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Abstract

With the dramatic development of the automotive industry and global economy, the motor

vehicle has become an indispensable part of daily life. Because of the intensive competi-

tion, vehicle manufacturers are investing a large amount of money and time on research in

improving the vehicle performance, reducing fuel consumption and meeting the legislative

requirement of environmental protection. Engine calibration is a fundamental process of de-

termining the vehicle performance in diverse working conditions. Control maps are developed

in the calibration process which must be conducted across the entire operating region before

being implemented in the engine control unit to regulate engine parameters at the different

operating points. The traditional calibration method is based on steady-state (pseudo-static)

experiments on the engine. The primary challenge for the process is the testing and opti-

misation time that each increases exponentially with additional calibration parameters and

control objectives.

This thesis presents a basic dynamic black-box model-based calibration method for multi-

variable control and the method is applied experimentally on a gasoline turbocharged direct

injection (GTDI) 2.0L virtual engine. Firstly the engine is characterized by dynamic models.

A constrained numerical optimization of fuel consumption is conducted on the models and the

optimal data is thus obtained and validated on the virtual system to ensure the accuracy of

the models. A dynamic optimization is presented in which the entire data sequence is divided

into segments then optimized separately in order to enhance the computational efficiency. A

dynamic map is identified using the inverse optimal behaviour. The map is shown to be

capable of providing a minimized fuel consumption and generally meeting the demands of

engine torque and air-fuel-ratio. The control performance of this feedforward map is further

improved by the addition of a closed loop controller. An open loop compensator for torque

control and a Smith predictor for air-fuel-ratio control are designed and shown to solve the

issues of practical implementation on production engines.

A basic pseudo-static engine-based calibration is generated for comparative purposes

and the resulting static map is implemented in order to compare the fuel consumption and

torque and air-fuel-ratio control with that of the proposed dynamic calibration method.

Methods of optimal test signal design and parameter estimation for polynomial models

are particularly detailed and studied in this thesis since polynomial models are frequently
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used in the process of dynamic calibration and control. Because of their ease of implemen-

tation, the input designs with different objective functions and optimization algorithms are

discussed. Novel design criteria which lead to an improved parameter estimation and output

prediction method are presented and verified using identified models of a 1.6L Zetec engine

developed from test data obtained on the Liverpool University Powertrain Laboratory. Prac-

tical amplitude and rate constraints in engine experiments are considered in the optimization

and optimal inputs are further validated to be effective in the black box modelling of the

virtual engine. An additional experiment of input design for a MIMO model is presented

based on a weighted optimization method.

Besides the prediction error based estimation method, a simulation error based esti-

mation method is proposed. This novel method is based on an unconstrained numerical

optimization and any output fitness criterion can be used as the objective function. The

effectiveness is also evaluated in a black box engine modelling and parameter estimations

with a better output fitness of a simulation model are provided.
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Chapter 1

Introduction

In recent years advanced technologies have been introduced to further reduce the fuel con-

sumption and emissions of vehicles. These technologies require complex and expensive engine

calibration work. With traditional hardware-based calibration methods, the experimental

time increases significantly with additional calibration parameters and may not include im-

portant transient characteristics of the system.

Dynamic models and dynamic model-based calibration are thus being investigated, which

are able to capture the dynamic behaviour and possibly decrease the cost of calibration by

a reduction of set-points and settling time. Dynamic models can also incorporate data-

smoothing into the model structure and integrate the calibration and control processes. As

more calibration work is carried out on models rather than the real engine the requirement

for model quality is essential. In this thesis methodologies of experiment design and model

estimation are accordingly proposed to improve the accuracy of identified dynamic models

required for calibration optimisation and system identification.

1.1 Advanced Technologies of Gasoline Engines

The gasoline engine has always been the most widely used type of engine in the automotive

industry since the first development of the car. Although its performance has been constantly

improved by continuous research over decades, there is still a large potential for further

improvement by using model-based control technologies [2]. Advanced automotive engine

technologies are being increasingly implemented in order to satisfy the customer demands

on fuel economy and also the legislative requirements on scheduled emissions. Many new

technologies have already been made commercially available and utilized in production. These

are summarized in the following sub-sections.

1
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1.1.1 Variable Valve Timing

The inlet and exhaust valves control the amount of air flow going into or out of the cylinder

therefore the control of valves has a significant influence on the combustion and volumetric

efficiency and so the resulting engine performance. In gasoline engines, the valves are driven

by a camshaft which is normally connected to the crankshaft through the timing belt, and

the opening and duration are determined correspondingly. For early engines in which the

phasing of the camshaft was fixed, it was not possible to alter the timing under changing

operating conditions so that the engine performance and fuel economy were necessarily a

tradeoff between low-load low-speed conditions and high-load high-speed conditions. For

instance a long opening at low engine speed will result in low fuel efficiency and increased

emission since the fuel may leave the combustion chamber without a full combustion. Con-

versely it will be beneficial at high speed because of the less restriction on the air flow [4].

Moreover, the requirement for high-power during a drastic changing in speed cannot be well

satisfied by traditionally fixed valve timing which was designed for optimal performance in

high speed and high load conditions for maximum power. In recent decades the optimization

tends to focus on low speed and low load because of the requirement for fuel efficiency and

emission evoked by the concerns for oil supply and environmental protection.

Variable Valve Timing (VVT) refers to technologies which have the ability to adjust

the scheduled valve timing flexibly in order to meet the desired performance in the various

operating regions. These technologies have been implemented by many automobile companies

and can be classified into four categories based on the controlled valves: phasing the inlet or

exhaust valves only; phasing the inlet and exhaust valves equally or independently. To realize

the variable timing, a mechanism that provided more than two cam profiles on the camshaft

was proposed firstly in the Honda VTEC[5]. The driving cam was switched alternatively

according to the engine speed. More recently, technologies of VVT for camless engine have

been developed [6, 7]. The valves are directly controlled by an electromagnetic or hydraulic

approach. This approach allows a continuous control depending on key control references

such as torque and engine speed hence it is capable of obtaining optimal engine performance

in different driving conditions. Nevertheless both electromagnetic and hydraulic valves need

additional energy which will correspondingly reduce the fuel efficiency. The real-time control

required by these various schedules raises the requirement for accurate and fast data collection

for model development to support the more complex control system.

VVT has an effect which can reduce the fuel consumption and emissions. Normally the

optimal timing of the inlet valves helps to increase volumetric efficiency so that the maximum

torque for otherwise fixed parameters in the whole operating region can be improved which

in turn increases the efficiency and fuel economy [8]. Effects from the timing of the exhaust

valves contribute to the exhaust gas recirculation (EGR) which reduces the generation of
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CO and NOx [9]. A detailed review and analysis of various strategies for VVT control is

presented in [10, 11].

1.1.2 Gasoline Direct Injection

The technology of gasoline direct injection (GDI) has been an important innovation in auto-

mobile powertrain design in the last decade. In conventional port fuel injection (PFI) engines,

the fuel injector is located in the inlet manifold outside the inlet valve of each cylinder. The

injected fuel is firstly mixed with the air stream and then vaporized in the inlet port by the

impact with the top surface of the inlet valve and then enters the combustion chamber with

the opening of the valve. One of the associated disadvantages is that a fuel puddle is formed

in the inlet port, also known as wall wetting which will compromise the accurate control of

the fuel delivery and thus the fuel economy. Furthermore the resulting delay in fuel delivery

may lead to misfire or rich combustion especially in cold-start [12].

GDI has totally solved the issue of wall wetting by injecting the fuel directly to the

cylinder. Although the associated time between injection and ignition for mixture prepara-

tion is considerably reduced, the fuel spray can be well atomized within the time limit by

using a high pressure injector. The amount of fuel in each combustion event thus can be ac-

curately measured and controlled in different working conditions of the engine and excessive

fuel supply is avoided. GDI provides the potential for implementing more complex control

methodology. As the timing of GDI is independent of the valve timing, the engine manage-

ment system (EMS) allows for multi-combustion models: stratified charge and homogeneous

charge. Stratified charge is selected in low-speed low-load conditions in which the engine

often experiences a constant speed or deceleration. A small amount of fuel is injected at the

end of compression stroke so that the lean mixture is away from the cylinder wall when igni-

tion happens. By reducing the wall heat loss, the thermal efficiency is significantly improved

and the fuel economy enhanced accordingly. However, since the lean burn causes emission

issues, a stoichiometric air-fuel ratio is required in most conditions. The fuel is injected in the

intake stroke and the homogenous mixture leads to an exhaust gas which can be effectively

converted by the catalyst.

Besides the major advantage in fuel economy, the merit of GDI is extended to emission

control since the rich air-fuel ratio (AFR) caused by the generation of a fuel puddle in

the cold-start is avoided; It is also beneficial in improving the transient response as less

acceleration-enrichment for the puddle is required. A comprehensive comparison of PFI and

GDI engine and control strategies of GDI combustion is documented in [13] and [14, 15].
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1.1.3 Turbocharger

Volumetric efficiency refers to the ratio of the air on real fuel-air mixture inducted into the

cylinder in each combustion event to that of the naturally aspirated engine at almost zero

engine speed. It is a key criterion of the performance of internal combustion engines since

it affects the maximum achievable power in a unit of a given capacity. Devices such as

superchargers and turbochargers induct compressed air flow, also known as forced induction,

to the cylinder and hence the associated allowable mass of fuel increases and more power can

be generated in each combustion.

The power supply required for the associated additional compression is the major dif-

ference between a supercharger and turbocharger. A supercharger is directly connected and

driven by the engine mechanically so that it has natural advantages of quick response to the

working condition and a reliable power supply. Nevertheless since a part of the generated

power needs to be used to maintain the running of the charger, this system may have rela-

tively low efficiency [16]. On the other hand, a turbocharger is driven by the energy of the

exhaust gas which was not utilized although it will increase the back-pressure. This system

is composed of a turbine and compressor. The exhaust gas delivered into the turbine is con-

trolled by a waste gate which is capable of diverting the gas away from the compressor. The

boost-pressure of the intake manifold is thus regulated and the risk of damaging the engine

due to effects such as knock can be consequently reduced. Turbochargers provide a signifi-

cantly enhanced power in high speed conditions however they work much less efficiently at

low speed conditions because the amount of exhaust gas is insufficient to spin the compressor

to boost. Another challenge of this system is the turbo lag. Due to the basic mechanism

of the turbocharger, the time required to generate the boost results in a time delay in the

response to changes in working conditions. Correspondingly undesirable drivability issues

might be caused in any accelerations.

A twincharger is a compound system composed of supercharger and turbocharger, which

can solve the defects of each type of forced induction system effectively. This technology has

been successfully implemented in several types of production car, such as the 125 kW 1.4 litre

turbocharged stratified injection engine [17], but the disadvantages of the high cost of the

components and the requirement for extremely accurate control raise new barriers to their

adoption.

1.2 Engine Calibration Methodologies

Along with the development of mechanical and electronic technologies, the methodologies of

engine calibration and control are also experiencing rapid developments. As an essential stage
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of engine development, the engine calibration determines optimal settings for the best overall

engine performance in the various operating conditions. In early times, calibrations were

directly carried out on the engine while in modern times the development is moving towards

model-based or simulation-based methods because of the rapidly increasing complexity.

Conventional calibration methods which have been used worldwide are based on pseudo-

static testing on the real engine over the entire operating range. Since the experiments are

conducted directly on the engine, the results obtained from the test bed are considered ac-

curate and reliable enough for implementations on current production vehicles. Nevertheless

this method has also been criticized for its inefficiency in testing and optimization [18]. In

general, all inputs need to be swept in order to find the optimal point at each operating point

and therefore a large number of experiments is unavoidable. Due to the nature of steady-

state testing, it is necessary to wait for the output response to reach a steady state which

in turn further increases the required experimental time. Moreover with the development

of advanced engine technologies, more engine parameters and variables including valve tim-

ing and waste gate timing become controllable and the associated dimension of experiments

increases significantly.

Model-based calibration methods have been developed to reduce the cost of experiment

[19]. A global model or local models are identified from engine data in the operating regions

and then used as a replacement of the real engine for offline calibration and optimization

which takes the majority of the online calibration burden out of the engine test bench and

into a PC. The accuracy of models is a crucial factor since it significantly affects the effec-

tiveness of optimal settings for the controllers which should be robust to the uncertainty in

the models. The benefit in reduced experimental cost from employing model-based calibra-

tion has popularised these methods which mainly include static and dynamic model-based

calibration methods.

1.2.1 Static Modelling and Mapping

Figure 1.1 demonstrates a typical static model-based calibration approach. “Minimap” points

denote representative local operating points. Local tests are made at each point and steady-

state data is collected for the identification of static models. Subsequent experiments for

determining the optimal settings are carried out on the resulting mathematical models and

local optimal settings are used to form calibration maps for the whole operating region. In

general the derived model is able to generate the simulated result in a short time hence the

settling time required in engine tests can be substantially reduced. As the data for analysis

is recorded in the steady state, the transient behaviour of the system is neglected so that

the overall performance might be compromised when the driving condition changes abruptly,
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Figure 1.1: A procedure of model-based static calibration [1]

such as acceleration or deceleration.

1.2.2 Dynamic Modelling and Mapping

To capture the important dynamics of the system, dynamic modelling and mapping can be

employed. In the design of experiments (DoE), test signals should be appropriately designed

in order to excite the system dynamics and the input-output data are collected for model

estimation. Dynamic models describe the system behaviour by using the current and past

values of inputs and outputs so that they are capable of describing the transient response of

inputs and outputs. This approach also gives a potential for removing the burden of selecting

operating points and local testing at each point since a well designed dynamic model using

a clustering algorithm is able to simulate outputs at different operating points with good

accuracy [20]. In the dynamic optimization, it may be possible to use the optimal settings

to identify a model which would interpolate and extrapolate to predict the optimal values

across a dense set of operating points.

Modelling and control of dynamic systems have been studied by many authors [21, 22,

23]. The extensive applications in engine calibration are well documented in [24].
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Figure 1.2: A schematic configuration of a PFI IC engine [2]

1.3 Engine Control

The obtained optimal settings are used to construct a calibration map in the form of look-up

tables and are stored in an engine control unit (ECU). The EMS collects the inputs from

engine sensors, searches for the stored settings and controls the actuators in real time to

produce the optimal performance. Figure 1.2 illustrates a simplified hardware configuration

of a PFI Internal Combustion(IC) engine.

The entire control system often includes a large number of feedforward and feedback

control loops that are used to satisfy increasing performance requirements. The best engine

performance in terms of smooth response and powerful output with the least fuel consumption

has always been the top requirement of customers and automotive manufacturers. Meanwhile

legislation for environmental protection encourages the technological progress to address the

requirement of reducing vehicle emission. These requirements can only be satisfied by the

use of new electronic and mechanical automotive mechanism and control technology.

1.3.1 Torque Control

Engine torque is a vital characteristic of engine performance, which represents the power

generated in a fuel combustion for a given speed. In a production car it is closely related to

the achievable maximum vehicle speed and acceleration. On a test bed, the torque is measured
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by a coupled dynamometer. On a production car, however it is not usually possible to measure

torque directly except with very expensive test instrument and normally it is estimated by a

model obtained from offline experiments. Engine torque is determined by the combustion of

the air-fuel mixture in the cylinders consequently it can be controlled in two ways. As the

throttle angle affects the intake air flow which in turn determines the allowable fuel injection

and the mass of mixture, control of throttle is a common and effective approach of regulating

engine torque in the spark ignition (SI) engine although it generates additional pumping

losses. Originally, the acceleration pedal was mechanically connected to the throttle so that

the driver could directly adjust the torque in a simple and quick manner. Alternatively,

now an electronic throttle control converts the signal of the pedal position into a desired

power output and the ECU will select or calculate coordinated optimal settings of all related

actuators accordingly. This technique provides a more flexible and precise control. However

the transient response might be slower than the conventional mechanical control since the

throttle plate is adjusted by filtered signals derived from feedback controllers in the ECU.

Combustion control is the major factor in transferring the chemical energy of the fuel into

kinetic energy therefore it also has a critical influence on engine torque. In a spark-ignition

IC engine, the spark advance (SA) angle needs to be optimized for maximum efficiency of the

combustion. The ignition causes an increase in in-cylinder pressure which creates the piston

work. A very early spark in the compression stroke will waste the energy required to push

the piston and will unnecessarily heat the cylinder wall. On the other hand, more energy

will be lost in the gas out of the cylinder in the exhaust stroke rather than being used to

accelerate the crankshaft if a too late spark occurs [3].

The main task of torque control is for the generated torque to track the desired torque

profile, in which both accurate steady-state values and rapid transient responses are com-

monly required. Since the speed is relatively slowly changing and this is perceived by the

driver, the torque and power control are equivalent from the driver’s perspective. In practice

the need for high steady-state accuracy of torque is not great since the driver can manually

compensate the error by feedback compensation using the accelerator pedal. An open loop

control with an acceptable settling time may have the potential of satisfying the requirement

for good torque control.

1.3.2 Fuel Control

According to the ECU map settings, for any specific demand of torque the fuel consumption

may vary and so the best fuel economy must be obtained by an optimized fuel controller. As

mentioned above, the timing of spark is an essential factor since it determines the location

of maximum burning rate and maximum work rate in the engine cycle. On the other hand,
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advanced engine technologies are introducing more factors in the fuel optimization. Variable

valve timing promotes the fuel efficiency by controlling the inlet valve. The overlap between

intake and exhaust valve is extended by early intake valve opening and consequently the burnt

high pressure and temperature gases will be pushed back to the intake manifold and sucked

into the cylinder in the next cycle and therefore the pumping losses are reduced. Early valve

closing happens when the desired amount of mixture is introduced in the cylinder so that

the required work for pumping is minimized. As gasoline direct injection (GDI) technology

can eliminate the fuel puddle in the conventional PFI engine, the compensation for the fuel

film dynamics is not needed. The flexible injection time control in GDI provides a further

potential for fuel reduction in low-speed low-load condition. The exhaust gas recirculation

and turbocharger can also contribute to the fuel efficiency by reducing the cylinder volumetric

capacity through utilizing the energy of the exhaust gas.

Idle speed specifies a special low-speed low-load condition in which the fuel is consumed

only to prevent the stall of the engine. In order to reduce the fuel consumption, the rotational

speed of engine is expected to be as low as possible but still capable of maintaining the smooth

engine performance whilst still operating the ancillaries. Since approximately one third of

the fuel is consumed in idle speed because of the traffic congestion [25], the development of

an efficient idle speed controller will make a significant contribution to the fuel economy.

1.3.3 Air-Fuel Ratio Control

An effective and efficient after-treatment system is essential to satisfy the increasing legislative

requirement for the reduction of emissions. The converting efficiency of the three way catalyst

(TWC) is mainly affected by the AFR and the AFR is normally desired to be stoichiometric,

usually about 14.7:1 or λ = 1, to ensure the optimal performance of the TWC [26]. As shown

in Figure 1.3, for a SI engine the main poisonous substances, NOx, CO and HC of vehicle

exhaust can be majorly filtered by the TWC only if the λ is in a narrow window around 1.

Hence the air-fuel ratio control is the most important feedforward and feedback control for

the regulation of emissions.

In common practice, an oxygen sensor is placed in the collective exhaust pipe before

the TWC. Instead of directly measuring mass of air and fuel in the mixture, this sensor

measures the proportion of oxygen and the AFR is determined accordingly [3]. A second

λ sensor positioned after the TWC as in Figure 1.2 is used to monitor the efficiency of the

TWC. A typical widely used oxygen sensor is the heated exhaust gas oxygen (HEGO) sensor.

Although the HEGO sensor benefits from its low cost, its output voltage is quite nonlinear

to the AFR. The resulting output voltage changes drastically around stoichiometric while

it becomes much less sensitive to lean and rich AFR. Thereby the measuring capability is
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Figure 1.3: Engine emissions after the TWC with different λ [3]

relatively poor for control purpose and its use is limited to limit-cycle control. An alternative

choice is the universal exhaust gas oxygen (UEGO) sensor which is capable of measuring the

AFR linearly across a wide range and therefore it is generally preferred in the test bench

since linear control technologies can be applied. However the high price of UEGO affects its

implementation in production cars.

As can be seen from Figure 1.3, the emission rates of the exhaust gas varies and the high

conversion efficiency is achieved only within a very small window around the stoichiometric

point therefore a precise control of AFR in static and transient situations is required. To

design a feedforward controller, the dynamics of the intake air-path must necessarily be es-

timated in order to predict a suitable fuel flow in the next engine cycle corresponding to the

related engine signal e.g. throttle position and SA. However for the purpose of reducing the

steady-state offset to an acceptable limit, developing a model with required global accuracy

in the operating region is excessive time consuming. In order to eliminate the steady-state er-

ror, closed loop control can be employed. However the biggest challenge of adapting feedback

control is the long time delay caused by the transport delay associated with delivering the

raw exhaust gas from the actuator, which is usually the fuel injector, to the λ sensor. Con-

sequently a combined feedforward-feedback control will be needed to overcome the defects

of each control method. With the implementation of certain advanced engine technologies,

the control system design can be simplified. For instance in conventional PFI engines, the

influence of fuel puddle and the time delay between the fuel injection and inlet valve opening

needs to be compensated in the estimation of air-path dynamics while the resulting difficulties
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of modelling can be reduced by using the GDI technology.

Figure 1.4: Emission and fuel consumption in SA sweeping [3]

Since the engine control system is complex and multi-objective oriented, some actuators

are often included in different control loops that have conflicting effects . In these cases, a large

amount of calibration work in searching for compromise solutions is considered necessary.

Figure 1.4 shows a map of fuel consumption and emission with respect to SA at a specific

operating point [3]. The optimal SA has to be a trade-off between the two control objectives.

Besides the three main control requirements, other demands related to safety and driv-

ability such as knock control also should not be neglected. Detailed descriptions of the engine

and engine control systems can be found in [2, 3, 27].

1.4 Motivations and Objectives

The motivations and objectives of this thesis can be summarized by two aspects:

1.4.1 Dynamic Model and Calibration

As stated previously, the main challenge in the engine-based calibration process is the ex-

pensive experimental cost and time. The acknowledged means of addressing this problem is

the increased use of model-based methodologies in the calibration process since models can
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generally run much faster than the engine in real time. Because of the increased importance

of transients in the calibration, e.g. forthcoming drive cycles with significant transient com-

ponents, dynamic models (which relate the current output to the past values of input and

output data) are likely to feature more within the calibration process to enable improved

transient optimisation and the minimisation of transient emissions in particular. Existing

static testing is time-consuming since it requires the test-bed to settle to steady-state con-

ditions. The development of dynamic models using system identification methods has the

potential to reduce the associated time and cost. In this thesis, a method of dynamic model-

based calibration is proposed in order to minimise the fuel consumption with constraints on

engine torque and AFR and its control performance is compared to that of a conventional

hardware-based static calibration.

1.4.2 Optimal Design of Experiments

For model-based calibrations, the accuracy of the models is the most important factor which

determines the online performances of calibrations. More accuracy can generally be obtained

by increased experimental testing, however this is expensive in time and resources, and re-

quires significantly increased effort unless a careful design of experiments is determined. To

further effectively improve the quality of models, improved methodologies for the design of

experiments are required to be developed. Design of experiment methodologies are well de-

veloped for static based modelling. However relatively few techniques have been developed

for the development of dynamic models and the related problem of optimal test-signal design

for dynamic testing has received little attention in the last few decades. The optimisation

of test-signals for dynamic model development is difficult because it requires computational

expensive optimisations. In this thesis, the influence of optimal test input design and op-

timal parameter estimation methods for model accuracy is investigated and new methods

developed. A new efficient objective function for use in optimal input design is proposed

which has the potential to significantly reduce the computational cost and a simulation error

based estimation method which is suited to the calibration applications is developed for the

associated estimation of simulation models.

1.5 Overview

Chapter 2 presents a general procedure of system identification and controller design in-

cluding a brief discussion of the general methodologies in each step. Real systems can be

conveniently classified as white box or black box models according to how much a prior

knowledge of the system is available, and can be furthermore identified as prediction models

or simulation models based on the requirements of the selected approach to controller design.
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Methodologies of choosing the input signal, model structure and estimator are introduced

for developing accurate models and their effectiveness are evaluated by means of validating

models using criteria regarding the error between measured output and estimated output.

Approaches to data pre-processing in order to reduce the affect of the stochastic of data

logging are discussed.

Chapter 3 gives the experimental setup of a 1.6L Zetec real engine and a 2.0L GT-

DI virtual engine for the implementation of proposed identification, calibration and control

methodologies in this thesis. Details and features of the engines are described together with

how the main actuators and sensors are installed and how the control interfaces, D-space

and WAVE are connected. As the experiments are conducted in different operating regions,

the real engine is coupled with a low inertia dynamometer in order to apply various loads to

restrict the engine speed to required ranges. In the virtual engine, additional sub-models are

developed to simulate the in-cylinder combustion and road load.

Chapter 4 discusses an implementation of the optimization in test signal selection. The

proposed iterative procedure of optimal input design is based on an assumption that a rela-

tively accurate initial model of the real system can be developed. Signals with wide frequency

content and experimental constraints are recommended for the identification of any initial

model to overcome the disadvantage of the unknown frequency range of the system. Optimal

input design is classified into two main types according to the objective of the optimization.

The first type of criteria is based on the parameter variance/covariance. The effectiveness

of A-optimal and D-optimal criteria are discussed and a weighted A-optimal criterion is pro-

posed for inputs of different scales. An illustrative example is given to evaluate the efficiency

of various optimization algorithms. The second type of criteria is based on the minimization

of output prediction error. A method of selecting the objective signal is proposed and a new

criterion is derived from an adaptation of I-optimal criteria, which leads to a considerably

improved computational efficiency. Practical constraints in the design of identification ex-

periment are studied and their influences on optimal input design are demonstrated. The

effectiveness of input design is firstly assessed by applications on a known system which was

obtained by experimental engine data. An implementation on black box modelling, which is

that of identifying a torque model of a virtual engine, is discussed subsequently with the pur-

pose of exploring its feasibility in industrial applications. A preference-based optimization of

input selection is investigated and the method required in designing an optimal input for es-

timating two MISO models as components of a MIMO model in one experiment is exhibited.

The validation of model quality is performed statistically by examination of multiple cases,

which is consistent with the statistical theory employed in parameter and output estimation.

Chapter 5 describes the approach to choose an estimation method according to the model

types. As a type of prediction error methods (PEM), the ordinary least square (OLS) is suit-



CHAPTER 1. INTRODUCTION 14

able to estimate parameters of prediction models and also can be adapted to approximately

estimate simulation models. A simulation error method (SEM) which minimizes the error

between the measured output and simulated output is proposed especially for estimating sim-

ulation models. The selection of algorithms for the unconstrained optimization is discussed

and the SEM is demonstrated giving better model accuracy than the PEM by examples of

identifying parametric models of a known system and a unknown system.

Chapter 6 introduces a basic engine-based static calibration on the virtual engine aiming

to minimize the fuel consumption with constraints on desired torque and stoichiometric air-

fuel-ratio. The torque and λ are regulated by feedback controllers and the SA is swept across

a safe range to find the optimal value. Steady-state values of outputs and inputs at the

optimal settings are recorded in local tests. The static tests are carried out at each operating

point and the results form a look-up table accordingly. The static map is validated online

and demonstrated to be effective in the low-speed low-load region. The performance of the

resulting static map is utilized as the basis for comparison to the dynamic calibration.

Chapter 7 presents a dynamic model-based calibration with the same control objectives

as the static calibration. Dynamic models of torque and λ are used to replace the real engine

in the calibration. The process of identifying polynomial models includes advanced DoE

methodologies for optimal input design and parameter estimation in order to improve the

model quality. Another model type, the recurrent neural network model which can represent

system nonlinearity conveniently is also employed to develop the models. Optimal settings

of calibration parameters are obtained by a constrained numerical optimization. Since long

data sequences need to be optimized, various optimization methods are proposed and one

particular method named the segment method is selected to improve the computational

efficiency. The optimal data obtained on the dynamic models are examined on the black box

virtual engine and additional constraints are applied to improve the consistency of regulated

torque and λ. After removing the time delay, inverse optimal data is utilized to identify

three dynamic models of injection flow, SA and throttle position and the models are proved

to be capable of producing desired torque and λ in the operating region with minimized fuel

consumption. Feedback PI controllers are designed to corporate with the feedforward map

with the purpose of reducing the steady-state offset. An open loop compensator of engine

torque is developed and implemented in the closed control loop since it is not feasible to apply

torque sensors in production cars. By using a Smith predictor, the effect of the significant

time delay caused by transportation in the λ control loop is reduced. A discussion on the

results of applying both the dynamic map and static map are given based on an analysis of

the fuel economy and the output responses of torque and λ.



Chapter 2

Literature Review

2.1 Introduction

System identification estimates mathematical models by statistic methods with the purpose

of representing real dynamic systems. Figure 2.1 depicts a general procedure of system i-

dentification and in this figure we address that the system identification can be conducted

iteratively by using methodologies of input signal design, model structure selection and pa-

rameter estimation. Popular technologies of each step in the procedure are introduced in this

chapter. The steps of input design and parameter estimation are improved by our proposed

methodologies in this work and will be introduced in later chapters.

2.2 System Modelling

2.2.1 Prediction and Simulation Model

ŷ(t) = f [u (t) , . . . , u (t− 1) , . . . , u (t−m) , y (t− 1) , . . . , y (t− n)] (2.1)

ŷ(t) = f [u (t) , . . . , u (t− 1) , . . . , u (t−m) , ŷ (t− 1) , . . . , ŷ (t− n)] (2.2)

Equations (2.1) and (2.2) show typical models for the purpose of prediction and simulation

respectively, where m and n denote the maximum time delay of input and output respectively

and the values can be determined arbitrarily or according to methods of regressor selection.

In prediction, the previous values of input u and output y are collected from the real system

and the value of the current output is estimated accordingly. However in simulation, only

values of previous inputs are required from the system, whereas the values of previous output

are estimated from the simulation [28].

15
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Figure 2.1: A general procedure of system identification
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The type of models developed should be determined by the planned application. Pre-

diction models can be implemented for online control problems and require online measure-

ment of the output. Simulation models typically have feedback components from themselves.

Although the issue of model stability needs to be in-depth considered in the process of iden-

tification, simulation models have been widely used in offline control and optimization tasks

because of their independence of system output measurement.

2.2.2 White Box and Black Box Model

The term white box model usually refers to physical systems where the internal mechanisms

and processes are available to inspect, e.g. models of a single pendulum system or a serial

circuit. The model structure can be acquired and understood by analysing the inner compo-

nents and logic using relevant principles and laws of physics, e.g. Newton’s law and Ohm’s

law. Parameters should be known with a high degree of certainty, e.g. mass and resistance.

As the physical causality of inputs and outputs is clearly exhibited, white box modelling

provides a deep insight into the real system. Another advantage as mentioned in [29], is that

once a satisfactory white box model is obtained, it can be easily adapted to similar systems

by means of slightly modifying the model structure or parameters, while the black box models

are only reliable for the very system and operating range over which they are identified and a

considerable amount of trial and error test is needed when adapted even to similar systems.

In [2], the techniques for physical modelling with particular application to powertrain

models are introduced and described in detail. A typical engine in-cylinder thermodynamics

model is given in [30] and a typical kinematics model in [31]. However, in an IC engine, a

large number of complex physical processes including the kinematics, thermodynamics and

fluid dynamics occur simultaneously. Therefore obtaining an accurate white box model can

be extremely difficult and time consuming.

In contrast to a white box model, a black box model is a system which can only be

characterised in terms of its input and output. To develop a black box model, system iden-

tification methods can be utilized to identify an appropriate structure and parameters from

analysis of the input-output sequence collected from the real system [32]. The limitation

of the black box modelling is that the reliability of the identified model may degrade with

the expansion of the operating region. Nevertheless, it is still considered as an efficient and

fast approach for dynamic engine modelling since a physical understanding of the internal

mechanisms is not absoluately required for many purposes. Details of system identification

methods can be found in [33, 34, 35].
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2.3 Input Signal Design

The input signal is crucial to system identification since it should effectively excite the dy-

namical behaviour of the system in the operating region of interest. Therefore, the selected

input cannot be too simple or weak, as maybe a cosine signal with small amplitude for ex-

ample. In black box modelling, as a prior information of the system is not available initially,

banded white noise signals or signals which are generated from a filtered white noise source

are often favoured because they contain a wide range of frequency content. In practice, a so

called pseudo-random binary sequence (PRBS) can be ideal for linear system identification.

It can be adjusted to any demanded binary level and the output limited correspondingly.

As the behaviour of nonlinear systems is more complicated, the collected data must contain

significantly more information, whereas binary signals cannot fully excite the nonlinear be-

haviour of a system and may lead to loss of identifiability [36]. Therefore, multi-level signals,

such as amplitude modulated pseudo-random binary sequence (APRBS) and random walk

sequence, can be chosen for nonlinear identification.

As stated in the Nyquist-Shammon sampling theorem, a signal can be identified only if

its maximum frequency is less than half of the sampling rate. It is also generally suggested

that an adequate sampling rate should be around 10 times the possible bandwidth of the

system [34], or in practice it can give us 4-6 samples within the rise time of the system.

However, it might be beneficial to use a higher sample rate so that the user can identify

models according to different experimental requirements by down sampling.

After the initial estimation, optimal test signal design could be conducted with the

obtained prior knowledge of the system in order to excite the dynamics better. Consider

the case of discrete nonlinear dynamic system model in input-output form expressed by a

combination of nonlinear input-output regressors which are linear in the parameters, together

with a white Gaussian noise term:

y(k) =
N∑
i=1

Hi(θ)fi(u(k), . . . , u(k − du), y(k − 1), . . . , y(k − dy))

z(k) = y(k) + ϵ(k) (2.3)

where k is the time index, u(k) is a p × 1 input vector at time k and y(k) and z(k) are

undisturbed and disturbed q× 1 output vectors at time k, H is a smooth parameter function

term, f is a smooth input-output function term with maximum delays du and dy in u and y

respectively, N is the number of regressors in the model structure and ϵ(k) is a q × 1 noise

vector at time k, in which each individual entry ϵj(k) has zero mean and covariance σ2
j
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2.3.1 Information Matrix and Cramer-Rao Law

An optimal input is required to excite the system dynamical behaviour to maximise the data

information in the experiment. If the input is deterministic, the data information content is

determined by the Fisher information matrix [37]:

M ≡ EY |θ

(
∂ ln p(Y |θ)

∂θ

)T (∂ ln p(Y |θ)
∂θ

)
(2.4)

where Y is the output sequence and θ is the vector of parameters. If the model is expressed

in equations of (2.3), M can be given by [38]:

M =
1

σ2

N∑
t=1

[
∂y(t)

∂θ

]T [∂y(t)
∂θ

]
(2.5)

where y(t) is the output at a time instant, σ is the variance of noise and N is the length of

output sequence. In optimal input design, the objective is thus generally taken as finding an

input u which maximises the information content of the data, based on some measure of the

information matrix M . The partial derivatives in the elements of the sensitivity matrix ∂y(t)
∂θ

are the output sensitivities, which can be determined from the input-output form by solution

of:

∂y(k)

∂θi
=

N∑
j=1

∂Hj(θ)

∂θi
fj +

N∑
j=1

dy∑
l=1

Hj(θ)
∂fj

∂y(k − l)

∂y(k − l)

∂θi

∂y(1)

∂θi
= a (2.6)

where a is the initial condition vector of the output sensitivity terms. The output sensitivities

indicate the influence of each parameter on the model output. A small change in the param-

eter will have a considerable influence on the model output, provided the output sensitivity

is high. While if it is low, the model output may not have a distinguishable change even for

large parameter changes.

The accuracy of parameter estimation is determined by the covariance matrix of the

estimated parameter vector θ̂ where according to the Cramer-Rao law [39, 40]:

cov(θ̂) ≡ E

[(
θ̂ − E[θ̂]

)(
θ̂ − E[θ̂]

)T]
≥ M−1 (2.7)

=

{
1

σ2

N∑
t=1

[
∂y(t)

∂θ

]T [∂y(t)
∂θ

]}−1

According to [41], an unbiased estimator, such as an ordinary least square estimator is said

to be efficient if its covariance is equal to the Cramer Rao lower bound. As the covariance

matrix of an efficient estimator is related to the Cramer-Rao lower bound which is determined
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by the information matrix, optimising the data information corresponds to optimising the

parameter covariance. A scalar measure of the information matrix such as tr(M−1) (A-

optimal) or − ln(det(M)) (D-optimal) is accordingly favoured as the performance index to

be optimised in the test signal design [42].

2.3.2 Optimation Algorithms and Design Criteria

In early developments, optimal test-signal methods were based on the use of local opti-

misation techniques. Goodwin [43] presented optimal excitation signal design for discrete

nonlinear system identifications based on steepest-descent and conjugate-gradient methods.

Mehra [44] developed an optimal input obtained using a Riccati equation method for contin-

uous linear system identification. Kalaba and Spingarn [45, 46] employed quasi-linearisation

and Newton-Raphson methods to solve an associated boundary value problem in the nonlin-

ear case. These algorithms employ an analytically obtainable gradient to determine a local

minimum. With the advent of successful global optimum algorithms, Lejeune [47] used a

generalized simulated annealing for heuristic optimization of experiment design and showed

its increasing effectiveness for larger models. Reeves and Wright [48] used genetic algorithms

in an experimental design perspective and compared these with the current alternative meth-

ods. Later improvements in global numerical algorithms and globally optimised DoE have

subsequently lead to a significant reduction in required experimentation time [49, 50, 51].

Figure 2.2: Overview of DoE optimality-criteria

For both information-theoretic and tractability reasons, many optimality-criteria for the

design of experiments (DoE) are concerned with the variance of parameters. A-optimal de-

signs minimise the trace of the inversed information matrix. Aoki and Staley [52] and Nahi

and Napjus [53] used A-optimality as a criterion since it leads to a quadratic optimisation

problem which is numerically tractable. E-optimality, which maximises the minimum eigen-

value of the information matrix, was used by Heiligers [54] in weighted polynomial regression.

D-optimality minimise the determinant of the information matrix. Mehra [55] found that an

important advantage of D-optimality is that it is independent of scale changes in the pa-
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rameters and linear transformations of the output. Zaglauer and Delflorian [56] developed a

Bayesian modification of the D-optimal design for use in dynamic engine testing which avoids

bias towards the experimental boundaries. State-of-the-art dynamic testing procedures for

industrial application were presented by Schreiber et. al. [57] who proposed and employed

the use of independent Pseudo-Random-Multilevel signals in combination with D-optimal

amplitudes for MISO engine testing. Figure 2.2 shows a taxonomy of current DoE criteria.

Now, many real systems are so complex that they cannot be easily identified using

white box approaches where the model structures have physical meanings. For instance,

in an internal combustion engine, a large number of complex physical processes including

the kinematics, thermodynamics and fluid dynamics interact simultaneously in 3D, and so

obtaining an accurate white box model can be extremely difficult and time consuming or

simply not feasible. On the other hand in black box modelling, an appropriate structure and

parameters must be obtained from an iterative analysis of input-output sequences collected

experimentally from the real system. Because the model structures are not unique in black

box modelling, assessments which are based only on the variance of the parameters become

less meaningful and output prediction accuracy is a more appropriate criterion.

Optimality-criteria applied in DoE for black box modelling have however, generally been

based on the variance of output predictions. Thus G-optimal criteria minimise the maximum

variance of the predicted values. Wong and Cook [58] have discussed the conditions for the

equivalence of D and G-optimal criteria and addressed the issue of constructing G-optimal de-

signs when the errors are not homoscedastic. Lizama and Surdilovic [59] designed G-optimal

experimental test signals for identification of system dynamics. I-optimal optimization min-

imises the mean variance of estimators over the operation space while V-optimal assesses

optimality over a reduced set of specific points selected from the operation space. Kapelle

[60] shows the advantages of I-optimal designs over the more conventional designs used in

industry, arising since it has a narrower confidence limits on predictions. Debusho and Haines

[61] discussed V and D-optimal designs for linear regression models with a random intercept

term.

A further issue is that any practical experimental design must also take into account

the constraints on the allowable experimental conditions. Algorithms using penalty functions

and Lagrange multipliers have thus been used to incorporate constraints into the optimal cost

function. Typical constraints that might be met in system identification practice have been

studied by Goodwin [43], who applied input and state amplitude constraints to the optimal

test signal design for nonlinear system identification. Ng et. al. [62] discussed the achievable

estimation accuracy with constrained input and output variance and also presented a method

of optimal input design for parameter estimation for an autoregressive model with constrained

output variances, which caused very little computational burden [63]. Forsell and Ljung [64]
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gave an explicit solution to an experiment design problem in identification for control with

constraints on both the input and output power. Morelli and Klein [65, 66, 67] discussed

techniques that can be applied to either linear or nonlinear dynamical systems with practical

constraints imposed on input and output amplitudes.

2.4 Data Pre-Procession

After the experimental data is collected from the real system, it may not be a good choice to

fit them to the model immediately. Deficiencies of the data, if present, will affect the iden-

tification and therefore data pre-procession is recommended. Typical defects and amending

methods are discussed in the following section.

2.4.1 Dealing with Offsets

Offset denotes steady-state bias of the data. The experimental data often describes two types

of relationship between input and output: the effect on the output of varying the input and

the resulting output when the input is a constant. As most real systems are nonlinear, the

purpose of identifying a linear model is typically for describing the output response for small

deviations from a physical equilibrium. However since a pure linear model generally does

not include a term of constant, the offset can not be precisely presented. For this reason,

offsets should be removed to avoid their disadvantageous influence on the identification. If

an additional static experiment is feasible, the offset can be removed by setting the input

close to that for the desired operating point and subtracting the input and corresponding

steady-state output from the raw data. In an offline application, the process can be done by

subtracting the mean values of input and output from each sample.

2.4.2 Dealing with Outlier Points and Missing Data

Outlier Points represent abnormal data as a result of mistakes in measurement or special issues

in experiments, for instance spark knock in an IC engine. These bad points can be determined

by plotting the data or analysing the residue. To manage outliers, a simple solution is to

split the data sequence into sections, reject the section with outliers and merge the rest of

the data. In situations when it is hard to find a segment of clean data, the outliers can be

considered as missing points. Missing input can be considered as unknown parameters while

missing output can be considered as irregular sampling. [34] and [68] include more details

and further discussions.
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2.4.3 Dealing with Disturbance

It is well known that the relation between input and output data from a linear system will not

be affected by implementing both the input and output data through the same filter. Any

disturbance or frequency content beyond the band of interest can be weakened or eliminated

from the collected data by filtering. High frequency or low frequency disturbance can be

removed by low pass or high pass filtering respectively, the corresponding frequency content

of the data will be however filtered as well. A feasible approach is to employ a band stop filter,

provided that the frequency range of the disturbance is known. On the other hand, a band

pass filter can be very suitable if the identification is made within a specific frequency band.

Although building an additional noise model has an equivalent effect to remove disturbance

[69], filtering is often considered as a better alternative approach since it will not affect the

model structure.

2.5 Selection of Estimation Methods

Consider a discrete linear polynomial dynamic model:

A(q)Y = B(q)U + ϵ (2.8)

where q is the time shift operator and A and B are polynomials in q−1

A(q) = 1 + a1q
−1 + a2q

−2 + . . .+ amq−m (2.9)

B(q) = b1q
−1 + b2q

−2 + . . .+ bnq
−n (2.10)

The system can be presented in the full regression form at the sample instant t by:

y(t) = −a1y(t− 1)− a2y(t− 2) . . .− amy(t−m) (2.11)

+b1u(t− 1) + b2u(t− 2) + . . .+ bnu(t− n) + ϵ(t)

where m and n are the time delays in output and input. A simplified regression form can be

given as:

y(t) = x(t)θ + ϵ(t) (2.12)

where θ = [−a1,−a2, . . . ,−am, b1, b2, . . . bn] is the vector of parameters and x(t) = [y(t −
1), y(t− 2), . . . , y(t−m), u(t− 1), u(t− 2), . . . , u(t− n)] is the vector of regressors.

The above equation is a general expression of auto-regressive with exogeneous inputs

(ARX) model type. The parameters θ are linear but the regressors can be in nonlinear form.

To estimate parameters of the model, many parametric methods have been developed [34].

According to the characteristic of ϵ(t), whether uncorrelated or correlated, the ordinary least

square method or the instrumental variable method can be applied.
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2.5.1 Ordinary Least Square Method

The least square method was originally developed by Gauss and Legendre in the early 19th

century. The objective is to minimise the sum of the squared error between the measured

output and the predicted output. Taking equation (2.11) as an example:

Y = Xθ + ϵ (2.13)

Ŷ = Xθ̂

where θ denotes a (m + n) × 1 vector of true parameters, Y denotes a N × 1 vector of

measured output and N denotes the length of the output sequence. θ̂ and Ŷ denote the

vectors of estimated parameters and the predicted output respectively. The ordinary least

square (OLS) method attempts to minimize:

J(θ̂) =
1

2
ϵT ϵ (2.14)

=
1

2
(Y − Ŷ )T (Y − Ŷ )

=
1

2
(Y −Xθ̂)T (Y −Xθ̂)

=
1

2
(Y TY − θ̂TXTY − Y TXθ̂ + θ̂TXTXθ̂)

This function can be optimized by numerical search approaches iteratively or analytically

solved as follows:

∂J(θ)

∂θ
|θ=θ̂ = −XTY +XTXθ̂ = 0 (2.15)

XTXθ̂ = XTY

θ̂ = (XTX)−1XTY

OLS estimators have the properties of unbiased, efficient and consistent estimation. The

global minimum of equation (2.14) can be found efficiently and unambiguously. However,

the estimation may be inconsistent if the noise ϵ is correlated. Advanced methods based on

modifications of the OLS have been developed to overcome the inconsistency problem.

2.5.2 Instrumental Variable Method

Submitting equation (2.15) to (2.13), we obtain:

θ̂ = θ + (XTX)−1XT ϵ (2.16)

= θ + (
1

N
XTX)−1 1

N
XT ϵ

where XTX/N converge to E[x(t)Tx(t)] and XT ϵ/N converges to E[x(t)T ϵ(t)]. It is clear

that if ϵ is correlated, E[x(t)T ϵ(t)] is not zero hence θ̂ will not converge to θ. To solve this
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problem, a model of the error can be incorporated so that:

ϵ(t) = C(q)γ(t) (2.17)

where C(q) is the developed model and γ(t) is an uncorrelated error. Another approach is to

replace the OLS estimator by an instrumental variable estimator:

θ̂IV = (ZTX)−1ZTY (2.18)

where Z is a matrix which is related to X in the sense that

ZTX/N → E[z(t)Tx(t)] (2.19)

detE[z(t)Tx(t)] ̸= 0

ZT ϵ/N → E[z(t)T ϵ(t)] ≡ 0

In practice, the conditions of equation (2.19) are difficult to check and thus consistent esti-

mation cannot be guaranteed in general. However, the matrix Z can be constructed by using

the acquired data from an OLS estimated model:

Â(q)ŷ(t) = B̂(q)û(t) (2.20)

The tth row of Z is then given by

z(t) = [−ŷ(t− 1),−ŷ(t− 2), . . . ,−ŷ(t−m), u(t− 1), . . . , u(t− n)] (2.21)

2.5.3 Maximum Likelihood Method

Another general method of parameter estimation is the maximum likelihood method (MLE)

which is originally developed by R.A. Fisher[70]. By the OLS, the parameter values which

produce the most accurate output prediction can be obtained while by the MLE, the obtained

parameter values are most likely to generate the observed output data. The MLE is more

related to probability theories. For observations Y = y(1), y(2), ...y(N), the joint likelihood

function is given by:

f(θ|y(1), y(2), ...y(N)) = fy(θ;Y ) (2.22)

A MLE estimation is achieved by finding values of θ that maximize the likelihood function

fy(θ;Y ) [71]:

θ̂ML(Y ) = argmax fy(θ;Y ) (2.23)

It should note that under the additional assumption that the errors are normally distributed,

the OLS estimator is identical to the maximum likelihood estimator [72].
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The MLE estimator possesses statistical properties such as consistency and efficiency.

The MLE estimator converges to the true value in probability and it achieves the Cramer-

Rao lower bound as the sample size increases to infinity [73]. However, it is claimed have

no optimum properties for finite samples because this estimator can be heavily biased with

small samples and the likelihood function might be unknown if the samples do not follow a

general distribution such as the normal distribution [74].

2.6 Model Structure Selection

2.6.1 Linear Polynomial Model Structure

The discrete-time linear polynomial model has been a popular model structure for discrete

systems. A general discrete-time linear polynomial model can be described as:

y(t) = G(q)u(t− nk) +H(q)ϵ(t) (2.24)

where G(q) represents the model of plant, H(q) represents the model of the noise, ϵ(t) is

assumed to be a white noise and nk is the time delay between inputs and outputs. According

to the different possible selections of numerators and denominators in G(q) and H(q), the

model structure can be categorized into 4 common types [75].

ARX model

Figure 2.3: Structure of ARX model

The structure of an ARX model is:

y(t) =
B(q)

A(q)
u(t− nk) +

1

A(q)
ϵ(t) (2.25)

where

A(q) = 1 + a1q
−1 + a2q

−2 + . . .+ anaq
−na (2.26)

B(q) = b1q
−1 + b2q

−2 + . . .+ bnbq
−nb+1
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The auto-regressive with exogenous inputs model, as shown in Figure 2.3 and equation (2.25)

is a simplified case of equation (2.24), where AR represents the term A(q)y(t) and X represents

B(q)u(t). The model of the noise does not have any flexible term but is completely determined

by the dynamics of the model of the plant. It is suitable for describing a system where the

noise is caused by stochastic of the plant.

ARMAX model

Figure 2.4: Structure of ARMAX model

The structure of an ARMAX model is:

y(t) =
B(q)

A(q)
u(t− nk) +

C(q)

A(q)
ϵ(t) (2.27)

where

A(q) = 1 + a1q
−1 + a2q

−2 + . . .+ anaq
−na (2.28)

B(q) = b1q
−1 + b2q

−2 + . . .+ bnbq
−nb+1

C(q) = c1q
−1 + c2q

−2 + . . .+ cncq
−nb+1

The autoRegressive moving average with exogeneous inputs (ARMAX) model can be con-

sidered as an expansion of the ARX model. An independent polynomial C(q) for the noise,

referred to as the MA term is designed for additional flexibility in the noise dynamics. The

noise can be used to represent the uncertainty of the plant and input disturbances.

Output Error Model

Figure 2.5: Structure of OE model
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The output error model structure is:

y(t) =
B(q)

F (q)
u(t− nk) + ϵ(t) (2.29)

where

B(q) = b1q
−1 + b2q

−2 + . . .+ bnbq
−nb+1 (2.30)

F (q) = f1q
−1 + f2q

−2 + . . .+ fnfq
−nf+1

ARX and ARMAX models are typical error equation model structures where the transfer

function of noise H(q) is affected by the denominator of the plant transfer function. In an

output error (OE) model, the noise is directly added to the output without going through

the dynamics of the plant and often refers to a pure error in the measurement of output.

Box-Jenkins model

Figure 2.6: Structure of BJ model

The Box-Jenkins model structure is:

y(t) =
B(q)

F (q)
u(t− nk) +

C(q)

D(q)
ϵ(t) (2.31)

where

B(q) = b1q
−1 + b2q

−2 + . . .+ bnbq
−nb+1 (2.32)

C(q) = c1q
−1 + c2q

−2 + . . .+ cncq
−nc+1

D(q) = d1q
−1 + d2q

−2 + . . .+ dndq
−nd+1

F (q) = f1q
−1 + f2q

−2 + . . .+ fnfq
−nf+1

Compared to the three types of models above, the Box-Jenkins model has the most compli-

cated structure. It gives more freedom in noise modelling and the models of plant and noise

are completely independent.

The above structures of linear models are expressed in the form of transfer function or

alternatively described by polynomial regressor as in equation (2.11). The nonlinearity of

system therefore can be represented by nonlinear regressors with linear parameters.
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2.6.2 Determination of Model Regressors

In nonlinear black box modelling, it is always difficult to determine what regressors should be

included in the model structure. Besides trial and error approach, a mathematical method

based on hypothesis testing and correlation analysis has been popular. Consider a model:

Y = θX + ϵ (2.33)

where Y = [y(1), y(2), . . . , y(N)], X = [x(1), x(2), . . . , x(N)] and ϵ is assumed to be a white

Gaussian noise with zero mean and variance σ2. To determine the model structure, in the

first step it is necessary to construct a pool of candidate regressors, including all linear and

nonlinear terms which are to be considered. The correlation between a candidate regressor

and measured output is calculated by:

rjz =

N∑
t=1

[xj(t)− x̄j [y(t)− Ȳ ]]√
SjjSyy

(2.34)

X̄j =
1

N

N∑
t=1

xj(t) (2.35)

Sjj =
N∑
t=1

[xj(t)− x̄j ]
2 (2.36)

Syy =

N∑
t=1

[y(t)− Ȳ ]2 (2.37)

where N is the length of data sequence and x is the candidate. The regressor which has

the highest correlation will be added to the model structure and regressor matrix X and the

estimated parameter updated correspondingly. The influence of the added regressor will be

examined by

F =
SSR(θ̂j |θ̂m)

s2
=

SSR(θ̂m+j)− SSR(θ̂m)

s2
> Fin (2.38)

SSR =

N∑
t=1

[ŷ(t)− Ȳ ]2 = θ̂XTY −NȲ 2 (2.39)

s2 =
1

N − P
(Y −Xθ̂)T (Y −Xθ̂) (2.40)

where SSR(θ̂m+j) is the sum of the squared variations of the predicted output after the

jth regressor is added into the regressor matrix which has m terms. P is the number of

regressors in the model including the one added in the current iteration. The new regressor

will be accepted, provided F > Fin, where Fin is a value which is predefined according to

the desired confidence level. However, because of the relationship between the new regressor

and regressors that have already been selected, the importance of each regressor might be



CHAPTER 2. LITERATURE REVIEW 30

affected. A backward elimination is added in order to reassess the regressors and remove the

redundant ones.

F = min
SSR(θ̂m)− SSR(θ̂m−j)

s2
< Fout (2.41)

where SSR(θ̂m−j) denotes the sum of the squared variations of the predicted output after

the jth regressor is removed from the regressor matrix. Then the relevant variable should be

updated as follows for the next iteration.

xj(i+1) = xj(i) − β̂Xi (2.42)

β̂ = (XT
i Xi)

−1XT
i xj(i) (2.43)

Yi+1 = Yi − θ̂i+1Xi+1 (2.44)

The whole process continues until no candidate satisfies Fin or the predicted output meets

the required accuracy.

2.7 Model Validation

With the purpose of measuring the quality of identified model, the model should be tested

against various validation signals to find out if it is good enough to describe the real system.

2.7.1 Validation Signals

Basically the validation signal might be selected as the same type of signal as the signal

used for the identification. The data collected from the system can be divided and the first

half sequence used as an identification signal while the second half as a validation signal.

Moreover it is convincing to repeat the validation with signals generated by different seeds.

Before applying validation signals to the model, it is beneficial to determine if these validation

signals are independent. Correlation refers to a statistical relationship between two sets of

data. For a statistically efficient test, the validation test signals should be uncorrelated which

indicates there is no tendency for the values of one signal to increase or decrease with the

values of the second signal. To test the qualification of validation signals, the correlation

coefficient is consequently determined for each pair of signals and is given by:

rUi,Uj =
cov(Ui, Uj)

σUiσUj
(2.45)

=
E(UiUj)− E(Ui)E(Uj)√

E(U2
i )−E2(Ui)

√
E(U2

j )− E2(Uj)

where Ui and Uj , i ̸= j are the distinct inputs. Besides evaluating the correlation between

validation signals, it is also important to measure the correlation of the signal value at
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different sample instants. For dynamic identification, each input is a sequence time series.

The correlation of two inner elements with lag l can be calculated by:

rl =

N∑
t=1

[u(t)− Ū ][u(t− l)− Ū ]

N∑
t=1

[u(t)− Ū ]2
(2.46)

2.7.2 Validation Criteria

For a white box model where the true model structure and parameters are available, a

natural validation is to compare the estimated parameters and their covariance with the

values obtained from prior knowledge. Although generally, in the experimental case true

model structure and parameters are unknown, the model quality can however be measured

by implementing a batch of validation signals to the identified model and checking how well

the simulated outputs matches the measured experimental outputs. For this purpose, a scalar

function of the error between estimated output and measured output, as a mean squared error

(MSE) can be selected.

MSE(Y, Ŷ ) =
||Ŷ − Y ||2

N
(2.47)

where Y = [y(1), y(2)..., y(N)]T is the measured output matrix and Ŷ = [ŷ(1), ŷ(2)..., ŷ(N)]T

is the simulated model output. Since the scales of output and corresponding prediction error

differ between models, the MSE cannot solely represent the degree of model quality without

a comparison to the measured output. Thus a criterion which relates the error to the output

of the same model as a percentage is desired to evaluate the quality of model. A multiple

correlation coefficient R2 function is employed to measure the output fitness given by:

R2(Y, Ŷ ) = 1− ||Ŷ − Y ||2

||Y − Ȳ ||2
(2.48)

where Ȳ is the mean of Y . If the system is precisely excited which gives Y ̸= Ȳ , the feasible

value of R2 is from −∞ to 1. It is obvious that R2 = 1 indicates a perfect model. It is worth

noting that the achievable maximum value of R2 is dependent upon the specific modelling

problem. This fact means that there is no universal value of R2 which is considered to be

acceptable and so the measure of fit is relative and an acceptance criteria must be judged on

a case by case basis.

Besides the MSE and R2, the final prediction error (FPE), Akaike’s information criterion

(AIC) and Bayesian information criterion (BIC) are also widely used in system identification
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and they are given by [76]:

FPE = N · ln(MSE) +N · ln [(N + nθ)/(N − nθ)] (2.49)

AIC(ρ) = N · ln(MSE) + ρ · nθ; ρ > 0 (2.50)

BIC = N · ln(MSE) + nθ · ln(N) (2.51)

where N denotes the length of the data sequence, nθ denotes the number of regressors in

the model and ρ denotes the weighting factor. The FPE, AIC and BIC criteria are closely

related. They can be used to evaluate the quality of the parameterized model by means of

measuring the output prediction error. The complexity of the model, which refers to the

number of the regressors in the model, is taken into account by these criteria and a model

with less regressors is considered having better quality since in practice the engineers usually

prefer a model of the system which is as simple as possible.

The criteria of R2, FPE, AIC and BIC are all related to the MSE. The advantage of

R2 is that it can represent the quality of model in percentage since the prediction error is

compared with the variance of measured output. However in the process of model structure

selection, the model which includes all possible regressors generally gives the best R2. To

overcome this problem, the FPE, AIC and BIC criteria can be employed since they penalize

the complexity of the model.

In the experiment design, the effects of model structure selection, input design and

parameter estimation on the model quality are interrelated. Since the optimal input design

and parameter estimation are studied in this thesis, the model structure is fixed in order to

eliminate the influence from model structure selection. Therefore the MSE and R2 criteria

are selected to validate the estimated models in this work.

2.8 Artificial Neural Networks

The term neural network (NN) originally refers to a network of biological neurons that are

linked together to realize a specific biological function. The artificial neural network is used

to present a mathematical model composed of artificial neurons. Similar to the biological

NN which can perform various physiological behaviours, the artificial NN is capable of repre-

senting very complex nonlinear models. In recent years the NN has been successfully used in

model fitting, clustering and pattern recognition. Currently its implementation in dynamic

modelling of automobile systems is being extensively investigated [77, 78].
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Figure 2.7: Schematic of a neuron

2.8.1 Structure Selection of NN Models

Neuron

Conventional polynomial models are composed of regressors and parameters while in NN

models the neuron is the basic component. Figure 2.7 shows a general construction of a

neuron. Each channel of the input signals is weighted and summed then a bias is added to

the product which is used to feed an activation function. The output of the neuron can be

expressed by the equation:

y = f

(
n∑

i=1

(wiui) + b

)
(2.52)

Layer

As shown in Figure 2.8, the simple neurons are linked in parallel to form a layer which is able

to represent more nonlinearities. By using the output of the current layer as the input of the

next layer, more layers can be added and a comprehensive network is formed accordingly.

The output of a multi-layer NN model is given by:

y = fk (Wkfk−1 (Wk−1fk−2 (. . . f1 (W1u+ b1) + . . .+ bk−2) + bk−1) + bk) (2.53)

The last layer is named the output layer and the other layers are named hidden layers.

To identify a NN model, the model structure should be determined firstly. Basically the

number of layers, the number of neurons in each layer and the type of activation function

should be pre-determined and for specific types of models such as time series models, the

time delay of input and output should also be given. As mentioned by Cybenko [79], a NN

model with one hidden layer can represent most systems if sufficient neurons and testing time

is available. The purpose of adding more hidden layers is usually for a quick convergence.

However according to Priddy [80], designers should try to build NN models within one or two
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Figure 2.8: Schematic of a single layer

hidden layers since the best performance of training, in other words the best learning, can

be obtained when the model is the simplest. He also suggested that the number of neurons

should be minimized and the optimal number could be determined by the validation results.

A list of common activation functions is given in [81], the selection of activation function

is affected by the pre-knowledge of the system and the intended training algorithm. For

instance the linear activation function is less useful if the system is expected to be nonlinear

and the function must be differentiable if backpropagation algorithms are employed.

2.8.2 Training, Validation and Testing

The term “training” in NN models has a similar meaning to “identification”, or more specif-

ically “parameter estimation” in polynomial models. It refers to the process of adjusting the

weights and biases of neurons to give the best output performance. In general, training meth-

ods can be classified into: supervised and unsupervised learning methods. The supervised

method, e.g. backpropagation method, utilizes the error between the desired output and the

model simulated output to adapt the weights and bias until a stopping criterion is satisfied.

On the other hand, the desired output is not available in the unsupervised learning method.

The model output is fed to an adaptation function which represents a general behaviour and

the NN model is adjusted according to the output of the adaptation function. Practically
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most NN models can be trained by supervised methods and the applications of unsupervised

methods are mainly in self-organized map and adaptive resonance theory [82, 83].

The obtained NN models by training may fit the training data very well, however they

might not be able to simulate the unseen data accurately and this problem is called “over-

fitting”. “Over-fitting” generally occurs if there are too many parameters in the model while

the data length for identification is relatively short. To evaluate whether a model is “over-

fitting”, another set of data can be used for validation, e.g. dividing the whole data into two

parts for identification and validation respectively. If the model fits the validation data to

the same degree as fitting the identification data, this model is considered not “over-fitting”.

The definition of validation data in NN models is different from that in polynomial

models. In the training of NN models, multiple candidates of trained networks could be

obtained. Validation data is used to find the best network which minimizes the error testing

against the validation set. In other words, the validation does not further adjust the model

structure but only verifies that any increase in accuracy over the training data set actually

causes an increase in accuracy over an unseen data set. Therefore the validation error can be

used as a stop criterion for training to prevent “over-fitting” of the training data [84].

The chosen network is eventually assessed by test data and its performance reported. To

ensure the generalization of the NN model, the test data should not have high independence

of the training and validation data for an unbiased estimation [85].

2.9 Conclusions

In this chapter, we present a detailed literature review on system identification and validation.

The general procedure of system modelling and relevant DoE methodologies are introduced.

The information theory, various optimal criteria and established research on these criteria are

studied. Popular structures for polynomial models, methods for model structure selection and

parameter estimation are also reviewed. It is found that the input selection, model structure

selection and parameter estimation have significant influences on the model quality therefore

the optimal input design and estimation method for simulation model are selected as the

research interests of this thesis and are discussed in later chapters.

Moreover, the differences between prediction models and simulation models and vari-

ous validation criteria for evaluating the model accuracy are also introduced to support the

selection of model type and validation criteria in the following chapters. Basic features of

artificial Neural Network are discussed and the performances of polynomial models and NN

on engine modelling are compared in the chapter of dynamic model-based calibration.



Chapter 3

Experimental Setup

3.1 Introduction

The experimental work in this thesis includes experiments on a real engine which is connected

to a dynamometer and a virtual engine which is presented by a WAVE-RT model. The

methodology of optimal test signal design and the simulation error method is developed

based on the real engine. The identification and control methodologies of dynamic calibration

developed in this thesis are intended to be applicable to real engine hardware. However

for the development of these techniques an engine simulation package is used. This has

the advantage of all engine simlators in that, it reduces experimentation cost, is repeatable

and unaffected by any external disturbance, such as humidity, atmosphere pressure and

temperature, which in the real engine experiment could compromise the results. To make

the experiments repeatable, simulation models built by Ricardo 1D WAVE software are used

instead of the real engine. A WAVE model of an EcoBoost 2.0-Litre GTDI engine was

provided by the Ford Moter Company. Engineers at Ford have been using this model, as

a replacement for the real engine, for initial stage tests of some developed control methods.

Appropriately designed and validated WAVE models are recognized as giving simulation

results with dynamics which closely match those of the real engine. For this reason the

effectiveness of the optimal input design and dynamic calibration is examined by WAVE.

In the first two sections of this chapter, the characteristics of the 1.6 Litre Zetec engine

and related software and hardware configurations for the experiments are introduced. A

WAVE model of a 2.0 Litre GTDI engine is then presented and a specification of the virtual

engine and relevant components is given. Section 5 discusses the procedure of adapting the

WAVE model for close-to-real-time applications in the Mathworks Simulink environment.

This, real-time (RT) model is further modified in order to meet experimental requirements.

Essential actuators and sensors of both real engine and virtual engine are introduced in

section 6 and a road load model for determining a speed profile is then devlopedd.

36
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3.2 Real Engine Specification

Table 3.1: Specification of Zetec 1.6L real engine

Number of cylinders 4

Strokes per cycle 4

Engine type Spark ignition

Cylinder bore 76mm

Stroke length 88mm

Connecting Rod Length 136.2mm

Compression Ratio 10.3mm

Maximum torque 138Nm at 3500 RPM

Maximum power 67kW

Idle speed 880 RPM

The experimental engine in the University of Liverpool powertrain control lab is a con-

ventional port fuel injection gasoline spark ignition Ford 1.6 Litre Zetec engine as specified

in Table 3.1. In low-speed low-load experiments, the throttle position is fixed and the air

is delivered by air bleed valve (ABV). Each cylinder has two intake valves and two exhaust

valves and the valve timing is controlled by dual overhead camshafts. The electronic port

fuel injectors thus inject the fuel before the opening of intake valves. The EMS is a control

unit for air delivery, fuel timing and spark timing. In production vehicles, pre-defined control

strategies are saved in EMS. For this thesis the engine is modified so that the designed control

signals can be transferred from software and hardware interface to the engine directly.

3.3 Real Engine Experiment Configuration

Figure 3.1 illustrates the configuration of the engine and its related instrumentation. The

crankshaft of the engine is coupled to a low inertia DC electric generator engine dynamometer

for measuring the engine torque and power. In experiments of torque control, the dynamome-

ter often acts like an extra load for absorbing power generated by the engine and the amount

of load produced from the dynamometer is regulated by a voltage control signal.

In this thesis, signals recorded by sensors on the real engine are sampled every degree,

in other words the data collection is crank angle based. The crank angle of the engine is

measured by the angle encoder located on the crankshaft. The encoder generates a pulse

every 1 degree and the pulse is then delivered to the D-space and triggers the data collection

in D-space tasks. The frequency of collection can be multiples of every 1 degree which allows

for down sampling the data into engine events such as every stroke or engine cycle. The

encoder also generates a pulse every 360 degree. The purpose of the 360 degree pulse is to

ensure no missing of 1 degree pulse occurs and to reset the crank angle if any inconsistency



CHAPTER 3. EXPERIMENTAL SETUP 38

Figure 3.1: A schematic of the engine setup and key instrumentation

occurs. A schematic diagram of the hardware and software configuration for the engine

experiments is shown in Figure 3.2. Originally, engine outputs such as engine speed, AFR

and temperature are delivered to the EMS which is in charge of controlling all engine inputs

such as ABV and FPW according to the embedded control strategy. In engine experiments,

the outputs can alternatively be transmitted to a D-space unit. The D-space will take over

the control authority of any interested parameters from the EMS and the Power stage is

used as an electronic amplifier to boost control signals from D-space in order to power the

corresponding inputs. The D-space hardware cooperates with a PC for data processing. The

Control Desk software running on the PC is interface software used for date logging and

real time monitoring. Real time engine data can be recorded and converted into MAT files

which are readable by MATLAB. MATLAB/SIMULINK with the Real-Time workshop add-

on package is used to develop controller and test signals by analysing the data offline and

then to generate models for implementation. The established models are complied into C

code and applied to Control Desk. By building a proper layout for the complied SIMULINK

model, online graphical control and monitoring of the engine can be achieved by Control

Desk.

3.4 WAVE Virtual Engine

Ricardo WAVE is a commercial software package which principally evaluates 1D flow to

simulate and analyse the system behaviour, such as air-path dynamics, fuel injection mass,

manifold pressure and piston position in the engine and related parts. It provides a fully
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Figure 3.2: Hardware and software configuration of engine experiments

integrated treatment of time-dependent fluid dynamics and thermodynamics by means of a

one-dimensional formulation which enables performance simulations to be carried out based

on virtually any intake, combustion and exhaust system configuration.

Figure 3.3 shows an example of simulating a single cylinder system by WAVE. The

components of the system at the top are modelled and connected as the block diagram in the

middle. All parameters such as initial condition and geometry can be set up accurately by

element panels at the bottom.

Table 3.2: Specification of GTDI 2.0L virtual engine

Number of cylinders 4

Strokes per cycle 4

Engine type Spark ignition

Cylinder bore 87.5mm

Stroke length 83.2mm

Clearance height 0.5mm

Piston surface area 6448.89mm2

Connecting rod length 156.6mm

Compression ratio 9.9

Wrist pin offset 0.8mm

A WAVE model of the 2.0 Litre GTDI Ford engine was provided by the Sponsoring Com-

pany (Ford Motor Company) and it is illustrated in Figure 3.4. This is a pressure charged, 4

cylinder, 4 stroke, 16 valve spark ignition engine. A geometric specification of the engine is



CHAPTER 3. EXPERIMENTAL SETUP 40

Figure 3.3: An example of simulating a cylinder by WAVE
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Figure 3.4: WAVE virtual engine
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given in Table 3.2. The air enters through a filter which prevents solid particulates going into

the engine, where it may cause mechanical wear and oil contamination. The compressor then

increases the density of the charge which allows for higher volumetric efficiency for a given

engine size. This allows higher peak torque and power to be achieved, whilst benefiting from

increased fuel economy at part load conditions. The compressed air is next cooled and then

goes through the throttle to the intake manifold. The engine is equipped with a high pressure

common rail, direct injection system which simulates the gasoline being injected directly into

the in-cylinder air-charge. On the exhaust side of the engine, the turbine generates boost by

using the high temperature exhausted gas which improves the thermodynamic efficiency of

the engine. Finally, a catalytic converter will convert the toxic by-products in exhaust gas to

less toxic substances.

Besides the general engine geometric model, sub-models such as heat transfer, conduction

and combustion should also be defined adequately. The combustion sub-model of the provided

2.0L virtual engine is a SI Wiebe model as shown in Figure 3.5. The rate of fuel mass

burned in thermodynamic calculations is described by the SI Wiebe function [86]. This

type of combustion model is designed by Ricardo and the required combustion parameters

of this virtual engine are provided by Ford. The combustion model for the 2.0L engine was

not available for reasons of commercial confidentiality and so combustion data for a similar

3.0L engine was obtained and used. The related parameters were provided including the

combustion duration and location of 50% burn point. The mass of fuel left in the cylinder

was calculated by a simple S-curve function and its burning rate represented as the first

derivative of this function [86].

Figure 3.5: SI Wiebe combustion model

In real engine experiments, the stochastic behaviour of variables such as temperature,
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pressure, moisture and even errors of the actuators and sensors will compromise the results

and make experiments unrepeatable. In the WAVE model, however, not only the environ-

mental parameters are pre-determined but also the sub-models are completely regulated.

The entire operating space is categorized into cases and saved in a constant table. The

WAVE model is always running under a specific case where all related parameters have been

regulated.

3.5 WAVE-RT Model

WAVE-RT is a simplified real-time simulation software version of WAVE which provides a

useful interface for connecting between WAVE and conventional control system developing

packages, such as MATLAB/Simulink. Besides compiling the geometry from WAVE, the

operating parameters and environmental parameters are also compiled appropriately as well.

However in practice it is necessary to be able to adjust these parameters in WAVE-RT

according to different experimental conditions. In order to do that, actuators should be

placed on variables that need to be controlled and the corresponding responses observed by

sensors, as shown in Figure 3.6. In the compilation procedure, firstly the WAVE model is

converted to C code which includes all necessary information from the WAVE model, such

as environmental parameters, actuator and sensor characteristics and details of components.

Users can modify the content of C code directly rather than the WAVE model. A WAVE-RT

block in SIMULINK will be appointed to the C code and present actuators and sensors as

an input-output block, as shown in Figure 3.7.

Figure 3.8 illustrates a fully developed Simulink WAVE-RT model by Ford for this thesis.

Besides the main RT block which is directly compiled from the provided Ricardo WAVE

model, other sub-models should be designed and cooperated in order to simulate engine

behaviours precisely in different operating regions. In the WAVE model, the inputs of the

spark advance (SA), burn duration and Wiebe exponent are chosen to simulate the fuel

combustion in the cylinders. The SA affects the combustion phasing and can be controlled

independently in the RT model. As suggested by Ford, the Wiebe exponent can be fixed

at 2.5 for low-load low-speed work. However since the burn duration is causal, it should be

determined by a function of speed, load, SA and valve phasing. A sub-model for the burn

duration is thus provided by Ford to generate a sensible input to the main RT block. The

units of input and output are also converted appropriately.
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Figure 3.6: WAVE virtual engine with sensors and actuators
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Figure 3.7: WAVE-RT block

3.6 Actuators and Sensors

Throttle Position Actuator

In the IC engine, the throttle position actuator refers to a valve that is located before the

intake manifold. The throttle valve directly controls the amount of air going into the intake

manifold and has an indirect influence on the engine torque and air-fuel-ratio. The throttle

valve in WAVE is modelled as an orifice with an adjustable diameter. A sub-model is used in

Simulink to relate the angle of the throttle butterfly valve to a representative orifice diameter.

ABV Actuator

Besides the throttle, the ABV is an alternative path for inlet air flow in the 1.6 Litre engine.

The unexpected transient air dynamics resulting from drastic change of throttle position can

be eliminated quickly by means of adjusting the ABV. In low-speed low-load Zetec engine

experiments, the ABV has a large authority in regulating the amount of inlet air flow whereas

the throttle position cannot be electronically controlled.

Spark Advance Actuator

Spark-ignition timing is a crucial factor of engine performance. Inappropriate spark timing

will not only affect the fuel consumption and emissions but also bring noise and vibration to

the engine. At the end of the compression stroke, the spark advance actuator will control the
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Figure 3.8: Adapted WAVE-RT model of the virtual engine
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angle relative to top dead center where the ignition occurs in order to optimize the behaviour

of the engine.

Fuel Injection Actuator

The fuel injection event occurs once every 4 strokes per cylinder in the 1.6 Litre and 2.0 Litre

engine. The actuator regulates the amount of fuel sprayed into the cylinder in each injection

event. Specifically, there are two variables which can be controlled: start of injection and

fuel pulse width (FPW). The first variable can be determined by the crank angle when the

injection is started and the second variable by the length of time the injector stays open

from the injection start angle. In the real engine experiment, the FPW is under control so

as to regulate the mass of fuel injected, whilst the fuel mass in each injection can be directly

adjusted in the virtual engine.

Engine Speed Actuator/Sensor

In real engine experiments, the engine is typically coupled to a dynamometer. Various engine

speeds can be achieved by controlling the load generated by the dynamometer. In the WAVE-

RT model, the simulated engine will be considered as connected to a dynamometer with

no dynamics which therefore produces desired engine speed instantaneously. Therefore, for

transient simulations the user needs to ensure that an appropriate speed profile is input to the

model, otherwise unrealistic loading and speed dynamics can result. One particular benefit

of testing at fixed engine speeds is that it is very convenient for developing static maps since

the engine speed is often an index of the operating space. For simulations representing the

engine in a vehicle, the engine speed is a result of the engine inputs, any braking and the

properties of the vehicle, such as the mass, inertia and the road conditions. Therefore for

calibration purposes a speed profile based on these parameters can be considered appropriate,

and engine accelerations faster than the vehicle can be neglected. A road load model which

is used to generate sensible speed profiles will be introduced in the later section.

Intake and Exhaust Valve Actuator

The intake and exhaust valve timing is decided by the camshaft phasing. In the 1.6 Litre

Zetec engine, the phase of the camshaft is uncontrollable. The intake valve opens and closes at

22 degree BTDC and 12 ATDC while the exhaust valve opens and closes at 64 degree BTDC

and 12 degree BTDC. Twin Independent Variable Camshaft Timing (VCT) is a feature of the

2.0 Litre GTDI engine. The VCT changes the valve timing by rotating the camshaft slightly

from its initial orientation, which results in the camshaft timing being advanced or retarded.
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The camshaft timing is adjusted depending on factors such as engine load and engine speed.

This technology is applied to both intake and exhaust valve independently. It allows for more

optimum engine performance, reduced emissions, and increased fuel efficiency compared to

engines with fixed camshafts.

Wiebe Actuator and Burn Duration Actuator

The Wiebe exponent and burn duration are essential parameters of a combustion model.

Similarly to engine speed in the WAVE-RT model, the user of the model should provide rea-

sonable inputs of these two parameters in order to prevent infeasible in-cylinder combustion.

As discussed above, the burn duration is determined by a combustion sub-model and the

Wiebe exponent can be selected from a speed-load table supported by Ford.

Waste Gate Actuator

A waste gate is a valve that regulates the amount of exhaust gas which enters the tur-

bocharger, which in turn controls the resulting boost. The boost varies with the pressure

and temperature of the exhaust gas which is related to the engine speed. As an engine can

only accommodate a given amount of boost, this valve should thus be adjusted according to

the manifold pressure. At higher boost the wastegate will be opened wider in order to divert

more of the gases away from the turbine. Two further constraints relate to the maximum

turbocharger speed and preventing compressor surge. At part load operation the wastegate

valve can be fully opened to simulate conditions closer to a normal aspirated engine.

Engine Torque Sensor

As a basic specification of an engine, engine torque represents the power that is transmitted

from the engine to the car, to produce the acceleration. In real engine experiments, the engine

is coupled to a dynamometer then the instantaneous shaft torque can be measured. However,

in every engine cycle, the instantaneous torque will reach the peak in the combustion stroke

but be used in other strokes in order to move the piston. For calibration and control work in

this thesis, only the average shaft torque is of interest and therefore it is necessary to filter

this signal, though the peak torque could be of interest in an engine calibration if maximum

instantaneous torque loads are constraints.
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AFR Sensor

AFR is the proportion of mass of air to mass of fuel in the mixture, which is important

in the amount of oxidation in the combustion of the fuel. The sensor is located before

the catalytic converter. In practice, the sensor will measure the oxygen or hydrocarbon

in the residue mixture and calculate the mass of air and fuel accordingly. The mixture

is called stoichiometric if the fuel is burned completely with all the oxygen in air. The

stoichiometric AFR is 14.7:1 for gasoline but only feasible in an ideal situation. Since the

value of stoichiometric AFR is different by the types of fuel, a relative measurement of AFR

is commonly used:

λ =
AFRmeasured

AFRstoichiometric
(3.1)

where λ > 1 represents a lean combustion and λ < 1 represents a rich combustion. The

measured AFR signal should also be filtered since it varies largely during the 4-stroke cycle

and only the mean value is necessary for determining catalytic converter performance.

Manifold Absolute Pressure Sensor

The manifold absolute pressure (MAP) is a basic measurement for fuelling control. It indi-

cates the pressure of the air in the intake manifold and when coupled with the engine speed

can be used to estimate the air-charge entering the cylinders. The sensor responds very

quickly to changes in the air pressure therefore it proves an informative signal. When the

MAP and engine speed are provided, the ECU will in turn adjust the amount of intake air

by throttle and determine the optimum fuel enrichment for combustion.

3.7 Road Load Model

Figure 3.9: Forces on a wheel in motion

Figure 3.9 shows the wheel of a car in motion with driving force F and instantaneous
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Table 3.3: Parameters derived by Mondao vehicle experiments

Vehicle mass 1200kg

Tyre radius 0.3m

Vehicle inertia 108kg·m2

A 34.7

B 0.289

C 0.01705

Basic gear 4.06:1

1st gear 3.417:1

2nd gear 2.136:1

3nd gear 1.448:1

4nd gear 1.028:1

5nd gear 0.767:1

velocity V , where F is determined by the force generated by the engine Fe and resistance Fr.

There are various types of resistance but these can generally be categorized into forces that

are dependent or independent of the velocity. The resistance could be approximated by the

empirically determined function by [87]:

Fr = A+Bv + Cv2 (3.2)

Assuming that Fe and Fr are both applied to the wheel, the torque generated by the engine

Te, and the engine rotational speed ωe can be converted to torque on the wheel Tw and wheel

rotational speed ωw by:

Tw = TeGbG (3.3)

ωw =
ωe

GbG
(3.4)

where Gb denotes the basic gear ratio and G denotes the selected gear ratio. Accordingly the

equation of motion can be expressed as:

Jω̇w = Tw − FrR (3.5)

= Tw − (AR+BωwR
2 + Cω3

wR
2)

A road load model is then designed based on the equations above, with an additional system

which selects the gear automatically according to the current vehicle speed. This gives a rep-

resentative speed profile of an engine in vehicle and is implemented for dynamical calibrations

in a later chapter. All required parameters are obtained from Mondeo vehicle experiments in

the Powertrain laboratory and listed in Table 3.3.

Figure 3.10 illustrates the constructed Simulink model of the auto-gear selection subsys-

tem. The generated engine torque is transferred into the torque on the wheel according to

equation (3.3) and the angular velocity of the wheel is obtained after the integrator according
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Figure 3.10: Simulink model of the autogear subsystem
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Figure 3.11: Simulated vehicle speed and engine speed in acceleration
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to equation 3.5 and then converted to vehicle speed. The auto-gear selection is carried out

by comparing the current vehicle speed to change speed from 10 mph to 50 mph. A profile of

simulated engine speed and vehicle speed during the acceleration are demonstrated in Figure

3.11. With an engine torque provided as 100 Nm, the vehicle speed increases from 0 to 50

mph within 20 sec. The engine speed increases with the vehicle speed but experiences a

drastic reduction when the gear is switched to a higher gear which is due to the instanta-

neous change of the gear ratio in equation (3.4). The acceleration of the vehicle decreases

when a higher gear is selected. The results are sensible because from equation (3.3) if the

engine torque remains constant, the torque provided at the wheel changes proportionally to

the selected gear.

3.8 Methodology and Research Plan

The proposed methodologies in the following chapters are evaluated by engine experiments.

In Chapter 4, the method of optimal input design is firstly tested on the known systems

that are obtained from the 1.6 Liter Zetec real engine experiments such as the torque model

and AFR model. Non-optimal inputs and optimal inputs designed by conventional design

criteria and the proposed new criterion are applied to the known systems with constraints

and then the identification results e.g. the estimated parameters or the predicted output are

compared to the true values of the known systems in order to validate the improvement on

model accuracy. On the other hand, the 2.0 Liter virtual engine is selected as an unknown

system and an initial model is obtained by system identification using non-optimal inputs.

The optimal inputs designed based on the initial model are applied to the virtual engine

and an updated model is developed accordingly. By comparing the accuracy of the models

obtained in the first and second iteration, the effectiveness of the optimal input design for

the identification of black box systems can be proved.

In Chapter 5, the performance of the proposed simulated error based estimation method

is examined by the identification of simulation models for the virtual engine. The data for

identification is collected from the virtual engine and the traditional prediction error method

and proposed simulation error method are employed respectively for the parameter estimation

with the same model structure. The superior performance of the SEM can be shown if the

corresponding model is more accurate.

In Chapter 6, a basic hardware-based steady state calibration is conducted on the virtual

engine for the optimization of fuel economy with constraints. Operating points at the low-

speed low-load region are selected and local tests are carried out accordingly. The derived

local optimal settings are assembled to form a calibration map and the control performance

of the map is demonstrated.
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In Chapter 7, dynamic models of the torque and AFR responses on the virtual engine

are developed and then an approach of dynamic model-based calibration is proposed. The

numerical optimization is applied to the surrogate models with torque and AFR constraints

in order to find the optimal input-output behavior. A feedforward controller is then de-

signed by an inverse identification of the optimal data and its performance on the virtual

engine is shown. Moreover in order to evaluate the effectiveness of the dynamic model based-

calibration, the performance of the controller is compared to the calibration map obtained in

Chapter 6.

3.9 Conclusions

The experiments on the real engine are setup in order to provide data for identifications of

black box model. A standard 1.6L Zetec engine is coupled with a low inertia dynamometer

which provides a controllable load with extra sensors added for monitoring and collecting en-

gine responses. D-space is utilized to manipulate the inputs of interest and it is advantageous

to allow the EMS to control the rest of the actuators. Data samples are collected each degree

as determined by the angle encoder and the specific resolution can be adjusted as demanded.

The virtual EcoBoost 2.0-Litre GTDI engine is used as a black box model for validating

the proposed methods in this thesis. A WAVE model is assembled according to the detailed

specification of the real GTDI engine and adapted to a WAVE-RT model in Simulink for

ease and speed of execution. Sub-models such as a road load are developed for experimental

requirements. Compared to the real engine, the virtual engine has the advantages of low

experimental time and cost, providing a repeatable process and ease of adaptation. Conse-

quently it is a suitable plant to test the proposed methods which are designed with various

objectives and need to be validated statistically.



Chapter 4

Optimal Input Design for System
Identification

4.1 Introduction

Many industrial applications of nonlinear system identification, such as in aircraft systems

and automotive engine calibration, require high efficiency of data capture, high model pre-

diction accuracy and protection from the exceedence of operational limits. Dynamic design

of experiment (DoE) methodologies are accordingly sought to address these requirements for

nonlinear dynamic experimental testing [34] [38] [88]. In recent decades, three aspects of DoE

have been addressed:

(1) Optimization algorithms

(2) Optimality criteria design

(3) Experimental constraints

In this chapter, firstly a general survey of optimization is given and popular optimization

algorithms for nonlinear optimization are introduced and compared. Section 3 indicates the

approach of applying technologies for optimization to input design. A systematical procedure

of optimal input design with constraints is presented. The generation and selection of non-

optimal inputs for initial model estimation and the obtained original model are discussed in

section 4 and 5. In section 6, two well-known criteria for minimization of parameter covari-

ance, A-optimum and D-optimum, are applied and tested. A new criterion which weights

the parameter variance by the square of output sensitivity terms are proposed as a further

development of A-optimum methods and evaluated and found to be effective. In criteria for

output prediction, a proposed criterion based on a simplified calculation of output covariance

is illustrated to be more effective than I-optimum and G-optimum. Since the criteria with

regard to parameter or output covariance are all expectation based, the effectiveness of op-

54
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timal inputs is validated statistically. Applications with additional practical constraints and

influence of disturbance are discussed in the end.

4.2 Methodology of Optimization

Optimization procedures are means of selecting a set of elements from the feasible candidate

sets with the purpose of optimizing some characters of a system. Mathematically, a general

optimization problem refers to maximizing or minimizing the value of a scalar objective

function by searching for appropriate values of arguments in the feasible region. It has the

form of:

argmin f(x) (4.1)

x ∈ S

where f(x) is the objective function, x is the argument and S is the feasible region. The

feasible region can be restricted by equivalence and inequivalence constraint functions:

ai(x) = 0, i = 1, 2, . . . ,m (4.2)

bi(x) < 0, i = 1, 2, . . . , n

Optimization problems can be solved either by direct search or indirect search methods.

Direct search methods only utilize the values of objective function and constraint function in

each iteration. In the feasible space of arguments, variables move from the current position

to nearby positions in all directions with an adjustable step size until a smaller function

value is founded. Direct search is very suitable if the objective function and constraints

function is extremely complex so that an analytical expression of functions is not available.

However, it is relatively difficult to converge and a bigger computing burden results. Indirect

search algorithms often determine the step size and direct the search with the help of a

calculated local gradient. However, the objective function and constraint function should be

differentiable or can be approximated as differentiable functions.

Unconstrained optimization and constrained optimization

The unconstrained optimization problem is a simplified case where the argument x is not

restricted. Many effective indirect search algorithms such as deepest decent algorithms,

Newton algorithms and conjugate gradient algorithms have been developed for unconstrained

minimization. In the case of constrained minimizations, the optimization problem is converted

into an unconstrained minimization using various types of penalty function or approximation

and is then treated by appropriate unconstrained algorithms.
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Linear optimization and nonlinear optimization

If the objective function and constraint are both linear, i.e. satisfying:

f(ax1 + bx2) = af(x1) + bf(x2) (4.3)

the optimization problem is called a linear optimization (programming) and given as:

min
x

aTx (4.4)

subject to : bTi x = ci, i = 1, 2, . . . ,m

dTi x < ei, i = 1, 2, . . . , n

otherwise it is recognized as a nonlinear optimization. Many efficient and reliable algorithms

have been developed for linear programming, e.g. primal-dual interior-point method for large-

scale linear programming and the active-set algorithm or simplex algorithm for medium-scale

problems. Nonlinear optimization consists of convex and non-convex optimization. Figure

Figure 4.1: Schematic of the convex (top) and nonconvex (bottom)optimization

4.1 shows examples of convex and non-convex objective functions. A general optimization

problem of the form of equations (4.1) and (4.2) is considered to be convex if the functions

f, a1, ..., am, b1, ...bn : Rn → R are convex. Since variables in a practical optimization problem

could be numbered in hundreds, it is generally too difficult to plot the figure with respect to

variables and function value. However, the convexity can be evaluated mathematically. A
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function is convex if for any two point x1 and x2 in the feasible region and any a, b ∈ [0, 1],

the following inequality is satisfied:

f(ax1 + bx2) ≤ af(x1) + bf(x2) (4.5)

where a + b = 1. In a convex minimization, any local minimum (if it exists) must be a

global minimum and the global minimum must exist if the functions are strictly convex.

Technologies for convex optimization are not as mature as for linear optimization, however

algorithms, such as the interior point algorithm, have proved to be effective in practice.

Non-convex optimization which involves multiple local minimums is the most difficult

problem in optimization and there is not an effective algorithm that can generally solve

all non-convex optimizations. Compromises have to be accepted in methods that attempt to

solve non-convex problems. Local optimization methods seek an objective function value that

is optimal in a neighbouring area rather than in the whole feasible space. Local optimization

is relatively fast but is done at the expense of losing the global accuracy and reliability.

The result of local optimization is considerably affected by the initial values of variables and

information concerning the difference in magnitude between local and global optimum is not

provided. In global optimization, analytical algorithms are often not applicable. Direct search

and genetic algorithms can be used but require a very long experimental time. Although

a global optimum still cannot be guaranteed, global algorithms have a stronger ability to

avoid converging to a local optimum. Therefore the selection of methods for non-convex

optimization is actually a compromise between accuracy and efficiency.

4.3 Optimization Algorithms

The objective of optimization is to approach the optimum value iteratively from the start

point. Optimization algorithms have been developed by various methods of choosing direc-

tion and step length. Popular optimization algorithms for local and global optimization are

surveyed as follows:

Trust region reflective algorithm

In an unconstrained minimization problem minimizing f(x), optimization algorithms seek a

proper step s from the current position x by various approaches for a smaller updated function

value f(x+ s) < f(x). In the trust region reflective (TRR) algorithm, the objective function

f is approximated by another function g(x), which is often quadratic, within a subspace of

the region of f around the current position x. This subspace is named the trust region R.

Another minimization problem thus arises which is to find the minimum value of g(u) within
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the trust region:

min
u

q(u), u ∈ R (4.6)

If f(x+ u) < f(x), the current position is updated to x+ u and the trust region is enlarged

and the procedure is repeated until the function value converges; If f(x + u) ≥ f(x), the

current position is not moved and the trust region is contracted and the step in equation

(4.6) is repeated [89].

Sequential quadratic programming

Sequential quadratic programming (SQP) is one of the most popular methods for constrained

optimization. Considering the general optimization problem in equation (4.1), the Lagrangian

function given by:

L(x, λ, σ) = f(x)− λTa(x)− σT b(x) (4.7)

where λ and σ are Lagrange multipliers. The principle idea of SQP is to solve this problem

by working out a sequence of approximated subproblems. At the current position xk, a

subproblem is formed by a quadratic approximation of the Lagrangian function:

min
x,λ,σ

L(xk, λk, σk) +∇L(xk, λk, σk)
Td+

1

2
dTHkd (4.8)

subject to : a(xk) +∇a(xk)
Td < 0

b(xk) +∇b(xk)
Td = 0

where Hk is the Hessian of the Lagrangian function and d is the search direction. The solution

of the subproblem is used to find the position of the next point xk+1. This iterative process

is done in such a way that the sequence x converges to a local minimum [90].

Interior point algorithm

The interior point (IP) algorithm is a method for linear and nonlinear convex optimization.

It translates the general form of equation (4.1) into an equality constrained form given by:

min
x,s

f(x, s) = min f(x)− µ
∑

ln(si) (4.9)

subject to : a(x) = 0, b(x) + s = 0

where
∑

ln(si) denotes a barrier function and the slack variable si is a positive value for

restricting the logarithmic term. µ denotes a barrier parameter. Since µ converges to ze-

ro, the solution of equation (4.9) will approach the solution of equation (4.1). Therefore

an optimization problem with equality and inequality constraints is reduced to an equality

constrained problem. Both the Newton and conjugate gradient methods can be utilized to

solve the approximated equality optimization problem [91].
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Pattern search

The Pattern search (PS) algorithm is one of the popular direct search methods which can

be used in functions that are not continuous or differentiable. This algorithm approaches an

optimal solution iteratively without any assistance of the gradient or higher order derivative of

the objective function. In each iteration, directions of search and corresponding sequencing,

called patterns, are decided firstly. The variables move from the current position towards

the first determined direction with a specified step. After that the function value at the

updated position is computed and if the obtained value is smaller than the previous one,

it is recognized as a successful poll. The new position becomes the current position of the

next iteration and the step size is doubled. If the poll failed, variables will be moved along

other available directions in order with the same step size and then with a reduced size until

a successful poll occurs. Alternatively, pattern search can calculate the function values in

all feasible directions then move to the position where the function value is the smallest.

However as the feasible directions increase exponentially with the number of variables, the

complete directional search only fits for optimizations with small amount of variables [92].

Although pattern search may not be as efficient as other gradient based deterministic

algorithms, it has a unique merit. In non-convex optimization, gradient based algorithms

converge to a local minimum because the reposition of variables is guided by the gradient

and the gradient approaches zero at the local minimum then the process ends. However, the

reposition of variable of pattern search is determined by an adjustable step size of arguments,

which means the variable can move from one cone to another, provided that the function

value at the position on the new cone is smaller than the current value. Pattern search hence

has a capability of giving a global optimum.

Genetic algorithm

The genetic algorithm (GA) is inspired by the evolution theory of Darwin. It is capable

of solving local optimization and global optimization based on the procedure of natural

selection. Unlike most gradient-based deterministic algorithms, the genetic algorithm can

be used to solve problems which have discontinuous or undifferentiable objective function.

As a stochastic algorithm, it generates a population of solutions at each iteration and selects

the best one, while most other stochastic methods operate on a single solution. The procedure

of the genetic algorithm can be briefly described as follows [93]:

Initialization: Initially a random population, composed of many individual solutions, is

produced as parents of the first generation. A proper size of the population is essential to

the optimization result since an extremely large size will occupy most system resource and

an insufficient one may omit the global optimum. Generally the random production takes
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place in the entire feasible region, whilst when prior knowledge is available, the production

of population can be manually restricted to a particular sub-region for higher probability of

finding the optimal value. The quality of initial generation is improved correspondingly.

Selection: In each generation, all individual solutions are measured by a fitness function.

The solutions which have better fitness have stronger probability to be selected as “parents”

to breed the next generation. However, the selection is not solely guided by the fitness

because it may lead the algorithm to quickly converge to a local minimum rather than a

global minimum if low fitness solutions are completely omitted.

Regeneration: The selected individual solutions in the current generation are used to

produce new solutions for the next generation, by following the rules of crossover and mutation

[94]. The new generation resulting from the process of selection, crossover and mutation is

different from the initial generation and is likely to have better fitness because the individual

solutions are produced by the best “parents”. The process of selection and regeneration

continues until a stopping criterion is satisfied.

Simulated annealing

The simulated annealing (SAN) algorithm belongs to the family of stochastic probabilistic

methods. It is inspired by annealing in metallurgy which minimizes the internal energy by

means of heating and slowly cooling the metal.

Initially, a state point S is randomly generated in the feasible space and a temperature

T is given. Then a new state S′ is produced whose position is based on a probability distri-

bution of the temperature and the corresponding value of the objective function is updated

subsequently. The increment of objective function value from S to S′ is calculated and the

new point is accepted if it causes a lower objective. Nevertheless, even if it raises the ob-

jective, S′ can still be accepted with a certain probability in order to avoid approaching a

local minimum. In the next iteration, the temperature is adjusted according to the annealing

schedule and a similar process is implemented to the new state point S′ or S if no point is

accepted [95].

The simulated annealing algorithm is independent of the initial state. Theoretically it

converges to the global optimum with the probability of 1, but the demanded experimental

time to achieve a good probability of SAN is often extremely long and can even exceed that

for a full search in the entire region.

The three local optimization algorithms, the TRR, SQP and IP all require a second

derivative of the Lagrangian function. These second variational methods are claimed to

have superior convergence rate than first variation methods such as the deepest descent and
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Table 4.1: Features of optimization algorithms

TRR IP SQP PS GA SAN

Global optimization
√ √ √

Input bound
√ √ √ √ √ √

Linear equality constraints
√ √ √ √ √

Nonlinear constraints
√ √ √ √

Gradient based
√ √ √

Direct search
√

Stochastic Algorithm
√ √

conjugate gradient method [96]. It is also worth noting that although global optimization

algorithms have the capability of finding the global optimal value, they can be easily trapped

at a local optimum. All of the global algorithms compromise between the convergence rate

and the extent of the global optimum. Therefore parameters of global algorithms should

be selected appropriately in different applications. In complex practical work, although no

algorithm can guarantee a global optimum within a finite time, it is still favourable for a

solution which satisfies the specific requirements to be found without knowing the existence

of a better solution.

Optimization algorithms mentioned above are provided as Matlab functions by the MAT-

LAB Optimization toolbox and are utilized in the optimal input design work in this thesis.

Characteristics of the algorithms are listed as in Table 4.1. The toolbox is able to approxi-

mate the gradient as necessary and the stopping criteria are given ready for the specification

of users. In this thesis, the specification of stopping criteria in a certain optimization problem

is kept unchanged between different algorithms in order to fairly compare their effects.

4.4 Iterative Optimal Input Design with Experimental Con-
straints

An iterative procedure of constrained optimal input design is illustrated in Figure 4.2. In the

first iteration, an initial model needs to be identified by non-optimal inputs and corresponding

outputs collected from the system. The constraints in the current iteration can initially be

conservative and then gradually approach the ultimate experimental constraints in subsequent

iterations. The initial conditions for optimization, such as the initial values of inputs can be

adapted from the non-optimal signals. The objective function and optimization algorithm

used for all iterations need to be designed appropriately for the accuracy of the optimization

and the efficiency of computation. Generally, the optimization algorithm is selected according

to the convexity of the function and available time for experiment. Resulting optimal inputs

will be applied to the system and another model identified subsequently. The model will be
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updated and the procedure is repeated until a model with acceptable goodness is determined

using optimal signals obtained with non-conservative constraints.

Figure 4.2: Flow chart of the iterative process of optimal input design

4.5 Input Selection for Initial Identification

The method of optimal input design and system identification should be conducted iteratively

for the sake of improving the model quality gradually. The selection of inputs for the initial

identification hence becomes extremely important in order to give a good start which may

reduce the number of iterations processed for an acceptable model. Since any prior knowledge

of a black box model is not generally available initially, the input for initial identification

should be able to excite the dynamics of most systems. Commonly used inputs are introduced

as follows.
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4.5.1 White Noise Signal

Figure 4.3: ACF Ru(L) and PSD Su(ω) of an ideal white noise

A white noise signal is a random signal with zero mean, an impulse like auto-correlation

function (ACF) Ru(L) and a constant power spectral density (PSD) Su(ω) as shown in Figure

4.3. Mathematically it can be expressed as:

µu = E[u] = 0 (4.10)

Ru(L) = σ2δ(L) (4.11)

Su(ω) = σ2 (4.12)

δ(L) =

{
1 when L = 0
0 when L ̸= 0

}
(4.13)

where L denotes the time delay of the signal and ω denotes the frequency. A PSD is the

Fourier transform of the ACF, which presents how the power of a signal is distributed with

frequency. For systems without prior frequency domain knowledge, a white noise signal could

be an ideal identification signal since it has a flat PSD where the power of input is evenly

distributed at any frequency.

An ideal white noise signal is however not realizable in practice. In this thesis a uniformly

distributed random number (UDRN) block is used to approximate a white noise signal. It

has the merit that the maximum and minimum value of the signal can be defined according

to the experimental input amplitude constraints. Figure 4.4 shows a simulated discrete white

noise signal and corresponding ACF. The main features of an ideal white noise signal are

clearly demonstrated though values of autocorrelation at non-zero delay points are slightly

disturbed.
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Figure 4.4: Simulated white noise and ACF

4.5.2 Pseudo Random Binary Signal

A discrete Random binary signal (RBS) is a stochastic signal which has 2 levels ±σ and the

value switches from one level to the other at any time interval λ. The AFC and PSD of an

RBS is given as follows:

Ru(L) =

{
σ2
(
1− |L|

λ

)
when |L| < λ

0 when |L| ≥ λ

}
(4.14)

Su(ω) = σ2λ

(
sinωλ

2
ωλ
2

)2

when 0 ≤ |ω| ≤ π

T0
(4.15)

where T0 is the sample time. Figure 4.5 depicts a typical RBS and its ACF. The ACF and

Figure 4.5: Discrete random binary signal and corresponding ACF

PSD of a discrete random binary signal can be very similar to those of a white noise signal if

the time interval is infinitely small. A unique advantage of RBS is that it delivers the largest
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amplitude density for any amplitude-constrained input. It is considered more informative

than other signals for linear system identification since the constrained amplitude range is

utilized in the most efficient way.

Figure 4.6: A Simulink generator of PRBS

Figure 4.7: ACF of PRBS

An ideal RBS is completely stochastic therefore it cannot be generated by computers

which are deterministic devices. A periodic signal, pseudo random binary signal (PRBS)

which has a very similar ACF to RBS is often used in practical work. PRBS can be generated

by the well-known means of a shift register circuit [34] and the digit of the register determines

the length of period. In this thesis a PRBS is converted from a random number signal by

restricting the random value to two pre-determined levels as shown in Figure 4.6. The random

number block generates a zero mean signal as a reference signal then the 2 level value can

be selected according to the result of comparing the reference signal to zero. For a 32 bit

system, the length of the period of the generated random number is 232 so that the period of

the PRBS is sufficient long and the ACF of the simulated PRBS in Figure 4.7 is very similar



CHAPTER 4. OPTIMAL INPUT DESIGN FOR SYSTEM IDENTIFICATION 66

to a pure RBS and white noise.

4.5.3 Amplitude-modulated Pseudo Random Binary Signal

For nonlinear system identification, perturbation signals should have multi-level values over

the input range in order to excite the nonlinear dynamics, thus the amplitude of PRBS

(APRBS) needs to be modulated. In a difference from white noise signals, the number of

levels of APRBS is pre-defined. However with increasing signal levels, it gradually approaches

white noise and the amplitude density decreases correspondingly. The whole input range is

divided equidistantly and a random number signal is generated to select the pre-determined

level at each time.

Figure 4.8: A Simulink generator of APRBS

Figure 4.8 shows an APRBS generator assembled in Simulink and the APRBS produced.

The entire range of the random number is split equally into segments and values of multi-level

are determined accordingly then APRBS thus produced.

4.5.4 Random Walk Signal

In practical experiments where rate constraints are required, a white noise signal is not appro-

priate because the value of change in the input is generated randomly. Although amplitude

levels of APRBS are pre-determined, the value is still selected stochastically so that it cannot

prevent a drastic step from the current level to the next. A random walk signal is composed of

a sequence of discrete steps with fixed step length, whilst the direction of the step is stochas-
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tic. Compared to other signals, a random walk signal sweeps over the input range slowly due

to the fixed step length so that the amplitude density is relatively low. It is however not a

serious drawback if the data sequence for identification is sufficiently long.

Figure 4.9: A Simulink generator of amplitude constrained random walk signal

A random walk signal and its generator is shown in Figure 4.9. The random walk signal

is generated by an initial value and an increment in each step. The step size is fixed and the

sign of increment is randomly chosen. To constrain the amplitude of the signal in a desired

range, the sign of the next increment is changed by reversing the direction if the value of the

signal at the current step exceeds pre-determined boundaries.

These types of signals are recommended for initial estimations of unknown systems. In

engine calibration, the selection of signal for initial engine model identification should be

determined by the behavior of the system in the interested operating region, for example a

torque model in the idle speed region or an AFR model in the high speed high load region.

If the system behavior is expected to be linear, a PRBS signal can be employed because it is

constrained in amplitude and has the largest amplitude density for any amplitude-constrained

input [34]. However it is not recommended to identify a nonlinear system since it may cause

a problem in the identifiability [36]. Comparing to a PRBS signal, a white noise signal has

a smaller amplitude density. It is generally used to identify a nonlinear system or a system

without any prior knowledge because it has multi-level values over the input range to excite
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the nonlinear behaviours of the system. A random walk signal is used if there is a practical

rate constraint on the inputs. To overcome the disadvantages of PRBS and white noise signal,

an APRBS signal can be selected to identify the system and the multi-level values of this

signal can be adjusted to give a larger amplitude density without losing the identifiability.

4.6 MISO Engine Model Identification

The system to be identified is a 3×1 nonlinear MISO torque model of a 1.6 Litre port fuel

injection Zetec engine with FPW (u1), ABV (u2) and engine speed (u3) as inputs. In order

to avoid very high frequency noise, the inputs for the nonlinear torque model identification

were collected every stroke (180◦). During the experiment, the other controllable parameters

are fixed, e.g. the SA is fixed to be 20◦ before TDC.

As discussed above, white noise signals are suitable to perturb ABV and FPW in order

to excite the nonlinear dynamics. Both amplitude and time interval should be considered to

generate a proper white noise test signal. The amplitude of inputs should be sufficient for

a representative torque response in the desired operating space without engine stall. In this

engine experiment, input amplitude constraints have been established as:

2000µs < u1 < 6000µs (4.16)

40% < u2 < 60%

and the resulting engine speed (u3) for system identification is between 1000 to 2000 RPM.

In the engine experiment, the D-space hardware can read signals from the PC and quickly

adjust engine inputs such as FPW, ABV and SA to be demanded values. However the engine

speed cannot be controlled by the same approach because it is actually a consequence of

many other parameters. Therefore the engine is connected to a low inertia dynamometer

and the load applied by the dynamometer is used to restrict the engine speed to the desired

range.

For the purpose of reducing the required experimental time for the optimal input design

and statistical validation, the data length is down sampled into 100 points. The IV method is

employed for parameter estimation because data collected from the engine might be corrupted
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by a correlated disturbance. The selected model structure is shown as follows:

y(t) = θ1 + θ2u1(t) + θ3u1(t)u2(t− 10) + θ4u1(t)u3(t) + θ5u1(t)u3(t− 3) (4.17)

+θ6u1(t− 10)u2(t− 10) + θ7u1(t− 10)u3(t− 9) + θ8u1(t− 10)2 + θ9u2(t− 10)2

+θ10u2(t− 10)u3(t− 9) + θ11u3(t)
2 + θ12u3(t− 2)u3(t− 4) + θ13u2(t− 10)u3(t)

+θ14u1(t− 10) + θ15u3(t)u3(t− 5) + θ16u3(t− 1)u3(t− 10)

+θ17u2(t− 10)u3(t− 5) + θ18u3(t− 2)u3(t− 9) + θ19u3(t− 2)u3(t− 6)

+θ20u1(t− 6)u2(t− 7) + θ21u1(t− 6)u1(t− 10) + θ17u2(t− 10)u3(t− 5)

+θ22u1(t− 6)u1(t) + θ23y(t− 10)

z(t) = y(t) + ϵ(t)

The estimated parameters are:

θ = [θ1, θ2, ...θ23]

= [64.17,−0.025, 0.062,−4.06× 10−7, 2.73× 10−6,−0.0069, 8.5× 10−7, 1.54× 10−6,

−327.7, 0.0016,−1.52× 10−5,−4.22× 10−8, 0.069,−0.014,−1.56× 10−6,

−2.25× 10−6, 0.029, 5.67× 10−7, 6.4× 10−7, 0.0021, 8.71× 10−7,−1.36× 10−6, 0.15]

with cov(ϵ) = σ2 = 80. The sample time is taken as 0.1 sec.

Conventional methods of optimal input design have been developed with an assumption

that the model structure of the real system is known. However, a true model structure of

the engine mechanisms discussed in this thesis is not available. Therefore the original model

obtained by initial identification is considered as the “real” system and is used to test the

optimal input for the purpose of proving that the optimal signal is effective. In later sections

the optimal signal is implemented on a real system with unknown structure to demonstrate

its suitability for industrial applications.

4.7 Optimal Input Design for Improved Parameter Estima-
tion

For white box model where the model structure of the real system is known, it is the param-

eter estimation that determines the accuracy of the identified model. The accuracy of the

estimated parameters can be expressed in terms of its statistical property such as covariance

and bias. In most of the research on optimal input design, the optimization is simplified to

minimize the parameter covariance because it is assumed that an unbiased efficient estimation

method is used.



CHAPTER 4. OPTIMAL INPUT DESIGN FOR SYSTEM IDENTIFICATION 70

4.7.1 Information Matrix and Cramor-Rao Bound

From equation (2.4), the information matrix is given by:

M ≡ EY |θ

[(
∂ ln p(Y |θ)

∂θ

)(
∂ ln p(Y |θ)

∂θ

)T
]
= −E

(
∂2 ln p(Y |θ)

∂θ∂θT

)
The log-likelihood function is in the form:

ln p(Y |θ) = − 1

2σ2

N∑
t=1

ϵ(t)T ϵ(t)− N

2
ln |σ| − Nn0

2
ln(2π) (4.18)

where ϵ(t) = z(t) − y(t). The last two terms in equation (4.18) are independent of the

parameter θ thus the first and second gradient of the likelihood function are obtained as [38]:

∂ ln p(Y |θ)
∂θ

=
1

σ2

N∑
t=1

∂yT (t)

∂θ
ϵ(t) (4.19)

∂2 ln p(Y |θ)
∂θ∂θT

= − 1

σ2

N∑
t=1

∂yT (t)

∂θ

∂y(t)

∂θ
+

1

σ2

N∑
t=1

∂2y(t)

∂θ∂θT
ϵ(t) (4.20)

and the entries of these vectors are:

∂ ln p(Y |θ)
∂θi

=
1

σ2

N∑
t=1

∂yT (t)

∂θi
ϵ(t) i, j = 1, 2, ..., p (4.21)

∂2 ln p(Y |θ)
∂θi∂θj

= − 1

σ2

N∑
t=1

∂yT (t)

∂θi

∂y(t)

∂θj
+

1

σ2

N∑
t=1

∂2y(t)

∂θi∂θj
ϵ(t) (4.22)

The simplification of the second gradient can be made by neglecting the second term in equa-

tion (4.20) which is computationally expensive to obtain. Therefore the Fisher information

matrix is simplified to [38]:

M = −E

(
∂2lnp(Y |θ)

∂θ∂θT

)
≈ 1

σ2

N∑
t=1

(
∂y(t)

∂θ

)T (∂y(t)

∂θ

)
(4.23)

where N denotes the length of discrete data set. To determine the data length, the allowable

experimental time and the asymptotical property of the Cramer-Rao lower bounds should

be considered. The low bounds decrease with increasing data length, however with a fixed

sample time, collecting more data requires a large amount of experimental time and a heavy

computing burden in the stage of optimization. The information matrix is calculated over

the entire data sequence. Therefore if any scalar function of M is selected as the criterion for

comparison in order to compare the effectiveness of different inputs, the data length should

be kept the same.

The goodness of the information matrix can be measured statistically as [41]:

J = Eθϕ(M) (4.24)
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where ϕ is a scalar function of M . Practically this criterion can be simplified by evaluating

ϕ(M) at suitably chosen parameter values.

Input design with a constant power as input constraint has been explored by many

authors [97] [98] [99]. Nevertheless, since the constant power can be obtained by various

combinations of data length and maximum allowable input amplitudes, it is not suitable

to implement the constant power as the only input constraint if a scalar function of the

information matrix is used as criterion. All the optimal inputs designed in this thesis have

the same data length and input amplitude constraints as a basic limit.

According to equation (2.6), the output sensitivity equations are obtained as:

∂y(t)

∂θ1
= 1 + θ23

∂y(t− 10)

∂θ1
(4.25)

∂y(t)

∂θ2
= u1(t) + θ23

∂y(t− 10)

∂θ2
∂y(t)

∂θ3
= u1(t)u2(t− 10) + θ23

∂y(t− 10)

∂θ3
...
∂y(t)

∂θ22
= u1(t− 6)u1(t) + θ23

∂y(t− 10)

∂θ22
∂y(t)

∂θ23
= y(t− 10) + θ23

∂y(t− 10)

∂θ23
∂y(1)

∂θ
= [0 0 . . . 0]T

Equation (4.23) indicates that the inputs have a nonlinear influence on M , regardless of

whether the original model is nonlinear or not because the matrix is nonlinear of the output

sensitivity.

The Cramer-Rao law states that the variance of any unbiased estimator is no smaller

than M−1:

cov(θ̂) ≥ M−1 (4.26)

where the theoretical lower limit for the covariance of estimated parameters will be achieved

if an unbiased efficient estimator is utilized. In equation (4.26), the diagonal elements of

M−1, Sjj , represent the achievable minimum value of parameter variances and the square

roots of the elements are called Cramer-Rao lower bounds which are the standard deviations

of estimated parameters:

S(θ̂j) =
√
Sjj (4.27)

The Cramer-Rao lower bound depends on the inputs and a pre-determined model structure

with parameters but is independent of the parameter estimation method. Therefore if a priori

knowledge of the system is available, it is worthy of using optimal input design to minimize

the theoretical minimum variance before estimating the parameters.
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4.7.2 Statistical Properties of Parameter Variance

In equation (2.29), the output is disturbed by a white noise term. Because of the existence of

noise in the output, results of parameter estimation will be different even if the same inputs

are applied to the system. Subsequently the parameter variance which is affected by the

input, noise and estimation method is used to measure the error between the true parameter

and estimated parameter in a probabilistic way.

Figure 4.10: Normal distribution of estimated parameter θ̂j

Assuming the output of the system follows a normal distribution, then Figure 4.10

demonstrates the relationship between the true parameter, the estimated parameter by OLS

and the parameter variance [41]. The square root of parameter variance
√

Sjj represents the

standard deviation of the estimated parameter and it is shown that the estimated parameter

should be in this window with a probability of 68%. A smaller standard deviation indicates

that the estimated parameter has a higher probability of approaching the true parameter.

The optimal input which minimizes the parameter variance therefore leads to probably more

accurate parameter estimation results than non-optimal inputs.

4.7.3 Design of A-optimal Criterion

Minimizing the lower bound of parameter covariance corresponds to maximizing the infor-

mation matrix which can be measured by various criteria. The A-optimal criterion is a

traditional criterion which seeks to minimize the sum of variances of the estimated parame-

ters. It is given by minimizing the trace of the inverse of the information matrix in the form

of:

JA = tr(M−1) (4.28)
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Table 4.2: Parameter variance by UDRN input and optimal input

cov(θ̂)UDRN cov(θ̂)op
θ1 0.000282 0.000108

θ2 0.000284 0.000109

θ3 0.000285 0.000108

The objective function can easily be proved to be non-convex according to equation (4.5)

using two different PRBS inputs.

Example 1

Consider a linear dynamic SISO system:

y(t) = θ1u(t− 1) + θ2u(t− 2) + θ3u(t− 3) + ϵ(t) (4.29)

where ϵ ∼ N(0, 1) and θ = [35.4, −0.08, 2.6]. As a basic example for demonstrating optimal

input design, the true parameter of the system is assumed known and is chosen as the initial

parameter values for the design. Thereby the iterative procedure is only carried out once.

Standard optimal designs with initial parameter estimation and more iterations are shown in

later sections.

JA in equation (4.28) is selected as the objective function and the information matrix is

given by:

M =
1

σ2

N∑
t=1

 u2(t− 1) u(t− 1)u(t− 2) u(t− 1)u(t− 3)
u(t− 1)u(t− 2) u2(t− 2) u(t− 2)u(t− 3)
u(t− 1)u(t− 3) u(t− 2)u(t− 3) u2(t− 3)

 (4.30)

The desired optimal input is required having a data length of 100 and an amplitude constraint

of [-10,10]. Figure 4.11 shows the UDRN signal which is used as the vector of initial values of

variables in the optimization and the obtained optimal input. The optimal input looks similar

to a PRBS signal since most points of this input are very close to the amplitude limits. It

indicates that a binary signal is considered optimal to identify a linear system, as suggested

by Ljung [34]. For comparison, their parameter variance evaluated by the information matrix

is shown in Table 4.2.

The A-optimal design is proved to be effective since the parameter variance derived from

the A-optimal input is considerably smaller, less than 40% of the one derived from the UDRN

signal. However, in this example the magnitudes of the diagonal elements of M have a similar

scale hence the defect of un-weighted A-optimal design is not exposed. In the next example,

the A-optimal design is applied to a more complicated model. The disadvantage caused

by different scales of the output sensitivity equations in M , is discussed and an effective

weighting function is proposed.
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Figure 4.11: UDRN input and optimal input

Example 2

In this example, optimal inputs are designed for the MISO engine model mentioned in Section

4.6. The system is given as the original model in equation (4.17). Bounds of inputs are set as

in equation (4.16) and no other linear or nonlinear constraints are implemented. The number

of variables is 300 in total, 100 for each input and the initial values of the variables are given

by a UDRN input signal.

Various optimization algorithms are tested and the convergence rate is shown in the

following figures. Figure 4.12 shows the convergence rate of 3 local optimization algorithms

in 50 iterations. The A-optimal criterion is selected as the objective function and the Y

axis denotes the value of objective function which is decreasing in iterations. The time

required for algorithms to generate 50 iterations are approximately 120 sec. The convergence

rates of trust-region algorithm and SQP algorithm are very similar and their function values

drop drastically in the 2nd iteration. A reasonable explanation could be that a quadratic

approximation is made of the Hessian of the Lagrangian function and then a QP subproblem is

generated accordingly in both algorithms. The SQP is generally preferred as it is compatible

with nonlinear constraints. The interior point algorithm exhibits a more smooth convergence

and reaches the same value of objective function as the others after 30 iterations.

Because of the significant distinctions in principles of the global algorithms, e.g. direct

search or indirect search, deterministic or stochastic, the efficiencies of these algorithms eval-

uated against the number of iterations might not be convincing. Based on the tests of the
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Figure 4.12: Objective function value by local algorithms

numerical optimizations with various algorithms in this thesis, it is found that hundreds of

iterations can be generated in a second by the simulated annealing algorithm but very little

reduction of the value of objective function obtained in each iteration; the genetic algorithm

with a large population size may take minutes for each iteration but the improvement of

function value can be remarkable. Moreover, the number of solutions obtained in each iter-

ation is also different. Therefore the optimization results of global algorithms are illustrated

separately.

Figure 4.13 shows the results of the SAN algorithm in 6000 iterations which cost about

5 minutes. The lower figure shows the current function value of each iteration. In the first

iteration, the temperature is 100 degrees at which point the function value is the largest.

With decreasing temperature, the function value reduces accordingly and converges until the

temperature reaches 0 degrees. The first annealing is finished in 300 iterations and then the

process is carried out again. The upper figure shows the best function value from the start

to the current iteration. It can be seen that this algorithm converges very quickly in each

annealing and a small function value can be expected in the first annealing. Nevertheless it

takes much more time to obtain a smaller value with the increment of iterations.

Figure 4.14 shows the convergence rate of the GA algorithm in generations. In each

generation, 20 individual solutions are produced in random positions. The mean and best

function values in each generation are plotted and the mean value converges to the best

value asymptotically. Figure 4.15 shows the result of mesh size and function value of the PS

algorithm. In each iteration of this direct search algorithm, the step length is specified as the

mesh size but there are many feasible step directions which are determined by the number of

variables. Therefore the function value in the figure represents the best value at the current



CHAPTER 4. OPTIMAL INPUT DESIGN FOR SYSTEM IDENTIFICATION 76

Figure 4.13: Current function value and best function value by simulated annealing

iteration. The function value converges to the optimum with the regulated mesh size by the

expansion and contraction factor. The optimal value of objective function can be further

reduced by means of using a longer experiment time or by adjusting algorithm parameters

appropriately, e.g. mesh size and population size.

In this thesis, since various practical experimental requirements are considered, the ob-

jective function will be subjected to different types of constraints which tend to compromise

the convexity. Additionally, the experiments are expected to be repeatable for the validation

of results. Therefore the pattern search algorithm is selected because it is a global opti-

mization algorithm which is capable of finding the global optimal value and moreover this

algorithm is deterministic so that the experiment results can be exactly reproduced with

the same initial conditions. Other global optimization algorithms such as the simulated-

annealing and genetic algorithm are not employed since a stochastic population is involved,

which makes the experiment unrepeatable. Table 4.3 shows the objective function value (JA)

of a UDRN signal and the optimal input. The diagonal elements of M−1 represent the low

bounds of parameters as shown in column 4 and 6 of Table 4.4.

Table 4.3: Objective function value (A-optimal criterion) of UDRN input and optimal input

JA = tr(M−1)

UDRN signal 4944.02

Optimal signal 1671.8
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Figure 4.14: Objective function value by genetic algorithm

Figure 4.15: Objective function value and mesh size of pattern search
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Table 4.4: Estimation results by UDRN input and A-optimal input

θ θ̂UDRN Lower bound (b1) θ̂Aop Lower bound (b2) b2/b1
1 64.17 77.27 23.16 45.03 16.46 0.71
2 -0.025 -0.034 0.0056 -0.0133 0.0095 1.70
3 0.062 0.070 0.0099 0.0364 0.0167 1.69
4 -4.06×10−7 1.31×10−6 2.39×10−6 7.90×10−7 2.06×10−6 0.86
5 2.73×10−6 2.82×10−6 7.41×10−7 2.31×10−6 7.97×10−7 1.08
6 -0.0069 -0.0034 0.0093 0.0103 0.0163 1.75
7 8.50×10−7 2.42×10−6 1.85×10−6 -1.01×10−7 1.95×10−6 1.05
8 1.54×10−6 1.63×10−6 6.32×10−7 6.887×10−7 8.81×10−7 1.39
9 -327.70 -135.99 94.47 -247.13 54.77 0.58
10 0.0016 -0.027 0.0167 0.0103 0.0185 1.10
11 -1.52×10−5 -1.24×10−5 7.07×10−6 -2.09×10−5 1.15×10−5 1.62
12 -4.22×10−8 3.89×10−7 1.69×10−6 -4.26×10−7 2.26×10−6 1.34
13 0.069 -0.0127 0.041 0.064 0.0523 1.27
14 -0.014 -0.0156 0.0074 -0.013 0.0115 1.55
15 -1.56×10−6 1.40×10−5 8.20×10−6 8.54×10−6 9.82×10−6 1.20
16 -2.25×10−6 -3.63×10−6 1.61×10−6 -1.72×10−6 1.73×10−6 1.07
17 0.029 -0.004 0.0241 -0.0068 0.0321 1.33
18 5.67×10−7 7.53×10−6 2.99×10−6 -3.25×10−7 4.19×10−6 1.40
19 6.4×10−7 -2.35×10−6 1.89×10−6 1.29×10−7 2.24×10−6 1.19
20 0.0021 0.0017 0.0016 0.0039 0.0027 0.96
21 8.71×10−7 4.20×10−7 3.98×10−7 8.34×10−7 4.09×10−7 1.03
22 -1.36×10−6 -1.24×10−6 3.69×10−7 -1.56×10−6 3.72×10−7 1.01
23 0.16 0.0928 0.0727 0.0863 0.0983 1.35

The UDRN input and obtained optimal input are applied to the original model in e-

quation 4.17 and 2 sets of input-output data for identification are recorded. With the pre-

determined model structure, the results of OLS parameter estimation are shown in column

3 and 5 of Table 4.4. The results in Table 4.3 and 4.4 indicate that although the objective

function, the sum of parameter variance is minimized, this cannot ensure that the lower

bound of each individual parameter is minimized. As shown in column 7 of Table 4.4, only 4

of 23 individual lower bounds are minimized by the optimal input and the average individual

lower bound for the A-optimal input is 122.73% of that of the UDRN signal.

This problem is caused by the complexity of the model structure and the different scales

of output sensitivities. For the model shown in equation (4.17), the output sensitivities can
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be calculated according to equation (2.6), which are given by:

∂y(t)

∂θ1
= 1 + θ23

∂y(t− 10)

∂θ1
(4.31)

∂y(t)

∂θ2
= u1(t) + θ23

∂y(t− 10)

∂θ2
...

∂y(t)

∂θ22
= u1(t− 6)u1(t) + θ23

∂y(t− 10)

∂θ22
∂y(t)

∂θ22
= y(t− 10) + θ23

∂y(t− 10)

∂θ23

It is shown that in a nonlinear dynamic model, the values of output sensitivities are affected

by the regressors and the regressors are often self-related or cross-related e.g. the relation

between u1(t − 1) and u1(t − 3) or between u1(t − 1) and u1(t − 1)u2(t − 3). Therefore

in an optimization problem, where the objective function is a summation of a few scalar

sub-functions of variables:

tr(M−1) =

n∑
i=1

cov(θi) =

n∑
i=1

fi(u1, u2, u3, y) (4.32)

Reducing the value of a sub-function fi by changing the value of the variables may lead to

an increased value of another sub-function. Since the sum of individual parameter variance

is minimized in A-optimal design, sub-functions with a large scale tend to be over minimized

at the expense of increasing the value of those with a small scale.

In practical applications, the input signals are usually normalized before the identifica-

tion. This transformation is helpful to reduce the influence caused by the different scales of

inputs. However in the optimal input design, taking the A-optimal criterion as an example,

the objective function is the sum of individual sub-functions (parameter variance) which are

directly determined by the output sensitivities. In models without output regressors, the

output sensitivities are only determined by the inputs but if any output regressor is included,

the sensitivities will also be affected by this term. Therefore in this thesis, the disadvan-

tage of A-optimal criterion is solved by weighting the output sensitivities. The influence of

normalizing the inputs in optimal input design will be studied in further research.

4.7.4 Design of Weighted A-optimal Criterion

To solve the problem mentioned above, a weighted A-optimal criterion min tr(WM−1) is

proposed. The individual parameter variance can be weighted in accordance with specif-

ic experimental requirements, which provides an improved flexibility in the optimal design.

Various weighting functions can be designed with prior knowledge of the relative importance
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of parameters. Generally, a parameter which is considered to be important should be heavily

weighted. In this thesis, the parameters are assumed to have equal importance and a weight-

ed objective function which tends to give reduced variance of each individual parameter is

proposed.

According to equation (4.23), the information matrix can be expanded as:

M =
1

σ2

N∑
t=1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∂y(t)
∂θ1

)2
∂y(t)
∂θ1

∂y(t)
∂θ2

· · · ∂y(t)
∂θ1

∂y(t)
∂θn

∂y(t)
∂θ2

∂y(t)
∂θ1

(
∂y(t)
∂θ2

)2
· · ·

...
...

. . .

∂y(t)
∂θn

∂y(t)
∂θ1

· · ·
(
∂y(t)
∂θn

)2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.33)

The inverse of M is thus given by:

M−1 =
1

det(M)
adj(M) =

1

det(M)

∣∣∣∣∣∣∣
C11

. . .

Cnn

∣∣∣∣∣∣∣ (4.34)

where adj(M) is the adjoint matrix and Ckk is the cofactor. As shown in equations (4.33)

and (4.34), the kth diagonal element of M−1 is related to all output sensitivities except the

kth. Therefore the proposed weighting function weights the individual diagonal elements of

M−1 with the corresponding squared output sensitivity term:

JWA = tr(WM−1) =

n∑
k=1

M−1
kk

∥∥∥∥ ∂Y∂θk
∥∥∥∥2 (4.35)

where
∥∥∥ ∂Y
∂θk

∥∥∥2 denotes the squared norm of the kth output sensitivity term which is an N×1

vector. Comparing Table 4.5 with Table 4.4, most of the lower bounds are reduced by using

the weighted A-optimal criterion and the average b2/b1 is 81.37%.

4.7.5 Design of D-optimal Criterion

The D-optimal criterion minimizes the determinant of the inverse information matrix. Com-

pared to the A-optimal criterion, it has the advantage that the scale change of the parameters

will not affect its effectiveness. A commonly used form of D-optimum is given by:

JD = − ln(det(M)) (4.36)

Using JD as the objective function, the D-optimal input is acquired. As shown in Table

4.6 and 4.7, although the sum of lower bounds of the D-optimum result is larger than that

of the A-optimum, the improvement in individual lower bounds is significant. The average

individual lower bound for the D-optimal input is 74.39% of that for the UDRN signal and

it is 60.61% compared to that for the A-optimal input.
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Table 4.5: Estimation results by UDRN input and WA-optimal input

θ θ̂UDRN Lower bound (b1) θ̂WAop Lower bound (b2) b2/b1
1 64.17 77.27 23.16 88.12 14.15 0.61
2 -0.025 -0.034 0.0056 -0.031 0.0047 0.84
3 0.062 0.070 0.0099 0.070 0.0091 0.92
4 -4.06×10−7 1.31×10−6 2.39×10−6 4.32×10−7 1.47×10−6 0.62
5 2.73×10−6 2.82×10−6 7.41×10−7 3.35×10−6 7.29×10−7 0.98
6 -0.0069 -0.0034 0.0093 0.0062 0.0091 0.98
7 8.50×10−7 2.42×10−6 1.85×10−6 2.97×10−6 1.51×10−6 0.82
8 1.54×10−6 1.63×10−6 6.32×10−7 1.61×10−6 6.51×10−7 1.03
9 -327.70 -135.99 94.47 -319.57 57.31 0.61
10 0.0016 -0.027 0.0167 -0.019 0.011 0.66
11 -1.52×10−5 -1.24×10−5 7.07×10−6 -1.36×10−5 4.70×10−6 0.66
12 -4.22×10−8 3.89×10−7 1.69×10−6 -3.55×10−9 1.56×10−6 0.92
13 0.069 -0.0127 0.041 0.049 0.026 0.63
14 -0.014 -0.0156 0.0074 -0.023 0.0064 0.86
15 -1.56×10−6 1.40×10−5 8.20×10−6 1.49×10−7 4.38×10−6 0.53
16 -2.25×10−6 -3.63×10−6 1.61×10−6 -3.58×10−6 1.41×10−6 0.87
17 0.029 -0.004 0.0241 0.021 0.012 0.50
18 5.67×10−7 7.53×10−6 2.99×10−6 1.61×10−6 2.55×10−6 0.85
19 6.4×10−7 -2.35×10−6 1.89×10−6 7.80×10−7 1.65×10−6 0.87
20 0.0021 0.0017 0.0016 0.0015 0.0026 1.62
21 8.71×10−7 4.20×10−7 3.98×10−7 9.48×10−7 3.87×10−7 0.97
22 -1.36×10−6 -1.24×10−6 3.69×10−7 -1.35×10−6 3.78×10−7 1.02
23 0.16 0.0928 0.0727 0.14 0.073 1.00

Table 4.6: Objective function values of UDRN inputs and optimal inputs

JD = − ln(det(M)) JA = tr(M−1)

UDRN signal -417.16 9460.7

A-optimal signal -410.87 3271.1

D-optimal signal -431.68 4852.7

4.7.6 Validation of Optimal Inputs in Parameter Estimation

In order to demonstrate the statistical effectiveness of optimal inputs on parameter estima-

tion, model identifications by UDRN signals and D-optimal signals are repeated 1000 times.

Since the white noise term ϵ(t) is different in value each time, the estimated parameters are

therefore different also. The distribution of θ̂1 is shown in Figure 4.16 as an example. This

illustrates that the θ̂1 estimated by the D-optimal signal clusters around the initial value

θ1 = 64.17 which is closer than the one obtained by UDRN signal therefore it indicates that

an estimated parameter by optimal inputs is probabilistically closer to the initial parameter

value.

In the example above, it is assumed that the initial value of parameter is equal to the
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Table 4.7: Estimation results by UDRN input and D-optimal input

θ θ̂UDRN Lower bound (b1) θ̂Dop Lower bound (b2) b2/b1
1 64.17 77.27 23.16 64.35 18.44 0.80
2 -0.025 -0.034 0.0056 -0.0211 0.0047 0.84
3 0.062 0.070 0.0099 0.0571 0.0083 0.84
4 -4.06×10−7 1.31×10−6 2.39×10−6 -2.19×10−6 9.79×10−7 0.41
5 2.73×10−6 2.82×10−6 7.41×10−7 2.74×10−6 4.49×10−7 0.61
6 -0.0069 -0.0034 0.0093 -0.0109 0.0086 0.92
7 8.50×10−7 2.42×10−6 1.85×10−6 2.24×10−6 1.03×10−6 0.56
8 1.54×10−6 1.63×10−6 6.32×10−7 1.91×10−6 8.25×10−7 1.31
9 -327.70 -135.99 94.47 -233.33 67.18 0.71
10 0.0016 -0.027 0.0167 -0.0051 0.01 0.60
11 -1.52×10−5 -1.24×10−5 7.07×10−6 -6.60×10−6 5.92×10−6 0.84
12 -4.22×10−8 3.89×10−7 1.69×10−6 2.10×10−6 1.16×10−6 0.69
13 0.069 -0.0127 0.041 0.0326 0.0317 0.77
14 -0.014 -0.0156 0.0074 -0.016 0.008 1.08
15 -1.56×10−6 1.40×10−5 8.20×10−6 -2.78×10−6 3.66×10−6 0.45
16 -2.25×10−6 -3.63×10−6 1.61×10−6 -1.88×10−6 9.31×10−7 0.58
17 0.029 -0.004 0.0241 0.032 0.0116 0.48
18 5.67×10−7 7.53×10−6 2.99×10−6 -2.12×10−6 1.87×10−6 0.62
19 6.4×10−7 -2.35×10−6 1.89×10−6 -1.06×10−6 1.19×10−6 0.63
20 0.0021 0.0017 0.0016 0.001 0.0023 1.44
21 8.71×10−7 4.20×10−7 3.98×10−7 7.02×10−7 2.19×10−7 0.55
22 -1.36×10−6 -1.24×10−6 3.69×10−7 -1.22×10−6 2.30×10−7 0.62
23 0.16 0.0928 0.0727 0.0754 0.0554 0.76
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Figure 4.16: Distribution of estimated parameter θ̂(1)

true value. In practice the true parameter value is usually unknown so that the initial value

should be determined by a pre-test. The estimated parameter acquired by optimal inputs will
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Table 4.8: Iterative parameter estimation with optimal input design

e

Initial state 2.63

1st iteration 1.11

2nd iteration 0.8

3rd iteration 0.68

4th iteration 0.53

5th iteration 0.5

replace the initial value in the next iteration and the procedure repeated. In the following

example, an initial estimation θ̂0 is derived from a UDRN pre-test and optimal design is

carried out iteratively.

θ̂0 = [74.25,−0.031, 0.068, 7.59× 10−7, 2.80× 10−6,−0.00466, 2.05× 10−6, 1.63× 10−6,

−195.34,−0.019,−1.35× 10−5, 2.67× 10−7, 0.014,−0.015, 9.4× 10−6,

−3.24× 10−6, 0.0057, 5.53× 10−6,−1.47× 10−6, 0.0017, 5.65× 10−7,−1.30× 10−6, 0.11]

Table 4.8 shows the proportion of parameter error in each iteration, which is given by:

e =

n∑
i=1

∣∣∣∣∣ θ̂(i)− θ(i)

θ(i)

∣∣∣∣∣ (4.37)

where θ̂ denotes the estimated value at the current iteration and θ denotes the true parameter

value. In this test, the optimal input was designed with θ0 as the initial conditions in the 1st

iteration. The values of parameters were update by system identification using the obtained

optimal input and the parameter error was calculated. In the next iteration the updated

parameter values were used as the initial conditions in the optimization and the process was

repeated for 5 times. As the parameter error becomes smaller gradually by iteration, the

estimated parameter is expected to converge to the true value with the iterative optimal

input design.

4.8 Optimal Input Design for Improved Output Prediction

As described in last section, optimizations with criteria based on the variance of parameters

minimize the lower bound of parameter estimation. Hence the resulting optimal inputs have

the effect of giving a parameter estimator with improved accuracy. From the practical point

of view, since true parameters of black box models are unknown, it is not feasible to evaluate

the effectiveness of optimal input design by directly comparing the estimated value to the

true value. Nevertheless, criteria with regard to output prediction can be used to evaluate the

accuracy of an estimated model because outputs of black box models can always be measured.
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As discussed in the last section, for a system given by equation (4.17), the lower bound

of estimated parameter variance is determined by the selected input signal. The objective

function for optimization should be a scaler function of M−1 which is given by:

M−1 = EY |θ

[(
∂ ln p(Y |θ)

∂θ

)(
∂ ln p(Y |θ)

∂θ

)T
]−1

=

[
1

σ2

N∑
t=1

(
∂y(t)

∂θ

)T (∂y(t)

∂θ

)]−1

≤ cov(θ̂) = E

[(
θ̂ − E[θ̂]

)(
θ̂ − E[θ̂]

)T]
(4.38)

However, the output covariance that needs to be minimized in the output prediction based

criteria is given by the form:

cov(Ŷ ) = E

[(
Ŷ − E[Ŷ ]

)(
Ŷ − E[Ŷ ]

)T]
(4.39)

where the predicted output Ŷ is affected by the chosen estimation method. Assuming the

ordinary least square method is selected for estimation and the OLS parameter estimator is:

θ̂ = (XTX)−1XTY

The parameter covariance and output covariance can be obtained as follows:

cov(θ̂) = E
[
(θ̂ − E[θ̂])(θ̂ − E[θ̂])T

]
(4.40)

= E

[(
(XTX)−1XT (Y − Ŷ )

)(
(XTX)−1XT (Y − Ŷ )

)T]
= σ2(XTX)−1

cov(Ŷ ) = E

[(
X(θ̂ − E[θ̂])

)(
X(θ̂ − E[θ̂])

)T]
(4.41)

= XE

[(
θ̂ − E[θ̂]

)(
θ̂ − E[θ̂]

)T]
XT

= Xcov(θ̂)XT

Therefore the covariance of the predicted output of the input applied for model identification

is:

cov(Ŷ ) = σ2X(XTX)−1XT (4.42)

It is worth noting that equations (4.40), (4.41) and (4.42) are derived under specific pre-

conditions i.e. the OLS is employed, the disturbance must be a white noise signal and the

input is deterministic. However, the purpose of output error based optimal input design is

for practical applications where the system is a black box model so that the pre-conditions

cannot be generally guaranteed. Because of this, Mehra [55] proposed a substitution of the

covariance of output prediction, which is determined by a first-order expansion of equation

(4.39):

cov(Ŷ ) = E

[(
Ŷ − E[Ŷ ]

)(
Ŷ − E[Ŷ ]

)T]
≥
(
∂Y

∂θ

)
M−1

(
∂Y

∂θ

)T

(4.43)
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4.8.1 Approaches to the Optimization for Output Prediction

If a particular input U0 is applied to the system and the model of the system is estimated

using the designed optimal signal Uop, the output covariance between the predicted output

Ŷ0 and measured output Y0 can be expressed as:

cov(Ŷ0) = σ2X0(X
T
opXop)

−1XT
0 (4.44)

where Xop is the regressor matrix of the designed optimal signal. X0 is the regressor matrix

of the particular input. Comparing equation (4.42) to (4.44), X0 and Xop have the same

structure which is determined by the structure of the initial model. However, U0 and Uop

are often different signals so that values of entries of X0 and Xop are not identical. U0,

for which the output prediction error is desired to be minimized, represents the goal of the

optimization. Uop, by which the model to predict Y0 is identified, is taken as the signal in

the proposed approach to achieve the output error minimisation goal. From the viewpoint of

system identification, equation 4.42 should be selected only if the objective of identification is

to find a model which gives a minimized output prediction error when using the identification

signal itself. Otherwise equation (4.44) should be employed for a model which can accurately

predict the output of another specified input U0. For practical applications, the optimal input

design for output prediction can be classified into 2 types:

Optimization for Specific Case

In the simplest case, (equation 4.44) can be applied directly if the objective of the experiment

is to predict the output of a particular input accurately. However it lacks practical utility in

the real world since the purpose of identifying a model is often to reproduce a type or class

of signals rather than a particular one. To solve this issue, a typical input for the specified

application can be used as U0 in the optimal design and the derived optimal input is then able

to identify a model which predicts the output in this application with better accuracy than

non-optimal inputs. Figure 4.17 shows a closed loop control system and the requirement is

to build a model which is qualified to replace the system under the feedback control. In this

case the input e(t) over certain sample instants can be used as U0 and the resulting model

may accurately reproduce the output at other sample instants since U0 is representative of

the system behaviour under the specific situation.

Optimization for Global Accuracy

In many applications, the identified model will be utilized for further implementation e.g. as a

substitution of the real system in offline controller design therefore the feature of input signal
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Figure 4.17: U0 selection in a closed loop control system

to the model in the final implementation is often unknown and consequently it is not feasible

to select U0 as before. A model with global accuracy which gives accurate output predictions

against all possible inputs is hence favoured for the compatibility in further design.

A theoretically feasible solution is to explore the entire input space and evaluate the

objective function against all possible inputs. A commonly used approach is to represent the

input space as several candidate points and the whole input sequence is composed of these

points rather than arbitrary values in the input space. The computing burden is remarkably

reduced by this approach but the optimization result will be compromised as well with a

decreasing number of candidate points. Furthermore, the data length of signal for dynamic

system identification tends to be more than hundreds in order to excite the system dynamics.

As a result even designing a 100-point 2-level optimal input requires 2100 evaluations which

demands an extremely long experimental time.

In this thesis, a proposed approach is to choose a signal of a broad frequency content

e.g. PRBS, APRBS and UDRN as U0 and then design the input accordingly. The principle

of this method is consistent with a popular identification method which utilizes a white noise

or similar signal to estimate a model without any prior knowledge. Because of the wide

frequency range of U0, the identified model can be expected to be globally accurate which

will be beneficial for further application. This approach also remarkably reduces the required

experimental time. Any design criterion which considers the whole input-output space can

then be relaxed to evaluate the sub-space covered by U0.

4.8.2 Design of I-optimal Criterion

If the purpose of the optimal input design is to accurately predict the output, scalar functions

of the output covariance can be selected as the objective function. An objective function

designed according to the I-optimal criterion should optimize the sum of the variance of the

output prediction over the entire design space and may be simplified to optimize over the sub-

space as above. The V-optimal criterion minimises the average function value. In practice, it
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is often used as an approximation of I-optimum by giving an averaged value over the space

of interest in order to compare the optimization result obtained by other criteria. Therefore

it is virtually identical to the I-optimum method in this simplified case.

JI =
k∑

t=1

cov (ŷ0(t)) (4.45)

where cov (ŷ0(t)) is the covariance of the predicted output of the objective signal at the time

k. Equation (4.44) shows that the dimension of the covariance matrix is identical to the

length of the output sequence of selected U0. In dynamic optimization, the data length tends

to be much longer than the number of parameters therefore I-optimal may lead to a very

high dimensional optimization problem, which leads to a very high computational burden.

Furthermore, in the case when the identification signal U is chosen as the objective signal

U0, it can be proved that the sum of the variance of the entire output sequence is identical

to the dimension of the vector of regressors n:

k∑
t=1

cov(ŷ(i)) = tr

(
∂Y

∂θ
M−1∂Y

∂θ

T)
(4.46)

= σ2tr

{
∂Y

∂θ

(
∂Y

∂θ

T ∂Y

∂θ

)−1
∂Y

∂θ

T
}

= σ2tr

{
∂Y

∂θ

T ∂Y

∂θ

(
∂Y

∂θ

T ∂Y

∂θ

)−1
}

= σ2tr (I)

= σ2n

The result indicates that the output variance of any input which is also used to identify

the prediction model is a constant and the value of the constant is only determined by the

model structure and the covariance of the noise. In optimal input design, the model structure

and noise do not change once they are selected, thus if the sum of output variance is chosen

as the objective function, the function value will not vary with the variables so that the

optimization will fail.
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4.8.3 Design of Adapted I-optimal Criterion

According to equation (4.41), the variance of output prediction at data sample instance i can

be derived as:

cov(ŷ(t)) = E
[
(ŷ(t)− E[ŷ(t)]) (ŷ(t)− E[ŷ(t)])T

]
(4.47)

= x(t)cov(θ̂)x(t)T

= [x1(t), · · ·xn(t)]
cov(θ̂11), . . . , cov(θ̂1n)

cov(θ̂21), . . . , cov(θ̂2n)
...

. . .
...

cov(θ̂n1), . . . , cov(θ̂nn)




x1(t)
x2(t)
...

xn(t)


=

n∑
p=1

n∑
q=1

xp(t)xq(t)cov(θ̂pq)

where x(t) = [x1(t), x2(t), . . . xn(t)] is the matrix of regressors at time t. In the thesis, a new

optimality criterion based on a weighted trace of the matrix of covariance is proposed, which

thereby enjoys similar computational advantages to A-optimality criterion based methods

but also approximates the output based approach by the use of only the diagonal elements

of the parameter covariance matrix instead of the high dimension output covariance. This

use of the diagonal elements will however only be accurate if the regressors are well chosen

so the parameter covariances are uncorrelated. In this case, the value of the parameter

covariance, cov(θ̂pq) where p ̸= q, will be very small and the influence of the corresponding

term xp(t)xq(t)cov(θ̂pq) can be neglected. Therefore the output covariance at data sample

instance t will be given by the approximation:

cov(ŷ(t)) =

n∑
p=1

n∑
q=1

xp(t)xq(t)cov(θ̂pq) (4.48)

≈
n∑

p=1

xp(t)
2cov(θ̂pp)

The proposed performance function JAI , to be evaluated over the data of length N is accord-

ingly

JAI =
N∑
t=1

n∑
p=1

xp(t)
2cov(θ̂pp) (4.49)

=

n∑
p=1

N∑
t=1

xp(t)
2cov(θ̂pp)

=

n∑
p=1

∥xp∥2 cov(θ̂pp)
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It can be seen from equation (4.49) that for any input, the corresponding output prediction

error is affected by both the parameter covariance of the estimated model and the norms of

the regressors. The regressor norms appear as a weighting to the variances of the param-

eter estimates. The weighting of the parameter covariance by the norms of the regressors

allows improvement in the output covariance over unweighted parameter variance methods.

Moreover if the output covariance is described by the general form in equation (4.43) and an

objective signal is determined, the AI criterion correspondingly becomes:

JAI =
n∑

p=1

M−1
pp

∥∥∥∥∂Y0∂θp

∥∥∥∥2 (4.50)

where M−1
pp denotes the pth diagonal element of the inverse information matrix of the optimal

signal and ∂Y0
∂θp

denote the pth output sensitivity term of the objective signal.

4.8.4 Design of G-optimal Criterion

As a classic criterion, G-optimality searches for a solution which minimizes the maximum

function value that can be obtained within a specified variable space. In output prediction

based, G-optimal input design refers to a minimization of the maximum variance of the

predicted output. It is considered advantageous because the output error can be distributed

more evenly over the entire output sequence by this approach. The objective function of G-

optimality is the maximum value of the diagonal elements of the output prediction covariance,

which is given by:

JG = max dig
(
cov(Ŷ0)

)
(4.51)

4.8.5 Methodology for Statistical Comparison

In much of the literature on optimal test signal design only single cases of the illustrative

examples are presented to claim a demonstrated superior performance [43, 100]. However

in validating or invalidating any optimisation method for an objective function based on ex-

pectation such as in minimised parameter covariance or output covariance presented above,

one single good or bad example result is strictly statistically meaningless. Statistical iden-

tifications and validations over a significantly sized population of test cases are required. In

this work, a pool of models is assembled including models identified with optimal test signals

generated with different randomly generated initial conditions. Pools of models are also as-

sembled comprising the models identified using the non-optimal input types, PRBS, APRBS

,UDRN and Random-walk, each again generated with different randomly generated initial

conditions. The R2 is selected as the criterion for validation since the model structure and

the data length remain in the same in the tests. A detailed explanation was given in Section



CHAPTER 4. OPTIMAL INPUT DESIGN FOR SYSTEM IDENTIFICATION 90

2.7.2. A number of different validation signals are then applied to each of the models in the

model pool and the average R2 of each of the non-optimal models is compared with that of

the optimal models.

Figure 4.18: Procedure of building model pool and validation

4.8.6 Validation of Optimal Inputs in Output Prediction

In this section, optimal inputs are generated by objective function designed according to the

criteria concerning about the output prediction. Models of equation (4.17) are then identified

and validated statistically. The process is divided into four steps.

Step 1 Design of objective function

Optimal test signals UI , UG and UAI with input amplitude constraints in equation (4.16) are

obtained from the minimisation of JI ,JG and JAI respectively by global optimisation using

the pattern search algorithm. An APRBS input is chosen as the U0 in the criteria. Table

4.9 shows the evaluation of JI ,JG and JAI performance indices obtained by applying both

the optimal signals and also PRBS, APRBS and UDRN inputs to the original model 4.17,

each with a sample period of 0.1s, and each of the non-optimal signals scaled to have maxima

and minima at the constraint limits of equation (4.16). Figure 4.19 shows examples of the

different test signal types.

Comparing with the optimal input in Figure 4.3, the values of optimal inputs generated

by the conventional G-optimal I-optimal and our proposed AI-optimal criteria are in multi-

levels. It indicates that a binary level signal may not be suitable to identify a nonlinear

model as shown in equation (4.17). The time interval (the minimum time period of the input

staying in a certain level) of the optimal inputs is 0.1 sec which is the same as the sample time

of the model and the values of inputs are changing in the desired range in the time history.

Therefore the optimal inputs are considered effective to excite the dynamic behavior of the

system. In order to capture more dynamic behaviors of the system, a discrete model with
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Table 4.9: objective function values of various inputs against criteria

UPRBS UAPRBS UUDRN UG UI UAI

JG 3.58×1013 34.66 133.37 27.37 31.35 39.61

JI 1.31×1015 1830 4225.6 1727.5 1536.7 1749.6

JAI 3.76×1017 6.86×105 1.8109×106 4.56×105 5.64×105 4.33×105

a smaller simple time can be used to represent this system and then the obtained optimal

inputs will have a smaller time interval accordingly. However as the sample time is reduced,

the length of data collected in the same period of time will increase correspondingly and it

will cause heavier computational burden of the optimization.
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Figure 4.19: An example of test signals of different types
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Step 2 Construction of model pool

In order to validate the effectiveness of optimal test signals, models identified using optimal

test signals produced by the global optimisation of the JI ,JG or JAI performance index are

compared to those identified by test inputs produced by the PRBS, APRBS and UDRN

signals. The test inputs produced by these global ALPS optimizations are repeatable since

they are deterministic products of the models and the constraints. The number of models is

required to be sufficiently large, usually in the hundreds, to ensure the validation results are

statistically significant. This is taken as 10 in this study because of the limit on the available

experimental time.

In practice, due to the complexity of the objective function and the limit of numerical

searching algorithms, the solution by the global optimization algorithm that runs within

an allowable experimental time may converge to a local optimum, in other words, a global

optimal value cannot be guaranteed. Therefore, the obtained optimal test signals may vary

with the different initial conditions in the global optimisation algorithm. Consequently a

set of 10 different optimal test signals UAI optimizing JAI can be assembled by using 10

different initial optimisation conditions. The initial conditions used are UDRN sequences

each generated by a unique seed. A pool of 10 models are then assembled by identification

with the 10 different optimal test signals UAI . Similarly 10 different optimal test signals UI

or UG optimising JI or JG are used to assemble another two pools of 10 different identified

models. For comparison 10 PRBS, 10 APRBS and 10 UDRN each with different seeds are

used to identify 10 different models for each signal type.

Step 3 Selection of validation signals

To validate the model pools associated with each type of test signal, a set of validation

signals are applied to each model in each of the pools. For each model, the resulting output

is compared with the output from the same signal applied to the original system in order

to produce an output fitness measured by the R2 criterion. It should be noted that since

the performance indices for JI ,JG and JAI are based on expectation, any associated optimal

test signal is only guaranteed to be superior to a non-optimal test signal in the mean. For

a statistically fair test, the validation tests should be uncorrelated. To test the qualification

of validation signals, the correlation coefficient in equation (2.45) is consequently determined

for each pair of signals as:

rUi,Uj =
cov(Ui, Uj)

σUiσUj

=
E(UiUj)− E(Ui)E(Uj)√

E(U2
i )−E2(Ui)

√
E(U2

j )− E2(Uj)
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Table 4.10: mean correlation coefficients of validation signals

CCPRBS CCAPRBS CCUDRN CCUI
CCUG

CCUAI

U1 0.091 0.079 0.082 0.097 0.132 0.098

U2 0.092 0.097 0.091 0.082 0.100 0.081

U3 0.103 0.086 0.097 0.094 0.087 0.095

Table 4.11: mean R2 of models identified by input constraints

Model R2
PRBS R2

APRBS R2
UDRN R2

UG
R2

UI
R2

UAI

MPRBS -449.75% -887.39% -1417.50% -817.37% -388.85% -646.13%

MAPRBS 72.06% 61.49% 47.55% 64.07% 78.30% 66.58%

MUDRN 57.36% 51.84% 42.08% 54.38% 70.68% 54.91%

MUG
77.37% 65.09% 50.63% 68.11% 81.38% 70.85%

MUI
79.84% 65.72% 48.49% 67.56% 83.37% 72.35%

MUAI
78.73% 66.49% 51.65% 68.19% 82.75% 72.76%

The set of validation signals is then selected so that the correlation between each pair com-

bination is close to 0. In this work, sets of 10 validation signals are assembled for each of the

JI ,JG and JAI optimal input test signals, and the non-optimal PRBS, APRBS and UDRN

signals. The 10 signals for JI ,JG and JAI denoted UI ,UG and UAI , are obtained by varying

the initial conditions of the optimisation by setting these as random sequences. The 10 sig-

nals UPRBS , UAPRBS and UUDRN , are obtained by varying their seeds. The mean correlation

coefficients (CC) of the different validation signal sets are shown in Table 4.10.

Step 4. Validation results

The validation signals are applied to each identified model and Table 4.11 shows validation

results measured by the R2. Since the model identification and validation are repeated for

10 times in each case, the averaged R2 is shown in the table. Other criteria, such as the

distribution of R2 could also be employed however the mean of R2 is selected in this thesis

since it is easier to be presented in tables. In this table, the y axis denotes models identified

by various types of inputs and the x axis denotes the R2 obtained by applying validation

input to estimated models. Since an APRBS input was selected as the U0 for output space

based input design, models identified by optimal inputs should be able to regenerate outputs

of APRBS inputs with other seeds more accurately than models identified by non-optimal

inputs, including MAPRBS . Moreover they are also expected to reproduce all types of outputs

better as the U0 has a frequency content with a large range. These two features are evidenced

by the validation results shown the table.

The result highlights the known general unsuitability of PRBS inputs for nonlinear

identification [36] since the R2 of the model identified by PRBS signal is considerably worse
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than the others. According to equation (2.48), since the prediction error ∥Y − Ŷ ∥2 is larger

than the ∥Y −Y ∥2, the values of the R2 of PRBS are negative. The R2 of MUDRN is sensible

but the second smallest. A reasonable explanation is that its amplitude density is smaller

so that it provides less information over the input range with a fixed data length. Since

APRBS has a higher amplitude density than UDRN, MAPRBS gives an improved R2 from

5% to 15%. MUG
, MUI

and MUAI
are recognized to be models with the best quality since

they give the highest R2, 3% to 5% further improvement than RAPRBS no matter which type

of validation signal is selected. Hence the output space based optimal input design is proved

to be effective. Since the R2 of these 3 types of models are not significantly different and the

stochastic of the validation needs to be considered, it is premature to give a general conclusion

concerning about which input design criterion leads to the most accurate model by judging

the R2. However JAI is suggested as the first choice for optimal input design as it leads to a

considerably smaller computing burden than JG and JI . Optimal inputs designed according

to conventional G-optimal, I-optimal and the proposed AI-optimal criterion were generated

using the Matlab Optimization Toolbox with the same number of function evaluations, 50000

in the selected pattern search algorithm. The averaged time to obtain the optimal inputs are

1205s, 1186s and 1032s. The computational speed of the AI-optimal criterion is more than

10% faster than the other criteria.

4.9 Influences of Experimental Constraints and Disturbance

Although maximizing the data information is the general purpose of DoE, excessive long

or powerful inputs are not acceptable test signals because the constraints on the practical

experimental conditions should be considered [41]. In previous experiments of input design,

amplitude constraints on inputs and available experimental time have been taken into ac-

count. For nonlinear dynamic systems, two other commonly used constraints are imposed on

optimal input design and the effect on output prediction is discussed as follows.

4.9.1 Optimization with Output Amplitude Constraints

Output amplitude constraints are utilized to limit the predicted output in the allowable region

so as to prevent undesired dynamics in real systems. Although a model with good quality

is required for accurate simulation, it is still sensible to implement a conservative output

amplitude constraint in the first iteration.

In the case of systems with true linear behaviour, at the expense of reducing input

amplitude, output constraints can be satisfied by directly scaling the input signal. However

in general, experimentally investigated systems are usually nonlinear systems and will not
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Table 4.12: mean R2 of models identified by input and output constraints

Model R2
PRBS R2

APRBS R2
UDRN R2

UAI

MPRBS -5.66% -500.05% -472.40% -698.08%

MAPRBS 40.61% 49.61% 45.63% 54.67 %

MUDRN 29.69% 42.85% 42.83% 38.00 %

MUAI
48.15% 54.47% 49.54% 72.41 %

have associative input-to-output characteristics as linear systems, making tuning the input

amplitude much more difficult. Exploring the full extent of the input-output signal envelope

with sufficient data information is then a challenging practical problem. Given an accurate

output prediction model of the system, an optimised input can explore the maximal input

space envelope without violations of the input and output constraints.

In the example of output prediction based input design, only amplitudes of inputs are

constrained. If an output constraint is added, since it is necessary to maximise signal infor-

mation, the test signals must be adjusted to satisfy the output limits. Now it can be relatively

time consuming to make appropriate PRBS, APRBS and UDRN inputs since the amplitudes

of these signals need to be adjusted manually and the nonlinearity may make this process

difficult. However, optimal inputs designed with specified input and output constraints can

be obtained directly. In the following optimal input design, the input and output constraints

are taken as:

1800µs < u1 < 6200µs

35% < u2 < 65%

800RPM < u3 < 2200RPM

−10Nm < y < 40Nm

The feasible non-optimal inputs are obtained by trial and error test on the prediction model.

Table 4.12 shows the validation results. Compared to other inputs satisfying the output

constraints, the optimal input designed by the proposed performance index JAI leads to a

better output fitness in R2, 4%-18% better than the output fitness of the model identified by

the second best identification signal. It should note that using the optimal input for system

identification can improve the accuracy of the obtained model however it cannot guarantee

that the accuracy of the resulting model could always meet the requirement for industrial

implementations. Therefore other DoE methods, e.g. model structure selection, can be

employed to further refine the model accuracy. However since many different methodologies

must be studied in depth and a large amount of experiments needs to be conducted, the

further improvement is not discussed in this thesis.
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Table 4.13: mean R2 of models identified by input and rate constraints

Input range Model R2
rw R2

UrAI

9 Levels Mrw -47.68% -32.53%
MUrAI 19.18% -11.49%

5 Levels Mrw 9.23% 5.05%
MUrAI 32.01% 31.18%

4.9.2 Optimization with Input Rate Constraints

In true linear systems, models can be obtained by local testing, typically with small mag-

nitude PRBS or other binary signals. In the case of nonlinear systems however, binary test

input signals will generally be untypical of actual operation and result in significantly poor

output fitness and the exceedence of operational limits. The use of binary test signals on

nonlinear systems also risks losing the system identifiability [36]. Although APRBS and U-

DRN inputs can overcome this issue since they provide values at multi-levels, the input may

still experience drastic raise or fall and this is not allowed in experiments which have limits

on input rate of changing. In order to prevent a typical system dynamics caused by high

input gradients, smooth or rate-limited input signals are usually recommended for nonlinear

system identifications with rate constraints.

Rate constrained random-walk inputs (Urw) are obtained from initial values with in-

crements in random directions in each step. In sequentially assembling the test signal, the

direction of the next increment is changed by reversing the direction if the values of the

signal at the current step exceed the amplitude constraints. In a real experimental based

engine identification, the input increment size should be decided according to physical rate

limits. For instance, the engine speed cannot increase or decrease too quick because of the

load and inertia. For the purposes of this study, the whole input constraint range shown in

equation (4.16) is divided into 9 and also 5 parts in order to show the effect on the identifi-

cation results. An example of random-walk inputs and optimal smooth inputs designed for

JAI(UrAI) with rate constraints △u1 = 500µs, △u2 = 2.5% and △u3 = 125RPM are shown

in Figure 4.20. Models identified by random-walk inputs (Urw) and smooth optimal inputs

(UrAI) are validated by 10 other constrained random-walk signals and 10 other UrAI signals.

The validation results for the different input range partitions are shown in Table 4.13. As

can be seen, the optimal smooth input designed by JAI always produces the best results.

Besides typical constraints, other linear and nonlinear constraints can be designed and

added also. However, the validation result will generally be traded off with any additional

constraint since the feasible region of input and output shrinks. Although the region will

be subsequently reduced, constraints may lead to more computing burden because they will

be converted to additional terms of an unconstrained optimization. Therefore, a subset of
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Figure 4.20: An example of the rate constrained random walk signal and optimal signals

relevant constraints should be established and subsequently checked for violation of other

constraints before the optimization. Repeated or conflicting constraints need to be removed

in order to simplify the optimization and relax the feasible region.

4.9.3 Influence of Disturbance on Optimization

As shown in equation (4.17), the model is disturbed with a white noise signal. Theoretically,

according to equation (4.23), if the covariance of disturbance is zero, the data information

will be infinitely rich for any input signal hence no input design is needed. On the contrary,

optimal inputs are expected to produce better effect than non-optimal inputs in situations

where the disturbance has a large covariance.

Tables 4.14 and 4.15 show the validation results of different original models with dis-

turbances for σ2 = 40 and σ2 = 160. Compared with the experiments tested against the

original model with disturbance σ2 = 80, the R2 increases or decreases as expected, however,

the relative benefits of optimal inputs are better exhibited since the relative increments in R2

for the optimal cases become even larger with a stronger disturbance, e.g. the improvement

between MAI and MAPRBS becomes 8%-25% with σ2 = 160. As the disturbance represents

the unknown and stochastic nature of the model, it implies that the optimal input design
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Table 4.14: mean R2 of models identified by input constraints with σ2 = 40

Model R2
PRBS R2

APRBS R2
UDRN R2

UG
R2

UI
R2

UAI

MPRBS -249.36% -636.69% -1198.01% -585.38% -222.17% -409.60%

MAPRBS 84.13% 76.89% 65.69% 78.89% 87.75% 80.38%

MUDRN 76.13% 71.46% 62.60% 73.55% 83.73% 73.86%

MUG
87.60% 79.55% 68.32% 81.62% 89.88% 83.45%

MUI
88.64% 79.13% 65.24% 80.45% 90.74% 84.16%

MUAI
88.24% 80.04% 68.39% 81.31% 90.51% 84.32%

Table 4.15: mean R2 of models identified by input constraints with σ2 = 160

Model R2
PRBS R2

APRBS R2
UDRN R2

UG
R2

UI
R2

UAI

MPRBS -205.15% -456.58% -701.50% -444.11% -182.16% -321.48%

MAPRBS 52.60% 40.67% 27.64% 43.31% 46.31% 62.71%

MUDRN 27.37% 25.41% 19.56% 27.65% 27.26% 49.30%

MUG
60.80% 45.52% 31.22% 49.18% 67.34% 52.26%

MUI
65.51% 47.65% 30.23% 49.63% 71.08% 56.42%

MUAI
63.41% 48.18% 33.21% 49.90% 69.93% 55.76%

might be also useful for the identification of a black box model in which the initial model

cannot perfectly present the true system due to the unavoidable uncertainty.

4.10 Optimal Input Design for Black Box Modelling

In previous sections, the effectiveness of optimal input design is validated by applying this

method to identify a known system, an engine model with known model structure and pa-

rameter values. There are two main reasons for evaluating the optimal input design initially

on a known system.

1. Suitable model equations to optimal input design theories

In the analysis of optimal input design theories, many conclusions are obtained under specific

assumptions. For example, the information matrix can be exactly expressed as equation (4.23)

only if the system is described in equation (2.3). An engine model can be built as in the

form of equation (2.3) in order to satisfy the assumptions of input design. The theoretical

effectiveness of the criteria of optimal input design can be verified if the evaluations are

conducted on the known system.



CHAPTER 4. OPTIMAL INPUT DESIGN FOR SYSTEM IDENTIFICATION 99

2. Known true model structure and parameter

If the true model structure and parameters are available, they can be utilized in the initial

model estimation for a relatively accurate model (without a disturbance term in the output)

then an optimal input which leads to a model with much better fitness than obtained with a

non-optimal input might be achieved without further iterations. Moreover it will be feasible

to judge the effectiveness of parameter based design criteria by analysing the error between

the true parameter and estimated parameter.

However most practical systems are the black box models therefore the quality of the

model is often evaluated by how well it can reproduce the output and so output space based

input design criteria are favoured. One potential issue for input design of black box models is

that the accuracy of the initial model estimation might be compromised without knowing the

true model structure and parameter. However, this can be solved by using suitable regressor,

input data and estimation methods. An example of input design for black box modelling and

evaluation of its effectiveness is demonstrated in the following.

4.10.1 Initial Model Estimation

For evaluation purposes in this section, the virtual engine is considered as the black box

system to be identified and the objective is to identify a torque model with high quality

where the inputs are engine speed (u1), spark advance (u2) and throttle angle (u3) with the

amplitude constraints:

2000RPM < u1 < 4000RPM

10◦ < u2 < 30◦

2◦ < u3 < 8◦

The model structure is selected as the affine model:

y(t) = θ1 + θ2u1(t− 1) + θ3u1(t− 2) + θ4u2(t− 1) + θ5u3(t− 1) + θ6u3(t− 2)(4.52)

The sample time is 0.3 sec and the parameters are estimated by OLS method with a UDRN

signal of 200-point length:

θ̂ = [θ̂1, θ̂2, ..., θ̂6] = [2.84,−0.0046,−6.96× 10−4,−0.045, 3.19, 0.062]

Figure 4.21 shows the measured output and simulated output by the identified model. The

corresponding R2 is 92.17% which indicates this affine model is of high accuracy and implies

that the relationship between the inputs and outputs is quite linear in this case.
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Figure 4.21: Measured output and simulated output of black box torque model

4.10.2 Optimal Input Design and Validation

Selecting a UDRN signal as U0 and the proposed AI-optimum as the design criterion, the

weighting vector is derived according to equation (4.50) as [190, 1.79×109, 1.79×109, 7.95×
104, 5.26×103, 5.25×103]. Figure 4.22 illustrates the difference between a UDRN signal and

the optimal input. Although the optimal input looks similar to a PRBS input, it is proved

to be more informative than a PRBS input in validation. Using 10 other UDRN signals for

validation, models identified by optimal inputs give an averaged result of R2 = 94.01% while

models identified by UDRN and PRBS signals only give R2 = 91.50% and R2 = 92.95%. Since

the optimal input leads to a model which is more accurate than the initial estimated model,

it clearly proves the effectiveness of input design for black box modelling and demonstrates

the feasibility of implementing input design in practical applications. Moreover since the

accuracy of models obtained by the optimal input and PRBS input is better than those by

the UDRN input, it indicates that binary signals are more effective than multi-level signals

to identify linear systems [34].
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Figure 4.22: An example of UDRN signal and optimal signal

4.11 Optimal Input Design of a MIMO System

Besides the torque model given in equation (4.17), a nonlinear λ model is used as the other

component of the 2×2 MIMO model:

y(t) = θ1 + θ2u2(t− 10)2 + θ3u1(t− 10)u3(t− 10) + θ4u1(t)u3(t− 7) (4.53)

+θ5u2(t− 10)u3(t) + θ6u1(t− 10)u2(t− 10) + θ7u1(t)u3(t− 10) + θ8u1(t)
2

+θ9u1(t− 10) + θ10u3(t) + θ11u3(t)
2 + θ12u1(t− 10)2 + θ13u2(t− 10)u3(t− 7)

+θ14u3(t− 10) + θ15u3(t)u3(t)u3(t− 7) + θ16u1(t)u1(t− 10)

+θ17u1(t)u2(t− 10) + θ18u3(t− 7)2 + θ19u2(t− 10) + θ20u3(t− 4)

+θ21u3(t)u3(t− 4)

z(k) = y(t) + ϵ(t)

The parameters are:

θ = [θ1, θ2, ..., θ21]

= [5.69, 10.75, 1.86× 10−7, 1.75× 10−8, 0.0046, 0.00031,−2.37× 10−7, 5.05× 10−8,

−0.00066, 0.0031,−1.28× 10−6, 2.27× 10−8, 0.003,−8.69× 10−5,−1.37× 10−6,

−1.50× 10−8,−0.0002, 3.22× 10−7,−23.36,−0.00023, 3.18× 10−7]

with cov(ϵ) = σ2 = 0.04. The sample time is taken as 0.1sec.
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Table 4.16: Preference vector of optimal input design for MIMO system

w1 w2

D optimum 477.91 802.84

AI optimum 3945.2 3621.8

Since each MISO model does not include any regressor of the output of the other model, it

is feasible to treat this MIMO model as two independent MISO models which can be identified

separately therefore two set of optimal input can be design for each of them. However, for

the purpose of saving experimental time, we propose an approach to developing a composite

objective function by weighting the objectives of two MISO models. One set of optimal test

signals can be developed accordingly and used as the identification signal for the two models

with the expectation of exciting the behaviours of both models.

To determine the weightings, firstly the magnitudes of the values of sub-objective func-

tions need to be scaled. For a function for which the minimum and maximum value is given,

the resulting value can be normalized in [0, 1]. However, the minimum values of the sub-

objective functions of optimal input design are not provided initially and a large amount of

computation will be required in order to find the minimum value of each sub-objective func-

tion. Thus in this work a trade-off approach of scaling is proposed. Applying a white noise

signal to all of the models, the corresponding absolute value of each sub-objective function, v

is computed and used as one component of the weighting factors of the other sub-objectives.

In an optimization which has k sub-objectives, the weighting factor of the ith sub-objective

wi is given by:

wi = v1v2 . . . vi−1vi+1 . . . vk (4.54)

where vi is the values of the ith sub-objective function. The catalytic converter converts

harmful emission of an gasoline IC engine into less harmful substances. However, it works

effectively provided that the λ of the emissions is 1 with a small tolerance of approximately

1%. The accuracy of the λ model is thus considered more important than the torque model

and it is weighted relatively by 2:1 for importance in the following experiment.

Optimal input designs with D-optimal criterion and the proposed AI-optimal criterion

are carried out in order to minimize the estimated parameters and output prediction of the

MIMO model. The determined weights are shown in Table 4.16.

Each type of input design is carried out 10 times with different initial conditions and

then utilized for model identification. The model estimated by optimal and non-optimal

inputs are compared and the results of statistical validation measured by e and R2 are shown

in Table 4.17 and 4.18. It is indicated that the optimal input design with proper weightings

are able to minimize the function value of each individual sub-objective and correspondingly
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Table 4.17: Validation results of torque model

e R2
PRBS R2

APRBS R2
UDRN

MDop 2.08 76.54% 64.00% 48.14%

MAIop 2.76 77.80% 65.85% 50.50%

MPRBS 2.45 -449.75% -892.30% -1416%

MAPRBS 2.24 72.09% 61.63% 47.54%

MUDRN 4.50 57.36% 52.00% 42.08%

Table 4.18: Validation results of λ model

e R2
PRBS R2

APRBS R2
UDRN

MDop 0.31 85.82% 75.10% 59.24%

MAIop 0.34 86.64% 76.63% 61.76%

MPRBS 2.40 -6210% -11732% -13961%

MAPRBS 0.54 82.75% 73.95% 59.81%

MUDRN 0.59 72.68% 67.05% 55.81%

improved accuracy is obtained in all identified models. Since the required experimental time

for the optimization of the composite objective function is close to the time cost of optimizing

a single sub-objective function, this approach is more efficient with a large number of sub-

objectives. Moreover the model obtained by D-optimum gives the smallest e but the second

best R2. As argued in [55] [101] , the D-optimal criterion is consistent with the G-optimal

criterion in principle so that it should also be a sensible criterion for optimization of output

prediction. However differently from most output space criteria, the D-optimal criterion does

not take the selection of U0 which is discussed in Section 4.8.1 into account so should not be

considered as the best choice of output prediction based input design for black box models.

4.12 Conclusions

Technologies of optimization are implemented for optimal test signal design with the purpose

of improving the quality of identified models. An iterative procedure for constrained optimal

input design for black box systems is developed. Commonly used excitation signals for initial

estimation of models are discussed and a white noise signal is applied in experiments on a

1.6L 4 cylinder SI PFI Zetec engine. An original MISO torque model is identified which is

subsequently used as the basis of experiments on optimal input design in this chapter.

Experiments of input design are firstly implemented to a known system for the conve-

nience of comparing the parameters and regulating the disturbance. An implementation on

a black box modelling of the virtual engine is given subsequently in order to demonstrate

the effectiveness in industrial applications. Various algorithms for optimization are tested for

the optimal input design and the deterministic PS algorithm is recognized to be the most
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appropriate particularly for reasons of the repeatability.

For the optimization of parameter estimation, A-optimal and D-optimal criteria are em-

ployed. The experimental results indicate that A-optimal criterion is effective if the regressors

of model have similar scales of magnitude but may lose efficiency if significant diversity exists

in scales. However the D-optimum method is not affected and provides more accurate estima-

tion of parameter in all cases. A weighted A-optimum is proposed as an alternative approach

to the D-optimum. This criterion weights the parameter variance by corresponding squared

output sensitivity terms and gives an estimation with similar accuracy to the D-optimum.

As the true parameters of a black box system is generally unknown, the optimization

of output prediction is more suitable for practical applications. Objective functions can be

designed according to classic G-optimal and I-optimal criteria. A new criterion based on a

minimization of a simplified sum of output error is proposed and illustrated to be the most

effective for an improved output prediction since it gives the best computing efficiency.

The statistical validation shows the advantages of optimal inputs in identifying an ac-

curate model for a known system and a unknown virtual engine. In applications of MIMO

model identification, methodologies of input design can be applied to generate a set of optimal

inputs by minimising a comprehensive objective function which is composed of the weighted

values of sub-objective functions. The optimal inputs are effective to improve the accuracy

of all sub-models with less computational burden.

The proposed methodology of optimal input design is used in the later chapter of dynamic

model-based calibration and control. The optimal inputs are designed to further improve the

accuracy of polynomial engine models.



Chapter 5

Selection of Parameter Estimation
Methods

5.1 Introduction

The quality of system identification is known to be affected by two main factors: model

structure and parameter values. Techniques of DoE such as input design have been developed

with the purpose of reducing the error of parameter estimation before selecting the estimator.

However, the estimation method does have a significant influence on the estimation results,

which thus should be selected sensibly according to the prior knowledge of the system.

In this chapter, the model types which should be determined by eventual application of

the model are introduced and estimation methods for different types of models are discussed

and subsequently evaluated by examples. A simulation error method is developed from a

traditional prediction error method. The proposed estimation method for simulation models

is initially demonstrated with an identification of a known system and then applied to identify

a black box model of the virtual engine.

5.2 Model Type Selection

Although the most usual application of a model is to forecast the future system output

behaviour, there are two types of models that need to be distinguished. As stated in equation

(2.1), a prediction model utilizes the input and output of the system to predict the output

in one step or k steps ahead while a simulation model in equation (2.2) uses the input of

the system and the simulated output of the model to generate the simulated output. In

cases where no regressor of the output is included in the model, the prediction model has no

difference to the simulation model, e.g. as in finite impulse response model. However, for a
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general linear model structure:

y(t) = G(q)u(t) +H(q)ϵ(t) (5.1)

the difference between prediction model and simulation model is as illustrated in Figure 5.1.

As illustrated in order to run a simulation model, only the input signal is required while the

previous output from the system is also needed to run a prediction model.

Figure 5.1: Schematic of simulation model and prediction model

Once a prediction model is identified, the output prediction is determined by the input

and previous system output. Therefore at the sample instant k, the prediction error e(k)

does not affect the prediction results in other sample instants. In other words the predicted

output ŷ(t)prd has no influence on the predicted output at other sample instants. Although

the output of the identified prediction model cannot perfectly match the output of the real

system, the inputs of the prediction model which are inputs and delayed outputs of the real

system, provide information of the system behaviour online and thus the predicted output

can be adjusted to avoid deviating from the measured output at each sample instant. The
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prediction model may not have a disturbance term nevertheless the predicted output is still

required to have a stochastic part since the measured output is disturbed by the noise of

the system. In the process of parameter estimation, the noise in the identification data has

an effect on the estimated parameter. When the prediction model is working on the system,

even if the system output experiences unexpected disturbance caused by a noise which is very

different from the noise in identification, the prediction model can still forecast a relatively

accurate output since the information in the new noise is delivered to the prediction model

by the delayed system output.

A simulation model can be run fully deterministically once it is identified. The disturbed

system output affects the estimation results of the model but is not presented in simulation.

Hence a simulation model may not be able to accurately forecast a stochastic system when

the system output is disturbed by a different noise from the one that was presented during

the identification. The simulated output at the sample instant k, ŷ(k)sim is influenced by the

input and previous simulated outputs ŷ(1)sim, ..., ŷ(k − 1)sim. Consequently for a dynamic

simulation model, if it cannot perfectly represent the real system, the error between the

simulated and measured output would exist from the start of the simulation and would be

accumulated in time series. Therefore the simulated output at later sample instant may

deviate from the system output significantly.

Compared to the simulation model, the prediction model can generally give a model

output which is more accurate if an appropriate estimation method is selected. However, the

simulation model has a significant utility because it works independently of the real system.

In many practical applications, a simulation model is required to be a substitution of the real

system and further design is then developed based on the model and finally implemented on

the real system. For instance, a controller for an engine is often initially designed using an

accurate offline simulation model.

5.3 Estimation Method for Prediction Model

For a prediction model, the prediction error is the essential measure of the model quality and

it can be given by:

e(t) = y(t)− ŷ(t) (5.2)

A well estimated model should thus seek to minimize the prediction error over the i-

dentification data. The objective function for prediction error minimization can be a scalar

function of the error vector. Since there is considerable flexibility in choosing the objec-

tive function, many prediction error methods (PEM) have been developed e.g. least square

methods.
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As shown in equation (2.14), the OLS method minimizes a quadratic scalar function of

prediction error. Assuming no limit on the values of parameters θ and that all parameters

are independent of each other, minimizing the prediction error becomes a convex quadratic

optimization problem and a unique global solution can be found. An analytical solution of θ̂

is given in equation (2.15), where the matrix XTX is non singular if the system is precisely

excited. The numerical solution approaches the analytical solution with increasing numbers

of iterations and the error can be limited to an acceptable range if sufficient iterations carried

out.

Example

Consider an affine MISO simulation torque model which is identified from real engine exper-

iment data as a known system:

y(t) = θ1 + θ2u1(t− 5) + θ3u1(t− 6) + θ4u1(t− 7) + θ5u2(t− 1) (5.3)

+θ6u3(t− 5) + θ7u3(t− 6) + θ8u3(t− 7) + θ9y(t− 1)

+θ10y(t− 2) + θ11y(t− 3) + θ12y(t− 4)

z(t) = y(t) + ϵ(t)

where u1 denotes ABV, u2 denotes SA and u3 denotes engine speed. ϵ is a term of disturbance

with zero mean and covariance 0.5. The sample time of this discrete model is 0.1 sec. In this

model ϵ is not a real engine input signal but a term which represents the disturbance of the

system. In this chapter it is assumed that this disturbance is normally distributed for the

ease of using ordinary least square method. The parameter values are:

θ = [−5.11, 14.27, − 50.82, 35.74, 0.028, − 0.025, (5.4)

0.043, − 0.015, 0.20, 0.30, 0.040, 0.25]

The inputs are constrained within:

42% < u1 < 50% (5.5)

16◦ < u2 < 34◦

1000RPM < u3 < 1800RPM

To identify a prediction model corresponding to this known system in equation (5.3), UDRN

signals are used and the estimated parameter θ̂prd is obtained by the OLS method in equation

(2.15) as:

θ̂prd = [−1.65, 15.8, − 53.77, 34.14, 0.021, − 0.0041, (5.6)

0.017, − 0.011, 0.24, 0.24, 0.17, 0.21]
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The predicted output and measured output are depicted in Figure 5.2. It is found that the

R2 of the prediction model is 92.62% and the MSE is 0.62. In this figure the torque values

between 750-950 points are negative. This is due to the net engine pumping losses being

greater than the power generated from combustion. In other words when the losses from

the compression, exhaust and intake strokes are greater than the power generated from the

combustion stroke, a negative torque will be obtained.
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Figure 5.2: Measured output and predicted output

5.4 Estimation Method for Simulation Model

5.4.1 Adapted Prediction Error Method

To estimate the parameters of a simulation model, a simple approach is to build a prediction

model with the same model structure then estimate the parameter by the PEM and directly

use it for the simulation model. However the PEM is developed explicitly for prediction

applications in which accumulated error of simulated output does not exist. Consequently

the simulation model obtained by the PEM is estimated at the expense of accuracy.

Using the estimated θ in equation (5.6), a simulation model can be derived and Figure

5.3 illustrates the simulation output and measured output. The R2 of the simulation model

is 88.46% and the MSE is 0.97.
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Figure 5.3: Measured output and simulated output by PEM

5.4.2 Simulation Error Method

In this thesis, a simulation error method (SEM) is proposed for the parameter estimation

of a simulation model. The SEM is developed based on a modification of PEM in which

the matrix of regressors in the output error minimization is amended. Taking the general

model in equation (2.11) as an example, for a prediction model the objective function of the

optimization is:

min(Y − Ŷ )2 = min(Y −Xθ)2 (5.7)

where

Y =


y(p+ 1)
y(p+ 2)

...
y(N)

 Ŷ =


ŷ(p+ 1)
ŷ(p+ 2)

...
ŷ(N)

 θ =


θ1
θ2
...

θm+n

 (5.8)

X =


y(p) · · · y(p−m+ 1) u(p) · · · u(p− n+ 1)

y(p+ 1) · · · y(p−m+ 2) u(p+ 1) · · · u(p− n+ 2)
...

...
...

...
y(N − 1) · · · y(N −m) u(N − 1) · · · u(N − n)

 (5.9)

The objective function can be minimized numerically as a standard convex problem or an-

alytically by OLS in equation (2.15). In this objective function, a sum of squared output

error at each sample instant is minimized and every individual error is affected by input and

output collected from the system at relevant sample instants.
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For a simulation model, the optimization problem is as in equation (5.7) but the regressor

matrix X is constructed by:

X =


ŷ(p) · · · ŷ(p−m+ 1) u(p) · · · u(p− n+ 1)

ŷ(p+ 1) · · · ŷ(p−m+ 2) u(p+ 1) · · · u(p− n+ 2)
...

...
...

...
ŷ(N − 1) · · · ŷ(N −m) u(N − 1) · · · u(N − n)

 (5.10)

where the vector of simulated output is computed by the input and previous simulation

output sequentially. Since the simulation output ŷ inX varies during the process of iteratively

estimating the parameter by minimizing the error of equation (5.7), the analytical solution

which requires every entry of X to be pre-determined cannot be employed for estimation.

However this quadratic optimization problem can be conveniently solved by a numerical

solution using an appropriate algorithm. The parameter estimated by the PEM is still useful

for the identification of simulation model because it can be used as the initial values of the

optimization for a reduced experimental time. Using the PS method for optimization, Figure

Figure 5.4: Minimized objective function value by Pattern Search method

5.4 shows the further reduced objective function value acquired by the SEM method from

0.97 to 0.76.

As stated above, the optimization of parameter estimation is an unconstrained convex

problem which can be solved by local algorithms efficiently. Keeping the stopping criteria the

same, two of the unconstrained nonlinear optimization algorithms, line search and Nelder-
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Mead (NM) simplex algorithm are tested for comparison. As a basic unconstrained algorithm,

the line search firstly attempts to find the descent direction of the objective function and then

determines the step size along the direction. In each iteration, a maximum searching interval

on the line, called the bracket is determined and subsequently divided into subintervals.

The value of the objective function or polynomial interpolation function which is used for

approximation is computed at subintervals and the minimum is selected.

The NM simplex algorithm is a direct search method which is independent of the deriva-

tive of the objective function. This algorithm constructs a simplex of n-dimensional vector

with n+1 points. Values of the objective function corresponding to n+1 points are comput-

ed and arranged in order. The point reflecting the biggest value will be replaced by a new

point. Initially the new point can be selected as the centroid of the remaining n points. If

the value reflected by the new point is worse than the current worst point, another point will

be selected and the procedure is repeated until a better point is found. The simplex is thus

modified iteratively and a minimum can be approached.

Table 5.1: Optimized objective function with different algorithms

Pattern Search Linear Search NM simplex

MSE 0.76 0.93 0.51

Time 46s 2s 21s

Table 5.1 shows the optimization result and experimental time of three algorithms. The

NM simplex algorithm generates the smallest MSE in a short time. Although the linear

search completed the optimization in two seconds, the MSE proves that it is not a suitable

choice because of the premature ending of optimization with the same stopping criteria.

The estimated parameter vector acquired by the SEM method with the NM simplex

algorithm is:

θ̂sim = [−5.16, 21.04, − 54.10, 32.06, 0.031, − 0.0044, (5.11)

0.019, − 0.011, − 0.13, 0.28, 0.29, 0.36]

As shown in Figure 5.5, the simulation model obtained by the SEM reproduces the

output better with an R2 of 93.72%.

In order to validation the simulation models, 10 other sets of inputs with constraints

in equation (5.5) are applied to the original model in equation (5.4) and simulation models

with parameters estimated by θ̂PEM and θ̂SEM . The MSE and R2 are shown in Table 5.2.

The model with θ̂SEM is shown to have better accuracy in simulation and thus the SEM is

demonstrated to be effective.



CHAPTER 5. SELECTION OF PARAMETER ESTIMATION METHODS 113

0 200 400 600 800 1000
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time(0.1s)

T
or

qu
e(

N
m

)

 

 
Measured output
Simulated output

Figure 5.5: Measured output and simulated output by SEM

Table 5.2: Validation results

MSE R2

MθPEM
1.14 90.83%

MθSEM
0.53 95.67%

5.5 Parameter Estimation of the Virtual Engine Model

In this section the PEM and SEM are employed to identify a simulation model of a real

engine system, rather than of a known system where the model structure and true parameter

values are available. The purpose is to demonstrate the effectiveness and compatibility of

SEM on parameter estimation of a black box model and also exhibit the SEM in an industrial

application.

The virtual engine (RT model) is considered as the real system. The objective of the

experiment is to develop a torque model and a λmodel which will be used to design controllers

by offline approaches and therefore simulation models are favoured. A 3×2 MIMO model is

identified by time series data collected from the virtual engine and validated by sets of engine

data as well. Assuming each model output is not affected by the other output, the MIMO

model can be divided into two 3×1 MISO models. The inputs are selected to be injection

fuel mass (u1), spark advance (u2) and throttle angle (u3) and the type of inputs is uniformly

distributed random number (UDRN). As discussed in Chapter 4, optimal inputs should be
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selected for system identification in order to maximize the data information and improve the

model accuracy. However in the following sections we only discuss the benefit of the proposed

SEM estimation method in parameter estimation therefore a set of common UDRN signals

is employed. The amplitudes of inputs are constrained as follows:

0mg < u1 < 35mg (5.12)

5◦ < u2 < 30◦

5◦ < u3 < 20◦

As stated in Section 2.3, the sample time should be selected according to the rise time of

the output. In this experiment the sample time is 0.03 sec for both MISO models. Since the

sample time is small, the data length should be long enough to capture the dynamics of the

system. In this chapter the objective is to develop a better estimation method for simulation

models so that the methodology on the selection of data length is not discussed here. The

data length of input is selected as 2000 which represent the data recorded in 60 sec. The

structure of the torque model is taken as follows:

y1(t) = θ1(1) + θ1(2)u1(t− 1) + θ1(3)u1(t− 2) + θ1(4)u1(t− 3) (5.13)

+θ1(5)u2(t− 1) + θ1(6)u3(t− 1) + θ1(7)u3(t− 2) + θ1(8)y1(t− 1)

Using the same identification signal, parameters estimated by PEM and SEM are listed in

Table 5.3.

Table 5.3: Estimated parameters of torque model by PEM and SEM

θ1(1) θ1(2) θ1(3) θ1(4) θ1(5) θ1(6) θ1(7) θ1(8)

PEM -4.5 4.56 -5.19 0.94 0.067 1.14 -0.73 0.87

SEM -2.57 -6.46 14.76 -8.2 0.046 -0.043 0.36 0.92

Two simulation models are established by using θPEM and θSEM respectively. The

identification signal is applied to these two models and simulated outputs are recorded and

compared with the system output in order to evaluate the model accuracy. The output fitness

of models is shown in Table 5.4, where the SEM provides a considerable improvement in both

MSE and R2.

Table 5.4: Validation results of torque model

MSE R2

MPEM 113.97 77.78%

MSEM 76.08 83.72%

The identification of the λ model follows the same procedure as above. The model
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structure is given by:

y2(t) = θ2(1) + θ2(2)u1(t− 1) + θ2(3)u1(t− 2) + θ2(4)u2(t− 1) (5.14)

+θ2(5)u3(t− 3) + θ2(6)y2(t− 1) + θ2(7)u2(t− 1)y2(t− 1) + θ2(8)u1(t− 1)u3(t− 1)

Estimated parameters and validation results are shown in Table 5.5 and Table 5.6.

Table 5.5: Estimated parameters of λ model by PEM and SEM

θ1(1) θ1(2) θ1(3) θ1(4) θ1(5) θ1(6) θ1(7) θ1(8)

PEM 0.41 0.6 -0.6 0.0017 0.0046 0.58 -0.0001 -7.29×10−05

SEM 0.49 0.77 -0.77 0.00088 0.0058 0.46 -0.00056 -0.0002

Table 5.6: Validation results of λ model

MSE R2

MPEM 0.0174 97.68%

MSEM 0.0144 97.7%

Compared to the model of torque, the values of R2 of the λ model by PEM and SEM are

very high and similar. However, the values of MSE still indicate the superiority of the SEM.

Generally for a model of good quality, the improvement in estimation accuracy derived by

the SEM might be limited. Moreover the objective function of the numerical optimization in

the SEM can be selected flexibly, not necessarily to be the squared error between simulated

output and system output, according to a specific requirement of the model quality. The

estimated model thus has a superior performance in that aspect than using the PEM. This

numerical minimization is also favoured since an analytical solution of the objective function

is not always available.

The MIMO simulation model is then validated by 10 other sets of signals collected from

the virtual engine and the result of averaged MSE and R2 are shown in Table 5.7

Table 5.7: Validation results of MIMO model

MSE R2

MPEM (Torque) 154.97 73.68%

MSEM (Torque) 115.90 79.62%

MPEM (λ) 0.0155 97.15%

MSEM (λ) 0.0131 97.39%

Based on the results of the tests discussed in this chapter, the accuracy of models es-

timated the SEM is always better than the PEM method therefore the benefit of the SEM

method in parameter estimation for simulation models is proved. For the use in industrial

applications, the model accuracy should be further improved by other DoE methodologies

such as optimal input design and model structure selection.
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5.6 Conclusions

Features of prediction models and simulation models and their practical applications are

discussed. Appropriate parameter estimation methods for each type of model are introduced

accordingly. An example of LS estimation of the prediction model is demonstrated and also

used for identification of the simulation model. The proposed SEM minimizes a quadratic

scalar function of output error, which is similar to PEM, nevertheless the estimated output

is purely determined by the input and simulated output. The SEM is found to give more

accurate parameter estimation than traditional PEM if the intended use of the estimated

model is for simulation while the PEM has the drawback of neglecting the possible error

accumulation.

The SEM is firstly implemented to an identification of a known torque model which is

derived from experimental data from the real engine. In the process of identification and

statistic validation, the superior performance of this method is fully displayed by both mea-

surement criteria. Another application of a black box modelling, the virtual engine identifi-

cation is given subsequently in which the SEM leads to a remarkably improved identification

and validation result of the MIMO engine model. It indicates that the SEM can be utilized

for the estimation of simulation models in practical applications rather than in purely ideal

situations.

In a general practice where the selected simulation model structure has both input and

output regressors, it is recommended to start with the LS method for the initial values

followed by a SEM estimation.



Chapter 6

Static Calibration and Controller
Design

6.1 Introduction

In recent years, the design of control system for modern IC engines is one of the most

important steps in the process of engine development. To satisfy the legislative demands of

environmental protection and the requirements of manufactures and customers, the major

purposes of engine control is to lower the emissions and minimize the fuel consumption with

a satisfying engine performance. Because of the nonlinearity of engines and complexity of

operating conditions, static look-up table based feedforward controllers are still widely used

to realize the control objectives. The whole operating region is represented by a grid of

operating points and static calibrations are carried out at each operating point so as to

obtain the steady-state settings of related engine calibration parameters. Static maps are

thereby formed by the optimal settings of calibration parameters obtained in experimental

steady-state testing and utilized to control the engine by the engine management system

[3, 2, 102, 103].

The following chapter describes a basic static calibration on the virtual engine for con-

strained fuel optimization. Firstly the procedure and targets of the calibration are explained

and corresponding settings of the RT model are given. The selection of a reasonable operating

region according to the simplified virtual engine is discussed. The process of finding optimal

settings at an operating point are illustrated and a static map is obtained by testing over

the operating region. The effectiveness of the map is then validated on the virtual engine.

Because of its known efficiency, the static map is used as the basis of comparison to the

dynamic map developed in the next chapter in order to assess the effectiveness of dynamic

model based calibration.

117
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6.2 Procedure of Static Calibration

The principle of static calibration is based on the investigation of the steady-state behaviour

of the experimental engine over a broad operating region. The optimal settings of calibration

parameters that satisfy the control objectives are recorded and then a fixed map is developed

for the production engine to choose appropriate settings according to different driver’s demand

and working conditions. A general procedure of static calibration has been illustrated in

Figure 1.1. The first step is to choose representative points in the entire engine operating

space and the selection of the grid is then a trade-off between the amount of calibration work

and the control performance of subsequent maps. Then local tests are conducted on the

engine and steady-state data are recorded in order to develop local models. Local optimal

settings are obtained by calibrations at the local models and calibration maps of the entire

operating region are derived accordingly.

In any model-based calibration, the accuracy of models is crucial to the effectiveness of

the resulting calibration map and many DoE methods may need to be implemented in order

to develop static local models with high accuracy. Moreover, the objective of this chapter

is to find effective optimal settings of the virtual engine, collect the corresponding optimal

engine response and use it as a basis for the comparison with the control performance of

the dynamic controller obtained in the next chapter. Therefore a simple static calibration

is directly conducted on the virtual engine although the experimental time will be increased

due to the hardware-based tests. Standard model-based static calibration is not discussed in

this thesis.

6.3 Objectives of Calibration

Figure 6.1: Schematic of a calibrated control system

In order to optimize the fuel economy and meet the requirements of engine performance
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and emissions, the aims of the proposed simplified gasoline engine calibration are:

1. Track demands for torque

2. Regulate stoichiometric air-fuel ratio

3. Achieve 1. and 2. for the minimum possible fuel mass consumption

To simplify the calibration, requirements of driveability, knock and constraints on emissions

and temperatures are neglected in this work. As the desired torque is fulfilled by fuel sup-

ply in diesel engines and by air supply in gasoline engines [3], a precise control of throttle

position is thus used for the first objective. The AFR presents the ratio of air and fuel in

the emission gas therefore it is feasible to incorporate the control of injected fuel mass with

the air supply to meet the requirement of stoichiometric λ. For the remaining controllable

calibration parameters of this simplified calibration, the SA is the major influential factor in

combustion which in turn determines the efficiency of converting the energy in the fuel to

engine torque. Correspondingly the resulting calibrated control system receives the desired

torque and engine speed as inputs, and controls the injected fuel mass, spark advance and

throttle position to achieve minimum fuel consumption subject to the tracking and regulation

requirements, as demonstrated in Figure 6.1.

6.4 Design of Experiments

Figure 6.2: Simplified configuration of the WaveRT model for initial development

As discussed in Chapter 3, the experiments are conducted on an RT model, which is

a virtual simulation of Ford 2.0L GTDI engine. Various calibrations should be carried out
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in order to find out the static map for multi-variable control. With reference to Figure 6.2,

firstly two PI feedback control loops are tuned to control the fuel mass INJ to maintain

stoichiometric air-fuel ratio and the throttle θ to maintain the desired torque load. The

desired torque and stoichiometric λ hence should be the references of the controllers. It is

important to know that the selection of PI controller has a crucial impact on the experimental

time of the static calibration because before recording the data, it is essential to wait until

the output settles down at each operating point. However it would be time costly to find

optimal controllers at each testing point so that a compromise has to be made between the

time spent on the settling of output and controller design. In this work the PI controllers for

desired torque and λ are tuned online and given by:

KT =
0.15 + 0.007s

s
(6.1)

Kλ =
−20− 1.5s

s

In this thesis the operating region is a two dimensional space of torque and engine speed.

To adjust the working condition from point to point in the region, the demand of torque

is realized by the feedback PI controller while the engine speed is regulated by the applied

external load. In real engine tests, the load is often controlled by the coupled dynamometer.

Users can adjust the load applied by the dynamometer to achieve the desired speed. In the

RT model, an engine speed actuator can be implemented which is able to control the speed

directly and instantaneously. At each operating point, the SA is swept over the safe range to

find the optimal setting for best fuel consumption.

The four inputs of the RT model under consideration are engine speed N , throttle angle

θ, spark advance SA, and the injected fuel mass INJ. The remaining calibration parameters

for the model are kept fixed, as follows:

• Fixed ambient conditions

• Inlet valve timing in locked position (MOP = 231◦ BTDC firing )

• Exhaust valve timing (MOP = 256◦ ATDC firing )

• Wiebe exponent (2)

• Wastegate actuator (28 mm diameter)

6.5 Selection of Operating Space

To reduce the dimensionality of the model for a first demonstration of the techniques, the

effect of the turbocharger was reduced as much as possible by setting the orifice diameter,
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representing the waste gate, to 28mm diameter. Both camshafts were set at zero degrees

advance, which is consistent with their lock positions (-231 and +256 relative to firing-

TDC for the inlet and exhaust cams respectively). In order to mitigate the effect of these

constraints, only the low-load low-speed region is considered in this chapter. The typical

engine behaviour in the reduced region is reasonably consistent with the open wastegate and

locked cam positions.
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Figure 6.3: Model operating envelope and reduced calibration region

Figure 6.3 indicates the approximate speed/load range for the entire engine operating

envelope. A full series of spark sweeps at equally spaced fixed speeds and desired torques of

the low-load low-speed region are given by:

SA = {5, 6, ......, 29, 40} (6.2)

N = {1000, 1200, ......, 2800, 3000}

T = {0, 10, ......, 90, 100}

The static calibration methodology is firstly carried out at further reduced subset and then

expanded to the whole low-load low-speed region.
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Figure 6.4: Throttle (a) and fuel mass (b) required to maintain torque demand

6.6 Calibration Results

6.6.1 Optimal Setting at Operating Points

For every speed-torque operating point under consideration, the SA is stepped within the

allowable range and the throttle and fuel control inputs allowed to settle for 9 sec to achieve

the desired static values. After that the data is sampled and averaged over the next one

second. An example of the processed WAVE-RT data for a static spark sweep at fixed torque

load and speed (70 Nm, 2000 RPM) produced from the current WAVE-RT 2.0L GTDI model

is shown in Figure 6.4

The examination of Figure 6.4 reveals that the optimal SA for minimum fuel consumption

at this particular speed torque point is 19 deg BTDC. The profiles of SA to θ and to INJ are

similar to quadratic curves, which indicates the investigation of SA to optimal fuel economy

can alternatively be determined by a numerical convex optimization. Additionally only a 1%

increase in fuel consumption spark timing is obtained at 3 degrees away from the optimal

value. Assuming that the local test is conducted on an engine model, the requirement of the

model quality can be relaxed since a sub-optimal SA within a reasonable tolerance is able to

provide a fuel consumption very close to the optimal solution.

6.6.2 Calibration Maps

For the further reduced number of operating points (N = 1600, 1800, 2000, 2200, 2400, T

= 30, 40, 50, 60, 70) the minimum fuel consumption at each operating point was obtained
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Figure 6.5: Calibration maps of the reduced region (a) and low-speed low-load region (b)
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by sweeping the SA and regulating the throttle to maintain the desired brake torque. From

these 25 sweeps the optimal SA and corresponding throttle angle and injected fuel mass were

obtained. Figure 6.5 shows the resulting optimal maps of the reduced region (a) and also

the whole low-speed low-load region (b) which is composed of 121 operating points. It can

be seen that the profile of the optimal fuel mass is remarkably flat and devoid of any static

nonlinearity. Profiles of optimal SA and throttle angle are relatively linear in the further

reduced region while more nonlinearity is exhibited with the expanding of engine speed and

torque region as shown in the low-speed low-load region. In general, the values of optimal INJ

linearly decrease with the increase of engine speed and the decrease of torque. The increase

or decrease of optimal θ is consistent with the engine speed and torque however in the relative

high torque region the trend of optimal θ with respect to speed becomes nonlinear. Compared

to the other two maps, the map of optimal SA exhibits more nonlinearity. The optimal value

increases with the increase of speed and the decrease of torque and a significant nonlinearity

is discovered in the low-speed low-load corner of the map.

6.7 Online Validation of Static Map

The obtained static map was connected to the RT model to examine its ability of tracking

the torque and λ and minimizing the fuel consumption online. Random number signals with

a time interval of 6 sec are applied as the desired torque and engine speed with amplitude

constraints which are given by:

10Nm < Tdesired < 90Nm (6.3)

1000RPM < N < 3000RPM

A set of engine speed and torque profiles and corresponding optimal INJ, SA and θ are

shown in Figure 6.6. At the time instant that the operating point switches, the optimal inputs

change immediately according to the static map which works as a feedforward controller.

The profile of optimal fuel mass is quite similar to the desired torque, which indicates that

providing the AFR remains a constant and the SA is always at its optimal value, the generated

engine torque is proportional to the fuel consumption and the proportional ratio would be

almost the same at all operating points.

Figure 6.7 illustrates the outputs of torque and λ from the RT model and Table 6.1 shows

the characteristic result of controllers. The output responds to the change of operating points

quickly with no overshoot and a maximum steady-state offset of less than 1%. λ experiences

a spike at the transient switching operating point. The size of the spike and corresponding

settling time is closely related to the step size of the torque. Since the engine torque is

proportional to the injected fuel mass, in this control system the INJ changes accordingly
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Figure 6.6: Optimal input signals at random operating points

Table 6.1: Measurements of engine output responses

Output Max settling time Max overshoot Max offset

Torque 1.5s 0 1 Nm

λ 2s 0.36 0.01

if the desired torque increase or decrease so that a rich or lean combustion results from the

transience which in turn compromises the efficiency of the catalytic converter. The spike

is formed due to the interaction between channels of system. With the development of

control theory, advanced controllers are able to decouple the relation [104, 105] and have

been successfully implemented to solve engine control problems [106, 107]. An alternative

approach is using dynamic models instead of static look-up tables since the resulting optimal

inputs vary more smoothly and dramatic changes of outputs can be avoid.

To validate the constrained optimization of the fuel economy, a random SA input is

used to perturb the RT model instead of the optimal SA input however the inputs of INJ and

θ channels are kept at the optimal values. The resulting outputs are compared to optimal

inputs in Figure 6.8. Since INJ and θ are kept the same, the amount of fuel mass and air

flow mass in each combustion is kept at a fixed ratio therefore λrandom is almost identical to

λopt. However Topt is always larger than Trandom which indicates that the energy generated by

combustion can be more efficiently converted to engine torque if the spark ignition occurs at
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Figure 6.7: Optimal engine outputs at random operating points
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an optimal angle. Assuming the injected fuel is fully consumed in combustion, it is sensible to

express the efficiency of energy conversion over a time period by the total amount of injected

fuel and the generated engine torque. Accordingly a measurement of fuel economy is given

by:

e =

∑
T∑

INJ
(6.4)

The random SA leads to: erandom = 3.97 Nm/mg while the optimal SA gives: eopt = 4.13

Nm/mg which is 104% of erandom. To compare the fuel economy by the e measurement, it

is necessary to ensure that the resulting profiles of λ between the two cases are the same

otherwise the assessment is meaningless since the requirement on emissions is satisfied to

different levels.

By the experiments in this section, it is proved that the obtained calibration map is

capable of minimizing the fuel consumption and meeting the requirements on engine torque

and λ. Therefore an optimal control performance for the dynamic calibration to compare

with is derived in this chapter. This basic hardware-based static calibration is considered

to be highly effective as all local tests are conducted on the real system rather than sur-

rogate models. Moreover the time delay between the actuators and sensors can be ignored

because only steady-state data are utilized for modelling and control. Any dynamic model

based controller has an inherent time delay in control because of the selected dynamic model

structure which is composed of delayed input-output regressors. Nevertheless static maps in

the SI engine lead to rapid control signals without any significant delay since the relationship

between the reference signals and control efforts is determined by time-independent look-up

tables.

However as the controllable calibration parameters have been increasing in recent decades,

the approach of the hardware-based static calibration is being challenged since the required

experimental time and cost will increasing significantly. Model-based static or dynamic cali-

bration methods are thus proposed for less experimental cost and higher efficiency. Although

it is not discussed in this thesis, the standard model-based static calibration has been proved

to be an effective and efficient approach for engine calibration [108] and related software such

as Matlab model-based calibration toolbox [19] has been developed and widely used.

6.8 Conclusions

In this chapter methodologies for conventional steady-state based calibration are introduced

and an experiment on engine-based steady-state calibration is conducted to develop a static

map which is capable of satisfying the multiple control objectives of torque and λ tracking

and fuel optimization. With the purpose of simply demonstrating this method, the operating
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region is restricted to the low-load low-speed range. The derived static control map is vali-

dated as effective as an accurate feedforward controller which is able to provide rapid output

responses and small steady-state offsets. Since the static calibration investigated the engine

behaviour at every considered operating point, a detailed prior knowledge of the system is

obtained from the tests which is helpful for the subsequent study of dynamic calibration in

the following chapter.



Chapter 7

Dynamic Calibration and
Controller Design

7.1 Introduction

Since many advanced engine technologies have been introduced to satisfy the increasing

requirements of the legislation and market, a number of new calibration parameters are

available in modern engines. Engine control systems thus are becoming more and more

complex and the associated engine calibration is becoming much more sophisticated. The

conventional static calibration process takes an significantly long time to obtain look-up tables

with high dimensions and the optimal engine performance might be compromised because the

dynamics of system are not addressed. The chapter investigates a way to meet the demands

of low cost and high efficiency, by the use of simulation(model)-based calibration which can be

incorporated in the calibration process to avoid a significant number of tests at steady-state

operating points by using dynamic models and dynamic DoE techniques.

The methodology of simulation-based calibration is firstly carried out on engine models

then the controllers developed are implemented and tuned on the real engine. Therefore

the quality of models is crucial to the calibration results. The developed models should be

capable of accurately regenerating the identification data and also precisely predicting the

system behaviour in the operating region of interest. Guzzella [2] and Sun [109] developed

a series of engine models for air, fuel and mechanical systems. These models are designed

based on physical first principles hence the key parameters can be estimated with a few

experiments. With the development of modelling technologies, various types of behaviour-

based models have been found to be comparable with the first principle models. Neural

network models have been widely investigated for application to automobile industry systems

in recent decades. Tan [77] modelled the manifold pressure and mass flow processes with

recurrent networks. Saraswati [110] and Xia [111] discussed the reconstruction of cylinder

129



CHAPTER 7. DYNAMIC CALIBRATION AND CONTROLLER DESIGN 130

pressure by NN models. The identification of AFR in the gasoline engine using NN has been

studied in-depth by many authors [78, 112, 113]. On the other hand conventional polynomial

models are also extensively employed in engine model identification and control [114, 115, 116].

Additionally methodologies of model structure selection, optimal input design and parameter

estimation have been developed to improve the accuracy of engine models [117, 118, 119].

An approach to model-based dynamic engine calibration is proposed in this chapter

to obtain optimal settings of fuel consumption subject to constraints on torque and λ. In

section 2 the principle and general configuration of the calibration process are presented. The

whole procedure is classified into 4 steps and a brief description of each step is introduced

in section 3. Section 4 details the modelling of engine torque and λ using a DoE approach

and estimation technologies. NN models and polynomial models are identified and critically

evaluated by output fitness. The selection of objective function, constraints and algorithm for

numerical optimization are discussed and an optimization over a fixed length input-output

data sequence is given in section 5. A dynamic map developed by an inverse identification of

the causal optimal data is presented and the effectiveness of the map is evaluated in section 6.

Section 7 demonstrates an approach to further improve the output response using feedback

from the virtual engine and open-loop estimators. The computing efficiency of the NN model

or polynomial model based optimisation is discussed and an approach of refining the dynamic

map is proposed in section 8.

7.2 Basic Model-Based Dynamic Calibration

Figure 7.1 shows a configuration of the basic dynamic gasoline engine calibration and control

problem for optimized fuel economy, engine performance and emissions. The whole system

is composed of a virtual engine, control model, dynamic map and feedback controllers. The

loaded virtual engine to be calibrated is denoted by VE which consists of an RT model and

road-load sub-model. In a real production engine, the engine speed is actually affected by load

rather than being determined by an engine speed actuator as in the RT model. Therefore it is

necessary to provide a reasonable speed profile to the speed actuator in order to simulate the

real engine appropriately. Consequently a vehicle-road-load sub-model described in Section

3.7 is employed. By connecting to the sub-model, the virtual engine is simulated as an engine

in vehicle. The engine speed is related to the engine torque from the RT model, the resisting

load and the load of the vehicle which is determined independently. Additionally the road-

load sub-model is able to set different gear ratios hence diverse transient driving cycles can

be simulated and examined.

The basic dynamic calibration obtains a feedforward dynamic map and feedback con-

trollers KT and Kλ to track the engine torque T from the signal Tdesired and regulates λ to the
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Figure 7.1: Basic dynamic calibration and control configuration
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stoichiometric λdesired = 1 and minimise the fuel consumption subject to these constraints on

engine performance and emissions. The vehicle-road-load sub-model then automatically pro-

vides feasible engine speeds according to the pre-determined relation between engine torque

and speed. Differently from the static map in Chapter 6, the feedforward dynamic map is

composed of time invariant dynamic models which are obtained by identification and so the

time consuming local experiments at every operating point and smooth curve fitting through

these points can be avoided. To design the dynamic map, a constrained optimization of en-

gine inputs over a representative operating region is required in the first place. The obtained

optimal data is considered causal and includes rich information of the optimal setting in the

desired region so that it is reasonable to acquire the dynamic map by inverse identifications

using the resulting engine outputs and the optimal inputs. For the accuracy of tracking

desired torque and λ, feedback controllers are utilized to eliminate any offset in the open

loop control. However the controllers need to be precisely tuned since the implementation

of closed loop control may compromise the settling time of the entire control system. In

cases when it is not possible to collect the feedback signals from a production engine, e.g.

the engine torque, an accurate model is selected as an open loop estimator which provides

a simulated output and the output signals generated by this estimator are used for precise

closed-loop control of the real engine.

7.3 The Procedure of Dynamic Calibration and Control

As shown in Figure 7.2, the basic dynamic calibration is consist of in 4 main steps.

1. Identification of Engine Models

In order to reduce the experimental time, the fuel optimization and controller design are

carried out offline on engine models. Using the experimental engine test data, a torque

model and λ model are identified as:

T = T (INJ, SA, θ,N) (7.1)

λ = λ(INJ, SA, θ,N)

As the calibration results obtained by model-based experiments are to be implemented on

the real system eventually, the model quality is crucial to the consistency between the model

response and engine response. It would be necessary and most effective to apply methodolo-

gies of DoE and estimation for the purpose of further improving the model accuracy as much

as possible in this first step of calibration.
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Figure 7.2: The process of dynamic calibration and control
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2. Optimization of Fuel Consumption

In this step an optimal causal behaviour between the engine inputs INJ, SA, θ and outputs

T, λ, N is investigated by a constrained optimization. The objective function, the consumed

mass of fuel (mf ) is given by:

mfopt = minmf (INJ,N) (7.2)

And the corresponding constraints are:

T (INJopt, SAopt, θopt, N) = Tdesired (7.3)

λ(INJopt, SAopt, θopt, N) = λdesired

The optimization is the start for exploring the optimal settings of the engine control pa-

rameters for the overall objectives. It thus has a significant influence on the effectiveness of

the dynamic map. Appropriate optimization algorithms and associated settings need to be

selected for the efficiency of computation.

3. Identification of Dynamic Map

Inverse models are often used as feedforward compensators to track the desired outputs

[120]. Feedback controllers are designed and connected in series with inverse models in

order to eliminate the steady-state offset of output response and they can be developed by

linear methodologies since the resulting open loop control system has less uncertainty and

nonlinearity [121, 122, 123]. In this thesis the following inverse models (causal dynamic

maps) identified with the optimal data set have an additional effect of providing minimized

fuel consumption so that the three performance objectives of control mentioned in Section

6.3 can be satisfied.

INJmap = INJmap(Tdesired, λdesired, N) (7.4)

SAmap = SAmap(Tdesired, λdesired, N)

θmap = θmap(Tdesired, λdesired, N)

The fitness of the inverse identification denotes how well the causal optimal behaviour dis-

covered by the constrained optimization can be presented and utilized with unseen data sets.

Although the steady-state offset of torque and λ can be amended by the closed loop control

of the next step, it is worth finding a map with the best fit of INJmap and θmap in order to

produce the best linearisation of the system for the feedback control design.
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4. Design of Closed Loop Control

Because of the sensitive relation between the stoichiometric λ and three-way catalyst effi-

ciency, the allowable offset of the λ control loop is generally required to be less than 1%.

Consequently a closed loop λ control is often employed to satisfy this strict requirement. On

the other hand the limit on offset of torque is not so strict since the driver is able to adjust

the throttle manually if more or less rapid acceleration is desired. Therefore a closed loop

control of torque is only necessary if the output error caused by the feedforward controller is

significant, above 5%. Despite a torque sensor not being installed in production vehicles, it is

nevertheless feasible to obtain a torque model with good quality from powertrain experiments

and simulate the engine torque for control action.

7.4 Identification of Engine Models

In general a production engine is operated under various conditions according to different

driving cycles. Identifying a model which is universally accurate would be time consuming

and often practically impossible. The system identification thus should be control-oriented

that is determined by the objectives of the calibration. According to the objective mentioned

in Section 6.3, input signals should be able to generate an engine torque in the operating

region, 10Nm to 90 Nm and stoichiometric λ. Rather than using a trial and error approach

to manually find appropriate inputs to generate the desired outputs, feedback controllers can

be used to restrict the engine outputs to safe desired regions as shown in Figure 6.2. The SA

is excited with an input amplitude constraint while INJ and θ are determined by closed loop

control.

The objective of controller design in this step is different from that of a conventional

tracking control hence the principle of refining controller is also different. Generally a feedback

controller is developed to precisely track the reference input, as in the controllers produced by

the static calibration of this work. In an ideal situation, the corresponding output is expected

to have no overshoot, oscillation and short settling time. The design of the controller is

thus aimed to minimize these measures as much as possible. However in this stage of the

dynamic identification process, the major objective of the control is to regulate the data for

identification in the desired region and consequently the tuning work of controllers aiming to

optimize the output response can be considerably reduced.

It is worth noting that in order to capture the dynamics of the system, the inputs should

be able to excite the system appropriately and the controllers should be adjusted to provided

the rapid output responses required. In static calibration it is necessary to validate the

effectiveness of controllers against all operating points since the optimal settings of the entire
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operating region would be recorded. Nevertheless controllers for dynamic identification are

not required to be tested at every operating point because only data along a representative

transient profile is used for modelling. This in turn provides more available experimental time

for designers to optimize the performance of the controllers. The PI controllers for dynamic

engine identification for the RT model were thus obtained by online tuning and are given by:

KT =
0.3 + 0.7s

s
(7.5)

Kλ =
−20− 1.5s

s

7.4.1 Excitation Signals

To identify engine models, Tdesired, λdesired, engine speed and SA are considered as excitation

signals while engine speed, SA, INJ and θ are input signals for the identification. As discussed

in Chapter 4, the selection of excitation signals has a significant influence on the accuracy of

the system identification. The input should be sufficiently rich to excite the key frequencies

of the system and also the nonlinearity. Accordingly the signal must have wide frequency

content and include values at multi-levels. To identify nonlinear dynamic models, initially

an APRBS signal, which type has the advantages of both amplitude density and frequency

content, is employed to excite input channels since it has been demonstrated as a better

sub-optimal signal than PRBS and random number signal in Section 4.8.6.

Furthermore the input amplitude and the rate of switching of the input value from one

level to another must be decided adequately. To represent the low-speed low-load operating

region, the amplitudes of the APRBS inputs are selected as follows:

0Nm < Tdesired < 100Nm (7.6)

0.9 < λdesired < 1.1

5◦ < SA < 30◦

The range of SA is determined by a knowledge of the system from the previous static cali-

bration and ranges of θ and INJ are determined by Tdesired and λ. An APRBS signal could

vary from a PRBS to a random number signal with the number of input levels changing from

two to infinite. The selection of levels is a trade-off between the amplitude density of input

and the ability to excite system nonlinearity. According to [124], 5 levels : the lower bound,

1/4 point, middle point, 3/4 point and upper bound are significant levels and are selected for

the signal.

From the viewpoint of model identification, the input of engine speed should also be

an APRBS sequence. This is feasible in virtual engine experiments since the speed can

be instantaneously adjusted by the speed actuator. Nevertheless a profile of actual engine
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Figure 7.3: A profile of engine speed at the acceleration of vehicle

speed is affected by the comprehensive effect of factors such as vehicle speed, gear ratio and

resistance, which cannot be instantaneously controlled by the engine inputs e.g. SA and θ. An

arbitrary APRBS input hence becomes less practically meaningful. In this chapter the engine

speed is determined by the vehicle-road-load sub-model. An example of the acceleration of

vehicle speed(Nv) from 0 to 50 miles/hour with an APRBS engine torque(Tdesired) is shown in

Figure 7.3, the associated gear level and corresponding engine speed(Ne) are also displayed.

The best time interval for changing the input value between levels depends on the dy-

namics of the system. If the signal changes too slowly, it would be difficult to capture the

dynamics at higher frequency while if changes too fast, the output would have insufficient

time to respond fully. It is found that the rise time of the outputs for step change of INJ, SA

and θ are approximately: 0.45s, 0.36s and 0.51s. Additionally the time interval of demanded

torque and λ must be longer than the setting time of outputs in closed loop control. In this

work sets of candidate signals with different time intervals were tried and the time interval

was determined as 3 sec for all inputs.

It is acknowledged that the signals of input channels in MISO and MIMO identification

must be uncorrelated [125]. Therefore the seeds of the different APRBS inputs need to

be different. The determination of input-output sample time and data length involves a
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compromise between the prospective model accuracy and computing efficiency. In practice

the real-time data can be sampled more frequently than necessary to ensure the high frequency

content of the system is adequately recorded. Then the discrete data sequence can be down

sampled according to the specific requirements of the modelling such as the determined

sample time of the discrete model. Theoretically a long data length is always preferred

since it contains more information on the input-output relation however the most efficient

data length for identification can be investigated by trials using any prior knowledge of the

system. Generally a linear system can be identified with a smaller data length since the linear

relationship between input and output can be clearly captured by a limited number of the

data points. Moreover the time interval of the input signal should also be taken into account

in the selection of the data length and more data points may be required to identify the low

frequency mode of the system. In this section, experimental data of one minute of test time

was recorded and the sample time was selected as 0.01 sec, which equals to the time of an

engine cycle at the speed of 6000 RPM. To identify models working in the low-speed low-load

region, the data was further down sampled into 2000-point sequences with a sample time of

0.03 sec.

7.4.2 Neural Network Models of Torque and λ

In recent years the Neural Network has been a popular candidate for system modelling because

of its superior ability for describing system nonlinearity [126]. Generally speaking, Neural

networks can be classified into static and dynamic categories. In this thesis a specific dynamic

recurrent neural network, nonlinear autogressive with exogenous inputs (NARX) network is

chosen to represent dynamic systems. The NARX network can be regarded as an extension of

the popular time-series linear ARX model and has the advantage of recognising a very large

number of nonlinear phenomena in the system. In contrast to other dynamic networks, the

current output of the NARX network is not only related to the previous and current input

but also the previous output.

The NARX network can be further classified into parallel and series-parallel architecture

as illustrated in Figure 7.4 where TDL refers to the time delay. The parallel NARX network

is a simulation model in which the delayed output is provided by the feedback of simulated

model output. On the other hand, the series-parallel architecture can be set up by using

the previous output of the real system as an input when employed in online estimation and

control applications [127]. As a prediction model, this network is used in the feedforward

architecture however the accuracy of the predicted output is significantly improved if it is

possible to measure and provide the previous output of real system as a model input. In

the application of this section, the NN model is utilized to replace the real system for offline

model based optimization thus the parallel architecture is employed.
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Figure 7.4: Series-parallel architecture (a) and parallel architecture (b)

As suggested by Priddy [80], designers should try to model a real system by a two layer

network, a hidden layer and a output layer, since generally additional hidden layers can be

presented by more neurons in the first hidden layer. For a reduction of model complexity and

computational processing burden, the number of neurons in each layer needs to be determined

by downsizing trials and a smaller number which does not result in a significant decrease of

model accuracy is preferred. Table 7.1 shows the result of layer size selection. 70% of points in

the data sequence were chosen for training, 15% for validating and 15% for testing. Since the

data for training, validating and testing are randomly selected in each trial [81], a statistical

result is more convincing so that each network was trained ten times with the same data set

and the mean result presented.

Table 7.1: Selection of layer size

Layer size MSE MSE MSE

5 1 25.58 51.70 31.15

10 1 20.45 39.01 27.76

20 1 20.32 41.97 27.10

30 1 19.31 35.84 28.75

The maximum delays of input and output are selected to be 5 and 1 so that the equation

of the NARX network is given by:

ŷ(t) = f (u(t− 1), u(t− 2), u(t− 3), u(t− 4), u(t− 5), ŷ(t− 1)) (7.7)

Figure 7.5 shows the architecture of selected NARX NN for both torque and λ. The first layer

has 10 neurons with a tan-sigmoid activation function and the second layer has 1 neuron with

a linear activation function. Levenberg-Marquardt backpropagation [128, 129] is employed

as the training algorithm.

Using the settings mentioned above, the NN models were trained 10 times offline using
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Figure 7.5: The architecture of selected NARX neural networks

Table 7.2: Testing results of neural network MT and Mλ

MT Mλ

MSE 92.86 0.0251

R2 91.13% 89.52%
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Figure 7.6: Simulated engine outputs and real engine outputs



CHAPTER 7. DYNAMIC CALIBRATION AND CONTROLLER DESIGN 141

the identical identification data. The best testing result with respect to MSE and R2 as

criteria are given in Table 7.2. Corresponding models of torque and λ are selected to simulate

the identification data. As displayed in in Figure 7.6, the simulated outputs closely matches

the real system outputs.

7.4.3 Polynomial Models of Torque and λ

The polynomial model is another competitive candidate for modelling dynamic systems.

Models are expressed by algebraic equations in which the relationship between input and

output time series is clearly exhibited and it is less time consuming to estimate the parameters

than with the NN structure. In many practical applications polynomial models are preferred

for the ease of being programmed and low computational burden. In order to find a model

that gives a satisfactory output fitness of the identification data, various model structures

were tested. To establish the model structure, firstly the linear terms was be added and then

the nonlinear quadratic terms. With these trial tests the structures of torque model and λ

model are determined as:

yT (t) = θ1 + θ2u1(t− 1) + θ3u1(t− 2) + θ4u1(t− 3) + θ5u2(t− 1) + θ6u2(t− 2) (7.8)

+θ7u3(t− 1) + θ8u3(t− 2) + θ9u4(t− 1) + θ10yT (t− 1) + θ11u1(t− 1)u2(t− 1)

+θ12u1(t− 1)u3(t− 1) + θ13u2(t− 1)2 + θ14u2(t− 1)u3(t− 1) + θ15u3(t− 2)2

+θ16u3(t− 2)3

yλ(t) = θ1 + θ2u1(t− 1) + θ3u1(t− 2) + θ4u2(t− 1) + θ5u3(t− 3) + θ6u4(t− 1) + θ7yλ(t− 1)

Using the same identification data as with the NN models and the PEM estimation

method, the parameters obtained are:

θ̂T = [−8.91, 1.86, 0.58,−1.34, 1.06, 0.18, 0.61, 0.88,−0.0087, (7.9)

0.72,−0.02, 2.96× 10−4,−0.0244,−0.0068,−0.0177,−1.69× 10−4]

θ̂λ = [0.61, 0.091,−0.10,−1.07× 10−4, 0.0083, 0.82,−1.87× 10−4]

The obtained polynomial models are used to regenerate the identification signal and the

evaluated fitness is shown in Table 7.3.

Table 7.3: Testing results of polynomial MT and Mλ with PEM

MT Mλ

MSEPEM 157.42 0.0431

R2
PEM 84.56% 82.02%

In order to further improve the model accuracy, the proposed DoE methods are employed.

The optimal input is designed by using the AI-optimal criterion and used as the signal for
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identification. The developed SEM estimation method is selected to estimate the parameters

of the model. The derived optimized parameters are then given by:

θ̂T = [−21.33, 1.43, 0.60,−1.09, 1.38,−0.37, 0.62, 0.88,−0.0016, (7.10)

0.77,−0.02, 3.96× 10−4,−0.0202,−0.0092,−0.0132,−2.36× 10−5]

θ̂λ = [0.51, 0.15,−0.16,−3.18× 10−4, 0.012, 0.64,−6.96× 10−5]

Table 7.4 shows the resulting improved output fitness.

Table 7.4: Testing results of polynomial MT and Mλ with SEM

MT Mλ

MSESEM 125.68 0.0247

R2
SEM 87.99% 89.70%

Over-fitting may occur in any system identification because a model is developed to

maximise or minimise a performance index, e.g. minimising the MSE, for the identification

data but the accuracy of the model is determined by its performance on predicting or simu-

lating unseen data. An over-fitted model will general give a poor predictive performance on

the unseen data therefore the models obtained in Section 7.4.2 and 7.4.3 should be validated

by other data sets.

7.4.4 Validation of Engine Models

The results in Table 7.2 and Table 7.4 indicate that the obtained NN models and polynomial

models provide good estimations of the identified data set. However, qualified models are

expected to have the capability of accurately simulating signals that are uncorrelated to the

identification signals. To further validate the models with unseen data, 10 other sets of data

with different seeds were collected from the real system and simulated by the models. Figure

7.7 demonstrates an example of engine outputs and simulated outputs by NN and polynomial

models. An averaged validation result for these 10 sets is shown in Table 7.5

Table 7.5: Validation results of NN and polynomial MT and Mλ

MTNN MλNN MTpoly Mλpoly

MSE 47.11 0.0254 150.95 0.0277

R2 95.41% 88.27% 85.26% 86.65%

The validation results indicate that NN models lead to better output fitness in this ap-

plication especially in the torque response. In cases where NN models are not available due

to limits of industrial practice, nonlinear polynomial models can be employed and method-

ologies of model structure selection can be used to improve the accuracy of the polynomial
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Figure 7.7: Validation of NN and polynomial models

models [76, 130, 131]. In the process of dynamic calibration, the models developed in this

step are utilized for offline fuel optimization and controller design. Since the engine models

will not be programmed and stored in the ECU, it is feasible to choose NN models to obtain

the required high accuracy for use in the subsequent optimization process.

7.5 Neural Network based Fuel Optimization

With the obtained NN models, the next step is using a numerical optimization in order to

minimise the fuel consumption and satisfy the constraints on torque and λ. The Matlab

Optimization Toolbox [132] is utilized to solve the constrained optimization in this thesis.

Options of the optimization program are configured as follows:

7.5.1 Initial Conditions of Optimization

The objective of fuel optimization is to find optimal engine inputs which lead to minimized

fuel consumption in the operating region of interest. A set of engine inputs is selected as

the initial conditions for the numerical optimization and then the obtained optimal data is

used to develop a dynamic map which is able to generate optimal inputs in the whole region.

Therefore the initial input signals should excite the system adequately so that the corre-
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sponding input-output data includes sufficient information of the optimal system behaviour

over the whole desired operating region.

In this work a set of APRBS signals which have the same amplitude constraints and

same time interval as the validation signal in Section 7.4.4 and the corresponding engine

speed generated by the vehicle-road-load model are applied to the NN models of torque and

λ; the data length is selected as 2000 points. The resulting INJ, SA, θ, engine speed are

chosen as initial values of inputs and the corresponding simulated torque and λ from the NN

models are chosen as constraints of the subsequent model-based fuel optimization.

7.5.2 Design of Objective Function and Constraints

The objective of the constrained optimization of the fuel economy is to minimize the amount

of injected fuel over a period and to satisfy the constraints simultaneously. Accordingly the

number of fuel injections which are related to engine speed N and the fuel mass in each

injection INJ in this period is an essential variable that determines the total fuel mass. The

mass of fuel mf is given as a function of fuel injection and speed by:

mf (kg/hour) = 1.2× 10−4 · INJ(mg) ·N(RPM) (7.11)

In a specific optimization, parameters concerned with the working condition such as the

desired torque, λ and engine speed are fixed as the initial values. INJ, SA and θ are three

variable vectors that will be manipulated to realize the objective of the optimization.

The objective function of the dynamic calibration is different from that of the basic

hardware-based static calibration presented in Chapter 6 although the fuel mass in each

injection will be involved in both calibrations. Because system dynamics are neglected in

that static calibration, the current output is only related to the current input, in other

words, the engine parameter settings of an operating point are completely independent from

those of other operating points. Therefore minimizing the fuel consumption over a period

is equivalent to minimise the mf at each individual operating point. As the engine speed

is fixed at a certain operating point, the objective can be simplified as minimising the INJ

at each point. However in dynamic models, the constraint at the current time instant is

affected by the INJ of several past time instants. Correspondingly minimizing the mf at

a time instant may compromise the mf at other instants because of the constraints. The

objective of dynamic calibration is therefore to minimize the average mf , which is expressed

in the form:

min

n∑
t=1

mf (t)

n
= min

n∑
t=1

f(INJ(t), N(t))

n
(7.12)
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where INJ(t) is the manipulated variable, N(t) is a pre-determined sequence and n is the

length of the discrete time sequence. This objective function for fuel optimisation is a sim-

plification for the purpose of demonstrating the proposed dynamic calibration in this thesis.

It needs to be further improved for practical industrial implementations.

To track the desired torque and λ, equality constraints on the output values are applied

to the optimization of the form:

T (INJ(t), SA(t), θ(t)) = Tdesired(t), t = 1, 2 . . . , n (7.13)

λ(INJ(t), SA(t), θ(t)) = λdesired(t), t = 1, 2 . . . , n

Because of the general nonlinearity of the torque model and λ model, these two constraints

are treated as nonlinear constraints and will be converted into an unconstrained optimization

problem by penalty function. Since the scales of the desired torque and λ are quite different,

appropriate weightings must be added for balance otherwise the constraint for the small scale

signal will be compromised in the optimization and cannot be appropriately met. Addition-

ally the level of importance of constraints in the experiment could be another factor in the

optimisation criterion through the choice of weightings. In this application the requirement

for stoichiometric λ is more serious than that for achieving the desired torque because the

engine torque can be easily adjusted by the driver nevertheless a 1% error in λ will signifi-

cantly lower the working efficiency of the catalytic convert. The weighting ratio of torque and

λ is arbitrarily chosen as 1:1000 in this optimization in order to ensure that the important

λ constraint can be well satisfied. More advanced methods of determining the weighting

ratio can be employed, for instance by weighting the scales of the torque constraints and λ

constraints. However the results show that the ratio 1:1000 used in this case is effective in

balancing the torque and λ constraints.

Inequality constraints on input amplitudes should also be considered to avoid physically

unavailable settings. From prior knowledge of the engine and the static calibration result,

the inputs are accordingly constrained as:

0mg < INJ < 30mg (7.14)

5◦ < SA < 30◦

0 <◦ θ < 90◦

7.5.3 Optimization Algorithms

Since the objective function in equation (7.12) is purely linear, the interior point algorithm can

be employed to solve the local optimization problem for this system efficiently. An increasing

number of iterations of this algorithm would improve the optimization result at the expense
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of increasing the computational time. Therefore a prior knowledge of the optimization from

trials is very helpful in selecting the iteration number and this is determined as 50000 for

these experiments. In the optimization, each point of the input sequence is considered as a

variable, the number of variables is dependent of the length of data and the number of input

channels. The time required to process the optimization fully across the full data length

would be very long with a large number of variables. Constraints also have a significant

influence on the computing work. From equations (7.13) it is learnt that the total number of

nonlinear constraint is 4000, twice the data length. The number of variables included in each

constraints is determined by the model structure of torque and λ and this is 15 as shown in

equation (7.7). In order to process the optimization efficiently, three approaches are studied:

1. Batch approach

In this approach, the variables of the entire data sequence are manipulated in one optimiza-

tion. The advantage of the batch approach is that the result of optimization, if it is practically

possible to achieve it, may be very accurate since all input points are optimized under full

constraints. However, there are two major disadvantages with this approach. The first dis-

advantage is that it does not take the causality into account because it can use information

about future behaviour and disturbances to determine current control inputs. The second

disadvantage is the high computational demand on memory and computational time. In fact

for the data lengths considered in this thesis, this is quite impractical. As described in Chap-

ter 4, the optimization algorithm approaches the optimal value asymptotically with a number

of iterations. Therefore 6000 variables subjected to 4000 constraints are processed in each

iteration, which means a vast size of memory is required to load and run the optimization

and it results in an extremely heave computing burden. In practice it was found that the

computer memory that can be utilized by a 32bit version of Matlab is even not enough to

execute the optimization.

2. Segment approach

To reduce the computational work in each iteration, a novel segment approach has been in-

vestigated which splits the whole data sequence into continuous sub-sequences or segments

and optimizations are then performed sequentially on each separate segment, each of which

includes much fewer variables and constraints. This method is found by experiment to be

practically effective. However since the optimizations of the segments are carried out inde-

pendently, the data at the connecting points between two sequential segments might not be

consistent in end and initial condition and so may not be well optimized overall. In dynamic

models, the current output of the objective function or constraint function is often related to
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Figure 7.8: The effect of segment approach on output constraints

Figure 7.9: A schematic of the predictive horizon approach

the previous values of the input and output. This means that in order to meet the constraints

on the first several points of a current torque or λ segment, the last a few points of previous

INJ, SA and θ segments will be affected. Therefore the constraints on the previous segment

may not be well satisfied.

Figure 7.8 shows an example of the torque and λ constraints in a fuel optimization

using the segment approach. The “spikes” in output are caused by the compromised initial

condition values at the connecting part between the segments. However, in practice it has

been found that these spikes can be reduced by smoothing these connecting points of the data

though the smoothing may have a negative influence on the result of the fuel optimization.

The segment approach overcomes much of the computational burden problem of the batch

approach but retains the disadvantage that the optimization may be non causal.
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Figure 7.10: The effect of predictive horizon approach on output constraints

3. Predictive Horizon approach

The predictive horizon approach is demonstrated by Figure 7.9. This method is similar to

explicit model predictive control (MPC) [133]. A horizon of length k is selected from the

start of the entire input sequence and an optimization of the selected data is carried out.

Although the whole horizon is optimized, only the optimal value of the first input point will

be recorded and then the horizon will move one step forward for the second optimization.

This process continues until the horizon reaches the end of the input sequence. Using this

approach the constraints can be satisfied very accurately as displayed in Figure 7.10.

The required computational work might be relatively heavy since the optimization of

the horizon will be repeated for the entire data length. However it is more feasible than

the batch method because of the adjustable length of the horizon. In addition it produces a

causal optimisation. To improve the efficiency, the size of the forward step and the number

of optimal values recorded in each optimization can be adjusted from 1 to k at the expense

of sacrificing the constraints. The predictive horizon approach is identical to the segment

approach if the size of the forward step is identical to the length of horizon.

In this thesis the segment method is chosen because of its high computational efficiency.

The connecting data of neighbour segments is simply smoothed by using the mean value over

a narrow connecting area. Figure 7.11 illustrates the effectiveness of the smoothing. The

spike in the outputs around the 50th sample instant is remarkably reduced by smoothing the

input data. Although the spikes in the constraints cannot be completely eliminated by means

of manually smoothing, in the experiments of later sections it is found that their effects can
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be further filtered to a large degree by the inverse compensator which will be used as the

dynamic map and also by any feedback controller if this is implemented.

7.5.4 Optimization Results

In the proposed fuel optimization, the whole 2000-point data is evenly divided into 20 seg-

ments. Using the interior point algorithm with 50000 numerical iterations in each optimiza-

tion, the resulting optimal inputs: INJ, SA, θ are shown in Figure 7.12.
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Figure 7.12: Optimal inputs obtained by constrained fuel optimization

The obtained optimal input looks “noisy” since parts of the input values change drastical-

ly. This problem is caused by the settings of the optimization. In the numerical optimization,

each point of the input is treated as an individual variable and the algorithm will adjust these

variables in order to meet the equivalent constraints. Since these variables are considered

independent from each other, the resulting optimal input may not be smooth. In order to

solve this problem, additional constraints such as input rate constraint can be applied to

relate the neighbour points of input in time series. Moreover, in later steps of the dynamic

calibration, a feedforward controller will be developed by an inverse identification in order

to generate the optimal inputs. Due to the inverse identification, this controller will produce

approximated smooth signals rather than the same inputs in Figure 7.12 so that the control

efforts which will be applied to the real system are not “noisy”.
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Comparing to the original fuel consumption of mf = 3.54kg/hour, the optimized fuel

consumption is mfopt = 3.05kg/hour and:

mfopt

mf
= 86.17% (7.15)

Figure 7.13 demonstrates the demanded constraints and the output responses on the NN
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Figure 7.13: Demanded constraints and optimal outputs on NN models

models generated by the optimal inputs. It is found that the constraints were not satis-

fied too well in segments with the selected iteration number when using the interior point

algorithm. Although the error can be reduced by using a larger number of iterations, the

computational efficiency of the optimization then deceases accordingly. As closed loop control

can be implemented to further regulate inputs to satisfy the constraints in the last stage of

the calibration, it is sensible to set the options for the optimization algorithm for the most

efficient computation at this stage.

Since the optimal inputs lead to a minimized fuel consumption and generally meet the

constraints satisfactorily, the constrained model-based fuel optimization is verified as being

effective. The final validation would require that the performance of optimization however

should be validated on the real system. The optimal inputs can only be considered practically

useful only if the generated outputs of the RT model closely match the outputs of the NN

models.
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Figure 7.14: Optimal outputs on NN model and RT model

7.5.5 Adaption for Output Consistency

The numerical optimization of the fuel consumption has a significant influence on the perfor-

mance of the dynamic map which is identified based on the inverse optimal data. In order to

achieve a well optimized and reliable result, first of all sufficient iterations in the numerical

optimization should be conducted in order to guarantee that a satisfactory causal optimal

behaviour of the system can be found. Secondly the identifiability of the obtained engine

control optimal inputs should be considered to ensure that the causal system behaviour can

be represented by an inverse identified dynamic model. Moreover since the constrained fuel

optimization is based on engine models, it is crucial to apply the obtained optimal signals to

the real system and evaluate the consistency of the resulting system outputs to the simulated

outputs. Figure 7.14 displays the profiles of the optimal outputs collected from the NN mod-

els and the virtual engine, where the fitness of the RT output to the demanded constraints

is:

R2
Topt = 79.96% R2

λopt = −222.86% (7.16)

Since the segment method is selected, the NN outputs have spikes at the connecting points

but meet the constraints closely at other points. However in the RT outputs the spikes are

filtered but large errors exist at points across the whole output sequence. Comparing to the

validation results in Section 7.4.4, the fitness of the optimal RT output is remarkably small.
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This indicates that the identified NN models could represent the system dynamics accurately

if tested with inputs that are similar to the identification signals however the models may

not be qualified to simulate the system behavior accurately if tested with the optimal inputs.

In the time domain the optimal inputs change much more quickly and drastically than the

signal used for identification as shown in Figure 7.12.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

Time(0.03s)

 

 
torque constraint
RT output 1st iteration
RT output 2nd iteration

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

Time(0.03s)

 

 
λ constraint
RT output 1st iteration
RT output 2nd iteration

Figure 7.15: Optimal outputs on RT model by iterations

To improve the output consistency two approaches can be employed. The first approach

is to reidentify the engine models using the obtained optimal inputs and then to repeat the

fuel optimization with the revised models. It is well known a model can easily represent the

system behaviour accurately in the validation if the validation signals have similar properties

to the identification signals in the time domain and frequency domain.

Assuming the identification signals are chosen as the initial data signals used in the

optimization, the resulting optimal inputs which are considered as validation signals must

necessarily be different from the initial signals since the inputs must be adjusted to optimize

the fuel consumption. However the difference between the signals can be reduced asymp-

totically by running the identification and optimization iteratively. Figure 7.15 and Table

7.6 illustrate an example of the effect of this approach. In the first iteration there is a large

discrepancy between the resulting RT output and the desired constraint while this distinction

is significantly reduced in the second iteration and the output fitness is enhanced correspond-
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ingly. As no additional constraint is added to the optimization, the search region in each

iteration is not further limited. Theoretically the true optimal value is always achievable pro-

viding sufficient iterations are conducted in the identification and optimization. Nevertheless

the major disadvantage here is the large amount of experimental time required to repeat this

comprehensive procedure.

Table 7.6: The fitness of RT output to desired constraints in iterations

1st iteration 2nd iteration

R2
T 79.96% 88.16%

R2
λ -222.86% -79.88%
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Figure 7.16: Optimal SA obtained with/without rate constraint

Table 7.7: The fitness of RT output to desired constraints with/without rate constraint

No rate constraint With rate constraint

R2
T 79.96% 94.66%

R2
λ -222.86% 28.43%

Besides processing the model identification and the fuel optimization iteratively, ad-

ditional constraints can be applied to the optimization with the purpose of improving the

output consistency. The major difference between the identification signal and the optimal

signal is the time interval and the rate of change. To compensate for the dissimilarity, a

constraint on the rate of input change would be effective however it should be implemented

on the inputs selectively since additional constraints may compromise the optimization re-

sult and computational time. In the dynamic calibration procedure, the INJ and θ values

mainly determine the generated torque and λ and are adjusted by feedforward and feedback
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Figure 7.17: Optimal outputs on RT model with/without rate constraints

controllers. On the other hand the SA is only controlled by the feedforward compensator

consequently a SA map with good accuracy is crucial for the fuel economy. A rate constraint

∆u = u(t)−u(t−1) = 1 was applied to SA and the optimal signal obtained with and without

the rate constraint is shown in Figure 7.16. The corresponding outputs on the RT model are

illustrated in Figure 7.17 and the validation result is given in Table 7.7, proving that the rate

constraint has a significant effect on the consistency of the output.

7.6 Design of Dynamic Map

In the automotive industry, EMS strategies generally use look-up tables as static maps to

control the actuators. In the basic static calibration presented in Chapter 6, 36 different

values of SA needed to be tested at each operating point and the settling time for each test

is 10 sec. The experimental time required to collect data for 121 operating points is thus

43560 seconds. For the accuracy of static calibration, a larger amount of operating points

may need to be mapped which results in an even longer experimental time. To overcome the

disadvantage of the cost in experimental time of the static calibration, many authors have

attempted to characterise the desired behaviours of system by dynamic models [134, 135].

The methodology of dynamic mapping proposed in this thesis refers to the prediction of the
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Figure 7.18: A Schematic of feedforward controller

optimal setting of the actuators by using an inverse feedforward controller, the first form

of which was initially used by Aquino [136]. Since the optimal inputs obtained in the last

section are causal, the feedforward controller can be designed by using the inverted optimal

data set. Three inverse MISO models are designed to predict the optimal INJ, SA and θ by

using desired torque, λ and engine speed as inputs. This method is quicker in experimental

time than the static calibration since only one set of optimal transient data is required for

inverse model identification. In order to generate the optimal data, a representative set of

initial data which sweeps over the operating region is needed in the optimization. Figure

7.18 depicts the structure of an inverse feedforward controller Λ. After the identification

the desired λ input is set to 1 so that the controller predicts the optimal inputs under the

stoichiometric condition.

7.6.1 Synchronisation of Optimal Data

To design rapid and accurate feedforward controllers the inherent time delay between inputs

and output need to be removed appropriately before modelling to ensure causality of the

inverse system. The length of the system time delay can be determined by simple step tests

on the system. For an IC engine most of the mechanical, chemical and thermal reactions are

combustion based. The time required for every combustion event which is equal to the event

of a 720◦ crankshaft rotation for a 4 stroke 4 cylinder engine. 360◦ is thus a reasonable choice

of sample time. Accordingly the sample time of the NN models obtained in Section 7.4.2 and

the following polynomial models is selected as 0.03 sec which equals to the time of a 360 ◦

rotation at the engine speed of 2000 RPM.

The first type of time delay is caused by the transport delay because of locations of the

sensors and actuators. To develop appropriate controllers, the significant delay due to trans-

portation lag should be removed before modelling. For instance since the λ sensor is placed

in the exhaust pipe close to the catalyst, a pure time delay is caused by the transportation

of the exhaust gas from the exhaust port to the sensor and the output in the input-output

data should be advanced accordingly to describe an instantaneous causal reaction. Addi-
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tionally the reaction time of sensors to report the experienced output should also be taken

into account if it is not much smaller than the sample time of model. In the RT model, it is

assumed that the λ sensor is placed at the exhaust port and ideal sensors and actuators with

no reaction time are used. Therefore the time delay of transportation and sensor reaction

can be ignored with this model.

Since the feedforward controller is composed of delayed and cross-related regressors and

is identified with inverse input-output sequences, the other type of time delay is caused by

the selected structure of the dynamic controller and the structure of the related dynamic

engine models. Assuming m and n are the maximum time delays of the engine model and

the controller respectively, in order to generate the same output sequence Y the input of the

controller should be Y ′ which is given by:

y′(t) = y(t−m− n) (7.17)

7.6.2 Inverse MISO Feedforward Controller Identification

In this step polynomial models are employed to describe the controllers because they are

more easily programmed and less resource demanding in the ECU than NN models. The

selected model structures of the 3 nonlinear dynamic control maps are:

y1(t) = a1 + a2u1(t− 3) + a3y1(t− 1) + a4u1(t− 2)u2(t− 3) + a5u2(t− 3)y1(t− 1) (7.18)

+a6u3(t− 3)y1(t− 1)

y2(t) = b1 + b2y2(t− 1) + b3u1(t− 3)y2(t− 1) + b4u1(t− 2)u3(t− 1) + b5u2(t− 1)y2(t− 1)

y3(t) = c1u1(t− 1) + c2u1(t− 2) + c3u2(t− 1) + c4u2(t− 2) + c5u2(t− 3)

+c6u2(t− 4) + c7u3(t− 1) + c8u3(t− 2)

where u1, u2, u3 denote desired torque, λ and engine speed and y1, y2 and y3 denote INJ,

SA and θ. The optimal data obtained in Section 7.5 are inverted and used as identification

signals. The optimal output sequence is shifted 8 steps backwards since the maximum delay

of the NN engine models and the polynomial controller are 5 and 3 samples respectively.

From the PEM method the estimated parameters are obtained as:

âPEM = [1.61, 0.77, 0.54,−4.00× 10−5, 0.0176,−0.0039] (7.19)

b̂PEM = [2.38, 0.90, 2.85× 10−5,−4.32× 10−6,−0.0012]

ĉPEM = [0.30,−0.14, 0.74, 0.31, 0.092,−0.37, 4.36× 10−5, 0.0018]

And the corresponding R2 values are:

R2
INJ = 73.14% R2

SA = 25.92% R2
θ = 38.89% (7.20)
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Using the proposed SEM method, the parameters and improved R2 are given by:

âSEM = [0.30, 0.96, 0.0078,−1.04× 10−5, 0.0018,−0.0033] (7.21)

b̂SEM = [5.22, 0.80,−1.68× 10−4,−7.55× 10−6,−0.0063]

ĉSEM = [0.19,−0.031, 0.094, 0.15, 0.16, 0.11,−0.011, 0.013]

R2
INJ = 79.29% R2

SA = 26.94% R2
θ = 40.26% (7.22)
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Figure 7.19: Optimal inputs and simulated optimal inputs by inverse models

Although the values of R2 in equation (7.22) are not as high as the fitness of the identified

engine model in Table 7.5, the simulated optimal inputs can still give satisfactory results. As

displayed in Figure 7.19 when the control map is implemented, the spikes between segments

are substantially reduced and the rest of the original optimal inputs are well matched in

general. A satisfactory dynamic map which has the ability of tracking desired torque and λ

and minimizing the fuel consumption is therefore composed of 3 dynamic models in equations

(7.18) with estimated parameters in equations (7.21). Theoretically the difference between

the original and simulated optimal inputs will undermine the control performance of the

dynamic map, nonetheless the influence can be reduced by an additional closed loop control.
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7.6.3 Offline Validation of Dynamic Map
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Figure 7.20: Control performance of dynamic map in offline validation

Since the numerical fuel optimization was carried out on the identified dynamic models

rather than the RT model, the obtained dynamic map should be firstly validated on the

engine models. Figure 7.20 shows the torque and λ response to a step change of demanded

torque at the engine speed 2000 RPM. The settling time of torque and λ is less than one

second so that the responses are as rapid as those controlled by the static map. However

due to the quality of the inverse identified dynamic map, the demanded signals cannot be

perfectly generated by this feedforward controller. The steady-state errors of torque and λ

are approximately 5% and 2%.

7.6.4 Online Validation of Dynamic Map

The dynamic map is implemented on the virtual engine so as to observe its capability in

satisfying the control objectives on the real system. Firstly a random number signal with

a time interval of 6 sec is applied as the demanded torque to test the tracking of torque

and the interaction with λ while the demanded λ remains stoichiometric. In real engine

experiments, there is a limit on the maximum brake torque generated by the low-inertia

dynamometer therefore may not be appropriate to apply step change of torque demand

larger than ±20Nm. The system behaviour excited by the limited step size of torque tends to

be linear. Accordingly it is difficult to test the robustness of the controller against nonlinear
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system dynamics excited by dramatic changes of torque. This issue should not be ignored

since it is common in drive cycle tests. As a unique benefit of calibrating the virtual engine,

it is possible to apply a simulated heavy load and hence the desired torque is selected with

a relaxed amplitude constraint from 20Nm to 80Nm. The engine speed N is the other index

of the operating region besides the torque. In the test the speed is generated by the vehicle-

road-load submodel in order to evaluate the robustness of controllers to diverse torque and

speed profiles. The outputs corresponding to the dynamic map and the static map are both

plotted in Figure 7.21 for the ease of comparison and the validation signal is identical to the

one used for static map online validation in Section 6.7 .
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Figure 7.21: Control performance of the dynamic map and static map in online validation

According to equation (6.4), the resulting fuel economy from the dynamic map is:

edy=4.15 Nm/mg, which is the same as the fuel economy from the static map. The tracking

of desired torque and stoichiometric λ is displayed in Figure 7.21. Comparing to the static

map, the overshoot of λ caused by the dynamic map is considerably shorter. The settling

time of torque and λ responses by the dynamic map is as small as that by the static map how-

ever the dynamic map leads to larger steady state offsets. The steady-state offset of torque

increases from 1Nm to 2Nm and the λ offset increases from 0.01 to 0.1 if the dynamic map

is employed. The drawbacks on the control performance of the dynamic map result from the

lack of accuracy of the identified engine models and also the inverse models used to obtain

the dynamic map. Improving the model quality is therefore the primary solution of the lack

of accuracy. Alternatively the offset error can also be reduced by the implementation of an
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additional feedback control loop.

7.7 Design of Closed Loop Control

The major advantage of feedforward control is the rapid output response since the reference

signal is not affected by the delays in measurement from the real system. However a closed

loop control is often employed to reduce the steady-state offset between the desired and

measured response. The following section discusses the design of such a closed loop control

designed according to different requirements.

7.7.1 RT Model Feedback for Torque and λ Control

Although advanced methodologies for controller design have been proposed by many authors

in recent decades, the PI controller is still one of the most widely used controllers in industry

because of its simple structure and effectiveness [137]. As the remaining nonlinearity of the

dynamic map feedforward compensated system, here composed of the feedforward controller

in series with the virtual engine, can be characterised as linear uncertainty, a pair of PI

controllers for engine torque and λ are designed according to the parameter-space method

[138, 139] in this step. Initially, 5-level APRBS signals are implemented as 5 equally spaced

set points of Tdesired and λdesired across the ranges [0.9 1.1] and [10Nm 90Nm]. The frequency

responses in 4 channels: Tdesired to T , Tdesired to λ, λdesired to T and λdesired to λ are tested.

To excite the dynamic map compensated system, firstly λdesired is fixed as a constant from

[0.9, 0.95, 1, 1.05, 1] respectively and Tdesired is selected as an APRBS signal which generates

the output response of Tdesired to T and Tdesired to λ. On the other hand Tdesired is fixed

at [10Nm, 30Nm, 50Nm, 70Nm, 90Nm] respectively and λdesired is selected as an APRBS

signal which generates the response of λdesired to T and λdesired to λ. 100 logarithmically

distributed frequencies from 0.01 to 500 Hz are collected and the corresponding Bode plots

are shown in Figure 7.22.

To simplify the control problem, the interaction between the λ channel and torque

channel which should not be excited during normal stoichiometric operation is ignored in

this thesis. The subplot of Tdesired to T indicates that a change of desired torque will lead

to the same scale of change in the measured torque while the subplot of λdesired to λ shows

that the output of λ is not sensitive to the change of desired λ. However because the desired

λ remains stoichiometric in the calibration work, the insensitive λdesired to λ response is also

of less importance.

Using the derived frequency responses, the parameter-space method produces the profiles

of gain margins of 0dB, 6dB and 12dB and phase margins of 30◦, 45◦ and 60◦ plotted in the
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Figure 7.22: The Bode plot of frequency responses in 4 channels
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Figure 7.23: The parameter plane of P and I terms

Kp and KI plane as shown in Figure 7.23. These profiles provide guides for selecting the

values of Kp and KI , yield the feedback controllers:

KT =
2.64 + 0.33s

s
(7.23)

Kλ =
19.34 + 3.59s

s

The capability of controllers to track demanded torque and λ is tested and presented in

Figure 7.24. Comparing to Figure 7.21, it can be seen that the steady-state deviation is

eliminated by the PI controllers. Nevertheless the corresponding outputs settle to the desired

value in approximately 1.5 sec which is longer than when using the static map.

7.7.2 Open Loop Compensator for Torque control

As torque sensors are highly expensive, it is not reasonable to install these in a production

car and so the implementation of closed loop torque control using feedback data from the

measured engine torque becomes infeasible. For agility and steady-state accuracy in the

torque control, an effective approach is for the ECU to provide online estimate of the engine

torque using an open loop torque estimator and to use feedback of the simulated torque

instead of the real engine torque in the closed loop control. Subsequently the resulting control

efforts: SA, INJ, θ are then delivered to the inputs of the real engine and the inaccuracy of

the pure feedforward torque control could be compensated. Figure 7.25 depicts a structure

of the open loop compensator for such a torque control system.
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Figure 7.24: Closed loop control performance of PI controllers

Figure 7.25: An open loop compensator for torque control
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The type of model estimator has been extensively discussed by several authors. Static

mean value models are chosen in [140, 141] because of their straightforward model structure

and rapid output response. Recurrent NN models are selected in [142, 143] for their superior

capability in modelling the nonlinearity of dynamic systems. In this chapter a nonlinear

dynamic polynomial MISO model is used to implement the estimator. This type of model

can represent a wide range of system dynamics by using nonlinear regressors with time delay

and additionally its algebraic model structure is simple to program and implement in the

ECU. Various engine signals can be used to build the estimator, generally including MAP,

SA, N etc. [144]. For consistency with the engine models obtained in Section 7.4, INJ, SA,

θ and N are employed.

In practical experiments significant time delays may exist between actuators and sensors

due to the limits of the experimental conditions and cannot be physically removed. However,

the estimator could still be used to improve the control. By removing the undesired time delay

from the input-output data for the identification of the estimator, the obtained estimator is

able to predict the output before the measurement from sensors is available. Providing

that the output prediction is sufficiently accurate, a controller that is designed based on the

estimator can lead to a more rapid output response [143].

Since the torque estimator is intended to replace the virtual engine in the closed loop

control, the data for identification is collected from a test in the closed loop control system

in Section 7.7.1. The identified polynomial model of the engine torque is given as:

yT (t) = θ1 + θ2u1(t− 1) + θ3u1(t− 2) + θ4u1(t− 3) + θ5u2(t− 1) (7.24)

+θ6u3(t− 1) + θ7u3(t− 2) + θ8yT (t− 1)

where the parameters estimated by PEM are as follows:

θ̂T = [−5.89, 5.67,−1.27, 2.25,−0.55,−1.79, 1.02, 0.89] (7.25)

The model quality is validated and the resulting output fitness are: MSE=11.45 andR2=98.87%

By using the proposed methodologies of optimal input design and SEM, the estimated pa-

rameters are updated as

θ̂Topt = [16.16, 7.99,−4.08, 4.12,−1.57, 0.53,−1.59,−0.45] (7.26)

The output fitness of the updated model in validation is the found to be: MSEopt=11.27

and R2
opt=98.90%. The benefit by using DoE methodologies is limited in this identification

because the accuracy of the model obtained by PEM is already very high and the system

behavior has been precisely modelled.
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Figure 7.26: Closed loop control performance of an open loop compensator

Using the obtained torque model as the open loop compensator, the control performance

is shown in Figure 7.26. Comparing with Figure 7.24, the control performance is seen to be

very close except for a slight steady-state offset of torque, of approximately 1Nm, due to the

difference between the model and real system.

7.7.3 Smith Predictor for λ Control

The control performance of λ in the virtual engine experiments is satisfactory since the

feedback signal from the RT model is used as the reference signal for control. However in the

real in-vehicle engine, two main practical issues need to be considered. Firstly as discussed

in Section 7.6.1, there is a significant time delay of λ in real engine because of the location of

the λ sensor and this delay will considerably compromise the control performance. Secondly

the steady-state error is required to be small enough to achieve the strict requirement on

emissions. An open loop compensator designed with time shifted data can solve the first

issue. However since it is actually an open loop control on the λ of the real system, the high

demand on steady-state accuracy is difficult to meet.

The control performance can be enhanced by iteratively refining the quality of the es-

timator. Alternatively a Simth predictor is also capable of improving the performance. To

illustrate this for the linear case, assuming a system without extra output delay G(z) and a

feedback controller K(z), the corresponding closed loop transfer function is thereby in the
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form of:

H(z) =
K(z)G(z)

1 +K(z)G(z)
(7.27)

Adding a pure k step time delay to the output, the transfer function of the system should

be updated as G(z)z−k. In order to obtain an updated closed loop transfer function H̄(z) =

H(z)z−k, the controller K̄(z) which is named Smith predictor can be design as:

K̄(z)G(z)z−k

1 + K̄(z)G(z)z−k
= z−k K(z)G(z)

1 +K(z)G(z)
⇒ K̄(z) =

K(z)

1 +K(z)G(z)(1− z−k)
(7.28)

Figure 7.27: A Smith predictor for system with extra output time delay

Practically the real system G(z) is often unknown so that an estimated Ĝ(z) needs to

be used. The Smith predictor is a predictive controller with pure time delay as demonstrated

in Figure 7.27. Without the predictor, the controller will regulate the system behaviour by

using delayed output information hence the control performance may not be satisfactory.

The estimator in the predictor is able to provide predicted output information which can

enhance the control performance providing the estimator can represent the system behaviour

precisely.

For λ control, the Smith predictor can be adapted as shown in Figure 7.28. The feedback

signal from the real system is amended by both the delayed and the non delayed output of

the λ estimator. It is shown that if the λ model perfectly matches the λ response of the

virtual engine, the internal feedback controller designed with RT model feedback signal can

be implemented directly without further tuning.

Adding an extra 5 step λ sensor delay to the RT output and using the same λ PI

controller as in the last section, the output response in the extra delayed system is found to

be as shown in Figure 7.29. Besides the 5 time delay, a large oscillation occurs which in turn

affects the settling time and overshoot, the control performance is thus significantly lowered.

To reduce the influence of the extra output delay on the control performance, an es-

timator for λ is developed using the same process in Section 7.7.2 by using a time shifted
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Figure 7.28: A Smith predictor for λ control
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Figure 7.29: Closed loop control performance of PI controllers in delayed system
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data. The resulting control performance of the Smith predictor is displayed in Figure 7.30.

Compared with the λ response controlled by the feedback signal from the RT model without

extra delay, the response in a delayed RT model which is controlled by the Smith predictor

has a pure time delay of 5 samples but the main control performance such as the settling time

and overshoot is not significantly affected. The benefit of the Smith predictor in the delayed

system is thus exhibited. However the difference in shape between the two curves indicates

that the accuracy of the estimator can be further improved and a better control performance

could then be achieved.
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Figure 7.30: Closed loop control performance of Smith predictor in delayed system

7.8 Polynomial Model Based Design

7.8.1 Polynomial Model Based Fuel Optimization

The Neural Network models obtained in Section 7.4.2 were selected for use in the model-based

optimization in the previous sections because of their high output fitness. However due to

the relative complexity of the NN model structure compared with the simple polynomial

models of Section 7.4.3, the simulation by the NN models required within the optimisation is

much slower than that using the polynomial models though it is still considerably faster than

the alternative of generating the output from the RT model on the real engine. Therefore

providing sufficient accuracy can be obtained it is beneficial to replace the NN models by

polynomial models in the optimization if a further improvement of computing efficiency is

desired.

In the following experiment, the polynomial models of equation (7.8) are employed to

simulate the torque and λ constraints while the other settings of the optimization such as the
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Figure 7.31: Optimal outputs on the RT model (segment length of 100 points)

objective function and the algorithm type remain the same. Figure 7.31 shows the resulting

outputs on the RT model when the optimal signals were generated using the segment approach

and the length of each segment is 100 points. As mentioned in Section 7.5.3, the spikes appear

between segments so that in order to improve the output responses, another optimization was

carried out using segments of 500 points. The corresponding output of the whole data length

2000 points is displayed in Figure 7.32. Compared with Figure 7.31, the output fitness is

improved since the spikes are significantly reduced.

Table 7.8: The computing time of the model-based numerical optimization

Segments of 100 points Segments of 500 points

Neural Network 103340s 163927s

Polynomial model 1442s 1668s

The computing time required for the model-based numerical optimization over the entire

data length of 2000 points with various lengths of segments is shown in Table 7.8. The

computing time for the polynomial model based optimization is only approximately 1.4% of

that for NN model based optimization. Although a longer segment length leads to a longer

computing time, improving the output fitness by increasing the length of segments is still a

sensible and practical approach because the cost of this is very much offset by the outstanding

computing efficiency of the polynomial model based optimization.
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Figure 7.32: Optimal outputs on the RT model (segment length of 500 points)

7.8.2 Iterative Dynamic Map Design

Using the same model structure as in equations (7.18) and the optimal signals obtained in the

polynomial model based fuel optimization with the segments of 500 points, the parameters

estimated by the PEM method and the corresponding output fitness are given by:

âPEM = [0.12, 0.0052, 1.03, 0.0043,−0.0054,−3.41× 10−5] (7.29)

b̂PEM = [11.77, 0.66,−7.19× 10−4,−2.64× 10−5,−0.0057]

ĉPEM = [0.21,−0.061, 9.60,−7.47, 7.70,−4.64,−0.0049, 0.0049]

R2
INJ = 85.11% R2

SA = 69.69% R2
θ = 58.60% (7.30)

The parameters and improved R2 of the proposed SEM method are given in equations (7.31)

and (7.32). The optimal inputs and simulated optimal inputs from the dynamic map are

shown in Figure 7.33. The parameters obtained by the SEM are:

âSEM = [0.44, 0.0061, 1.08, 0.016,−0.099,−4.60× 10−5] (7.31)

b̂SEM = [16.50, 0.50;−0.0014;−3.21× 10−5; 0.0051]

ĉSEM = [0.22,−0.062, 10.17,−10.62, 12.02,−6.44,−0.0058, 0.0059]

R2
INJ = 93.06% R2

SA = 70.65% R2
θ = 58.66% (7.32)

Following the approach described in Section 7.7.1, a pair of PI controllers is obtained as

shown in equation (7.33) and the output responses obtained by using these controllers are
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Figure 7.33: Optimal inputs and simulated optimal inputs by inverse models
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Figure 7.34: Closed loop control performance of PI controllers
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shown in Figure 7.34.

KT =
2.64 + 0.33s

s
(7.33)

Kλ =
2 + 0.5s

s

Comparing to the feedforward controllers, the major disadvantage of the feedback controllers

in this section and Section 7.7.1 is the resulting longer settling time. However we propose an

approach to refine the dynamic map using the input-output data collected from the closed

loop control system. Since the design of the dynamic map is based on experiments on the

developed engine models, the control performance might be compromised when implementing

the dynamic map on the virtual engine. Therefore it is sensible to further develop the dynamic

map using the data collected in the closed loop control system because the data represents a

typical optimal behaviour of the virtual engine.

Using the data from the closed loop control system and the same model structure, the

parameters estimated by the SEM are updated as:

âSEM = [2.83, 0.093, 1.39, 0.078,−1.23,−3.19× 10−5] (7.34)

b̂SEM = [31.31,−0.0049, 0.0012,−8.79× 10−5, 0.019]

ĉSEM = [0.096, 0.043,−63.79, 62.99, 74.68,−75.69, 0.16,−0.15]

Figure 7.35 shows the control performance of the dynamic map with the parameters as in

equation 7.31 and the updated dynamic map with parameters as in equation (7.34). It is

clearly illustrated that the static error of λ is reduced to less than 2% from 5% and the error

in the torque is reduced to less than 0.5 % which is close to the control performance of the

feedback controllers. The approach of refining the dynamic map is thus demonstrated to be

effective.

7.9 Conclusions

A dynamic model-based calibration and inverse optimal behaviour based control methodology

is presented in this chapter. Dynamic engine models of torque and λ are developed using the

prior knowledge of the engine behaviour learnt from the static calibration. The use of NN

models and polynomial models are discussed and proposed DoE and estimation methods are

used for better model quality. The NN models are initially selected for their superior fitness

for the torque model.

A constrained numerical optimization based on the developed engine models is employed

to investigate the optimal fuel economy with specified torque demand and the requirement of

stoichiometric air-fuel ratio. Assuming that the fuel is completely consumed in combustion,
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Figure 7.35: Control performance of dynamic maps in online validation

the objective function is selected as the mean of injected fuel mass over a period of time.

The constraints are weighted according to their scales and experimental requirements. The

segment method is selected to optimize the long data sequence because of its superior com-

putational efficiency. The obtained optimal inputs are applied to the virtual engine with the

purpose of validating the consistency between the output from the dynamic model and the

RT model. Iterative model identification and fuel optimization, and additional input rate

constraints can improve the consistency of output effectively.

The inverse optimal data is used to develop a feedforward dynamic control map. The

time delay that is determined by the structure of the engine models and the resulting dynamic

map is removed to obtain causality for the inverse identification. The dynamic models in the

map are in the form of polynomial structures for the ease of programming in the ECU. The

obtained dynamic map is capable of providing an optimized fuel consumption and rapid

output response however steady-state offsets are observed in offline and online validation.

A closed loop control is designed to reduce the drawback of effects in the open loop

dynamic map control. Simple PI controllers are developed using the frequency responses of

torque and λ of the dynamic map feedforward compensated open loop control system and a

parameter space design method is employed. The feasibility of direct feedback control in a

practical engine implementation is considered. An open loop compensator for torque control

and a Smith predictor for λ control are designed accordingly. The combined control system

is capable of providing a similar fuel consumption and control performance to the static map.

The computing time of the polynomial model based fuel optimization is proved to be

considerably shorter than that of the NN model based optimization. The approach of using



CHAPTER 7. DYNAMIC CALIBRATION AND CONTROLLER DESIGN 175

the data collected from the closed loop control system to refine the dynamic map is shown

to be effective in improving the control performance of the dynamic map.



Chapter 8

Discussions and Conclusions

8.1 Discussions

In Chapter 4, 5 and 7, a new criterion for optimal input design, a simulation error method

for parameter estimation and a dynamic model-based calibration approach are proposed

respectively. Benefits of and critical reviews of the developed methods are summarized as

follows:

Optimal input design

Since optimal inputs maximize the data information in the collected identification signals,

models identified by optimal inputs are more accurate than those identified by non-optimal

inputs as shown in Chapter 4. The proposed criterion for optimal input design is a simplifi-

cation of the established I-optimal criterion. As the objective function is required calculated

thousands, or even millions of times in any optimisation algorithm used for dynamic model

optimization, the proposed criterion leads to a significant improvement in the computational

efficiency of the dynamic modelling objective function. Moreover since in the new measure

only terms which have little influence on the output prediction are removed from the com-

putation, the new criterion is capable of improving the model accuracy to virtually the same

degree as conventional optimal criteria.

In practical applications, any optimization should be constrained according to the exper-

imental requirements. For instance, assuming the engine speed is one of the inputs, without

proper input constraints the resulting optimal input for engine speed may change too quickly

to be realized by a low-inertia dynomometer. Similarly the input signals may be too large and

liable to cause damage to the test engine or test equipment. Secondly also for the parameter

estimation based criteria, it is necessary to weight the diagonal elements in the parameter

covariance matrix in order to reduce the influence of output sensitivities in the different scales

176
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of the different dimensions of the signals. Since the output sensitivities are affected by the

inputs, normalizing the scales of inputs before the optimization might be another effective

approach of solving this problem and it will be tested in further research. Thirdly, the op-

timal input is found to be capable of improving the model accuracy however the degree of

improvement varies in different cases. In systems with a strong disturbance, the improve-

ment is relatively significant while this benefit decreases if the system disturbance is reduced.

Therefore to model a system with very low uncertainty, it may not be necessary to design

optimal inputs since the improvement on model accuracy would be limited. Nevertheless it

is expected that in the physical testing required for engine calibration significant uncertainty

would generally be present.

Simulation error based estimation method

A simulation error based estimation method is proposed to estimate parameters for use in the

more difficult to establish simulation models (as opposed to on-line prediction models using

measured output data). It is demonstrated that the resulting models are more accurate than

those identified by prediction error methods such as ordinary least square method. Once

established, simulation models are able to generate outputs without requiring the output

data from the real system and are therefore favoured for model-based calibration.

In order to ensure the effectiveness of the model-based calibration, the requirement on

model accuracy is usually very high. However as the purpose of the examples used in this

chapter is just to illustrate the benefit of the SEM comparing to the PEM, some of the result-

ing models do not meet the requirement on model accuracy for industrial implementations,

such as the torque model in Section 5.5. Nevertheless, it is expected that the model accuracy

can be further improved to the required standard by other DoE methods such as by model

structure selection techniques, but this aspect is not discussed in this thesis.

Dynamic model-based calibration

In Chapter 7, an approach to basic dynamic model-based calibration is demonstrated. The

objective is to minimize the fuel consumption with constraints on engine torque and AFR.

The engine behaviours are modelled by dynamic models in the form of NN or polynomial

types and the obtained models are validated by other data sets in order to eliminate the

influence of possible over/under-fitting. A constrained numerical optimization is conducted

on the established models and the resulting optimal behaviour is used to design a feedforward

controller by inverse identification. The design of an open loop compensator and Smith

predictor is introduced in order to further improve the control performance. Comparing

the hardware-based steady state calibration in Chapter 6 to the dynamic calibration, it is
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shown that the dynamic calibration gives the same improvement on the fuel economy but the

experimental time, as represented by the length of data used, is significantly reduced.

In recent decades, many methodologies for steady state model-based calibration, as il-

lustrated in Figure 1.1, have been proposed. Such approaches model the engine behavior at

representative operating points and then optimize the settings based on the obtained local

models. Because adjacent models may differ significantly a data-smoothing of the resulting

control map must be performed to give the smooth response required for good driveability.

This smoothing may compromise the optimal steady-state performance. Nevertheless, since

in these approaches, the optimisation is carried out on models, the corresponding experiment

time can also be reduced. The performance of the dynamic and static model-based calibration

methods should be compared in further research to analyse their relative advantages and dis-

advantages. Additional practical constraints, especially on emission levels, should be applied

to the inputs of the numerical fuel optimisation and a more advanced optimization method

should be invented to generate smooth optimal inputs. A better feedforward controller is

desired in order to reproduce the optimal input-output behaviour obtained by the optimisa-

tion algorithm more precisely. The proposed dynamic calibration method should be tested

in an aggressive drive cycle, such as the US06 drive cycle, to test its possible advantages in

transients.

8.2 Conclusions

This thesis focuses on a development of optimal input design and estimation methods for

popular polynomial and NN dynamic models. The optimal test signal and numerical simu-

lation based estimation method are utilized in system identification in order to improve the

quality of dynamic models. A dynamic model-based engine calibration and inverse optimal

behaviour based control implementing these dynamic models is proposed. Related polyno-

mial and NN model based methods to implement the control are investigated and refined

methods proposed.

The conclusions drawn from each chapter in this work are as follows:

• In chapter 4, a general procedure of iterative optimal input design with practical con-

straints is presented and the influence of the optimal test signal on model estimation

accuracy is compared with popular test signals currently used in industry. Signal tests

are conduced on a nonlinear MISO polynomial engine torque model developed by exper-

imental data from a 1.6L 4 cylinder SI Zetec Ford engine and the validation is carried

out repeatedly for a convincing statistical result. The optimal input is designed by a

constrained numerical optimization with the purpose of maximizing the data informa-
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tion of the input. Since the Fisher information matrix is capable of measuring the data

information, the objective function for optimization is selected as a scalar function of

the matrix.

Using the objective function based on the covariance of estimated parameters, the

A-optimal criterion is found to be unsuitable if the output sensitive terms are in sig-

nificantly different scales while the D-optimal criterion and the proposed WA-optimal

criteria are always effective in producing an estimate which is close to the true value.

For the objective function based on the covariance of output prediction, the I-optimal,

G-optimal and proposed AI-optimal criteria are examined. The AI-optimal criterion

has a superior computational efficiency and leads to a model with an enhanced output

fitness similar to the other criteria.

Various local and global optimization algorithms are discussed and the deterministic

pattern search algorithm is selected due to the nonlinearity of the objective function and

constraints. An optimal input is also designed with the additional practical constraints

arising in experimental engine testing and it is demonstrated to be more useful for

identifying systems with large disturbances. Moreover this methodology is shown to be

effective in a black box identification of a 2.0L GTDI virtual engine and its potential

in industrial practices is thus indicated. By a multi-variable optimization method, an

optimal input can be designed to improve the model quality of a MIMO engine model

and consequently time consuming tasks to design inputs for each sub-model can be

avoided.

• In chapter 5, the differences between prediction models and simulation models are

studied and a simulation error method is proposed to estimate parameters of simulation

models. In prediction models, the predicted output is affected by both the input and

the previous values of system output and the parameters can be estimated using a

prediction error method. In the proposed PEM, an analytical solution for minimizing

the prediction error is given. The system output is not only used as the reference signal

to compute the prediction error but also contributes to the computation of the predicted

output. Therefore the principle of this method is consistent to the prediction model.

Simulation models only use the input to forecast the system output. These can be

selected to describe dynamic engine models for offline calibration and controller design

in which the plant should work independently of the real system. The PEM can be

used to estimate parameters of simulation models at the expensive of compromising

the minimization of the simulation error. The proposed simulation error method is

developed as a numerical optimization of a selected objective function which is often

a scalar function of the simulation error. The SEM is extremely advantageous if it

is difficult to obtain an analytical solution of the scalar function. The linear search
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method is employed to solve the unconstrained optimization for this method since it

shows a higher computational efficiency than other algorithms. The estimation methods

are validated by estimating parameters of an established model of the real engine and

a black box model of the virtual engine. Compared to the PEM, the model identified

by the SEM shows a better output fitness in MSE and R2.

• In chapter 6, the objectives of steady-state “static” engine calibration are presented in

the form of minimizing the fuel consumption and satisfying the constraints on torque

and λ. A conventional static engine-based calibration is conducted to realize the ob-

jectives by the control of the engine parameters: injection flow, spark advance and

throttle angle. The operating space is restricted to a low-speed low-load region for

a simple demonstration of this methodology and local tests are carried out at each

operating point according to desired engine torque and speed. In each test, the INJ

and θ are controlled by feedback PI controllers to enable the engine to produce the

stoichiometric air-fuel-ratio and desired torque. The SA is swept in a safe range to find

the optimal parameter settings for fuel economy. The signals are applied for 10 sec to

reach the steady-state values and therefore the calibration is a time-consuming task. A

static control map is composed of optimal parameter settings at each operating point

and is used as a feedforward controller by the EMS in a production vehicle. In the

online validation, the static map is tested against random signals and it is proved to be

able to provide satisfactory control performance in output tracking and minimization of

fuel consumption. This map is used to evaluate the effectiveness of the dynamic maps

and related compensators obtained in the novel process of the subsequent chapter by

comparing the control performance.

• In chapter 7, a novel process of dynamic model-based calibration and inverse opti-

mal behaviour based control is presented for the same control objectives used in that

hardware-based static calibration. MISO dynamic models of the virtual engine torque

and λ are identified in both the Neural Network and polynomial form. In the process of

collecting signals for identification, feedback controllers are attached to the RT model

in order to restrict the system outputs to the interested region. The methodologies of

optimal test signal and SEM estimation are employed to further improve the quality

of the engine models. NN models are initially selected for model-based experiments

because of their higher accuracy and the main drawback of implementing NN models

to the ECU is avoided since the engine models are only utilized in offline experiments.

The optimal behaviour of minimized fuel consumption with constraints on torque and

λ is determined by a numerical optimization on the NN engine models. The con-

straints on torque and λ are weighted since their scales are significantly different and

the requirement of the stoichiometric λ is most crucial. For a superior computational



CHAPTER 8. DISCUSSIONS AND CONCLUSIONS 181

efficiency, the entire data sequence is optimized gradually in segments. The resulting

optimal inputs are applied to the RT model to test the online performance and the

consistency of the optimal outputs between the NN models and RT model are found

to be improved by conducting the procedure of model identification and optimization

iteratively or optimizing with additional input constraints.

The dynamic map is obtained by inverse identifications of the optimal data. The

time delay is removed according to the selected model structure and the quality of

the inverse polynomial models are enhanced by the SEM estimation. The dynamic

map leads to the same fuel economy as the static map with a compromised static

control performance caused by the loss of fitness in the inverse identification and the

inconsistency between model and system. However the dynamic calibration process is

advantageous because it requires significantly less expensive experimental data. The

offset in the dynamic method can be largely reduced by an additional closed loop

control. A open loop compensator is developed due to the high cost of implementing

torque sensors on production engines and a Smith predictor is employed to reduce the

influence of extra λ delay on control performance.



Chapter 9

Contributions and Future Work

9.1 Contributions

The novel contributions of this thesis are summarized in two major areas:

1. Development of methodologies for system identification

• A detailed procedure for constrained optimal input design for system identification is

presented. Issues from the initial identification to the final application are discussed in-

depth, including the selection of sub-optimal signal, optimization algorithms, practical

constraints and objective function design according to the model type, etc.

• A novel weighted A-optimal design criterion for parameter estimation based optimal

input design is developed. The major use for parameter estimation based input design is

to identify white box models of which the structure is physically determined in advance.

In this thesis conventional A-optimal and D-optimal criteria are applied to improve

the quality of dynamic engine models by more accurate parameter estimation. The

traditional A-optimum is found to be sensitive to the scales of input signals but this

disadvantage can be overcome by the proposed weighted-A optimal criterion.

• A novel criterion adapted from I-optimal design for output prediction based optimal

input design is presented and the selection of objective signal is studied. Conventional

I-optimal and G-optimal are usually utilized in black box modelling in which the aim is

to minimize the output prediction error. The proposed adapted-I optimum provides the

same effect in optimization when the regressors are well chosen but with a considerably

reduced experimental time. An approach to choose the objective signal used in the

criterion to improve the global accuracy of identified models is presented.

• A novel application for optimal input design for MIMO systems is proposed. A reference

182
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based method is used to adapt the input design to weighted optimization. An input

signal which optimizes the development of two MISO models is generated and the

experimental time for obtaining the required data and the accuracy in the resultant

modelling is improved accordingly.

• A method of parameter estimation is developed to improve the estimation accuracy

of simulation models. The method is adapted from the conventional ordinary least

square method by replacing the output of the real system in regressors with those of a

simulated output.

• An approach to statistical validation is utilized to evaluate the proposed methods. As

statistical theories are fundamental in the methodologies for system identification, one

single good or bad example can hardly prove the effectiveness of any of the proposed

methods. Accordingly it is sensible to test any obtained models against a variety of

signals since statistical assurance is required for the global model accuracy which is

desired.

2. Dynamic calibration for multi-variable engine control

• A dynamic model-based calibration method originally proposed by Shenton [145] with

the purpose of optimizing the fuel consumption and tracking the desired engine torque

and λ is implemented in detail for the first time. This method proves to be a more

time-efficient approach than conventional static calibration methods since the tests are

carried out on dynamic models with a more limited amount of experimental data.

The required feedforward controller for optimized fuel consumption is obtained by a

novel approach of inverse causal identification. Feedback controllers are used to further

reduce the stead-state offset of tracking. The methodology is validated on a Ford GTDI

2.0L virtual engine and the result of the control is compared favourably with that of a

developed static map.

9.2 Recommendations of Future Work

The methodologies proposed in this thesis can be further developed in the following aspects:

Optimal input design for control

The direct objective of optimal input design in this thesis is to enhance the quality of the

identified model. Assuming the model is used for control purposes, there is a strong con-

nection between the accuracy of the model and the control performance on the system. The
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Figure 9.1: A schematic of multi-models

identified model represents the system behaviour with a region of uncertainty and the con-

troller is designed to work stably in the uncertainty region [146]. The objective function of

the optimization can be designed to measure the control performance therefore a controller

designed using the estimated model is likely to achieve the desired control performance.

Design of multi-polynomial model

With the expansion of the operating region, a single model developed in a reduced region

may not describe the system dynamics appropriately. As shown in Figure 9.1, a multi-model

is composed of a series of local models and weighting functions that are selected according

to the current operating point so that it is capable of representing the system accurately

in a larger space by means of independently obtained local models. This approach is also

recommended for the inverse identification of the dynamic map with the purpose of improving

the model quality since it may also reflect the system nonlinearity more accurately than a

single polynomial model.

Dynamic programming

The computational efficiency of numerical optimization in this work can be further improved

by dynamic programming. Although the optimization of the entire sequence is solved in

segments, each element in the segment is considered as an independent variable therefore

the required computing time increases exponentially. The dynamic programming approach

divides the optimization into subproblems and the solution of each subproblem is calculated

and stored. If the same subproblem occurs in the process of optimizing, the solution can

be directly loaded to reduce the computational burden [147]. Furthermore, the dynamic

programming also correctly accounts for the controller causality.
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Full operating region of production engines with turbocharger

The methodology developed in this thesis are recommended to be applied and validated

in many other industrial applications. For further automotive applications, the calibration

envelope should be expanded to a fully practical engine operating region from low-speed

low-load to high-speed high-load. The control of waste gate of the virtual engine should

be enabled to activate the turbocharger. Furthermore, the variable of inlet-outlet valves

and EGR valve should also be considered as control inputs. Constraints on emissions over

legislated drive cycles should be incorporated into the numerical optimisation. More system

nonlinearities are expected in such an extended new application and further challenges to the

modelling and control methodologies may be introduced accordingly. The whole approach

should also be considered for applications to the diesel engine control.
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