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ABSTRACT 

Pancreatic ductal adenocarcinoma (PDAC) is characterised by a very high mortality rate and is 
the 4th most common cause of cancer death (Siegel et al., 2012). The disease initially develops 
asymptomatically, and at the time of diagnosis patients usually have multiple metastases (Rhim 
et al., 2012). It would therefore be highly desirable to develop treatments which specifically 
impede the ability of PDAC cells to metastasise by interfering with the cellular processes 
responsible for efficient cellular migration. Intracellular signalling cascades, which utilise various 
signalling proteins, ultimately lead to the appropriate cell coordination and enable efficient 
cellular motility. One such signalling pathway that participates in the regulation of migration is 
controlled by the second messenger cyclic adenosine monophosphate (cAMP) (Howe, 2004). 
Several effectors of cAMP have been found which include protein kinase A (PKA) (Tasken & 
Aandahl, 2004), exchange factors activated by cAMP (EPAC) (Bos, 2006), and cyclic nucleotide-
regulated cation channels (Biel, 2009). PKA has been intimately linked with several cellular 
processes which contribute towards cell motility. In most cases, the various specific effects of 
PKA signalling require selective targeting of the kinase into microdomains through interaction 
with A-kinase-anchoring proteins (AKAPs) (Pidoux & Tasken, 2010). Other cAMP effectors such 
as EPAC have defined roles in controlling various aspects of migration, such as cellular adhesion 
to the extracellular matrix (Bos, 2005). The effect of modulating cAMP signalling on the rate of 
migration has been investigated in several cancer types. Interestingly the results obtained were 
rather varied; both inhibition and stimulation of migration was observed (Chen et al., 2008; 
Baljinnyam et al., 2009; Grandoch et al., 2009; Shaikh et al., 2012). However, the effect of 
cAMP, and its effectors, on the rate of migration has not been investigated in PDAC; this was 
the main aim of this study. Classical cAMP elevating agents such as forskolin and 3-Isobutyl-1-
methylxanthine (IBMX), as well as the cAMP analogue 8-Bromoadenosine 3’5’-cyclic 
monophosphate (8Br-cAMP), were found to inhibit migration of the PANC-1 cells. The role of 
cAMP signalling was further supported by the results of experiments utilising cAMP FRET 
sensors, which were imaged in live single cells. Further characterisation of cAMP effects in 4 
other diverse PDAC cell lines yielded similar results, indicating that the mechanism of inhibition 
was common to all PDAC cell types tested. PANC-1 cell invasion was also inhibited by cAMP 
elevation. I went on to investigate events such as cell ruffling and focal adhesion assembly, 
which are processes closely associated with cellular motility. Dual transfection with a cAMP 
sensor and GFP tagged paxillin revealed a relationship between cAMP elevation and the loss of 
paxillin from focal adhesions, which was quickly reversible upon cAMP returning back to basal 
levels. Using a similar approach, peripheral cell ruffling was found to be inhibited by intracellular 
cAMP elevation. These results indicated that the inhibition of migration upon cAMP elevation 
was likely to occur as a result of immediate signalling events (and not due to cAMP-dependent 
changes in gene expression). The final part of the project concentrated on the individual 
contribution of the downstream effectors of cAMP, with particular emphasis on selective PKA 
and EPAC modulation. Utilising both PKA and EPAC sensors, I determined the appropriate 
concentrations of N6-benzoyl-cAMP (6Bnz) and 8-pCPT-2’OMe-cAMP (8pCPT) required to 
achieve selective PKA and EPAC activation respectively. Interestingly, I found that the two 
effectors had opposing actions; EPAC activation was found to induce migration, while PKA was 
found to suppress migration. Further investigation utilised a potent and selective PKA inhibitor 
peptide (PKI), which upon expression was found to prevent inhibition of ruffling, paxillin loss 
from focal adhesions, and inhibition of migration in response to cAMP elevation. Furthermore, 
it was found that suppression of basal PKA activity had a tendency to induce migration. I also 
utilised a cell permeable peptide (st-Ht31) which inhibits PKA interaction with AKAPs, thus 
effectively reducing its function by uncoupling the kinase from its specific signalling 
microdomains. The resulting effect was found to be a large potentiation of PANC-1 migration, 
which further highlighted the importance of PKA activity in the control of migration.  
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ABBREVIATIONS 

 
6Bnz   N6-benzoyl-cAMP 
8Br-cAMP  8-Bromoadenosine 3’5’-cyclic monophosphate 
8Cl-cAMP  8-Chloroadenosine 3’5’-cyclic monophosphate 
8pCPT   8-pCPT-2’OMe-cAMP 
AC   adenylyl cyclase 
ADP   adenosine diphosphate 
AKAP   A-kinase-anchoring proteins 
AKAR4   PKA FRET sensor; with backbone comprised of a substrate for PKA 
AOBS   acousto-optical beam splitter 
aPKC   atypical PKC 
Arp2/3   actin-related proteins 2 and 3 
ATP   adenosine triphosphate 
cAMP   cyclic adenosine monophosphate 
CAT   PKA catalytic subunit 
CDKN2A   cyclin-dependent kinase inhibitor 2A 
CFP   cyan fluorescent protein 
cGMP   cyclic guanine monophosphate 
CNB   cyclic-nucleotide-binding 
CNG   cyclic nucleotide-gated 
D/D   PKA’s dimerisation and docking domain 
DAG   diacylglycerol 
DEP   Dishevelled, Egl-10, Pleckstrin 
DMEM   Dulbecco’s modified Eagle medium 
DMSO   dimethyl sulfoxide 
dnPKA   dominant negative PKA 
EHS   Engelberth-Holm-Swarm 
EMT   epithelial to mesenchymal transition 
EPAC   exchange protein activated by cAMP 
ERK   extracellular signal-regulated kinase 
ERK5   extracellular signal-regulated kinase 5 
FAK   focal adhesion kinase 
FAT   C-terminal focal-adhesion targeting 
FBS   foetal bovine serum 
FRET   Förster electron resonance energy transfer 
GDP   guanosine diphosphate  
GEF   guanine-exchange factor 
GFP   green fluorescent protein 
GIT1   G-protein-coupled receptor kinase interacting protein 1 
GPCR   G-protein-coupled receptor 
GTP   guanosine triphosphate 
GAP   GTPase activating protein 
HCN   hyperpolarisation-activated cyclic nucleotide-gated 
IBMX   3-Isobutyl-1-methylxanthine 
IP3   inositol trisphosphate 
KRAS   v-Ki-ras2 Kirsten rat sarcoma viral oncogenes homolog 
LSCM   laser scanning confocal microscope 
MEF   mouse embryonic fibroblast 
MEK   MAPK/ERK kinase 
MEKK   MAPK/ERK kinase kinase 
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MLC   myosin light chain 
Myr-PKI   myristoylated PKI 
PAK   p21-activated kinase 
PanIN   pancreatic intraepithelial neoplasia 
PAR3   protease activated receptor 3 
PAR6   protease activated receptor 6 
PBS   phosphate buffered saline  
PDAC   pancreatic ductal adenocarcinoma 
PDE   phosphodiesterase 
PDGF   platelet derived growth factor 
PET   polyethylene terephthalate 
PI3K   phosphoinositide 3-kinase 
PIX   PAK-interacting exchange factor 
PKA   protein kinase A 
PKC   protein kinase C 
PKG   protein kinase G 
PKI   protein kinase A inhibitor 
PLC   phospholipase C 
PLCγ   phospholipase Cγ 
PSmOrange  photo-switchable mOrange 
PTB1B   protein tyrosine phosphatase 1B 
RFP   red fluorescent protein 
RhoGDI   Rho GDP-dissociation inhibitor 
ROCK   Rho-associated kinase 
sAC   soluble adenylyl cyclase 
WASP   Wiskot-Aldrich syndrome protein 
WAVE   verprolin homology protein-1 
YFP   yellow fluorescent protein 
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1.1. Pancreatic ductal adenocarcinoma 

 

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest human malignancies and 

is the 4th most common cause of cancer death in America (Ferlay et al., 2010; Siegel et al., 

2012). Due to a lack of early detection methods and despite great efforts in studying the 

disease, the 5-year survival rate following diagnosis has remained below 5%. PDAC is a 

heterogeneous disease, in that the development of PDAC can arise as result of a 

convergence of several genetic alterations (Campbell et al., 2010). There is significant 

genomic instability leading to the eventual development of metastatic pancreatic cancer 

(Iacobuzio-Donahue et al., 2012). However, some key mutations are common to most cases 

of PDAC development. One of the initial common alterations, which occurs early in the 

development of PDAC, result in the activating mutation of KRAS oncogene. This occurs 

during the early stage of pancreatic intraepithelial neoplasia (PanIN); the earliest onset of 

this is termed PanIN-1 (Iacobuzio-Donahue et al., 2012). Subsequent progression leads to 

the stage PanIN-2, often during which cyclin-dependent kinase inhibitor 2A alpha 

(CDKN2Aα, also known as p16) tumour suppressor, is mutated (Iacobuzio-Donahue et al., 

2012). Further progression to PanIN-3 stage accumulates mutation in p53 and SMAD4 

tumour suppressors (Iacobuzio-Donahue et al., 2012). Further accumulation of genetic 

alterations eventually can lead to cell dissemination from the primary tumour and invasion 

of the local tissues, leading to metastasis of the cancer (Iacobuzio-Donahue et al., 2012). 

Pancreatic cancer effectively forms both local and distant cell metastases (Kamisawa et al., 

1995; Marchesi et al., 2004; Yachida et al., 2010). Majority of patient mortality is caused by 

metastasis of the cancer cells into other tissues, which form secondary tumour sites (Farrell 

et al., 1997). Hence it is would be very important to understand the mechanism which 

controls cell migration and invasion, and develop therapeutic interventions which are able 

to prevent metastasis of pancreatic cancer. 
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1.2. Cellular motility 

Cell motility is a process in which a cell translocates from one location to another. This 

process is important in many physiological and pathological processes. For example, cellular 

migration is key process in embryonic development which is responsible for the correct 

localisation of differentiated cells to form tissues and organs (Kurosaka & Kashina, 2008). In 

a developed organism, cell motility is required for processes such as wound healing and 

immune responses (Luster et al., 2005). Conversely, dysregulation of cellular migration can 

also contribute towards development of diseases, such as cell dissemination from a primary 

tumour leading to metastasis (Wang et al., 2005). Single or groups of cells can migrate away 

from the tumour mass and enter the blood or lymph vessels, in a process known as 

intravasation. Cells can then spread throughout the organism and exit the vasculature 

(extravasation) and spread to secondary sites to form secondary tumour masses (Wang et 

al., 2005). The basic mechanism of cell motility that is common to both physiological and 

pathological processes have been well characterised (Lauffenburger & Horwitz, 1996; Ridley 

et al., 2003), and consist of initial cell polarisation which enables asymmetric cell 

morphology with defined leading and trailing edges. The leading edge of the cell possesses 

protrusive ability to further extend the membrane forward. Adhesion to the extracellular 

matrix is mediated via a family of integrin proteins and is usually established under the 

protrusive leading edge. Cell contraction takes place to enable the cell to move in the 

direction of the leading edge. Finally, trailing edge retraction has to take place in order to 

ensure that efficient cell motility takes place (Lauffenburger & Horwitz, 1996; Ridley et al., 

2003). 

 

Cellular polarity develops upon the initiation of migration. Extracellular cues are among the 

deciding factors that can induce polarisation and migration. In the case of directed 
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migration, gradients of soluble factors can induce cell polarisation leading to chemotaxis. 

Protrusive leading edge is found to establish towards the higher concentration of the 

gradient, while the trailing edge is situated towards the lower concentration of the gradient 

(Iglesias & Devreotes, 2008; Swaney et al., 2010). Although in some cases, spontaneous cell 

polarisation can take place in the absence of any asymmetric cues (Wedlich-Soldner & Li, 

2003). Application of chemoattractants in a homogenous non-gradient manner can induce 

cell polarisation and migration, which indicates that a gradient is not always necessary to 

induce cell polarisation, and highlights that cells have the ability to self polarise (Verkhovsky 

et al., 1999). In other situations, adhesion alone to the extracellular matrix can be sufficient 

to induce cell polarisation and migration (Parsons et al., 2010).  

 

Cell stimulation by soluble factors can activate specific surface receptors which often 

belong to the G-protein-coupled receptor (GPCR) family (Cotton & Claing, 2009). The main 

effectors which have been found to be activated downstream of the receptors are 

phospholipase C (PLC) and protein kinase C (PKC). This leads to the subsequent formation of 

the second messengers inositol trisphosphate (IP3) and diacylglycerol (DAG), as well as 

phosphorylation of target proteins by PKC (Van Haastert & Devreotes, 2004). GPCR 

mediated activation of phosphoinositide 3-kinase (PI3K) can lead to the production of 

phosphatidylinositol-3,4,5-trisphosphate (PIP3). PIP3 production is confined mainly to the 

front of the cell and is responsible for asymmetric activation of Rho GTPases, of which the 

most famous members are the Rac1, RhoA, and Cdc42, via recruitment of guanine-

exchange factors (GEFs) (Kolsch et al., 2008; Cain & Ridley, 2009). The GTPase Cdc42 has 

been shown to be important in the initiation of cell polarity, and it achieves this through 

recruitment of actin polymerisation machinery as well as atypical PKCs (aPKCs), PAR3 and 

PAR6 to the leading edge of migrating cells (Etienne-Manneville & Hall, 2003). The activity 
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Cdc42 has been shown to be absolutely crucial for efficient migration in most cells (Etienne-

Manneville, 2004).  

 

Following establishment of cell polarity, the next step of migration is the formation of 

membrane protrusion at the leading edge. This process requires careful coordination of 

multiple signalling molecules, which ultimately control the arrangement of actin 

cytoskeleton to produce the protrusive forces required for the extension of the leading 

edge of the cell. The actin cytoskeleton comprises of monomeric globular (G) - actin which 

polymerises to form actin filaments. ATP bound to G-actin is hydrolysed to ADP as two actin 

monomers are joined together. Further release of the phosphate group destabilises the 

structure and promotes filament depolymerisation (Korn et al., 1987; Pollard & Borisy, 

2003; Pollard & Cooper, 2009). Polymerised actin filaments can be assembled into various 

structures via several actin binding proteins such as α-actinin, myosin, and filamin.  

 

Filopodia projections are long and thin actin projections composed of unbranched parallel 

actin bundles. The function of filopodia appears to be exploratory, in that they are able to 

physically sense the local environment within the cell proximity (Mejillano et al., 2004; 

Mattila & Lappalainen, 2008). The key membrane protrusive event which is associated with 

cell motility is the formation of lamellipodia, which are comprised of branched network of 

thin and short actin filaments (Cramer et al., 1997; Svitkina & Borisy, 1999). Rac1 GTPase 

was initially considered to be the most important mediator of lamellipodia formation. 

However more recent findings have demonstrated that all three GTPases (Rac1, RhoA, and 

Cdc42) play a role in the membrane protrusion/retraction cycle (Machacek et al., 2009). 

Furthermore, studies have found that the lamellipodial protrusion/retraction cycle is 

mediated by protein kinase A (PKA) which phosphorylates RhoA, resulting in its inhibition 
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by increased association with Rho GDP-dissociation inhibitor (RhoGDI) (Tkachenko et al., 

2011). Downstream of the Rho GTPases are the effectors which control actin 

polymerisation to form the membrane protrusions. Some of the main mediators which 

have been found to be involved in these processes are the Wiskot-Aldrich syndrome 

protein (WASP) and the verprolin homology protein-1 (WAVE/Scar) complex (Suetsugu et 

al., 2003; Pollitt & Insall, 2009). Cdc42 has been found to regulate WASP, while Rac1 

regulates WAVE/Scar proteins (Eden et al., 2002). Together, they can regulate the activity 

of actin-related proteins 2 and 3 (Arp2/3) complex (Schweiger, 1991; Suetsugu et al., 2003; 

Svitkina, 2007; Pollitt & Insall, 2009; Campellone & Welch, 2010). Arp2/3 is a 

heteroheptameric protein structure which is able to promote actin branching by binding to 

the side of an actin filament and promote actin polymerisation at approximately 70o angle 

to the original filament direction (Mullins et al., 1998). The branching of the actin network 

is an essential process associated with lamellipodia formation (Svitkina, 2007). 

 

Following cell protrusion at the leading edge of the cell, new adhesions can form between 

the cell and the extracellular matrix. Cellular adhesions were first observed in cultured cells 

which were seen as sites of overlap between the extracellular fibrils and the actin 

cytoskeleton (Curtis, 1964). Further investigation into fibroblast migration using electron 

microscopy, found electron-dense regions at the plasma membrane that made direct 

contact with extracellular substrate (Abercrombie et al., 1971). Over the years the cell-

matrix adhesion sites have been characterised into different groups. Following the 

immediate formation of an adhesive structure, it is termed a nascent adhesion 

(Alexandrova et al., 2008). These structures typically have fast turnover time and are 

smaller in size, and as a result are more rarely observed. Next are the focal complexes; they 

are bigger than the nascent adhesions and are myosin II dependent structures. They 
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typically localise at the border where the initiation of lamellipodia formation takes place 

(Rottner et al., 1999; Giannone et al., 2007). Similarly to nascent adhesions however, the 

focal complexes also have a more transient nature and either quickly disassemble or 

mature into full focal adhesions. Finally, a fully matured focal complex is termed a focal 

adhesion and has the longest turnover lifetime (Zaidel-Bar et al., 2004). Due to the longer 

lifetime of these structures, they are the most commonly observed cellular adhesions. In 

the text of this thesis I will be referring to all cellular adhesions as ‘focal adhesion’ unless 

otherwise stated.   

 

Within the specific regions of adhesion, there are various associated proteins (Zamir & 

Geiger, 2001b). There is a considerable overlap, with many proteins localising within 

different adhesion structures. Of great importance are the integrin family of proteins. They 

are heterodimeric proteins consisting of α and β subunits. Integrins are transmembrane 

proteins which have both cytosolic and extracellular components; they can bind many types 

of extracellular matrix compositions, and this depends on the integrin type (Jockusch et al., 

1995; Hynes, 2002; Humphries et al., 2006). Intracellular binding of other focal adhesion 

associated proteins to integrins can enhance integrin binding to the extracellular matrix. 

Focal adhesion associated protein, talin, can bind to the cytosolic part of the integrin, which 

induces a conformational change within the integrin structure, causing increased 

extracellular binding affinity to the substrate (Shattil et al., 2010). Integrins are also bi-

directional in nature, in that they are able to serve as receptors and report the extracellular 

cues to the intracellular cytoplasmic signalling domains. 

 

In order to generate tractional forces, so that the cell can pull itself forward, the integrin 

proteins are coupled to the actomyosin cytoskeleton. However, this interaction is not direct 
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and requires other focal adhesion associated proteins. Talin for example is able to directly 

bind to both integrins and actin (Critchley, 2009). Other examples of proteins which can 

crosslink integrins with the cytoskeleton are α-actinin and filamin (Otey et al., 1990; Pfaff et 

al., 1998). Proteins associated with adhesion sites are not only important in establishing 

tractional forces, but are also very important in integrating extracellular events and passing 

on this information through various intracellular signalling networks.  For example, proteins 

such as focal adhesion kinase (FAK) have been implemented in the downstream control of 

RhoA signalling by interaction with RhoGEFs (Tomar & Schlaepfer, 2009). Another such 

protein is paxillin, which serves as a very important signalling hub. Although paxillin lacks 

any kinase activity, its regulatory functions come from many interactions with other 

signalling proteins. Both direct and indirect binding of GEFs and/or GTPase activating 

proteins (GAPs) for Rac1, RhoA and Cdc42 helps regulate their activity and subsequently 

cellular motility (Brown & Turner, 2004; Deakin & Turner, 2008).  

 

Following cellular leading edge protrusion, the cell can advance forward by actomyosin 

based cytoskeletal contraction. As a result this process is dependent on the protein myosin 

II, which can generate the tractional forces required (Svitkina et al., 1997; Small et al., 

1998). At the same time, cell retraction must take place at the rear of the cell in order to 

allow net cell movement in a defined direction. Interestingly, RhoA has a different role at 

the trailing edge of the cell, where through its effector Rho-associated kinase (ROCK) it 

regulates myosin IIA isoform activity, to promote adhesive contact disassembly 

(Worthylake et al., 2001). Several processes help the disassembly of cellular adhesion at the 

trailing edge of the cell. Microtubule targeting appears to play an important role in the 

initiation of focal adhesion dismantling. It has been found that microtubules preferentially 

target focal adhesions located at the trailing edge which initiates their disassembly 
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(Kaverina et al., 1999; Efimov & Kaverina, 2009). Furthermore, proteolytic cleavage of focal 

adhesion associated proteins such as FAK and talin, is mediated by Ca2+ dependent enzyme 

calpain, which further helps cell detachment at the trailing edge (Franco et al., 2004; Chan 

et al., 2010). All of these processes are coordinated to enable efficient cellular migration. 

 

1.3. The cAMP signalling pathway 

Cyclic adenosine monophosphate (cAMP) signalling cascade is activated through the 

binding of ligands to GPCRs. Attached to the GPCR is the heterotrimeric G protein which is 

comprised of the Gα,G β, and Gγ subunits. In a non activated state, the Gα subunit is 

attached to the Gβγ subunits and is bound to GDP. Activation of the GPCR via ligand binding 

causes increased GDP-GTP exchange on the Gα subunit. GTP-bound Gα subunit then 

dissociates from the heterotrimer complex and activates its downstream effectors. The Gβγ 

stay bound together and also activate their respective downstream effectors. Several 

subtypes of the Gα subunits exist which include Gsα, Giα, Gqα, Gtα (transducin), and Gα12/13. 

Of importance to cAMP production, Gsα causes activation of adenylyl cyclases (ACs) and 

thus increase in cAMP production, while Giα inhibits AC activity (Birnbaumer, 1990; Gilman, 

1990). Gβγ subunits can also activate or inhibit ACs which depends on their isoform type 

(Cooper, 2003).  

 

A total of 9 membrane-bound isoforms of ACs have been identified (AC1-AC9), as well as 

one soluble form (sAC) (Hanoune & Defer, 2001). Membrane-bound AC1-AC9 isoforms all 

consist of approximately 130kDa glycoprotein with considerable sequence homology 

(Sunahara et al., 1996). The structure of AC comprises of two hydrophobic transmembrane 

domains (Tm1 and Tm2), one small N-terminus cytoplasmic domain (Nt), and two larger 



  Chapter 1 - Introduction  

17 
 

cytoplasmic C-terminus domains (C1 and C2) (Sunahara et al., 1996). The C1 and C2 

domains contain the catalytic site of the enzyme (Sunahara et al., 1996). The C1 and C2 

domains are further subdivided into the highly conserved catalytic regions (C1a and C2a), 

and the less conserved non catalytic part of the domains (C1b and C2b) (Sunahara et al., 

1996; Cooper, 2003). The distribution of the different isoforms of ACs is quite varied 

throughout the organism, and are reviewed in (Hanoune & Defer, 2001; Cooper, 2003). 

From the reviews I can see that AC1 localises mainly in the brain . AC2 is found in both lung 

and the brain. AC3 localises in the olfactory epithelia and the pancreas. AC4 isoform is 

ubiquitously expressed and is widespread through the organism. AC5 is located mainly in 

the heart and striatum.  AC6 mostly widespread, but is seen at slightly higher expression 

levels in the heart and kidney. AC7 is another isoform that is widespread throughout the 

organism. AC8 is mainly in the brain and pancreas. AC9 is another widespread isoform with 

some preferential expression in the pituitary tissues. Finally sAC is widely expressed, with 

particular prominent expression in the testis.  Furthermore, AC3-5 have been reported to 

be localised within membrane lipid rafts and caveolae, suggesting that ACs can form 

microdomains complexes within the cells (Schwencke et al., 1999). To add to the 

complexity, AC1 and AC8 can also be activated by Ca2+ (Fagan et al., 1996), whereas AC5 

and AC6 are inhibited (Cooper et al., 1995).  

 

cAMP that is produced by ACs is broken down by another class of cyclic nucleotide enzymes 

termed phosphodiesterases (PDEs), and consists of 11 separate families (PDE1-11) 

(Soderling & Beavo, 2000; Mehats et al., 2002). Some PDEs (PDE4, PDE7, PDE8) are 

selective for cAMP nucleotide hydrolysis, while other PDEs (PDE5, PDE6, PDE9) are selective 

for cyclic guanosine monophosphate (cGMP). The remaining PDEs (PDE1, PDE2, PDE3, 

PDE10 and PDE11) have dual specificity and are able to hydrolyse both cAMP and cGMP 

(Mehats et al., 2002). Some of the PDE families have subclasses: PDE1 (A, B, and C), PDE3 
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(A, and B), PDE4 (A, B, C, and D), PDE6 (A, B, C, D, and G), PDE7 (A, and B), and PDE8 (A, and 

B) (Savai et al., 2010). Furthermore, due to alternative splicing and promoter sequences 

used, there is likely to be over 40 different PDEs capable of cAMP degradation (Baillie et al., 

2005; Lugnier, 2006). The different families of PDEs can respond differently to the same 

signalling molecules, for example PDE3 is inhibited by cGMP, while PDE2 is activated 

(Lugnier, 2006; Conti & Beavo, 2007). The structure of different PDEs varies, however they 

all have a highly conserved catalytic core region which enables them to perform their 

hydrolytic function (Mehats et al., 2002). Like with ACs, PDEs have differential expression 

amongst the different tissues within the organism (Savai et al., 2010).   

 

1.3.1. Protein Kinase A 

Downstream of cAMP production are the effectors which are directly activated by the cyclic 

nucleotide. PKA is one such effector and is one of the most studied classical kinase proteins. 

In the inactive state the PKA holoenzyme consists of a regulatory (R) subunit dimer which is 

associated noncovalently with two catalytic (C) subunits (Corbin et al., 1973; Corbin & 

Keely, 1977). There are two sites on each R subunit, termed A and B, to which cAMP can 

bind. Thus a complete PKA structure can bind 4 cAMP nucleotides. However in the inactive 

state, only site B is open to allow cAMP biding. Following occupation of site B however, site 

A becomes more accessible and allows further cAMP binding. After 4 molecules of cAMP 

bind to the R subunit dimer, a conformation change occurs within PKA and the C subunits 

can dissociate as two monomers. The dissociation from the R subunits exposes the catalytic 

site within the C subunits, thus enabling catalytic activity which phosphorylates 

downstream target proteins on serine and threonine residues, for review of these 

processes see (Kopperud et al., 2002). PKA has a broad substrate specificity and 

phosphorylates the amino acids serine/threonine in the following sequences: Arg-Arg-X-

Ser/Thr, Arg/Lys-X-X-Ser/Thr, and finally Arg/Lys-X-Ser/Thr (Shabb, 2001). 
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Two different types of PKA were originally identified based on their elution by ion-exchange 

chromatography. The classification of these kinases was based on their regulatory subunits. 

They were termed PKA type I which contained the RI subunits, and PKA type II which 

contained the RII subunits (Reimann et al., 1971; Corbin et al., 1975). Further analysis has 

revealed that multiple isoforms of each PKA subunit exist. The R subunits were termed RIα, 

RIβ, RIIα, and RIIβ, while four isoforms of the C subunits were found and termed Cα, Cβ, Cγ, 

and PRKX (human X chromosome-encoded protein kinase X) (Skalhegg & Tasken, 2000). 

PRKX differs from Cα, Cβ, and Cγ subunits in that it does not possess the ability to bind RII 

subunits in physiological conditions (Zimmermann et al., 1999). Structurally PKA consists of 

two C subunits bound to RI homodimers / heterodimers, or RII homodimers (Scott, 1991; 

Tasken et al., 1993).  Type I and II PKA also possesses different sensitivities towards cAMP. 

Type I PKA has a cAMP activation constant of 50-100nM. Type II PKA is less sensitive 

towards cAMP and has a cAMP activation constant of 200-400nM (Cadd et al., 1990; 

Dostmann & Taylor, 1991; Gamm et al., 1996).   

 

Despite the different isoforms of R subunits, they all have common features which enable 

them to perform similar function. All R subunits posses an N-terminal dimerisation and 

docking domain (D/D). This allows R subunit monomers to form the homo- and/or hetero-

dimers. Each R subunit also contains an inhibitor site (pseudosubstrate in RI and a substrate 

site for RII subunits), and two of the previously mentioned cAMP-binding domains (Heller et 

al., 2004). Connecting the D/D domain and the cAMP-binding site, is a highly variable linker 

which contains the autoinhibitory residues required to inhibit the catalytic activity of the 

bound C subunits (Vigil et al., 2004). Unlike the highly variable linker however, the D/D 

domain is highly conserved amongst the different R subunit isoforms. The cAMP-binding 

domains also show high sequence homology (Canaves & Taylor, 2002).    
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Different forms of PKA are expressed differentially within the tissues which further adds to 

the specificity of PKA signalling. For example, RIIβ is more expressed in the reproductive, 

endocrine, fat, and brain tissues, while RIβ subunit is found primarily in the brain (Jahnsen 

et al., 1986; Clegg et al., 1988; Cadd & McKnight, 1989). On the other hand, both the RIα 

and RIIα subunits are fairly ubiquitously expressed throughout the organism (Lee et al., 

1983; Scott et al., 1987). In addition to providing the capability for R subunit dimerisation, 

the D/D domain also facilitates docking to A-kinase-anchoring proteins (AKAPs). This 

intensively investigated interaction provides a means by which differential intracellular 

targeting of PKA is achieved. Interestingly, the original experiments that found AKAPs had 

assumed that they were contaminants of purified PKA (Theurkauf & Vallee, 1982; Lohmann 

et al., 1984; Sarkar et al., 1984). However it was soon found that they can bind PKA, and 

through a unique targeting sequence can localise PKA to different subcellular 

compartments. Typically PKA type I was found to be soluble and assumed to be localised 

within the cytosol. PKA type II however was found to be differentially distributed within 

subcellular compartments and this was later shown to be as a result of interaction with 

AKAPs (Colledge & Scott, 1999; Dodge & Scott, 2000; Diviani & Scott, 2001; Michel & Scott, 

2002). Later experimental results suggest that PKA type I can also be targeted by dual-

specificity AKAPs which anchor type I and II PKA (Huang et al., 1997; Reinton et al., 2000; 

Hamuro et al., 2002). There are also specific AKAPs which have been found to only bind PKA 

type I (Angelo & Rubin, 1998; Lim et al., 2007). Thus it is likely that the targeting of PKA to 

specific signalling networks is more complicated than originally anticipated. Significant 

volume of experimental data supports the idea that PKA can control various discrete 

signalling pathways despite having broad substrate specificity.  

 

AKAPs are a broad family of proteins which, if including splice variants, includes over 50 

different proteins (Pidoux & Tasken, 2010). They achieve the interaction with R subunits 
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through a 14-18 amino acid amphipathic helix stretch (Carr et al., 1991). This helix is 

common to almost all AKAPs characterised so far and is hydrophobic on one side of the 

helix, while the other side is hydrophilic. The residues within the helix form a total of 5 

complete turns, structure of which is important for the interaction with the PKA’s D/D 

domain. The interaction between type II PKA and AKAPs has been shown to occur with high 

affinity in the low nanomolar range of the participating proteins. (Herberg et al., 2000). 

However, it has been shown that in order for AKAP binding to occur and the PKA-AKAP 

complex to form, the N-terminus of RII must first dimerise (Newlon et al., 1999; Gold et al., 

2006). Each AKAP also contains a unique domain which enables selective targeting to 

subcellular regions of the cells. It is also important to note that some AKAPs have been 

found to not only bind and target PKA, but also are responsible for binding many other 

diverse proteins such as kinases, phosphodiesterases, and phosphoprotein phosphatases 

(Coghlan et al., 1995; Schillace & Scott, 1999; Feliciello et al., 2001; Tasken et al., 2001). 

 

1.3.2. Exchange proteins activated by cAMP 

Another downstream effector of cAMP that has been recently discovered, is the exchange 

protein activated by cAMP (EPAC). In the earlier days of the cAMP field development, it was 

thought that the effects of cAMP were mostly due to PKA activation. However, there were 

certain effects induced by cAMP that appeared to be independent of PKA activity. One such 

example was the activation of the small GTPase Rap1 in the presence of PKA inhibitors (de 

Rooij et al., 1998; Kawasaki et al., 1998; de Rooij et al., 2000). Subsequently, after a search 

for other cAMP effectors, two separate isoforms of EPAC were discovered and named 

EPAC1 and EPAC2. Both proteins act as a GEF for Rap1 and Rap2 GTPases. Both EPAC 

proteins have a similar structure which consists of a catalytic region towards the C-terminal, 

while the N-terminal contains the regulatory domains. One key difference between EPAC1 
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and EPAC2 is that the latter has an additional cyclic-nucleotide-binding (CNB) domain 

located at the end of the N-terminus (Bos, 2006). 

 

Functional studies found that fragments of EPAC containing the catalytic domains displayed 

full catalytic activity. This suggested that the regulatory domains can suppress the catalytic 

activity of the protein. Later studies utilised X-ray crystallography and found that the 

regulatory domains indeed cover the catalytic site when EPAC is not bound to cAMP 

(Rehmann et al., 2003; Rehmann et al., 2006). This suggested that EPAC is an auto-

inhibitory protein, which upon binding of cAMP, undergoes a conformational change and 

relieves the inhibition at the catalytic site. The mechanism by which this is achieved has 

been found due to two key features of the protein. Firstly, there is a pseudo β-sheet hinge 

connecting the regulatory and catalytic domains, around which the protein unfolds. The 

second feature is an ‘ionic latch’, which is in the form of an ionic interaction between one of 

the catalytic domains (CDC25-homology domain) and a CNB that is common to both EPAC 1 

and EPAC2. As mentioned previously, EPAC 2 has an extra CNB domain whose function is 

not very clear. Firstly, this domain binds cAMP with considerably lower affinity then the 

other CNB that it posses.  Secondly, deletion of this extra CNB does not appear to affect the 

binding of cAMP to the remaining CNB, nor does it affect the auto-inhibitory function of the 

protein (de Rooij et al., 2000); thus its function is unclear. EPAC activation by cAMP occurs 

in the low micromolar range, which is considerably higher than that required for PKA, which 

is in the high nanomolar range (Walsh et al., 1968). This raises the interesting possibility 

that PKA can be activated at lower level of physiological stimulation than EPAC. The same 

observation have been made when experiments have been conducted with cAMP sensors 

based on either PKA or EPAC (Ponsioen et al., 2004). However, this is quite subjective as the 

localisation of EPAC could greatly influence its exposure to local cAMP flux, and thus its 

activation. As was discussed above, due to selective targeting with AKAPs, PKA can be 
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recruited to subcellular microdomains which have the potential to expose PKA to much 

higher localised fluxes of cAMP. Similarly, EPAC has a targeting domain located in the 

regulatory region of the protein. The Dishevelled, Egl-10, Pleckstrin (DEP) domain has been 

found to regulate localisation of EPAC to membranes. Upon deletion of DEP, the 

localisation of EPAC becomes more cytosolic, although the function and regulation of EPAC 

by cAMP remains unchanged (de Rooij et al., 2000; Ponsioen et al., 2004). Thus selective 

targeting of EPAC to specific regions of the cell could potentially counter the lower 

sensitivity of EPAC by exposing it to a higher localised concentration of cAMP, and thus 

enable sufficient activation and function of the protein. 

 

Classical tools typically used to study cAMP signalling such as forskolin (AC activator) and 3-

Isobutyl-1-methylxanthine (IBMX) (PDE inhibitor) raise intracellular cAMP concentrations. 

Following the discovery of EPAC however, one needs to consider that raising global cAMP 

would activate both PKA and EPAC simultaneously. It therefore became crucial develop 

selective activators of each effector. Subtle differences in the molecular structure of PKA 

and EPAC proteins has been found to alter cAMP binding sites in such a way that could be 

exploited for producing selective cAMP analogues. PKA contains a glutamate residue that 

interacts with 2’OH of a ribose and has been shown to be important in cAMP binding to 

PKA; this arrangement is not however present in either EPAC 1 or EPAC2 proteins (Yagura & 

Miller, 1981; Enserink et al., 2002). This led to the development of cAMP analogues which 

could selectively activate EPAC. One such cAMP analogue was created and termed 8-pCPT-

2’OMe-cAMP (8pCPT); it was found to activate both EPAC1 and EPAC2 without causing any 

substantial activation of PKA (Enserink et al., 2002; Kang et al., 2006). The selective 

activation of PKA is also desirable. For this reason another cAMP analogue, N6-benzoyl-

cAMP (6Bnz), was developed (Christensen et al., 2003). This molecule effectively activates 
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PKA but not EPAC. Thus, these selective cAMP analogues can be used to study the 

individual biological effects elicited by each type of effector proteins.  

 

It is important to note that Rap1 activation has been linked with controlling integrin 

mediated adhesion, and thus could play potentially important role in the control of cell 

motility (Bos, 2005). Rap1 GTPase can be activated by various signalling systems which are 

controlled by second messengers such as diacylglycerol, cAMP, and Ca2+ (Bos, 2006). The 

second messengers can modulate activation of several specific GEFs leading to Rap1 

activation, which includes both EPAC proteins. Many effectors of Rap1 appear to be in 

control of important cellular processes. These include cell-cell junction formation regulated 

by Rap1 effector AF6 (Boettner et al., 2003). Cell adhesion complex formation is controlled 

by Rap1 effectors RapL and Riam (Katagiri et al., 2003; Lafuente et al., 2004). Actin 

remodelling has been found to be controlled through the Rap1 effectors Vav2 and Tiam1 

which are Rac1 associated GEFs (Arthur et al., 2004). RhoA GAP, Arap3, is also one of the 

effectors of Rap1 GTPase (Krugmann et al., 2004). However, Rap GTPases are not the only 

effectors of EPAC proteins which have been noted to play a role in cell signalling. EPAC1 has 

been shown to directly interact and activate Ras-related GTPase, R-Ras, leading to the 

downstream stimulation of phospholipase D (Lopez De Jesus et al., 2006). This in turn leads 

to integrin activation and subsequent adhesion of cells. R-Ras has also been implicated in 

the control of cell migration through the spatio-temporal regulation of RhoA and Rac1 

GTPases (Bezuidenhout, 1992; Holly et al., 2005; Jeong et al., 2005; Wozniak et al., 2005).  

 

1.3.3. Cyclic nucleotide-regulated cation channels 

Another class of protein which has been found to directly bind cAMP and cGMP are the 

cyclic nucleotide-regulated cation channels. Two families of channels have so far been 

identified which are the cyclic nucleotide-gated (CNG) channels, and the hyperpolarisation-
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activated cyclic nucleotide-gated (HCN) channels (Kaupp & Seifert, 2002; Craven & Zagotta, 

2006; Biel, 2009). Although both families of channels bind cAMP/cGMP, they differ in their 

relative sensitivities towards these cyclic nucleotides. CNG channels are preferentially 

activated by cGMP, whereas HCN channels display approximately 10-fold higher affinity for 

cAMP (Kaupp & Seifert, 2002). The key differences that determine the selectivity of the 

nucleotides have been attributed due to several key amino acids changes. Studies in CNG 

channels have provided evidence that the threonine residue in a β-roll (Altenhofen et al., 

1991) and aspartate in the C-helix (Varnum et al., 1995), help stabilise cGMP binding by 

forming an extra hydrogen bond with the guanine ring of cGMP which is lacking in the 

adenine ring of cAMP. The corresponding residues are also present on HCN channels which 

are the threonine 591, but the aspartate is replaced by isoleucine at position 636 (Zhou & 

Siegelbaum, 2007). Replacement of I636 with aspartate residue converts the HCN into 

cGMP-selective channels. Other adjacent residues also play a role in cAMP selectivity of 

HCN channels which are the R632, R635, and the K638 (Zhou & Siegelbaum, 2007).  

 

The basic structure of both CNG and HCN channels is quite similar, and seen in many 

voltage-gated cation channels (Yu et al., 2005). The general structure of the whole channel 

consists of a tetrameric complex. Each of the channel’s transmembrane cores consists of six 

α-helixes (S1-S6). There is also an ion conducting pore loop situated between helices S5 and 

S6 (Biel, 2009). Both the N- and C-terminus are located within the cytoplasm of the cell. 

Both families of cyclic nucleotide-regulated channels contain positively charged arginine or 

lysine residues within the S4 helix; these amino acids function as a voltage sensor in the 

HCN channels and help control the channel activity in combination with cyclic nucleotide 

binding (Biel, 2009). Although cyclic nucleotide binding is not required for HCN channel 

activation, the binding of nucleotides shifts the voltage sensitivity of these channels. CNG 

channels on the other hand are not controlled by membrane potential, but rather only by 
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direct activation with cyclic nucleotides, thus the role of S4 helix in these channels is 

unknown. CNG channels are expressed in olfactory neurons as well as in the retinal 

photoreceptors and play a key role in visual and olfactory signal transduction systems 

(Kaupp & Seifert, 2002; Hofmann et al., 2005; Biel & Michalakis, 2007). These channels are 

also found at lower density in other tissues such as the testis, kidney, and in the brain. HCN 

channels are associated with excitable tissues in the heart, brain and in the photoreceptors 

(Pape, 1996). For example, the cation current, mediated by an HCN channel, that is 

activated by the membrane hyperpolarisation (Ih) controls the heart rate rhythm by acting 

as the pacemaker current in the heart’s SA node (Baruscotti et al., 2005). Sympathetic 

nervous stimulation raises cAMP production in the SA node which causes a positive shift in 

the Ih current activation, causing an acceleration of the heart rate.      

 

1.4. The aims of this study 

The effects of cAMP signalling have been characterised in several cancers, and interestingly 

was found to modulate the rate of migration and invasion of cancer cells both positively 

and negatively (Chen et al., 2008; Baljinnyam et al., 2009; Grandoch et al., 2009; Baljinnyam 

et al., 2010; Shaikh et al., 2012). This was both agonists and cell type dependent. However, 

so far there has not been any clear investigation of the role played by cAMP signalling and 

its downstream effectors in pancreatic cancer; this was the reason for initiating my project.  

 

Our first aim was to characterise the cAMP effects on migration of PDAC cells. I utilised 

five cell lines which covered a range of genetic variations and patient origin; this was to 

ensure the effects of cAMP were not specific to a particular cell line. To confirm that the 

effect on the rate of migration was due to cAMP elevation, I used various cAMP elevating 

agents. Importantly, I planned to correlate migration assay experiments with results 
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obtained using cAMP sensors. I also planned to characterise the effect of cAMP elevation 

on the process of invasion and directional migration. 

 

Our second aim of the study was to characterise the effect of cAMP elevation on 

membrane ruffle formation and trafficking of focal adhesion associated proteins, which 

are processes associated with cellular migration. The key interest was to determine 

whether the effect of cAMP elevation was rapid, or took a longer period of time to develop. 

The migration assays in our study required a period of 6 hours; it would therefore be 

difficult to determine using these experiments whether the effect of cAMP on migration 

was due to direct signalling event(s) or mediated by changes of gene expression. For this 

reason I studied peripheral cell ruffling and focal adhesion assembly, as these processes 

occur over a shorter time course. To gain greater insight, I utilised cAMP sensors to 

simultaneously monitor intracellular cAMP changes and correlate them with ruffling and 

trafficking of focal adhesion associated proteins. 

 

The third aim of the study was to characterise the specific roles played by PKA and EPAC 

in the regulation of PDAC migration. To investigate this I utilise selective activators for both 

of the cAMP effectors. To selectively activate PKA I utilised the cAMP analogue 6Bnz, while 

selective EPAC activation was achieved using 8pCPT. These sets of experiments were 

important to discriminate between the possible effectors which could be activated upon 

global cAMP elevation, and to characterise the individual contribution of PKA and EPAC to 

changes in the rate of PDAC migration. 
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2.1. Cell culture 

PDAC cell lines PANC-1, SUIT-2, BxPC3, CAPAN-2, and MiaPaca-2 were maintained in 

Dulbecco modified Eagle medium (DMEM) (Invitrogen, Paisley, UK) supplemented with 10% 

foetal bovine serum (FBS) (Invitrogen, Paisley, UK) and penicillin/streptomycin/L-glutamate 

(Invitrogen, Paisley, UK) at 100units/mL, 100ug/mL, and 0.29mg/ml respectively. Cell 

cultures were maintained in standard humidified tissue culture incubators (Wolf 

Laboratories) at 37 oC and 5% CO2. Prior to any imaging experiments, cells were transferred 

into Na+-HEPES based extracellular solution (composition of which is 140mM NaCl, 4.7mM 

KCl, 1.13mM MgCl, 10mM HEPES, 10mM Glucose, 1.8mM CaCl, pH 7.4, and will be referred 

to as Na+-HEPES or extracellular solution).  

 

2.2. Exogenous gene expression 

Cells were transfected using PromoFectin (PromoKine, UK) reagent according to 

manufacturer instructions. This reagent was chosen because it is non-liposomal formulation 

and as a result displays lower cytotoxicity as compared to other liposomal-based 

transfection reagents. Briefly, a total of 2ug DNA and 4µl PromoFectin was mixed in 100µl 

of antibiotic-free and serum-free DMEM for 20min at room temperature. Cells were grown 

in 2ml DMEM + 10%FBS on 35mm glass-bottom culture dishes (MatTek, USA) to 

approximately 60% confluency and were supplemented with the 100µl volume of the 

transfection solution, and maintained in the incubator at 37oC and 5% CO2 for 24 hours. 

Cells were then washed twice with HEPES based extracellular solution before start of 

experiments. 
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2.2.1. Plasmids and constructs 

All plasmids were amplified using Qiagen Plasmid Maxi Prep HiSpeed kit. The whole process 

was performed according to manufacturer instructions. EPAC-based cAMP Förster 

resonance energy transfer (FRET) sensor CFP(nd)-EPAC (dDEP/CD)-Venus(d) was termed 

H84 and was a gift from Dr. K. Jalink (The Netherlands Cancer Institute) [see 

http://research.nki.nl/jalinklab/Constructs.htm and (van der Krogt et al., 2008) ]. PKA FRET 

sensor encoding substrate for PKA (termed AKAR4, containing PKA substrate sequence and 

Cerulean-Venus FRET pair), allowing visualisation of endogenous PKA activation, was a gift 

from Dr. J. Zhang (The John Hopkins University School of Medicine ) (Depry et al., 2011). 

PKA-based cAMP FRET sensor (RII-L20-CFP + CAT-YFP)  was a gift from Prof. M. Zaccolo 

(University of Oxford) (Zaccolo et al., 2000). LifeAct-GFP was a gift from Prof. M. Clague and 

Prof. S. Urbé, (The University of Liverpool) and was originally obtained from Ibidi, UK. 

LifeAct-RFP was obtained from Ibidi, UK. FAK-YFP was a gift from Dr. G. Bunt (Max-Planck 

Institute of Experimental Medicine, Germany) (Papusheva et al., 2009). PKI-mCherry was a 

kind gift from Dr. M. Ginsberg (University of California San Diego) (Tkachenko et al., 2011). 

 

The following constructs were all obtained from plasmid sharing company addgene 

(www.addgene.org): Paxillin-GFP (Addgene plasmid 15233); principal investigator was Rick 

Horwitz (Laukaitis et al., 2001). Vinculin-Venus (Addgene plasmid 27300); principal 

investigator was Martin Schwartz (Grashoff et al., 2010). GIT-GFP (Addgene plasmid 15226); 

principal investigator was Rick Horwitz (Manabe et al., 2002). Paxillin-PSmOrange (Addgene 

plasmid 31923); principal investigator was Vladislav Verkhusha (Subach et al., 2011). Note, 

this plasmid encodes photoswitchable version of mOrange; however in all experiments, low 

laser light was used to ensure no photoswitching occurred and thus was used as ordinary 
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mOrange tag with typical excitation and emission spectra. Dominant negative PKA-GFP 

(Addgene plasmid 16716) was made by Randall Moon (Ungar & Moon, 1996).  

 

All transfections were performed in PANC-1 cells line. Transfection efficiency was typically 

between 20-30% of the population. Approximately 24 hours after transfection the 

expression of the constructs was adequate to allow imaging. It is important to mention that 

after the 24 hour period of transfection, variable levels of expression within the population 

of cells was seen. Cells that were overexpressing the constructs were not analysed. Only 

relatively low and medium expressing cells, which displayed regular morphology, were used 

for analysis. 

2.3. Microscopy - Perfusion system 

Cells were grown to approximately 80% confluency in 35mm glass-bottom dishes (MatTek, 

USA), and were placed into a custom made insert designed to accommodate the dish. The 

insert had attachments to a 5 or 6-way manifold connected to gravity fed perfusion system, 

which was equilibrated to flow at approximately 0.5ml/min. A controlled vacuum fed 

suction line was attached to the other side of insert, allowing a constant perfusion through 

the insert. Depending on the insert used the volume was approximately between 0.3 and 

0.8ml, allowing complete solution exchange between approximately 0.75 and 1.5 minutes. 

The top part of the gravity fed perfusion system had 10ml syringes connected via two-way 

valve taps, only one syringe was ever open at any one time thus keeping flow rate constant 

throughout the experiment. 
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2.3.1. Microscopy - Confocal imaging 

Two types of the Leica inverted laser scanning microscopes (LSCM) were used: TCS-SP2-

AOBS or TCS-SL. TCS-SP2-AOBS was specifically required for experiments utilising FRET 

sensors because of the available 405nm laser line. A set of objectives were used to take 

both low resolution and high resolution images depending on the experiments performed. 

10x dry objective (NA=0.3) without any digital zoom was used for imaging stained Boyden 

chamber inserts. 20x dry objective (NA=0.5) was often used for ruffling and time lapse 

migration experiments. 40x dry objective (NA=0.85) was sometimes used to image the 

brighter FRET constructs. 63x oil (NA=1.4) were used to acquire high resolution images. 

Scan head pinhole diameter, determining the z-thickness of the optical slice, was also 

varied depending on the requirements of the experiment. The smaller the pinhole was set 

(measured in Airy units), the thinner the optical slice was obtained. For high resolution 

images, such as paxillin localisation, pinhole was typically set to 1-2 Airy units. To enable 

best signal to noise ratio for FRET recordings, larger pinhole diameters were used which 

ranged between 7 and 31 Airy units. 

 

2.3.2. Microscopy - Fluorochrome excitation and emission 

Laser excitation used and emission spectra collected were set to suit the fluorochromes 

used. In the event of imaging multiple fluorochromes, excitation/emission was in some 

instances adjusted to minimise spectral bleed through, this usually involved limiting the 

emission spectra collected to avoid overlapping spectra of both fluorochromes. In general, 

CFP was excited by 405nm laser and emission was collected between 450-490nm, GFP was 

excited by 488nm laser and emission collected between 500 and 570nm, YFP was excited 

by 514nm laser and emission collected between 520 and 590nm, PSmOrange was excited 
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by 543nm laser and emission collected between 560 and 670nm, RFP and mCherry was 

excited by 594nm laser and emission collected between 605 and 690nm.  

 

2.3.3. Microscopy - XYT mode of imaging 

Leica microscopes were used in the XYT series mode to create two-dimensional images at a 

fixed Z-plane optical section over time. Single frame acquisition time was dependent on 

chosen image resolution, number of line average and frequency of scan head. Typically 

512x512 pixel resolution along with 400Hz scan head speed and 8 line average was used, 

resulting 13.44 second duration to fully acquire the image. This cycle was repeated every 15 

seconds yielding 4 frames per minute recording for the duration of the experiment. In some 

experiments 1024x1024 pixel resolution images were chosen, providing higher spatial but 

lower temporal resolution image series. Additionally scan head could be used in 

unidirectional mode as described above, or bidirectional mode which halved acquisition 

time at a cost of producing lower detail images, whilst maintaining same signal to noise 

ratio. For experiments requiring high level of detail, such as visualisation of small discrete 

focal adhesion complexes, unidirectional mode was used. In all FRET experiments regions of 

interest were drawn around whole cells, and bidirectional mode was used. Furthermore, 

when imaging more than one fluorochrome, either parallel or sequential modes were used 

in order to minimise spectral bleed through and/or cycle time.   

 

2.4. FRET imaging and analysis 

All FRET sensors utilised CFP donor and YFP acceptor FRET pair (or their variants, such as 

Cerulean and Venus), thus 405nm laser was used for excitation of donor only. Donor 

emission was collected between 450 and 490nm, while acceptor emission was collected 
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between 520 and 590nm. Both EPAC-based FRET sensor H84 and PKA sensor AKAR4 are a 

uni-molecular design, which signifies that the entire sensor is composed of a single protein 

molecule. Thus, regardless of expression level or intracellular localisation of the construct 

within individual cells, the ratio of donor to acceptor fluorochromes remains fixed at 1:1. In 

the case of H84, the binding of cAMP to the sensor’s EPAC-based backbone induces a 

conformational change, which increases the distance between the CFP and YFP 

fluorochromes, resulting in reduced FRET from the donor to the acceptor. To display 

increasing cAMP as a function of upward deflection on the y-axis, CFP emission was divided 

by Venus emission and normalised to initial baseline. In contrast, PKA phosphorylation of 

the AKAR4 sensor results in conformational change which brings the Cerulean-Venus FRET 

pair closer together and thus causing an increase FRET. As a result, to display increasing PKA 

activity as a function of upward deflection on the y-axis, Venus emission was divided by 

Cerulean emission and normalised to the initial baseline. 

 

PKA-based cAMP FRET sensor RII-L20-CFP + CAT-YFP is of bi-molecular design. Bi-molecular 

sensors utilise the same principal mechanism of FRET between donor and acceptor 

fluorochromes, however they comprise of two separate peptides: one peptide has the 

donor attached, while the other has the acceptor. This arrangement can lead to significant 

problems if the amount of expression and localisation of both constructs varies significantly 

between individual cells, and thus there is uneven ratio of donor to acceptor 

fluorochromes. If the ratio of donor to acceptor was to vary between different 

compartments of the cell, this could lead to misinterpretation of the results and wrong 

conclusion that there are differences in FRET in these compartments. This could be 

detrimental to particular investigations, such as studies which try to measure intracellular 

gradients of cAMP production within individual cells. To avoid such problems associated 
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with bi-molecular sensors, additional excitation of the acceptor fluorochrome can be 

performed. Then, calculations can be used to find the absolute intracellular FRET within the 

different compartments of the cell, which allows correcting for any differences in FRET 

induced by an uneven ratio of donor to acceptor fluorochromes. However, in our study, for 

all the FRET sensors used, the FRET signal was collected from the entire single transfected 

cells (during analysis the region of interest was drawn around the periphery of the entire 

cell which was not overlapping with adjacent cells). There were several reasons for this; 

primarily I were interested in global cAMP signals rather than localised signalling within 

different compartments of the cell. Secondly, this avoided some of the problems associated 

with bi-molecular sensors discussed above. The design of the PKA-based cAMP FRET sensor 

RII-L20-CFP + CAT-YFP is such that elevation of cAMP causes separation of the FRET pair. As 

a result, to display increasing cAMP as a function of upward deflection on the y-axis, CFP 

emission was divided by YFP emission and normalised to the initial baseline. 

 

2.4.1. Image processing and data analysis 

Adjustments made to images were always performed using linear algorithms in Leica 

Application Suit AF Lite (Leica Microsystems) or PowerPoint 2007 (Microsoft). Image 

cropping was performed in PowerPoint 2007. Quantification of time series was performed 

in Leica Application Suit AF Lite software. Regions of interest were drawn around whole 

cells and intensity values were exported into Excel 2007 (Microsoft). Following calculations, 

if any, excel spread sheets were imported into OriginPro 8.5 (OriginLab Corporation, 

Northampton, MA, USA) in order to plot the graphs required. Results were presented as 

mean values +/- standard error of the mean. 
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2.5. Ruffling analysis 

A macro developed by (Deming et al., 2008) was used in ImajeJ software (Schneider et al., 

2012) to process transmitted light series of images to minimise background intensity 

fluctuation induced by the perfusion system. Briefly, for each image of a time-lapse stack, 

the macro produces two Gaussian blurred images at a radius of 1.23 and 0.80. The 1.6:1 

ratio of the two values was chosen by the authors to keep the closest approximation of the 

Difference of Gaussian function to the true Laplacian of Gaussian function. While the 

absolute values were determined to maximize the discrimination between ruffle and non-

ruffle features. Images with the smaller blur radius are subtracted from those with the 

larger radius. and the resulting difference images are thresholded based on the average 

image intensity of the whole stack.  

Processed image series were used to produce kymographs from selected lines of interest, 

using a plug-in ‘Multiple Kymograph’ developed by Jens Rietdorf and Arne Seitz (see: 

http://fiji.sc/wiki/index.php/Multi_Kymograph). 

 

2.6. Chemicals and other reagents 

Forskolin, 8Br-cAMP, H89, and myristoylated PKI (Myr-PKI) were all purchased from (Tocris 

Biosciences, UK). IBMX was obtained from (Sigma Aldrich, UK). 8-pCPT-2’-O-Me-cAMP and 

N6-benzoyl-cAMP were acquired from (BioLog, Germany). St-Ht31 active peptide and st-

Ht31P control peptide were obtained from (Promega, Madison, WI, USA). All other 

chemical reagents were purchased from Sigma-Aldrich, UK. All reagents were dissolved in 

water or dimethyl sulfoxide (DMSO). Experiments which utilised drugs which were 

dissolved in DMSO, had a corresponding concentration of DMSO placed into the control 

solution(s). Forskolin stock was made in DMSO to 20mM, while IBMX was made in DMSO to 

500mM; thus solution containing 20µM forskolin + 1mM IBMX was 0.3% DMSO. 
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Accordingly the control solution was supplemented with DMSO to 0.3%. I found that 0.3% 

DMSO did not influence the cellular ability to migrate relative to the control solution which 

did not contain any DMSO. 

 

2.7. Migration and Invasion assays 

Random cell migration was assessed using 24-well sized Boyden chambers (BD Biosciences, 

UK) with polyethylene terephthalate (PET) membrane containing 8µm pore size, and were 

used as specified by the manufacturer. Briefly, 750µl of DMEM culture media + 1%FBS was 

placed into the bottom well of a 24-well plate and 500µl DMEM + 1% FBS into the top well 

of Boyden chamber. The 24-well plate was allowed to equilibrate in the incubator set to 

37oC and 5% CO2. Cells were trypsinized for a minimal duration required (typically 2 

minutes), then resuspended in DMEM + 1% FBS and seeded in a volume of approximately 

500µl into the top well. Migration was allowed to take place in the incubator for the 

duration of 6 hours. Between 30,000 and 100,000 cells were seeded into the top well of 

Boyden chambers, depending on cell type and experiment performed. To test random cell 

invasion, matrigel covered Boyden chambers (BD Biosciences, UK) were used according to 

manufacturer specification, and the same protocol was used as the above test for random 

migration. Directional chemotactic cell migration and invasion were assessed by setting up 

a gradient of FBS across the top and bottom wells. Bottom well was filled with 750µl of 

DMEM + 10% FBS, while top well with 500µl DMEM + 0% FBS. Trypsinized cells were 

resuspended in DMEM + 0% FBS in order to preserve the 0-10% FBS gradient during cell 

seeding into the top well.   
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Following 6h of incubation in a Boyden chamber, the cells were fixed using 100% methanol 

for 10 minutes at room temperature (this method of fixation provided sufficient quality for 

staining and imaging that was required, and is described in the following text). Non-

migrated cells were scraped away from top well using forceps with soft tissue paper on the 

ends. Boyden chambers were then placed into solution containing 10ug/ml RNAaseA for 30 

minutes, which was followed by 100ug/ml propidium iodide staining for 10 minutes at 

room temperature. Any remaining non migrating cells were removed from the top of 

Boyden chambers for the second time as described above and placed into 24-well plate 

containing 1ml phosphate buffered saline (PBS) solution per well. In-between each of the 

steps above two quick PBS washes with PBS was given.  

 

Stained cells were imaged using Leica TCS SP2 inverted LSCM microscope using dry 10x 

objective. To visualise propidium iodide staining, 514nm laser excitation was used in 

combination with 570-690nm emission collection. CellProfiler software (Carpenter et al., 

2006) was used to automatically identify and quantify individually stained cells, (this 

eliminated human bias when counting migrated cells in different conditions). Unpaired 

two-tailed t-test was used to calculate the statistical significance to p < 0.05. Statistically 

significant results were indicated by the * symbol situated above the error bars. 

 

2.8. Scratch assay 

Cells were grown in 35mm culture dishes and were allowed to reach 100% confluency. 

Horizontal and vertical lines were drawn with a marker on the underside of each dish to use 

as landmark reference points. Using a 200µl pipette tip, which was held by hand, a scratch 

was made on the cell surface by the application of uniform pressure. Dishes were carefully 



  Chapter 2 –Materials and methods  

39 
 

washed with PBS to remove any of the non-adherent cells, and 2ml of fresh DMEM + 1% 

FBS was added. Images were taken at 0 hours soon after the scratch procedure. Further 

images at the corresponding landmarks were taken 6 and 18 hours following induction of 

the scratch. 
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3.1. Elevation of intracellular cAMP inhibits migration of pancreatic cancer cells. 

The effect of cAMP signalling on migration was investigated using classical modulators of the 

pathway such as forskolin and IBMX: both agents cause elevation of intracellular cAMP via 

activation of adenylyl cyclase and inhibition of phosphodiesterase activity respectively. 

Migration of PANC-1 cells was measured using Boyden chambers containing DMEM 

supplemented with 1% FBS in both top and bottom wells. With no gradient of FBS across the 

chambers, cell migration was non-directional. Cells were treated with control vehicle or 

cAMP elevating agents for 6 hours, cells which migrated to the bottom of the chambers were 

quantified. All treatments were normalised relative to the control condition and expressed as 

a percentage. Treatment of cells with forskolin (20µM) resulted in decreased level of 

migration to 43%, while IBMX (1mM) inhibited migration to 38%. Combination of forskolin 

(20µM) + IBMX (1mM) strongly inhibited migration to 4.7% (Figure 3.1); this supported the 

idea that cAMP that was responsible for the inhibitory effects.  

 

Wound healing assays were used to confirm the Boyden Chamber results. PANC-1 cells 

were grown to confluency and scratches were induced by a 200µl pipette tip. In these 

experiments it was necessary to extend migration time to 18 hours to clearly observe 

migration in the control condition. Relative to the 0 hour time point, some control cells 

were seen migrating into the scratch as early as 6 hours, and quite clearly by 18 hours. In 

contrast, majority of forskolin (20µM) + IBMX (1mM) treated cells were not seen to migrate 

into the scratch at neither 6 nor 18 hours post scratch induction (Figure 3.2).  

 

I wanted to confirm that inhibition of cell migration was not as a result of cell injury induced 

by cAMP elevation with forskolin (20µM) + IBMX (1mM). Thus I performed cell death assays 

utilising propidium iodide, which is taken up from the extracellular solution by dead cells as a 
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result of a loss of plasma membrane integrity. Upon binding to DNA, propidium iodide 

undergoes an increase in fluorescence. Cells which were labelled with propidium iodide were 

considered dead. PANC-1 cells were treated with control vehicle or with forskolin (20µM) + 

IBMX (1mM) for 6 hours and were subsequently exposed to DMEM supplemented with 

propidium iodide (10µg/ml) for 10 minutes. Stained cell were quantified in each condition, 

and it was found that there was no significant difference between the numbers of cells 

stained with propidium (n=3, data not shown). Further experiments were performed for a 

duration of 24 hours, which also displayed no difference in cell death between the control 

and forskolin (20µM) + IBMX (1mM) conditions (n=3, data not shown). 
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Figure 3.1. cAMP elevating agents reduce migration of PANC-1 cells. Cell migration was 

investigated using Boyden chambers supplemented with DMEM + 1% FBS in both top and 

bottom wells. Cells were allowed to migrate from top to bottom wells for 6h post seeding. 

Results were normalized relative to control and displayed as a percentage. Both adenylyl 

cyclase activator forskolin (20µM) and non-specific phosphodiesterase inhibitor IBMX 

(1mM) reduced migration (to 43% and 38% respectively). Combination of forskolin + IBMX 

resulted in strong inhibition of migration to 4.7% (n=18 Boyden chambers for each 

condition. At least 3 independent experiments were performed. All results were statistically 

significant to p<0.05 and indicated by * symbol). 
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Figure 3.2. Scratch assay revealed that cAMP elevation strongly inhibited migration. 

PANC-1 cell were grown to confluency, after which a scratch was induced with a 200µl 

pipette tip; cells were imaged at 0, 6, and 18 hours after the scratch. Control cells were 

clearly able to migrate into the scratch by 18 hour time point. In contrast, forskolin (20µM) 

+ IBMX (1mM) treated cells were not seen to migrate into the induced scratch (n=12 

scratches for each condition. Scale bar corresponds to 200µm). 
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To investigate the effects of forskolin and IBMX on intracellular cAMP changes, PANC-1 cells 

were transfected with EPAC-based cAMP Förster electron resonance energy transfer (FRET) 

sensor H84; this was developed by Kees, J. and others (van der Krogt et al., 2008) and has 

proven to be a very robust and reliable tool for measuring intracellular cAMP changes in 

single cells. The sensor comprised of N-terminal CFP donor fluorochrome, EPAC backbone, 

and C-terminal Venus acceptor fluorochrome. The positioning of both fluorochromes is very 

close to each other, and is in such a way that allows FRET to occur.  

 

PANC-1 cells were transfected with EPAC-based cAMP FRET sensor H84 and were imaged 

24 hours later. After obtaining a stable baseline of the FRET sensor, forskolin (20µM) was 

applied and resulted in a modest elevation of cAMP. Addition of forskolin 20µM) + IBMX 

(1mM) further increased cAMP levels, and resulted in the FRET sensor saturation (Figure 

3.3). Relative to the fully saturated FRET signal, application of forskolin (20µM) alone 

resulted in approximately 32% FRET shift. The order of drug application was reversed to 

visualise the effects of IBMX (1mM) alone, followed by addition of IBMX (1mM) + forskolin 

(20µM). It was found that IBMX resulted in similar cAMP increases as with forskolin, 

resulting in approximately 26% FRET shift (Figure 3.4). These data indicated that application 

of either drug alone resulted in modest elevation of cAMP, which correlated with their 

ability to moderately suppress migration. Combination of both drugs resulted in additive 

large cAMP elevation, which correlated with their ability to strongly suppress migration. 

 

It should be noted that I utilised relatively higher concentration of IBMX then reported in 

most other studies; typically around 100µM IBMX is used to maximally inhibit 

phosphodiesterase activity. I have found however, that this is not the case in PANC-1 cells 

(as shown in Figure 3.5); higher extracellular concentration of the drug was required to 
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achieve stronger inhibition of phosphodiesterase activity. In these experiments PANC-1 

cells expressing H84 sensor were subject to 100µM IBMX, which resulted in very marginal 

FRET shift. Subsequent application of 1mM IBMX resulted in a substantially larger FRET 

shift, indicating that further phosphodiesterase inhibition occurred resulting in higher 

intracellular cAMP rise. Application of 4mM IBMX resulted in only a slightly higher FRET 

shift (in comparison with 1mM), indicating 1mM IBMX was sufficient to strongly inhibit 

most of the phosphodiesterase activity (Figure 3.5). 
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Figure 3.3. The effect of forskolin and combination of forskolin + IBMX on the cAMP level 

in PANC-1 cells. PANC-1 cells were transfected with EPAC-based FRET sensor H84. Forskolin 

(20µM) induced a modest rise of cAMP; approximate FRET shift was calculated to be 32% of 

that achievable for the maximal FRET shift. Combination of forskolin (20µM) + IBMX (1mM) 

caused a much larger response of H84m and saturated the sensor (n=34 cells. At least 3 

independent experiments were performed.) 
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Figure 3.4. The effect of IBMX and combination of forskolin/IBMX on cAMP level in PANC-

1 cells. PANC-1 cells were transfected with EPAC-based FRET sensor H84. IBMX (1mM) 

induced a modest rise of cAMP; approximate FRET shift was calculated to be 26% of that 

achievable for the maximal FRET shift. Combination of forskolin (20µM) + IBMX (1mM) 

caused a much larger response of H84, and saturated the sensor (n=54 cells. At least 3 

independent experiments were performed.) 
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 Figure 3.5. Relatively high extracellular concentration of IBMX is required to achieve 

strong inhibition of PANC-1 phosphodiesterase activity. PANC-1 cells were transfected 

with EPAC-based FRET sensor H84. IBMX (100µM) induced a very marginal FRET shift. 

Application of 1mM IBMX caused a larger FRET shift, indicating that substantial rise of 

intracellular cAMP had occurred as a result of higher phosphodiesterase inhibition. Further 

application of 4mM IBMX resulted in only a slight further elevation of the FRET signal. 

Application of forskolin (20µM) + IBMX (4mM) caused a much larger increase of cAMP (n=8 

cells. At least 3 independent experiments were performed.) 
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I wanted to confirm the results obtained with the EPAC-based sensor H84 by using other 

FRET sensors, which were either based on a PKA backbone or were a direct substrate for 

endogenous PKA. Firstly, I used PKA-based FRET sensor (RII-L20-CFP + CAT-YFP) developed 

by  Zaccolo, Tsien, Posan and others (Zaccolo et al., 2000). This was a bi-molecular sensor 

which utilised PKA regulatory subunit fused to CFP, and catalytic subunit fused with YFP. 

RII-L20-CFP + CAT-YFP FRET sensor was transfected into PANC-1 cells and imaged in a 

similar manor as with the EPAC-based FRET sensor H84. cAMP elevation results in RII-L20-

CFP + CAT-YFP FRET sensor activation, leading to catalytic-YFP subunit dissociation from the 

regulatory-CFP subunits; resulting in a decline of FRET. Therefore, a ratio of CFP relative to 

YFP emission was plotted and normalised to the initial baseline. Upward deflection of the 

graph would indicate increased intracellular cAMP concentrations. Forskolin (20µM) was 

applied and resulted in approximately 33% FRET shift. Application of IBMX (1mM) together 

with forskolin resulted in greater activation of PKA, and caused full saturation of the FRET 

sensor (Figure 3.6).  
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Figure 3.6. PKA-based FRET sensor revealed similar intracellular cAMP changes as seen 

with EPAC FRET sensor. PANC-1 cells were transfected with PKA-based cAMP FRET sensor 

RII-L20-CFP + CAT-YFP. Forskolin (20µM) induced a modest rise of cAMP, as seen by the 

approximate 33% FRET shift. Combination of forskolin (20µM) + IBMX (1mM) resulted a 

larger increase of cAMP which saturated the sensor (n=19 cells. At least 3 independent 

experiments were performed.) 
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I also utilised a FRET sensor which is able to measure endogenous PKA activity (AKAR4), 

which was developed by Zhang and others (Depry et al., 2011). Unlike the previous sensors 

mentioned which rely on endogenous cAMP to induce FRET changes, AKAR4 sensor utilises 

a backbone which is selectively phosphorylated by endogenous PKA; which results in 

conformational change leading to increased FRET between Cerulean and Venus based 

fluorochromes. Intracellular phosphatase activity on the other hand dephosphorylates the 

construct. Thus, the level of AKAR4 FRET is controlled by equilibrium between PKA 

phosphorylation and phosphatase dephosphorylation events. For this reason it is also 

worth noting that unlike with the previous two sensors mentioned, AKAR4 full FRET 

saturation does not correspond to maximum PKA activity. However, the sensor is able to 

visualise small elevations of PKA activity owing to its great sensitivity profile, and so is 

extensively used in the field in studies which investigate small gradients and localised 

intracellular PKA activity. Graphs were plotted with Venus emission relative to Cerulean 

emission; increase in PKA activity corresponds to elevation of the graph. PANC-1 cell were 

transfected with AKAR4 construct 24 hours prior to the beginning of the experiments, and 

where imaged as with the previous FRET sensors used. Application of forskolin (20µM) 

resulted in a large FRET shift. Application of IBMX (1mM) on top did not induce any further 

FRET shift, indicating the sensor was fully saturated. 
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Figure 3.7. PANC-1 cells were transfected with AKAR4 which revealed endogenous 

activation of PKA following cAMP elevation. PANC-1 cells were transfected with AKAR4 

PKA FRET sensor. Forskolin (20µM) was applied and resulted in large FRET shift. Application 

of forskolin (20µM) + IBMX (1mM) was not able to increase the FRET shift any further, 

indicating the FRET sensor was already fully saturated  (n=10 cells. At least 3 independent 

experiments were performed.) 
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 3.1.1. Analogue of cAMP inhibits PANC-1 migration. 

So far I have seen correlation between endogenous cAMP elevation and inhibition of 

migration. All of these results were obtained using drugs which manipulate endogenous 

machinery to raise cAMP levels. However, it is possible that both forskolin and IBMX could 

have off-target effects, and as a result the inhibition of migration was not specifically due to 

the cAMP changes. To control for this, I utilised 8Br-cAMP, a non-selective analogue of cAMP. 

I utilised the same protocols for investigating migration and FRET sensor recording as 

mentioned previously. I decided to find the concentration of 8Br-cAMP required to induce 

similar FRET changes as observed with forskolin (20µM) or IBMX (1mM). PANC-1 cells were 

transfected with EPAC-based FRET sensor H84 to monitor intracellular cAMP concentrations. 

To our surprise, I found that relatively high extracellular concentration of 8Br-cAMP had to be 

applied in order to achieve comparable cAMP elevation as induced with either forskolin 

(20µM) or IBMX (1mM) alone. Application of 2mM 8Br-cAMP resulted in very modest FRET 

shift which was substantially below that which was caused by either forskolin or IBMX. A 

higher dose of 8Br-cAMP (6mM) was applied and resulted in further FRET shift which was 

comparable to the action of either forskolin or IBMX (Figure 3.8). It was found that 2mM 8Br-

cAMP induced 12% FRET shift, while 6mM 8Br-cAMP produced 27% shift. As seen from 

previous results, relative changes induced by forskolin (20µM) were approximately 32%, 

while for IBMX (1mM) were 26%.  
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Figure 3.8. Intracellular cAMP levels measured in PANC-1 cells displayed submaximal 

effect of 2mM and 6mM 8Br-cAMP. PANC-1 cells were transfected with EPAC-based FRET 

sensor H84. 8Br-cAMP was applied at 2mM followed by a higher concentration of 6mM. 

After the drugs were washed off, forskolin (20µM) + IBMX (1mM) was applied. Only modest 

intracellular rise of 8Br-cAMP was achieved with 2mM 8Br-cAMP, which induced only a 12% 

FRET shift. Higher concentration of 8Br-cAMP (6mM) produced 27% FRET shift (n=37 cells. 

At least 3 independent experiments were performed.) 
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I decided to use the two remaining sensors, AKAR4 and PKA-based FRET sensor RII-L20-CFP + 

CAT-YFP, to confirm 8Br-cAMP was non-selective cAMP analogue, which is able to also 

activate PKA. Firstly, I utilised AKAR4 to visualise endogenous activation of PKA. Following a 

stable baseline, sequential doses of 2mM and 6mM 8Br-cAMP were applied. This was 

followed by a wash period of 20 minutes and a positive control using forskolin (20µM) + IBMX 

(1mM) to induce maximal FRET shift. 2mM 8Br-cAMP was found to induce approximately 

37% FRET shift, while 6mM induced 60% shift (Figure 3.9).  

 

Finally, I used PKA-based FRET sensor RII-L20-CFP + CAT-YFP to confirm the actions of 8Br-

cAMP on PKA activity. Sequential doses of 2mM and 6mM 8Br-cAMP were applied, which 

was followed by a wash period of 20 minutes and a positive control using forskolin (20µM) + 

IBMX (1mM) to induce maximal FRET shift. 2mM 8Br-cAMP was found to induce 

approximately 8% FRET shift, while 6mM induced 36% shift (Figure 3.10). Earlier experiments 

displayed that forskolin (20µM) induced approximately 33% FRET shift with this sensor; 

indicating 6mM 8Br-cAMP is comparable to 20µM forskolin.  

 

After finding the concentration of the 8Br-cAMP required to induce comparable activation of 

EPAC and PKA as with either forskolin (20µM) or IBMX (1mM), I were ready to use Boyden 

chamber assays to investigate the effect of the drug on cell migration. 8Br-cAMP was used at 

2mM and 6mM, and was found to inhibit migration to 78% and 24% of the control 

respectively (Figure 3.11). The higher dose of 8Br-cAMP inhibited migration to a level that 

was comparable to either forskolin (20µM) or IBMX (1mM) alone. Thus, after considering all 

the experiments performed so far, it strongly appears that cAMP elevation was responsible 

for the inhibition of PANC-1 migration. 
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Figure 3.9. Endogenous activation of PKA by 8Br-cAMP was measured in PANC-1 cells 

using AKAR4 sensor. PANC-1 cells were transfected with AKAR4 PKA FRET sensor. 8Br-

cAMP was applied at 2mM followed by 6mM concentration. Control forskolin (20µM) + 

IBMX (1mM) was applied following a wash period. 2mM 8Br-cAMP was found to induce 

approximately 37% FRET shift, while 6mM induced 60% shift (n=13 cells. At least 3 

independent experiments were performed.) 
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Figure 3.10. Intracellular cAMP levels measured in PANC-1 cells displayed submaximal 

effect of 2mM and 6mM 8Br-cAMP. PANC-1 cells were transfected with PKA-based FRET 

sensor RII-L20-CFP + CAT-YFP. 8Br-cAMP was applied at 2mM followed by 6mM. Control 

forskolin (20µM) + IBMX (1mM) was applied following a wash period. Results indicate only 

a modest rise of intracellular 8Br-cAMP was achieved following 6mM of extracellular 8Br-

cAMP application. 2mM 8Br-cAMP was found to induce approximately 8% FRET shift, while 

6mM induced 36% shift (n=8 cells. At least 3 independent experiments were performed.) 
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Figure 3.11. cAMP analogue 8Br-cAMP reduced PANC-1 cell migration. Cell migration was 

investigated using Boyden chambers supplemented with DMEM + 1% FBS in both top and 

bottom wells. Cells were allowed to migrate from top to bottom chamber for 6h post 

seeding. 8Br-cAMP, a non-selective cAMP analogue, was used at 2mM and 6mM 

concentration and resulted in 78% and 24% inhibition of migration respectively (n= 9 

Boyden chambers for each condition. At least 3 independent experiments were performed. 

All results were statistically significant to p<0.05 and indicated by * symbol). 
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3.2. cAMP elevation inhibits migration in a diverse range of PDAC cell lines. 

To ensure the effects of cAMP are not specific to the PANC-1 cell line, I tested the effect 

cAMP on four other diverse pancreatic adenocarcinoma cell lines; Suit-2, BxPC3, Capan-2, 

and MiaPaca-2. Boyden chamber migration assays were setup as previously described. Cell 

migration was significantly inhibited in Suit-2 (Figure 3.12), BxPC3 (Figure 3.13), Capan-2 

(Figure 3.14), and MiaPaca-2 (Figure 3.15) cells by forskolin (20µM) + IBMX (1mM) to a level 

of 5.4%, 44%, 47%, and 42% of the control condition respectively. It became quite clear that 

migration in all cell lines tested was inhibited in response to cAMP, however the responses 

varied with some cell lines displaying stronger inhibition than others.  
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Figure 3.12. cAMP elevating agents reduced migration of SUIT-2 cells. Cell migration was 

investigated using Boyden chambers supplemented with DMEM + 1% FBS in both top and 

bottom wells. SUIT-2 cells were allowed to migrate from top to bottom chamber for 6h post 

seeding. Combination of Forskolin (20µM) + IBMX (1mM) reduced migration to 5.4% of the 

control (n=6 Boyden chambers for each condition. At least 3 independent experiments 

were performed. All results were statistically significant to p<0.05 and indicated by * 

symbol)  
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Figure 3.13. cAMP elevating agents reduced migration of BxPC3 cells. Cell migration was 

investigated using Boyden chambers supplemented with DMEM + 1% FBS in both top and 

bottom wells. BxPC3 cells were allowed to migrate from top to bottom chamber for 6h post 

seeding. Combination of Forskolin (20µM) + IBMX (1mM) reduced migration to 44% of the 

control (n=9 Boyden chambers for each condition. At least 3 independent experiments 

were performed. All results were statistically significant to p<0.05 and indicated by * 

symbol).  
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Figure 3.14. cAMP elevating agents reduced migration of CAPAN-2 cells. Cell migration 

was investigated using Boyden chambers supplemented with DMEM + 1% FBS in both top 

and bottom wells. CAPAN-2 cells were allowed to migrate from top to bottom chamber for 

6h post seeding. Combination of Forskolin (20µM) + IBMX (1mM) reduced migration to 47% 

of the control, (n=12 Boyden chambers for each condition. At least 3 independent 

experiments were performed. All results were statistically significant to p<0.05 and 

indicated by * symbol) 
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Figure 3.15. cAMP elevating agents reduced migration of MiaPaca-2 cells. Cell migration 

was investigated using Boyden chambers supplemented with DMEM + 1% FBS in both top 

and bottom wells. MiaPaca-2 cells were allowed to migrate from top to bottom chamber 

for 6h post seeding. Combination of Forskolin (20µM) + IBMX (1mM) reduced migration to 

42% of the control (n=7 Boyden chambers for each condition. At least 3 independent 

experiments were performed. All results were statistically significant to p<0.05 and 

indicated by * symbol). 
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3.3. Cell migration is inhibited when migration is induced by asymmetric FBS gradient. 

The effects of cAMP on PANC-1 migration have so far utilised Boyden chambers which 

tested non-directional migration. Directional migration was investigated using Boyden 

chambers containing DMEM supplemented with 0% FBS in top and 10% FBS in bottom wells 

(thus cells seeded into top wells migrated towards higher FBS concentrations in the bottom 

wells). Combination of forskolin + IBMX inhibited directional migration to 7.3% of the 

control condition (Figure 3.16). 
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Figure 3.16. cAMP elevation reduces directional migration of PANC-1 cells. In order to 

investigate directional migration, a gradient of 0-10% FBS was setup within each Boyden 

chamber. PANC-1 cells were seeded into the top well of Boyden chambers containing 

DMEM + 0% FBS, whilst the bottom well contained DMEM + 10% FBS. Cells were allowed to 

migrate from top to bottom chamber for 6h post seeding. Combination of Forskolin (20µM) 

+ IBMX (1mM) inhibited directional migration to 7.3% of the control (n=12 Boyden 

chambers for each condition. At least 3 independent experiments were performed. All 

results were statistically significant to p<0.05 and indicated by * symbol). 
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3.4. Cell invasion is inhibited by cAMP elevation in PANC-1 cells. 

I felt it was also important to investigate the role of cAMP in the ability of the cells to 

invade. Boyden chambers were purchased which were covered with a homogenous layer of 

matrigel; which simulates the extracellular matrix environment. Importantly, the pores 

were occluded, meaning that PANC-1 cells had to actively degrade the matrix contents in 

order to successfully invade to the bottom side of the membrane. To induce non-directional 

invasion, both the top and bottom wells were supplemented with DMEM +1% FBS. Cells 

were allowed to invade for 6h in either a control vehicle or forskolin (20µM) + IBMX (1mM) 

condition. Forskolin (20µM) + IBMX (1mM) was found to inhibit cell invasion to 12.1% of 

the control condition (Figure 3.17). These findings indicated that elevation of cAMP not 

only inhibited migration, but also strongly suppressed cellular ability to invade. 
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Figure 3.17. The effect of cAMP elevating agents reduces invasion of PANC-1 cells. Cell 

invasion was examined using matrigel covered Boyden chambers containing DMEM + 1% 

FBS in the top and bottom wells. Cells were allowed to migrate from top to bottom 

chamber for 6h post seeding. Combination of Forskolin (20µM) + IBMX (1mM) inhibited 

invasion to 12.1% of the control (n=6 Boyden chambers for each condition. At least 3 

independent experiments were performed. All results were statistically significant to 

p<0.05 and indicated by * symbol). 
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3.5. Directional invasion induced by asymmetric FBS gradient is suppressed by cAMP. 

I investigated directional invasion, which was induced by the use asymmetrical FBS 

gradient; DMEM + 0% FBS in the top and DMEM + 10% FBS in the bottom wells of matrigel 

covered Boyden chambers was used. Forskolin (20µM) + IBMX (1mM) inhibited directional 

invasion to 11.8% of the control condition (Figure 3.18). Thus, the strong inhibition of 

migration and invasion in both non-directional and directional modes of migration, suggests 

that cAMP elevation is able to inhibit effective cell movement in a variety of cell migration 

and invasion modes. 
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Figure 3.18. Effect of cAMP elevating agents reduces directional invasion of PANC-1 cells. 

To test directional cell invasion, a gradient of 0-10% FBS was setup within each matrigel 

covered Boyden chamber. PANC-1 cells were seeded into the top well of Boyden chambers 

containing DMEM + 0% FBS, whilst the bottom well contained DMEM + 10% FBS. Cells were 

allowed to migrate from top to bottom chamber for 6h post seeding. Combination of 

Forskolin (20µM) + IBMX (1mM) inhibited directional invasion to 11.8% of the control 

condition (n=6 Boyden chambers for each condition. At least 3 independent experiments 

were performed. All results were statistically significant to p<0.05 and indicated by * 

symbol).  
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Summary of the key results in Chapter 3. 

I have successfully utilised EPAC based cAMP sensor and AKAR4 to monitor correspondingly 

cAMP and PKA activity in PANC-1 cells. I observed cAMP increases induced by forskolin, 

IBMX and 8Br-cAMP. Increase of cAMP, induced by all of these substances, resulted in the 

inhibition of migration of PANC-1 cells, as revealed in experiments utilising Boyden 

Chamber assay. The strength of the inhibition of migration directly correlated with the 

amplitude of cAMP increase. Not only random migration but also directional migration and 

invasion of PANC-1 cells were inhibited by cAMP elevation. Importantly, migration of four 

other pancreatic cancer cell lines was also inhibited by cAMP increase, suggesting that this 

phenomenon is common for all cell lines derived from this type of cancer. 
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CHAPTER 4 – RAPID AFFECT OF cAMP INCREASE ON RUFFLING, STRESS 

FIBRES, ACTIN DYNAMICS, AND FOCAL ADHESIONS.  
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 4.1. cAMP elevation inhibits cell ruffling. 

Having determined that cAMP plays a role in modulating migration, I next set out to test 

the effects of cAMP increase on cellular processes integral for migration. I decided to 

investigate the effect of cAMP on events which can contribute towards efficient migration 

such as cell ruffling, focal adhesion assembly, and cytoskeletal arrangement. Firstly, I 

decided to focus on cell ruffling events in PANC-1 cells. Lamellipodial extensions, which can 

lead to the formation of ruffles, are frequently observed as important structures which are 

associated with cell migration and invasion (Cramer et al., 1997; Svitkina & Borisy, 1999). 

Ruffle composition is actin rich, which is tightly controlled through the actions Rho GTPases 

such as Rac1, RhoA, and Cdc42 (Schweiger, 1991; Suetsugu et al., 2003; Svitkina, 2007; 

Machacek et al., 2009; Pollitt & Insall, 2009; Campellone & Welch, 2010). Careful 

cooperation between these GTPases and their downstream effectors results in membrane 

protrusion and retraction cycles. Following acquisition of time-lapse videos of migrating 

PANC-1 cells, I frequently observed prominent peripheral ruffling at the front leading edge 

of polarised migrating cells (n>50, data not shown). With this in mind, I set out to 

investigate whether a correlation between cAMP effect on migration and ruffling existed. 

PANC-1 cells were seeded onto glass bottom dishes and imaged 24 hours later. In these 

experiments ruffling cells were recorded for a control period of time in order to ensure 

stable ruffling kinetics were maintained. Application of forskolin (20µM) + IBMX (1mM) 

quickly inhibited cell ruffling (Figure 4.1). Ruffle inhibition remained for the duration of the 

drug application. After a wash period, ruffle formation was quickly restored. To visualise 

ruffling kinetics over time, the time-lapse images were used to create a kymograph from a 

specified line of interest. One can clearly see stable ruffling kinetics during the control 

period (Figure 4.1). Addition of forskolin (20µM) + IBMX (1mM) resulted in compete ruffle 

inhibition within approximately 300-400s (Figure 4.1). Washing the drugs off resulted in 

quick (200-300s) restoration of ruffle formation (Figure 4.1).  
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Figure 4.1. PANC-1 peripheral ruffling was reversibly inhibited with forskolin (20µM) + 

IBMX (1mM).  Peripheral cell ruffling can be seen in images of PANC-1 cells, and was 

further visualised over time with the use of a kymograph constructed using the line of 

interest indicated (1). After 600s of ruffling, cells were subject to forskolin (20µM) + IBMX 

(1mM) application. Within approximately 300s, ruffle formation inhibited. After a wash of 

the drugs, ruffles began to form within approximately 200s (n > 50 cells. At least 3 

independent experiments were performed. Scale bar corresponds to 10µm). 
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Ruffles are rich in actin, I therefore hypothesised that inhibition of ruffling could be 

accompanied with the inhibition of cortical actin dynamics. To test this hypothesis PANC-1 

cells were transfected with LifeAct-GFP, which is an F-actin marker. In these experiments 

cells with stable ruffling kinetics were imaged for the duration of the control period (Figure 

4.2). Simultaneous recording of LifeAct-GFP revealed its localisation within the ruffling 

structures. Inhibition of ruffling induced by forskolin (20µM) + IBMX (1mM) resulted in 

simultaneous loss of LifeAct-GFP staining within the corresponding ruffling structures 

(Figure 4.2). Upon complete ruffle inhibition, LifeAct-GFP was seen to be diffusely 

distributed within the cytosol, with minimal peripheral staining (Figure 4.2). Upon the wash 

of the drug, LifeAct-GFP was seen to redistribute back towards the cell periphery, and its 

intensity increased proportionally with the size of ruffling structures. Within a few minutes, 

full recovery of ruffling was seen, with corresponding LifeAct-GFP distribution within the 

ruffle structures. These data strongly indicated that elevation of cAMP did not simply inhibit 

ruffle kinetics, but rather inhibited the formation of ruffles. It is also interesting to note that 

advancement of the leading edge of the migrating cell was immediately stopped by the 

action of cAMP. This can be seen from the kymographs; during the control period the 

ruffles advance forward, which is indicated by their movement further upward in the 

kymograph. Upon cAMP elevation, ruffles are inhibited and the leading edge no longer 

advances forward. Following wash of the cAMP elevating drugs, ruffle structures appear 

again at the same level on the kymograph as seen just before they were inhibited. Once the 

ruffles establish, the leading edge of the cell advances forward again. These results suggest 

that the effect of cAMP on the rate of migration is immediate. 
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Figure 4.2. Actin distribution within ruffling structures of PANC-1 cells was reversibly 

inhibited with forskolin (20µM) + IBMX (1mM). PANC-1 cells were transfected with LifeAct-

GFP in order to visualise actin distribution. Both transmitted light and LifeAct-GFP images 

are displayed at the top of the figure. Corresponding kymographs for both transmitted light 

and LifeAct-GFP are created from line of interest (1) and (2) respectively (same position of 

the lines of interest was used in transmitted light and fluorescent images), and are 

displayed below the images. High density of actin can be seen within corresponding cell 

edge lamellipodial extensions. Combination of cAMP elevating agents resulted in reversible 

ruffle inhibition and a large reversible decrease in corresponding LifeAct-GFP staining (n=6 

cells. At least 3 independent experiments were performed. Scale bar corresponds to 10µm). 
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To investigate whether there is a direct relationship between cAMP and ruffling, I decided 

to monitor endogenous cAMP levels using the EPAC-based cAMP FRET sensor H84, while 

simultaneously monitoring ruffling. For these experiments I selected cells which were 

adequately transfected with EPAC-based FRET sensor H84 and displayed stable ruffling 

kinetics for the duration of the control period (Figure 4.3). Application of forskolin (20µM) + 

IBMX (1mM) resulted in elevation of endogenous cAMP levels. Simultaneous observation of 

ruffle kinetics revealed a relationship between ruffling and cAMP levels (Figure 4.3). 

Ruffling inhibition was typically quite abrupt and occurred when the FRET shift of the 

sensor was approximately 50%. Ruffle structures were usually fully inhibited by the time 

maximal FRET shift was achieved. Ruffling remained inhibited for the duration of cAMP 

elevation. Upon removal of the drugs, cAMP would typically return to baseline levels within 

300-600s (Figure 4.3). Immediately upon the return of cAMP to baseline, ruffles structures 

started to appear. All of the effects developed rapidly, with very little delay between the 

rise of intracellular cAMP and the inhibition of ruffling. Thus the action of cAMP on the 

ruffle kinetics is very likely to be as a result of direct signalling events such as 

phosphorylation (rather than due to cAMP-dependent changes in gene expression). 
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Figure 4.3. Simultaneous recording of cAMP and cell ruffling. PANC-1 cells were 

transfected with EPAC-based FRET sensor H84. It was found that upon cAMP elevation with 

forskolin (20µM) + IBMX (1mM), cell ruffling was inhibited. Upon cAMP returning to basal 

levels, ruffling was re-established (n=3 cells. 3 independent experiments were performed. 

Scale bar corresponds to 5µm). 
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4.2. Key focal adhesion protein paxillin dissociates from focal adhesions in response to 

cAMP elevation. 

I next focused on focal adhesion assembly and the effect, if any, that cAMP elevation has on 

key focal adhesion associated proteins. As mentioned within the introduction, there are 

many proteins that can localise into focal adhesions structures. However, there are a few 

key proteins which have been well studied and shown to be important for cell motility. I 

decided to investigate the focal adhesion associated protein paxillin, based on the fact that 

it is one of the key focal adhesion proteins responsible for modulation of various 

downstream effectors such as RhoA, Rac1 and CDC42 Rho GTPases (Brown & Turner, 2004). 

I utilised constructs encoding for paxillin-GFP, which enabled us to monitor its intracellular 

distribution in individual cells. PANC-1 were transfected with this construct and the effect 

of cAMP elevation on paxillin presence in focal adhesions was investigated. In these 

experiments, I have found that application of forskolin (20µM) + IBMX (1mM) resulted in 

rapid loss of paxillin in response to cAMP elevation (Figure 4.4). The effect was also found 

to be quickly reversible upon wash of the drugs. 
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Figure 4.4. Elevation of intracellular cAMP induces paxillin trafficking out of focal 

adhesions. Paxillin-GFP construct was transfected into PANC-1 cells. Cells were imaged for a 

control period of 300s. Application of forskolin (20µM) + IBMX (1mM) (from 300 to 900s), 

caused paxillin to traffic out of focal adhesions. After a washing off the drugs (900 to 

3000s), paxillin trafficked back into focal adhesions (n >30. At least 3 independent 

experiments were performed. Scale bar corresponds to 10µm). 
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To further investigate the effect of cAMP on paxillin localisation, PANC-1 cells were co-

transfected with EPAC-based FRET sensor H84 and paxillin-PSmOrange. To quantify the 

relative amount of paxillin within focal adhesions, regions of interest were drawn around 

each of the clearly visible focal adhesions (FFa). Next to each focal adhesion devoid of focal 

adhesions, a corresponding region of interest was drawn in the vicinity of the focal 

adhesion (FC). Thus a ratio of paxillin intensity within a focal adhesion relative to adjacent 

cytosolic staining revealed the relative level of paxillin incorporation within the focal 

adhesion. Combining the paxillin ratio with the simultaneous cAMP FRET sensor recording, 

enabled us to simultaneously visualise dynamics of intracellular cAMP levels and paxillin 

focal adhesion incorporation within single live cells. An example of such experiment is 

shown in Figure 4.5. Forskolin (20µM) + IBMX (1mM) was applied, which resulted in 

elevation of cAMP. Simultaneous recording of paxillin revealed that elevation of cAMP 

caused paxillin to traffic out of focal adhesions (Figure 4.5). Upon removal of the drugs, 

cAMP levels returned back to baseline, which was accompanied by paxillin trafficking back 

into focal adhesion. Interestingly, paxillin was seen to start moving back into focal 

adhesions before basal level of cAMP was achieved; unlike ruffling which started to recover 

after basal levels of cAMP were achieved. This could be perhaps expected, as paxillin acts as 

a scaffold to bind proteins which control ruffling.  Furthermore, the rapid action of cAMP on 

paxillin in focal adhesions, suggests that the effect of cAMP is direct (i.e. not modulated by 

cAMP-dependent changes in gene expression). 
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Figure 4.5. Correlation of cAMP concentration and paxillin presence in focal adhesions. 

PANC-1 cells were transfected with EPAC-based FRET sensor H84. Cells were co-transfected 

with paxillin-PSmOrange, enabling simultaneous observation of its focal adhesion 

distribution. The ratios (FFa/FC, see page 84) obtained from focal adhesions (outlined in the 

image situated in the middle of the figure, and indicated by white circles) were averaged to 

give a single trace. It was found that upon cAMP elevation with forskolin (20µM) + IBMX 

(1mM), content of paxillin in focal adhesions was greatly reduced. Upon cAMP returning to 

basal levels, paxillin was seen to traffic back into focal adhesions (n=4 cells. At least 3 

independent experiments were performed. Scale bar corresponds to 10µm). 
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4.3. cAMP elevation reversibly inhibits actin stress fibre formation. 

To further investigate the role of cAMP in the inhibition of migration, I focused on the 

cytoskeletal arrangement of actin; more specifically stress fibre formation. Actin stress 

fibres are important structures which are connected to the focal adhesion complexes and 

are used by the cell to produce tractional forces (Cox & Huttenlocher, 1998). Stress fibres 

usually terminate at focal adhesions, where they are attached via linker proteins such as 

vinculin and talin (Critchley, 2009). PANC-1 cells were transfected with LifeAct-GFP in order 

to visualise actin stress fibres. In our experiments, forskolin (20µM) + IBMX (1mM) was 

applied for a period of 30 minutes; this resulted in the breakdown of stress fibres (Figure 

4.6). Removal of the cAMP elevating agents resulted in quick reversal of stress fibre 

formation. 
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Figure 4.6. Actin stress fibre were disassembled by forskolin (20µM) + IBMX (1mM) in 

PANC-1 cells. In order to visualise actin stress fibres, PANC-1 cells were transfected with 

LifeAct -GFP. Cells were imaged for a control period of 600s. The application of forskolin 

(20µM) + IBMX (1mM) from 600s to 2400s, resulted in stress fibre disassembly. Removal of 

forskolin + IBMX at 2400s resulted in the restoration of stress fibres (n=6. At least 3 

independent experiments were performed. Scale bar corresponds to 10µm). 
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I next decided to establish the relationship between cAMP and stress fibres. PANC-1 cells 

were transfected with EPAC-based FRET sensor H84 and LifeAct-RFP; results of the 

experiment are shown in Figure 4.7. To visualise stress fibre formation over time, a 

kymograph was generated from a line of interest running through the middle of the cell. 

Three sample images were chosen from the time series of the recording to show stress 

fibres before, during and after application of forskolin (20µM) + IBMX (1mM) (see lower 

part of Figure 4.7). The line of interest drawn to generate the kymograph is displayed in the 

left image. Cells were chosen which displayed good expression of both constructs. Forskolin 

(20µM) + IBMX (1mM) was applied, resulting in elevation of cAMP. Simultaneous recording 

of LifeAct-RFP revealed inverse correlation of the density of stress fibres and cAMP levels. 

Most stress fibres started to dissipate around the time when the cAMP sensor was 

displaying approximately 50% FRET shift (Figure 4.7). Some stress fibres were noted to take 

longer than others to dissipate, however all showed decreased fluorescence intensity 

following cAMP elevation. Removal of forskolin + IBMX resulted in lowering of cAMP back 

towards baseline levels. Stress fibres stared to form immediately after basal levels of cAMP 

were achieved.  

 

 

 

 

 

 

 

 

 

 



                            Chapter 4 – cAMP effect on ruffling, focal adhesions and stress fibres 

91 
 

 

 

 

 

 

 

 

Figure 4.7. Simultaneous recording of cAMP and actin stress fibres revealed cAMP-

dependent disassembly of stress fibres. PANC-1 cells were transfected with EPAC-based 

FRET sensor H84. Cells were co-transfected with LifeAct-RFP in order to visualise actin 

stress fibres. Three sample images were chosen from the time series, before, during and 

after application of forskolin (20µM) + IBMX (1mM) (see lower part of the figure).  A line of 

interest was drawn in the centre of the cell to generate a kymograph of the stress fibre 

status over time (shown in lower left image). Elevation of cAMP resulted in stress fibre 

disassembly. Recovery of cAMP back to basal level resulted in restoration of stress fibres 

(n=3 cells. At least 3 independent experiments were performed. Scale bar corresponds to 

10µm). 
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Summary of the key results in Chapter 4. 

 I have successfully developed protocols for monitoring ruffling, formation and dynamics of 

focal adhesion and localisation of stress fibres. Results of experiments reported in this 

chapter indicate that cAMP increase inhibits a number of cellular processes closely 

associated with migration. Treatment with forskolin and IBMX resulted in the inhibition of 

ruffling, and in loss of actin at the leading edge of migrating cells. cAMP increase triggered 

the loss of paxillin from focal adhesions and stopped dynamic remodelling of focal 

adhesions. Finally cAMP elevation resulted in disassembly of stress fibres in PANC-1 cells. 

Importantly, the simultaneous monitoring of cAMP levels and ruffling, focal adhesion 

dynamics and stress fibre localisation revealed that the inhibition of the processes 

associated with migration develops well before the saturation of the cAMP probe (in other 

words, within the physiological range of cAMP effectors). 
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5.1. Selective EPAC activation potentiates migration. 

So far I have discovered that cAMP elevation inhibits migration in various PDAC cell lines. 

Further investigation utilising PANC-1 cells revealed effects of cAMP are immediate with 

respect to its inhibitory action on ruffles, stress fibre, and focal adhesion assembly. 

However, what is not yet clear is through which effector(s) cAMP is mediating its actions. 

To investigate this question, I utilised selective cAMP analogues. EPAC selective analogue, 

8pCPT, was chosen to see if EPAC is at all involved in modulating PANC-1 migration. 

However, I first utilised both EPAC and PKA FRET sensors in order to find a dose at which 

8pCPT will strongly activate EPAC, but would not significantly activate PKA; as high doses of 

8pCPT could potentially activate PKA.  PANC-1 cells were transfected with EPAC-based 

cAMP FRET sensor and various doses of 8pCPT were tested (data not shown). It was found 

that 300µM 8pCPT caused near maximal FRET shift, thus indicating strong activation of 

EPAC (Figure 5.1). Importantly however, there was no saturation of the FRET sensor in most 

of the cells imaged. Thus, I chose to work with 300µM 8pCPT for all the subsequent 

experiments. I next decided to confirm this concentration of drug was selective for 

activation of EPAC. PANC-1 cells were transfected with AKAR4 and imaged 24 hours post 

transfection. 8pCPT (300µM) did not induce any noticeable FRET shift of the PKA sensor 

(Figure 5.2). Following a wash off period, positive control was applied, consisting of 

forskolin (20µM) + IBMX (1mM), which displayed a FRET shift as expected. This was a good 

indication that selective EPAC activation was achieved with 300µM 8pCPT, with no 

significant cross activation of endogenous PKA.  
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Figure 5.1. EPAC activation was verified using EPAC-based FRET sensor, revealing near 

maximal EPAC activation with 300µM 8pCPT. PANC-1 cells were transfected with EPAC-

based FRET sensor H84. 8pCPT (300µM) was applied and resulted in strong activation of the 

EPAC FRET sensor. Following wash off period, forskolin (20µM) + IBMX (1mM) was applied 

to induce maximal FRET shift (n=30 cells. At least 3 independent experiments were 

performed). 
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Figure 5.2.  AKAR4 revealed no significant endogenous PKA activation with 300µM 8pCPT. 

PANC-1 cells were transfected with AKAR4. 8pCPT (300µM) did not induce in any significant 

PKA activation. Following a wash off period, forskolin (20µM) + IBMX (1mM) was applied 

and resulted in a typical FRET shift (n=21 cells. At least 3 independent experiments were 

performed). 
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Having established the correct dose to achieve strong but selective activation of EPAC, 

PANC-1 cells were subjected to Boyden Chamber experiments to test if EPAC activation is 

responsible for the inhibition of migration. Cells were treated with control vehicle or 8pCPT 

(300µM) for 6 hours, and migration was assed as previously described. Surprisingly, I found 

that EPAC activation resulted in potentiation of migration to 154% of the control condition 

(Figure 5.3). This was very interesting finding for two main reasons. Firstly, the effects of 

selective EPAC activation in PANC-1 cells has never been characterised before. Secondly, 

this data indicated that another effector is likely responsible for the inhibition of migration 

that is induced through cAMP elevation. 
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Figure 5.3. Selective EPAC activation using cAMP analogue 8pCPT resulted in potentiation 

of migration. Cell migration was investigated using Boyden chambers supplemented with 

DMEM + 1% FBS in both top and bottom wells. PANC-1 cells were allowed to migrate from 

top to bottom chamber for 6h post seeding. Results were normalised and displayed as a 

percentage. EPAC activation with 8pCPT (300µM) led to increased migration rate of 154% 

relative to the control condition (n=16 Boyden chambers for each condition. At least 3 

independent experiments were performed. All results were statistically significant to 

p<0.05 and indicated by * symbol). 
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5.2. Selective PKA activation inhibits cell migration. 

Surprised by the previous findings, I were now interested to find out the role of PKA in 

modulating migration.  I used a similar approach as described for 8pCPT, to find an 

appropriate selective dose of a PKA activator. I utilised another cAMP analogue, 6Bnz, 

which is known to be a selective PKA activator. I utilised both PKA and EPAC FRET sensors in 

order to find a concentration at which 6Bnz will strongly activate PKA, but would not 

significantly activate EPAC. PANC-1 cells were transfected with AKAR4 and various doses of 

6Bnz were tested (data not shown). It was found that, like with the non-selective analogue 

8Br-cAMP, a similar and high concentration of 6Bnz was required to achieve moderate PKA 

activation. For this reason, I decided to use 6mM 6Bnz in all the following experiments. 

PANC-1 cells were transfected with AKAR4 and the cells were subjected to application of 

6mM 6Bnz which was seen to induce FRET of the probe (Figure 5.4). These results indicate 

that PKA activation was achieved with 6Bnz. I next decided to determine whether the 

concentration of 6Bnz used was selective for activation of PKA. PANC-1 cells were 

transfected with EPAC-based cAMP FRET sensor and imaged 24 hours post transfection. 

Following a stable baseline, 6Bnz was applied at 6mM and did not induce any noticeable 

FRET shift in any of the cells imaged (Figure 5.5). Following a wash off period, positive 

control was applied, consisting of forskolin (20µM) + IBMX (1mM), which displayed a 

normal FRET shift as expected. This was a good indication that selective PKA activation was 

achieved, with no cross activation of EPAC. PANC-1 cells were subjected to Boyden 

chamber experiments to see if selective PKA activation by cAMP is responsible for the 

inhibition of migration. Cells were treated with control vehicle or 6Bnz (6mM) for 6 hours, 

and migration was assed as described previously. Selective PKA activation resulted in the 

inhibition of migration to 54% of the control (Figure 5.6).  
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Figure 5.4. Endogenous PKA activation by 6Bnz was verified using FRET sensor containing 

a substrate for PKA. PANC-1 cells were transfected with AKAR4. 6Bnz was applied at 6mM 

and caused a moderate FRET shift, indicating endogenous PKA was activated. After a wash 

off period, forskolin (20µM) + IBMX (1mM) was applied to induce maximal FRET shift (n=28 

cells. At least 3 independent experiments were performed). 



 Chapter 5 – PKA and EPAC have opposing action on migration  

102 
 

0 900 1800 2700 3600

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Time (s)

6Bnz (6mM)

Forskolin (20M)

+ IBMX (1mM)
c

A
M

P
 (

H
8
4

) 

 

Figure 5.5. 6Bnz did not induce resolvable FRET response of the EPAC-based FRET sensor. 

PANC-1 cells were transfected with EPAC-based FRET sensor H84. 6Bnz was applied at 6mM 

concentration. After a wash off, forskolin (20µM) + IBMX (1mM) was applied to induce 

maximal FRET shift. No EPAC activation was achieved in any of the cells imaged (n=29 cells. 

At least 3 independent experiments were performed). 
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Figure 5.6. Selective PKA activation using 6Bnz shows inhibition of PANC-1 migration. Cell 

migration was investigated using Boyden chambers supplemented with DMEM + 1% FBS in 

both top and bottom wells. Cells were allowed to migrate from top to bottom chamber for 

6h post seeding. Results were normalised relative to control and displayed as a percentage. 

Selective PKA activation was achieved using cAMP analogue 6Bnz at 6mM, which led to 

decreased migration rate to 54% relative to the control condition (n=7 Boyden chambers 

for each condition. At least 3 independent experiments were performed. All results were 

statistically significant to p<0.05 and indicated by * symbol). 
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5.3. PKA activity correlates with ruffling. 

Having obtained data which displayed selective PKA activation can result in inhibition of 

migration, I set out to further confirm these results by using selective inhibitors of PKA to 

reverse the effects induced by cAMP elevation. I decided to test a hypothesis that PKA 

activation is responsible for ruffle inhibition, paxillin dissociation from focal adhesions, as 

well as inhibition of migration. I first decided to establish the relationship between 

endogenous PKA activity and ruffle formation. PANC-1 cells were transfected with AKAR4 

and imaged 24 hours later. Transfected cells were chosen which were displaying stable 

ruffle kinetics for the duration of the control period. Upon application of forskolin (20µM) + 

IBMX (1mM), endogenous PKA activity increased as expected and fully saturated the FRET 

sensor. Typically between 300-600s post elevation of cAMP, ruffling would be inhibited. 

Upon removal of cAMP elevating drugs, ruffles were seen to start forming immediately 

after basal PKA levels were restored (figure 5.7). These observations would suggest 

intracellular PKA activity is linked with ruffling formation. 
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Figure 5.7. Simultaneous recording of endogenous PKA activity and cell ruffling revealed a 

relationship between the two variables. PANC-1 cells were transfected with the AKAR4. It 

was found that upon cAMP elevation with forskolin (20µM) + IBMX (1mM), resulted in 

activation of endogenous PKA and inhibition of cell ruffling. Upon return to basal level of 

PKA activity, ruffles were seen to start forming again (n= 9 cells. At least 3 independent 

experiments were performed. Scale bar corresponds to 10µm). 
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5.3.1. Selective PKA activation using 6Bnz induces paxillin translocation out of focal 

adhesions.  

I next decied to investigate the effect of selective PKA activation on paxillin localisation 

within focal adhesions. PANC-1 cells were transfected with paxillin-GFP and imaged 24 

hours later. I have found that unlike with forskolin (20µM) + IBMX (1mM), which caused 

strong paxillin loss from focal adhesions; 6mM 6Bnz caused a milder effect which was only 

seen in half of the cells imaged (23 out of 46). The cells that did respond displayed a clear 

loss of paxillin from the focal adhesion structures (Figure 5.8). Upon removal of 6Bnz, 

paxillin was seen to start trafficking back into the focal adhesions. The observations were 

quite clear, and suggested that selective PKA activation can cause paxillin loss from focal 

adhesion structures. I wanted to test the effect of selective EPAC activation on paxillin 

localisation. PANC-1 cells were again transfected with paxillin-GFP and imaged 24 hours 

later. Following a control period, 8pCPT (300µM) was applied for an extensive period of 

time. However, no loss of paxillin from focal adhesion structures was seen (Figure 5.9). I 

therefore concluded that the loss of paxillin from focal adhesion structures induced by 

global elevation of cAMP with forskolin (20µM) + IBMX (1mM) was as a result of PKA 

activation. 
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Figure 5.8. Selective PKA activation using 6Bnz induces paxillin translocation out of focal 

adhesions.  PANC-1 cells were transfected with paxillin-GFP. After 900 second control 

period, cells were treated with 6Bnz (6mM) for 1800 seconds which induced paxillin 

translocation out of focal adhesion into the cytosol. Paxillin was seen to traffic back into 

focal adhesion upon wash of the drugs. This was observed in 23 out of 46 cells imaged 

(n=46 cells. At least 3 independent experiments were performed. Scale bar corresponds to 

10µm).  
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Figure 5.9. Selective EPAC activation using 8pCPT did not affect paxillin localisation.  

PANC-1 cells were transfected with paxillin-GFP. After 600 second control period, PANC-1 

cells were treated with 8pCPT (300µM) for an extended period of 3000 seconds, which did 

not result in any paxillin localisation changes (n=5 cells. At least 3 independent experiments 

were performed. Scale bar corresponds to 10µm).  
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5.4. Testing PKA inhibitors. 

Following observations suggesting that ruffle formation correlated with endogenous PKA 

activity, and selective activation of PKA inhibited migration and reduced paxillin within focal 

adhesions; I decided to further test the actions of PKA by using selective inhibitors of PKA. I 

decided to use a highly potent and selective PKA inhibitor peptide (PKI). I acquired a cell-

permeable myristoylated form of PKI which was termed (Myr-PKI). PANC-1 cells were 

transfected with AKAR4 and imaged 24 hours later. Forskolin (20µM) + IBMX (1mM) was 

applied, resulting in elevation of PKA activity. Application of Myr-PKI (2µM) in combination 

with cAMP elevating drugs did not however reduce FRET of the sensor (Figure 5.10). This 

was quite surprising, considering Myr-PKI should be a highly potent drug. At the end of the 

experiment, another PKA inhibitor (H89) was used as a control to see if PKA inhibition could 

bring the AKAR4 sensor back to baseline. Although H89 is a potent inhibitor of PKA, the 

drug also has been shown to inhibit many other kinases at similar concentrations as 

required to inhibit PKA (Lochner & Moolman, 2006). For this reason, I chose to not to use 

H89 for our main experiments and opted to use highly selective and potent inhibitors of 

PKA, such as PKI (Glass et al., 1986; Kumar & Walsh, 2002). Nonetheless, for the purpose as 

a control, H89 (10µM) was applied along with forskolin (20µM) + IBMX (1mM) + Myr-PKI 

(2µM), and resulted in complete reversal of the FRET sensor signal back to baseline. These 

data displayed that despite elevation of PKA activity with forskolin (20µM) + IBMX (1mM), 

inhibition of PKA should bring the AKAR4 signal back to baseline. These results therefore 

suggested that Myr-PKI (2µM) was not inhibiting PKA as expected. As I know, AKAR4 is 

quickly saturated before PKA activity is maximal, therefore it is possible that Myr-PKI (2µM) 

did partially inhibit PKA, but this was not visualised because of the FRET sensor limitation. 

However, it is still important to note that Myr-PKI was unable to strongly block PKA activity, 

as compared to the H89.  
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Figure 5.10. Myristoylated-PKI application did not result in the inhibition of endogenous 

PKA. PANC-1 cells were transfected with AKAR4. Forskolin (20µM) + IBMX (1mM) was 

applied and resulted in maximal FRET shift. Subsequent prolonged application of Myr-PKI 

(2µM), in continuing presence of forskolin + IBMX, and did not result in any obvious PKA 

inhibition. Application of H89 (10µM) to Myr-PKI + forskolin + IBMX resulted in a potent and 

quick inhibition of PKA activity (n=13 cells. At least 3 independent experiments were 

performed). 
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I went on to use a different protocol that would enable us to probe more subtle effects, if 

any, that Myr-PKI had on PKA activity. PANC-1 cell were transfected with AKAR4, and low 

dose forskolin (10µM) was applied to trigger moderate (non-saturating) FRET sensor 

response. This resulted in approximately 56% FRET shift, indicating PKA activity was 

elevated within the cells (Figure 5.11a). This was followed by application of forskolin 

(20µM) + IBMX (1mM) to ensure a much larger activation of endogenous PKA had occurred, 

which caused full saturation of the FRET sensor. In parallel, another dish of PANC-1 cells 

was pre-treated with Myr-PKI (2µM) for 24 hours prior to imaging (Figure 5.11b). Using the 

same protocol of drug application had revealed the low dose forskolin (10µM) response 

was not significantly affected and was displaying approximately 43% FRET shift. Subsequent 

application of forskolin (20µM) + IBMX (1mM) resulted in full saturation of the FRET sensor, 

indicating PKA activity was not inhibited by Myr-PKI.  
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Figure 5.11.  24 hour pre-treatment with myristoylated-PKI did not result in the inhibition 

of endogenous PKA. PANC-1 cells were transfected with AKAR4. In control cells, application 

of low dose of forskolin (10µM) resulted in approximately 56% FRET shift, and full sensor 

activation was achieved with forskolin (20µM) + IBMX (1mM) (a, n=46 cells. At least 3 

independent experiments were performed). In cells pre-treated with Myr-PKI (2µM) for 24 

hours prior to the experiment, and was maintained throughout the duration of the 

experiment. Low dose forskolin (10µM) was applied and resulted in approximately 43% 

FRET shift. Following this, forskolin (20µM) + IBMX (1mM) was applied and resulted in full 

FRET sensor saturation (b, n=12 cells. At least 3 independent experiments were performed). 
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Following experiments were performed by pre-treating PANC-1 cell with Myr-PKI (2µM) for 

48 hours (Figure 5.12) and 96 hours (Figure 5.13). Remarkably, even with 48 hour pre-

treatment period, low dose forskolin (10µM) response was unaffected as compared to 

control cells. With 96 hours of pre-treatment, the low dose forskolin (10µM) response was 

dampened to approximately 24% FRET shift, which was lower than the 56% FRET shift in 

control cells. However, application of forskolin (20µM) + IBMX (1mM) in all experiments 

resulted in quick saturation of the FRET sensor.  This was an intriguing finding, suggesting 

that moderate level of PKA suppression can be attained after prolonged incubation with 

Myr-PKI. The very slow effect could be potentially explained by low permeability or slow 

accumulation of the compound. 
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 Figure 5.12. 48 hour pre-treatment with myristoylated-PKI did not result in the inhibition 

of endogenous PKA. PANC-1 cells were transfected with AKAR4 PKA FRET sensor. Cells 

were pre-treated with Myr-PKI (2µM) for 48 hours prior to the experiment, which was also 

maintained throughout the duration of the experiment. Low dose of forskolin (10µM) was 

applied and resulted in approximately 51% FRET shift. Following this, forskolin (20µM) + 

IBMX (1mM) was applied and resulted in full FRET sensor saturation (n=18 cells. At least 3 

independent experiments were performed). 
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 Figure 5.13. 96 hour pre-treatment with myristoylated-PKI partially suppressed the 

inhibition of endogenous PKA. PANC-1 cells were transfected with AKAR4. Cells were pre-

treated with Myr-PKI (2µM) for 96 hours prior to the experiment, which was also 

maintained throughout the duration of the experiment. Low dose of forskolin (10µM) was 

applied and resulted in approximately 24% FRET shift. Following this, forskolin (20µM) + 

IBMX (1mM) was applied and resulted in full FRET sensor saturation (n=13 cells. At least 3 

independent experiments were performed). 
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In pursuit of achieving selective and potent inhibition of PKA, I next decided to focus our 

attention on using a plasmid which encoded full length PKI protein. PKI was tagged with 

mCherry which allowed the visualisation of individual cells expressing the protein as well as 

quantification of the relative amount of intercellular expression amongst the cell 

population. I decided to use the same protocol as previously used with Myr-PKI in order to 

enable direct comparison of the data. PANC-1 cells were transfected with AKAR4 and PKI-

mCherry constructs, and did not show any significant FRET shift in response to low dose 

forskolin (10µM). Further application of forskolin (20µM) + IBMX (1mM), which was 

expected to further increase endogenous PKA activation, also did not result in any 

significant FRET shift (Figure 5.14). Furthermore, it was also noted that even weakly 

expressing cells displayed full PKA inhibition, as evident from the lack of any significant 

FRET shift. Inhibition of endogenous PKA activity by PKI-mCherry thus appeared to be very 

potent and gave us confidence that strong endogenous PKA inhibition was attained. 
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Figure 5.14. PKI-mCherry expression potently inhibits endogenous PKA activity. The 

experiment from Figure 5.11a (cell transfected with AKAR4) was compared with PANC-1 

cells that were transfected with AKAR4 and PKI-mCherry (n=51 cells. At least 3 independent 

experiments were performed). Results of both set of experiments were combined on a 

single graph to allow direct comparison of the data. In AKAR4 expressing cells, application 

of low dose of forskolin (10µM) resulted in approximately 56% FRET shift, and full sensor 

activation was achieved with forskolin (20µM) + IBMX (1mM). Cells expressing AKAR4 + PKI-

mCherry displayed no FRET shift to either low dose forskolin (10µM) or the combination of 

forskolin (20µM) + IBMX (1mM).  
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5.5. PKI-mCherry prevents the effect of cAMP induced inhibition of ruffling. 

Having established PKI-mCherry was able to potently inhibit endogenous PKA activity, 

despite the activation induced by forskolin (20µM) + IBMX (1mM), I next proceeded to 

investigate the role PKA in the inhibition of ruffling, paxillin trafficking out of focal 

adhesions, and inhibition of migration.  First, I decided to investigate the effect of PKA 

inhibition on cell ruffling. PANC-1 cell were transfected with PKI-mCherry and imaged 24 

hours later. It is worth noting that typical transfection efficiency which was achieved for 

most of the constructs used was around 30%. Thus, following transfection with PKI-

mCherry, I found both transfected and non-transfected population of cells within the same 

dish. This was partially a favourable situation, as I were able to image both cell populations 

within the same experiment. As mentioned previously though, PKI-mCherry appeared to be 

very potent, so that even low expressing cells displayed inhibition of PKA. Thus, it was 

important to clearly separate transfected cells from non-transfected cell population. To 

achieve this, high laser power corresponding to mCherry excitation was used at the 

beginning and end of the experiments, which clearly separated low expressing cells from 

the non-expressing cells. Following the start of experiment, cells were chosen from both 

populations which displayed stable ruffle kinetic for the duration of the control period. Cells 

were then subjected to application of forskolin (20µM) + IBMX (1mM). Non-expressing cells 

displayed typical inhibition of ruffle formation. In contrast, majority of PKI-mCherry 

expressing cells continued to ruffle (Figure 5.15). These results indicate that PKA activation 

appeared to be the key process responsible for the inhibition of ruffling.  
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Figure 5.15. Expression of PKI-mCherry prevented ruffle inhibition induced by elevation of 

cAMP.  PANC-1 cells were transfected with PKI-mCherry (n=36 cells. At least 3 independent 

experiments were performed). Of the transfected cells, 30 out of 36 cells continued to 

ruffle in the presence of forskolin (20µM) + IBMX (1mM). In contrast, adjacent non 

transfected cells showed typical reversible inhibition of ruffling. Scale bar corresponds to 

5µm. 
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To confirm the results obtained with PKI-mCherry, which displayed that PKA inhibition 

prevented ruffle inhibition induced by cAMP, I utilised another genetically encoded 

inhibitor of PKA: dominant negative PKA tagged with GFP (dnPKA-GFP). The mechanism by 

which inhibition of endogenous PKA is achieved, is through expression of a regulatory 

subunit of PKA which contains mutated residues at the docking site responsible for 

interaction with the catalytic subunits. This causes altered binding of the endogenous 

catalytic subunits in such a way, that they can’t dissociate, and thus they remain in an 

inactive state. Provided the construct is sufficiently expressed, it will outcompete 

endogenous regulatory subunits, and thus would have a net effect of inhibiting global 

endogenous PKA signalling.  

 

In order to determine the ability of dnPKA to suppress PKA activation induced with forskolin 

(20µM) + IBMX (1mM), PANC-1 cells were dual transfected with AKAR4 and dnPKA-GFP. 

Cells were imaged approximately 24 hours after transfection. Dual transfected cells 

displayed greatly suppressed PKA activation in response to forskolin (20µM) + IBMX (1mM). 

Approximately 90% of cells displayed strong inhibition of PKA, so much so that no 

significant shift in the FRET ratio could be seen (Figure 5.16a). In the remaining 10% of the 

cells, responses varied, with some cells showing no apparent dampening of PKA activity, 

while others displayed a slower rate of change of the FRET ratio shift, indicating that some 

level of PKA suppression was achieved (Figure 5.16b). Unlike PKI-mCherry, dnPKA-GFP did 

not induce strong inhibition in all the cells, but rather in the majority of cells. Thus in any 

subsequent experiments utilising this construct, especially involving single cell 

observations, cells were co-transfected with AKAR4 to monitor PKA activity and ensure that 

it was indeed inhibited. 
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Figure 5.16. Transfection of dnPKA resulted in strong suppression of endogenous PKA 

activity in the majority of PANC-1 cells. PANC-1 cells were transfected with AKAR4.  Cells 

were co-transfected with dnPKA-GFP. Forskolin (20µM) + IBMX (1mM) were applied, 

however no FRET shift was seen, indicating that PKA activity was strongly suppressed. This 

was observed in 20 out of the 24 cells, and a representative trace of a single cell is show in 

upper part of the figure (a). However, 4 out of the 24 cells displayed AKAR4 responses; 

representative trace is displayed in lower part of figure (b) (n=24 cells. At least 3 

independent experiments were performed). 
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Having established dnPKA-GFP was able to strongly inhibit PKA in the majority of 

transfected cells, I wanted to confirm the results obtained with PKI-mCherry and ruffling 

experiments.  As mentioned previously, not all cells displayed strong inhibition of PKA, thus 

I decided to co-transfect cells with both dnPKA-GFP and the AKAR4. This enabled us to 

monitor both the intracellular PKA activation along with ruffle formation. PANC-1 cells were 

transfected with AKAR4 and dnPKA-GFP, and were imaged 24 hours later. Forskolin (20µM) 

+ IBMX (1mM) induced the characteristic inhibition of ruffles in non-expressing cells (data 

not shown). Duel transfected cells however, displayed no significant shift in AKAR4 FRET 

ratio, and did not display inhibition of ruffling (Figure 5.17). These results confirmed 

previous observations made with PKI-mCherry, supporting the finding that inhibition of 

ruffling by elevation of cAMP is due to activation of endogenous PKA. 
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Figure 5.17. Genetic inhibition of endogenous PKA prevented ruffle inhibition induced by 

elevation of cAMP. PANC-1 cells were transfected with AKAR4. Cells were co-transfected 

with dnPKA-GFP. Forskolin (20µM) + IBMX (1mM) was applied, however the PKA FRET 

sensor confirmed that endogenous PKA was strongly suppressed in this cell. Simultaneous 

recording of ruffling, revealed that PKA suppression prevented ruffle inhibition by 

forskolin/IBMX (n= 3 cells. 3 independent experiments were performed. Scale bar 

corresponds to 5µm). 
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5.6. Selective PKA inhibition prevents the loss of paxillin from focal adhesions in response 

to cAMP elevation. 

I next concentrated on establishing whether PKA inhibition would prevent cAMP induced 

loss of paxillin from focal adhesions. PANC-1 cells were transfected with paxillin-GFP alone 

or in combination with PKI-mCherry. Cells were imaged for 15 minutes as a control period; 

this was followed by 30 minutes of forskolin (20µM) + IBMX (1mM) treatment. Cells that 

did not express PKI-mCherry displayed typical loss of paxillin out of focal adhesions in 

response to forskolin + IBMX application (Figure 5.18). In cells expressing PKI-mCherry 

however, paxillin loss from focal adhesions was greatly reduced. 

 

In order to quantify the effect of forskolin + IBMX on paxillin trafficking, its fluorescence 

within focal adhesions was compared to cytosolic levels as previously described. Very 

briefly, regions of interest were drawn around each of the clearly visible focal adhesions. 

Corresponding regions of interest was drawn in the vicinity of the focal adhesion. A ratio of 

paxillin intensity within a focal adhesion relative to adjacent cytosolic fluorescence was 

calculated to reveal the level of paxillin incorporation within the focal adhesion. After the 

data was combined for paxillin (Figure 5.18) and paxillin + PKI-mCherry (Figure 5.19) cells, it 

was found that PKA inhibition significantly prevented paxillin loss from focal adhesions 

(Figure 5.20). Immediately prior to addition of forskolin (20µM) + IBMX (1mM), the ratio of 

focal adhesion to cytosolic paxillin was calculated for paxillin-GFP only expressing cells as 

2.24. Cells expressing both paxillin-GFP and PKI-mCherry displayed a ratio of 2.13. Following 

elevation of cAMP by forskolin (20µM) + IBMX (1mM) for 30 minutes in paxillin transfected 

cells, the ratio  was reduced to 1.32; while paxillin + PKI-mCherry expressing cells displayed 

a drop to only 1.82, which was significantly higher than that for the control condition.  
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Figure 5.18. Cell transfected with paxillin-GFP displayed typical loss of paxillin from focal 

adhesions in response cAMP elevation. PANC-1 cells were transfected with paxillin-GFP. 

After a 900 second control period, forskolin (20µM) + IBMX (1mM) was applied for a 

duration of 1800 seconds. Paxillin-GFP transfected cells displayed typical loss of paxillin out 

of focal adhesions in response to cAMP elevation (n=23 cells. At least 3 independent 

experiments were performed. Scale bar corresponds to 10µm). 
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 Figure 5.19. In cells expressing paxillin-GFP and PKI-mCherry, paxillin loss from focal 

adhesions in response to forskolin + IBMX was suppressed. PANC-1 cells were duel 

transfected with paxillin-GFP and PKI-mCherry. After a 900 second control period, forskolin 

(20µM) + IBMX (1mM) was applied for a duration of 1800 seconds. Duel transfected cells 

displayed much reduced loss of paxillin out of focal adhesions in response to cAMP 

elevation (n=29 cells. At least 3 independent experiments were performed. Scale bar 

corresponds to 10µm). 
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Figure 5.20. Inhibition of PKA prevents paxillin loss from focal adhesions in response to 

cAMP elevation. PANC-1 cells were transfected with paxillin-GFP only (n=23 cells) or in 

combination with PKI-mCherry (n=29 cells). Cells were imaged for a 900 second control 

period, after which forskolin (20µM) + IBMX (1mM) was applied for 1800 seconds. For both 

single and dual transfected cells, the focal adhesion incorporated paxillin relative to 

cytosolic paxillin was calculated immediately before application of drugs, and 1800 seconds 

after. Immediately prior to drug application, cells expressing paxillin-GFP displayed 2.24 fold 

higher fluorescence in focal adhesions relative to the cytosol. After 1800 seconds of 

forskolin (20µM) + IBMX (1mM) treatment, paxillin ratio was reduced to 1.32. Immediately 

prior to drug application, cells expressing paxillin-GFP and PKI-mCherry displayed 2.13 fold 

higher fluorescence in focal adhesions relative to the cytosol. After 1800 seconds of 

forskolin (20µM) + IBMX (1mM) treatment, paxillin ratio was reduced to only 1.82; 

displaying a significant rescue relative to paxillin-GFP expressing cells. (At least 3 

independent experiments were performed. Results that were statistically significant to 

p<0.05 are indicated by * symbol). 
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5.7. Selective PKA inhibition prevents the induced inhibition of migration. 

Having confirmed the involvement of PKA signalling in controlling ruffling and paxillin focal 

adhesion trafficking, I now turned our attention to migration of PANC-1 cells. I used Boyden 

chambers to measure migration as previously described. However, one key difference 

which was employed specifically for these set of experiments was the use of Boyden 

chambers with a membrane which that prevented the bleed-through of fluorescence from 

top of the membrane to the bottom side (BD Fluoroblok coating). Thus, there was no need 

to remove non-migrated cells from the top well, and the chambers could be imaged live 

without fixation. This was advantageous in this particular situation, as I were interested in 

only imaging transfected cells. Two experiments were performed in parallel; cells were 

either transfected with PKI-mCherry or a plasmid encoding mCherry only. Each set of cells 

was treated with a control vehicle or forskolin (20µM) + IBMX (1mM). Following 6 hours of 

migration, transfected cells which migrated to the bottom of the membrane were imaged. 

The number of drug treated cells were normalised to the corresponding control condition, 

and displayed as a percentage. Application of forskolin (20µM) + IBMX (1mM) was found to 

inhibit migration of mCherry only transfected cells to 13% of the control. However, PKI-

mCherry expressing cells displayed a significant rescue of migration to 48% of their 

corresponding control (Figure 5.21). As with paxillin, I do not see a complete rescue of 

migration when I inhibit PKA. This would suggest that other effectors besides PKA could be 

involved in further suppressing PANC-1 migration. However it is important to note that the 

results indicate that PKA plays a major role in inhibiting cell migration.  
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Figure 5.21. PKI-mCherry significantly suppresses forskolin + IBMX induced inhibition of 

migration. Cell migration was investigated using Boyden chambers supplemented with 

DMEM + 1% FBS in both top and bottom wells. Cells were allowed to migrate from top to 

bottom wells for 6h post seeding. Results were normalized relative to the corresponding 

control and displayed as a percentage. PANC-1 cell were either transfected with PKI-

mCherry or a vector encoding mCherry only. Each group was treated with control vehicle or 

forskolin (20µM) + IBMX (1mM); mCherry only expressing cells were inhibited to 13% 

relative to their control, while PKI-mCherry expressing cells were inhibited to only 48% 

relative to their control (n=6 Boyden chambers for each condition. At least 3 independent 

experiments were performed. Results that were statistically significant to p<0.05 are 

indicated by * symbol). 
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5.7.1. PKA inhibition induces cell migration. 

Having established that PKA activation inhibits PANC-1 migration, I wanted to find out 

whether inhibiting basal PKA activity would affect migration. PANC-1 cells were transfected 

with either PKI-mCherry or a plasmid encoding mCherry only. It was found that inhibition of 

PKA accelerated migration rate to 139% relative to cells expressing mCherry (Figure 5.22). 

This result was not however statistically significant (P=0.0998). This result suggested that 

PKA signalling in plays a net negative role in controlling migration; thus when PKA activity 

was inhibited, migration rate had a tendency to increase.  
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Figure 5.22. The effect of PKI-mCherry expression on cell migration. Cell migration was 

investigated using Boyden chambers supplemented with DMEM + 1% FBS in both top and 

bottom wells. Cells were allowed to migrate from top to bottom wells for 6h post seeding. 

PANC-1 cells were either transfected with PKI-mCherry, or mCherry only (n=6 Boyden 

chambers for each condition. At least 3 independent experiments were performed. These 

results were not statistically significant). 
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5.7.2. Uncoupling PKA from signalling microdomains by disrupting its binding to AKAPs 

enhances cellular migration rate. 

Intrigued by the previous finding, I wanted to further investigate the role of PKA in 

migration, specifically with respect to compartmentalised PKA signalling.  As described 

previously, the majority, if not all of PKA is targeted to various compartments of the cell 

through association with AKAP’s (Pidoux & Tasken, 2010). This helps regulate the rather 

broad substrate specificity that PKA has, and produce spatially and temporally restricted 

signalling complexes. To see what would happen if PKA was uncoupled from such signalling 

domains, I utilised a peptide named st-Ht31. This cell-permeable compound is able to 

inhibit the interaction between PKA regulatory subunits and AKAP’s (Rosenmund et al., 

1994; Pidoux & Tasken, 2010). Cell migration was investigated using standard Boyden 

chambers as described previously. Cells were treated with either control inactive peptide 

st-Ht31P (2µM) or the active peptide st-Ht31 (2µM). Following 6 hours of migration cells 

were quantified. These experiments revealed a remarkable result: cells treated with active 

AKAP binding disruptor peptide migrated much faster than control cells. Migration rate 

increased to 240% of the control condition (Figure 5.23). These results indicated that PKA 

signalling is important in modulating cell migration, and that disruption of 

compartmentalised PKA signalling could lead to large increase in cell migration. It can also 

be speculated that the induction of migration induced by PKA uncoupling could be due to 

the remaining unaffected and unopposed EPAC signalling. This is consistent with our results 

indicating that selective EPAC activation can lead to the potentiation of migration (see 

Chapter 4, Figure 5.3). 
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Figure 5.23. Disrupting compartmentalised PKA signalling with st-Ht31 potentiated PANC-

1 migration. Cell migration was investigated using Boyden chambers supplemented with 

DMEM + 1% FBS in both top and bottom wells. Cells were allowed to migrate from top to 

bottom wells for 6h post seeding. Results were normalized relative to control inactive 

peptide and displayed as a percentage. Treatment with st-Ht31 (2µM) resulted in strong 

potentiation of PANC-1 migration (n=6 Boyden chambers for each condition. At least 3 

independent experiments were performed. All results were statistically significant to 

p<0.05 and indicated by * symbol).  

 



 Chapter 5 – PKA and EPAC have opposing action on migration  

140 
 

Summary of the key results in Chapter 5. 

In this chapter I utilised selective inhibitor of PKA and selective activators of PKA and EPAC. 

The selectivity of these compounds was confirmed using EPAC based sensor and AKAR4. 

The results of experiments involving selective inhibition of PKA suggested that the observed 

cAMP-induced inhibition of PANC-1 migration (and processes associated with migration) is 

mediated by PKA. This conclusion was strengthened by observation that a PKA activator 

induced significant inhibition of migration. Interestingly, selective activation of EPAC 

potentiated the migration, highlighting the opposing actions of two primary cAMP sensors 

on the motility in this type of cancer cells. 
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6.1. cAMP inhibits migration in 5 diverse PDAC cell lines.  

Pancreatic ductal adenocarcinoma (PDAC) is characterised by a very high mortality rate 

(Siegel et al., 2012). The disease initially develops asymptomatically and at the time of 

diagnosis patients usually have multiple metastases (Rhim et al., 2012). Cellular migration is 

important for the development of metastasis. Therefore, our studies of the mechanism 

involved in the regulation of this process (in our case cAMP-dependednt mechanisms) are 

important for the understanding of the disease. The development of pancreatic 

adenocarcinoma occurs through accumulation of various mutations and genetic alterations 

leading to the activation of oncogenes (e.g. activation of KRAS) as well as inactivation of 

tumour suppressor genes (e.g. SMAD4) (Iacobuzio-Donahue et al., 2012). Due to the 

random nature of acquiring multiple mutations, this can lead to the development of 

different sub-classes of the same disease (Jones et al., 2008). It is therefore important to 

consider that differential development of the disease amongst patients can be due to 

involvement of different cellular mechanisms; and so it is important to test the role of 

specific signalling processes on as many diverse forms of pancreatic adenocarcinoma as 

practical. For this reason, I decided to focus on using 5 diverse pancreatic adenocarcinoma 

cell lines which encompass different gene mutations and tumorigenicity potential (Moore 

et al., 2001; Deer et al., 2010). The following pancreatic adenocarcinoma cell lines were 

studied in our investigation: PANC-1, SUIT-2, BxPC-3, Capan-2, and MIA PaCa-2.  PANC-1 cell 

lines were originally cultured from the primary tumour of a 56 year old male with 

adenocarcinoma being present in the head of the pancreas (Lieber et al., 1975). Invasion of 

the carcinoma was found in the duodenal wall of the patient. SUIT-2 was derived from a 

metastatic liver tumour with pancreatic carcinoma origin (Iwamura et al., 1987). BxPC-3 

was obtained from a 61 year old woman from an adenocarcinoma in the body of the 

pancreas (Tan et al., 1986). Despite chemotherapy and radiation treatments the patient 

died within 6 months. Capan-2 originated from a 56 year old male diagnosed with 
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pancreatic adenocarcinoma (Kyriazis et al., 1986). The cell line was derived from the 

primary tumour. MIA PaCa-2 cell line was derived from a 65 year old man with the 

pancreatic adenocarcinoma (Yunis et al., 1977). No information is available whether 

metastasis had occurred within the patient; cell line was established from the primary 

tumour. 

 

Four most common genetic alterations which occur within pancreatic cancers include v-Ki-

ras2 Kirsten rat sarcoma viral oncogenes homolog (KRAS); the mutation leads to 

constitutively active form of KRAS (Malumbres & Barbacid, 2003).  Alterations in the TP53 

tumour suppressor gene, encoding for the protein p53, is also commonly muted in many 

pancreatic cancer cell lines, resulting in a non-functional protein (Scarpa et al., 1993). 

Tumour suppressor protein SMAD4 (also known as DPC4) is also commonly inhibited 

though mutations or is deleted in approximately 50% of pancreatic adenocarcinoma cell 

lines (Kim et al., 1996). Similarly, tumour suppressor CDKN2Aα (also known as p16) is also 

inhibited through genetic mutations or is fully deleted in many pancreatic adenocarcinoma 

cell lines studied (Caldas et al., 1994). The cell lines used in this study all have different 

mutations which between them cover the four most common genetic alterations. Mutated 

KRAS was found in Capan-2 (Berrozpe et al., 1994; Aoki et al., 2000; Moore et al., 2001; 

Loukopoulos et al., 2004), MIA PaCa-2 (Durodola, 1975; Berrozpe et al., 1994; Kita et al., 

1999; Moore et al., 2001; Sun et al., 2001), and PANC-1 cells (Berrozpe et al., 1994; Kita et 

al., 1999; Yang et al., 1999; Sun et al., 2001; Loukopoulos et al., 2004). However, wild type 

KRAS was present in BxPC-3 cells (Berrozpe et al., 1994; Aoki et al., 2000; Sun et al., 2001; 

Loukopoulos et al., 2004).  In contrast, mutated TP53 was found in BxPC-3 (Berrozpe et al., 

1994; Caldas et al., 1994; Sun et al., 2001; Loukopoulos et al., 2004), MIA PaCa-2 (Berrozpe 

et al., 1994; Caldas et al., 1994; Moore et al., 2001; Sun et al., 2001) and PANC-1 (Berrozpe 
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et al., 1994; Caldas et al., 1994; Yang et al., 1999; Moore et al., 2001; Sun et al., 2001; 

Loukopoulos et al., 2004). However discrepancy was found which indicated that Capan-2 

cells either had wild type TP53 (Caldas et al., 1994; Loukopoulos et al., 2004) or a mutation 

at intron 4, which resulted in a 200 base pair deletion (Berrozpe et al., 1994). SMAD4 was 

found to be wild type in Capan-2 (Loukopoulos et al., 2004), MIA PaCa-2 (Moore et al., 

2001; Sun et al., 2001) and PANC-1 (Moore et al., 2001; Sun et al., 2001; Loukopoulos et al., 

2004) cell lines. BxPC-3 on the other hand displayed a homozygous deletion of SMAD4 

(Hahn et al., 1996; Aoki et al., 2000; Sun et al., 2001; Loukopoulos et al., 2004). Finally, 

PANC-1 (Caldas et al., 1994; Huang et al., 1996; Moore et al., 2001; Sun et al., 2001; 

Loukopoulos et al., 2004) and MIA PaCa-2 (Caldas et al., 1994; Huang et al., 1996; Moore et 

al., 2001; Sun et al., 2001) both display homozygous deletion of CDKN2Aα tumour 

suppressor. However, discrepancy was found with both BxPC-3 and Capan-2 cell lines. Both 

wild type (Loukopoulos et al., 2004) and homozygous deletion (Caldas et al., 1994; Huang et 

al., 1996; Sun et al., 2001) were found in BxPC-3 cells. Capan-2 cells displayed either wild 

type (Loukopoulos et al., 2004), or have a mutation which resulted in a 6 base pair insertion 

(Caldas et al., 1994) or 7 (Huang et al., 1996). It is interesting to note that different results 

have been found for mutations of the genes in several cell lines. A possible explanation for 

such findings is that additional gene mutations could have developed over time during 

routine cell culture. Also it is noted that the original tumour sample used to establish a 

particular cell line could its self have had a heterogeneous population of cells (Sun et al., 

2001). The known mutations in the SUIT-2 cell line, are the activating KRAS mutation, 

inactivation of p53, and homozygous deletion of CDKN2Aα (Moore et al., 2001). 

 

After completing experiments with five different cell lines used in this study, I have found 

that elevation of cAMP inhibited migration in all of cell lines tested, regardless of their 
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genetic background. This would strongly indicate that the mechanism responsible for the 

effects of cAMP on migration is common to all cell lines used, and was not specific to a 

particular cell line. Furthermore, this finding would suggest that cAMP elevation can be 

used to suppress migration in a broad range of pancreatic adenocarcinoma genetic 

subtypes. 

 

6.2. cAMP inhibits migration and invasion in different modes of migration.  

As mentioned previously, basic mechanisms which govern cell motility have been well 

documented and are thought to be well understood. In general, cells acquire polarised 

morphology and have a leading and trailing edge. Intracellular signalling ensures active 

protrusion / retraction cycles at the leading edge. The protruding area of the cell can bind 

to the extracellular matrix via integrin mediated adhesion. Contractile forces generated 

within the cell can pull the cell towards the leading edge, while controlled detachment at 

the trailing edge ensures effective migration (Lauffenburger & Horwitz, 1996; Ridley et al., 

2003). This sequence of steps is seen in large variety of epithelial and mesenchymal cells, 

and is a process known as ‘the cell motility cycle’. What is less well defined is intracellular 

polarised signalling which specifically leads to the formation and maintenance of polarised 

morphology (and therefore results in directional migration).  

 

Non-directional migration can occur in response to uniform application of stimulatory 

chemoattractant signals, such as platelet derived growth factor (PDGF) and FBS (Seppa et 

al., 1982; Muinonen-Martin et al., 2010). The resulting migration can be fast, however it 

usually lacks specific directionality, as the net movement of the cells would be much 

smaller than the total distance travelled. Upon application of a gradient of 
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chemoattractant, the cells acquire a steering mechanism which is coupled to the cell’s 

migratory machinery. The resulting movement is a lot more coordinated with a higher 

intrinsic directionality; ratio of net movement relative to total movement is much higher in 

chemotactic migration (Martin & Martin, 2000; Arrieumerlou & Meyer, 2005). Interestingly, 

there is not always a correlation between chemoattractant application and migration, as 

chemoattractants which increase random migration often result in decreased directional 

migration (Bosgraaf et al., 2005; Pankov et al., 2005). It was therefore important to test the 

ability of cells to migrate both in non-directional and directional fashion, as the differences 

between the intracellular signalling networks which are used by the cells for different types 

of migration can lead to altered responses to inhibitory agents. Thus, after performing 

experiments which utilised non-directional mode of migration and observed that cAMP 

elevation resulted in the inhibition of PANC-1 migration, I then proceeded to investigate 

directional mode of migration which was induced by a 0-10% gradient of FBS across the 

Boyden chambers. I found that cAMP increase also resulted in a strong inhibition of PANC-1 

directional migration, indicating that cAMP elevation was affecting signalling mechanisms 

common to both types of migration modes. 

 

Invasion is another key process which leads to the formation of cancer metastasis (Takada 

et al., 2002). This highlights the importance of investigating not only migration, but also the 

ability of cell to invade. I used matrigel coated Boyden chambers which had a 

homogenously coated surface and occluded pores. Matrigel is a solubilised basement 

membrane extracted from Engelberth-Holm-Swarm (EHS) mouse tumour, and consists 

mainly of laminin, type IV collagen, heparin sulphate, and entactin (Hughes et al., 2010). 

Matrigel is one of the most commonly used extracellular matrix, and is often used in cell 

invasion studies (Albini et al., 1987). First I tested invasion in conditions of equal FBS 
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concentration in upper and lower chambers, and found that elevation of cAMP strongly 

inhibited this process in PANC-1 cells. I proceeded to test directional invasion induced by 

asymmetric FBS, and also found that invasion of PANC-1 cells displayed was strongly 

inhibited by cAMP elevating agents. Thus, I have found that elevation of cAMP can strongly 

inhibit both non-directional and directional modes of invasion. I can therefore conclude 

that cAMP elevation can inhibit both migration and invasion, and furthermore that this 

inhibition can be observed in the presence and absence of FBS gradient (indicating there 

was a common mechanism involved which cAMP elevation effected to abrogate cell 

motility). 

 

6.3. Elevation of cAMP inhibits ruffling.   

Ruffles are small, actin-rich, sheet-like membrane protrusions. Currently there are two clear 

groups of ruffle formations both of which are formed primarily from polymerised actin. 

Dorsal ruffles are formed on the dorsal surface of cells, and form circular structures before 

disappearing. It is thought that dorsal ruffles are responsible for receptor internalization 

and macropinocytosis (Buccione et al., 2004). Another form believed to be distinct from 

dorsal ruffles (Suetsugu et al., 2003), are the peripheral ruffles which assemble at the 

leading edge of migrating cells (Abercrombie et al., 1970). It is the peripheral ruffles at the 

leading edge of cells that are associated with cell motility. These structures arise from thin 

lamellipodia extensions which typically extend 1-3µm past the cell lamellum (Ponti et al., 

2004). Upon extension the lamellipodium can form focal complexes with the underlying 

extracellular substratum. If however insufficient adhesion is made or adhesions complexes 

become detached, the lamellipodium is withdrawn, causing it to move backwards and 

change its position upwards. At this stage, the withdrawn lamellipodial protrusion structure 

is classified as a peripheral ruffle (Abercrombie et al., 1970; Giannone et al., 2007). During 
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the lifetime progression of a peripheral ruffle, it moves backwards (with respect to the 

direction of cell membrane protrusion) before disappearing closely behind the leading edge 

of the cell, which is around the boundary between cell lamellum and lamellipodium. 

Continuous cycle of lamellipodial membrane protrusion and subsequent retraction gives 

rise to formation of membrane ruffles (Chhabra & Higgs, 2007). As mentioned previously, 

the principal mediators which control the membrane protrusions are the Rho GTPases 

(such as RhoA, Rac1, and Cdc42). Important downstream effectors which control actin 

polymerisation events include the Arp2/3 complex which enables branched actin 

polymerisation to take place (Suetsugu et al., 2003; Svitkina, 2007). In our studies 

performed with PANC-1 cells, I found that cAMP elevation led to inhibition of peripheral 

ruffles, which was accompanied by decreased actin localisation within the ruffle structures. 

Our data therefore demonstrated that elevation of cAMP can not only inhibit migration 

(measured using Boyden chambers with 6 hour time interval), but also suppress relatively 

quick events associated with migration, such as ruffling. Following these observations, it 

became clearer that cAMP induced inhibition of migration was unlikely to occur due to 

long-term signalling changes as a result of altered gene expression, but was more likely to 

develop as a result of immediate signalling events such as phosphorylation of proteins 

involved in migratory machinery induced by cAMP. 

 

6.4. cAMP elevation causes paxillin to dissociate from focal adhesions.  

To enable efficient motility, cells first need to attach to the extracellular matrix. This occurs 

though specialised areas on the membrane that contain transmembrane integrin receptor 

proteins, which are capable of directly binding to the extracellular matrix components 

(Burridge et al., 1988; Jockusch et al., 1995; Schwartz et al., 1995; Hynes, 2002).  Cell-matrix 

adhesions also play vital roles in biological processes such as cell survival, proliferation, 
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regulation of gene expression, and cell differentiation (Burridge et al., 1988). The 

assemblies of integrins are accompanied by a large number of specialized scaffolding 

molecules, kinases, phosphatases, lipases, GTPases and proteases (Schwartz et al., 1995; 

Dedhar, 2000; Geiger et al., 2001; Zamir & Geiger, 2001b; Hynes, 2002; Brakebusch & 

Fassler, 2003; DeMali et al., 2003). The arrangement of these molecules is termed in 

general as focal adhesions, which serve many functions, one of which includes binding to 

actin cytoskeleton to enable tractional forces and subsequent cell movement. Over 50 focal 

adhesion associated proteins have already been identified (Zamir & Geiger, 2001a, 2001b), 

and the number of proteins which participate in the diverse formation of focal adhesions 

continues to grow. Although one could speculate that all of the proteins which participate 

in focal adhesion formation are important, some proteins have so far been found to play 

more important roles than others. These include proteins such as β1 integrin (Brakebusch & 

Fassler, 2005), Src kinase (Frame, 2004), FAK (Avraham et al., 2000; Parsons, 2003; Mitra et 

al., 2005), paxillin (Schaller, 2001; Brown & Turner, 2004), talin (Campbell & Ginsberg, 2004; 

Critchley, 2005), vinculin (Critchley, 2004; Ziegler et al., 2006), GIT (Hoefen & Berk, 2006), 

α-actinin (Otey & Carpen, 2004), profilin (Witke, 2004), and PTP1B (Bourdeau et al., 2005). 

 

Paxillin is a very important focal adhesion associated protein that localises to newly forming 

focal complexes and well established focal adhesions (Laukaitis et al., 2001). The main 

function of paxillin is to integrate signals from integrins and growth factor stimulated 

receptors, which can subsequently result in efficient cell migration (Brown & Turner, 2004). 

Paxillin does not possess any kinase activity, and as a result its functions depend on the 

ability to act as a large adaptor protein forming many associations with other regulatory 

proteins (Brown & Turner, 2004). The associations are often controlled by phosphorylation 

state of both paxillin and its associated proteins (Turner et al., 1989; Turner, 2000b; Turner 
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et al., 2001). Paxillin is important in migration and cell adhesion as was demonstrated by 

the finding that tyrosine phosphorylation of paxillin on residues 31 and 118 resulted in 

subsequent association with CrkII adaptor protein through its SH2 domain; mutation of 

these sites resulted in the inhibition of migration (Petit et al., 2000). The interaction of 

paxillin with CrkII has also been implicated in epithelial to mesenchymal transition (EMT), 

which is an important step in cancer progression (Lamorte et al., 2003). Furthermore, the 

formation of the paxillin-Crk complex at focal adhesions can lead to activation of Rac1 

through the action of Crk-DOCK180 complex (Kiyokawa et al., 1998). Another important 

function of paxillin has been shown to control activation of extracellular signal-regulated 

kinase (ERK) at focal adhesions (Hagel et al., 2002). Phosphorylation of tyrosine 118 on 

paxillin by Src kinase creates a docking site for ERK, causing it to be sequestered into focal 

adhesions (Ishibe et al., 2003). Interestingly, ERK can then phosphorylate paxillin causing 

recruitment of FAK, resulting in increased cell migration rates (Liu et al., 2002b). Paxillin can 

also interact with GIT proteins, which causes recruitment of MEK, resulting in ERK activation 

at focal adhesions (Yin et al., 2004).   

 

FAK is an important focal adhesion associated protein that binds to paxillin (Turner, 2000a; 

Schaller, 2001). It was discovered through independent studies in the early 1990’s as a 

highly tyrosine phosphorylated protein that localised within focal adhesions; and that its 

tyrosine phosphorylation was linked with its association with focal adhesions (Parsons, 

2003). FAK function was found to be important in embryonic morphogenesis (Ilic et al., 

1995). Although in contrast to initial expectations, active FAK seems to increase the 

turnover of focal adhesion structures, while knockout results in excessive formation (Webb 

et al., 2004). Loss of FAK function has also been reported to alter microtubule polarization 

(Palazzo et al., 2004), which is important for establishment of cell polarity during migration. 
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FAK has also been implicated in regulating activity of Rho GTPases (Ren et al., 2000) and 

therefore is important for the remodelling of actin cytoskeleton (again highlighting its 

importance for migration). Interestingly, FAK genes has been found to be amplified in a 

number of human cancer cell lines (Agochiya et al., 1999). There have also been reports 

indicating FAK was over expressed in many highly malignant cancers (Cance et al., 2000), 

and was associated with formation of invadopodia structures (Hauck et al., 2002).  

Targeting of FAK to focal adhesions occurs through the C-terminal focal-adhesion targeting 

(FAT) domain (Mitra et al., 2005). Association of FAK however does not occur directly with 

integrins, but rather through association with other integrin binding proteins such as talin 

and paxillin (Schlaepfer et al., 2004). The FAT domain can also bind  and activate p190 

RhoGEF which can lead to RhoA activation (Zhai et al., 2003). Another focal adhesion 

associated kinase, Src, binds to and phosphorylates FAK resulting in its maximal activation. 

FAK associated Src kinase however is able to phosphorylate other target proteins such as 

paxillin and p130Cas (Turner, 2000a; Hanks et al., 2003; Chodniewicz & Klemke, 2004). 

Tyrosine phosphorylation of p130Cas, results in downstream activation of Rac1 causing 

increased lamellipodial protrusion and ruffle formation leading to increased invasion and 

migration rates (Cho & Klemke, 2002; Hsia et al., 2003; Brabek et al., 2004). Thus it can be 

seen that FAK functions are diverse and important in controlling migration and invasion of 

cancer cells, and that FAK associated with paxillin is important for its function. 

 

Vinculin is another important focal contact associated protein that binds paxillin. Vinculin 

structure comprises of a head and tail domain which are separated by a flexible linker 

(Bakolitsa et al., 2004). The protein has binding sites on all three of these domains 

(Critchley, 2000), and one of the best characterised binding partners is talin. Binding of 

vinculin’s head domain to talin, results in vinculin recruitment to focal adhesions. On the 
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other end of the protein, vinculin’s tail section can bind paxillin and F-actin (Ziegler et al., 

2008). What is also interesting about vinculin is its involvement in focal adhesion 

mechanosensitivity. Vinculin incorporation into focal adhesions appears to depend on 

external and internal mechanical forces (Riveline et al., 2001; Galbraith et al., 2002). 

Knockout of vinculin results in reduced cellular tractional forces, and also impairs cell 

spreading and the ability to migrate (Xu et al., 1998; Alenghat et al., 2000; Mierke et al., 

2008). Recent findings have revealed vinculin plays important role in focal adhesion 

assembly which depends on its ability to sense tension. Highest tension detected by 

vinculin correlates with adhesion assembly and enlargement, whereas low tension results 

in dismantling and sliding of focal adhesions (Grashoff et al., 2010). Thus correct function of 

this paxillin-binding protein is also very important in the regulation of focal adhesion 

assembly and cell migration. 

 

The GPCR-Kinase-interacting proteins 1 and 2 (GIT1 and GIT2) are paxillin-binding proteins 

located in cytoplasmic complexes, on the cell periphery, and within focal adhesions. They 

interact with various proteins such as MAPK/ERK kinase 1 (MEK1) kinase, phospholipase Cγ 

(PLCγ), p21-activated kinase (PAK), PAK-interacting exchange factor (PIX), Rac1, CDC42, and 

paxillin (Hoefen & Berk, 2006). Considering its binding partners, it is not surprising to find 

that GIT proteins have important functions in controlling cytoskeletal dynamics. Both GIT-1 

and GIT-2 localise into focal adhesion through the interaction with paxillin; this is mediated 

through LD4 motif on paxillin and a ‘paxillin binding site’ on GIT (Turner et al., 1999; Di 

Cesare et al., 2000; Zhao et al., 2000; Matafora et al., 2001; Mazaki et al., 2001; Brown et 

al., 2002; Lamorte et al., 2003).  
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It is quite clear that the deregulation of the correct function of paxillin can impact the 

ability of cell to achieve efficient migration. The numerous functions of paxillin and its 

important associated binding partners was the motivation for our studies of paxillin 

trafficking (in and out of focal adhesions). Paxillin has been found to efficiently traffic out of 

focal adhesions in response to cAMP elevation, which could be the process that results in 

the inhibition of cell migration and invasion. Furthermore, the relatively quick loss of 

paxillin in response to cAMP elevation suggests that the observed phenomenon develops as 

a result of rapid signalling events and is unlikely to be mediated by cAMP-dependent 

changes in gene expression. 

  

6.5. cAMP elevation causes the breakdown of actin stress fibres.  

Composition of stress fibres consists of bundles of actin which are typically made of 10 to 

30 filaments (Cramer et al., 1997). The major protein that has been found to crosslink the 

filaments has been α-actinin (Lazarides & Burridge, 1975). Stress fibres are also rich in non-

muscle myosin II protein which enables the contraction and shortening of the fibres to 

exert pulling forces (Svitkina et al., 1997; Small et al., 1998). There are three main 

subclasses of stress fibres which have been identified which are based on their localisation 

within the cell. Transverse arc stress fibres form at the ventral surface of cell and are 

attached to focal adhesions. Only one end of the fibre is attached to the focal adhesion, 

while the rest of fibre grows away from it into the dorsal part of the cell, where it often 

terminates at the nucleus (Heath, 1983). Second type are the dorsal stress fibres which are 

also only attached at one end to focal adhesions,  while the rest of the fibre rises up 

towards the dorsal side of the cell (Heath & Dunn, 1978). Finally, ventral stress fibres are 

located at the base of cells and are the most commonly observed stress fibres. Unlike the 

previous two types, ventral stress fibres are attached to focal adhesions at both ends of the 
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fibre (Small et al., 1998). For imaging stress fibres I utilised confocal microscopy which 

allowed us to image a very thin section of the cell; in our experiments I visualised the 

section close to the coverslip, and thus majority of the stress fibres observed were ventral 

fibres. However, since all three classes of fibres are associated with focal adhesions, which 

are located on the ventral part of the cell, some of the stress fibres observed could also 

have been dorsal or transverse arc fibres.  

 

The exact role of stress fibres in cell motility is not fully known, and literature exists to both 

support and reject the idea that stress fibre formation promotes migration (Couchman & 

Rees, 1979; Kreis & Birchmeier, 1980; Burridge, 1981). Following observation that stress 

fibres have contractile properties, it was suggested that they were involved in promoting 

migration (Kreis & Birchmeier, 1980). Although other studies have found that stress fibres 

were in greater abundance in stationary cells, suggesting they function to stabilise cells and 

inhibit their migration (Couchman & Rees, 1979; Burridge, 1981). There does appear to be 

more agreement on the participation of myosin IIA in the tail retraction within migrating 

cells (Even-Ram et al., 2007; Vicente-Manzanares et al., 2007). In migrating fibroblasts the 

ventral stress fibres are positioned in parallel to the direction of motility (Oliver et al., 1994; 

Cramer et al., 1997), and the contractile force generated by the fibres appears to be 

important for motility (Cox & Huttenlocher, 1998; Kirfel et al., 2004). Another study 

conducted on migrating fibroblasts has found that upon disassembly of a posterior focal 

adhesions, the ventral stress fibres detach from them and bind to a new adhesions within 

the cell’s tail (Rid et al., 2005). This can result in stress fibre reorientation and alignment 

with the new direction of migration; and thus the stress fibres could be acting to steer cell 

motility. Taken together, stress fibre formation appears to play a role in cell migration in a 

range of cell types. It is therefore likely that stress fibre disassembly induced through cAMP 
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elevation contributed towards the inhibition of PANC-1 migration. It is also interesting to 

note that like with ruffling and paxillin, stress fibre disassembly was very rapid and 

reversible; again indicating that short-term signalling cascades are likely to be responsible 

for this phenomenon. 

 

6.6. PKA and EPAC have opposing roles in PANC-1 migration.  

Many publications have investigated the effects of the specific downstream effectors of 

cAMP on the migration rate in various cell types and animal models. Rather than finding 

that the effectors have the same role regardless of cell type, it was found that they can 

cause both inhibition and activation of migration, which was dependent on the cell type. To 

give a few examples, it was found that activation of PKA accelerated bovine bronchial cell 

migration (Spurzem et al., 2002). Similarly it was found that PKA activity was required to 

promote neuronal progenitor cell motility (Toriyama et al., 2012). In another example, PKA 

activation was recently found to play an essential role in hypoxia-mediated EMT transition 

in lung cancer cells, resulting in increased migration and invasion (Shaikh et al., 2012). On 

the other hand, migration of endothelial cells was inhibited following activation of PKA (Jin 

et al., 2010). Similarly it was found that migration of mouse embryonic fibroblasts (MEFs) 

and mouse 4T1 breast tumour cells was inhibited as a result of selective PKA activation 

(Chen et al., 2008). Similar diversity in results was found with selective EPAC modulation, 

both inhibition and activation of migration was seen in different cell types. To give a few 

examples, it was found that EPAC activation promoted migration of vascular smooth muscle 

cells (Yokoyama et al., 2008a; Yokoyama et al., 2008b).  In another study, it was found that 

EPAC activation induced migration in several melanoma cell lines (Baljinnyam et al., 2009; 

Baljinnyam et al., 2010). Similarly, it was found that endothelial cell migration was 

stimulated by selective EPAC or PKA activation, which interestingly worked through 
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independent but complementary mechanisms (Lorenowicz et al., 2008). Other contrasting 

studies have found opposing actions of selective EPAC activation. For example, selective 

activation of EPAC inhibited epithelial cell migration by modulating focal adhesions and 

leading edge dynamics (Lyle et al., 2008). Similarly EPAC was found to inhibit proliferation 

and migration of human prostate carcinoma cells (Grandoch et al., 2009).  

 

It is very interesting that activation of the same cAMP effectors can lead to opposing effects 

in different cell types; there are however many explanations why such differences can 

occur. Focusing on PKA, it is known that this kinase has a broad substrate specificity with 

hundreds of direct intracellular targets which have been identified so far (Shabb, 2001). 

PKA however, is not simply homogenously distributed within the cell, but is rather 

sequestered into specific regions of the cell through interactions with AKAPs (Pidoux & 

Tasken, 2010). As mentioned previously, this is a structurally diverse family of proteins that 

currently includes over 50 members which all share a common function of binding PKA 

(Pidoux & Tasken, 2010). The interaction occurs between the regulatory subunit of PKA and 

an amphipathic helix consisting of a stretch of 14-18 amino acids situated on the AKAP (Carr 

et al., 1991). Each AKAP also contains a unique targeting domain which facilitates PKA 

targeting to specific regions within the cell. Furthermore, some AKAPs are able to form 

signal transduction complexes by also binding to other proteins such as 

phosphodiesterases, phosphoprotein phosphatases, and other kinases(Coghlan et al., 1995; 

Schillace & Scott, 1999; Feliciello et al., 2001; Tasken et al., 2001). One example of this is 

the muscle specific AKAP, mAKAP, which has a role of coordinating two cAMP effector 

pathways. mAKAP binds both PKA and phosphodiesterase 4D3 (PDE4D3) to create a 

negative feedback loop. This occurs through PKA phosphorylation of the PDE4D3 which 

increases its activity. Increased degradation of cAMP therefore results in the suppression of 
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PKA activity (Tasken et al., 2001). Interestingly, PDE4D3 also serves to bind EPAC and 

extracellular signal-regulated kinase 5 (ERK5) (Dodge-Kafka et al., 2005). ERK5 

phosphorylation of PDE4D3 leads to inhibition of phosphodiesterase activity and thus 

increases the cAMP concentration (Hoffmann et al., 1999). This causes an increase in both 

PKA and EPAC activity. Through activation of the downstream GTPase Rap1, EPAC is able to 

inhibit MAPK/ERK kinase kinase (MEKK); this leads to suppression ERK5 activity, and thus 

reduces the ERK5 induced PDE4D3 activation. Thus mAKAP does not just simply bind and 

target PKA to specific subcellular regions, but is able to integrate and control multiple 

signalling pathways. It is therefore conceivable that with different expression of AKAPs 

within different cell types, can lead to diverse and even opposing effects on migration in 

response to global cAMP activation.  

 

Global cAMP elevation results in global activation of PKA and EPAC, rather than local 

activation within individual signalling microdomains. This means that all the individual PKA-

AKAP complexes will be activated, and the migration rate seen will be determined by the 

net summation of each microdomain contribution (if any) towards migration. Again, 

differential expression of AKAPs between two cell types could result in opposing effects on 

migration, despite using the same agents to activate PKA. For these reasons, it becomes 

obvious that characterisation of migration in response to global PKA activation is useful at 

providing initial insight and is good as a starting point to research, however in future 

studies it is going to be even more important to modulate PKA activity within individual 

signalling microdomains. This will enable much more accurate characterisation of the 

different roles of PKA within each microdomain and the diverse downstream functions. 
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A number of AKAPs that have been discovered so far and were found to directly interact 

with important cell structures or signalling proteins associated with cell motility, and have 

provided new insight into possible roles played by cAMP/PKA signalling. The following 

AKAPs have been found to directly bind or co-localize with the actin cytoskeleton: ezrin 

(Dransfield et al., 1997; Bretscher, 1999; Bretscher et al., 2002; Gautreau et al., 2002), 

gravin (Nauert et al., 1997; Gelman, 2002), AKAP-KL (Dong et al., 1998a; Diviani & Scott, 

2001), WASP and WAVE complex (Miki et al., 1998; Westphal et al., 2000; Takenawa & 

Miki, 2001). AKAP-Lbc has also been implicated in the association with the cytoskeleton by 

its ability to interact with RhoA GTPase (Diviani et al., 2001; Klussmann et al., 2001). AKAP 

ezrin is found to localise within membrane ruffles and filopodia projections (Amieva et al., 

1999; Menager et al., 1999; Nakamura et al., 2000). This AKAP has been shown to play an 

important role in linking actin cytoskeleton to the cell membrane (Bretscher et al., 1997; 

Bretscher et al., 2002). It has also been implemented in controlling RhoA and Rac1 GTPase 

activities (Mackay et al., 1997; Louvet-Vallee, 2000). WAVE-1 localises to the lamellipodia 

and plays very important roles in controlling Rac1 and Cdc42 GTPases, which enables actin 

filament formation (Takenawa & Miki, 2001; Pollard & Borisy, 2003). AKAP-Lbc is associated 

with stress fibres and has been found to tether PKA together with RhoA at these sites 

(Diviani et al., 2001; Klussmann et al., 2001). It is very interesting to note that PKA can 

directly phosphorylate RhoA on serine 188, which  leads to the enhanced association with 

RhoGDI, causing translocation of RhoA away from the membrane into the cytoplasm and 

resulting in the inhibition of RhoA activity (Lang et al., 1996; Ellerbroek et al., 2003). In 

support of the above findings, the effects of cAMP elevation and/or selective PKA activation 

was found to cause stress fibre disassembly; this could be effectively reversed through 

expression of constitutively active RhoA (Kreisberg et al., 1997), non-phosphorylatable 

RhoA carrying a S188A mutation (Ellerbroek et al., 2003), and overexpression of RhoA 

effector ROCK (Dong et al., 1998b). Interestingly, a recent publication has shown that 
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sequential PKA phosphorylation of RhoA on serine 188 is the main pacemaker driving 

membrane protrusion and retraction cycles within cells (Tkachenko et al., 2011). It is 

interesting to speculate that the inhibition of ruffling I observed could be as a result of 

RhoA phosphorylation by PKA. Continuous global activation of PKA would effectively hyper-

phosphorylate RhoA at Ser188, thus inhibiting its function. With continuous RhoA 

suppression, the protrusion-retraction cycle would be inhibited, and subsequently ruffling 

structures would also be inhibited. Lowering global cAMP would decrease PKA activity and 

restore the fine balance of RhoA activation required to maintain the protrusion-retraction 

cycle, and thus ruffling structures would once again start forming at the cell periphery. 

These considerations provide possible explanation of the results of our experiments. 

 

Other migration associated proteins found to be directly phosphorylated by PKA include 

actin; this phosphorylation of actin has been shown to decreases its ability to polymerise in 

vitro (Ohta et al., 1987). Another interesting direct target of PKA is α4 integrin, 

phosphorylation of which causes inhibition of α4 integrin-paxillin interaction (Gendrel et al., 

1992; Han et al., 2001). The interaction between paxillin and α4 integrin has been shown to 

be of importance in modulating cell migration (Liu et al., 1999; Han et al., 2001; Liu et al., 

2002a). Phosphorylation of α4 integrin by PKA appears to occur mostly in protrusive 

lamellipodial structures and was found to be of great importance for α4β1-dependent 

migration (Gendrel et al., 1992). Interestingly, it has been found that α4 integrin is a type I 

AKAP which directly binds PKA (Lim et al., 2007). Other PKA phosphorylatable proteins 

involved in migration include tyrosine phosphatase PTP-PEST, Src, PAK1, VASP, LASP, 

myosin light chain (MLC) and others, see review (Howe, 2004).  Interestingly, the majority 

of the PKA targets appear to be negatively regulated by phosphorylation events, suggesting 

that PKA usually inhibits migration. These reported results are consistent with our finding 
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that global activation of PKA leads to net inhibition of migration, while suppression of PKA 

tends to potentiate it. 

 

Several AKAPs have been observed to be associated with cancer progression. For example, 

AKAP3 mRNA levels have been found elevated in patients with epithelial ovarian cancer 

(Sharma et al., 2005). In all patients studied, it was found that AKAP3 mRNA levels were 

significantly elevated when compared with normal tissue. Furthermore, high level of 

expression was also associated with decreased survival rate of the patients (Sharma et al., 

2005). Another AKAP which has been associated with familial breast cancer is AKAP-Lbc. 

Polymorphic variation of this protein have been suggested to increase the associated RhoA 

GTPase function and possibly be responsible for the progression of the malignancy 

(Wirtenberger et al., 2006). Another study investigated the mitochondrial targeted AKAP10, 

which is a dual specificity AKAP that binds both type-I and type-II PKA. It was found that 

polymorphism in AKAP10 favoured the binding of RIα subunits, and was associated with 

familial breast cancer (Wirtenberger et al., 2007). This is an interesting finding, as it is 

known that malignant transformation is associated with increased PKA-RI expression, 

and/or with an increase in the PKA-RI : PKA-RII ratio (Bossis & Stratakis, 2004; Neary et al., 

2004). Interestingly, earlier studies with cAMP analogue 8-Chloroadenosine 3’5’-cyclic 

monophosphate (8Cl-cAMP) displayed inhibition of proliferation across a wide variety of 

human cancers both in vitro and in vivo (Tagliaferri et al., 1985; Tagliaferri et al., 1988a; 

Tagliaferri et al., 1988b; Tortora et al., 1988). It was found that this drug could modulate 

the ratio of PKA-RI : PKA-RII; causing an increase in the PKA-RII : PKA-RI ratio that is more 

typically seen in normal healthy tissue (Rohlff et al., 1993; Noguchi et al., 1998). As a result 

of these findings, 8Cl-cAMP has been extensively tested (including several Phase 1 and 

Phase 2 drug trials (Tortora & Ciardiello, 2002) ). The results of our experiments suggest 
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that cAMP analogues could be effective in the inhibition of migration/invasion and 

therefore inhibition of the spread of metastasis. 

 

6.7. Concluding remarks 

I have established that cAMP signalling plays an important role in PDAC cellular migration. 

Interestingly, I found that the downstream effectors PKA and EPAC have opposing roles in 

control of cell motility. Furthermore I characterised rapid cAMP-induced inhibition of 

ruffling and observed that cAMP increases also triggered fast trafficking of paxillin out of 

focal adhesions. These rapid effects suggest that the cAMP action on cellular migratory 

apparatus is unlikely to be mediated by changes in gene expression. The inhibition of 

migration probably occurs as a result of the rapid action of the cAMP effectors on the 

proteins responsible for regulating cell migration. Considering that PKA and EPAC have 

opposing actions on the rate of migration, treatment with cAMP elevating agents could 

create a potential problem, as both effectors will be activated. The results of our 

experiments suggest that selective PKA activation combined with selective EPAC inhibition 

could result in efficient inhibition of migration/invasion of PDAC cells, and therefore should 

be considered as a possible strategy for developing treatments that will prevent or reduce 

metastasis of PDAC. 
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