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Thesis Statement/Abstract

The formal analysis of computational processes is by now a well-established field. How-
ever, in practical scenarios, the problem of how we can formally verify interactions with
humans still remains. This thesis is concerned with addressing this problem through
the use of the Brahms language. Our overall goal is to provide formal verification
techniques for human-agent teamwork, particularly astronaut-robot teamwork on fu-
ture space missions and human-robot interactions in health-care scenarios modelled in
Brahms.
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Thesis Structure
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Chapter 1
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Chapter 1

Introduction

Computational devices often need to interact with humans. These devices can range
from mobile phones or domestic appliances, all the way to fully autonomous robots.
In many cases all that the users care about is that the device works well most of
the time. However, in mission critical scenarios we clearly require a more formal,
and consequently much deeper, analysis. For example, as various space agencies plan
missions to the Moon and Mars which involve robots and astronauts collaborating,
then we surely need some form of formal verification for astronaut-robot teamwork.
This is needed at least for astronaut safety (e.g., “the astronaut will never be out
of contact with the base”) but also for mission targets (e.g., “three robots and two
astronauts can together build the shelter within one hour”). As autonomous devices
are increasingly being developed for, and deployed in, both domestic and industrial
scenarios, there is an increasing requirement for humans to at least interact with, and
often work cooperatively with, such devices. While the autonomous devices in use at
present are just simple sensors or embedded hardware, a much wider range of systems
are being developed. These consist not only of devices performing solo tasks, such
as the automated vacuum cleaners we see already, but are likely to include robots
working cooperatively with humans. Examples are robot ‘helpers’ to assist the elderly
and incapacitated in their homes [57, 65], manufacturing robots to help humans to
make complex artefacts [52], and robots tasked with ensuring that humans working in
dangerous areas remain safe. All these are being developed, many will be with us in
the next 5 years, and all involve varying degrees of cooperation and teamwork.

What are the challenges facing such analysis? The first is: how can we accurately
describe human, and indeed robot, behaviour? Even when we have described such be-
haviours, how can we exhaustively assess the possible interactions between the humans
and robots? While some work has been carried out on the safety analysis of low-level
human-robot interactions [62], a detailed analysis of the high-level behaviours within
such systems has not yet been achieved.

In this thesis we are concerned with the general problem of matching a set of
requirements (which could concern safety, capabilities, or interactions) against scenarios
involving humans, robots, and software agents. Within this, we use important work on
high-level modelling of human-robot-agent teamwork that has already been carried out
using the Brahms framework [73]. Brahms is a simulation/modelling language in which
complex human-agent work patterns can be described. Importantly for the purpose of
this thesis, Brahms is based on the concept of rational agents and the system continues
to be successfully used within NASA for the sophisticated modelling of astronaut-robot
planetary exploration teams [21, 75, 74]. For information on the Brahms framework see

2



Chapter 3. Thus, for this thesis an assumption is made that the key interactions and
behaviours of any human-robot-agent scenario have been captured within a Brahms
model. Also an assumption is made that a set of informal requirements have been
constructed.

However, how can we go about verifying requirements against Brahms models? How
can we possibly verify human behaviour? And how can we analyse teamwork? In this
thesis we aim to take a step forward by developing techniques to solve these problems.

The above examples discuss robots deployed in both domestic and safety-critical
industrial situations where human safety can be compromised. Thus, it is vital to
carry out as much analysis as is possible not only to maximize the safety of the humans
involved, but to ascertain whether the humans and robots together ‘can’, ‘should’, or
‘will’ achieve the goals required of the team activity. In [11] a formal approach to the
problem of human-agent (and therefore astronaut-robot) analysis has been proposed,
suggesting the model-checking of Brahms models [73, 42]. Thus, it seems natural to
want to formally verify Brahms models [11].

This thesis takes a first step in verifying human-agent teamwork using the Brahms
framework. This first step is not concerned with being the most efficient with the widest
range of functionality, but simply a prototype for others to learn from and even a plat-
form for others to develop on. Also by specifying that we are working towards achieving
this goal we are acknowledging the difficulty and complexity of this task, specifically in
verifying human behaviour. Since human behaviour can be unpredictable and irrational
there is no way to guarantee a model will ever represent a human in any given situation.
However, by taking typical actions of a human - actions typical for that scenario - we
can make an attempt to verify the protocols of the scenario given that the humans act
in a rational way. Therefore, in this thesis we present our process and achievements
while working towards achieving the verification of human-robot-agent teamwork. We
present the reader with a description of our chosen simulation tool Brahms, along with
a formal operational semantics [79] describing its behaviour and methodologies. Us-
ing this formal operational semantics we describe our translation process from Brahms
input code to Java data structures and then to the input language PROMELA for ver-
ification via the Spin model checker. We evaluate the use and correctness of our tool
using two case studies; a robotic home helper scenario and a digital nurse scenario in a
hospital. An evaluation of our tools performance is conducted to demonstrate how it
performs on simple scalable tasks, providing graphs and figures to show any strength
or weaknesses and also the scalability of our tool.

This thesis provides contributions to the field of Computer Science through our
formal operational semantics of Brahms, published in [79] and the translation from
Brahms to Java data structures and then to PROMELA for verification via the Spin
model checker [78]. Our operational semantics is the first of its kind for Brahms, which
provides a foundation for the formal verification of Brahms. The operational semantics
has not only proven a foundation for our verification tool but also for the verification
tool of Franco Raimondi and Neha Rungta in [71]. The translation of Brahms models
into Spin has given way to the first verification system for Brahms and for human-
agent-robot teamwork.

3



Chapter 2

Software Agents

In this thesis we are concerned with analysing the interactions of humans, software
agents and robots while operating together in a team. In this chapter we provide the
reader with an overview of the concept of an agent. We discuss what it means to be
an agent, how agents are used and programmed, how agents are grouped together in
teams, how our view point of agents and humans differ, and the architectures used to
model them.

2.1 Agents

Agents are a relatively new addition to computer science originating around 1980 but
only coming into recognition during the mid-1990s [89]. There are differing definitions
of an agent but in this thesis we consider agents to be entities which act autonomously
to achieve self-interested goals. The large number of applications where agents can be
applied results in different requirements of how they should act, such as robotic agents
[35] and agents for intrusion detection [3] having very different requirements. Agents
can also be viewed differently from different perspectives, such as artificial intelligence,
databases, distributed computing and programming languages [43]. Agent learning is
an example of a trait which may or may not be required; learning can improve the
functionality of an agent but can cause it to develop unexpected behaviours [89]. The
agent modelling tool used in this thesis, Brahms, specifically omits agent learning. This
minimises unexpected behaviour and reduces the state space for analysing the agents’
actions, see Chapter 4.2.

Brahms allows the user to explicitly describe the environment and the properties it
has. For this reason it is important to consider how an environment can be represented.
Environments can be [89]:

1. Accessible: if an environment is accessible then all the accurate, up to date and
complete details about the state of the environment is available to the agent.

2. Deterministic: deterministic environments have no uncertainty about how an
agent’s actions will alter the state of the environment. Every time actions are
performed they will have the same effect.

3. Static/Dynamic: A static environment is an environment where no changes occur
unless an action is performed by an agent, whereas dynamic environment variables
can change without the involvement of an agent.

4



4. Discrete/Continuous: A discrete environment has a limited number of actions,
perceptions and effects that can occur, whereas in continuous are unlimited.

Brahms allows for all the possible environments listed above. The environments we
will consider in this thesis will utilise most of these environment types, except for the
continuous and deterministic environment types. Verification considers every set of
possible actions so we are required to have a limited number of possible actions for
the verification to complete. Determinism in an environment would mean verification
is not required, since the outcome can be pre-determined before the simulation is run.
Static environments are considered relevant to this thesis, however only the perfor-
mance testing section utilises static environments. All the case studies use dynamic
environments where emergencies occur and we verify the agent’s actions and reactions.
In such dynamic environments we expect our agents to be “reactive”, “pro-active” and
“social” [89]. By being “pro-active” the agents will operate on their own initiative
and exhibit goal-directed behaviour, they will then be “reactive” to changes in these
dynamic environments, and since they will be operating in teams they will need to be
“social” and interact with each other to complete tasks efficiently.

2.2 Rational Agents

To be able to analyse the behaviour of an agent, we need to be able to explain and
understand it. In this thesis we use the concept of a rational agent so that our agents
are able to make their own choices and carry out actions in a rational and explainable
way. Brahms represents rational agents by using concepts from the Beliefs, Desires,
Intentions architecture (BDI) [85], see Chapter 2.4. This architecture allows the repre-
sentation of the information, motivation and deliberative actions of the agents, enabling
us to see the reasoning behind each action the agent makes. Rational agents are re-
garded as having their own agenda, which may concur or conflict with other agent’s
agendas [88]. They are situated in environments which may also have additional agents
each with their own agendas. This makes rational agents desirable for teamwork; where
both reactive and social behaviour is required to achieve the team’s goals.

2.2.1 Applications

Rational agents are becoming ever more common in modern life especially in situations
too dangerous, too difficult or too complex to employ humans [68]. These situations
are often safety critical and require decisions to be made by autonomous entities that
are independent, safe and explainable, i.e., rational. NASA’s Deep Space One probe
launched October 24th 1998 [59] is one example. It was the first NASA spacecraft to
feature an on-board planner. This on-board planner formed an autonomy architecture
which enabled high-level command, robust fault responses and opportunistic responses
to serendipitous events. By employing rational agents in this spacecraft NASA was able
to reduce mission costs and increase mission quality [58]. Before this automation NASA
required a ground crew of up to 300 staff to continually monitor progress and make
every decision [88]. This is one application of where rational agents can be employed,
but there exist much simpler commonplace areas such as in e-commerce, buying/selling
goods [88]; or expert systems, as an aid for general practitioners or nurses [44]. All
these examples have some form of safety/business critical aspect, i.e., lives or large
quantities of money are at risk. There is always doubt when employing an agent or a
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robot to control such situations. This is where formal verification becomes useful, by
mathematically analysing the correctness of the system we can be more confident that
the system will behave as expected.

2.2.2 Humans as Agents

In this thesis we take the view point that humans can be represented as complicated
agents. We believe that humans in professional scenarios such as astronauts, nurses,
people in search and rescue, etc. will act in rational and explainable ways, i.e., like a
rational agent. This leads us to believe that if we can model human aspects into our
agents then we can model both our humans and agents in the same way, except the
agents will be more restricted than the humans. Such human aspects we would need to
be able to represent are: taking breaks, making errors, forgetting things, taking varied
amounts of time to perform tasks, etc.

2.3 Multi-Agent Systems

In this section we describe multi-agent systems to give an insight into the difficulties
of handling multiple agents in an environment and the formation of teams. Multi-
agent systems are very diverse systems which can be as simple as a single computer
system with multiple software agents to a large distributed system where each agent is
a computer system itself. A multi-agent system can also be a group of robots operating
in a mutual environment, where the agent is the software which acts as the “mind” of
the robot. It is possible that a single multi-agent system can contain agents designed
by different individuals with differing goals. Agents can “team-up” with others to
form coalitions, compete against each other for their preferred outcome, or perhaps
act mutually exclusively to each other. Situations such as these mean that multi-
agent systems can sometimes be represented as games where agents must act in a way
which best suits either their own interests or the systems’. When agents work together
multiple factors have to be taken into account: how to break down the problem, how to
produce an overall solution from the sub-problems, how to maximize efficiency and how
to avoid destructive clashes of activities [89]. When we have multiple agents working
together or against each other in an environment a lot of uncertainties develop, such
as: which agents will form coalitions, how an agent will react to anothers actions, will
the agents coordinate their tasks, will any deadlocks or race conditions occur, will the
agents choose the most optimal set of actions to complete their task, and will the agent
react in a timely fashion to the actions of another. These uncertainties are additional
to those present in a single agent system, e.g., will an agent successfully complete its
task. These uncertainties can leave doubts on whether multi-agent systems should be
implemented in a safety critical scenario. Therefore, tests and analyses, such as formal
verification, need to be performed to ensure the safety of a multi-agent system before
it can be employed within such scenarios.

2.3.1 Humans and Agents Working as a Team

Sierhuis et al. [75] note a growing interest in requirements for human-agent interaction,
stating that: “many new space efforts are specifically motivated by the need to support
close human-agent interaction”. Sierhuis et al. [75] and Bradshaw et al. [16, 14]
mainly centre their discussions about human-agent teamwork around space related
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situations but there are many other applications such as: pervasive systems operating
with humans in health care and at home [4]; simulation based training [81]; evacuation
during an emergency [80]; and gamebots and players in video games [47]. In such
scenarios humans and agents need to work together to form a team in order to effectively
complete their tasks, but there are many challenges in achieving this. In [15] Bradshaw
et al. focus on the problem of coordination in human-agent teamwork. Bradshaw et
al’s [15] aim is to give human-agent teamwork a richness of interaction and characterize
natural and effective teamwork among groups of people. Techniques to over come the
challenges are: the notions of joint activity [17] and joint intentions [24], and team
plans [20].

Bradshaw et al. [17] started researching the notion of joint activity by studying how
humans succeed and fail when taking part in an activity which requires a high degree
of interdependence between participants. From this study Bradshaw et al. decided
to focus on the issue of coordination and identifying the difficulty in representing and
reasoning about humans in comparison to agents. The difficulties involved with coor-
dinating humans and agents are one of the limitations of agents: only certain aspects
of the world can be represented to the agents and the agents have a limited ability to
sense or infer information from a human environment. Bradshaw et al. [17] identify
three basic requirements for effective coordination:

• Inter-predictability

– By being able to predict what others will do, you will be able to predict
what you will be able to do yourself.

• Common Ground

– Everyone has the same beliefs and assumptions about the activity and ev-
eryone knows that everyone has these beliefs and assumptions.

• Directability

– Directability is being able to evaluate and modify others as the conditions
and priorities of the activity change.

Cohen and Levesque [24] introduce a notion for agent collaboration they call “joint
intention”. The aim of a joint intention is to perform a collective action while in a
shared mental state, meaning the agents will have shared beliefs and intentions while
performing the activity. This notion of joint intention is based upon the beliefs-desires-
intentions paradigm, meaning that when a collection of agents share the same beliefs
and desires they will involve each other when creating their intentions so that they
become joint intentions. This makes communication of paramount importance, by
asking when the agents should communicate we are able to decide how a joint intention
is formed.

Cavedon et al. [20] describe a notion called “Team Plans” for implementing team
behaviour for autonomous agents. These team plans are used to implement team
strategies. The team plan is created so that it specifies what subsets of abilities the
agents require to take part in this team, the agents are then able to select and commit
to tasks as if they were committing to single-agent plans. Once an agent joins the
team it is assigned roles; a set of tasks an agent will execute to complete a part of the
task. Even though each agent has its own roles within the task it still has the goal of
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achieving the whole plan. Team members that are committed to a team plan that fails
can either try to resolve any failed sub-tasks or determine if the failed task is unsolvable
or infeasible.

2.3.2 What is Teamwork?

Teamwork itself is a popular research topic, with researchers such as Dyer [31] and
Salas [72], differing opinions on what teamwork is and how it is formed. A general
description of teamwork could be that it involves 2 or more individuals working together
to achieve a common goal. However this may or may not encapsulate everything that
we associate with teamwork; would we consider 2 individuals sweeping the floors of
2 different branches of the same company as working in a team? After all they are
both working for the same company and trying to achieve the same goal (i.e., maintain
the company’s level of hygiene) but they may never see or speak to each other. Some
would argue that this is still teamwork, albeit very minimal teamwork. This level of
teamwork is similar to what can be found in a generic multi-agent system, where agents
have no joint intentions, joint actions or team goals. In this thesis we are taking the
opinion that teamwork can be considered to be on a sliding scale; one extreme being a
multi-agent system where agents own individual goals are closely linked (such as in the
sweeping floors example), and the opposite end of the spectrum where the agents are
involved in joint actions and with joint intentions. From this perspective we are only
interested in a level of teamwork which is somewhere in the middle of the two extremes
on this sliding scale between joint intentions, etc. and simply related activities. This
is due to the way Brahms handles joint intentions and joint activities, see Chapter
3.2. The teamwork we are interested in involves communications and interactions to
achieve goals of mutual interest, such as robotic helpers; where the robots’ goals are
to help the humans, and the humans’ goals are to complete a task. For example the
human will request an object or request a task to be done and the robot will comply.
Another example would be a robot looking after a human, so the human has their
own personal interests and the robot has the safety and well-being of the human as its
interest. These levels of teamwork are not what could be considered to be very deep.
For example a team of humans and robots playing a game of football together would
involve much deeper levels of teamwork with constantly changing joint intentions and
activities between team members with the common goals to score ‘goals’ and prevent
‘goals’ being conceded.

When verifying properties of teamwork we need to take into account the teamwork
aspect of the scenario, so we need to look at how to measure a team’s performance.
Hexmoor and Beavers [38] suggest four properties for testing the effectiveness of team-
work:

1. Efficiency, use of resources by the team to achieve the goal, such as time or effort

2. Influence, how members affect the performance of others

3. Dependence, how the ability of a member to complete its task is affected by the
performance of other members

4. Redundancy, the duplication of effort by distinct members

Consideration also needs to be made about the organisation of the teamwork, such
as; roles, delegation of tasks, and the obligations of each team member. McCallum,
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Vasconcelos and Norman [56] highlight the importance of verifying roles, delegations
and obligations, and produced a formal verification framework for organisational multi-
agent systems. However, this framework concentrates on organisations of agents, with
no direct consideration for human team members.

2.4 Beliefs-Desires-Intentions

In this section we describe the Beliefs-desires-intentions (BDI) architecture [69], which
the agent modelling simulation framework we use (Brahms) is based on. In the BDI
architecture agents have a set of beliefs (beliefs), a set of goals (desires) and a set of
pre-compiled plans to achieve these goals based upon their beliefs (intentions). Gen-
erating plans according to the desires the agent wishes to achieve is known as means-
ends-reasoning. These plans take into account the beliefs the agents have about their
environment and what effect they believe their actions will have. BDI models are used
to determine the behaviour of the agent and also to optimise the performance when in
a resource-bound scenario.

BDI architectures use Beliefs, Desires and Intentions to represent an agent’s mental
model of information, motivation and deliberation. Beliefs represent what the agent
believes to be true, such as the location of an object and the distance to that location.
Desires are what the agent aims to achieve, these are usually represented as a desired
set of beliefs, e.g., a desire to fill a glass with water would be achieved when the agent
believes the glass is full. Intentions are how the agent aims to achieve its desires based
on its current beliefs; effectively a list of actions or a plan to achieve its goal.

Figure 2.1 shows an architecture for resource-bounded agents demonstrating how
BDI models will determine the actions of the agents. The diagram shows how per-
ceptions form the agents’ beliefs about its environment, reasoning about these beliefs
is performed and how to discover what implications they have. Means-end reasoning
decides which plans are best used to complete the tasks. Desires are shown in this
model in order to influence the option filtering process and also influence the deliber-
ation process to produce intentions. Actions are decided once the options have been
filtered, the list of intentions has been generated and the intentions are structured into
plans. The model also shows that previously generated plans influence future plans yet
to be created.

The BDI architecture does have its criticisms [69]: classical decision theorists and
planning researchers question the necessity of all three mental attitudes while sociology
and distributed artificial intelligence researchers question the adequacy of using only
three.

Brahms only takes inspiration from the BDI architecture, it does not follow all of its
ideologies. Brahms uses the notion of beliefs for its agents but does not directly imple-
ment desires or intentions in the form of plans. Brahms operates over its beliefs using
an activity based subsumption architecture (a structured layering of simple behaviours
with a single goal per layer) of workframes (used to represent an agent’s work process)
which can be assumed to resemble plans. Guard conditions on these workframes match
to the agent’s beliefs, therefore these can effectively be considered as intentions. Figure
2.2 shows how Brahms relates to the BDI architecture, showing that the Brahms en-
gine operates on and has an effect on all the beliefs, desires, intentions and plans of the
agents. To explain this further we need to consider how thoughtframes and workframes
represent the desires, intentions and plans. The thoughtframes and workframes guard
conditions operate on the beliefs of the agent, thereby creating desires for the agent,
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Figure 2.1: An architecture for resource-bounded agents [18]
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Figure 2.2: Relating Brahms to the BDI architecture

i.e., if the agents beliefs match the guard condition of a workframe then that agent
has a desire to execute this workframe. Plans are formed using the workframes and
thoughtframes order by their priorities. Workframes will be executed in the descending
order of their priority forming a plan of workframes, each workframe will complete
a sub-task of activities with the aim of achieving the overall goal. The intentions of
the agent are then the currently active workframes and thoughtframes which can be
selected for execution.

The emphasis on the BDI agent architecture in this chapter is due to the likeness
that Brahms has to this architecture. We would also like to point out that there are
other alternative architectures for implementing agents. An example of such archi-
tectures are deliberative, planning, Intelligent Resourse-bounded Machine Architecture
(IRMA), and reactive [87]. A deliberate agent has an explicitly represented, symbolic
model of its environment. Decisions, such as the actions it will perform, are then made
through some logical reasoning. An example of a planning agent architecture is STRIPS
which takes a symbolic description of the world, a desired goal state, and a set of action
descriptions. Pre- and post-conditions are used to execute actions in a specific order
to achieve the goal. The IRMA architecture uses a symbolic data structures with a
plan library and explicit representations for the beliefs, desires and intentions of the
agent. A reasoner is then used to reason about the world and determine which plans
may achieve the agent’s intentions. The IRMA architecture also has an opportunity
analyser to monitor the environment to respond to events. A reactive agent architec-
ture is one which does not use a central symbolic model of the world and does not use
complex symbolic reasoning; the agents simply react to events that occur [87].

2.5 Chapter Summary

This chapter introduced the notion of an agent, what it is and how it can be used
in the real world. It also introduced the idea of rational agents, agents that can act
in a rational explainable way so that we can understand the actions of the agent. It
also introduced the idea of multi-agent systems, where there are multiple agents (of
varying types from software to robotic) who interact in an environment, sometimes
competing against each other and other times assisting each other to achieve a shared
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goal. Issues of multi-agent systems were also discussed along with how they can help
in real world scenarios. This chapter also brought forward the idea of teamwork, in
respect to human-human and human-agent; detailing the difficulties and advantages of
having humans and agents working together in a team. Finally the idea of the beliefs
desires intentions paradigm was discussed, the paradigm which the Brahms simulation
framework is based upon.
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Chapter 3

Brahms

In this chapter we will discuss Brahms (Business Redesign Agent-based Holistic Model-
ing System), a multi-agent modelling, simulation and development environment devised
by Sierhuis [73] and subsequently developed at NASA Ames Research Center. We will
describe the core aspects of Brahms and what they are for, along with some example
code to illustrate how they are used. We also describe applications of Brahms, showing
how and when it has been used. A comparison between Brahms and other agent pro-
gramming languages is presented along with an explanation of why Brahms was chosen
over these other languages.

3.1 Basic Anatomy of Brahms

3.1.1 Geography

In Brahms the model of the agent’s world is described using the geography model. Here
the world is organised hierarchically, where an area can be conceptual (an areaDef, e.g.,
house, restaurant) or a physical location (area, e.g., 10 Downing Street). These area
and areaDef are used to form the hierarchy where: an area can be an instanceof an
areaDef ; an areaDef can extend another areaDef ; and an area can be partof another
area. The distance between two areas is described using a path, undefined paths are
transitively calculated from the defined paths. Agents are assigned an initial location
in the geography in their code. The following code shows a Brahms description of a
city called Berkeley which has a university, a restaurant, a bank and a hall within the
university. It also describes a path from the hall to the restaurant and the bank which
infers a path from the bank to the restaurant.

area AtmGeography instanceof World { }
areadef University extends BaseAreaDef { }
areadef UniversityHall extends Building { }
areadef BankBranch extends Building { }
areadef Restaurant extends Building { }
area Berkeley instanceof City partof AtmGeography { }
area UCB instanceof University partof Berkeley { }
area SouthHall instanceof UniversityHall partof UCB { }
area Telegraph Av 2405 instanceof Restaurant partof Berkeley { }
area Bancroft Av 77 instanceof BankBranch partof Berkeley { }

path StH to from RB {
area1: SouthHall;
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area2: Telegraph Av 2405;

distance: 400;

}
path StH to from_WF {

area1: SouthHall;

area2: Bancroft Av 77;

distance: 200;

}

3.1.2 Agents and Objects

Agents and objects are the core components of every Brahms simulation with agents
modelling intelligent entities and objects modelling inanimate objects and sensors, etc.
Objects have the same capabilities of agents except they react to external factors (facts,
explained in section 3.1.3) and agents react based on their internal beliefs. Brahms
provides an option for objects to switch from reacting to external factors to internal
beliefs, but for our purposes we consider objects to react to external factors.

3.1.3 Attributes, Relations, Beliefs and Facts

Agents and objects can have their own personal attributes, relations and beliefs. At-
tributes are characteristics of the agent such as their height, weight, power levels, etc.
Attributes can be of type Boolean, String, Double or Integer. Relations are a form of
attribute where the attribute’s ‘type’ is set of agents or objects (these sets are groups
and classes, explained in Section 3.1.8). The relation then allows for a connection be-
tween agents and objects, e.g., public Account hasAccount would state that the current
agent could have a relationship called ‘hasAccount’ with a set of agents (or objects)
labelled ‘Account’. Beliefs and facts are all tied to attributes and relations, every be-
lief and fact has to contain either an attribute or a relation, e.g., an agent could have
the belief AgentA hasAccount AccountA which would represent an ‘AgentA’ owning an
account called ‘AccountA’. Beliefs and facts differ in that facts represent the real value
the attribute or relation has and the beliefs represent what the agent believes it to
be. Below is example code for declaring an agent with attributes, etc. note that the
initial location on initialisation is defined using ‘location:’ and beliefs use the keyword
‘current’ to refer to the agent being defined by this code, e.g., ‘current.howHungry = 0’
represents the current agent’s belief that its attribute ‘howHungry’ has value 0 where
‘Bob.howHungry = 0’ represents this agent’s belief on Bob’s attribute ‘howHungry’.

agent Alex {

/*Assign the agent’s initial location*/

location: SouthHall;

attributes:

public double howHungry;

public int perceivedtime;

relations:

public Account hasAccount;

initial_beliefs:

(current.howHungry = 0);

(Bob.howHungry = 0);
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(current.perceivedtime = 0);

(current hasAccount Alex_Account);

initial_facts:

(current.howHungry = 0);

(current.perceivedtime = 0);

(current hasAccount Alex_Account);

3.1.4 Workframes and Thoughtframes

Workframes and thoughtframes represent the work and thought process in Brahms. A
workframe contains a sequence of activities and belief updates which the agent/object
will perform, whereas a thoughtframe only contains sequences of belief updates; a
thoughtframe is simply a restricted workframe which is unable to process activities.
Workframes can detect (using detectables) changes in the environment, update agent’s
beliefs accordingly and then decide whether or not to continue executing. Essentially,
workframes represent the work processes involved in completing a task and thought-
frames represent the reasoning process upon the current beliefs, e.g.,

• Start workframe to go to the shops

• Rain causes a detectable to fire

• Agent now believes it is raining

• Workframe is suspended

• Thoughtframe is executed to decide that the agent needs a coat

3.1.5 Executing plans: Activities and Concludes

Agents are able to perform activities and concludes (belief/fact updates), these are
executed via workframes and thoughtframes (which can update beliefs only, no fact
updates or activities can be performed) which decide when they should be performed.
Primitive activities, move activities and communication activities are the three main
types of activities.

Primitive activities are conceptual activities in the sense that they only spend
simulation time, while the assigned name infers what the agent was doing, e.g., primitive
activity ‘dig hole’ has a duration of 400 time units and no belief or fact updates are
made. When assessing the simulation the name infers that the agent was digging a
hole. To confirm a hole was dug the workframe would require a conclude to update the
beliefs and the facts that a hole now exists. Brahms is a simulation framework, not
an execution framework, so activities such as primitive activities are used to subtract
simulation time while an event is occurring.

Move activities are performed to change an agent’s location. Like primitive activi-
ties they are assigned a duration, however this duration is calculated from the Brahms
geography model. When a move activity is performed multiple things occur: the sim-
ulation time is spent; the agent’s location is changed; all other agent’s in the previous
location have their beliefs deleted about the agent’s location and the agents in the new
location recognise this agent has joined them.
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Communication Activities are used for passing messages between agents, these com-
munications are assigned a duration. Once this duration is over the beliefs of the other
agents are updated corresponding to this communication, an agent however can only
communicate beliefs it already has.

Below is an example of a workframe for eating using a simple primitive activity and a
belief update. Note that a repeat variable has been set to true so that the workframe
can be performed multiple times. The ‘when’ condition states the requirement for
the workframe to activate, i.e., when the agent believes its hunger is greater than 10.
The ‘do’ statement declares which activities and belief updates will be made; ‘eat()’
represents the activity to eat and conclude defines a belief update, i.e., that the agent’s
hunger decreases by 3. Note that the belief update has ‘bc:100’ and ‘fc:0’, which
represents a ‘belief certainty’ of 100% and ‘fact certainty’ of 0%, i.e., update the belief
with a 100% probability and the fact with a 0% probability.

workframe wf_eat {

repeat: true;

when(knownval(current.howHungry > 10))

do{

eat();

conclude((current.howHungry = current.howHungry - 3.00)

, bc:100, fc:0);

}

}

3.1.6 Detectables

Detectables are contained within workframes and can only be executed if their work-
frame is currently active. They can detect changes in facts and can: abort, continue,
complete or impasse the workframe. When a detectable is executed it imports the fact
it “detected” into the agent’s belief base and then it either:

1. abort - deletes all elements from the workframe’s stack;

2. continue - carries on regardless;

3. complete - deletes only activities from the workframe’s stack; or

4. impasse - suspends the workframe until the detectable’s guard is no longer satis-
fied

Below is an example of a workframe containing a detectable. The detectable states to
‘impasse’ (suspend) the workframe when it detects the agent’s thirst is greater than
10. The ‘when(whenever)’ means that the detectable can be activated at any time, a
point of time in the simulation could be inserted here instead. The ‘dc:100’ represents
a ‘detect certainty’ of 100%, meaning the detectable will always fire when it is active.

workframe wf_eat {

repeat: true;

detectables:

detectable thirsty{

when(whenever)
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detect((current.howThirsty > 10), dc:100)

then impasse;

}

when(knownval(current.howHungry > 10))

do{

eat();

conclude((current.howHungry = current.howHungry - 3.00)

, bc:100, fc:0);

}

}

3.1.7 Variables

Variables provide a method of quantification within Brahms. So, if there are multiple
objects or agents which can match the specifications in a guard condition then the
variable can either perform: forone - select one; foreach - work on all, one after another;
or collectall - work on all at once. Below is an example of a workframe containing a
variable to identify an object in the class of objects called ‘Cash’. The guard condition
identifies which member of ‘Cash’ is to be selected, i.e., an object that the current agent
has the relationship ‘hasCash’ with. The selected object is identified by the assigned
name ‘cs’. A belief update in the workframe then changes the agent’s belief about the
object’s attribute ‘amount’.

workframe wf_eat {

repeat: true;

variables:

forone(Cash) cs;

when(knownval(current.howHungry > 10) and

knownval(current hasCash cs))

do{

eat();

conclude((current.howHungry = current.howHungry - 3.00)

, bc:100, fc:0);

conclude((cs.amount = cs.amount - 10.00)

, bc:100, fc:0);

}

}

3.1.8 Groups and Classes

Groups in Brahms form the hierarchical structure of agents, where agents can be mem-
bers of groups and groups can also be members of other groups. Groups form a template
for an agent, so if an agent is a member of a group then it will inherit all the beliefs,
workframes and thoughtframes declared in the group. The following code shows a
Brahms description of a group called student, any agent who is a member of student
will inherit all the attributes, relations, beliefs, etc. Classes are identical to groups
except they form a hierarchical structure of objects, not agents. Below is an example
of a group with an agent inheriting from the group. To make the code more clear the
attributes, etc. have been replaced by a comment, but notice that the agents’ codes
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workframe ::= workframe workframe-name

{
{ display : ID.literal-string ; }
{ type : factframe | dataframe ; }
{ repeat : ID.truth-value ; }
{ priority : ID.unsigned ; }
{ variable-decl }
{ detectable-decl }
{ [ precondition-decl workframe-body-decl ] |

workframe-body-decl }
}

Figure 3.1: BNF Grammer Representing Part of the Brahms Syntax Specification

are empty except for a location. This is to show that the agents can be entirely de-
scribed in their superstructures but any individual information can be placed in their
own personal sections of code.

group student{

attributes:

/*all attributes here*/

initial_beliefs:

/*all beliefs here*/

initial_facts:

/*all facts here*/

workframes:

/*all workframes here*/

thoughtframes:

/*all thoughtframes here*/

}

agent Alex memberof student{

location: SouthHall;

}

agent Bob memberof student{

location: Telegraph_Av_2405;

}

3.1.9 Brahms Syntax

Brahms has an expressive sophisticated syntax for creating systems, agents and ob-
jects, the full syntax specification can be found in the appendix or the ‘agentisolutions’
website1. As an example Fig. 3.1 shows the definition of an agent’s workframe showing
where variables, detectables and the main body of the workframe are placed. Guards
are specified by precondition-decl.

1For the full Brahms syntax (with an informal semantics) see [42].
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3.2 Applications

Brahms has been used in a variety of projects within NASA, from modelling the
NYNEX telephone exchange in the early years to modelling the Mars Rover exploring
the Victoria crater. Figure 3.2 provides an insight into where Brahms has been applied
from 1992 up until 2008.

3.2.1 Extra-Vehicular Activities during Mars exploration

Bordini, Fisher and Sierhuis [9] describe a possible scenario of human-robot teamwork
during a Mars exploration mission. An overview of the scenario can be found in Figure
3.3 and a more detailed description is found below.

During an Extra-Vehicular Activity (EVA) there are two surface astronauts
and two EVA Robotic Assistants (ERA) assigned to explore a region of
Mars. Both the astronauts and the ERAs have their own agenda to work
to, but the ERAs also have the responsibility of ensuring that both the as-
tronauts always have a network connection back to the habitat. The ERAs,
like the humans, can be interrupted while performing their assigned tasks.
When this happens the ERAs need to be able to handle this interruption
without jeopardizing the astronauts, themselves or the mission.

ERAs can be assigned to “Team up” with an astronaut, becoming the as-
tronauts personal agent (PA). The ERA’s tasks then involves additional
functions such as “follow astronaut” and “astronaut watching”. The ERA
also acts as a relay point for the connection back to the habitat for the
astronaut. The ERA will therefore detect and inform an astronaut when
they are moving out of range of communications with the habitat. Also if
an astronaut calls to its PA for assistance the PA will have to suspend any
activities it is performing and come to the astronaut’s aid. However if the
PA is engaged in an activity which is more important than another ERA’s
or another ERA is closer to the astronaut then the ERA can ask the other
ERA to temporarily take over the role as the astronaut’s PA.

In summary, the ERAs assigned to work with the astronauts have to be com-
pletely autonomous robots which can fulfil assigned tasks without human
assistance. They need to be able to react to unpredictable situations such
as loss in communications, as well as aiding other astronauts and robots
when requested.

3.2.2 OCAMS

Orbital Communications Adapter (OCA) officer flight controllers in NASA’s Interna-
tional Space Station Mission Control Center use different computer systems to up link,
down link, mirror, archive, and deliver files to and from the International Space Station
(ISS) in real time. The OCA Mirroring System (OCAMS) is a multi-agent software
system operational in NASA’s Mission Control Center [77], replacing the OCA officer
flight controller with an agent system that is based on the behaviour of the human
operator. NASA researchers developed a detailed human-behavioural agent model of
the OCA officers’ work practice behaviour in Brahms. The agent model was based
on work practice observations of the OCA officers and the observed decision-making

19



Figure 3.2: A history of Brahms applications

Figure 3.3: EVA Activity on Mars [9]
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involved with the current way of doing the work. In the system design and implemen-
tation phases, this model of the human work practice behaviour was made part of the
OCAMS multi-agent system, enabling the system to behave and make decisions as if
it were an OCA officer. Here is a short scenario of how the OCAMS system is used in
mission control:

The On-board Data File and Procedures Officer (ODF) sends a request to the
OCAMS (personal) agent via their email system. The OCAMS agent parses the request
and understands that the ODF has dropped a zip file to be up linked to the ISS on
the common server. The OCAMS agent needs to identify the type of file that is being
delivered and decide, based on this, what up link procedure needs to be executed.
Having done so, the OCAMS agent chooses the procedure and starts executing it, as if
it were an OCA officer. The OCAMS agent first transfers the file and performs a virus
scan, and then continues to up-link the file to the correct folder on-board the ISS. The
OCAMS agent applies the same procedure that an OCA officer would do.

The OCAMS system has been extended over three years [22]. With the latest
release the OCAMS system will have completely taken over all routine tasks from the
OCA officer, about 80% of the workload. Other flight controllers in mission control will
interact with the OCAMS agent as if it were an OCA officer.

3.2.3 Teamwork In Brahms

Intentions in Brahms are represented by the guard conditions on workframes (plans
of actions) and actions are represented by Brahms activities which spend simulation
time, and in the case of move and communication activities they change locations and
other agent’s beliefs as well. These intentions and actions can become joint through
inheritance from a super class where the agents inherit team’s activities and work-
frames. This isn’t ideal as different members of the groups will have different tasks
to do within the team and different sub-goals. To model joint intentions the modeller
has to specifically give agents individual workframes with guard conditions which are
linked. Modelling joint activities is also difficult; agent’s workframes need to be syn-
chronised using guard conditions and Brahms detectables (to detect when other team
members are ready to start the joint activity) to ensure the agent’s operate together.
Additional workframes then need to be used to conclude whether joint activities have
been successful. The abstract nature of the Brahms activities does however alleviate
some of the difficulties of modelling a joint activity for example: a task for three agents
picking an object up together only has the difficulty of ensuring that the agents start
and finish their activities at the same time, the agents then conclude the object to be
“picked up” after the simulation time elapses.

3.3 A Comparison with other Agent Programming
Languages

Over the years a plethora of different agent theories, languages and architectures have
been proposed and developed. In this section we give the reader an insight into how
Brahms and three of the main agent programming languages differ to help explain
why we have chosen the Brahms framework. Many of these agent-orientated program-
ming languages are based on Prolog, which uses a logical goal reduction approach, i.e.,
identifying its goals and reducing them into sub-goals [10].
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3.3.1 3APL

3APL agents use practical reasoning rules, which have been extended from the recur-
sive rules of imperative programming, to monitor and revise agents’ goals [39]. 3APL
incorporates features from both imperative and logic programming plus features which
allow for a descriptions of agent oriented features, e.g., the querying of agents’ beliefs.
3APL also supports agents which have reflective capabilities related to their goals or
plans provided by practical reasoning rules. Agents in 3APL follow these characteristics
of intelligent agents:

• sophisticated internal mental state made up of beliefs, desires, plans, and inten-
tions, which may change over time

• agents act pro-actively, i.e., goal-directed and respond to changes in a timely
fashion

• agents have reflective or meta-level reasoning capabilities

A 3APL program allows a user to define the agent’s capabilities, beliefbase, rule-
base and goalbase. The capabilities of an agent are the actions which it can perform
such as put block a on block b. This is done using pre and post conditions with an
action statement, e.g., a precondition on(a, table) would mean for this action to be
performed then block a is on top of the table, with an action statement aOnb() (used
to call the action) and post condition on(a, b) which states that after this action is
performed block a will be on top of block b. The beliefbase is used to state what
the agent believes, e.g., on(a, table) means the agent believes block a is on the table.
The rulebase is used to describe the tasks the agent will complete, e.g., putAonB()
< − aOnb(). tells the agent to perform the action aOnb(). Rules can contain multiple
actions which the agent can perform in sequence. Finally in the goalbase are the list of
rules which are to be performed such as putAonB(). Any additional requirements such
as the environment or graphical interface, etc. are programmed using C and C++. An
example of a 3APL program for the Blocks World problem is as follows:

CAPABILITIES

{on(a,table), on(b,table)} aOnb() {on(a,b)}

BELIEFBASE

on(a,table).

on(b,table).

GOALBASE

putAonB().

RULEBASE

putAonB() <- aOnb().

For more information on 3APL see Hindriks et al. [39]

3.3.2 GOAL

GOAL is based on the concept of rational agents, see Chapter 2.2. GOAL is a BDI
based language where agents derive their plans from their beliefs and goals. GOAL
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facilitates the manipulation of an agent’s beliefs and goals in order to structure its
decision-making. The language is based on common sense notions and basic practical
reasoning. The main features of GOAL are [82]:

• Declarative beliefs; the agent’s initial beliefs at the start of the simulation

• Declarative goals; the agent’s initial goals

• Blind commitment strategy; drop goals only when they have been achieved

• Rule-based action selection; selection of actions based upon rules

• Policy-based intention modules; specific focusing on achieving a subset of the
agent’s goals using only knowledge relevant to achieving those goals

• Communication at the knowledge level; inter-agent communication to exchange
information, and coordinate actions

When programming in GOAL you are allowed to describe the multi-agent system using
environment, agentfiles and launchpolicy tags. The environment tag uploads an
environment from a Java file and the agentfiles allows uploading of GOAL agent files
to the system. The launchpolicy is used to give rules on when the agent starts. For
example:

environment{

"environment.jar" .

}

agentfiles{

"agentA.goal" .

"agentB.goal" .

}

launchpolicy{

when entity@env do launch alex : agentA, bob : agentB .

}

When defining an agent GOAL allows descriptions of the agent’s knowledge, beliefs
and goals. In the Blocks World example the knowledge section can be used to define
the expressions; such as block(a), block(b) to say we have a block a and b, and on(X,Y )
to represent the description of any block X can be on any block Y. The beliefs section
represents what the agent believes such as on(a, b) to state the agent believes block a
is on block b. The goals section would then contain beliefs the agent wishes to achieve
such as on(b, a). A program section then details the actions which can be performed
and when such as if goal(on(a, b)) then move(X,Y ) where action move(x, y) is defined
in the action-spec. Note that if a − goal(on([X|T ])) is used to describe when a
block has been misplaced. Any additional information such as the environment or the
graphical interface are programmed using Java. Example code for the Blocks World
problem is as follows:
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main BlocksWorldAgent

{

knowledge{

block(a), block(b).

on(X,Y).

}

beliefs{

on(a,table), on(b,table).

}

goals{

on(a,b).

}

program{

if a-goal(on(X,Y)) then move(X,Y).

if a-goal(on([X|T])) then move(X,table).

}

action-spec{

move(X,Y) {

pre{ clear(X), clear(Y), on(X,Z) }

post{ not(on(X,Z)), on(X,Y) }

}

}

For more information on GOAL see [82]

3.3.3 AgentSpeak(L)/Jason

AgentSpeak(L) is an extension of logic programming for the BDI agent architecture,
providing a framework for programming BDI agents [67]. An AgentSpeak(L) agent
defines its beliefs as a set of ground (first-order) atomic formulae and uses a set of
plans to form its plan library. AgentSpeak(L) contains two types of goals: achievement
goals; atomic formulas prefixed with the ‘!’ operator and test goals; prefixed with the
‘?’ operator. Achievement goals describe a world state that the agent wants to achieve.
Test goals are a test on whether the associated atomic formulae form one of the agent’s
beliefs.

AgentSpeak(L) forms a reactive planning system where agents react to events re-
lated to either changes in beliefs due to perception of the environment, or to changes in
the agent’s goals due to the execution of plans. Plans are predefined and triggered by
changes in beliefs and goals by either by addition ‘+’ or deletion ‘-’. An AgentSpeak(L)
plan has a body, which is a sequence of basic actions (sub-goals) that the agent has
to achieve (or test). Basic actions can be atomic operations the agent can perform to
change the environment, or actions written as atomic formulae using a set of action
symbols rather than predicate symbols.

Jason is an extension of AgentSpeak(L) with additional functionalities such as
atomic formulae which are able to have annotations on the sources of the agent’s beliefs
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[13]. Continuing with the Blocks World example, Jason allows simple declaration of be-
liefs with onTop(a, table) to represent the agent believing block a is on top of the table.
The plans are denoted using the @ symbol, e.g., @P1 would describe a plan called P1.
In this plan a goal needs to be added with a condition, e.g., goal addition by +![on(a, b)]
and condition : not onTop(a, b) stating block a must not be on top of block b. When
these conditions are met a belief removal and addition are made; −onTop(a, table) to
say that block a is no longer on the table and +onTop(a, b) to state that block a is now
top of block b. An example of an AgentSpeak(L) Blocks World program is as follows:

/*Initial Beliefs*/

onTop(a,table).

onTop(b,table).

/*Plans*/

@P1

+![on(a,b)]

: not onTop(a,b)

<- !putAonB(a,b);

-onTop(a,table);

+onTop(a,b);

3APL has been applied in main stream areas such as mobile computing [50], where an
architecture 3APL-M has been developed to support the development of deliberative
multi-agent systems in mobile computing devices. 3APL has also been used to for
programming cognitive robots. For more information on AgentSpeak(L) and Jason see
Bordini et al. [13]

3.3.4 Why Brahms

To decide which agent language/framework to use we drew up a list of requirements
to help identify which language would best suit our needs. The list of requirements we
generated are as follows:

1. allow for high level descriptions of agent activities with minimal coding

2. can show a distinct time line of events to demonstrate when activities occur

3. an embedded geographic model which requires no external code or environments

4. allow agents to perform human specific behaviour, such as:

(a) thinking about problems

(b) reasoning about the implications of beliefs and causality of actions

(c) off task behaviour and multi-tasking

(d) making mistakes

(e) communicating with each other

(f) taking varied amounts of time to complete tasks

5. and have an already existing user base for simulating human behaviour
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When considering these requirements it became clear that Brahms was the only
language we could find to match these requirements. Brahms has the high level ab-
stractions of activities all contained within a time line of events. It has a simple
geographic syntax for describing the possible locations, the distance between them,
their associations with each other and it is very simple to tell agents to move from
location to location. Brahms was also developed for simulating humans, so it meets
our human behaviour requirements. Brahms has also been used at NASA to simulate
human behaviour for over 10 years.

Other agent languages considered were AgentSpeak(L) and Jason, 3APL, and Goal.
These are all common and popular languages used to program agents, which is their
primary function. Brahms on the other hand was developed to model both humans and
machines at NASA [76, 73, 21]. Although representation of humans may be possible
in all the above languages, it is only Brahms which has been specifically designed and
used to model human behaviour. Brahms achieves this representation of humans by
modelling the objects they use, the environment they are in, their thought and work
processes, communication, and other concepts where humans and agents will typically
collaborate. AgentSpeak(L) and Jason, 3APL, and Goal are focussed on the develop-
ment and behaviour of the agents, including competitiveness and lack a framework for
shared achievement [11]. However, it could be argued that any of these languages could
be used for modelling humans, even though they have not been specifically designed
to do so. This then leaves the issue of defending how accurate this representation of
a human is, whereas with Brahms there are already papers and experiments demon-
strating its use in modelling humans [76, 73, 21] and thereby we can safely assume it
meets both requirements 4 and 5. Brahms also allows for a high level of abstraction,
where capabilities of agents can be assumed. This high level of abstraction, which
matches requirement 1, allows for easier modelling of humans because we can assume
they can perform certain tasks, such as moving a simple object, without any difficul-
ties. Whereas an agent centred approach like 3APL, GOAL and AgentSpeak(L) do
not usually allow for such high level of abstraction, they require us to model every
action. Activities in Brahms are inherently linked with time, meaning no extra coding
is required which works towards meeting requirement 2. The other agent languages are
more interested in the events themselves than the time they take to complete, although
it is possible for them to represent this time it will require additional coding making
the simulation more verbose. Brahms is also the only language which matches require-
ment 3; an embedded graphical model. AgentSpeak(L), 3APL and GOAL all require
the geographic models to be described in another language such as Java or C, making
the simulations much more verbose and add an additional language to the verification
process. Brahms’ graphical model is simple to program, has very little extra syntax
and allows easy reference to these locations in the simulations.

In summary, we are interested in analysing the teamwork aspect of human-agent
teams, examining the interactions and work processes the teams use to complete their
task. Therefore it only seems natural that we choose a framework designed to model
humans and work processes, such as Brahms. Brahms is also the only language we could
find that meets all of our requirements easily, making it an obvious choice. Additionally
Brahms has already been used to model human-agent-robot teamwork, meaning there
are existing models/examples already available for us to apply verification.

26



Chapter 4

Formal Verification - Techniques
and Applications

The primary concern of this thesis is to perform formal verification of models of human-
agent teamwork. In this chapter we discuss: what we mean by the term formal verifica-
tion; why we wish to perform agent verification; and which formal verification technique
we use and why. The structure of this chapter is as follows:

• Formal Verification; here we explain what we mean by formal verification and
formal operational semantics

• Model Checking; here we explain the formal verification technique model checking
and the model checking tool Spin

• Other Formal Verification Techniques; here we briefly explain opposing verifica-
tion techniques to model checking

• Agent Verification; here we explain how agent verification has previously per-
formed on agent based systems

• Verification of Agent Languages; here we explain how verification has been per-
formed on agent languages

4.1 Formal Verification

Formal verification represents a family of techniques aimed at assessing the correctness
of a system design. These techniques have become very popular in hardware design
since they can ensure 100% functional correctness of circuit designs [30]. For example,
Kaivola and Narasimhan [46] describe the process they used to verify the floating-point
multiplier in the Intel IA-32 Pentium microprocessor. Formal verification is always
performed against a set of requirements, i.e., a specification. A formal specification is a
concise mathematical description of the behaviour and properties of a system, stating
what actions a system can take and what should (or should not) happen [51]. Informal
specifications are inadequate for formal verification as they tend to be vague, improper,
incomplete, hard to analyse and ambiguous. A multitude of formal languages and
logics have been created in order to express as broad a range of properties as possible.
liveness, safety and fairness are typical properties to check. The liveness concept
states the system must at some point perform this action, e.g., “the spacecraft will
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take off”. Safety is a concept which states something must never happen, e.g., “while
performing manoeuvres in space, no doors can be opened”. Fairness is a concept used
when multiple agents are employed; it states that each agent will fairly get the chance
to perform an operation with no agent indefinitely occupying the resource. Formal
languages may also need to be able to express properties concerning real-time dynamic
systems, probabilistic systems and goal driven systems [11].

Essentially formal verification is a reachability test, testing whether a certain state
can be achieved which does not satisfy the specification. Formal verification can how-
ever be used to identify other faults in a system which are not part of the specification
such as deadlock, livelock, race conditions and termination. Deadlock occurs for in-
stance when a process will not release a shared resource that other processes are waiting
to access and cannot progress any further until they access the resource. Livelock is
similar to deadlock, such that no progress is made but no blocking occurs [63], e.g.,
one processor constantly flips a Boolean to true and in response another flips it back
to false. There is no strict definitive definition of a race condition, however race con-
ditions generally occur when different processes share a data source without explicit
synchronization [60]. Termination analysis is simply a check to identify whether the
program will always terminate, such as identifying any infinite loops. Termination is
a difficult problem, also known as the halting-problem, and has been the subject to
intensive research, for example, in [53, 33, 26].

The most popular approach to formal verification is model checking [27]. Model
checking (see Chapter 4.2) creates a model of every single state achievable within a
system, the transitions between these states, and also indicates which states are the
possible initial states. Every single run (a sequence of state transitions from an initial
point to an end point) is checked to ascertain whether or not a formal property holds.
Model checking requires a finite model of the system, which we generate from the
operational semantics, and the representation of a property to check in some logic.

4.1.1 Formal Operational Semantics

Formal operational semantics are interpretations of formal (mathematical) languages.
They are used to precisely describe how a system will behave when executed. This is
done by describing semantic rules which identify the possible types of states the system
can be in and the ways the state can change when applying these rules. These semantic
rules can be used to build a model of the system by applying the rules to the initial
states of the system and then storing the resulting states in the model.

Formal operational semantics consist of a set of rules which govern how/when and
what the system will do at a given time. These rules form a premise and a conclusion,
rules with empty premises are axioms. Set theory and logical notations are used to
describe both the premise and the conclusion. These notations are able to express the
state of the system (e.g., a set of tuples and their values), describe the changes made
to the data structures, and the resulting system after the changes have been made [84].

4.2 Model Checking

Model checking is the technique which has been used in this thesis to analyse the
behaviour of human and agent teamwork. Model checking is a verification technique
developed to logically analyse whether a system meets certain specifications. Specifica-
tions are described in a precise mathematical language and the system itself is typically
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represented by a finite state machine (FSM), i.e., a directed graph consisting of vertices
and edges. The model is exhaustively searched for reachable states where the specifica-
tion fails [2]. Specifications checked are unique to the systems requirements, typically of
a qualitative (e.g., is the result OK?) and a timed nature (e.g., is task achieved within
x hours). General bad states such as deadlock, livelock and race conditions are also
checked for. Figure 4.1 shows the model checking process, showing that the process
starts with a description of the model and a desired property of the system. A model is
then created from this description and a quick test is performed to check its accuracy.
Meanwhile, the specification is formalised into a property specification language. The
model checker then exhaustively checks every state to determine whether or not the
property holds. If the property holds then the verification is complete, if not then an
error trace through the model is produced to demonstrate how the property can be
violated. Additionally, the model generated can be too large to be held in memory,
requiring the model to be refined before verification can continue.

Baier and Katoen [2] detail a list of strengths and weaknesses of model checking:

1. Strengths

(a) Wide range of applications: embedded systems, software engineering and
hardware design

(b) Supports partial verification, i.e., each property can be checked individually

(c) Not vulnerable to the likelihood that an error is exposed

(d) Provides diagnostic information for debugging purposes

(e) System does everything for the user making it simple to use

(f) Increasing interest within industry

(g) Easily integrated into existing development cycles

(h) Verification performed is trustworthy due to its mathematical soundness

2. Weaknesses

(a) Unsuitable for data applications as they tend to cover infinite domains

(b) Decidability can cause issues which can create infinite-state systems

(c) Finds design flaws not coding errors or fabrication faults

(d) Checks only requirements which have been specified

(e) State-explosion problem may cause the system to run out of memory

(f) Creating the model of the system requires expertise to abstract a small
enough system model and to convert the specifications into logical formulae

(g) Results aren’t guaranteed to be correct, the model checker may contain its
own software defects

The main reasons why we chose model checking are that it’s an automated process
and the mathematical soundness of the proof. The main weakness that did become an
issue during the course of this thesis was the state-explosion problem, weakness 2(e).
Techniques such as declaring sections of code as deterministic and scaling down the
non-determinism were used to reduce the state space to resolve this issue. Weakness
2(a) was not an issue since the scenarios were modelled over a finite amount of time with
a finite number of choices. Decidability (weakness 2(b)) refers to the model checkers
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Figure 4.1: The model checking process [2]
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ability to return a Boolean true or false to a specification of the system. Decidability
issues arise when models are either too large to hold in memory or the model loops
infinitely. The model checker Spin has techniques to identify and remove infinite loops,
and tools to keep models within memory limits. However there is always a possibil-
ity that all available memory will become consumed leaving the model checker unable
to return a result. We tried to avoid these memory issues by progressivly increasing
non-determinism, since non-determinism is a key factor in state space explosions. By
gradually increasing the non-determinism we can see at what point memory becomes
an issue. 2(c) was not an issue since we are specifically looking for design flaws, coding
issues can be resolved using the Brahms simulator. Model checking will only check
for properties that it has specifically been asked to check (weakness 2(d)). This weak-
ness was not a concern for us because we were only interested if our tool was able
to correctly answer whether our specifications held or not. The model is generated
automatically by the system we have created, eliminating the requirement of the user
requiring the expertise to create the model, eliminating the issue 2(f). However, 2(f)
also mentions that the user needs this expertise to convert the specifications into logical
formulae. This means 2(f) is still an issue, the user needs to know how an agent’s belief
is represented in the PROMELA translation and they must know how to convert the
specification in to a PROMELA ‘Never Claim’. 2(g) may be an issue, it is extremely
difficult to tell if the PROMELA translation exactly matches the Brahms framework.
This means that an error found in a the verification may not be an error in Brahms or
vice-versa. Also Brahms is a simulation itself, meaning a Brahms simulation may not
accurately represent the situation it was trying to model.

4.2.1 Spin

The model checker used for the verification of the human-agent teamwork in this thesis
was the Spin model checker [41]. In this section we describe Spin and the syntax for its
input language PROMELA. Spin is a popular model checking tool designed to verify
models of distributed software systems. Spin models concentrate on proving correct-
ness of process interactions and also attempt to abstract as much as possible from the
internal sequential computations. Spin has a graphical front-end known as XSpin which
allows users to define specifications of a high level model of concurrent systems. Spin
accepts design specifications written in the verification language PROMELA (a Pro-
cess Meta Language). The PROMELA language is very similar to ordinary program-
ming languages, but it has the added capability of handling certain non-deterministic
constructs [37]. This high level specification of the systems is tested via interactive
simulations to assure a basic level of confidence in the model. The high level model
is then optimised using reduction algorithms. The optimised model is used to verify
the system. If any counterexamples to the specification are found during verification
then they are passed through the high level model to inspect this example in greater
detail. Figure 4.2 shows Holzmann’s [41] diagram to illustrate the structure of Spin.
The diagram shows that PROMELA, along with a property in Linear Temporal Logic,
can be parsed in order to find: 1) syntax errors 2) produce a simulation or 3) generate
a finite state machine for verification. For model checking the state machine is opti-
mised and on-the-fly model checking is performed. On-the-fly model checking refers to
checking the specification while generating the model. Any counter-examples produced
are related to simulation runs.

Spin formulates models of concurrent systems by interleaving all process automata
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Figure 4.2: Structure of the Spin model checker [41]
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to form a single automaton, a product forming the global state space. The specifications
are represented using temporal logic, which Spin converts into Büchi automata; a finite
state machine which accepts words of an infinite length. On execution Spin explores
all possible states while synchronously running the Büchi automaton representing the
specification. If the language accepted by the product of the Büchi automaton and the
global state space is empty then the specification was not satisfied.

PROMELA

PROMELA is the input language for the Spin model checker, it was designed to make
good abstractions of a system’s design easier. PROMELA was designed to handle
asynchronous processes, buffered and unbuffered message channelling, synchronizing
statements, and structured data. Restrictions on PROMELA have been placed to
make it easier to model and verify client and server behaviour but make it difficult to
model complex mathematical behaviour [41].

PROMELA is comprised of processes called “proctypes”. These processes represent
an individual program, in our case an agent. They all run together asynchronously in
a random order, similar to threads in Java. One of the restrictions to processes is that
there are no methods, however macros and “goto” statements can be used instead.
Macros are similar to methods but are merely replications of code; they cannot return
values and macros which declare variables will duplicate the variable declarations if
called multiple times. The goto statements tell the process to jump to a different
section of code. Some other restrictions applied to PROMELA are the data types
e.g., no strings, sets, stacks or floating points are allowed. The main functions of
PROMELA used in this thesis are: enumerations, integers, arrays, goto statements, if-
statements, and do-statements. The if-statements and do-statements are different from
most programming languages because they can handle multiple conditions and are able
to halt a process. Here is an example of an if-statement with multiple conditions, where
it will either count up or down depending on when a value A is equal a value B or C:

byte counter

active proctype counter(){

if

::(A==B)-> count++;

::(A==C)-> count--;

fi

}

Multiple conditions can also be used for non-determinism. For example, the process
below two things, either count up or count down. Since the values in the if-statement
are ‘true Spin will non-deterministically choses which action to take. This is typical
method for representing non-determinism (i.e., branching in model generation) in Spin.

byte counter

active proctype counter(){

if

::(true)-> count++;

::(true)-> count--;

fi

}
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The do-statement also operates in this fashion. Blocking occurs when Spin reaches an
if-statement or do-statement when no option is available, e.g.,

Mtype = {P, C} /*mtype is for enumeration*/

mtype turn = P;

active proctype Producer(){

do

::(turn == P)->

printf(‘‘Produce’’\n");

turn = C;

od

}

active proctype Consumer(){

do

::(turn == C)->

printf(‘‘Consume\n’’);

turn = P;

od

}

This example shows a producer and a consumer. The variable turn is initially set to
P, so when the producer starts to execute it prints “Produce”. The consumer starts to
execute but turn isn’t set to C so it halts, once the Producer sets the turn to C it can
then execute.

When Spin generates a model it produces a state for every line of code (including
print lines). To stop Spin from doing this wrappers known as a “d step” can be used,
these declare a certain section of code as being deterministic. Code inside a d step
is compressed into a single state, if there is non-determinism in the d step then Spin
makes a random choice making it deterministic, e.g.,

byte counter

active proctype counter(){

d_step{

if

::(true)-> count++;

::(true)-> count--;

fi;

}

if

::(true)-> count++;

::(true)-> count--;

fi

}

The example above shows two non-deterministic if-statements but a deterministic
wrap has been used on the first if-statement to render it deterministic. When generating
a model for this code Spin will make a random choice for the first if-statement and then
create a branch for the second if-statement displaying the two possible outcomes. The
model will either look like Figure 4.3 or Figure 4.4.
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Figure 4.3: Spin randomly chooses to add on the first statement

Figure 4.4: Spin randomly chooses to subtract on the first statement
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Spin was our chosen model checker mainly for its speed and popularity. Spin is
known for being a reliable and fast model checker and its popularity means it is more
likely users will have the expertise to use and trust the system. One of the weaknesses
of model checking is that it is difficult to create an accurate model of the system which
is small enough to model check (weakness 2f in Section 4.2). Spin’s input language
PROMELA helped alleviate this weakness; its high level nature made implementing
the semantics easier. Spin’s simulation mode also helped with the accuracy by allowing
comparisons with the output of the Brahms simulator. Other features such as being able
to declare sections of code as deterministic and running the PROMELA simulation line
by line highlighting all the choice points helped reduce the size of the models generated,
alleviating the state-space explosion problem of model checking (problem 2e in Section
4.2).

4.2.2 Java Pathfinder

Java Pathfinder (JPF) is a verification tool developed by NASA to model check Java
programs. JPF was built in a way so that Java programs execute it to find defects within
themselves; properties still need to be specified as input for JPF to operate. JPF is
implemented in Java itself and runs as a Virtual Machine (VM) on top of the standard
Java VM which causes JPF to run much slower than a normal Java program would. JPF
builds a state-transition diagram of the Java program by identifying execution choices
within the programming code and is then able to traverse all these paths to discover any
hidden defects in the code. JPF also has the feature where users can specify scheduling
sequences, random values, types of choices and user input. The state explosion problem
is always an issue for model checking large systems, JPF tries to tackle this issue using
state matching. State matching is when the JPF notices that a choice point it is about
to create is similar to a previous choice point encountered, meaning this new path
can be abandoned allowing JPF to backtrack to this previous choice and take a new
unexplored path from there. JPF also allows for manual declaration of where choice
points should occur preventing surplus unnecessary states [37].

JPF can be used to identify many defects in Java programs, the core properties JPF
will check are deadlocks and unhandled exceptions. JPF requires manual definitions of
properties to be checked, these are mostly checked using “plugins” known as listeners.
These listeners closely monitor all actions JPF makes (not just state transitions) but
also actions such as single instructions, creating objects, etc. and will notify once a
defect has been discovered. On detection JPF produces a program called a trace which
identifies the error path and provides full account of the actions that caused the defect.

The first incarnation of JPF performed its model checking through the Spin model
checker, described in Section 4.2.1, by translating a program from Java code into
PROMELA. The current version of JPF builds a model itself using the byte code
generated by Java from the javac command. JPF does not however apply any form of
reduction on the generated model, meaning that the Java programs must have a finite
and tractable state space. JPF has been applied to programs having up to 2000 lines
of code [37].

In a combined effort with Rungta et al. [71] we use Java Pathfinder (JPF), along
with the Brahms semantics generated for this thesis, to model check Brahms simula-
tions. This implementation takes a slightly different verification path than the path to
translate the Brahms semantics in PROMELA, see Chapter 5 and 12 for more details.
JPF was chosen because of its ability to specify where choice points occur, thereby
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avoiding unnecessary states being produced when generating Brahms models. JPF
also has the advantage that Brahms uses hierarchical and high level functions easily
represented in Java but difficult in languages such as PROMELA.

4.2.3 Temporal Logic

In model checking we are required to describe the state of the system and properties
we wish to verify. To do this tools such as Spin use temporal logics. Temporal logics
are logics which extend classical logics using specific operators which allow us to reason
about time [66]. Typical operators used by temporal logics are

• �ϕ - ϕ will always be true

• ♦ϕ - ϕ will become true some time in the future

• ©ϕ - ϕ will be true in the next moment

• ϕUψ - ϕ is true until ψ is true

• ϕWψ - ϕ is true unless ψ is true, but ψ does not necessarily need to become true

Temporal logics are ideal for the use in specification and verification of properties
of concurrent systems, examples where they have been applied for these purposes are
[23, 34, 49]. Temporal logics are ideal for specification because they can easily express
properties such as livelock, deadlock and mutual exclusion. The verification itself can
be performed using proofs within the logic itself. However, one of the issues with
using a standard temporal logic, such as LTL (Linear Temporal Logic), is that the
operators cant explicitly express when the property must occur in the future, e.g., a
specification can state a property will eventually be true but not that within 5 time
steps the property will be true. Important computational properties such as livelock,
deadlock and mutual exclusion can be expressed easily and simply in temporal logic
making it useful for specification. Verifying that such properties hold for a program
specified in temporal logic involves proofs within the logic itself.

There are different types of temporal logic, such as linear [66], branching [5], discrete
or dense [19]. However, in this thesis we are only concerned with discrete, linear
temporal logics such as LTL which is used by the Spin model checker.

LTL Syntax

LTL formulae are constructed using the following connective and proposition symbols.

• A set P of propositional symbols

• Propositional constants true and false

• Propositional connecitves ¬, ∨, ∧, ⇒, and ⇔

• Future-time temporal connectives

– Unary connectives: ©, �, ♦

– Binary connectives: U , W

The set of well-formed formulae of LTL, WFF, is inductively defined as the smallest
set satisfying:
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• Any element of P is in WFF

• true and false are in WFF

• if ϕ and ψ are in WFF then so are

¬ϕ ϕ ∧ φ ϕ ∨ φ ϕ⇒ φ ϕ⇔ φ
♦ϕ �ϕ ©φ ϕUψ ϕWψ

LTL Semantics

A model of a temporal logic can be considered as a sequence of states indexed by the
natural numbers N. An LTL model can be represented by a sequence of states such as

M = s0, s1, s2, s3,...

Where state si represents a set of propositions which are satisfied in the ith moment in
time. To state when an LTL formula is satisfied we use the notation

(M, i) � ϕ

This denotes that the formula ϕ is satisfied in the model M in the ith state where
i ∈ N. To express a formula that is not satisfied in this model at the same particular
state we would use the notation (M, i) 2 ψ. To state that a formula is valid, i.e., it is
satisfied in every state, we express it as � ϕ.
The semantics for a proposition is defined by

(M, i) � p iff p ∈ si where p ∈ P.

The semantics for a standard propositional connective of classical logic is, for example

(M, i) � ϕ ∧ ψ iff (M, i) � ϕ and (M, i) � ψ.

The semantics of a negated formula is defined as follows

(M, i) � ¬ϕ iff (M, i) 2 ϕ.

The semantics for the unary future-time temporal connectives are defined as follows

(M, i) �©ϕ iff (M, i+ 1) � ϕ.

(M, i) � ♦ϕ iff ∃j ≥ i s.t. (M, j) � ϕ.

(M, i) � �ϕ iff ∀j ≥ i s.t. (M, j) � ϕ.

The semantics for the binary future-time temporal connectives are defined as follows

(M, i) � ϕUψ iff ∃k ≥ i s.t. (M, k) � ψ
And ∀i ≤ j < k then (M, j) � ϕ

(M, i) � ϕWψ iff (M, i) � ϕUψ or (M, i) � �ϕ.
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4.3 Other Formal Verification Techniques

Model checking is not the only available technique for performing formal verification.
Some other typical mechanisms for performing formal verification are as follows:

• Dynamic Fault Monitoring: also referred to as Runtime Verification because prop-
erties are represented by a finite-state automaton (FSA) and checked during an
actual execution of the system, i.e., a property A represented as a FSA is used
to scan an execution, α, to see whether it satisfies A. If at any time an error
is flagged, i.e., at some point in the execution the requirement is not satisfied
(α 2 A), then the violation is investigated [36].

• Formal Proof: the use of mathematics to logically prove whether or not a prop-
erty will hold in a system. To do this we require a mathematical representation of
the behaviour of the system, a logical formula α, and a requirement of the system
also represented by a logical formula, A. Verifying that property A holds involves
proving that α implies A is a theorem in the system, i.e., ` α ⇒ A. This process
can be automated to deduce whether a requirement holds when given the speci-
fication in a traditional logic, such as temporal logic, and a logical specification
of the system’s behaviour in the language of a theorem prover [32].

• Equivalence Checking: whereby the intended behaviour of a system is represented
by a specification S and the actual implementation of the system, I. These
representations are defined as states in transition systems, and then it is shown
that S and I are equivalent [48].

These techniques all have their applications in various domains however little work has
been done in applying these techniques to verify multi-agent systems. To apply these
techniques to human-agent teamwork scenarios additional work would be required to
develop adequate tools to perform the verification. Model checking has however been
the preferred technique for verifying multi-agent systems, demonstrating its use with
model checkers such as Spin and Java Pathfinder used to verify multi-agent systems.
Model checking tools for agents have also been developed such as MCMAS (Model
Checking Multi-Agent Systems) [54] and MCAPL (Model Checking Agent Program-
ming Languages) [6] for verifying multi-agent systems programmed in a variety of agent
languages.

4.4 Agent Verification

The autonomous nature of agents and their ability to work together in a team leads to
questions about their behaviour. We need to know if they will do what they are required
to do and whether or not they will be able to coordinate their efforts to complete the
task. Verification techniques are used in determining whether an agent, or team of
agents, will satisfy a system’s design objectives. Since agents work in teams, issues
such as deadlocks, livelock and race conditions become apparent [12].

Agent programming paradigms such as the beliefs-desires-intentions (BDI) have
the concept that agents act rationally. This principle of acting rationally means that
it is possible to model the various actions of the agents, allowing applications of model
checkers [12]. One of the reasons agent based systems have become so popular is due
to their ability to automatically handle large systems with superior speed and accuracy
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Figure 4.5: Overview of the AIL Architecture [28]

to any human counter-part [89]. For this reason agents are now being incorporated
into safety critical systems, where unexpected errors can cost time, money, and endan-
ger lives. Being able to logically test such a system before application makes formal
verification appealing.

4.4.1 Agent Infrastructure Layer

An already existing technique for verifying multi-agent systems is the Agent Infras-
tructure Layer (AIL). AIL is a collection of Java classes developed to unify frameworks
of the variety of modelling formalisms available, particularly agent programming lan-
guages. The collection of Java classes within AIL contain clear and adaptable semantics
and are able to implement interpreters for various agent languages. Programs inter-
preted by AIL are then able to be model checked by Agent Java Pathfinder (AJPF);
an extension of the Java Pathfinder model checker customised to support AIL-based
interpreters. AIL can be perceived as a basis to which agents, that have been pro-
grammed in various languages, can co-exist in a multi-agent system and still provide
the capability of model checking these agents using AJPF. AIL does this by identifying
the key operations that many BDI languages use and incorporates them into an AIL
toolkit [28]. Fig. 4.5 shows a diagram by Dennis et al. [28] illustrating how the AIL
architecture fits within the JPF virtual machine.

4.5 Verification of Agent Languages

The verification of agents and multi-agent systems is currently an on-going research
topic, with papers such as [25, 70, 6, 29, 1, 90] performing verification on various agent
programming languages. In this section we will describe how agents have previously
been verified to provide an insight into the possible different routes available for agent
verification.

Bordini et al. [6] use the AIL toolkit and the MCAPL (Model Checking Agent
Programming Languages) interface to model check a range of agent programming lan-
guages. They use the AIL toolkit as an interpretation tool (as it encompasses the main
concepts of agent based languages) and the MCAPL interface to perform model check-
ing via AJPF (Agent Java Pathfinder). Using this approach they verified properties of
programs programmed in agent languages such as 3APL [39], AgentSpeak(L) encap-
sulated by Jason [13], GOAL [82] and SAAPL (Simple Abstract Agent Programming
Language) [83]. Figure 4.6 shows the approach used by Bordini et al. [6]. Where
AIL represents the semantics of the agent languages, AgentSpeak, 3APL, etc. This
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Figure 4.6: Overview of Bordini et al’s [6] approach

representation of the semantics of these languages, along with a specified property of
the system is translated into Java code. AJPF and JPF together form a model of the
Java code presented, this model is then traversed with Java listeners checking for states
where the property is violated.

Boer et al. [25] produce a verification framework for goal orientated agents, specif-
ically for agents programmed in the language GOAL. In [25] Boer et al. describe a
formal operational semantics for GOAL and construct a temporal logic specifically to
prove properties of GOAL agents, which incorporates the belief and goal modalities
used in GOAL agents.

In [8] Bordini et al. produce a variation of the AgentSpeak(L) language called
AgentSpeak(F) and show how they transform programs written in AgentSpeak(F) into
PROMELA for Spin verification.

McCallum et al. [56] produce a flexible and expressive framework for the verification
and analysis of agents taking part in multiple organisations with distinct roles and
disparate obligations. Rather than using an existing agent programming language
McCallum et al. citemccallum2006verification produce their own system for modelling
agents using organisations, roles, actions, and obligations using Sicstus Prolog [61]. To
verify these models McCallum et al. [56] combine the model’s rules with a constraint
solver [55] which determines whether all the agent’s obligations can be fulfilled.
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Chapter 5

Analysis of the Project

There are a number of routes we could explore to develop verification techniques for
human-agent teamwork. In this chapter we aim to provide the reader with an overview
of the paths that were considered through the course of the project including the path
that was chosen. We present the reader with our process for selecting a framework for
representing humans and agents, the verification of this framework, and the method
we chose to implement our tool. An overview of the possible paths is provided in 5.1.

5.1 Representing Humans, Agents and Robots

This first challenge was how to represent the entities whose actions and interactions are
to be verified. For verification purposes the framework needed to be a simulation frame-
work; able to state the actions performed, when they were performed, for how long and
the implications of the actions. These requirements were set to allow for easy modelling
of human-agent teamwork scenarios for verification. Stating the possible actions and
when they can be performed allows for describing branching in the models, the timing
of the actions allows for reasoning over temporal properties (e.g., the task will always be
completed within the required time frame), and the implications of the actions describes
the changes that will be made to the current state. The most desired requirement of
this framework was the ability to represent humans, agents and robots accurately. The
difficulty of this is the human aspect, what framework can model humans? To model
humans the framework needs to be able to represent human behaviour such as multi-
tasking, communication, making mistakes, etc. However, to accurately model a human
is an impossible task because people can be irrational and unpredictable. For this
reason it was decided to only consider expected possible behaviours of the person in
the given situation. The languages and frameworks considered for this project were:
3APL, AgentSpeak/Jason, GOAL and Brahms. 3APL, AgentSpeak/Jason and GOAL
were considered due to their popularity amongst the agent community, however none
of these were designed to model humans or had been previously been used to do so.
The possibility of extending these languages to model humans was considered but dis-
counted because the Brahms framework had been designed to model humans and been
used to do so.
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5.2 Verification of Brahms

5.2.1 Breaking down Brahms for Verification

As Brahms is a large complex system, rather than try to verify the whole of Brahms
we identified a core of Brahms such that it still retains the essence of Brahms but
without features that do not offer additional functionality. The workings of all the
Brahms functions were analysed and evaluated based on their importance and whether
or not they could be replicated using other functions. The results of this work found
that only a few core functions could be removed from Brahms. The core functions
that could be removed were found to be Composite Activities and Create Agent/Object
Activities. We identified that Composite Activities could be replicated using other
functions, since they are a collection of activities grouped together. The creation of new
agents and objects after initialisation was deemed not to be a necessity of the Brahms
framework and could also be removed, especially since this could make verification
difficult, e.g., non-deterministic creation of agents could cause a state space explosion
when model checking a simulation. Functions such as: broadcast, communicate to all
agents; detectArrivalIn, detect when another agent arrives at an agent’s location; and
detectDepartureIn, detect when an agent leaves an agents location, where considered to
be replicable using other functions. The functions that could be considered superfluous
for verification were: min duration, set a lower bound for the duration of an activity;
label, name the agents, etc. for visualisation in the Brahms output; and gestures,
simulate a wave or handshake, etc. Table 5.2.1 shows a list of all the keyword in
Brahms, keywords in bold font are functions which have been implemented in the
project.

5.2.2 How to Verify Brahms

With a suitable framework to model the human-agent teamwork we needed to consider
how to verify the simulations produced by Brahms. Model checking, see Chapter 4.2,
was the technique decided for the verification. The reasons behind this were that it is an
automated process and it has already been used to verify agent behaviour [45, 27, 86].
Figure 5.1 describes possible options for verifying Brahms models. The path at the top
describes translating Brahms into an agent language which already has model checking
capabilities; the middle path describes translating Brahms for verification via the Agent
Infra-Structure Layer and Java Pathfinder; and the final path describes storing the
Brahms model in Java data structures before translating into the input language of an
existing model checker.

We decided to create Java data structures to hold the details of the scenario for
translation into the language of the desired model checker. This choice was made be-
cause the intermediate representation of the model in Java would act as a central hub for
easier translation to multiple input languages for model checkers. This would allow for
more than one model checker to be used where results could be compared and different
types of verification could be performed; possibly probabilistic and epistemic properties
as well as temporal. The other options were discounted because verification via AIL
and Java Pathfinder is slow and Brahms only has similarities to the Beliefs-Desires-
Intentions paradigm, making it difficult to translate into BDI languages. Within our
chosen solution there was also an option to create our own model checker, however the
availability of many fast and reliable model checkers such as NuSMV, Spin, PRISM, etc.
we discounted this option. Developing our own model checker would mean questioning
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ActiveClass delete mod ActiveConcept

move ActiveInstance detect name

Agent detectable destination min duration

nowork Area detectables not

object Class detectArrivalInSubAreas package

part of ConceptualClass detectDeparture InSubAreas

path ConceptualConcept Concept detectDepartureIn

display primitive activity ConceptualObject distance

div private Group do

protected Object priority GeographyConcept

double public abort end activity

end condition quantity action extends

random activities put about

factframe receive agent FALSE

fc relations area foreach

repeat area1 relation and

forone resource area2 gesture

get send assigned group

source attributes resources areadef

impasse string bc import

icon symbol broadcast inhabitants

then class super boolean

initial beliefs thoughtframe collectall initial facts

instanceof time unit complete int

to composite activity thoughtframes communicate

is toSubAreas conceptual class java

jimport type conclude known

unassigned continue TRUE conceptual object

knownval unknown cost listof

location with create area long

when create object variables create agent

map whenever current max duration

workframe dataframe memberof workframes

dc AreaDef detectArrivalIn

Table 5.1: List of all Brahms keywords, keywords marked with an asterix have been
implemented in the project

Figure 5.1: Overview of the possible paths to verifying Brahms
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the efficiency and reliability of the model checker as well as any translation performed.
Since the chosen path allows for possible translations into many different model check-
ers the choice of model checker wasn’t of such great importance. The model checker
chosen was the Spin model checker as this is a very popular model checker, and has been
evolving since it was made publicly available in 1991. Since then its efficiency, func-
tionality and the confidence in its verification results has increased over time. Spin’s
input language PROMELA is a higher level language than most other model checker
input languages, making it easier to represent the Brahms semantics. Spin also has the
ability to run PROMELA code as a simulation, this makes it possible to compare the
output of the PROMELA translation with the output of the Brahms simulation. The
Spin model checker is discussed in more detail in Section 4.2.1.

5.3 The Implementation

Here we explain the process conducted during the implementation of the project. Firstly
we needed to develop a formal representation of the semantics. The only previous formal
representation available for Brahms was the implementation code, which due to NASA
copyright restrictions we had no access. The development of this operational semantics
was performed with the aid of the creators of Brahms: Maarten Sierhuis and Ron van
Hoof. We used simple Brahms simulations to develop our understanding of Brahms
in order to construct the semantics. The formal semantics were published at CLIMA
2011 [79]. The operational semantics for Brahms can be found in Part II, Section 6 of
this thesis.

The second stage of the project was to parse the Brahms code and store the Brahms
simulation data into Java data structures. The operational semantics produced in [79]
acted as a blueprint for storing this data, i.e., matching up the Java data structures to
the structures represented in the tuples of the operational semantics. A Brahms parser
was developed using ANTLR (Another Tool for Language Recognition), where the
syntax is expressed in Backus-Naur Form (BNF, a notation technique for context-free
grammars) and the details of the syntax are passed on to a Java class.

The third stage was to implement the Brahms semantics in PROMELA. This was
performed by following the Brahms operational semantics in Part II, Section 6. Each
rule was created in PROMELA code, tested on simple Brahms simulations using Spin’s
simulation runs and the results then compared against results of the simulation gener-
ated by Brahms. Steadily each semantic rule was created and tested in this way. The
Java code was then developed to automatically generate this PROMELA translation
using the simulation’s data which was parsed from a Brahms simulation. Restrictions
implemented in PROMELA meant an instance of Brahms semantics had to be created
for each Brahms agent and object. This process was also performed iteratively, grad-
ually adding in Brahms functions and testing the output against a Brahms simulation
to analyse the correctness of the Brahms translation. The final stage was to produce
scenarios and analyse the verification results. The scenarios were developed in incre-
ments where each increment was translated to PROMELA, tested in a Spin simulation
(for results comparison, in case of any translation errors), and verification of a simple
property was performed.
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Part II

Formal Verification of Brahms
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Chapter 6

Formal Semantics of Brahms

This Chapter describes the formal operation semantics we produced for Brahms frame-
work. Here we describe the notation used, the structure of the tuples and the rules
themselves. In this chapter we present the reader with 41 rules to describe the formal
semantics of Brahms. With so many rules it is difficult to get a clear picture of how
Brahms operates, so we present the reader with Figures 6.1 and 6.2 to help explain the
semantics.

This section will follow the flow through the Brahms semantics in Figures 6.1 and
6.2. It should be noted that this is only the core aspects of the Brahms semantics,
functions such as suspension, detectables, variables, etc. have been removed for sim-
plicity. The Figures 6.1 and 6.2 have been drawn with a relation to traditional data flow
diagrams where rectangles with rounded edges start the data flow, rectangular boxes
with sharp edges represent a process, diamond boxes represent a yes/no choice, and an
elongated oval represents the termination state. Arrows are used in the diagrams to
show how the flow moves from process to process, arrows emanating from a diamond
are labelled either yes or no to signify which choice they represent. To help describe
the flow through these diagrams the states have been labelled A1-A22 and S1-S8. The
agent’s states are identified using A and the scheduler’s by S. It should be realised that
the agent’s and the scheduler diagrams are not mutually exclusive, i.e., some agent
states require the scheduler to be in a certain state before the agent is moved onto
another state. Some process states in the diagrams are shaded, these are to identify
that non-determinism can occur in these states, e.g., state A14 is shaded and refers to
updating a belief or a fact, the non-determinism here occurs because belief and fact
updates are assigned a ‘certainty’, i.e., a percentage chance that the update will occur.

The scheduler, in Figure 6.2, starts off by initialising everything from agents, to
objects, etc. in state S1. During this initialisation the scheduler informs the agents to
start executing, the scheduler then moves into S2 where it waits for a response from all
the agents. The agents, in Figure 6.1, start off by moving into A1 where they initialise
themselves, then move on to A2 where they then wait for the scheduler. Once the agents
have received the command from the scheduler to start executing they move into state
A4 where they generate a set containing all active thoughtframes. The agent then
cycles through states A4, A5 and A6 where it executes all thoughtframes in the set and
checks for more thoughtframes to become active until no more thoughtframes are active.
The box A6 is shaded because the thoughtframes are chosen non-deterministically. The
agent then moves into state A7 where a set of all active workframes is selected, if this set
is empty then the agent moves to A9 to set itself as idle. If there are active workframes
then the agent moves to state A11 where it randomly selects one of these workframes,
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again A11 is shaded due to this random choice. The semantics then check whether the
workframe is empty or not in A10, if the workframe deed stack is empty then the agent
is directed back to state A4 to process its thoughtframes. If the workframe deed stack
is not empty then it pops the top element off the stack in A12. A13 then checks if the
event is an activity or a conclude. If the event is a conclude then the agent moves to
state A14 where it processes this conclude, this state is shaded because the belief and
fact attributed to this conclude may or may not be updated based upon the belief and
fact certainty of the conclude. If the event is an activity then the agent moves to state
A15 where it selects a duration for this activity between the minimum and maximum
value, the box is shaded to represent this non-determinism. The agent then sends
this value to the scheduler in state A16 and waits for a response from the scheduler.
Once the scheduler receives all durations from all the agents it moves to state S4 and
calculates which is the shortest. If all the agents had found no active workframes in
state A8 and moved to state A9 then they would all have sent the scheduler a duration
of -1, if this is the case then the scheduler will be directed to states S7 and S8 from
state S5 to terminate the simulation. If the scheduler did find a duration greater
than -1 in S5 then it moves its clock forward by this duration in state S6 and moves
back to waiting for a duration from all the agents in state S2. The agents will now
have received a duration from the scheduler and will move from A16 into A18, if the
scheduler had sent a -1 for the duration then they will move to A19 and terminate.
When the scheduler sends a duration greater than -1 the agents move into state A22
where they check to see whether they have an activity to deduct time from, if they had
set themselves idle then they would not have a current activity to do this with. They
then process states A21 and A20 to update their clocks and deduct time from their
activities, they are then directed back to state A10 to continue popping events off the
deed stack. Once the deed stack becomes empty they will be directed from state A10
to A4 to start processing thoughtframes and eventually move onto the next workframe.

6.1 Semantics: Notation

The following conventions refer to components of the system, and agent and object
states.

Agents: ag is used to express the identity of an agent, e.g., agAlex would represent
an agent named Alex, while Ag represents the set of all agents. When referring
to arbitrary agents we use names such as i and j, and when we are referring to
the number of agents we use n. For example, when we use the term ∀agi ∈ Ags
we are referring to all arbitrary agents in the set of all agents, and when we are
using something that requires two arbitrary agents, such as communication, we
will say that arbitrary agent agi communicates to arbitrary agent agj .

Beliefs: b represents the atomic formula of a belief, while B represents a set of beliefs.
In Brahms the overall system may have beliefs which are represented by Bξ.

Facts: f represents the atomic formula of a fact, while F represents a set of facts.

Workframes: Workframes are represented as the tuple

〈W g,W pri,W r,WD,W V ,Wins〉

Where
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Figure 6.1: Overview of a Brahms Agent’s Semantics
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Figure 6.2: Overview of the Scheduler’s Semantics
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• W g is the workframe’s guard.

• W pri is the workframe’s priority. Priorities are represented in Brahms as
a natural number, N, however in this semantics we add decimal values to
these numbers to account for priorities of suspended, impassed and current
workframes over generic workframes yet to be instantiated.

• W r is the workframe’s repeat variable. The repeat variable can take the
values true, false, and once.

• WD is the workframe’s detectables. This is a tuple 〈dg, dtype〉, where dg rep-
resents the detectables guard condition and dtype represents the detectables
type; impasse, continue, complete, or abort.

• W V is the workframe’s variables, βV for the current workframe. A single
variable is identified using v, each variable has a type which is identifed by
vtype which can take the values forone, foreach, and collectall.

• 〈W0...Wn〉 is a set representing instansiations of the workframe. These in-
stantiations are necessary when a workframe contains variables, an instan-
tiation is created for every possible combination of assignments that the
variables can have; variables can be assigned to agents, objects and loca-
tions.

• W Concludes is used to represent all the conclude statements inside the work-
frames stack of instructions. This is used when a workframe has been in-
structed to process only concludes and ignore actvities.

When referring to workframes W refers to any arbitrary workframe, β represents
the current workframe, e.g., βpri would refer to the current workframe’s priority,
andWF represents a set of workframes. Occasionally to save space in the tuple we
represent the first 6 elements of the workframe tuple as Wd, i.e., the workframe’s
header data. This shortened form of the tuple looks as follows 〈Wd,Wins〉 where
Wins represents the stack of instructions the workframe is to perform, such as
concludes and activities.

Thoughtframes: Thoughtframes are represented in a similar fashion except α repre-
sents the current thoughtframe, TF represents a set of thoughtframes, while T
represents any arbitrary thoughtframe.

Activities and Concludes: Activities and concludes are broken down into the fol-
lowing types

• Prim Actt is a primitive activity of duration t.

• Comms(agj , b)
t is a communication activity to agent j, sending belief b with

a duration t.

• Move(Loc = new)t is a move activity from the current location Loc to the
new location new t.

• conclude(b) is a conclude asserting the belief b.

• conclude(f ) is a conclude asserting the fact f .

Environment: In this semantics additional details outside of the agent’s and object’s
own perceptions are referred to as belonging to the environment. To represent
this environment we use the identification ξ.
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Time: T represents the time in general, while a specific duration for an activity is
represented by t. The time T is always associated with either an agent, object
or the environment, e.g., Ti refers to current time of agent agi and Tξ refers to
the time of the global clock, or the system clock, in the environment. Time
is represented as a natural number, N, with the exception of the termination
condition which takes the value of -1.

Stage: The semantics are organised into “stages”. Stages refer to the names of the
operational semantic rules that may be applicable at that time, wild cards (∗) are
used to refer to multiple rules with identical prefixes. There is also a “fin” stage
which indicates an agent is ready for the next cycle, and an “idle” stage which
means it currently has no applicable thoughtframes or workframes. To describe
the stage of an agent i we use the notation agstagei

Methods: To keep the semantic rules as simple as possible we shorten some actions
into Java like method calls. The methods used are as follows:

• MinTime(∀agi|Ti ∈ Bξ). This method is used when all the agents have
informed the scheduler of when their next activity is due to finish. This
method examines all the durations of all the agent’s activities and identifies
which is the smallest, ∀agi|Ti ∈ Bξ expresses that the method examines the
durations, in the environment’s belief base, for all the agents.

• Max Pri(). This method is used to find the thoughtframe or workframe of
the highest priority, e.g., Max Pri(∀T ∈ TF i|Bi |= T g) finds the thought-
frame in the set of all thoughtframes such that the thoughtframe’s guard
condition is met in the agent’s belief base.

• selectV ar(). This method matches all the agents/objects/locations that
meet the requirements set out in the workframe or thoughtframe’s guard
condition and assigns each set of agents etc. to a workframe or thoughtframe
instance.

• Random(). This method is used to show a that random selection is being
made, e.g., Random(W0...Wn) randomly selects a workframe out of the set
of workframes W0...Wn.

• concludes(W1...Wn). This method is used in the rule Var all, it takes all the
workframes instances W1...Wn and extracts all the conclude statements from
it. This rule is needed because a collectAll variable takes all the conclude
statements from every instance and processes them at the same time.

6.2 Semantics: Structure

The operational semantics are broken up into two parts; the scheduler semantic rules
and the agents semantic rules. We use a 5-tuple description (shown in Definition 1)
to represent the state of the scheduler, a 9-tuple description (shown in Definition 2) to
represent the state of the agent, and a transition rule (shown in Definition 3) to show
how the states transform. We use first-order logic with set theoretic operations, but
restricted to the sets available within the semantic structures, to express when the rule
is active and to state how the tuple changes when the rule fires.

Definition 1. The system configuration is a 5-tuple description 〈Ags, agi, Bξ, F, Tξ〉
where
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〈StartingTuple〉

ActionsPerformed−−−−−−−−−−−−−−−−−−−→
ConditionsRequiredForActions

〈ResultingTuple〉

Figure 6.3: Simplified Template for the Operational Semantics Transition Rules

Ags - is the first element of the tuple in the set of all agents;
agi - is the second is the current agent under consideration;
Bξ - is the third is the belief base of the system;
F - is the fourth is the set of facts in the environment;
Tξ - is and the fifth is the current time of the system;

Definition 2. The agents and objects within a system have a 9-tuple representation
〈agi, T ,W, stage,B, F, Ti,TF ,WF 〉 where

agi - is the first element is the identification of the agent;
T - the second is the current thoughtframe;
W - the third is the current workframe;
stage - the fourth is the stage the agent is at;
B - the fifth is the set of beliefs the agent has;
F - the sixth is the set of facts;
Ti - the seventh is the time of the agent;
TF - eighth is the set of thoughtframes the agent has;
WF - and the ninth is the agent’s set of workframes.

The fourth element of the tuple, the stage, explains which set of rules the agent is
currently considering or if the agent is in a finish (fin) or idle (idle) stage.

Definition 3. A transition rule is denoted by Figure 6.3 where

〈StartingTuple〉 - represents the system’s or the agent’s
tuple before the rule is applied;

ConditionsRequiredForActions - states the conditions required for the rule
to fire;

ActionsPerformed - represents the actions performed by the
rule;

ResultingTuple - represents the tuple after the rule has
fired;
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6.2.1 Timing

The timing in Brahms works by the use of a global system clock coupled with agents
having their own internal clocks. The system scheduler asks each agent how long each
of their activities are, finds the time of the shortest activity and then tells each agent
to move their clock forward by this time. However it should be noted that during a
simulation agents are not aware of their internal clocks, the clocks are used behind the
scenes to keep all agents synchronised. Traditionally Brahms simulations are modelled
with a ‘Clock’ agent to broadcast a simulation time to all the agents to give them
an awareness of time. Workframes that the agents are currently working on can be
interrupted if a new higher priority thought/workframe becomes active, or if a fact
change in the system causes an impasse via a detectable. The following structure
shows how agents are moved forward in time by the scheduler. It shows every agent
from Ag0 to Agn being moved forward in time, once an agent moves forward in time
it reaches an intermediary point X where it will then make a Choice on its next set of
actions. ξ represents the scheduler, showing that all the agents and the scheduler move
as one from time point to time point.

Ag0
LocalClock+t−−−−−−−−→ X,X

Choice−−−−→ Ag′0
.
.
.

Agn
LocalClock+t−−−−−−−−→ X,X

Choice−−−−→ Ag′n

ξ
LocalClock+t−−−−−−−−→ ξ′

6.3 Semantic Rules

6.3.1 Scheduler Semantics

The scheduler is the central system of Brahms, it decides when and what value the
global clock will take and it starts and terminates the execution of the system. For the
scheduler to start/continue execution all agents must be in a ‘fin’ (finished) or ‘idle’
(idle) state and the global clock must not be less than zero. For Brahms to terminate
all the agents need to be in an idle state where they have no workframes/thoughtframes
which have their guard condition met.

Sch run. Start agents running for the new clock tick. This rule states that if all agents
in the system are either in a finished or idle state and the global clock is not minus one
then all agents are directed to the ‘Set Act ’ semantic rule.

Rule: Sch run

〈Ags, agi, Bξ, F, Tξ〉

ag
i
′=agi[ag

stage
i ∈{fin,idle}/agstage

i ∈{Set Act}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀agi∈Ags|agstagei ∈{fin,idle}∧(Tξ 6=−1)

〈Ags, agi′ , Bξ, F, Tξ〉

Sch rcvd. Receives the activity durations from all agents. This rule identifies when
the Scheduler has received all the durations from all agents. It states that if all agents
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are in a waiting or idle state then the Scheduler will check all the agents end activity
times, calculate the smallest value and set its time to this. For this rule to activate all
the agents need to be considering the rules Pop PA∗, Pop MA∗ or Pop CA∗ where *
represents a wild card for any suffix of the word.

Rule: Sch rcvd

〈Ags, agi, Bξ, F, Tξ〉
Tξ′=Tξ[Tξ/Tξ+MinTime(∀agi|Ti∈Bξ)]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∀agi∈Ags|stage∈{Pop PA∗,Pop MA∗,Pop CA∗)}∨idle,(Tξ 6=−1)

〈Ags, agi, Bξ, F, Tξ′〉

the notation agi′ = agi[ag
stage
i ∈ {fin, idle}/agstagei ∈ {Set Act}] indicates that the

stage value of agi has been replaced by Set Act .

Sch term. This termination condition happens when all agents are in an idle state,
to signal the termination it sets the global clock to minus one.

Rule: Sch Term

〈Ags, agi, Bξ, F, Tξ〉
Tξ′=Tξ[Tξ/Tξ=−1]−−−−−−−−−−−−−−−→
∀agi∈Ags|stage∈{idle}

〈Ags, agi, Bξ, F, Tξ′〉

6.3.2 Agent Semantics

The Brahms system operates on a simple cycle of handling:

Thoughtframes → Detectables →Workframes

6.3.3 Set * rules

Rules with the prefix of ‘Set *’ are used at the start of every cycle. These are used
to determine whether or not the agent/object will be idle (no active workframe or
thoughtframe) for the duration of this cycle. Those that are idle will do nothing until
this rule is next invoked by the system, those that are not idle are directed to checking
thoughtframes.

Set Act. If the agent is currently checking ‘Set *’ rules, has no current thoughtframe
and the agent has a workframe or a thoughtframe with its guard condition met then
this rule directs the agent to the ‘Tf *’ rules. Whether or not the agent has an active
workframe or not is not an issue.

Rule: Set Act
〈agi, α, β,Set ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Set ∗}/agstagei ∈{Tf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α∈{∅}∧(∃T ∈TFi |Bi|=T g∨∃W∈WFi |Bi|=W g)

〈agi, α, β,Tf ∗, Bi, F, Ti,TF i,WF i〉
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Set Idle. If the agent has no current thoughtframes or workframes with their precon-
ditions met then place the agent in an idle state. Additionally the agent can not have
an active thoughtframe but can possibly have an active workframe.

Rule: Set Idle
〈agi, α, β,Set ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Set ∗}/agstagei ∈{idle}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α∈{∅}∧β∈{∅}∧¬∃T ∈TFi |Bi|=T g∧¬∃W∈WFi |Bi|=W g

〈agi, α, β, idle, Bi, F, Ti,TF i,WF i〉

6.3.4 Tf * rules (Thoughtframes)

The agent is now in a state where it is selecting a thoughtframe to run. The agent will
not have any thoughtframes currently active. When selecting the thoughtframe to run
it will choose the thoughtframe with the highest priority, but if there is more than one
then a random selection will be made.

Tf Select. If there is a thoughtframe(s) with preconditions met then perform a selection
based on the thoughtframe’s priority. The agent can not have a current thoughtframe
but can possibly have an active workframe. The thoughtframe is selected using the
Max pri method which choses the thoughtframe based on the priority. The agent is
then passed onto rules to execute the thoughtframe, the chosen rule depends on the
repeat variable of the thoughtframe(true, false or once).

Rule: Tf Select
〈agi, α, β, Tf ∗, Bi, F, Ti,TF i,WF i〉

α′=α[α/Max Pri(∀T ∈TF i|Bi|=T g)]∧agi[agstagei ∈{Set ∗}/agstagei ∈{Tf true,Tf false,Tf once}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

α∈{∅}∧∃T ∈TF i|Bi|=T g

〈agi, α′, β, {Tf true,Tf false,Tf once}, Bi, F, Ti,TF i,WF i〉

Tf true (Repeat = true). If the repeat variable on the thoughtframe is true then
the agent is just directed to ‘Pop Tf*’ rules.

Rule: Tf true
〈agi, α, β,Tf true, Bi, F, Ti,WF i,TF i〉
agi[ag

stage
i ∈{Tf true}/agstagei ∈{Pop Tf∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
αr=true∧β∈{∅}

〈agi, α, β, Pop Tf∗, Bi, F, Ti,TF i,WF i〉

Tf once (Repeat = once). If repeat variable is set to once, change to false then
move to ‘Pop Tf*’ rules.

Rule: Tf once
〈agi, α, β,Tf once, Bi, F, Ti,TF i,WF i〉

α′=α[αr=once/αr=false ]∧TF ′
i=TF i[α/α

′]∧agi[agstagei ∈{Tf once}/agstagei ∈{Pop Tf∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

αr=once∧β∈{∅}

〈agi, α, β,Pop Tf ∗, Bi, F, Ti,TF i,WF i〉
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Tf false(Repeat = false). If repeat variable is set to false, then delete thoughtframe
from the set of thoughtframes.

Rule: Tf false
〈agi, α, β,Tf false, Bi, F, Ti,TF i,WF i〉

TF ′
i=TF i[TFi−α]∧agi[agstagei ∈{Tf false}/agstagei ∈{Pop Tf∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
αr=false∧β∈{∅}

〈agi, α, β,Pop Tf ∗, Bi, F, Ti,TF ′i,WF i〉

Tf exit. If there are no thoughtframes to be executed then the agent is directed
towards checking all the detectables.

Rule: Tf exit
〈agi, α, β, Tf ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Tf ∗}/agstagei ∈{Det ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−→
¬∃T ∈TF i|B|=T g∧α∈{∅}

〈agi, α, β,Det ∗, Bi, F, TiTF i,WF i〉

6.3.5 Wf * rules (Workframes)

The agent is now in a state where it is selecting a workframe to run. When selecting
the workframe to run it will choose the workframe with the highest priority, if there
is more than one workframe with the highest priority then a random selection is made
between these workframes.

Wf select. If there is no current workframe then a simple selection process occurs
taking the workframe with the highest priority. The agent must have no workframes
or thoughtframes assigned to it.

Rule: Wf Select

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉
β′=β[β/Max Pri(∀W∈WF i|Bi|=W g)]∧agi[agstagei ∈{Set ∗}/agstagei ∈{Wf true,Wf false,Wf once}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

α∈{∅}∧β∈{∅}∧∃W∈WF i|Bi|=W g

〈agi, α, β′, {Wf true,Wf false,Wf once}, Bi, F, Ti,TF i,WF i〉

Wf suspend. If an agent is currently working on a workframe, but there exists a
workframe with its guard condition met that has higher priority then the current work-
frame is suspended and the progress the agent has made through this workframe is
recorded. The priority of the suspended workframe is increased by 0.2, priorities are
usually integers but this gives suspended workframes higher priority over those which
normally would have the same priority. Note. βd represents the workframe’s deed stack
and βins refers to the workframe’s instructions, such as the workframe’s repeat values,
etc.

Rule: Wf Suspend

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉
β′=β[βpri/(βpri+0.2)]∧WF ′

i=WF ′
i[WF i∪β′]∧β′′∈{∅}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

α∈{∅}∧β/∈{∅}∧∃W∈WF i|Bi|=W g∧Wpri>(βpri+0.3)
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〈agi, α, β′′,Wf ∗, Bi, F, Ti,TF i,WF i′〉

Wf true (Repeat = true). If there does not exist such a workframe with a greater
priority then execute the currently selected workframe. 0.3 is added to the current
workframes priority when checking whether to suspend, so that the current workframe
is not suspended for another suspended workframe of priority only 0.2 higher. The
agent is then passed onto rules for processing variables, rules with prefix ‘Var *’

Rule: Wf true

〈agi, α, β,Tf true, Bi, F, Ti,WF i,TF i〉
agi[ag

stage
i ∈{Wf true}/agstagei ∈{Pop Wf∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
βr=true∧α∈{∅}∧¬∃W∈WF i|Bi|=W g∧Wpri>βpri+0.3)

〈agi, α, β, Pop Wf∗, Bi, F, Ti,TF i,WF i〉

Wf once (Repeat = once). If the current workframe has the repeat value once then
the repeat value of this workframe is changed to false and the agent is passed onto rules
for processing variables.

Rule: Wf once
〈agi, α, β,Wf once,Bi, F, Ti,TF i,WF i〉

βr=once∧α∈{∅}∧β′=β[βr=once/(βr=false ]∧WF ′
i=WF i[β/β

′]∧agi[agstagei ∈{Wf once}/agstagei ∈{V ar ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

¬∃W∈WF i|Bi|=W g∧Wpri>βpri+0.3

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF ′i〉

Wf false(Repeat = false). If the current workframe has the repeat value false then it
is deleted from the set of workframes and the agent is passed onto processing variables.

Rule: Wf false
〈agi, α, β,Wf (false), Bi, F, Ti,TF i,WF i〉

WF ′
i=WF i[WF i−β]∧agi[agstagei ∈{Wf false}/agstagei ∈{V ar ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
βr=false∧¬∃W∈WF i|Bi|=W g&Wpri>βpri+0.3

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF ′i〉

6.3.6 Det * rules (Detectables)

Detectables are additional guards contained within a workframe which when activated
(though facts not beliefs) will trigger a belief update from the facts and will then decide
how the rest of the workframe will be executed. The possible executions are Continue,
Complete, Impasse and Abort.

Det cont. When a detectable’s guard condition is met and the detectable is of type
Continue then the workframe updates its beliefs from the facts detected and carries on
unchanged.

Rule: Det cont
〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
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B′
i=Bi∪d

g∧agi[agstagei ∈{Det ∗}/agstagei ∈{Wf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∃d∈βD|dg|=F∧dtype=continue∧(¬∃d′inβD|d′g|=F∧(d′type=impasse∨d′type=abort∨d′type=complete))

〈agi, α, β,Wf ∗, B′i, F, Ti,TF i,WF i〉

Here d is used to represent a detectable, βD is the workframe β’s set of detectables.
Notation to express parts of the detectables: dg represents the detectables guard condi-
tion and dtype refers to the detectables type whether it is continue, complete or abort.

Det comp. When a detectable’s guard condition is met and the detectable is of type
complete then the workframe updates its beliefs from the facts detected and deletes all
activities from the workframe leaving only concludes.

Rule: Det comp

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
β′=β[βins/β

Concludes ]∧B′
i=Bi∪d

g∧agi[agstagei ∈{Det ∗}/agstagei ∈{Wf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∃d∈βD|dg|=F∧dtype=complete∧(¬∃d′inβD|d′g|=F∧(d′type=impasse∨d′type=abort ))

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

βConcludes is used to refer to conclude events within the workframe β.

Det impasse. When the detectable is of type impasse the beliefs are updated from
the facts detected but the workframe is suspended. To suspend the workframe a new
workframe is created out of this workframe instance and added to the set of workframes
with repeat set to false. The priority of this new workframe is fractionally larger than
the previous (but smaller than a suspended).

Rule: Det impasse

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
β′=β[βpri/(βpri+0.1)∧βg∪¬dg)]∧B′

i=Bi∪d
g∧WF ′

i=WF i∪β′∧agi[agstagei ∈{Det ∗}/agstagei ∈{Wf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∃d∈βD|dg|=F∧dtype=impasse∧(¬∃d′inβD|d′g|=F∧d′type=abort )

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

Det abort. If the detectable is of type abort then the belief base is updated and the
agent’s assignment to the workframe is removed.

Rule: Det abort

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
β′∈{∅}∧B′

i=Bi∪d
g∧agi[agstagei ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∃d∈βD|dg|=F∧dtype=abort

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

Det empty. If there are no active detectables found then the agent is moved to the
‘workframes’ rule set denoted ‘Wf *’.

Rule: Det empty
〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
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agi[ag
stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−→
¬∃d∈βD|dg|=F

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉

6.3.7 Var * rules (Variables)

Variables are used to represent quantification in Brahms. Variables operate on both
workframes and thoughtframes, however for simplicity only workframes have been mod-
elled to handle variables. Thoughtframes would operate variables in exactly the same
way.

Rule: Var empty
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Var ∗}/agstagei ∈{Pop ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−→
β/∈{∅}∧βV ∈{∅}

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. Where βV represents the variables contained within workframe β.

Var set. Workframes with variables have an additional stack. This additional stack
stores instances of the workframe with the differing instantiations that can be created
with the variables. If the set of options is empty then a selection process called ‘select-
Var()’ is called. ‘selectVar()’ will match all agents/objects which match the name and
conditions, assign each to an instance of the workframe then places the instances onto
the stack. Note. 〈βd, [∅], [βins ]〉 represents a workframe β with a deed stack d, a set of
empty workframe instances and the workframe’s set of instructions βins

Rule: Var set
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉

β′=〈βd,[∅∪selectVar()],βins〉−−−−−−−−−−−−−−−−−−→
β=〈βd,∅,βins〉

〈agi, α, β′,Var ∗, Bi, F, Ti,TF i,WF i〉

Var one. When the variable is of type ‘forone’ and a set of workframe instances has
been generated then the first workframe instance is selected and set as the current
workframe. The subset of variables in the workframe are then deleted. This is how
Brahms performs unification.

Rule: Var one
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉

β′=〈βd,Random(W0 ...Wn),βins〉∧agi[agstagei ∈{Var ∗}/agstagei ∈{Pop ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=forone

〈agi, α, β′,Pop ∗, Bi, F, Ti,TF i,WF i〉

‘Random’ refers to a random selection of one of the instances and ‘vtype’ represents the
variables type (forone, foreach or collectall).

Var each. When the variable is of type ‘foreach’ and the subset of the workframe is
not empty then the instances of the workframes are added to the set of workframes and
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the first instance is set as the current workframe. The instances are given a slightly
increased priority and a repeat value of false so they will never be repeated. This
represents Brahms operating on a multitude of tasks sequentially.

Rule: Var each

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
WF ′

i=WF i∪(W0[W
pri
0 /(βpri+0.1),W r

0 /W
r
0 =false]...Wn[W

pri
n /(βpri+0.1),W r

n/W
r
n=false])−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=foreach

〈agi, α,W0,Pop ∗, Bi, F, Ti,TF i,WF i〉

Var all. The ‘collectall’ variable operates in a similar fashion to the previous variables,
however when it selects the first workframe from the subset it merges all the concludes
from the other work frames into this workframe. This effectively is how Brahms handles
a job which has multiple consequences, e.g., By completing task A, I also complete task
B.

Rule: Var all

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
β′=concludes(W0...Wn)∧agi[agstagei ∈{Var ∗}/agstagei ∈{Pop ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=forall

〈agi, α, β′,Pop ∗, Bi, F, Ti,TF i,WF i〉

concludes(W1...Wn) is a method which takes all the workframe instances W1...Wn and
extracts the concludes statements.

6.3.8 Pop * rules (Popstack)

Thoughtframes and workframes all have their own stack of instructions. These rules
presented demonstrate how the events are “popped” off these instruction stacks. The
events can be activites or concludes, so these rules show how Brahms treats these
different instructions.

Pop Wfconc*. When a conclude action is found it is removed from the top of the
instruction stack. Concludes can update the beliefs, the facts or both. Three different
rules are used for concludes: one for updating beliefs; one for facts; and one for both.
Brahms additionally has probabilities that beliefs will be updated, these probabilities
have not been taken into account in these semantics. Pop Wfconc* is neccessary
only for workframes, there is no rule Pop Tfconc* thoughtframes since there are no
activities to interupt execution.

Rule: Pop WfconcB
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

B′
i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−→

b∈Bi∧β=〈βd,conclude(b′)belief ;βins〉

〈agi, α, β,Pop ∗, B′i, F, Ti,TF i,WF i〉

The “belief” superscript on the conclude is to show the conclude is for updating beliefs
only. The statement conclude(b′) represents a conclude statement a belief update b′
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and B′
i = (Bi/b) ∪ b′ represents removing the old belief where b and replacing it with

the new belief b′.

Rule: Pop WfconcF

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
F=(F/f)∪f ′

−−−−−−−−−−−−−−−−−−−−−→
f∈F∧β=〈βd,conclude(f ′)fact ;βins〉

〈agi, α, β,Pop ∗, Bi, F ′, Ti,TF i,WF i〉

Rule: Pop WfconcBF

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
F ′=(F/b)∪b′∧B′

i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b∈Bi∧b∈F∧β=〈βd,conclude(b′)belief ∧fact ;βins〉

〈agi, α, β,Pop ∗, B′i, F ′, Ti,TF i,WF i〉

Pop concWf*. When agents have finished performing an activity they need to finalise
belief updates before they can flag themselves as finished for the cycle. This rule here
is for doing exactly this, if a conclude is the next event it will carry out the belief/fact
update. Here only ‘Pop concWfB’ is described, this shows how it is done with just belief
updates. Fact and belief/fact updates will be as previously shown.

Rule: Pop concWfB

〈agi, ∅, β,Pop concWf ∗, Bi, F, Ti,TF i,WF i〉

B′
i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−→

b∈Bi∧β=〈βd,conclude(b′)belief ;βins〉

〈agi, α, β,Pop concWf ∗, B′i, F, Ti,TF i,WF i〉

Pop notConc. This rule is for when the agent is finalising beliefs after an activity but
has not found a conclude event, the event could be an activity or simply empty.

Rule: Pop notConc

〈agi, α, β,Pop concWf ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
β=〈βd,(Prim Act∨Move∨Comms);βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop PA*. When a primitive activity is started the agents send the duration of their
current activity to the scheduler. The scheduler receives all the activity times then
determines which activity time is the smallest and updates its own clock based on
this duration. When an agent’s time is different to the system clock’s it then changes
accordingly and subtracts the time increment from the duration of its activity.

Pop PASend. This is the rule the agent’s use to send the duration of their next event
to the scheduler.
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Rule: Pop PASend
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−→
Tξ=Ti∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Pop PA(t>0). This rule is invoked when the agent’s time is no longer the same as the
schedulers time. Additionally this rule checks whether the current activity’s duration
will be greater than zero after updating the times and durations.

Rule: Pop PA(t>0)
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

t′=(Tξ−Ti)∧Ti=Tξ∧Prim Actt=Prim Actt[t/t′]∧agi[agstagei ∈{Pop concWf ∗}/agstagei ∈{fin}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop PA(t=0). This rule is for when the agent’s activity is due to finish at the end of
the next clock tick. This rule directs the agent to only executing conclude statements
before finishing for the cycle.

Rule: Pop PA(t=0)
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Ti=Tξ∧β=〈βd,βins−Prim Actt〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,Pop concWF∗, Bi, F, Ti,TF i,WF i〉

Pop move*. Move activities are very similar to primitive activities, except when
the activity terminates a belief update is performed to change the agents and the
environments beliefs of the agent’s current location. This belief update occurs when
the agent notices that the duration of the move has reached zero after the clock update.
Pop moveSend. This is the rule the agent’s use to send the duration of their next
event to the scheduler.

Rule: Pop moveSend

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−−−−−→

Tξ=Ti∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. ‘Loc = new’ refers to the allocation of the location to the new location.

Pop move(t>0). Like for primitive activities, the move activity needs a rule for when
the activity still has time remaining after the clock tick.

Rule: Pop move(t>0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
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t′=(Tξ−Ti)∧Ti=Tξ∧move(Loc=new)t=move(Loc=new)t[t/t′]∧agi[agstagei ∈{Pop concWf ∗}/agstagei ∈{fin}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop move(t=0). Likewise, the move activity needs a rule for when the activity
duration ends.

Rule: Pop move(t=0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Ti=Tξ∧β=〈βd,βins−move(Loc=new)t〉∧B′

i=Bi[Loc=old/Loc=new ]∧F ′=F [Loc=old/Loc=new ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,Pop concWF∗, B′i, F ′, Ti,TF i,WF i〉

Note. ‘old’ refers to the previous location of the agent.

Pop comm*. Communication is very similar to a move activity, except the agent
doesn’t update its own beliefs or the environments beliefs but it updates another agents
beliefs.
Pop commSend. Sends the scheduler the time of next event when processing a com-
munication.

Rule: Pop commSend

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−−−−→

Tξ=Ti∧β=〈βd,Comms(agj ,b′)t;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. Comms(agj , b
′) represents a communication to agent j, sending the belief b′.

Pop comm(t>0). For when the communication has time remaining after the system
clock tick.

Rule: Pop comm(t>0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
t′=(Tξ−Ti)∧Ti=Tξ∧Comms(agj ,b

′)t=Comms(agj ,b
′)t[t/t′]∧agi[agstagei ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,Comms(agj ,b′)t;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop comm(t=0). Rule for when the communication activity duration ends.

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Ti=Tξ∧β=〈βd,βins−Comms(agj ,b

′)t〉∧B′
j=Bj [b/b

′]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,Comms(agj ,b′)t;βins〉∧b∈Bj

〈agi, α, β,Pop concWF∗, Bi, F, Ti,TF i,WF i〉
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Note. Belief exchange via communication is handed directly in Brahms, i.e. when an
agent communicates with another, it directly changes the other agent’s beliefs.

Pop emptyTf. Concludes do not use up any simulation time during execution, since
thoughtframes only contain concludes then an agent will keep executing thoughtframes
until it no longer has any to execute. This rule is for selecting a new thoughtframe
when the current one becomes empty.

Rule: Pop emptyTf
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
α∈{∅}∧agi[agstagei ∈{Pop ∗}/agstagei ∈{Tf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

α=〈αd,∅〉

〈agi, α, β,Tf ∗, Bi, F, Ti,TF i,WF i〉

Pop emptyWf. A workframe which only contains concludes will act like a thought-
frame. This rule is for such workframes so the agent can keep select another workframes
when the current one becomes empty.

Rule: Pop emptyWf

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
β∈{∅}∧agi[agstagei ∈{Pop ∗}/agstagei ∈{Wf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

β=〈β,∅〉

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉

6.4 Justification of the Semantics

Justifying a formal semantics is never an easy task, especially when there is nothing
formal to compare it against. The only formal basis of the Brahms framework is
the implementation code, which for confidentiality reasons we had no access to. The
formal semantics was produced by testing Brahms functions and analysing the output
to identify how they affect simulations. The problem with this method is that some
Brahms functions are not apparent when using or examining the system. For this
reason we collaborated with Maarten Sierhuis, who designed Brahms, to develop the
semantics. Any correctness issues were discussed with Maarten Sierhuis, to maintain as
close a likeness to the design of Brahms as possible. When we had the final draft of the
semantics we decided to involve NASA engineers, who use Brahms regularly, to confirm
their correctness. The NASA engineers confirmed the correctness of the semantics and
created their own implementation of the semantics for their own verification purposes,
see the work by Neha Rungta in Chapter 12 which we collaborated with. Overall the
semantics have been seen and closely examined by those who know the tool the best and
know what it was designed to do. They have studied the rules and also implemented
them for their own verification purposes, thus confirming that they accurately represent
Brahms and its intended purpose.
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Chapter 7

Translation to PROMELA

In this chapter we describe how we implement operational semantic rules for Brahms in
PROMELA. The aim of this section is to informally justify that the PROMELA code
generated by our tool accurately represents the Brahms simulations it was generated
from. To help the reader understand how the PROMELA matches the semantic rules
we again represent the semantic rules, as they are in Chapter 6, for a comparison.

7.1 Parsing into Java Data Structures

Before implementing the operational semantics of Brahms in PROMELA an interme-
diate representation of the Brahms data structures was implemented in Java. This
intermediate representation stores all the information for the initialisation of a Brahms
scenario, such as the workframes, attributes, beliefs, etc. This intermediate represen-
tation follows the structure of the tuples found in the Brahms semantics such as the
set of workframes, set of thoughtframes, set of agents, etc. This was created using
a language recognition tool called ANTLR (Another Tool for Language Recognition)
[64]. With this tool a parser was created to read Brahms code and export the data
from the simulation into the Java data structures. Figure 7.1 describes our process for
verifying Brahms scenarios and highlights the potential for flexible translation to many
different verification systems.

The system’s semantic structure takes the form 〈Ags, agi, Bξ, F, Tξ〉. The system’s
tuples are mainly represented in a Java class called MultiAgentSystem.java. In this
class there are Java Set data structures used to store all the agents (Ags in the se-
mantic’s tuple) and objects (named ‘agents’ and ‘objects’). These sets store instances
of Java classes called agent.java for agents and object.java for objects. There are
also Java Sets for the groups and classes of agents and objects (for hierarchical storage
of agents and objects) which provide a reference to which group or class the agents or
objects belong. The belief base of the system Bξ is not represented using the Java data
structures as this mainly refers to the agent’s simulation time and the duration of their
current activities which is represented in the PROMELA translation. F refers to the
facts of the system which are initially stored in Java Sets inside the classes agent.java
and object.java, since in Brahms facts are asserted into the system by agents during
initialisation and throughout the simulation. Once all agents and objects have been
initialised the facts from all the agents and objects are collated into a single Java Set
inside MulitAgentSystem.java called ‘facts’. The system’s simulation time is repre-
sented in the system’s tuple by Tξ, simulation time is always zero at initialisation so
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Figure 7.1: The translation and verification process

does not need to be represented in the Java data structures.
The tuple for the agents is 〈agi, T ,W, stage,B, F, Ti,TF ,WF 〉. The current agent

under consideration agi does not need to be represented in the Java data structures
because the PROMELA translation has instantiations of the semantics for each agent.
The current workframe and thoughtframe T and W are only important during a sim-
ulation run, i.e., on initialisation they are always empty. The same applies for stage
which refers to the semantic rule currently under consideration by the agent; stage is
represented in PROMELA by the current position in the programming code. B and F
refer to the beliefs and facts of the agent, and are stored in Java Sets inside the Java
classes agent.java and object.java. As described above the simulation time of the
agent, T , is always zero on initialisation so again is only represented in the PROMELA
translation.

7.2 PROMELA Translation

Although PROMELA is an appropriate input language for model checking its restrictive
data types and control structures made it difficult to write generic code that will apply
to any model. As such we choose to generate an individual instantiation of the semantic
rules for every agent. Due to the restrictions on control structures it was difficult to
directly implement the rules, i.e., having a method for each rule and if-statements
deciding which method to call. For this reason the semantics were implemented using
nested do-while loops, where loops would represent semantic rules. However, due to
the nature of this method it means some loops span across more than one rule and
some rules span across more than one loop. We refer to this as a partial instantiation
of the operational rules, which have been tailored for a particular model of interest.
This partial instantiation is generated automatically from the Java representation.

The analysis of this implementation consists of an informal comparison of the
PROMELA data structures against the complex data structures of the semantics and
an informal analysis of the operational rules against the partial instantiations. The
“Home Care” system, shown in Part III and Section 8, has been used as a specific ex-
ample to help illustrate the implementation. It should be noted that we do not provide
a fully formal proof that the operational semantics accurately capture the Brahms simu-
lator. So both systems can be viewed separately as mechanisms for exploring models of
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human-agent teamwork even though they have not yet been proved equivalent. While
we believe the translation faithfully captures the formal semantics, a formal proof of
all these aspects would take considerable time and is beyond the scope of this thesis.

This section will informally discuss how each semantic rule from Section 6 is repre-
sented in PROMELA, how it differs yet represents the same actions being performed.
The semantic rules will be presented again in this section to remind the reader of the
rule being referred to.

7.2.1 Representing the Scheduler in PROMELA

In Brahms the scheduler is used as a global arbiter, informing the agents when to
execute and for how many time steps to execute for. When implementing the scheduler
we generate partial instantiations of the scheduler rules which act, not on a list of
unknown agents, Ags, but upon the specific agents we know to exist in a given specific
model. These are different from those found in the operational semantics, because all
the data structures have been replaced with instantiations of the agents and objects,
etc. The only variables used by the scheduler are:

• integer ‘cntEnvironment’, to represent the current time

• enumeration ‘turn’, which can be either an object/agent’s name or the Environ-
ment

• Boolean, ‘EnvironmentActive’, decides when the system is to terminate.

All these variables are globally visible so that communication or message passing via
channels is not necessary. The PROMELA translation simulates the Brahms system
scheduler by representing it as a proctype named ‘proc Environment’. The global clock
is represented by an integer. Agents are also represented using proctypes and the
scheduler determines the order of execution through the variable ‘turn’ by assigning
‘turn’ to the name of an agent who then has exclusive execution rights. Once an agent
has executed, ‘turn’ is re-assigned to the scheduler and the agent sets the value of its
‘timeRemaining’ (e.g.,‘Robot timeRemaining’) variable to the remaining seconds of its
current activity. Once all agents have executed, the scheduler sets the global clock to
the current time + the smallest duration of the agents’ activities. On the next cycle
the agents deduct the time difference between their personal clocks and the global
clock from their current activity, and then synchronise their clock to the global clock.
The PROMELA translation differs from the semantics in that the agents are executed
in a prescribed order; however this order is secondary to the overall synchronisation
provided by the scheduler.

Matching the Scheduler’s Rules. The PROMELA code captures all the scheduler
rules in a loop containing a conditional expression with one condition representing the
guard for each rule. If the relevant condition evaluates to true then code representing
the rule is executed. We now describe the changes in the PROMELA data structures
to represent how the PROMELA translation alters its data structures with respect to
the operational semantics. See [79] or Section 6 for notation and the full operational
semantics.

The scheduler has three rules; Sch run, Sch Term and Sch rcvd, determining the in-
structions sent to the agents.
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Rule: Sch run

〈Ags, agi, Bξ, F, Tξ〉

ag
i
′=agi[ag

stage
i ∈{fin,idle}/agstage

i ∈{Set Act}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀agi∈Ags|agstagei ∈{fin,idle}∧(Tξ 6=−1)

〈Ags, agi′ , Bξ, F, Tξ〉

Rule: Sch Term

〈Ags, agi, Bξ, F, Tξ〉
Tξ′=Tξ[Tξ/Tξ=−1]−−−−−−−−−−−−−−−→
∀agi∈Ags|stage∈{idle}

〈Ags, agi, Bξ, F, Tξ′〉

Rule: Sch rcvd

〈Ags, agi, Bξ, F, Tξ〉
Tξ′=Tξ[Tξ/Tξ+MinTime(∀agi|Ti∈Bξ)]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∀agi∈Ags|stage∈{Pop PA∗,Pop MA∗,Pop CA∗)}∨idle,(Tξ 6=−1)

〈Ags, agi, Bξ, F, Tξ′〉

Sch run becomes active if all the agents are either finished (in the fin stage) or idle (the
idle stage) and the simulation has not yet finished (Tξ 6= −1). In PROMELA:

• a set of Boolean variables represent when agents are idle (e.g., ‘RobotActive’) is
set to false if the Robot is idle);

• a set of integers representing the time remaining for each agent’s current
activity are used to judge whether an agent is in the fin stage (e.g., if
‘Robot timeRemaining’ is zero then the Robot is in the fin stage); and

• PROMELA will terminate if the simulation has concluded so it is not necessary
to check explicitly for Tξ = −1.

The condition for Sch run represents the conditions from the rule, i.e., that all the
agents must be in a finished or idle state and the time must not be −1:

∀ag ∈ Ags|stageag ∈ {fin, idle} ∧ (Tξ 6= −1) .

An agent is idle when it has no workframes or thoughtframes to execute, this is rep-
resented in PROMELA using a Boolean with agent’s name and a suffix ‘Active’. The
Boolean with the suffix ‘Active’ is used to decide whether the scheduler selects the
rule Sch run or Sch Term. On initialisation this Boolean is set true for all agents.
The agents then check all their workframes guard conditions and if no workframes
are active the agent will change the Boolean to false. If all agents have their ‘Active’
Boolean set to false then the rule Sch Term is executed which terminates all processes.
The rule Sch run is used to tell agents to start processing their current workframes
or check for active workframes, etc. The operational semantics suggest that this is a
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parallel process, i.e., all the agents execute their activities together. If this was imple-
mented in PROMELA as a parallel process it would cause unnecessary branching in
model, branching to represent every possible interleaving of agent executions. Instead
we model this in PROMELA as a sequential process by sleeping and waking agents.
PROMELA does not have the option to wake or sleep processes so an enumeration
called ‘turn’ is used, when an agent is slept turn is changed to ‘Environment’ to hand
control to the scheduler and when the scheduler wakes an agent it does so by assigning
‘turn’ to the name of the agent. Guard conditions in if-statements using the enumera-
tion ‘turn’ are used to imitate the agents sleeping, in PROMELA an if-statement with
no conditions satisfied will halt the process halts until one evaluates true. The rule
Sch rcvd is used to move the simulation clock forward. When all agents have identified
the duration their activities they notify the scheduler who takes the smallest of these
values and moves the clock forward by this value. In PROMELA each agent has a
‘timeRemaining’ variable which it assigns as duration of its current activity. When
checking the ‘Activity’ Boolean for the agents this ‘timeRemaining’ variable is also
checked, if there is an agent whose ‘timeRemaining’ variable is greater than zero then
Sch rcvd is selected. Sch rcvd takes precedence over Sch run and Sch Term.

The following code demonstrates how these three rules are constructed within a
do-while loop:

active proctype proc_Environment(){

do

::(/*Agents are active and all ‘timeRemaining’

variables equal 0, rule Sch_run*/)->

if

::(turn == environment) -> turn = Robot;

fi;

if

::(turn == environment) -> turn = Clock;

fi

...

::(/*An Agent has ‘timeRemaining’ variable

greater than zero, rule Sch_rcvd*/)->

if

::(/*Lowest duration = Robot*/)

cntEnvironment = cntEnvironment+Robot_timeRemaining;

::(/*Lowest = Clock*/)

...

fi

::(/*No active agents, rule Sch_Term*/)

environmentActive = false;

od}

7.2.2 From Agent Semantics to PROMELA Processes

Representing the Agent’s Data Structures in PROMELA. The PROMELA
translation has a separate proctype for each agent labelled ‘proc ’ followed by the
agent’s name (e.g.,‘proc Robot’). The name of the agent is a member of the scheduler’s
enumeration data structure ‘turn’. So the agent only executes when this variable holds
the agent’s name. The components of the 9-tuple that represent an agent are primarily

70



Index Description

0 Thoughtframe ID number

1 Boolean guard condition, e.g.,1 = thoughtframe is active

2 Priority of the thoughtframe

3 Repeat, e.g.,0 = delete, 3 = always

4 Last deed on stack

. .

. .

i Top deed on stack

Table 7.1: Current Thoughtframe: tf stackRobot .

Index Description

0 Workframe ID number

1 Boolean guard condition, e.g.,1 = workframe is active

2 Priority of the workframe

3 Repeat, e.g.,0 = delete, 3 = always

4 Boolean to flag a communication or move activity

5 Boolean to flag the workframe is in impasse

6 Last deed on stack
. .
. .

i Top deed on stack

Table 7.2: Current Workframe: wf stackRobot .

represented by arrays. These arrays are referred to by name in the partial instanti-
ations of the operational rules. For instance, T , the agent’s current thoughtframe is
represented as a one-dimensional array and treated as a stack. The array is labelled
‘tf stack’ followed by the agent’s name, e.g.,‘tf stackRobot’ with the corresponding
pointer ‘tf RobotTop’ to identify the top element. The first four indices of the array
(elements 0-3) are used to store the header data of the thoughtframe (like the array
depicted for workframes below without rows labelled 4 and 5). For an example see
Table 7.1.

The current workframe is represented in a similar fashion. The first six indices
(three in the case of the current thoughtframe) of the array (elements 0-5) are used to
store the workframe header data. Below the header information are a stack of deeds
which may represent belief updates or activities, e.g., see Table 7.2.

We do not represent the current stage of the agent’s reasoning cycle explicitly, but
do so implicitly by the order in which rules are represented in the PROMELA code.
Beliefs and facts in Brahms are tied to the attributes and relations of an agent, e.g.,
agent Robot believes Bob’s attribute AskedForFood = true. To model this in PROMELA
every agent is assigned a belief about every attribute, even if it does not own that
attribute. This belief is represented as a Boolean array either as an integer array or
a enumeration array, depending on the attribute. The name of the belief is the name
of the agent followed by the name of the attribute, e.g., RobotAskedForFood represents
the Robot’s beliefs about the attribute AskedForFood. The Clock object will also have
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0 = Robot’s ID Robot believes the Robot askedForFood = false
1 = Clock’s ID Robot believes the Clock askedForFood = false
2 = Bob’s ID Robot believes that Bob AskedForFood = true
3 = House’s ID Robot believes the House AskedForFood = false

Table 7.3: Beliefs concerning RobotAskedForFood .

0 1 2 3
0 = Robot’s ID 1 = Clock’s ID 2 = Bob’s ID 3 = House’s ID

0 = Robot’s ID 0 0 1 0

1 = Clock’s ID 0 0 0 0

2 = Bob’s ID 0 0 0 0

3 = House’s ID 0 0 0 0

Table 7.4: Relation RobotIsFriendOf .

ClockAskedForFood even though it does not have this attribute. The index of the array
is the ID number of the agent whom the belief concerns, e.g., see Table 7.3.

Beliefs about relationships take a slightly different form. Relationships involve two
agents, e.g., agent Robot ‘is a friend of ’ agent Bob. Beliefs about relationships are
represented by a two-dimensional array where both x-y indices represent agents and
the value 1 represents the relationship exists and 0 when it does not. The value is a
Boolean on whether the relationship exists. The Table 7.4 represents a relationship
belief that the Robot believes the Robot ‘is a friend of ’ Bob.

F in the operational semantics tuple describes the set of facts. Facts are identical
to beliefs except they represent what the value of the attribute actually is, not what is
believed about the attribute. Facts are represented using the same array structures as
beliefs except the array’s name starts with ‘fact’ followed by the attribute name e.g.,
see Table 7.5.

Thoughtframe and workframe sets are represented as two-dimensional arrays where
the first index represents the thoughtframe or workframe and the second represents the
elements of the thoughtframe or workframe. These are named ‘tf’ or ‘wf’ followed by
the name of the agent. A pointer to the top of the thoughtframe’s stack is represented
using a one dimensional array called ‘tfTop’ followed by the name of the agent. This
array stores the pointer for each thoughtframe in the set. The Table 7.6 shows a
thoughtframe at a certain index has a depth given by the value in the array, e.g., the
thoughtframe at index 0 has depth = i.

The representation of thoughtframes is depicted in the Table 7.7; this is similar
to workframes shown in Table 7.8 but without the rows labelled 4 (Comm/Move) and 5
(impasse).

0 = Robot’s ID Robot’s AskedForFood = false

1 = Clock’s ID Clock’s AskedForFood = false

2 = Bob’s ID Bob’s AskedForFood = true

Table 7.5: Fact: factAskedForFood .
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0 1 2

Thoughtframe
at index 0 has
depth = i

Thoughtframe
at index 1 has
depth k

Thoughtframe
at index 2 has
depth j

Table 7.6: Thoughtframe (tfTopRobot) Depths

0 1 2

0 ID = 0 ID = 1 ID = 2

1 Guard = 0 Guard = 1 Guard = 0

2 Priority = 2 Priority = 1000 Priority = 0

3 Repeat = 3 Repeat = 1 Repeat = 3

4 Last Deed Last Deed Last Deed

. . . .

. . . .

. . . .

i Top Deed . .
j . Top Deed
k Top Deed

Table 7.7: Thoughtframes: tfRobot .

0 1 2

0 ID = 0 ID = 1 ID = 2

1 Guard = 1 Guard = 1 Guard = 1

2 Priority = 1 Priority = 10 Priority = 4

3 Repeat = 3 Repeat = 3 Repeat = 3

4 Comm/Move = 0 Comm/Move = 0 Comm/Move = 0

5 impasse = 0 impasse = 1 impasse = 0

6 Last Deed Last Deed Last Deed

. . . .

. . . .

i . . Top Deed
j . Top Deed
k Top Deed

Table 7.8: Workframes: wfRobot .
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Additionally. Agents also have other data structures to identify their current state:
an integer to represent their current time; an integer to represent how long they have
remaining on their current activity; and a Boolean to state whether or not they are
active.

Matching the Agent’s Semantic Rules in PROMELA. When the scheduler’s
‘turn’ enumeration is an agent name then control passes to the agent rules. Like the
scheduler rules these are represented by a loop that checks the rule pre-conditions in
turn. To explain how the PROMELA translation matches Brahms we show how one
of the operational semantic rules is represented in PROMELA. A comparison will be
made describing how the operational semantic rules are programmed in PROMELA.

Rule: Set Act
〈agi, α, β,Set ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Set ∗}/agstagei ∈{Tf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α∈{∅}∧(∃T ∈TFi |Bi|=T g∨∃W∈WFi |Bi|=W g)

〈agi, α, β,Tf ∗, Bi, F, Ti,TF i,WF i〉

Rule: Set Idle
〈agi, α, β,Set ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Set ∗}/agstagei ∈{idle}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α∈{∅}∧β∈{∅}∧¬∃T ∈TFi |Bi|=T g∧¬∃W∈WFi |Bi|=W g

〈agi, α, β, idle, Bi, F, Ti,TF i,WF i〉

Set Act is a simple rule which determines whether or not the agent is active. The rule
states the agents’ examine whether or not they have an active workframe or thought-
frame to process, if they do then this rule is activates and puts the agent into a state
where it can operate its thoughtframes. If there are no frames active then Set Idle is ac-
tivated which effectively puts the agent to sleep for this cycle. In PROMELA the agents
first of all check which thoughtframes and workframes are active. The guard conditions
for each workframe (and thoughtframe) are coded as an if-statement in PROMELA. If
the guard is satisfied then the ID number of the frame is passed to a macro to set the
frame as active e.g.,

/* Workframe wf_getFood with ID = 10, has no variables

and agent name is Robot*/

if

::(Robot_askedFood[AlexID] ==true)->

printf("Workframe wf_getFood is active\n");

RobotwfActive(10)

::else->

RobotwfNotActive(10)

fi;

RobotwfNotActive(10) and RobotwfActive(10) in the above code represent the macros
to declare the workframe with identification number 10 active or inactive. These macros
loop through all frames in the set of workframes (or thoughtframes) array, any frame
which matches the ID number passed to it has its active flag set to true (or false) in
the header data, also the macro keeps a check on which has the highest priority. Once
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all workframe and thoughtframe guard conditions have been evaluated a further quick
check is performed to see if any are active. If no frames are active then the agent’s
‘timeRemaining’ variable is set to -1 to indicate the agent is idle, if there are active
frames then the agent starts operating its thoughtframes.

Rule: Tf Select
〈agi, α, β, Tf ∗, Bi, F, Ti,TF i,WF i〉

α′=α[α/Max Pri(∀T ∈TF i|Bi|=T g)]∧agi[agstagei ∈{Set ∗}/agstagei ∈{Tf true,Tf false,Tf once}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

α∈{∅}∧∃T ∈TF i|Bi|=T g

〈agi, α′, β, {Tf true,Tf false,Tf once}, Bi, F, Ti,TF i,WF i〉

Tf Select determines which thoughtframe is to be selected for execution. For the
rule to be activated there needs to exist at least one thoughtframe in the set of
thoughtframes whose guard conditions evaluates to true with respect to the belief base
(∃T ∈ TF i |Bi |= T g). Rule Set Act has already determined which (if any) are active.
Tf Select states that the “current thoughtframe” entry in the tuple must be empty,
which is represented in PROMELA by a pointer to the current workframe’s top ele-
ment. If the value of this pointer is negative then there is no current thoughtframe.
If the current thoughtframe is empty and a thoughtframe is active then the Tf Select
procedure will be invoked.

The following code shows how PROMELA decides if Wf Select is active, note that
the guards on the do-while statements have been replaced with comments to simplify
the code:

bool active = false;

do

::(/*workframe is active in array*/) ->

active = true; break;

::(/*workframe is not active*/) -> skip;

::(/*End of array*/) -> break;

od;

if

::(active==true && /*current workframe pointer*/ == -1)->

/*Select a workframe*/

::else -> /*Set idle*/

fi;

Tf Select performs a selection process to find the active thoughtframe with the highest
priority (β = Max pri(T ∈ TF i|B |= T g)). The PROMELA translation loops through
the array of thoughtframes, checks the guard condition and the priority of each thought-
frame (index 1 and 2 in the thoughtframe array shown earlier). It builds a temporary
array of thoughtframes that share the maximum priority among all the active work-
frames. Finally the PROMELA code arbitrarily selects one thoughtframe from this
temporary array. Example code to explain this is as follows:

/*Loop through set of thoughtframes*/

do

::(/*thoughtframe is active, priority = highest*/)->

/*Add to temporary array*/

::else-> skip;
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od;

/*Loop through temporary array*/

do

::(/*Not the last, Reject*/) -> skip;

::(/*Not the last, Accept*/) ->

/*Upload workframes data into current workframe*/

::else-> /*Upload thoughtframes data into current thoughtframe*/

od;

The rules (Tf true, Tf once, Tf false) are used to determine whether or not the thought-
frames may be repeated after execution; either once, always or never.
Tf true (Repeat = true). If the repeat variable on the thoughtframe is true then
the agent is just directed to ‘Pop Tf*’ rules.

Rule: Tf true
〈agi, α, β,Tf true, Bi, F, Ti,WF i,TF i〉
agi[ag

stage
i ∈{Tf true}/agstagei ∈{Pop Tf∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
αr=true∧β∈{∅}

〈agi, α, β, Pop Tf∗, Bi, F, Ti,TF i,WF i〉

Tf once (Repeat = once). If repeat variable is set to once, change to false then
move to ‘Pop Tf*’ rules.

Rule: Tf once
〈agi, α, β,Tf once, Bi, F, Ti,TF i,WF i〉

α′=α[αr=once/αr=false ]∧TF ′
i=TF i[α/α

′]∧agi[agstagei ∈{Tf once}/agstagei ∈{Pop Tf∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

αr=once∧β∈{∅}

〈agi, α, β,Pop Tf ∗, Bi, F, Ti,TF i,WF i〉

where we use the notation α′ = α[αr=once/(αr=false ] to indicate that the repeat value
of α has been replaced by αr=false.

Tf false(Repeat = false). If repeat variable is set to false, then delete thoughtframe
from the set of thoughtframes.

Rule: Tf false
〈agi, α, β,Tf false, Bi, F, Ti,TF i,WF i〉

TF ′
i=TF i[TFi−α]∧agi[agstagei ∈{Tf false}/agstagei ∈{Pop Tf∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
αr=false∧β∈{∅}

〈agi, α, β,Pop Tf ∗, Bi, F, Ti,TF ′i,WF i〉

In PROMELA these semantic rules are performed by checking an if-statement which
has a condition suitable for each of the rules above. Each condition checks the repeat
variable in the header data of the thoughtframe. The repeat variable can be: 0 - delete,
1 - never repeat, 2 - repeat once and 3 - always repeat. These integers are used so a
change in repeat status can be handled by a simple subtraction of the repeat variable
e.g., if a workframe is marked as repeat once it is assigned a value of 2, after executing
this workframe this value is reduced to 1 (never repeat) and finally to 0 which marks
the workframe for deletion. Before every cycle the scheduler checks all the agents’
workframes and thoughtframes for any with a repeat variable of 0 (delete) and deletes
the frame from the array.
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/*tfRobot[i].elements[3] represents the repeat variable

in the header data of the thoughtframe at index i*/

if

::(tfRobot[i].elements[3] < 3)->

tfRobot[i].elements[3] = tfRobot[i].elements[3] - 1;

printf("Thoughtframes repeat variable is reduced\n");

::else ->

skip;

printf("Thoughtframes repeat variable is to always repeat\n");

fi;

Tf exit is the rule which decides if there are no thoughtframes to execute and directs
the agent onto examining the detectables of its current workframe.

Rule: Tf exit
〈agi, α, β, Tf ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Tf ∗}/agstagei ∈{Det ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−→
¬∃T ∈TF i|B|=T g∧α∈{∅}

〈agi, α, β,Det ∗, Bi, F, TiTF i,WF i〉

In the PROMELA translation the guard conditions on the thoughtframes are
checked after every execution of a thoughtframe, if a thoughtframe is found then
Tf Select is chosen but if not then Tf exit is chosen. These two rules are represented
using a single if-statement where one condition is Tf Select and the other is Tf exit.
The two rules are decided by a loop which executes before this if-statement, this loop
iterates through all the thoughtframes until it finds one which is active and then breaks.
If the counter on this loop reaches the max number of thoughtframes then no active
thoughtframes were found and selects the Tf exit condition which contains a goto work-
frames command. The workframes section of code firstly examines detectables on the
workframes, so correctly moves onto checking detectables.

/*tfRobotIndex represents index of the last thoughtframe in the

array and i is the counter from the loop*/

if

::(i <= tfRobotIndex)->

printf("Selecting a thoughtframe\n");

...

:: else ->

printf("Moving onto Workframes\n");

goto workframes;

fi;

The workframes set of rules operate in the same fashion as the thoughtframes; rules
such as Wf Select, Wf true, Wf false, Wf once. The only difference with thoughtframes
and workframes is that workframes don’t need a Wf exit rule and that workframes can
suspend using Wf Suspend.

Rule: Wf Suspend

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉
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β′=β[βpri/(βpri+0.2)]∧WF ′
i=WF ′

i[WF i∪β′]∧β′′∈{∅}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α∈{∅}∧β/∈{∅}∧∃W∈WF i|Bi|=W g∧Wpri>(βpri+0.3)

〈agi, α, β′′,Wf ∗, Bi, F, Ti,TF i,WF i′〉

Wf Suspend is selected when the agent has a current workframe but another workframe
of higher priority has become active. This rule creates a copy of the current work-
frame (in its current altered condition) and adds this workframe copy onto the set of
workframes. The priority of this workframe copy is +0.2 of the original and the re-
peat variable is set to never repeat. Wf Suspend is represented in PROMELA with an
if-statement before Wf Select, this if-statement checks to see if the agent has a current
workframe; by checking if the pointer pointing to the current element in the workframe
array is empty (i.e., equal to -1). Nested inside this if-statement is a loop which loops
through all active workframes checking to see if one has a priority higher than the
current workframe’s + 0.3. If this is the case then the pointer to the last workframe
in the set of workframes is increased and the elements of the current workframe are
uploaded at this position and the pointer pointing to the current position in the current
workframe is reset to -1 to indicate the current workframe is now empty. The following
code shows how PROMELA implementation checks whether to suspend a workframe:

if /*Check if top element of current workframe stack is empty.

This is checked by making sure the pointer to the top element

in the stack is not empty*/

::(wf_RobotTop != -1) ->

if /*Check if priority of highest active workframe is greater

than the current +3*/

::(pri > (wf_stackRobot[2]+3)) ->

/*increase number of workframes in set*/

wfRobotIndex = wfRobotIndex +1;

i = 0;

/*Cycle through all elements in the current workframe to

add them to the new temporary workframe in the set of

all workframes*/

do

::(i <= wf_RobotTop) ->

if

::(i == 2) ->

/*Check the priority of the workframe and perform a

check to test whether workframe is already suspended,

i.e., if the priority is a multiple of 10 then it

has not already been suspended*/*/

j = wf_stackRobot[i];

do

::(j > 0) ->

j = j - 10;

::(j == 0) ->

wfRobot[wfRobotIndex].elements[i] =

wf_stackRobot[i] + 2;

break;
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::else ->

/*Workframe has already been suspended*/

break;

od;

j = 0;

i = i+1;

::(i == 3) ->

/*This is the repeat variable, because it is

suspended the repeat variable must be set to once, i.e.,

equal to 1*/

wfRobot[wfRobotIndex].elements[i] = 1;

i = i+1;

::else ->

/*Save element from the current workframe

in the set of all workframes*/

wfRobot[wfRobotIndex].elements[i] = wf_stackRobot[i];

i = i+1;

fi;

::else ->

break;

od;

/*Mark the top element in the stack and reset*/

wfTopRobot[wfRobotIndex] = wf_RobotTop;

wf_RobotTop = -1;

::else ->

/*No need to suspend the current workframe*/

skip;

fi;

i = 0;

::else ->

/*There is no current workframe to suspend*/

skip;

fi;

7.2.3 Det * rules (Detectables)

Detectables are additional guards contained within a workframe which when activated
(through facts not beliefs) will trigger a belief update from the facts and will then
decide how the rest of the workframe will be executed. The possible executions are
Continue, Complete, Impasse and Abort.

Det cont. When a detectables guard condition is met and the detectable is of type
Continue then the workframe updates its beliefs from the facts detected and carries on
unchanged.

Rule: Det cont
〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉

B′
i=Bi∪d

g∧agi[agstagei ∈{Det ∗}/agstagei ∈{Wf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∃d∈βD|dg|=F∧dtype=continue∧(¬∃d′inβD|d′g|=F∧(d′type=impasse∨d′type=abort∨d′type=complete))

〈agi, α, β,Wf ∗, B′i, F, Ti,TF i,WF i〉
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Here d is used to represent a detectable, βD is the workframe β’s set of detectables. We
also use notation here to express parts of the detectables: dg represents the detectables
guard condition and dtype refers to the detectables type whether it is continue, complete
or abort.

Det comp. When a detectable’s guard condition is met and the detectable is of type
complete then the workframe updates its beliefs from the facts detected and deletes all
activities from the workframe leaving only concludes.

Rule: Det comp

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
β′=β[βins/β

Concludes ]∧B′
i=Bi∪d

g∧agi[agstagei ∈{Det ∗}/agstagei ∈{Wf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∃d∈βD|dg|=F∧dtype=complete∧(¬∃d′inβD|d′g|=F∧(d′type=impasse∨d′type=abort ))

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

βConcludes is used to refer to conclude events within the workframe β.

Det impasse. When the detectable is of type impasse the beliefs are updated from
the facts detected but the workframe is suspended. To suspend the workframe a new
workframe is created from what remains of the current workframe instance, this is then
added to the set of workframes with a repeat value of false. The priority of this new
workframe is fractionally larger than the previous (but smaller than a suspended).

Rule: Det impasse

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
β′=β[βpri/(βpri+0.1)∧βg∪¬dg)]∧B′

i=Bi∪d
g∧WF ′

i=WF i∪β′∧agi[agstagei ∈{Det ∗}/agstagei ∈{Wf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∃d∈βD|dg|=F∧dtype=impasse∧(¬∃d′inβD|d′g|=F∧d′type=abort )

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

Det abort. If the detectable is of type abort then the belief base is updated and the
agent’s assignment to the workframe is removed.

Rule: Det abort

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
β′∈{∅}∧B′

i=Bi∪d
g∧agi[agstagei ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∃d∈βD|dg|=F∧dtype=abort

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

Det empty. If there are no active detectables found then agent is moved to the
‘workframes’ rule set denoted ‘Wf *’.

Rule: Det empty
〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−→
¬∃d∈βD|dg|=F

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉
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Detectables are checked just before a current workframe pops an activity element off
the stack. In the PROMELA translation a loop with multiple conditions is used to
pop elements off the stack and check if its activities or concludes being processed, the
basic conditions are: stack is empty, activity found and conclude is found. The activity
duration is what decides this, i.e., duration >0 is an activity, duration <0 is a conclude
and duration = 0 is empty. If-statements are used to represent the guard conditions
of all the detectables. The following code shows how activities, concludes and end of
activities are distinguished:

/*wf_stackRobot is an array containing all elements of the

current workframe. wf_RobotTop is the pointer to the

current position in the stack. This has to be >5 because

0-5 is the header data. det_complete will be explained

later*/

do

::(wf_stackRobot[wf_RobotTop] == 0 &&

wf_RobotTop > 5);

/*Element is 0, activity has finished*/

...

::(wf_stackRobot[wf_RobotTop] >= 1 &&

det_complete == false && ... && wf_RobotTop > 5)->

/*Element is > 0 therefore an activity*/

/*Check detectables*/

...

::(wf_stackRobot[wf_RobotTop] >= 1 &&

det_complete == true && ... && wf_RobotTop > 5)->

/*Element is > 0 therefore an activity, but det_complete

is true so activity must be discarded*/

...

::((wf_stackRobot[wf_RobotTop] < 0 && ... &&

wf_RobotTop > 5)->)

/*Element is < 0, processing a conclude*/

...

od

The code generated is generic to all workframes so all detectables for every workframe
will be checked. To ensure a detectable from another workframe does not fire the if-
statement has an additional condition: that the ID number of the current workframe
must match the ID of the workframe which has this detectable. If the detectable is
active then a belief update on the agent is made matching the agent’s belief to the
fact, also a variable is set to identify what kind of detectable has fired (abort, continue,
etc.) called activeDetectableType which is set to identify which detectable was fired for
that workframe (workframes can have more than one detectable). Example code for a
workframes detectable:

/*fact_hasEmptyPlate[AlexID] == true is the detectables guard.

wf_stackRobot[0] is the current workframe stack and index 0

references the workframe ID number, which in this example is 11*/
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if

::(fact_hasEmptyPlate[AlexID] ==true && wf_stackRobot[0] == 11)->

Robot_hasEmptyPlate[AlexID] = fact_hasEmptyPlate[AlexID] ;

activeDetectableType = abort;

activeDetectableID = 0;

fi

After all the detectables have been checked an if-statement then decides what to do
based on the type of detectable which was active. Each of the conditions in this
if-statement represent a rule (Det continue, Det abort, Det impasse, Det complete and
Det empty). The conditions examine the variable activeDetectableType to identify which
is to be processed e.g.,

if

::(activeDetectableType == impasse)->

...

::(activeDetectableType == abort)->

...

::(activeDetectableType == continue)->

...

::(activeDetectableType == complete)->

...

::(activeDetectableType == null /*i.e., empty*/)->

...

fi;

Impassing a workframe is a similar to suspending one, i.e., adding another workframe
to the set with an increased priority, a repeat variable set to false, and resetting the
current workframe pointer to -1. A continue variable has no additional consequences,
simply continues to pop the stack. Abort deletes the current workframe by setting the
pointer to -1. Complete sets a variable called det complete to true, this variable is used
in the if-statement for deciding if the event is an activity, empty or conclude; if this
variable is true and an activity is found then the activity is discarded. If the variable
is null then it jumps to popping the stack.

7.2.4 Pop * rules (Popstack)

Thoughtframes and workframes all have their own stack of instructions. These rules
presented demonstrate how the events are “popped” off these instruction stacks. The
events can be activities or concludes, so these rules show how Brahms treats these
different instructions.

Pop Wfconc*. When a conclude action is found it is removed from the top of the
instruction stack. Concludes can update the beliefs, the facts or both. We represent
three different rules for concludes: one for updating beliefs; one for facts; and one
for both. Brahms additionally has probabilities that beliefs will be updated, these
probabilities have not been taken into account in these semantics. With concludes we
only describe the rules for workframes because performing concludes in thoughtframes
are identical but on a different stack.

Rule: Pop WfconcB
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
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B′
i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−→

b∈Bi∧β=〈βd,conclude(b′)belief ;βins〉

〈agi, α, β,Pop ∗, B′i, F, Ti,TF i,WF i〉

Note. The “belief” superscript is to show the conclude is for updating beliefs only.

Rule: Pop WfconcF

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
F=(F/f)∪f ′

−−−−−−−−−−−−−−−−−−−−−→
f∈F∧β=〈βd,conclude(f ′)fact ;βins〉

〈agi, α, β,Pop ∗, Bi, F ′, Ti,TF i,WF i〉

Rule: Pop WfconcBF

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
F ′=(F/b)∪b′∧B′

i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b∈Bi∧b∈F∧β=〈βd,conclude(b′)belief ∧fact ;βins〉

〈agi, α, β,Pop ∗, B′i, F ′, Ti,TF i,WF i〉

Pop concWf*. When agents have finished performing an activity they need to finalise
belief updates before they can flag themselves as finished for the cycle. This rule here
is for doing exactly this, if a conclude is the next event it will carry out the belief/fact
update. Here we describe only ‘Pop concWfB’, this shows how it is done with just belief
updates. Fact and belief/fact updates will be as previously shown.

Rule: Pop concWfB

〈agi, ∅, β,Pop concWf ∗, Bi, F, Ti,TF i,WF i〉

B′
i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−→

b∈Bi∧β=〈βd,conclude(b′)belief ;βins〉

〈agi, α, β,Pop concWf ∗, B′i, F, Ti,TF i,WF i〉

Pop notConc. This is for when the agent is finalising beliefs after an activity but has
not found a conclude event, the event could be an activity or simply empty.

Rule: Pop notConc

〈agi, α, β,Pop concWf ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
β=〈βd,(Prim Act∨Move∨Comms);βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop PA*. When a primitive activity is started the agents send the duration of their
current activity to the scheduler. The scheduler receives all the activity times then
determines which activity time is the smallest and updates its own clock based on
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this duration. When an agent’s time is different to the system clock’s it then changes
accordingly and subtracts the time increment from the duration of its activity.

Pop PASend. This is the rule the agent’s use to send the duration of their next event
to the scheduler.

Rule: Pop PASend
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−→
Tξ=Ti∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Pop PA(t>0). This rule is invoked when the agent’s time is no longer the same as the
scheduler’s time. Additionally this rule checks whether the current activity’s duration
will be greater than zero after updating the times and durations.

Rule: Pop PA(t>0)
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

t′=(Tξ−Ti)∧Ti=Tξ∧Prim Actt=Prim Actt[t/t′]∧agi[agstagei ∈{Pop concWf ∗}/agstagei ∈{fin}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop PA(t=0). This rule is for when the agent’s activity is due to finish at the end of
the next clock tick. This rule directs the agent to only executing conclude statements
before finishing for the cycle.

Rule: Pop PA(t=0)
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Ti=Tξ∧β=〈βd,βins−Prim Actt〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,Pop concWF∗, Bi, F, Ti,TF i,WF i〉

Pop move*. Move activities are very similar to primitive activities, except when
the activity terminates a belief update is performed to change the agents and the
environments beliefs of the agent’s current location. This belief update occurs when
the agent notices that the duration of the move has reached zero after the clock update.
Pop PASend. This is the rule the agent’s use to send the duration of their next event
to the scheduler.

Rule: Pop moveSend

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−−−−−→

Tξ=Ti∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. ‘Loc = new’ refers to the allocation of the location to the new location.
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Pop move(t>0). Like for primitive activities, the move activity needs a rule for when
the activity still has time remaining after the clock tick.

Rule: Pop move(t>0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
t′=(Tξ−Ti)∧Ti=Tξ∧move(Loc=new)t=move(Loc=new)t[t/t′]∧agi[agstagei ∈{Pop concWf ∗}/agstagei ∈{fin}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop move(t=0). Likewise, the move activity needs a rule for when the activity
duration ends.

Rule: Pop move(t=0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Ti=Tξ∧β=〈βd,βins−move(Loc=new)t〉∧B′

i=Bi[Loc=old/Loc=new ]∧F ′=F [Loc=old/Loc=new ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,Pop concWF∗, B′i, F ′, Ti,TF i,WF i〉

Note. ‘old’ refers to the previous location of the agent.

Pop comm*. Communication is very similar to a move activity, except the agent does
not update its own beliefs or the environments beliefs but it updates another agents
beliefs.
Pop commSend. This rule sends the scheduler the duration of the communication.

Rule: Pop commSend

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−−−−→

Tξ=Ti∧β=〈βd,Comms(agj ,b′)t;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Pop comm(t>0). For when the communication has time remaining after the system
clock tick.

Rule: Pop comm(t>0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
t′=(Tξ−Ti)∧Ti=Tξ∧Comms(agj ,b

′)t=Comms(agj ,b
′)t[t/t′]∧agi[agstagei ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,Comms(agj ,b′)t;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop comm(t=0). Rule for when the communication activity duration ends.

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Ti=Tξ∧β=〈βd,βins−Comms(agj ,b

′)t〉∧B′
j=Bj [b/b

′]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,Comms(agj ,b′)t;βins〉∧b∈Bj
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〈agi, α, β,Pop concWF∗, Bi, F, Ti,TF i,WF i〉

Note. Belief exchange via communication is handed directly in Brahms, i.e., when an
agent communicates with another, it directly changes the other agent’s beliefs.

Pop emptyTf. Concludes do not use any simulation time during execution, since
thoughtframes only contain concludes then an agent will keep executing thoughtframes
until it no longer has any to execute. This rule is for selecting a new thoughtframe
when the current one becomes empty.

Rule: Pop emptyTf
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
α∈{∅}∧agi[agstagei ∈{Pop ∗}/agstagei ∈{Tf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

α=〈αd,∅〉

〈agi, α, β,Tf ∗, Bi, F, Ti,TF i,WF i〉

Pop emptyWf. A workframe which only contains concludes will act like a thought-
frame. This rule is for such workframes so the agent can keep select another workframes
when the current one becomes empty.

Rule: Pop emptyWf

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
β∈{∅}∧agi[agstagei ∈{Pop ∗}/agstagei ∈{Wf ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

β=〈β,∅〉

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉

Pop * rules in PROMELA. The rules for popping the elements off the stack are
all handled by the same do-while loop used with detectables. The loop has conditions
for activities, concludes and for when the activity is finished. Concludes have been
handled as negative integers in PROMELA with each conclude having its own negative
integer. In the do-while loop one of the conditions specifies the number is negative (i.e.,
a conclude), this section of code contains many if-statements checking which conclude
the event is representing. The appropriate belief/fact updates are then made. These
statements collectively represent rules Pop WfconcB, Pop WfconcF and Pop WfconcBF.

/*Represents the conclude section of the loop.

wf_stackRobot[wf_RobotTop] refers to the current

element on the deed stack. -84 represents the ID

number of a conclude*/

do

::(wf_stackRobot[wf_RobotTop] < 0 && ... && wf_RobotTop > 5)->

/*Element is < 0, processing a conclude*/

if

::(wf_stackRobot[wf_RobotTop] == -84 &&

wf_RobotTop > 5) ->

/*Update the belief*/

Robot_checkMedicationA[RobotID] = false;
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/*Update the fact*/

fact_checkMedicationA[RobotID] = false;

fi;

if

::(wf_stackRobot[wf_RobotTop] == -75 &&

wf_RobotTop > 5) ->

...

fi;

od

The activity duration in PROMELA is handled using a variable called timeRemaining
and by marking the difference in time between the global clock and the agent’s own
clock. The PROMELA coordinates the sending and receiving of the duration of activity
for the agents. The agents execute the rule Pop PASend where they find the duration
of their activity and store it in their timeRemaining variable, they then pass control
back to the scheduler. The following code shows how the Pop PASend is tied in with
the detectables.

/*Check if a detectable has been fired, if not, i.e., "null"

perform Pop_PASend*/

if

::(activeDetectableType == impasse)->

...

::(activeDetectableType == continue)->

...

::(activeDetectableType == abort)->

...

::(activeDetectableType == complete)->

...

::(activeDetectableType == null)->

/****represents Pop_PASend****/

Robot_timeRemaining = wf_stackRobot[wf_RobotTop];

/*Set agent’s time = scheduler’s time*/

cntRobot = cntEnvironment;

/*pass control to the scheduler*/

turn = Environment

fi;

Eventually all agents perform this task and the scheduler will be at the end of the cycle.
The scheduler uses a collection of if-statements to determine the shortest duration of
all the timeRemaining variables and update its clock; the current time + this duration.
The scheduler then returns to issuing control of the cpu back the agents. The agents
are then in a different section of code (representing Pop PA(t>0) and Pop PA(t=0))
which is asking them if their time is different to the global clocks. If their time is
different, the clock has moved forward, then the time difference is subtracted from
their current activity and their clock is set to the same time as the global clock. An
additional if-statement is used to determine if the rule Pop PA(t>0) is active, a check for
Pop PA(t=0) is not made because time can not be deducted if the activity is duration is
0. When Pop PA(t>0) activates the time is deducted from the activity’s duration, then
rule Pop PA(t=0)) is checked. If the duration has been reset to 0 (i.e., Pop PA(t=0))
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is active) then the agent sets a ‘concludes’ flag to true and returns to pop the stack.
This concludes flag directs the agent to the rules Pop concWF*, as represented in the
semantics of Pop PA(t=0)). This is because the agent needs to make the appropriate
belief updates after an activity has been finished.

if /*check if time is different to scheduler*/

::(cntRobot != cntEnvironment && turn == ag_Robot) ->

/*find time difference*/

timeDeduction = cntEnvironment - cntRobot;

/*Set agent’s time to match the scheduler*/

cntRobot = cntEnvironment;

/*Sanity check: incase there is no activity or if

it is a communication*/

if

::(wf_RobotTop != -1 && commRobot == false)->

/****rule Pop_PA(t>0)****/

if

::(wf_stackRobot[wf_RobotTop] > 0)->

/*Find the new duration of the activity*/

new = wf_stackRobot[wf_RobotTop] - timeDeduction;

/*Assign new value for the activites duration*/

wf_stackRobot[wf_RobotTop] = new;

/*rule Pop_(PA=0); Rule is nested because Pop_(PA=0) needs

to be processed as soon as t=0*/

if

::(wf_stackRobot[wf_RobotTop] == 0)->

concludes = true; /*the ‘concludes flag’*/

goto popstack; /*go back to Pop_* rules*/

::else->

/*move on to checking thoughtframes*/

goto thoughtframes;

fi;

::else->

skip;

fi;

::else->

skip;

fi;

/*Time is the same as the schedulers*/

::(cntRobot == cntEnvironment && turn == ag_Robot) ->

/*process thoughtframes*/
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goto thoughtframes;

fi;

The PROMELA translation handles move and communication activities using negative
numbers, like concludes. Pop Move* and Pop Comm* rules are initially handled as
concludes; this is because move and communication activities are essentially primitive
activities followed by a belief/fact update. Therefore they are treated as such in the
PROMELA translation. The first time a move or communication is encountered a flag
in the header data is set to true and a primitive activity is pushed onto the stack. The
primitive activity is processed as normal and when it is finished it is removed from the
stack. The negative number of the move or communication activity is now again at the
top of the stack, but this time the flag indicates to process the belief update. A move
activity (Pop Move*) operates in the same way but the belief updates corresponds to
the change in location. The following code describes the implementation of a move
activity:

/*The move activity is represented as -16 on

the stack*/

::(wf_stackRobot[wf_RobotTop] == -16 && wf_RobotTop > 5) ->

/*Check if we have previously visited this activity

wf_stackRobot[4] == 0 means we have not

wf_stackRobot[4] == 1 means we have

and check if we are only processing concludes*/

if

::(wf_stackRobot[4] == 0 && concludes == false)->

/*increase size of the deed stack*/

wf_RobotTop = wf_RobotTop+1;

/*Find ID number of the robots current location*/

findID(Robot_location[RobotID]);

currentLoc = searchID - 8;

/*Find the ID number of the destination*/

findID(sinkTwo);

targetLoc = searchID - 8;

/*Locate the distance and set as the

agent’s activity time*/

wf_stackRobot[wf_RobotTop] =

adjacency[currentLoc].edges[targetLoc];

/*Set current activity duration as the distance

to travel to new location*/

Robot_timeRemaining = wf_stackRobot[wf_RobotTop];

/*Flag that we have visited this move*/

wf_stackRobot[4] = 1;

/*Guard to check if it is concludes only*/

::(wf_stackRobot[4] == 0 && concludes == true)->

concludes = false;
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goto processWorkframes;

/*Guard for if the move has previously been visited*/

::(wf_stackRobot[4] == 1)->

/*Update the belief*/

Robot_location[RobotID] = sinkTwo;

/*Update the fact*/

fact_location[RobotID] = sinkTwo;

/*Remove activity from the stack

and reset the flag*/

wf_RobotTop--;

wf_stackRobot[4] = 0;

fi;

7.2.5 Var * rules (Variables)

Variables are used to represent quantification and unification in Brahms. A variable
tells an agent to perform an activity in relation to an agent (or agents) who meet
a certain requirement, a requirement which is defined in the guard condition. For
example: request a hammer from an agent who is currently holding a hammer, or take
a supply of nails to all agents who are holding a hammer. Variables operate in the
same way on both workframes and thoughtframes.

Var empty. When a workframe without variables is found it is forwarded to popping
the stack.

Rule: Var empty
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Var ∗}/agstagei ∈{Pop ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−→
β/∈{∅}∧βV ∈{∅}

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. Where βV represents the variables contained within workframe β.

This rule is not directly handled in the PROMELA translation, but it is actually han-
dled using the Java code. The PROMELA code is written from this Java code and
there are if-statements which checks the variables contained within a frame. If the set
of variables is empty then the Var * rules are bypassed.

Var set. Frames with variables create instances of themselves with the variables as-
signed to specific agents and objects. The ‘selectVar()’ command is what assigns these
agents and objects to the variables.

Rule: Var set
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉

β′=〈βd,[∅∪selectVar()],βins〉−−−−−−−−−−−−−−−−−−→
β=〈βd,∅,βins〉

〈agi, α, β′,Var ∗, Bi, F, Ti,TF i,WF i〉
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If the Java code identifies a frame as having a variable then it writes the PROMELA
code differently. The first difference being the guard condition, if there are no variables
then the whole guard condition is represented in a single if-statement, if there are
variables then the guards need to be broken up into those tied to variables and those
not e.g., a guard condition saying the current agent has battery value greater than
50% does not have a variable tied to it, but a guard condition saying forone agent
who is holding a hammer does. With a frame for variables the guard conditions are
then broke up into if-statements and do-while statements. There is always an initial
if-statement which holds all the guard conditions not tied to a variable, if none exist
then the if-statement states:

if

::(true)->

...

fi;

A do-while loop is then used for each variable in the frame e.g., if there are 3 variables
then there will be 3 do-while loops. Each of these loops then represent a rule of type
Var one, Var each or Var all depending on what type the variable it is.

Var one. A ‘forone’ variable is used for unification, to essentially select a single agent
or object which meets the requirements in the guard condition.

Rule: Var one
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉

β′=〈βd,Random(W0 ...Wn),βins〉∧agi[agstagei ∈{Var ∗}/agstagei ∈{Pop ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=forone

〈agi, α, β′,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. Where ‘Random’ is a random selection of one of the instances and ‘vtype’ repre-
sents the variables type (forone, foreach or collectall).

Var each. A ‘foreach’ variable will operate the action on all the agents or objects
which meet the requirements in the guard condition, this is performed sequentially.

Rule: Var each

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉

WF ′
i=WF i∪(W0[W

pri
0 /(βpri+0.1),W r

0 /W
r
0 =false]...Wn[W

pri
n /(βpri+0.1),W r

n/W
r
n=false])−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=foreach

〈agi, α,W0,Pop ∗, Bi, F, Ti,TF i,WF i〉

Var all. The ‘collectall’ variable is similar to the ‘foreach’ except it performs the task
on all the agents instantly. An example where this could be used would be picking up
a pile of objects in a single move e.g., pick up all papers in stack A.

Rule: Var all

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
β′=concludes(W0...Wn)∧agi[agstagei ∈{Var ∗}/agstagei ∈{Pop ∗}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=forall
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〈agi, α, β′,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. concludes(W1...Wn) is a method which takes all the workframe instances W1...Wn

and extracts the concludes statements.

Each of these rules Var one, Var each and Var all are performed inside a do-while
loop. The guard conditions for each variable (each variable can have multiple guards)
are placed inside the do-while loop specific to that variable. The do-while loops then
loop through all the agents and objects and checks if they match the required guard
condition. A check is also performed on whether the agent is in the correct class or
group, as variables specify groups or classes of agents and objects e.g., ‘foreach’ agent
in class ‘Robot’ who meets the requirement A, B and C. The do-while loops for all the
variable types are very similar with only some minor differences. The do-while loop
representing the rule Var each is the most simple, this adds every agent who meets
the requirements to an array associated to the frame. The Var all is almost identical
except sets a flag to identify it as a ‘collectall’. The Var one variable however only
wants to select a single agent or object so uses a break statement when one is found.
However, the semantics describe this selection process as a random selection where this
is simply taking the first agent or object it finds. It is planned in future work to make
this selection a more random process. The following is PROMELA pseudocode of a
workframe with a foreach and a forone:

if

::(/*non-variable guards are true*/)->

do

::(/*The forone variables guards are true*/)->

do

::(/*The foreach variables guards are true*/)

/*Add forone variable to array at index 0*/

/*Add foreach variable to array at index 1*/

/*Increment array pointer*/

/*Mark the frame as active*/

::(/*A guard is false for the foreach variable*/)

skip;

::(/*Looped through all agents or objects*/)->

break;

od;

if

::(/*Array pointer has not been incremented, i.e., equals 0*/)

/*set frame as inactive because no agents were found

for the foreach variable*/

::else->

skip;

fi;

break;

::(/*A guard is false for the forone variable*/)->

skip;

::(/*Looped through all agents or objects*/)->

break;
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variable Index0 Index1 Index2

forone Bob Bob Bob

foreach Robot Careworker RobotHouse

forone Robot Robot Robot

Table 7.9: A table holding the values of variables in a workframe.

od;

::else->

/*Set frame as inactive*/

fi;

The details of the agents and objects used for the variables for the frame are stored
in a two dimensional array; one index for the variables and the other for storing the
agents and objects matching that variable. An example table to demonstrate this
array is shown in Table 7.9. This table shows three different variables being used in the
workframe; 2 forone and a foreach. In this table there is a forone which has selected
Bob, another forone which has selected the Robot and a foreach which has selected the
Robot, the Careworker and the RobotHouse.

Each workframe and thoughtframe with variables has an array like Table 7.9 to
reference which variables have been selected. One of the requirements for Var set to
become active is that there must not already be a set of values tied to the variables.
The PROMELA code identifies this by checking if the array pointer has a value greater
than -1. Using Table 7.9 as an example, the pointer will start at value 2 (because that is
the largest index) and decrement every time the workframe is been processed, thereby
performing the workframe for each agent matching the requirements. Eventually this
pointer will become -1, this will indicate that a new set of variable values needs to be
assigned, i.e., rule Var set is active. Some additional code is required when processing
concludes and activities which use these variables; for concludes the agent or object
the belief is about needs to be referenced from the array (like in Table 7.9) and for an
activity such as communication the agent will need to look up which agent or object the
communication will be made to. For an example, we provide some pseudocode to show
how a conclude with a variable will behave in a hypothetical workframe which uses a
variable to locate who the Robot will feed. The element off the deed stack is a conclude
of ID -72 and wf RobotTop > 5 is to ensure we are not in the header data of the
workframe. The findID is a macro used to find the ID number of an agent when given
their name. Inside the brackets is a reference to the current variable for the workframe,
Robot feed var refers to the array holding the variables for the agent Robot and the
workframe feed. The string Robot feed index refers to the set of variables under
consideration and the 0 in the second index refers to the first variable. The macro
findID will return the value of agent’s ID number using the integer named searchID.
The line stating Robot fed[searchID] refers to the Robots belief about the attribute
‘fed’ which belongs to the agent who’s ID number is stored in searchID. This line then
concludes that the belief is changed to true. This pseudocode is as follows:

::(wf_stackRobot[wf_RobotTop] == -72 && wf_RobotTop > 5) ->

findID(Robot_feed_var[Robot_feed_index].var_elements[0]);

Robot_fed[searchID] = true;
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7.3 Justification of The PROMELA Translation

The operational semantics created for Brahms in [79] were directly used for developing
the PROMELA implementation of the Brahms framework. The operational semantics
had no formal basis for an in-depth comparison to the Brahms framework, so instead
of performing an analysis against the formal semantics we decided to perform a direct
comparison between the outputs of the PROMELA against the actual Brahms frame-
work. The Spin model checker has the ability to run PROMELA code as a simulation as
well as for creating a model for model checking. This simulation mode was used to view
the updates of beliefs and facts so a comparison could be made when the same Brahms
simulation was ran in the Brahms framework. As the semantic rules were implemented
tests were performed to analyse their correctness, in respect to the Brahms framework.
The tests were performed incrementally. The tests were based on the RobotHelper
scenario, where the scenario would steadily get more detailed. So at the beginning the
agents would start, initialise their beliefs and then terminate. More detailed activities
would be introduced, such as starting a workframe and exiting the workframe. The
analyses on the correctness of the system were mainly based on two factors; the global
clock and belief/fact updates. The simulations were run in Brahms first; details were
noted on what beliefs changed, when they changed and what they were changed to.
The same simulations were run in the PROMELA implementation and the results were
compared. The process was repeated until all the desired functions were implemented
and all the bugs were fixed so that the outputs matched.

The final comparison was performed using the Spin model checker. The scenarios
were created (The RobotHelper and DigitalNurse) and simple properties were incre-
mentally verified after every small change made. Making a comparison to the output
produced by Brahms here was slightly more difficult because there would be some small
amounts of non-determinism. Initially models were made as deterministic as possible
to simplify the process. The results of the verification were analysed manually against
the output of Brahms, e.g., if a property verified had specified that Bob would al-
ways take his medicine then the results of a simulation ran in the Brahms framework
would be checked to see if this was the case. With the addition of non-determinism the
analysis would be conducted across multiple simulations, simulations which had been
engineered to produce all the possible outputs. However, the larger the models became
the more difficult it was to do this. When the models were too large for manual testing
we would test a handful of samples manually and then make a judgement on whether
the property should or should not be verifiable.
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Part III

Case Studies
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Chapter 8

Home Helper Robot Scenario

8.1 Overview of Scenario

This first scenario was developed as a test bed for the verification of human-agent team-
work. The idea behind this scenario was to invent a case study, one based on a possible
real life scenario, which demonstrates low level teamwork involving humans and agents.
The scenario was incrementally built adding functionality along with specifications to
verify, this was to ensure the correctness of the verification and of the scenario. While
doing this, simple issues with the design of the scenario would prevent some specifica-
tions from being verifiable, e.g., a robot not activating a workframe to clean some dirty
plates because a guard condition was incorrectly defined. The low level teamwork this
scenario was interested in evaluating was that of individual agents who communicate
with each other to fulfil their own personal goals, e.g., a person requesting food from
a robot, and the robot complying with the request. Since this was a simple scenario
there was little emphasis on joint activities and joint goals. The non-determinism in
this scenario was presented through an outside event, i.e., the event of a fire. The rea-
son behind this choice of non-determinism is because we want to program the agents
with deterministic protocols, but then we want to test how they manage in the event
of an emergency.

In this scenario there is a person with dementia (Bob), a helper robot, a human
care worker and a house agent. The helper robot is mobile and can move about the
house assisting the person with various tasks. The house agent has the role of detecting
information, informing the person and reminding them of things where necessary. The
care worker is called for when the robot/agent are unable to assist. Such domestic
health-care scenarios typically involve assisting the elderly or infirm; see for example
[57, 65].

Figure 8.1 provides a description of this scenario explaining the roles of the person
with dementia, the helper robot, the human care worker and the house agent. To help
explain Figure 8.1 we provide the following description of all the humans and agents
roles below:
The helper robot:

1. fetches drinks, cooks food, and delivers them to the person

2. collects dirty dishes and puts them in the dishwasher

3. fetches medicines

4. records whether the person has their medication
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Figure 8.1: Overview of the Robot Helper Scenario

5. informs the person of what to do in case of an emergency, e.g., a fire

6. communicates with the house agent

7. answers the door

The house agent:

1. informs the helper robot of the person’s location

2. reminds the person to flush the toilet

3. monitors the person’s location

4. notifies robot of fire

5. informs careworker if person does not take medication

The care worker:

1. administers the medication; which we assume is 100% successful

The person:

1. requests food

2. goes to the toilet at regular intervals

3. watches television
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8.2 Brahms Representation

This scenario is modelled in Brahms using five agents and one object: Robot, The
House, Environment, careworker and Bob (our elderly person) are the four agents and
Clock is the object. The Clock is used for termination of the simulation (i.e., after 20
hours) and provides the notion of time used by the simulation, e.g., governing when the
human’s hunger increases. The Environment is a simple agent which decides if, and
when, a fire alarm will occur. Bob’s role is to mainly watch television and to perform
simple everyday tasks such as to eat and go to the toilet. Thoughtframes are used to
update beliefs about how hungry he is and how much he needs the toilet.

When his hunger reaches a certain threshold a workframe activates and Bob requests
food. A similar workframe will trigger a visit to the toilet. These workframes have a
higher priority than the workframe for watching television, so when they become active
the ‘television’ workframe suspends. The workframe for going to the toilet activates
other workframes to flush the toilet and wash his hands once finished. Two versions
of these workframes exist: representing whether or not he remembers to perform the
task, each have the same guard conditions and priority so only one will execute at
random. Bob also has workframes for taking his medication and thoughtframes that
govern whether or not he chooses to do so.

The helper Robot remains idle until a command is made or it detects Bob requires
attention. When Bob makes a request for food the Robot prepares and delivers the
food. There is a detectable in the Robot’s “wait for instructions” workframe which de-
tects when Bob has finished eating; this triggers a belief update which in turn triggers
a workframe to clear the plates. The Robot also has workframes to deliver medicine
to Bob; activated at pre-allocated times. The Robot places the drugs on Bob’s tray
and then monitors them, checking every hour if they have been taken. The workframe
governing this is shown in Fig. 8.2. A detectable takenMedicationC aborts the work-
frame if the drugs have been taken and then updates the Robot’s beliefs. If the drugs
have not been taken the workframe reminds Bob to take his medication. The Robot
counts the number of times it reminds Bob, and after 2 reminders the Robot notifies
the House. The Robot also instructs Bob to evacuate the house if a fire alarm has
sounded and answers the door to the care worker.

The House is ‘intelligent’. It has the responsibility for monitoring Bob, giving
him instructions based on his location and detecting any fire. The House’s default
workframe monitors Bob, and has detectables which update the House’s beliefs about
Bob’s location. When Bob’s location is on the toilet a new workframe is fired, this
workframe contains an ‘abort’ detectable which quits the activity when Bob leaves the
toilet and activates a new workframe which detects Bob’s location and uses this to
decide whether or not Bob has left without flushing the toilet. Bob is then reminded if
necessary. The default monitoring workframe also has a detectable for the fire alarm,
this aborts the current activity and activates a workframe which sounds an alarm and
notifies the Robot and Bob. Finally, the House has a workframe for when it has been
notified that Bob has failed to take his medicine, the House then informs the care
worker.

The Care Worker performs outside activities which are abstracted into a single
activity. When the care worker is called they will only make their way once they have
finished their current activity. When the care worker arrives they ring the doorbell and
once they are let in by the helper robot they administer the medication and inform
the robot that the patient has taken the medication. The care worker then leaves and
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continues with their outside activities.

workframe wf_checkMedicationC {

repeat: true;

priority: 3;

detectables:

detectable takenMedicationC{

when(whenever)

detect((Bob.hasMedicationC = false),

dc:100)

then abort; }

when(knownval(current.perceivedtime > 14)and

knownval(Bob.hasMedicationC = true) and

knownval(current.checkMedicationC = true))

do {

checkMedication();

remindMedicationC();

conclude((current.checkMedicationC =

false));

conclude((current.missedMedicationC =

current.missedMedicationC + 1));

}}

Figure 8.2: The Robot’s workframe to remind Bob about medication

8.3 “Home Care” Verification

We next consider the actual verification of the human-agent-robot teamwork in this
“home care” scenario.

8.3.1 Desirable Properties to Prove

We develop a range of logical properties for the scenario; recall that in temporal logic,
♦φ means that “φ will be true at some moment in the future”, while �φ means that
“φ will be true at all future moments”. We describe the properties verified and classify
these just by the core aspect they represent,, i.e., properties labelled Fn relate to the
fire alarm; labelled by Tn relate to the toilet; Hn relate to hunger and Mn relate to
medicine. The propositions used in the properties are all based on the beliefs of the
agents or facts in the system. We expect all of these properties to hold apart from M1.

FIRE ALARM.

F1: This property was designed to check if The House will generate a fire alarm
when a fire occurs. The property, explained in English, is: If a fire occurs then,
eventually, The House believes the fire alarm has been activated. The property,
as a temporal logic formula is: �(a ⇒ ♦ b) where

a = There is a fire
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b = The House believes the fire alarm is sounding

F2: This property was designed to check that The House agent will shut the alarm off
when Bob is no longer in danger. The property, explained in English, is: If the
hourse believes a fire alarm is sounding, and Bob believes he has left The House
then eventually The House will no longer believe the fire alarm is sounding. The
property, as a temporal logic formula is: �((a ∧ b)⇒ ♦¬a) where

a = The House believes the fire alarm is sounding

b = Bob believes he has evacuated the house

F3: This property was designed to check that the Robot will remind Bob to leave the
house in the event of a fire. The property, explained in English, is: If The House
believes a fire alarm is sounding and Bob believes he has not left The House,
then the Robot eventually believes it has alerted Bob about the fire. Logical
requirement is: �((a ∧ ¬b)⇒ ♦c) where

a = The House believes the fire alarm is sounding

b = Bob believes he has evacuated the house

c = Robot believes it has alerted Bob about the fire

TOILET.

T1: This property was designed to check that Bob does go to the toilet, since T2 will
always evaluate to true if Bob does not go to the toilet. The property, explained
in English, is: Eventually Bob believes he is on the toilet. The property, as a
temporal logic formula is: ♦a where

a = Bob believes his location is on the toilet

T2: This property was designed to check that The House agent does remind Bob to
perform tasks, such as wash his hands after using the toilet. If Bob goes to the
toilet he can forget to flush it and, if so, we verify that he will be reminded by
the House. To simplify the property we assume that Bob will wash his hands
once reminded. The property, explained in English, is: if Bob believes he is on
the toilet then eventually the toilet will be flushed. The property, as a temporal
logic formula is: �(a⇒ ♦b) where

a = Bob believes his location is the toilet

b = the toilet flushed is true

HUNGER.

H1: This property was designed to check if the Robot delivers Bob his food within
a certain time. The issue with formulating this property was that we needed to
accurately measure how long it takes for the Robot to return with the food. The
most accurate and simplest method was to have the count performed by Bob.
The count performed by Bob was not considered part of the scenario, since it
would be unrealistic to expect an elderly person to do so. The count is activated
as soon as Bob requests food and stopped and soon as the Robot places the food
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on the tray. The property, explained in English, is: If Bob believes he has asked
for food then eventually the Bob believes the time he asked for food is less than
1 hour. The property, as a temporal logic formula is: �(a⇒ �¬b) where

T = 1 hour

a = Bob believes his “asked for food” variable is true

b = Bob believes the time since he asked for food is greater than T

H2: This property was designed to check that the Robot will collect the dishes once
Bob has finished eating. To simplify this property we assume that when the
Robot is at the dishwasher then the dishes are inside the dishwasher. This is
because the only time the Robot is at the dishwasher is to fill it up. The property,
explained in English, is: Once Bob believes his plate is empty, then eventually
the Robot’s location is the dishwasher. The property, as a temporal logic formula
is: �(a⇒ ♦(a⇒ b)) where

a = Robot believes Bob’s plate is empty

b = Robot believes its location is the dishWasher

MEDICINE.

M1: This property was designed to evaluate to false to show that our verification sys-
tem did not always evaluate properties as true. The property itself was designed
to verify either Bob always takes his medication or the Robot never reminds him
to do so. Which should evaluate as false since if Bob does not take his medica-
tion then the Robot should remind him. The property, explained in English, is:
Always Bob does not take believe he has taken his medication and always the
Robot does not remind Bob to take his medication. In this case we shouldn’t be
able to verify: �¬a ∧�¬b where

a = The Robot believes it has reminded Bob to take his medication

b = Bob believes he has taken his medication

M2: This property was designed to test that the Robot will remind Bob to take his
medication if he forgets to. It is difficult to verify that a communication occurs
with our tool, so instead we verify that the recipient’s set of beliefs are updated
with the message details. The property, explained in English, is: If Bob believes
he has his medication, but believes he has not taken it, then eventually Bob will
believe he has taken it. The property, as a temporal logic formula is: �(a⇒ ♦¬b)
where

a = Bob believes he has his medication

b = The Robot believes Bob has not taken his medication

M3: This property was designed to test whether The House will be informed when
Bob does not take his medication. The property, explained in English, is: if the
facts state that Bob has not taken any medicine, then The House will believe that
Bob has not taken it. The property, as a temporal logic formula is: ♦(a ⇒ b)
where
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a = the fact states Bob has not taken his medication

b = The House believes Bob has not taken his medication

M4: This property was designed to test whether the Care Worker will arrive to ad-
minister Bob’s medication when he does not take it, within a certain time limit.
The property, explained in English, is: If Care Worker believes that Bob has
not taken his medication then The House believes it has been less than 2 hours
sine it notified the Care Worker, and eventually Bob takes his medication. The
property, as a temporal logic formula is: �((a⇒ �¬b) ∧ ♦c) where

T = 2 hours

a = The Care Worker believes Bob has not taken his medication

b = The House believes the time since the Care Worker was informed of
failure to take medication > T )

c = The Care Worker believes their location is Bob’s chair

8.3.2 Verification Results

The properties F1, F2, F3, T1, T2, H1, H2, M2, M3 were all verified using Spin (i.e.
the property holds on all paths from every initial state) in times ranging from T1 of
29.9 seconds to H1 of 848 seconds. As expected Spin shows that the property M1 is
false and the time taken to find a trace in the model was 421 seconds. The property
M4 was run multiple times to observe how changing the duration of the Care Worker’s
other duties affected the outcome. Spin was able to verify M4 so long as the Care
Worker’s other duties took less than 2 hours.
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Chapter 9

Digital Nurse Scenario

9.1 Overview of Scenario

This second scenario was developed to verify more complex human-agent teamwork.
The idea behind this scenario was, again, to invent a case study based on a possible real
life scenario, which demonstrates a slightly higher level of teamwork involving humans
and agents. This scenario was derived with the assistance of researchers at the Palo
Alto Research Center (PARC), who are working on projects to develop devices for use
inside a hospital. This scenario was also incrementally built adding functionality along
with specifications to verify, to ensure the correctness of the verification and of the
scenario. The level of teamwork in this scenario was increased to involve joint activities
and to achieve joint goals, e.g., turning a patient is a joint goal between a robot and a
nurse, and both are required to achieve the goal. The non-determinism in this scenario
was also presented through an outside event, i.e., the event of a heart attack. This,
again, is because we want to program the agents with deterministic protocols, so we
want to test how they manage in the event of an emergency.

The Digital Nurse scenario was created to have multiple agents (some virtual) and
humans working together as part of a team. The scenario involves 2 nurses, 1 doctor, 3
digital nurses, 1 robot and 1 agent to monitor the patients. The goal of the scenario is
to take sufficient care of 5 patients. The five patients have certain needs such as food,
water, medication and turning in their beds. Also certain patients are at risk of a heart
attack, which provides an emergency for the scenario. The nurses have the duties of
looking after the patients, however only one nurse at a time looks after the patients.
The other nurse continues duties which are not considered as part of the simulation;
this nurse covers the active nurse in the simulation during the nurse’s break. The
nurse will have a schedule to work to: turning the patients when needed, administering
medication, responding to emergencies and feeding the patients. The digital nurse is
essentially a scheduler for the nurses, reminding them when to perform their duties and
informing them of emergencies. The doctor in the scenario has minimal responsibilities:
check the patients, prescribe medication and respond to emergencies. The robot is a
helping hand for the doctor and nurses: it aids the nurses in turning the patients, refills
patient’s water jugs, fetches the patient’s medication, fetches the patient’s food and
responds to emergencies.
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9.2 Brahms Representation

The scenario is modelled in Brahms using 12 Brahms agents and 2 Brahms objects.
The agents are: 2 nurses (modelled as a humans), 1 doctor (modelled as a human), 3
digital nurses (one for each nurse, and one for the doctor, they are modelled as software
agents), 5 patients (modelled as a humans) and 1 robot (modelled as a hardware/robotic
agent). The objects are: 1 to monitor the patients and 1 for a clock. The patients drink
water every so often, make a breakfast choice when prompted and might have a heart
attack. The patient will only recover from a heart attack if the doctor, robot and a
nurse all respond to resuscitate. The Monitor object keeps track of all the agents. It
can detect when an agent’s water is low and communicates this to the appropriate
digital nurse. The Monitor agent also checks the patients’ vitals so knows when one
has a heart attack, dies or is no longer having a heart attack. The Monitor agent is also
used for counting durations for verification purposes, e.g., it notes when a heart attack
occurs and increments a counter until the patient is either dead or resuscitated. One of
the nurses (Nurse 1) is assigned the responsibility of turning the patients but cannot do
so until the robot is there to assist. To do this two workframes are used: ‘wf turnOne’
and ‘wf turnTwo’. The workframe ‘wf turnOne’ takes the nurse to the patient and
waits for the robot to arrive, a detectable is used to abort this workframe when the
robot is at the nurses location. If the robot does not arrive at the location in time then
the nurse continues with the workframe and sets a flag to preventing ‘wf turnTwo’
from executing. If the robot does arrive in time then workframe ‘wf turnTwo’ becomes
active which performs a primitive activity to turn the patient followed by belief updates
to determine that the patient has been turned. The following is the Brahms code used
to do this:

workframe wf_turnOne{

repeat: true;

priority: 1;

variables:

/*assign a variable to a patient that needs turning*/

forone(Patient) pat;

/*assign a variable to the patient’s location*/

forone(bed) b;

detectables:

/*Detect if robot is at the patient’s location*/

detectable waitForRobot {

when(whenever)

detect((pat.location = Robot.location), dc:100)

/*if robot at patient location then abort the workframe*/

then abort;

}

/*following guards represent:

at time point 8

patient has not been turned

flag to determine if wf_turnOne or wf_turnTwo

should be executed

patient is one which needs turning

this nurse is responsible for turning patients
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identify the location of the patient*/

when(

knownval(current.perceivedTime = 8) and

knownval(pat.turned = false) and

knownval(pat.readyToBeTurned = false) and

knownval(pat.needTurning = true) and

knownval(current.turnDuty = true) and

knownval(pat.location = b))

do {

/*move to location identified*/

moveToBed(b);

/*flag for wf_turnTwo to true*/

conclude((pat.readyToBeTurned = true));

/*inform robot which patient to turn*/

patientToTurn(pat);

/*wait for the robot to arrive*/

waitToTurn();

/*robot has not arrived so set wf_turnTwo flag

to false*/

conclude((pat.readyToBeTurned = false));

}

}

workframe wf_turnTwo{

repeat: true;

priority: 1;

variables:

forone(Patient) pat;

/*Guards check that:

wf_turnTwo flag is true

this nurse is responsible for turning patients*/

when(knownval(pat.readyToBeTurned = true) and

knownval(current.turnDuty = true))

do {

/*turn the patients*/

turnPatient();

/*reset all values and flags*/

conclude((pat.turned = true));

conclude((pat.readyToBeTurned = false));

conclude((pat.timeSinceTurned = 0));

}

}

The nurse responds to resuscitate patients when they have had a heart attack, and also
asks the patients what they want for breakfast and makes the order. The doctor visits
patients and decides what medication the patient will have, for simplicity the medica-
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tion is just a number, e.g., medication 1, 2 and 3, etc. The doctor also resuscitates a
patient when having a heart attack. The digital nurse is responsible for informing the
nurses and doctor of events and passing messages. The digital nurse has workframes
to:

1. remind the nurse when it is time for breakfast;

2. send breakfast orders to the robot;

3. inform the robot of medications the doctor has prescribed;

4. inform the nurse when it is break time;

5. arrange another nurse to cover a nurse’s break; and

6. inform the nurses and doctor of when a patient has a heart attack.

All the agents have thoughtframes to manage time. The clock object uses a collec-
tall variable to send the current time to all the agents. Each agent is a member
of a TimeKeepers group which means they will all receive messages from the clock.
Non-determinism was added to the scenario via the patients having a heart attack.
Thoughtframes in the patient’s code were added to achieve this. These thoughtframes
become active at certain times (times due to the agent’s belief of time, not simulation
time). When these thoughtframes become active they then decide whether or not a
heart attack will happen. A Boolean is set for each patient to decide whether or not
they can use these thoughtframes, i.e., whether they are at risk of a heart attack or not.
A single agent was put at risk of a heart attack and gradually these thoughtframes were
added to test how much non-determinism there could be; three of these thoughtframes
were added before all memory was exhausted.

9.3 “Digital Nurse” Verification

9.3.1 Desirable Properties to Prove

Again we use a range of logical properties for the scenario; recall that in temporal logic,
♦φ means that “φ will be true at some moment in the future”, while �φ means that
“φ will be true at all future moments”. We describe the properties verified and classify
these just by the core aspect they represent, i.e., properties labelled Pn relate to the
patient; Nn relate to the nurses; Rn relate to the robot and DNn relate to the digital
nurses. The axioms used in the properties are all based on the beliefs of the agents or
facts in the system.

PATIENT.

P1: This property was designed to test if an emergency will actually occur in the
scenario, i.e., a patient has a heart attack. The property, explained in English, is:
Eventually a patient will have a heart attack. The property, as a temporal logic
formula is: ♦a where

a = Patient one has a heart attack
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P2: When a patient has a heart attack they can only be revived if all members of the
team arrive to perform their job, when they do we consider the resuscitation rate
to be 100%. If not all members of the team arrive within a certain time frame
then the patient dies. We construct the scenario this way for simplicity, so we
can easily evaluate whether or not all the agents perform their required task. The
property, explained in English, is: The patients are always alive. The property,
as a temporal logic formula is �(a ∧ b ∧ c ∧ d ∧ e) where

a = Patient one is alive

b = Patient two is alive

c = Patient three is alive

d = Patient four is alive

e = Patient five is alive

P3: One of the roles of the nurse is to turn patients that need turning. This task
requires the joint effort of the robot and the nurse, where the nurse must wait
for the assistance of the robot before turning the patient. The team aspect of
this task means it is possible that the patients end up waiting too long to be
turned. To evaluate this we assign each patient a counter, where they start to
count-up when they are due to be turned. This is not considered to not be part
of the scenario, more of an addition to aid verification. The property, explained
in English, is: The patients don’t wait more than 1 hour when they need to be
turned. The property, as a temporal logic formula is: �(a ∧ b ∧ c ∧ d ∧ e) where

a = Patient one’s time for waiting to be turned is less than 1 hour

b = Patient two’s time for waiting to be turned is less than 1 hour

c = Patient three’s time for waiting to be turned is less than 1 hour

d = Patient four’s time for waiting to be turned is less than 1 hour

e = Patient five’s time for waiting to be turned is less than 1 hour

NURSE.

N1: One of the requirements of the scenario is that the nurse on duty (i.e., Nurse one)
needs to take a break, this break needs to then be covered by the nurse not on
duty (Nurse two). The digital nurse is used to notify the nurse of when to take
a break. When the nurse is on a break a simple flag is used to indicate this. The
property, explained in English, is: Eventually the nurse will have a break. The
property, as a temporal logic formula is: ♦a where

a = Nurse one has a break

N2: In the scenario there is only one nurse performing the duties relevant to the
scenario, the other performs ‘other duties’. However, when the primary nurse in
the simulation takes a break the other nurse must cover this nurse’s duties. This
relies on the communication between the digital nurses and the nurses, so that
the secondary nurse takes over before the primary takes a break. The property,
explained in English, is: There is always a nurse on duty. The property, as a
temporal logic formula is: �(a ∨ b)
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a = Nurse one is on duty

b = Nurse two is on duty

N3: When the patient has a heart attack all members of the medical team are called to
resuscitate the patient. We have already specified the property that the patient
does not die in the simulation, but as a sanity check we wish to ensure this
is because the team perform their resuscitation duties within the required time
frame. Again the patient is given a counter to count simulation time to aid
verification, this counter counts the duration since the patient has had a heart
attack. Note that in the simulation it was only Patient one that was put at
risk of a heart attack. The property, explained in English, is: If a heart attack
occurs then eventually the nurse, the doctor and the robot will resuscitate the
patient within 4 minutes. The property, as a temporal logic formula is: �(a ⇒
♦(b ∧ c ∧ d ∧ e)) where

a = Patient one has a heart attack

b = nurse performs resuscitation workframe

c = doctor performs resuscitation workframe

d = robot performs resuscitation workframe

e = time since heart attack is less than 4 minutes

ROBOT

R1: One of the robot’s duties is to ensure the patient’s water jugs always have water.
In the scenario we have a sensor attached to the object monitoring the patients
which informs the robot of when a patient’s water is low and the robot should then
refill this patient’s water jug. This is a low priority task but it is still essential so
we need to ensure this task is still performed, and in a timely fashion. To verify
this property the sensor counts the duration since it flagged the water as low, if
this duration exceeds an hour then an alarm is sounded. The property, explained
in English, is: the low water alarm is never sounded. The property, as a temporal
logic formula is: �(¬a) where

a = low water alarm is sounded

R2: The doctor’s only duty in the simulation is to examine each patient and prescribe
medication. Once a patient is prescribed a medication then the robot has the job
of retrieving this medication for the nurse to administer. The doctor will visit
each patient in turn, tell the digital nurse the prescription who in turn notifies
the robot. The requirement we wish to verify is that at no point does the robot
have the wrong prescription for the patient. The property, explained in English,
is: The robot either has no belief of the patient’s medication requirement or
it matches what the doctor has prescribed. The property, as a temporal logic
formula is: �((a ∨ b) ∧ (c ∨ d) ∧ (e ∨ f) ∧ (g ∨ h) ∧ (i ∨ j)) where

a = robot has no belief about Patient one’s medication

b = robot’s belief about Patient one’s medication matches the doctor’s belief

c = robot has no belief about Patient two’s medication

d = robot’s belief about Patient two’s medication matches the doctor’s belief
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e = robot has no belief about Patient three’s medication

f = robot’s belief about Patient three’s medication matches the doctor’s belief

g = robot has no belief about Patient four’s medication

h = robot’s belief about Patient four’s medication matches the doctor’s belief

i = robot has no belief about Patient five’s medication

j = robot’s belief about Patient five’s medication matches the doctor’s belief

DIGITAL NURSE

DN1: The digital nurse has the job of informing the nurse of their duties and when
to perform them. When the clock announces that 8 hours have passed in the
simulation the digital nurse then has the responsibility to inform the nurse that it
is breakfast time. The property, explained in English, is is: The digital nurse will
notify the nurse it is breakfast time within 1 hour. The property, as a temporal
logic formula is: ♦(a ∧ b) where

a = breakfast has been announced

b = time is at least 8 but less than 9

DN2: This property is to check the reaction time of the digital nurses, ensuring that
when an emergency occurs then the digital nurses inform the doctors, etc. in a
timely fashion. The emergency in this case is a heart attack, again a counter is
started by the patient to measure the duration since the heart attack occurred,
which is used for verification purposes. For this property we use the beliefs of the
agents to test whether the communications have been sent by the digital nurses.
The property, explained in English, is: The digital nurse will notify the doctor,
nurse and robot of a heart attack in less than 2 minutes of when the heart attack
occurred. The property, as a temporal logic formula is: �(a ⇒ (b ∧ c ∧ d ∧ e))
where

a = patient one has a heart attack

b = nurse one believes patient one has had a heart attack

c = robot believes patient one has had a heart attack

d = doctor believes patient one has had a heart attack

e = time since heart attack is less than 2

DN3: This property again checks the communication of the digital nurses, this time
ensuring the nurse is informed to take a break. In the scenario the nurse is due
for a break 10 hours into the simulation, so the property needs to check at the
time is at least 10 but does not become 11. The property, explained in English, is:
The digital nurse will send a notification to the nurse one to take a break within
1 hour of when it is due. The property, as a temporal logic formula is is: ♦(a∧ b)
where

a = the digital nurse believes the nurse has gone on a break

b = the time is at least 10 but not 11
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9.3.2 Verification Results

All the properties above were verified using our tool, however R1 could initially not be
verified. When analysing the results it was found that there was a small error in the
implementation of the scenario. The robot would be notified that the patient’s water
was low, remove the water jug and execute the workframe to fill the jug. However,
the patient were not recognising when the water jug was missing and would carry on
drinking. The robot would set the fact for the jugs water level as full but immediately
afterwards the patient would change the fact to match its belief about the water level -
which is very low since the patient didn’t know the water had been filled. The scenario
was adjusted so that this would not happen but again the verification would fail. This
was found to be because the the Monitor object was performing the count and could
only count a single patient’s jug at a time, but at one point more than one jug was
becoming empty. To fix this we changed the Brahms model so that the patients would
count how much time had passed since their own jug was low. Once this fix was made
the verification of R1 was successful.
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Chapter 10

Case Study Conclusions

Two case studies were chosen to demonstrate the verification of differing levels of
human-agent teamwork. The two scenarios are:

• a home helper scenario; a person with dementia being aided by a robot, an
intelligent house and a human careworker

• a hospital scenario; a doctor, 2 nurses, a robot and 3 digital assistants are working
together to treat 5 patients

The home helper scenario was intended to be small and relatively deterministic for
the purpose of analysing the results of the verification. The hospital scenario, labelled
digital nurse, was intended to push the boundaries of the Brahms translation and the
verification with multiple agents, more in-depth teamwork and more non-determinism.
When designing these scenarios we had to take into account the Brahms functions
utilised in these scenarios, since we will want to test as broad a range of functions as
possible. The Venn diagrams in Figure 10.1 and Figure 10.2 demonstrate what Brahms
constructs have been used in each scenario and all together. Out of all the Brahms
constructs described in the operational semantics the only functions not represented in
these case studies are: the impasse detectable and the foreach variable.

The verification results of these scenarios were promising, with our tool correctly
verifying the properties that should be true and finding an error trace in properties
that should not be verifiable. While conducting the verification there were instances
where errors in the model were identified (such as R1 in the digital nurse scenario) and
adjustments needed to be made so that the property could be verified. During verifi-
cation there were some memory issues, where the verification process would consume
all available memory rendering a property unverifiable. These issues were resolved but
in the case of the digital nurse scenario the level of non-determinism had to be kept
to a minimal amount. Overall the verification of these case studies demonstrated that
accurate models of the Brahms scenarios were being created and that properties could
be correctly verified. However, these case studies did highlight that, because of memory
issues future work will be required in order to practically verify any Brahms models
which are larger than the digital nurse scenario.
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Figure 10.1: Venn diagram showing Brahms functions used in the home helper scenario

Figure 10.2: Venn diagram showing Brahms functions used in the digital nurse scenario
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Part IV

Evaluation and Conclusions
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Chapter 11

Evaluation of the Verification
Performance

Next we consider the effect of our translation from Brahms models into the input lan-
guage for Spin in terms of numbers of states generated in the model and verification
times. Since this is the first tool for verifying Brahms models of human-agent team-
work we had no expectations on the performance. However, a performance issue became
apparent when only minimal non-determinism could be added to the Digital Nurse ex-
ample before all memory was consumed. The verification of the Robot Helper scenario
also had memory issues, even on deterministic runs. We managed to identify that the
cause of this issue was surplus states generated from the semantics, i.e., new states
generated when the only variables changed are those holding states for loop counters,
stack pointers, temporary variables, etc. We consider these states to be surplus because
they do not provide any additional details about the state of the Brahms model. This
issue was partially resolved by adding deterministic sections inside the PROMELA.
These deterministic sections tell the Spin model checker to condense the code into a
single state, with any non-determinism dealt with by random selections. Restrictions
on the use of these deterministic wrappers meant that not all of the surplus states
could be removed. Sections of code containing ‘goto’ statements could not be inside a
wrap neither could sections containing the halting of a processes, this has increased the
number of states generated and therefore increased the verification time and amount
of memory used.

While the translation of the Brahms models into PROMELA is arguably correct
there may be better ways to structure the code to improve the size of the state space. To
further explore this we conducted some performance testing for agents carrying out very
simple and scalable tasks. The main focus of the testing was on the number of agents,
the number of actions the agents perform, workframes, thoughtframes, activities and
communication. Our hypothesis is that increasing the size of the PROMELA code (by
adding more Brahms constructs) and increasing the iterations through the semantics
(number of time steps) will create surplus states. To explore these issues we focused
on simple counting agents.

11.1 Single Agent

We performed tests on a single agent scenario to analyse how it is affected by various
Brahms constructs. The tests were all based on counting to see the effect on per-
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Figure 11.1: Graph showing verification time against size of count

Figure 11.2: Graph showing the number of states stored against size of count

formance when: a count is increased, the number of workframes (or thoughtframes)
increases, the number of activities increases and the amount of non-determinism is
increased.

11.1.1 Deterministic Counting

The first test was intended as a bench mark to judge limitations of a simple agent
example. The idea was to see what value a single agent could count to using a single
workframe before all memory would be consumed during verification, and to see what
the effect of increasing the count would have; the property verified was that the agent’s
count would never exceed the count assigned, e.g., if the count was 1,000 we would
verify that it never reaches 1,001. An activity was also present in the workframe: to
wait one time unit before incrementing, this was to incorporate as many semantic rules
visited on each count. The graphs representing the test results can be found in Figure
11.1 showing verification time and Figure 11.2 showing the number of states stored.
As the results show this is a linear increase in verification time and states stored. This
was expected because for each count the agent cycles through its semantics, changing
only one variable every time.
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Figure 11.3: Graph showing the verification time of a count via different frame types

11.1.2 Frame Types and Number of Frames

The next set of tests was used to judge the effect of the frame type and the number
of frames used to count to 5,000. To evaluate the effect of the frame type we verified
that the agent would not count to 5,001, using either thoughtframes or workframes.
The test was performed by breaking up the count and distributing it between differ-
ing numbers of frames, e.g., 1 frame with a count from 0-5,000, 2 frames with counts
0-2,500 and 2,501-5,000, and so on. The hypothesis is that: each frame would have a
slight overhead, creating more states for each additional frame; workframes will have
a very slightly higher overhead due to more available constructs; and adding an activ-
ity will have the largest overhead as it will move time forward causing the agent and
scheduler to utilise more of their semantic rules. The results of the tests are shown
in Figure 11.3 showing verification time and Figure 11.4 showing states stored. The
results showed a linear increase in verification time and states stored when frame num-
bers increased, as expected. For a count of 5,000 there were found to be approximately
50,000 additional states per additional thoughtframe, which results in approximately
10 extra states per iteration of the semantics (calculated by 50,000 divided by 5,000).
Workframes were found to be an extra 30 states per additional workframe. The re-
sults also showed that, as expected, thoughtframes performed better on verification
and adding an activity to the workframe slows down the verification. However, the
difference in performance is surprising, only a marginal performance difference between
thoughtframes and workframes was expected yet the difference was similar to adding
an activity to the workframe. On closer examination of these results it was found that
PROMELA code using workframes was much larger than those using thoughtframes,
one example being 478 lines with 4 thoughtframes against 748 for 4 workframes. The
additional lines of code with the agents using workframes are to check if the workframe
needs to be suspended. This could be considered an error because the workframes in
these tests do not have activities, which means they will never be suspended. However,
the general idea of workframes is that they will contain activities, a workframe without
any activities should be represented using a thoughtframe.

11.1.3 Non-Deterministic Counting

The next test was to set a benchmark for adding non-determinism to Brahms models
for verification. Non-determinism in Brahms can be added through various means,
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Figure 11.4: Graph showing the number of states stored when verifying a count via
different frame types

however we only consider two possible methods for adding non-determinism:

1. belief and fact certainties, there are probabilities assigned to belief and fact up-
dates stating the probability that the update will occur; and

2. thoughtframe and workframe selection, thoughtframes and workframes that are
active and have equal priority will be randomly selected for execution;

The test was performed using 2 counters; one which deterministically counts up to a
desired stop condition and the second counter which may or may not increase. For
example, using two counters i and j we deterministically increase counter i 800 times
and every time we increase i we have the option of increasing j, resulting in a non-
deterministic value of j ranging from 0-800. The results of the tests are shown in
Figure 11.5 showing verification time and Figure 11.6 showing states stored. The results
show an exponential increase until a count of 800 when memory has been completely
consumed. This demonstrates that if the task is small then there are no problems when
adding non-determinism. To compare the performance we built a simple PROMELA
model to do the exact same process. The PROMELA code has two variables i and j,
both set to 0, and a do-while loop with a guard condition that i < 800. Inside this
loop there is an increment for variable i and an if-statement with two possible options:
increment j, or do nothing. The do-while loop iterates 800 times, i.e., i = 800 on
termination, but on each iteration j may or may not be incremented resulting in a
termination value varying between 0 and 800. The code is as follows:

/*i increases to 800 and on each count

j has an opportunity to increase */

int i = 0;

int j = 0;

active proctype proc_Environment(){

/*Loop to a count of 800*/

do

::(i < 800)-> i = i+1;

/*Non-deterministic if-statement with two
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possible options: count up or skip count*/

if

::(true)-> j = j+1;

::(true)-> skip;

fi;

:: else-> break;

od;

}

We performed the same tests using this simple PROMELA code and plotted the results
onto the same graph shown in Figure 11.7. The results show that the simple PROMELA
model is much more efficient, since the Brahms implementation has a much steeper
exponential curve. This is possibly due to the PROMELA model generating states for
the Brahms semantics, where the simple model only generates states relating to the
model. Figure 11.8 shows the performance difference between these two tests, which
surprisingly shows an exponential increase. This was an unexpected result since the
number of branches in the model should be identical except the depth of the Brahms
model should be much deeper. To help explain our reasoning consider Figure 11.9
and Figure 11.10. Figure 11.9 shows a deterministic example of counting for both a
Brahms implementation and the simple PROMELA example. This shows that in the
simple example only one state is required to increase the counter, where the Brahms
implementation will require a set number of additional states in-between these two.
These additional states are used to execute the Brahms operational semantics (loop
counters, temporary variables, if-statements, etc.) Figure 11.10 shows what happens
when branching occurs due to non-determinism; it shows that branching occurs at
the same points but for the Brahms implementation there are extra states required
between each branching point. Figure 11.9 and Figure 11.10 are hypothetical and use an
arbitrary value of n states to represent the additional states used by loop counters, etc.
in the implementation of the Brahms operational semantics. This simplified PROMELA
example was used as a basis to show how our implementation compares to a solution
which could be considered as optimal. To achieve similar verification results to this
simplified example would be extremely difficult because it would require us to remove
all the surplus states from the model. There is also a possibly that it will be a time
cost for identifying and removing these states during verification.

11.2 Multiple Agents

The next set of tests are similar to the single agent tests but with an emphasis on
showing the effect of adding more agents into the scenario. The agents are all synchro-
nised using a Brahms scheduler which prevents any interleaving of the agents, giving
a clearly defined order of which agent runs next. Our hypothesis was that adding
additional agents should not change the verification performance much, except for an
overhead on initialising variables and additional work for the scheduler.

11.2.1 Increasing Agents Counting 1,500

This experiment was designed to see the effect of increasing the number of agents
all doing the same task. The hypothesis was that since there is no interleaving of
agents then there should be a linear increase in verification time, e.g., having one
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Figure 11.5: Graph showing the verification time of a single agent incrementing two
counters, one deterministic and the other non-deterministic

Figure 11.6: Graph showing the number of states used when verifying a single agent
incrementing two counters, one deterministic and the other non-deterministic

Figure 11.7: Graph showing a simple PROMELA representation vs the Brahms im-
plementation, each showing the number of states used when verifying a single agent
incrementing two counters, one deterministic and the other non-deterministic
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Figure 11.8: Graph showing a single line representing the difference in number of states
used between a simple PROMELA implementation and the Brahms implementation
when counting non-deterministically

Figure 11.9: Simple Deterministic Counting
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Figure 11.10: Simple Non-Determinisitic Counting

agent counting to 1,500 then adding another agent to count to 1,500 should double the
number of states and therefore double the verification time. However, the scheduler’s
work needs to be taken into account, an extra agent will produce more work for the
scheduler. When the tests were performed we found that the number of states (graph
found in Figure 11.12) did increase linearly but the verification time rose exponentially
(graph found in Figure 11.11). The initial hypothesis to explain this result was the
property being checked (such as the number of operators and depth of nesting) increased
with the number of agents (i.e., Agent 1’s and Agent 2’s and Agent 3’s count does not
exceed 1,500) causing a rise in verification time. The tests were rerun but with all
the tests checking the same property; that Agent 1’s count did not exceed 1,500. The
second test produced almost identical results as previously. Since the property had
little effect on the verification time this meant the issue must lie with the amount of
memory consumed by each state. Each agent has a belief about every attribute of
every agent and every object, even if this belief is null. This means that the amount of
memory used by each state increases with every additional agent, even if the agent is
inactive for the whole simulation.

11.2.2 Increasing Agents sharing a Count of 10,000

This set of tests was run to verify a hypothesis arising from the results of the previous
test (multiple agents counting to 1,500); the size of the state increases when more
agents are added. The idea behind this test was to split a work load between multiple
agents to demonstrate how this affects the state space and verification time. The tests
would involve a single agent counting to 10,000, 2 agents each counting to 5,000, 3
agents counting to 3,333 and so on. The hypothesis was that the verification time and
state space should actually decrease (at an inversely exponential rate) with more agents
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Figure 11.11: Graph showing the verification time of increasing agents counting to
1,500

Figure 11.12: Graph showing the the number of states used when increasing agents
counting to 1,500. Including a single agent representation
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Figure 11.13: Graph showing the verification time when sharing a count to 10,000
between an increasing number of agents

added. The reasoning behind this is that 1 agent executing a cycle of the operational
semantics for a Brahms model twice is computationally the same as 2 agents executing
the operational semantics of the same Brahms model once. However with 1 agent the
scheduler cycles through a set of operational semantic rules for the model twice and with
2 agents it cycles through these semantics once. Figure 11.15 helps explain this idea,
showing the difference between the cycles of the semantics for a single agent counting
to 10,000 and 2 agents counting to 5,000. With a single agent the scheduler only has to
coordinate the one agent but has to iterate through its semantics 10,000 times. With
two agents the scheduler needs to coordinate 2 agents but only has to iterate through
the operational semantics for the model 5,000 times. The results of the tests showed
the hypothesis to be correct with respect to the state space, shown in Figure 11.14 for
states and Figure 11.13 for time. However, the time to verify the property rose linearly
with the number of agents. This reinforces the previous hypothesis that the memory
consumed by the states is slowing the verification: In the single agent example all the
variables and counters of just 1 agent are stored, but with 2 agents this is doubled to
accommodate the second agent. It is an exponential increase because if a third agent is
added then agent 1 and 2 will need beliefs about agent 3’s attributes and agent 3 will
need beliefs about agent 1 and 2’s attributes, also since agent 3 is identical to 1 and 2
then it will have the same attributes.

11.2.3 Broadcasting Count to 1,000

These next set of tests were designed to analyse the effect of communication on veri-
fication time. The test involved a single object counting to 1,000 then communicating
its count to the agents. As it was previously discovered that increasing the number of
agents increases the verification time we decided to keep the number of agents the same
but change the number receiving the communication. Communication is carried out in
Brahms by one agent changing another agent’s beliefs, meaning that communication
is little more than a belief update, so in theory only a few additional states would be
needed. When performing this test we used two different methods for sending a single
message to multiple agents: one would perform a communication for each agent, one
after the other; and the other would use a collectall variable to decide who would re-
ceive the communication and then update the beliefs of all these agents at once. What
we are essentially trying to do here is a ‘broadcast’, Brahms does have a broadcast
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Figure 11.14: Graph showing the the number of states used when sharing a count to
10,000 between an increasing number of agents

Figure 11.15: Semantic iterations comparrison of single agent vs two agents
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Figure 11.16: Graph showing the verification time of an object counting to 1,000 and
broadcasts this count to an increasing number of agents

function but this was not implemented in the operational semantics or the PROMELA
translation because it could be represented using other constructs. This test was of
particular interest because it would demonstrate the verification performance of these
two different methods. Where the broadcast using a collectall variable will require the
use of loops and if-statements to identify the agents it is communicating to but will
perform all the communications very quickly, whereas the individual communications
method will bypass these loops and if-statements but need to execute the communica-
tion semantic rules multiple times. The results of the two experiments were overlapped
onto the same graphs (Figure 11.16 showing the verification time and Figure 11.17
showing the states used) to show the difference in performance.

The predicted result for the collectall test was a high initial number states and
verification time for communication to a single agent with a very slight increase for
every additional agent. The individual communications prediction was a lower initial
number of states and verification time with a steeper increase for every additional agent.
The results for the verification time are shown in Figure 11.16 which shows that the
prediction for the collectall method was correct. However, it was surprising to see how
little adding agents to the communication affected the performance, Figure 11.17 shows
that only 2 additional states are created for every agent added.

In Figure 11.16 and Figure 11.17 there are only 3 points shown on the graph for
individual communications to the agents, but only 1 is visible as the first two overlap
with the collectall. This was because the maximum amount of memory was exceeded
when trying to verify the communications to more than 2 agents. This signifies an issue
with communication suggesting further testing needs to be performed to ascertain the
reason behind this state space explosion.

11.2.4 Multi-Agent Non-Deterministic Counting

The next set of tests was aimed at analysing the effect of non-determinism when the
number of agents increases. Similarly to the deterministic test, non-determinism was
added to the scenario with two counters, one deterministic to act as a stop condition
and the other which non-deterministically increments.

The agents were asked to count to 5, the results are shown in Figure 11.18 showing
time and Figure 11.19 showing the number of states. As expected, the rise in time and
the number of states increases at an exponential rate until memory was exhausted after
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Figure 11.17: Graph showing the the number of states used when an object counts to
1,000 and broadcasts this count to an increasing number of agents

5 agents non-deterministically counting to 5.
The expected results for these tests were that the number of agents would expo-

nentially increase the depth of the model (number of states in a trace run through the
model) and the size of the count would exponentially increase the amount of branch-
ing that occurs in the model. Based on these assumptions it was decided to keep the
count small, since adding more agents will also add more non-determinism, i.e., 1 agent
counting to 10 would have much less non-determinism than 2 agents counting to 10.
The rise in number of states was however far greater than anticipated. We identified
in Figure 11.19 that if a task is distributed across multiple agents then the number of
states required reduces. This posed a question of whether this would still be the case
with multiple agents, e.g., if one agent counts to 800 with a non-deterministic choice at
each count, could 5 agents count to 160 with the same non-deterministic choices using
fewer states?

To answer this question another simple PROMELA example was created, based on
the one used in Section 11.1.3. The simple PROMELA example uses 3 variables: 1 acts
as a deterministic count (variable a) and a variable for each agent (variables b and c) to
non-deterministically increment on each count. There is a process for each agent and a
process for the scheduler to synchronise the agents. The scheduler loops 6 times, each
time incrementing counter a. On each iteration of this loop the scheduler hands control
of the cpu using a variable turn to each agent, where they have a choice to increment
their counter. Below is PROMELA code for a scheduler of an example model:

int a = 0; /*deterministic counter*/

int b = 0; /*agent 1’s non-deterministic counter*/

int c = 0; /*agent 2’s non-deterministic counter*/

mtype = {Environment, ag1, ag2}

mtype turn = Environment;

/*The scheduler*/

active proctype proc_Environment(){

/*Loop through all agents*/

do

::(a < 6)-> /*Loop for 5 counts, 6th for termination*/
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/*Agent 1*/

if

::(turn == Environment)->

/*if at start, start agent*/

if

::(a == 0)-> run proc_agent1();

::else-> skip;

fi;

/*Give agent 1 control of cpu*/

turn = ag1;

fi;

/*Agent 2*/

if

::(turn == Environment)->

/*if at start, start agent*/

if

::(a == 0)-> run proc_agent2();

::else-> skip;

fi;

/*Give agent 2 control of cpu*/

turn = ag2;

fi;

:: else-> break;

od;

}

proctype proc_agent1(){

do

::(a < 5)->

if

/*Increment counter*/

::(turn == ag1)-> b = b+1;

/*Do not increment counter*/

::(turn == ag1)-> skip;

fi;

/*hand control back to environment*/

turn = Environment;

:: else-> break;

od;

}

proctype proc_agent2(){

do

::(a < 5)->

if

/*Increment counter*/

::(turn == ag2)-> c = c+1;
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/*Do not increment counter*/

::(turn == ag2)-> skip;

fi;

/*hand control back to environment*/

turn = Environment;

:: else-> break;

od;

}

Through using this simplified version of the Brahms PROMELA implementation we
were able to test if it was a problem with the Brahms implementation or whether
PROMELA had state reduction techniques for handling large non-determinism on sin-
gle variables. The results of this PROMELA test was that the memory was still being
exhausted for small counts, e.g., counting to 5. To further test this hypothesis another
simpler PROMELA example was created that did not reflect the Brahms semantics but
performed the same task. This simplified version compressed the agents and scheduler
into a single process. This was done by using a do-while loop to increment the deter-
ministic counter with nested if-statements to represent the agents’ choice to increment
their counters. The code is as follows:

int a = 0; /*deterministic counter*/

int b = 0; /*agent 1’s non-deterministic counter*/

int c = 0; /*agent 2’s non-deterministic counter*/

active proctype proc_Environment(){

do

::(a < 10)->

/*Agent 1*/

if

/*Increment counter*/

::(true)-> b = b+1;

/*Do not increment counter*/

::(true)-> skip;

fi;

/*Agent 2*/

if

/*Increment Counter*/

::(true)-> c = c+1;

/*Do not increment counter*/

::(true)-> skip;

fi;

/*Increase deterministic counter*/

a = a+1;

:: else-> break;

od;

}

This simplified version of the multi-agent non-deterministic count showed that 5 agents
could count to 10 before all available memory would be, compared to 5 for the previous
version. Overall the results of these tests show that the performance of the Brahms
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Figure 11.18: Graph showing the verification time of an increasing number of agents
non-deterministically counting to 5

Figure 11.19: Graph showing the number of states used when an increasing number of
agents non-deterministically count to 5

implementation is not as poor as first thought but that restructuring the agents into a
single process (which is possible) could provide a much needed performance boost.

11.2.5 Performance Conclusion

The performance of the PROMELA implementation of the Brahms semantics is af-
fected by many factors which increase the number of states produced and therefore the
verification time. The main issues identified were that adding agents, adding frames,
workframes with no activities, communication and how many activities/concludes the
agent has increases the number of states.

We identified that adding additional agents increased the size of the states thus
extending verification time. Interestingly, adding inactive agents did not increase the
number of states as significantly as expected. This is believed to be because most of
the agents’ semantic rules are bypassed when inactive; only rules requiring the agent
to check for active thoughtframes and workframes are processed.

The addition of workframes and thoughtframes of an agent were found to have an
approximate increase of 30 and 15 (respectively) additional states per single iteration
of the semantics. The reason why so many additional states are created is unclear
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especially since the check on whether a frame is active or not is placed in a deterministic
wrapper (a function which compresses multiple states into a single state, removing any
non-determinism). A possible reason for these states is the increased length of the
arrays to hold the frames; these arrays are checked from head to tail to find the frame
matching an identification number to set it as active or inactive. However, this array
search is also enclosed in a deterministic wrapper. The only other additional code
created is from the belief updates contained within the frames. These belief updates
are not contained within any deterministic wrappers however only one of the belief
updates will be available for selection (the one matching the identification number
retrieved from the frame’s stack of deeds). One issue that was noticed was the number
of deterministic wrappers used, since each one wraps a number of states into single state
it would mean multiple wrappers still mean multiple states. Therefore a re-organisation
of the code to reduce the number of wrappers used would reduce the number of states
created. It was also noticed that the wrappers used did not fully enclose all aspects
of the code, aspects such as print lines (for debugging purposes) were omitted and
some simple counters. Because of this it would be beneficial to make these small
adjustments to the deterministic wrappers and note the effect on the performance. If
there is a marked increase in performance then justification could be made to restructure
the implementation to reduce the number of deterministic wrappers used and thereby
improve performance.

A performance issue was identified with the use of workframes making workframes
far more expensive than thoughtframes. A possible reason for this was executing a
semantic rule to check whether or not to suspend the current workframe. This check
needs to be performed but it was found that this check was possibly being unnecessarily
performed, notably when a workframe had no activities.

Communication provided the worst and most unexpected performance result, espe-
cially with the individual communication to multiple agents. The use of the collectall
was expected to give a rise in number of the states, however when a single communi-
cation is made the collectall only required 2 more states than the individual commu-
nication. However the addition of a communication (from 0 communications to 1) in
both cases more than doubled the number of states used (124,271 to 330,272 for the
communication without a collectall). Since this is a simple belief update then such an
increase should not happen. Future work will need to be conducted to identify how to
fix this issue.

The addition of non-determinism to the tests proved to have surprisingly better per-
formance than expected with a single agent but with poorer performance with multiple
agents. The single agent model managed a count to 800 before running into memory
issues whereas the tests with 5 agents counting to 5 pushed the memory limits. Ad-
ditional tests were run on simplified PROMELA models to help understand this; they
suggested that this outcome should have been predicted. However, these tests also
highlighted that implementing the Brahms semantics in a single process could improve
the performance when adding non-determinism. Implementing the Brahms semantics
in a single process would also remove blocking statements (where an agent’s process is
halted until another agent has finished) and allow easier use of deterministic wrappers.

11.3 Modified Brahms Implementation

As a result of the performance testing it was identified that the PROMELA imple-
mentation of the Brahms semantics could be improved by adding more deterministic
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Figure 11.20: Graph showing the number of states stored when verifying an increasing
deterministic count

wrappers. The performance testing highlighted that Spin generates a state for every
line of code that it encounters; including print lines. This led to some small modifica-
tions to extend the wrappers to include every line of code they could encapsulate and
add wrappers for others. The performance testing was then performed once again using
exactly the same Brahms models to demonstrate what kind of performance increase
would be achieved from adding some extra deterministic wrappers. More importantly,
any increase in performance achieved would justify future work to alter the implemen-
tation to accommodate and condense the use of deterministic wrappers.

The sections below will explain the tests performed before discussing the results.
For simplicity we only consider the number of states used for verification to analyse
the performance difference. The graphs will show both the performance of the previous
implementation of Brahms semantics (labelled as Old) and the updated implementation
(labelled as New).

11.4 Single Agent

The single agent tests were to analyse the performance of Brahms functions. These
individual tests show how the performance has been affected for individual Brahms
functions as some functions may have more deterministic wrappers added than others.

11.4.1 Deterministic Counting

This test was to see what value a single agent could count to using workframes with a
primitive activity of 1 time unit to ensure full cycling of the semantics. The results can
be seen in Figure 11.20. The new implementation shows a marked improvement with
a growth rate of 380,000 states per additional count of 10,000 compared to 540,000 of
the previous implementation, approximately 30% decrease in the number of states.

11.4.2 Frame Types and Number of Frames

In this test a count was broken down into sections, for a single frame the whole count
was represented in a single frame but for 2 frames the count would be split into 2
frames (one counting from 0 to 2,500, the other counting from 2,500 to 5,000). This
test was performed 3 times, once for each of the following: workframes, thoughtframes
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Figure 11.21: Graph showing the number of states stored when verifying a count dis-
tributed among different thoughtframes

Figure 11.22: Graph showing the number of states stored when verifying a count dis-
tributed among different workframes

and workframes with an activity. A graph was used to display each test with a compar-
ison against the previous implementation: thoughtframes in Figure 11.21; workframes
in Figure 11.22; and workframes with an activity in Figure 11.23. The results shows an
improvement on all frame types, however the number of states required per thought-
frame does not change so both lines on the graph are parallel to each other. There
is an initial performance improvement but every time another thoughtframe is added
both the old and new implementation need an additional 50,000 states. It can be noted
that 50,000 additional states over a count of 5,000 mean an addition of 10 states per
thoughtframe per count (50,000/5,000). This implies that most aspects which can be
in a deterministic wrapper are covered. Workframes on the other hand showed a real
performance improvement; requiring less on single workframes and showing a smaller
state increase when new workframes are added. For workframes (both with and without
an activity) the number of states increase at a rate of 150,000 per additional workframe
compared with the new implementation’s 100,000; approximately a 33% improvement.
The workframes also have an initial improvement when using a single workframe. This
improvement is due to workframes requiring additional code for suspending the work-
frame, processing detectables and processing activities. These additional lines of code
provide more possible applications of deterministic wrappers.
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Figure 11.23: Graph showing the number of states stored when verifying a count dis-
tributed among different workframes with an activity

Figure 11.24: Graph showing the number of states stored when verifying an increasing
non-deterministic count

11.4.3 Non-Deterministic Counting

To test non-determinism 2 counters were used; one which would deterministically count
setting a desired stop-condition and a second counter which may or may not increase
with the first counter. This test also showed a performance improvement for the new
implementation. This improvement is harder to quantify since the graphs are exponen-
tial, however the new implementation required approximately 27% less states than the
old implementation. The results are shown in Figure 11.24.

11.5 Multiple Agents

The following sets of tests will show the change in performance with the addition of
multiple agents. There has however already been a significant performance increase
when using Brahms functions in single agent scenarios, taking this into account we will
analyse the performance in comparison to the already known increases in performance.
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Figure 11.25: Graph showing the number of states stored with increasing agents count-
ing to 1,500

Figure 11.26: Graph showing the number of states stored with a count to 10,000 split
between an increasing numbers of agents

11.5.1 Increasing Agents Counting to 1,500

This test was designed to analyse the effect of multiple agents performing the same task,
i.e., counting to 1,500. The test results are shown in Figure 11.25. The results show a
30% reduction in states as compared to the previous implementation, considering the
single agent version, in Figure 11.20, also had a 30% reduction this indicates that there
is no additional performance increase (or decrease) from adding new agents.

11.5.2 Increasing Agents sharing a Count of 10,000

This test was to split a work load between multiple agents to demonstrate how this
affects the state space. This test also showed a 30% increase in performance, which
was to be expected given the previous test. The results are shown in Figure 11.26

11.5.3 Broadcasting Count to 1,000

This test is a single object counting to 1,000 and communicating its count to an in-
creasing number of agents. There were two versions of this test; one for individual
communications and another for using a collectall variable to simulate a broadcast.

134



Figure 11.27: Graph showing the number of states stored when an object communicates
its count to 1,000 to an increasing number of agents

Figure 11.28: Graph showing the number of states stored when an increasing number
of agents non-deterministically count to 5

This could not be tested in a single agent environment for obvious reasons, so only a
comparison to the previous implementation can be made. The results are all overlaid
onto a single graph: old, new, individual and collectall. The results (Figure 11.27) show
a performance increase but still show that individual communications are an issue with
memory becoming an issue after only 2 communications. This indicates that determin-
istic wrappers will not solve this issue. Overall the communication shows a 25% state
reduction; slightly less than other Brahms functions.

11.5.4 Multi-Agent Non-Deterministic Counting

This experiment tested non-determinism with multiple agents. An increasing number
of agents was used with two counters: one deterministic to act as a stop condition
(counting to 5) and the other which non-deterministically increments with the first
counter. The results of this test shows a performance increase of approximately 28%,
shown in Figure 11.28, which is consistent with the single agent example showing a
27% improvement.
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11.6 Performance Conclusion

The addition of more deterministic wrappers has significantly increased the performance
with state reductions varying from 25-33%. This change was a very minor change,
simply compressing some print line states and counter states into a single state. This
demonstrates that a serious performance gain can be made by maximising the use of
deterministic wrappers within the implementation, thereby justifying further work to
break down the implementation and re-implement it so that deterministic wrappers
can be more easily used. To further analyse the improvement to the verification we
verified the properties of the Digital Nurse and Home Helper scenarios to analyse the
performance difference.

Table 11.1: Home Helper Verification

Property Old Version(states) New Version(states) Percentage

F1 70938 70483 0.65%
F2 69794 69980 -0.02%
F3 78641 78650 -0.01%
T1 33955 34122 -0.05%
T2 69954 69927 0.01%
H1 137545 137176 0.03%
H2 137545 137176 0.03%
M1 80333 80189 0.02%
M2 70938 70483 0.07%
M3 69308 69281 0.01%

Table 11.2: Digital Nurse Verification

Property Old Version(states) New Version(states) Percentage

P1 103618 85644 17.3%
P2 230864 172190 25.4%
P3 230864 172190 25.4%
N1 101594 75905 25.2%
N2 230864 172190 25.4%
N3 230864 172190 25.4%
R1 230864 172190 25.4%
R2 230864 172190 25.4%
D1 103618 85644 17.3%
D2 230864 172190 25.4%
D3 100062 75575 24.4%

The results show a marked improvement for the Digital Nurse, shown in Table 11.2
with approximately +25% state reduction which is comparable to the results of the
tests performed on the counting agents. However, for the Home Helper scenario there
was only a slight improvement of less than 1%, with F2, F3, T1 showing very minor
increases in the number of states stored; results are shown in Table 11.1.
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Chapter 12

Impact on Computer Science

In this chapter we discuss how the work produced from this thesis has aided others in
their research. To remind the reader of the contributions this thesis makes to computer
science:

• the first formal operational semantics for Brahms

• the first formal verification tool specifically for human-agent teamwork

• the first formal verification tool for the Brahms simulation framework

• aided construction of another formal verification tool for the Brahms simulation
framework

The formal operational semantics we produced for Brahms is the first of its kind, these
semantics will allow an insight into the workings of Brahms for any other researcher
who wishes to develop their own verification techniques or tools for Brahms. It also
gives prospective Brahms users an idea of how a Brahms simulation is processed, which
may help them to decide whether or not Brahms is the system they need for their
research.

The verification tool we present in this thesis doubles up as two contributions; one
for verifying human-agent teamwork and the other for verifying Brahms models. This
is the first tool of its kind for both human-agent teamwork and Brahms. Using this
tool other researchers will be able to verify simulations involving humans and agents,
and other Brahms simulations. This tool also operates as a prototype, giving ideas and
insight into how the verification of Brahms can be performed and also details possible
problems a researcher may encounter.

The final contribution bundles all these contributions together and presents a real
example of where our work has contributed to computer science. This real example is
another model checking tool developed at NASA to verify Brahms models. To create
their tool NASA used our operational semantics for Brahms and requested our expertise
on how to implement the semantics in Java. To aid them in this implementation
we produced a simplified implementation of the operational semantics of Brahms and
presented them to NASA, this code can be found in Appendix E. A copy of our tool
was presented to NASA, the issue where PROMELA generates states for changes in
counters, variable, etc. that arent needed for verification was explained. The process
used by NASA as a result took great care in preventing the creation of these unnecessary
states. The model checker they created is explained below.
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Figure 12.1: An extensible architecture that leverages state of the art technologies to
verify MAS models.

12.1 NASA’s Translation via Java Pathfinder to Multiple
Model Checkers

With our collaboration Neha Rungta and Franco Raimondi developed a different tool
for verifying Brahms models using the semantics we present in this thesis in Chapter
6. Figure 12.1 presents a high level overview of this framework. The input to the
framework is a Brahms model representing a simulation of the desired MAS (Multi-
Agent System). The MAS connector shown in 12.1 executes the Brahms semantics and
generates an intermediate representation of the MAS model described in the inputted
Brahms code. This model holds all the relevant states and transitions of all the agents
in the MAS, discarding anything which is not part of the model e.g., counters and
variables used when executing the Brahms semantics. This was done by extending the
Java Pathfinder model checker to gain control of the execution of the Brahms seman-
tics. Extensible plugins in JPF, such as customised choice points, allowed the efficient
reduction of the state space producing the model in the intermediate representation.
This intermediate representation is essentially an explicit state model representing all
the possible states and actions of the MAS. Additionally the MAS connector gathers
and stores information such as transition probabilities, temporal and epistemic rela-
tions between states. This allows for additional search and exploration strategies for
verification purposes which are re-useable for different verifiers such as probabilistic
and on-the-fly safety properties.

Currently the intermediate representation can be converted into formats for main-
stream verification tools such as Spin, NuSMV and PRISM, allowing verification of
LTL/CTL properties, probabilities, time bounds and cost.

12.1.1 Case study: Air France 447 Model

The following is Neha Rungta’s [71] description of the case study to demonstrate the
efficacy of this technique:

On June 1, 2009 Air France Flight 447 between Rio de Janeiro and Paris
crashed in the equatorial Atlantic. The final BEA accident report1 states

1http://www.bea.aero/en/enquetes/
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that the pitot tubes sensors used to detect the airspeed of the aircraft were
reporting incorrect airspeed values. The weather conditions caused icing to
build up on the pitot tubes resulting in inaccurate airspeed readings. The
inexperience of the pilot was determined to be the cause of the crash. The
pilot in charge misjudged the airspeed of the plane and increased the altitude
of the plane without realizing the plane was in a stall which eventually led
to its crash. According to the report the pilot was presented with several
chances to recover, but, was unable to do so.

A model of the conditions during the flight of AirFrance 447 was devel-
oped to validate that the conditions or hardware failures did not lead to
the crash2. This flight model only includes the important scenarios (i.e.
those that have been determined as catalysts in the cause of the crash).
In the model, there are several components that interact with one another,
namely, the pilot, the controls, the airplane itself, two pitot tube sensors,
the weather, and the stall level. The pilot uses the controls (throttle, ele-
vators) to manipulate the speed, altitude and attitude of the plane. In the
model, the pilot relies on the airspeed reading, which is provided by the
pitot sensors. Pitot sensors monitor the speed of the plane and relay that
information back to the pilot through the gauges. The Weather object in
the model that can simulate stormy conditions and that results in ice to
form over the pitot tubes. The model assumes that when the icing over the
of the Pitot tube’s sensors exceeds a certain threshold the airspeed readings
become inaccurate. If the pilot notices that the airspeed readings from each
of the two pitot sensors do not match, the pilot attempts to estimate the
airspeed using measures described in aviation procedures. In the model the
pilot can use other values to determine that the airspeed values reported by
the pitot sensors is incorrect and then tries to guess the correct speed. The
stall level may increase depending on the combination of airspeed, altitude,
and attitude. Once the stall level goes above some threshold, through dif-
ferent mechanisms the pilot becomes aware of the situation and can adjust
the controls accordingly.

Verification Results

The results showed that the model checker was able to verify that hardware failure was
not at fault and that the pilot had plenty of opportunities to correct the stall. JPF
took 2.5 minutes to generate approximately 28, 000 to prove the property (which was
not made available to us) representing the above statement.

12.1.2 Comparing results

A comparison was made to analyse the performance between the JPF with an interme-
diate representation and the direct translation to PROMELA presented in this thesis.
The comparison was on the model of the home helper shown in Chapter 8 which models
an elderly person, a helper robot, a care provider who is human, and another auto-
mated agent. Ten different properties were verified using both frameworks in order to

flight.af.447/flight.af.447.php
2Statistical Analysis of Flight Procedures, by Adrian Agogino and Guillaume Brat at NASA Ames

Research Center, CA.
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empirically compare the effectiveness of each approach.
The JPF framework has two tasks to perform; generate the intermediate repre-

sentation and perform the verification. It takes less than one minute to generate the
intermediate model, with 511 intermediate states and 690 transitions. The verification
of the 10 properties then only takes 2 seconds, because the model is so refined. Giving
an overall result of:

elapsed time: 00:00:54

JPF states: 7792

search depth: maxDepth=1173

bytecode executed 77169747

max memory: 110MB

loaded code: classes=168, methods=2054

The direct translation to PROMELA, the technique noted in this thesis, does not
have an intermediate representation so Spin is required to build the model itself. This
allows for surplus states required for execution of the Brahms semantics. Overall it
takes approx 5 minutes to verify all 10 properties using this technique, about 5 times
slower than the JPF technique. An example result for verifying a single property is:

State-vector: 18144 byte

depth reached: 126049

states, stored: 137545

states, matched: 11574

transitions

(= stored+matched): 149119

total actual

memory usage: 1010.894 Megabytes

It is interesting to note that in the JPF verification over 77 million bytecode in-
structions are executed while 168 classes and over 2000 methods are analysed. This
demonstrates that the program analysed is of a significant size. However, a mere 7792
JPF states are generated and only 511 intermediate states are produced as output. This
demonstrates how much refinement is done to eliminate surplus states which would only
be used to calculate what values the next state would have i.e., the execution of the
Brahms semantics. The Spin verification is then extremely fast because it does not
need to generate a model since it has already been inputted into it.

The direct translation to PROMELA takes longer due to the structure of the exam-
ple and semantics. It is worth noting however that the direct translation to PROMELA
was a prototype to the JPF verification framework. The identification of the require-
ment of these surplus states during the model checking process inspired the JPF frame-
work to create this intermediate representation and thereby increase the efficiency of
the model checking.
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Chapter 13

Conclusion

The work in this thesis is directed towards the verification of human-agent teamwork
using the Spin model checker and the Brahms multi-agent environment. Brahms en-
ables the description of human-agent teamwork scenarios where the defining factors
are the actions taken, their timing, duration and results. It has proven useful in the
analysis of such scenarios via simulation. By adding verification to Brahms we hope to
extend its usefulness by allowing all possible simulations to be explored, thus ensuring
that undesirable outcomes cannot arise within the model.

In this thesis we have presented the first formal operational semantics for the
Brahms framework and the first tool for the formal verification of Brahms models in-
volving human-agent teamwork. The formal semantics we produced provides us with a
route towards the formal verification of Brahms applications. Using these operational
semantics we can devise model checking procedures and can either invoke standard
model checkers, such as Spin [40] or agent model checkers such as AJPF [7]. Using the
operational semantics we were able to identify the core data structures of Brahms and
develop a parser to parse a model into Java data structures. Parsing a Brahms model
into Java data structures allowed for easier implementation of the Brahms semantics in
the input languages of various model checkers. We implemented the Brahms semantics
in the input language for the Spin model checker, PROMELA, for Spin verification.

Two scenarios were developed to demonstrate and analyse the verification produced
by our tool. The first scenario produced was a home helper robot to aid a person with
dementia. The scenario involved a robot performing duties such as fetching food and
medication, an intelligent house to monitor the person and a care worker who would as-
sist in situations the robots were incapable of handling. This was the simplest scenario
but still demonstrates much of the semantics of Brahms, including the most important
aspects: selection of workframes and thoughtframes; suspension of workframes when a
more important (higher priority) workframe becomes active; detection of facts; perfor-
mance of concludes’, primitive activities, move’ activities and communication activities;
and the use of the scheduler. We verified properties of this scenario, such as: if fire
alarm has been going for > T seconds and the person has not yet left the house, then
the robot informs the person to leave.

The second scenario relates to a hospital, this involved: 2 nurses, 5 patients, a
doctor, a robot to monitor the patient’s, a helper robot and digital assistants for the
nurses and doctor. One nurse has the role of looking after the patients, turning them,
etc. The other nurse performs ‘other duties’ not relevant to the simulation but is there
to cover the nurse looking after the patients during that nurse’s break. The doctor is
there for emergencies and the prescription of medication. The helper robot is there to
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aid the nurse; fetching medication and turning patients, etc. The digital assistants are
for reminding/informing the nurses and the doctor of their most current duties and also
act as autonomous communication devices to keep everyone up to date on the patients.
This scenario was more complex than the home helper scenario demonstrating the same
key features of the Brahms semantics but also required the use of Brahms variables.
The main difference with this scenario was the larger number of agents and the level
of teamwork; agents and humans actually perform tasks together. An example of a
property verified for this scenario is: The patients don’t wait more than 1 hour when
they need to be turned.

To further evaluate our tool we carried out performance evaluating tests to mea-
sure the efficiency of the verification. These tests were not based on human-agent
teamwork but on the use of Brahms functions. The tests performed were very simple
and based on agents counting. The tests involved measuring the effect of increasing the
count, increasing the number of agents counting, adding non-determinism to the count,
communicating the counts and dividing the count between multiple agents. The tests
revealed some issues such as communication adding states exponentially and that more
deterministic wrappers could be added to improve efficiency. After the performance
testing was conducted a new slightly improved version was created which had better
use of deterministic wrappers, this new version was then ran through the same perfor-
mance tests and showed a 30% reduction in the number of states produced. Verification
of the hospital and home helper scenarios was performed using the newer version and
showed an improvement of approximately 25% state reduction for the hospital scenario
and 4% for the homer helper.

The work performed in this thesis contributed to the development of another ver-
ification tool developed by Neha Rungta and Franco Raimondi. With our help Neha
and Franco used the semantics produced for Brahms in this thesis to develop a Java
implementation of the Brahms semantics. With this Java instantiation of the semantics
they are able to use Java Pathfinder to create a refined model of the Brahms simulation,
this refined model is then output into the input language of a model checker, such as
Spin, for verification. Generating the refined model using Java Pathfinder proves to be
the most time expensive part of the verification, but once the model is generated the
verification is quick and efficient.

Future Work

The tool created in this thesis for the verification of human-agent teamwork in Brahms
models was the first of its kind, a prototype. As with all prototypes there are always
areas for improvement, such as increased efficiency and functionality. The tool we
created in this thesis is no different, verification efficiency can be improved on and
more Brahms functions could be added to the PROMELA translation. The possibility
of increasing the efficiency of our tool was highlighted in the performance evaluation
section which showed areas where we could improve the tool. Such ways of increasing
efficiency included:

1. restructuring the Brahms translation into a single PROMELA process to allow
for better use of deterministic wrappers

2. identifying the communication issue which resulted in an exponential rise in states
when performing multiple communications
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3. structuring the Brahms translation for efficient use of deterministic wrappers to
limit the number of surplus states

Where functionality is concerned the translation to Brahms could be expanded to in-
clude Brahms functions such as group activities and possibly to handle activities with
durations within a minimum and maximum range (where currently only a single value
is allowed). Functionality of the tool itself could also be improved as currently it is
only executable from the command line. Spin never-claims (used to express specifi-
cations) currently need to be created manually requiring expertise and knowledge of
the translation. The implementation of a graphical interface which can aid the user in
generating the never-claims of the user’s specification would make the system much eas-
ier to use. The graphical interface could also be integrated into the Brahms Composer
(the Brahms graphical interface) giving the user the option to either generate a random
Brahms simulation or verify whether a property holds or not. By adding verification to
the Brahms Composer we would provide easy access to verification, which will allow all
possible simulations (with fixed time granularities) to be explored, thus ensuring that
undesirable outcomes cannot arise within the model.
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Appendix A

Brahms Syntax

This is the syntax of Brahms, which was referred to in Chapter 7. It is represented in
Backus-Naur Form (BNF).

Identifiers

name ::= [ letter ][ letter | digit | - ]*

letter ::= a | b || z | A | B || Z | _

digit ::= 0 | 1 || 9

blank-character ::= | \t | \n | \f | \r

number ::= [ integer | long | double ]

integer ::= { + | - } unsigned

long ::= { + | - } unsigned { l | L }

unsigned ::= [ digit ]+

double ::= [ integer.unsigned ]

truth-value ::= true | false | unknown

literal-string ::= " [ letter | digit | - | : | ; | . ] "

literal-symbol ::= name

Compilation Unit

compilation-unit ::=

[ PCK.package-declaration ]*

[ IMP.import-declaration ]*

[ GRP.group |

AGT.agent |

CLS.class |

OBJ.object |

COC.conceptual-class |

COB.conceptual-object |

ADF.areadef |

ARE.area |

PAT.path ]*
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Package Declaration

package-declaration ::= package package-name ;

package-name ::= ID.name |

package-name . ID.name

Import Declaration

import-declaration ::= [ brahms-import-declaration

| java-import-declaration ]

brahms-import-declaration ::= [ import brahms-single-type-import ;

| import brahms-multi-type-import ; ]

brahms-single-type-import ::= concept-name |

PCK.package-name . concept-name

concept-name ::= ID.name

brahms-multi-type-import ::= * |

PCK.package-name . *

java-import-declaration ::= [ jimport java-single-type-import ;

| jimport java-type-import-on-demand ; ]

java-single-type-import ::= [ ID.name

| PCK.package-name . ID.name ]

java-type-import-on-demand ::= PCK.package-name . *

Group

group ::= group group-name { group-membership }

{

{ display : ID.literal-string ; }

{ cost : ID.number ; }

{ time_unit : ID.number ; }

{ icon : ID.literal-string ; }

{ attributes }

{ relations }

{ initial-beliefs }

{ initial-facts }

{ activities }

{ workframes }

{ thoughtframes }

}

group-name ::= ID.name

group-membership ::= memberof group-name [ , group-name ]*

attributes ::= attributes : [ ATT.attribute ]*

relations ::= relations : [ REL.relation ]*

initial-beliefs ::= initial_beliefs : [ BEL.initial-belief ]*

initial-facts ::= initial_facts : [ FCT.initial-fact ]*

activities ::= activities : [ activity ]*
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activity ::= [ CAC.composite-activity |

PAC.primitive-activity |

MOV.move-activity |

CAA.create-agent-activity |

COA.create-object-activity |

COM.communicate-activity |

BCT.broadcast-activity |

JAC.java-activity |

GET.get-activity |

PUT.put-activity ]

workframes ::= workframes : [ WFR.workframe ]*

thoughtframes ::= thoughtframes : [ TFR.thoughtframe ]*

Agent

agent ::= agent agent-name { GRP.group-membership }

{

{ display : ID.literal-string ; }

{ cost : ID.number ; }

{ time_unit : ID.number ; }

{ location : ARE.area-name ; }

{ icon : ID.literal-string ; }

{ GRP.attributes }

{ GRP.relations }

{ GRP.initial-beliefs }

{ GRP.initial-facts }

{ GRP.activities }

{ GRP.workframes }

{ GRP.thoughtframes }

}

externalagt ::= external agent agent-name ;

agent-name ::= ID.name

Class

class ::= class class-name { class-inheritance }

{

{ display : ID.literal-string ; }

{ cost : ID.number ; }

{ time_unit : ID.number ; }

{ resource : ID.truth-value ; }

{ icon : ID.literal-string ; }

{ GRP.attributes }

{ GRP.relations }

{ GRP.initial-beliefs }

{ GRP.initial-facts }
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{ GRP.activities }

{ GRP.workframes }

{ GRP.thoughtframes }

}

class-name ::= ID.name

class-inheritance ::= extends class-name [ , class-name ]*

Object

object ::= object object-name

instanceof CLS.class-name

{ COB.conceptual-object-membership }

{

{ display : ID.literal-string ; }

{ cost : ID.number ; }

{ time_unit : ID.number ; }

{ resource : ID.truth-value ; }

{ location : ARE.area-name ; }

{ icon : ID.literal-string ; }

{ GRP.attributes }

{ GRP.relations }

{ GRP.initial-beliefs }

{ GRP.initial-facts }

{ GRP.activities }

{ GRP.workframes }

{ GRP.thoughtframes }

}

object-name ::= ID.name

Conceptual Class

conceptual-class ::= conceptual_class conceptual-class-name

{ conceptual-class-inheritance }

{

{ display : ID.literal-string ; }

{ icon : ID.literal-string ; }

{ GRP.attributes }

{ GRP.relations }

}

conceptual-class-name ::= ID.name

conceptual-class-inheritance ::= extends conceptual-class-name

[ , conceptual-class-name ]*
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Conceptual Object

conceptual-object ::= conceptual_object conceptual-object-name

instanceof COC.conceptual-class-name

{ conceptual-object-membership }

{

{ display : ID.literal-string ; }

{ icon : ID.literal-string ; }

{ GRP.attributes }

{ GRP.relations }

}

conceptual-object-name ::= ID.name

conceptual-object-membership ::= partof conceptual-object-name

[ , conceptual-object-name ]*

Area Definition

areadef ::= areadef areadef-name { areadef-inheritance }

{

{ display : ID.literal-string ; }

{ icon : ID.literal-string ; }

{ GRP.attributes }

{ GRP.relations }

{ GRP.initial-facts }

}

areadef-name ::= ID.name

areadef-inheritance ::= extends areadef-name [ , areadef-name ]*

Area

area ::= area area-name

instanceof ADF.areadef-name

{ partof area-name }

{

{ display : ID.literal-string ; }

{ icon : ID.literal-string ; }

{ GRP.attributes }

{ GRP.relations }

{ GRP.initial-facts }

}

area-name ::= ID.name
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Path

path ::= path path-name

{

{ display : ID.literal-string ; }

area1 : ARE.area-name ;

area2 : ARE.area-name ;

{ distance : ID.unsigned ; }

}

path-name ::= ID.name

Attribute

attribute ::= { private | protected | public }

attribute-type-def

attribute-name

{ attrib-body }

;

attribute-name ::= location | ID.name

attribute-type-def ::= [ type-def

| collection-type-def

| relation-type-def ]

type-def ::= [ class-type-def

| value-type-def

| java-type-def ]

class-type-def ::= [ Agent |

Group |

Class |

Object |

ActiveClass |

ActiveInstance |

ActiveConcept |

ConceptualClass |

ConceptualObject |

ConceptualConcept |

AreaDef |

Area |

GeographyConcept |

Concept |

GRP.group-name |

CLS.class-name |

COC.conceptual-class-name |

ADF.areadef-name ]

value-type-def ::= [ int | long | double | symbol | string | boolean ]

collection-type-def ::= [ map ]

relation-type-def ::= relation ( type-def )

java-type-def ::= java ( java-ref-type-def )
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java-ref-type-def ::=

java-class-or-interface-type-def [ [ ] ]*

java-class-or-interface-type-def ::=

java-type-decl-specifier { java-type-arguments }

java-type-decl-specifier ::= [ ID.name [ . ID.name ]*

| java-class-or-interface-type-def . ID.name ]

java-type-arguments ::= < java-type-argument

[ , java-type-argument ]* >

java-type-argument ::= [ java-ref-type-def

| ? { java-wildcard-bounds } ]

java-wildcard-bounds ::= [ extends java-ref-type-def

| super java-ref-type-def ]

attrib-body ::= {

{ display : ID.literal-string ; }

}

Relation

relation ::= { private | protected | public }

ATT.class-type-def

relation-name

{ ATT.attrib-body }

;

relation-name ::= ID.name

Variable

variable ::= [ collectall | foreach | forone ]

( ATT.type-def )

variable-name

{ variable-body }

;

variable-name ::= ID.name

variable-body ::= {

{ display : ID.literal-string ; }

}

Initial Belief

initial-belief ::= ( [ value-expression

| relational-expression ] ) ;

value-expression ::= obj-attr

equality-operator value |

obj-attr equality-operator
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sgl-object-ref

equality-operator ::= = | !=

evaluation-operator ::= equality-operator

| > | >= | < | <=

obj-attr ::= tuple-object-ref . ATT.attribute-name

{ ( collection-index ) }

tuple-object-ref ::= AGT.agent-name |

OBJ.object-name |

COB.conceptual-object-name |

ARE.area-name |

VAR.variable-name |

PAC.param-name |

current

collection-index ::= ID.literal-string |

ID.unsigned |

VAR.variable-name |

PAC.param-name

sgl-object-ref ::= AGT.agent-name |

OBJ.object-name |

COB.conceptual-object-name |

ARE.area-name |

VAR.variable-name |

PAC.param-name |

unknown |

current

value ::= ID.literal-string | ID.number |

PAC.param-name | unknown

relational-expression ::= tuple-object-ref

REL.relation-name sgl-object-ref { is ID.truth-value }

Initial Fact

initial-fact ::= ( [ BEL.value-expression |

BEL.relational-expression ] ) ;

Primitive Activitiy

primitive-activity ::= primitive_activity activity-name(

{ param-decl [ , param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned | param-name ] ; }

{ random : [ ID.truth-value | param-name ] ; }

{ min_duration : [ ID.unsigned | param-name ] ; }

{ max_duration : [ ID.unsigned | param-name ] ; }

{ resources }

}
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activity-name ::= ID.name

param-decl ::= param-type param-name

param-type ::= ATT.type-def

param-name ::= ID.name

resources ::= resources : [ param-name | OBJ.object-name ]

[ , [ param-name | OBJ.object-name ]*;

activity-ref ::= activity-name

( { param-expr [ , param-expr ]* } ) ;

param-expr ::= GRP.group-name |

AGT.agent-name |

CLS.class-name |

OBJ.object-name |

COC.conceptual-class-name |

COB.conceptual-object-name |

ARE.area-name |

VAR.variable-name |

ID.number |

ID.literal-symbol |

ID.literal-string |

ID.truth-value

Move Activity

move-activity ::= move PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned | PAC.param-name ] ; }

{ random : [ ID.truth-value | PAC.param-name ] ; }

{ min_duration : [ ID.unsigned | PAC.param-name ] ; }

{ max_duration : [ ID.unsigned | PAC.param-name ] ; }

{ PAC.resources }

location : [ ARE.area-name | PAC.param-name ] ;

{ detectDepartureIn : [ ARE.area-name | PAC.param-name ]

[ , [ ARE.area-name | PAC.param-name ] ]* ; }

{ detectDepartureInSubAreas : [ ID.truth-value |

PAC.param-name ] ; }

{ detectArrivalIn : [ ARE.area-name | PAC.param-name ]

[ , [ ARE.area-name | PAC.param-name ] ]* ; }

{ detectArrivalInSubAreas : [ ID.truth-value |

PAC.param-name ] ; }

}
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Create Agent

create-agent-activity ::= create_agent

PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned |

PAC.param-name ] ; }

{ random : [ ID.truth-value |

PAC.param-name ] ; }

{ min_duration : [ ID.unsigned |

PAC.param-name ] ; }

{ max_duration : [ ID.unsigned |

PAC.param-name ] ; }

{ PAC.resources }

{ memberof : [ GRP.group-name | PAC.param-name ]

[ , [ GRP.group-name | PAC.param-name ]* ] ; }

{ quantity : [ ID.unsigned | PAC.param-name ] ; }

{ destination : [PAC.param-name ] ; }

{ destination_name : [ ID.literal-symbol |

PAC.param-name ] ; }

{ location : [ ARE.area-name | PAC.param-name ] ; }

{ when : [ start | end | PAC.param-name ] ; }

}

Create Area

create-area-activity ::= create_area

PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned | PAC.param-name ] ; }

{ random : [ ID.truth-value | PAC.param-name ] ; }

{ min_duration : [ ID.unsigned | PAC.param-name ] ; }

{ max_duration : [ ID.unsigned | PAC.param-name ] ; }

{ PAC.resources }

{ instanceof : [ ADF.areadef-name | PAC.param-name ]

[ , [ ADF.areadef-name | PAC.param-name ]* ] ; }

{ partof : [ ARE.area-name | PAC.param-name ] ; }

{ inhabitants : [ AGT.agent-name | OBJ.object-name

| PAC.param-name ] [ , [ AGT.agent-name |

OBJ.object-name | PAC.param-name ]* ] ; }

{ destination : [PAC.param-name ] ; }

{ destination_name : [ ID.literal-symbol |
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PAC.param-name ] ; }

{ when : [ start | end | PAC.param-name ] ; }

}

Create Object

create-object-activity ::= create_object

PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned |

PAC.param-name ] ; }

{ random : [ ID.truth-value |

PAC.param-name ] ; }

{ min_duration : [ ID.unsigned |

PAC.param-name ] ; }

{ max_duration : [ ID.unsigned |

PAC.param-name ] ; }

{ PAC.resources }

action : [ new | copy | PAC.param-name ] ;

source : [ CLS.class-name |

OBJ.object-name |

COC.conceptual-object-name |

COB.conceptual-object-name |

PAC.param-name ] ;

destination : [PAC.param-name ] ;

{ destination_name : [ ID.literal-symbol |

PAC.param-name ] ; }

{ location : [ ARE.area-name |

PAC.param-name ] ; }

{ conceptual_object :

[ COB.conceptual-object-name | PAC.param-name ]

[ , [ COB.conceptual-object-name |

PAC.param-name ] ]* ; }

{ when : [ start | end | PAC.param-name ] ; }

}

Communicate

communicate-activity ::= communicate

PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned |
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PAC.param-name ] ; }

{ random : [ ID.truth-value |

PAC.param-name ] ; }

{ min_duration : [ ID.unsigned |

PAC.param-name ] ; }

{ max_duration : [ ID.unsigned |

PAC.param-name ] ; }

{ PAC.resources }

{ type : [ phone | fax | email |

face2face | terminal |

pager | none | PAC.param-name ] ; }

with : [ [ AGT.agent-name |OBJ.object-name |

PAC.param-name ] [ , [ AGT.agent-name |

OBJ.object-name | PAC.param-name ] ]* ;

about : TDF.transfer-definition

[ , TDF.transfer-definition ]* ;

{ when : [ start | end | PAC.param-name ] ; }

}

Broadcast

broadcast-activity ::= broadcast

PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned |

PAC.param-name ] ; }

{ random : [ ID.truth-value |

PAC.param-name ] ; }

{ min_duration : [ ID.unsigned |

PAC.param-name ] ; }

{ max_duration : [ ID.unsigned |

PAC.param-name ] ; }

{ PAC.resources }

{ type : [ phone | fax | email |

face2face | terminal |

pager | none | PAC.param-name ] ; }

{ to : [ ARE.area-name | PAC.param-name ]

[ , [ ARE.area-name | PAC.param-name ] ]* ; }

{ toSubAreas : [ ID.truth-value | PAC.param-name ] ; }

about : TDF.transfer-definition

[ , TDF.transfer-definition ]* ;

{ when : [ start | end | PAC.param-name ] ; }

}
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Get

get-activity ::= get PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned | PAC.param-name ] ; }

{ random : [ ID.truth-value | PAC.param-name ] ; }

{ min_duration : [ ID.unsigned | PAC.param-name ] ; }

{ max_duration : [ ID.unsigned | PAC.param-name ] ; }

{ PAC.resources }

items

{ source : [OBJ.object-name | AGT.agent-name |

ARE.area-name | PAC.param-name ] ; }

{ when : [ start | end | PAC.param-name ] ; }

}

items ::= items : [ PAC.param-name | OBJ.object-name |

AGT.agent-name ] [ , [ PAC.param-name |

OBJ.object-name | AGT.agent-name ]* ;

Put

put-activity ::= put PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned | PAC.param-name ] ; }

{ random : [ ID.truth-value | PAC.param-name ] ; }

{ min_duration : [ ID.unsigned | PAC.param-name ] ; }

{ max_duration : [ ID.unsigned | PAC.param-name ] ; }

{ PAC.resources }

items

{ destination : [OBJ.object-name | AGT.agent-name |

ARE.area-name | PAC.param-name ] ; }

{ when : [ start | end | PAC.param-name ] ; }

}

items ::= items : [ PAC.param-name | OBJ.object-name |

AGT.agent-name ] [ , [ PAC.param-name | OBJ.object-name |

AGT.agent-name ]* ;

Gesture

gesture-activity ::= gesture PAC.activity-name (
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{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned | PAC.param-name ] ; }

{ random : [ ID.truth-value | PAC.param-name ] ; }

{ min_duration : [ ID.unsigned | PAC.param-name ] ; }

{ max_duration : [ ID.unsigned | PAC.param-name ] ; }

{ PAC.resources }

gesture : [ ID.literal-symbol | PAC.param-name ] ; }

}

Java

java-activity ::= java PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned | PAC.param-name ] ; }

{ random : [ ID.truth-value | PAC.param-name ] ; }

{ min_duration : [ ID.unsigned | PAC.param-name ] ; }

{ max_duration : [ ID.unsigned | PAC.param-name ] ; }

{ PAC.resources }

class : [ ID.literal-string | PAC.param-name ] ;

{ when : [ start | end | PAC.param-name ] ; }

}

Composite

composite-activity ::= composite-activity PAC.activity-name (

{ PAC.param-decl [ , PAC.param-decl ]* } )

{

{ display : ID.literal-string ; }

{ priority : [ ID.unsigned | PAC.param-name ] ; }

{ end_condition : [ detectable | nowork ] ; }

{ WFR.detectable-decl }

{ GRP.activities }

{ GRP.workframes }

{ GRP.thoughtframes }

}

Workframe
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workframe ::= workframe workframe-name

{

{ display : ID.literal-string ; }

{ type : factframe | dataframe ; }

{ repeat : ID.truth-value ; }

{ priority : ID.unsigned ; }

{ variable-decl }

{ detectable-decl }

{ [ precondition-decl workframe-body-decl ] |

workframe-body-decl }

}

workframe-name ::= ID.name

variable-decl ::= variables : [ VAR.variable ]*

detectable-decl ::= detectables : [ DET.detectable ]*

precondition-decl ::= when ( {

[ PRE.precondition ] [ and PRE.precondition ]* } )

workframe-body-decl ::= do {

[ workframe-body-element ]* }

workframe-body-element ::= [ PAC.activity-ref |

CON.consequence | DEL.delete-operation ]

Thoughtframe

thoughtframe ::= thoughtframe thoughtframe-name

{

{ display : ID.literal-string ; }

{ repeat : ID.truth-value ; }

{ priority : ID.unsigned ; }

{ WFR.variable-decl }

{ [ WFR.precondition-decl thoughtframe-body-decl ] |

thoughtframe-body-decl }

}

thoughtframe-name ::= ID.name

thoughtframe-body-decl ::= do {

[ thoughtframe-body-element ; ]* }

thoughtframe-body-element ::= CON.consequence

Precondition

precondition ::= { [ known | unknown ] } ( novalcomparison ) |

{ [ knownval | not ] } ( evalcomparison )

novalcomparison ::= BEL.obj-attr |

BEL.obj-attr REL.relation-name |

BEL.tuple-object-ref REL.relation-name

evalcomparison ::= eval-val-comp | rel-comp
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eval-val-comp ::= expression BEL.evaluation-operator expression |

BEL.obj-attr BEL.equality-operator ID.literal-symbol |

BEL.obj-attr BEL.equality-operator ID.literal-string |

BEL.obj-attr BEL.equality-operator BEL.sgl-object-ref |

BEL.sgl-object-ref BEL.equality-operator BEL.sgl-object-ref

rel-comp ::= BEL.obj-attr REL.relation-name BEL.obj-attr

{ is ID.truth-value } |

BEL.obj-attr REL.relation-name BEL.sgl-object-ref

{ is ID.truth-value } |

BEL.tuple-object-ref REL.relation-name BEL.sgl-object-ref

{ is ID.truth-value }

expression ::= term | expression [ + | - ] term

term ::= factor | term [ * | / | div | mod ] factor

factor ::= primary | factor ^ primary

primary ::= - primary | element

element ::= ID.number |

BEL.obj-attr |

VAR.variable-name |

unknown

Consequence

consequence ::= conclude ( ( resultcomparison )

{ , fact-certainty }

{ , belief-certainty } ) ;

resultcomparison ::= [ result-val-comp | PRE.rel-comp ]

result-val-comp ::= BEL.obj-attr BEL.equality-operator

PRE.expression |

BEL.obj-attr BEL.equality-operator ID.literal-symbol |

BEL.obj-attr BEL.equality-operator ID.literal-string |

BEL.obj-attr BEL.equality-operator BEL.sgl-object-ref |

BEL.tuple-object-ref BEL.equality-operator

BEL.sgl-object-ref

fact-certainty ::= fc : ID.unsigned

belief-certainty ::= bc : ID.unsigned

Detectable

detectable ::= detectable detectable-name {

{ when ( [ whenever | ID.unsigned ] ) }

detect ( ( resultcomparison ) { ,

detect-certainty } )

{ then detectable-action } ;

}

detectable-name ::= ID.name
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resultcomparison ::= [ detect-val-comp |

detect-rel-comp ]

detect-val-comp ::= obj-attr |

obj-attr BEL.evaluation-operator PRE.expression |

obj-attr BEL.evaluation-operator obj-attr |

obj-attr BEL.equality-operator ID.literal-symbol |

obj-attr BEL.equality-operator ID.literal-string |

obj-attr BEL.equality-operator sgl-object-ref

detect-rel-comp ::= detectable-object REL.relation-name |

detectable-object REL.relation-name sgl-object-ref

{ is ID.truth-value }

obj-attr ::= detectable-tuple

{ ( BEL.collection-index ) }

detectable-tuple ::= detectable-object .

ATT.attribute-name

detectable-object ::= BEL.tuple-object-ref |

< ID.name >

sql-object-ref ::= BEL.sql-object-ref |

< ID.name > | ?

detect-certainty ::= dc : ID.unsigned

detectable-action ::= continue | impasse | abort |

complete | end_activity

Transfer Definition

transfer-definition ::= transfer-action ( communicative-act |

DET.resultcomparison )

transfer-action ::= send | receive

communicative-act ::= OBJ.object-name | PAC.param-name

Delete

delete-operation ::= delete [ VAR.variable-name |

PAC.param-name ]
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Appendix B

ANTLR Parser

The following code is detailed in the appendix to show how Brahms code is read in and
parsed for storage in Java data structures. It is coded using the BNF language defined
for the ANTLR parser.

grammar Brahms;

@header {

import java.util.HashSet;

import java.util.Stack;

import java.util.Set;

import java.util.Iterator;

import java.io.*;

}

@members {

// Geography

String area;

String area1;

String area2;

int distance;

String instance;

String part;

int locID = 0;

int agentObjectID = 0;

String areaDef;

String ex;

Set<locations> locs = new HashSet<locations>();

Set<areaDefs> areaDefSet = new HashSet<areaDefs>();

Set<path> paths = new HashSet<path>();

// Store all agents, objects, classes and groups

Set<agent> mas = new HashSet<agent>(); // Store all agents

Set<object> mos = new HashSet<object>();
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Set<b_class> mcs = new HashSet<b_class>();

Set<group> mgs = new HashSet<group>();

// Store all Facts

Set facAbout = new HashSet();

Set facName = new HashSet();

Set facValue = new HashSet();

//agent

String name;

Set<String> memberOf = new HashSet<String>();

String display;

String cost;

String timeUnit;

String location;

int wfNumber = 0;

int tfNumber = 0;

// Relations

String relPriv;

String relTo;

String relName;

//Attributes

String attName;

String attPrivacy;

String attType;

int attDuration;

// Beliefs

String about; // Also acts as a variable for guard

String attributeName; // Also acts as a variable for guard

String belMath; // Math in a belief, = or a relation

String belValue; // value of the belief

//Frames

String f_name; // name of workframe or thoughtframe

String f_repeat = "false";

int f_priority = 0;

String f_event; // States if next even needs to be popped off

// conclude or activity stack

//Detectables

String det_name; // detectables name

String det_type; // abort, impasse etc.

String det_Math; // = or a relation

int det_id; // ID number for detectable (mainly for promela)

int dc = 100; // condition on detection
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//Variables

String f_varName; // name of the variable

String f_varType; // forone, foreach, collectall etc

String f_varAssoc; // Which class of objects or group of agents

int varNo = 0; // ID number for variable (promela)

String valueOwned; // Owner of a value to be assigned to a belief

String valueAttr; // the attribute

String valueOwned2; // incase a 2nd is needed

String valueAttr2; // incase a 2nd is needed

String valueOperator; // +, - *, /

//Guards

String f_guardType; // known, knownval etc.

String leftAssoc; // Agent on left side of equation

String leftAttr; // attribute on left side of equation

String f_guardMathSymb; // math symbol, = or a relation

String rightAssoc; // Agent on right hand side

String rightAttr; // attribute on right hand side

String value; // If not an attribute but an integar or string

//Activity

String actName; // Name of activity

eventType eveType;

int duration = -1;

String paramType;

String paramType2;

String parameter;

String parameter2;

eventType TypeEvent; // evenType declared in event.java

String whom_where;

String whom_where2;

String messAbout;

String messAtt;

String messAbout2;

String messAtt2;

Set<messages> mess = new HashSet<messages>();

//Concludes

String f_concAssoc; // Who the conclude belief belongs to

String f_concBelief; // name of the attribute

String f_concValue; // new value Needs changing

int concID = 0;

int bc = 100;

int fc = 100;

// Stacks

// Instances of the class workframes

Set<workframe> workframes = new HashSet<workframe>();
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Set<thoughtframe> thoughtframes = new HashSet<thoughtframe>();

Set<relation> relations = new HashSet<relation>();

Set<variable> variables = new HashSet<variable>();

Set<detectable> detectables = new HashSet<detectable>();

Set<activity> activities = new HashSet<activity>();

Set<attribute> attributes = new HashSet<attribute>();

Set<belief> beliefs = new HashSet<belief>();

Set<fact> facts = new HashSet<fact>();

Set<guard> guards = new HashSet<guard>();

List<event> events = new ArrayList<event>();

// Temp variables

Set<workframe> tempWFset = new HashSet<workframe>();

Set<variable> tempVarset = new HashSet<variable>();

Set<guard> tempGuardset = new HashSet<guard>();

List<event> tempEventList = new ArrayList<event>();

int cou = 0;

}

// Start rule

prog:(((geography NEWLINE*)

|(agent NEWLINE* )

|(object NEWLINE*)

|(class1 NEWLINE*)

|group NEWLINE*)

{

cou++;

name = "";

display = "";

cost = "";

timeUnit = "";

location = "";

relations.clear();

memberOf.clear();

activities.clear();

attributes.clear();

beliefs.clear();

facts.clear();

workframes.clear();

thoughtframes.clear();})+

{

Set<agent> TempMAS = new HashSet<agent>(mas);

Set<object> TempMOS = new HashSet<object>(mos);

Set<b_class> TempMCS = new HashSet<b_class>(mcs);

Set<group> TempMGS = new HashSet<group>(mgs);

Set<locations> TempLocs = new HashSet<locations>(locs);

Set<areaDefs> TempAreaDefs = new HashSet<areaDefs>(areaDefSet);

Set<path> TempAreaPaths = new HashSet<path>(paths);
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Set<fact> TempFacts = new HashSet<fact>(facts);

MultiAgentSystem multi = new MultiAgentSystem(TempMAS, TempMOS,

TempMCS, TempMGS, TempLocs, TempAreaDefs, TempAreaPaths,

TempFacts);}

;

geography

:

area

| areadef

| path

;

area

: ’area’ areaName = ID {area = $areaName.text;}

(’instanceof’ instanceOf = ID {instance =

$instanceOf.text;})?

(’partof’ partOf = ID {part = $partOf.text;})? ’{’ ’}’

{locations loca = new locations(area, instance, part, locID);

locs.add(loca);

locID++;

}

;

areadef

: ’areadef’ areaDefinition = ID {areaDef = $areaDefinition.text;}

(’extends’ extension = ID {ex = $extension.text;})? ’{’ ’}’

{areaDefs ad = new areaDefs(areaDef, ex); areaDefSet.add(ad);}

;

path

: ’path’ ID NEWLINE* ’{’ NEWLINE*

’area1:’ a1 = ID {area1 = $a1.text;}’;’ NEWLINE*

’area2:’ a2 = ID {area2 = $a2.text;}’;’ NEWLINE*

’distance:’ dist = INT {distance = Integer.parseInt($dist.text);}’;’

NEWLINE*

{path path1 = new path(area1, area2, distance); paths.add(path1);}

’}’

;

class1 : ’class’ agentName=ID {name = $agentName.text;}

NEWLINE*

(’instanceof’ (mem = ID {memberOf.add($mem.text);} (’,’)?)+)?

’{’ NEWLINE*

(displayName = display {display = $displayName.text;} NEWLINE*)?

(theCost = cost {cost = $theCost.text;} NEWLINE*)?

( theTimeUnit = timeUnit {timeUnit = $theTimeUnit.text;} NEWLINE*)?

( location NEWLINE*)?

( attributes NEWLINE*)?
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( relations NEWLINE*)? /* SKIPPED RELATIONS SO FAR! */

( beliefs NEWLINE*)?

( facts NEWLINE*)?

( activities NEWLINE*)?

( workframes NEWLINE*)?

( thoughtframes NEWLINE*)?

’}’

{

Set<relation> TempRelations1 = new HashSet

<relation>(relations);

Set<activity> TempActivities1 = new HashSet

<activity>(activities);

Set<attribute> TempAttributes1 = new HashSet

<attribute>(attributes);

Set<belief> TempBeliefs1 = new HashSet<belief>(beliefs);

Set<fact> TempFacts1 = new HashSet<fact>(facts);

Set<workframe> TempWorkframes1 = new HashSet

<workframe>(workframes);

Set<thoughtframe> TempThoughtframes1 = new HashSet

<thoughtframe>(thoughtframes);

Set<String> TempMemberOf1 = new HashSet<String>(memberOf);

mcs.add(new b_class(

name,

display,

cost,

timeUnit,

location,

TempMemberOf1,

TempRelations1,

TempActivities1,

TempAttributes1,

TempBeliefs1,

TempFacts1,

TempWorkframes1,

TempThoughtframes1));

wfNumber = 0;

}

;

group : ’group’ agentName=ID {name = $agentName.text;} NEWLINE*

(’memberof’ (mem = ID {memberOf.add($mem.text);} (’,’)?)+)?

’{’ NEWLINE*

(displayName = display {display = $displayName.text;} NEWLINE*)?

(theCost = cost {cost = $theCost.text;} NEWLINE*)?

( theTimeUnit = timeUnit {timeUnit = $theTimeUnit.text;} NEWLINE*)?

( location NEWLINE*)?

( attributes NEWLINE*)?

( relations NEWLINE*)? /* SKIPPED RELATIONS SO FAR! */
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( beliefs NEWLINE*)?

( facts NEWLINE*)?

( activities NEWLINE*)?

( workframes NEWLINE*)?

( thoughtframes NEWLINE*)?

’}’

{

Set<relation> TempRelations2 = new HashSet

<relation>(relations);

Set<activity> TempActivities2 = new HashSet

<activity>(activities);

Set<attribute> TempAttributes2 = new HashSet

<attribute>(attributes);

Set<belief> TempBeliefs2 = new HashSet

<belief>(beliefs);

Set<fact> TempFacts2 = new HashSet<fact>(facts);

Set<workframe> TempWorkframes2 = new HashSet

<workframe>(workframes);

Set<thoughtframe> TempThoughtframes2 = new HashSet

<thoughtframe>(thoughtframes);

Set<String> TempMemberOf2 = new HashSet<String>(memberOf);

mgs.add(new group(

name,

display,

cost,

timeUnit,

location,

TempMemberOf2,

TempRelations2,

TempActivities2,

TempAttributes2,

TempBeliefs2,

TempFacts2,

TempWorkframes2,

TempThoughtframes2));

wfNumber = 0;

} ;

agent : ’agent’ agentName=ID {name = $agentName.text;}

NEWLINE* (’memberof’ (mem = ID {memberOf.add($mem.text);}

(’,’)?)+)? ’{’ NEWLINE*

(displayName = display {display = $displayName.text;} NEWLINE*)?

(theCost = cost {cost = $theCost.text;} NEWLINE*)?

( theTimeUnit = timeUnit {timeUnit = $theTimeUnit.text;} NEWLINE*)?

( location NEWLINE*)?

( attributes NEWLINE*)?

( relations NEWLINE*)?
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( beliefs NEWLINE*)?

( facts NEWLINE*)?

( activities NEWLINE*)?

( workframes NEWLINE*)?

( thoughtframes NEWLINE*)?

’}’

{

Set<relation> TempRelations3 = new HashSet

<relation>(relations);

Set<activity> TempActivities3 = new HashSet

<activity>(activities);

Set<attribute> TempAttributes3 = new HashSet

<attribute>(attributes);

Set<belief> TempBeliefs3 = new HashSet<belief>(beliefs);

Set<fact> TempFacts3 = new HashSet<fact>(facts);

Set<workframe> TempWorkframes3 = new HashSet

<workframe>(workframes);

Set<thoughtframe> TempThoughtframes3 = new HashSet

<thoughtframe>(thoughtframes);

Set<String> TempMemberOf3 = new HashSet<String>(memberOf);

mas.add(new agent(

name,

agentObjectID,

TempMemberOf3,

display,

cost,

timeUnit,

location,

TempRelations3,

TempActivities3,

TempAttributes3,

TempBeliefs3,

TempFacts3,

TempWorkframes3,

TempThoughtframes3));

wfNumber = 0;

agentObjectID++;

}

;

object : ’object’ agentName=ID {name = $agentName.text;}

NEWLINE* (’instanceof’ (mem = ID {memberOf.add($mem.text);}

(’,’)?)+)? ’{’ NEWLINE*

(displayName = display {display = $displayName.text;}

NEWLINE*)?

(theCost = cost {cost = $theCost.text;} NEWLINE*)?

( theTimeUnit = timeUnit {timeUnit = $theTimeUnit.text;} NEWLINE*)?

( location NEWLINE*)?
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( attributes NEWLINE*)?

( relations NEWLINE*)? /* SKIPPED RELATIONS SO FAR! */

( beliefs NEWLINE*)?

( facts NEWLINE*)?

( activities NEWLINE*)?

( workframes NEWLINE*)?

( thoughtframes NEWLINE*)?

’}’

{

Set<relation> TempRelations4 = new HashSet

<relation>(relations);

Set<activity> TempActivities4 = new HashSet

<activity>(activities);

Set<attribute> TempAttributes4 = new HashSet

<attribute>(attributes);

Set<belief> TempBeliefs4 = new HashSet<belief>(beliefs);

Set<fact> TempFacts4 = new HashSet<fact>(facts);

Set<workframe> TempWorkframes4 = new HashSet

<workframe>(workframes);

Set<thoughtframe> TempThoughtframes4 = new HashSet

<thoughtframe>(thoughtframes);

Set<String> TempMemberOf4 = new HashSet<String>(memberOf);

mos.add(new object(

name,

agentObjectID,

TempMemberOf4,

display,

cost,

timeUnit,

location,

TempRelations4,

TempActivities4,

TempAttributes4,

TempBeliefs4,

TempFacts4,

TempWorkframes4,

TempThoughtframes4));

wfNumber = 0;

agentObjectID++;

}

;

display : ’display:’ ’"’ ID ’"’ ’;’

;

cost : ’cost:’ INT ’;’ /* Need to make this a double somehow */

;
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timeUnit: ’time:’ INT ’;’

;

location: ’location:’ theLocation = ID {location =

$theLocation.text;}

’;’

;

attributes

: ’attributes:’ (NEWLINE* attribute{attributes.add

(new attribute(attPrivacy,attType,attName));})*

;

relations

: ’relations:’ (NEWLINE* relation{relations.add

(new relation(relPriv,relName,relTo));})*

;

relation

: privacy = (’public’ | ’private’) {relPriv = $privacy.text;}

to = ID {relTo = $to.text;} name = ID

{relName = $name.text;}’;’

;

attribute

: privacy = (’public’ | ’private’)? {attPrivacy = $privacy.text;}

type = ID/*(’int’| ’String’| ’boolean’|’double’|)*/

{attType = $type.text;} name = ID {attName = $name.text;} ’;’

;

beliefs : ’initial_beliefs:’ (NEWLINE* belief ’;’)*;

facts : ’initial_facts:’ (NEWLINE* fact ’;’)* ;

belief : (’(’d=attRef math = (MATH|ID)

{belMath = $math.text;} (valID = (ID|’current’)

{belValue = $valID.text;}|valInt = INT

{belValue = $valInt.text;}| valTrue = ’true’

{belValue = $valTrue.text;}| valFalse = ’false’

{belValue = $valFalse.text;}) ’)’)

{beliefs.add(new belief(about, attributeName,

belMath, belValue)); belMath = null;

attributeName = null; about = null; belValue = null;};

fact : (’(’d=attRef math = (MATH|ID) {belMath = $math.text;}

(valID = ID {belValue = $valID.text;}|valInt = INT

{belValue = $valInt.text;}| valTrue = ’true’

{belValue = $valTrue.text;}| valFalse = ’false’
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{belValue = $valFalse.text;}) ’)’)

{facts.add(new fact(about, attributeName, belMath, belValue));

belMath = null; attributeName = null; about = null;

belValue = null;};

activities

: ’activities:’ (NEWLINE* {actName = null; paramType = null;

paramType2 = null; parameter = null; parameter2 = null;

duration = -1; messAbout = null; messAtt = null;

messAbout2 = null; messAtt2 = null;} activity)*;

: (’move’ {eveType = eventType.Move;} name = ID

{actName = $name.text;} ’(’ ((pType = ID param = ID)

{paramType = $pType.text; parameter = $param.text;})?

’)’ NEWLINE* ’{’ NEWLINE* ’location:’ where = ID

{whom_where = $where.text; messAbout = null;

messAtt = null;} ’;’ NEWLINE* | ’primitive_activity’

{eveType = eventType.PrimAct;} name = ID

{actName = $name.text;} ’(’ ((pType = ID param = ID)

{paramType = $pType.text; parameter = $param.text;})?

’)’ NEWLINE* ’{’ NEWLINE* ’max_duration:’

(dur = INT{duration = Integer.parseInt ($dur.text);}|

ID{duration = -1;}) {whom_where = null; messAbout = null;

messAtt = null;} ’;’ NEWLINE* |’communicate’

{eveType = eventType.CommAct;} name = ID

{actName = $name.text;} ’(’ ((pType = ID param = ID)

{paramType = $pType.text; parameter = $param.text;})?

((’,’ pType2 = ID param2 = ID){paramType2 = $pType2.text;

parameter2 = $param2.text;})? ’)’ NEWLINE* ’{’

NEWLINE* ’max_duration:’

(dur = INT{duration = Integer.parseInt($dur.text);}|

ID{duration = -1;}) ’;’

NEWLINE* ’with:’ where = ID {whom_where = $where.text;} ’;’

NEWLINE* ’about:’

NEWLINE* (’send(’ about = (ID|’current’)

{messAbout = $about.text;} ’.’ attrib = ID

{messAtt = $attrib.text;} MATH about2 = (ID|’current’)

{messAbout2 = $about2.text;} ’.’ attrib2 = ID {messAtt2 =

$attrib2.text;} ’)’ (’,’ NEWLINE*)? {mess.add(

new messages(messAbout, messAbout2, messAtt, messAtt2));

messAbout = null; messAbout2 = null; messAtt2 = null;

messAtt2 = null;})+ ’;’ NEWLINE* (’when: end;’

NEWLINE*)?) {Set<messages> TempMess = new HashSet

<messages>(mess); activities.add(new activity(eveType,

actName, paramType, parameter,

paramType2, parameter2, duration, whom_where, TempMess));

duration = 0; mess.clear();}
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’}’ ;

workframes

:’workframes:’ (NEWLINE* workframe

{

Set<variable> TempVariables = new HashSet

<variable>(variables);

Set<detectable> TempDetectables = new HashSet

<detectable>(detectables);

Set<guard> TempGuards = new HashSet

<guard>(guards);

List<event> TempEvents = new ArrayList

<event>(events);

Set<agent> TempMas = new HashSet<agent>(mas);

workframes.add(new workframe(TempMas, wfNumber, name, f_name,

f_repeat, f_priority, TempVariables, TempDetectables,

TempGuards, TempEvents));

wfNumber = wfNumber+1;

f_name = null;

f_repeat = "false";

f_priority = 0;

variables.clear();

detectables.clear();

guards.clear();

events.clear();

det_id = 0;

}

)*;

workframe

:

’workframe’ wfname=ID {f_name = $wfname.text;} NEWLINE* ’{’ NEWLINE*

(repeat NEWLINE*)?

(priority NEWLINE*)?

(’variables:’ (NEWLINE* variable {variables.add(new variable(varNo,

f_varType, f_varAssoc, f_varName)); varNo++;})* {varNo = 0;}

NEWLINE*)? (’detectables:’ (NEWLINE* detectable)* NEWLINE*)?

’when’ ’(’ condition NEWLINE* (’and’ NEWLINE* condition NEWLINE*)*

’)’ NEWLINE*

’do’ NEWLINE* ’{’ NEWLINE*

(event NEWLINE*)*

’}’ NEWLINE*

’}’

;

repeat
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: ’repeat:’ rep = (’true’|’false’|’once’) {f_repeat = $rep.text;}’;’

;

priority

: ’priority:’ pri = INT {f_priority = Integer.parseInt($pri.text);}

’;’;

variable:

type = ’forone’ {f_varType = $type.text;} ’(’ assoc = ID {

f_varAssoc = $assoc.text;} ’)’ name = ID

{f_varName = $name.text;} ’;’ | type = ’foreach’

{f_varType = $type.text;} ’(’ assoc = ID {f_varAssoc =

$assoc.text;} ’)’ name = ID {f_varName = $name.text;} ’;’

| type = ’collectall’ {f_varType = $type.text;} ’(’

assoc = ID {f_varAssoc = $assoc.text;} ’)’ name = ID

{f_varName = $name.text;} ’;’

;

detectable

: {dc = 100; about = null; attributeName = null; valueOwned = null;

value = null; valueAttr = null;}

’detectable’ detname = ID {det_name = $detname.text;} NEWLINE* ’{’

NEWLINE* (’when’ ’(’ ’whenever’ ’)’

|’when’ ’(’ INT ’)’)

NEWLINE* ’detect’ ’(’ ’(’ attRef detMath = MATH {det_Math =

$detMath.text;} leftExpr ’)’ (’,’ ’dc:’ detdc = INT

{dc = Integer.parseInt($detdc.text);} )?

’)’ NEWLINE* ’then’ dettype = (’complete’ |

’abort’ | ’continue’|’impasse’)

{det_type = $dettype.text;} ’;’ NEWLINE* ’}’

{detectables.add(new detectable

(det_id, det_name, about, attributeName, valueOwned, valueAttr,

value, det_Math, det_type, dc, wfNumber));}

{about = null; attributeName = null; valueOwned = null;

value = null; dc = 100; valueAttr = null; det_id++;}

;

event : conclude

| action

{TypeEvent = null; about = null; attributeName = null;

valueOwned = null; whom_where = null; whom_where2 = null;

value = null; bc = 100; fc = 100;

actName = null; duration = 0;};

conclude: {TypeEvent = eventType.Conc; about = null;

attributeName = null; valueOwned = null; valueOwned2 = null;

value = null; bc = 100; fc = 100; valueAttr = null;

valueAttr2 = null; valueOperator = null;} ’conclude’ ’(’ ’(’

attRef MATH multiexpr ’)’ (’,’ ’bc:’ belCon = INT
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{bc = Integer.parseInt($belCon.text);})? (’,’ ’fc:’

facCon = INT {fc = Integer.parseInt($facCon.text);})? ’)’ ’;’

{concID = concID-1; Set<variable> tempVars = new HashSet

<variable>(variables);

events.add(new event(concID, f_name, TypeEvent, about,

attributeName, valueOwned, valueOwned2, value, valueAttr,

valueAttr2, valueOperator, bc, fc, tempVars));};

action : name = ID {actName = $name.text;} ’(’ (param = ID

{whom_where = $param.text;}| dur = INT {duration =

Integer.parseInt($dur.text);})?

(’,’ param2 = ID {whom_where2 = $param.text;})? ’)’ ’;’

{Set<activity> tempActivities = new HashSet<activity>

(activities); Set<variable> tempVars = new HashSet<variable>

(variables); concID = concID-1; events.add(new event

(concID, f_name, actName, whom_where, whom_where2,

duration, tempActivities, tempVars)); actName = null;

duration = 0; whom_where = null; whom_where2 = null;}

;

thoughtframes

: ’thoughtframes:’ (NEWLINE* thoughtframe {

Set<variable> TempVariables = new HashSet

<variable>(variables);

Set<guard> TempGuards = new HashSet

<guard>(guards);

List<event> TempEvents = new ArrayList

<event>(events);

Set<agent> TempMas = new HashSet

<agent>(mas);

thoughtframes.add(new thoughtframe(TempMas, tfNumber,

name,f_name, f_repeat, f_priority, TempVariables,

TempGuards, TempEvents));

tfNumber = tfNumber+1;

f_name = null;

f_repeat = "false";

f_priority = 0;

variables.clear();

guards.clear();

events.clear();

}

)* ;

thoughtframe

:

’thoughtframe’ tfname = ID {f_name = $tfname.text;} NEWLINE*

’{’ NEWLINE* (repeat NEWLINE*)? (priority NEWLINE*)?

(’variables:’ (NEWLINE* variable {variables.add(new

variable(varNo, f_varType, f_varAssoc, f_varName));
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varNo++;})* {varNo = 0;} NEWLINE*)? ’when’ ’(’

condition NEWLINE* (’and’ NEWLINE* condition

NEWLINE*)* ’)’NEWLINE* ’do’ NEWLINE* ’{’ NEWLINE*

(conclude NEWLINE*)*

’}’ NEWLINE*

’}’

;

// For when refering to an agent and its attribute

attRef : who = (ID|’current’) {about = $who.text;}

(’.’ att = ID {attributeName = $att.text;})?;

// Left side of the equation

leftExpr: valueOwner = (ID|’current’)

{valueOwned = $valueOwner.text; } ’.’

theValue = ID {valueAttr = $theValue.text;}

| theValue=(ID|’true’|’false’|INT)

{valueOwned = null; valueAttr = null;

value = $theValue.text; }

;

// right side of the equation

rightExpr

: (valueOwner = (ID|’current’) {valueOwned2 =

$valueOwner.text; } ’.’)? theValue = ID

{valueAttr2 = $theValue.text;}

| theValue=(’true’|’false’|INT)

{valueOwned2 = null; valueAttr2 = null;

value = $theValue.text; };

// For different types of concludes

condition

: type = (’knownval’

| ’not’)? {f_guardType = $type.text;} ’(’

(leftGuard mathSymb = MATH

{f_guardMathSymb = $mathSymb.text;} rightGuard

| who = (ID|’current’) {/*about*/

leftAssoc = $who.text;

leftAttr = null;} relate = ID

{f_guardMathSymb = $relate.text;}

att = (ID|’current’) {/*attributeName*/

rightAssoc = $att.text;

rightAttr = null; value = ""; valueOwned = "";})

{guards.add(new guard(f_guardType, f_guardMathSymb,

leftAssoc, rightAssoc, leftAttr, rightAttr, value));} ’)’

| ’known’ {f_guardType = $type.text;} ’(’ attRef ’)’

{f_guardType = null; f_guardMathSymb = null;

leftAssoc = null; rightAssoc = null; leftAttr = null;

rightAttr = null; value = null;}

;
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// Left side of the guard

leftGuard

: ((valueOwner = (ID|’current’)

{leftAssoc = $valueOwner.text; } ’.’)

theValue = ID {leftAttr = $theValue.text;}

|theValue = ID {leftAssoc = null;

leftAttr = $theValue.text;});

// Right side of the guard

rightGuard

: {rightAssoc = null; rightAttr = null;value = null;}

(valueOwner = (ID|’current’)

{rightAssoc = $valueOwner.text; } ’.’)

theValue = ID { rightAttr = $theValue.text;}

| theValue = (INT|ID|’true’|’false’)

{value = $theValue.text;

rightAssoc = null; rightAttr = null;}

;

// Joins the left side of the expression with the right side

multiexpr

: leftExpr (op = OPERATORS {valueOperator = $op.text;}

theval = rightExpr)? ;

ID : (’a’..’z’|’A’..’Z’|’_’)+ INT?

;

INT : ’-’?(’0’..’9’)+ ;

MATH : ((’!’)?’=’)|((’=’)?’<’)|((’=’)?’>’);

NEWLINE:’\r’? ’\n’

|’\r’

|’\t’ ;

OPERATORS

: ’+’|’-’|’*’|’/’;

WS : (’ ’|’\t’)+ {skip();} ;

// Comments

COMMENT

: ’/*’ .* ’*/’ {$channel=HIDDEN;}

;

LINE_COMMENT

: ’//’ ~(’\n’|’\r’)* ’\r’? ’\n’ {$channel=HIDDEN;}

;
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Appendix C

Java Intermediary
Representation

The following sections details the Java programming code used to store the data
of a Brahms and translate it into partial instantiations of the Brahms semantics in
PROMELA code. This code is detailed in the appendix to help readers understand
how the project has been programmed. The code is broken up into the following sec-
tions:

• Main Method. This class reads in the Brahms code as a text file, which is accepted
as an argument from the command line, and then executes the parser generated
by ANTLR to parse the simulation. The Parsing code identifies the main class
for translation as ‘MultiAgentSystem. When executed this class instantiates all
the other classes and begins the translation process.

• The Scheduler. This is the ‘MultiAgentSystem class which instantiates all the
other classes and translates the scheduler semantic rules in PROMELA.

• Agents. This is the agent class, it instantiates the agent and implements the
agents semantic rules in PROMELA.

• Groups. This class stores all the details of a group, its thoughtframes, workframes,
etc. When an agent starts generating its semantics in the agent class it will check
which group it is a member of and retrieve any details from this group.

• Classes. This class stores all the details of an object class, its thoughtframes,
workframes, etc. When an object starts generating its semantics in the object
class it will check which class it is a member of and retrieve any details from this
class.

• Attributes. This class stores the details of an attribute, when an agent stores all
its attributes it is in a set of instances of this class.

• Relationships. This class stores the details of a relation, when an agent stores all
its relations it is in a set of instances of this class.

• Beliefs. This class stores the details of a belief, when an agent stores all its beliefs
it is in a set of instances of this class.
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• Facts. This class stores the details of a fact, when the system stores all the facts
it is in a set of instances of this class.

• Activities. This class stores the details of an activity, when an workframe or a
thoughtframe stores all its activities it is in a set of instances of this class.

• Event. This class stores the semantic rules of how to execute an event; it decides
what type of event it is and how it is to be handled.

• Concludes. This class stores the details of a conclude, when workframe or a
thoughtframe stores its concludes it is in a set of instances of this class.

• Communication Messages. This class stores all the details of a communication
message, when a communication event stores all its messages it is in a set of
instances of this class.

• Workframes. This class stores the details of a workframe, when an agent stores
all its workframes it is in a set of instances of this class.

• Detectables. This class stores the details of a detectable, when workframe stores
its detectables it is in a set of instances of this class.

• Thoughtframes. This class stores the details of a workframe, when an agent stores
all its workframes it is in a set of instances of this class.

• Guard Conditions. This class stores the details of a guard condition, when a
workframe, thoughtframe or a detectable stores its guard conditions it is in a set
of instances of this class.

• Variables. This class stores the details of a variable, when workframe or a thought-
frame stores its variables it is in a set of instances of this class.

• Geography: Area Definitions. This class stores the details of area definitions; an
instance is created for this class for every area definition and stored in a set in
‘MultiAgentSystem.

• Geography: The Locations. This class stores the details of locations; an instance
is created for this class for every location and stored in a set in ‘MultiAgentSystem.

• Geography: Paths between Areas. This class stores the details of the paths
between locations; an instance is created for this class for every path and stored
in a set in ‘MultiAgentSystem. These paths are then used to create a matrix
describing the shortest path to and from every location for every location.

• Geography: Calculating Undefined Routes. This class uses Dijkstras algorithm
to calculate the shortest paths between locations and enters them into the path
matrix described above.

C.1 The Main Method

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

178



*Date: Dec 2012

**/

/*

The main method which runs the ANTRL parser

*/

import org.antlr.runtime.*;

import java.io.*;

public class Main {

public static void main(String[] args) throws Exception {

try{

FileInputStream file = new FileInputStream(args[0]);

ANTLRInputStream input = new ANTLRInputStream(file);

BrahmsLexer lexer = new BrahmsLexer(input);

CommonTokenStream tokens = new CommonTokenStream(lexer);

BrahmsParser parser = new BrahmsParser(tokens);

parser.prog();

}

catch(Exception e) {}

}

}

C.2 The Scheduler

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

This is the main class which forms the multi-agent system. This

class stores all the agents, objects, groups etc.

This class relates to the System’s Tuple in the semantics i.e.

<Agents, currect agent, Beliefs, Facts, Time>

Agents in the tuple refers to all agents and objects

(for simplicity). Current agent under consideration isn’t

included as this only happens during run time. These data

structures only include what comes from the Brahms code,

not any variables which represent "under the hood"

operations such as time.

*/

import java.util.*;
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class MultiAgentSystem

{

// All the data about agents/objects

Set<agent> agents = new HashSet<agent>();

Set<object> objects = new HashSet<object>();

Set<b_class> classes = new HashSet<b_class>();

Set<group> groups = new HashSet<group>();

Set<relation> relations = new HashSet<relation>();

Set<activity> activities = new HashSet<activity>();

Set<attribute> attributes = new HashSet<attribute>();

Set<attribute> allAttributes = new HashSet<attribute>();

Set<relation> allRelations = new HashSet<relation>();

Set<belief> beliefs = new HashSet<belief>();

Set<fact> facts = new HashSet<fact>();

Set<guard> guards = new HashSet<guard>();

Set<conclude> concludes = new HashSet<conclude>();

Set<workframe> workframes = new HashSet<workframe>();

Set<thoughtframe> thoughtframes = new HashSet<thoughtframe>();

/***************

*Promela fields*

****************/

String name; // Used to name the agent/object under consideration

// Stores all the identification numbers of agents,

// objects and locations

String identificationNumbers[];

int numberOfAgentsObjects; // Used for array sizes

int numberOfEverything; // Used for array sizes

// Work around until I make code to count max depth of a workframe

// or thoughtframe

int maxDepth;

int maxVar;

//Counts for max number of work and thoughtframes

Set<locations> locs = new HashSet<locations>();

Set<areaDefs> areaDefinitions = new HashSet<areaDefs>();

Set<path> paths = new HashSet<path>();

int[][] adjacencyMatrix; // Used for calculating paths

String promelaCode = "";

public MultiAgentSystem()
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{ }

public MultiAgentSystem(Set new_agents, Set new_objects, Set

new_classes, Set new_groups, Set new_locs,

Set new_areaDefinitions, Set new_paths, Set new_facts)

{

agents = new_agents;

objects = new_objects;

classes = new_classes;

groups = new_groups;

locs = new_locs;

areaDefinitions = new_areaDefinitions;

paths = new_paths;

facts = new_facts;

numberOfAgentsObjects = agents.size() + objects.size()+2;

numberOfEverything = locs.size() + numberOfAgentsObjects+2;

adjacencyMatrix = new int[locs.size()][locs.size()];

identificationNumbers = new String[numberOfEverything];

//identificationNumbers[0] = "Environment";

buildAdjacencyMatrix();

toPromela();

}

public void buildAdjacencyMatrix(){

for(int i = 0; i < locs.size();i++){

for(int j = 0; j < locs.size();j++){

adjacencyMatrix[i][j] = 99999;

}

}

int areaID1 = -1;

int areaID2 = -1;

// Generate initial adjacency matrix for the geography

for (Iterator<path> pathit = paths.iterator();

pathit.hasNext(); ){

path pt = pathit.next();

for (Iterator<locations> Locit = locs.iterator();

Locit.hasNext(); ){

locations l = Locit.next();

if(l.getName().equals(pt.getArea1())){

areaID1 = l.getID();

}

if(l.getName().equals(pt.getArea2())){

areaID2 = l.getID();

}

}
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adjacencyMatrix[areaID1][areaID2] = pt.getDist();

adjacencyMatrix[areaID2][areaID1] = pt.getDist();

}

}

public void toPromela(){

String thoughtWorkInit = "";

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

thoughtWorkInit = thoughtWorkInit.concat(

ag.thoughtWorkInitialisation(groups) + "\n");

allAttributes.addAll(ag.getAttributes());

// collect all relations

allRelations.addAll(ag.getRelations());

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

thoughtWorkInit = thoughtWorkInit.concat

(ob.thoughtWorkInitialisation(classes) + "\n");

allAttributes.addAll(ob.getAttributes());

// collect all relations

allRelations.addAll(ob.getRelations());

}

promelaCode = promelaCode.concat(

"/*Environment’s Variables*/\n");

promelaCode = promelaCode.concat("int choice = 0;\n");

//If there is more than 1 variable used in an event

promelaCode = promelaCode.concat("int multiVarOne = 0;\n");

promelaCode = promelaCode.concat("int multiVarTwo = 0;\n");

promelaCode = promelaCode.concat("bool EnvironmentActive

= true;\n");

// temporary variable

promelaCode = promelaCode.concat("int tempIndex = -1;\n");

promelaCode = promelaCode.concat("int timeDeduction;\n");

// temporary variable

promelaCode = promelaCode.concat("int new;\n");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat("bool " + ag.getName()+

"Active = true;\n");

promelaCode = promelaCode.concat("int " + ag.getName()+

"_timeRemaining = -1;\n");

promelaCode = promelaCode.concat("int cnt" + ag.getName()+

"= 0;\n");
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// flag to set time remaining at 0 so agents return and

// process thoughtframes again. Due to communication

// updating agent’s beliefs after the cycle

promelaCode = promelaCode.concat("bool comm" +

ag.getName()+ "= false;\n");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat("bool " + ob.getName()+

"Active = true;\n");

promelaCode = promelaCode.concat("int " + ob.getName()+

"_timeRemaining = -1;\n");

promelaCode = promelaCode.concat("int cnt" + ob.getName()+

"= 0;\n");

promelaCode = promelaCode.concat("bool comm"+ob.getName()+

"= false;\n");

}

promelaCode = promelaCode.concat("int cntEnvironment = 0;\n");

promelaCode = promelaCode.concat("mtype = {Environment,

complete, abort, continue, impasse, null\n");

Set<String> workframeNames = new HashSet<String>();

Set<String> thoughtframeNames = new HashSet<String>();

for (Iterator<agent> MASit = agents.iterator();

MASit.hasNext(); ){

agent ag = MASit.next();

name = ag.getName();

promelaCode = promelaCode.concat(" ,ag_" +name+"\n");

promelaCode = promelaCode.concat(" ," + name + "\n");

Set<workframe> tempWorkframes = new HashSet<workframe>

(ag.getWorkframes());

Set<thoughtframe> tempThoughtframes = new HashSet

<thoughtframe>(ag.getThoughtframes());

for (Iterator<thoughtframe> tfit = tempThoughtframes.

iterator(); tfit.hasNext(); ){

thoughtframe tf = tfit.next();

thoughtframeNames.add(tf.getName());

}

for (Iterator<workframe> wfit = tempWorkframes.iterator();

wfit.hasNext(); ){

workframe wf = wfit.next();

workframeNames.add(wf.getName());

}

}

for (Iterator<object> MOSit = objects.iterator();

MOSit.hasNext(); ){

object ob = MOSit.next();

name = ob.getName();
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promelaCode = promelaCode.concat(" ,ob_" +

name+ "\n");

promelaCode = promelaCode.concat(" ," + name + "\n");

Set<workframe> tempWorkframes = new HashSet<workframe>(

ob.getWorkframes());

Set<thoughtframe> tempThoughtframes = new HashSet

<thoughtframe>(ob.getThoughtframes());

for (Iterator<thoughtframe> tfit = tempThoughtframes.

iterator(); tfit.hasNext(); ){

thoughtframe tf = tfit.next();

thoughtframeNames.add(tf.getName());

}

for (Iterator<workframe> wfit = tempWorkframes.iterator();

wfit.hasNext(); ){

workframe wf = wfit.next();

workframeNames.add(wf.getName());

}

}

for (Iterator<locations> locit = locs.iterator();

locit.hasNext(); ){

locations l = locit.next();

name = l.getName();

promelaCode = promelaCode.concat(" ," + name + "\n");

}

for (Iterator<group> groupit = groups.iterator();

groupit.hasNext(); ){

group g = groupit.next();

Set<workframe> tempWorkframes = new HashSet<workframe>

(g.getWorkframes());

Set<thoughtframe> tempThoughtframes = new HashSet

<thoughtframe>(g.getThoughtframes());

for (Iterator<thoughtframe> tfit = tempThoughtframes.

iterator(); tfit.hasNext(); ){

thoughtframe tf = tfit.next();

thoughtframeNames.add(tf.getName());

}

for (Iterator<workframe> wfit = tempWorkframes.iterator();

wfit.hasNext(); ){

workframe wf = wfit.next();

workframeNames.add(wf.getName());

}

}

for (Iterator<b_class> classit = classes.iterator();

classit.hasNext(); ){

b_class c = classit.next();

Set<workframe> tempWorkframes = new HashSet<workframe>

(c.getWorkframes());

Set<thoughtframe> tempThoughtframes = new HashSet

<thoughtframe>(c.getThoughtframes());
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for (Iterator<thoughtframe> tfit = tempThoughtframes.

iterator(); tfit.hasNext(); ){

thoughtframe tf = tfit.next();

thoughtframeNames.add(tf.getName());

}

for (Iterator<workframe> wfit = tempWorkframes.

iterator(); wfit.hasNext(); ){

workframe wf = wfit.next();

workframeNames.add(wf.getName());

}

}

for (Iterator<String> tfNameIT = thoughtframeNames.iterator();

tfNameIT.hasNext(); ){

String n = tfNameIT.next();

promelaCode = promelaCode.concat(" ," + n + "\n");

}

for (Iterator<String> wfNameIT = workframeNames.iterator();

wfNameIT.hasNext(); ){

String n = wfNameIT.next();

promelaCode = promelaCode.concat(" ," + n + "\n");

}

promelaCode = promelaCode.concat("}\n\n");

promelaCode = promelaCode.concat("mtype activeDetectableType

= null;\n");

promelaCode = promelaCode.concat("int activeDetectableID;\n");

promelaCode = promelaCode.concat("mtype turn=Environment;\n");

// holds the value of lowest time for each agent

promelaCode = promelaCode.concat("int lowest = -1;\n");

// the name of the agent

promelaCode = promelaCode.concat("mtype theLowest;\n");

/*if(numberOfEverything < 15)

maxDepth = 15;

else

maxDepth = numberOfEverything+1;*/

maxDepth = numberOfEverything;

maxVar = 0;

/*Counters to count number of workframes and thoughtframes,

used for ID numbers*/

int wfNum = 0;

int tfNum = 0;

/*End of these counters*/

for (Iterator<agent> MASit = agents.iterator();

MASit.hasNext(); ){
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agent ag = MASit.next();

Set<workframe> tempWorkframes = new HashSet<workframe>

(ag.getWorkframes());

Set<thoughtframe> tempThoughtframes = new HashSet

<thoughtframe>(ag.getThoughtframes());

for (Iterator<workframe> wfit = tempWorkframes.iterator();

wfit.hasNext(); ){

wfNum++;

workframe wf = wfit.next();

Set<event> tempEvents = new HashSet<event>

(wf.getEvents());

Set<variable> tempVars = new HashSet<variable>

(wf.getVariables());

if(tempVars.size() > maxVar)

maxVar = tempVars.size();

if(tempEvents.size() > maxDepth)

maxDepth = tempEvents.size();

}

for (Iterator<thoughtframe> tfit = tempThoughtframes.

iterator(); tfit.hasNext(); ){

tfNum++;

thoughtframe tf = tfit.next();

Set<variable> tempVars = new HashSet<variable>(tf.

getVariables());

if(tempVars.size() > maxVar)

maxVar = tempVars.size();

Set<event> tempEvents = new HashSet<event>

(tf.getEvents());

if(tempEvents.size() > maxDepth)

maxDepth = tempEvents.size();

}

}

for (Iterator<object> MOSit = objects.iterator();

MOSit.hasNext(); ){

object ob = MOSit.next();

Set<workframe> tempWorkframes = new HashSet<workframe>

(ob.getWorkframes());

Set<thoughtframe> tempThoughtframes = new HashSet

<thoughtframe>(ob.getThoughtframes());

for (Iterator<workframe> wfit = tempWorkframes.iterator();

wfit.hasNext(); ){

wfNum++;

workframe wf = wfit.next();

Set<event> tempEvents = new HashSet<event>

(wf.getEvents());

Set<variable> tempVars = new HashSet<variable>

(wf.getVariables());

if(tempVars.size() > maxVar)

maxVar = tempVars.size();
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if(tempEvents.size() > maxDepth)

maxDepth = tempEvents.size();

}

for (Iterator<thoughtframe> tfit =

tempThoughtframes.iterator();

tfit.hasNext(); ){

tfNum++;

thoughtframe tf = tfit.next();

Set<variable> tempVars = new HashSet<variable>

(tf.getVariables());

if(tempVars.size() > maxVar)

maxVar = tempVars.size();

Set<event> tempEvents = new HashSet<event>

(tf.getEvents());

if(tempEvents.size() > maxDepth)

maxDepth = tempEvents.size();

}

}

if(wfNum > 0){

promelaCode = promelaCode.concat

("mtype WorkframeIDs["+wfNum+"];\n");

}

if(tfNum > 0){

promelaCode = promelaCode.concat("

mtype ThoughtframeIDs["+tfNum+"];\n");

}

//Add 6 to cater for header data

promelaCode = promelaCode.concat("typedef array {int

elements["+(maxDepth+7)+"]};\n");

if(maxVar > 0)

promelaCode = promelaCode.concat("typedef array1

{mtype var_elements["+maxVar+"]};\n");

promelaCode = promelaCode.concat("int index2;\n\n");

if(locs.size() >0){

promelaCode = promelaCode.concat("/*

Variables for calculating shortest path*/\n");

promelaCode = promelaCode.concat("typedef matrix

{int edges["+ locs.size() +"]};\n");

promelaCode = promelaCode.concat("matrix adjacency[" +

locs.size() +"];\n");

promelaCode = promelaCode.concat("int minDist = 0;\n");

promelaCode = promelaCode.concat("int dist[" +

locs.size() +"];\n");

promelaCode = promelaCode.concat("int visit[" +

locs.size() +"];\n");

promelaCode = promelaCode.concat("int current;\n");

promelaCode = promelaCode.concat("int currentLoc;\n");

promelaCode = promelaCode.concat("int targetLoc;\n");
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promelaCode = promelaCode.concat("int source;\n");

promelaCode = promelaCode.concat("int temp;\n");

promelaCode = promelaCode.concat("int distance;\n\n");

}

// To identify who is in what class/group

for(Iterator<group> groupit = groups.iterator();

groupit.hasNext();){

group g = groupit.next();

promelaCode = promelaCode.concat("int " + g.getName()+

"members["+numberOfEverything+"];/*this is it*/\n");

}

for(Iterator<b_class> classit = classes.iterator();

classit.hasNext();){

b_class c = classit.next();

promelaCode = promelaCode.concat("int " + c.getName()+

"members["+numberOfEverything+"];\n");

}

for(Iterator<areaDefs> areait = areaDefinitions.iterator();

areait.hasNext();){

areaDefs ad = areait.next();

promelaCode = promelaCode.concat("int " + ad.getName()+

"members["+numberOfEverything+"];\n");

}

// Loop through all agents and assign them an ID number

promelaCode = promelaCode.concat("/*Agent ID numbers*/\n");

for (Iterator<agent> MASit = agents.iterator();

MASit.hasNext(); ){

agent ag = MASit.next();

name = ag.getName();

identificationNumbers[ag.getID()] = name;

promelaCode = promelaCode.concat("int " + name+"ID =

" + ag.getID() + ";\n");

}

promelaCode = promelaCode.concat("\n/*Object ID numbers*/\n");

// Loop through all objects and assign them an ID number

for (Iterator<object> MOSit = objects.iterator();

MOSit.hasNext(); ){

object ob = MOSit.next();

name = ob.getName();

identificationNumbers[ob.getID()] = name;

promelaCode = promelaCode.concat("int " + name+"ID = "

+ ob.getID() + ";\n");

}

//int numberOfAgentsObjects = i;

promelaCode = promelaCode.concat("int numberOfAgentsObjects ="

+ numberOfAgentsObjects + ";\n");
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promelaCode = promelaCode.concat(

"\n/*Locations ID numbers*/\n");

// Loop through all Locations and assign them an ID number

for (Iterator<locations> locit = locs.iterator();

locit.hasNext(); ){

locations l = locit.next();

name = l.getName();

int theID = l.getID() + numberOfAgentsObjects;

identificationNumbers[theID] = name;

promelaCode = promelaCode.concat("#define " +

name+"ID " + theID + "\n");

}

promelaCode = promelaCode.concat("#define locationCount "

+ locs.size() +" \n");

promelaCode = promelaCode.concat("#define numberOfEverything

locationCount+numberOfAgentsObjects+1\n");

promelaCode = promelaCode.concat("int searchID;

/*Used to find the ID numbers*/\n");

promelaCode = promelaCode.concat("mtype agentsObjectsIDs[

"+numberOfEverything+"];/*Array which is searched to

find ID numbers*/\n\n");

/* Workframe/Thoughtframe variables for agents */

promelaCode = promelaCode.concat("/* Workframe/Thoughtframe

variables for agents */\n");

for (Iterator<agent> MASit = agents.iterator();

MASit.hasNext(); ){

agent ag = MASit.next();

Set<workframe> tempWorkframes = new HashSet<workframe>

(ag.getWorkframes());

Set<thoughtframe> tempThoughtframes = new HashSet

<thoughtframe>(ag.getThoughtframes());

relations.addAll(ag.getRelations());

String tempAg = ag.getName();

// space needed for all workframes

wfNum = tempWorkframes.size();

// space needed for all thoughtframes

tfNum = tempThoughtframes.size();

// Add 3 to allow for up to 3 suspended,

// should really be *2 but trying to save space!!!

promelaCode = promelaCode.concat("/* Workframe/Thoughtframe

variables for " + tempAg + "*/\n");

promelaCode = promelaCode.concat("array wf"+tempAg +

"["+(wfNum+8)+"];\n");

promelaCode = promelaCode.concat("int wfTop"+tempAg +

"["+(wfNum+8)+"];\n");

promelaCode = promelaCode.concat("

int wf"+tempAg + "Index = -1;\n");
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promelaCode = promelaCode.concat("\n");

promelaCode = promelaCode.concat("

array tf"+tempAg + "["+(tfNum+1)+"];\n");

promelaCode = promelaCode.concat("

int tfTop"+tempAg + "["+(tfNum+1)+"];\n");

promelaCode = promelaCode.concat("

int tf"+tempAg + "Index = -1;\n\n");

promelaCode = promelaCode.concat("

/*Agent "+tempAg+"’s relations*/\n");

Set<relation> tempRelations = new HashSet

<relation>(ag.getRelations());

for (Iterator<workframe> workit=tempWorkframes.iterator();

workit.hasNext(); ){

workframe tempWorkframe = workit.next();

String tempWF = tempWorkframe.getName();

promelaCode = promelaCode.concat("/* Workframe "

+ tempWF + "*/\n");

if(maxVar > 0){

promelaCode=promelaCode.concat("array1 "+tempAg+"_

wf_"+tempWF+"_var["+numberOfAgentsObjects+"];\n");

}

promelaCode = promelaCode.concat("int "+tempAg+"_wf_

"+tempWF + "_index = -1;\n");

promelaCode = promelaCode.concat("\n");

}

for (Iterator<thoughtframe> thoughtit = tempThoughtframes.

iterator(); thoughtit.hasNext(); ){

thoughtframe tempThoughtframe = thoughtit.next();

String tempTF = tempThoughtframe.getName();

promelaCode = promelaCode.concat("/* Thoughtframe "

+ tempTF + "*/\n");

if(maxVar > 0)

promelaCode = promelaCode.concat("array1 "+tempAg

+"_tf_"+tempTF + "_var["+numberOfAgentsObjects

+"];\n");

promelaCode = promelaCode.concat("int "+tempAg+"_tf_"

+tempTF + "_index = -1; /*Look here!*/\n\n");

}

int maxWfDepth = 0;

int maxTfDepth = 0;

for (Iterator<workframe> wfit = tempWorkframes.iterator();

wfit.hasNext(); ){

workframe wf = wfit.next();

List<event> tempEvents = wf.getEvents();

if(tempEvents.size() > maxWfDepth){

maxWfDepth = tempEvents.size();

}

}
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for (Iterator<thoughtframe> tfit = tempThoughtframes.

iterator(); tfit.hasNext(); ){

thoughtframe tf = tfit.next();

List<event> tempEvents = tf.getEvents();

if(tempEvents.size() > maxTfDepth){

maxTfDepth = tempEvents.size();

}

}

// Add 7 to depth, 1 in case a move/comm activity at

// bottow and 6 to hold header data

promelaCode = promelaCode.concat("/* Variables for current

thoughtframe */\n");

promelaCode = promelaCode.concat("int tf_stack"+tempAg +

"["+(maxTfDepth+7)+"];\n");

promelaCode = promelaCode.concat("int tf_"+tempAg + "

Top = -1;\n\n");

promelaCode = promelaCode.concat("/* Variables for

current workframe */\n");

promelaCode = promelaCode.concat("int wf_stack"+tempAg +

"["+(maxWfDepth+7)+"];\n");

promelaCode = promelaCode.concat("int wf_"+tempAg +

"Top = -1;\n\n");

}

promelaCode =promelaCode.concat("\n/****Workframe/Thoughtframe

variables for objects ****/\n");

/* Workframe/Thoughtframe variables for objects */

for (Iterator<object> MOSit = objects.iterator();

MOSit.hasNext(); ){

object ob = MOSit.next();

Set<workframe> tempWorkframes = new HashSet

<workframe>(ob.getWorkframes());

Set<thoughtframe> tempThoughtframes = new HashSet

<thoughtframe>(ob.getThoughtframes());

String tempAg = ob.getName();

// space needed for all workframes

wfNum = tempWorkframes.size();

// space needed for all thoughtframes

tfNum = tempThoughtframes.size();

promelaCode = promelaCode.concat("/* Workframe/Thoughtframe

variables for " + tempAg + "*/\n");

promelaCode = promelaCode.concat("array wf"+tempAg +

"["+(wfNum+3)+"];\n");

promelaCode = promelaCode.concat("int wfTop"+tempAg +

"["+(wfNum+3)+"];\n");

promelaCode = promelaCode.concat("int wf"+tempAg +

"Index = -1;\n");

promelaCode = promelaCode.concat("\n");

promelaCode = promelaCode.concat("array tf"+tempAg +

"["+(tfNum+3)+"];\n");
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promelaCode = promelaCode.concat("int tfTop"+tempAg +

"["+(tfNum+3)+"];\n");

promelaCode = promelaCode.concat("int tf"+tempAg +

"Index = -1;\n\n");

for (Iterator<workframe> workit=tempWorkframes.iterator();

workit.hasNext(); ){

workframe tempWorkframe = workit.next();

String tempWF = tempWorkframe.getName();

promelaCode = promelaCode.concat("/*

Workframe " + tempWF + "*/\n");

if(maxVar > 0){

promelaCode = promelaCode.concat("array1 "+tempAg

+"_wf_"+tempWF + "_var["+maxDepth+"];\n");

}

promelaCode = promelaCode.concat("int "+tempAg+"_wf_

"+tempWF + "_index = -1;\n\n");

}

promelaCode = promelaCode.concat("\n");

for (Iterator<thoughtframe> thoughtit =

tempThoughtframes.iterator();

thoughtit.hasNext(); ){

thoughtframe tempThoughtframe = thoughtit.next();

String tempTF = tempThoughtframe.getName();

promelaCode = promelaCode.concat("/* Thoughtframe "

+ tempTF + "*/\n");

if(maxVar > 0)

promelaCode = promelaCode.concat("array1 tf"+tempTF

+ "_var["+maxDepth+"];\n");

promelaCode = promelaCode.concat("int tf"+tempTF +

"_index = -1;\n\n");

}

int maxWfDepth = 0;

int maxTfDepth = 0;

for (Iterator<workframe> wfit = tempWorkframes.iterator();

wfit.hasNext(); ){

workframe wf = wfit.next();

List<event> tempEvents = wf.getEvents();

if(tempEvents.size() > maxWfDepth)

maxWfDepth = tempEvents.size();

}

for (Iterator<thoughtframe> tfit = tempThoughtframes.

iterator(); tfit.hasNext(); ){

thoughtframe tf = tfit.next();

List<event> tempEvents = tf.getEvents();

if(tempEvents.size() > maxWfDepth)

maxTfDepth = tempEvents.size();

}

// Add 7 to depth, 1 in case a move/comm activity at

// bottow and 6 to hold header data
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promelaCode = promelaCode.concat("/* Variables for current

thoughtframe */\n");

promelaCode = promelaCode.concat("int tf_stack"+tempAg +

"["+(maxTfDepth+7)+"];\n");

promelaCode = promelaCode.concat("int tf_"+tempAg +

"Top = -1;\n\n");

promelaCode = promelaCode.concat("/* Variables for current

workframe */\n");

promelaCode = promelaCode.concat("int wf_stack"+tempAg +

"["+(maxWfDepth+7)+"];\n");

promelaCode = promelaCode.concat("int wf_"+tempAg +

"Top = -1;\n\n");

}

/* Variables to hold names of all agents */

promelaCode = promelaCode.concat("/*Variables to hold

names of all agents*/\n");

for (Iterator<group> groupit = groups.iterator();

groupit.hasNext(); ){

group gr = groupit.next();

// collect all attributes

allAttributes.addAll(gr.getAttributes());

// collect all relations

allRelations.addAll(gr.getRelations());

String groupsName = gr.getName();

promelaCode = promelaCode.concat("int "+gr.getName()+

"Counter = 0;\n");

int count = 0;

for (Iterator<agent> MASit2 = agents.iterator();

MASit2.hasNext(); ){

agent ag2 = MASit2.next();

Set memOf = ag2.getMemberOf();

count = memOf.size();

}

}

promelaCode = promelaCode.concat("\n");

/* Variables to hold names of all objects */

promelaCode = promelaCode.concat("/*Variables to

hold names of all objects*/\n");

for (Iterator<b_class> classit = classes.iterator();

classit.hasNext(); ){

b_class cl = classit.next();

// collect all the attributes

allAttributes.addAll(cl.getAttributes());

// collect all relations

allRelations.addAll(cl.getRelations());

String className = cl.getName();

promelaCode = promelaCode.concat("int "+cl.getName()+
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"Counter = 0;\n");

int count = 0;

for (Iterator<object> MOSit2 = objects.iterator();

MOSit2.hasNext(); ){

object ob2 = MOSit2.next();

Set memOf = ob2.getMemberOf();

count = memOf.size();

}

}

/* Variables to hold names of all objects */

for (Iterator<areaDefs> areaDefit = areaDefinitions.iterator();

areaDefit.hasNext(); ){

areaDefs ad = areaDefit.next();

promelaCode = promelaCode.concat("int "+ad.getName()+

"["+locs.size()+"]; \n");

int counterX = 0;

promelaCode = promelaCode.concat("int "+ad.getName()+

"Counter = 0;\n");

for (Iterator<locations> locsit = locs.iterator();

locsit.hasNext(); ){

locations lo = locsit.next();

if(lo.getInstanceOf().equals(ad.getName())){

counterX++;

}

}

}

/*Attributes for objects and agents*/

promelaCode = promelaCode.concat("/*Agent’s and object’s

attributes - Need to be global for verification purposes*/

\n");

// Temp set of attributes to check for duplications

Set<String> tempAttFacts = new HashSet<String>();

promelaCode = promelaCode.concat("

mtype fact_location" + "[" + numberOfAgentsObjects

+ "];\n"); // fact of locations

//Cycle through all agents to add their attributes

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat(" /*Agent "+

ag.getName()+"’s Attributes*/\n");

promelaCode = promelaCode.concat(" mtype " +

ag.getName()+ "_" + "location" + "[" +

numberOfAgentsObjects

+ "];\n"); //Belief on locations

// Temp set of attributes to check for duplications

Set<String> tempAtt = new HashSet<String>();

//Loop through all attributes again
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for (Iterator<attribute> attit = a

llAttributes.iterator(); attit.hasNext(); ){

attribute at = attit.next();

String tempA = at.toPromelaString

(numberOfAgentsObjects, ag.getName())+ "\n";

String tempB = at.factToPromelaString

(numberOfAgentsObjects, ag.getName())+ "\n";

if(!tempAtt.contains(tempA)){

tempAtt.add(tempA);

promelaCode = promelaCode.concat(tempA);

}

if(!tempAttFacts.contains(tempB)){

tempAttFacts.add(tempB);

promelaCode = promelaCode.concat("/*Fact*/\n");

promelaCode = promelaCode.concat(tempB);

}

}

promelaCode = promelaCode.concat("

/*Agent "+ag.getName()+"’s Relations*/\n");

//Temp set of relations to check for duplications

Set<String> tempRel = new HashSet<String>();

for (Iterator<relation> relit = allRelations.iterator();

relit.hasNext(); ){

relation rel = relit.next();

String tempR = " "+rel.toPromelaString(

numberOfEverything, ag.getName())+ "\n";

String tempB = rel.factToPromelaString(

numberOfEverything, ag.getName())+ "\n";

if(!tempRel.contains(tempR)){

tempRel.add(tempR);

promelaCode = promelaCode.concat(tempR);

}

if(!tempAttFacts.contains(tempB)){

tempAttFacts.add(tempB);

promelaCode = promelaCode.concat("/*Fact*/\n");

promelaCode = promelaCode.concat(tempB);

}

}

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat("

/*Object "+ob.getName()+"’s Attributes*/\n");

//Belief on locations

promelaCode = promelaCode.concat(" mtype " +

ob.getName()+ "_" + "location" + "[" +
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numberOfAgentsObjects + "];\n");

// Temp set of attributes to check for duplications

Set<String> tempAtt = new HashSet<String>();

//Loop through all attributes again

for (Iterator<attribute> attit = allAttributes.iterator();

attit.hasNext(); ){

attribute at = attit.next();

String tempA = at.toPromelaString(

numberOfAgentsObjects, ob.getName())+ "\n";

String tempB = at.factToPromelaString(

numberOfAgentsObjects, ob.getName())+ "\n";

if(!tempAtt.contains(tempA)){

tempAtt.add(tempA);

promelaCode = promelaCode.concat(tempA);

}

if(!tempAttFacts.contains(tempB)){

tempAttFacts.add(tempB);

promelaCode = promelaCode.concat("/*Fact*/\n");

promelaCode = promelaCode.concat(tempB);

}

}

promelaCode = promelaCode.concat(" /*Object "+

ob.getName()+"’s Relations*/\n");

//Temp set of relations to check for duplications

Set<String> tempRel = new HashSet<String>();

for (Iterator<relation> relit = allRelations.iterator();

relit.hasNext(); ){

relation rel = relit.next();

String tempR = " "+rel.toPromelaString(

numberOfEverything, ob.getName())+ "\n";

String tempB = rel.factToPromelaString(

numberOfEverything, ob.getName())+ "\n";

if(!tempRel.contains(tempR)){

tempRel.add(tempR);

promelaCode = promelaCode.concat(tempR);

}

if(!tempAttFacts.contains(tempB)){

tempAttFacts.add(tempB);

promelaCode = promelaCode.concat("/*Fact*/\n");

promelaCode = promelaCode.concat(tempB);

}

}

}

promelaCode = promelaCode.concat("active

proctype proc_Environment(){\n");

promelaCode = promelaCode.concat(" int i;\n ");
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promelaCode = promelaCode.concat(" int j;\n");

promelaCode = promelaCode.concat(" int k;\n");

promelaCode = promelaCode.concat("d_step{\n");

promelaCode = promelaCode.concat(" printf(\"

Starting system!\\n\");\n");

promelaCode = promelaCode.concat(" i = 0;\n ");

promelaCode = promelaCode.concat(" j = 0;\n");

promelaCode = promelaCode.concat(" k = 0;\n\n");

/*Creates adjacency matrix*/

if(locs.size() > 0){

Dijkstra dj = new Dijkstra(locs, adjacencyMatrix);

int[][] shortestPaths = dj.findShortestPaths();

for(int i = 0;i<locs.size();i++){

for(int j = 0;j<locs.size();j++){

promelaCode = promelaCode.concat("

adjacency"+"["+i+"]"+ ".edges[" + j + "] = "

+ shortestPaths[i][j] +";\n");

}

}

}

/* loops to go through all the objects/agents/locations and

add them to an array */

promelaCode = promelaCode.concat("

/*agents added to an array*/\n");

promelaCode = promelaCode.concat("

printf(\"Initialising Agents\\n\");\n");

for (Iterator<agent> MASit2 = agents.iterator();

MASit2.hasNext(); ){

agent ag = MASit2.next();

String tempAg2 = ag.getName();

promelaCode = promelaCode.concat(" agentsObjectsIDs

[" + ag.getID() + "] = " + tempAg2 + ";\n");

}

promelaCode = promelaCode.concat("\n");

promelaCode = promelaCode.concat("

/*objects added to an array*/\n");

promelaCode = promelaCode.concat("

printf(\"Initialising Objects\\n\");\n");

for (Iterator<object> MOSit = objects.iterator();

MOSit.hasNext(); ){

object ob = MOSit.next();

String tempOb = ob.getName();

promelaCode = promelaCode.concat("

agentsObjectsIDs[" + ob.getID() + "] = " +
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tempOb + ";\n");

}

promelaCode = promelaCode.concat("\n");

promelaCode = promelaCode.concat(" /*locations added

to an array*/\n");

promelaCode = promelaCode.concat(" printf(

\"Initialising Locations\\n\");\n");

for (Iterator<locations> locsit = locs.iterator();

locsit.hasNext(); ){

locations loc = locsit.next();

String tempLoc = loc.getName();

int theID = numberOfAgentsObjects + loc.getID();

promelaCode = promelaCode.concat(" agentsObjectsIDs[" +

theID + "] = " + tempLoc + ";\n");

for(Iterator<areaDefs> areait = areaDefinitions.iterator();

areait.hasNext();){

areaDefs ad = areait.next();

if(loc.getInstanceOf().equals(ad.getName())){

promelaCode = promelaCode.concat(" " +

ad.getName()+"members["+theID+"] = 1;\n");

}

}

}

promelaCode = promelaCode.concat("\n");

/* Filling the multiple arrays which individiualise all the

agents, objects and locations according by class/group*/

/* names of all agents */

for (Iterator<group> groupit = groups.iterator();

groupit.hasNext(); ){

group gr = groupit.next();

String groupsName = gr.getName();

int count = 0;

for (Iterator<agent> MASit2 = agents.iterator();

MASit2.hasNext(); ){

agent ag2 = MASit2.next();

Set memOf = ag2.getMemberOf();

count = memOf.size();

}

}

/* names of all objects */

for (Iterator<b_class> classit = classes.iterator();

classit.hasNext(); ){

b_class cl = classit.next();

String className = cl.getName();

int count = 0;

for (Iterator<object> MOSit2 = objects.iterator();

MOSit2.hasNext(); ){
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object ob2 = MOSit2.next();

Set memOf = ob2.getMemberOf();

count = memOf.size();

}

}

/* Names of locations */

promelaCode = promelaCode.concat("

/*Store name of all locations in an array*/\n");

int count = 0;

for (Iterator<locations> locsit = locs.iterator();

locsit.hasNext(); ){

locations lo = locsit.next();

String locName = lo.getName();

for (Iterator<areaDefs> areaDefit = areaDefinitions.

iterator(); areaDefit.hasNext(); ){

areaDefs ad = areaDefit.next();

if(lo.getInstanceOf().equals(ad.getName())){

}

}

count++;

}

/* Initialise Thoughtframes and Workframes for agents */

promelaCode = promelaCode.concat(" /*Initialise

Thoughtframes and Workframes for agents and objects*/\n");

promelaCode = promelaCode.concat("

printf(\"Initialising Thoughtframes and workframes

for agents\\n\");\n");

promelaCode = promelaCode.concat(thoughtWorkInit);

promelaCode = promelaCode.concat(" /*Program Loop:

Initiating Agents/Objects*/\n");

promelaCode = promelaCode.concat(" printf(\"Starting

agents and objects\\n\");\n");

promelaCode = promelaCode.concat("} \n");

promelaCode = promelaCode.concat(" do\n");

promelaCode = promelaCode.concat(" ::(turn == Environment

&& EnvironmentActive == true && (");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat(ag.getName()+

"Active == true");

if(agentit.hasNext())
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promelaCode = promelaCode.concat(" || ");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat(" || "+

ob.getName()+"Active == true");

}

promelaCode = promelaCode.concat(") && ");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat(ag.getName()+

"_timeRemaining == -1");

if(agentit.hasNext())

promelaCode = promelaCode.concat(" && ");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promela Code = promelaCode.concat(" && "+

ob.getName()+"_timeRemaining == -1");

}

promelaCode = promelaCode.concat(") -> \n");

promelaCode = promelaCode.concat(" d_step{");

promelaCode = promelaCode.concat(" printf(\"time =

%d, \", cntEnvironment);\n");

for (Iterator<agent> agentit = agents.iterator(); agentit.

hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat("

printf(\"cnt"+ag.getName()+" = %d, \", cnt"+

ag.getName()+");\n");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat("

printf(\"cnt"+ ob.getName()+" =

%d, \", cnt"+ob.getName()+");\n");

}

//Loop through all agents to initiate them

promelaCode = promelaCode.concat("

printf(\"\\n\");\n");

promelaCode = promelaCode.concat(" }");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();
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promelaCode = promelaCode.concat("

"+ "if\n");

promelaCode = promelaCode.concat(" "+ "

::(turn == Environment) ->\n");

promelaCode = promelaCode.concat("

d_step{\n");

promelaCode = promelaCode.concat("

"+ ag.getName() + "Active = true;\n");

promelaCode = promelaCode.concat("

"+ "turn = ag_" + ag.getName() + ";\n");

promelaCode = promelaCode.concat("

printf(\"turn = ag_"+ag.getName()+"\\n\");\n");

promelaCode = promelaCode.concat(" }");

promelaCode = promelaCode.concat(" "+

"run proc_" + ag.getName() + "();\n");

promelaCode = promelaCode.concat(" "+

"fi;\n\n");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat(" "+ "if\n");

promelaCode = promelaCode.concat(" "+

"::(turn == Environment) ->\n");

promelaCode = promelaCode.concat("

d_step{\n");

promelaCode = promelaCode.concat("

"+ ob.getName() + "Active = true;\n");

promelaCode = promelaCode.concat("

printf(\"turn = ob_"+ob.getName()+"\\n\");\n");

promelaCode = promelaCode.concat("

"+ "turn = ob_" + ob.getName() + ";\n");

promelaCode = promelaCode.concat(" }");

promelaCode = promelaCode.concat("

"+ "run proc_" + ob.getName() + "();\n");

promelaCode = promelaCode.concat(" "+

"fi;\n\n");

}

promelaCode = promelaCode.concat(" ::(turn ==

Environment && EnvironmentActive == true && (");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat(ag.getName()+

"Active == true");

if(agentit.hasNext())

promelaCode = promelaCode.concat(" || ");

}
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for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat(" ||

"+ ob.getName()+"Active == true");

}

promelaCode = promelaCode.concat(") && (");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat(ag.getName()+

"_timeRemaining != -1");

if(agentit.hasNext())

promelaCode = promelaCode.concat(" || ");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat(" || "+

ob.getName()+"_timeRemaining != -1");

}

promelaCode = promelaCode.concat(")) -> \n");

promelaCode = promelaCode.concat(" d_step{\n");

promelaCode = promelaCode.concat(" " +

"lowest = -1;\n");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat(" " + "if\n");

promelaCode = promelaCode.concat(" " +

"::("+ag.getName() +"_timeRemaining != -1 &&

(" + ag.getName() + "_timeRemaining < lowest ||

lowest == -1))->\n");

promelaCode = promelaCode.concat(" " + "

lowest = "+ag.getName() +"_timeRemaining;\n");

promelaCode = promelaCode.concat(" " + "

theLowest = "+ag.getName() +";\n");

promelaCode = promelaCode.concat(" " +

"::else->\n");

promelaCode = promelaCode.concat(" " + "

skip;\n");

promelaCode = promelaCode.concat(" " +

"fi;\n");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat(" " + "if\n");
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promelaCode = promelaCode.concat(" " +

"::("+ob.getName() +"_timeRemaining != -1 && (" +

ob.getName() + "_timeRemaining < lowest ||

lowest == -1))->\n");

promelaCode = promelaCode.concat(" " + "

lowest = "+ob.getName() +"_timeRemaining;\n");

promelaCode = promelaCode.concat(" " + "

theLowest = "+ob.getName() +";\n");

promelaCode = promelaCode.concat(" " +

"::else->\n");

promelaCode = promelaCode.concat(" " + "

skip;\n");

promelaCode = promelaCode.concat(" " + "fi;\n");

}

promelaCode = promelaCode.concat(" " +

"printf(\" %e currently has the lowest time remaining

of %d\\n\", theLowest, lowest);\n");

promelaCode = promelaCode.concat(" " +

"printf(\" SO the cntEnvironment = %d + %d\\n\",

cntEnvironment, lowest);\n");

promelaCode = promelaCode.concat(" " +

"cntEnvironment = cntEnvironment + lowest;\n");

promelaCode = promelaCode.concat(" }\n");

for (Iterator<agent> agentit = agents.iterator(); a

gentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat(" if\n");

promelaCode = promelaCode.concat("

::(turn == Environment)->\n");

promelaCode = promelaCode.concat(" d_step{\n");

promelaCode = promelaCode.concat(" "+ "

i=0;\n");

promelaCode = promelaCode.concat(" "+

"/*Check for deleted workframes*/\n");

promelaCode = promelaCode.concat(" printf(\"

Checking for deleted workframes for agent "+

ag.getName()+"\\n\");\n");

promelaCode = promelaCode.concat(" "

+ "do\n");

promelaCode = promelaCode.concat(" "

+ "::(i <= wf"+ ag.getName() +"Index) ->\n");

promelaCode = promelaCode.concat(" "

+ "if\n");

promelaCode = promelaCode.concat(" "+

"::(wf"+ ag.getName() +"[i].elements[3] == 0) ->\n");

promelaCode = promelaCode.concat("

printf(\" Deleting workframe at index %d\\n\",
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i);\n");

promelaCode = promelaCode.concat("

"+ "j=0;\n");

promelaCode = promelaCode.concat("

"+ "do\n");

promelaCode = promelaCode.concat(" "+

"::(j <= wfTop"+ ag.getName() +"[wf" + ag.getName() +

"Index]) ->\n");

promelaCode = promelaCode.concat("

"+ "wf"+ ag.getName() +"[i].elements[j] = wf" +

ag.getName() +"[wf" + ag.getName() + "Index].

elements[j];\n");

promelaCode = promelaCode.concat("

"+ "j = j+1;\n");

promelaCode = promelaCode.concat(" "

+ "::else ->\n");

promelaCode = promelaCode.concat(" "

+ " wfTop"+ag.getName()+"[i] = wfTop"+ag.getName()

+"[wf" + ag.getName() + "Index];\n");

promelaCode = promelaCode.concat(" "

+ "wf"+ag.getName()+"Index = wf"+ag.getName()+"Index-1

;\n");

promelaCode = promelaCode.concat(" "+

"break;\n");

promelaCode = promelaCode.concat(" "+

"od;\n");

promelaCode = promelaCode.concat(" "+

"::else ->\n");

promelaCode = promelaCode.concat(" "+

"skip;\n");

promelaCode = promelaCode.concat(" "+

"fi;\n");

promelaCode = promelaCode.concat(" "+

"i=i+1;\n");

promelaCode = promelaCode.concat(" "+

"::else -> \n");

promelaCode = promelaCode.concat(" "+

"break;\n");

promelaCode = promelaCode.concat(" "+

"od;\n");

promelaCode = promelaCode.concat(" " +

ag.getName() + "_timeRemaining = -1;\n");

promelaCode = promelaCode.concat("

printf(\"turn = ag_" + ag.getName() + "\\n\");\n");

promelaCode = promelaCode.concat(" "+

ag.getName()+"Active = true;\n");

promelaCode = promelaCode.concat("

turn = ag_" + ag.getName() + ";\n");

promelaCode = promelaCode.concat(" }\n");
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promelaCode = promelaCode.concat(" fi;\n");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat(" if\n");

promelaCode = promelaCode.concat("

::(turn == Environment)->\n");

promelaCode = promelaCode.concat(" d_step{\n");

promelaCode = promelaCode.concat("

i=0;\n");

promelaCode = promelaCode.concat("

/*Check for deleted workframes*/\n");

promelaCode = promelaCode.concat(" printf(\"

Checking for deleted workframes for agent "+

ob.getName()+"\\n\");\n");

promelaCode = promelaCode.concat(" do\n");

promelaCode = promelaCode.concat(" ::(i <= wf

"+ ob.getName() +"Index) ->\n");

promelaCode = promelaCode.concat(" if\n");

promelaCode = promelaCode.concat(" ::(wf"+

ob.getName() +"[i].elements[3] == 0) ->\n");

promelaCode = promelaCode.concat("

printf(\"Deleting workframe at index %d\\n\", i);\n");

promelaCode = promelaCode.concat("

j=0;\n");

promelaCode = promelaCode.concat("

do\n");

promelaCode = promelaCode.concat("

::(j <= wfTop"+ ob.getName() +"[wf" + ob.getName()

+ "Index]) ->\n");

promelaCode = promelaCode.concat("

wf"+ ob.getName() +"[i].elements[j] = wf" +

ob.getName() +"[wf" + ob.getName() + "Index]

.elements[j];\n");

promelaCode = promelaCode.concat("

j = j+1;\n");

promelaCode = promelaCode.concat("

::else ->\n");

promelaCode = promelaCode.concat("

"+ "wfTop"+ob.getName()+"[i] = wfTop"+ob.getName()+

"[wf" + ob.getName() + "Index];\n");

promelaCode = promelaCode.concat("

wf"+ob.getName()+"Index = wf"+ob.getName()+

"Index - 1;\n");

promelaCode = promelaCode.concat("

break;\n");

promelaCode = promelaCode.concat("

od;\n");
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promelaCode = promelaCode.concat("

::else ->\n");

promelaCode = promelaCode.concat("

skip;\n");

promelaCode = promelaCode.concat("

fi;\n");

promelaCode = promelaCode.concat("

i=i+1;\n");

promelaCode = promelaCode.concat("

::else -> \n");

promelaCode = promelaCode.concat("

break;\n");

promelaCode = promelaCode.concat("

od;\n");

promelaCode = promelaCode.concat(" " +

ob.getName() + "_timeRemaining = -1;\n");

promelaCode = promelaCode.concat("

printf(\"turn = ob_" + ob.getName() + "\\n\");\n");

promelaCode = promelaCode.concat(" "+

ob.getName()+"Active = true;");

promelaCode = promelaCode.concat("

turn = ob_" + ob.getName() + ";\n");

promelaCode = promelaCode.concat(" }\n");

promelaCode = promelaCode.concat(" fi;\n");

}

promelaCode = promelaCode.concat(" if

/*Stops Environment jumping ahead*/\n");

promelaCode = promelaCode.concat(" ::(turn ==

Environment)->\n");

promelaCode = promelaCode.concat(" skip;\n");

promelaCode = promelaCode.concat(" fi;\n");

promelaCode = promelaCode.concat(" " +

"::(turn == Environment && EnvironmentActive

== true");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat(" && "+ag.getName()

+ "Active == false");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat(" && "+ob.getName() +

"Active == false");

}

promelaCode = promelaCode.concat(") ->\n");

promelaCode = promelaCode.concat(" " + "d_step{\n");

promelaCode = promelaCode.concat(" " + "printf(
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\"Issuing terminate command\\n\");\n");

promelaCode = promelaCode.concat(" " +

"EnvironmentActive = false;\n");

promelaCode = promelaCode.concat(" " + "}\n");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

promelaCode = promelaCode.concat(" if\n");

promelaCode = promelaCode.concat("

::(turn == Environment)->\n");

promelaCode = promelaCode.concat(" " +

"d_step{\n");

promelaCode = promelaCode.concat("

printf(\"Passing control to ag_"+ag.getName()+"

so it can terminate\\n\");\n");

promelaCode = promelaCode.concat("

turn = ag_"+ag.getName()+";\n");

promelaCode = promelaCode.concat(" "

+ "}\n");

promelaCode = promelaCode.concat(" fi;\n");

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

promelaCode = promelaCode.concat(" if\n");

promelaCode = promelaCode.concat("

::(turn == Environment)->\n");

promelaCode = promelaCode.concat(" " +

"d_step{\n");

promelaCode = promelaCode.concat("

printf(\"Passing control to ob_"+ob.getName()+"

so it can terminate\\n\");\n");

promelaCode = promelaCode.concat("

turn = ob_"+ob.getName()+";\n");

promelaCode = promelaCode.concat(" " + "}\n");

promelaCode = promelaCode.concat(" fi;\n");

}

promelaCode = promelaCode.concat(" if\n");

promelaCode = promelaCode.concat("

::(turn == Environment)->\n");

promelaCode = promelaCode.concat(" " + "break;\n");

promelaCode = promelaCode.concat(" fi;\n");

promelaCode = promelaCode.concat(" " + "od;\n");

promelaCode = promelaCode.concat("}\n\n");

promelaCode = promelaCode.concat("inline findID(name)\n");

promelaCode = promelaCode.concat("{\n");

promelaCode = promelaCode.concat(" d_step{\n");

promelaCode = promelaCode.concat(" index2 = 0;\n");

promelaCode = promelaCode.concat(" do\n");
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promelaCode = promelaCode.concat(" ::(index2 <

numberOfEverything) ->\n");

promelaCode = promelaCode.concat(" if\n");

promelaCode = promelaCode.concat("

::(agentsObjectsIDs[index2] == name)->\n");

promelaCode = promelaCode.concat("

searchID = index2;\n");

promelaCode = promelaCode.concat("

index2 = numberOfEverything;\n");

promelaCode = promelaCode.concat(" ::else ->\n");

promelaCode = promelaCode.concat(" index2++;\n");

promelaCode = promelaCode.concat(" fi;\n");

promelaCode = promelaCode.concat(" ::else ->\n");

promelaCode = promelaCode.concat(" break;\n");

promelaCode = promelaCode.concat(" od;\n");

promelaCode = promelaCode.concat(" }\n");

promelaCode = promelaCode.concat("}\n");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

String tempProm = ag.toPromelaString(agents, objects,

classes, groups, numberOfAgentsObjects,

numberOfEverything, locs, areaDefinitions, paths,

identificationNumbers);

promelaCode = promelaCode.concat("\n

/*Code for Agent "+ag.getName()+"*/ \n\n" + tempProm);

}

for (Iterator<object> objectit = objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

String tempProm = ob.toPromelaString(agents, objects,

classes, groups, numberOfAgentsObjects,

numberOfEverything, locs, areaDefinitions, paths,

identificationNumbers);

promelaCode=promelaCode.concat("\n/*Code for Object "

+ob.getName()+"*/ \n\n" + tempProm);

}

System.out.println(promelaCode);

}

}

208



C.3 Agents

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Holds all data about the agents. Code is almost identical to objects

except during translation object will react on facts and not beliefs.

In the semantics:

Agent’s tuple = <agent, Thoughtframe, Workframe, stage, Befliefs,

Facts, Time, Thoughtframes, Workframes>

Thoughtframe(current thoughtframe), Workframe(current workframe),

Stage(which rules to consider) and Time are not covered in these

data structures because they are purely run time only.

*/

import java.util.*;

class agent

{

String name; // name of the agent

String display; // Agents display name

String cost; // cost of agent

String timeUnit; //

String location; // current location of the agent

// Which group the agent is a member of, will be changed to a

// set so agent can be member of multiple groups

Set<String> memberOf;

// All relations the agent has.

Set<relation> relations = new HashSet<relation>();

// All activites agent has

Set<activity> activities = new HashSet<activity>();

// Attributes

Set<attribute> attributes = new HashSet<attribute>();

// beliefs

Set<belief> beliefs = new HashSet<belief>();

// facts

Set<fact> facts = new HashSet<fact>();

// workframes

Set<workframe> workframes = new HashSet<workframe>();

// thoughtframes

Set<thoughtframe> thoughtframes = new HashSet<thoughtframe>();

/****************

*For Promela use*
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*****************/

int ID; // An ID number assigned to the agent

// Used to count the number of objects/agents,

// for sizing arrays

Set<agent> agents = new HashSet<agent>();

Set<object> objects = new HashSet<object>();

// Available so agents can access details of the groups they

// are members of. Should be changed to use inheritance.

Set<b_class> classes = new HashSet<b_class>();

Set<group> groups = new HashSet<group>();

// Number of all objects and agents, mainly used to

// declare size of arrays

int numberOfAgentsObjects;

// Number of agents, objects and locations.

// Again for array declaration.

int numberOfEverything;

// Holds all the identification numbers for agents

String identificationNumbers[];

// Detectables to be checked

Set<detectable> agentsDetectables = new HashSet<detectable>();

// Details of all the locations. Used to size arrays.

Set<locations> locs = new HashSet<locations>();

Set<areaDefs> areaDefs = new HashSet<areaDefs>();

Set<path> paths = new HashSet<path>();

public String initialisePromela = "";

public String toPromela = "";

public agent()

{ }

public agent(

String new_name,

int new_ID,

Set new_memberOf,

String new_display,

String new_cost,

String new_timeUnit,

String new_location,

Set new_relations,

Set new_activities,

Set new_attributes,

Set new_beliefs,

Set new_facts,

Set new_workframes,
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Set new_thoughtframes){

name = new_name;

ID = new_ID;

memberOf = new_memberOf;

display = new_display;

cost = new_cost;

timeUnit = new_timeUnit;

location = new_location;

relations = new_relations;

activities = new_activities;

attributes = new_attributes;

beliefs = new_beliefs;

facts = new_facts;

workframes = new_workframes;

thoughtframes = new_thoughtframes;

}

public void inheritance(Set groups){

for(Iterator<group> groupit = groups.iterator();

groupit.hasNext();){

group g = groupit.next();

g.inheritFromMemberOf(groups);

if(memberOf.contains(g.getName())){

Set<String> tempMemberOf = new HashSet<String>

(g.getMembersOf());

for(Iterator<String> memIt = tempMemberOf.iterator();

memIt.hasNext();){

String m = memIt.next();

if(!memberOf.contains(m)){

memberOf.add(m);

inheritance(groups);

}

}

relations.addAll(g.getRelations());

activities.addAll(g.getActivities());

attributes.addAll(g.getAttributes());

beliefs.addAll(g.getBeliefs());

facts.addAll(g.getFacts());

workframes.addAll(g.getWorkframes());

thoughtframes.addAll(g.getThoughtframes());

}

}

}

public String thoughtWorkInitialisation(Set groups){

inheritance(groups);

//Loop through all groups agent is a member of
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for(Iterator<String> memIt = memberOf.iterator();

memIt.hasNext();){

String m = memIt.next();

//Set in array that this is a member of the group

initialisePromela = initialisePromela.concat(" "+

m+"members["+ID+"] = 1;\n");

}

for(Iterator<workframe> workit = workframes.iterator();

workit.hasNext();){

workframe w = workit.next();

agentsDetectables.addAll(w.getDetectables());

}

initialisePromela = initialisePromela.concat("

/*Thoughtframes*/\n");

for(Iterator<thoughtframe> thoughtit =

thoughtframes.iterator(); thoughtit.hasNext();){

thoughtframe t = thoughtit.next();

initialisePromela = initialisePromela.concat("

/*Thoughtframe "+t.getName()+"*/\n");

initialisePromela = initialisePromela.concat("

ThoughtframeIDs["+t.getID()+"] = "+t.getName()

+";\n");

initialisePromela = initialisePromela.concat("

tf"+name+"Index++;\n");

List<event> events = t.getEvents();

initialisePromela = initialisePromela.concat("

tfTop"+name+"[tf"+name+"Index] = "+(events.size()+5)

+";\n");

// ID of thoughtframe

initialisePromela = initialisePromela.concat("

tf"+name+"[tf"+name+"Index].elements[0] = "+

t.getID() +";\n");

// Guard condition

initialisePromela = initialisePromela.concat("

tf"+name+"[tf"+name+"Index].elements[1] = 0;\n");

int priority = 10*t.getPriority();

initialisePromela = initialisePromela.concat("

tf"+name+"[tf"+name+"Index].elements[2] = "+

priority+";\n"); // Priority

initialisePromela = initialisePromela.concat("

tf"+name+"[tf"+name+"Index].elements[3] = "+

t.getRepeatValue()+";\n"); // Repeat

// Comm/Move activity started

initialisePromela = initialisePromela.concat("

tf"+name+"[tf"+name+"Index].elements[4] = 0;\n");

// Impassed

initialisePromela = initialisePromela.concat("

tf"+name+"[tf"+name+"Index].elements[5] = -1;\n");
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int i = 0;

for(Iterator<event> eventit = events.iterator();

eventit.hasNext();){

event e = eventit.next();

initialisePromela = initialisePromela.concat("

tf"+name+"[tf"+name+"Index].elements["+

(events.size()+5-i)+"] = "+e.getID()+";\n");

i++;

}

}

initialisePromela = initialisePromela.concat("

/*Workframes*/\n");

for(Iterator<workframe> workit = workframes.iterator();

workit.hasNext();){

workframe w = workit.next();

initialisePromela = initialisePromela.concat("

/*Workframe "+w.getName()+"*/\n");

initialisePromela = initialisePromela.concat("

WorkframeIDs["+w.getID()+"] = "+w.getName() +";\n");

initialisePromela = initialisePromela.concat("

wf"+name+"Index++;\n");

List<event> events = w.getEvents();

initialisePromela = initialisePromela.concat("

wfTop"+name+"[wf"+name+"Index] = "+(events.size()

+5)+";\n");

initialisePromela = initialisePromela.concat("

wf"+name+"[wf"+name+"Index].elements[0] = "+

w.getID()+";\n");

initialisePromela = initialisePromela.concat("

wf"+name+"[wf"+name+"Index].elements[1] = 0;\n");

int priority = 10*w.getPriority();

initialisePromela = initialisePromela.concat("

wf"+name+"[wf"+name+"Index].elements[2] = "

+priority+";\n");

initialisePromela = initialisePromela.concat("

wf"+name+"[wf"+name+"Index].elements[3] = "

+w.getRepeatValue()+";\n");

initialisePromela = initialisePromela.concat("

wf"+name+"[wf"+name+"Index].elements[4]

= 0;\n");

// Impassed

initialisePromela = initialisePromela.concat("

wf"+name+"[wf"+name+"Index].elements[5] = -1;\n");

int i = 0;

for(Iterator<event> eventit = events.iterator();

eventit.hasNext();){

event e = eventit.next();

if(e.getType() == eventType.Conc || e.getType()

== eventType.CommAct || e.getType()
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== eventType.Move)

initialisePromela = initialisePromela.concat("

wf"+name+"[wf"+name+"Index].elements["+

(events.size()+5-i)+"] = "+e.getID()+";\n");

if(e.getType() == eventType.PrimAct)

initialisePromela = initialisePromela.concat("

wf"+name+"[wf"+name+"Index].elements["+

(events.size()+5-i)+"] = "+e.getDuration()+

";\n");

i++;

}

}

return initialisePromela;

}

public String toPromelaString(Set new_agents, Set new_objects,

Set new_classes, Set new_groups, int new_numberOfAgentsObjects,

int new_numberOfEverything, Set new_locs, Set new_areaDefs,

Set new_paths, String new_identificationNumbers[]) {

agents = new_agents;

objects = new_objects;

classes = new_classes;

groups = new_groups;

numberOfAgentsObjects = new_numberOfAgentsObjects;

numberOfEverything = new_numberOfEverything;

locs = new_locs;

areaDefs = new_areaDefs;

paths = new_paths;

identificationNumbers = new_identificationNumbers;

if(workframes.size() > 0){

toPromela = toPromela.concat("/*Method to set all

instances as active if guard condition is met*/\n");

toPromela = toPromela.concat("inline " + name +

"wfActive(i, ID) {\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat(" i = 0;\n");

toPromela = toPromela.concat(" printf(\"

Setting workframes named %e, with ID = %d active

and priotiry %d\\n\", WorkframeIDs[ID], ID, wf"+name+"

[ID].elements[2]);\n");

toPromela = toPromela.concat(" do\n");

toPromela = toPromela.concat(" ::(i <= wf"+name+"

Index)->\n");

for (Iterator<workframe> workit = workframes.iterator();

workit.hasNext(); ){

workframe wf = workit.next();

}
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toPromela = toPromela.concat("

if /*workframe has correct ID and repeat

= true or once*/\n");

toPromela = toPromela.concat("

::(wf"+name+"[i].elements[0] == ID &&

wf"+name+"[i].elements[3] > 0)->\n");

toPromela = toPromela.concat("

printf(\" Active workframe found at index %d

\\n\", i);\n");

if(agentsDetectables.isEmpty() == false){

toPromela = toPromela.concat("

printf(\" Workframe[%d] has detectables,

checking if in impasse\\n\", i);\n");

toPromela = toPromela.concat("

if /*workframe is in impasse*/\n");

toPromela = toPromela.concat("

::(wf"+name+"[i].elements[5] > -1)->\n");

toPromela = toPromela.concat("

printf(\" workframe is in impasse

\\n\");\n");

// Loop through all detectables for agent

for(Iterator<detectable> adit =

agentsDetectables.iterator();

adit.hasNext();){

detectable d = adit.next();

// if guard condition is met on detectable,

// checked wf has same wfID and detectableID

// as the impasse

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::("+d.toPromelaString(identificationNumbers,

workframes, name)+" && wf"+name+"[i].

elements[5] == "+d.getID()+" && wf"+

name+"[i].elements[0] == "+d.getwfNumber()

+")->\n");

toPromela = toPromela.concat("

printf(\" Workframe %d is in

impasse and detectable is active, therefore

not active\\n\", i);\n");

toPromela = toPromela.concat("

wf"+name+"[i].elements[1] = 0;\n");

toPromela = toPromela.concat("

::else->\n");

// Impasse is resolved so workframe can

// continue exectuting

toPromela = toPromela.concat("

wf"+name+"[i].elements[1] = 1;\n");

// Set detectable inactive
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toPromela = toPromela.concat("

wf"+name+"[i].elements[5] = -1;\n");

// Amend beliefs to match facts

toPromela = toPromela.concat("

" + d.getBeliefUpdateToString() +";\n");

toPromela = toPromela.concat("

printf(\" Impasse resolved,

workframe can now continue\\n\");\n");

toPromela = toPromela.concat("

fi;\n");

}

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

printf(\" workframe is not in

impasse, workframe is set active\\n\");\n");

// Detectable is not active so workframe exectute

toPromela = toPromela.concat("

wf"+name+"[i].elements[1] = 1;\n");

toPromela = toPromela.concat(" fi;\n");

}

else{

toPromela = toPromela.concat("

wf"+name+"[i].elements[1] = 1;\n");

}

//toPromela = toPromela.concat("

wf"+name+"[i].elements[1] = 1;\n");

toPromela = toPromela.concat("

if /*priority is > current highest*/\n");

toPromela = toPromela.concat("

::(pri <= wf"+name+"[i].elements[2] &&

wf"+name+"[i].elements[1] == 1)->\n");

toPromela = toPromela.concat("

pri = wf"+name+"[i].elements[2];\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat(" ::else->\n");

toPromela = toPromela.concat(" skip;\n");

toPromela = toPromela.concat(" fi;\n");

toPromela = toPromela.concat(" i = i+1;\n");

toPromela = toPromela.concat(" ::else->\n");

toPromela = toPromela.concat(" break;\n");

toPromela = toPromela.concat(" od;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("}\n\n");
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toPromela = toPromela.concat("inline "+name+"

wfNotActive(i, ID) {\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat(" i = 0;\n");

toPromela = toPromela.concat(" do\n");

toPromela = toPromela.concat("

::(i <= wf"+name+"Index)->\n");

toPromela = toPromela.concat(" if\n");

toPromela = toPromela.concat("

::(wf"+name+"[i].elements[0] == ID)->\n");

toPromela = toPromela.concat("

wf"+name+"[i].elements[1] = 0;\n");

toPromela = toPromela.concat(" ::else ->\n");

toPromela = toPromela.concat(" skip;\n");

toPromela = toPromela.concat(" fi;\n");

toPromela = toPromela.concat(" i = i+1;\n");

toPromela = toPromela.concat(" ::else->\n");

toPromela = toPromela.concat(" break;\n");

toPromela = toPromela.concat(" od;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("}\n\n");

}

if(thoughtframes.size() > 0){

toPromela = toPromela.concat("inline " + name +

"tfActive(i, ID) {\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat(" i = 0;\n");

toPromela = toPromela.concat(" do\n");

toPromela = toPromela.concat("

::(i <= tf"+name+"Index)->\n");

toPromela = toPromela.concat("

if /*thoughtframe has correct ID and repeat

= true or once*/\n");

toPromela = toPromela.concat("

::(tf"+name+"[i].elements[0] == ID && tf"+name+

"[i].elements[3] > 0)-> \n");

toPromela = toPromela.concat("

tf"+name+"[i].elements[1] = 1;

/*set guard condition to true*/\n");

toPromela = toPromela.concat("

if /*priority is > current highest*/\n");

toPromela = toPromela.concat("

::(pri <= tf"+name+"[i].elements[2])->\n");

toPromela = toPromela.concat("

pri = tf"+name+"[i].elements[2];\n");

toPromela = toPromela.concat(" ::else ->\n");

toPromela = toPromela.concat(" skip;\n");

toPromela = toPromela.concat(" fi;\n");
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toPromela = toPromela.concat(" ::else->\n");

toPromela = toPromela.concat(" skip;\n");

toPromela = toPromela.concat(" fi;\n");

toPromela = toPromela.concat(" i = i+1;\n");

toPromela = toPromela.concat(" ::else->\n");

toPromela = toPromela.concat(" break;\n");

toPromela = toPromela.concat(" od;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("}\n");

toPromela = toPromela.concat("

inline "+name+"tfNotActive(i, ID) {\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat(" i = 0;\n");

toPromela = toPromela.concat(" do\n");

toPromela = toPromela.concat("

::(i <= tf"+name+"Index)->\n");

toPromela = toPromela.concat(" if\n");

toPromela = toPromela.concat("

::(tf"+name+"[i].elements[0] == ID)->\n");

toPromela = toPromela.concat("

tf"+name+"[i].elements[1] = 0;\n");

toPromela = toPromela.concat(" ::else ->\n");

toPromela = toPromela.concat(" skip;\n");

toPromela = toPromela.concat(" fi;\n");

toPromela = toPromela.concat(" i = i+1;\n");

toPromela = toPromela.concat(" ::else->\n");

toPromela = toPromela.concat(" break;\n");

toPromela = toPromela.concat(" od;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("}\n");

}

toPromela = toPromela.concat("

proctype proc_"+name+"() {\n");

toPromela = toPromela.concat("

int pri = 0;\n");

toPromela = toPromela.concat("

int currentPri = 0;\n");

toPromela = toPromela.concat("

bool det_complete = false;\n");

toPromela = toPromela.concat("

bool concludes = false;\n");

toPromela = toPromela.concat(" int i;\n");

toPromela = toPromela.concat(" int j;\n");

toPromela = toPromela.concat(" int k;\n\n");

toPromela = toPromela.concat("\n");

toPromela = toPromela.concat(" /*Beliefs*/\n");

if(location != null && !location.equals("")){

beliefs.add(new belief("current", "location",

"=", location));
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}

if(beliefs.size() > 0){

for(Iterator<belief> beliefit = beliefs.iterator();

beliefit.hasNext();){

belief b = beliefit.next();

toPromela = toPromela.concat(

b.promelaToString(ID, identificationNumbers,

name));

}

}

toPromela = toPromela.concat(" /*Facts*/\n");

if(location != null && !location.equals("")){

facts.add(new fact("current", "location", "=",

location));

}

if(beliefs.size() > 0){

for(Iterator<fact> factit = facts.iterator();

factit.hasNext();){

fact f = factit.next();

toPromela = toPromela.concat(

f.promelaToString(ID, identificationNumbers,

name)+ "\n");

}

}

for(Iterator<locations> locit = locs.iterator();

locit.hasNext();){

locations l = locit.next();

toPromela = toPromela.concat("

bool bool"+l.getName()+";\n");

}

toPromela = toPromela.concat(" bool loop;\n\n");

toPromela = toPromela.concat(" do\n");

toPromela = toPromela.concat(" ::(turn == ag_"+name+" &&

"+name+"Active == true && EnvironmentActive == true)

->\n");

if(thoughtframes.size() > 0) {

toPromela = toPromela.concat("

/*********Thoughtframes*********/\n");

toPromela = toPromela.concat("

thoughtframes:\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

printf(\"Checking for active thoughtframes

\\n\");\n");

toPromela = toPromela.concat("

pri = -1;\n");

for(Iterator<thoughtframe> thoughtit =

thoughtframes.iterator(); thoughtit.hasNext
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();){

thoughtframe t = thoughtit.next();

toPromela = toPromela.concat(t.toPromelaString

(identificationNumbers, name)+"\n");

}

toPromela = toPromela.concat("

\n/*Stack is empty, select a thoughtframe*/\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat(" if\n");

toPromela = toPromela.concat(" ::(tf_"+name+

"Top == -1 && "+name+"Active == true) ->\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

printf(\"Thoughtframe stack is empty, checking

for thoughtframes\\n\");\n");

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat(" do\n");

toPromela = toPromela.concat("

::(tf"+name+"[i].elements[1] == 1 && i <= tf"+name+

"Index && tf"+name+"[i].elements[2] == pri)->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

::((tf"+name+"[i].elements[1] != 1 || tf"+name+"[i].

elements[2]!= pri) && i <= tf"+name+"Index)->\n");

toPromela = toPromela.concat("

i = i + 1;\n");

toPromela = toPromela.concat("

::(i > tf"+name+"Index)->\n");

toPromela = toPromela.concat("

goto workframes;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat(" if\n");

toPromela = toPromela.concat("

::(i <= tf"+name+"Index)->\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

currentPri = pri;\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(tf"+name+"[i].elements[3] < 3)->\n");

toPromela = toPromela.concat("

tf"+name+"[i].elements[3] = tf"+name+"[i].

elements[3] - 1;\n");
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toPromela = toPromela.concat("

printf(\"Thoughtframes repeat variable is reduced

\\n\");\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

printf(\"Thoughtframes repeat variable is to always

repeat\\n\");\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

/*Upload current tf data into current

thoughtframe*/\n");

toPromela = toPromela.concat("

printf(\"About to upload tf data into current, TF

depth = %d\\n\", tfTop"+name+"[i]);\n");

toPromela = toPromela.concat("

j = 0;\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::(j <= tfTop"+name+"[i])->\n");

toPromela = toPromela.concat("

tf_stack"+name+"[j] = tf"+name+"[i].

elements[j];\n");

toPromela = toPromela.concat("

tf_"+name+"Top = tf_"+name+"Top + 1;\n");

toPromela = toPromela.concat("

printf(\" adding %d at index %d to current tf

stack\\n\", tf_stack"+name+"[j], tf_"+name+"Top);

\n");

toPromela = toPromela.concat("

j = j+1; \n");

toPromela = toPromela.concat("

:: else ->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

printf(\"Thoughtframe %e has been loaded into

current tf\\n\", ThoughtframeIDs[tf_stack"+name+

"[0]]);\n");

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat("

j = 0;\n");
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toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

goto thoughtframes;\n");

toPromela = toPromela.concat("

:: else ->\n");

toPromela = toPromela.concat("

goto workframes;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

:: else ->\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::(tf_"+name+"Top <= 5);\n");

toPromela = toPromela.concat("

tf_"+name+"Top = -1;\n");

for(Iterator<thoughtframe> thoughtit = thoughtframes.

iterator(); thoughtit.hasNext();){

thoughtframe t = thoughtit.next();

//Check if the workframe finishing has a varaible,

//if so decrement the counter

if(t.getVariables().size() > 0){

toPromela = toPromela.concat("

d_step{\n");

//if it has a collectall then counter needs to

// be decremented right to the end

t.hasCollectAll();

if(t.getContainsCollectAll()){

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::("+name+"_tf_"+t.getName() +

"_index > -1)->\n");

toPromela = toPromela.concat("

"+name+"_tf_"+t.getName() +

"_index--;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

}

// if not then just -1

else{

toPromela = toPromela.concat("

if\n");
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toPromela = toPromela.concat("

::(tf_stack"+name+"[0] == "+t.getID()

+");\n");

toPromela = toPromela.concat("

"+name+"_tf_"+t.getName() + "_index--;

\n");

toPromela = toPromela.concat("

printf(\"Moving to next variable, "+

name+"_tf_"+t.getName() + "_index = %d

\\n\", "+name+"_tf_"+t.getName() + "

_index);\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

}

toPromela = toPromela.concat(" }\n");

}

}

toPromela = toPromela.concat("

goto thoughtframes;\n");

toPromela = toPromela.concat("

break;\n");

List<event> agentsTFEvents = new ArrayList();

for(Iterator<thoughtframe> thoughtit =

thoughtframes.iterator(); thoughtit.hasNext();){

thoughtframe t = thoughtit.next();

t.hasCollectAll();

agentsTFEvents.addAll(t.getEvents());

}

for(Iterator<event> eventit = agentsTFEvents.iterator();

eventit.hasNext();){

event e = eventit.next();

toPromela = toPromela.concat("

::(tf_stack"+name+"[tf_"+name+"Top] == "+

e.getID()+" && tf_"+name+"Top > 5) ->\n");

String theEvent = e.toPromelaString(name,

"thoughtframe", agents, objects);

if(e.getCollectAll() && e.getHasVar() == true){

toPromela = toPromela.concat("

tempIndex = "+name+"_tf_"+e.getFName()+

"_index;\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::("+name+"_tf_"+e.getFName()+"_index >

-1)->\n");
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}

toPromela = toPromela.concat(theEvent);

if(e.getCollectAll() && e.getHasVar() == true){

toPromela = toPromela.concat("

"+name+"_tf_"+e.getFName()+"_index--;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+name+"_tf_"+e.getFName()+"_index =

tempIndex;\n");

toPromela = toPromela.concat("

tempIndex = -1;\n");

toPromela = toPromela.concat("

};\n");

}

toPromela = toPromela.concat("

tf_"+name+"Top--;\n");

Set updates = e.getBeliefUpdate();

for(Iterator<String> iter =

updates.iterator(); iter.hasNext();){

String up = iter.next();

}

}

toPromela = toPromela.concat("

:: else ->\n");

toPromela = toPromela.concat("

printf(\" Error in processing thoughtframe concludes

in agent "+name+" \\n \");\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

fi;\n");

}

else if(workframes.size() > 0){

toPromela = toPromela.concat("

thoughtframes:\n");

toPromela = toPromela.concat("

goto workframes;\n");

}

if(workframes.size() > 0){
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toPromela = toPromela.concat("

/*********Workframes*********/\n");

toPromela = toPromela.concat("

workframes:\n");

toPromela = toPromela.concat("

/********Find active workframes*******/\n");

toPromela = toPromela.concat(" skip;\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat(" printf(

\"Processing workframes\\n\");\n");

toPromela = toPromela.concat("

pri = -1; /* reset priority */\n");

toPromela = toPromela.concat(" }\n");

for(Iterator<workframe> workit = workframes.iterator();

workit.hasNext();){

toPromela = toPromela.concat("

d_step{\n");

workframe w = workit.next();

toPromela = toPromela.concat(w.toPromelaString(

identificationNumbers, name, name)+"\n");

toPromela = toPromela.concat(" }\n");

}

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

\n/*Check for suspension*/\n");

toPromela = toPromela.concat("

printf(\"Checking whether to suspend current

workframe \\n\");\n");

toPromela = toPromela.concat(" if\n");

toPromela = toPromela.concat("

::(wf_"+name+"Top != -1) ->\n");

toPromela = toPromela.concat("

printf(\"Current pri = %d and pri of highest =

%d\\n\", wf_stack"+name+"[2], pri);\n");

toPromela = toPromela.concat(" if\n");

toPromela = toPromela.concat("

::(pri > (wf_stack"+name+"[2]+3)) ->\n");

toPromela = toPromela.concat("

printf(\"Suspending current workframe\\n\");\n");

toPromela = toPromela.concat("

wf"+name+"Index = wf"+name+"Index +1; \n");

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat("

printf(\"Adding Elements to set of workframes at

index %d\\n\", wf"+name+"Index);\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("
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::(i <= wf_"+name+"Top) ->\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(i == 2) ->\n"); // If I’m looking at priority

// Set j to value of the priority

toPromela = toPromela.concat("

j = wf_stack"+name+"[i];\n");

// This checks to see if this wf has already been

// suspended

toPromela = toPromela.concat(" do\n");

toPromela = toPromela.concat("

::(j > 0) ->\n");

// Subtract by 10 until j = 0 is < 0. If < 0

//then it has already been suspended.

toPromela = toPromela.concat("

j = j - 10;\n");

toPromela = toPromela.concat("

::(j == 0) ->\n");

toPromela = toPromela.concat("

wf"+name+"[wf"+name+"Index].elements[i] =

wf_stack"+name+"[i] + 2;\n"); // Add 0.2 to priority

toPromela = toPromela.concat("

printf(\"---> wf"+name+"[%d].elements[%d] = %d\\n\",

wf"+name+"Index, i,wf"+name+"[wf"+name+"Index].

elements[i]);\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

printf(\"Workframe has already been suspended!

\\n\");\n");

toPromela = toPromela.concat("

printf(\"---> wf"+name+"[%d].elements[%d] = %d\\n\",

wf"+name+"Index, i,wf"+name+"[wf"+name+"Index].

elements[i]);\n");

// If < 0 then don’t add anything to priority

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

j = 0;\n");

toPromela = toPromela.concat("

i = i+1;\n");

toPromela = toPromela.concat("

::(i == 3) ->\n");

toPromela = toPromela.concat("
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wf"+name+"[wf"+name+"Index].elements[i] = 1;\n");

toPromela = toPromela.concat("

printf(\"---> wf"+name+"[%d].elements[%d] = %d\\n\",

wf"+name+"Index, i,wf"+name+"[wf"+name+"Index]

.elements[i]);\n");

toPromela = toPromela.concat("

i = i+1;\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

wf"+name+"[wf"+name+"Index].elements[i] =

wf_stack"+name+"[i];\n");

toPromela = toPromela.concat("

printf(\"---> wf"+name+"[%d].elements[%d] = %d\\n\",

wf"+name+"Index, i,wf"+name+"[wf"+name+

"Index].elements[i]);\n");

toPromela = toPromela.concat("

i = i+1;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

wfTop"+name+"[wf"+name+"Index] =

wf_"+name+"Top;\n");

toPromela = toPromela.concat("

wf_"+name+"Top = -1;\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

printf(\"No need to suspend current\\n\");\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

printf(\"No current workframe to suspend\\n\");\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");
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toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("processWorkframes:\n");

toPromela = toPromela.concat("

\n/*Stack is empty, select a workframe*/\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_"+name+"Top == -1 &&

"+name+"Active == true) ->\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

printf(\"Stack is empty,

selecting workframes\\n\");\n");

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat("

j = 0;\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::(wf"+name+"[i].elements[1] == 1 && i <=

wf"+name+"Index && wf"+name+"[i].

elements[2] == pri)->\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

i = i + 1;\n");

toPromela = toPromela.concat("

j = j + 1;\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

::((wf"+name+"[i].elements[1] != 1 ||

wf"+name+"[i].elements[2] != pri) &&

i <= wf"+name+"Index)->\n");

toPromela = toPromela.concat("

i = i + 1;\n");

toPromela = toPromela.concat("

::(i > wf"+name+"Index)->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

i = 0;\n");

228



toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

k = 1;\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::(wf"+name+"[i].elements[1] == 1 && i <=

wf"+name+"Index && wf"+name+"[i].

elements[2] == pri)->\n");

toPromela = toPromela.concat("

printf(\"Uploading workframe %e data from workframe

at index %d\\n\", WorkframeIDs[wf"+name+"[i].

elements[0]], i);\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

::(wf"+name+"[i].elements[1] == 1 && i <= wf"+name

+"Index && wf"+name+"[i].elements[2] == pri &&

k < j)->\n");

toPromela = toPromela.concat("

i = i + 1;\n");

toPromela = toPromela.concat("

k = k + 1;\n");

toPromela = toPromela.concat("

::((wf"+name+"[i].elements[1] != 1 || wf"+name+"[i].

elements[2] != pri) && i <= wf"+name+"Index)->\n");

toPromela = toPromela.concat("

i = i + 1;\n");

toPromela = toPromela.concat("

::(i > wf"+name+"Index)->\n");

toPromela = toPromela.concat("

cnt"+name+" = cntEnvironment;\n");

toPromela = toPromela.concat("

printf(\"No active workframes found, setting time to

match environment’s: cnt"+name+" = %d\\n\", cnt"+

name+");\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(i <= wf"+name+"Index)->\n");

toPromela = toPromela.concat("

d_step{\n");
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toPromela = toPromela.concat("

currentPri = pri;\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf"+name+"[i].elements[3] < 3)->\n");

toPromela = toPromela.concat("

wf"+name+"[i].elements[3] = wf"+name+"[i].

elements[3] - 1;\n");

toPromela = toPromela.concat("

printf(\"Repeat variable reduced, is now

repeat = %d\\n\", wf"+name+"[i].elements[3]);

\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

/*Upload current wf data into current workframe*/

\n");

toPromela = toPromela.concat("

j=0;\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::(j <= wfTop"+name+"[i])->\n");

toPromela = toPromela.concat("

wf_stack"+name+"[j] = wf"+name+"[i].elements[j];\n");

toPromela = toPromela.concat("

wf_"+name+"Top = wf_"+name+"Top + 1;\n");

toPromela = toPromela.concat("

printf(\" adding %d at index %d in current wf

stack\\n\", wf_stack"+name+"[j], wf_"+name+"Top);\n");

toPromela = toPromela.concat("

j = j+1; \n");

toPromela = toPromela.concat("

:: else ->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat("

j = 0;\n");

toPromela = toPromela.concat("

printf(\"Workframe %e uploaded, back to start of
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processing\\n\", WorkframeIDs[wf_stack"+name+"

[0]]);\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

goto processWorkframes;\n");

toPromela = toPromela.concat("

:: else ->\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+name+"Active = false;\n");

toPromela = toPromela.concat("

printf(\"turn = Environment\\n\");\n");

toPromela = toPromela.concat("

turn = Environment;\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

::(wf_"+name+"Top != -1 && "+name+"Active == true)

->\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

printf(\"A current workframe found and concludes

= %d\\n\", concludes);\n");

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(turn == ag_"+name+")->\n");

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat("

popstack:\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[wf_"+name+"Top] == 0 &&

wf_"+name+"Top > 5 && comm" + name + " ==

false);\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

wf_"+name+"Top--;\n");
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toPromela = toPromela.concat("

printf(\"Activity finished, there are now %d

elements left on the stack next element is %d\\n\"

,(wf_"+name+"Top-5), wf_stack"+name+"[wf_"+name+

"Top]);\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[wf_"+name+"Top] == 0 && wf_"+

name+"Top > 5 && comm" + name + " == true);\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

wf_"+name+"Top--;\n");

toPromela = toPromela.concat("

comm"+name+" = false;\n");

toPromela = toPromela.concat("

concludes = false;\n");

toPromela = toPromela.concat("

"+name+"_timeRemaining = 0;\n");

toPromela = toPromela.concat("

printf(\""+name+"_timeRemaining set to 0\\n\");\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[wf_"+name+"Top] >= 1 &&

det_complete == false && concludes == false

&& wf_"+name+"Top > 5);\n");

for(Iterator<detectable> adit = agentsDetectables.

iterator(); adit.hasNext();){

detectable d = adit.next();

toPromela = toPromela.concat(" d_step{\n");

d.toPromelaString(identificationNumbers,workframes,

name);

toPromela = toPromela.concat("

// Different to Object, objects act on facts only.

/*has Variable = "+d.getHasVariable()+"*/\n");

if(d.getHasVariable()){

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[0] == "+ d.getwfNumber()

+");\n");

toPromela = toPromela.concat("

searchID = 0;\n");

toPromela = toPromela.concat("

findID("+d.getTheVariable()+");\n");
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toPromela = toPromela.concat("

printf(\"Search = %e\\n\",

agentsObjectsIDs[searchID]);\n");

}

// Different to Object, objects act on facts only.

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::("+d.getFactGuardToString()+" && wf_stack"+

name+"[0] == "+ d.getwfNumber()+")->\n");

toPromela = toPromela.concat("

printf(\""+d.getType()+" detectable has

fired\\n\");\n");

toPromela = toPromela.concat("

" + d.getBeliefUpdateToString() +" = "+

d.getFactUpdateToString()+";\n");

toPromela = toPromela.concat("

printf(\"DET BELIEF UPDATE " +

d.getBeliefUpdateToString() +" = %d (if int) or

%e (if String)\\n\", "+

d.getBeliefUpdateToString()+","+

d.getBeliefUpdateToString()+");\n");

String tempName;

if(d.getLeftOwner().equals("current"))

tempName = name;

else

tempName = d.getLeftOwner();

toPromela = toPromela.concat("

activeDetectableType = "+d.getType()+";\n");

toPromela = toPromela.concat("

activeDetectableID = "+d.getID()+";\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

if(d.getHasVariable()){

toPromela = toPromela.concat("

::else\n");

toPromela = toPromela.concat("

skip\n");

toPromela = toPromela.concat("

fi;\n");

}

toPromela = toPromela.concat(" }\n");

}

toPromela = toPromela.concat("

if\n");
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toPromela = toPromela.concat("

::(activeDetectableType == impasse)->\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

wf_stack"+name+"[5] = activeDetectableID;\n");

toPromela = toPromela.concat("

printf(\"Suspending through impasse! Remaining time

on activity is %d\\n\", wf_stack"+name+"

[wf_"+name+"Top]);\n");

//Loop through and mark all workframes with this ID as impassed

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::(i <= wf"+name+"Index) ->\n");

toPromela = toPromela.concat("

if /*workframe has correct ID mark as impassed*/\n");

toPromela = toPromela.concat("

::(wf"+name+"[i].elements[0] == wf_stack"+name

+"[0])->\n");

toPromela = toPromela.concat("

printf(\"Workframe at index %d marked as impassed

\\n\", i);\n");

toPromela = toPromela.concat("

wf"+name+"[i].elements[5] = activeDetectableID;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

i = i+ 1;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

wf"+name+"Index = wf"+name+"Index +1; \n");

toPromela = toPromela.concat("

i = 0;\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::(i <= wf_"+name+"Top) ->\n");

toPromela = toPromela.concat("
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if\n");

toPromela = toPromela.concat("

::(i == 2) ->\n"); // If I’m looking at priority

// Set j to value of the priority

toPromela = toPromela.concat("

j = wf_stack"+name+"[i];\n");

// This checks to see if this wf has already been suspended

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::(j > 0) ->\n");

// Subtract by 10 until j = 0 is < 0.

// If < 0 then it has already been suspended.

toPromela = toPromela.concat("

j = j - 10;\n");

toPromela = toPromela.concat("

::(j == 0) ->\n");

toPromela = toPromela.concat("

wf"+name+"[wf"+name+"Index].elements[i] = wf_stack"+

name+"[i] + 1;\n"); // Add 0.1 to priority

toPromela = toPromela.concat("

printf(\"----> wf"+name+"[%d].elements[%d] = %d

\\n\",wf"+name+"Index, i,wf"+name+"[wf"+name+"Index]

.elements[i] );\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

wf"+name+"[wf"+name+"Index].elements[i] =

wf_stack"+name+"[i];\n");

toPromela = toPromela.concat("

printf(\"----> wf"+name+"[%d].elements[%d] = %d\\n\",

wf"+name+"Index, i,wf"+name+"[wf"+name+"Index].

elements[i] );\n");

// If < 0 then don’t add anything to priority

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

j = 0;\n");

toPromela = toPromela.concat("

i = i+1;\n");

toPromela = toPromela.concat("

::(i == 3) ->\n");

toPromela = toPromela.concat("

wf"+name+"[wf"+name+"Index].elements[i] = 1;\n");

toPromela = toPromela.concat("
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printf(\"----> wf"+name+"[%d].elements[%d] = %d\\n

\",wf"+name+"Index, i,wf"+name+"[wf"+name+"Index]

.elements[i] );\n");

toPromela = toPromela.concat("

i = i+1;\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

wf"+name+"[wf"+name+"Index].elements[i] =

wf_stack"+name+"[i];\n");

toPromela = toPromela.concat("

printf(\"----> wf"+name+"[%d].elements[%d] = %d

\\n\", wf"+name+"Index, i,wf"+name+"[wf"+name+"Index]

.elements[i] );\n");

toPromela = toPromela.concat("

i = i+1;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

::else ->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

wfTop"+name+"[wf"+name+"Index] = wf_"+name+"Top;\n");

toPromela = toPromela.concat("

printf(\"Stack is now empty, workframe has been

suspended through impasse\\n\");\n");

toPromela = toPromela.concat("

"+name+"_timeRemaining = -1;\n");

toPromela = toPromela.concat("

det_complete = false;\n");

toPromela = toPromela.concat("

currentPri = 0;\n");

toPromela = toPromela.concat("

wf_"+name+"Top = -1;\n");

toPromela = toPromela.concat("

activeDetectableType = null;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

goto workframes;\n");

toPromela = toPromela.concat("

::(activeDetectableType == continue)->\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

printf(\"A continue detectable fired!\\n\");\n");

toPromela = toPromela.concat("

"+name+"_timeRemaining = wf_stack"+name+
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"[wf_"+name+"Top];\n");

toPromela = toPromela.concat("

printf(\""+name+" has an activity of duration %d

\\n\", wf_stack"+name+"[wf_"+name+"Top]);\n");

toPromela = toPromela.concat("

cnt"+name+" = cntEnvironment;\n");

toPromela = toPromela.concat("

printf(\"cnt"+name+" = %d\\n\",cnt"+name+");\n");

toPromela = toPromela.concat("

printf(\"turn = Environment\\n\");\n");

toPromela = toPromela.concat("

activeDetectableType = null;\n");

toPromela = toPromela.concat("

activeDetectableID = -1;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

::(activeDetectableType == abort)->\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

wf_"+name+"Top = 5;\n");

toPromela = toPromela.concat("

printf(\"Aborting workframe through detectable

\\n\");\n");

toPromela = toPromela.concat("

activeDetectableType = null;\n");

toPromela = toPromela.concat("

activeDetectableID = -1;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

::(activeDetectableType == complete)->\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

det_complete = true;\n");

toPromela = toPromela.concat("

activeDetectableType = null;\n");

toPromela = toPromela.concat("

printf(\"A complete detectable fired!\\n\");\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

::(activeDetectableType == null)->\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

"+name+"_timeRemaining = wf_stack"+name+

"[wf_"+name+"Top];\n");

toPromela = toPromela.concat("

printf(\""+name+" has an activity of duration %d

\\n\", wf_stack"+name+"[wf_"+name+"Top]);\n");
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toPromela = toPromela.concat("

cnt"+name+" = cntEnvironment;\n");

toPromela = toPromela.concat("

printf(\"turn = Environment\\n\");\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[wf_"+name+"Top] >= 1 &&

det_complete == true && concludes == false &&

wf_"+name+"Top > 5);\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

printf(\""+name+" is discarding an activity of

duration %d\\n\", wf_stack"+name+"[wf_"+name+"Top])

;\n");

toPromela = toPromela.concat("

wf_"+name+"Top--;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[wf_"+name+"Top] >= 1 &&

det_complete == false && concludes == true &&

wf_"+name+"Top > 5);\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

printf(\"An activity found when concludes = true,

breaking.\\n\");\n");

toPromela = toPromela.concat("

concludes = false;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

goto processWorkframes;\n");

List<event> agentsWFEvents = new ArrayList();

for(Iterator<workframe> workit = workframes.iterator();

workit.hasNext();){

workframe w = workit.next();

w.hasCollectAll();

agentsWFEvents.addAll(w.getEvents());

}

for(Iterator<event> eventit = agentsWFEvents.iterator();

eventit.hasNext();){

event e = eventit.next();

if(e.getType() == eventType.CommAct){

toPromela = toPromela.concat("

::(wf_stack"+name+"[wf_"+name+"Top] == "+

e.getID()+" && wf_"+name+"Top > 5) ->\n");

String theEvent = e.toPromelaString(name,
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"workframe", agents, objects);

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[4] == 0 && concludes

== true)->\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

printf(\"An activity found when concludes =

true, breaking.\\n\");\n");

toPromela = toPromela.concat("

concludes = false;\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

goto processWorkframes;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[4] == 0 && concludes

== false && "+e.getDuration()+" > 0)->\n");

toPromela = toPromela.concat("

wf_"+name+"Top = wf_"+name+"Top+1;\n");

toPromela = toPromela.concat("

wf_stack"+name+"[wf_"+name+"Top] = "+

e.getDuration()+";\n");

toPromela = toPromela.concat("

printf(\"Inserting a PA of time %d on to

the stack\\n\","+e.getDuration()+");\n");

toPromela = toPromela.concat("

"+name+"_timeRemaining = wf_stack"+name+"

[wf_"+name+"Top];\n");

toPromela = toPromela.concat("

wf_stack"+name+"[4] = 1;\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[4] == 1)->\n");

if(e.getCollectAll()){

toPromela = toPromela.concat("

tempIndex = "+name+"_wf_"+e.getFName()+

"_index;\n");

toPromela = toPromela.concat("
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do\n");

toPromela = toPromela.concat("

::("+name+"_wf_"+e.getFName()+

"_index > -1)->\n");

}

toPromela = toPromela.concat(theEvent);

if(e.getCollectAll()){

toPromela = toPromela.concat("

"+name+"_wf_"+e.getFName()+

"_index--;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

"+name+"_wf_"+e.getFName()+"_index =

tempIndex;\n");

toPromela = toPromela.concat("

tempIndex = -1;\n");

}

toPromela = toPromela.concat("

wf_stack"+name+"[wf_"+name+"Top] = 0;\n");

toPromela = toPromela.concat("

wf_stack"+name+"[4] = 0;\n");

toPromela = toPromela.concat("

comm"+name+" = true;\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[4] == 0 && concludes

== false && "+e.getDuration()+" == 0)->\n");

toPromela = toPromela.concat(theEvent);

toPromela = toPromela.concat("

wf_"+name+"Top--;\n");

Set updates = e.getBeliefUpdate();

for(Iterator<String> iter =

updates.iterator(); iter.hasNext();){

String up = iter.next();

toPromela = toPromela.concat("

printf(\"There are now %d elements left

on the stack\\n\",(wf_"+name+"Top-5))

;\n");

}

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat(" }\n");

}

if(e.getType() == eventType.Move){

toPromela = toPromela.concat("
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::(wf_stack"+name+"[wf_"+name+"Top] ==

"+e.getID()+" && wf_"+name+"Top > 5) ->\n");

String theEvent = e.toPromelaString(name,

"workframe", agents, objects);

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[4] == 0 &&

concludes == false)->\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

wf_"+name+"Top = wf_"+name+"Top+1;\n");

toPromela = toPromela.concat("

printf(\"Find ID of %e\\n\","+name+

"_location["+name+"ID]);\n");

toPromela = toPromela.concat("

findID("+name+"_location["+name+"ID]);\n");

toPromela = toPromela.concat("

currentLoc = searchID - "+

numberOfAgentsObjects+";\n");

toPromela = toPromela.concat("

printf(\"Find ID of %e\\n\","+

e.getWhomWhere()+");\n");

toPromela = toPromela.concat("

findID("+e.getWhomWhere()+");\n");

toPromela = toPromela.concat("

targetLoc = searchID - "+

numberOfAgentsObjects+";\n");

toPromela = toPromela.concat("

printf(\"currentLoc = %d and targetLoc =

%d\\n\", currentLoc, targetLoc);\n");

toPromela = toPromela.concat("

wf_stack"+name+"[wf_"+name+"Top] =

adjacency[currentLoc].edges[targetLoc];\n");

toPromela = toPromela.concat("

printf(\"Inserting a PA of time %d on to

the stack\\n\",minDist);\n");

toPromela = toPromela.concat("

"+name+"_timeRemaining = wf_stack"+name+

"[wf_"+name+"Top];\n");

toPromela = toPromela.concat("

wf_stack"+name+"[4] = 1;\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[4] == 0 && concludes

== true)->\n");
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toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

printf(\"An activity found when concludes

= true, breaking.\\n\");\n");

toPromela = toPromela.concat("

concludes = false;\n");

toPromela = toPromela.concat("

}\n");

toPromela = toPromela.concat("

goto processWorkframes;\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[4] == 1)->\n");

toPromela = toPromela.concat(theEvent);

toPromela = toPromela.concat("

"+e.getToPromelaMove());

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

wf_"+name+"Top--;\n");

toPromela = toPromela.concat("

wf_stack"+name+"[4] = 0;\n");

toPromela = toPromela.concat("

printf(\"There are now %d elements

left on the stack\\n\",(wf_"+name+

"Top-5));\n");

Set updates = e.getBeliefUpdate();

for(Iterator<String> iter = updates.iterator();

iter.hasNext();){

String up = iter.next();

}

Set factUpdates = e.getPromelaFactUpdate();

toPromela = toPromela.concat("

}\n");

for(Iterator<String> iter = factUpdates

.iterator(); iter.hasNext();){

String up = iter.next();

}

toPromela = toPromela.concat("

fi;\n");

}

if(e.getType() == eventType.Conc){

toPromela = toPromela.concat("

::(wf_stack"+name+"[wf_"+name+"Top] ==

"+e.getID()+" && wf_"+name+"Top > 5) ->\n");

if(e.getFc() == 100 && e.getBc() == 100){

toPromela = toPromela.concat("

d_step{\n");

}
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if(e.getCollectAll() && e.getHasVar() == true){

toPromela = toPromela.concat("

tempIndex = "+name+"_wf_"+e.getFName()+

"_index;\n");

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::("+name+"_wf_"+e.getFName()+"_index

> -1)->\n");

}

String theEvent = e.toPromelaString(name,

"workframe", agents, objects);

toPromela = toPromela.concat(theEvent);

if(e.getCollectAll() && e.getHasVar()

== true){

toPromela = toPromela.concat("

"+name+"_wf_"+e.getFName()+

"_index--;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

"+name+"_wf_"+e.getFName()+

"_index = tempIndex;\n");

toPromela = toPromela.concat("

tempIndex = -1;\n");

}

toPromela = toPromela.concat("

wf_"+name+"Top--;\n");

toPromela = toPromela.concat("

printf(\"There are now %d elements left

on the stack\\n\",(wf_"+name+"Top-5));\n");

if(e.getFc() == 100 & e.getBc() == 100){

toPromela = toPromela.concat("

}\n");

}

}

}

toPromela = toPromela.concat("

::(wf_"+name+"Top <= 5 && concludes == false)

->\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("
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"+name+"_timeRemaining = -1;\n");

for(Iterator<workframe> workit = workframes.iterator();

workit.hasNext();){

workframe w = workit.next();

//Check if the workframe finishing has a varaible,

//if so decrement the counter

if(w.getVariables().size() > 0){

//if it has a collectall then counter needs to

//be decremented right to the end

w.hasCollectAll();

if(w.getContainsCollectAll()){

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::("+name+"_wf_"+w.getName() +

"_index > -1)->\n");

toPromela = toPromela.concat("

"+name+"_wf_"+w.getName() +

"_index--;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

}

// if not then just -1

else{

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[0] == "+

w.getID()+");\n");

toPromela = toPromela.concat("

"+name+"_wf_"+w.getName()

+ "_index--;\n");

toPromela = toPromela.concat("

printf(\"Moving to next variable,

"+name+"_wf_"+w.getName() +

"_index = %d\\n\", "+name+"_wf_"+

w.getName() + "_index);\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

}
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}

}

toPromela = toPromela.concat("

printf(\"Stack is now empty, workframe finished and

concludes = %d\\n\", concludes);\n");

toPromela = toPromela.concat("

"+name+"_timeRemaining = -1;\n");

toPromela = toPromela.concat("

det_complete = false;\n");

toPromela = toPromela.concat("

concludes = false;\n");

toPromela = toPromela.concat("

currentPri = 0;\n");

toPromela = toPromela.concat("

wf_"+name+"Top = -1;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

goto thoughtframes;\n");

toPromela = toPromela.concat("

::(wf_"+name+"Top <= 5 && concludes == true)

->\n");

toPromela = toPromela.concat(" d_step{\n");

for(Iterator<workframe> workit = workframes.iterator();

workit.hasNext();){

workframe w = workit.next();

//Check if the workframe finishing has a varaible,

//if so decrement the counter

if(w.getVariables().size() > 0){

//if it has a collectall then counter needs

//to be decremented right to the end

w.hasCollectAll();

if(w.getContainsCollectAll()){

toPromela = toPromela.concat("

do\n");

toPromela = toPromela.concat("

::("+name+"_wf_"+w.getName() +

"_index > -1)->\n");

toPromela = toPromela.concat("

"+name+"_wf_"+w.getName() +

"_index--;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

break;\n");

toPromela = toPromela.concat("

od;\n");

}
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// if not then just -1

else{

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[0] == "+

w.getID()+");\n");

toPromela = toPromela.concat("

"+name+"_wf_"+w.getName() +

"_index--;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

}

}

}

toPromela = toPromela.concat("

printf(\"Stack is now empty, workframe finished

concludes = %d\\n\", concludes);\n");

toPromela = toPromela.concat("

"+name+"_timeRemaining = -1;\n");

toPromela = toPromela.concat("

det_complete = false;\n");

toPromela = toPromela.concat("

concludes = false;\n");

toPromela = toPromela.concat("

currentPri = 0;\n");

toPromela = toPromela.concat("

wf_"+name+"Top = -1;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

goto thoughtframes;\n");

toPromela = toPromela.concat("

:: else ->\n");

toPromela = toPromela.concat("

printf(\" wf_stack"+name+"[wf_"+name+"Top] = %d

&& det_complete = %d && concludes = %d && wf_"+

name+"Top = %d\\n \", wf_stack"+name+"[wf_"+

name+"Top], det_complete, concludes, wf_"+name+

"Top);\n");

toPromela = toPromela.concat("

printf(\" Error in processing workframe concludes

at depth %d in agent "+name+" can’t find element

%d\\n \",wf_"+name+"Top, wf_stack"+name+"

[wf_"+name+"Top]);\n");

toPromela = toPromela.concat("
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od;\n");

toPromela = toPromela.concat("

printf(\"Setting turn = Environment with "+name+

"_timeRemaining = %d\\n\", "+name+"_timeRemaining)

;\n");

toPromela = toPromela.concat("

turn = Environment;\n");

toPromela = toPromela.concat(" if\n");

toPromela = toPromela.concat("

::(cnt"+name+" != cntEnvironment && turn ==

ag_"+name+") ->\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

timeDeduction = cntEnvironment - cnt"+name+";\n");

toPromela = toPromela.concat("

printf(\"Time to deducted from current activity

is %d\\n\", timeDeduction);\n");

toPromela = toPromela.concat("

cnt"+name+" = cntEnvironment;\n");

toPromela = toPromela.concat("

printf(\"cnt"+name+" = %d\\n\",cnt"+name+");\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_"+name+"Top != -1 && comm" + name + "

== false)->\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[wf_"+name+"Top] > 0)->\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

new = wf_stack"+name+"[wf_"+name+"Top] - t

imeDeduction;\n");

toPromela = toPromela.concat("

printf(\"Activity duration changes from %d to %d

\\n\", wf_stack"+name+"[wf_"+name+"Top], new);\n");

toPromela = toPromela.concat("

wf_stack"+name+"[wf_"+name+"Top] = new;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(wf_stack"+name+"[wf_"+name+"Top] == 0)->\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

printf(\"Activity is finished, returning

to finish concludes\\n\");\n");
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toPromela = toPromela.concat("

concludes = true;\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat("

goto popstack;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

goto thoughtframes;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

::else->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

::(cnt"+name+" == cntEnvironment && turn ==

ag_"+name+") ->\n");

toPromela = toPromela.concat("

goto thoughtframes;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

printf(\"turn = Environment\\n\");\n");

toPromela = toPromela.concat("

turn = Environment;\n");

toPromela = toPromela.concat("

fi;\n");

toPromela = toPromela.concat("

fi;\n");

}

else{

toPromela = toPromela.concat("

workframes:\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

"+name+"Active = false;\n");

toPromela = toPromela.concat("

printf(\""+name+" is passing control to

248



Environment\\n\");\n");

toPromela = toPromela.concat("

printf(\"turn = Environment\\n\");\n");

toPromela = toPromela.concat("

turn = Environment;\n");

toPromela = toPromela.concat(" }\n");

}

toPromela = toPromela.concat("

::(turn == ag_"+name+" && EnvironmentActive ==

false)->\n");

boolean andNeeded = false;

toPromela = toPromela.concat(" d_step{\n");

toPromela = toPromela.concat("

printf(\""+name+" has received Terminate

Command!\\n\");\n");

toPromela = toPromela.concat("

printf(\"turn = Environment\\n\");\n");

toPromela = toPromela.concat(" }\n");

toPromela = toPromela.concat(" break;\n");

toPromela = toPromela.concat(" od;\n");

toPromela = toPromela.concat(" if\n");

toPromela = toPromela.concat("

::(turn == ag_"+name+")->\n");

toPromela = toPromela.concat("

turn = Environment;\n");

toPromela = toPromela.concat(" fi;\n");

toPromela = toPromela.concat("}\n");

return toPromela;

}

public String getWorkThoughtInitialisation()

{

return initialisePromela;

}

public String getName()

{

return name;

}

public int getID()

{

return ID;

}

public String getDisplay()

{

return display;

}

public String getCost()

{

return cost;
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}

public String getTimeUnit()

{

return timeUnit;

}

public String getLocation()

{

return location;

}

public Set getRelations()

{

return relations;

}

public Set getActivities()

{

return activities;

}

public Set getAttributes()

{

return attributes;

}

public Set getRBeliefs()

{

return beliefs;

}

public Set getWorkframes()

{

return workframes;

}

public Set getThoughtframes()

{

return thoughtframes;

}

public Set getMemberOf()

{

return memberOf;

}

}

C.4 Groups

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/
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/*

Stores all information on the Group of agents.

*/

import java.util.*;

class group

{

String name; // Name of the group

String display;

String cost;

String timeUnit;

String location;

// All the details group has

Set<relation> relations = new HashSet<relation>();

Set<variable> variables = new HashSet<variable>();

Set<detectable> detectables = new HashSet<detectable>();

Set<activity> activities = new HashSet<activity>();

Set<attribute> attributes = new HashSet<attribute>();

Set<belief> beliefs = new HashSet<belief>();

Set<fact> facts = new HashSet<fact>();

Set<guard> guards = new HashSet<guard>();

Set<conclude> concludes = new HashSet<conclude>();

Set<workframe> workframes = new HashSet<workframe>();

Set<thoughtframe> thoughtframes = new HashSet<thoughtframe>();

Set<String> memberOf = new HashSet<String>();

public group()

{ }

public group(

String new_name,

String new_display,

String new_cost,

String new_timeUnit,

String new_location,

Set new_memberOf,

Set new_relations,

Set new_activities,

Set new_attributes,

Set new_beliefs,

Set new_facts,

Set new_workframes,

Set new_thoughtframes){

name = new_name;

display = new_display;

cost = new_cost;
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timeUnit = new_timeUnit;

location = new_location;

memberOf = new_memberOf;

relations = new_relations;

activities = new_activities;

attributes = new_attributes;

beliefs = new_beliefs;

facts = new_facts;

workframes = new_workframes;

thoughtframes = new_thoughtframes;

}

public void inheritFromMemberOf(Set groups){

for(Iterator<group> groupit = groups.iterator();

groupit.hasNext();){

group g = groupit.next();

if(memberOf.contains(g.getName())){

Set<String> tempMemberOf = new HashSet<String>

(g.getMembersOf());

for(Iterator<String> memIt =

tempMemberOf.iterator();

memIt.hasNext();){

String m = memIt.next();

if(!memberOf.contains(m)){

memberOf.add(m);

inheritFromMemberOf(groups);

}

}

relations.addAll(g.getRelations());

activities.addAll(g.getActivities());

attributes.addAll(g.getAttributes());

beliefs.addAll(g.getBeliefs());

workframes.addAll(g.getWorkframes());

thoughtframes.addAll(g.getThoughtframes());

}

}

}

public String getName()

{

return name;

}

public String getDisplay()

{

return display;

}

public String getCost()

{

return cost;
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}

public String getTimeUnit()

{

return timeUnit;

}

public String getLocation()

{

return location;

}

public Set getRelations()

{

return relations;

}

public Set getActivities()

{

return activities;

}

public Set getAttributes()

{

return attributes;

}

public Set getBeliefs()

{

return beliefs;

}

public Set getFacts()

{

return facts;

}

public Set getWorkframes()

{

return workframes;

}

public Set getThoughtframes()

{

return thoughtframes;

}

public Set getMembersOf(){

return memberOf;

}

}

C.5 Classes

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012
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**/

/*

Stores all information on the Class of objects.

*/

import java.util.*;

class b_class

{

String name; // Name of the class

String display;

String cost;

String timeUnit;

String location;

// All the details class has

Set<relation> relations = new HashSet<relation>();

Set<variable> variables = new HashSet<variable>();

Set<detectable> detectables = new HashSet<detectable>();

Set<activity> activities = new HashSet<activity>();

Set<attribute> attributes = new HashSet<attribute>();

Set<belief> beliefs = new HashSet<belief>();

Set<fact> facts = new HashSet<fact>();

Set<guard> guards = new HashSet<guard>();

Set<conclude> concludes = new HashSet<conclude>();

Set<workframe> workframes = new HashSet<workframe>();

Set<thoughtframe> thoughtframes = new HashSet<thoughtframe>();

Set<String> memberOf = new HashSet<String>();

public b_class()

{ }

public b_class(

String new_name,

String new_display,

String new_cost,

String new_timeUnit,

String new_location,

Set new_memberOf,

Set new_relations,

Set new_activities,

Set new_attributes,

Set new_beliefs,

Set new_facts,

Set new_workframes,

Set new_thoughtframes){

name = new_name;

display = new_display;
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cost = new_cost;

timeUnit = new_timeUnit;

location = new_location;

memberOf = new_memberOf;

relations = new_relations;

activities = new_activities;

attributes = new_attributes;

beliefs = new_beliefs;

facts = new_facts;

workframes = new_workframes;

thoughtframes = new_thoughtframes;

}

public void inheritFromMemberOf(Set classes){

for(Iterator<b_class> classit = classes.iterator();

classit.hasNext();){

b_class c = classit.next();

if(memberOf.contains(c.getName())){

Set<String> tempMemberOf = new HashSet<String>

(c.getMembersOf());

for(Iterator<String> memIt = tempMemberOf.iterator();

memIt.hasNext();){

String m = memIt.next();

if(!memberOf.contains(m)){

memberOf.add(m);

inheritFromMemberOf(classes);

}

}

relations.addAll(c.getRelations());

activities.addAll(c.getActivities());

attributes.addAll(c.getAttributes());

beliefs.addAll(c.getBeliefs());

workframes.addAll(c.getWorkframes());

thoughtframes.addAll(c.getThoughtframes());

}

}

}

public String getName()

{

return name;

}

public String getDisplay()

{

return display;

}

public String getCost()

{

return cost;
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}

public String getTimeUnit()

{

return timeUnit;

}

public String getLocation()

{

return location;

}

public Set getRelations()

{

return relations;

}

public Set getActivities()

{

return activities;

}

public Set getAttributes()

{

return attributes;

}

public Set getBeliefs()

{

return beliefs;

}

public Set getFacts()

{

return facts;

}

public Set getWorkframes()

{

return workframes;

}

public Set getThoughtframes()

{

return thoughtframes;

}

public Set getMembersOf(){

return memberOf;

}

}

C.6 Attributes

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012
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**/

/*This forms the attributes for agents, objects and possibly

areas/area definitions.*/

import java.util.Stack;

class attribute

{

String name; // Name of the attribute

String privacy; // public or private etc.

String type; // e.g. int, String, boolean etc.

String toPromela = "";

public attribute(){}

public attribute(String new_privacy, String new_type,

String new_name)

{

name = new_name;

privacy = new_privacy;

type = new_type;

}

public String toPromelaString(int numberOfEverything,

String agentName)

{

toPromela = "";

if(type.equals("boolean"))

type = "bool";

if(!type.equals("bool") && !type.equals("int") &&

!type.equals("String"))

type = "mtype";

if(type.equals("String"))

toPromela = toPromela.concat(" mtype " + agentName

+ "_" + name + "[" + numberOfEverything + "];");

else

toPromela = toPromela.concat(" "+type + " " +

agentName+ "_" +name+ "[" + numberOfEverything +

"];");

return toPromela;

}
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public String factToPromelaString(int numberOfEverything,

String agentName)

{

toPromela = "";

if(type.equals("boolean"))

type = "bool";

if(!type.equals("bool") && !type.equals("int") &&

!type.equals("String"))

type = "mtype";

if(type.equals("String"))

toPromela = toPromela.concat(" mtype " + "fact_" +

name + "[" + numberOfEverything + "];");

else

toPromela = toPromela.concat(" "+type + " fact_"

+name+ "[" + numberOfEverything + "];");

return toPromela;

}

public String getPromela(){

return toPromela;

}

public String getName()

{

return name;

}

public String getPrivacy()

{

return privacy;

}

public String getType()

{

return type;

}

}

C.7 Relationships

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/
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/*

Details about types of relations which exist.

*/

import java.util.Stack;

class relation

{

String name; // relation name

String privacy; // public or private etc.

String to; // Which object or agent it refers to

/****************

*For Promela use*

*****************/

String toPromela = "";

int numberOf;

public relation(String new_privacy, String new_name,

String new_to)

{

name = new_name;

privacy = new_privacy;

to = new_to;

}

public String toPromelaString(int numberOfEverything,

String agentName)

{

toPromela = "";

toPromela = toPromela.concat("array " + agentName+ "_"

+ name + "["+numberOfEverything+"];");

return toPromela;

}

public String factToPromelaString(int numberOfEverything,

String agentName)

{

toPromela = "";

toPromela = toPromela.concat("array " + "fact_" + name +

"["+numberOfEverything+"];");

return toPromela;

}
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public String getName() {

return name;

}

}

C.8 Beliefs

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Beliefs of the agents/objects and possibly even areas.

*/

import java.util.Stack;

class belief

{

String about; // Who the belief is about

String attribute; // the attribute name

// Used mainly due to relations, if not a relation it is just an "="

String mathSymbol;

String value; // the value of the belief

String toPromela = "";

public belief(String new_about, String new_attribute,

String new_mathSymbol, String new_value)

{

about = new_about;

attribute = new_attribute;

mathSymbol = new_mathSymbol;

value = new_value;

}

public String promelaToString(int ID, String

identificationNumbers[], String agentName) {

String tempAbout = "";

String tempValue = "";

if(!about.equals("current")){

for(int i = 0; i < identificationNumbers.length; i++) {

try{

if(identificationNumbers[i].equals(about)){
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ID = i;

i = identificationNumbers.length;

}

}

catch(Exception E){

System.out.println("Found a Null where there

shouldn’t be!");

}

}

}

else{

tempAbout = about;

about = agentName;

}

if(value.equals("current")){

tempValue = value;

value = agentName;

}

// if involves a relation

if(!mathSymbol.equals("=")&&!mathSymbol.equals("!=")&&

!mathSymbol.equals("<")&&!mathSymbol.equals(">")&&

!mathSymbol.equals("<=")&&!mathSymbol.equals(">=")){

toPromela = toPromela.concat(" " + agentName + "_" +

mathSymbol + "[" + about + "ID].elements["+value+"ID]

= 1;" );

}

else{

if(attribute != null)

toPromela = toPromela.concat(" " + agentName+ "_" +

attribute + "["+ about + "ID] = " + value+ ";");

else

toPromela = toPromela.concat(" "+ agentName+ "_" +

attribute + "["+ about + "ID] = " + value+ ";");

}

//reset to current - incase in a group not a single agent

if(tempAbout.equals("current"))

about = tempAbout;

if(tempValue.equals("current"))

value = tempValue;

//return the value

toPromela = toPromela.concat("\n");

return toPromela;

}

}
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C.9 Facts

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Facts.

*/

import java.util.Stack;

class fact

{

String about; // Who the fact is about

String attribute; // The attribute it belongs to

String mathSymbol; // if it is an "=" or a relation

String value; // the value it holds

String toPromela = "";

public fact(String new_about, String new_attribute, String

new_mathSymbol, String new_value)

{

about = new_about;

attribute = new_attribute;

mathSymbol = new_mathSymbol;

value = new_value;

}

public String promelaToString(int ID, String

identificationNumbers[], String agentName) {

String tempAbout = "";

String tempValue = "";

if(!about.equals("current")){

for(int i = 0; i < identificationNumbers.length; i++) {

if(identificationNumbers[i].equals(about)){

ID = i;

i = identificationNumbers.length;

}

}

}

else{

tempAbout = about;

about = agentName;

}
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if(value.equals("current")){

tempValue = value;

value = agentName;

}

// if involves a relation

if(!mathSymbol.equals("=")&&!mathSymbol.equals("!=")&&

!mathSymbol.equals("<")&&!mathSymbol.equals(">")&&

!mathSymbol.equals("<=")&&!mathSymbol.equals(">=")){

toPromela = toPromela.concat(" " + "fact_" + mathSymbol

+ "[" + about + "ID].elements["+value+"ID] = 1;" );

}

else{

if(attribute != null)

toPromela = toPromela.concat(" " + "fact_" +

attribute + "["+ about + "ID] = " + value+ ";");

else

toPromela = toPromela.concat(" "+ "fact_" +

attribute + "["+ about + "ID] = " + value+ ";");

}

//reset to current - incase in a group not a single agent

if(tempAbout.equals("current"))

about = tempAbout;

if(tempValue.equals("current"))

value = tempValue;

//return the value

return toPromela;

}

}

C.10 Activities

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

This class stores all the activity definitions within the Brahms code.

Activities can be primtive, move or communicate activity. Conclude

option is also available but not used in this class.

*/
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import java.util.*;

class activity

{

// Type of event e.g. PrimAct, Conc, CommAct or Move.

// Defined in event.java

eventType type;

String name; // Name of activity

// The parametername and type of parameter accepted.

String paramType;

String parameter;

String paramType2;

String parameter2;

// Used for communication or move, this state who the message is

//for or where the agent is moving to depending on the activity

String whom_where;

Set<messages> mess = new HashSet<messages>();

int duration; // duration of the activity

public activity(eventType new_type, String new_name,

String new_paramType, String new_parameter, String

new_paramType2, String new_parameter2, int new_duration,

String new_whom_where, Set<messages> new_mess){

type = new_type;

name = new_name;

paramType = new_paramType;

paramType2 = new_paramType2;

parameter = new_parameter;

parameter2 = new_parameter2;

duration = new_duration;

whom_where = new_whom_where;

mess = new_mess;

}

public Set getMess(){

return mess;

}

public String getWhomWhere(){

return whom_where;

}

public eventType getType()

{

return type;

}

public String getName()

{
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return name;

}// Name of activity

public String getParamType()

{

return paramType;

}

public String getParamType2()

{

return paramType2;

}

public String getParameter()

{

return parameter;

}

public int getDuration()

{

return duration;

}

}

C.11 Events

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

import java.util.Stack;

import java.util.Set;

import java.util.HashSet;

import java.util.Iterator;

/*

Event refers to a conclude or an activity call.

*/

enum eventType {PrimAct, Conc, CommAct, Move}

class event

{

eventType type; // Conclude, primitive activity, communication etc
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// if activity

String name; // name of the variable

int duration; // Which class of objects or group of agents

// Who it is communicating with or where it is going to,

// if activity is communicate or move

String tempWhom_where;

String whom_where;

String whom_where2; // 2nd parameter

// If variable passed through, which class or group is it

String paramType;

// If variable passed through, which class or group is it

String paramType2;

// Who the message is about, communication only

String messAbout;

// The attribute the message is concerned about

String messAtt;

// Who the message is about, communication only. NEW VALUE

String messAbout2;

// The attribute the message is concerned about. NEW VALUE

String messAtt2;

Set<messages> mess;

//Temp fields to change back to previous values

String OldAttributeOwner;

String OldValueOwner;

String OldValueOwner2;

String OldValue;

String OldWhom_where;

// if conclude

int concID; // Promela use

String f_name; // name of the workframe it is from.

// if the workframe it is from contains a collectAll variable

boolean isCollectAll = false;

// Name of who owns the attribute to be updated

String attributeOwner;

String attributeName; // Name of the attribute to be updated

// If updated value involves another attribute then this

// stores the owner

String valueOwner;

// if there are two then this holds this second e.g.

// "current.total = Alex.a + Mary.b" then valueOwner2 = Mary

String valueOwner2;

String value; // Used if there is just a single value

String valueAttr; // attribute of valueOwner

String valueAttr2; // attribute of valueOwner2

// +, -, * or /. Only one is required as Brahms doesn’t

// allow a+b+c etc.
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String valueOperator;

// Stores all activities so event can be tied

// to the activity it belongs

Set<activity> activities = new HashSet<activity>();

// Variables can be as a parameter being passed to an activity

Set<variable> variables = new HashSet<variable>();

/****************

*Used in Promela*

*****************/

// Whether or not event passes through a variable

boolean hasVar = false;

// Has an attribute and refers to current agent/object

boolean attributeOwnerCurrent =false;

// Value in conclude is an attribute with an owner

boolean valueOwnerCurrent =false;

// There is a second

boolean valueOwner2Current =false;

// There is a message or destination about "current"

boolean whomWhereCurrent = false;

// There is a message about "current"

boolean messAboutCurrent = false;

// There is a message about "current"

boolean messAbout2Current = false;

String toPromela = "";

Set<String> PromelaBeliefUpdate = new HashSet<String>();

Set<String> PromelaFactUpdate = new HashSet<String>();

String toPromelaMove = "";

int bc; // Belief condition

int fc; // fact condition

public event()

{}

// if activity

public event(int new_concID, String new_f_name, String new_name,

String new_whom_where, String new_whom_where2,

int new_duration, Set<activity> new_activities,

Set<variable> new_variables)

{

name = new_name;

f_name = new_f_name;

whom_where = new_whom_where;

whom_where2 = new_whom_where2;

duration = new_duration;

activities = new_activities;
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variables = new_variables;

concID = new_concID;

//if it has no duration find the acitivty it is associated

//to and find from there

if(duration == 0)

{

for (Iterator<activity> actIt = activities.iterator();

actIt.hasNext(); ) {

activity act = actIt.next();

if(act.getType() == eventType.PrimAct){

String temp = act.getName();

if(temp.equals(name)){

duration = act.getDuration();

type = act.getType();

break;

}

}

if(act.getType() == eventType.CommAct){

String temp = act.getName();

if(act.getParamType() != null)

paramType = act.getParamType();

if(act.getParamType2() != null)

paramType2 = act.getParamType2();

if(temp.equals(name)){

duration = act.getDuration();

type = act.getType();

if(act.getParameter() != null &&

act.getWhomWhere() != null){

if(!(act.getParameter().

equals(act.getWhomWhere()))){

whom_where = act.getWhomWhere();

}

}

else{

whom_where = act.getWhomWhere();

}

mess = new HashSet<messages>(act.getMess());

break;

}

}

if(act.getType() == eventType.Move){

String temp = act.getName();

if(temp.equals(name)){

duration = act.getDuration();

if(act.getParameter() != null &&

act.getWhomWhere() != null){

if(!(act.getParameter().equals

(act.getWhomWhere()))){

whom_where = act.getWhomWhere();
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}

}

else{

whom_where = act.getWhomWhere();

}

type = act.getType();

break;

}

}

}

}

OldAttributeOwner = attributeOwner;

OldValueOwner = valueOwner;

OldValueOwner2 = valueOwner2;

OldValue = value;

OldWhom_where = whom_where;

}

// if conclude

public event(int new_concID, String new_f_name, eventType

new_type, String new_attributeOwner, String

new_attributeName, String new_valueOwner, String

new_valueOwner2, String new_value, String new_valueAttr,

String new_valueAttr2, String new_valueOperator, int

new_bc, int new_fc, Set<variable> new_variables)

{

concID = new_concID;

f_name = new_f_name;

type = new_type;

attributeOwner = new_attributeOwner;

attributeName = new_attributeName;

valueOwner = new_valueOwner;

valueOwner2 = new_valueOwner2;

value = new_value;

valueAttr = new_valueAttr;

valueAttr2 = new_valueAttr2;

valueOperator = new_valueOperator;

duration = -1;

bc = new_bc;

fc = new_fc;

variables = new_variables;

OldAttributeOwner = attributeOwner;

OldValueOwner = valueOwner;

OldValueOwner2 = valueOwner2;

OldValue = value;

OldWhom_where = whom_where;

}
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public String toPromelaString(String agentName, String frame,

Set agents, Set objects){

toPromela = "";

toPromelaMove = "";

PromelaBeliefUpdate.clear();

PromelaFactUpdate.clear();

boolean hasVariable = false;

boolean attributeOwnerVariable = false;

boolean valueOwnerVariable = false;

boolean valueOwner2Variable = false;

attributeOwner = OldAttributeOwner;

valueOwner = OldValueOwner;

valueOwner2 = OldValueOwner2;

value = OldValue;

whom_where = OldWhom_where;

if(frame.equals("workframe"))

frame = "_wf_";

else

frame = "_tf_";

for(Iterator<variable> varit = variables.iterator();

varit.hasNext();){

variable v = varit.next();

try{

if(attributeOwner.equals(v.getName())){

attributeOwner = "";

attributeOwner = attributeOwner.concat(

agentName+frame+f_name+"_var["+agentName+

frame+f_name+"_index].var_elements["+

v.getVarNo()+"]");

attributeOwnerVariable = true;

hasVar = true;

}

}

catch(Exception e){}

try{

if(valueOwner.equals(v.getName())){

valueOwner = "";

valueOwner = valueOwner.concat(""+agentName+

frame+f_name+"_var["+agentName+frame+

f_name+"_index].var_elements["+v.getVarNo()+"]");

//System.out.println("/*" + valueOwner + "*/");

hasVar = true;

valueOwnerVariable = true;

}

}

catch(Exception e){}

try{
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if(valueOwner2.equals(v.getName())){

valueOwner2 = "";

valueOwner2 = valueOwner2.concat(""+agentName+

frame+f_name+"_var["+agentName+frame+

f_name+"_index].var_elements["+v.

getVarNo()+"]");

hasVar = true;

valueOwner2Variable = true;

}

}

catch(Exception e){}

try{

if(value.equals(v.getName())){

value = "";

value = value.concat(""+agentName+frame+f_name+

"_var["+agentName+frame+f_name+"_index].

var_elements["+v.getVarNo()+"]");

hasVar = true;

}

}

catch(Exception e){}

try{

if(whom_where.equals(v.getName())){

hasVariable = true;

whom_where = "";

whom_where = whom_where.concat(""+agentName+frame+

f_name+"_var["+agentName+frame+f_name+"_index]

.var_elements["+v.getVarNo()+"]");

hasVar = true;

}

}

catch(Exception e){}

}

boolean attributeOwnerCurrent =false;

boolean valueOwnerCurrent =false;

boolean valueOwner2Current =false;

if(type == eventType.Conc){

if(attributeOwner != null){

if(attributeOwner.equals("current")){

attributeOwner = agentName;

attributeOwnerCurrent =true;

}

}

if(valueOwner != null){;

if(valueOwner.equals("current")){

valueOwner = agentName;

valueOwnerCurrent = true;
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}

}

if(valueOwner2 != null){

if(valueOwner2.equals("current")){

valueOwner2 = agentName;

valueOwner2Current = true;

}

}

if(valueOwner == null && valueOwner2 == null && value

!= null){

//same for facts

if(fc ==100 && frame.equals("_wf_")){

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[" +

attributeOwner + "ID] = " + value + ";\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE1: fact_"+

attributeName + "[" + attributeOwner +

"ID] = %e (String) or %d (Integar)\\n\",

fact_"+attributeName + "[" + attributeOwner

+ "ID], fact_"+ attributeName + "[" +

attributeOwner + "ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[searchID]

= " + value + ";\n");

toPromela = toPromela.concat("

printf(\"Search = %e\\n\",

agentsObjectsIDs[searchID]);\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE2: fact_"+attributeName

+ "[searchID] = %e (String) or %d (Integar)

\\n\", fact_"+attributeName + "[searchID],

fact_"+attributeName + "[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}
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if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[" +

attributeOwner + "ID] = " + value + ";\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE3: fact_"+attributeName

+ "[" + attributeOwner + "ID] = %e (String)

or %d (Integar)\\n\", fact_"+attributeName

+ "[" + attributeOwner + "ID], fact_"+

attributeName + "[" + attributeOwner +

"ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[searchID]

= " + value + ";\n");

toPromela = toPromela.concat("

printf(\"Search = %e\\n\",

agentsObjectsIDs[searchID]);\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE4: fact_"+

attributeName + "[searchID] = %e

(String) or %d (Integar)\\n\",

fact_"+attributeName + "[searchID],

fact_"+attributeName + "[searchID]);

\n");

toPromela = toPromela.concat("

}\n");

}

}

else if(fc == 0 || frame.equals("_tf_"))

toPromela = toPromela.concat("

/*Fact not updated*/\n");

else if(frame.equals("_wf_")){

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(true)->\n");

if(attributeOwnerVariable == false){
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toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[" +

attributeOwner + "ID] = " +

value + ";\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE5: fact_"+

attributeName + "[" + attributeOwner

+ "ID] = %e (String) or %d (Integar)

\\n\", fact_"+attributeName + "[" +

attributeOwner + "ID], fact_"+

attributeName + "[" + attributeOwner

+ "ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[searchID]

= " + value + ";\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE6: fact_"+attributeName

+ "[searchID] = %e (String) or %d (Integar)

\\n\", fact_"+attributeName + "[searchID],

fact_"+attributeName + "[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

toPromela = toPromela.concat("

::(true)->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;");

}

// If belief condition is 100% then just put a straight conclude

if(bc ==100){

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[" +

274



attributeOwner + "ID] = " + value + ";\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[" + attributeOwner + "

ID] = %e (String) or %d (Integar)\\n\", "

+agentName+"_"+attributeName + "[" +

attributeOwner + "ID], "+ agentName+"_"+

attributeName + "[" + attributeOwner +

"ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName +

"[searchID] = " + value + ";\n");

toPromela = toPromela.concat("

printf(\"Search = %e\\n\",

agentsObjectsIDs[searchID]);\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+

"_"+attributeName + "[searchID] = %e

(String) or %d (Integar)\\n\", "+

agentName+"_"+attributeName + "[searchID],

" + agentName+"_"+attributeName +

"[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

}

else if(bc == 0){

toPromela = toPromela.concat("

/*Belief not updated*/\n");

}

//If not create a split where conclude is not done

else{

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(true)->\n");

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");
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toPromela = toPromela.concat("

" + agentName+"_"+attributeName +

"[" + attributeOwner + "ID] = "

+ value + ";\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName

+"_"+attributeName + "[" + attributeOwner

+ "ID] = %e (String) or %d (Integar)

\\n\", "+agentName+"_"+attributeName +

"[" + attributeOwner + "ID], "+

agentName+"_"+attributeName +

"[" + attributeOwner + "ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName +

"[searchID] = " + value + ";\n");

toPromela = toPromela.concat("

printf(\"Search = %e\\n\",

agentsObjectsIDs[searchID]);\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[searchID] = %e (String)

or %d (Integar)\\n\", "+agentName+"_"+

attributeName + "[searchID]," +

agentName+"_"+attributeName +

"[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

toPromela = toPromela.concat("

::(true)->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;");

}

}

if(valueOwner != null && valueOwner2 == null

&& value == null){
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//same for facts

if(fc ==100 && frame.equals("_wf_"))

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName

+"_"+valueAttr + "[" + valueOwner

+ "ID];\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE7: fact_"+

attributeName + "[" + attributeOwner

+ "ID] = %e (String) or %d (Integar)\\n\",

fact_"+attributeName + "[" + attributeOwner

+ "ID], fact_"+attributeName + "[" +

attributeOwner + "ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[searchID]

= " + agentName+"_"+valueAttr + "["

+ valueOwner + "ID];\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE8: fact_"+attributeName

+ "[searchID] = %e (String) or %d (Integar)

\\n\", fact_"+attributeName + "[searchID],

fact_"+attributeName + "[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(fc == 0 || frame.equals("_tf_"))

toPromela = toPromela.concat("

/*Fact not updated*/\n");

else{

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(true)->\n");

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("
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d_step{\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName+"_"+

valueAttr + "[" + valueOwner + "ID];\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE9: fact_"+attributeName

+ "[" + attributeOwner + "ID] = %e (String)

or %d (Integar)\\n\", fact_"+attributeName

+ "[" + attributeOwner + "ID], fact_"+

attributeName + "[" + attributeOwner + "

ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[searchID] = " +

agentName+"_"+valueAttr + "[" + valueOwner

+ "ID];\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE10: fact_"+

attributeName + "[searchID] = %e (String)

or %d (Integar)\\n\", fact_"+attributeName

+ "[searchID], fact_"+attributeName +

"[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

toPromela = toPromela.concat("

::(true)->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;");

}

// If belief condition is 100% then just put a straight conclude

if(bc ==100)

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[" +
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attributeOwner + "ID] = " + agentName

+"_"+valueAttr + "[" + valueOwner +

"ID];\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[" + attributeOwner +

"ID] = %e (String) or %d (Integar)\\n\",

"+agentName+"_"+attributeName + "[" +

attributeOwner + "ID], "+ agentName+"_"+

attributeName + "[" + attributeOwner + "

ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[searchID]

= " + agentName+"_"+valueAttr + "[" +

valueOwner + "ID];\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[searchID] = %e (String)

or %d (Integar)\\n\", "+agentName+"_"+

attributeName + "[searchID]," + agentName

+"_"+attributeName + "[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(bc == 0)

toPromela = toPromela.concat("

/*Belief not updated*/\n");

else{ //If not create a split

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(true)->\n");

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName+

"_"+valueAttr + "[" + valueOwner + "ID];
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\n");

toPromela = toPromela.concat(" 0

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[" + attributeOwner + "

ID] = %e (String) or %d (Integar)\\n\", "

+agentName+"_"+attributeName + "[" +

attributeOwner + "ID], "+ agentName+"_"+

attributeName + "[" + attributeOwner +

"ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "

[searchID] = " + agentName+"_"+

valueAttr + "[" + valueOwner + "ID];\n");

toPromela = toPromela.concat("

}\n");

}

toPromela = toPromela.concat("

::(true)->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;");

}

}

if(valueOwner != null && valueOwner2 == null && value

!= null){

//same for facts

if(fc ==100 && frame.equals("_wf_")){

if(attributeOwnerVariable == false &&

valueOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName+

"_"+valueAttr + "[" + valueOwner + "ID] "+

valueOperator + " " + value + ";\n");

toPromela = toPromela.concat("
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printf(\"FACT UPDATE11: fact_"+

attributeName + "[" + attributeOwner +

"ID] = %e (String) or %d (Integar)\\n\"

, fact_"+attributeName + "[" +

attributeOwner + "ID], fact_"+

attributeName + "[" + attributeOwner + "

ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(attributeOwnerVariable == true &&

valueOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[searchID] = " +

agentName+"_"+valueAttr + "[" +

valueOwner + "ID] " + valueOperator

+ " " + value + ";\n");

toPromela = toPromela.concat("

"+"printf(\"FACT UPDATE: fact_"+

attributeName + "[searchID] = %e (String)

or %d (Integar)\\n\",fact_"+attributeName

+ "[searchID], fact_"+ attributeName +

"[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(attributeOwnerVariable == true &&

valueOwnerVariable == true){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"multiVarOne = searchID;\n");

toPromela = toPromela.concat("

"+"findID("+valueOwner+");\n");

toPromela = toPromela.concat("

"+"multiVarTwo = searchID;\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[multiVarOne]="

+ agentName+"_"+valueAttr+"[multiVarTwo] "
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+ valueOperator + " " + value + ";\n");

toPromela = toPromela.concat("

"+"printf(\"FACT UPDATE: fact_"+

attributeName + "[multiVarOne] = %e

(String) or %d (Integar) \\n\",

fact_"+attributeName + "[multiVarOne],

fact_"+attributeName + "[multiVarOne]);

\n");

toPromela = toPromela.concat("

"+"multiVarOne = 0;\n");

toPromela = toPromela.concat("

"+"multiVarTwo = 0;\n");

toPromela = toPromela.concat("

}\n");

}

}

else if(fc == 0 || frame.equals("_tf_")){

toPromela = toPromela.concat("

/*Fact not updated*/\n");

}

else if(frame.equals("_wf_")){

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(true)->\n");

if(attributeOwnerVariable == false &&

valueOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName

+"_"+valueAttr + "[" + valueOwner +

"ID] " + valueOperator + " " +

value + ";\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE12: fact_"+

attributeName + "[" + attributeOwner

+ "ID] = %e (String) or %d (Integar)\\n\",

fact_"+attributeName + "[" + attributeOwner

+ "ID], fact_"+attributeName + "[" +

attributeOwner + "ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(attributeOwnerVariable == true &&

valueOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");
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toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[searchID] = "

+ agentName+"_"+valueAttr + "[" +

valueOwner + "ID] " + valueOperator +

" " + value + ";\n");

toPromela = toPromela.concat("

"+"printf(\"FACT UPDATE13: fact_"+

attributeName + "[searchID] = %e

(String) or %d (Integar)\\n\",

fact_"+attributeName + "[searchID],

fact_"+attributeName + "[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(attributeOwnerVariable == true &&

valueOwnerVariable == true){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"multiVarOne = searchID;\n");

toPromela = toPromela.concat("

"+"findID("+valueOwner+");\n");

toPromela = toPromela.concat("

"+"multiVarTwo = searchID;\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[multiVarOne]

= " + agentName+"_"+valueAttr + "

[multiVarTwo] " + valueOperator + " " +

value + ";\n");

toPromela = toPromela.concat("

"+"printf(\"FACT UPDATE14: fact_"+

attributeName + "[multiVarOne] = %e

(String) or %d (Integar)\\n\",

fact_"+attributeName + "[multiVarOne],

fact_"+attributeName +

"[multiVarOne]);\n");

toPromela = toPromela.concat("

"+"multiVarOne = 0;\n");

toPromela = toPromela.concat("

"+"multiVarTwo = 0;\n");

toPromela = toPromela.concat("
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}\n");

toPromela = toPromela.concat("

::(true)->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;");

}

}

// If belief condition is 100%

if(bc ==100){

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName+

"_"+valueAttr + "[" + valueOwner + "ID] "

+ valueOperator + " " + value + ";\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[" + attributeOwner +

"ID] = %e (String) or %d (Integar)\\n\",

"+agentName+"_"+attributeName + "[" +

attributeOwner + "ID], "+ agentName+"_"+

attributeName + "[" + attributeOwner +

"ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(attributeOwnerVariable == true &&

valueOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName +

"[searchID] = " + agentName+"_"+

valueAttr + "[" + valueOwner + "ID] " +

valueOperator + " " + value + ";\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[searchID] = %e (String)

or %d (Integar)\\n\", "+agentName+"_"+

attributeName + "[searchID]," + agentName+

"_"+attributeName + "[searchID]);\n");
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toPromela = toPromela.concat("

}\n");

}

else if(attributeOwnerVariable == true &&

valueOwnerVariable == true){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"multiVarOne = searchID;\n");

toPromela = toPromela.concat("

"+"findID("+valueOwner+");\n");

toPromela = toPromela.concat("

"+"multiVarTwo = searchID;\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName +

"[multiVarOne] = " + agentName+"_"+

valueAttr + "[multiVarTwo] " +

valueOperator + " " + value + ";\n");

toPromela = toPromela.concat("

"+"printf(\"BELIEF UPDATE: "+agentName

+"_"+ attributeName + "[multiVarOne] =

%e (String) or %d (Integar)\\n\", "+

agentName+"_"+ attributeName + "

[multiVarOne],"+agentName+ "_" +

attributeName

+ "[multiVarOne]);\n");

toPromela = toPromela.concat("

"+"multiVarOne = 0;\n");

toPromela = toPromela.concat("

"+"multiVarTwo = 0;\n");

toPromela = toPromela.concat("

}\n");

}

}

else if(bc == 0){

toPromela = toPromela.concat("

/*Belief not updated*/\n");

}

else{ //If not create a split

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(true)->\n");

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("
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d_step{\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName+"_"+

valueAttr + "[" + valueOwner + "ID] " +

valueOperator + " " + value + ";\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[" + attributeOwner + "ID]

= %e (String) or %d (Integar)\\n\", "+

agentName+"_"+attributeName + "[" +

attributeOwner + "ID], "+ agentName+"_"+

attributeName + "[" + attributeOwner +

"ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(attributeOwnerVariable == true &&

valueOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[searchID]

= " + agentName+"_"+valueAttr + "[" +

valueOwner + "ID] " + valueOperator + " " +

value + ";\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[searchID] = %e (String) or

%d (Integar)\\n\", "+agentName+"_"+

attributeName + "[searchID]," + agentName

+"_"+attributeName + "[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(attributeOwnerVariable == true &&

valueOwnerVariable == true){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+"multiVarOne = searchID;\n");
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toPromela = toPromela.concat("

"+"findID("+valueOwner+");\n");

toPromela = toPromela.concat("

"+"multiVarTwo = searchID;\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName +

"[multiVarOne] = " + agentName+"_"+

valueAttr + "[multiVarTwo] " +

valueOperator + " " + value + ";\n");

toPromela = toPromela.concat("

"+"printf(\"BELIEF UPDATE: "+

agentName+"_"+

attributeName + "[multiVarOne] = %e

(String) or %d (Integar)\\n\", "+

agentName+"_"+ attributeName +

"[multiVarOne], "+agentName+ "_" +

attributeName + "[multiVarOne]);\n");

toPromela = toPromela.concat("

"+"multiVarOne = 0;\n");

toPromela = toPromela.concat("

"+"multiVarTwo = 0;\n");

toPromela = toPromela.concat("

}\n");

}

toPromela = toPromela.concat("

::(true)->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;");

}

}

if(valueOwner != null && valueOwner2 != null){

if(fc ==100 && frame.equals("_wf_")) //same for facts

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName+"_"+

valueAttr + "[" + valueOwner + "ID] " +

valueOperator + " " + agentName + "_" +

valueAttr2 + "[" + valueOwner2 + "ID] "

+ ";\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE15: fact_"+

attributeName + "[" +
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attributeOwner + "ID] = %e (String)

or %d (Integar)\\n\", fact_"+

attributeName + "[" + attributeOwner +

"ID], fact_"+ attributeName + "[" +

attributeOwner + "ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "

[searchID] = " + agentName+"_"+

valueAttr + "[" + valueOwner + "ID] " +

valueOperator + " " + agentName + "_" +

valueAttr2 + "[" + valueOwner2 + "ID] "

+ ";\n");

toPromela = toPromela.concat("

}\n");

}

else if(fc == 0 || frame.equals("_tf_"))

toPromela = toPromela.concat("

/*Fact not updated*/\n");

else if(frame.equals("_wf_")){

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(true)->\n");

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"fact_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName+

"_"+valueAttr + "[" + valueOwner + "ID]

" + valueOperator + " " + agentName + "_"

+ valueAttr2 + "[" + valueOwner2 + "ID] "

+ ";\n");

toPromela = toPromela.concat("

printf(\"FACT UPDATE16: fact_"+attributeName

+ "[" + attributeOwner + "ID] = %e (String)

or %d (Integar)\\n\", fact_"+attributeName

+ "[" + attributeOwner + "ID], fact_"+

attributeName + "[" + attributeOwner +
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"ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName +

"[searchID] = " + agentName+"_"+

valueAttr + "[" + valueOwner + "ID] "

+ valueOperator + " " + agentName + "_"

+ valueAttr2 + "[" + valueOwner2 + "ID]

" + ";\n");

toPromela = toPromela.concat("

}\n");

}

toPromela = toPromela.concat("

::(true)->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;");

}

if(bc ==100)

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName

+"_"+valueAttr + "[" + valueOwner + "ID] "

+ valueOperator + " " + agentName + "_" +

valueAttr2 + "[" + valueOwner2 + "ID] " +

";\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[" + attributeOwner + "ID]

= %e (String) or %d (Integar)\\n\",

"+agentName+"_"+attributeName + "[" +

attributeOwner + "ID], "+ agentName+"_"+

attributeName + "[" + attributeOwner +

"ID]);\n");

toPromela = toPromela.concat("

}\n");
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}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[searchID]

= " + value + ";\n");

toPromela = toPromela.concat("

printf(\"Search = %e\\n\",

agentsObjectsIDs[searchID]);\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[searchID] = %e (String)

or %d (Integar)\\n\", "+agentName+"_"+

attributeName + "[searchID]," + agentName

+"_"+attributeName + "[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

else if(bc == 0)

toPromela = toPromela.concat("

/*Belief not updated*/\n");

//If not create a split where conclude is not done

else{

toPromela = toPromela.concat("

if\n");

toPromela = toPromela.concat("

::(true)->\n");

if(attributeOwnerVariable == false){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName + "[" +

attributeOwner + "ID] = " + agentName+"_"+

valueAttr + "[" + valueOwner + "ID] " +

valueOperator + " " + agentName + "_" +

valueAttr2 + "[" + valueOwner2 + "ID] " +

";\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[" + attributeOwner +

"ID] = %e (String) or %d (Integar)\\n\"

, "+agentName+"_"+attributeName + "["

+ attributeOwner + "ID], "+ agentName

+"_"+attributeName + "[" + attributeOwner
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+ "ID]);\n");

toPromela = toPromela.concat("

}\n");

}

else{

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"searchID = 0;\n");

toPromela = toPromela.concat("

"+"findID("+attributeOwner+");\n");

toPromela = toPromela.concat("

"+agentName+"_"+attributeName +

"[searchID] = " + agentName+"_"+valueAttr +

"[" + valueOwner + "ID] " + valueOperator +

" " + agentName + "_" + valueAttr2 +

"[" + valueOwner2 + "ID] " + ";\n");

toPromela = toPromela.concat("

printf(\"BELIEF UPDATE: "+agentName+"_"+

attributeName + "[searchID] = %e (String)

or %d (Integar)\\n\", "+agentName+"_"+

attributeName + "[searchID]," +

agentName+"_"+attributeName +

"[searchID]);\n");

toPromela = toPromela.concat("

}\n");

}

toPromela = toPromela.concat("

::(true)->\n");

toPromela = toPromela.concat("

skip;\n");

toPromela = toPromela.concat("

fi;");

}

}

PromelaBeliefUpdate.add(attributeOwner+"_"+attributeName

+ "[" + attributeOwner + "ID]");

}

if(type == eventType.CommAct){

if(whom_where.equals("current")){

whom_where = agentName;

whomWhereCurrent = true;

}

for (Iterator<messages> messIt = mess.iterator();

messIt.hasNext(); ) {

messages m = messIt.next();

messAbout = m.getMessAbout();
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messAbout2 = m.getMessAbout2();

messAtt = m.getMessAtt();

messAtt2 = m.getMessAtt2();

boolean messHasVar = false;

if(messAbout.equals("current")){

messAbout = agentName;

messAboutCurrent = true;

}

if(messAbout2.equals("current")){

messAbout2 = agentName;

messAbout2Current = true;

}

for(Iterator<variable> varit = variables.iterator();

varit.hasNext();){

variable v = varit.next();

if(messAbout.equals(v.getName())){

messAbout = "";

messAbout = messAbout.concat(""+agentName+

frame+f_name+"_var["+agentName+frame+

f_name+"_index].var_elements["+

v.getVarNo()+"]");

messHasVar = true;

}

if(messAbout2.equals(v.getName())){

messAbout2 = "";

messAbout2 = messAbout2.concat(""+agentName+

frame+f_name+"_var["+agentName+frame+

f_name+"_index].var_elements["+

v.getVarNo()+"]");

messHasVar = true;

}

}

if(hasVariable == false && messHasVar == false){

toPromela = toPromela.concat("

"+"/*No variable*/\n");

toPromela = toPromela.concat("

"+whom_where+"_"+messAtt + "[" + messAbout +

"ID] = " + agentName+"_"+ messAtt2 + "[" +

messAbout + "ID];\n");

toPromela = toPromela.concat("

printf(\"COMM BELIEF UPDATE: "+whom_where+

"_"+messAtt + "[" + messAbout + "ID] = %e

(String) or %d (Integar)\\n\", "+whom_where

+"_"+messAtt + "[" + messAbout + "ID], "+

whom_where+"_"+messAtt + "[" + messAbout +

"ID]);\n");

PromelaBeliefUpdate.add("

"+whom_where+"_"+messAtt + "[" + agentName +
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"ID]");

}

else if(hasVariable == false && messHasVar == true){

toPromela = toPromela.concat("

"+"/*Agent/Object in message is a variable

*/\n");

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+" searchID = 0;\n");

toPromela = toPromela.concat("

"+" findID("+messAbout+");\n");

toPromela = toPromela.concat("

printf(\"Search = %e\\n\", agentsObjectsIDs

[searchID]);\n");

toPromela = toPromela.concat("

"+whom_where+"_"+messAtt + "[searchID] = " +

agentName+"_"+ messAtt2 + "[searchID];\n");

toPromela = toPromela.concat("

printf(\"COMM BELIEF UPDATE: "+whom_where

+"_"+messAtt + "[searchID] = %e (String)

or %d (Integar)\\n\", "+whom_where+"_"+

messAtt + "[searchID], "+ whom_where+"_"+

messAtt + "[searchID]);\n");

PromelaBeliefUpdate.add("

"+whom_where+"_"+messAtt + "[" +

agentName + "ID]");

toPromela = toPromela.concat("

}\n");

}

else if(hasVariable == true && messHasVar == false){

toPromela = toPromela.concat("

"+"/*Receiver is a variable*/\n");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

if(ag.getMemberOf().contains(paramType) ||

ag.getMemberOf().contains

(paramType2)){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"if\n");

toPromela = toPromela.concat("

"+"::("+whom_where+" == "+

ag.getName()+")->\n");

toPromela = toPromela.concat("

"+" "+ag.getName()+"_"+messAtt

+ "["+messAbout+"ID] = " + agentName
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+"_"+ messAtt2 + "[" + messAbout +

"ID];\n");

toPromela = toPromela.concat("

printf(\"COMM BELIEF UPDATE: "+

ag.getName()+"_"+messAtt + "[" +

messAbout + "ID] = %e (String) or %d

(Integar)\\n\", "+ag.getName()+"_"+

messAtt + "[" + messAbout + "ID], "+

ag.getName() +"_"+messAtt + "[" +

messAbout + "ID]);\n");

toPromela = toPromela.concat("

"+"::else ->\n");

toPromela = toPromela.concat("

"+" skip;\n");

toPromela = toPromela.concat("

"+"fi;\n");

toPromela = toPromela.concat("

}\n");

}

}

for (Iterator<object> objectit =

objects.iterator();

objectit.hasNext(); ){

object ob = objectit.next();

if(ob.getMemberOf().contains(paramType)

|| ob.getMemberOf().contains

(paramType2)){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"if\n");

toPromela = toPromela.concat("

"+"::("+whom_where+" == "+

ob.getName()+")->\n");

toPromela = toPromela.concat("

"+" "+ob.getName()+"_"+messAtt +

"["+messAbout+"ID] = " +

agentName+"_"+ messAtt2 + "[" +

messAbout + "ID];\n");

toPromela = toPromela.concat("

printf(\"COMM BELIEF UPDATE:

"+ob.getName()+"_"+messAtt + "["

+ messAbout + "ID] = %e (String)

or %d (Integar)\\n\", "+ob.getName

()+"_"+messAtt + "[" + messAbout +

"ID], "+ ob.getName()+"_"+messAtt +

"[" + messAbout + "ID]);\n");

toPromela = toPromela.concat("

"+"::else ->\n");
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toPromela = toPromela.concat("

"+" skip;\n");

toPromela = toPromela.concat("

"+"fi;\n");

toPromela = toPromela.concat("

}\n");

}

}

}

else if(hasVariable == true && messHasVar == true){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"/*Both are variables*/\n");

toPromela = toPromela.concat("

"+" searchID = 0;\n");

toPromela = toPromela.concat("

"+" findID("+messAbout+");\n");

toPromela = toPromela.concat("

printf(\"Search = %e\\n\", agentsObjectsIDs

[searchID]);\n");

toPromela = toPromela.concat("

}\n");

for (Iterator<agent> agentit = agents.iterator();

agentit.hasNext(); ){

agent ag = agentit.next();

if(ag.getMemberOf().contains(paramType)

|| ag.getMemberOf().contains

(paramType2)){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"if\n");

toPromela = toPromela.concat("

"+"::("+whom_where+" == "+

ag.getName()+")->\n");

toPromela = toPromela.concat("

"+" "+ag.getName()+"_"+messAtt +

"[searchID] = " + agentName+"_"+

messAtt2 + "[searchID];\n");

toPromela = toPromela.concat("

printf(\"COMM BELIEF UPDATE: "+ag.

getName()+"_"+messAtt + "[searchID]

= %e (String) or %d

(Integar)\\n\", "+ag.getName()+"_"+

messAtt + "[searchID], "+ ag.getName()+

"_"+messAtt + "[searchID]);\n");

toPromela = toPromela.concat("
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"+"::else ->\n");

toPromela = toPromela.concat("

"+" skip;\n");

toPromela = toPromela.concat("

"+"fi;\n");

toPromela = toPromela.concat("

}\n");

}

}

for (Iterator<object> objectit = objects.

iterator(); objectit.hasNext(); ){

object ob = objectit.next();

if(ob.getMemberOf().contains(paramType) ||

ob.getMemberOf().contains(paramType2)){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+"if\n");

toPromela = toPromela.concat("

"+"::("+whom_where+" == "+

ob.getName()+")->\n");

toPromela = toPromela.concat("

"+" "+ob.getName()+"_"+messAtt +

"[searchID] = " + agentName+"_"+

messAtt2 + "[searchID];\n");

toPromela = toPromela.concat("

printf(\"COMM BELIEF UPDATE: "+ob.

getName()+"_"+messAtt + "[searchID]

= %e (String) or %d (Integar)\\n\", "

+ob.getName()+"_"+messAtt + "[searchID]

, "+ ob.getName()+"_"+messAtt + "

[searchID]);\n");

toPromela = toPromela.concat("

"+"::else ->\n");

toPromela = toPromela.concat("

"+" skip;\n");

toPromela = toPromela.concat("

"+"fi;\n");

toPromela = toPromela.concat("

}\n");

}

}

}

messAbout = null;

messAbout2 = null;

messAtt = null;

messAtt2 = null;

}

}
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if(type == eventType.Move){

toPromela = toPromela.concat("

d_step{\n");

toPromela = toPromela.concat("

"+agentName+"_location[" + agentName + "ID] = " +

whom_where + ";\n");

toPromelaMove = toPromelaMove.concat("fact_location["+

agentName+"ID] = " + whom_where + ";\n");

toPromela = toPromela.concat("

printf(\"MOVE BELIEF UPDATE: "+agentName+"_location[" +

agentName + "ID] = %e (String) or %d (Integar)\\n\", "+

agentName+"_location[" + agentName + "ID], "+

agentName+"_location[" + agentName + "ID]);\n");

PromelaBeliefUpdate.add(agentName+"_location[" +

agentName + "ID]");

PromelaBeliefUpdate.add("fact_location[" +

agentName + "ID]");

toPromela = toPromela.concat("

}\n");

}

if(attributeOwnerCurrent)

attributeOwner = "current";

if(valueOwnerCurrent)

valueOwner = "current";

if(valueOwner2Current)

valueOwner2 = "current";

if(whomWhereCurrent)

whom_where = "current";

if(messAboutCurrent)

messAbout = "current";

if(messAbout2Current)

messAbout2 = "current";

return toPromela;

}

public void inCollectAll(){

isCollectAll = true;

}

public String getWhomWhere(){

return whom_where;

}

public Set getPromelaFactUpdate(){

return PromelaFactUpdate;
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}

public Set getBeliefUpdate(){

return PromelaBeliefUpdate;

}

public String getToPromelaMove(){

return toPromelaMove;

}

public eventType getType()

{

return type;

}

public String getName()

{

return name;

}

public int getID()

{

return concID;

}

public int getDuration()

{

return duration;

}

public String getAttOwner()

{

return attributeOwner;

}

public String getAttName()

{

return attributeName;

}

public String getValueOwner()

{

return valueOwner;

}

public String getValue()

{

return value;

}

public int getBc()

{

return bc;

}
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public int getFc()

{

return fc;

}

public String getFName(){

return f_name;

}

public boolean getCollectAll(){

return isCollectAll;

}

public boolean getHasVar(){

return hasVar;

}

}

C.12 Concludes

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

import java.util.Stack;

class conclude

{

String association; // Who the conclude belief belongs to

String belief; // name of the attribute

String value; // new value

}

C.13 Communication Messages

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Stores all messgae for communication.

*/

import java.util.*;
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class messages {

String messAbout;

String messAbout2;

String messAtt;

String messAtt2;

public messages(String new_messAbout, String new_messAbout2,

String new_messAtt, String new_messAtt2) {

messAbout = new_messAbout;

messAbout2= new_messAbout2;

messAtt = new_messAtt;

messAtt2 = new_messAtt2;

}

public String getMessAbout(){

return messAbout;

}

public String getMessAbout2(){

return messAbout2;

}

public String getMessAtt(){

return messAtt;

}

public String getMessAtt2(){

return messAtt2;

}

}

C.14 Workframes

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Workframe details.

*/

import java.util.*;

class workframe

{ // name of agent it belongs to

public String agent;

// name of the workframe

public String wf_name;
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// repeat: true, once, false.

public String wf_repeat = "false";

// priority of the workframe

public int wf_priority = 0;

// The variables it contains

public Set<variable> vars = new HashSet();

// The detectables it contains

public Set<detectable> detectables = new HashSet();

// Guard condition of the thoughtframe

public Set<guard> guards = new HashSet();

// Events contained within the thoughtframe

public List<event> events = new ArrayList();

/****************

*For Promela use*

*****************/

public int ID; // workframes ID number

public boolean containsCollectAll = false;

// Details of all other agents/objects

public Set<agent> mas = new HashSet();

// Guards which don’t contain variables

Set<String> staticGuards = new HashSet<String>();

// Guards which contain variables

Set<String> varGuards = new HashSet<String>();

// Names of the variables

public Set<String> VarNames = new HashSet();

String promelaString = "";

public workframe(){}

public workframe(Set<agent> new_mas, int new_ID,

String new_agent, String new_name, String new_repeat,

int new_priority, Set<variable> new_variables,

Set<detectable> new_detectables, Set<guard> new_guards,

List<event> new_events) {

mas = new_mas;

ID = new_ID;

agent = new_agent;

wf_name = new_name;

wf_repeat = new_repeat;

wf_priority = new_priority;

vars = new_variables;

detectables = new_detectables;

guards = new_guards;

events = new_events;

}

public String toPromelaString(String[] identificationNumbers,
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String agentName, String agentObject){

promelaString = "";

varGuards.clear();

staticGuards.clear();

boolean hasVariable;

// Cycle through guards to find which contain variables

for (Iterator<guard> Garit = guards.iterator();

Garit.hasNext(); ) {

guard gar = Garit.next();

String guardToString = gar.toPromela(

identificationNumbers, vars, agentName,

agentObject);

if(gar.getHasVariable())

varGuards.add(guardToString);

else

staticGuards.add(guardToString);

}

if(vars.size() == 0){

promelaString = promelaString.concat("

/* Workframe "+ wf_name +", has no variables

and agent name is "+agentName+"*/\n");

promelaString = promelaString.concat("

if\n");

promelaString = promelaString.concat("

::(");

for (Iterator<String> statGarit = staticGuards.iterator();

statGarit.hasNext(); ) {

String g = statGarit.next();

if(statGarit.hasNext())

promelaString = promelaString.concat(g + " && ");

else

promelaString = promelaString.concat(g +

")-> \n");

}

// If statement for relations

promelaString = promelaString.concat("

i = 0;\n");

promelaString = promelaString.concat("

printf(\"Workframe "+wf_name+" is active\\n\");\n");

promelaString = promelaString.concat("

" + agentName + "wfActive(i, "+ID+")\n");

promelaString = promelaString.concat("

::else->\n");

promelaString = promelaString.concat("

i = 0;\n");

promelaString = promelaString.concat(" "

+ agentName + "wfNotActive(i, " + ID + ")\n");

promelaString = promelaString.concat("
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fi;\n");

}

else{ // Has variables

promelaString = promelaString.concat("

/* Workframe "+ wf_name +", has variables*/\n");

if(!staticGuards.isEmpty()){

promelaString = promelaString.concat("

if\n");

promelaString = promelaString.concat("

::(");

for (Iterator<String> statGarit =

staticGuards.iterator();

statGarit.hasNext(); ) {

String g = statGarit.next();

if(statGarit.hasNext())

promelaString = promelaString.concat(g + "

&& ");

else

promelaString = promelaString.concat(g +

")-> \n");

}

}

else{

promelaString = promelaString.concat("

if\n");

promelaString = promelaString.concat("

::(true)->\n");

}

//Check to see if any more instances remaining,

//if not find some more (if available)

promelaString = promelaString.concat("

if\n");

promelaString = promelaString.concat("

::("+agentName+"_wf_" + wf_name + "_index == -1)

->\n");

String indent = " ";

Iterator<variable> VariableIterator = vars.iterator();

//Adds the variable bit, needs to be looped

//via recusion to get right effect

promelaString = promelaString.concat(indent +

"printf(\"Assigning variable values for workframe

"+wf_name+"\\n\");\n");

promelaGuardWithVariables(VariableIterator, indent,

agentName);

promelaString = promelaString.concat(indent + "if\n");

promelaString = promelaString.concat(indent +

"::("+agentName+"_wf_"+wf_name+"_index > -1) ->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + agentName +
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"wfActive(i,"+ID+");\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else

->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + agentName +

"wfNotActive(i,"+ID+");\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "fi;\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else

->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent +

agentName + "wfActive(i,"+ID+");\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "fi;\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else

->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + "i = 0;\n");

promelaString = promelaString.concat(indent + agentName +

"wfNotActive(i,"+ID+");\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "fi;\n");

promelaString = promelaString.concat(indent + "i = 0;\n");

}

return promelaString;

}

public void promelaGuardWithVariables(Iterator<variable> varit,

String indent, String agentName){

variable v = varit.next();

int varNo = v.getVarNo();

//promelaString = promelaString.concat(indent +

"int "+ v.getAssociation() + "Counter;\n");

promelaString = promelaString.concat(indent +

v.getAssociation() + "Counter = 0;\n");

promelaString = promelaString.concat(indent + "do\n");

promelaString = promelaString.concat(indent + "::("+

v.getAssociation() + "Counter < numberOfEverything &&

"+v.getAssociation() + "members["+v.getAssociation() +

"Counter] != 1)->\n");

promelaString = promelaString.concat(indent + " " +

v.getAssociation() + "Counter++;\n");

promelaString = promelaString.concat(indent + "::("+
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v.getAssociation() + "Counter < numberOfEverything &&

"+v.getAssociation() + "members["+v.getAssociation() +

"Counter] == 1)->\n");

boolean varOfVar = false;

for (Iterator<guard> Garit = guards.iterator();

Garit.hasNext(); ) {

guard gar = Garit.next();

if(v.getName().equals(gar.getleftAssoc()) &&

gar.getleftAttr()!= null){

promelaString = promelaString.concat(indent + "

printf(\"Checking for ID of %e\\n\",

agentsObjectsIDs["+v.getAssociation()+

"Counter]);\n");

promelaString = promelaString.concat(indent + "

findID(agentsObjectsIDs["+v.getAssociation()+

"Counter]);\n");

promelaString = promelaString.concat(indent +

" int var" + varNo + ";\n");

promelaString = promelaString.concat(indent + "

var" + varNo + " = searchID;\n");

varOfVar = true;

}

}

indent = indent.concat(" ");

if(varit.hasNext()){

promelaGuardWithVariables(varit, indent, agentName);

}

else{

promelaString = promelaString.concat(indent+"if\n");

promelaString = promelaString.concat(indent+"::(");

boolean isFirst = true;

for (Iterator<String> varGarit = varGuards.iterator();

varGarit.hasNext(); ) {

String g = varGarit.next();

if(varGarit.hasNext())

promelaString = promelaString.concat(g + " && ");

else

promelaString = promelaString.concat(" " + g + ")

->\n");

}

//promelaString = promelaString.concat(")->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + ""+

agentName+"_wf_" + wf_name + "_index++;\n");

for (Iterator<variable> Varit2 = vars.iterator();

Varit2.hasNext(); ) {

variable v2 = Varit2.next();

varNo = v2.getVarNo();
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promelaString = promelaString.concat(indent +

""+agentName+"_wf_"+wf_name + "_var["+agentName+

"_wf_"+

wf_name +"_index].var_elements["+varNo+"] =

agentsObjectsIDs["+v2.getAssociation()+

"Counter];\n");

promelaString = promelaString.concat(indent +"

printf(\"Inserting %e into variable "+v2.getName()

+" of type "+v2.getType()+

" \\n\", agentsObjectsIDs["+v2.getAssociation()+

"Counter]);\n");

if(v2.getType().equals("forone"))

promelaString = promelaString.concat(indent +

v2.getAssociation() +

"Counter = numberOfEverything+1;\n");

//varNo++;

}

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else

->\n");

promelaString = promelaString.concat(indent + " skip;

\n");

promelaString = promelaString.concat(indent + "fi;\n");

}

promelaString = promelaString.concat(indent +

v.getAssociation() + "Counter++;\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else ->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + "break; \n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "od; \n");

indent = indent.concat(" ");

}

//Finds out if workframe has a collectAll in it and will

//therefore mark all events

public void hasCollectAll(){

for(Iterator<variable> varit = vars.iterator();

varit.hasNext();){

variable v = varit.next();

//If workframe has a collectAll variable then flag

//all its events with collectAll

if(v.getType().equals("collectall")){

//System.out.println("Found a CollectAll");

containsCollectAll = true;

for(Iterator<event> eventit = events.iterator();

eventit.hasNext();){
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event e = eventit.next();

e.inCollectAll();

}

}

}

}

public boolean getContainsCollectAll(){

return containsCollectAll;

}

public String getName()

{

return wf_name;

}

public int getID()

{

return ID;

}

public String getRepeat(){

return wf_repeat;

}

public int getRepeatValue()

{

if(wf_repeat.equals("false"))

return 1;

else if(wf_repeat.equals("once"))

return 2;

else if(wf_repeat.equals("true"))

return 3;

else

return 1;

}

public int getPriority()

{

return wf_priority;

}

public Set getDetectables()

{

return detectables;

}

public Set getVariables()

{

return vars;

}

public Set getGuards()

{

return guards;
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}

public List getEvents()

{

return events;

}

public int numOfEvents()

{

return events.size();

}

}

C.15 Detectables

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*The detectable of a workframe. These are stored in sets

inside workframes*/

import java.util.*;

class detectable{

String name; // Name of the detectable

/* Store the guard condtion of the detectable. e.g.

"Alex.hunger = current.hunger". leftOwner = Alex,

leftAttribute = hunger, rightOwner = current and rightAttribute =

hunger. However if it was "Alex.hunger = 10" then 10 = value.

*/

String leftOwner;

String leftAttribute;

String rightOwner;

String rightAttribute;

String value;

// used incase of relation e.g. "Alex hasCheck check"

// then math would be hasCheck

String math;

int dc; // Decision condidtion

String type; // Abort, impasse, continue or complete.

String f_name;

boolean hasVariable = false;

int leftVar = -1;

int rightVar = -1;

int valVar = -1;

// Following are used for Promela
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int AgentID; // ID of agent who owns it

int wfNumber; // ID number of the workframe it is in

int ID; // Its own ID number

String beliefGuardToString = "";

String factGuardToString = "";

String beliefUpdateToString = "";

String factUpdateToString = "";

String printBelief = "";

String theVariable = ""; //might not be needed

//Left side of guard as in does left = right?

String leftSide = "";

String rightSide = "";

public detectable(int new_ID, String new_name, String

new_leftOwner, String new_leftAttribute, String

new_rightOwner, String new_rightAttribute, String

new_value, String new_math, String new_type, int

new_dc, int new_wfNumber){

ID = new_ID;

name = new_name;

leftOwner = new_leftOwner;

leftAttribute = new_leftAttribute;

rightOwner = new_rightOwner;

rightAttribute = new_rightAttribute;

value = new_value;

math = new_math;

type = new_type;

dc = new_dc;

wfNumber = new_wfNumber;

if(math.equals("="))

math = "==";

}

public String toPromelaString(String[] identificationNumbers,

Set workframes, String agent) {

Set<variable> vars = new HashSet();

for(Iterator<workframe> workit = workframes.iterator();

workit.hasNext();){

workframe w = workit.next();

if(w.getID() == wfNumber){

vars = w.getVariables();

f_name = w.getName();

}

}

boolean leftOwnerCurrent = false;

try{
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if(leftOwner.equals("current")){

leftOwner = agent;

leftOwnerCurrent = true;

}

}

catch(Exception e){}

boolean rightOwnerCurrent = false;

try{

if(rightOwner.equals("current")){

rightOwner = agent;

rightOwnerCurrent = true;

}

}

catch(Exception e){}

factGuardToString = guardToString("fact", agent, vars);

beliefUpdateToString = "";

factUpdateToString = "";

beliefUpdateToString = beliefUpdateToString.concat(

BeliefUpdateToString(agent, agent, vars));

factUpdateToString = factUpdateToString.concat(

BeliefUpdateToString("fact", agent, vars));

if(leftOwnerCurrent == true){

leftOwner = "current";

}

if(rightOwnerCurrent == true){

rightOwner = "current";

}

return factGuardToString;

}

public String guardToString(String agent, String agentName,

Set vars){

boolean leftAssocCurrent = false;

boolean rightAssocCurrent = false;

String guard = "";

if(leftOwner.equals("current"))

{

leftOwner = agentName;

leftAssocCurrent = true;

}

if(rightOwner != null){

if(rightOwner.equals("current"))

{

rightOwner = agentName;
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rightAssocCurrent = true;

}

}

// Loop through to see if the guard contains a variable

for(Iterator<variable> Varit = vars.iterator();

Varit.hasNext();)

{

variable v = Varit.next();

String varName = v.getName();

if(leftOwner != null && leftOwner.equals(varName))

{

leftVar = v.getVarNo();

hasVariable = true;

}

if(rightOwner != null && rightOwner.equals(varName ))

{

rightVar = v.getVarNo();

hasVariable = true;

}

if(value != null && value.equals(varName))

{

valVar = v.getVarNo();

hasVariable = true;

}

}

if(hasVariable == false){

if(!math.equals("=")&&!math.equals("==")&&!math.equals

("!=")&&!math.equals("<")&&!math.equals(">")&&

!math.equals("<=")&&!math.equals(">=")){

guard = guard.concat(agent + "_" + math + "[" +

leftOwner + "ID].elements["+rightOwner+"ID]

== 1" );

}

else{

guard = guard.concat(agent + "_"+leftAttribute+

"["+/*left*/leftOwner+"ID] ");

if(math.equals("="))

guard = guard.concat("==");

else

guard = guard.concat(math);

if(rightOwner != null){

guard = guard.concat(rightOwner + "_"+

rightAttribute+"["+/*right*/rightOwner+"ID]");

}

else
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guard = guard.concat(value);

}

}

else {

// is it a relation

if(!math.equals("==")&&!math.equals("!=")&&!math.equals

("<")&&!math.equals(">")&&!math.equals("<=")&&

!math.equals(">=")&&!math.equals("=")){

if(leftVar > -1 && valVar == -1){

theVariable = agentName+"_wf_"+f_name+"_var["+

agentName+"_wf_"+f_name+"_index].var_elements

["+leftVar+"]";

guard = agent + "_" + math + "[searchID].elements

["+rightOwner+"ID"+"] == 1";

}

else if(leftVar == -1 && valVar > -1){

theVariable = agentName+"_wf_"+f_name+"_var["+

agentName+"_wf_"+f_name+"_index].var_elements

["+rightVar+"]";

guard = agent + "_" + math + "["+leftOwner+"ID].

elements[searchID]"+"] == 1";

}

else{

theVariable = agentName+"_wf_"+f_name+"_var["+

agentName+"_wf_"+f_name+"_index].

var_elements["+leftVar+"]";

guard = agent + "_" + math + "[searchID]"+"].

elements["+agentName+"_wf_"+f_name+"_var

["+agentName+"_wf_"+f_name+"_index].

var_elements["+rightVar+"]"+"] == 1";

}

}

// not a relation

else{

if(leftVar > -1){

theVariable = agentName+"_wf_"+f_name+"_var

["+agentName+"_wf_"+f_name+"_index].

var_elements["+leftVar+"]";

leftSide = agent + "_"+leftAttribute+

"[searchID]";

}

else{

leftSide = agent + "_"+leftAttribute+"["+

leftOwner+"ID]";

}

if(rightVar > -1){

theVariable = agentName+"_wf_"+f_name+"_var["+

agentName+"_wf_"+f_name+"_index].
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var_elements["+valVar+"]";

rightSide = agent + "_"+leftAttribute+"

[searchID]";

}

else if(rightOwner != null)

rightSide = agent + "_"+leftAttribute+

"["+rightOwner+"ID] ";

else{

rightSide = value;

}

/*if(leftVar > -1)

leftSide = agent + "_"+leftAttribute+"["+

leftOwner+"ID].elements["+agentName+

"_wf_"+f_name+"_var["+agentName+"_wf_"+

f_name+"_index].var_elements["+rightVar

+"]"+"]";

else

leftSide = agent + "_"+leftAttribute+"["+

leftOwner+"ID]";

if(rightVar > -1)

rightSide = agent + "_"+leftAttribute+"["+

leftOwner+"ID].elements["+agentName+"

_wf_"+f_name+"_var["+agentName+"_wf_"

+f_name+"_index].var_elements["

+leftVar+"]"+"]";

else if(rightOwner != null)

rightSide = agent + "_"+leftAttribute+"["+

rightOwner+"ID] ";

else{

rightSide = value;

}

*/

guard = guard.concat(leftSide + math + rightSide);

}

}

if(leftAssocCurrent)

leftOwner = "current";

if(rightAssocCurrent)

rightOwner = "current";

return guard;

}

public String BeliefUpdateToString(String agent, String agentName,
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Set vars){

boolean leftAssocCurrent = false;

String update = "";

if(leftOwner.equals("current"))

{

leftOwner = agentName;

leftAssocCurrent = true;

}

// Loop through to see if the guard contains a variable

for(Iterator<variable> Varit = vars.iterator();

Varit.hasNext();)

{

variable v = Varit.next();

String varName = v.getName();

if(leftOwner != null && leftOwner.equals(varName))

{

leftVar = v.getVarNo();

hasVariable = true;

}

if(value != null && value.equals(varName))

{

valVar = v.getVarNo();

hasVariable = true;

}

}

if(hasVariable == false){

if(!math.equals("=")&&!math.equals("==")&&!math.equals

("!=")&&!math.equals("<")&&!math.equals(">")&&!math.

equals("<=")&&!math.equals(">=")){update = update.

concat(agent + "_" + math + "[" + leftOwner + "ID].

elements["+rightOwner+"ID] == 1" );

}

else{

update = update.concat(agent + "_"+leftAttribute+

"["+/*left*/leftOwner+"ID] ");

}

}

else {

// is it a relation

if(!math.equals("==")&&!math.equals("!=")&&!math.

equals("<")&&!math.equals(">")&&!math.equals

("<=")&&!math.equals(">=")){

if(leftVar > -1 && valVar == -1){

update = agent + "_" + math + "["+agentName+

"_wf_"+f_name+"_var["+agentName+"_wf_"+f_name+
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"_index].var_elements["+leftVar+"]"+"].elements

["+rightOwner+"ID"+"] == 1";

}

else if(leftVar == -1 && valVar > -1){

update = agent + "_" + math + "["+leftOwner+"ID]

.elements["+agentName+"_wf_"+f_name+"_var["+

agentName+"_wf_"+f_name+"_index].var_elements["+

rightVar+"]"+"] == 1";

}

else{

update = agent + "_" + math + "["+agentName+

"_wf_"+f_name+"_var["+agentName+"_wf_"+f_name+

"_index].var_elements["+leftVar+"]"+"].elements

["+agentName+"_wf_"+f_name+"_var["+agentName+

"_wf_"+f_name+"_index].var_elements["+rightVar

+"]"+"] == 1";

}

}

// not a relation

else{

if(leftVar > -1)

leftSide = agent + "_"+leftAttribute+

"[searchID]";

else

leftSide = agent + "_"+leftAttribute+

"["+leftOwner+"ID]";

update = update.concat(leftSide);

}

}

if(leftAssocCurrent)

leftOwner = "current";

return update;

}

public String getName(){

return name;

}

public String getLeftOwner(){

return leftOwner;

}

public String getRightOwner(){

return rightOwner;

}

public String getLeftAttribute(){

return leftAttribute;

}

public String getRightAttribute(){
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return rightAttribute;

}

public String getValue(){

return value;

}

public String getMath(){

return math;

}

public String getType(){

return type;

}

public int getID(){

return ID;

}

public int getwfNumber(){

return wfNumber;

}

public String getBeliefGuardToString(){

return beliefGuardToString;

}

public String getFactGuardToString(){

return factGuardToString;

}

public String getBeliefUpdateToString(){

return beliefUpdateToString;

}

public String getFactUpdateToString(){

return factUpdateToString;

}

public boolean getHasVariable(){

return hasVariable;

}

public String getTheVariable(){

return theVariable;

}

}

C.16 Thoughtframes

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*
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Thoughtframe details. Relations not yet implemented for thoughtframes

yet.

*/

import java.util.*;

class thoughtframe

{

public String agent; // name of agent it belongs to

public String tf_name; // name of the thoughtframe

public String tf_repeat = "false"; // repeat: true, once, false

public int tf_priority = 0; // priority of the thoughtframe

// The variables it contains

public Set<variable> vars = new HashSet();

// Guard condition of the thoughtframe

public Set<guard> guards = new HashSet();

// Events contained within the thoughtframe

public List<event> events = new ArrayList();

/****************

*For Promela use*

*****************/

public int ID; // thoughtframes ID number

public boolean containsCollectAll = false;

// Details of all other agents/objects

public Set<agent> mas = new HashSet();

// Guards which don’t contain variables

Set<String> staticGuards = new HashSet<String>();

// Guards which contain variables

Set<String> varGuards = new HashSet<String>();

// Names of the variables

public Set<String> VarNames = new HashSet();

String promelaString = "";

public thoughtframe(){}

public thoughtframe(Set<agent> new_mas, int new_ID, String

new_agent, String new_name, String new_repeat, int

new_priority, Set<variable> new_variables, Set<guard>

new_guards, List<event> new_events) {

mas = new_mas;

ID = new_ID;

agent = new_agent;

tf_name = new_name;

tf_repeat = new_repeat;

tf_priority = new_priority;

vars = new_variables;

guards = new_guards;
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events = new_events;

}

public String toPromelaString(String[]

identificationNumbers, String agentName){

promelaString = "";

varGuards.clear();

staticGuards.clear();

boolean hasVariable;

// Cycle through guards to find which contain variables

for (Iterator<guard> Garit = guards.iterator();

Garit.hasNext(); ) {

guard gar = Garit.next();

String guardToString = gar.toPromela

(identificationNumbers, vars, agentName, agentName);

if(gar.getHasVariable())

varGuards.add(guardToString);

else

staticGuards.add(guardToString);

}

if(vars.size() == 0){

promelaString = promelaString.concat("

/* thoughtframe "+ tf_name +", has no variables*/\n");

promelaString = promelaString.concat(" if\n");

promelaString = promelaString.concat(" ::(");

for (Iterator<String> statGarit = staticGuards.iterator();

statGarit.hasNext(); ) {

String g = statGarit.next();

if(statGarit.hasNext())

promelaString = promelaString.concat(g + " && ");

else

promelaString = promelaString.concat(

g + ")-> \n");

}

promelaString = promelaString.concat("

i = 0;\n");

promelaString = promelaString.concat("

" + agentName + "tfActive(i, "+ID+")\n");

promelaString = promelaString.concat("

printf(\"--Thoughtframe "+tf_name+" is

active\\n\")\n");

promelaString = promelaString.concat("

::else->\n");

promelaString = promelaString.concat("

i = 0;\n");

promelaString = promelaString.concat("

" + agentName + "tfNotActive(i, " + ID + ")\n");
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promelaString = promelaString.concat(" fi;\n");

}

else{

promelaString = promelaString.concat("

/* thoughtframe "+ tf_name +", has variables*/\n");

if(!staticGuards.isEmpty()){

promelaString = promelaString.concat(" if\n");

promelaString = promelaString.concat(" ::(");

for (Iterator<String> statGarit = staticGuards.

iterator(); statGarit.hasNext(); ) {

String g = statGarit.next();

if(statGarit.hasNext())

promelaString = promelaString.

concat(g + " && ");

else

promelaString = promelaString.concat(

g + ")-> \n");

}

}

else{

promelaString = promelaString.concat("

if\n");

promelaString = promelaString.concat("

::(true)->\n");

}

promelaString = promelaString.concat(" if\n");

promelaString = promelaString.concat("

::("+agentName+"_tf_"+tf_name+ "_index == -1) ->\n");

String indent = " ";

Iterator<variable> VariableIterator = vars.iterator();

//Adds the variable bit, needs to be looped via

//recusion to get right effect

promelaString = promelaString.concat(indent +"

printf(\"Assigning variable values for thoughtframe

"+tf_name+"\\n\");\n");

promelaGuardWithVariables(VariableIterator, indent,

agentName);

promelaString = promelaString.concat(indent + "if\n");

promelaString = promelaString.concat(indent + "::("+

agentName+"_tf_"+tf_name+"_index > -1) ->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + agentName +

"tfActive(i,"+ID+");\n");

promelaString = promelaString.concat(indent + "printf(

\"--Thoughtframe "+tf_name+" is active1\\n\")\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else

->\n");

indent = indent.concat(" ");
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promelaString = promelaString.concat(indent + agentName + "

tfNotActive(i,"+ID+");\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "fi;\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else

->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + agentName+"

tfActive(i,"+ID+");\n");

promelaString = promelaString.concat(indent + "printf(\"--

Thoughtframe "+tf_name+" is active2\\n\")\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "fi;\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else

->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + "i = 0;\n");

promelaString = promelaString.concat(indent + agentName +

"tfNotActive(i,"+ID+");\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "fi;\n");

promelaString = promelaString.concat(indent + "i = 0;\n");

}

return promelaString;

}

public void promelaGuardWithVariables(Iterator<variable> varit,

String indent, String agentName){

variable v = varit.next();

int varNo = v.getVarNo();

promelaString = promelaString.concat(indent +

v.getAssociation() + "Counter = 0;\n");

promelaString = promelaString.concat(indent + "do\n");

promelaString = promelaString.concat(indent + "

::("+v.getAssociation() + "Counter <

numberOfEverything && "+v.getAssociation() +

"members["+v.getAssociation() + "Counter] != 1)->\n");

promelaString = promelaString.concat(indent + " "

+ v.getAssociation() + "Counter++;\n");

promelaString = promelaString.concat(indent +

"::("+v.getAssociation() + "Counter <

numberOfEverything && "+v.getAssociation() +

"members["+v.getAssociation() + "Counter] == 1)->\n");

boolean varOfVar = false;

for (Iterator<guard> Garit = guards.iterator();
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Garit.hasNext(); ) {

guard gar = Garit.next();

if(v.getName().equals(gar.getleftAssoc()) &&

gar.getleftAttr()!= null){

promelaString = promelaString.concat(indent + "

printf(\"Checking for ID of %e\\n\",

agentsObjectsIDs

["+v.getAssociation()+"Counter]);\n");

promelaString = promelaString.concat(indent + "

findID(agentsObjectsIDs["+v.getAssociation()+

"Counter]);\n");

promelaString = promelaString.concat(indent + "

int var" + varNo + ";\n");

promelaString = promelaString.concat(indent + "

var" + varNo + " = searchID;\n");

varOfVar = true;

}

}

indent = indent.concat(" ");

if(varit.hasNext()){

promelaGuardWithVariables(varit, indent, agentName);

}

else{

promelaString = promelaString.concat(indent+"if\n");

promelaString = promelaString.concat(indent+"::(");

boolean isFirst = true;

for (Iterator<String> varGarit = varGuards.iterator();

varGarit.hasNext(); ) {

String g = varGarit.next();

if(varGarit.hasNext())

promelaString = promelaString.concat(g + " && ");

else

promelaString = promelaString.concat(" " + g + ")

->\n");

}

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + ""+agentName

+"_tf_" + tf_name + "_index++;\n");

for (Iterator<variable> Varit2 = vars.iterator();

Varit2.hasNext(); ) {

variable v2 = Varit2.next();

varNo = v2.getVarNo();

promelaString = promelaString.concat(indent +""+

agentName+"_tf_"+tf_name + "_var["+agentName+"

_tf_"+ tf_name +"_index].var_elements["+varNo+"]

= agentsObjectsIDs["+v2.getAssociation()+

"Counter];\n");
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promelaString = promelaString.concat(indent +

"printf(\" Inserting %e into variable "+v2.

getName()+" of type "+v2.getType()+" \\n\",

agentsObjectsIDs["+v2.getAssociation()+"Counter])

;\n");

if(v2.getType().equals("forone"))

promelaString = promelaString.concat(indent +

v2.getAssociation() + "Counter =

numberOfEverything+1;\n");

}

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else

->\n");

promelaString = promelaString.concat(indent + "

skip;\n");

promelaString = promelaString.concat(indent + "

fi;\n");

}

promelaString =promelaString.concat(indent+v.getAssociation()

+ "Counter++;\n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "::else ->\n");

indent = indent.concat(" ");

promelaString = promelaString.concat(indent + "break; \n");

indent = indent.substring(0,(indent.length()-4));

promelaString = promelaString.concat(indent + "od; \n");

indent = indent.concat(" ");

}

//Finds out if thoughtframe has a collectAll in it and will

//therefore mark all events

public void hasCollectAll(){

for(Iterator<variable> varit = vars.iterator();

varit.hasNext();){

variable v = varit.next();

if(v.getType().equals("collectall")){

//System.out.println("Found a CollectAll");

containsCollectAll = true;

for(Iterator<event> eventit = events.iterator();

eventit.hasNext();){

event e = eventit.next();

e.inCollectAll();

}

}

}

}
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public boolean getContainsCollectAll(){

return containsCollectAll;

}

public String getName()

{

return tf_name;

}

public int getID()

{

return ID;

}

public String getRepeat(){

return tf_repeat;

}

public int getRepeatValue()

{

if(tf_repeat.equals("false"))

return 1;

else if(tf_repeat.equals("once"))

return 2;

else if(tf_repeat.equals("true"))

return 3;

else

return 1;

}

public int getPriority()

{

return tf_priority;

}

public Set getVariables()

{

return vars;

}

public Set getGuards()

{

return guards;

}

public List getEvents()

{

return events;

}

}
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C.17 Guard Conditions

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Stores the guard conditions of Workframes, Thoughtframes and

Detectables.

*/

import java.util.*;

class guard

{

// Temp variable to hold ID number of the agent the guard

// belongs to, -1 means empty

int leftID = -1;

int rightID = -1;

boolean hasVariable = false;

// Who the leftAttr of the left hand variable is about

String leftAssoc;

String leftAttr; // left hand attribute

// Right hand attribute attribute if it is string or int

String value;

String mathSymbol; // if it is > or < or =

String type; // not, known, knownval etc.

String rightAssoc; // right hand attribute leftAssoc

String rightAttr; // Right hand attribute

String guardToString = "";

String leftSide = ""; // Used to interpret into Promela

String rightSide = ""; // Used to interpret into Promela

public guard(){}

public guard(String new_type, String new_mathSymbol, String

new_leftAssoc, String new_rightAssoc, String new_leftAttr,

String new_rightAttr, String new_value)

{

type = new_type;

mathSymbol = new_mathSymbol;

leftAssoc = new_leftAssoc;

leftAttr = new_leftAttr;

value = new_value;

rightAssoc = new_rightAssoc;

rightAttr = new_rightAttr;
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if(mathSymbol.equals("="))

mathSymbol = "==";

}

public String relationInGuard(Set<relation> relations){

String relationName = "";

if(!mathSymbol.equals("==")&&!mathSymbol.equals("!=")&&

!mathSymbol.equals("<")&&!mathSymbol.equals(">")&&

!mathSymbol.equals("<=")&&!mathSymbol.equals(">=")){

for(Iterator<relation> relit = relations.iterator();

relit.hasNext(); ) {

relation rel = relit.next();

if(rel.getName().equals(mathSymbol)){

relationName = mathSymbol;

break;

}

}

}

return relationName;

}

public String toPromela(String[] identificationNumbers, Set vars,

String agent, String agentObject)

{

rightAttr + " " + value);

boolean leftAssocCurrent = false;

boolean rightAssocCurrent = false;

guardToString = "";

if(leftAssoc.equals("current"))

{

leftAssoc = agent;

leftAssocCurrent = true;

}

if(rightAssoc != null){

if(rightAssoc.equals("current"))

{

rightAssoc = agent;

rightAssocCurrent = true;

}

}

// Loop through to see if the guard contains a variable

for(Iterator<variable> Varit = vars.iterator();

Varit.hasNext();)

{

variable var = Varit.next();
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String varName = var.getName();

if(leftAssoc != null && leftAssoc.equals(varName))

{

hasVariable = true;

// if(leftAttr == null){

leftAssoc = var.getAssociation();

//}

}

if(rightAssoc != null && rightAssoc.equals(varName ))

{

hasVariable = true;

if(rightAttr == null){

rightAssoc = var.getAssociation();

}

}

if(value != null && value.equals(varName))

{

hasVariable = true;

if(rightAttr == null){

rightAssoc = var.getAssociation();

}

}

}

if(hasVariable == false){

if(type.equals("knownval"))

{

if(!mathSymbol.equals("==")&&!mathSymbol.equals("!=")

&&!mathSymbol.equals("<")&&!mathSymbol.equals

(">")&&!mathSymbol.equals("<=")&&!mathSymbol.

equals(">=")){

guardToString = guardToString.concat(agentObject +

"_" + mathSymbol + "[" + leftAssoc + "ID].

elements["+rightAssoc+"ID] == 1" );

}

else{

guardToString = guardToString.concat(agentObject +

"_"+leftAttr+"["+/*left*/leftAssoc+"ID] ");

if(mathSymbol.equals("="))

guardToString = guardToString.concat("==");

else

guardToString = guardToString.concat

(mathSymbol);

if(rightAssoc != null){

guardToString = guardToString.concat(rightAssoc +
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"_"+rightAttr+"["+/*right*/rightAssoc+"ID ] ");

}

else

guardToString = guardToString.concat(value);

}

}

}

else {

boolean leftVarNoAtt = false;

boolean rightVarNoAtt = false;

boolean leftVarAtt = false;

boolean rightVarAtt = false;

// is it a relation

if(!mathSymbol.equals("==")&&!mathSymbol.equals("!=")

&&!mathSymbol.equals("<")&&!mathSymbol.equals

(">")&&!mathSymbol.equals("<=")&&!mathSymbol.

equals(">=")){

leftSide = leftAssoc + "ID"; // Set default

rightSide = rightAssoc + "ID"; // Set default

for(Iterator<variable> Varit = vars.iterator();

Varit.hasNext();)

{

variable var = Varit.next();

String varAssoc = var.getAssociation();

// if left side is the variable then add counter

if(leftAssoc.equals(varAssoc))

leftSide = varAssoc + "Counter";

// if right side is the variable then add counter

if(rightAssoc.equals(varAssoc))

rightSide = varAssoc + "Counter";

}

guardToString = agentObject + "_" + mathSymbol + "[" +

leftSide +"].elements["+ rightSide+"] == 1";

}

// not a relation

else{

leftSide = leftAssoc + "ID"; // Set default

rightSide = rightAssoc + "ID"; // Set default

for(Iterator<variable> Varit = vars.iterator();

Varit.hasNext();)

{

variable var = Varit.next();

String varAssoc = var.getAssociation();

try{

if(leftAssoc.equals(varAssoc) && leftAttr

== null)

{

leftSide = "agentsObjectsIDs" + "[" +
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varAssoc + "Counter]";

}

}

catch(Exception e){}

try{

if(leftAssoc.equals(varAssoc) &&

leftAttr != null)

{

leftSide = agentObject + "_" +

leftAttr + "[" + varAssoc + "Counter]";

}

}

catch(Exception e){}

try{

if(rightAssoc.equals(varAssoc) &&

rightAttr == null)

{

rightSide = "agentsObjectsIDs" + "["

+ varAssoc + "Counter]";

}

}

catch(Exception e){}

try{

if(rightAssoc.equals(varAssoc) && rightAttr

!= null)

{

rightSide = agentObject + "_" + rightAttr

+ "[" + varAssoc + "Counter]";

}

}

catch(Exception e){}

}

if(rightAssoc == null && rightAttr == null &&

value != null)

rightSide = value;

guardToString = guardToString.concat(leftSide +

mathSymbol + rightSide);

}

}

if(leftAssocCurrent)

leftAssoc = "current";

if(rightAssocCurrent)

rightAssoc = "current";

return guardToString;

}
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public boolean getHasVariable()

{

return hasVariable;

}

public String getGuardToString()

{

return guardToString;

}

public String getleftAssoc()

{

return leftAssoc;

}

public String getrightAssoc()

{

return rightAssoc;

}

public String getleftAttr()

{

return leftAttr;

}

public String getValue()

{

return value;

}

public String getMathSymbol()

{

return mathSymbol;

}

public String getType()

{

return type;

}

public String getLeftSide(){

return leftSide;

}

}

C.18 Variables

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Stores the variables of a workframe or thoughtframe.
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*/

import java.util.Stack;

class variable

{

String name; // name of the variable

String type; // forone, foreach, collectall etc

String association; // Which class of objects or group of agents

/****************

*For Promela use*

*****************/

int varNo; // ID number for the variable

public variable()

{}

public variable(int new_varNo, String new_type,

String new_association, String new_name)

{

varNo = new_varNo;

name = new_name;

type = new_type;

association = new_association;

}

public String getName()

{

return name;

}

public String getType()

{

return type;

}

public String getAssociation()

{

return association;

}

public int getVarNo(){

return varNo;

}

}

C.19 Geography: Area Definitions

/**

*Author: Richard Stocker
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*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Simple class to store the area definition.

*/

import java.util.*;

class areaDefs

{

String name; // Name of the area definition

String ex; // What it extends

public areaDefs(String new_name, String new_extends){

name = new_name;

ex = new_extends;

}

public String getName(){

return name;

}

}

C.20 Geography: The Locations

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Perhaps would have been better labelling this as "area".

Essentially holds all the details of the areas that an agent/object

can visit.

*/

import java.util.*;

class locations

{

String name; // Name of the area

String instanceOf; // areaDef it belongs to

String partOf; // area it is part of

int locID; // Promela ID number
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public locations(String new_name, String new_instanceOf, String

new_partOf, int new_locID){

name = new_name;

instanceOf = new_instanceOf;

partOf = new_partOf;

locID = new_locID;

//System.out.println(name+" = " + locID);

}

public String getName(){

return name;

}

public int getID(){

return locID;

}

public String getInstanceOf(){

return instanceOf;

}

public String getPartOf(){

return partOf;

}

}

C.21 Geography: Paths between Areas

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

/*

Details of which area connects to what.

*/

class path

{

String area1;

String area2;

int distance;

public path(String new_area1, String new_area2,
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int new_distance){

area1 = new_area1;

area2 = new_area2;

distance = new_distance;

}

public String getArea1(){

return area1;

}

public String getArea2(){

return area2;

}

public int getDist(){

return distance;

}

}

C.22 Geography: Calculating Undefined Routes

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2012

**/

import java.util.*;

class Dijkstra

{

// Set of all locations

Set<locations> locs = new HashSet<locations>();

int[][] adjacency; // The adjacency matrix

public Dijkstra(Set new_locs, int[][] new_adjacency){

locs = new_locs;

adjacency = new_adjacency;

}

public int[][] findShortestPaths(){

int distance = 0;

int temp;

int minDist = -1;

int dist[];

int visit[];

int k = 0;

dist = new int[locs.size()];

visit = new int[locs.size()];

// store the new matrix
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int[][] newAdjacency = new int[locs.size()][locs.size()];

// Set all values as 99999 in new matrix

for(int i = 0;i<locs.size();i++){

for(int j = 0;j<locs.size();j++){

newAdjacency[i][j] = 99999;

}

}

//loop through all locations, represents the "from"

for(int source = 0;source<locs.size();source++){

//System.out.println("Node = " + source);

for(int destination = 0; destination <locs.size()

;destination++){

//Set all locations as not visited

for(int i = 0;i<locs.size();i++){

visit[i] = 0;

}

//set all initial distances as max

for(int i = 0;i<locs.size();i++){

dist[i] = 99999;

}

//Reset currect distance travelled

distance = 0;

// Current location is the start location

int current = source;

//loop through all locations to check for connection

boolean found = false;

while(found == false){

//Set the current place as visited

visit[current] = 1;

//assign distances from all immediate neighbours

for(int j = 0;j<locs.size();j++){

if((distance + adjacency[current][j])

< dist[j]){

dist[j] = adjacency[current][j] +

distance;

}

}

// shortest distance in array

int shortest = -1;

int next = -1; // index of the shortest distance

//Loop through to find next node to visit

for(int i = 0;i<locs.size();i++){

// Next node has to be shortest tentative distance away

if(visit[i] == 0 && (dist[i] < shortest

|| shortest == -1) && dist[i]

!= 99999){

next = i; //assign as next node

shortest = dist[i];
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}

}

//if there is a next node and it isn’t the

//destination, assing new current and loop again

if(next != -1 && next != destination){

current = next;

distance = shortest;

}

else{ //break loop

found = true;

if(source == destination){

newAdjacency[source][destination] = 0;

}

else{

newAdjacency[source][destination] =

dist[destination];

}

}

}

}

}

return newAdjacency;

}

}
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Appendix D

The Brahms Models used in the
Case Studies

The following sections provide the reader with the Brahms code used to create the
simulations in the case studies. These are provided in the appendix so the reader can
get a better insight into how the simulations were programmed, and they also show in
detail what can be translated from Brahms into PROMELA.

D.1 Robot Helper Case Study

areadef House extends BaseAreaDef { }

areadef Room extends House { }

areadef areaOfInterest extends Room { }

area Geography instanceof World { }

area AlexHouse instanceof House { }

area LivingRoom instanceof Room partof AlexHouse { }

area BedRoom instanceof Room partof AlexHouse { }

area Kitchen instanceof Room partof AlexHouse { }

area BathRoom instanceof Room partof AlexHouse { }

area chair instanceof areaOfInterest partof LivingRoom { }

area frontDoor instanceof areaOfInterest partof LivingRoom { }

area medCabinet instanceof areaOfInterest partof LivingRoom { }

area sinkOne instanceof areaOfInterest partof Kitchen { }

area dishWasher instanceof areaOfInterest partof Kitchen { }

area microWave instanceof areaOfInterest partof Kitchen { }

area medicationBox instanceof areaOfInterest partof LivingRoom { }

area bed instanceof areaOfInterest partof BedRoom { }

area toilet instanceof areaOfInterest partof BathRoom { }

area sinkTwo instanceof areaOfInterest partof BathRoom { }

area careCentre instanceof House {}

path chair_to_from_medCabinet {

area1: chair;

area2: medCabinet;

distance: 10;

}
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path chair_to_from_sinkOne {

area1: chair;

area2: sinkOne;

distance: 10;

}

path chair_to_from_bed {

area1: chair;

area2: bed;

distance: 15;

}

path chair_to_from_toilet {

area1: chair;

area2: toilet;

distance: 5;

}

path chair_to_from_frontDoor {

area1: chair;

area2: frontDoor;

distance: 5;

}

path toilet_to_from_sinkTwo {

area1: toilet;

area2: sinkTwo;

distance: 2;

}

path sinkOne_to_from_dishWasher {

area1: sinkOne;

area2: dishWasher;

distance: 2;

}

path dishWasher_to_from_microWave {

area1: dishWasher;

area2: microWave;

distance: 2;

}

path careCentre_to_from_frontDoor {

area1: careCentre;

area2: frontDoor;

distance: 2000;

}
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group person{

}

agent Alex memberof person {

location: chair;

attributes:

public int perceivedtime;

public int howHungry;

public int needToilet;

public int waitingForFood;

public boolean askedFood;

public boolean updateAskedFood;

public boolean hasFood;

public boolean handsWashed;

public boolean hasEmptyPlate;

public boolean hasMedicationA;

public boolean takeMedicationA;

public boolean hasTakenMedicationA;

public boolean toiletFlushed;

public boolean evacuate;

public boolean fireDecision;

public boolean danger;

public int missedMedicationA;

public int timeSinceAskedFood;

initial_beliefs:

(current.timeSinceAskedFood = 0);

(current.howHungry = 15);

(current.fireDecision = false);

(current.toiletFlushed = true);

(current.handsWashed = true);

(current.needToilet = 1);

(current.askedFood = false);

(current.waitingForFood = 0);

(current.updateAskedFood = false);

(current.perceivedtime = 1);

(Campanile_Clock.time = 1);

(current.hasFood = false);

(current.takeMedicationA = false);

(current.hasMedicationA = false);

(current.hasTakenMedicationA = false);

(current.hasEmptyPlate = false);

(theEnvironment.fire = false);

(current.evacuate = false);

initial_facts:

activities:

primitive_activity eat() {

max_duration: 1000;
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}

primitive_activity watchTV() {

max_duration: 2000;

}

primitive_activity takeMedication() {

max_duration: 100;

}

communicate askForFood(){

max_duration: 1;

with: robotHelper;

about:

send(current.askedFood = current.askedFood);

}

primitive_activity wait(){

max_duration: 100;

}

primitive_activity goToilet(){

max_duration: 400;

}

primitive_activity flushToilet(){

max_duration: 3;

}

primitive_activity washHands(){

max_duration: 100;

}

move moveToChair() {

location: chair;

}

move moveToMeds() {

location: medCabinet;

}

move moveToBed() {

location: bed;

}

move moveToSinkOne() {

location: sinkOne;

}
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move moveToDishWasher() {

location: dishWasher;

}

move moveToMicroWave() {

location: microWave;

}

move moveToToilet() {

location: toilet;

}

move moveToSinkTwo() {

location: sinkTwo;

}

move moveToFrontDoor() {

location: frontDoor;

}

workframes:

workframe wf_watchTV {

repeat: true;

priority: 1;

detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(current.location = chair))

do {

watchTV();

}

}

workframe wf_evacuate {

repeat: true;

priority: 1000;

when(knownval(current.evacuate = true))

do {

moveToFrontDoor();
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conclude((current.evacuate = false));

conclude((current.perceivedtime = 10));

}

}

workframe wf_goToilet {

repeat: true;

priority: 4;

detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(current.needToilet > 5))

do {

moveToToilet();

goToilet();

conclude((current.needToilet = 0));

conclude((current.handsWashed = false));

conclude((current.toiletFlushed = false));

}

}

workframe wf_flushToilet {

repeat: true;

priority: 7;

detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(current.location = toilet) and

knownval(current.toiletFlushed = false))

do {

flushToilet();

conclude((current.toiletFlushed = true));

}

}

workframe wf_flushToiletTwo {

repeat: true;

priority: 3;
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detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(current.location != toilet) and

knownval(current.toiletFlushed = false))

do {

moveToToilet();

flushToilet();

conclude((current.toiletFlushed = true));

}

}

workframe wf_forgetFlushToilet {

repeat: true;

priority: 7;

detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(current.location = toilet) and

knownval(current.toiletFlushed = false))

do {

conclude((current.toiletFlushed = true), fc:0);

}

}

workframe wf_washHands {

repeat: true;

priority: 6;

detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(current.handsWashed = false))

do {

moveToSinkTwo();
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washHands();

conclude((current.handsWashed = true));

moveToChair();

}

}

workframe wf_askForFood {

repeat: true;

priority: 9;

detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.howHungry > 10) and

knownval(current.perceivedtime < 10) and

knownval(current.askedFood = false) and

knownval(current.hasFood = false))

do {

conclude((current.askedFood = true));

askForFood();

conclude((current.waitingForFood = 0));

}

}

workframe wf_takeMedicationA {

repeat: true;

priority: 10;

detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.takeMedicationA = true) and

knownval(current.perceivedtime < 10) and

knownval(current.location = chair))

do {

takeMedication();

conclude((current.takeMedicationA = false));

conclude((current.hasMedicationA = false));

conclude((current.hasTakenMedicationA = true));

}

}
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workframe wf_DontTakeMedicationA {

repeat: true;

priority: 10;

detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.takeMedicationA = true) and

knownval(current.perceivedtime < 10) and

knownval(current.location = chair))

do {

takeMedication();

conclude((current.takeMedicationA = false));

}

}

workframe wf_eat {

repeat: true;

priority: 11;

detectables:

detectable stop{

when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.howHungry > 10) and

knownval(current.perceivedtime < 10) and

knownval(current.askedFood = true) and

knownval(current.hasFood = true) and

knownval(current.location = chair))

do {

eat();

conclude((current.askedFood = false));

conclude((current.howHungry = 0));

conclude((current.waitingForFood = 0));

conclude((current.hasFood = false));

conclude((current.hasEmptyPlate = true));

conclude((current.timeSinceAskedFood = 0));

}

}

workframe wf_atToilet{

repeat: true;

detectables:

detectable stop{
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when(whenever)

detect((current.perceivedtime = 10),

dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(current.location = toilet) and

knownval(current.handsWashed = true) and

knownval(current.toiletFlushed = true) and

knownval(current.needToilet < 5))

do{

moveToChair();

}

}

thoughtframes:

thoughtframe tf_durationAskedForFood {

repeat: true;

priority: 2;

when(knownval(Campanile_Clock.time >

current.perceivedtime) and

knownval(current.askedFood = true) and

knownval(current.updateAskedFood = true))

do {

conclude((current.waitingForFood =

current.waitingForFood + 1), bc:100);

conclude((current.updateAskedFood = false));

}

}

thoughtframe tf_asTimeGoesBy {

repeat: true;

priority: 1;

when(knownval(Campanile_Clock.time >

current.perceivedtime) and

knownval(current.howHungry < 21 ))

do {

conclude((current.perceivedtime =

Campanile_Clock.time), bc: 100);

conclude((current.howHungry =

current.howHungry + 3));

conclude((current.updateAskedFood = true));

conclude((current.needToilet =

current.needToilet +1));
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}

}

thoughtframe tf_timeSinceAskedFood {

repeat: true;

when(knownval(current.howHungry > 10 ) and

knownval(Campanile_Clock.time >

current.perceivedtime))

do {

conclude((current.perceivedtime =

Campanile_Clock.time), bc: 100);

conclude((current.howHungry =

current.howHungry + 3));

conclude((current.updateAskedFood = true));

conclude((current.needToilet =

current.needToilet +1));

conclude((current.timeSinceAskedFood =

current.timeSinceAskedFood+1));

}

}

thoughtframe tf_takeMedicationA {

repeat: true;

priority: 3;

when(knownval(current.perceivedtime < 10) and

knownval(current.hasMedicationA = true) and

knownval(current.takeMedicationA = false) and

knownval(current.location = chair))

do {

conclude((current.takeMedicationA = true));

conclude((current.hasMedicationA = false));

}

}

thoughtframe tf_fireAlarm {

repeat: true;

priority: 99;

when(knownval(theEnvironment.fire = true) and

knownval(current.fireDecision = false))

do {

conclude((current.evacuate = true),bc:50);

conclude((current.fireDecision = true));

}
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}

}

agent robotHelper{

location: chair;

attributes:

public int perceivedtime;

public int fireAlerted;

public boolean checkMedicationA;

public boolean medNotificationA;

public int timeSinceMedANotification;

initial_beliefs:

(current.timeSinceMedANotification = 0);

(Alex.location = chair);

(robotHouse.doorBellRang = false);

(careWorker.location = careCentre);

(Alex.hasEmptyPlate = false);

(Alex.askedFood = false);

(Alex.hasMedicationA = false);

(Alex.missedMedicationA = 0);

(Alex.takeMedicationA = false);

(current.perceivedtime = 1);

(current.fireAlerted = 0);

(theEnvironment.fire = false);

(Alex.evacuate = false);

(Alex.danger = false);

(current.medNotificationA = false);

(Alex.hasTakenMedicationA = false);

initial_facts:

activities:

primitive_activity getFood(){

max_duration: 2;

}

primitive_activity cookFood(){

max_duration: 1200;

}

primitive_activity placeFoodOnTray(){

max_duration: 20;

}

primitive_activity putMedsOnTray(){

max_duration: 15;

}
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primitive_activity pickupMeds(){

max_duration: 100;

}

primitive_activity checkMedication(){

max_duration: 10;

}

communicate tellAlexFood(){

max_duration: 1;

with: Alex;

about:

send(Alex.hasFood = Alex.hasFood);

}

communicate remindMedictionA(){

max_duration: 1;

with: Alex;

about:

send(Alex.takeMedicationA = Alex.takeMedicationA);

}

communicate tellHouseMed(){

max_duration: 1;

with: robotHouse;

about:

send(Alex.missedMedicationA =

Alex.missedMedicationA);

}

communicate giveMedicationA(){

max_duration: 1;

with: Alex;

about:

send(Alex.hasMedicationA = Alex.hasMedicationA);

}

communicate alertFire(){

max_duration: 1;

with: Alex;

about:

send(Alex.evacuate = Alex.evacuate);

}

communicate TellAlexLocation(){

max_duration: 1;

with: careWorker;
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about:

send(Alex.location = Alex.location);

}

communicate alexInDanger(){

max_duration: 1;

with: robotHouse;

about:

send(Alex.danger = Alex.danger);

}

primitive_activity openDoor(){

max_duration: 1;

}

primitive_activity closeFrontDoor(){

max_duration: 1;

}

primitive_activity wait(){

max_duration: 1000;

}

primitive_activity platesInDishWasher(){

max_duration: 50;

}

primitive_activity pickupPlates(){

max_duration: 5;

}

move moveToChair() {

location: chair;

}

move moveToMeds() {

location: medCabinet;

}

move moveToBed() {

location: bed;

}

move moveToSinkOne() {

location: sinkOne;

}

move moveToDishWasher() {

location: dishWasher;

}

move moveToMicroWave() {
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location: microWave;

}

move moveToToilet() {

location: toilet;

}

move moveToSinkTwo() {

location: sinkTwo;

}

move moveToFrontDoor() {

location: frontDoor;

}

workframes:

workframe wf_answerDoor {

repeat: true;

priority: 10;

when(knownval(robotHouse.doorBellRang = true))

do{

moveToFrontDoor();

conclude((robotHouse.doorBellRang = false));

openDoor();

conclude((robotHouse.doorOpen = true));

TellAlexLocation();

}

}

workframe wf_closeDoor {

repeat: true;

priority: 10;

when(knownval(robotHouse.doorBellRang = false) and

knownval(robotHouse.doorOpen = true))

do{

closeFrontDoor();

conclude((robotHouse.doorOpen = false));

}

}

workframe wf_fireAlarmChair {

repeat: true;

priority: 100;

detectables:
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detectable AlexSafe{

when(whenever)

detect((Alex.location = frontDoor), dc:100)

then abort;

}

when(knownval(theEnvironment.fire = true) and

knownval(Alex.location = chair))

do{

moveToChair();

conclude((Alex.evacuate = true));

alertFire();

}

}

workframe wf_fireAlarmToilet {

repeat: true;

priority: 100;

detectables:

detectable AlexSafe{

when(whenever)

detect((Alex.location = frontDoor), dc:100)

then abort;

}

when(knownval(theEnvironment.fire = true) and

knownval(Alex.location = toilet))

do{

moveToToilet();

conclude((Alex.evacuate = true));

alertFire();

}

}

workframe wf_fireAlarmSink {

repeat: true;

priority: 100;

detectables:

detectable AlexSafe{

when(whenever)

detect((Alex.location = frontDoor), dc:100)

then abort;

}

when(knownval(theEnvironment.fire = true) and
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knownval(Alex.location = sinkTwo))

do{

moveToSinkTwo();

conclude((Alex.evacuate = true));

alertFire();

}

}

workframe wf_alexInDanger {

repeat: true;

priority: 101;

when(knownval(theEnvironment.fire = true) and

knownval(Alex.evacuate = false) and

knownval(current.fireAlerted > 5) and

knownval(Alex.danger = false))

do{

conclude((Alex.danger = true));

alexInDanger();

}

}

workframe wf_cleanPlates {

repeat: true;

priority: 2;

when(knownval(Alex.hasEmptyPlate = true))

do {

moveToChair();

pickupPlates();

moveToDishWasher();

conclude((Alex.hasEmptyPlate = false));

platesInDishWasher();

moveToChair();

}

}

workframe wf_medicationA {

repeat: true;

priority: 5;

when(knownval(current.perceivedtime = 2) and

knownval(Alex.hasMedicationA = false))

do {

moveToMeds();

pickupMeds();

moveToChair();

putMedsOnTray();

conclude((Alex.hasMedicationA = true));
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conclude((Alex.missedMedicationA = 0));

giveMedicationA();

}

}

workframe wf_checkMedicationA {

repeat: true;

priority: 3;

detectables:

detectable takenMedicationA{

when(whenever)

detect((Alex.hasMedicationA = false), dc:100)

then abort;

}

when(knownval(current.perceivedtime > 2)and

knownval(current.perceivedtime < 10) and

knownval(Alex.hasMedicationA = true) and

knownval(Alex.missedMedicationA < 2) and

knownval(current.checkMedicationA = true))

do {

checkMedication();

conclude((current.checkMedicationA = false));

conclude((Alex.takeMedicationA = true));

remindMedictionA();

conclude((Alex.missedMedicationA =

Alex.missedMedicationA + 1));

}

}

workframe wf_notifyMedicationANotTaken {

repeat: true;

priority: 15;

when(knownval(current.perceivedtime < 10) and

knownval(Alex.missedMedicationA > 1) and

knownval(current.medNotificationA = false))

do{

conclude((current.medNotificationA = true));

tellHouseMed();

}

}

workframe wf_getFood {

repeat: true;

priority: 4;
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when(knownval(Alex.askedFood = true))

do {

moveToMicroWave();

getFood();

cookFood();

moveToChair();

placeFoodOnTray();

conclude((Alex.askedFood = false));

conclude((Alex.hasFood = true));

tellAlexFood();

}

}

workframe wf_waitForInstruction {

repeat: true;

priority: 1;

detectables:

detectable platesToClean{

when(whenever)

detect((Alex.hasEmptyPlate = true), dc:100)

then abort;

}

detectable feedAlex{

when(whenever)

detect((Alex.askedFood = true), dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(theEnvironment.fire = false))

do{

wait();

}

}

workframe wf_endOfSimulation {

repeat: true;

priority: 999;

when(knownval(current.perceivedtime < 10) and

knownval(theEnvironment.fire = true) and

knownval(Alex.location = frontDoor))

do{

conclude((current.perceivedtime = 10));

}

}
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thoughtframes:

thoughtframe tf_updateTime {

repeat: true;

priority: 1;

when(knownval(Campanile_Clock.time >

current.perceivedtime))

do {

conclude((current.perceivedtime =

Campanile_Clock.time), bc: 100);

conclude((current.checkMedicationA = true));

}

}

thoughtframe tf_MedsUpdateTime {

repeat: true;

priority: 2;

when(knownval(Campanile_Clock.time >

current.perceivedtime) and

knownval(current.medNotificationA = true) and

knownval(Alex.hasTakenMedicationA = false))

do {

conclude((current.perceivedtime =

Campanile_Clock.time), bc: 100);

conclude((current.timeSinceMedANotification =

current.timeSinceMedANotification + 1));

}

}

}

agent robotHouse{

attributes:

public int perceivedtime;

public boolean alarmSounding;

public boolean calledCareWorker;

public boolean doorBellRang;

public boolean doorOpen;

initial_beliefs:

(current.doorOpen = false);

(current.doorBellRang = false);

(current.calledCareWorker = false);

(current.perceivedtime = 1);

(current.alarmSounding = false);

(theEnvironment.fire = false);

(Alex.location = chair);
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(Alex.handsWashed = true);

(Alex.toiletFlushed = true);

(Alex.danger = false);

(Alex.missedMedicationA = 0);

initial_facts:

(current.doorOpen = false);

activities:

primitive_activity monitorAlex(){

max_duration: 3000;

}

primitive_activity pause(){

max_duration: 120;

}

primitive_activity checkAlex(){

max_duration: 1;

}

primitive_activity fireAlarm(){

max_duration: 100;

}

communicate AlexWashHands(){

max_duration: 1;

with: Alex;

about:

send(Alex.handsWashed = Alex.handsWashed);

}

communicate AlexFlushToilet(){

max_duration: 1;

with: Alex;

about:

send(Alex.toiletFlushed = Alex.toiletFlushed);

}

communicate announceFireAlex(){

max_duration: 1;

with: Alex;

about:

send(theEnvironment.fire = theEnvironment.fire);

}

communicate doorBell(){

max_duration: 1;

with: robotHelper;

about:

send(current.doorBellRang = current.doorBellRang);

}

communicate callCareWorker(){
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max_duration: 1;

with: careWorker;

about:

send(Alex.missedMedicationA =

Alex.missedMedicationA);

}

communicate announceFireRobot(){

max_duration: 1;

with: robotHelper;

about:

send(theEnvironment.fire = theEnvironment.fire),

send(Alex.location = Alex.location);

}

workframes:

workframe wf_monitorAlex {

repeat: true;

priority: 1;

detectables:

detectable AlexOnToilet{

when(whenever)

detect((Alex.location = toilet), dc:100)

then abort;

}

detectable fire{

when(whenever)

detect((theEnvironment.fire = true),

dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(theEnvironment.fire = false))

do{

monitorAlex();

}

}

workframe wf_soundFireAlarm {

repeat: true;

priority: 1000;

detectables:

detectable AlexSafe{

when(whenever)

detect((Alex.location = frontDoor),

dc:100)

then abort;
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}

when(knownval(theEnvironment.fire = true)and

knownval(Alex.location != frontDoor))

do{

conclude((current.alarmSounding = true));

conclude((current.perceivedtime = 10));

announceFireAlex();

announceFireRobot();

fireAlarm();

}

}

workframe wf_AlexOnToilet{

repeat: true;

priority: 3;

detectables:

detectable AlexNotOnToilet{

when(whenever)

detect((Alex.location != toilet), dc:100)

then complete;

}

detectable fire{

when(whenever)

detect((theEnvironment.fire = true), dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(Alex.location = toilet))

do{

monitorAlex();

conclude((Alex.handsWashed = false),fc:0);

conclude((Alex.toiletFlushed = false),fc:0);

}

}

workframe wf_AlexWashHands{

repeat: true;

priority: 2;

detectables:

detectable AlexNotWashedHands{

when(whenever)

detect((Alex.handsWashed = true), dc:100)

then abort;

}

detectable fire{

when(whenever)

detect((theEnvironment.fire = true), dc:100)

then abort;
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}

when(knownval(current.perceivedtime < 10) and

knownval(Alex.location != toilet) and

knownval(Alex.location != sinkTwo) and

knownval(Alex.handsWashed = false))

do{

checkAlex();

AlexWashHands();

pause();

}

}

workframe wf_AlexFlushToilet{

repeat: true;

priority: 4;

detectables:

detectable AlexNotFlushed{

when(whenever)

detect((Alex.toiletFlushed = true), dc:100)

then abort;

}

detectable fire{

when(whenever)

detect((theEnvironment.fire = true), dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(Alex.location != toilet) and

knownval(Alex.location != sinkTwo) and

knownval(Alex.toiletFlushed = false))

do{

checkAlex();

AlexFlushToilet();

}

}

workframe wf_callCareWorker{

repeat: true;

priority: 10;

detectables:

when(knownval(current.perceivedtime < 10) and

knownval(Alex.missedMedicationA > 1) and

knownval(current.calledCareWorker = false))

do{

callCareWorker();

conclude((current.calledCareWorker = true));

}

}
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workframe wf_doorBellRang{

repeat: true;

priority: 10;

detectables:

when(knownval(current.perceivedtime < 10) and

knownval(current.doorBellRang = true))

do{

doorBell();

conclude((current.doorBellRang = false));

}

}

thoughtframes:

thoughtframe tf_updateTime {

repeat: true;

priority: 1;

when(knownval(Campanile_Clock.time >

current.perceivedtime))

do {

conclude((current.perceivedtime =

Campanile_Clock.time), bc: 100);

}

}

thoughtframe tf_alarmOff {

repeat: true;

when(knownval(current.alarmSounding = true)and

knownval(Alex.location = frontDoor))

do{

conclude((current.alarmSounding = false));

}

}

}

agent careWorker memberof person {

location: careCentre;

attributes:

public int perceivedtime;

initial_beliefs:

(current.perceivedtime = 1);

(Campanile_Clock.time = 1);

(Alex.missedMedicationA = 0);

(robotHouse.doorBellRang = false);

(Alex.hasTakenMedicationA = false);
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initial_facts:

activities:

primitive_activity waitForAnswer(){

max_duration: 5000;

}

primitive_activity wait(){

max_duration: 5000;

}

primitive_activity stuff(){

max_duration: 7800;

}

primitive_activity medicateAlex(){

max_duration: 500;

}

communicate pressDoorBell(){

max_duration: 1;

with: robotHouse;

about:

send(robotHouse.doorBellRang =

robotHouse.doorBellRang);

}

communicate informRobotMedsTaken(){

max_duration: 1;

with: robotHelper;

about:

send(Alex.hasTakenMedicationA =

Alex.hasTakenMedicationA);

}

move moveToChair() {

location: chair;

}

move moveToFrontDoor() {

location: frontDoor;

}

move moveToCareCentre() {

location: careCentre;

}

workframes:

workframe wf_careWorkerStuff{

repeat: true;

priority: 10;

when(knownval(current.perceivedtime < 10) and
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knownval(Alex.missedMedicationA < 2) and

knownval(current.location = careCentre))

do{

stuff();

}

}

workframe wf_respondToCall{

repeat: true;

priority: 9;

when(knownval(current.perceivedtime < 10) and

knownval(Alex.missedMedicationA > 1) and

knownval(current.location = careCentre))

do{

moveToFrontDoor();

}

}

workframe gotoChair{

repeat: true;

priority: 8;

when(knownval(current.perceivedtime < 10) and

knownval(current.location = frontDoor) and

knownval(robotHouse.doorBellRang = true))

do{

moveToChair();

}

}

workframe waitForAlex {

repeat: true;

priority: 7;

detectables:

detectable alexAtChair{

when(whenever)

detect((Alex.location = chair), dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(current.location = chair) and

knownval(Alex.location != chair))

do{

wait();

}

}
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workframe administerMeds {

repeat: true;

priority: 6;

when(knownval(current.perceivedtime < 10) and

knownval(current.location = chair) and

knownval(Alex.location = chair) and

knownval(Alex.hasTakenMedicationA = false))

do{

medicateAlex();

conclude((Alex.missedMedicationA = 0));

conclude((Alex.hasTakenMedicationA = true));

informRobotMedsTaken();

moveToCareCentre();

}

}

workframe wf_knockDoor{

repeat: true;

priority: 5;

detectables:

detectable doorOpen{

when(whenever)

detect((robotHouse.doorOpen = true), dc:100)

then abort;

}

when(knownval(current.perceivedtime < 10) and

knownval(current.location = frontDoor) and

knownval(robotHouse.doorBellRang = false))

do{

conclude((robotHouse.doorBellRang = true));

pressDoorBell();

waitForAnswer();

conclude((robotHouse.doorBellRang = false));

}

}

thoughtframes:

thoughtframe tf_asTimeGoesBy {

repeat: true;

priority: 1;

when(knownval(Campanile_Clock.time > current.perceivedtime))

do {

conclude((current.perceivedtime = Campanile_Clock.time),
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bc: 100);

}

}

}

agent theEnvironment{

attributes:

boolean fire;

int perceivedtime;

int timeSinceFire;

initial_beliefs:

(current.fire = false);

(current.timeSinceFire = 0);

(current.perceivedtime = 1);

initial_facts:

(current.fire = false);

(current.timeSinceFire = 0);

workframes:

workframe wf_fireTwentyOne{

repeat: false;

when(knownval(current.perceivedtime = 21) and

knownval(current.fire = false))

do{

conclude((current.fire = true), fc:50);

}

}

workframe wf_fireTen{

repeat: false;

when(knownval(current.perceivedtime = 10) and

knownval(current.fire = false))

do{

conclude((current.fire = true), fc:50);

}

}

thoughtframes:

thoughtframe tf_asTimeGoesBy {

repeat: true;
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priority: 1;

when(knownval(Campanile_Clock.time >

current.perceivedtime))

do {

conclude((current.perceivedtime =

Campanile_Clock.time), bc: 100);

}

}

thoughtframe tf_asTimeGoesByTwo {

repeat: true;

priority: 2;

when(knownval(Campanile_Clock.time >

current.perceivedtime) and

knownval(current.fire = true))

do {

conclude((current.perceivedtime =

Campanile_Clock.time), bc: 100);

conclude((current.timeSinceFire =

current.timeSinceFire + 1), bc: 100);

}

}

}

agent Campanile_Clock {

attributes:

public int time;

initial_beliefs:

(current.time = 1);

initial_facts:

(current.time = 1);

activities:

primitive_activity asTimeGoesBy() {

max_duration: 3599;

}

communicate announceTimeToAlex() {
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max_duration: 1;

with: Alex;

about:

send(current.time = current.time);

when: end;

}

communicate announceTimeToCareWorker() {

max_duration: 1;

with: careWorker;

about:

send(current.time = current.time);

when: end;

}

communicate announceTimeToHouse() {

max_duration: 1;

with: robotHelper;

about:

send(current.time = current.time);

when: end;

}

communicate announceTimeToRobot() {

max_duration: 1;

with: robotHouse;

about:

send(current.time = current.time);

when: end;

}

communicate announceTimeToEnvironment() {

max_duration: 1;

with: theEnvironment;

about:

send(current.time = current.time);

when: end;

}

workframes:

workframe wf_asTimeGoesBy {

repeat: true;

when(knownval(current.time < 10))
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do {

asTimeGoesBy();

conclude((current.time = current.time + 1),

bc:100, fc:100);

announceTimeToEnvironment();

announceTimeToAlex();

announceTimeToHouse();

announceTimeToRobot();

announceTimeToCareWorker();

}

}

}

D.2 The Digital Nurse Case Study

areadef hospital extends BaseAreaDef { }

areadef room extends BaseAreaDef { }

areadef bed extends BaseAreaDef {}

area hospitalGeography instanceof World { }

area medRoom instanceof room partof hospitalGeography { }

area staffRoom instanceof room partof hospitalGeography { }

area wardOne instanceof room partof hospitalGeography { }

area wardTwo instanceof room partof hospitalGeography { }

area bedOne instanceof bed partof wardOne { }

area bedTwo instanceof bed partof wardOne { }

area bedThree instanceof bed partof wardOne { }

area bedFour instanceof bed partof wardOne { }

area bedFive instanceof bed partof wardOne { }

path bedOne_to_from_bedTwo {

area1: bedOne;

area2: bedTwo;

distance: 2;

}

path bedTwo_to_from_bedThree {

area1: bedTwo;

area2: bedThree;

distance: 2;

}

path bedThree_to_from_bedFour {

area1: bedThree;

area2: bedFour;

distance: 2;

}

367



path bedFour_to_from_bedFive {

area1: bedFour;

area2: bedFive;

distance: 2;

}

path bedOne_to_from_wardTwo {

area1: bedOne;

area2: wardTwo;

distance: 2;

}

path bedOne_to_from_medRoom {

area1: bedOne;

area2: medRoom;

distance: 2;

}

path bedOne_to_from_staffRoom {

area1: bedOne;

area2: staffRoom;

distance: 2;

}

class MyClock {

attributes:

public int time;

activities:

primitive_activity asTimeGoesBy() {

max_duration: 3599;

}

communicate announceTimeTo(TimeKeepers t) {

max_duration: 1;

with: t;

about:

send(current.time = current.time);

when: end;

}

workframes:

workframe wf_asTimeGoesBy {

repeat: true;

variables:
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collectall(TimeKeepers) t;

when(knownval(current.time < 20) and

knownval(t.sendTime = true))

do {

asTimeGoesBy();

conclude((current.time = current.time + 1),

bc:100, fc:100);

announceTimeTo(t);

}

}

}

object Campanile_Clock instanceof MyClock {

initial_beliefs:

(Patient_one.sendTime = true);

(Patient_two.sendTime = true);

(Patient_three.sendTime = true);

(Patient_four.sendTime = true);

(Patient_five.sendTime = true);

(Nurse_one.sendTime = true);

(Nurse_two.sendTime = true);

(Digital_Nurse_one.sendTime = true);

(Digital_Nurse_two.sendTime = true);

(Digital_Nurse_three.sendTime = true);

(Doctor_one.sendTime = true);

(Robot.sendTime = true);

(current.time = 1);

initial_facts:

(Patient_one.sendTime = true);

(Patient_two.sendTime = true);

(Patient_three.sendTime = true);

(Patient_four.sendTime = true);

(Patient_five.sendTime = true);

(Nurse_one.sendTime = true);

(Nurse_two.sendTime = true);

(Digital_Nurse_one.sendTime = true);

(Digital_Nurse_two.sendTime = true);

(Digital_Nurse_three.sendTime = true);

(Robot.sendTime = true);

(current.time = 1);

}

group Digital_Nurse memberof TimeKeepers{

attributes:

relations:

initial_beliefs:
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(Monitor.breakfastTime = false);

(Patient_one.breakfastChoiceMade = false);

(Patient_two.breakfastChoiceMade = false);

(Patient_three.breakfastChoiceMade = false);

(Patient_four.breakfastChoiceMade = false);

(Patient_five.breakfastChoiceMade = false);

(Nurse_one.break = false);

(Nurse_two.turnDuty = false);

initial_facts:

activities:

communicate announceBreakfast(Nurse n) {

max_duration: 1;

with: n;

about:

send(Monitor.breakfastTime = Monitor.breakfastTime);

when: end;

}

communicate notifyMedication(Patient pat) {

max_duration: 1;

with: Robot;

about:

send(pat.medication = pat.medication);

when: end;

}

communicate notifyHeartAttackNurse(Patient pat, Nurse n) {

max_duration: 1;

with: n;

about:

send(pat.heartAttack = pat.heartAttack);

when: end;

}

communicate notifyHeartAttackDoctor(Patient pat) {

max_duration: 1;

with: Doctor_one;

about:

send(pat.heartAttack = pat.heartAttack);

when: end;

}

communicate notifyHeartAttackRobot(Patient pat) {

max_duration: 1;

with: Robot;

about:

send(pat.heartAttack = pat.heartAttack);

when: end;

}

communicate sendRobotForBreakfast(Patient pat) {

max_duration: 1;

with: Robot;
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about:

send(pat.breakfastChoice = pat.breakfastChoice);

when: end;

}

communicate sendBreakTime() {

max_duration: 1;

with: Nurse_one;

about:

send(Nurse_one.break = Nurse_one.break);

when: end;

}

communicate sendTurnDuty() {

max_duration: 1;

with: Nurse_two;

about:

send(Nurse_two.turnDuty = Nurse_two.turnDuty);

when: end;

}

workframes:

workframe wf_breakfast{

repeat: false;

priority: 1;

variables:

forone(Nurse) n;

when(knownval(Campanile_Clock.time = 8)and

knownval(n hasDN current))

do {

conclude((Monitor.breakfastTime = true));

announceBreakfast(n);

}

}

workframe wf_RobotGetBreakfast{

repeat: true;

priority: 1;

variables:

forone(Patient) pat;

when(knownval(pat.breakfastChoice > 0)and

knownval(pat.breakfastChoiceMade = false))

do {

conclude((pat.breakfastChoiceMade = true));

sendRobotForBreakfast(pat);

}

}

workframe wf_notifyMedication{

repeat: true;
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priority: 1;

variables:

forone(Patient) pat;

when(knownval(pat.medication > 0))

do {

notifyMedication(pat);

conclude((pat.medication = 0));

}

}

workframe wf_notifyHeartAttackNurse{

repeat: false;

priority: 1;

variables:

forone(Nurse) n;

forone(Patient) pat;

when(knownval(n hasDN current) and

knownval(pat.heartAttack = true)

)

do {

notifyHeartAttackNurse(pat, n);

notifyHeartAttackRobot(pat);

}

}

workframe wf_notifyHeartAttackDoctor{

repeat: false;

priority: 1;

variables:

forone(Patient) pat;

when(knownval(Doctor_one hasDN current) and

knownval(pat.heartAttack = true)

)

do {

notifyHeartAttackDoctor(pat);

}

}

workframe wf_breakTime{

repeat: false;

priority: 1;

when(knownval(current.perceivedTime > 9))

do {

conclude((Nurse_one.break = true));

sendBreakTime();

conclude((Nurse_two.turnDuty = true));
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sendTurnDuty();

}

}

thoughtframes:

thoughtframe tf_updateTime{

repeat: true;

priority: 1;

when(knownval(Campanile_Clock.time >

current.perceivedTime))

do {

conclude((current.perceivedTime =

Campanile_Clock.time));

}

}

}

agent Digital_Nurse_one memberof Digital_Nurse{

initial_beliefs:

(Nurse_one hasDN current);

}

agent Digital_Nurse_two memberof Digital_Nurse{

initial_beliefs:

(Nurse_two hasDN current);

}

agent Digital_Nurse_three memberof Digital_Nurse{

initial_beliefs:

(Doctor_one hasDN current);

}

group Doctors memberof TimeKeepers{

attributes:

public boolean performedCPR;

relations:

public Digital_Nurse hasDN;

initial_beliefs:

(Patient_one.location = bedOne);

(Patient_two.location = bedTwo);

(Patient_three.location = bedThree);

(Patient_four.location = bedFour);

(Patient_five.location = bedFive);
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(Patient_one.doctorVisit = false);

(Patient_two.doctorVisit = false);

(Patient_three.doctorVisit = false);

(Patient_four.doctorVisit = false);

(Patient_five.doctorVisit = false);

(Patient_one.requestMeds = false);

(Patient_two.requestMeds = false);

(Patient_three.requestMeds = false);

(Patient_four.requestMeds = false);

(Patient_five.requestMeds = false);

(Patient_one.medication = 3);

(Patient_two.medication = 0);

(Patient_three.medication = 1);

(Patient_four.medication = 4);

(Patient_five.medication = 6);

(Patient_one.alive = true);

(Patient_two.alive = true);

(Patient_three.alive = true);

(Patient_four.alive = true);

(Patient_five.alive = true);

initial_facts:

(current.performedCPR = false);

activities:

primitive_activity examinePatient() {

max_duration: 1000;

}

primitive_activity resuscitate() {

max_duration: 100;

}

communicate sendMedication(Patient pat, Digital_Nurse DN) {

max_duration: 1;

with: DN;

about:

send(pat.medication = pat.medication);

when: end;

}

move moveToBed(bed b) {

location: b;

}

workframes:

workframe wf_visitPatient{

repeat: true;

priority: 1;

variables:

forone(Digital_Nurse) DN;

forone(Patient) pat;

forone(bed) b;
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when(knownval(current hasDN DN) and

knownval(pat.doctorVisit = false) and

knownval(pat.location = b))

do {

moveToBed(b);

conclude((pat.doctorVisit = true));

examinePatient();

sendMedication(pat, DN);

}

}

workframe wf_resuscitate{

repeat: true;

priority: 100;

variables:

forone(Patient) pat;

forone(bed) b;

detectables:

detectable resuscitated {

when(whenever)

detect((pat.heartAttack = false), dc:100)

then abort;

}

when(knownval(pat.heartAttack = true) and

knownval(pat.location = b) and

knownval(pat.alive = true))

do {

moveToBed(b);

resuscitate();

conclude((current.performedCPR = true));

}

}

thoughtframes:

}

agent Doctor_one memberof Doctors {

location: staffRoom;

initial_beliefs:

(current hasDN Digital_Nurse_three);

}

class Monitors {

attributes:

public boolean announceWater;

public int lowestWaterLevel;

public boolean breakfastTime;

public boolean lunchTime;

375



public boolean teaTime;

initial_beliefs:

(current.announceWater = false);

(current.lowestWaterLevel = 1000);

(Patient_one.waterLevel = 1000);

(Patient_two.waterLevel = 1000);

(Patient_three.waterLevel = 1000);

initial_facts:

(current.timeWater = false);

activities:

primitive_activity pause() {

max_duration: 60;

}

primitive_activity wait() {

max_duration: 400;

}

communicate announceDeathNurseOne(Patient pat) {

max_duration: 1;

with: Nurse_one;

about:

send(pat.alive = pat.alive);

when: end;

}

communicate announceDeathNurseTwo(Patient pat) {

max_duration: 1;

with: Nurse_two;

about:

send(pat.alive = pat.alive);

when: end;

}

communicate announceDeathDoctor(Patient pat) {

max_duration: 1;

with: Doctor_one;

about:

send(pat.alive = pat.alive);

when: end;

}

communicate announceDeathRobot(Patient pat) {

max_duration: 1;

with: Robot;

about:

send(pat.alive = pat.alive);

when: end;

}

communicate announceWater(Patient pat) {
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max_duration: 1;

with: Robot;

about:

send(pat.waterLevel = pat.waterLevel);

when: end;

}

communicate heartAttackDN_one(Patient pat) {

max_duration: 1;

with: Digital_Nurse_one;

about:

send(pat.heartAttack = pat.heartAttack);

when: end;

}

communicate heartAttackDN_two(Patient pat) {

max_duration: 1;

with: Digital_Nurse_two;

about:

send(pat.heartAttack = pat.heartAttack);

when: end;

}

communicate heartAttackDN_three(Patient pat) {

max_duration: 1;

with: Digital_Nurse_three;

about:

send(pat.heartAttack = pat.heartAttack);

when: end;

}

workframes:

workframe wf_lowWater {

repeat: true;

priority: 1;

variables:

forone(Patient) pat;

detectables:

detectable pat_Water{

when(whenever)

detect((pat.waterLevel > 200), dc:100)

then abort;

}

detectable pat_Water2{

when(whenever)

detect((pat.waterLevel < 1001), dc:100)

then continue;
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}

when(knownval(pat.waterLevel < 201))

do {

announceWater(pat);

wait();

}

}

workframe wf_HeartAttackAlarm {

repeat: true;

priority: 100;

variables:

forone(Patient) pat;

when(knownval(pat.heartAttack = true) and

knownval(pat.alive = true) and

knownval(pat.timeSinceHeartAttack < 5))

do {

conclude((pat.heartAttack = true), bc:100);

heartAttackDN_one(pat);

heartAttackDN_two(pat);

heartAttackDN_three(pat);

pause();

conclude((pat.timeSinceHeartAttack =

pat.timeSinceHeartAttack +1),fc:100);

}

}

workframe wf_death {

repeat: true;

priority: 101;

variables:

forone(Patient) pat;

when(knownval(pat.heartAttack = true) and

knownval(pat.timeSinceHeartAttack > 4))

do {

conclude((pat.alive = false),bc: 100,fc:100);

conclude((pat.timeSinceHeartAttack = 0),fc:100);

announceDeathNurseOne(pat);

announceDeathNurseTwo(pat);

announceDeathDoctor(pat);

announceDeathRobot(pat);

}

}
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workframe wf_resuscitated {

repeat: true;

priority: 102;

variables:

forone(Patient) pat;

forone(Nurse) n;

when(knownval(pat.heartAttack = true) and

knownval(pat.timeSinceHeartAttack < 3) and

knownval(n.turnDuty = true) and

knownval(n.performedCPR = true) and

knownval(Robot.performedCPR = true) and

knownval(Doctor_one.performedCPR = true))

do {

conclude((pat.heartAttack = false),fc:100);

}

}

}

object Monitor instanceof Monitors{

}

group Nurse memberof TimeKeepers{

attributes:

public boolean turnDuty;

public boolean foodDuty;

public boolean ReadyToTurnPatientOne;

public boolean ReadyToTurnPatientTwo;

public boolean ReadyToTurnPatient;

public boolean turningPatient;

public boolean performedCPR;

public boolean break;

relations:

public Digital_Nurse hasDN;

initial_beliefs:

(current.break = false);

(current.turningPatient = false);

(Patient_one.readyToBeTurned = false);

(Patient_two.readyToBeTurned = false);

(Patient_three.readyToBeTurned = false);

(Patient_four.readyToBeTurned = false);

(Patient_five.readyToBeTurned = false);

(Patient_one.location = bedOne);
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(Patient_two.location = bedTwo);

(Patient_three.location = bedThree);

(Patient_four.location = bedFour);

(Patient_five.location = bedFive);

(Patient_one.needTurning = true);

(Patient_two.needTurning = false);

(Patient_three.needTurning = true);

(Patient_four.needTurning = false);

(Patient_five.needTurning = true);

(Patient_one.turned = true);

(Patient_two.turned = true);

(Patient_three.turned = true);

(Patient_four.turned = true);

(Patient_five.turned = true);

(Patient_one.nilByMouth = true);

(Patient_two.nilByMouth = false);

(Patient_three.nilByMouth = false);

(Patient_four.nilByMouth = false);

(Patient_five.nilByMouth = false);

(Patient_one.breakfastRequest = false);

(Patient_two.breakfastRequest = false);

(Patient_three.breakfastRequest = false);

(Patient_four.breakfastRequest = false);

(Patient_five.breakfastRequest = false);

(Patient_one.breakfastChoiceMade = false);

(Patient_two.breakfastChoiceMade = false);

(Patient_three.breakfastChoiceMade = false);

(Patient_four.breakfastChoiceMade = false);

(Patient_five.breakfastChoiceMade = false);

(Patient_one.alive = true);

(Patient_two.alive = true);

(Patient_three.alive = true);

(Patient_four.alive = true);

(Patient_five.alive = true);

initial_facts:

(current.performedCPR = false);

(current.break = false);

activities:

move moveToBed(bed b) {

location: b;

}

move moveToStaffRoom() {

location: staffRoom;

}

primitive_activity waitToTurn() {

max_duration: 500;

}

primitive_activity haveBreak() {

max_duration: 1800;
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}

primitive_activity resuscitate() {

max_duration: 100;

}

primitive_activity turnPatient() {

max_duration: 240;

}

primitive_activity wait() {

max_duration: 5;

}

communicate requestBreakfastChoice(Patient pat) {

max_duration: 1;

with: pat;

about:

send(pat.breakfastRequest = pat.breakfastRequest);

when: end;

}

communicate requestLunchChoice(Patient pat) {

max_duration: 1;

with: pat;

about:

send(pat.breakfastRequest = pat.breakfastRequest);

when: end;

}

communicate requestTeaChoice(Patient pat) {

max_duration: 1;

with: pat;

about:

send(pat.breakfastRequest = pat.breakfastRequest);

when: end;

}

communicate sendBreakfastChoice(Patient pat,

Digital_Nurse DN) {

max_duration: 1;

with: DN;

about:

send(pat.breakfastChoice = pat.breakfastChoice);

when: end;

}

communicate patientToTurn(Patient pat) {

max_duration: 1;

with: Robot;

about:

send(pat.readyToBeTurned = pat.readyToBeTurned);

when: end;

}

communicate sendTurnDutytwo() {
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max_duration: 1;

with: Nurse_two;

about:

send(Nurse_two.turnDuty = Nurse_two.turnDuty);

when: end;

}

workframes:

workframe wf_turnOne{

repeat: true;

priority: 1;

variables:

forone(Patient) pat;

forone(bed) b;

detectables:

detectable waitForRobot {

when(whenever)

detect((pat.location = Robot.location),

dc:100)

then abort;

}

when(knownval(current.perceivedTime = 8) and

knownval(pat.turned = false) and

knownval(pat.readyToBeTurned = false) and

knownval(pat.needTurning = true) and

knownval(current.turnDuty = true) and

knownval(current.turningPatient = false) and

knownval(pat.location = b))

do {

moveToBed(b);

conclude((pat.readyToBeTurned = true));

conclude((current.turningPatient = true));

patientToTurn(pat);

waitToTurn();

conclude((pat.readyToBeTurned = false));

conclude((current.turningPatient = false));

}

}

workframe wf_break{

repeat: true;

priority: 20;

when(knownval(current.break = true) and

knownval(current.perceivedTime < 20))

do {
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moveToStaffRoom();

haveBreak();

conclude((current.break = false));

conclude((Nurse_two.turnDuty = false));

sendTurnDutytwo();

}

}

workframe wf_turnTwo{

repeat: true;

priority: 1;

variables:

forone(Patient) pat;

when(knownval(pat.readyToBeTurned = true) and

knownval(current.turnDuty = true))

do {

turnPatient();

conclude((pat.turned = true));

conclude((pat.readyToBeTurned = false));

conclude((current.turningPatient = false));

conclude((pat.timeSinceTurned = 0));

}

}

workframe wf_breakfast{

repeat: true;

priority: 2;

variables:

forone(Patient) pat;

when(knownval(Monitor.breakfastTime = true) and

knownval(pat.nilByMouth = false) and

knownval(pat.breakfastRequest = false) and

knownval(current.turnDuty = true))

do {

conclude((pat.breakfastRequest = true));

requestBreakfastChoice(pat);

wait();

}

}

workframe wf_sendForBreakfast{

repeat: true;

priority: 3;

variables:

forone(Digital_Nurse) DN;

forone(Patient) pat;
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when(knownval(current hasDN DN) and

knownval(pat.breakfastChoice > 0) and

knownval(pat.breakfastChoiceMade = false) and

knownval(current.turnDuty = true))

do {

conclude((pat.breakfastChoiceMade = true));

sendBreakfastChoice(pat, DN);

}

}

workframe wf_resuscitate{

repeat: true;

priority: 100;

variables:

forone(Patient) pat;

forone(bed) b;

detectables:

detectable resuscitated {

when(whenever)

detect((pat.heartAttack = false), dc:100)

then abort;

}

when(knownval(pat.heartAttack = true) and

knownval(pat.location = b) and

knownval(pat.alive = true))

do {

moveToBed(b);

resuscitate();

conclude((current.performedCPR = true));

}

}

thoughtframes:

thoughtframe tf_updateTime{

repeat: true;

priority: 1;

when(knownval(Campanile_Clock.time >

current.perceivedTime))

do {

conclude((current.perceivedTime =

Campanile_Clock.time));

}

}

thoughtframe tf_updateTimeTurn{

384



repeat: true;

priority: 2;

when(knownval(Campanile_Clock.time >

current.perceivedTime)

and knownval(current.perceivedTime > 7))

do {

conclude((current.perceivedTime =

Campanile_Clock.time));

conclude((Patient_one.timeSinceTurned =

Patient_one.timeSinceTurned + 1));

conclude((Patient_two.timeSinceTurned =

Patient_two.timeSinceTurned + 1));

conclude((Patient_three.timeSinceTurned =

Patient_three.timeSinceTurned + 1));

conclude((Patient_four.timeSinceTurned =

Patient_four.timeSinceTurned + 1));

conclude((Patient_five.timeSinceTurned =

Patient_five.timeSinceTurned + 1));

}

}

thoughtframe tf_turnPatients{

repeat: false;

priority: 1;

variables:

collectall(Patient) pat;

when(knownval(current.perceivedTime > 7) and

knownval(pat.turned = true))

do {

conclude((pat.turned = false));

}

}

}

agent Nurse_one memberof Nurse{

location: staffRoom;

initial_beliefs:

(current.turnDuty = true);

(current hasDN Digital_Nurse_one);

(current.turnDuty = true);

initial_facts:

(current.turnDuty = true);

(current hasDN Digital_Nurse_one);

(current.turnDuty = true);

}
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agent Nurse_two memberof Nurse{

location: staffRoom;

initial_beliefs:

(current.turnDuty = false);

(current hasDN Digital_Nurse_two);

(current.turnDuty = false);

initial_facts:

(current.turnDuty = false);

(current hasDN Digital_Nurse_two);

(current.turnDuty = false);

}

group Patient memberof TimeKeepers{

attributes:

public boolean heartAttackRisk;

public boolean heartAttack;

public boolean needTurning;

public boolean doctorVisit;

public boolean requestMeds;

public int medication;

public boolean turned;

public boolean nilByMouth;

public int waterLevel;

public int drink;

public int thirst;

public int timeSinceHeartAttack;

public int timeSinceTurned;

public boolean breakfastRequest;

public int breakfastChoice;

public boolean breakfastChoiceMade;

public boolean readyToBeTurned;

public boolean alive;

public boolean timeWater;

initial_beliefs:

(current.heartAttack = false);

(current.alive = true);

(current.thirst = 0);

(current.waterLevel = 1000);

(Nurse_one.foodDuty = true);

(Nurse_two.foodDuty = false);

initial_facts:

(current.heartAttack = false);

(current.turned = false);

(current.waterLevel = 1000);

(current.timeSinceHeartAttack = 0);

(current.alive = true);
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(current.timeSinceTurned = 0);

activities:

primitive_activity countWater() {

max_duration: 3600;

}

primitive_activity drinkWater(){

max_duration: 50;

}

communicate stateBreakfastChoice(Nurse nur) {

max_duration: 1;

with: nur;

about:

send(current.breakfastChoice =

current.breakfastChoice);

when: end;

}

workframes:

workframe wf_drinkWater {

repeat: true;

priority: 1;

when(knownval(current.waterLevel > 200) and

knownval(current.thirst = 1) and

knownval(current.heartAttack = false))

do {

conclude((current.thirst = 0));

conclude((current.waterLevel =

current.waterLevel - current.drink));

conclude((Monitor.announceWater = false),

bc:0, fc:100);

}

}

workframe wf_requestBreakfast {

repeat: false;

priority: 1;

variables:

forone(Nurse) nur;

when(knownval(current.breakfastRequest = true) and

knownval(current.heartAttack = false) and

knownval(nur.foodDuty = true))

do {

stateBreakfastChoice(nur);

}

}

workframe wf_haveHeartAttack {
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repeat: false;

priority: 100;

when(knownval(current.heartAttack = true))

do {

conclude((current.heartAttack = true),

bc:100, fc:100);

}

}

workframe wf_lowWaterTime {

repeat: true;

priority: 2;

detectables:

detectable pat_Water{

when(whenever)

detect((current.waterLevel > 200), dc:100)

then abort;

}

when(knownval(current.waterLevel < 201) and

knownval(current.timeWater = false))

do {

countWater();

conclude((current.timeWater = true));

}

}

thoughtframes:

thoughtframe tf_updateTimeHeartAttack {

repeat: false;

priority: 2;

when(knownval(Campanile_Clock.time = 10) and

knownval(current.heartAttackRisk = true) and

knownval(current.heartAttack = false))

do {

conclude((current.perceivedTime =

Campanile_Clock.time));

conclude((current.heartAttack = true),

bc:50, fc:50);

conclude((current.thirst = 1));

}

}

thoughtframe tf_updateTimeHeartAttackTwo {

repeat: false;

priority: 2;

when(knownval(Campanile_Clock.time = 12) and
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knownval(current.heartAttackRisk = true) and

knownval(current.heartAttack = false))

do {

conclude((current.perceivedTime =

Campanile_Clock.time));

conclude((current.heartAttack = true));

conclude((current.thirst = 1));

}

}

thoughtframe tf_updateTimeHeartAttackThree {

repeat: false;

priority: 2;

when(knownval(Campanile_Clock.time = 14) and

knownval(current.heartAttackRisk = true) and

knownval(current.heartAttack = false))

do {

conclude((current.perceivedTime =

Campanile_Clock.time));

conclude((current.heartAttack = true));

conclude((current.thirst = 1));

}

}

thoughtframe tf_updateTime{

repeat: true;

priority: 1;

when(knownval(Campanile_Clock.time >

current.perceivedTime))

do {

conclude((current.perceivedTime =

Campanile_Clock.time));

conclude((current.thirst = 1));

}

}

}

agent Patient_one memberof Patient{

location: bedOne;

initial_beliefs:

(current.heartAttackRisk = true);

(current.needTurning = true);

(current.drink = 100);

(current.nilByMouth = true);

initial_facts:
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(current.heartAttackRisk = true);

(current.needTurning = true);

(current.nilByMouth = true);

}

agent Patient_two memberof Patient{

location: bedTwo;

initial_beliefs:

(current.heartAttackRisk = false);

(current.needTurning = false);

(current.drink = 200);

(current.nilByMouth = false);

(current.breakfastChoice = 3);

initial_facts:

(current.heartAttackRisk = false);

(current.needTurning = false);

(current.nilByMouth = false);

}

agent Patient_three memberof Patient{

location: bedThree;

initial_beliefs:

(current.heartAttackRisk = false);

(current.needTurning = true);

(current.drink = 200);

(current.nilByMouth = false);

(current.breakfastChoice = 1);

initial_facts:

(current.heartAttackRisk = false);

(current.needTurning = true);

(current.nilByMouth = false);

}

agent Patient_four memberof Patient{

location: bedFour;

initial_beliefs:

(current.heartAttackRisk = false);

(current.needTurning = false);

(current.drink = 50);

(current.nilByMouth = false);

(current.breakfastChoice = 3);

initial_facts:

(current.heartAttackRisk = false);

(current.needTurning = false);

(current.nilByMouth = false);

}

agent Patient_five memberof Patient{
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location: bedFive;

initial_beliefs:

(current.heartAttackRisk = false);

(current.needTurning = true);

(current.drink = 150);

(current.nilByMouth = false);

(current.breakfastChoice = 1);

initial_facts:

(current.heartAttackRisk = false);

(current.needTurning = true);

(current.nilByMouth = false);

}

agent Robot memberof TimeKeepers {

location: medRoom;

attributes:

public boolean performedCPR;

initial_beliefs:

(Patient_one.readyToBeTurned = false);

(Patient_two.readyToBeTurned = false);

(Patient_three.readyToBeTurned = false);

(Patient_four.readyToBeTurned = false);

(Patient_five.readyToBeTurned = false);

(Patient_one.location = bedOne);

(Patient_two.location = bedTwo);

(Patient_three.location = bedThree);

(Patient_four.location = bedFour);

(Patient_five.location = bedFive);

(Patient_one.waterLevel = 1000);

(Patient_two.waterLevel = 1000);

(Patient_three.waterLevel = 1000);

(Patient_four.waterLevel = 1000);

(Patient_five.waterLevel = 1000);

(Patient_one.breakfastChoiceMade = true);

(Patient_two.breakfastChoiceMade = true);

(Patient_three.breakfastChoiceMade = true);

(Patient_four.breakfastChoiceMade = true);

(Patient_five.breakfastChoiceMade = true);

(Patient_one.medication = 0);

(Patient_two.medication = 0);

(Patient_three.medication = 0);

(Patient_four.medication = 0);

(Patient_five.medication = 0);

(Patient_one.alive = true);

(Patient_two.alive = true);

(Patient_three.alive = true);

(Patient_four.alive = true);

(Patient_five.alive = true);
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initial_facts:

(current.performedCPR = false);

activities:

move moveToBed(bed b) {

location: b;

}

move moveToStaffRoom() {

location: staffRoom;

}

move moveToMedRoom() {

location: medRoom;

}

primitive_activity getMedication(){

max_duration:400;

}

primitive_activity refillWater(){

max_duration:300;

}

primitive_activity fetchBreakfast(){

max_duration:600;

}

primitive_activity turnPatient() {

max_duration: 240;

}

primitive_activity resuscitate() {

max_duration: 100;

}

workframes:

workframe wf_turnPatient {

repeat: true;

priority: 1;

variables:

forone(Patient) pat;

forone(bed) b;

when(knownval(pat.readyToBeTurned = true) and

knownval(pat.location = b))

do{

moveToBed(b);

turnPatient();

conclude((pat.readyToBeTurned = false));

}

}

workframe wf_refillWater {

repeat: true;

variables:

foreach(Patient) pat;

forone(bed) b;
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when(knownval(pat.waterLevel < 201) and

knownval(pat.location = b))

do{

moveToStaffRoom();

refillWater();

moveToBed(b);

conclude((pat.waterLevel = 1000));

}

}

workframe wf_fetchBreakfast {

repeat: true;

variables:

forone(Patient) pat;

forone(bed) b;

when(knownval(pat.breakfastChoice > 0) and

knownval(pat.breakfastChoiceMade = true) and

knownval(pat.location = b))

do{

moveToStaffRoom();

conclude((pat.breakfastChoiceMade = false));

fetchBreakfast();

moveToBed(b);

}

}

workframe wf_medication {

repeat: true;

variables:

forone(Patient) pat;

forone(bed) b;

when(knownval(pat.medication > 0) and

knownval(pat.location = b))

do{

moveToMedRoom();

getMedication();

moveToBed(b);

conclude((pat.medication = 0));

}

}

workframe wf_resuscitate{

repeat: true;

priority: 100;

variables:

forone(Patient) pat;

forone(bed) b;
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detectables:

detectable resuscitated {

when(whenever)

detect((pat.heartAttack = false), dc:100)

then abort;

}

when(knownval(pat.heartAttack = true) and

knownval(pat.location = b) and

knownval(pat.alive = true))

do {

moveToBed(b);

resuscitate();

conclude((current.performedCPR = true));

}

}

thoughtframes:

}

group TimeKeepers {

attributes:

public int perceivedTime;

public boolean sendTime;

initial_beliefs:

(current.perceivedTime = 1);

(Campanile_Clock.time = 1);

(current.sendTime = true);

initial_facts:

(current.perceivedTime = 1);

(Campanile_Clock.time = 1);

(current.sendTime = true);

}
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Appendix E

Java Translation of Brahms
Operational Semantics

The two following classes demonstrate the implementation of the Brahms semantics in
Java. These classes were shown to researchers at NASA to help them understand how
the semantics of Brahms works. These classes uses methods already declared in this
appendix as it recycles the Java code used for storing the data of the models for the
PROMELA translation.

/**

*Author: Richard Stocker

*Copyright: University of Liverpool

*Date: Dec 2011

**/

/*

This is the main class which forms the multi-agent system. This

class stores all the agents, objects, groups etc.

This class relates to the System’s Tuple in the semantics i.e.

<Agents, currect agent, Beliefs, Facts, Time>

Agents in the tuple refers to all agents and objects (for simplicity).

Current agent under consideration isn’t included as this only happens

during run time. These data structures only include what comes from

the Brahms code, not any variables which represent "under the hood"

operations such as time.

*/

import java.util.*;

class MultiAgentSystem

{

// All the data about agents/objects

Set<agent> agents = new HashSet<agent>();

Set<object> objects = new HashSet<object>();

Set<b_class> classes = new HashSet<b_class>();

Set<group> groups = new HashSet<group>();
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Set<relation> relations = new HashSet<relation>();

Set<activity> activities = new HashSet<activity>();

Set<attribute> attributes = new HashSet<attribute>();

Set<attribute> allAttributes = new HashSet<attribute>();

Set<relation> allRelations = new HashSet<relation>();

Set<belief> beliefs = new HashSet<belief>();

Set<fact> facts = new HashSet<fact>();

Set<guard> guards = new HashSet<guard>();

Set<conclude> concludes = new HashSet<conclude>();

Set<workframe> workframes = new HashSet<workframe>();

Set<thoughtframe> thoughtframes = new HashSet<thoughtframe>();

/***************

*Promela fields*

****************/

String name; // Used to name the agent/object under consideration

// Stores all the identification numbers of agents, objects and

// locations

String identificationNumbers[];

int numberOfAgentsObjects; // Used for array sizes

int numberOfEverything; // Used for array sizes

// Work around until I make code to count max depth of a workframe

or thoughtframe

int maxDepth;

Set<locations> locs = new HashSet<locations>();

Set<areaDefs> areaDefinitions = new HashSet<areaDefs>();

Set<path> paths = new HashSet<path>();

int[][] adjacencyMatrix; // Used for calculating paths

int shortestDuration = -1; //Holds the shortest duration

int globalClock = 0; // The global clock

public MultiAgentSystem()

{ }

public MultiAgentSystem(Set new_agents, Set new_objects,

Set new_classes, Set new_groups, Set new_locs,

Set new_areaDefinitions, Set new_paths, Set new_facts)

{

agents = new_agents;

objects = new_objects;

classes = new_classes;
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groups = new_groups;

locs = new_locs;

areaDefinitions = new_areaDefinitions;

paths = new_paths;

facts = new_facts;

numberOfAgentsObjects = agents.size() +

objects.size()+1;

numberOfEverything = locs.size() +

numberOfAgentsObjects+1;

adjacencyMatrix = new int[locs.size()][locs.size()];

identificationNumbers = new String[numberOfEverything];

identificationNumbers[0] = "Environment";

if(locs.size() > 0){

buildAdjacencyMatrix();

Dijkstra AdjacencyMatrix =

new Dijkstra(locs, adjacencyMatrix);

adjacencyMatrix = AdjacencyMatrix.findShortestPaths();

}

initAgents();

Sch_Star();

}

//Create the initial Adjacency matrix

public void buildAdjacencyMatrix(){

for(int i = 0; i < locs.size();i++){

for(int j = 0; j < locs.size();j++){

adjacencyMatrix[i][j] = 99999;

}

}

int areaID1 = -1;

int areaID2 = -1;

// Generate the adjacency matrix for the geography

for (Iterator<path> pathit = paths.iterator();

pathit.hasNext(); ){

path pt = pathit.next();

for (Iterator<locations> Locit = locs.iterator();

Locit.hasNext(); ){

locations l = Locit.next();

if(l.getName().equals(pt.getArea1())){

areaID1 = l.getID();

}

if(l.getName().equals(pt.getArea2())){

areaID2 = l.getID();

}

}

adjacencyMatrix[areaID1][areaID2] = pt.getDist();
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adjacencyMatrix[areaID2][areaID1] = pt.getDist();

}

}

/*Main method calls this method to distribute workframes,

beliefs etc. down the hierarchy. So an agent will gain

all the workframes, thoughtframes beliefs etc. from groups

it is a member of*/

public void initAgents(){

// Find which groups are members of which groups

System.out.println("Initialising Agents!");

for(Iterator<group> groupit = groups.iterator();

groupit.hasNext();){

group g = groupit.next();

g.inheritFromMemberOf(groups);

//Get all facts from every group

facts.addAll(g.getFacts());

}

String indent = " ";

for(Iterator<agent> AgIterator = agents.iterator();

AgIterator.hasNext();){

agent a = AgIterator.next();

a.inheritFromMemberOf(groups);

//Get all facts from every agent

facts.addAll(a.getFacts());

a.setIndent(indent);

indent = indent.concat(" ");

}

for(Iterator<object> obIterator = objects.iterator();

obIterator.hasNext();){

object o = obIterator.next();

}

}

// Method holds all Sch_* rules so Sch_run, Sch_rcvd

// and Sch_Term

public void Sch_Star(){

//System.out.println("Sch_Star rule activated");

Sch_Run();

if(shortestDuration != -1){

Sch_rcvd();//Move clock forward

}

else{ /*Sch_term: Quit program*/

Sch_term();

}

}
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public void Sch_Run(){

/*Sch_WF: Loop through all agents/objects, tell

them to start processing and to return the duration

of the next activity*/

shortestDuration = -1;//Reset shortest duration

String indent = "";

for(Iterator<agent> AgIterator = agents.iterator();

AgIterator.hasNext();){

agent a = AgIterator.next();

// Tell all agents to move to rules of Set_TF

a.Set_TF(globalClock);

// Tell all agents to move to rules of Set_*

// e.g Set_Act or Set_Idle

int duration = a.Set_WF(globalClock, agents,

adjacencyMatrix, locs, facts);

// If a new shortest is found

if(((duration < shortestDuration) ||

shortestDuration == -1) && duration > -1){

shortestDuration = duration;

}

indent = indent.concat(" ");

}

for(Iterator<object> obIterator = objects.iterator();

obIterator.hasNext();){

object o = obIterator.next();

// If a new shortest is found

if(duration > shortestDuration)

shortestDuration = duration;*/

}

}

public void Sch_rcvd(){

int tempClock = globalClock;

globalClock = globalClock + shortestDuration;

Sch_Star();//Continue cycle

}

public void Sch_term(){

globalClock = -1;

}

}

/**

*Author: Richard Stocker

*Copyright: University of Liverpool
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*Date: Dec 2011

**/

/* Holds all data about the agents. Code is almost identical to

objects except during translation object will react on facts and

not beliefs. In the semantics: Agent’s tuple = <agent,

Thoughtframe, Workframe, stage, Befliefs, Facts, Time, Thoughtframes,

Workframes>

Thoughtframe(current thoughtframe), Workframe(current workframe),

Stage(which rules to consider) and Time are not covered in

these data structures because they are purely run time only.

*/

import java.util.*;

class agent

{

String indent; // used for spacing out the agents output

String name; // name of the agent

String display; // Agents display name

String cost; // cost of agent

String timeUnit; //

String location; // current location of the agent

// Which group the agent is a member of

Set<String> memberOf;

// All relations the agent has.

Set<relation> relations = new HashSet<relation>();

// All activites agent has

Set<activity> activities = new HashSet<activity>();

// Attributes

Set<attribute> attributes = new HashSet<attribute>();

// beliefs

Set<belief> beliefs = new HashSet<belief>();

Set<fact> facts = new HashSet<fact>(); // facts

// workframes

Set<workframe> workframes = new HashSet<workframe>();

// thoughtframes

Set<thoughtframe> thoughtframes = new HashSet<thoughtframe>();

int[][] adjacencyMatrix;

Set<locations> locs;

int ID; // An ID number assigned to the agent

Set<agent> agents = new HashSet<agent>();

Set<object> objects = new HashSet<object>();
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Set<b_class> classes = new HashSet<b_class>();

Set<group> groups = new HashSet<group>();

// Number of all objects and agents

int numberOfAgentsObjects;

// Number of agents, objects and locations

int numberOfEverything;

// Holds all the identification numbers for agents.

String identificationNumbers[];

// Detectables to be checked

Set<detectable> agentsDetectables = new HashSet<detectable>();

// Details of all the locations.

Set<locations> locs = new HashSet<locations>();

Set<areaDefs> areaDefs = new HashSet<areaDefs>();

Set<path> paths = new HashSet<path>();

int clock; // agents clock

int globalClock; // as on the tin

int timeRemaining; //Time left on current activity

// The current thoughtframe

thoughtframe currentThoughtframe;

workframe currentWorkframe;

Set<thoughtframe> activeThoughtframes =

new HashSet<thoughtframe>();

Set<workframe> activeWorkframes = new

HashSet<workframe>();

double maxPri = 0;

public String initialisePromela = "";

public String toPromela = "";

public agent()

{ }

public agent(

String new_name,

int new_ID,

Set new_memberOf,

String new_display,

String new_cost,

String new_timeUnit,

String new_location,

Set new_relations,

Set new_activities,

Set new_attributes,

Set new_beliefs,

Set new_facts,

Set new_workframes,

401



Set new_thoughtframes){

name = new_name;

ID = new_ID;

memberOf = new_memberOf;

display = new_display;

cost = new_cost;

timeUnit = new_timeUnit;

location = new_location;

relations = new_relations;

activities = new_activities;

attributes = new_attributes;

beliefs = new_beliefs;

facts = new_facts;

workframes = new_workframes;

thoughtframes = new_thoughtframes;

if(location != null){

beliefs.add(new belief("current", "location",

"=", location));

}

}

// Find which groups the agent is a member of

public void inheritFromMemberOf(Set groups){

for(Iterator<group> groupit = groups.iterator();

groupit.hasNext();){

group g = groupit.next();

if(memberOf.contains(g.getName())){

relations.addAll(g.getRelations());

activities.addAll(g.getActivities());

attributes.addAll(g.getAttributes());

beliefs.addAll(g.getBeliefs());

workframes.addAll(g.getWorkframes());

thoughtframes.addAll(g.getThoughtframes());

}

}

}

public void Set_TF(int gc){

globalClock = gc;

/*Check thoughtframes*/

activeThoughtframes = findActiveThoughtframes();

if(!activeThoughtframes.isEmpty()){

Tf_Star();

}

}
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/*All rules denoted Set_* */

public int Set_WF(int newGlobalClock,

Set<agent> new_agents, int[][] new_adjacencyMatrix,

Set<locations> new_locs, Set<fact> newFacts){

facts = newFacts;

agents = new_agents;

adjacencyMatrix = new_adjacencyMatrix;

locs = new_locs;

timeRemaining = -1; // reset time remaining on activity

globalClock = newGlobalClock;

/*firstly needs to decide whether or not a thoughtframe

or workframe is active to chose next rule*/

/*Check workframes*/

activeWorkframes = findActiveWorkframes();

/*Set_Idle*/

/*If no worframes or thoughtframes available*/

if(activeWorkframes.isEmpty() &&

currentWorkframe == null){

clock = newGlobalClock;

return -1;

}

else{

/*Set_Act*/

if(clock == globalClock){

Wf_Star();//Find active workframe

}

else if(currentWorkframe != null){

Pop_WFStar();

}

return timeRemaining;

}

}

public Set findActiveWorkframes(){

//Make a copy so original stays untouched

Set<workframe> tempWorkframes =

new HashSet<workframe>(workframes);

activeWorkframes.clear();

System.out.println(indent+"Active workframes are:");

for(Iterator<workframe> wfIterator =

tempWorkframes.iterator();

wfIterator.hasNext();){

workframe wf = wfIterator.next();

/*Pass all beliefs to this class containing a

thoughtframe, this method will return whether

or not the thoughtframe is active */

boolean active = wf.isActive(beliefs, indent);
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/*If active then add to set of all workframes*/

if(active == true){

activeWorkframes.add(wf);

}

}

return activeWorkframes;

}

public Set findActiveThoughtframes(){

//Make a copy so original stays untouched

Set<thoughtframe> tempThoughtframes = new

HashSet<thoughtframe>(thoughtframes);

activeThoughtframes.clear();

for(Iterator<thoughtframe> tfIterator =

tempThoughtframes.iterator();

tfIterator.hasNext();){

thoughtframe tf = tfIterator.next();

/*Pass all beliefs to this class containing a

thoughtframe, this method will return whether

or not it is active */

boolean active = tf.isActive(beliefs, indent);

/*If active then add to set of all thoughtframes*/

if(active == true){

activeThoughtframes.add(tf);

}

}

return activeThoughtframes;

}

/*All rules denoted Tf_* */

public void Tf_Star(){

maxPri = 0; // Maximum priority

Set<thoughtframe> highestPriThoughtframes =

new HashSet<thoughtframe>();

/*Identify thoughtframes with highest priority and

add to a temporary set*/

if(highestPriThoughtframes.size() > 1){

for(Iterator<thoughtframe> tfIterator =

highestPriThoughtframes.iterator();

tfIterator.hasNext();){

thoughtframe tf = tfIterator.next();

System.out.println(indent+"----"+tf.getName());

}

}

if(!activeThoughtframes.isEmpty()){

highestPriThoughtframes = findSetOfMaxPriThoughtframes

(highestPriThoughtframes);

/*Tf_Select*/

// if no current thoughtframe
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if(currentThoughtframe == null){

Tf_Select(highestPriThoughtframes);

}

/*Tf_(true/false/once)*/

/*Tf_true*/

if(currentThoughtframe.getRepeat().equals("true")){

//System.out.println(indent+"Selected rule Tf_true");

}

/*Tf_once*/

else if(currentThoughtframe.getRepeat().

equals("once")){

// calls method to change repeat value to false

currentThoughtframe.setRepeat("false");

}

/*Tf_false*/

else{

// remove thoughtframe from the set

thoughtframes.remove(currentThoughtframe);

}

}

else{

System.out.println(indent+"No Active Thoughtframes");

}

Pop_TFStar();//Execute thoughtframe

}

/*All rules denoted Wf_* */

public void Wf_Star(){

maxPri = 0;

Set<workframe> highestPriWorkframes =

new HashSet<workframe>();

/*Identify workframes with highest priority and add to

temporary set*/

highestPriWorkframes = findSetOfMaxPriWorkframes

(highestPriWorkframes);

/*Wf_Select*/

// if no current thoughtframe

if(currentWorkframe == null){

/*Take top element from set of highest

priority workframes*/

Iterator<workframe> wfIterator =

highestPriWorkframes.iterator();

workframe tempWork = wfIterator.next();

// Make new instances of all events and add to a set

// of events - this is so the event templates won’t

// be changed

List<event> tempEvents = new ArrayList();

for(Iterator<event> eventIterator =

tempWork.getEvents().iterator();
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eventIterator.hasNext();){

event tempE = eventIterator.next();

event e;

//if a conclude needs one constructor

if(tempE.getType() == eventType.Conc){

e = new event(tempE.getID(), tempE.getFName(),

tempE.getType(), tempE.getAttOwner(),

tempE.getAttName(), tempE.getValueOwner(),

tempE.getValueOwner2(), tempE.getValue(),

tempE.getValueAttr(), tempE.getValueAttr2(),

tempE.getValueOperator(), tempE.getBC(),

tempE.getFC(), tempE.getVariables());

e.setIndent(indent);

}

// for all other activities another constructor

else{

e = new event(tempE.getID(), tempE.getFName(),

tempE.getName(), tempE.getWhomWhere(),

tempE.getWhomWhere2(), 0,

tempE.getActivities(),

tempE.getVariables());

e.setIndent(indent);

}

tempEvents.add(e);

}

currentWorkframe = new workframe(tempWork.getMas(),

tempWork.getID(), tempWork.getAgent(),

tempWork.getName(), tempWork.getRepeat(),

tempWork.getPriority(), tempWork.getVariables(),

tempWork.getDetectables(), tempWork.getGuards(),

tempEvents);

/*Wf_(true/false/once)*/

/*Wf_true does nothing*/

if(tempWork.getRepeat().equals("true")){

//System.out.println(indent+"Selected rule Wf_true");

}

/*Wf_once*/

else if(tempWork.getRepeat().equals("once")){

// calls method to change repeat value to false

currentWorkframe.setRepeat("false");

}

/*Wf_false*/

else if(tempWork.getRepeat().equals("false")){

// remove thoughtframe from the set

workframes.remove(tempWork);

}

}

/*WF_Suspend*/
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else if(maxPri > (currentWorkframe.getPriority()+0.3)){

// make a temp workframe

workframe temp = new workframe(currentWorkframe.getMas(),

currentWorkframe.getID(), currentWorkframe.getAgent(),

currentWorkframe.getName(),

currentWorkframe.getRepeat(),

currentWorkframe.getPriority(), currentWorkframe.

getVariables(),

currentWorkframe.getDetectables(), currentWorkframe.

getGuards(),

currentWorkframe.getEvents());

double newPri = temp.getPriority() + 0.2;

temp.setPri(newPri); // assign it a new priority of +0.2

/*This bit is missing from semantics, it should have been

included. Basically says to change repeat to false so the

workframe will be deleted after it has been ran*/

temp.setRepeat("false");

// add suspended workframe to set of all workframes

workframes.add(temp);

currentWorkframe =null;

Wf_Star();

}

// Decide on what value variables will take

// needs implementing!

// Var_Star();

// Start popping stack. Detectables are checked when

// an activity is found

Pop_WFStar();

}

/*The semantics only show Pop_* rules because TF and WF are

identical except for the data structure they access*/

public void Pop_TFStar(){

List<event> events = new ArrayList<event>

(currentThoughtframe.getEvents());

for(Iterator<event> eventIterator = events.iterator();

eventIterator.hasNext();){

event e = eventIterator.next();

/*Rule Pop_TFconc* - Not in semantics but

same as Pop_WFconc* */

if(e.getType() == eventType.Conc){

/*Rule Pop_TfconcB*/

Pop_TfconcB(e);

}

}

/*Pop_emptyTF: Thoughtframe is empty,

check for more thoughtframes*/

// Check if there are more active thoughtframes

currentThoughtframe = null;
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// populate list of active thoughtframes

activeThoughtframes = findActiveThoughtframes();

// if more active then process them

if(!activeThoughtframes.isEmpty()){

//Check for more thoughtframes

Tf_Star();

}

}

public void Pop_TfconcB(event e){

Random randomGenerator = new Random();

//generate a random number between 0..99

int randomInt = randomGenerator.nextInt(100);

/*if random number is <= the belief condition and > 0

or is 100% then update belief*/

if((e.getBC() > 0 && randomInt <= e.getBC()) ||

e.getBC() == 100){

/*find which belief it is*/

for(Iterator<belief> belIterator = beliefs.iterator();

belIterator.hasNext();){

belief b = belIterator.next();

/*Check if belief matches the event*/

if(b.getAbout().equals(e.getAttOwner()) &&

b.getAttribute().equals(e.getAttName())){

belief tempBelief = b;

// method assigns the belief the new value

tempBelief.setValue(e.setValueBelief(beliefs));

beliefs.remove(b); // remove old belief

beliefs.add(tempBelief); // insert new belief

String beliefUpdate = tempBelief.getAbout();

if(beliefUpdate.equals("current"))

beliefUpdate = name;

beliefUpdate = beliefUpdate.concat("."+

tempBelief.getAttribute() +

tempBelief.getMathSymbol() +

tempBelief.getValue());

System.out.println(indent+"----Belief Assertion:

" + beliefUpdate + " at time " + clock);

break;

}

}

}

//Facts not handled in thoughtframes

// Calls method to remove event from stack

currentThoughtframe.removeEvent(e);

}
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/*Could probably turn Pop_TFStar and Pop_WFStar into one method

which accepts the list of events*/

public void Pop_WFStar(){

List events = currentWorkframe.getEvents();

if(!events.isEmpty()){

Iterator<event> eventIterator = events.iterator();

//System.out.println(indent+"Popping event off stack");

event e = eventIterator.next();

/*Rule Pop_WFconc* */

if(e.getType() == eventType.Conc){

Pop_WfconcB(e);

Pop_WfconcF(e);

/*Rule Pop_WfconcBF is not needed when programming

it this way*/

// Calls method to remove event from stack

currentWorkframe.removeEvent(e);

Pop_WFStar();

}

/*Primitive Activity*/

else if(e.getType() == eventType.PrimAct){

PopPAStar(e);

}

/*Communication activity*/

else if(e.getType() == eventType.CommAct){

PopCommStar(e);

}

/*Move activity*/

else if(e.getType() == eventType.Move){

PopMoveStar(adjacencyMatrix, locs,e);

}

}

/*Check if workframe is empty*/

else{

/*Pop_emptyWF: workframe is empty, check for more

workframes*/

// Check if there are more active workframes

currentWorkframe = null;

// populate list of active workframes

activeWorkframes = findActiveWorkframes();

// if more active then process them

if(!activeWorkframes.isEmpty()){

Wf_Star();

}

}

}

public void Pop_WfconcB(event e){

System.out.println(indent+"Conclude found:");

//System.out.println(indent+"Selected rule Pop_WfconcB");
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Random randomGenerator = new Random();

//generate a random number between 0..99

int randomInt = randomGenerator.nextInt(100);

/*if random number is <= the belief condition and > 0 or is

100% then update belief*/

if((e.getBC() > 0 && randomInt <= e.getBC()) ||

e.getBC() == 100){

/*find which belief it is*/

for(Iterator<belief> belIterator = beliefs.iterator();

belIterator.hasNext();){

belief b = belIterator.next();

/*Check if belief matches the event*/

if(b.getAbout().equals(e.getAttOwner()) &&

b.getAttribute().equals(e.getAttName())){

belief tempBelief = b;

// method assigns the belief the new value

tempBelief.setValue(e.setValueBelief(beliefs));

beliefs.remove(b); // remove old belief

beliefs.add(tempBelief); // insert new belief

String beliefUpdate = tempBelief.getAbout();

if(beliefUpdate.equals("current"))

beliefUpdate = name;

beliefUpdate = beliefUpdate.concat("."+

tempBelief.getAttribute() +

tempBelief.getMathSymbol() +

tempBelief.getValue());

System.out.println(indent+"----Belief Assertion:

" + beliefUpdate + " at time " + clock);

break;

}

}

}

}

public void Pop_WfconcF(event e){

Random randomGenerator = new Random();

//generate another random number

int randomInt = randomGenerator.nextInt(100);

/*if random number is <= the fact condition and > 0 or

is 100% then update belief*/

if((e.getFC() > 0 && randomInt <= e.getFC()) ||

e.getFC() == 100){

String about = e.getAttOwner();

if(about.equals("current")){

about = name;

}

/*find which fact it is*/

if(facts.size() > 0){

for(Iterator<fact> factIterator = facts.iterator();
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factIterator.hasNext();){

fact f = factIterator.next();

/*Check if belief matches the event*/

if(f.getAbout().equals(about) && f.getAttribute()

.equals(e.getAttName())){

fact tempFact = f;

// method assigns the fact the new value.

tempFact.setValue

(e.setValueFact(facts, name));

facts.remove(f); // remove old fact

facts.add(tempFact); // insert new fact

String factUpdate = tempFact.getAbout();

if(factUpdate.equals("current"))

factUpdate = name;

factUpdate = factUpdate.concat("."+

tempFact.getAttribute() +

tempFact.getMathSymbol() +

tempFact.getValue());

System.out.println(indent+"Fact Assertion:

" + factUpdate);

break;

}

}

}

else{

fact f = new fact(about, e.getAttName(), "=",

e.getValue(), name);

}

}

}

//Check if detectable active

public void Det_Star(){

//Get current worframes set of detectables

Set<detectable> tempDet = currentWorkframe.getDetectables();

Set<detectable> activeDetectables = new HashSet<detectable>();

for(Iterator<detectable> detIterator = tempDet.iterator();

detIterator.hasNext();){

detectable d = detIterator.next();

boolean active = d.isActive(facts, indent);

if(active == true){

activeDetectables.add(d);

for(Iterator<belief> belIterator = beliefs.iterator();

belIterator.hasNext();){

belief b = belIterator.next();

/*Check if belief matches the event*/
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if(b.getAbout().equals(d.getLeftOwner()) &&

b.getAttribute().equals

(d.getLeftAttribute())){

beliefs.remove(b); // remove old belief

break;

}

}

//Find the fact and add as a belief

for(Iterator<fact> factIterator = facts.iterator();

factIterator.hasNext();){

fact f = factIterator.next();

if(f.getAbout().equals(d.getLeftOwner()) &&

f.getAttribute().equals

(d.getLeftAttribute())){

String tempAbout = f.getAbout();

if(tempAbout.equals(name))

tempAbout = "current";

String tempAtt = f.getAttribute();

String tempMath = f.getMathSymbol();

String tempValue = f.getValue();

belief newBelief = new belief(tempAbout,

tempAtt, tempMath, tempValue);

beliefs.add(newBelief);

System.out.println(indent+"------------

Belief Assertion: "+

tempAbout + "." + tempAtt + " "

+ tempMath + " " + tempValue);

break;

}

}

}

else{

System.out.println(indent+"--------Detectable "

+ d.getName() + " is inactive");

}

}

if(!activeDetectables.isEmpty()){

System.out.println(indent+"Processing the detectables");

// 4 = Abort; 3 = Impasse; 2 = Complete; 1 = Continue.

// Used to determine which has highest priority.

int detType = 0;

// Loop decides which action to perform when more than

// 1 detectable is active

for(Iterator<detectable> detIterator =

activeDetectables.iterator();

detIterator.hasNext();){

detectable d = detIterator.next();
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if(d.getType().equals("abort"))

detType = 4;

if(d.getType().equals("impasse")&& detType <= 3)

detType = 3;

if(d.getType().equals("complete")&& detType <= 2)

detType = 2;

if(d.getType().equals("continue")&& detType <= 1)

detType = 1;

}

System.out.println(indent+"detType = " + detType);

switch (detType) { // Decide which rule to call

case 1: Det_Continue();

break;

case 2: Det_Complete();

break;

case 3: Det_Impasse();

break;

case 4: Det_Abort();

break;

}

}

}

public void Det_Abort(){

// Check if there are more active workframes

currentWorkframe = null;

// populate list of active workframes

activeWorkframes = findActiveWorkframes();

// if more active then process them

if(!activeWorkframes.isEmpty()){

Wf_Star();

}

}

public void Det_Continue(){

System.out.println(indent+"Continue detectable

activated, carrying on with workframe");

}

public void Det_Complete(){

System.out.println(indent+"Found a

Complete detectable!!!");

}

public void Det_Impasse(){

System.out.println(indent+"Impassing workframe

through detectable");

}

public void PopPAStar(event e){

System.out.println(indent+"Primitive activity found:");

Det_Star(); // Check detectables
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/*Pop_PASend*/

if(clock == globalClock){

// set time remaining to duration of activity

timeRemaining = e.getDuration();

/*Method now ends and timeRemaining will be returned

to MultiAgentSystem.java */

}

else{

/*Find out duration of current activity after time update*/

// how much time to deduct from activity

int timeDifference = globalClock - clock;

// find new duration of the activity

int newDuration = e.getDuration() - timeDifference;

/*Pop_PA(t>0): if new duration > 0*/

if(newDuration > 0){

int tempDur = e.getDuration();

// call a method to update the duration

e.setDuration(newDuration);

// Set time to clock

clock = globalClock;

timeRemaining = newDuration;

}

/*Pop_PA(t=0): if new duration = 0*/

else if(newDuration == 0){

// remove event from stack

currentWorkframe.removeEvent(e);

clock = globalClock; // Set time to clock

// Set time remaining as zero so system can

// update after the activity

timeRemaining = 0;

}

}

}

public void PopCommStar(event e){

System.out.println(indent+"Communication activity found");

Det_Star(); // Check detectables

/*Pop_commSend*/

if(clock == globalClock){

// set time remaining to duration of activity

timeRemaining = e.getDuration();

System.out.println(indent+"----

activity duration is " + timeRemaining);

}

/*Method now ends and timeRemaining will be returned

to MultiAgentSystem.java */

else{
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/*Find out duration of current activity

after time update*/

// how much time to deduct from activity

int timeDifference = globalClock - clock;

// find new duration of the activity

int newDuration = e.getDuration() - timeDifference;

clock = globalClock; // Set time to clock

/*Pop_comm(t>0): if new duration > 0*/

if(newDuration > 0){

int tempDur = e.getDuration();

// call a method to update the duration

e.setDuration(newDuration);

// Set time to clock

clock = globalClock;

// to be returned to MultiAgentSystem.java

timeRemaining = newDuration;

}

/*Pop_comm(t=0): if new duration = 0

Looks very different to the semantics because

the semantics simplifies this greatly.*/

else if(newDuration == 0){

Set<messages> mess = e.getMessages();

/*Cycle through to find which agent message

is to be sent to, in the event it is an agent*/

for(Iterator<agent> AgIterator = agents.iterator();

AgIterator.hasNext();){

agent a = AgIterator.next();

/*if agent is agent message is to be sent to*/

if(e.getWhomWhere().equals(a.getName())){

/*Cycle through the messages*/

for(Iterator<messages> messIterator =

mess.iterator();

messIterator.hasNext();){

messages m = messIterator.next();

/*Find which belief is being sent*/

int counter = 0; //If agent doesnt have

for(Iterator<belief> belIterator =

beliefs.iterator();

belIterator.hasNext();){

belief b = belIterator.next();

/*if belief matches message*/

if(b.getAttribute().equals

(m.getMessAtt()) &&

b.getAbout().equals

(m.getMessAbout())){

belief tempB;

String tempAbout =

m.getMessAbout();

if(tempAbout.equals("current")){
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tempAbout = name;

}

if(e.getWhomWhere() == tempAbout){

tempB = new belief("current",

b.getAttribute(),

b.getMathSymbol(),

b.getValue());

}

else{

tempB = new belief(tempAbout,

b.getAttribute(),

b.getMathSymbol(),

b.getValue());

}

// Send belief

a.transferMessage(tempB, clock);

}

}

}

}

}

/*Cycle through to find which object message is to be

sent to, in the event it is an object*/

for(Iterator<object> obIterator = objects.iterator();

obIterator.hasNext();){

object o = obIterator.next();

if(e.getWhomWhere().equals(o.getName())){

/*Cycle through the messages*/

for(Iterator<messages> messIterator =

mess.iterator();

messIterator.hasNext();){

messages m = messIterator.next();

/*Find which belief is being sent*/

for(Iterator<belief> belIterator =

beliefs.iterator();

belIterator.hasNext();){

belief b = belIterator.next();

/*if belief matches message*/

if(b.getAttribute().

equals(m.getMessAtt())

&& b.getAbout().equals

(m.getMessAbout()))

// Send belief

transferMessage(b, clock);

}

}

}

}

// remove event from stack
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currentWorkframe.removeEvent(e);

// Set time remaining as zero so system can

// update after the activity

timeRemaining = 0;

}

}

}

public void PopMoveStar(int [][] adjacencyMatrix,

Set<locations> locs, event e){

Det_Star(); // Check detectables

/*Pop_PASend*/

if(clock == globalClock){

//Find point in matrix where current location lies

int from = -1; //Location moving from

int to = -1;//Location moving to

if(e.getDuration() == 0){

for (Iterator<locations> Locit =

locs.iterator(); Locit.hasNext(); ){

locations l = Locit.next();

if(location.equals(l.getName())){

from = l.getID();

break;

}

}

//Find point in matrix where target location lies

for (Iterator<locations> Locit = locs.iterator();

Locit.hasNext(); ){

locations l = Locit.next();

if(e.getWhomWhere().equals(l.getName())){

to = l.getID();

break;

}

}

e.setDuration(adjacencyMatrix[from][to]);

timeRemaining = e.getDuration();

}

/*Method now ends and timeRemaining will be returned to

MultiAgentSystem.java */

}

else{

/*Find out duration of current activity after time

update*/

// how much time to deduct from activity

int timeDifference = globalClock - clock;

// find new duration of the activity

int newDuration = e.getDuration() - timeDifference;

/*Pop_PA(t>0): if new duration > 0*/

if(newDuration > 0){
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// call a method to update the duration

e.setDuration(newDuration);

clock = globalClock; // Set time to clock

// to be returned to MultiAgentSystem.java

timeRemaining = newDuration;

}

/*Pop_PA(t=0): if new duration = 0*/

else if(newDuration == 0){

location = e.getWhomWhere();

// remove event from stack

currentWorkframe.removeEvent(e);

clock = globalClock; // Set time to clock

// Set time remaining as zero so system can

// update after the activity

timeRemaining = 0;

}

}

}

public void Tf_Select(Set<thoughtframe>

highestPriThoughtframes){

/*Take top element from set of highest priority

thoughtframes*/

Iterator<thoughtframe> tfIterator =

highestPriThoughtframes.iterator();

thoughtframe tempThought = tfIterator.next();

// Make new instances of all events and add to a set

// of events, this is so the event templates won’t be

// changed

List<event> tempEvents = new ArrayList();

for(Iterator<event> eventIterator =

tempThought.getEvents().iterator();

eventIterator.hasNext();){

event tempE = eventIterator.next();

event e;

//if a conclude needs one constructor

if(tempE.getType() == eventType.Conc){

e = new event(tempE.getID(), tempE.getFName(),

tempE.getType(), tempE.getAttOwner(),

tempE.getAttName(), tempE.getValueOwner(),

tempE.getValueOwner2(), tempE.getValue(),

tempE.getValueAttr(), tempE.getValueAttr2(),

tempE.getValueOperator(), tempE.getBC(),

tempE.getFC(), tempE.getVariables());

e.setIndent(indent);

}

else{ // for all other activities another constructor
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e = new event(tempE.getID(), tempE.getFName(),

tempE.getName(), tempE.getWhomWhere(),

tempE.getWhomWhere2(), 0, tempE.getActivities(),

tempE.getVariables());

e.setIndent(indent);

}

tempEvents.add(e);

}

currentThoughtframe = new thoughtframe(

tempThought.getMas(), tempThought.getID(),

tempThought.getAgent(), tempThought.getName(),

tempThought.getRepeat(), tempThought.getPriority(),

tempThought.getVariables(), tempThought.getGuards(),

tempEvents);

}

public Set findSetOfMaxPriThoughtframes

(Set<thoughtframe> hpt){

maxPri = 0;

for(Iterator<thoughtframe> tfIterator =

activeThoughtframes.iterator();

tfIterator.hasNext();){

thoughtframe tf = tfIterator.next();

double pri = tf.getPriority();

if(pri == maxPri) // if equal to max add to set

hpt.add(tf);

// if greater than max, clear the set and add

else if(pri > maxPri){

hpt.clear();

hpt.add(tf);

}

}

return hpt;

}

public Set findSetOfMaxPriWorkframes(Set<workframe> hpw){

maxPri = 0;

for(Iterator<workframe> wfIterator =

activeWorkframes.iterator();

wfIterator.hasNext();){

workframe wf = wfIterator.next();

double pri = wf.getPriority();

// if equal to max add to set

if(pri == maxPri)

hpw.add(wf);

// if greater than max, clear the set and add

else if(pri > maxPri){

hpw.clear();

hpw.add(wf);

maxPri = pri;
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}

}

return hpw;

}

/*Method takes belief from the messages,

removes previous belief and inserts new*/

public void transferMessage(belief b, int c){

/*Loop through all beliefs*/

for(Iterator<belief> belIterator = beliefs.iterator();

belIterator.hasNext();){

belief b2 = belIterator.next();

//If the belief matches

if(b.getAbout().equals(b2.getAbout()) &&

b.getAttribute().equals(b2.getAttribute())){

beliefs.remove(b2);

break;

}

}

// Add the belief to the belief base i.e. message received

beliefs.add(b);

String beliefUpdate = b.getAbout();

//if(beliefUpdate.equals("current"))

//beliefUpdate = name;

beliefUpdate = beliefUpdate.concat("."+b.getAttribute() +

b.getMathSymbol() + b.getValue());

System.out.println(indent+"--------Agent "+name+"

message update: "

+ beliefUpdate + " at time " + c);

}

public String getName(){

return name;

}

public Set getFacts(){

return facts;

}

/*public String detectableBeliefUpdate(detectable d){

String newValue = "";

for(Iterator<fact> factIterator = facts.iterator();

factIterator.hasNext();){

fact f = factIterator.next();

if(f.getAbout().equals(d.getLeftOwner()) &&

f.getAttribute().equals(d.getLeftAttribute())){

newValue = f.getValue();

}

}

return newValue;
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}*/

public void setIndent(String in){

indent = in;

}

}
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