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Abstract

This thesis presents practical suggestions towards the implementation of the hyperset
approach to semi-structured databases and the associated query language ∆ (Delta).
This work can be characterised as part of a top-down approach to semi-structured
databases, from theory to practice.

Over the last decade the rise of the World-Wide Web has lead to the suggestion
for a shift from structured relational databases to semi-structured databases, which
can query distributed and heterogeneous data having unfixed/non-rigid structure in
contrast to ordinary relational databases. In principle, the World-Wide Web can be
considered as a large distributed semi-structured database where arbitrary hyperlinking
between Web pages can be interpreted as graph edges (inspiring the synonym
‘Web-like’ for ‘semi-structured’ databases also called here WDB). In fact, most
approaches to semi-structured databases are based on graphs, whereas the hyperset
approach presented here represents such graphs as systems of set equations. This is
more than just a style of notation, but rather a style of thought and the corresponding
mathematical background leads to considerable differences with other approaches to
semi-structured databases. The hyperset approach to such databases and to querying
them has clear semantics based on the well established tradition of set theory and logic,
and, in particular, on non-well-founded set theory because semi-structured data allow
arbitrary graphs and hence cycles.

The main original part of this work consisted in implementation of the hyperset
∆-query language to semi-structured databases, including worked example queries. In
fact, the goal was to demonstrate the practical details of this approach and language.
The required development of an extended, practical version of the language based on
the existing theoretical version, and the corresponding operational semantics. Here we
present detailed description of the most essential steps of the implementation. Another
crucial problem for this approach was to demonstrate how to deal in reality with the
concept of the equality relation between (hyper)sets, which is computationally realised
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by the bisimulation relation. In fact, this expensive procedure, especially in the case
of distributed semi-structured data, required some additional theoretical considerations
and practical suggestions for efficient implementation. To this end the “local/global”
strategy for computing the bisimulation relation over distributed semi-structured data
was developed and its efficiency was experimentally confirmed.

Finally, the XML-WDB format for representing any distributed WDB as system
of set equations was developed so that arbitrary XML elements can participate and,
hence, queried by the ∆-language.

The query system with the syntax of the language and several example queries from
this thesis is available online at

http://www.csc.liv.ac.uk/˜molyneux/t/

Keywords: Semi-structured, Web-like, distributed databases, hypersets, bisimulation,
query language ∆ (Delta)
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Chapter 1

Introduction

Before the emergence of the database culture in the late 1960’s data processing involved the

ad hoc manipulation of data on tape or disk. The complexity of developing and managing

such systems inspired new research into the principles of data organisation. Three models were

suggested during the late 1960’s and early 1970’s: i) the hierarchical model [72], ii) the network

model [70] proposed by the Data Base Task Group, and iii) Codd’s relational model [16].

The hierarchical and network models are closely related to the notion of object-orientation

as is argued in [73] and are, in fact, based on the idea of object identity, i.e. an object whose

meaning is determined not only by records of values of its fields (or attributes) but also by a

pointer or address of this object within files or memory. Note that, two objects are identical

if they have the same address or pointer, whereas two objects are equivalent if they share

the same fields. Links T1 → T2 denoting many-to-one relationships between record types

constitute a graph in the case of the network model, and a forest (consisting of trees) in the

case of the hierarchical model. Physically, each such graph or tree edge is represented by real

relationships between OIDs of records of types T1 and T2.

On the other hand, the great success of Codd’s relational model, which can be considered

as a value-oriented approach, was based on taking the most fundamental concepts of logic

and set theory as its foundation. Thus, any relation is a set of tuples, with each tuple also

being represented1 by a set of a special kind (a set of attribute labelled values). In fact, this

approach assumes an abstract view on data values where the concept of object identity is not

needed. (Note that the concept of object identity may play a role in implementation but not

in the abstract model itself.) The relational model was further extended by object-orientation

during the early 1990’s [32], thus again absorbing the idea of object identity and additionally

allowing complex data values with possibly nested structure and the idea of abstract data type

with encapsulated methods.

1 under our interpretation
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2 Chapter 1. Introduction

However, object-relational databases are still restricted by an imposed relational schema,

that is they have a rigid structure. Note that complex, nested structures considered in this

approach are somewhat related with the idea of semi-structured databases discussed in this

thesis, but the latter approach does not assume in general a rigid structure. Moreover, the

hyperset approach to semi-structured databases presented in this thesis is crucially based on

the value-oriented rather than the object-oriented view

From relations to semi-structured or Web-like data

From the second half of the 1990s a new idea of semi-structured databases emerged (see [1]

as a general reference). In the age of the Internet and the World-Wide Web (WWW), allowing

accessibility of remote and heterogeneous databases, the relational paradigm has become too

narrow and restrictive. Indeed, the structure of the data over the WWW is typically non-fixed

or non-uniform. The idea of graph representation of data was introduced with the interpretation

of graph edges like hyperlinks on the Web. Due to this analogy such graph-like semi-structured

databases can also be reasonably called Web-like databases (WDB) [41].

An important example of the graph approach (in its pure form) is the system Lore [46]

and the corresponding query language Lorel [2], which considers graph vertices as object

identities (OIDs) with equality between vertices understood as essentially literal coincidence

of OIDs irrespectively of their information content (presented by outgoing edges according to

our hyperset approach). In fact, this is typical for most semi-structured database approaches

[2, 8, 13, 14, 15, 18, 19, 22, 26, 27, 31, 33, 46, 51], except in the case of the query language

UnQL [11] (as discussed briefly below).

On the other hand, because of this idea of browsing by “picturing” the informational content

(data value) of a graph vertex, considering such graphs merely as a binary (or ternary, if taking

labels on edges into account) relation is not fully adequate in this context. Thus, we view the

notion of semi-structured data as more than just a relation, that is more than just a graph where

vertices are (uniquely presented by) object identities. In our hyperset theoretic approach, which

is value-oriented, it becomes more appropriate to consider those target vertices of outgoing

edges from any given vertex v as children or even as elements of v with v understood as a

set of its elements. It is the latter view on graph vertices which makes it value oriented. In

fact, similar terminology is used in Extensible Markup Language (XML), which is a widely

adopted approach to semi-structured data. However, this is only a superficial similarity with

the set theoretic approach. XML only allows to syntactically represent semi-structured data

whereas treating such data as sets requires an additional level of abstraction (supported by an

appropriate technique such as some set theoretic query language) which is more than just using

the rudiments of set theoretic terminology.



3

XML documents, in fact, represent ordered tree structured data rather than arbitrary graph

structured data, however, using the attributes id and ref allows one to imitate in XML

arbitrary graphs as well. Considering the ordering of data in XML documents as an essential

feature is related mainly with numerous software implementations which are deliberately

sensitive to the order of such data. But, XML documents can also be treated as unordered, as

we do in this thesis. Note that XML plays only an auxiliary role in our approach as a particular

way of representing semi-structured data (XML-WDB format). Our main terminology and

abstract data model is based on (hyper)set theory.

The graph model and set theoretic model

The interpretation of graph vertices as sets of their “children” leads us again to a set theoretic

idea of representation of data, semi-structured data, a far going generalisation of the relational

(value-oriented) approach. It is also worth noting that in the foundations of mathematics the

previous century was marked by the triumph of the set theoretic approach for representing

mathematical data as well as the style of mathematical language and reasoning. Mathematical

logicians also developed generalised computability theory over abstract sets (of sets of sets,

etc.) in the form of admissible set theory [6]. In computer science, the set theoretic

programming language SETL [62, 63] was created, quite naturally, for the case of finite

sets only. Also some theoretical considerations on computability and query languages over

hereditarily finite sets were done in [20, 21, 43, 56, 57, 59, 61] with the perspective of

a generalised set-theoretically presented databases – in fact semi-structured – even before

the term “semi-structured databases” had arisen. Moreover, the set theoretic approach is

closely related with a special version of the graph approach when graphs are considered up

to bisimulation (see below).

The first mathematical result relating both the set and graph approaches was Mostowski’s

Collapsing Lemma, allowing the interpretation of graph vertices as sets of sets corresponding

to children of these vertices. This, however, worked properly only for well-founded graphs and

sets (which in the finite case, especially interesting for database applications, means the absence

of cycles). But arbitrary graphs with cycles can also be “collapsed” into sets (interrelated by

the membership relation) in the more general non-well-founded set theory also called hyperset

theory [3, 5]. Here, for example the set Ω = {Ω} consisting of itself is quite natural and

meaningful, and corresponds to the simplest graph cycle 	.

These two trends, from abstract set theory to more concrete graph model of semi-structured

data (which is closer to implementation), and vice versa were called in [61] top-down and

bottom-up approaches. They meet most closely in the work on UnQL query language [11]

which is devoted to a specific graph model approach to semi-structured data considered up to
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bisimulation. The latter concept is also the key one in the works [41, 43, 56, 57, 61] (serving

as the theoretical background for this thesis) for interpreting graph vertices as a system of

(hyper)sets belonging one to another according to the graph edges. Nevertheless, [11] is still

rather a graph approach than hyperset one according to the special, however related to, but

not a genuine set theoretical way in which [11] treats graphs (see Section 11.3 and [61]). The

main difference is that graphs considered in [11] have multiple “input” and “output” vertices,

whereas graphs as considered in our hyperset approach have only one “input” corresponding

to the set itself (and possibly one “output” corresponding to the empty set if it is contained

in the transitive closure of this set). In fact, working with these “inputs” and “outputs”

(used for appending one graph to another, etc.) is conceptually rather graph-theoretical than

set-theoretical.

Hyperset approach to semi-structured or Web-like databases

As discussed above, the hyperset approach to semi-structured databases interprets graph

structured data as abstract hypersets. Moreover, for the purposes of implementation, such

graphs are represented as systems of set equations e.g. Ω = {Ω} for the graph 	. In fact,

arbitrary finite graphs can be rewritten into systems of set equations and vice versa, where

graph vertices (or object identities) represent set names. Moreover, elements of sets in these

set equations should be labelled according to labelling of graph edges, and, in fact, these labels

are the carriers of atomic information in the hyperset approach to semi-structured databases.

Furthermore, graph structure or, respectively, set-element nesting organises such atomic data,

just like relational tables in the relational or nested relational approaches. The notion of equality

between sets can be represented in graph terms by the bisimulation relation on vertices or set

names whose idea consists, roughly speaking, in (recursively) ignoring the order and repetition.

Thus, any two graph vertices or set names denote the same set if they are bisimilar, that is

contain the same (recursively, up to bisimulation) elements. In fact, the bisimulation relation is

very important in our approach being a fundamental concept underlying hyperset theory.

Hyperset query language ∆

The associated ∆-query language is based on set theory and predicate logic, being an extension

of the basic or rudimentary operations [30, 39] – the core fragment of ∆. The set theoretic

operators of the ∆-language, like in the relational calculus, have clear and well-understood

semantics. In fact, the expressive power of ∆ (the core fragment plus transitive closure,

decoration and recursion set theoretic operations) was shown in [57] and [43, 58] to capture

all polynomial time computable operations over hereditarily finite sets and, respectively,

hypersets. Also, another version of the language was shown in [40, 42] to capture exactly
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all LogSpace computable operations over hereditarily finite sets (without cycles). Therefore, in

principle, the ∆-query language can be reasonably considered as computationally viable and

worthy of implementation.

Some earlier preliminary work on the implementation of the ∆-query language to WDB

was done earlier by Yuri Serdyuk in [66], as well as in some practical attempt towards a new

implementation based on multiple distributed agents working cooperately over the Internet [35]

(taking into account the earlier theoretical work [60]). More recently the implementation work

leading to this thesis was done in [49]. However, the latter implementation was insufficiently

perfect. This antecedent work subsequently inspired the proposal for further research and the

development of a sufficiently detailed implementation, that is, the point of the work done here.

Note that some details of the implementation described here were published in [50].

Implementation of the hyperset approach

The goal of this work was to demonstrate how the hyperset approach to semi-structured or

Web-like databases could be implemented, with the aim of presenting this approach in a

practical rather than theoretical context and making it accessible to a more practically oriented

audience. In particular, the practical characteristic of this work assumes representation of

hyperset data as files distributed over the World-Wide Web and the implementation of the

hyperset query language ∆ allowing queries over such distributed data. Importantly, the

implemented language should preserve the original high level, declarative character2 and retain

its set theoretic style. Further, this approach should demonstrate the power of the set theoretic

style of thought towards semi-structured databases. Note that the query system (which is

implemented in Java) and the example queries described in this thesis can be found at

http://www.csc.liv.ac.uk/˜molyneux/t/

Efficiency issues

Another goal consisted in the subsequent investigation of theoretical considerations arising

from this experimental implementation, specifically the problem of efficient implementation

of the equality or the bisimulation relation – which crucially underlies this hyperset theoretic

approach. Moreover, our proposed solution was restricted to making the bisimulation relation

efficient only in context of distributed WDB which may require numerous and particularly

expensive downloads of files from the World-Wide Web. However, this work does not consider

the problem of efficiency in the non-distributed case, especially taking into account the previous
2 Recall that, for example, Prolog initially intended to be a logical, declarative programming language,

eventually has both declarative and imperative features. This mixture of ideologies was the result of making this
language more efficient.

http://www.csc.liv.ac.uk/~molyneux/t/
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works on efficient bisimulation algorithms that, on the other hand, do not consider distribution

[24, 25]. Note that, many other aspects of efficiency of the implementation (such as indexing,

hashing and other physical data organisation techniques [73]) as well as various other questions

which should be resolved for creating a sufficiently realistic database management system were

inevitably postponed here. In fact, the primary aim of this work was the correct and meaningful

implementation of a non-trivial and user friendly version of the ∆-language.

Organisation of the thesis

Details of the implementation are rather technical, thus it makes sense to firstly explain the

intuitive (or high level) meaning of the hyperset approach and demonstrate example queries of

the implemented ∆-query language. Secondly, technical details of the implementation appear

towards the end of the thesis detailing the lower level aspects of our approach. Note that,

the material presented in this thesis follows an intuitive perception of this approach towards

semi-structured databases rather than a strict logical dependency.

The thesis is organised into four parts:

Part I, “Hyperset approach to querying Web-like databases”, gives an overview of the

implemented hyperset approach to semi-structured or Web-like databases and the associated

query language ∆, including worked example queries. The point of this part is to introduce

this approach on an intuitive level before discussing the technical details of implementation.

Part II, “Local/global approach to optimise bisimulation and querying”, is concerned with

the problem of efficient implementation of the equality or bisimulation relation. Here two joint

strategies were suggested for resolving this problem: i) implementation of an Internet service

for resolving bisimulation questions, and ii) the computation of bisimulation approximations

on fragments of distributed Web-like databases to aid the computation of global bisimulation.

The viability of these suggestions as solutions is supported by empirical testing.

Part III, “Implementation issues”, presents the technical details of the implementation of

the hyperset approach towards semi-structured or Web-like databases. We start by detailing

query execution (which we feel is potentially more important for readers) followed with query

parsing and contextual analysis, although query execution is, in fact, formally dependent on the

latter syntactical considerations. Finally, XML representation of WDB systems of set equation

has a quite isolated role in our approach and is presented at the end of this technical material,

but this discussion is actually quite self-contained and can be read independently of the rest of

this thesis.
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Part IV, “Evaluation”, concludes with comparative analysis with other known approaches

towards semi-structured databases, and finishes with some future prospects and closing

remarks.
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Chapter 2

Semi-structured or Web-like databases

The term semi-structured data denotes data which has a characteristically unfixed or non-rigid

structure, thus semi-structured data is considered as “schemaless” or “self-describing”1having

no complete structural description or schema [1]. However, typically semi-structured data is

similar to structured data e.g. relational data (as described below) but without strictly imposed

structure. More specifically our approach to semi-structured databases is based on (hyper)set

theory [3, 5].

2.1 Set theoretic view of structured and semi-structured data

2.1.1 Structured relational data

Structured data has a fixed and rigid structure such as relational data [17] described by relational

schema R(A1, A2, ..., An), where R is relation name and Ai are attributes (constrained by the

domainDi). In the relational model, relations are naturally represented as tables with attributes

as named columns of a table. For example, the Stud relation shown in Figure 2.1 has the

attributes forename, surname, DOB (date of birth) and department.

Figure 2.1: Relational table of students.

1 The consideration of semi-structured data as “self-describing” is somewhat misleading as it might be wrongly
thought to suggest clear semantic description of such data. In particular, when considering the graph representation
of semi-structured data, labels have only an informal meaning dependant on subjective interpretation of language,
e.g. the imprecise term “location” could have many interpretations – address, map coordinates, URI, anatomical,
etc.

11
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The relational approach is essentially based on set theory, as well as on logic. For example, the
Stud relation (above) can be represented as set of student tuples (rows or records),

Stud = { st1, st2, ... }

or, better, as

Stud = { student:st1, student:st2, ... }

where each student tuple is represented as a set of labelled atomic values, with labels being
attribute names, and attribute values as atomic values (strings of symbols between quotation
marks to distinguish them from set names and attribute names),

st1 = { forename:"Jack", surname:"Jones",

DOB:"30/6/1986", department:"DeptChemistry" }

st2 = { forename:"Sarah", surname:"Smith",

DOB:"27/11/1988", department:"DeptBiology" }.

Let us consider the relational database Univ as the following set of (labelled) relations,

Univ = { departments:Dept, students:Stud, lecturers:Lect,

modules:Mod, courses:Course, ... }.

The relations Dept, Lect, Mod and Course will not be further described, they are plausible

example relations, like Stud, that could belong to a University database. Here the labels (or

attributes) departments, students, lecturers, etc., give an informal description of

what the sets Dept, Stud, Lect, etc., are about. These sets could be denoted differently,

say as D, S, L, etc. Thus, strictly speaking the denotation of sets does not necessarily carry

informational content. Hence the important role of labels (attributes e.g. forename) and

atomic values (e.g. "Jack"), which are the proper carriers of basic information.

2.1.2 Relaxation of structural restrictions on relational data

Relational data with the given schema R(A1, A2, ..., An) has a rigid structure with mandatory
attributes Ai for associated tuple components. It is also known of the more general approaches
to nested relational databases [52, 54, 71] where attribute values could be relations. Say, in the
above example we could reconsider DeptChemistry as a set (instead of an atomic value)
by omitting the quotation marks around DeptChemistry and adding the corresponding set
equation further detailing the chemistry department:

DeptChemistry = { name:"Department_of_Chemistry",

lecturers:ChemLect,

modules:ChemMod,

... }.
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Moreover, we could relax the requirement on students tuples to have a value for each attribute

forename, surname, age and department. For example, the DOB of a student could be

absent by some reason, but some other information could be present, such as

email:"jones@liv.ac.uk"

or,

sex:"male".

Thus, relaxation of traditional structural restrictions on relational databases leads naturally to

semi-structured databases, in fact, to the set theoretic approach where such data are considered

as arbitrary set of (labelled) sets of sets, etc., to any depth, represented by set equations like

above.

2.1.3 Semi-structured data

For simplicity, we consider semi-structured data as systems of flat set equations where a set

equation consists of set name si equated to a bracket expression Bi(s̄) like those considered in

the above example. In vector form this can be summarised as

s̄ = B̄(s̄).

Flat bracket expression {l1 : si1 , . . . , ln : sin} is thought of as a set of labelled elements. In the
flat (non-nested form) only set names si from the list of all set names s̄ = s1, s2, ..., sn, may
participate as elements. Labels lj can be considered as analogous to attributes in the relational
approach, however, element labelling is optional with the default label being the empty label 2

(or null) which can be considered as invisible, such as the absence of labelling in the Stud
set above. Formally our general approach does not consider atomic values such as "Jack",
"Jones", etc., from the example above. However, any atomic value can be simulated as a set
consisting of one labelled empty set [41, 57, 61], such as

"Jack" = {’Jack’:{}}.

Strictly speaking, we should use single quotation marks for labels (often omitted for simplicity)

and double quotation marks for atomic values. Of course, we can still use the denotation for

atomic data like "Jack", but it should be understood as above.

2.1.4 Syntactical and conceptual set nesting

In the case where nesting is allowed (like the participation of {} in the above definition of
atomic values, and also in more complicated cases) any set name si can be substituted with
the corresponding nested bracket expression Bi, and vice versa. For example, the Stud set
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equation could be rewritten with the nested right-hand side (and adding the student attribute)
as follows,

Stud = {

student:{ forename:"Jack", surname:"Jones",

DOB:"30/6/1986", department:"DeptChemistry" },

student:{ forename:"Sarah", surname:"Smith",

DOB:"27/11/1988", department:"DeptBiology" }

}.

Here the nesting of data inside the Stud set equation proves useful in avoiding the introduction

of new set names, and thus eliminating st1 and st2. Moveover, this demonstrates that set

names in set equations play an auxiliary role, and can even be readily renamed in an analogous

way to renaming variables in any ordinary algebraic equations. Thus the real information of

such semi-structured data is carried by labels and set/element nesting. More generally, we

could allow (and, in fact, will consider later) arbitrary nesting in the right-hand sides of set

equations s̄ = B̄(s̄). This can be evidently “unnested” or “flattened” by introducing new

(fresh) set names and appropriate set equations. So, our restriction for non-nested systems of

set equations (i.e. with non-nested right-hand sides) is not essential, but can simplify some

considerations.

In fact, the notion of non-nested or flat system of set equations is only syntactical and,

conceptually, flat systems of set equations allow arbitrary nesting with the participation of set

names (corresponding to set equation) as elements

2.2 Hyperset theoretic view of semi-structured data

In the above approach to semi-structured data via systems of set equations s̄ = B̄(s̄) there was,

in fact, no restriction on the form of these equations. Thus allowing not only arbitrarily nested,

but also cycling data like in the simplest example of a set consisting of itself

Ω = {Ω}.

Mathematically, such kind of sets are considered as non-traditional, although they have already

been deeply investigated in hyperset theory, as represented in the books [3, 5]. From the point

of view of semi-structured data there is nothing strange in such sets. Imagine that we have a

relational table where some cells can represent other relational tables, etc. Such nesting can be

implemented so that “clicking” on such a cell leads to the corresponding nested relational table

shown instead of the original table. There is no technical or conceptual problem to have such
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a situation that after several such “clicks” we will arrive back to the original table we started

“clicking” with – like in the World-Wide Web by successive “clicking” we can possibly return

to the Web page we started with. Moreover, from the informational or database point of view

this can be quite meaningful.

For example, let us consider the University database where formally the student set st1 has
the chemistry department set DeptChemistry as the member, and (possibly many) students
are members of the ChemStud set of enrolled chemistry students, as described by mutually
recursive set definitions,

st1 = { forename:"Jack", surname:"Jones",

DOB:"30/6/1986", department:DeptChemistry }

DeptChemistry = { ..., enrolled:ChemStud, ... }

ChemStud = { student:st1, ... }

with ChemStud a subset of the set Stud of all university students. Any set (name) si can be

defined by referring to other set (names) as elements, etc., so that eventually we could possibly

come to the original set si – thus, arbitrary cycling is allowed.

There is more to say about the hyperset approach to semi-structured data on the conceptual

level, in particular, on the concept of equality between sets (possibly denoted by different

set names) but we will postpone this discussion to Section 2.4.1. On the current very

preliminary level of consideration sets are thought simply as syntactical bracket expressions,

or as represented by formal systems of set equations. In fact, we need an abstract concept of

hypersets amongst which we could find a (unique) solution to any given system of set equations.

2.3 Graph or Web-like view

2.3.1 Graph representation of systems of set equations

Representation of semi-structured databases by systems of set equations presents a clear and

mathematically well-understood2 conceptual view of semi-structured data as (hyper)sets. But

it also makes sense to consider visualisation of systems of set equations by the equivalent

representation as (finite) labelled directed graphs. In fact, it is important for all considerations

of this work that any given system of set equations can be considered as a labelled directed

graph.

2 taking into account Section 2.4
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Figure 2.2: Semi-structured database Univ represented as directed graph.

In fact, most approaches to semi-structured databases typically consider them as labelled

directed graphs, that is, semi-structured data is modelled as (finite) directed graph G = 〈N,E〉
with L-labelled edges, where L is an infinite set of possible labels (l1, l2, . . ., etc., and the

empty label 2), N is a finite set of nodes (s1, s2, . . ., etc.), and E is a finite set of edges with

each edge si
lk→ sj being formally an ordered triple of the form 〈si, sj , lk〉. For example, the

University database considered in Section 2.1 has the corresponding representation by directed

graph shown in Figure 2.2.

The membership of labelled element label : s2 to the set s1 (label : s2 ∈ s1) corresponds

to the labelled edge s1
label−→ s2 (and vice versa), where set names si serve as (the unique

names of) graph nodes. In general, each set equation si = {l1 : si1 , . . . , ln : sin} from the

system generates a fork of labelled edges si
l1−→ si1 , . . . , si

ln−→ sin outgoing from si, as

depicted in Figure 2.3. All those forks generated from every set equation give the corresponding

representation as graph. Vice versa, any graph with labelled edges is evidently visualising

a system of set equations, with one equation for each node so that each node is thought as

a (hyper)set. Thus, graphs and (formal) systems of set equations are essentially equivalent

concepts.

2.3.2 Graphs or systems of set equations as Web-like databases

The World-Wide Web (WWW) can, in principle, be considered as a large semi-structured

database, consisting of an arbitrarily organised collection of hyperlinked HTML documents.

Each HTML document has a corresponding URL (WWW address), and contains textual data
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Figure 2.3: Forking of labelled edges generated by the set equation si = {l1 :si1 , . . . , ln :sin}.

with markup tags denoting visualisation and hyperlink information. The following fragment of

HTML code is an example of a hyperlink,

<a href="http://www.liv.ac.uk/">University of Liverpool</a>

what in our symbolism of labelled elements can be represented as

University of Liverpool : http://www.liv.ac.uk/

and visually (in Web browser) this hyperlink would appear as “clickable” fragment of text

University of Liverpool

with the URL hidden. Hiding of URLs corresponds to the idea mentioned above that set names

(names of graph nodes) actually do not matter from the point of view of the proper information.

Only labels on edges or the “clickable” links (and other text and visual content) on Web pages

carry information, plus, of course, the graphical structure. That is, URLs play a different role

than proper information in the WWW. In Figure 2.4 we consider browsing between hyperlinked

HTML documents by “clicking” on such links. It is evident from this example that hyperlinked

HTML documents can express arbitrary relationships, for example the cycle when browsing by

“clicking” on the links, Departments, Medicine, University of Liverpool, and

so on.

Thus, any hyperlink can be denoted by the labelled edge urli
label−→ urlj , suggesting the

intuitive understanding of hyperlinking as arbitrary labelled directed graph. Therefore, systems

of set equations or equivalently labelled direct graphs, can be more generally named by the

analogy Web-like Databases (WDB) [19, 41, 60, 61]. Furthermore, our approach also considers

WDB as Web-like with distribution over the Internet (in a similar manner to hyperlinks),

however, it is intended to be smaller, simpler and better organised than the WWW. Such

WDB graphs can, in principle, be quite arbitrary but in real applications it is assumed to be

http://www.liv.ac.uk/
http://www.liv.ac.uk/
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governed by some organisation or company, and possibly not allowed to be arbitrarily extended

by anybody in the world (like typical databases). Additionally, WDB (or semi-structured data)

can also have a schema restricting the shape of the WDB, but not necessarily so rigid like in

the case of relational databases, see for example [9, 41, 57]. However, we will not go further

into these details.

Figure 2.4: Browsing of hyperlinked HTML documents on the University of Liverpool website.

2.3.3 Distributed WDB

Any WDB represented as a system of set equations s̄ = B̄(s̄) can be quite big, and naturally

divided into subsystems of set equations. Each subsystem corresponds to a XML-WDB file

(see Chapter 10 for details of the XML-WDB representation) containing only some of the

equations (desirably closely interrelated by a subject matter). Moreover, these files could be

distributed between various servers over the world, like HTML files on the World-Wide Web.

It may happen that set equations defined in some WDB file may involve set names defined by

equations in other (non-local) WDB files.

Furthermore, when considering the real application of WDB distribution proves useful in
the creation and management of (potentally large) databases, such as the plausible distribution
of the University WDB. Let us consider that in the case of the University WDB, set equations
might be distributed between many WDB files, let us say by department. Therefore, the
WDB file http://www.liv.ac.uk/ChemistryDepartment.xml could contain the
following subsystem of set equations3:

3This is still not very realistic situation to assume that the file ChemistryDepartment.xml contains all set

http://www.liv.ac.uk/ChemistryDepartment.xml
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DeptChemistry = { ..., enrolled:ChemStud, ... }

ChemStud = { student:st1, ... }

Likewise, the WDB file http://www.liv.ac.uk/BiologyDepartment.xml could

contain the subsystem of set equations:

DeptBiology = { ..., enrolled:BiolStud, ... }

BiolStud = { student:st2, ... }

Moreover, there could also be the WDB file Students.xml containing the set equations

st1 = {...} and st2 = {...}. Thus, the set names st1, st2, etc. participating,

respectively, in ChemistryDepartment.xml and BiologyDepartment.xml would

now be described as sets in another file. In this case, we should consider the full versions of the

simple set names, st1, st2, etc., described in http://www.liv.ac.uk/Students.

xml, as discussed below.

2.3.3.1 Full versus simple set names

Taking into account the above example, any given set name should be considered as a full set
name, consisting of WDB file URL and simple set name (with the simple set name described
within the WDB file). For example, in the distributed University WDB considered above, the
full set name of the biology student st2 would be

http://www.liv.ac.uk/Students.xml#st2

with the WDB file URL and simple set name delimited by # symbol. However, in practice

it suffices to use simple set names in the left-hand side of set equations, and also for those

occurrences of set names appearing in the right-hand side of set equation definitions if they are

defined in the same WDB file. In particular, the author of a WDB file can freely use any simple

set name (as such or as part of full set names) without the danger of clashes with simple names

participating in the other WDB files.

However, there is one subtle point: if a simple set name set_name occurs twice in some

WDB file, once as a simple set name and again as part of a full set name url#set_name

(with url referring to some different WDB file). Then in the latter case it refers to another

file where the corresponding equation is defined, even if the current file already contains the

equation set_name = {...}. Thus, these two occurrences are actually different set names

because their corresponding full set names are indeed different. Of course, each set name must

be defined either in the same or some other WDB file. Otherwise it is considered as syntactical

error. Thus, it is necessary to download some WDB files whose URLs appear in full set names

of the given file to confirm the existence of defining equations of the referenced set names.

equations related with this department (on students, lecturers, etc.). These set equations should be further divided
into natural fragments (WDB files).

http://www.liv.ac.uk/BiologyDepartment.xml
http://www.liv.ac.uk/Students.xml
http://www.liv.ac.uk/Students.xml
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2.4 Hyperset data considered abstractly

The notion of WDB as a system of set equations presents a low level, syntactical understanding

of semi-structured data. However, conceptually (and semantically) WDB is understood as

consisting of abstract hypersets (like relational database consists of abstract relations). The

hyperset approach considers WDB as an arbitrary finite system of set equations, each set

equation consisting of set name equated to corresponding bracket expression. But the intended

meaning of such a syntactical expression is a set of labelled elements, not an ordered sequence.

Therefore according to this (hyper)set theoretic approach ordering and repetition of elements in

a bracket expression should be completely ignored. That is, ignoring ordering and repetitions

has some both operational and conceptual consequences.

This can possibly lead to equality between different set names si and sj denoted as

si = sj and meaning that si and sj denote the same abstract hyperset, or strictly denoted as

si ≈ sj (to avoid possible misunderstanding of si = sj as the assertion that these set names are

identical, and to stress on the particularly important role of this concept of equality). In fact, ≈
is the well known concept in the context of graphs called bisimulation relation between graph

nodes or, in our case, between set names [3, 5, 61]. As the role of this relation is crucial for

the hyperset approach to semi-structured databases, this approach is therefore more than pure

graph theoretic, as considered in the approaches to semi-structured databases as graphs e.g. in

[1, 2, 11, 18, 19, 36, 46] or as XML tree-like data e.g. in [23, 33]. Note that, however, [11] is

also heavily based on the bisimulation relation, it is rather a graph than a hyperset approach as

was argued in [61].

2.4.1 Bisimulation – preliminary considerations

In general, the bisimulation relation between set names (graph nodes) of a WDB, i.e. a system

of set equations, and the corresponding recursive algorithm is based on the idea that any two

sets are equal if for each (labelled) element of the first set there exists an equal (bisimilar)

element in the second set (and vice versa). Bisimilar set names are said to denote the

same abstract (hyper)set. The bisimulation relation will be further described in Chapter 4,

with formal theoretical definition, and practical considerations for its implementation. We

consider that this hyperset approach to WDB is worth implementing as it suggests a clear and

mathematically well-understood view on querying such semi-structured data.

A WDB is called strongly extensional [3] or non-redundant, if different set names (nodes)

are non-bisimilar i.e. denote different hypersets. In the case of strongly extensional WDB,

equality between set names (nodes) trivially becomes the syntactical identity relationship.

Otherwise, even the simplest queries like x = y or x ∈ y can be quite expensive to evaluate,
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especially in the case of distributed WDB. Therefore, we devote Part II to some approach of

dealing with this problem practically.

2.4.1.1 Example

Consider the set equations below, where trivially x ≈ x′ holds because our (hyper)set approach

ignores the ordering and repetition of elements:

x = {y, z}

x′ = {z, y, z}.

However, set names (or graph nodes) may be equal (bisimilar) for some “deeper” reason than

for x and x′ above. Let us consider the above example extended with the (recursive) definitions

of the sets z, y and y′:

z = {}

y = {x}

y′ = {x′}.

The sets y and y′ both contain one element of syntactically differing set names (x and x′

respectively), thus suggesting that y and y′ might not be equal. However, the bisimulation

relation defines two sets as equal if for each element of the first set there exists an equal (or

bisimilar) element in the second set, and vice versa. In the case above we already know that

x ≈ x′ holds, and according to this informal definition of bisimulation all of the elements of y

are bisimilar to the elements of y′, and vice versa. Therefore we can deduce that, in fact, y ≈ y′

holds.

Let us now consider the strongly extensional version of this system of set equations

obtained by eliminating the redundant set names x′ and y′, and omitting repetitions. Thus,

after “collapsing” the bisimilar nodes x′ to x and y′ to y, and omitting element repetitions, the

resulting system of set equations is

x = {y, z}

y = {x}

z = {}.

Thus, the elimination of redundancies (in the above system of set equations) is visualised by

Figure 2.5.
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(a) Redundant version, with red dashed edges
relating bisimilar nodes (or sets)

(b) Non-redundant (strongly exten-
sional) version

Figure 2.5: Graphical representation of a trivial WDB (cf. corresponding set equations above).

2.4.2 Redundancies in WDB

The above example, although artificial, demonstrates that bisimilarity between set names

introduces redundancies into WDB. However, the crucial question in implementing the

hyperset approach to WDB is whether the bisimulation relation (≈) can be computed in any

reasonable and practical way. Some possible approaches and views are outlined below.

In principle, the occurrence of bisimilar nodes in a realistic WDB (i.e. redundancies)

should be infrequent. Therefore, such rare redundancies can be eliminated by supporting

WDB in a strongly extensional state, with redundancies detected or even eliminated instantly

as soon as they might potentially appear. Trivially, after eliminating redundancies equality

between sets (i.e. bisimulation relation between set names or graph nodes) becomes the identity

relation. However, eliminating redundancies is more expensive than only detecting them

i.e. just computing bisimulation relation on the WDB. Thus, supporting WDB in strongly

extensional form may be reasonable option when WDB is not large.

WDB should not be assumed to be just another version of WWW, freely extensible by

anybody in the world. That is, an appropriate discipline of working with WDB could make

the problem of bisimulation practically resolvable. Let us now consider several ways by which

redundancies can appear.

2.4.2.1 Redundancies arising during query execution

Execution of queries leads to the temporary extension WDB′ of the original WDB (as detailed

later in Section 3.3), with the addition of new set names and set equations locally. Such

extensions WDB′ may potentially give rise to new redundancies, so that equality subqueries

applied to these newly generated sets becomes non-trivial. Note that the set names in original
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WDB do not refer to new ones in WDB′, thus WDB remains self-contained. Therefore, the

new bisimulation relation (≈′) on WDB′ restricted to those set names in WDB coincides with

the identity relation on WDB. Moreover, the algorithm of query execution could be amended

in such a way that as soon as new (auxiliary) set names are generated (like res in Section 3.3)

any possible redundancies will be eliminated immediately. It should also be taken into account

that the extensions WDB′ arising during query execution have several specific types, and are

sufficiently simple and small, thus making the process of detecting/eliminating redundancies

easier, see also [40, 42], but we will not go into the details here.

2.4.2.2 Redundancies which can appear during a local update

Local updates of WDB files are more problematic because previously non-bisimilar nodes

outside this file may become bisimilar due to possible links (or paths) to the local nodes

with changed/added meaning. The appropriate (more efficient than the standard) strategy of

detecting/removing all such redundancies is not so straightforward and needs to be developed

yet. However, taking into account the locality of changes, this task does not seem to be

unrealistic.

2.4.2.3 Deliberate redundancies

Deliberate redundancies in WDB can also appear with the same aim as mirroring in WWW.

But, if there is a requirement to officially registered such mirroring in the WDB, then such

deliberate redundancies should most plausibly be dealt with in a quite feasible way.

2.4.2.4 Local versus global bisimulation

Unlike the other considerations above, we will consider the “local/global” approach and its

implementation for supporting bisimulation relation on WDB (in background time) in more

detail (see Part II). Now we present only some general introductory comments on this idea.

Assume that all WDB nodes are divided into classes Li according to their sites (WDB

servers) or even files. There is a quite natural definition of local (i.e. computed locally) lower

and upper approximations (≈L
−,≈L

+) to the global bisimulation relation (≈) on the whole WDB:

n1 ≈L
− n2 ⇒ n1 ≈ n2 ⇒ n1 ≈L

+ n2

These approximations can help to compute and to permanently support global bisimulation

in a distributed way in background time. Moreover, we could require local independence

(≈L
− = ≈L

+, and hence = ≈� L) and additionally local non-redundancy (≈L
− = ≈L

+ = =L).
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2.4.3 Bisimulation invariance

The hyperset approach assumes considering WDB (graphs or systems of set equations) up to

bisimulation. Therefore, it is an important requirement for set theoretic operations and relations

to be bisimulation invariant, that is to preserve the bisimulation relation. Although not fully

proven here, it can be shown [58] that all definable queries q of the hyperset ∆-query language4

(see Chapter 3) are bisimulation invariant:

x̄ ≈ ȳ =⇒ q(x̄) ≈ q(ȳ) (for set valued queries)

x̄ ≈ ȳ =⇒ q(x̄)⇔ q(ȳ) (for boolean queries).

For example, in the case of the set theoretic operation union we have:

x1 ≈ y1 & x2 ≈ y2 ⇒ (x1 ∪ x2) ≈ (y1 ∪ y2).

This actually means that we work with (abstract) hypersets rather than just with graph nodes

or set names, however the operational semantics of the language ∆ is based on the syntactical

manipulations of set equations [61]. The point is that the semantics of the language ∆ respects

bisimulation and completely agrees with the hyperset theory [3, 5].

In particular, x1 ∪ x2 is defined as a new set name, say u, with corresponding new set

equation u = {. . . , . . .}, where the first “. . .” is the content of the right-hand side of the

equation x1 = {. . .} from the given WDB, and similarly for the second “. . .” and the equation

x2 = {. . .}. The union y1 ∪ y2 is computed in the same way from set equations for y1 and y2

giving rise to new set name, u′, and the corresponding set equation u′ = {. . . , . . .}. Then the

conclusion of the above bisimulation invariance condition for ∪ actually means u ≈ u′, and

can evidentially be shown.

Note that the membership relation x ∈ y for two sets (considering the unlabelled case for

simplicity) is defined to be true if the set equation for y involves some set name x′, where

y = {. . . , x′, . . .} and, moreover, x ≈ x′. Additionally, it can be shown that the membership

relation is also bisimulation invariant:

x1 ≈ y1 & x2 ≈ y2 =⇒ x1 ∈ x2 ⇐⇒ y1 ∈ y2

For all other constructs of the ∆-language the operational semantics maybe more complicated,

however, it follows that they also agree with this intuitive (abstract) set theoretical meaning.

The syntax and semantics of the ∆-query language will be further detailed in Sections 3.1

and 3.2, with some further indications of the operational semantics in terms of set equations

4 The operational meaning of ∆-queries are defined graph theoretically or in terms of set equations.
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detailed in Section 3.3.

2.4.4 Anti-Foundation Axiom

Finally, we do not go into full mathematical details on hypersets, however, we could assert

the following form of Anti-Foundation Axiom (AFA) [3, 5], which holds in the universe of

abstract (in our case finite) hypersets:

Any system of set equations s̄ = B̄(s̄) has a unique abstract hyperset solution for

set names s̄ making these equations true.

Therefore, set names of any WDB (as system of set equations) denote quite concrete, uniquely

defined abstract hypersets. In this sense each set name (in a ∆-query) serves as a set constant

(relative to the given WDB) denoting a unique hyperset. Note that, the ∆-language also has set

variables which can be quantified unlike constants.

Strictly speaking all of this makes precise mathematical sense only in context of Chapter 4,

which further details the bisimulation relation (with some additional mathematical considera-

tions) beyond the general informal description of bisimulation relation so far.
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Chapter 3

Query language ∆

3.1 The syntax

There has already been much theoretical considerations on (some versions of) the ∆ (Delta)

query language to hyperset/WDB databases [40, 41, 43, 57, 61]. The two main syntactical

categories of ∆ are:

• ∆-terms representing set valued operations over hypersets (set queries), and

• ∆-formulas representing truth valued operations (boolean queries).

Note that the denotation ∆ bears partly from the well-known class ∆0 of bounded formulas

introduced by Levy, although ∆, as defined here, denotes a wider language. It is based on

the basic or rudimentary set theoretic languages of Gandy [30] and Jensen [39]. Moreover,

inclusion of set theoretic operators: transitive closure (TC), recursion (Rec) and, for the case

of hypersets, decoration (Dec) (the latter due to Forti and Honsell [29] and Aczel [3]), allows

to define in ∆ exactly all polynomial time computable operations over hypersets represented as

WDB, thus demonstrating and characterising theoretically its rich expressive power (assuming

that a linear order on labels is given) [43, 56, 57, 58]. The operators of ∆ are defined as follows:

〈∆-term〉 ::= 〈set variable or constant〉 ∅ {l1 : a1, . . . , ln, an}
⋃
a TC(a)

{l : t(x, l) | l : x ∈ a & ϕ(x, l)} Rec p.{l : x ∈ a | ϕ(x, l, p)} Dec(a, b)

〈∆-formula〉 ::= a = b l1 = l2 l1 < l2 l1 R l2 l : a ∈ b ϕ & ψ ϕ ∨ ψ ¬ϕ

∀l : x ∈ a.ϕ(x, l) ∃l : x ∈ a.ϕ(x, l)

The intuitive set theoretic semantics of the majority of the above constructs should be

well-understood by anyone with the minimal mathematical background in set theory and logic.

In the above constructs we denote: a, b, . . . as (set valued) ∆-terms; x, y, z, . . . as set variables;

27
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l, li as label values or variables (depending on the context); l : t(x, l) is any l-labelled ∆-term

t possibly involving the label variable l and the set variable x; and ϕ,ψ as (boolean valued)

∆-formulas. Note that labels li participating in the ∆-term {l1 : a1, . . . , ln : an} need not

be unique, that is, multiple occurrences of labels are allowed. This means that we consider

arbitrary sets of labelled elements rather than records or tuples of a relational table where li
serve as names of fields (columns).

The binding label and set variables l, x, p of quantifiers, collect, and recursion constructs

should not appear free in the bounding term a (denoting a finite set). Otherwise, these operators

may become unbounded and thus, in general, non-computable. For example, let us consider

the universal quantifier ∀l : x ∈ {. . . , l : x, . . .}.ϕ(x, l) which becomes unbounded due to

the quantified variables l : x participating in the bounding term {. . . , l : x, . . .}. In fact, as

l : x ∈ {. . . , l : x, . . .} is always true the above quantified formula proves to be equivalent to

unbounded one: ∀l :x.ϕ(x, l).

3.2 Intuitive denotational semantics

Any ∆-query without free variables has either: i) (hyper)set value in the case of ∆-terms, or

ii) boolean value in the case of ∆-formulas. Those participating set variables or set constants

represent abstract hypersets (and thus correspond to set names in WDB), whereas participating

label variables or label constants represent label values (corresponding to strings of symbols).

The intuitive meaning of ∆-queries is described by the denotational semantics, that is what

any expression denotes1. For the purposes of implementation ∆-queries are also described

by means of their operational or computational semantics (see Section 3.3) which must be

coherent with our intuitive denotational semantics. Here we will also rely on intuition, without

presenting any precise argument. In fact, the required coherence will be pretty much evident.

So, we can concentrate on examples of queries and implementation aspects.

3.2.1 Boolean valued expressions — ∆-formulas

Equality (=) and the alphabetic ordering (<) between labels is understood standardly. In the

theoretical ∆-language the relation R over labels is any easily computable relation over labels,

however, in the implemented ∆-language described in this thesis we consider R as any of the

following substring relations
1 There is a deep mathematical theory of denotational semantics of programming languages based on Domain

Theory [65, 68] (also see the contemporary reference [28]) to represent denotational values of a programming
language expressions. The language ∆, where all computations evaluating queries are finite, does not require this
theory which is based on the idea of potentially infinite computations (embodied in the so called “undefined”
element ⊥). Anyway, it makes sense to use the term denotational semantics, although we will describe this
semantics on a very intuitive level by reference to the “domain” of sets and hypersets.
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∗l1 = l2 l1∗ = l2 ∗l1∗ = l2

where the wildcard ∗ represents any string of symbols. In principle we could include into the

language more relations over labels, but in the implementation there are only < and substring

relations, and the user currently has no way to define more primitive relations over labels.

It should be noted that equality between ∆-terms, a = b or, for technical reasons, a ≈ b,

is understood as the equality of abstract hypersets denoted by these terms and, as such, is

computed by the bisimulation algorithm discussed in Chapter 4. That is, when we discuss

hypersets abstractly, we use =. But when considering bisimulation algorithm to determine

whether two set names or graph nodes denote the same abstract hyperset, we use ≈. In the

implemented version of the language we have only = which, of course, involves calling the

bisimulation algorithm, but this is hidden from the user who, therefore can think on hypersets

abstractly. Moreover, bisimulation is implicitly involved in the (computational) meaning of the

membership relation according to the equivalence

l :a ∈ b ⇐⇒ ∃m :x ∈ b.(m= l & x≈a)

informally having the meaning: find an outgoing l-labelled edge from b which leads to some

node x bisimilar to a. But, thinking abstractly, l : a ∈ b says simply that a is an l-labelled

element of b.

The logical operators (&,∨,¬) have the usual meaning from propositional logic and can be

used to form logical sentences from ∆-formulas. Universal quantification can be understood

in terms of conjunction:

∀l :x ∈ a.ϕ(x, l) ⇐⇒
∧

li:xi∈a

ϕ(xi, li)

and existential quantification in terms of disjunction:

∃l :x ∈ a.ϕ(x, l) ⇐⇒
∨

li:xi∈a

ϕ(xi, li)

assuming that a = {l1 : x1, . . . , ln : xn}. It is evident from this definition that quantification

occurs over those elements of the set denoted by a which satisfy the formula ϕ. That is,

quantification is bounded by (elements of) the set a, with the ∆ formula ϕ being called the

scope of the quantifier.
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Note that when a quantified formula participates as a subformula of a bigger formula or of a

term the technical problem arises where exactly this (sub)formula is finished, that is what is the

scope of the quantifier. In the implemented ∆-language (Appendix A.1) there is a discipline of

using parentheses to find unambiguously the scope of quantifiers, both intuitively and by the

implemented parser (and contextual analysis algorithm). Say, in

∀l : x ∈ a . (ϕ & ψ & χ)

the scope of the quantifier is the whole expression in the parentheses. But the general informal

rule is: the scope of any quantifier is as small as possible. For example, in

(∀l : x ∈ a . ϕ & ψ & χ)

the multiple conjunctions requires some compulsory external parentheses (exactly as shown),

and then the scope of the quantifier is either ϕ (excluding ψ and χ) or some initial part of

ϕ, if syntactically meaningful at all. We will not give the formal definition which is usually

widely known and intuitively evident. For the precise definition of the scope of quantifiers,

declarations, etc. the reader should, first, inspect the relevant part of the ∆-language syntax

in Appendix A.1 and, most importantly, read the Section 9.2 on contextual analysis which, in

fact, served as a rigorous conceptual guidance for us to implement the language correctly.

3.2.2 Set valued expressions — ∆-terms

The set constant empty set (∅) denotes the set {} having no elements. In general, set values

are represented symbolically by either: set constants, set variables or ∆-terms. Furthermore,

“literal” set values can be introduced with the enumeration expression {l1 : a1, ..., ln : an}
which can create new sets, possibly with nesting if some ai are also enumeration expressions,

however, ai may also be arbitrary ∆-terms.

The collection operation {l : t(x, l) | l : x ∈ a & ϕ(x, l)} denotes the set of labelled

elements l : t(x, l) with t(x, l) a ∆-term depending on the set and label variables l and x, where

l : x ranges over the set a, for which the ∆-formula ϕ(x, l) holds. We can also consider the

more special case of collection called the separation operation {l : x ∈ a | ϕ(x, l)} which

denotes the set of labelled elements l :x in a for which ϕ(x, l) holds.

The (unary) union operation
⋃
a is understood as the (multiple) ordinary union over the

elements of a. Let us assume a = {l1 :a1, . . . , ln :an} then

⋃
a = a1 ∪ . . . ∪ an
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with the ordinary union used in the right-hand side of equality. In particular, this also shows

that the ordinary union is definable by means of the unary union and enumeration operators.

This is only the simplest example of expressibility in ∆. As we mentioned, this language has,

in fact, very high expressive power exactly corresponding to polynomial time computability

over hereditarily-finite hypersets2.

The transitive closure TC(a) denotes the set of (labelled) elements of elements, . . . , of

elements of a including a itself. This can also be written (not fully formally, say, due to . . .

present) as:

l :x ∈ TC(a) ⇐⇒ l :x ∈ x0 ∈ . . . ∈ xn = a ∨

(l = 2 & x = a)

with xi some intermediate elements in the membership chain, each belonging to the next xi+1

with some label li whose value is not important. In particular, we let 2 : a ∈ TC(a).

The above core constructs of the ∆-language extended with the two additional constructs

recursion and decoration (introduced below) define all polynomial time computable operations

and relations over hypersets (represented as WDB); see the precise formulations in [41, 43, 57].

3.2.2.1 Recursion operation

The recursion operator Rec p.{l : x ∈ a | ϕ(x, l, p)} defines a subset π of the set denoted

by (the ∆-term) a, obtained as the result of stabilising (due to finiteness of a) the inflating

sequence of subsets of a defined iteratively as:

p0 = ∅

p1 = p0 ∪ {l :x ∈ a | ϕ(x, l, p0)}

p2 = p1 ∪ {l :x ∈ a | ϕ(x, l, p1)}

. . .

pk+1 = pk ∪ {l :x ∈ a | ϕ(x, l, pk)}.

Evidently, all ∅ = p0 ⊆ p1 ⊆ . . . are subsets of a. As a is finite, pk = pk+1 = pk+2, . . . for

some k, and this stabilised value, denoted above as π, is taken as the value of the recursion

operator.

2 Any hyperset set is hereditarily-finite if and only if it contains a finite number of elements, and these elements
are also hereditarily-finite hypersets, etc. Moreover, it is required that the transitive closure of this hyperset is also
finite.
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3.2.2.2 Decoration operation

Recall that in Chapter 2 graph nodes were shown to denote (hyper)sets, and vice versa, arbitrary

hereditarily-finite hyperset can be represented in this way.

Now, we shall consider finite graphs in set theoretic terms. Traditionally, this is done

by defining a graph as a set of ordered pairs where ordered pairs represent graph edges, for

example 〈a, b〉 denoting the edge a → b. Here (the arbitrary sets) a and b, play the role of

the source and target vertices of the edge a → b. Thus, any set g of ordered pairs can be

treated as a graph. Formally such ordered pairs are represented as the sets containing two

elements labelled by fst and snd respectively, such as {fst : a, snd : b}. That is, we define

〈a, b〉 = {fst :a, snd : b}. Any labelled ordered pair l : {fst :a, snd : b} represents a labelled

edge a l→ b. In general, we can consider absolutely arbitrary hyperset g as representing a graph.

Indeed, we can take into account only those elements of g which happen to be ordered pairs,

and ignore the other non-pair elements. This will make the operation of decoration defined

below applicable to the arbitrary hyperset g what is convenient. Otherwise the formulation of

the language ∆ would be more complicated. Also, the arbitrary set v may either participate as

an element of the ordered pairs of g, i.e. serving as a g-vertex, or, otherwise, it is considered as

an isolated vertex of the graph g. In this sense each set v serves as a g-vertex.

Definition 1. The abstract set theoretic decoration operator Dec(g, v) = d takes two arbitrary

input sets g and v where the former represents a graph as a set of ordered pairs, and the latter

represents some vertex v of this graph. It outputs a new (hyper)set d corresponding to the

v-rooted graph g according to the first paragraph of this section.

Note that decoration is the only operator in ∆ which allows for the construction of cyclic

hypersets, like Ω = {Ω}, from the ordinary “uncycled” sets (of sets of sets,. . . ) of finite

depth. For example, consider the trivial cyclic graph g defined by the following system of set

equations,

g = { {fst :a, snd :a} }

a = {}

The result of applying decoration to the graph g and the participating vertex a would be,

Ω = {Ω}

where Ω denotes the result Dec(g, a). Indeed this leads to the construction of the cyclic

membership represented by the unique g-edge a→ a. In fact, here the Anti-Foundation Axiom
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from Section 2.4.4 guarantees that Ω is a unique hyperset denoted by Dec(g, a) (and the same

for arbitrary g and a).

This operator can also be reasonably called the plan performance operator [61] because

its input(s) can be considered as a graphical plan for the construction of a hyperset with the

output being the resulting abstract hyperset. Imagine that we have a plan of a Web site (i.e.

of a system of hyperlinked Web pages) and that Dec is a tool (or query) which automatically

creates all the required Web pages. See also Section 3.5.3 for a more involved example of using

the decoration operation for defining a restructuring query.

3.3 Operational semantics

Consider any set or boolean query q which involves no free variables and whose participating

set names (constants) are taken from the given WDB system of set equations. Resolving q

consists in the following two macro steps:

• Extending this system by new equation res = q with res a fresh (i.e. unused in WDB)

set or boolean name, and

• Simplifying the extended system:

WDB0 = WDB + (res = q)

until it will contain only flat bracket expressions as the right-hand sides of the equations

or the truth values true or false (if the left-hand side is boolean name).

After simplification is complete, these set equations will contain no complex set or boolean

queries (like q above). In fact, the resulting version WDBres of WDB will consist (alongside

the old equations of the original WDB) of new set equations (new set names equated to flat

bracket expressions) and boolean equations (boolean names equated to boolean values, true or

false). This process of computation by extension and simplification was described in [61] as

reduction steps

WDB0 �WDB1 � . . .�WDBres

where WDB0 is the initial state of WDB extended by the equation res = q, and WDBres is

the final step of reduction consisting of only flat set equations including the flattened version of

set equation res = q (or boolean equation, if q is a ∆-formula). Each reduction step represents

simplification by applying rewrite rules which transform set equations involving complicated
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∆ expressions into simpler, semantically equivalent, equations. Note that the rewrite rules

described here are based on those in [61] but extended to the labelled case as considered in this

thesis. In general, rewrite steps are denoted by the � symbol which means “transforms to”.

Firstly, let us assume participation of the set names s, p, r in the rewrite rules below, which

correspond to the set equations

s = {l1 :s1, ..., la :sa},

p = {m1 :p1, ...,mb :pb},

. . .

r = {n1 :r1, ..., nc :rc}

existing either in the initial WDB or in the current reduction WDBi. The operational

semantics for the ∆ operators (except for recursion, decoration, transitive closure, bisimulation

and label relation operators) are described as the reduction rules

res = t(t1, . . . , ta) �



res = t(res1, . . . , resa),

res1 = t1,

. . .

resa = ta.

res = {l :s,m :p, . . . , n :r} – no further reduction required once s, p . . . , r, are set names,

res = s ∪ p ∪ . . . ∪ r � res = {l1 :s1, ..., la :sa, m1 :p1, ...,mb :pb, . . . , n1 :r1, ..., nc :rc},

res =
⋃
s� res = s1 ∪ . . . ∪ sa,

res = TC(p) – operational semantics described in Section 8.1.5,

res = {l : x ∈ p | ϕ(l, x)}� res = {mi1 :pi1 , . . . ,mib′ :pib′}

where mij :pij are all those mi :pi ∈ p for which resi = ϕ(mi, pi) � resi = true,

res = {t(l, x) | l :x ∈ p & ϕ(l, x)}� res = {t(mi1 :pi1), . . . , t(mib′ :pib′ )}

where mij :pij are all those mi :pi ∈ p for which resi = ϕ(mi, pi) � resi = true,

res = Rec p.{l : x ∈ a | ϕ(l, x, p)} – operational semantics described in Section 8.1.3,

res = Dec(a, b) – operational semantics described in Section 8.1.4,

res = ∀l :x ∈ p . ϕ(l, x) � res = ϕ(m1, p1) & ... & ϕ(mn, pn),

res = ∃l :x ∈ p . ϕ(l, x) � res = ϕ(m1, p1) ∨ ... ∨ ϕ(mn, pn),

res = true & true � res = true,
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res = false & ϕ� res = false,

res = ϕ & false � res = false,

res = ϕ ∨ ψ � res = ¬(¬ϕ & ¬ψ),

res = ¬false � res = true,

res = ¬true � res = false,

res = l :s ∈ p� res = ∃m :x ∈ p . (s = x & l = m),

res = x = y � x ≈ y – operational semantics described in Section 4.2.1,

res = l R m – operational semantics described in Section 3.2.1.

The implementation of ∆-query execution is based on this process of reduction except for the

∆-terms: recursion, decoration, transitive closure described in Section 8.1.3, Section 8.1.4 and

Section 8.1.5 respectively; and the ∆-formulas: set equality (bisimulation) and label relation

operators described in Section 4.2.1 and Section 3.2.1 respectively.

3.3.1 Examples of reduction

The above process of computation by reduction is quite natural as shown in the following

examples.

3.3.1.1 Example elimination of complicated subterms

Let us consider the reduction of the query q =
⋃
q1 containing the complex subquery q1. In

general, any complicated term t(t1, . . . , tn) can be simplified by invoking the splitting rule

which transforms the equation res = t(t1, . . . , tn) to the resultant equations

res = t(res1, . . . , resn)

res1 = t1

. . .

resn = tn

Therefore, the complicated query res =
⋃
q1 can be split into two subqueries, res =

⋃
res1

and res1 = q1 where res1 is a new set name.
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3.3.1.2 Example reduction of union

In the case of our union query having the particular form q =
⋃
{l :s,m :p, n :r} where s, p, r

represent set names, it follows that the equation res = q is reduced by the following steps:

1. Split the complicated equation res =
⋃
{l :s,m :p, n :r} resulting in the equations:

res =
⋃
res1

res1 = {l :s,m :p, n :r}

where s, p, r are set names, and hence do not require further splitting.

2. Reduce unary union res =
⋃
res1 to multiple union resulting in the equation:

res = s ∪ p ∪ r

with the unary union reduced to multiple unions over the elements of the set res1 (the

set names s, p, r).

3. Reduce multiple union res = s ∪ p ∪ r to the bracket expression resulting in the

equation:

res = {l1 :s1, ..., li :si, m1 :p1, ...,mj :pj , n1 :r1, ..., nk :rk}

assuming that the current extension of the original WDB already contains the simplified

equations s = {l1 :s1, ..., li :si}, p = {m1 :p1, ...,mj :pj} and q = {n1 :q1, ..., nk :rk}.
Here multiple union over the sets s, p, r is reduced to the bracket expression containing

the elements of these sets.

In general, most of the ∆ operators can be resolved using the above reduction rules except for

recursion, decoration, transitive closure, bisimulation and label relation operators. In fact, there

is no common framework for describing the operational semantics for all the ∆ operators, with

the latter exceptions described as lower-level algorithms in Chapters 4 and 8.

The main conclusion is that after reduction we will have the equation res = {. . .} of the

required form whose right-hand side should involve no complicated terms or formulas, only set

names either from the original WDB or new set names introduced during reduction (like res1
above) together with the corresponding equations of the required form. Thus, execution of a

query extends the original WDB to WDBres (simplification of WDB0 above). This extension

with the set name res as an “entrance point” to the result of the query can be considered as a

temporary one until we need this result.
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In principle, we could also consider update queries which would change the original WDB

(not only extend it as above), but this is beyond the scope of this work.

3.4 Implemented ∆-query language

The implemented ∆-query language can express all operations definable in the original (as

described above). For the purpose of writing queries the grammar of this language is expressed

as BNF (see Appendix A.1) which the reader should take into consideration whilst reading

the current section. (See Chapter 8 for technical details of the implementation of the ∆-query

language.) Note that, not every computable set theoretic operation is definable within the

∆-language but everything which is polynomial time computable (and generic; cf. [41]) is

already definable in the original language.

Additional features (not present in the theoretical version of the language) have also been

included in the implemented language making the language more practically convenient, but

not increasing its theoretical expressive power. These additions, however important practically,

are just “syntactic sugaring” of the above theoretical version of ∆.

3.4.1 Queries with declarations

Like in many programming languages allowing procedure declarations and calls we also

introduce in the language ∆ query declarations and calls. Thus, a query once declared can

be invoked as many times as we want by using its name with various parameters. Besides

queries, we allow also constant declarations. Each declaration has its own scope especially

delimited (unlike quantifiers) by the keywords in and endlet where the declared queries or

constants can be used (called). For example, let us show how full set names3 (which can be

quite long and unmanageable) can be declared and then used as set constants. The following

query declares the set constant BibDB as an abbreviation of the corresponding full set name:

set query

let set constant BibDB be

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB.xml#BibDB

in QUERY( BibDB )

endlet;

Here QUERY denotes any subquery (according to the syntax in Appendix A.1) which may

involve (possibly many times) the set constant BibDB declared once in the let declaration

3 Recall that full set name consists of XML-WDB file URL extended by simple set name (delimited by #
symbol).
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at the beginning of the whole query. However in general let declarations of constants and

queries can appear at any depth of a query.

Let us now consider the more useful case of the query declaration getBooks, which in

the following example gives the set of all books in the bibliography database illustrated by the

graph in Figure 3.1 in Section 3.5 below. We first declare the query getBooks with one set

variable argument input and then call it with the argument value BibDB:

set query

let set constant BibDB be

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#BibDB,

set query getBooks (set input) be

separate {

pub-type:pub in input

where pub-type=’book’

}

in call getBooks(BibDB)

endlet;

Here the keyword call means that we invoke the set query getBooks defined above. In

general, any query can be declared once and invoked many times, e.g. getBooks(BibDB1),

getBooks(BibDB2), etc., each time with various <parameters> which may be either

any <delta-term> or <label> according to the BNF. Those relevant parts of the BNF for

this set query are as follows,

<delta-term with declarations> ::=

"let" <declarations> "in" <delta-term> "endlet"

<set constant declaration> ::=

"set constant" <set constant> ("be"|"=") <delta-term>

<set query declaration> ::=

"set query" <set query name> "(" <variables> ")"

("be"|"=") <delta-term>

<set query call> ::=

"call" <set query name> "(" <parameters> ")"

In general, there are also <label constant declaration> and <boolean query

declaration> syntactical categories. Note that in the syntactic category <delta-term

with declarations> the keyword in evidently does not play the role of the membership

relation such as in the case of the other contexts of the ∆-language. Recursive calls are not
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allowed in query declarations, that is the declared query name or constant should not occur

in the scope of the declaration. For <recursion> (see the syntax in Appendix A.1) we

have the special construct recursive separation already discussed above and illustrated below

in Section 3.5.4.

3.4.2 Library

The library allows to create query or constant declarations independent of a query. Library
commands allow creation and modification of user defined queries and constants. Predefined
and also user defined queries and constants can then be used, i.e. called, (globally) in any
query. For example, the following library command adds the set constant some-book for the
appropriate full set name to the library:

library add set constant some_book =

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b1;

where the identifier some-book may now participate in any subsequent queries in the current
query session4. Queries and constants can be modified or redeclared by rerunning the library
add command. For example, the set constant some_book (above) could be redeclared as
follows:

library add set constant some_book =

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2;

Predefined and user defined5 library queries/constants can be listed, in brief without the full
declarations, with the command,

library list;

with result of this command (including predefined queries/constants) being,

Library command is well-formed and well-typed, but not

executable

Warning, library command successful but no query executed.

Warning, in the case of duplicate declaration names those

declarations at the bottom of the list have precedence.

List of library declaration(s):

4 Query session is the period of time between opening the query system (for running queries and library
commands) and closing it. When query system is restarted, only build in query and constant declarations (see
the current list in the Appendix A.3) can be used.

5 added in the current query session
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set query Pair (set x,set y),

boolean query isPair (set p),

set query First (set p),

set query Second (set p),

set query CartProduct (set x,set y),

set query Square (set z),

set query LabelledPairs (set v),

set query Nodes (set g),

set query Children (set x,set g),

set query Regroup (set g),

set query CanGraph (set x),

set query Can (set x),

set query TCPure (set x),

set query HorizontalTC (set g),

set query TC_along_label (label l,set z),

set query SuccessorPairs (set L),

boolean query Precedes5 (set R,label l,set x,label m,set y),

set query StrictLinOrder_on_TC (set z),

set constant some_book,

set constant some_book

The order of query/constant declarations depends on the order in which the corresponding

library add commands were executed. Note that, the duplicate declarations named

some_book is the result of running above the library add commands, and those

declarations appearing at the bottom of the list have precedence over those at the top of the

list. Thus, the set constant some_book appearing globally in any query would, in fact, have

the redeclared set name http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.

xml#b2. However, there is one subtle point: if a query q is declared in the library which calls

another library query q1 (or constant), then q will invoke the latest declaration of q1 preceding

this declaration of q even if q1 is redeclared again after q. Note that the modification or deletion

of user defined declarations is not yet implemented, but it can be done easily.

Also, the full declarations of user defined and predefined queries/constants can be listed
with the command,

library list verbose;

with the result being,

Library command is well-formed and well-typed, but not

executable

Warning, library command successful but no query executed.

http://www.csc.liv.ac.uk/~molyneux/t/BibDB-f1.xml#b2
http://www.csc.liv.ac.uk/~molyneux/t/BibDB-f1.xml#b2
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List of library declaration(s):

set query Pair (set x,set y) be

{ ’fst’:x, ’snd’:y },

boolean query isPair (set p) be (

exists l: x in p . (

l=’fst’

and

forall m:z in p . ( m=’fst’ => z=x )

)

and

exists l:y in p . (

l=’snd’

and

forall m:z in p .( m=’snd’ => z=y )

)

),

...

set constant some_book be

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b1

set constant some_book be

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2

Here the list of queries/constants follows as above, but including the full declaration for all
other default library declarations (omitted here for brevity; see the full listing of predefined
library declarations in Appendix A.3). Those relevant parts of the BNF for the library
commands are as follows:

<library commands> ::= "add" <declarations> |

"list" [ "verbose" ]

Note that, only the predefined library declarations will remain in the library after finishing the

query session. In principle the ability to work with several libraries (as well as user defined

libraries) should also be implemented. The queries Pair, isPair, First, Second will be

formally explained below; CartProduct, Square and HorizontalTC in Section 3.5.4;

LabelledPairs, CanGraph and Can in Section 3.5.6; TC along label in Section 3.6;

SuccessorPairs, Precedes5, TCPure, StrictLinOrder on TC in Section 3.7 and

Appendix A.3; whereas Nodes, Children and Regroup in Section 8.1.4.1.
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3.4.2.1 The queries Pair, isPair, First and Second

Thus, let us now define several auxiliary queries dealing with ordered pairs. According to the

syntax in Appendix A.1 query declarations have the general form:

set query q(x̄) = t(x̄),

boolean query q(x̄) = ϕ(x̄).

Here q is either set or boolean query name, respectively, with query parameters defined by the

list x̄ of participating set or label variables.

3.4.2.1.1 Pair: Our first query defines the operation creating an ordered pair:

set query Pair(set x,set y) = {’fst’:x,’snd’:y}

where ’fst’ and ’snd’ are label values helping to distinguish the first element x from the

second element y of the ordered pair, with x,y as set variables denoting any (hyper)sets. Recall

that the order of elements in a set is ignored, playing no role. But, labels of elements such as

fst and snd add the required structure.

3.4.2.1.2 isPair: Now we consider the boolean valued query isPair(p) which given
a set p says whether it is an ordered pair p={’fst’:x,’snd’:y} for some sets x and y:

boolean query

isPair(set p) =

(exists l:x in p .

( l=’fst’ and forall m:z in p . (m=’fst’ implies z = x) )

and

exists l:y in p .

( l=’snd’ and forall m:z in p . (m=’snd’ implies z = y) )

)

Note that the equalities z=x and z=y in this query are actually based on the bisimulation

relation. It follows that isPair(p) can hold even if the set equation p={...} contains

syntactically more than two elements between braces. It is required that there exists only one

element in p labelled by ’fst’ and one labelled by ’snd’ only up to bisimulation.

3.4.2.1.3 First and Second: Let us also define the set valued operations First(p)
and Second(p) giving the first and the second elements of any pair p:

set query First(set p) =

union separate {l:x in p where l=’fst’ }



3.4. Implemented ∆-query language 43

set query Second(set p) =

union separate {l:x in p where l=’snd’ }

Note that the union operation is necessary here. Indeed, assuming that the input is an

ordered pair p = {’fst’:u,’snd’:v}, then we would get without union just singleton

sets {’fst’ : u} and {’snd’ : v}, respectively, generated by the separation operator

whereas we need their elements u and v, respectively. Therefore, we need to use the general

set theoretic identity ⋃
{l : u} = u

where u is any set. Of course, in the case of arbitrary set input p separation will not necessary

generate a singleton set. Anyway, First(p) and Second(p) will give some set values so

that these operations are always defined.

3.4.2.2 Implementation of the library

Although general implementation issues will be postponed till Part III, we can easily comment

here how implementation of the library can be reduced to the general let-endlet construct

of the language. Thus, let us assume that the library contains a list of declarations

d1, d2, . . . , dn

already added by the add command. Then any query q can use these declarations and thus can

contain constants and query names which are not declared in q, but must be declared above in

the library. In fact, any such query

set query q; or boolean query q;

is automatically transformed by the implemented query system, respectively, to the query

set/boolean query let d1, d2, . . . , dn in q endlet; (3.1)

Then this query is checked to be well-formed and well-typed and then executed as it is

discussed formally in Chapters 9 and 8. This way also the problem of dependency between

library declarations d1, d2, ..., dn, whose order may be essential6, is resolved automatically.

Also query declarations when added to the library are automatically checked simply by

6 A declaration di can depend only on dj with j < i. Even if di calls a constant or query name declared by dk

with i < k, appropriate (rightmost) dj with j < i should be really found and used. But this does not require any
special or additional care for the library declarations because the contextual analysis algorithm in Section 9.2 will
guarantee this automatically under translation (3.1).
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transforming them to the usual query

set query let d1, d2, . . . , dn in {} endlet;

where the trivial version of q = {} is used. Well-formedness and well-typedness of the latter

query is considered, by definition, as well-formedness and well-typedness of the declarations

in the library.

3.5 Example ∆-queries

Let us consider the following example queries based on the bibliographic WDB presented in

[50] and similar to the example in [1]. This WDB is distributed (split into two fragments) as

illustrated by the colouring of the graph in Figure 3.1. Each fragment is given by a subsystem

of set equations represented practically as an XML-WDB file (see Chapter 10 for the technical

details of the XML-WDB representation). These files can be examined in the Appendix A.2.

Figure 3.1: Example distributed WDB of a small bibliographic database, distributed into two
fragments.

Let us consider the corresponding subsystems of set equations represented practically as

XML-WDB files. Note that, full set names are denoted as the concatenation of URL, #, and

simple set name; however, the URL and the delimiter # can be omitted for local set names. The

subsystem of set equations represented by the XML-WDB file http://www.csc.liv.

ac.uk/˜molyneux/t/BibDB-f1.xml is as follows:

http://www.csc.liv.ac.uk/~molyneux/t/BibDB-f1.xml
http://www.csc.liv.ac.uk/~molyneux/t/BibDB-f1.xml
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BibDB = {

’book’:b1,

’book’:b2,

’paper’:http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p1,

’paper’:http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p2,

’paper’:http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p3

}

b1 = {

’refers-to’:http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#b2,

’refers-to’:p1

}

b2 = {

’author’:"Jones",

’title’:"Databases"

}

The XML-WDB file http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml

represents the subsystem

p1 = {

’refers-to’:p2

}

p2 = {

’author’:"Smith",

’title’:"Databases",

’refers-to’:p3

}

p3 = {

’author’:"Jones",

’title’:"Databases"

}

Recall that single quotation marks are used to denote labels such as ’author’, whereas

double quotation marks denote atomic values which are, strictly speaking, special singleton

sets, e.g. "Jones" means {’Jones’:{}}.

http://www.csc.liv.ac.uk/~molyneux/t/BibDB-f2.xml
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3.5.1 Example of a non-well-typed query

In our first example the query is non-well-typed because the identifiers BibDB and b2 are
formally undeclared within the following query, although intuitively corresponding to some
graph nodes. The intended informal meaning of the query being: find all publications which
refer to the book b2.

set query collect {

pub-type:pub

where pub-type:pub in BibDB

and exists ’refers-to’:ref in pub . ref=b2

};

The result of running this query is the error messages:

Query is well-formed, but not well-typed

Error at character 76,

occurrence of identifier name BibDB not declared:

set query collect { pub-type:pub

where pub-type:pub in BibDB <-------

and exists ’refers-to’:ref in pub .

Error at character 127,

occurrence of identifier name b2 not declared:

and exists ’refers-to’:ref in pub .

ref=b2 <-------

};

Here well-typed would intuitively mean that all identifiers and their types (set or label,

etc.) in the query are appropriately described by declarations, quantifiers, etc., and used in

other places of the query accordingly. But unfortunately the error messages show that it is not

the case. The corrected version of this query is presented in Section 3.5.2, where the identifiers

BibDB and b2 are appropriately related to the WDB considered. We will pay much more

attention to well-typedness of queries in Chapter 9 which is highly important for the correct

implementation of ∆.

3.5.2 Example of valid and executable query

After correction of the above query we have:
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set query

let set constant BibDB be

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#BibDB,

set constant b2 be

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2

in collect { pub-type:pub

where pub-type:pub in BibDB

and exists ’refers-to’:ref in pub . ref=b2

}

endlet;

Evidently the result of this query contains the book b1 (which refers to b2) and, not so
obviously, the paper p2 which refers to p3, the latter being formally bisimilar to b2 with
the same title and author elements. The result of the modified query is,

Query is well-formed, well-typed and executable

Result = {

’paper’:http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p2,

’book’:http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b1

}

Finished in: 398 ms

This result might seem strange, but formally it is correct taking into account our hyperset

theoretic approach to WDB. The question here is to the designer(s) of this bibliographic

database who overlooked that essentially the same publication is presented in the database

both as a book and as a paper. If these are really different publications then they should be

represented in the database accordingly (as discussed in the considerations below). Note that

the incoming edges labelled by book or paper do not count when determining bisimilarity

of the nodes p3 and b2 — only outgoing edges play a role. Such fundamental flaws can

be introduced accidentally when possibly many users create distributed WDB. Evidently, this

WDB was poorly designed, therefore, better understanding of the structural design of WDB

would make this process less error-prone. Anyway, even with the (traditional) relational

approach database design is a crucial step.

3.5.2.1 Query semantics versus WDB design

If we really want to include only references to the book b2 (without redesigning this WDB),
then it might seem that the solution is to replace the equality ref=b2 by the formula

(ref=b2 and ’book’:ref in BibDB)
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in the above query. However, this would not really help because in any case p3=b2 (these set

names / graph nodes are bisimilar) in the above WDB. Equality of (hyper)sets is defined by

their elements, elements of elements, etc., i.e. by outgoing edges, and not by incoming edges.

So, after formally removing redundancies (say, omitting p3) we should have one joint node b2

with two incoming edges BibDB book−→ b2 and BibDB paper−→ b2 (besides two more incoming

refers-to edges from b1 and p2 and the evident two outgoing edges). This is probably not

what the designer(s) of this distributed WDB had in mind. Anyway, we will continue using this

example as a good and simple illustration of the (hyper)set theoretic approach. In principle, we

could imagine that the creators of this WDB really wanted to have publications classified both

as a book and a paper. This is not a contradiction, as anything is possible in semi-structured

data. In fact, the problem is only to decide what we really want and whether this intuition is

reflected correctly by the given WDB design.

This example emphasises the real meaning of set theoretic versus pure graph approaches

to semi-structured databases, and the role of removing redundancies on the level of the design.

The right approach here should be based on a well-chosen discipline, for example:

(i) Reconstruct this database by replacing labels book and paper by publication and

adding outgoing edges from each publication showing its type (’book’ or ’paper’;

see Figure 3.2 7), or alternatively

(ii) Enforce some WDB schema during the design of WDB e.g. requiring that there is only

one book or paper edge from BibDB leading to any given publication considered up

to bisimulation.

Here the term “up to bisimulation” means that if two children of BibDB are bisimilar then

they, in fact, have identical labelling. But it is not our goal here to go into details of such kind

of discipline and consider WDB schemas. In any case, we should be precise and accurate with

the design of WDB, and in formulating both formal and intuitive versions of our queries. The

mathematical ground of hyperset theory is quite solid and sufficient for that.

The main point is that any formal query has a unique (up to bisimulation) answer – in

fact, either a hyperset or boolean value – and all the queries are bisimulation invariant and can

be computed in polynomial time (with respect to the size of WDB). Vice versa, any P-time

computable and bisimulation invariant (and also “generic” [41, 57]) query is definable in ∆. In

fact, this also means that the language ∆ has full P-time computable power of restructuring,

not only simple retrieval of already existing elements in the WDB. For example the query

7 Strictly speaking, Figure 3.2 reflects this idea only partially because it is devoted to illustrate a related but
formally different example of restructuring query in the ∆-language. It still has a publication which is characterised
as both book and a paper, however, this is more noticeable “locally” reducing accidental user error.
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restructuring the BibDB database as is essentially described in (i) above could be written in ∆
using the plan performance operator Dec.

3.5.3 Restructuring query

The ability to define queries arbitrarily restructuring any given data is the most essential

requirement of any database query language. Here we will consider one simple example which

could hopefully convince the reader that ∆ has a very strong restructuring power.

Firstly, let us recall the informal meaning of the following useful query declarations in

the default library (with the formal meaning fully described in Section 3.4.2.1) and introduce

semi-formally one more query CanGraph to be formally defined in Section 3.5.6:

• Pair(x,y) – denoting the ordered pair 〈x, y〉, in fact the two element set of the form

{’fst’:x,’snd’:y} allowing to distinguish between the first and second elements.

• First(p) – first element of p if p is an ordered pair.

• Second(p) – second element of p if p is an ordered pair.

• CanGraph(x) – denoting the set of labelled pairs l : 〈u, v〉 where l :v ∈ u holds in the

transitive closure TC(x).

Then the required restructuring query (described informally in (i) above) is defined as follows:

set query

let set constant BibDB =

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#BibDB,

set constant restructuredBibDB be

(U collect{

’null’:if (L=’paper’ or L=’book’)

then { ’publication’:X,

’type’:call Pair(call Second(X),{L:{}}),

L:call Pair({L:{}}, {}) }

else {L:X}

fi

where L:X in call CanGraph(BibDB)

}

)

in

decorate ( restructuredBibDB, BibDB )

endlet;
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Here CanGraph(BibDB) is essentially the bibliography graph in Figure 3.1, but represented
in the traditional set theoretic way as the set of labelled ordered pairs, each denoted in the query
as L:X with L the label and X the ordered pair in question. The required restructuring in terms
of ordered pairs consists in relabelling of labels ’book’ and ’paper’ as ’publication’,
and creating additional leaf edges with the publication type is done essentially by the following
fragment

’null’:if (L=’paper’ or L=’book’)

then { ’publication’:X,

’type’:call Pair(call Second(X),{L:{}}),

L:call Pair({L:{}}, {})

}

else {L:X}

fi

generating appropriate sets of labelled ordered pairs. Then these sets8 are collected, and
taking the union gives rise to the required restructured set of labelled ordered pairs denoted as
restructuredBibDB. But abstractly, we need a hyperset rather than this graph (a set of
pairs). Thus, finally, the decoration operation applied to the graph restructuredBibDB

and the vertex BibDB generates the required abstract hyperset (as described in general in
Section 3.2.2.2). The result of this query is,

Query is well-formed, well-typed and executable

Result = {

’publication’:res2,

’publication’:res0,

’publication’:res1,

’publication’:{

’type’:"book",

’refers-to’:res1,

’refers-to’:res2

}

}

res0 = {

’type’:"paper",

’author’:"Smith",

’title’:"Databases",

’refers-to’:res1

}

8 where the value of the label ’null’ is not important
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res1 = {

’type’:"paper",

’type’:"book",

’author’:"Jones",

’title’:"Databases"

}

res2 = {

’type’:"paper",

’refers-to’:res0

}

Finished in: 1646 ms (query execution is 1643 ms, and

postprocessing time is 3 ms)

As we discussed formerly, atomic values, strictly speaking, denote corresponding singleton

sets, for example "Smith", denotes {’Smith’:{}}. The (new) set names res0, res1

and res2 correspond, respectively, to the “restructured” publications p2’, p3’/b2’ and

p1’. Note that, the query system replaces some set names on the right-hand side by the

corresponding bracket expression where suitable, thereby presenting the result in a “nested”

form. For example the publication b1’ is implicitly nested in the Result set equation.

This result can be more conveniently visualised by Figure 3.2 with the set name Result

replaced by BibDB’, and new set names replaced by corresponding names revelant to the

restructured publications (as was discussed above).

Figure 3.2: The result of the restructuring query.

Note that the publication p3’/b2’9 has both the type book and paper, and that this unusual
9 denoted by the new set name res1 (see query result above)
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feature is the result of the initial design of BibDB and not a failure of the above query. Anyway,

in principle this graph suggests a potentially better (less semantically error prone) design for

the bibliography database.

3.5.4 Horizontal transitive closure

Let us now consider the query which can generate the “horizontal” transitive closure10 of any

graph g (a set of ordered pairs). Consider the trivial example graph g represented as the nodes

a, b, c with edges 〈a, b〉 and 〈b, c〉 depicted by solid black edges in Figure 3.311. The result of

applying horizontal transitive closure to the graph g is shown by the original edges (in solid

black) and the additional edges 〈a, c〉, 〈a, a〉, 〈b, b〉 and 〈c, c〉 highlighted in Figure 3.3 as red

dashed edges.

Figure 3.3: The result of “horizontal” transitive closure applied to the abstract graph g.

The result is also a graph denoted as g∗ which extends g by new ordered pairs (g ⊆ g∗) such

that for each edge 〈x, y〉 ∈ g∗ there exists a path from x to y belonging to the original graph g,

and vice versa. This can be recursively defined as follows:

〈x, y〉 ∈ g∗ ⇐⇒ x = y ∨ ∃z.(〈x, z〉 ∈ g∗ ∧ 〈z, y〉 ∈ g)

or as

g∗ = {〈x, y〉 ∈ |g| | x = y ∨ ∃z ∈ |g|.(〈x, z〉 ∈ g∗ ∧ 〈z, y〉 ∈ g)} (3.2)

where |g| is the set of all g-nodes. It is assumed that g∗ is the least set of pairs satisfying

the above equivalence. This operation could prove useful complementing “vertical” transitive

closure TC(x) in the original ∆-language, whose result is the set of elements of elements, etc.

for any given set x (including x itself).
10 This should not be mixed with the set theoretic meaning of the ∆-term operator transitive closure TC which

can be understood intuitively as “vertical” transitive closure, that is TC(x) represents the set of (labelled) elements
of element of elements, etc. of x (including x itself) as defined in Section 3.2.2. The point is that it is typically
convenient to think of elements of a set as lying under this set – hence vertical view.

11 We should not mix this graph, which is only a visual representation of a set of ordered pairs, with any other
graphs depicted before and having rather a visual representation of a system of set equations.
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Thus, let us implement g∗ (denoted below as HorizontalTC(g)) in the following

straightforward way based on the above formula (3.2). Firstly, let us add to the library the

set query declaration Nodes(g) (formally described in Section 8.1.4.1), denoted above as |g|
and extracting from the set of ordered pairs g the set of elements participating in these ordered

pairs.

Nodes:

set query Nodes (set g) =

union separate { m : p in g | call isPair ( p ) }

We will also need the ordinary and very important (not only for defining the horizontal

transitive closure) set theoretic operations of

CartProduct and Square:

set query CartProduct(set X,set Y) =

U collect {’null’:collect {’null’:call Pair(x,y)

where l:y in Y

}

where m:x in X

}

set query Square(set X) = call CartProduct(X,X)

Finally, the set query HorizontalTC(g) can be easily defined using the recursion operator

as follows.

HorizontalTC:

set query HorizontalTC(set g) be

recursion p {

’null’:pair in call Square(call Nodes(g)) where (

call First(pair)=call Second(pair)

or

exists m:z in call Nodes(g) . (

’null’:call Pair(call First(pair),z) in p

and

’null’:call Pair(z,call Second(pair)) in g

)

)

}

Let us now execute HorizontalTC applied to the graph g (see above),
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set query

let set constant g be {

’null’:call Pair("a","b"),

’null’:call Pair("b","c")

}

in

call HorizontalTC(g)

endlet;

and see that the result is as expected, although with many repetitions which witness that the
implementation is currently not optimal. However, all the repetitions in the query result can be
easily eliminated by canonisation (to be discussed in Section 3.5.6 below). First note that the
canonisation set query declaration (Can) is already added to the default library

set query Can(set x) be decorate(call CanGraph(x),x)

and that the above query can be rewritten using Can as follows:

set query

let set constant g be {

’null’:call Pair("a","b"),

’null’:call Pair("b","c")

}

in

call Can(call HorizontalTC(g))

endlet;

Now, by running the amended query, we see that all repetitions have been eliminated.

3.5.5 Dealing with proper hypersets

The hyperset theoretic approach to WDB can represent and query semi-structured databases

possibly involving arbitrary cycles (see Chapter 2). For example let us consider the WDB

graph in Figure 3.4 with the cycle between the vertices a and b (edges a −→ b and b −→ a).

Figure 3.4: WDB graph with cycle.
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It is easy to see that a ≈ b and c ≈ d are the only positive bisimulation facts, and hence a and

b, and also c and d actually denote the same hypersets (the latter two denote ∅). The strongly

extensional version of this WDB with all redundancies removed is shown in Figure 3.5.

Figure 3.5: Strongly extensional version of the WDB in Figure 3.4.

Let us show how to define in ∆ the hyperset denoted by the vertex a. It can be done with the

help of decoration operation as follows:

set query let

set constant g = {

’null’:call Pair("a","b"), ’null’:call Pair("b","a"),

’null’:call Pair("a","c"), ’null’:call Pair("a","d"),

’null’:call Pair("b","d")

}

in

decorate (g, "a")

endlet;

The result of this query exactly corresponds to the graph in Figure 3.4:

Query is well-formed, well-typed and executable

Result = {

’null’:{

’null’:Result,

’null’:{}

},

’null’:{},

’null’:{}

}

Finished in: 20 ms (query execution is 20 ms, and

postprocessing time is 0 ms)
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In the next section we will show how the strongly extensional result (corresponding to
Figure 3.5) can be obtained. In fact, without using decoration it would be impossible to define
this cyclic set Result corresponding to the vertex a. Further, let us consider the query to
compute equality (bisimulation) between the sets denoting the vertices a and b as

boolean query let

set constant g = {

’null’:call Pair("a","b"), ’null’:call Pair("b","a"),

’null’:call Pair("a","c"), ’null’:call Pair("a","d"),

’null’:call Pair("b","d")

}

in

decorate (g, "a") = decorate (g, "b")

endlet;

where the evident result true of this query corresponds to the intuitive observation that, in

fact, "a" and "b" denote bisimilar graph g-nodes.

3.5.6 Query optimisation by removing redundancies

The following example demonstrates the general task of removing redundancies by a particular

set query Can (for “canonisation”) on the above graph in Figure 3.4 (in Section 3.5.5). Here we

use our knowledge12 on the implementation of the decoration operation (see Section 8.1.4) to

remove the redundancies in the original graph (see the result of the set query above) by applying

the decoration operator to the canonical form of this graph (as a set of pairs representing graph

edges) and the participating vertex a.

First, let us define the set query declaration

LabelledPairs:

set query LabelledPairs (set v) be

collect {

l:{ ’fst’:v , ’snd’:u }

where l:u in v

}

with the result of LabelledPairs(v) being the set of labelled pairs l : 〈v, u〉 denoting

labelled edges v l−→ u corresponding to the set memberships l:u in the set v. This set query

declaration participates in another important library set query
12 This solution may not be so intuitively evident yet to those users who are unfamiliar with the set theoretic

meaning of decoration and the details of how this operation was implemented (see Section 8.1.4). But running
queries with Can can nevertheless clearly demonstrate its usefulness.
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CanGraph:

set query CanGraph(set x) be

union

collect {

’null’:call LabelledPairs ( v )

where m:v in TC(x)

}

whose output is the set of labelled pairs l : 〈u, v〉 corresponding to those labelled elements

l : v ∈ u with u ranging over the elements of transitive closure TC(x). Here ’null’ is

a label whose value is not important. Indeed, the union operation unifies the labelled pairs

from LabelledPairs(v). The third library query we need is the set query Can(set x)

(invoking CanGraph above) which takes any set x and returns the same abstract set x, but in

its strongly extensional form.

Can:

set query Can(set x) be

decorate (call CanGraph(x), x)

In fact, we should always have Can(x)=x because CanGraph(x) is evidently the canonical

graph whose node x represents the set x itself, and, in this sense, the set query Can does

nothing. It follows also that Can and decorate are essentially inverse operations. Thus,

Can changes nothing in the abstract set theoretical sense. But due to applying decoration to

get Can(x) and taking into account both strong extensionality of CanGraph(x) and the

way decoration used in Can is implemented in Section 8.1.4, the resulting system of set

equations generated by Can(x) is always non-redundant (strongly extensional).

Therefore the result of Can(a) for the example in Figure 3.4 consists of one set equation

for the node a/b of the graph shown in Figure 3.5. Indeed, running the query:

set query let

set constant g = {

’null’:call Pair("a","b"), ’null’:call Pair("b","a"),

’null’:call Pair("a","c"), ’null’:call Pair("a","d"),

’null’:call Pair("b","d")

}

in

call Can ( decorate (g, "a") )

endlet;

gives the result:
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Query is well-formed, well-typed and executable

Result = {

’null’:Result,

’null’:{}

}

Finished in: 35 ms (query execution is 35 ms, and

postprocessing time is 0 ms)

with the set Result denoting a/b. From the abstract hyperset view this is exactly the same

result as without using Can, but represented in a better, non-redundant way.

Note that Can can be used for the more general purpose of query optimisation (not only

for optimisation of query results by removing redundancies). Of course, using Can(t)

instead of t will require some time to compute TC(t) and then decoration (which in fact

requires computation of many bisimulation facts). But the benefit is that Can(t) will be

represented without any redundancies at all, in contrast to the set t which could contain a large

number of equal elements due to possible redundancies and thus would be much smaller after

eliminating them. Then, for example, Square(t) (the Cartesian product of t) would also be

represented without any unnecessary repetitions, and thus possibly much smaller. In particular,

if we want to have recursion over this Square (like in the case of recursive definition of

HorizontalTC), it would be computed much more efficiently, also with smaller number of

iteration steps, assuming Can(t) instead of t.

In principle, we could extend the language by adding literal equality eq(x,y) for set

names (object identities). This, of course, would change the set theoretic character of the

language as queries using such equality will not necessarily be bisimulation invariant. But if

we would use this equality only over the elements of sets represented as Can(t), then this

can work as an additional optimisation. In principle, the query system could recognise the

expressions Can(t) and automatically replace bisimulation over this set by literal equality.

Finally, note that the above optimisation was given for the current implementation of the

∆-language so that users can exploit canonisation to optimise some queries. In principle, this

optimisation could be build into the implementation, so that, any possible redundancies are

removed during query execution. In fact, the query system, while executing a query, supports

a list of currently known positive bisimulation facts (see Chapter 4) which can be used in

background time to remove at least some redundancies in set equations stored in local memory.
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3.6 Imitating path expressions

The ability to select nodes of a WDB graph to arbitrary depth can be elegantly achieved using

path expressions. As shown in [61], the action of a rich class of path expressions is definable in

the original ∆, itself having no path expressions at all, with the help of TC and Rec. In spite of

this fact, an important goal for the future work is to implement the extension of ∆ by such user

friendly path expressions like in the following example query13 (for simplicity only involving

set constants for full set names from the bibliographic WDB):

set query

separate {

pub-type:x in BibDB

where exists path <b1>refers-to*<x>refers-to<b2> .

’author’:"Smith" in x

};

The result of this query would be:

Result = {

paper:p2

}

Quantification goes over paths from b1 to b2 having an appropriate intermediate set (or

node for a publication) x which is required to have the element author:"Smith", but it

appears that there does not exists such an explicit path. Nevertheless, the required path does

exist, as shown in Figure 3.6 by the dashed edges labelled refers-to leading from b1

to p3, where p3 is equal (bisimilar) to b2 (p3 ≈ b2) as we already know. In strongly

extensional graphs (where there are no bisimilar nodes) path expressions would be understood

quite straightforwardly. Our hyperset approach leads to such kind of complications, but this is

the compromise for having a natural language with clear semantics and strong (also precisely

characterised) expressive power.

Note that the result of the above query would be the empty set if the Kleene star “*” was

removed from the path expression. Indeed, there are no paths of length two from b1 to b2, even

up to bisimulation.

13 The keyword path is added to aid reading.
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Figure 3.6: Visualisation of the path expression <b1>refers-to*<x>refers-to<b2>
applied to the bibliographic WDB.

The action of the path expression <b1>refers-to*<x>refers-to<b2> can, in fact,
be “rewritten” into ∆ (in its present form) by the following steps. Firstly, consider the
subexpression <x>refers-to<b2> denoting a path from the candidate publication x to
b2 labelled by ’refers-to’. This can be expressed as the ∆-formula:

’refers-to’:b2 in x

where b2 is set constant and x is set variable. Secondly, the subpath expression

<b1>refers-to*<x> denotes set of candidate publications x which can be reached from

b1 by navigating zero or more refers-to labelled edges. Thus, let us include in the

library the general set query which will give the set of graph nodes (of a graph representing a

hyperset z) reachable by navigating zero or more l-labelled edges.

TC along label:

set query TC_along_label(label l, set z) be

recursion p { k:x in TC(z)

where (

( x=z and k=’null’ )

or

( k=l and exists m:y in p . l:x in y )

)

};

Here p is a recursion set variable to representing the set T=TC_along_label(l,z) of
nodes lying on potentially all the l-labelled paths outgoing from z. All elements of T are
l-labelled, except possibly z. If l:z is in z then l:z will be added to T. But in any case
’null’:z will appear in T at the first stage of iteration. Hence the query call
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TC_along_label(’refers-to’, b1)

represents the path expression <b1>refers-to*<x> where ’refers-to’ is label value

and b1 is set constant.

Finally the path expression <b1>refers-to*<x>refers-to<b2>, understood as
the set of all x lying on the paths matching this path expression, is expressed as:

set query

separate {

n:xx in call TC_along_label(’refers-to’, b1)

where ’refers-to’:b2 in xx

};

Now, the fragment

exists path <b1>refers-to*<x>refers-to<b2> .

’author’:"Smith" in x

of our path expression query can be rewritten as

exists m:y in separate

{n:xx in call TC_along_label(’refers-to’,b1)

where ’refers-to’:b2 in xx

} .

(x=y and ’author’:"Smith" in x)

so that we can insert it in the full query

set query

let

set constant BibDB =

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#BibDB,

set constant b1 =

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b1,

set constant b2 =

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2

in

separate {

pub-type:x in BibDB

where

exists m:y in separate {

n:xx in call TC_along_label(’refers-to’,b1)

where ’refers-to’:b2 in xx

} .

( x=y and ’author’:"Smith" in x)

}

endlet;
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and run it to see the required result:

Query is well-formed, well-typed and executable

Result = {

’paper’:http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p2

}

Finished in: 5766 ms (query execution is 5764 ms, and

postprocessing time is 2 ms)

Despite this example of successfully imitating path expressions it would be more useful to also

include path expressions directly within the implementation language. Although much more

general path expressions can be imitated by ∆-queries in the current version [61], this imitation

can be quite complicated in general and is not a particularly efficient way of implementing and

executing queries with path expressions. Anyway, the ∆-language, as it is implemented now,

is very expressive.

3.7 Linear ordering query

The query example considered in this section has mainly theoretical interest, although it might

be useful in practice. The point is that we can define in ∆ linear ordering on the transitive

closure of any hyperset by using the lexicographical linear ordering we have on labels. In fact,

the resulting linear ordering on hypersets is itself, in a sense, lexicographical. Having defined

linear ordering, we can further define any (“generic” polynomial-time) computable operation

over hypersets by simulating any given Turing Machine (as shown in descriptive complexity

theory [34, 37, 55, 74]). This is the key point of the main result in [57] (for well-founded sets)

and in [58, 41, 43] (for hypersets) on the expressive power of ∆ coinciding with polynomial

time computability over (hyper)sets. (We omit precise formulation which is more subtle in the

case of hypersets having labelled elements; see [57, 41]).

Let us consider the set query declaration StrictLinOrder_on_TC(set z) (and
other associated declarations) which can be found in Appendix A.314. In fact, the rather
complicated query StrictLinOrder_on_TC serves as additional witness demonstrating
that everything is implemented correctly, and to check whether and where any optimisation
of the implementation is required. Note that StrictLinOrder_on_TC invokes Can and
without this canonisation the transitive closure

TCPure(BibDB)

14 It is based on formula (22) and Theorem 2 in [43]. We leave this for the reader to realise how this query below
is related with this formula and why it gives a strict linear ordering (see [43]).
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participating in the query below (according to Appendix A.3) would have too many repetitions,
and, hence, Square would have even more repetitions so that the recursion in the set query
StrictLinOrder_on_TC over this Square would take many hours. Now let us run

set query

let

set constant BibDB =

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#BibDB

in

call SuccessorPairs(

call StrictLinOrder_on_TC(BibDB)

)

endlet;

Note that SuccessorPairs (defined in Appendix A.3) makes the result more concise. We
see that our database BibDB becomes linear ordered (with corresponding simple set names
from the bibliographic database substituted in the place of new set names generated by the
query system):

Query is well-formed, well-typed and executable

Result = {

’null’:{’fst’:{}, ’snd’:"Databases"},

’null’:{’fst’:"Databases",’snd’:"Jones"},

’null’:{’fst’:"Jones", ’snd’:"Smith"},

’null’:{’fst’:"Smith", ’snd’:BibDB},

’null’:{’fst’:BibDB, ’snd’:p1},

’null’:{’fst’:p1, ’snd’:b1},

’null’:{’fst’:b1, ’snd’:b2/p3},

’null’:{’fst’:b2/p3, ’snd’:p2}

}

p2 = {’author’:"Smith",’title’:"Databases",’refers-to’:b2/p3}

b2/p3 = {’author’:"Jones",’title’:"Databases"}

p1 = {’refers-to’:p2}

b1 = {’refers-to’:b2/p3,’refers-to’:p1}

BibDB = {’paper’:p1,’paper’:p2,’paper’:b2/p3,’book’:b1,

’book’:b2/p3}

Finished in: 270500 ms (˜ 4 minutes and 30 seconds)

The correspondence of set names with those nodes in the graph in Figure 3.1 is explicitly shown
in the above result. Thus, the resulting linear ordering on the transitive closure of BibDB is:

{}, "Databases", "Jones", "Smith", BibDB, p1, b1, b2/p3, p2.
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Here it is important that recursion in StrictLinOrder_on_TC does not use bisimulation

for comparison iteration steps (see Chapter 4). This crucially optimises recursion, and

in particular the query StrictLinOrder_on_TC which also uses Can in its library

declaration. Without the first optimisations this query would take about 30 minutes, and

without also using Can even hours. Of course, several minutes for such a small database (with

TC(BibDB) containing 9 sets) is also quite long, and thus the query system implementation

needs to be further optimised. But the query is rather complicated (see Appendix A.3), and

recursion actually uses 81 = 92 steps of iteration if Can is involved. This means in the average

about 3.3 seconds per iteration step.
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Bisimulation

Before discussing the theoretical and practical issues surrounding bisimulation, let us recall

some relevant details of the hyperset approach to WDB. As previously described in Chapter 2

WDB is represented as a system of set equations x̄ = b̄(x̄) where x̄ is a list of set names

x1, . . . , xk and b̄(x̄) is the corresponding list of bracket expressions (for simplicity, “flat” ones).

Visually equivalent representation can be done in the form of labelled directed graph, where

labelled edges xi
label−→ xj correspond to the set memberships label : xj ∈ xi meaning that the

equation for xi has the form xi = {. . . , label : xj , . . .}. In this case we also call xj a child

of xi. Note that, our usage of the membership symbol (∈) as relation between set names or

graph nodes is non-traditional but very close to the traditional set theoretic membership relation

between abstract (hyper)sets. Of course this analogy is very important for us and it is indeed

highly natural, hence we decided not to introduce a new kind of membership symbol here. For

the purposes of our description below labels can be ignored, as inclusion of labels will not

affect the nature of our discussion. We will also apply the transitive closure operator TC(x)
to a set name x. The essential point is that in this context TC(x) is understood as a set of set

names (or graph nodes) rather than of abstract sets denoted by these names. Again, we do not

bother with introducing a new denotation for such TC.

4.1 Hyperset equality and the problem of efficiency

One of the key points of our approach is the interpretation of WDB-graph nodes as set names

x1, . . . , xk where different nodes xi and xj can, in principle, denote the same (hyper)set,

xi = xj . This notion of equality between nodes is defined by the bisimulation relation denoted

also as xi ≈ xj (to emphasise that set names can be syntactically different, but denote the

same set) which can be computed by the appropriate recursive comparison of child nodes or

set names. Thus, in outline, to check bisimulation of two nodes we need to check bisimulation

between some children, grandchildren, and so on, of the given nodes, i.e. many nodes could be

65
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involved. If the WDB is distributed amongst many WDB files and remote sites, downloading

the relevant WDB files might be necessary in this process and will take significant time. There

is also the analogous problem with the related transitive closure operator (TC) whose efficient

implementation in the distributed case requires additional considerations not discussed here.

So, in practice the equality relation for hypersets seems intractable, although theoretically it

takes polynomial time with respect to the size of WDB. Nevertheless, we consider that the

hyperset approach to WDB based on bisimulation relation is worth implementing because it

suggests a very clear and mathematically well-understood view on semi-structured data and the

querying of such data. Thus, the crucial question is whether the problem of bisimulation can be

resolved in any reasonable and practical way. Some possible approaches and strategies related

with the possible distributed nature of WDB and showing that the situation is manageable in

principle are outlined below.

Although for the general database perspective we should consider graphs with labels on

edges and hypersets with labelled elements, the majority of our considerations in this chapter

will be devoted to the pure case without any labels. Extension to the labelled case is quite

straightforward and is not explicitly considered, except in Definition 2 (b). Of course, our

implementation of bisimulation relation considers the labelled case.

4.1.1 Bisimulation relation

Equality between set names (or graph nodes) of any WDB is determined by bisimulation

relation defined according to [3] (see also [48, 53]).

Definition 2. (a) Bisimulation relation ≈ (or ≈WDB) on a WDB without labels (the pure case)

is the largest one such that for all set names x, y the following implication holds:

x ≈ y ⇒ ∀x′ ∈ x∃y′ ∈ y(x′ ≈ y′) & ∀y′ ∈ y∃x′ ∈ x(x′ ≈ y′). (4.1)

(b) In the general labelled case, it should satisfy the implication

x ≈ y ⇒ ∀l : x′ ∈ x∃m : y′ ∈ y(l = m ∧ x′ ≈ y′) &

∀m : y′ ∈ y∃l : x′ ∈ x(l = m ∧ x′ ≈ y′). (4.2)

It is well-known that the largest such relation does exist. Indeed, the class R of relations R

satisfying any of the above formulas (in place of≈) is evidently closed under taking unions, so

the union of all of them is the required largest one ≈. In fact, for ≈ the implication⇒ above

can be replaced by ⇐⇒ . Moreover, the class R evidently contains the identity relation =
and is closed under taking compositions R ◦ S and inverse relations R−1. It follows that the

largest such relation ≈ is reflexive, transitive and symmetric, that is, an equivalence relation.
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The bisimulation relation is completely coherent with hyperset theory as it is fully described in

the books of Aczel [3], and Barwise and Moss [5] for the pure case, and this fact extends easily

to the labelled case. It is by this reason that the bisimulation relation ≈ between set names can

be considered as equality relation = between corresponding abstract hypersets. So, we will not

go into further general theoretical details concerning the bisimulation relation (except for the

concept of local bisimulation in Chapter 6 below), paying the main attention to implementation

aspects.

4.2 Computing bisimulation over WDB

Bisimulation relation is computed in our implementation by recursively deriving bisimulation

facts. Both positive (≈) and negative (6≈) bisimulation facts can be derived with the following

rules:

x ≈ y : − ∀x′ ∈ x∃y′ ∈ y(x′ ≈ y′) & ∀y′ ∈ y∃x′ ∈ x(x′ ≈ y′). (4.3)

x 6≈ y : − ∃x′ ∈ x∀y′ ∈ y(x′ 6≈ y′) ∨ ∃y′ ∈ y∀x′ ∈ x(x′ 6≈ y′). (4.4)

In principle, using the rule (4.3) for deriving positive facts is unnecessary. They will be

obtained, anyway, at the moment of stabilisation in the derivation process by using only (4.4)

(see below). Derivation of bisimulation facts using the above rules (4.3 and 4.4) occur after

initial facts have been derived. The rules for deriving these initial facts are partial cases of the

main rules (4.3 and 4.4):

x ≈ y : − (x = ∅ & y = ∅) (4.5)

x 6≈ y : − (x = ∅ & y 6= ∅) ∨ (y = ∅ & x 6= ∅) (4.6)

x ≈ x (4.7)

After the derivation of initial facts, rules 4.3 and 4.4 can be recursively applied. Since it is

known that bisimulation is an equivalence relation, the following transitivity and symmetry

rules can be used alongside the above rules:

x ≈ z : − x ≈ y & y ≈ z (4.8)

x ≈ y : − y ≈ x (4.9)

All these rules should be applied until stabilisation, the stage when no more new x ≈ y or x 6≈ y
facts can be derived by the above rules. Evidentially, stabilisation is inevitable because there

are only finitely many set names in the original WDB, i.e. in the corresponding system of set

equations. All remaining non-resolved bisimulation questions (x
?
≈ y) can now be concluded

as resolved positively as x ≈ y.
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4.2.1 Implemented algorithm for computing bisimulation over distributed WDB

The deeply recursive nature of the bisimulation algorithm seems to suggest that it maybe

necessary to effectively compute the transitive closure of the two set names participating in any

bisimulation question. For example in the case of the bisimulation question x
?
≈ y, stabilisation

is sufficient to establish only for the facts between set names in TC(x) and TC(y). In general,

it may happen that the full transitive closures will be involved. However, in an optimistic

approach, derivation rules (described in Section 4.2) may be applied to the partial transitive

closures, with a “progressive” transitive closures computed as necessitated by the derivation

rules to facilitate the resolution of a bisimulation question.

Bisimulation algorithm Bis(x, y):

START with resolving the bisimulation question x
?
≈ y.

1. Create two (initially empty) lists Q and and Eq. Q will consist of bisimulation

questions u
?
≈ v or their possible answers, and Eq of (downloaded) set equations.

Note: During the computation, some bisimulation questions u
?
≈ v from the list Q can

be resolved – replaced by either u ≈ v (positive) or u 6≈ v (negative) facts. Thereby

Q will contain both non-resolved questions, and positive or negative facts. The process

will continue until Q will stabilise1.

2. Initialise populating Q by inserting the bisimulation question x
?
≈ y.

3. Acquire set equations corresponding to those set names involved in all non-resolved

bisimulation questions in Q by downloading appropriate WDB files containing these

equations. That is, for the question u
?
≈ v in Q, download the uniquely defined WDB

files (by full set names u, v) containing equations u = {. . .} and v = {. . .} (if they have

not been downloaded yet).

Add these equation into the (originally empty) list of set equations Eq (acquired from

the WDB).

Extend Q by all new bisimulation questions (more precisely, those not yet included in

Q neither as questions nor as positive or negative answers) for all set names participating

in Q plus set names in the right hand side of the (downloaded) set equations from Eq.

Note: Not all the downloaded equations (from the downloaded files) will likely

participate inEq and in the generation of transitive closure TC(x)∪TC(y) for the initial

question x
?
≈ y, and in this case they may be ignored when generating new questions

1In the case of using the Oracle, as described later in Chapter 5, the questions already asked to the Oracle should
be appropriately labelled to avoid asking them again.
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(to be added in Q). But they could probably be useful in future computations and could

save time on downloading if some equations to be downloaded as prescribed by the

current stage have been already downloaded earlier. Thus, all downloaded equations

(in fact, WDB files) should be saved in a cache of WDB (in memory) for possible future

use. Therefore, before making the quite expensive step of downloading a WDB file the

system should check whether it has already been downloaded. This WDB cache should

be initialised when beginning general query execution and used by both the general

query evaluation procedure and algorithm described here for evaluating bisimulation

(or equality) subqueries u
?
≈ v.

Similarly to the cache of WDB, the current versions ofQ andEq should not be discarded

from the memory till the end of executing a given query, involving the subquery x
?
≈ y

considered in the current algorithm, because some other bisimulation questions might

be involved which could be easily answered with already known Q and Eq.

4. Iteratively apply derivation rules (4.3) and (4.4) (thereby resolving some questions in

Q) until the initial bisimulation question x
?
≈ y becomes a resolved fact or, otherwise,

until exhaustion by using the currently downloaded (probably incomplete) list Eq of set

equations.

Note: Some enumerated in Q questions could still remain unresolved.

5. Recursive jump:

(a) Is the initial bisimulation question x
?
≈ y now a resolved fact in Q?

Yes – The original bisimulation question has now been resolved (end of algorithm).

No – Move to step 5b to continue trying to resolve initial bisimulation question

and other non-resolved questions in Q.

(b) Are there set names u participating in non-resolved questions in Q for which
set equations u = {. . .} have not yet been downloaded?

Yes – Then move to step 3 by which further facts may be derived once the relevant

set equations have been downloaded.

No – Then the full transitive closure TC(x) ∪ TC(y) of the initial bisimulation

question x
?
≈ y has been completed, therefore there are no further possibilities to

derive/resolve new facts, and stabilisation of the listQ has been achieved. Postulate

all non-resolved bisimulation questions as true facts. In particular, the original
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bisimulation question x
?
≈ y has now been resolved positively as x ≈ y (end of

algorithm).

END with the bisimulation question x
?
≈ y resolved positively x ≈ y or negatively

x 6≈ y.

The essential point of the above algorithm for computing bisimulation is that downloading

of WDB files is done in a “lazy” way – only when no derivation step is possible. This

strategy is chosen because downloading WDB files is the most expensive process of the

general implemented bisimulation algorithm. Therefore only in the worst case downloading all

the necessary set equations (generating the full transitive closure of the original bisimulation

question) will be necessary. Usually this should save a lot of time and memory.



Part II

Local/global approach to optimise
bisimulation and querying
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Chapter 5

The Oracle

5.1 Computing bisimulation with the help of the Oracle

The concept of the Oracle for Web-like databases is somewhat similar to that of an Internet

search engine, such as Google, where the Oracle will attempt to provide bisimulation facts

to the ∆-query system when requested and thereby to facilitate the easier computation of set

equality. Furthermore, the Oracle should work in background time independently (as well as

by requests from the ∆-query system) to derive bisimulation facts.

We assume that to the bisimulation question x
?
≈ y the Oracle should give one of three

answers “Yes”, “No” or “Unknown”1. In the latter case “Unknown” should consequently be

replaced by the Oracle (after resolving the question itself, probably resulting in some delay)

with either “Yes” or “No”. The answers “Yes” or “No” must be correct. In fact, asking the

Oracle is a way to resolve bisimulation questions, just like applying derivation rules. However,

it is likely that the Oracle only provides a partial bisimulation relation (depending on the current

state of its work) because of possible updates to WDB forcing the Oracle to redo at least

some of its work and the time required to compute bisimulation. Thus, those bisimulation

questions answered “Unknown” should invoke an initial attempt by the query system to resolve

the question locally, hence downloading WDB files with those set equations corresponding to

the set names participating in the question(s), etc., as in the algorithm of Section 4.2.1 above. If

during the process of local computation the Oracle will replace “Unknown” by “Yes” or “No”

then this local attempt to resolve the bisimulation question will be automatically halted due to

replacing this question by its answer, however, downloaded WDB files may prove to be useful

in future derivation steps of other possible bisimulation questions and should not be discarded

from the local cache.

1More precisely, to know which question is answered, full answers should be given: “x ≈ y”, “x 6≈ y” or

“x
?
≈ y”.
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For example, let us consider the Oracle attempting to resolve a bisimulation question posed

by the ∆-query system as shown below:

∆-query system: x
?
≈ y (is the set name x bisimilar to the set name y?).

Oracle: “Unknown” (based on the current state of knowledge of the Oracle).

The Oracle works towards resolving various bisimulation questions, in particular x
?
≈ y.

500ms later...

Oracle: “No” (x 6≈ y holds).

5.2 Imitating the Oracle for testing purposes

As the first attempt, an Oracle which is able to answer bisimulation questions can be simulated

with a single file containing a list of bisimulation facts with the states “Yes” or “No”. Further,

those bisimulation questions initially answered as “Unknown” can be also simulated as delayed

answers of “Yes” and “No” by associating each bisimulation fact with number of milliseconds

delay.

For the purposes of our preliminary implementation the trivial Oracle (simulated as a file

instead of a special Internet server) was implemented as an XML file2. The trivial Oracle

(XML file) contains all the necessary information to simulate the behaviour of the Oracle:

bisimulation facts corresponding to all possible bisimulation questions. Also, to simulate those

questions initially answered “Unknown” by the Oracle (such as in the example above) each

bisimulation fact has an associated delay time. These XML files are generated by one of the

programs belonging to our suite of tools from a given WDB in such a way that all “Yes”/“No”

facts presented there are automatically true, that is the bisimulation relation is computed by

this program and presented as an XML file. Furthermore, arbitrary delay times (useful for the

purposes of testing) are added manually to those XML files generated by this program.

Each bisimulation fact (in the trivial Oracle) is represented as an XML tag with

set_names, bisimulation value and delay times as mandatory attributes. For example,

let us consider the bisimulation fact y 6≈ z with no delay time represented in the trivial Oracle

as,

<facts set_name="y">

<fact set_name="z" value="no" delay="0" />

</facts>

2 which should not be mixed with XML-WDB files used to represent set equations



5.2. Imitating the Oracle for testing purposes 75

where bisimulation facts are grouped, inside <facts> and <fact> tags, according to those

set name participating in the WDB. The grouping of facts is a feature of the implementation

used to generate these XML files. Let us consider the trivial Oracle for the bibliographic WDB

(considered in Section 3.5) represented as the XML file:

<oracle>

<facts set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#BibDB">

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b1" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p1" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p2" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p3" value="no"/>

</facts>

<facts set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b1">

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p1" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p2" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p3" value="no"/>

</facts>

<facts set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2">

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p1" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p2" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p3" value="yes"/>

</facts>

<facts set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p1">

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p2" value="no"/>

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p3" value="no"/>

</facts>

<facts set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p2">

<fact delay="0"

set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p3" value="no"/>

</facts>

<facts set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p3">

</facts>

</oracle>

Note that only one value "yes" appears above as it is already known concerning our

bibliography database that only the set names b2 and p3 are bisimilar. Information encoded

within the such an XML file simulates the responses of the Oracle, i.e. the responses

to bisimulation questions. These responses, i.e. the desired bisimulation facts (possibly

delayed with the immediate temporary answer “Unknown”) may assist the regular bisimulation

algorithm. To simulate the Oracle, the bisimulation algorithm in Section 4.2.1 should be



76 Chapter 5. The Oracle

extended replacing step 3 as follows:

3. Acquiring set equations u = {. . .} and v = {. . .} corresponding to all those unresolved

questions u
?
≈ v inQ should now begin with asking the Oracle all these questions (which

have not already been asked), and the necessary downloads should follow only in the case

where the Oracle answers with “Unknown”.

Note: According to Footnote 1 (on page 73), the answer “Unknown”, in fact, means

that the Oracle returns back to the query system the question “u
?
≈ v”, and similarly

for the answers “Yes” and “No” in which case the full answers “x ≈ y” and “x 6≈ y”,

respectively, should be returned. Otherwise, because of delays, the system will not know

how to treat “Yes”, “No” and “Unknown”.

Evidentially, whilst resolving bisimulation questions (the modified version of) Step 2 will pose

many bisimulation question to the Oracle, which will be answered either “Yes” (u ≈ v) or “No”

(u 6≈ v) possibly with delays. In fact, the behaviour of the modified bisimulation algorithm can

be characterised as follows, depending on the Oracle’s responses:

• Bisimulation questions (u
?
≈ v) to the Oracle directly answered “Yes” (u ≈ v) or

“No” (u 6≈ v): In this case, the answer from the Oracle should immediately replace the

unresolved question in Q, and the modified bisimulation algorithm will resume its work

resolving other non-resolved bisimulation questions from Q.

• Bisimulation questions (u
?
≈ v) to the Oracle initially answered “Unknown” (u

?
≈ v):

In this case, the modified bisimulation algorithm will, in fact, resume its work resolving

u
?
≈ v and other non-resolved bisimulation questions from Q. Thus, the question will

either be resolved locally or the Oracle will replace its answer “Unknown” (u
?
≈ v) by

either “Yes” (u ≈ v) or “No” (u 6≈ v) possibly with some delay.

Note that, if the Oracle answers the question positively or negatively before being

resolved locally then this answer should replace the question in Q and the modified

bisimulation algorithm should continue its work (taking into account the newly resolved

question – it does not matter in which way the question is resolved, by the Oracle or by

the query system)3.

Note that, step 2 in the present modified form plays a crucial role in performance: resolution

of bisimulation questions by the Oracle will save costly downloading of WDB files.

3 A question answered “Unknown” does not require asking the Oracle again. In general, Oracle (as a special
Internet server) should remember all questions and reply to the appropriate client accordingly when the answer will
be ready.
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5.3 Empirical testing of the trivial Oracle

In principle, with the help of the Oracle those ∆-queries which involve set equality (bisimula-

tion) should be executed quicker. The aim of the following empirical testing is to measure the

improvement in query performance with the help of the Oracle, in addition to demonstrating

the effects of delayed answers to bisimulation questions (those initially answered “Unknown”)

by the Oracle.4

The distributed bibliographic WDB considered in Section 3.5 (see Figure 3.1) is frag-

mented into two XML-WDB files, thus making computation of bisimulation more dependent

on the time taken to download these files. The following example query (already considered

in Section 3.5.2) involves set equality to determine which publications belonging to BibDB

refer to the publication (possibly bisimilar to) b2. The requirement to compute bisimulation

across the distributed bibliographic WDB makes this simple example particularly suitable for

empirical testing of the Oracle:

set query

let set constant BibDB be

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#BibDB,

set constant b2 be

http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#b2

in collect { pub-type:pub

where pub-type:pub in BibDB

and exists ’refers-to’:ref in pub . ref=b2

}

endlet;

The execution time of this example query under various experimental conditions can be seen

in the Table 5.1. The results suggest a marked improvement in performance with help of the

Oracle, and only a slight improvement in performance when the Oracle returns an answer after

delay 50ms or 75ms. However, when the Oracle provided a greatly delayed answer (≥ 100ms)

query execution occurs with no real help by the Oracle, and bisimulation is computed locally

without any real help from the Oracle. Thus, under this circumstance, query execution time

increases, and the optimal approach appears to be query execution without invoking the Oracle.

This result may be explained by the numerous (and seemingly futile) bisimulation questions

posed to the Oracle (all of which are answered “Unknown” and never improved) which provide

no real help.

4Even more optimal would be to postpone local resolution of bisimulation questions in favour of some other
independent subqueries of the given query with the hope that the Oracle will give a definite answer before starting
local resolution. There are many ways to optimise our implementation, but we can consider only a limited range of
such possibilities.
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In summary, these results were based on experiments with the trivial Oracle (simulated as

an XML file instead of an Internet server). Additionally, the example WDB is too small and,

crucially, only distributed into two fragments. In principle, invoking the help of the Oracle

should improve query performance considerably when the WDB is distributed into a large

number of fragments.

Strategy Query execution time [ms]
Bisimulation algorithm without invoking the Oracle 588
with help of the Oracle (no delay time per question) 390
with help of the Oracle (50ms delay time per question) 500
with help of the Oracle (75ms delay time per question) 500
with help of the Oracle (100ms delay time per question) 608
with help of the Oracle (125ms delay time per question) 608

Table 5.1: Experimental results showing query execution time [ms] corresponding to each
strategy for computing bisimulation.

In a more realistic situation, the Oracle should be implemented as an Internet service (called

the bisimulation engine) for large distributed WDB, working in background time to derive all

possible bisimulation facts on the current state of WDB. The goal of the bisimulation engine

consists in answering bisimulation questions x
?
≈ y from the ∆-query system (possibly with a

delay5). The Oracle should be based on the bisimulation algorithm described in Section 4.2.1

and, additionally, on the idea of local/global bisimulation considered in Chapter 6. We will

consider implementation (still rather an imitation) of the Oracle in Chapter 7 and some further

advanced experiments.

5 In principle, the Oracle, when asked the question x
?
≈ y, could change its regular behaviour, and try to resolve

such questions (with appropriate strategy of priority) from one or more querying clients.
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Local/global bisimulation

Let a proper set1 L ⊆ SNames of “local” vertices (set names) in a graph WDB (a system of

set equations) be given, where SNames is the set of all WDB vertices (set names). Let us

also denote by L′ ⊇ L the set of all set names participating in the set equations for each set

name in L both from left and right-hand sides. Considering the graph as a WDB distributed

among many sites, L plays the role of (local) set names defined by set equations in some (local)

WDB files of one of these sites. Then L′ \ L consists of non-local set names which, however,

participate in the local WDB files, have defining equations in other (possibly remote) sites of

the given WDB. Non-local (full) set names can be recognised by their URLs as different from

the URL of the given site. Set names (or vertices) from L′ can be reasonably called “almost

local”.

We will consider derivation rules of the form xRy : − . . . R . . . for three relations over

SNames:

≈L
− ⊆ ≈ ⊆ ≈L

+ or, rather, their negations 6≈L
+ ⊆ 6≈ ⊆ 6≈L

−

defined on the whole WDB graph (however, we will be mainly interested in the behaviour of

≈L
− and ≈L

+ on L). We will usually omit the superscript L when it is clear from the context. In

particular, this chapter deals mainly with one L, so no ambiguity can arise.

6.1 Defining the ordinary bisimulation relation ≈

Recall the derivation rule defining 6≈:

x 6≈ y : − ∃x′ ∈ x∀y′ ∈ y(x′ 6≈ y′) ∨ ∃y′ ∈ y∀x′ ∈ x(x′ 6≈ y′). (6.1)

If u 6≈ v is underivable for some vertices/set names u, v then we assume u ≈ v to be true

1L 6= ∅ and L 6= SNames
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(indistinguishable sets are considered equal), and similarly in other cases below. Equivalently,

6≈ is the least relation satisfying (6.1), and its positive version≈ is the largest relation satisfying

x ≈ y ⇒ ∀x′ ∈ x∃y′ ∈ y(x′ ≈ y′) & ∀y′ ∈ y∃x′ ∈ x(x′ ≈ y′). (6.2)

The relation≈ is called bisimulation relation which is also known to be an equivalence relation

on the whole graph. Below are defined its upper and lower (relativised to L) approximations

≈+ and ≈−.

6.2 Defining the local upper approximation ≈L+ of ≈

Let us define the relation 6≈+ ⊆ SNames2 by derivation rule

x 6≈+ y : − x, y ∈ L & [∃x′ ∈ x∀y′ ∈ y(x′ 6≈+ y′) ∨ . . .]. (6.3)

Here and below “. . .” represents the evident symmetrical disjunct (or conjunct). Thus the

premise (i.e. the right-hand side) of (6.3) is a restriction of that of (6.1). It follows by induction

on the length of derivation of the 6≈+-facts that,

6≈+ ⊆ 6≈, ≈ ⊆ ≈+ (6.4)

x 6≈+ y ⇒ x, y ∈ L (6.5)

x 6∈ L ∨ y 6∈ L⇒ x ≈+ y. (6.6)

As L 6= SNames, the set of all vertices, it follows from (6.6) that ≈+ can be an equivalence

relation on the whole graph only if it is trivial, making all vertices equivalent. But we will show

below that it is an equivalence relation locally, that is on L.

Let us also consider another, “more local” version of the rule (6.3)

x 6≈+ y : − x, y ∈ L & [∃x′ ∈ x∀y′ ∈ y(x′, y′ ∈ L & x′ 6≈+ y′) ∨ . . .]. (6.7)

It defines the same relation 6≈+ because in both cases (6.5) holds implying that the right-hand

side of (6.7) is equivalent to the right-hand side of (6.3). The advantage of (6.3) is its formal

simplicity whereas that of (6.7) is its “local” computational meaning. From the point of view

of distributed WDB with L one of its local sets of vertices/set names (corresponding to one of

the sites of the distributed WDB), we can derive x 6≈+ y for local x, y via (6.7) by looking at

the content of local WDB files only. Indeed, participating URLs (full set names) x′ ∈ x and

y′ ∈ y, although likely non-local names (∈ L′ \ L), occur in the locally stored WDB files with

local URLs x and y ∈ L. However, despite the possibility that x′ and y′ can be in general
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non-local, we will need to use in (6.7) the facts of the kind x′ 6≈+ y′ derived on the previous

steps for local x′, y′ ∈ L only. Therefore,

Note 1 (Local computability of x 6≈+ y). For deriving the facts x 6≈+ y for x, y ∈ L by means

of the rule (6.3) or (6.7) we will need to use the previously derived facts x′ 6≈+ y′ for set names

x′, y′ fromL only, and additionally we will need to use set names from a wider setL′ (available,

in fact, also locally)2. In this sense, the derivation of all facts x 6≈+ y for x, y ∈ L can be done

locally and does not require downloading of any external WDB files. (In particular, facts of the

form x 6≈+ y or x ≈+ y for set names x or y in L′ \L present no interest in such derivations.)

The upper approximation ≈+ (on the whole WDB graph) can be equivalently characterised

as the largest relation satisfying any of the following (equivalent) implications for all graph

vertices x, y:

x ≈+ y ⇒ x 6∈ L ∨ y 6∈ L ∨ [∀x′ ∈ x∃y′ ∈ y(x′ ≈+ y′) & . . .]

x ≈+ y & x, y ∈ L⇒ [∀x′ ∈ x∃y′ ∈ y(x′ ≈+ y′) & . . .] (6.8)

The set of relations R ⊆ SNames2 satisfying (6.8), in place of ≈+, evidently: (i) contains the

identity relation = and is closed under (ii) unions (thus the largest ≈+ does exist), and (iii)
taking inverse.

Evidently, any ordinary (global) bisimulation relation R ⊆ SNames2 (that is, a relation

satisfying (6.2)) satisfies (6.8) as well3. For any R ⊆ L2 the converse also holds: if R satisfies

(6.8) then it is actually a global bisimulation relation (and R ⊆ ≈). It is easy to check that (iv)
relations R ⊆ L2 satisfying (6.8) are closed under compositions.

It follows from (i) and (iii) that ≈+ is reflexive and symmetric. Over L, the relation ≈+

(that is the restriction ≈+� L) is also transitive due to (iv). Therefore, ≈+ is an equivalence

relation. (In general, as we noticed above, ≈+ cannot be equivalence relation on the whole

graph, due to (6.6).) Moreover, any x 6∈ L is ≈+ to all vertices (including itself).

6.3 Defining the local lower approximation ≈L− of ≈

Consider the derivation rule for the relation 6≈− ⊆ SNames2:

x 6≈− y : − (x, y 6∈ L & x 6= y) ∨ (x ∈ L & y 6∈ L) ∨ (y ∈ L & x 6∈ L) ∨

[∃x′ ∈ x∀y′ ∈ y(x′ 6≈− y′) ∨ . . .].
2 This is the case when y = ∅ but there exists according to (6.7) an x′ in x which can be possibly in L′ \ L (or

similarly for x = ∅). When y = ∅ then, of course, there are no suitable witnesses y′ ∈ y for which x′ 6≈+ y′ hold.
Therefore, only the existence of some x′ in x plays a role here.

3This imples (6.4) again because ≈+ is the largest relation satisfying (6.8).
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The following is an equivalent simplified rule:

x 6≈− y : − ((x 6∈ L ∨ y 6∈ L) & x 6= y) ∨

[∃x′ ∈ x∀y′ ∈ y(x′ 6≈− y′) ∨ . . .] (6.9)

which can also be equivalently replaced by two rules:

x 6≈− y : − (x 6∈ L ∨ y 6∈ L) & x 6= y – “a priori knowledge”, (6.10)

x 6≈− y : − ∃x′ ∈ x∀y′ ∈ y(x′ 6≈− y′) ∨ . . . . (6.11)

Thus, in contrast to (6.3), this is a relaxation, or, an extension of the rule (6.1) for 6≈. It follows

that

6≈ ⊆ 6≈− (≈− ⊆ ≈),

x ≈− x for all x ∈ SNames — reflexivity.

The former is trivial, and the latter means that x 6≈− x is not derivable. (Indeed, x 6≈− x can be

derivable only if x′ 6≈− x′ is derivable for some x′ ∈ x on an earlier stage; thus, there cannot

exists a first such derivable fact.) It is also evident that

any x 6∈ L is 6≈− to all vertices different from x,

x ≈− y & x 6= y ⇒ (x, y ∈ L).

The latter means that ≈− (which is an equivalence relation on SNames and hence on L as it is

shown below) is non-trivial only on the local set names. Again, like for 6≈+, we can conclude

from the above considerations that,

Note 2 (Local computability of x 6≈− y). We can compute the restriction of 6≈− on L locally:

to derive x 6≈− y for x, y ∈ L with x 6= y (taking into account reflexivity of ≈−) by (6.9) we

need to use only x′, y′ ∈ L′ (by x′ ∈ x and y′ ∈ y) and already derived facts x′ 6≈− y′ for

x′, y′ ∈ L, x 6= y, as well as the facts x′ 6≈− y′ for x′ or y′ ∈ L′ \ L, x′ 6= y′ following from

the “a priori knowledge” (6.10).

The lower approximation≈− can be equivalently characterised as the largest relation satisfying

x ≈− y ⇒ (x, y ∈ L ∨ x = y) & (∀x′ ∈ x∃y′ ∈ y(x′ ≈− y′) & . . .).

Evidently, = (substituted for ≈−) satisfies this implication. Relations R satisfying this

implication are also closed under unions and taking inverse and compositions. It follows that

≈− is reflexive, symmetric and transitive, and therefore an equivalence relation over the whole
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WDB graph, and therefore on its local part L.

Finally, we summarise that both upper and lower approximations ≈L
+ and ≈L

− to ≈
restricted to L are computable “locally”. Each of them is defined in a trivial way outside

of L, and the computation requires only knowledge at most on the L′-part of the graph. In fact,

only edges from L to L′ are needed, everything being available locally.

6.4 Using local approximations to aid computation of the global
bisimulation

The point of previous considerations of this chapter was that, given any set L of “local” set

names (or WDB graph vertices), we defined two (local to L) approximations ≈L
+ and ≈L

− to

the global bisimulation relation ≈. Now, assume that the set SNames of all set names (nodes)

of a WDB is disjointly divided into a family of local sets Li, for each “local” site i ∈ I (so that

SNames is the disjoint union SNames =
⋃

i∈I Li). Then we have many local approximations

≈Li
+ and ≈Li

− to the global bisimulation relation ≈. As we discussed above, these relations can

be easily computed locally by each site i using the derivation algorithms described in Notes 1

and 2, respectively.

Now the problem is how to compute the global bisimulation relation ≈ with the help of many

its local approximations ≈Li
+ and ≈Li

− in all sites i.

6.4.1 Granularity of sites

However, for simplicity of implementation and testing the above idea (and also because it is

more problematic to create many sites with their servers) we will redefine the scope of i to

a smaller granularity. Instead of taking i to be a site, consisting of many WDB files, we will

consider that each i itself is a name of a single WDB file filei. More precisely, i is considered as

the URL of any such a file. This will not change the main idea of implementation of the Oracle

on the basis of using local information for each i. That is, we reconsider our understanding of

the term local – from being local to a site to local to a file4 – as shown in Figure 6.1. Then

Li is just the set of all (full versions of) set names defined in file i (left-hand sides of all set

equations in this file). Evidently, so defined sets Li are disjoint and cover the class SNames of

all (full) set names from the WDB considered. Recall that ≈Li
+ and ≈Li

− are formally defined

on the whole WDB (not only on Li). Their restrictions to Li are also equivalence relations

(on Li) denoted, for brevity and when it is clear from the context, also as ≈Li
+ and ≈Li

− .

4 Moreover, this idea of locality to files (described below in detail) belonging to each such a site i is useful for
computing i-th site’s local upper and lower approximations of bisimulation as an intermediate step. Then these i-th
approximations could be used in implementation of the global Oracle. That is, the idea of locality can be fruitfully
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(a) Local to files (b) Local to sites

Figure 6.1: Summary of a distributed WDB showing the difference between interpretation of
local as: local to a file, or local to a site.

The relations ≈Li
+ and ≈Li

− should be automatically computed, saved as file and maintained as

the current local approximations for each WDB file i. In principle a suitable tool is necessary

for editting (and maintaining) WDB, which would save a WDB file i and thereby generate the

approximation relations ≈Li
+ and ≈Li

− (file) automatically.

6.4.2 Local approximations giving rise to global bisimulation facts

We know that these approximations satisfy,

≈Li
− ⊆ ≈ ⊆ ≈

Li
+ ,

or, equivalently,

6≈Li
+ ⊆ 6≈ ⊆ 6≈

Li
− .

It evidently follows that,

• each positive local fact of the form x ≈Li
− y is a positive fact about ≈, i.e. gives rise to

the fact x ≈ y, and

• each negative local fact of the form x 6≈Li
+ y is a negative fact about ≈, i.e. gives rise to

the fact x 6≈ y.

Let ≈Li (without subscripts + or −) denote the set of positive and negative facts for set names

in Li on the global bisimulation relation≈ obtained by these two clauses. This set of facts≈Li

is called the local simple approximation set to ≈ for the file (or site) i. Let the local Oracle

LOi just answer “Yes” (“x ≈ y”), “No” (“x 6≈ y”) or “Unknown” to questions x
?
≈ y for

x, y ∈ Li according to ≈Li .

used on various levels of granularity to optimise performance of the bisimulation engine (the Oracle).
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In the case of i considered as a site (rather than a file) then LOi can have delays when

answering “Yes” (“x ≈ y”) or “No” (“x 6≈ y”) because LOi should rather compute ≈Li itself

and find out in≈Li answers to the questions asked which takes time. But, if i is understood just

as a file saved together with all the necessary information on local approximations at the time

of its creation then LOi can submit the required answer and, additionally, all the other facts it

knows at once (to save time on possible future communications).

Therefore, a centralised Internet server (for the given distributed WDB) working as the

(global) Oracle or Bisimulation Engine, which derives positive and negative (≈ and 6≈) global

bisimulation facts can do this by the algorithm of Section 4.2.1, in addition to asking (when

required) various local Oracles LOi concerning ≈Li . That is, the algorithm from Section 4.2.1

extended to exploit local simple approximations ≈Li should, in the case of the question x
?
≈ y

in Q with x, y ∈ Li from the same site/WDB file i5, additionally ask the oracle LOi whether

it already knows the answer (as described in the above two items). If the answer is known,

the algorithm should just use it. Otherwise (if LOi does not know the answer or x, y do not

belong to one Li – that is, they are “remote” one from another), the global Oracle should work

as described in Section 4.2.1 by downloading set equations, making derivation steps, etc. Thus,

local approximations serve as auxiliary local Oracles LOi helping the global Oracle.

6.4.3 Practical algorithm for computation of local approximations

The derivations rules for computing local approximations (described above by rules 6.3, 6.9

together with Notes 1, 2) can be implemented in a very similar way to the practical algorithm for

computing the global bisimulation described in Section 4.2. Given a WDB file i as the input, the

algorithm will generate approximation files iA and iSA containing local approximations ≈Li
+ ,

≈Li
− and, respectively, local simple approximation set ≈Li (all three approximations restricted

to Li). The derivation rules (6.3, 6.9) were formulated to compute the relations ≈Li
+ and ≈Li

−

over all set names (both local and non-local). According to Notes 1, 2 on local computability of

local approximations the computation of restricted relations can be also restricted to local set

names in Li (or to slightly wider set L′i). Additionally, the two clauses in Section 6.4.2 should

be used.

Unlike the practical algorithm for computing global bisimulations, the computation of local

approximations≈Li
+ ,≈

Li
− , and≈Li (creation of approximation files iA and iSA) should be done

after creating (and saving) WDB files i, therefore this operation does not require much attention

towards optimisation.

5x, y ∈ Li can be trivially checked by comparing the full set names x, y with the URL i
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Local simple approximation files, iSA, are represented as XML files (quite similar to those

of the imitated Oracle; see Section 5.2) containing global bisimulation facts derived locally

on the fragment i (≈Li). Each approximation fact is represented as an (XML) fact tag

with boolean local approximation value and set name as mandatory attributes value and

set_name. These approximation facts are grouped (inside facts tag) corresponding to

all local set names in Li
6.

For example, let us consider the simple approximation file iSA, corresponding to the local

simple approximation set ≈Li , for one particular fragment of the bibliographic WDB (see

Section 3.5) http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml:

<simple-approximation>

<facts set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#BibDB">

<fact set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b1" value="no"/>

<fact set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2" value="no"/>

</facts>

<facts set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b1">

<fact set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2" value="no"/>

</facts>

<facts set_name="http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml#b2">

</facts>

</simple-approximation>

Note that all “no” values above correspond to negative bisimulation facts ( 6≈) resulting

from the computation of the local simple approximation set ≈Li , where i is the WDB file

mentioned above. Simple approximation files are predictably named based on the name of the

corresponding WDB file i by concatenating the string “approximation” to the end of the

WDB file name, for example the WDB file name “BibDB-f1.xml” will have corresponding

simple approximation file with the name “BibDB-f1.approximation.xml”.

6 This is quite similar to the previous implemented tool to generate the (trivial) Oracle XML files.

http://www.csc.liv.ac.uk/~molyneux/t/BibDB-f1.xml


Chapter 7

The Oracle based on the idea of
local/global bisimulation

7.1 Description of the bisimulation engine (implementation of a
more realistic Oracle)

Empirical evidence from the implementation of the imitated Oracle in Section 5.3 concluded

that a centralised service providing answers to bisimulation question would increase query

performance (for those queries exploiting set equality) – this service could be named

bisimulation engine. The goal of such bisimulation engine would be:

• Answer bisimulation queries – Answers bisimulation questions communicating via

standardised protocol (as discussed in Section 5.1).

• Compute bisimulation – Derive bisimulation facts in background time, and strategically

prioritise bisimulation questions posed by the ∆-query system by temporary changing

the fashion of the background time work in favour of resolving these questions1.

• Exploit local approximations – Exploit those local approximations corresponding to

WDB files to assist in the computation of bisimulation.

• Maintain cache of set equations – The Oracle (just like the ∆-query system) should

maintain a cache of the downloaded set equations in the previous steps. These set

equations may later prove useful in deriving new bisimulation facts with saving time

on downloading of already known equations.

1 Although due to limitations of time, the current implementation is more basic and does not adopt this strategy
of prioritising. (See more in Section 7.1.1.

87
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7.1.1 Strategies

In principle, the bisimulation engine should give strategic prioritisation to resolving those

bisimulation questions posed by clients – favouring resolution of these bisimulation questions

over background tasks (resolving all other bisimulation questions). Moreover, it is reasonable

to make the query system adopt a “lazy” strategy while working on a query q. This strategy

consists of sending bisimulation subqueries of q to the Oracle but not attempting to resolve

them in the case of the Oracle’s answer “Unknown” (according to the standard algorithm).

Instead of such attempts, the query system could try to resolve other subqueries of the given

query q until the resolution of the bisimulation question sent to the Oracle is absolutely

necessary. The hope is that before this moment the bisimulation engine will have already

given a definite answer.

However these useful features have not yet been implemented. In the current version, we

have only a simplified imitation of bisimulation engine which resolves all possible bisimulation

questions for the given WDB in some predefined standard order without any prioritisation and

answers these questions in a definite way when it has derived the required information. Thus the

Oracle, while doing its main job in background time, should only remember all the pairs (client,

question) for questions asked by clients and send the definite answer to the corresponding client

when it is ready.

7.1.2 Exploiting local approximations to aid in the computation of bisimulation

For implementation of the Oracle we use again the algorithm for computing the bisimulation

relation, as described in Section 4.2.1. But, this algorithm will be extended to exploit local

approximations by adding an additional step after acquiring set equations (step 3). This

additional step (step 3’) is detailed below:

3’. Acquire local approximations by (i) downloading the local approximation set ≈Li

(consisting of some positive and negative bisimulation facts) represented as the simple

approximations file iSA (cf. Section 6.4.3) for each WDB file i retrieved during step 3,

and (ii) adding all the positive and negative bisimulation facts from iSA to the list Q

of questions and answers (replacing those questions in Q which were thereby answered

positively or negatively).

Additionally, while computing global bisimulation by exploiting local approximations, the

Oracle should always be ready to receive questions u
?
≈ v from various, possibly remote

∆-query systems and answer them immediately that the result is yet unknown (if it is so)

and, when the result will become known either as u ≈ v or u 6≈ v, sending it back to the

corresponding ∆-query system.
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7.2 Empirical testing of the bisimulation engine

Preliminary results from testing of the simulated Oracle (described in Section 5.3) indicated

that, in principle, an Internet Service providing answers to bisimulation questions would

decrease query execution time for those queries involving set equality. However, these

preliminary tests were idealised situations and did not describe the relationship between

background work by the bisimulation engine and query performance. (In fact, the simulated

Oracle did not work in background time, and only some intermediate result was represented.)

Additionally, advantages of exploiting local approximations should be demonstrated.

Let us consider empirical testing of the bisimulation engine by measuring the performance

of the query client executing (with the help of the bisimulation engine) set equality queries of

the form x
?
≈ y where x, y belong to a some suitable large WDB. To simplify our considerations

on measuring efficiency and to demonstrate some desirable effects we will consider rather

artificial examples of WDB. As for WDB size, we will try to determine a threshold where

the execution time becomes either unrealistically long or sufficiently reasonable. Note that,

labels are ignored with just one (identical) label on all graph edges, as labels typically

allow the bisimulation algorithm (see Section 4.2.1) to derive more negative facts and, thus,

possibly terminating too early (before the transitive closure of both set names involved in any

bisimulation question will be fully explored).

7.2.1 Determining the benefit of background work by the bisimulation engine
on query performance

The aim of this experiment is to demonstrate the relationship between query execution time t

by the query system, and background work by the bisimulation engine. Background work by

the bisimulation engine is simulated by delay time d, summarised briefly as follows:

1. The bisimulation engine should begin working with the goal of resolving all possible

questions u
?
≈ v for arbitrary set names of a given WDB. For the sake of the experiment,

it should work uninterrupted (without being posed any questions by the query client) for

the delay time d.

2. The query client should start executing the test query x
?
≈ y after the delay time d

has expired, attempting resolution of the test question (and possibly other bisimulation

questions which may arise during this process) with the help of the bisimulation engine.

The bisimulation engine should continue its work, but now communicating with the

query client.
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Thus, the query execution time t(d) by the query client (working with the bisimulation engine

starting from the delay time d) depends on d, and it is this dependence which we want to

investigate experimentally. Evidently, t(d) should be a decreasing function: the later the client

starts its work after the bisimulation engine, the more help it can provide, and the smaller

should be the client’s working time t(d). Note that this is still an idealised experiment, in

practice, there could be many query clients communicating with the bisimulation engine at

arbitrary times.

Note 3. It should be noted that the current implementation of the hyperset language ∆ does

not use yet any bisimulation engine. These experiments were implemented separately and only

to demonstrate some potential strategies for more efficient implementation of the most crucial

concept of bisimulation relation underlying the hyperset approach.

In this experiment, the example WDB consists of 51 set names distributed over 10 WDB

files, connected in chains as shown by the schematical graph in Figure 7.1. To increase the

difficulty of computing bisimulation a copy WDB’ of this WDB was made, changing only the

URL part of full set names. Thus, the experiment is done over WDB + WDB’. Bisimulation

between corresponding set names in WDB and WDB’ under this circumstance is intuitively

trivial (the answer being always “true”). However, it is a non-trivial task when calculated by

our algorithm which has no advance knowledge that WDB and WDB’ are essentially identical

(isomorphic).

Further, our experimental procedure here was the measurement of execution time t(d) by

the query client executing the test query x
?
≈ x′ where x, x′ are corresponding set names in

WDB and, its isomorphic copy, WDB’.

Figure 7.1: Schematical WDB graph divided into WDB files as shown by the red dashed ovals.
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7.2.1.1 Experiment results

On examination of the results graph in Figure 7.2 the trend curve suggests an exponential

decay relationship between partial work of the bisimulation engine and query performance.

Moreover, this qualitative assessment by inspection of the graph is confirmed by examining

the experimental values in Table 7.1, which demonstrate that t(d) approximately halves as d

increases by steps of 2500ms.

Therefore, query performance benefits considerably even when the bisimulation engine has

been working (in the background) for relatively short periods of time (say, 5 seconds or more),

with an exponential decrease in t(d) as d increases. However, for sufficiently small delay time

d, query performance suffers, as the bisimulation engine answers “Unknown” to nearly all

posed bisimulation questions. Thus, in this case, the bisimulation engine provides no real help,

and the query client is forced to start resolving the bisimulation question itself. This suggests

that in this circumstance that local computation of bisimulation by the query system without

invoking the help of the bisimulation engine would be more efficient, as shown by the threshold

on the graph (dashed horizontal line). In fact, here query execution time t(d) with the help of

the bisimulation engine is smaller than without the help of the bisimulation engine when delay

d is > 2000ms.

Figure 7.2: Graph of experimental results (cf. Table 7.1 below) showing the dependence of
query execution time t(d) [ms] on delay time d [ms]
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Delay time d [ms] Execution time t(d) [ms]
0 31050
2500 16300
5000 7930
7500 4090
10000 2040
12500 1380
15000 770
17500 320
20000 10
22500 10
25000 10

Table 7.1: Experimental results showing dependence of query execution time t(d) [ms] on
delay time d [ms]

7.2.2 Determining the benefit of exploiting local approximations by the bisimu-
lation engine on query performance

It seems plausible to expect that, in practice, each WDB file (or a group of closely related WDB

files) should be sufficiently self-contained and have few links to the external files – relatively

small dependence on the “external world”. Therefore, we should expect that the set of locally

derived bisimulation facts should be sufficiently large (the majority of questions x
?
≈ y for

local set names should be resolved locally based on ≈L
+ and ≈L

−), and, hence, helpful for the

work of bisimulation engine and improving its performance.

Figure 7.3: Schematical WDB graph consisting of one WDB file as shown by the red dashed
oval.

Taking this into account, our alternative example WDB for testing consists of one WDB file

containing a variable number n of set names (our experimental parameter as described below)

connected in one chain, as shown by the schematical graph in Figure 7.3. Also, like the previous

experiment, a copy WDB’ of this WDB was made, changing only the URL part of full set

name. Likewise, the experimental queries to follow are over WDB + WDB’, that is over two
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files. This example represents an extreme, idealised case when each of these two files is fully

self-contained, i.e. has no links to the “external world”. As we wrote above, in more realistic

situations we should rather expect a relatively small number of such external links.

Recall that each of the WDB and WDB’ files has a corresponding local approximations

file, as described in Section 6.4.3, containing, respectively, local sets ≈L and ≈L′ of (positive

and negative) bisimulation facts which now will be available by demand to the bisimulation

engine (as well as to the query system) which should considerably improve the performance.

Thus, for our self-contained WDB file 1 (and similarly with its duplicate) the set of local set

names is L = {x1, . . . , xn} and the corresponding local facts ≈L and 6≈L obtained from the

local approximations ≈L
+ and ≈L

− trivially coincide with those global bisimulation facts ≈ and

6≈ restricted to the set of names L.

The aim of the experiment is to determine the relationship between the size of WDB (input

size based on the parameter n) and query performance time comparing the three strategies: (i)
with the help of the bisimulation engine not exploiting local approximations; (ii) with the help

of the bisimulation engine, exploiting local approximations; and (iii) without the help of the

bisimulation engine2. Similarly to the previous experiment we measure query performance for

the test query x1
?
≈ x′1 where x1,x′1 are corresponding set names of the example WDB and

its copy WDB’. But now there is no delay time between the client and the bisimulation engine

starting work. Delay time d = 0 is the “worst case” for the bisimulation engine, as proved by

the previous experiment. (The case of variable d for a fixed n will be considered in another

experiment later.)

7.2.2.1 Experiment results

The graph in Figure 7.4 suggests a sufficiently close to linear trend between query performance

and WDB size when the bisimulation engine exploits local approximations. Moreover, this

looks almost like a horizontal line, and query execution seems practically viable (∼ 41 seconds

for n = 70; see Table 7.2). On the other hand, with help of the bisimulation engine not

exploiting local approximations, as well as without help of the bisimulation engine at all,

query performance with sufficiently large WDB (n = 70) becomes intractable (more than

one hour). In fact query performance improves at a threshold level of approximately n = 27
(see Table 7.2) with the bisimulation engine exploiting local approximations, with significant

improvement in query performance for larger n compared to the bisimulation engine not

exploiting local approximations or without using bisimulation engine at all.

2 That is, without the help of the bisimulation engine the query client running the test query is forced to compute
bisimulation itself.
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Moreover, the absence of hyperlinks to other WDB files in our example WDB gives

local approximations facts that coincide with those global bisimulation facts restricted to

the set names in L or L′. Thus, computing bisimulation requires fewer derivation steps,

dramatically decreasing the time required to compute bisimulation. Furthermore, these results

suggest that local approximations are more useful when the WDB is divided into larger almost

self-contained fragments. The latter is definitely the case when local is understood as local

to a site. However, in the latter case, local approximations to ≈ could take some time to

compute at each site. This situation is somewhat different from saving a WDB file with its

local approximation set ≈L. Thus more experimentation is required.

Figure 7.4: Graph of experimental results (cf. Table 7.2 below) showing the relationship
between query execution time [ms] and size of WDB (based on the parameter n) – comparing
the three strategies towards computing bisimulation

It might seem unexpectedly, but is actually quite natural that the results of this experiment

also demonstrate that query performance is worse with the help of the bisimulation engine not

exploiting local approximations compared to without the help of the bisimulation engine. In

fact, this experiment was conducted with no delay time (d = 0), and we should recall the results

of the experiments in Section 7.2.1 where a sufficiently small delay times decreased query

performance with the help of the bisimulation engine (not exploiting local approximations)

due to the additional expense of communication with the bisimulation engine.
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Note that the WDB considered in this and the following experiments was artificially created

to make computation of bisimulation more difficult. In real situations, in particular where

labels are used, it should be possible to derive non-bisimilarity of vertices without the need to

go so deeply. However, only realistic application of the ∆-query language can fully show its

efficiency and where it should be improved.

Query execution time (ms)
Number of
set names
n

with bisimulation
engine exploiting
local approximations

without bisimulation
engine

with bisimulation
engine not exploiting
local approximations

15 3422 1015 1340
20 4360 1781 2428
25 5500 3422 4585
30 7015 7781 10368
35 8547 19766 26309
40 10375 48422 64400
50 20063 746187 (∼ 13 mins) 989750 (∼ 16 mins)
60 27516 2113375 (∼ 35 mins) 2810800 (∼ 47 mins)
70 40983 5069797 (∼ 84 mins) 6742890 (∼ 112 mins)

Table 7.2: Experimental results showing query execution time [ms] against WDB size (based
on the parameter n) – comparing the three strategies towards computing bisimulation.

7.2.3 Determining the benefits of background work by the bisimulation engine
exploiting local approximations

Now let us consider the realistic case where the bisimulation engine is working in background

time, comparing both strategies of working by the bisimulation engine: (i) with exploitation of

local approximations, and (ii) without exploitation of local approximations. We shall adopt the

same method of testing as previously in Section 7.2.1 with the aim to determine the relationship

between query execution time against partial background work3 by the bisimulation engine for

both strategies.

The example WDB used in this experiment is based on notions described in Section 7.2.2

that WDB files (or groups of WDB files) should be relatively self contained with few external

links. Thus, here the experimental WDB consists of one (main) WDB file with hyperlinks to

two other (auxiliary) WDB files, describing 61 set names in total, as shown by the schematical

graph in Figure 7.5. Note that, like those previous experiments in Section 7.2.1 and 7.2.2, the

following experimental queries are over WDB and its identical copy WDB’.
3Recall that, in Section 7.2.1 the experimental parameter, delay time d, simulated partial background work by

the bisimulation engine.
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The aim of this experiment is to measure query execution time t(d) by the query client with

the help of the bisimulation engine for the test query x
?
≈ x′ where x, x′ are corresponding

“root” set names of the example WDB and its copy WDB’. Our experimental parameter is the

delay time d, as detailed in the previous experiment Section 7.2.1.

Figure 7.5: Schematical WDB graph divided into three WDB files as shown by the red dashed
ovals.

7.2.3.1 Experiment results

The results of the experiment in Table 7.3 extend previous results in Section 7.2.2 which

suggested that exploitation of local approximation by the bisimulation engine increases

query performance. However, comparing the influence of partial background work by the

bisimulation engine, for both strategies of working, is somewhat difficult due to the difference

in magnitude between the results (see Figure 7.6a). In fact, exploitation of local approximations

(by the bisimulation engine) reduces query execution time from minutes to seconds, and hours

to minutes.

Note that in the case of exploitation of local approximations, the process of derivation

is preceded4 by acquiring these approximations. The additional plot of data in Figure 7.6b

shows threshold level, when d is small, that background work by the bisimulation engine does

not improve query performance whilst (the initial required) local approximations are being

downloaded, as shown by the brown arrow in Figure 7.6b. Furthermore, when exploiting local

approximations, a sufficiently large number of locally derived bisimulation facts (on the stage

of creating WDB files) actually means in this example that fewer real derivation steps are

required.

4 Downloading approximation files can occur at any stage whilst resolving some bisimulation question.
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(b) Bisimulation engine exploiting local approximations

Figure 7.6: Graphs of experimental results demonstrating the relationship between query
execution time [ms] and background work by the bisimulation engine simulated by delay time
d [ms]
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7.3 Overall conclusion

In summary, here two strategies were suggested towards improving the performance of

queries involving set equality (bisimulation), these strategies are: (i) implementation of an

Internet service, bisimulation engine, answering bisimulation questions; and (ii) exploitation

of local approximations (by the bisimulation engine) to facilitate the quicker computation of

bisimulation. It was shown empirically that for an artificial WDB that both strategies, and most

dramatically (ii), improved query performance. In fact, the latter strategy demonstrates that

querying of a medium sized example WDB could become practically viable.

Note that other recent research into the efficient computation of the bisimulation relation

was not considered here, for example the bisimulation algorithm described by Dovier et al

[24] (which was intended to optimise the theoretical semi-structured query language G-log

[19]). However, the point of the approach presented here was to demonstrate some strategies

for computing bisimulation in the case of distributed semi-structured data, unlike that by

Dovier et al which did not consider distribution. There was not enough time to consider all

possibilities for optimisation, and here we concentrated on those most novel and appropriate to

our approach.

Query execution time with help of the
bisimulation engine t(d) (ms)

Delay time d [ms] exploiting local
approximations

not exploiting local
approximations

0 11546 1340250 (∼ 22 mins, 20 secs)
2500 11550 1315269 (∼ 21 mins, 55 secs)
5000 180 1290715 (∼ 21 mins, 31 secs)
7500 28 1266620 (∼ 21 mins, 7 secs)
10000 10 1243000 (∼ 20 mins, 43 secs)
12500 10 1219769 (∼ 20 mins, 20 secs)
15000 10 1197025 (∼ 19 mins, 57 secs)
20000 10 1152728 (∼ 19 mins, 13 secs)
40000 10 1000520 (∼ 17 mins)
70000 10 790760 (∼ 13 mins)
100000 10 630772 (∼ 11 mins)
500000 (∼ 8 mins) 10 28765
1000000 (∼ 17 mins) 10 118
1250000 (∼ 21 mins) 10 10
1500000 (25 mins) 10 10

Table 7.3: Experimental results showing query execution time t(d) [ms] against partial
background work by the bisimulation engine simulated by delay time d [ms] – comparing both
strategies towards computing bisimulation, with and without exploiting local approximations.
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7.3.1 Claims and limitations

The main conclusion from the above experiments is that, although bisimulation (crucial to the

hyperset approach to WDB and the ∆-query language) presents some difficulty in efficient

and realistic implementation, this problem appears to be resolvable in principle. Moreover,

this assertion is somewhat supported by the empirical testing of artificial WDB examples

described in Sections 7.2.1–7.2.3. In particular, these artificial WDB were chosen to simulate

some specific worst case structural features of WDB similarly to physicists conducting some

very specific experiments allowing to understand the most fundamental laws of the nature

instead of dealing with something complicated as in the real life. On the other hand, those

artificial WDB example presented here are intrinsically limited by their small size5 and have

restricted structural features6, and, in principle, further comprehensive tests should be done to

further characterise the usefulness of those practical strategies towards computing bisimulation

suggested here. Also, empirical testing of some particular real-world WDB of sufficiently big

size is important, but in this case a lot of further work should be done on optimisation of query

execution which was outside of the scope of this work but deserves further investigation. We

only considered one essential aspect of efficiency for the current version of the query system

related with the idea of local/global bisimulation. However, in principle, the experiments done

here suggest that these strategies show potential and merit further investigation.

What has been demonstrated here is probably insufficient for a full-fledged implementation

because in real-world circumstances using the ∆-query language could be much more

complicated. Anyway, only further work and practical experimentation can reveal problems

with the current implementation, which is, of course, not fully perfect. However, it shows that

the hyperset approach to databases looks promising and deserves further not only theoretical

but also practical considerations – and this was actually our main goal, as well as the goal to

create a working implementation available to a wider range of users to realise practically what

is the hyperset approach to WDB or semistructured databases.

5 with the largest WDB considered here involving only 70 set names
6 which should involve not only nested chains but also nested tree structures
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Part III

Implementation issues
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Overview of Part III

In this part we discuss the most essential issues of implementing the ∆-query language: (i)

query execution (Chapter 8), (ii) syntactical aspects (Chapter 9), and (iii) XML representation

of WDB (Chapter 10). These chapters can be read (almost) independently, however, logically

their order should be the inverse. The chosen order rather reflects the importance of the material

for the reader, who probably should be more interested in the principles of query execution

than in the very technical details of implementation of the syntax (in particular related with the

subtle points of well-formed vs. well-typed queries). But from the point of view of the actual

implementation (including execution of queries) such syntactical aspects were very crucial

and, in fact, such technical details serve as a guarantee that the whole implementation was

done correctly. Indeed, the content of Chapter 9 arose to overcome the problems of ensuring

well-formed/well-typed queries encountered during the first attempt at implementation [49].

Finally, Chapter 10 details the XML representation of WDB, and has quite a separate role.

We think and work exclusively in terms of hypersets and set equations, and any WDB could

be represented adequately and straightforwardly in the latter form. However, we have chosen

XML form (XML-WDB format) as a representation of set equations to make our approach

potentially more closely related to the existing practice of using XML for semistructured data.

The reader should choose the level of details he/she needs from this chapter for understanding

examples of XML-WDB files we use when running ∆-queries.
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Chapter 8

∆ Query Execution

8.1 Implementation of ∆-query execution by reduction process

How to execute any ∆-query was explained mostly in Section 3.3 as operational semantics

(based on the general abstract mathematical approach described in [61]) and continued in

Section 4.2 on computing bisimulation. Here we will finalise the operational semantics by

considering the clauses omitted in Section 3.3 in the style more close to that of implementation.

Recall that in this approach, any ∆-term or ∆-formula query q should be equated, respectively,

to a new set or boolean name res. Then this equation res = q is reduced (in the context of all

set equations of WDB) to an equation res = V ,

res = q � res = V, (8.1)

where V is, respectively, either a

• set value – flat bracket expression {l1 : v1, . . . , ln : vn} where vi are set names and li
label values, or

• boolean value – true or false.

Note that this process of reduction can extend the original WDB by the auxiliary set equations

vi = {. . .} defining those set names vi participating in V which were not the original set

names in the WDB, and, possibly, many others participating in equations for vi, and so on.

Thus, strictly speaking, the reducibility statement (8.1) only partially reflects this process of

reduction as the whole WDB extended by the equation res = q can be involved. In the case

of distributed WDB, over which some query q should be executed, this process of reduction

also tacitly assumes downloading the (remote) WDB files with those required set equations

participating in this process.

105



106 Chapter 8. ∆ Query Execution

Implementation of the ∆-language should evidently follow the operational semantics in [61]

or in Section 3.3. In this chapter, we will give implementation details on four important

∆-language constructs: separation, quantification, recursion, decoration and transitive closure.

Equality (bisimulation) was already discussed in detail. Other cases are sufficiently evident or

do not add much to the operational semantics and by this reason are omitted.

8.1.1 Separation construct

In the case of those queries which involve complex subqueries new equations will be created

during the evaluation of the subquery (which was conceptually understood as the “splitting”

rule; cf. Section 3.3).

Consider the reduction process for ∆-term separate {l :x ∈ t | ϕ(l, x)}:

res = {l :x ∈ t | ϕ(l, x)}� res = {l1 : x1, ..., ln : xn}

where t is a set name with a flat set equation t = {l1 : x1, ..., lm : xm} in the current version

of WDB (possibly extended locally by the query system). In reality t could be a complicated

∆-term, but we may assume that the “splitting” rule from Section 3.3 has already been applied

so that we have here just a set name. In fact, l1 : x1, ..., ln : xn should be a sublist of

l1 : x1, ..., lm : xm separated by the formula ϕ(l, x) – for simplicity of denotation some initial

sublist (so that n ≤ m). Note that l, x are label and set variables whereas li, xi are label values

and set names participating in the current extended version of WDB. (See also the ∆-language

syntax in Appendix A.1 on set names, and label and set variables.) The process of reduction is

the quite evident iterative procedure,

Separation algorithm:

START with the current version of WDB and the separation term

{l :x ∈ t | ϕ(l, x)}

where t is set name, and WDB contains flat set equation t = {l1 :x1, ..., lm :xm}.

1. Extend current version of WDB by the equation res = {l :x ∈ T | ϕ(l, x)} where res

is a new set name.

2. Create the new (temporary) set equation res = {} (empty set) for the same set

name res. (After populating the right-hand side by labelled set names, this equation

will replace the above.)

3. Iterate over the labelled elements li :xi of t where t = {l1 :x1, ..., lm :xm}.
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(a) Call the corresponding reduction procedure for the ∆-formula ϕ(li, xi),

resi = ϕ(li, xi) � resi = . . . ,

for new set names resi resulting in the boolean equations resi = true or

resi = false.1

Does res = ϕ(li, xi) � resi = true?

Yes – Amend the equation for res = {. . .} initiated in the step 2 as res = {. . . , li :
xi} by adding the labelled element li : xi. Move back to step 3 (iterate over next

labelled element, if one exists).

No – Move back to step 3 (iterate over next labelled element, if one exists).

END with the (simplified) set equation res = {l1 : x1, ..., ln : xn} (with res a subset

of t).

8.1.2 Quantification

Consider, for example, the reduction process for the quantified formula ∃l :x ∈ t.ϕ(l, x) where

t is (for simplicity) a set name with a flat set equation t = {l1 :x1, ..., lm :xm} (for li, xi label

values and set names, like above). It starts by replacing the bounded existential quantifier with

the disjunction:

res = ∃l :x ∈ t.ϕ(l, x) � res = ϕ(l1, x1) ∨ ... ∨ ϕ(lm, xm) � . . . .

By invoking the “splitting” rule it assumes the recursive subprocesses

resi = ϕ(li, xi) � . . .

(with new boolean names resi) leading to truth values for resi from which an appropriate truth

value for res can evidently be obtained.

8.1.3 Recursive separation

Consider the recursion query:

1As the ∆-language is bounded (quantifiers and other variable binding constructs are bounded by appropriately
restricting the range of variables explicitly required by the language syntax) any such reduction process will
inevitably halt (in fact, in polynomial time). In the current case either true or false will be obtained.
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Rec p.{l :x ∈ t | ϕ(x, l, p)}

where, as above, t is considered as set name with a flat set equation t = {l1 : x1, ..., lm : xm}
for li, xi label values and set names. To execute it, we should start by adding the set equation

to the WDB with the new set name res,

res = Rec p.{l :x ∈ t | ϕ(x, l, p)}.

The set name res denoting the result of the recursion query should represent a subset of twhere

only some of li :xi will participate. It is computed iteratively as an increasing sequence pk of

subsets of t:

p0 = {} (empty set)

p1 = p0 ∪ {l :x ∈ t | ϕ(x, l, p0)}� p1 = P1

p2 = p1 ∪ {l :x ∈ t | ϕ(x, l, p1)}� p2 = P2

. . .

This sequence of equations with new set names pk (in fact, intermediate results) should be

generated iteratively, with each new set equation generated after the previous one. Each of

these complicated equations is reduced essentially by using the above process of reduction for

the ordinary separation construct giving rise to a subset Pk of t. As these subsets are inflating,

and t is finite, this process should be halted when Pk = Pk+1 (stabilisation). Note that checking

equality between these sets does not require the computation of bisimulation as each iterative

set pk is an “explicit” subsets of t (elements of the bracket expression Pk are exactly, i.e. not up

to bisimulation, some of li : xi from the right-hand side of the equation for t). Now, simplify

the initial equation res = Rec p.{...} by replacing it with res = Pk:

res = Rec p.{l :x ∈ t | ϕ(x, l, p)}� res = Pk.

Note that the subprocesses of the above process

resik = ϕ(xi, li, pk) � . . .

(where ϕ can be quite complicated formula involving complicated subterms) may introduce
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new set names with their corresponding set equations. Of course, they should also be

considered as the part of the result of this computation (as soon as they are contained in the

transitive closure of res). Thus, it has been demonstrated how to resolve the ∆-term recursive

separation.

8.1.4 Decoration

Although the decoration operator can be explained sufficiently easily on the intuitive level (see

[3] and Section 3.2.2.2), its implementation should be done particularly carefully and precisely.

To resolve the query

Dec(g, v)

over a WDB with g and v arbitrary set names, i.e. to simplify the equation

res = Dec(g, v) � res = {. . .},

let us firstly consider some auxiliary queries which deserve to be included as library query

declarations and, most importantly, add an intermediate conceptual level of abstraction in the

description of the operational semantics for the decoration operator.

8.1.4.1 Auxiliary (library) queries useful for computing decoration

Let us now define several auxiliary queries dealing with representation of graphs as sets of

ordered pairs.

8.1.4.1.1 Nodes: Now, consider a set name g with the flat2 WDB-equation

g = { ..., l:p, ...}

with l:p any labelled set name appearing in the right-hand side (which can be a name of an

ordered pair or just of an arbitrary set). The (abstract) set values First(p) and Second(p)

are called g-nodes3 so that

First(p)
l−→ Second(p)

serves as an g-edge, and therefore the (absolutely arbitrary) set g plays the role of a graph.

Alternatively, we could ignore those p in g which are not ordered pairs – the approach adopted
2Recall that the query system considers WDB as a flat system of set equations, and all set equations it eventually

produces are also flat. (Only at the very last step of outputting the query result will the system produce set equations
with reasonably nested right-hand sides.)

3 Recall that First(p) and Second(p) are library queries defined in Section 3.4.2.1.3 and Appendix A.3.
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below. Note that different set names may denote the same set, in particular, the same g-node,

so that we will need to choose canonical g-node names in the algorithm considered below.

The set of g-nodes can be formally defined in ∆ as library query declaration

set query Nodes (set g) =

union separate { m : p in g | call isPair ( p ) }

The set Nodes(g) (the union of two element sets p in g) contains exactly all g-nodes, but,

strictly speaking, each g-node in this set (being an element of some p in g) has a label fst or

snd and possibly appears twice, under both of these labels. However, this feature (which could

be corrected by replacing these labels by the neutral “empty” label null) will play no role in

the following considerations. On the other hand, preserving this information on the nodes in

Nodes(g) might be useful in other examples of using this query declaration.

8.1.4.1.2 Children: We also need the concept of g-children of a node x in a graph g (as
a set of ordered pairs), which is essentially the set of all outgoing edges from x in g. This can
be defined set theoretically by the following library query declaration (with three occurrences
of the call keyword omitted to simplify reading):

set query Children(set x,set g)=

collect {l:Second(p)

where l:p in g

and ( isPair(p) and First(p)=x )

}

Evidently, if the set x is not the value of First(p) for some pair p as required in this

declaration then Children(x,g)={} (the empty set).

8.1.4.1.3 Regroup: Let us now define the set valued library operation Regroup(g) that

can reorganise (without losing any essential information) any graph g into something closely

similar to the system of set equations represented by this graph. (For simplicity we again omit

all call keywords.) Pay attention to the use of the label null which can be considered here

as the “empty” label (some label is formally necessary according to the BNF of the language):

set query Regroup(set g)=

collect {’null’:Pair(x, Children(x,g))

where m:x in Nodes(g)

}

Informally, each pair Pair(x,Children(x,g)) collected in Regroup(g) is considered

as abstractly representing a set equation, where:
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• first element x of the pair (understood as the abstract set denoted by x) plays the role of

a node of g or of an abstract set name – the left-hand side of the intended equation, and

• second element, set Children(x,g), plays the role of the right-hand side of this

equation – the evident bracket expression enumerating the labelled elements (g-nodes)

of this set.

It is crucial here that the set of ordered pairs Regroup(g) is functional in the sense that

for each (abstract set) x there exist at most one (abstract) pair Pair(x,c) in Regroup(g)

with the first element x (and with c uniquely defined by x as c=Children(x,g)). In fact,

Regroup(g) defines abstractly the correct system of set equations where each abstract set

name (a set in Nodes(g)) has exactly one (abstract) equation with this name as the left-hand

side. The operation Regroup(g) will make it easier extracting from g the required system

of set equations, described in the main algorithm for computing decoration operation below.

8.1.4.1.4 An assumption. Now, let us assume that the fragment of the ∆-language without

decoration operation has already been implemented. Then we can make calls to the above

library queries applied to appropriate set name arguments in a given WDB, such as the set

name g (representing a set of ordered pairs) in the call Regroup(g). The latter call will be

used in the implementation of decoration operator in the next section.

As usually, when executed by the query system, these library operations generate new
set names and set equations and add them to the WDB. In particular, considering set names
generated by the query system, the result of Regroup(g) is, informally, a set of ordered pairs
of the form {’fst’:x,’snd’:Children_x} where x and Children_x (denoted as c
in the algorithm below) are now set names4. Moreover, according to the natural implementation
of the declaration for the query Children(x,g), the right-hand side of the equation for each
set name Children_x,

Children_x = { ..., l:y, ... },

contains labelled set names (in fact, g-node names) l:y for all (labelled) g-children of the

g-node named by x. Note that the algorithm described in the next section operates with these

g-node names.

8.1.4.2 Algorithm for computing decoration

We will show how the decoration operation decorate(g,v) can be implemented over a

given WDB (with g and v any set names from the WDB) exploiting the above library query
4In further detail, when executing the query Regroup(g), a new set name r and set equation r=Regroup(g)

are generated. Then, the implemented reduction process (�) executing this query will give rise to a flat
equation r={..., ’null’:e, ...} with each set name e in the right-hand side having the equation
e={’fst’:x,’snd’:Children x}.
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declarations. This can be done as follows:

START with the current version of WDB and the term Dec(g, v) for a given set
names g and v.

1. Extend current version of WDB by the equation res = Dec(g, v) where res is a new

set name.

2. Regroup g and canonise g-node names.

(a) Call the query Regroup(g). This amounts to simplifying the extended system

of set equations WDB + (r=Regroup(g)) for r a new set name, which results

in some new (auxiliary) set names and flat set equations, including the flattened

version r={..., ’null’:e, ...} of r=Regroup(g), and, for each e

in r,

e={’fst’:x,’snd’:c}, c={..., l:y, m:z, ...}.

(b) Canonise g-node names:

i. Extract g-node names (all x, y, z, ...) from the result in (2a),

ii. Compare which of them, considered as sets, are equal between themselves

(bisimilar as set names, represent the same abstract g-node).

iii. For each g-node name u find its canonical representative Can_u as the first in

the lexicographical order g-node name bisimilar to u. (Thus, u is bisimilar to

Can_u. Note that Can_u is not a new set name — just one of those extracted

in the step 2(b)i.)

iv. In the resulting set equations in (2a)

e={’fst’:x,’snd’:c}, c={..., l:y, m:z, ...}

(for each e in r) replace g-node names x and y,. . ., respectively, by Can_x

and Can_y,. . ., thereby transforming these equations to

e={’fst’:Can_x,’snd’:c}, c={.., l:Can_y, m:Can_z,..},

. . ..

(The original versions of these equations should be deleted.)

v. If for another pair of such equations (for e’ in r),

e’={’fst’:Can_x’,’snd’:c’}, c’={..., l’:Can_y’, ...},

set names Can_x and Can_x’ in e and e’, respectively, coincide then omit

one of these pairs (does not matter which), and repeat this until no such

coincidence of canonical node names will exist.

vi. Eliminate possible repetitions of labelled canonical node names l:Can_y in

each c (which can arise, e.g. due to replacements in (2(b)iv) as l:Can_y
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can literally coincide with some m:Can_z in c for different g-node names y

and z).

From now on, these Can_u serve as canonical g-node names. Only these node

names will be used below as uniquely representing g-nodes.

3. Does a canonical g-node name bisimilar to v exist? Find a canonical g-node name w

bisimilar to set name v (or just coinciding with v if v is itself a canonical g-node name).

Two answers are possible:

No - The required canonical g-node name w bisimilar to v does not exist (and thus v

can be treated as naming an isolated g-node):

(a) Simplify the equation res = decorate(g,v) to res = {} (empty set).

Then move to END of the algorithm.

Yes - The required canonical g-node name w does exist (and thus v can be treated as

naming a proper g-node):

(a) Generate new set equations for duplicated canonical g-node names:

i. For each set name s which is a canonical g-node name create a new duplicate

set name Dupl_s (in particular, Dupl_w, Dupl_Can_x, etc.).

ii. For the equations

e={’fst’:Can_x,’snd’:c}, c={...,l:Can_y,m:Can_z,...},

obtained in (2(b)iv, 2(b)v, 2(b)vi) for each e in r, extend further the current

extension of WDB by new set equations:

Dupl_Can_x = {..., l:Dupl_Can_y, m:Dupl_Can_z, ...},

thereby constructing a system of set equations for duplicate names whose

graph is isomorphic to the abstract graph g.

In particular, this will add to the WDB the equation for Dupl_w:

Dupl_w = W

with the right-hand side a bracket expression W defined as described above (and

involving only duplicated canonical g-node names).

(b) Simplify the equation, res=decorate(g,v) by replacing it with the (flat)
equation

res = W.

(End of algorithm.)

END with the (simplified) set equation res = {l1 :x1, ..., ln :xn} (and the associated
equations for set names in W, etc.).
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In the case of the query, res = Dec(G,V ) where G and V are ∆-terms and not just set names

(as above), the “splitting” rule should be invoked first, which will result in three equations

g = G, v = V and res = Dec(g, v) for the new set names g and v. Then these equation

should be simplified, in particular, by using the above algorithm for the decoration.

8.1.5 Transitive closure

Let us now consider implementation of the transitive closure operation TC(a), where a is

considered as a set name with the flat equation a = {l1 :x1, ..., lm :xm} for li, xi label values

and set names, as the following (recursive) algorithm:

START with the current version of WDB and the transitive closure term TC(a)
where a is set name, and WDB contains flat set equation a = {l1 :x1, ..., lm :xm}.

1. Extend current version of WDB by the equation res = TC(a) where res is a new set

name.

2. Replace the original set equation res = TC(a) by the new (temporary) set equation
res = {′null′ : a} (singleton set) for the same set name res. (This will be further

populated below.)

3. Find the first labelled element m : z of res = {. . . ,m : z, . . .} such that z 6⊆ res.

(Elements for which z ⊆ res should be marked and put at the end of the current bracket

expression for res so that they will not be considered again and again. For efficiency,

the bracket expression for res can be organised as a directed “loop” structure with some

point of entrance. Each time when z ⊆ res holds at the entrance point then this point

in the loop will be marked and the entrance point shifted to the next one to repeat the

inclusion test.)

If it does not exist (the currently observed element and hence all m :z are marked), go to

the END.

Else replace the current equation res = {. . . ,m : z, . . .} with the m : z found (at the

current entrance point) by

res = {. . . ,m :z, . . .} ∪ (z \ res)

(inserting elements of z \ res in the loop immediately after m :z, then marking m :z as

now z ⊆ res for the extended res and shifting the entrance point from m : z to the next

point of so extended loop — the first element in z \ res).

(Computing z \ res can evidently also use the loop structure of res with marking

ignored.)
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Repeat 3.

END with the set equation for res.

Note that in fact TC(a) =
⋃
{{a}, a,

⋃
a,

⋃ ⋃
a, ...}.

8.2 Representation of query output

Recall that the implemented query system works internally with (WDB represented as) a flat

system of set equations, and produces query results in this flat form. The resulting set equations

also use internally generated (local) set names having no mnemonics. It appears that some

nesting in the outputted equations might be desirable which would simultaneously eliminate

some internal set names by substituting them with bracket expressions. This substitution can

be repeated giving rise to possibly deeply nested results. Consider, for example the result of

the restructuring query from Section 3.5.3 obtained after some such automatic substitutions:

Query is well-formed, well-typed and executable

Result = {

’publication’:res2,

’publication’:res0,

’publication’:res1,

’publication’:{

’type’:"Book",

’refers-to’:res1,

’refers-to’:res2

}

}

res0 = {

’type’:"Paper",

’author’:"Smith",

’title’:"Databases",

’refers-to’:res1

}

res1 = {

’type’:"Paper",

’type’:"Book",

’author’:"Jones",

’title’:"Databases"

}
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res2 = {

’type’:"Paper",

’refers-to’:res0

}

Finished in: 1866 ms (query execution is 1864 ms, and

postprocessing time is 2 ms)

Comment(s):

Double quotation denotes atomic values like "atom" representing

singleton sets "atom" = {’atom’:{}}, etc.

Note that, in this example further substitutions could be made to eliminate even those few

local names res0, res1, res2, so that there would be just one deeply nested equation

result={...}. However, this would be a rather inconvenient form as set names to be

substituted occur several times, and identical subexpressions could be repeated many times

making the query result difficult to grasp. Thus, the system makes such suitable nesting to

avoid multiple substitutions in the whole system of equations. Additionally, nested bracket

expressions like {Paper:{}} which imitate atomic values in our approach are replaced,

quite naturally, by "Paper". Note that in the later case there may be multiple substitutions

and replacements of the same expression. Similarly, set names for the empty set are always

replaced by {}. In this way query results become sufficiently readable. Lastly, in the case

of cycles substitutions could be infinitely repeated. To avoid this, the system should only

substitute those set names resi with the corresponding bracket expression if resi 6∈ TC(resi)
holds (in addition to the other rules for substitutions above). Also, the computation of transitive

closure should be restricted to those new set names resulting from the execution of the query,

thus, in principle, this can be done quickly on only local set names.

However, any such postprocessing of the query result can sometimes lead to unnatural

looking output, for example in the above query result there is some undesirable extra nesting

for one of the publications. In other cases (such as showing a graph as a set of ordered pairs)

such nesting appears more reasonable. Also atomic values and explicitly shown empty sets{}

are very natural. Of course it would be better if the user could choose the preferred form, or

the result could be optionally visualised as a graph.
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∆ Query Syntax

9.1 Parsing (well-formed queries)

9.1.1 Implemented ∆-language grammar

The syntax of the implemented language was discussed in Chapter 3, with the full syntax

appearing in Appendix A.1. The implemented language is described as Extended Backus-Naur

form (EBNF or, shortened, BNF), defined as a set of production rules, with each production

describing one syntactical category represented as a non-terminal. For example, the production

rule

<query> ::=

"boolean query" <delta-formula> | "set query" <delta-term>

defines the <query> syntactical category (also called non-terminal) by stipulating in general

that a terminal can be substituted by a sequence of terminals such as "boolean query"

and other non-terminals such as <delta-formula>. Here the symbol | allows to describe

alternative productions. (There are also other ways in the BNF to describe more complicated

alternations in production rules.) Continuing such substitutions by using production rules for

<delta-formula>, etc., a sequence consisting only of terminals can be obtained. Further,

as terminals are strings of symbols, the final concatenation is also a string of symbols which,

properly speaking, is called well-formed query, provided it was generated starting from the

non-terminal <query>. (Quite similarly we can consider well-formed delta formulas, delta

terms, etc.) Thus, the BNF defines how to construct any query in ∆. In fact, each ∆-query,

if well-formed, generates a parse tree (by using BNF-forks discussed below) which should be

subsequently checked for well-typedness (see Section 9.2).

117
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9.1.2 BNF forking

Firstly a general note on the BNF grammar. Each production rule from the BNF (except some

auxiliary ones which can be eliminated as we will see below) can be represented as one, several,

or even infinitely many alternative forks F1,F2,... each having the same label (syntactical

category or non-terminal) on the root of the fork. For example, the rule

<A> ::= <B><C> | <B><D><E>

splits into two rules

<A> ::= <B><C>

<A> ::= <B><D><E>,

evidently corresponding to two forks with the branching degree two and three, whose roots are

labelled by <A> and leafs labelled, respectively, as <B>, <C> and <B>, <D>, <E>. Let us

analogously consider the production rule

<set constant declaration> ::= "set constant" <set constant>

("be"|"=") <delta term>

which generates two unique forks depending on whether "be" or "=" is used – each fork has

a branching degree of four.

Thus whole BNF grammar can then be represented as a set of all such forks. In fact, the

parse tree of a query is constructed of such forks. However, not all BNF production rules are

so simple and literally split into forks as will be discussed below.

9.1.2.1 Recursion by Kleene operators

Recursive BNF rules using repetition by the Kleene star and plus (* and +) operators generates

an infinite set of forks; * represents zero or more repetitions, and + represents one or more

repetitions. For example the following rule represents a sequence of declarations:

<declarations> ::= <declaration> ( "," <declaration> )*

Each fork has a root labelled by <declarations> and any number of leaves labelled by

<declaration>, separated by the terminal leaves labelled by ",". Evidently, the branching

of these forks have an arbitrary odd degree because of the separator "," considered formally

as a leaf. Analogously the following syntactic categories are also considered:

<variables>, <parameters>, <multiple union>, <conjunction>

<disjunction>, <quasi-implication>, <labelled terms>
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9.1.2.2 Identifier forks

There is further simplification to the BNF forks and to parse trees by eliminating the

“intermediate” <identifier> category playing rather an auxiliary role. Thus, we will

replace corresponding production rules by those generating infinitely many simple (one child)

forks:

<boolean query name> ::= ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

<set query name> ::= ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

<label variable> ::= ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

<label constant> ::= ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

<set variable> ::= ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

<set constant> ::= ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

There are infinitely many of such identifier forks because there are infinitely many sequences

of alphanumeric characters (just those characters participating in the identifier forks) which

can serve as a leaf label of a fork for each of the above syntactical categories.

Root nodes of these forks of the corresponding nodes in a parse tree are called Identifier

Nodes (IN). In general, every occurrence of <identifier> in the right-hand sides of

production rules in BNF is replaced by:

( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

There is, however, restrictions on these alphanumeric strings: they should not coincide with

keywords of ∆ language.

9.1.2.3 Set name forks

Let us recall the production rules related with full set names represented by the syntactical

category <set name>. This important category, including some additional auxiliary

productions, appears as follows:

<set name> ::= <URI> "#" <simple set name>

<URI> ::= ( <web prefix> | <local prefix> ) <file path>

<web prefix> ::= "http://" <host> "/" [ "˜" <identifier> "/" ]

<local prefix> ::= "file://" ( (A-Z) | (a-z) ) ":/"

<host> ::= <identifier> [ "." <host> ]
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<file path> ::= <identifier> ( "/" <file path> | <extension> )

<extension> ::= ".xml"

<simple set name> ::= <identifier>

<identifier> ::= ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

Here all the syntactical categories, besides <set name>, play an auxiliary role. Therefore,

by composing them, all these production rules will produce two kind of one child forks for set

names

<set name> ::= "http://... " "#" ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

or

<set name> ::= "file://... " "#" ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+

Here "http://..." and "file://..." represent any string of symbols allowed by the

<URI> production rule. Therefore, the production rule <set name> generates an infinite

number of (one child) forks with the root <set name> and the leaf a string of characters as

defined in the above productions.

We will not consider other cases of defining BNF forks relying on the readers’ intuition

which should be based on the above examples. Assertions 1-3 from the next section should

summarise and give more understanding on the way which BNF forks are defined.

9.1.2.4 Assertions on BNF forks

After defining the set of forks of the BNF, we can make the following assertions.

Assertion 1. Only Identifier Nodes (IN) can have just one child leaf labelled by a sequence of

alphanumeric characters.

Proof. Inspection of the whole BNF (and the definitions above) show that only IN can have

just one child leaf labelled by a sequence of alphanumeric characters.

Note that <set name> forks, although one child, have leafs containing non-alphanumeric

characters ":", "/" and "#".

Assertion 2. In fact, parsing of any given query generates a corresponding query parse tree

constructed from these forks connected in the evident way. Here it is assumed that all keywords

like ”forall”, ”let”, etc are included in the parse tree as terminals (except they are not allowed

to be leafs of identifier forks).
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Assertion 3 (Uniqueness of forks1). Two different forks can have coinciding leaf labels (in the

natural order) only if each of them is an identifier fork (see above). That is, if one of the two

forks F1 and F2 is not an identifier fork and both forks have the same leaves then (their roots

coincide and) F1 = F2. Or equivalently, the syntactic category of any fork, except for identifier

forks, can be determined according to the syntactic categories of its children.

Proof. We should check all possible cases. Assuming that two forks F1 and F2 have the same

leaves and one of them has the root labelled not as identifier fork, show that F1 = F2.

Example: If F1 or F2 has the root <quantified formula> then both have the same first

leaf e.g. <forall> (or <exists>). Then, according to the BNF, another fork must also

have the root <quantified formula> and therefore F1 = F2, as required.

Example: If F1 or F2 has the root <forall> then both have the same first leaf "forall"

and the leaf "in" (or "<-"). Inspection of all BNF forks shows that any fork containing both

these leafs must have the root <forall>. Therefore F1 = F2.

Example: If F1 or F2 has the root <union> then both have the same first leaf "union"

(or "U") and second leaf <delta-term>. Inspection of all BNF forks shows that any fork

containing both these leafs must have the root <union>. Therefore F1 = F2.

All other cases follow as above.

Note 4. Despite this Assertion which means a kind of unambiguity of parsing (actually only

a conditional and partial unambiguity) we will see in Section 9.1.4 that parsing according to

the BNF of ∆ is actually quite ambiguous. This means that the same query can have parse

trees of the same form, but with different labelling of nodes by syntactical categories. Later we

will consider contextual analysis algorithm dealing with typing which will resolve this kind of

ambiguity.

9.1.3 Query parsing

The parser for the BNF syntax of the language Delta can easily be implemented which can

transform any query q into parse tree. The process of parsing q involves matching of BNF

production rules (represented rather in the form of forks defined above) starting at the root

production rule for <top level command> until all possibilities are exhausted. The output

of parsing the query q is the query parse tree qt.

1This assertion will be used in the syntactical category renaming algorithm in Section 9.2.3.2
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During the process of parsing, successful matching of production rules creates new nodes in

the parse tree connected by fork edges from the previous node, except for the root production

rule which itself has no parent node. Successful matching of terminals creates new nodes

labelled by the sequence of matched characters.

9.1.3.1 Example query parse tree

Let us consider the simple example of query

boolean query

let label constant l=’Robert’

in l=’Rob*’

endlet;

and the corresponding query parse tree,

Figure 9.1: Example parse tree

Strictly speaking, some parts of this parse tree are omitted for brevity. Say, according to

Section 9.1.2.1, between <declarations> and <label constant declaration>

we should have a tree node <declaration>.



9.1. Parsing (well-formed queries) 123

9.1.3.2 Aims of query parsing

Well-formedness of any query is determined according to the rules of the BNF grammar.

However, when all possibilities for matching productions are unsuccessfully exhausted in

any attempt to construct a parse tree then the query is considered as non-well-formed with

appropriate error messages outputted.

Moreover, to further aid contextual analysis (see Section 9.2) the parser should output, in

addition to the parse tree of the query, the list of all Identifier Nodes (see Section 9.1.2.2) in the

parse tree labelled by:

<boolean query name>, <set query name>, <label variable>,

<label constant>, <set variable>, <set constant>.

9.1.4 Parsing ambiguities

The syntax of the implemented ∆-language (expressed as BNF) is intended for any user to

understand the constructs of ∆, and how to write valid ∆-queries – well-formed and well-

typed. However, the implemented parser alone cannot guarantee well-typedness of queries.

Note that, well-typedness is checked by the contextual analysis algorithms described later in

Section 9.2.

The problem is that the grammar of our implemented ∆-language is ambiguous concerning

types as we briefly commented this in Note 4 above. Thus, the typing of identifiers, say as label

constant or variable, or set constant or variable, etc., is actually decided from the context. For

example, let us consider the equality query:

boolean query a=b;

Parsing of this query could realise two unique parse trees, where the statement a=b represents

either <label equality> or <set equality>. Thus, the syntactical category of this

statement depends wholly on the interpretation of the identifiers a and b as either, label

constants or variables, or set constants or variables, respectively. The parse tree presented above

in Figure 9.1 is also not unique one because the syntactic category <label constant>

under <label> could be formally replaced according to syntax by <label variable>,

however, intuitively contradicting the label constant declaration let label constant l

= ....

Furthermore, let us even strengthen the above example,

boolean query let

label constant l=’Robert’,

label constant m=’John’
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in

l=m endlet;

where the statement l=m intuitively represents the syntactic category <label equality>

because according to the context the identifiers l and m are label constants. However, the BNF
formally allows that <label equality> could be replaced with <set equality> and
l and m are are taken as <delta-term>s, independently of the declarations that l and m are
both label constants. Even the following query can be formally parsed, i.e. is well-formed,

boolean query let

label constant l=’Robert’,

set constant m={}

in

l=m endlet;

despite being evidently non-well-typed by equating label with set.

Therefore, the syntax (expressed as BNF) alone is insufficient and requires guessing

which rule to apply to make the parse tree (and to guarantee that the parsed query is)

well-typed. Therefore, such guesses by the parser should be subsequently checked, to ensure

no contradictions with the actual typing of identifiers. Moreover, the syntactic categories of

all nodes, not just IN, should be checked and possibly renamed (according to the grammar)

without changing the structure of the parse tree. Such renaming is done by the contextual

analysis algorithm, detailed in Section 9.2, whose role is to ensure query well-typedness and

eliminate potential ambiguities, as above.

9.1.5 Grammar classification

Note that the syntax of ∆-query language, fully presented as BNF in Appendix A.1, can be

classified as context-free grammar according to Chomsky’s definitions of formal languages.

Taking the definition from the textbook about parsing [75], all production rules of a context

free grammar have the form:

A −→ γ

where A represents a unique non-terminal, and γ represents an ordered list of terminals and/or

non-terminals (possibly empty). Context free grammars are those where each non-terminal A

can be transformed by a production rule into corresponding γ without any additional criteria

of context. Our grammar satisfies this property and therefore cannot grasp contexts which

are necessary for correct typing of queries. Thus, an additional contextual analysis algorithm

working jointly with the parser is required which we discuss in the following section.
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9.2 Contextual analysis (well-typed queries)

9.2.1 Aim of contextual analysis

The aim of contextual analysis is to determine whether every identifier occurrence in a query

q is declared2, thereby having type, and whether the whole query is well-typed (all types are

coherent). Each identifier occurrence should be appropriately typed as either: set constant or

variable, label constant or variable or query name of some type3. Note that query names can

have more complicated types than variables or constants,

(type1, type2, ..., typen −→ type) (9.1)

where each participating typei is either set or label, and type after the arrow is either set or

boolean4. Each typei is the expected type of i-th parameter of the query name q, and n is the

required number of parameters – according to the declaration of this query name. From this

type it should be already clear that the identifier q is a (set or boolean) query name, how many

arguments it has, and the typing of each argument.

Furthermore, an identifier occurrence is considered declared if it is contained within the

scope of an appropriate identifier declaration, and well-typed if both the identifier occurrence

and identifier declaration have the same types. Moreover, for query to be well-typed, coherence

of typing (for equalities, as in the examples above, membership statements and query calls)

should be additionally required.

9.2.1.1 Strategies for computing contextual analysis

In principle there are two possible algorithms for performing contextual analysis of any query

q, both algorithms are named after the way in which they walk the parse tree of q:

• Top-down contextual analysis – The parse tree is walked in breadth first manner starting

at the root node, creating a list of the identifier declarations (called the context) which is

used to check that all other identifier occurrences are closed and well-typed according to

these declarations.
2 An identifier occurrence in some expression e (not necessary a full-fledged query; e can be a fragment of

a query q) which is non-declared inside e can also be called free in e, whereas those correctly declared inside
e identifier occurrences are called closed. Therefore the terms “declared” and “closed”, and “non-declared” and
“free”, have the same meaning. (This agreement on terminology is, however, non-traditional in the particular case
of (set or label) constants for which it is more habitual to use the terms “declared” or “non-declared” instead of
“closed” or “free”.) We assume that each full-fledged query q must be closed in this sense (all its identifiers must
be declared inside q).

3 To simplify terminology, we consider variable or constant or query name as typing information of some
identifier, alongside the proper types set or label or boolean or the complex type (9.1).

4 Note that, we formally have no queries or query names in ∆ of the type label. However, label values can be
represented in the same way as atomic values, i.e. as singleton sets of the form {l : ∅}.
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• Bottom-up contextual analysis – Walking of the parse tree starts from any identifier

occurrence leaf i5 ascending up the corresponding branch of the parse tree, searching for

an identifier declaration which declares i6. The existence of a corresponding identifier

declaration indicates that the identifier occurrence is declared. Moreover, the real types

of all such i can be extracted from the corresponding declarations and compared with

syntactical categories of these nodes i in the parse tree. In the case of coherence, the

parse tree and hence the query is considered well-typed. Otherwise, syntactical categories

of the parse tree nodes could be possibly corrected by (another bottom-up procedure

of) renaming syntactical categories of some non-leaf nodes by the iterative algorithm

described below in Section 9.2.3. If such a renaming is successful – giving rise to a

correct parse tree according to both the BNF and the typing, then the resulting version of

tree and the original query are also considered well-typed, otherwise non-well-typed.

9.2.2 Some useful definitions

Definition 1 (Identifier Node). Identifier Nodes (IN) were introduced in Section 9.1.2.2, as
those nodes in the parse tree labelled by one of the following syntactic categories:

<boolean query name>, <set query name>, <label variable>,

<label constant>, <set variable>, <set constant>.

Additionally, let us define Identifier Node Name (INN) as string of symbols labelling the unique

child (in fact, a leaf called above as i) of the corresponding IN fork in the parse tree.

Definition 2 (Binder Node). Binder (or binding) Nodes (BN) are those nodes in the parse tree
labelled by one of the following syntactic categories:

<delta-term with declarations>, <delta-formula with declarations>,

<collect>, <separate>, <recursion>, <quantified formula>.

Binder nodes can have appropriate declarations like "let...", "forall...",

"exists...", etc., as described in Definition 3, and thereby can bind identifier occurrences

(or IN).

Definition 3 (Identifier Declaration Node). Following from Definition 2 those declarations

belonging to BN are called identifier declarations nodes (IDN) of a BN and defined as follows.

• For BNs <delta-formula with declarations> with "let" declaration(s),

and <delta-term with declarations> with "let" declaration(s) the IDNs

are:
5 For example, the second leaf labelled by the identifier l in Fig. 9.1 above
6 In Fig. 9.1 above the corresponding node would be <delta-formula with declarations> having

the declaration of the label constant l under it. Note that quantifiers and other quantifier-like constructs, called
binders (see Section 9.2.2), are also considered as identifier declarations.
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– <set constant declaration> grandchild of <declarations>,

– <label constant declaration> grandchild of <declarations>,

– <set query declaration> grandchild of <declarations>, and

– <boolean query declaration> grandchild of <declarations>.

• For BNs <separate> and <collect> the IDNs are:

– <label variable> grandchild of <variable pair>, and

– <set variable> grandchild of <variable pair>.

• For BN <recursion> the IDNs are:

– <set variable> child of <recursion>,

– <label variable> grandchild of <variable pair>, and

– <set variable> grandchild of <variable pair>.

• For BN <quantified formula> the IDNs are:

– <label variable> grandchild of <variable pair>, and

– <set variable> grandchild of <variable pair>.

For example, Figure 9.2 depicts a fragment of a query parse tree, where the root node

<separate> is a BN and the corresponding IDN nodes (described above) can be found by

walking the paths from the <separate> node,

<variable pair>→ <variable pair label>→ <label variable>

<variable pair>→ <variable pair set>→ <set variable>

All other cases follow as the above. Note that there may be many IDNs of a given BN. Any

IDN declares one or more identifiers (IN) each of which has its name as a string of symbols

(the leaf under IN).

Definition 4 (Bounding Term or Formula or Label Value Node ).

(a) Following from Definition 2, the bounding term or formula or label value nodes

(BTFLVN) of a BN

<collect>

<separate>

<recursion>

<quantified formula>

<delta-term with declarations>

<delta-formula with declarations>
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is defined, respectively, as

– a unique <delta-term> child of:

∗ <collect> or <separate> or <recursion> or

∗ <forall> child of <quantified formula> or

∗ <exists> child of <quantified formula> or

∗ any <set constant declaration> grandchild of

<delta-term with declarations> or

<delta-formula with declarations> or

∗ any <set query declaration> grandchild of

<delta-term with declarations> or

<delta-formula with declarations>, or

– a unique <label value> child of:

∗ any <label constant declaration> grandchild of

<delta-term with declarations> or

<delta-formula with declarations> or

– a unique <delta-formula> child of:

∗ any <boolean query declaration> child of

<delta-term with declarations> or

<delta-formula with declarations>.

(b) Each BTFLVN of a BN restricts the range of the value of some INs (variables, constants

or query names) which BN binds7 and which we also call bounded or restricted IN(s) by

the BTFLVN8. These INs are defined as follows:

– In the case of BNs <collect>, <separate>, <recursion> and

<quantified formula>, the bounded INs are respectively

<label variable> and <set variable> grandchildren of <variable

pair>.

– Additionally, in the case of BN <recursion> one more bounded IN is its

immediate <set variable> child.

– In the case of BNs <delta-formula with declarations> or

<delta-term with declarations>, the bounded IN is either the declared

7Which was briefly hinted in the Definition 2
8 Moreover, the IN bounded by BTFLVN should not be free in the BTFLVN (i.e., if present in the BTFLVN, it

should be declared inside this BTFLVN) as we will discuss later as one of the conditions to be checked by contextual
analysis algorithm. This is the reason why we need Definition 4.
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<set constant> or <label constant>, or <set query name>, or

<boolean query name>.

For example, Figure 9.2 depicts the query parse tree for an expression e (fragment of a query q),

where the root node <recursion> is a BN and the corresponding BTFLVN and the bounded

INs can be found by walking the paths,

<recursion>→ <delta-term> (BTFLVN)

<recursion>→ <set variable> (IN)

<recursion>→ <variable pair>→
<variable pair label>→ <label variable> (IN)

<recursion>→ <variable pair>→
<variable pair term>→ <set variable> (IN)

whereas <label variable> (l) and <set variable> (x) are INs bounded by this

<delta-term> (BTFLVN). Additional (recursion) <set variable> (r) is IN also

bounded by <delta-term> (BTFLVN).

Figure 9.2: Fragment of a query parse tree

9.2.3 Bottom-up contextual analysis in detail

As stated in the brief description in Section 9.2.1, contextual analysis should check that the

given well-formed query (according to the parser) is also well-typed. To this end, the bottom-

up contextual analysis algorithm, first of all, iteratively searches for the nearest identifier

declaration for each identifier occurrence, i.e. each IN in the parse tree. We assume that

before starting contextual analysis the parser generates a list of all INs (not those INs of

the declarations in IDNs) along with their currently chosen typing (immediately seen from

syntactical categories of these INs, say, <set variable>, etc.) during the parsing process.

The parser outputs this list if the query is well-formed.
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9.2.3.1 Identifier declaration search (IDS) algorithm

Single iteration of the search for the nearest identifier declaration of an IN is determined by

the Identifier Declaration Search (IDS) algorithm. The inputs to this algorithm is any qt

(query parse tree) and some IN in qt. The output of the IDS algorithm is the ordered triple

< BN, IDN, IN > (if the required one exists at all) consisting of: BN (Binding Node), IDN

(Identifier Declaration Node) and the given IN.

Note that, IDN contains typing information of the declared identifier (including the

information whether it is a constant or variable, or a query name – also a kind of typing

information). In fact, the IDN is recoverable from BN and IN in the parse tree, however, it

is convenient to have IDN included in the triple obtained during this process.

Identifier Search Algorithm IDS(qt, IN):

START with a given IN belonging to qt.

1. Make this node (IN) the current node.

2. Ascend from the current node traversing up qt to its unique parent node, making this

node the current node.

3. Is the current node a BN?

No – Move to step 4.

Yes – Iterate from right to left through IDNs of the BN, searching for the first9 suitable

candidate identifier declaration whose declared identifier has the same name (INN)

as the given IN. If a suitable candidate IDN exists then construct the ordered triple

< BN, IDN, IN > (end of algorithm), otherwise move to step 4.

4. Is the current node the root node of qt?

Yes – No suitable candidate identifier declaration could be found, and therefore, the

IN is non-declared. Output ordered triple < NULL,NULL, IN > (end of algorithm).

No – Continue searching for a suitable identifier declaration by moving to step 2.

END with the ordered triple < BN, IDN, IN > if a suitable identifier declaration
exists, otherwise with < NULL,NULL, IN >.

9 Formally, it is not forbidden that the same identifier name could be multiply declared even in the same binder,
but only the right most one is that which binds the IN considered and which assigns a type to IN.
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The IDS algorithm should iteratively generate the triples as above for all INs (actually, for those

identifier occurrences not in a declaration) of the given parse tree qt. If all these are non-null

triples then the query q is considered as closed (yet possibly not well-typed). Thus, any closed

query q has all INs declared with preliminary typing according to the declarations (IDN) from

the corresponding triples. For non-closed query an error message should be generated by the

implementation saying that the query has non-declared identifiers. Moreover, any closed query

q and its parse tree qt are considered also well-typed if all identifiers have coherent typing both

in respect to their corresponding declarations and syntactical categories of the parse tree qt.

More precisely, this means that:

1. Syntactical categories of IN (e.g. <set variable> or <boolean query name>,

etc.) should be the same as declared in IDN (in corresponding triple), and

2. Types of participating parameters in query calls should agree with types discovered from

IDNs declaring corresponding query names.

If these two clauses do hold then in other nodes the BNF itself supports correct typing

and/or syntactical categories (such as <set equality> vs. <label equality>, etc.).

Otherwise, an appropriate renaming of syntactical categories of the nodes in qt should be tried

(as detailed in the next section), based on the initial partial correcting only the discrepancies in

the clauses (1) and (2), with the aim to recover well-typed version of qt and conclude that the

query q is well-typed. If such a renaming is impossible, then q is considered as non-well-typed.

9.2.3.2 Syntactic category renaming (SCR) algorithm

It is required that renaming should lead to a correct parse tree. This means that the syntactic

category renaming (SCR) algorithm,

• takes a parse tree with some already correctly renamed nodes (such as INs, by removing

the discrepancies mentioned above, and may be some other nodes as we will see below)

and formally marked as “correct”, and

• if necessary, attempts to rename other nodes ensuring that the parse tree remains faithful

to the ∆-language BNF syntax (well-formed).

Thus, the input is a given parse tree qt with some (non-leaf) labels already relabelled 10 and

additionally marked as “correct”, with the output being either: (i) parse tree with all other

10 Note that, INs are formally non-leaf nodes, although neighboring to leafs. As we will see below in
Section 9.2.3.3, not only INs should be initially relabelled in the input parse tree. These may be also query call
<parameters> which, unlike INs, may be far away from leaves in the parse tree.
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nodes successfully relabelled (q is well-formed), or (ii) an error state (qt is inconsistent with

the ∆-language syntax, even after further relabelling).

The procedure of relabelling starts from the leafs of the parse tree, and, while going bottom-

up along the tree relabels according to the ∆-language BNF syntax (if necessary) those nodes

which have not already been relabelled. Newly relabelled nodes are additionally marked as

“correct”, and visited nodes are marked also as “seen” as described formally below. At each

stage of the computation some nodes are already marked by this procedure as “correct”, and

only a node N can be relabelled and then also marked as “correct” and “seen” which, (i) has

not yet marked as “seen” (although probably marked as “correct” by the input marking), and

(ii) all its children, Children(N), have already marked as both “seen” and “correct”.

Syntactical renaming algorithm SCR(qt):

START with parse tree qt.

1. Initially mark some nodes as “seen” and “correct”. Mark all leaf nodes, INs, IDNs

and <set name> nodes both as “seen” and “correct”11.

Note: Syntactic categories of “correct” nodes will not be renamed by this algorithm.

Furthermore, <set name> nodes should not be renamed (and thus, these are initial

marked as “correct”) as they evidently have unambiguous type set and definitely require

no renaming.

2. Find any node suitable for correcting. Find node N , which is not marked as “seen”,

and whose all children are marked both as “correct” and “seen” (giving rise to a fork

N −→ Children(N) in qt). Does the required N exist in qt?

No – Therefore, by induction, all nodes in the tree are already marked as “correct”,

(end of algorithm).

Yes - Check and (if necessary, and possible) rename according to BNF the syntactical

category of N :

(a) Find a suitable fork F in the BNF that matches the children of N . Find a fork

F from the BNF whose leaves match with Children(N). As N is not an identifier

node, it follows from Assertion 3 from Section 9.1.2 that there can exists only one

such fork F , if any.

11 In fact, as we discussed above, INs and query call <parameters> are already marked as correct in the input
parse tree qt.
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If the required fork F does not exist in the BNF, output error message “query is

not well-typed” indicating the statement in the query q corresponding to the node

N which “cannot be properly typed”, and halt (end of algorithm).

Otherwise, if F exists, move to step 2b or 2c depending on whether N is already

marked as “correct” or not.

Note: The term ‘matching’ means that the branching degree should be the same and

the matching children nodes (in the natural order) have the same labels. The labels

of N and the root of F are not required to coincide for matching to be successful.

(b) N is not marked as “correct” - relabel syntactical category of N exactly as the

root of F , mark N as “correct” and “seen”, and move to step 2.

(c) N is marked as “correct” - if the label of the root of F coincides with the label on

N then mark N also as “seen” and move to step 2.

However, if the label of the root of F differs from the label onN , generate the error

message “query is not well-typed; conflicts with the expected syntax” and indicate

which syntactic category name (and corresponding place in the query) requires

renaming. (End of algorithm.)

END with either correctly relabelled parse tree, or an appropriate error state.

The successful result of this algorithm would give us a full guarantee that the resulting

relabelled tree is still the correct parse tree of the given query which is therefore well-formed.

Most importantly12, it will also guarantee that the query is well-typed: parse tree labelling is

fully coherent, both with the typing and all other details in declarations of identifiers (such as

to be a constant or variable or query name).

9.2.3.3 Contextual analysis algorithm

The complete algorithm for bottom-up contextual analysis consists of the following (macro)

steps. The input is any query parse tree qt and the list of INs (both obtained from the parser).

The output being either: (i) correctly relabelled query parse tree (q is well-typed), or (ii) an

error message (q is non-well-typed).

Contextual analysis algorithm CA(qt, the list of INs):

START with the list of INs of the query parse tree qt.

1. Find suitable candidate declaration (BN and IDN) for each identifier occurrence
(each IN). That is, iterate over the given list of INs calling IDS algorithm for each IN

12 also, taking into account appropriate renaming of syntactical categories of query call <parameters>
considered below
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(see Section 9.2.3.1). The result of these identifier declaration searches is the list of

declaration triples for all INs.

For those INs for which the algorithm IDS outputs < NULL,NULL, IN > the

corresponding error messages “identifier non-declared” should be outputted concerning

all such identifier occurrences in the query q and additionally that the “query is not well

typed”.

If IDS outputted NULL triple for some IN then end of algorithm; otherwise move to

step 2.

2. Relabel syntactical categories of some parse tree nodes according to step 1.

(a) Relabel syntactical categories of identifier occurrences. Labels of nodes (i.e.

syntactical categories) generated by the parser contain the preliminary information

on the typing (assigned by the parser and possible contradicting the actual type).

The real typing of any IN and, in fact, the real syntactical categories (the node

labels) of the INs can be correctly determined using the IDN from the declaration

triple of IN. The parse tree labelling for these INs should be updated accordingly

(may be vacuously if the given IN, in fact, does not need updating according to the

IDN) with marking these nodes as “correct”. This can be done straightforwardly for

all INs (in particular for query names to be discussed below). Thus after relabelling,

all INs will be actually marked as “correct”.

(b) Relabel syntactical categories of query call parameters13. In the case of INs

which are query names in query calls some additional renaming of some (possibly)

non-IN nodes (query parameters) is required as described below.

If we have a query call q(t1, ..., tn) with the query name q of the type

(type1, type2, ..., typem −→ type)

obtained from the appropriate IDN by the algorithm IDS (where all participating

typei are set or label, and the type after arrow is set or boolean) then we should:

i. Check whether m = n; if not, the query is not well-typed, and the algorithm

should halt with an appropriate error message.

13 In some cases similar to query parameters the parser already assumes some typing. For example, in
the membership statement l : a ∈ b the syntactical categories of l, a, b must be, respectively, <label>,
<delta-term> and <delta-term>, according to the BNF. In the case of equality a = b, the expressions
a and b must be of the same type according to BNF, although the choice of type is ambiguous as shown by those
examples in Section 9.1.4. But, the case of query call parameters requires our special attention in the currently
described algorithm.
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ii. If m = n, rename (possibly vacuously) syntactical categories of parameter

nodes ti (<delta-term> or <label>) according to the types typei (set or

label), and mark them as “correct”.

3. Relabel syntactical categories of all other parse tree nodes. Apply SCR algorithm

(Section 9.2.3.2) to the resulting partially relabelled parse tree. Thereby other nodes of

the parse tree will also be potentially renamed.

(a) Were all other nodes successfully renamed?

Yes - If the SCR algorithm renamed and marked all nodes as “correct”, then move

to Step 4 to check for additional requirement (that query is properly “bounded”).

No - Parsing agreeing with typing is impossible, and appropriate error messages

from SCR algorithm should be outputted. End of algorithm.

4. Additional requirements on bounding terms or formulas (BTFLVNs)

(a) Check that (the names of) bounded identifiers (INs) of: <separate>,
<recursion>, <collect>, <delta-formula with declarations>,
<delta-term with declarations>, and <quantified formula>

have no non-declared occurrences inside the bounding term or formula
(BTFLVN).

For convenient implementation of this clause we assume additionally that the parser

also generates for each bounding term or formula (BTFLVN) the sub-list of INs

(from the list of all INs generated by the parser) lying under BTFLVN in qt14. In

other words, these are some of the identifiers occurring in the query q. This can be

represented as lists (for each BTFLVN) of the form:

< BTFLV N, IN1, . . . , INk > .

Using the list of these INi under the given BTFLVN and the declaration triples

of the form < BN, IDN, IN > generated by the IDS algorithm, it should be

checked that each INi from the above list whose name coincides with the name of

some bounded IN by the given BTFLVN (see Definition 4 (b)) is declared in this

BTFLVN. The latter means that such an IN has its own binding node BN (from

the appropriate unique triple), and this BN lies under or coincides with the given

BTFLVN. This should hold for each BTFLVN in qt. Otherwise contextual analysis

should be aborted with corresponding error message.

14 If BTFLVN is LVN – a label value node – then this list is, of course, empty.
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In particular, in the case or recursion, we should check that the recursion binding set

variable, as well as variables from the binding variable pair, do not occur free in the

bounding term. Also, each query name should not occur free in the defining term

or formula, and set constant should not occur free (non-declared) in the defining

term, etc. However, in the case of set constants and query names we need to add

the following additional requirements.

(b) Check that for each <set constant declaration> the defining

<delta-term> has all of its set or label variables declared within this term.

That is, intuitively, <delta-term> defining a set constant should have a constant

value. However, constants and query names inside this <delta-term> may be

declared in the query outside this term.

To do this, use the list of INs of variables lying under the node <delta-term>

of <set constant declaration> and the identifier declaration triples of

the form < BN, IDN, IN > generated by the above IDS algorithm, and check

that each BN of such a variable IN lies in the <delta-term> node subtree.

Otherwise, such a variable IN of the <delta-term> is considered as free, and

the contextual analysis should be aborted with the corresponding error message.

(c) Check that for each <set query declaration> the defining

<delta-term> has all its set or label variables declared (quantified, etc.) either

inside this term or in the given <set query declaration> as

<variables> parameters of the declared query. Constants, and query names

inside this <delta-term> may be declared in the query outside this term. Quite

similarly check for each <boolean query declaration> and correspond-

ing <delta-formula>.

(d) The remaining check that <label constant declaration> uses closed

<label value> is evidently vacuous, as actually there is nothing to check.

END with a correctly relabelled and well-typed and properly bounded parse tree
(“query is well-formed and well-typed”), or a partially relabelled parse tree plus
additional error messages (“query is well-formed but not well-typed”, etc.).

9.2.4 Extension of contextual analysis to support libraries

That the library declarations are well-formed and well-typed can be checked by reducing these

declarations to the ordinary queries, as it was shown in Section 3.4.2.2, and applying parsing

and contextual analysis algorithm described above to the resulting query.



Chapter 10

XML Representation of Web-like
Databases (XML-WDB Format)

10.1 Represention of WDB by graph or set equations

As we discussed in Chapter 2 the (hyper)set theoretic approach [40, 41, 43, 56, 57, 61] to WDB

is based on the concept of hereditary finite sets or, more generally, hyperset theory [3, 5]. Such

semi-structured data is represented as abstract sets (of sets of sets, etc.) with the possibility for

membership relation to form cycles.

name

"Alice"

"Sam" "cat"

species

name

name
"Bob"

pet

bob alice

husband

wife

sam

Figure 10.1: Example WDB representing a fictitious family

For visualisation purposes hyperset databases are represented as graphs (see Figure 10.1) where

nodes correspond to set names and labelled edges to membership relation. When considering

implementation (and also intuitively from the set theoretic view) it is far more appropriate to

represent WDB as system of set equations. Each set equation consists of a set name equated to

a bracket expression; labelled elements of such sets may be either atomic values, nested bracket

expressions, or set names (described in some other equations). For example, system of flat set

137
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equations corresponding to the WDB graph in Figure 10.1 looks as follows:

bob = { name:"Bob", wife:alice }

alice = { name:"Alice", husband:bob, pet:sam }

sam = { name:"Sam", species:"cat" }

or, equivalently, with the nesting allowed:

bob = { name:"Bob", wife:alice }

alice = { name:"Alice", husband:bob,

pet:{name:"Sam", species:"cat"} }

In particular, this demonstrates that the specific form of set names (e.g. bob, alice, sam)

however helpful intuitively are formally not important. They can always be renamed (say by

numbered “object identities” e.g. &23, etc.) or substituted as above. In general, the role of

set names in any system of set equations depends on its position. Those set names occurrences

on the left-hand side of set equation (simple set names) are also called defined set names,

whereas, all other set name occurrences are called referenced set names. Each referenced set

name should be defined somewhere in the system, and only once.

The implemented query system considers WDB as systems of flat set equations (without

any nesting). As described below, WDB is represented practically as a system of XML files

each containing a fragment of the whole system of set equations of the WDB, which proves

convenient. From the perspective of any database designer, the informational content of WDB

is carried by:

• Labels on WDB-graph edges e.g. name, wife, husband, etc.

• Atomic data (see Note 5) on leaves e.g. "Bob", "Alice", etc.

• Graph structure or, respectively, set-element nesting.

Note 5 (Atomic data). Atomic data is, in fact, treated as singleton sets consisting of a labelled

empty set or, equivalently, as labels on additional leaf edges in the WDB graph. For example,

the atomic value "Bob" from the above example is formally represented as

{Bob:{}}

or, respectively, as the labelled edge with the target node being a leaf,
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For example, taking into account the above description, the corresponding system of (almost)

flat set equations (with atomic values simulated as labelled empty sets) representing the WDB

graph depicted in Figure 10.1 should actually be:

bob = { name:bob_name, wife:alice }

bob_name = { Bob:{} }

alice = { name:alice_name, husband:bob, pet:sam }

alice_name = { Alice:{} }

sam = { name:sam_name, species:cat_name }

sam_name = { Sam:{} }

cat_name = { cat:{} }

To completely flatten this system we need to further replace all nested occurrences of {},

say, by the set name empty and add one more equation empty = {}. Of course, nesting

is a reasonable notion, and atomic values are more user friendly from the external point of

view. Thus, these concepts are included in the XML representation of WDB considered below,

although the query system internally uses only completely flat set equations1.

10.2 Practical representation of WDB as XML

Although set equations represent WDB in the most natural and intuitive way, directly

suggesting that such data are hypersets, it makes sense to relate this approach to the popular

XML representation of semi-structured data and use appropriate existing techniques. Thus,

numerous and independently existing XML data can be treated by our approach, making its

application considerably wider.

Extensible Markup Language (XML) is popular model for ordered (typically) tree-like

semi-structured data. The portability, scaleability and tree (but extendable to graph) structure

of XML has given rise to its wide spread useage. As such, systems of set equations, possibly

allowing deep nesting, although very intuitively appealing could be represented practically

as XML documents also based on the idea of representation of nesting data. However, the

primary goal of our approach is not the implementation of XML querying, as much research

and practical work has already been devoted to the latter: CDuce [7], Lore [33], Quilt [14]

XML-GL [13], and XML-QL [23]; as well as the W3C standards XSLT [15], XPath [22], and

XQuery [8] (based on Quilt).

1 Note that WDB may (briefly) involve complicated equations, such as res = q where q is an arbitrarily
complicated term or formula, during the execution of queries q or after invoking the “splitting” rule during
reduction. But, this extended system is, in fact, reduced to the flat form, and it is technically more convenient
to work with other given WDB equations if they are presented in the flat form.
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The main idea of the proposed XML-WDB format is to represent WDB systems of set

equations as XML documents of a special form, and the most essential step consists in

recursively replacing any labelled bracket expression

label : {...}

by the XML element:

<label>...</label>

Additionally, XML-WDB documents require: (i) the special root element <set:eqns>

which denotes system of set equations, and (ii) the nested elements <set:eqn> denoting

particular set equations. Defined set names participate as values of the set:id attribute of

<set:eqn> tags, and referenced set names as values of the set:ref attribute (and also

set:href attribute discussed later) of any other tags. Note that, as stated above, XML

represents ordered tree-like semi-structured data, however, our set-theoretic approach to WDB

ignores order. Thus, such XML documents are treated by our approach ignoring the order (and

possible repetition) of elements.

Let us consider the system of set equations (with nesting allowed) in Section 10.1 (depicted

visually in Figure 10.1) and its representation as an XML document in XML-WDB file 1. The

names of the special elements (set:eqns and set:eqn) and special attributes (set:id,

set:ref and set:href) should appeal to the readers’ intuition that the XML-WDB

document below corresponds to the above system of set equations.

XML-WDB file 1 Family database (cf. Figure 10.1).

<?xml version="1.0"?>
<set:eqns xmlns:set="http://www.csc.liv.ac.uk/˜molyneux/XML-WDB">

<set:eqn set:id="bob">
<name>Bob</name>
<wife set:ref="alice" />

</set:eqn>

<set:eqn set:id="alice">
<name>Alice</name>
<husband set:ref="bob" />
<pet>
<name>Sam</name><species>cat</species>

</pet>
</set:eqn>

</set:eqns>
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Recall that atomic data such as name:"Bob" is interpreted as name:{Bob:{}}, and

should therefore be translated into <name><Bob></Bob></name> or, equivalently, into

<name><Bob/></name>. This might seem to contradict XML-WDB file 1 where rather

<name>Bob</name> is used, but the inverse translation in Section 10.2.3 (Rule 2) shows

that the empty element <Bob></Bob> or <Bob/> is treated equivalently as text data Bob.

Here it appears as text data for the readers’ convenience.

10.2.1 XML-WDB document format

In general, an arbitrary XML-WDB document is defined as follows.

Definition 5 (XML-WDB; see also Section 10.2.4 for the corresponding XML schema).
A well-formed and valid XML-WDB file is an XML document with the root element

<set:eqns> containing possibly several <set:eqn> sub-elements. The <set:eqns>

element should contain no attributes, whereas, the element <set:eqn> should contain the

required set:id attribute only. The value of the attribute set:id should have a unique value

(across the whole document) called the defined set name and can only be be a string of symbols

which is any simple set name (according to the syntactical category <simple set name>

in the BNF). The elements <set:eqns>, <set:eqn>, and the attribute set:id are not

allowed to appear anywhere else in the document. The element <set:eqn> can contain

possibly several arbitrary XML sub-elements. The attributes set:ref and set:href can

appear (at any depth) in those arbitrary elements under <set:eqn>. The values of the

attributes set:ref and set:href are called referenced set names, and must correspond

to some existing set:id value in the same XML-WDB document in the case of set:ref,

or set:id value in some other XML-WDB document in the case of set:href. To this end,

the value of the attribute set:href should be full set name (as discussed in Section 10.2.2;

cf. the syntactical category <set name> in the BNF) consisting of an (XML-WDB file) URL

and simple set name defined in that file (delimited by #).

Everything else allowed by XML standard, what is not forbidden by the above restrictions, is

permitted in the XML-WDB format.

Note 6. The important feature of this definition is that XML-WDB documents can contain

quite arbitrary XML elements under <set:eqn>, thus allowing to include arbitrary XML

data with any nesting, any text data and any attributes2 (except set:id, and with restrictions

on values of set:ref and set:href, as described above) into our hyperset approach to

WDB. However, the order and repetitions of data will be irrelevant for our approach, and the

usual XML attributes (except the attributes set:ref and set:href which have a special

role, as described above) will be treated rather as tags which permit no further nesting.
2 In general, arbitrary attributes are treated by the Rule 1 in Section 10.2.3 below.
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10.2.2 Distributed WDB

Any WDB system of set equations may be divided into several subsystems (as XML-WDB

files) with the possibility for the set names s participating in one subsystem (XML-WDB file)

to be defined by set equations s = {. . .} either in the same or in some other subsystems

(XML-WDB files). Thus, strictly speaking, we should always consider the corresponding full

versions of set names defined in set equations of distributed WDB, even when a simple set

name is used for simplicity. That is, each simple set name occurring as a value of set:id

or set:ref attributes within an WDB-XML file should be understood as full set name

obtained from the URL of this file by concatenating it with the simple name using # to delimite

these parts. Moreover, this technique allows to avoid unintended simple set name clashes

without cooperation or collaboration between the authors of distributed WDB-XML files.

(Unfortunately, unintended clashes for using the same label for different intuitive meanings is

still possible, however, this is not formal contradiction in our approach. Here the well-known

idea of namespaces in XML could be used.)

Figure 10.2: Example distributed WDB representing two fictitious families, divided into two
fragments represented as white and grey nodes

Defined set names appearing in some XML-WDB file can participate as referenced set names

in the same or other XML-WDB files. Those set names defined in the same XML-WDB file are

referenced as simple set name values of the attribute set:ref, whereas, set names defined in

some other XML-WDB file are referenced as full set name values of the attribute set:href.

It is required that each full set name should refer to an existing XML-WDB file and the set

equation within that file for the simple set name part (after the # symbol).

Let us now consider an example of distributed WDB, representing two families (visualised
in Figure 10.2) and the corresponding XML-WDB files family1.xml and family2.xml
(XML files 2 and 3) appearing below. Both simple and full set names participate as
referenced set names in this example distributed WDB. For example, take the labelled element
daughter:emma represented in XML-WDB file family1.xml as

<daughter set:ref="emma" />
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where the attribute set:ref refers to simple set name emma defined within the same file. As
an illustration of distribution, consider the labelled element friend:mark represented as

<friend set:href="...family2.xml#mark" />

where the attribute set:href refers to set name mark defined in the file family2.xml.

Note that, the URL in this example has shorted for the sake of simplicity.

XML-WDB file 2 Family database fragment (cf. grey nodes Figure 10.2): family1.xml

<?xml version="1.0"?>
<set:eqns xmlns:set="http://www.csc.liv.ac.uk/˜molyneux/XML-WDB">

<set:eqn set:id="bob">
<daughter set:ref="emma" />

</set:eqn>

<set:eqn set:id="alice">
<daughter set:ref="emma" />

</set:eqn>

<set:eqn set:id="emma">
<friend set:href="...family2.xml#mark" />

</set:eqn>

</set:eqns>

XML-WDB file 3 Family database fragment (cf. white nodes Figure 10.2): family2.xml

<?xml version="1.0"?>
<set:eqns xmlns:set="http://www.csc.liv.ac.uk/˜molyneux/XML-WDB">

<set:eqn set:id="paul">
<son set:ref="mark" />

</set:eqn>

<set:eqn set:id="amy">
<son set:ref="mark" />

</set:eqn>

<set:eqn set:id="mark">
<friend set:href="...family1.xml#emma" />

</set:eqn>

</set:eqns>



144 Chapter 10. XML Representation of Web-like Databases (XML-WDB Format)

The analogy of WDB with the WWW and, in particular possible distributed character of WDB

does not imply it is necessarily so huge and unorganised as the WWW. It could be distributed

between several sites, and supported by specialised WDB servers of some departments of an

organisation owning this WDB and maintaining some specific structure of this WDB.

Thus, WDB might, in fact, be much more structured than the WWW, however, the general

approach imposes no restrictions. Therefore, the concept of WDB schema or typing relation

between hypersets or graphs (much more flexible than for the relational databases and based

on the notion of bisimulation or “one-way” simulation) relativised to some typing relation on

labels/atomic values can be considered for such databases [9, 41, 57, 69]. Here we will not go

into details of this important topic as our main concern is the straightforward implementation

of querying WDB which does not take into account any such WDB schemas.

10.2.3 Transformation rules from XML to systems of set equations

Let us show how any XML-WDB document, as described above, can be treated as a

system of set equations by using the following simple transformations (applicable, in fact,

to arbitrary XML documents, but giving the desired system of set equations only for the

XML-WDB documents). There are however currently some restrictions on XML-WDB in

these transformation rules which can easily be relaxed, for example attributes having many

values attr="value1 value2 ..." are not taken into account.

10.2.3.1 Elimination of attributes and text data

The first two transformation rules, applied recursively, will eliminate attributes and atomic

(text) data from arbitrary XML element by treating them as tags.

Rule 1 (Attribute elimination, except attributes set:id, set:ref and set:href).

XML tags which have attributes,

<tag attr="value" other-attributes>

some-content

</tag>

transform to

<tag other-attributes>

<attr>value</attr>

some-content

</tag>
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where attr is restricted to be any attribute name except the distinguished attributes set:id,

set:ref and set:href belonging to the set namespace which will be considered later.

Additionally, some-content means arbitrary XML content of an XML element.

In the case of empty element with attributes,

<tag attr="value" other-attributes />

transformation quite analogously gives the similar result,

<tag other-attributes>

<attr>value</attr>

</tag>

This rule is applied until all attributes, except those attributes beglonging to the set namespace

(set:id, set:ref and set:href), are eliminated. This way attributes are actually treated

as tags.

Rule 2 (Atomic data elimination).

Text data with no white spaces

any-text-data

transforms to the empty XML element

<any-text-data/>

In the case of text data containing white characters (spaces, carriage-returns, tabs),

any text data

all white characters are ignored, and the result is the corresponding sequence of the empty

elements,

<any/><text/><data/>

As our set theoretic approach ignores order and repetitions (in contrast with the ordinary

XML approach) this, in fact, means that a sentence (any text data) is considered rather as

an unordered set of words. This way text data are actually treated as tags. (An another

alternative would be to replace all white characters by the underscore symbol, thus giving

rise to <any_text_data/>, like above.)

Iterated application of rules 1 and 2 eliminates all atomic (text) data and attributes except those

attributes belonging to the set namespace (set:id, set:ref and set:href).
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10.2.3.2 Elimination of tags

The remaining rules below allow transformation of XML elements with (simple) attributes and

text data eliminated by the above rules into bracket expressions (possibly involving set names),

and into set equations if there are tags set:eqns and set:eqn occurring as described

in Definition 5. In the intermediate steps, the expression transformed will be in the mixed

language.

Rule 3 (Tag elimination, except the tags set:eqns and set:eqn).

For arbitrary XML tags, except set:eqns and set:eqn, which have no attributes,

<tag>

some-content

</tag>

transforms into

tag:{some-content}.

Those possibly remaining tags in sub-elements of some-content will be eliminated
recursively by application of transformation rules 3 and 4. Quite analogously for the case
of the empty element,

<tag/>

transforms to

tag:{}

Rule 4 (Elimination of tags with set:ref and set:href attributes).

<tag set:ref="set-name" />

transforms to the sequence

tag:set-name

Recall that other attributes were already eliminated by Rule 1. Furthermore, according to

the definition of well-formed XML document an attribute name must only appear once in

any tag, however, set:ref and set:href may participate together in any tag. The above

elimination is considered as typical if only the attribute set:ref or set:href occurs.

Additionally, we must consider the following more general, however unlikely case when some
content is present:

<tag set:ref="set-name1" set:href="set-name2">

some-content

</tag>
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transforms to

tag:set-name1,

tag:set-name2,

tag:{some-content}.

However, to be consistent with the first version of Rule 4, if some-content is empty, then

(as an exception) the result should not contain the labelled element, tag:{}.

The above rules hold also for the case of the attribute set:href, or when both set:ref

and set:href are present within a tag. Note that after applying Rule 4, the difference

between these two attributes is not taken into account in generating the result. Recall that

set:ref refers to a simple set name, whereas, set:href refers to a full set name which

is actually an URL together with simple set name (see Section 10.2.2). Such syntax explicitly

differentiating between simple and full set names is convenient for implementation. After

applying this rule this feature will disappear, but the difference between the shapes of simple

and full set names will remain, so that nothing essential will be lost.

Rule 5 (Elimination of tags set:eqn and set:eqns).

<set:eqn set:id="simple-set-name">some-content</set:eqn>

is replaced by the equation,

simple-set-name = {some-content}

and,

<?xml ... >

<set:eqns>some-content</set:eqns>

is replaced by

some-content

that is, by system of set equations (in the case of a well-formed XML-WDB document; cf.

Definition 5 above).

Note that, all the above rules can be applied in arbitrary order, leading to a unique system of

set equations.
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10.2.4 XML schema for XML-WDB format

A well-formed and valid XML-WDB document must conform to Definition 5. As our general

goal is implementation, let us also present the XML schema3 (at the end of this section) which

corresponds to this definition almost completely (as XML schemes are, in fact, insufficiently

expressible).

First of all, the schema requires that all the declared elements eqns and eqn, and attributes

id, ref and href are qualified under the namespace http://www.csc.liv.ac.uk/

˜molyneux/XML-WDB. In practice the author of any XML-WDB document can declare this

namespace as the mnemonic set4 and use set:eqns instead of just eqns, etc. to emphasise

these special elements/attributes are subject to the rules of this schema.

The root element eqns of an XML-WDB document is declared in the schema as having the
complex type system_of_set_equations, as follows,

<xsd:element name="eqns" type="system_of_set_equations"/>.

The complex type system_of_set_equations is defined as

<xsd:complexType name="system_of_set_equations">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="eqn" type="set_equation"/>

</xsd:sequence>

</xsd:complexType>

where an arbitrary number (≥ 0) of set equations can participate in any XML represented
system of set equations. Note that, by definition only, eqn subelements can participate under
an eqns element. Here, eqn elements represent set equations by the given complex type
set_equation, which is defined by two elements:

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:any namespace="##any" processContents="lax"/>

</xsd:sequence>

<xsd:attribute form="qualified"

name="id"

type="xsd:ID"

use="required"/>

Thus, any eqn element must contain the required attribute id, and may contain arbitrary

XML sub-elements. Note that, by definition, only one attribute, id, must appear in eqn

3 also available at http://www.csc.liv.ac.uk/˜molyneux/XML-WDB/schema/xml-wdb.xsd
4 In fact, the namespace http://www.csc.liv.ac.uk/˜molyneux/XML-WDB could be declared

by any chosen mnemonic, let us say s.

http://www.csc.liv.ac.uk/~molyneux/XML-WDB
http://www.csc.liv.ac.uk/~molyneux/XML-WDB
http://www.csc.liv.ac.uk/~molyneux/XML-WDB/schema/xml-wdb.xsd
http://www.csc.liv.ac.uk/~molyneux/XML-WDB
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elements. The corresponding value of the id attribute must be unique over the entire

XML-WDB document according the type xsd:ID. However, the schema only ensures the

well-formedness with lax processing of arbitrary XML sub-elements, and therefore does not

check that such elements are XML-WDB valid according to Definition 5. In particular this

schema says nothing about ref and href attributes and how they can be used. Thus, our

implementation additionally ensures the following:

• The elements eqns and eqn and attribute id qualified under the http://www.csc.

liv.ac.uk/˜molyneux/XML-WDB/ namespace can not participate in arbitrary

XML sub-elements.

• The attribute ref must have simple set name value, defined by the id attribute in the

same XML-WDB file. Furthermore, the attribute href must have full set name value

whose simple set name part is defined in some other well-formed and valid XML-WDB

file.

Thus, any well-formed XML document is considered as valid XML-WDB document if it can

be successfully validated against the above schema and conforms to these additional rules.

However, our ∆ language query implementation deals directly with systems of set equations,

therefore it is necessary to rewrite from valid XML-WDB files into systems of set equations,

by treating them with the rules from Section 10.2.3. The inverse transformation from systems

of set equations to XML-WDB format is also implemented.

http://www.csc.liv.ac.uk/~molyneux/XML-WDB/
http://www.csc.liv.ac.uk/~molyneux/XML-WDB/
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XML schema 1 XML-WDB file schema: xml-wdb.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.csc.liv.ac.uk/˜molyneux/XML-WDB"
xmlns="http://www.csc.liv.ac.uk/˜molyneux/XML-WDB"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:complexType name="system_of_set_equations">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eqn" type="set_equation"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="set_equation">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:any namespace="##any" processContents="lax"/>

</xsd:sequence>

<xsd:attribute form="qualified" name="id"
type="xsd:ID" use="required"/>

</xsd:complexType>

<xsd:element name="eqns" type="system_of_set_equations"/>

</xsd:schema>
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Chapter 11

Comparative analysis

11.1 Preliminary comparison

There have been many proposed approaches for modelling and querying semi-structured data.

Many of these approaches are based on the graph model, which has become the prevalent model

for representation of semi-structured data. For example, the graphical Object Exchange Model

(OEM) [51] was used in the integration of heterogeneous information sources in Tsimmis [31]

and the semi-structured query language Lorel [2, 46]. Moreover, there has been some trend

toward the XML document model, which is essentially the graph model restricted to ordered

trees, but arbitrary graphs can be imitated by using the attributes id and ref to define links

between tree branches. In fact, Lore (implementation of the Lorel language) was later migrated

to XML [33].

The most natural and intuitive way of querying graphs employed in most approaches is

path navigation by using path expressions. However, path expressions are evidently sufficiently

complicated syntactical means to achieve expressive power in queries. This is practically very

reasonable and means path expressions are a strong technical tool. But, on a logical level (in

the wide sense of this word) such complicated things are always considered as definable in

terms of some other more fundamental concepts. Thus, in foundation of mathematics such

fundamental concepts are set, membership relation, logical quantifiers, etc. allowing to express

all other concepts, constructions and proofs in mathematics and (theoretical) computer science.

In a sense, the graph approach to semi-structured databases lacks natural logically fundamental

concepts, and in these circumstances path expressions are included as the main tool for

achieving expressive power. On the other hand, the set theoretic approach to semi-structured

databases presented in this thesis does not require path expressions1 to achieve high expressive

1besides the related classical operation of transitive closure of a set and a general recursion operator — classical
inductive definitions
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power which in fact captures exactly all “generic” polynomial time computable operations over

hypersets [41, 43, 56, 57]. Therefore, the language can be considered theoretically as having

in this sense no “gaps”. But, from the point of view of practical usability and efficiency of

implementation, path expressions should be eventually included in our implementation of the

∆-language although not increasing its expressive power (see [61]).

From the traditional theoretical point of view polynomial time computability of queries in

∆ (which is usually theoretically considered as “feasible computability”) allows to consider

∆ as computationally viable. However, in a practical sense, we cannot insist on this usage of

the term “feasible” because polynomials can be of high degree and with huge coefficients.

Also, this makes less sense in the context of those most expensive computational steps

assuming downloading numerous files from the World-Wide Web. Thus, we rather consider

this characteristic not as a witness of efficiency of ∆ but as a good witness of expressive power

of the language. Anyway, when comparing this approach with others, it can be considered as

top-down from theory to practice. In particular, this explains again our attitude to not include

path expressions in the main conceptual version of the ∆-language, being a definable concept,

and considering them only as technical “conservative” extension, although very important

practically.

Recall that hypersets representing WDB can be visualised as graphs, and thus, in principle,

our approach can treat graph structured data from other approaches, but assuming that the order

and repetition of such data does not matter. As the latter is not always the case, the precise

comparison with other approaches is not so straightforward. Similarly, our implementation can

query arbitrary XML elements, rewriting from XML-WDB to systems of set equations and

ignoring order. Although the aim of the project was not XML querying, this accomplishment

extends possible applicability of our implementation.

Now, after these preliminary general comments, let us consider several known approaches

to semi-structured databases and to set theoretic programming.

11.2 SETL

An important practical predecessor of our work is the set theoretic programming language

SETL [62, 63, 64] which deals with hereditarily-finite well-founded sets (without cycles) and

tuples. (Note that tuples or, more generally, records [a1 : x1, . . . , an : xn] can be trivially

treated in our approach as sets {a1 : x1, . . . , an : xn} in which all labels ai are different.) This

general purpose programming language exploits the notion of set as fundamental data structure

with its set theoretic style of constructs like collection in ∆. It is, however, an imperative

language using such traditional operators as the assignment operator, loops, etc. For example,

let us consider the SETL program:
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A = {1,2,3,4,5};

B = { x: x in A | x >= 3 };

print(B);

where the statement on the second line reminds us of the ∆-term collect. In fact, the result of
executing this SETL program is the output set of B, which is, in fact, defined as those numbers
x belonging to the set A such that the number x is greater than or equal to three, as follows:

{3,4,5}.

Furthermore, in SETL, equality between sets is understood as “deep” set equality implemented
as the following (recursive) procedure taken from [62]:

proc equal(S1,S2);

if # S2 /= # S1

then return false;

else

(forall x in S1)

if x notin S2 then return false;

end if;

end forall loop;

return true; -- S1 and S2 are equal

end if;

end proc;

That is, the two sets S1 and S2 are equal if they have the same cardinality and each element

x of the set S1 participates as a member in the set S2. In fact, this equality procedure will

be called recursively for each membership test notin (where, like in our case, x ∈ y ⇐⇒
∃x′ ∈ y .Equal(x, x′)). Hence, S1 and S2 are equal if their elements are equal and their

elements are also equal, and so on. This is similar to bisimulation equivalence which is

an important concept in our hyperset theoretic approach. The use of cardinality operator #
either witnesses that hereditarily-finite sets are represented in SETL implementation in strongly

extensional form and, anyway, assumes further recursive call of equality. In contrast to SETL,

the implemented ∆ language is actually a declarative query language to semi-structured or

Web-like databases and, as such, is not intended to be a universal language. The degree of

universality of ∆ is characterised by its expressive power equivalent to polynomial time. Also,

SETL does not have any construct similar to the decoration operator within the ∆-language

which allows for restructuring, but its universal character should allow to define decoration for

acyclic graphs. In contrast to SETL, the main characteristic feature of ∆ is the extension of

the ideas of descriptive complexity theory [37, 38, 55, 74] (usually considered in connection

with the relational approach to databases) from finite relational structures to hereditarily-finite

(hyper)sets and, thereby, to semistructured databases.
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The most recent development on the SETL language was the implementation described

in [4], which introduced Internet programming using sockets into the SETL language. In fact,

these latest considerations further support that SETL is actually a general purpose programming

language, and in this sense differs from ∆ which is a query language.

11.3 UnQL

The UnQL query language [10, 11] is closest to our approach as it is based on bisimulation,

with its operators also being bisimulation invariant as in our case. However, despite considering

bisimulation, UnQL is based on the graph model, and the op. cit. do not even mention hyperset

theory. UnQL can also be characterised as a bottom-up approach from graphs to something

reminding us of hypersets. Moreover, there is no operator for testing equality between

graph vertices (neither literal nor based on bisimulation) in the UnQL language. However,

bisimulation should be used in defining the semantics of path expressions (patterns in their

terminology) in the UnQL language, as shown in [61] and in our example in Section 3.6,

ensuring that its operations really are bisimulation invariant. Much of the UnQL approach is

devoted to the rather complicated way in which they deal with graphs, which appears more

technical compared to the intuitive denotational and operational semantics of the hyperset

approach. In a sense, UnQL has defined only operational semantics over graphs, which

is bisimulation invariant. No abstract concept like hyperset and corresponding (hyper)set

theoretical style of thought is explicitly described. Moreover, operational semantics of the

structural recursion operator is rather complicated by working with multiple “input” and

“output” vertices considered as essential part of graphs to be queried by UnQL. Therefore,

semi-structured data represented in UnQL does not exactly correspond to hypersets, although

it can be imitated by hypersets as shown in [61]. Also, the UnQL language and related

language UnCal were shown in [61] to be embeddable within ∆, but, as reasonably conjectured,

not vice versa. This embedding, although done in purely set theoretic terms, is based on

the interpretation of arbitrary graphs as sets of ordered pairs. The bisimulation invariant

operations on graphs of UnQL are defined set theoretically but as operations on graphs rather

than as operations on abstract entities denoted by these graphs (with multiple “inputs” and

“outputs”) considered up to simulation. In particular, the main structural recursion construct of

UnQL is definable in ∆ by manipulating graphs using recursive separation and concluded by

applying decoration operation to get a hyperset imitating the result (with multiple “inputs” and

“outputs”). In fact, many of the operations in UnQL are based on various ways of appending

such kind of graphs (via “inputs” and “outputs”), including structural recursion, all of which

may be considered as a special versions of the decoration operator. However, the full version

of the powerful decoration operator (which is much simpler and logically more fundamental
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than its particular versions mentioned) is neither considered nor definable in UnQL (according

to the conjecture in [61, page 813]).

11.4 Lore

Lore (Lightweight Object REpository) [46] is the implementation of the Lorel query language
[2] based on the OEM graph model [51]. Lorel is an extention of the Object Query Language
(OQL) [12] and, in fact, statements written in the Lorel are translated to OQL. Moreover,
additional features of Lorel (such as path expressions, and type coercion) are syntactical
sugaring of OQL. The OEM model is similar to the data model used in UnQL, but unlike UnQL
and also our approach, does not consider graphs up to bisimulation. Therefore, bisimulation
invariance is not pursued in this approach, hence, in this way it is crucially different from UnQL
and ∆. In the OEM model equality is between graph nodes (OIDs) rather than value equality
using bisimulation. Lorel also uses ordinary equality between sets of OIDs, which, however,
is not the “deep” set equality assumed by bisimulation. Therefore, Lorel would treat some of
our examples differently, and thus, only very informal and superficial comparison is possible,
unlike the comparison with UnQL. However, the select operator of Lorel is very similar to
our collect construct, as illustrated in the following example Lorel query:

SELECT pub

FROM pub in BibDB

WHERE pub.author = "Smith"

and the (strikingly similar) corresponding ∆-query,

set query collect {

’null’:pub

where pub-type:pub in BibDB

and author:"Smith" in pub

}

Note that only OIDs are selected in Lorel, whereas in ∆ (OIDs or) set names denote

(hyper)sets which are, in fact (on the level of abstract semantics) collected. Note that,

OIDs in Lorel denote just themselves and nothing more. Lorel can not express restructuring

queries, unlike ∆ which can perform restructuring queries with the decoration operation (at the

final stage). Thus, informally (as formal comparison is impossible due to the above differences

in data models – graphs vs. hypersets represented by graphs) Lorel (and also UnQL) can be

said to be also strictly embeddable in ∆2. Finally, there is also no recursion operator (except

for Kleenes star in path expressions) and nothing similar to decoration operator (important for

deep restructuring).

2ignoring so called path variables which may potentially lead to exponential complexity and, for simplicity,
some less essential aspects like typing and coercion
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11.5 Strudel

Strudel is a Web site management system [26] for creating Web pages from heterogeneous data

sources via the StruQL query language [27] (see also [1]). In particular, the link clause in

StruQL is able to do simple restructuring. In fact, Strudel allows to generate real Web sites in

a declarative way from a site graph (a graphical “plan” of a site) that encodes the Web site’s

structure. The latter feature resembles the decoration construct although outside of hyperset

approach. In Studel data is integrated from heterogeneous sources by mediators which rewrite

from various data sources (such as XML files, bibtex files, etc.) to Strudel data graphs. StruQL

queries over these data graphs, in fact, define the Web site structure creating Web pages and

hyperlinks between Web pages.

11.6 G-Log

G-Log [19] is another query language for semi-structured data represented as arbitrary labelled

graphs. However, unlike the other approaches consider so far (Lorel, UnQL, ∆) any query,

as well as data, in G-log is represented graphically as a set of schematical red/green coloured

“rule” graphs. Querying in G-log (in general, updating) is based on matching the query rule

graph with the “concrete” black coloured data graph. This matching assumes one of three

possible kinds of bisimulation (in particular, isomorphic embedding) of the red part of the

rule with a subgraph of the black concrete data graph, and using the green part for updating

the concrete data graph. This procedure is essentially non-deterministic and, in fact, can be

executed in non-deterministic polynomial time (rather than polynomial time in the case of ∆).

The expressive power of G-log in its present form, or its potential extensions, is unclear, as

well as precise comparison with ∆. Granted, both are based on bisimulation but in a somewhat

different way. The rule graphs of G-log can be described in some logical form, but it is

unclear how to systematically relate this with the syntax of ∆ to have a better comparison.

In principle, extending ∆ by quantification over the subset of a set, ∀x ⊆ t,∃x ⊆ t, together

with definability in ∆ the necessary versions of bisimulation over graphs could make it

possible to imitate matching of a rule graph with a subgraph of the data graph. But, it seems

unclear whether there exists a natural unifying conceptual framework for both approaches.

Furthermore, G-log is an open ended language with some ideas of its extension discussed in

[19]. In any case, we can conclude that UnQL and even Lorel3 are syntactically, as well as

in terms of operational semantics, much closer to ∆ than G-log. However, matching with a

subgraph is somewhat similar to the idea of path expressions which appear in both UnQL and

Lorel, the latter being imitated in ∆ as illustrated in Section 3.6.

3 ignoring that Lorel does not consider bisimulation
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11.7 Tree (XML) model approaches

The XML data model is based on ordered trees, whereas the other approaches to querying

semi-structured databases discussed so far deal with arbitrary graphs. (However, as we already

mentioned, using attributes id and ref in XML allows imitate arbitrary graphs.) It might

seem that querying XML data is formally outside of the (hyper)set theoretic view as the XML

document model assumes a fixed order on the children of any node. Despite this our approach

is able to query restricted XML documents (XML-WDB files which, however, can involve

arbitrary nested XML elements) interpreted as systems of set equations.

The following comparisons focus on three contemporary XML data model approaches,

XSLT, XQuery and XPath, all of which were developed by W3C working groups. In fact, these

languages are the successors to many other XML model approaches, for example, XQuery is

based on the Quilt query language [14]. However, for brevity no comparisons will be made

with these predecessors.

XSLT

XSLT (eXtensible Stylesheet Language transformations) [15] is a rule based language for

transforming the structure of an XML document, that is, XSLT rewrites an XML document

to another XML document with different structure. Thus, XSLT does allow convenient

manipulation of XML documents. XSLT rules are composed of template rules which match

attributes/elements using XPath-like expressions (discussed below) and create new XML

elements/attributes or apply other template rules. This style of language and its operational

semantics is rather different from the ∆-query language. In particular XSLT is typically used

to visualise XML documents by transforming them into HTML Web pages.

XQuery

XQuery [8] is declarative query language for XML documents, and was derived from Quilt

[14], Lorel [2] (described above) and XML-QL [23]. XQuery is, in fact, Turing complete and

thus can be considered as more than just a query language but also, in a sense, as a general

purpose programming language.

Path expressions (XPath)

XQuery and XSLT include XPath path expressions in its syntax. XPath is a language especially

created to express paths navigating over XML document trees, and, in fact, XPath itself can

serve as a query language.
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Currently path expressions are not included in the implemented ∆-query language,

however, they were shown to be definable in the original language [61], and a simple example

demonstrating how ∆ could be extended syntactically to have path expressions and how it

can define their meaning was shown in Section 3.6. Thus, our language is rich enough by

fundamental operators over sets so that, at least theoretically, path expressions are unnecessary.

Of course, practically they are very desirable and must be included in ∆ to make it more

practically convenient and user friendly. Moreover, path expressions, if implemented well,

would make execution time of queries better than queries imitating path expressions in the

current version of ∆.

In general, comparison of ∆ with query languages for XML can be done only on a rather

superficial level. In fact, they do not share a common data model and the levels of abstraction

are so different that more detailed comparison in general terms is difficult. We can only repeat

that the closest approach to ours is UnQL where comparisons can be done in quite precise

mathematical formulations [61].
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Conclusion and future outlook

In this thesis we explored the experimental implementation of the hyperset approach to

semi-structured or Web-like databases and the query language ∆ originally known only on

a pure theoretical level. The primary goal was to demonstrate working practically with

the ∆-query language, and secondly, some considerations towards one crucial aspect of

efficiency of such querying in the case of distributed WDB. The latter involves some theoretical

considerations in Chapter 6 and empirical testing in Section 7.2.

This chapter begins by reviewing the hyperset approach to semi-structured databases in

the context of this thesis. In Section 12.2 we summarise the main results of our work which,

in brief, consist in (i) the implementation of the query language ∆ and (ii) development the

concept of local/global bisimulation and running experiments demonstrating its fruitfulness in

making query execution more efficient when equality (bisimulation) is involved. Some further

simple optimisations used in our implementation are also discussed. Then we recapitulate

briefly in Section 12.3 comparisons of ∆ with other most close query languages. Finally, we

conclude in Section 12.4 with some closing discussion towards possible future extensions and

optimisations.

12.1 Hyperset approach to semi-structured databases

First of all, the hyperset approach to semi-structured or Web-like databases and their querying

was described in this thesis on the base of the earlier theoretical work done in [41, 57, 61].

This approach considers hypersets as the abstract data model for WDB where the concrete

representation of hypersets is given by systems of set equations which can be saved either as

plain text files or as XML-WDB files. Likewise in relational databases where the abstract

data model is relations, our approach focuses on abstract hypersets and strongly distinguishes

them from their concrete representations by set equations (or corresponding XML-WDB form).
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Set theory is known to play an extraordinary foundational role in mathematics, and here we

wanted to demonstrate in a practical context that very general set theoretic approach towards

semi-structured or Web-like databases is also quite reasonable.

Systems of set equations can also be trivially represented as graphs where the latter, if

considered literally, lead to the more traditional approach to semi-structured databases. To

visualise our considerations we also use graphs, but they play only an auxiliary role. Abstractly,

graph nodes as well as corresponding set names in set equations, denote hypersets. In fact, it

is assumed that any user of our query system should mainly rely on pure set theoretic style of

thought which is (mostly) simple and intuitive.1 Otherwise it would not be so widely accepted

both in the foundation of mathematics, and in everyday mathematical practice. As graphs or

corresponding systems of set equations can involve cycles, their nodes or set names denote, in

general, hypersets. They differ from the ordinary concept of sets in the fact that hypersets are

not necessary well-founded. Based on well-developed and understood hyperset theory [3, 5],

such sets pose no conceptual difficulty in our approach. This approach demonstrates on a

practical level that hypersets are no more difficult than the usual concept of sets, and are quite

useful by allowing arbitrary semi-structured data to be represented in a completely set theoretic

manner.

An additional feature of our data model is its distributed character, that is any system

of set equations representing a WDB is allowed to be distributed, with set names used in

one (XML-WDB) file possibly described by set equations in the others files. This leads to

distinctions between simple set names described in the same file, and full set names involving

also the URL of the file where this set name is described. This does not change the hyperset

approach but extends its possible applicability. On the other hand, this distributed character

of a WDB poses an additional challenge on how to check practically whether two set names

(possibly described in remote files) denote the same abstract hyperset, i.e. whether two given

set names or graph nodes are bisimilar. However, the problem of computing bisimulation in

the distributed case was shown here to be, in principle, resolvable practically, as remarked later

in Section 12.2.2.

Respectively, the ∆-query language considered here is set theoretic with the denotation ∆
bearing from logic and set theory and traditionally emphasising its bounded character. The

latter guarantees that all queries in ∆ are computable in finite, in fact, polynomial time with

respect to the the size of the input WDB. Moreover, it is known to have expressive power

exactly corresponding to polynomial time (see [43, 57] and particularly [41, 57] for precise

formulations of the labelled case considered here).

1 The most subtle concept in our approach is the decoration operation.
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12.2 Novel contributions

The main results of this work are the implementation of the hyperset approach to

semi-structured databases and the query language ∆, and, secondly, the local/global approach

towards efficient computation of bisimulation in the case of distributed WDB.

12.2.1 Implementation of the hyperset approach to semi-structured databases

The implemented version of the language ∆ is quite complex and even somewhat comparable

with practical programming languages. In fact, there was not enough time to create the most

optimal implementation. The general problem of efficiency is so difficult and involving so

many various aspects (see e.g. [32]) that it is mostly outside the scope of this thesis (with one

exception which is most essential to our hyperset approach; see Section 12.2.2). Taking this

into account, the main criteria were correctness of the implementation and its user friendliness

so that the language could be demonstrated to a more practically oriented, rather than just a

mathematically inclined, audience. As far as we see, the implementation satisfies these criteria

based on our testing and also writing and running the worked examples in Sections 3.5–3.7.

This query system was also used by my supervisor, Vladimir Sazonov, as demonstration tool

for undergraduate students. This initial practical goal of the project lead to the successful

development of:

• Implementation of the ∆-query language as a declarative language, based on those

theoretical constructs in the original ∆-language. Furthermore, for the convenience of

writing queries some important features were included in the implemented language,

such as library declarations and query declarations which, although very useful as the

reader can see from the example queries, do not extend the theoretical expressive power

of the language.

• Algorithms for checking the validity of queries to ensure both well-formedness and

well-typedness. These algorithms add important low-level details for our implementation

serving also as a sufficiently strong guarantee that the implementation was done

correctly. The aim of the parsing algorithm is to ensure well-formedness, according to

the BNF grammar in Appendix A.1; whereas the aim of the contextual analysis algorithm

is to ensure well-typedness (which required considerable efforts to develop).

The above syntactical considerations were highly important for implementation, and much time

was dedication to ensuring these algorithms were described and implemented correctly. In fact,

the following developments strongly rely on these algorithms:
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• Implementation of operational semantics of ∆ language according to reduction rules

in [61] with some additional low-level descriptions for the operators recursion,

decoration and TC also given here to aid implementation.

• XML representation of WDB by developing the XML-WDB format for systems of

set equations and implementing algorithms rewriting from XML-WDB documents into

systems of set equations, and vice versa. Currently we accepted this XML-WDB format

as the standard way of representing WDB. These files can be saved on various sites

and hyperlinked via full set names as we discussed above, and thus, WDB can be

distributed (and queried) over the Internet. In fact, the XML-WDB format allows our

approach to treat arbitrary nested XML elements within a WDB. The aim of this practical

representation of WDB as XML is the ability, in principle, to query any existing XML

data in our hyperset approach (assuming order and repetition in these data play no

essential role).

12.2.2 Local/global approach towards efficient implementation of bisimulation

Bisimulation between WDB graph nodes or set names (i.e. whether they denote the same

hypersets) is a crucial concept for the whole hyperset approach to WDB. The equality symbol

(=) in our language means, abstractly, the identity between hypersets. But, from the point

of view of implementation which deals with set names, rather than with abstract hypersets, the

equality operator (=) means bisimulation which assumes sufficiently complicated computation.

Thus, if we want to remain faithful to this approach and really value this set theoretic style then

we should not only implement bisimulation, as it is described in Chapter 4, but also work

towards optimising this expensive operation. It can be particularly expensive in the case of

distributed WDB when computing bisimulation would assume potentially downloading lots of

(possibly) remote WDB files, and we pay special attention to this challenge.

The main idea of the local/global approach consists in computing the (global) bisimulation

relation (≈) on the whole distributed WDB from many couples of local approximation relations

(≈L
+ and ≈L

−) for each WDB site (or even for each WDB file), and that the latter relations

are easily derivable locally. This way the global task is distributed between the main agent

(Bisimulation Engine) and local agents (servers of WDB sites). Furthermore, empirical

testing suggested that the exploitation of local approximations in the computation of global

bisimulation relation ≈ can considerably improve performance. Also, the idea that the

Bisimulation Engine is working in background time (similarly to Google) to compute the global

bisimulation relation from local approximations was crucial in this performance improving

strategy. Experiments described in Section 7.2 suggested that bisimulation, although a very

challenging problem, especially in distributed case, is not so hopeless practically as it might
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seem. In particular, taking such optimisations into account the hyperset approach to WDB

seems also potentially feasible practically.

12.2.3 Further optimisation

The work done on local/global bisimulation was the main focus of our attempts to optimise

our implementation of the hyperset approach in the case of distributed WDB. Also, some

additional consideration was given on writing more efficient queries in the current implemented

version of ∆, such as the removal of redundancies by using the so called canonisation query

Can(x). In fact, this query does not change its input (Can(x)=x as abstract hypersets) but

transforms its representation into an equivalent strongly extensional (non-redundant) form. The

effect of using Can in one particular example (in the query which linear orders any hyperset,

Section 3.7) is quite impressive. Another general optimisation related with the recursion

operator (and also crucially improving execution time of the linear ordering query mentioned

above) is based on the possibility of replacing bisimulation to compare the iteration steps by

simple comparison of participating set names only. Of course, further work on optimising the

implementation of ∆ (in comparison with writing optimal queries, for example exploiting Can

above) remains to be done (see Section 12.4 below).

12.3 Comparisons with other approaches

After considering various approaches in Chapter 11 we have found that the UnQL and Lorel

query languages are closest to our approach. However conceptually, i.e., in fact, from the point

of view of the hyperset approach, UnQL is the most close to ∆. The implemented ∆-language

does not include yet path expressions typical for other approaches. But, this language is already

a very expressive, and, in a sense, subsumes both the UnQL and (the main features of) Lorel

languages.

12.4 Further work

In short, the primary goal of implementation and attempts towards optimisation described in

this thesis can be considered as successful. However, development of the implementation and

the experiments was very time consuming, and there was insufficient time to implement all

potential ideas. Many useful features have yet to be implemented, such as:

• Extending the implemented ∆-query language to make it more user friendly
with quantification over multiple variables. Also, similarly for the case of collection,

separation and recursion constructs.
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• Improving the library function, in particular to allow multiple or user defined libraries.

• Extending the implemented ∆-query language to include path expressions which

are typically included in other approaches towards semi-structured databases and,

additionally, are very useful practically. In principle, path expressions could be

implemented by rewriting them into ∆-queries according to definitions in [61]. But,

straightforward implementation should be more efficient.

• Extending the implemented ∆-query language by update queries.

• More user friendly interface for inputting queries and WDB, as well as for outputting

query results. In particular, the graphical visualisation of WDB and query results

(developing a special WDB browser, as well as an editor for WDB files).

Additionally, suitable techniques should be developed for creating WDB, taking into account

its hyperset theoretic character:

• Using WDB schemas in the context of hyperset approach to impose restriction on the

structure of WDB, just like in the relational approach but not necessarily so rigid. In

fact, enforcing structure makes queries easier to write, and, additionally, can serve to

eliminate possible unintended redundancies in set equations which could arise otherwise

due to poor WDB design.

Furthermore, although some suggestions towards efficiency were made here, there remains

much work towards development of a practically efficient implementation:

• Adapting known and developing new optimisation techniques such as indexing,

hashing and other data structures helping to implement efficient searching as described

in [73] to the case of semi-structured data. Redundancies in set equations arising

during computation should be regularly eliminated, thus allowing writing queries without

explicit using the canonisation query. In this case equality between sets trivially becomes

the identity relation rather than the bisimulation relation. Also, identical query calls

should be executed only once.

• Dealing with redundancies in various circumstances by developing various techniques

and methodology e.g. related with redundancies (bisimilarities) arising due to local

updates in a WDB file (answering questions such as: are redundancies possibly arising

in such local way easy to eliminate? under which conditions? etc.), or due to mirroring

WDB sites, etc.



12.4. Further work 167

• Further improvements on the bisimulation engine transforming it from imitational to

a more realistic version (Web service) assuming several levels (granularity) of locality

(WDB-files, WDB-sites, the whole WDB) and extending the range of experiments with

this engine.

• Adopting known [24, 25] and developing new techniques for optimisation of
bisimulation which, for example, may take advantage of WDB scheme (see above).

There is great scope for further theoretical and practical work. In summary, this could mean

developing a full-fledged WDB management system and also WDB design techniques, and

other methodologies based on the hypeset approach. Of course, the hyperset approach could

be further evolved, e.g. it can be extended to also involve standard datatypes like integers,

reals, strings as atomic data or label values with arithmetical and other operations over them

(completely lacking in the current version of ∆), etc. Also, multi-hypersets [44], records,

lists, etc. could be allowed. Another version of the ∆ language capturing LogSpace [40, 42]

(currently for well-founded sets only) could be either implemented in its present form or, firstly,

theoretically extended to the case of hypersets. Anyway, working on the theoretical level in

various directions and simultaneously developing more practically oriented implementations,

like in this thesis, seems a fruitful style of research.
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Appendix A

Appendix

A.1 Implemented BNF grammar of ∆-query language

The grammar of the implemented ∆-language is represented by the metasyntax notation

Extended Backus-Naur Form (EBNF) which allows for example to define the repetition of

syntactical categories using * or + (unlike regular BNF which does not have these features).

For example, the EBNF production rule of <declarations> in Section A.1 defines an

infinite number of possible forks, with any number of leaves labelled by <declaration>

each separated by the terminal leaf labelled by ",".

The EBNF notation (used here to express the ∆-language grammar) defines production rules

as sequence of terminals (symbols) or non-terminals,

"xxx" - Terminal

<yyy> - Non-terminal

where production rules are constructed (from those terminals or non-terminals) according to

the following rules,

Parentheses, () - Grouping

Vertical bar, | - Alternation

Square brackets, [] - Optional

Kleene star, * - Repeat 0 or more times

Kleene plus, + - Repeat 1 or more times

Top level commands

<top level command> ::=

( "library" <library command> | <query> | "exit" ) ";"
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<query> ::=

"boolean query" <delta-formula> | "set query" <delta-term>

Library commands

<library command> ::=

"add" <declarations> |

"list" [ "verbose" ]

Declarations

<declarations> ::= <declaration> ( "," <declaration> )*

<declaration> ::=

<set constant declaration> | <label constant declaration> |

<set query declaration> | <boolean query declaration>

<set constant declaration> ::=

"set constant" <set constant> ("be"|"=") <delta-term>

<label constant declaration> ::=

"label constant" <label constant> ("be"|"=") <label value>

<set query declaration> ::=

"set query" <set query name> "(" <variables> ")" ("be"|"=")

<delta-term>

<boolean query declaration> ::=

"boolean query" <boolean query name> "(" <variables> ")"

("be"|"=") <delta-formula>

<variables> ::= <variable> ( "," <variable> )*
<variable> ::= ( "set" <set variable> | "label" <label variable> )

<parameters> ::= <parameter> ( "," <parameter> )*
<parameter> ::= ( <delta-term> | <label> )

<boolean query name> ::= <identifier>

<set query name> ::= <identifier>
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∆-terms

<delta-term> ::= <set variable> |

<set constant> |

<set name> |

<atomic value> |

<enumerate> |

<union> |

"(" <multiple union> ")" |

<collect> |

<separate> |

<transitive closure> |

<recursion> |

<decoration> |

<if-else term> |

<set query call> |

<delta-term with declarations>

<set name> ::= <URI> "#" <simple set name>

<atomic value> ::= """ <identifier> """

<enumerate> ::= "{" <labelled terms> "}"

<union> ::= ( "U" | "union" ) <delta-term>

<multiple union> ::=

<delta-term> ( ( "U" | "union" ) <delta-term> )*

<collect> ::=

"collect" "{" <labelled term> ( "where" | "|" ) <variable pair>

("in"|"<-") <delta-term> [ "and" <delta-formula> ] "}"

<separate> ::=

"separate" "{" <variable pair> ("in"|"<-") <delta-term>

( "where" | "|" ) <delta-formula> "}"

<transitive closure> ::=

( "tc" | "TC" | "transitiveclosure" ) <delta-term>

<recursion> ::=

"recursion " <set variable> " {" <variable pair> (" in "| "<-")

<delta-term> ( "where" | "|" ) <delta-formula> "}"
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<decoration> ::= "decorate" "(" <delta-term> ", " <delta-term> ")"

<if-else term> ::= "if" <delta-formula> "then" <delta-term>

"else" <delta-term> "fi"

<set query call> ::= "call" <set query name> "(" <parameters> ")"

<delta-term with declarations> ::=

"let " <declarations> "in" <delta-term> " endlet"

<URI> ::= ( <web prefix> | <local prefix> ) <file path>

<web prefix> ::= "http://" <host> "/" [ "˜" <identifier> "/" ]

<local prefix> ::= "file://" ( (A-Z) | (a-z) ) ":/"

<host> ::= <identifier> [ "." <host> ]

<file path> ::= <identifier> ( "/" <file path> | <extension> )

<extension> ::= ".xml"

<simple set name> ::= <identifier>

∆-formulas

<delta-formula> ::= <atomic formula> |

"(" <conjunction> ")" |

"(" <disjunction> ")" |

"(" <quasi-implication> ")" |

<quantified formula> |

<negated formula> |

<if-else formula> |

<delta-formula with declarations>

<atomic formula> ::=

<equality> | <label relationship> | <membership> |

<boolean query call> | "true" | "false"

<equality> ::= <set equality> | <label equality>

<set equality> ::= <delta-term> "=" <delta-term>

<label equality> ::=

<label> "=" <wildcard label> | <wildcard label> "=" <label>
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<wildcard label> ::=

["*"] ( <label variable> | <label constant> ) ["*"] |

"’" ["*"] <identifier> ["*"] "’"

<label relationship> ::= <label> "<" <label>

<label> ">" <label>

<label> "<=" <label>

<label> ">=" <label>

<membership> ::= <labelled term> ("in"|"<-") <delta-term>

<boolean query call> ::= "call" <boolean query name>

"(" <parameters> ")"

<if-else formula> ::= "if" <delta-formula> "then" <delta-formula>

"else" <delta-formula> "fi"

<delta-formula with declarations> ::=

"let" <declarations> "in" <delta-formula> "endlet"

<conjunction> ::= <delta-formula> ( "and" <delta-formula> )*

<disjunction> ::= <delta-formula> ( "or" <delta-formula> )*

<quasi-implication> ::= <delta-formula>

( <quasi-implication connective> <delta-formula> )*

<quasi-implication connective> ::=

"<=" | "=>" | "implies" | "iff" | "<=>"

<quantified formula> ::= <forall> <delta-formula> |

<exists> <delta-formula> |

<forall> ::=

"forall" <variable pair> ("in"|"<-") <delta-term> [ "." ]

<exists> ::=

"exists" <variable pair> ("in"|"<-") <delta-term> [ "." ]

<negated formula> ::= "not" <delta-formula>
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Variables, constants, literals etc.

<label> ::= <label variable> | <label value> | <label constant>

<label variable> ::= <identifier>

<label constant> ::= <identifier>

<label value> ::= "’" <identifier> "’"

<set variable> ::= <identifier>

<set constant> ::= <identifier>

<labelled terms> ::= <labelled term> ( "," <labelled term> )*
<labelled term> ::= <label> ":" <delta-term>

<variable pair> ::= <variable pair label> ":" <variable pair term>

<variable pair label> ::= <label variable> | <label value>

<variable pair term> ::= <set variable>

<identifier> ::= ( (A-Z) | (a-z) | (0-9) | "_" | "-" )+
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A.2 Example XML-WDB files

XML-WDB file 4 XML-WDB file http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f1.xml (cf.
Section 3.5).

<?xml version="1.0"?>

<set:eqns
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www.csc.liv.ac.uk/˜molyneux/XML-WDB/schema/xml-wdb.xsd"
xmlns:set="http://www.csc.liv.ac.uk/˜molyneux/XML-WDB">

<set:eqn set:id="BibDB">
<paper set:href=
"http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p1"/>

<paper set:href=
"http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p2"/>

<paper set:href=
"http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p3"/>

<book set:ref="b1"/>
<book set:ref="b2"/>

</set:eqn>

<set:eqn set:id="b1">
<refers-to set:ref="b2"/>
<refers-to set:href=
"http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml#p1"/>

</set:eqn>

<set:eqn set:id="b2">
<author>Jones</author>
<title>Databases</title>

</set:eqn>

</set:eqns>
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XML-WDB file 5 XML-WDB file http://www.csc.liv.ac.uk/˜molyneux/t/BibDB-f2.xml (cf.
Section 3.5).

<?xml version="1.0"?>

<set:eqns
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www.csc.liv.ac.uk/˜molyneux/XML-WDB/schema/xml-wdb.xsd"
xmlns:set="http://www.csc.liv.ac.uk/˜molyneux/XML-WDB">

<set:eqn set:id="p1">
<refers-to set:ref="p2"/>

</set:eqn>

<set:eqn set:id="p2">
<author>Smith</author>
<title>Databases</title>
<refers-to set:ref="p3"/>

</set:eqn>

<set:eqn set:id="p3">
<author>Jones</author>
<title>Databases</title>

</set:eqn>

</set:eqns>
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A.3 Predefined library queries

set query Pair (set x,set y) be

{ ’fst’:x, ’snd’:y },

boolean query isPair (set p) be (

exists l: x in p . (

l=’fst’

and

forall m:z in p . ( m=’fst’ => z=x )

)

and

exists l:y in p . (

l=’snd’

and

forall m:z in p .( m=’snd’ => z=y )

)

),

set query First (set p) be

union separate { l:x in p where l=’fst’ },

set query Second (set p) be

union separate { l:x in p where l=’snd’ },

set query CartProduct (set x,set y) be

union collect {

’null’:collect {

’null’:call Pair ( xx, yy )

where l:yy in y

}

where m : xx in x

},

set query Square (set z) be

call CartProduct ( z, z ),

set query LabelledPairs (set v) be

collect { l:{ ’fst’:v, ’snd’:u } where l:u in v },

set query Nodes (set g) be

union separate { m:p in g where call isPair ( p ) },
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set query Children (set x,set g) be

collect {

l:call Second ( p )

where l:p in g

and (

call isPair ( p )

and

call First ( p ) = x

)

},

set query Regroup (set g) be

collect {

’null’:call Pair ( x, call Children ( x , g ) )

where m : x in call Nodes ( g )

},

set query CanGraph (set x) be

union collect {

’null’:call LabelledPairs ( v )

where m:v in TC ( x )

},

set query Can (set x) be

decorate ( call CanGraph ( x ), x ),

set query TCPure(set x) be

collect{ ’null’:v where l:v in TC ( x ) },

set query HorizontalTC (set g) be

recursion p {

’null’:pair in call Square ( call Nodes ( g ) )

where (

call First ( pair ) = call Second ( pair )

or

exists m:z in call Nodes ( g ) . (

’null’:call Pair ( call First ( pair ), z ) in p

and

’null’:call Pair ( z, call Second ( pair ) ) in g

)

)

},
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set query TC_along_label (label l,set z) be

recursion p {

k:x in TC ( z )

where (

( x=z and k = ’null’ )

or

( k=l and exists m:y in p . l:x in y )

)

},

set query SuccessorPairs (set L) be

separate {

l:pair in L

and not exists l:x in call Nodes(L) . (

’null’:call Pair ( call First ( pair ),x ) in L

and

’null’:call Pair ( x, call Second ( pair ) ) in L

)

},

boolean query Precedes5(set R,label l,set x,label m,set y) be (

l < m

or (

l=m

and

exists ’null’:p in R . (

’fst’:x in p and ’snd’:y in p

)

)

),
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set query StrictLinOrder_on_TC (set z) be

recursion R {

’null’:p_xy in call Square( call Can(call TCPure(z)) )

where (

(

not ’null’:p_xy in R

and

not exists ’fst’:xx in p_xy .

exists ’snd’:yy in p_xy .

exists ’null’:inv_p in R . (

’fst’:yy in inv_p

and

’snd’:xx in inv_p

)

)

and

exists ’snd’:yyy in p_xy .

exists lu:u in yyy . (

exists ’fst’:xxx in p_xy .

forall lv:v in xxx . (

call Precedes5(R,lu,u, lv,v)

or

call Precedes5(R,lv,v, lu,u)

)

and

forall fs:xy in p_xy .

forall lw:w in xy . (

call Precedes5(R,lu,u, lw,w) =>

exists ’fst’:xxxx in p_xy .

exists lp:p in xxxx .

exists ’snd’:yyyy in p_xy .

exists lq:q in yyyy . (

not call Precedes5(R,lp,p, lw,w) and

not call Precedes5(R,lw,w, lp,p) and

not call Precedes5(R,lq,q, lw,w) and

not call Precedes5(R,lw,w, lq,q)

)

)

)

)

}
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