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Abstract: Abstract 
Dental filling materials are subjected to cyclic compression in the mouth. Nine resin-based composite 
filling materials were subjected to 2000 compression cycles between either 0 and 12 kg, or 0 and 40 
kg. Surface deformation was measured as the diameter of the compression scar and surface 
microhardness determined by a Vickers' microhardness test at 4 sites around the scar. Subsurface 
damage was stained with silver nitrate and the area of stain determined by image analysis software. 
Subsurface microhardness was measured at 4 sites around the stained zone. Surface deformation at 12 
kg was inversely proportional to the surface microhardness at 12 kg. At both loads subsurface damage 
was directly proportional to the subsurface microhardness. Samples with small filler particles 
experienced less subsurface damage than those with larger particles. Silver nitrate staining was found 
to be a useful method for identifying subsurface damage.  
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Determination of Surface and Subsurface Fatigue Damage in Dental 

Composites 

 

Introduction 

Teeth and dental restorations are subject to cyclic loading during both eating and 

at other times. Human beings often clench or grind their teeth together at times of 

mental concentration or stress. The latter often occurs at night and is known as 

bruxism. The forces applied to the natural teeth while eating may vary between 

0.5 and 25 kg [1-3]; but during nocturnal grinding these forces may reach 80 kg 

[4]. Besides causing of abrasion of the surface these forces can also initiate 

cracks in the subsurface [5,6]. Today, dental resin composite materials are 

commonly used to replace missing tooth tissue that has been worn away by 

grinding [7-9].  They have the advantage that they can be directly stuck onto the 

surface without requiring physical locking keyways to be drilled into the teeth [10].   

 

Dental resin composite consist of glass filler particles embedded in a polymer 

matrix based on an epoxy resin (Bisphenol A glycidyl methacrylate). The 

functions of the fillers are to reduce the polymerization shrinkage on setting and 

to increase wear resistance. The first composites were introduced in the mid 

1960’s and advocated solely for fillings in the front teeth that are not subject to 

heavy chewing forces. The fillers were relatively large quartz particles >50 µm in 

diameter. By the mid 1980’s a new generation of materials became available for 

use in the back teeth that are subject to the forces of grinding and clenching. 

These materials required radiopaque glass fillers to make them visible on 

radiographs. The particle size had decreased to below 10 µm; that was still 

relatively large compared to modern materials. Between 1985 and 1990 small 

amounts of colloidal silica (20 nm dia) were added to “fill in” gaps between the 

glass particles. Materials containing glass particles and colloidal silica were called 

hybrid composites. Between 1990 and 1995 the size of the glass particles was 

reduced to around 1µm in diameter. Again these materials contained some 

colloidal silica. They were called microhybrid materials and the majority of dental 

composites currently available are of this type.  Another type of composite is 

based entirely on colloidal silica that has been agglomerated into pre-polymerised 
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particles during the manufacturing process. The materials are called microfilled 

composites.  

 

Dentists place composite fillings by pressing the material into the cavity with 

small packing instruments. The packing force bring the resin to the surface so 

that the surface layer tends to resin rich compared to the subsurface. Also, the 

surface layer does not set as hard as the underlying material because free 

radicals generated from the initiator system compete with oxygen in the 

atmosphere giving rise to an oxygen inhibited layer on the surface [11, 12]. 

 

In 1981 Wu and Cobb developed a method to stain subsurface damage in resin 

composites with silver nitrate [13, 14].  Silver ions (Ag+) penetrate through the 

network of cracks and can subsequently be precipitated as colloidal ionic silver 

(Ag) in the damaged zone. The color of the stained zones results from the 

scattering of light by these colloidal silver particles according to Mie Theory for 

the scattering of light by colloidal particles [15]. The purpose of this study was to 

determine the area of surface deformation and subsurface damage in nine dental 

resin composites caused by low cyclic fatigue. The values were related to the 

composition and properties of the materials.  

 

Materials and Methods 

Nine dental resin composite filling materials were used in the investigation. The 

materials are described in Table 1.  For the purpose of statistical analysis the 

materials are categorized as having Large, Medium or Micro particles. Figure 1 

shows micrographs of the 9 materials to illustrate the particle size and 

configuration.  

 

Twenty disks of each of the materials were fabricated by condensing them into a 

PTFE mould (diameter 7mm x 2.5mm). Seven of the materials were set by photo-

initiation whilst the remaining two were supplied as a two paste system and set 

by chemical initiation after mixing. The specimens were subjected to 2000 

compression cycles in a Universal Testing Machine (Nene Instrument, 

Wellingborough, UK) using a rounded cone indenter. Ten specimens were cycled 

between 0 and 12 kg and the remaining 10 disks between 0 and 40 kg. All cycling 
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was performed under water. A schematic of the apparatus is shown in Figure 2. 

The testing machine recorded the increasing displacement of the indenter during 

the test.   

 

To determine the degree of surface damage the diameter of the compression 

scar was measured with an eyepiece graticule, using an incident light microscope 

(Photomicroscope II, Carl Zeiss, Oberkoken, Germany) with Differential 

Interference Contrast (DIC) to enhance the boundary of the scar.  Surface 

microhardness was determined by making four Vickers’ indentations around the 

scar using a commercial microhardness tester (MPH, Carl Zeiss, Oberkoken, 

Germany). The indentations were made with a load of 200 grams that was 

allowed to stabilize for 30 seconds before measurement. This is standard test for 

dental composites. The position of the surface scar and indentations is shown in 

Figure 3A. 

 

To determine the extent of subsurface damage after compression, the specimens 

were immersed in AgNO3 (3 mol/L) for 72 hours. The specimens were then 

sectioned through the indentation scar with a diamond cutting disk (Isomet, 

Buehler UK, Coventry, UK.) to expose the subsurface.  The sectioned specimens 

were then embedded in PMMA and ground on silica carbide papers (240, 400, 

600, and 1200 grit) to achieve a flat surface. Finally, they were polished on 

microcloth with 50 µm alumina in an ultrasonic polishing machine (Vibromet 

Polisher, Buehler UK, Coventry, UK).  

 

The area of stained subsurface damage was examined with an the incident light 

microscope using crossed polars to exclude directly reflected light and reveal the 

color of the stain. Digital images were taken and the damaged zoned measured 

using image analysis software (Sigma Scan Pro 5.0, SPSS, USA). The 

microhardness of the composite surrounding the damage zone was measured in 

four areas with the microhardness tester.  The position of the stained zone and 

subsurface indentations is shown in Figure 3B. 

 

The values for the diameter of the surface scar and the area of subsurface 

damage were analyzed by one-way Analysis of Variance (ANOVA) followed by 
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Scheffe post hoc tests to determine homogeneous subsets (level p = 0.05). 

Correlations between the four values: surface deformation, surface 

microhardness, subsurface damage and subsurface microhardness, for the 

individual specimens, were made by Pearson’s Correlation coefficient. 

Correlations between the categorized size of the particles and the degree of 

surface deformation and subsurface damage were determined by Kendall’s 

Coefficient (tau-c).  

 

Results: 

 

Surface deformation 

The values for the diameter of the deformation scar and surface microhardness 

are given in Table 2. Table 3 shows the homogeneous subsets for surface 

deformation. 

 

These results shows that for all materials the size of the scar increased with the 

increased load. The increase in size was not directly proportional to the increased 

load.  

 

Subsurface damage 

The values for the area of subsurface damage and subsurface microhardness 

are given in Table 4 and the homogeneous subsets are shown in Table 5.   

 

In terms of subsurface damage, at 12 kg there were four subsets with three of 

materials showing no apparent damage. At 40 kg all the materials except MiH3 

displayed some damage. The post-hoc test discriminated 5 subsets.  

 

Figure 4 shows representative examples of the subsets indicated in Table 5. The 

depression caused by surface deformation can be seen on the samples at 40 kg; 

but not at 12kg.  

 

Figure 5 shows a Scanning Electron Micrograph (x2000) of MPH1. Although 

there are signs of debonding of the resin from the larger particles (arrowed) the 

damaged zone is not as well demonstrated as with silver nitrate staining. 
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Statistical correlations  

The correlations between for the experimental values of the individual samples 

are given in Table 6 

 

The correlation values (tau-c) between the categorized filler particle size and the 

ranked deformation, damage and hardness values are given in Table 7. 

 

The regression analysis indicated a significant inverse relationship between the 

diameter of the deformation scar at 12Kg values (r=-0.51, p<0.001); but the value 

was only just significant at 40Kg (r=-0.34 p=0.04). In terms of subsurface damage 

there was a significant correlation between the degree of subsurface damage and 

the microhardness of the materials. This was stronger at 40 kg than at 12 kg.   

 

Discussion :  

 

In this study silver nitrate was used to stain the zone of subsurface damage. It 

has been shown that this technique can identify damaged zones that are not 

apparent with scanning electron microscopy. The reason for this is that silver 

nitrate is not a stain in the traditional sense of the word. The latter are essentially 

dyes with large complex molecules that cannot penetrate into subsurface crazes 

and cracks. Silver nitrate is a colourless liquid that penetrates as the silver ion 

(Ag+). It is only after the silver has been reduced to ionic silver in the cracks and 

crazes that the colour becomes apparent because of light scattering by these 

particles that are 5-30nm in diameter [15].  

 

Areas of silver staining similar to that show in Fig. 4 have been demonstrated in 

actual fillings that had been removed for replacement after a number of years in 

the mouth [16].  There was often a wear scar on the surface of the filling adjacent 

to the subsurface stain.  

 

It could be argued that the damage is not cumulative; but resulted from the initial 

“impact” of the indenter. This is unlikely because the depth (and therefore the 

volume) of the indentation increased over the 2000 cycles.  
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The results indicated that after 2000 compression cycles at 12 kg there was a 

significant correlation between surface deformation and surface hardness. The 

fact this correlation was much weaker at 40 kg can be explained because, as 

discussed in the introduction, the surface of a dental composite is softer than the 

bulk of the material because of the resin rich effect and oxygen inhibition of the 

free radicals during conversion.  As the overall depth of penetration at 12 kg was 

less that at 40 kg the penetration of the indenter is more likely to be influenced by 

the surface rather than the subsurface hardness. The deeper the penetration the 

more the process is influenced by the subsurface hardness.  

 

With the exception of MPH1, there was no significant difference between the 

surface hardness values at the two loads and for some materials the mean 

values at 40Kg was less than at 12kg (Table 3). The differences are just minor 

differences in surface softness that can be caused by the packing pressure of the 

composite into the mould as this influence the depth of the resin rich layer. The 

large mean value for MPH1 resulted from a very high reading for one specimen. 

This can be caused if the Vickers’ microhardness indenter pressed directly on a 

filler particle.  

 

For all materials the degree of subsurface damage increased with the increased 

load. For some materials there was almost 4 times the degree of damage at the 

higher load. At 12 Kg there was no evidence of subsurface damage with three 

materials based on microparticles. These materials were also in the lowest 

subset for damage at 40 kg. The three large particle composites were all in the 

largest subset at 40 kg. Again, there was no significant difference between the 

subsurface hardness values between 12kg and 40 kg (Table 4). This militates 

against the concept that hardness may increase because the particles are 

compressed by flow of the materials during deformation.  

 

Table 7 shows a high degree of correlation between the categorized particle size 

and both the microhardness, surface deformation (at 12 Kg) and subsurface 

damage. The hardness of the materials must be related to the filler size and 

packing rather than the hardness of the particles because the glass in both some 
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of the medium sized particle and micro particle composites is the same. The 

statistical relationship was only significant if the materials were categorized into 

large, medium and microfilled materials and correlated with the ranked values for 

deformation and damage. The correlation between the values and the actual size 

of the particles for the 9 materials was not significant.  The fact that the microfilled 

materials showed comparatively little damage, as identified by stain, may be 

because the materials can deform elastically rather than nucleating fatigue 

cracks.  

 

Today clinicians use composites to cover the biting surface of worn teeth [17,18]. 

Clinical studies with the early dental resin composites in the 1970’s showed 

excessive wear if these were used on the biting surface of the back teeth. These 

early materials had large filler particles. By 1985 the fillers were in the medium 

range. The results of a 10-year clinical trial indicated that these materials had 

adequate wear resistance for the back teeth[19]. More recent studies have shown 

that the new microhybrid  materials also have an adequate wear resistance in the 

mouth [20,21].   

 

Conclusion:  

Surface Deformation and Subsurface damage varied between different resin 

composites. Overall, the softer the material surface, the more the surface 

deformation. In contrast, the harder the subsurface, the more the subsurface 

damage.  
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Responses to Referees 

 

The referees comments were very helpful.  We had written the paper primarily to 

introduce the technique of silver nitrate staining as a means to identifying damage in 

dental composites that cannot be identified by electron microscopy.  Both referees 

commented that the paper was interesting. The referees correctly pointed out that 

we had overlooked some of the basic science. There is a danger that in making the 

revisions the original reason for submission would be lost. Nonetheless, we have 

altered the paper considerably in the light of the comments. It is clear from both 

referees comments that we did not give enough detail about the technique and , 

hopefully, this has been rectified. It is helpful to consider the second referees 

comments first.  

Referee 2. 

1. We have removed all the commercial names from the manuscript. However, whilst 

we hope that the majority of readers will not be dentists, the paper may be accessed 

by a few dental researchers. They would expect to see commercial names and batch 

numbers to compare with papers in dental journals.  We have put these at the back 

of the paper. The editor can, of course, leave them out at his discretion.  

2. There was no change in microhardness are a result of deformation. Table 2 & 4 

show that the microhardness was not significantly different between the samples that 

had been cycled at 12 kg and the ones cycles at 40kg. The differences are just non -

significant differences between samples. There was a difference between the 

surface hardness and the subsurface hardness of the materials. This is because of 

the surface resin rich layer and the oxygen inhibition of the setting reaction at the 

surface. This has been more clearly explained in the text. 

3. The text has been changed throughout to “low cycle fatigue” 

4. Silver nitrate staining was the focus of my PhD (1990) and I have published a 

number of papers on this subject. The area of damage does increase with increasing 

cycles. In the present experiment the universal testing machine provided a screen 

display of overall displacement of the indenter showing that the depth of indentation 

increased with increasing cycles. Given its geometry (rounded cone) the increase in 

depth must be accompanied by an increase in volume.  This has been included in 

the text. 

  

Response to Reviewers



 

5. The cited papers:  L.H. Mair, The colors of silver with silver nitrate staining in 

dental materials, Dent. Mater. 8 (1992) 110-7. and L.H. Mair, Subsurface 

compression fatigue in seven dental composites, Dent. Mater. 10 (1994) 111-115 

shows a number of SEM micrographs of the area stained by silver nitrate. There is 

normally no evidence of damage on the SEM which is why the silver technique is 

useful. We have now included a SEM for this paper. We have reemphasised that 

silver nitrate is not a dye in the traditional sense of the word. It penetrates into the 

damaged zone as ionic silver (Ag+). When it is reduced to metallic silver it forms 

colloidal particles in nano spaces in the material.  The brown colour results from the 

scattering of light by these particles according to Mie Theory. It is not like black and 

white film where the grains are often microns in diameter.  We have emphasised this 

and included the reference on the colours of silver.  

6. I regret that I don’t understand the Hertz equation; but having looked it up I think 

that we would need to use a much more standard material to test this. 

7. We have removed the diagrams and replaced them with a more detailed statistical 

analysis (Kendall’s tau-c). 

 

Referee 1 

1. This was a most helpful comment. We have changed Table 1 to give more 

information about the materials and included a statistical analysis of the results in 

relation to the size of the filler particles. A small point of misunderstanding in 

comments 5 and 7. This is not an etching technique. Etching means treating the 

material to open up pre-existing flaws. This is a staining or doping technique. As 

stated in Comment  5 above – it isn’t like using a dye because the AgNO3 

penetrates as an ion rather than macromolecules like most dyes.    

2. see 1 above 

3. The load and time for the microhardness tests have now been included in text. It is 

true that the actual zone of damage may be larger than the stained zone. However, 

there is no way to show this. As stated under the response to Referee 1 (No 5) the 

silver staining technique indicated damage does not show on SEM. It is not possible 

to use TEM with these materials because the fillers do not cut cleanly in an 

ultramicrotome. As composite are two phase materials there is a limit to the 

magnification that is possible with SEM. The SEM included for this paper is x2000.  

4. In this experiment we stained the specimens before sectioning; but in other 

studies we have stained them after sectioning so that the silver nitrate can penetrate 

directly into the damaged zone. There is no difference at all in the area of staining 

detected.  



5. Whist we agree with this comment the resin rich layer has been known about for 

many years; but as yet, nobody has been able to quantify it. The depth of the resin 

rich layer is determined by the packing pressure when placing the composite as this 

brings the resin to the surface. This is not controlled in dentistry because it depends 

on the shape of filling. It changes from specimen to specimen. We have included the 

relevant references. 

6. The original statistical analysis has been checked and the probabilities are as 

stated. In response to Comment 1 (above) the data was also correlated to the 

categorised particle size (Large, Medium, Micro) and, as the referee suggested, 

there was a highly significant relationship.  

7. As stated in comment 3 we cannot demonstrate the presence of cracks because 

they do normally show on SEM. However, the images in Fig 6 clearly show that 

something has happened. Whether there are cracks or crazes depend on the 

definition of crazes. Kambour used silver nitrate to dope crazes in polycarbonate 

(Polymer 5 (1963) 143-155). This paper shows that AgNO3 can penetrate these pre-

cracks.  

 

I hope that these responses are helpful.  

 

Lawrence Mair 
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Table 1: Dental resin composites used in this experiment 

 

Material 

 

Code 

 

C 

A 

T 

 

Fillers 

Mean  

filler 

size (µm) 

Filler  

Loading 

Surface 

Hardness 

(Vickers) 

(Kg/mm
2
) 

Subsurface 

Hardness 

(Vickers) 

(Kg/mm
2
) 

Large particle 

composite 1 

LP1  

3 

Quartz  

80 

 

68.2 vol% 

84.0 wt% 

 

101 

 

139 

Large particle 

composite 2
 

LP2  

3 

Quartz  

50 

61.1 vol% 

79.7 wt% 

 

67  

 

396 

Large particle 

composite 3 

LP3  

3 

Barium Glass  

10 

75.5 vol% 

85.7 wt% 

 

77 

 

105 

Medium 

particle hybrid 

composite 1 

MPH1  

2 

Ba-Al-Borosilicate 

glass particles 

+ Colloidal silica  

2.5 µm 

 

20-60 nm 

71.4 vol% 

87.0 wt% 

 

90.4 

 

116 

Medium 

particle hybrid 

composite 1 

MPH2  

2 

Ba-Al-Borosilicate 

glass particles 

+ Colloidal silica 

2.5 µm 

 

20-60 nm 

 65.6 vol% 

80.0 wt% 

 

56 

 

103 

Micro particle 

composite 1  

MiH1  

1 

Ba-Al-Borosilicate 

glass particles 

+ Colloidal silica 

 1 µm 

 

20-60 nm 

57.0 vol% 

77.0 wt% 

 

58 

 

98 

Micro particle 

composite 2 

MiH2  

1 

Ba-Al-Borosilicate 

glass particles+ 

Colloidal silica 

0.7 µm 

 

20-60 nm 

56.0 vol% 

78.0 wt% 

 

59.6 

 

65 

Micro particle 

composite 3 

MiH3  

1 

Ba-Al-Borosilicate 

glass particles+ 

Colloidal silica 

0.6 µm 

 

20-60 nm 

 59.0 vol% 

78.4 wt% 

 

62.7 

 

76 

Microfilled 

composite 1 

MF1  

1 

Colloidal silica 

agglomerated as 

pre-polymerized 

particles (PPP) 

20-60 µm  

 

PPP =30 (µm) 

50 vol% 

60 wt% 

 

26.2 

 

31 

 

LP = Large Particle 

MPH = Medium Particle Hybrid 

MiH = Micro Particle Hybrid 

MF = Microfilled  

 

Table 1
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Table 2: Results for the surface deformation diameter and surface hardness 

 

Material 

Surface 

 Deformation 

12 kg 

(μm) 

Surface 

Microhardness 

(Kg/mm
2
) 

Surface 

Deformation  

40 kg 

(μm) 

Surface 

Microhardness 

(Kg/mm
2
) 

LP1 564.0 ± 43.4 96.8 ± 19.8 936.0 ± 72.3 106.6 ± 6.6 

LP2 642.0 ± 200.4 73.1 ± 6.2 1176.1 ± 109 61.0 ± 4.6 

LP3 662.0 ± 37.0 67.6 ± 3.1 960.0 ± 54.8 77.4 ± 10.0 

MPH1 614.0 ± 115.5 82.8 ± 3.4 820.0 ± 21.2 136.45±78.2 

MPH2 722.0 ± 71.9 55.0 ± 3.6 910.4 ± 11.5 56.7 ± 1.9  

MiH1 748.0 ± 98.8 61.2 ± 0.2 924 ± 23.0 55.2 ± 1.8 

MiH2 852.0 ± 157.9 58.1 ± 1.7 964.0 ± 20.7 61.1 ± 5.0 

MiH3 552.0 ± 31.1 67.9 ± 6.6 952.3 ± 24.9 62.7 ± 0.7 

MF1 774.0 ± 45.1 31.3 ± 11.2 998.0 ± 14.8 26.2 ± 0.9 

 

Table 2
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Table 3: Homogeneous subsets for the surface deformation at 12 and 40 Kg 

Subset Deformation at 12 kg                        ANOVA F = 4.56, p<0.001 

1 MiH3 LP1 MPH1 LP2 LP3 MPH2 MiH1 MF1  

2   MPH1 LP2 LP3 MPH2 MiH1 MF1 MiH2 

Subset Deformation at 40 kg                        ANOVA F = 17.48, p<0.001 

1 MPH1 MPH2 MiH1 LP1 MiH3     

2  MPH2 MiH1 LP2 MiH3 LP3 MiH2 MF1l  

3         LP2 

Subsets determined by Scheffe Multiple Comparison Test (Level p= 0.05) 

Table 3
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Table 4: Results for the subsurface damage and subsurface hardness 

 

Material 

Subsurface Damage  

12 kg 

(μm
2
×10

-3
) 

Subsurface 

Microhardness 

(K/mm
2
) 

Subsurface Damage  

40 kg 

(μm
2
×10

-3
) 

Subsurface 

Microhardness 

(K/mm
2
) 

LP1 58.9 ± 43.9  139.9 ± 23.7 422.1 ± 81.4  139.0 ± 12.1 

LP2 224.6 ± 115.3  454.0 ± 66.7 834.3 ± 112.2  337.1 ± 87.7 

LP3 150.0 ± 20.2  105.0 ± 10.2 707.4 ± 108.7  104.6 ± 14.6 

MPH1 151.3 ± 30.3  100.4 ± 33.7 352.8 ± 52.1  116.0 ± 34.1 

MPH2 128.3 ± 61.6  93.2 ± 14.9 366.1 ± 60.1  114.0 ± 12.0 

MiH1 15.4 ± 10.2 96.8 ± 4.5 170.3 ± 103.4  99.3 ± 6.5 

MiH2 0.00  69.5 ± 6.5 134.6 ± 79.8  60.9 ± 7.2 

MiH3 0.00  74.8 ± 12.9 0.00  80.1 ± 22.0 

MF1 0.00  51.1 ± 27.4 102.0 ± 76.0  30.8 ± 12.2 

 

Table 4
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     Table 5: Homogeneous subsets for the subsurface damage at 12 and 40 Kg. 

Subset Subsurface damage at 12 kg                        ANOVA F = 15.69,  p<0.001               

1 MiH2 MiH3 MF1 MiH1 LP1     

2    MiH1 LP1 MPH2    

3     LP1 MPH2 LP3 MPH1                 

4      MPH2 LP3 MPH1                 LP2 

Subset Subsurface damage at 40 kg                        ANOVA F = 25.96,  p<0.001               

1 MiH3 MiH2 MiH1 MF1 MPH1     

2  MiH2 MiH1 MF1 MPH1 MPH2    

3    MF1l MPH1 MPH2 LP1   

4     MPH1 MPH2 LP1 LP3  

5        LP3 LP2 

Subsets determined by Scheffe Multiple Comparison Test (Level p= 0.05) 
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Table 6. Pearson’s Correlation Coefficients. 

 SURFACE 
DEFORMATION 

12Kg 

SURFACE  
DEFORMATION 

40Kg 

SUBSURFACE 
DAMAGE  

12Kg 

SUBSURFACE 
DAMAGE 

40 Kg 

SURFACE 
HARDNESS 

 

-0.51 
p<0.001 

-0.34 
p=0.04 

  

SUBSURFACE 
HARD 

  0.64 
p<0.001 

0.73 
p<0.001 
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Table 7 Kendall’s tau-c values based on filler size category. 

 SURFACE 
DEFORMATION 

12Kg 

SURFACE  
DEFORMATION 

40Kg 

SUBSURFACE 
DAMAGE  

12Kg 

SUBSURFACE 
DAMAGE 

40 Kg 

SURFACE 
HARDNESS 

SUBSURFACE 
HARDNESS 

 

 
CAT 
1-3  

 
0.39 

p<0.001 
 

 
-0.06 

p=0.684 

 
0.09 

p<0.001 

 
0.84 

p<0.001 

 
0.58 

p<0.001 

 
0.853 

p<0.001 

 

Table 7



Legend 

 

Figure 1: Light micrograph of resin composites (x200). Incident light illumination with crossed 

polars. 

LP = Large Particle 

MPH = Medium Particle Hybrid 

MiH = Micro Particle Hybrid 

MF = Microfilled  

 

Figure 2: The specimen rig for cyclic compression under water. 

 

Figure 3A Surface deformation and position of microhardness indentations 

 3B Location of subsurface stain and position of microhardness indentations. 

 

Figure 4 Examples of subsurface damage stained with AgNO3 after 2000 cycles between 0-

12 kg and 0- 40 kg.  

 

Figure 5 Scanning Electron Micrograph of Medium Particle Hybrid (MPH1) after 2000 

compression cycles between 0 – 40kg. Arrow shows debonding between resin and filler 

phase. 

 

 

Figure(s)


