,

where n is the number of connections per a node and all other values are the same

as the mean-field model [36]. The results Keeling obtained in this derivation for

an S-I-R network differ from the results for the S-I-S system. Following the same
derivation, with a transmission rate of τ , one obtains a value for R0 for an S-I-S
epidemic of:

R0 =
β − g − 2τ +

√
(g + 2τ − β)2 + 4gβ

2g
[54].

This difference is interesting because the results for R0 in the mass action models
considered earlier are the same for the S-I-S and S-I-R systems. While interesting,
the result is not necessarily surprising. If one considers the correlation discussion
from earlier in this section, in an S-I-R system when an individual is infected they
are permanently unavailable for infection, which could as correlations develop limit
the ability of the infection to spread. Alternatively, in the S-I-S system after an
individual recovers from infection it returns to the susceptible pool, which changes
the limiting effects of the correlations seen in the S-I-R model.

Networks in Modeling Intervention Strategies

Networks often offer more realistic representations of population interaction than
mean-field mixing models, making them inherently useful in modeling intervention
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strategies for potential epidemics. One of the first challenges in building models to
test intervention strategies is building an accurate network upon which to model.
The networks discussed earlier are all idealized to some degree in order to build
general conclusions about how epidemics behave on different networks. However, for
an epidemiologist looking to model intervention strategies, accuracy is paramount,
while generality and mathematical elegance are less important.

One method for building an accurate network is to collect data directly. The use
of contact surveys is a common method for building networks of sexual contacts. It
can also be used with more general social contact.

In 2008 Read et al. conducted a contact survey of 49 adults on 14 non-consecutive

days [33]. They asked individuals to record all face to face encounters and as much as

possible the name or a unique identifier for the contact so that repeat contacts could
be accounted for. Participants also recorded the contact type and social context.
While the results showed that in wider social contexts a lot of random contacts occur,
in more intimate social settings the repeated close contacts are very measurable.
With this data they built a weighted contact network on which epidemics could be
simulated. One strength of their network is the ability to study the affect of contacts
in different settings.

They used the network developed from the contact survey for simulating epi-
demics and evaluating control strategies. Because their survey included information
on the strength of contacts, a weighted network was used to simulate an epidemic
and determine the effects of vaccination strategies.

They tested targeted vaccination strategies for an epidemic that unchecked would
likely affect approximately half of the population. The total degree of a node, the
number of other nodes to which it links, total weight, the sum of the total degree
multiplied by the effective strength of contacts, secondary cases, the expected number
of individuals a contact is likely to infect, daily degree, and the number of contacts
of an individual on a random day are all used as methods for targeting individuals
for vaccination. In the end, all of these measures improved significantly on random

vaccination as control strategies for preventing an outbreak [21]. Their work shows

that detailed, precise knowledge of a social network is not necessary for targeted
vaccinating to be effective. Even with approximate knowledge of basic parameters
such as daily number of contacts, vaccinating individuals at higher risk for spreading
an outbreak is a good use of limited resources.

Alternatively a group in the Sandia National Laboratories in the United States
used a simulated network of a small community to test social distancing strategies
for intervening in an epidemic where a vaccine or antidote may not be available.
To simulate the community, the researchers used a combination of small random
networks and a ring lattice. They attempted to estimate the life patterns of typi-
cal individuals in the community across all age groups. The network is extremely
complex and specific. It is likely to be quite accurate for the community of 10,000
individuals it is meant to simulate, but its complexity points to the limitations of
this strategy. While a small community can be modeled with relative accuracy, a
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city of millions such as London or New York with many more people and much
more diversity in types of individual behavior would be impossible to capture accu-
rately. Additionally, one would need separate networks to represent each individual
community.

For the small town modeled, this work showed that social distancing strategies are
effective in limiting the spread of an epidemic. School closures and keeping children
home can be especially effective in addressing influenza, which is primarily spread
among young individuals. For an epidemic that is more likely to affect the adult pop-
ulation then work place closures would need to be considered. The affect of out lying
communities that might not be employing the same strategies was also considered.
While these communities might continue to import infectious contacts, prolonging
the epidemic, it would ultimately be held to a manageable level for local hospitals

[25]. This type of modeling is especially important because control strategies such

as social distancing can carry very significant economic costs and be unpopular to
implement. Their effectiveness needs to be convincingly proven through modeling
before they are likely to be implemented in the face of an epidemic.

2.1.4 Network generation

Great circle network

An algorithm is written for generating each type of network. The generation of the
great circle or ring lattice is very straight forward with no room for variation. Each
individual numbered one through N , the size of the network, is connected to its n
nearest neighbors. Special cases are used for the first and last few nodes to connect
the ends of the network.

Square lattice network

A similar procedure is used for the square lattice network. In three-dimensional space
the network would be shaped as a taurus so that it is k-regular across all nodes and
does not have any boundary exceptions. Each individual is again numbered and then
connected to their equivalent neighbors on either side and above and below. This
network is defined by two parameters M and N , which when multiplied together
determine the size of the network, or the population being modeled.

Poisson random network

The Poisson Random network is created using an existing algorithm in Matlab to
create a sparse random network of size N with a Poisson distribution centered on
a mean of n neighbors or contacts per an individual. The network created by the
Matlab function sprand for sparse random network is then modified so that it is

a network comprised solely of ones and zeros like the other networks and is not
weighted.
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K-regular random network

For the K-regular random network a procedure used by House and Keeling [30]

adapted from Watts Strogatz small world is implemented. The algorithm begins
with the creation of a ring lattice of size N , with n connections per a node. Then
beginning with the first node and moving around the network, one of its connections
is broken. A second node is chosen from the network at random that was not already
connected to the first node, then one of this second node’s connections is also selected
and broken. The second chosen node is then rewired to the first and the two nodes
that were broken are then rewired. This procedure is followed moving around the
circle a total of five times. By that point the network is completely rewired such
that connections are no longer local, but entirely random.

This procedure is similar to the algorithm proposed by Watts Strogatz for the
original Small World network, however, this network must remain k-regular so where
ever a node is wired one of the corresponding nodes for the receiving individual must
also be broken and enough connections are rewired to lose all of the initial structure.

Small world network

The small world network is created using the original algorithm created by Watts and
Strogatz, without the condition of k-regularity. A value for p, the fraction of nodes
rewired, is set at p = .1 corresponding to the value found by Watts and Strogatz
where local clustering is maintained while the average path length of the network is
drastically reduced.

Scale free network

To build the scale free model the algorithm developed by Barabasi and Albert of
preferential attachment is used. In the beginning a very small network with a few
random connections is created. Then edges are added to the network at random, but
with a higher probability of attaching to nodes with more connections already then
nodes with fewer connections. As the network grows and more individuals become
connected to the higher degree nodes then the probability of new nodes connecting
to the original is very strong with lesser probability of connecting to any other given
node.
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Chapter 3

An investigation of the epidemic
threshold phenomenon in
complex networks

3.1 Problem Definition

As the previous discussion has shown, the basic reproduction number R0 is a fun-
damental quantity in infectious disease modeling. Its main purpose is in informing
whether or not an epidemic could take-off in a population. Additionally, networks
are increasingly used to form more accurate views on how an infection would be
likely to spread. Unfortunately, these two concepts do not merge well. The formu-
lations for R0 developed for mean-field models do not directly translate to models
developed on networks.

Models built on networks incorporate limitations on the ability of an infection
to transmit in a population and can include correlations between susceptible and
infectious pairs. Various efforts have been made to define R0 on networks. While
these efforts have made inroads in defining R0, a clear universal definition for a
quantity equivalent to the basic reproduction number for networks in general has
not been found.

In the earlier discussion, a number of relationships between R0 and various char-
acteristics of epidemics in different systems have been shown. Two of these character-
istics are of interest in this work. The first characteristic is the relationship between
R0 and the endemic state of the S-I-S system. For the basic, mean-field S-I-S model,

R0 = 1 − 1/I(∞). This relationship comes from the deterministic model defined

by the differential equations introduced in Section 1.1.4. The second relationship
on the other hand comes from the stochastic model. The stochastic model is built
around the idea that, in the real world, epidemics seeded with a single individual
often do not take-off even if they have parameter values that make them likely to
take-off. From this uncertainty, a relationship to the basic reproduction number can
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be defined. The derivation is in Section 1.3.2 and the relationship is R0 = 1/(1−F ).

As they have been defined for the mean-field model, both the endemic level
of infection and the fraction of epidemics that take-off have direct relationships to
the basic reproduction number and so one could postulate that they would have
a relationship even when defined on a network for which the basic R0 might not
apply. By considering the extreme cases, a nice pattern begins to show. In the
case where the probability of an infection taking-off is zero, the mean number of
infectious individuals in the steady state must also equal zero. Conversely, when the
probability of take-off is one, the value of the recovery parameter g must be zero.
If g is not equal to zero than there would exist some probability of an infectious
individual recovering and not passing on the infection. Since g is zero when the
infection has been established and is in its steady state, then the entire population
will be infected, corresponding to a fraction infected of one. Thus, in a network
with one strongly connected giant component, defined in Section 2.1.1, a relation
between the fraction that take-off and the endemic level of an S-I-S system must

pass through the points (0, 0) and (1, 1). The interest of this work is to examine

the relationship between these two quantities in different networks and to determine
if this relationship could bring insight into the problem of defining a threshold for
when an epidemic can take-off. This relationship has been shown to hold for the

great circle network [44].

3.2 Method for investigation

The approach taken here is to use two simulators based on Gillespie’s algorithm to
run stochastic simulations of S-I-S epidemics on six different general networks. One
simulator is formulated to run one long simulation in order to obtain an endemic
value for a given parameter set and network. The other simulator runs a large
number of simulations until a cut-off value where the infection is endemic in the
population and considered to have taken off. This second simulator then outputs
the size of each epidemic run so that the number of epidemics that take-off can be
determined.

For this work six networks are chosen that represent different types and levels
of heterogeneity and structure. The six networks chosen are: great circle, lattice,
k-regular random, Poisson random, small-world, and scale-free. The great circle,
lattice, and k-regular networks each have four contacts per an individual, and the
Poisson random and small-world networks have a mean of four contacts across the
network. By its nature the scale-free network has a much larger distribution of con-
tacts than any of the other networks. The great circle and lattice networks are con-
structed to be completely homogeneous with no boundaries and highly structured,
while the scale-free network is extremely heterogeneous and unstructured. Consid-
ering a range of networks should allow for insight into any patterns that might be
distinct to one type of network and not universal.

A representative network of each type is created and then the same network is
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used repeatedly in all simulations in order to avoid any variance based on random
differences between different individual networks in the same class. All networks
consist of 20,000 individuals. This network size is deemed as optimal size in order
to overcome a challenge for defining the endemic level near the threshold, but still
retain computational efficiency.

All results for the fraction of epidemics that take-off are based on running one
million simulations and results for the endemic level are developed after running the
endemic simulator for four million events. The large number of simulations run is to
ensure the degree of accuracy required to obtain a clear relationship free from noise.
The code used to generate the simulations for the endemic level and fraction that
take-off is attached as Appendices A and B.

3.2.1 Challenges of Investigation

Several challenges arise in properly determining both the endemic levels and the
fraction that take off on the different networks.

Determining the endemic level

The first challenge is simply to define the endemic level based on a simulation of an
outbreak. In the deterministic, differential equation based models the endemic level
is a single value, but in a stochastic simulation the exact level of infection in the
population is constantly changing. The value oscillates around the steady state, but
judgment must be used to determine when the infection has reached its steady state.
For the higher levels of infection this point is very clear, as illustrated in Figure
3.1. For low values of infection determining exactly when an infection is endemic

 

Figure 3.1: A sample of a network with a high infection rate. The level of infection
quickly reaches a point where it stabilizes around the assumed endemic level.

is challenging. Figure 3.2 illustrates this challenge as the epidemic appears to be
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decreasing to what might be a steady state, but it is not very clear. One way to
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Figure 3.2: This infection has a very low infection rate and whether it has stabilized
to an equialibrium is unclear.

attempt to get a clearer view is to run the simulation for more events. In this work
events were used instead of set times, however, the varying time between events was
accounted for in the compilation of the data. However for low values of infection
this exacerbates the problem of stochastic fade out. As Figure 3.3 illustrates if an
infection is oscillating around a small enough value then it is highly susceptible to
reaching zero infectives after a short time, which kills the epidemic.

Stochastic fade-out

Stochastic fade-out occurs when an infection is endemic in a population, but at
such a low level that it randomly dies out. If run long enough, all SIS epidemics
with g > 0 on a closed population of size N will eventually go extinct. Stochastic
fade-out is problematic to this work when it occurs before an endemic level can be
ascertained. This problem can be avoided by automatically re-seeding an infection
if it ever reaches zero in the population. However, this method is not desirable for
this work as it might affect the value obtained for the endemic level. Instead the size
of the network is an important consideration.

As the level of infection in a population is not an absolute value, but instead a
fraction of the population a larger population allows for the consideration of smaller
fractions without the problem of stochastic fade out. This desire for a larger network
to prevent stochastic fade-out must be balanced against the need to keep the networks
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Figure 3.3: An epidemic, which has sucumbed to stochastic fade-out.

at a reasonable level for computation speed. To this end three different networks
sizes were tested to find an optimal size. Networks of 10,000, 20,000, and 30,000
were all tested. Figure 3.4 shows the results of runs for the stochastic system on one
network of each size. The network of 20,000 was determined to be optimal because
it had a marked improvement in how small of values could be tested without fadeout
over the 10,000 node network while the 30,000 node network did not offer noticeable
further improvement.

Determining when an epidemic has taken-off

Another challenge arises in determining exactly when an epidemic has taken-off. The
determinant for this work is the standard of bi-modal behavior. If the results of the
large number of runs is bi-modal then there is a clear gap between small epidemics
that die out quickly and those that become entrenched in the population, as Figure
3.5 shows. As with the endemic level, this distinction is very clear for the higher
values of infection illustrated by Figure 3.5, but it is more difficult to determine as
the infection level nears the threshold shown in Figure 3.6. When one moves even
closer to the threshold the distinction disappears completely as Figure 3.7 shows.
Ultimately, by raising the cut-off for the simulator to a high enough value bi-modal
behavior can be determined to very low values of infection on the different networks.
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Figure 3.4: This graph illustrates the effect of size on point of stochastic fade-out.
All three networks showed a small amount of noise at these low values, but the
larger networks of 20,000 and 30,000 individuals appeared to to reach lower values
for infection rate without fading out.
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Figure 3.5: This graph illustrates the results of a network that was deemed bi-modal.
Note the large gap between the number of individuals infected in epidemics that took
off versus those that did not.
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Figure 3.6: As one attempts to model lower infection rates the distinction between
epidemics that took-off and those that died becomes less clear.
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Figure 3.7: In a network close to the threshold there is no clear distinction between
epidemics that took off and those that died.
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3.3 Results

In each of the networks the same pattern appears. Each of these networks show a lin-
ear relationship between the endemic level of infection and the fraction of epidemics
that take-off.
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Figure 3.8: The results of the fraction of epidemics that take-off plotted against the
endemic level of infection.

As Figure 3.8 shows, the linear relationship holds through the spectrum of param-
eter values for each network. The cut-off point where the relationship can no longer
be ascertained, however, does vary for each of the networks. This variation is likely
caused by the differing thresholds existent on each network. Figure 3.9illustrates
the difference between the endemic level of infection and fraction of epidemics that
take-off throughout the parameter spectrum. It shows the noise that is present in the
current data and how different networks can only be measured to different infection
levels. At a point in each of the networks results could not be found do to stochastic
fade-out and the definition of an epidemic take-off becoming murky do to the loss of
bi-modal behavior. Addressing both of these issues would allow for examining the

relationship even closer to the threshold and closer to the (0, 0) point.

The difference in the threshold for each of the networks is not surprising because
the structure of the network effects the point at which an infection is sustainable in

a population [36]. While a mean-field model offers N − 1 opportunities for direct

contact, in a network an individual can only directly contact the n individuals it is
connected to, which is often a very small fraction of the population. Additionally,
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Figure 3.9: A graph of the difference between the endemic level and fraction of
epidemics that take-off at different infection rates.

the degree of correlation between neighbors that is emphasized in pair-based models
varies significantly by network. In highly clustered networks such as the great circle
or square lattice the spread of the infection is limited by the boundaries of the
spreading infection and the need to have contact with a susceptible individual in
order to pass on infection. In random or small world networks where the average
path length on the network is much shorter it is possible for an epidemic to spread
more quickly throughout the network as it is not limited to one section but can
instead move throughout.

3.4 Application to real-world networks

While this work appears to hold well in all five of the networks chosen which represent
varying degrees of heterogeneity and clustering, the real test of this relationship
would be on a much more heterogeneous network, particularly a network generated
from data, which would not follow exactly any of the standard network attributes
existent in all of the above networks. While the linear relationship has held on the
scale-free network, which is very heterogeneous, it is still very simple and idealized
compared to many data derived networks.

To test this assertion a network is selected, which is about as complex as can
be found. It is heterogeneous, asymmetric, weighted, and has multiple disjointed
components. This network, a representation of relationships between fisheries in

the UK [34], was chosen because it is completely opposite of the networks studied

previously. All networks studied thus far are symmetric, unweighted, and have a
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single giant component. Figure 3.10 shows the results of a few initial runs on this
network. The initial results are not promising as the linear relationship appears to
completely disappear especially at higher values of R0.
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Figure 3.10: Initial results for a real-world network do not appear to show the linear
relationship demonstrated on the idealized networks.

This limited investigation leads to the conclusion that the connectivity of the
network is a condition for this relationship on asymmetric networks. In asymmetric
networks where individuals have directed edges it is possible to have nodes that can
be reached from one direction and thus would be possibly infected in the endemic
state but, if they have no connections directed outward into the rest of the network,
then they are unable to pass on the infection if it was seeded with that individual.
Figure 3.11 illustrates an example of such a disjointed asymmetric network. An
epidemic seeded with individuals 4 or 8 would take-off with probability 0. However,
in an endemic state it is very possible for them to be infectious. This type of property
likely is the cause for the skewed initial results on the asymmetric network of fisheries

tested [34]. A number of nodes exist at the end of chains where they do not have

the ability to initiate an infection even while they can be infectious in the endemic
state.

If we would like to examine the possibility of a one-to-one relationship than
it is necessary to identify the giant component within this network. In the giant
component any node can be reached from any other node via some path through the
network. In figure 3.11 all nodes are in the giant component except for nodes 4 and

42



 

1 

7 

5 

6 

2 

4 
3 

8 

Figure 3.11: An illustration of an asymmetric network.

8 discussed earlier.

3.5 Areas for further development

There are several areas for further development of this work.

3.5.1 Determining Source of “Wobbles”

The term “near linear” is used because while there appears to be a clear linear rela-
tionship across all networks, it contains noise whose source has yet to be identified.
Figure 3.8 illustrates the results for each of the six networks with a straight line
representing the perfect linear relationship, which can be used for comparison.

With this significant number of simulations run, the continued presence of noise
in the linear relationship can only be put down to a yet undetected bug in the
simulator program or a real artifact of the system that is currently not understood.
As follow up work done by another researcher did not include “wobbles” and thus
they are determined to be the result of a bug in the code.

3.5.2 Focus on the individual level

The first area for further development is in examining correlations between individu-
als in the network. What is the degree of correlation between the likelihood that an
individual is infected in the endemic state and the likelihood of an epidemic taking off
seeded from that individual? While some amount of agreement seems likely, whether
a clear pattern or relationship can be established deserves deep consideration.

This examination could be particularly relevant because it might help bring in-
sight into the role that different key areas in a network, such as “super spreaders”
in a scale free network might have on the persistence of an infection in the endemic
state and the possibility of initiating an epidemic. It might be possible that in the
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initial stages of an epidemic, if certain areas could be protected, then the infection
would not be allowed to become endemic in the population.

3.5.3 Pushing to the threshold

Finally, as this work appears to show a clear linear relationship between the endemic
level and the likelihood of an epidemic taking off, pushing this relationship closer to
the threshold is desirable. However, in order to show the validity of the relationship
at values very close to the threshold of R0 further investigation is required. Clearer
definitions of what it means for an epidemic to take-off and to be established in a
population must be created or much larger networks must be used to obtain a clearer
view of behaviors near the threshold.

Defining bi-modal behavior

The current definition for whether an epidemic has taken off or not, as discussed
in Section 3.2.1, is reliant on bi-modal behavior of the system where epidemics ei-
ther clearly do not take-off and only a few individuals are infected or they become
entrenched and a large number of individuals are infected. The challenge of this
condition is that there is not a definitive, quantitative method for distinguishing the
mode of an individual epidemic when an overlap between the modes exists. In the
work conducted here a judgment is made by the researcher as to which outbreaks
belong to each mode. For larger values of R0 this behavior is very distinct, but for
lower values it is very much a judgment call. A different judgment might lead to a
different answer.

One possibility for attempting to draw a clearer picture of bi-modal behavior
closer to the threshold is to attempt to model in successively larger networks. The
use of larger networks might help prevent stochastic fade out that comes from an
infection that has reached an endemic state, but the amplitudes of its oscillations
around the endemic level exceed the number of individuals infected at the endemic
level. This fade out is likely responsible for a number of epidemics that appear
to infect a significant number of individuals and be entrenched in the population,
but fadeout before reaching the defined cutoff to determine bi-modal behavior. If
the population size is larger, then the absolute endemic level is raised so that the
oscillations are less likely to hit zero and cause stochastic fadeouts.

However, it is also important to consider that at some point the loss of bi-
modal behavior will correspond with the instability of the endemic steady state do
to reaching and passing the disease threshold. At this point corresponding to R0 ≤ 1
than by definition an epidemic cannot take-off in the population corresponding to

the point (0, 0).
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Defining endemic level

A similar problem exists in measuring the endemic level of infection. Not only does
one run into the issue of stochastic fade-out as mentioned in Section 3.2.1, but the
definition of the steady-state for a stochastic system is not clear. For higher values
of the basic reproduction number this state is clear from examining a graph and
is reached quickly. However, for parameter values near the threshold, judgment is
involved in attempting to discern when an infection has reached its endemic state.

The challenge of stochastic fade-out is that sometimes it is unclear if an infection
with certain parameter values has a potentially valid steady state that should be
measured or if an infection is just very slow in fading out and no steady state in fact
exists. This challenge could be addressed by running simulations near the threshold
for longer periods of time in larger networks where stochastic fadeouts are less likely.
Additionally, comparisons might be made back to the fraction of epidemics that take-
off. If bi-modal behavior has been lost in that system for a given set of parameter
values than it is likely that even if there appears to be the possibility of an endemic
steady state, it is unlikely to be stable.

3.5.4 Attempting different models

This work has been attempted on the basic S-I-S model because it is a simplistic
model and possesses a steady state. As has already been shown by comparing the
original R0 correction presented by Keeling in his 1999 paper for the S-I-R model
to a correction derived from the same process for the S-I-S model in Section 2.1.3,
these models differ in their thresholds. Thus the relationship between an endemic
level determined by an S-I-S model and an epidemic take-off threshold determined
from the S-I-R model will not be one to one, but it could still be defined and useful
in attempting to discern the likelihood of an outbreak with a given set of parameters

Another model that might be worth investigating is an S-I-R model with demog-
raphy. Unlike the basic model, the S-I-R model with demography does eventually
reach a steady state, but it tends to oscillate a lot more in reaching the steady state
than the S-I-S model and will still have periods of low disease prevalence intermixed
with epidemics. Again however, if a relationship could be determined it is likely to
be useful in a real world context. Additionally, S-I-R models with demography are
more realistic than the basic models so it is closer to a real world system.

Beyond these examples there are any number of other systems which could be
tested. Models with additional states such as the S-E-I-R model, which includes the
latent period, or S-I-R-S model, with waning immunity, might both prove interesting.
While the relationships might not be linear they could still be useful. Only testing
of these additional examples will be able to determine if the relationship shown here
can be applied to more complex models in addition to differing networks.
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3.6 Conclusions

The goal of this research was to determine the relationship between the endemic level
of infection in a population and the fraction of epidemics that take-off on various
networks. Results obtained so far appear to support the hypothesis that there is
a relationship, and the nature of this relationship appears to be linear. While this
result is not entirely unexpected it is nice that it appears to hold for all of the
networks despite extreme examples of localization illustrated by the great circle and
square lattice and heterogeneity illustrated by the scale free network. As the results
have held across this variety of networks, the probability of them holding on further
types of networks is very high.

These results could useful in practice if the results are proved to be robust across
extreme real-world networks. However there are limitations in the real world applica-
tions as early results from the asymmetric fish network show. For directed networks
the linear relationship is only likely to hold for the giant component in the network.
While the linear relationship may not hold for the entire network in cases of directed
networks where the network is not covered by the giant component, the measure
of individuals might still prove useful. These investigations would further solidify
the robustness of this relationship between the endemic level of infection and the
likelihood of an epidemic taking off.
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Appendix A

MATLAB code for simulating
fraction of epidemics that
take-off

% clear; close all 
profile on 

  
%Transmission network generation 
k=5; 
N=500; 
g=1; 

  

  
tic 

  
% T=make_homogeneous_symmetric_network(N,k);%note that this does not always converge to a 

solution 
% T=make_random_network(N,k);% 
% T=make_lattice_network(M,N); 
% T=make_scale_free(N,k); %k is min number contacts per individual 
% T=make_small_world; 

  
% Predicted_R0=tau*k/g 

  
No_sims=2000; 

  
outMat=[]; 

  
tau=[.31]; 
no_trials=length(tau);  
Frac_take=zeros(2,length(tau)); 
for i=1:no_trials 
    T=T~=0; 
    T=tau(i).*T; 
FracTake=SIS_frac_sim(T,g,No_sims); 
Frac_take(:,i)=[tau(i); FracTake]; 
end 
Frac_take 
toc 
profile off 
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function FracTake=SIS_frac_sim(T,g,No_sims) 

   
Fail_Vec=[]; I0=randsample(length(T(:,1)),1); 

  
for i=1:No_sims 
       Fail=simulate(T,I0,g); 
       Fail_Vec=[Fail_Vec Fail]; 
       FracTake=(length(Fail_Vec)-sum(Fail_Vec))/length(Fail_Vec);  
end 

  
function Fail=simulate(T,I0,g) 
Fail=[]; No=length(T(:,1)); 

  
I_vec=zeros(1,No);I_vec(I0)=1; 
S_vec=ones(1,No);S_vec(I0)=0; 
S_tot=sum(S_vec);I_tot=sum(I_vec); 

  
M=I_vec*T; P_vec=S_vec.*M; P=max(sum(P_vec),eps); 

  
current_time=0; infection_time=current_time+exprnd(1/P); 

  
R=max(g*sum(I_vec),eps); recovery_time=current_time+exprnd(1/R); 
event=0; t_max=1000; I_max=20; 

  
while I_tot<I_max  
event=event+1; 
    if I_tot>0 
    %find next event 
    [time_to_next_event,event_type]=min([infection_time,recovery_time,t_max+1]); 
    current_time=time_to_next_event; 

  
    if event_type==1 %infection 
        A=P_vec/P; 
        edges=[0,cumsum(A)]; 
        [F,farm_index]=histc(rand,edges); 
        S_vec(farm_index)=0; I_vec(farm_index)=1; 
        M=M+T(farm_index,:); 
        P_vec=max(S_vec.*M,0); P=max(sum(P_vec),eps); 
        infection_time=current_time+exprnd(1/P); 
        R=max(g*sum(I_vec),eps); 
        recovery_time=current_time+exprnd(1/R); 

  S_tot=S_tot-1; I_tot=I_tot+1; 
    elseif event_type==2 %recovery 
        A=I_vec/sum(I_vec); 
        edges=[0,cumsum(A)]; 
        [F,farm_index]=histc(rand,edges); 
        I_vec(farm_index)=0; S_vec(farm_index)=1; 
        M=M-T(farm_index,:); 
        P_vec=max(S_vec.*M,0); P=max(sum(P_vec),eps); 
        infection_time=current_time+exprnd(1/P); 
        R=max(g*sum(I_vec),eps); 
        recovery_time=current_time+exprnd(1/R); 
        I_tot=I_tot-1;  S_tot=S_tot+1; 
    end 
    else 
       Fail=1; 
       return 
    end 
end 
 

if     I_tot==I_max;  Fail=0;  end 

48



Appendix B

MATLAB code for simulating
endemic level of infection

 
clear; close all 
profile on 

  
%Transmission network generation 
k=5; 
N=2000; 
g=1; 

  

  
tic 

  

  
T=make_homogeneous_symmetric_network(N,k);%note that this does not always converge to a 

solution 
% T=make_random_network(N,k);% 
% T=make_lattice_network(M,N); 
% T=make_scale_free(N,k); %k is min number contacts per individual 
% T=make_small_world; 

  
% Predicted_R0=tau*k/g 

  
event_max=10*length(T);  
startCount=1000; 

  
outMat=[]; 

  
tau=[.29]; 
no_trials=length(tau); 
infMat=zeros(2,length(tau)); 
for i=1:no_trials 
    T=T~=0; 
    T=tau(i).*T; 
[out inf]=steady_state_sim(T,g,event_max,startCount); 
outMat=[outMat out(:,3)]; 
infMat(:,i)=[tau(i); inf]; 
end 
infMat 
toc 
profile off 
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function [out inf]=steady_state_sim(T,g,event_max,startCount) 

  
N=length(T); 
I0=randsample(length(T(:,1)),.05*N); %The second value is the number of individuals 

seeding the epidemic. 
No=length(T(:,1)); 

  
I_vec=zeros(1,No);I_vec(I0)=1; 
S_vec=ones(1,No);S_vec(I0)=0; 
S_tot=sum(S_vec);I_tot=sum(I_vec); 

  
M=I_vec*T; P_vec=S_vec.*M; P=max(sum(P_vec),eps); 

   
current_time=0; 

   
infection_time=current_time+exprnd(1/P); 

  
R=max(g*sum(I_vec),eps); recovery_time=current_time+exprnd(1/R); 
event=0; t_max=2*event_max; 

  
out=zeros(event_max,3); 
while event<event_max && I_tot~=0 
    event=event+1; 
    out(event,:)=[current_time,S_tot,I_tot];   

     
    %find next event 
    [time_to_next_event,event_type]=min([infection_time,recovery_time,t_max+1]); 

  
    current_time=time_to_next_event; 

  
    if event_type==1 %infection  
        A=P_vec/P; 
        edges=[0,cumsum(A)]; 
        [F,farm_index]=histc(rand,edges); 
        S_vec(farm_index)=0; I_vec(farm_index)=1; 
        M=M+T(farm_index,:); 
        P_vec=max(S_vec.*M,0); P=max(sum(P_vec),eps); 
        infection_time=current_time+exprnd(1/P); 
        R=max(g*sum(I_vec),eps); 
        recovery_time=current_time+exprnd(1/R); 

  S_tot=S_tot-1; I_tot=I_tot+1; 
    elseif event_type==2 %recovery 
        A=I_vec/sum(I_vec); 
        edges=[0,cumsum(A)]; 
        [F,farm_index]=histc(rand,edges); 
        I_vec(farm_index)=0; S_vec(farm_index)=1; 
        M=M-T(farm_index,:); 
        P_vec=max(S_vec.*M,0); P=max(sum(P_vec),eps); 
        infection_time=current_time+exprnd(1/P); 
        R=max(g*sum(I_vec),eps); 
        recovery_time=current_time+exprnd(1/R); 
        I_tot=I_tot-1; S_tot=S_tot+1; 
    end 
end 
if I_tot==0 
    out='ERROR' 
    return 
end 
outInfVec=out(:,3); 
outInfVec=outInfVec(startCount:event_max); 
inf=mean(outInfVec)/N; 
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