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Abstract 

The Apicomplexan parasite Toxoplasma gondii is an obligate intracellular parasite. 

Infection by T .gondii causes the disease toxoplasmosis, which is one of the most 

prevalent parasitic diseases of animals and humans. It has been 100 years since the 

first discovery of the parasite in 1908; research on T. gondii has been carried out in 

many scientific disciplines consistently expanding the understanding of this parasite. 

In the last ten years, the developments of EST, microarray, genome sequencing and 

continuing efforts towards genome annotation has centralized the focus of T. gondii 

research on the understanding of gene expression and gene functions on the genome 

scale. Equipped with the technical advances in mass spectrometry and bioinformatics, 

proteomics has become established as an integral component in the post-genomics 

era by providing first-hand data on the functional products of gene expression. 

In this study, three complementary proteomic strategies, 1-DE, 2-DE and MudPIT, 

have been used to characterise the proteome of T. gondii tachyzoites. Protein 

identifications have been acquired for more than two thousand (2252) unique release 

4 genes, representing almost one third (29%) of the predicted proteome of all life 

cycle stages. Functional predictions for each protein were carried out, which 

provided valuable insights into the composition of the expressed proteome and their 

potential biological roles. The T. gondii proteomic data has been integrated into the 

publically accessible ToxoDB, where 2477 intron-spanning peptides provided 

supporting evidence for correct splice site annotation of the release 4 genome 

annotation. The incompleteness of the release 4 genome annotation has been 

highlighted using peptide evidence, confirming 421 splice sites that are only 

predicted by alternative gene models. Analysis has also been carried out on the 

proteomic data in the light of other genome wide expression data. The comparison of 

the proteome and transcriptome of Toxoplasma and other Apicomplexa parasites has 

revealed important discrepancies between protein and mRNA expression where 

interesting candidates have been highlighted for further investigation. A preliminary 

DIGE study has been developed to characterize protein expression changes in T. 

gondii grown in the presence or absence of glucose. 

In conclusion, this study has demonstrated the importance of proteomic applications 

in understanding gene expression profiles and regulation in T. gondii and highlighted 

the importance and potential of proteogenomic approaches in genome annotation 

process. The importance of temporal and quantitative proteomics as well as the 

future of systems biology has been discussed. 
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1.1  Toxoplasma gondii 

In 1908, Nicolle and Manceaux at the Pasteur Institute in Tunis discovered a parasite 

in North African rodents, the gundi, Ctenodactylus gundi [1]. In the same year, 

Splendore discovered the same parasite isolated from a rabbit in Brazil [2]. Both 

groups initially identified this parasite as Leishmania before the current name 

Toxoplasma gondii was proposed by Nicolle and Manceaux after extensive 

microscopic analysis of several tissues and experimental studies in 1909 [3]. 

In the last 100 years, research on T. gondii has been carried out in many scientific 

disciplines consistently expanding the understanding of this parasite. T. gondii is an 

obligate intracellular protozoan parasite which infects all warm-blooded animals [4]. 

Humans acquire T. gondii through ingestion of undercooked meat, contact with 

feline faeces, through drinking contaminated water and through transplantation of a 

contaminated organ [5]. In humans, T. gondii is frequently associated with 

congenital infection and abortion [6]. Infections of T. gondii are usually minor and 

self-limiting but it can cause encephalitis or systemic infections in the immune-

compromised, particularly individuals with HIV/AIDS [7].  

T. gondii is a member of the phylum Apicomplexa, class Sporozoa and subclass 

Coccidia.  All members of Apicomplexa share a common feature of the presence of 

an apical complex in one or more stages of the life cycle. The Apicomplexa include a 

number of medically and agriculturally significant pathogens such as Plasmodium, 

Cryptosporidium, Theileria, Neospora and Eimeria. In common with the other 

Apicomplexa, T. gondii has a complex life-cycle with multiple life-stages. 
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1.1.1  Life cycle of T. gondii 

T. gondii is a tissue cyst-forming coccidium with a heteroxenous life cycle. Felidae, 

for example domestic cats, are the only definitive hosts for T. gondii [8] and all other 

warm-blooded animals are intermediate hosts. There are three infectious stages of T. 

gondii: the tachyzoites, the bradyzoites and the sporozites. They are linked in a 

complex life cycle which is illustrated in Figure 1.1. 

 

Figure 1.1 Life cycle of T. gondii (Adapted from Dubey JP [9]) 

1.1.1.1  Life cycle in the intermediate hosts 

In intermediate hosts, T. gondii undergoes two phases of asexual development, the 

tachyzoite and bradyzoite.  
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1.1.1.1.1 Tachyzoite 

The term “tachyzoite” (Greek: tachos = speed) was proposed by Frenkel [10] to 

reflect the rapidly multiplied and invasive nature of this life stage. Tachyzoites 

invade host cells by actively penetrating through host cells (see section 1.1.3). 

Tachyzoites multiply asexually within the host cell by a repetitive specialized 

process called endodyogeny, in which two progeny form within the parent parasite 

[11, 12].  

The tachyzoite is crescent-shaped, approximately 2×7 µm with a pointed anterior 

end (defined by the direction of motility). It consists of a unique cytoskeleton 

(subpellicular microtubules, conoid, inner membrane complex), secretory organelles 

(rhoptries, micronemes, dense granules), endosymbiotic derived organelles 

(mitochondrion, apicoplast), eukaryotic universal organelles (nucleus, endoplasmic 

reticulum, Golgi apparatus, ribosomes), and specific structures (acidocalcisomes), all 

enclosed by a complex membranous structure termed the pellicle [13, 14]. 

In response to the stress of the host cell immune system, the tachyzoites convert to a 

slow growing form called bradyzoites. Stage differentiation from tachyzoite to 

bradyzoite is accompanied by a major shift in the antigenic expression profile and 

alterations to metabolism of the parasites [15-17]. 

1.1.1.1.2 Bradyzoite and tissue cysts 

The term “bradyzoite” (Greek: brady = slow) was also proposed by Frenkel [10] to 

describe the encysted stage of the parasite in tissues. Bradyzoites multiply slowly by 

endodyogeny in tissue cysts [15, 18]. Tissue cysts vary in size, young tissue cysts 

can be as small as 5 µm in diameter and contain only two bradyzoites [19] while 
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older ones can contain hundreds of bradyzoites and be elongated to 100 µm long 

[20].  

The crescent-shaped bradyzoites are 5-8.5×1-3 µm in size. Structurally, the 

bradyzoite only differs slightly from the tachyzoite. Bradyzoites are more slender 

than tachyzoites, and the nucleus is situated more towards the posterior end 

compared to the centrally located tachyzoite nucleus. Bradyzoites contain several 

amylopectin granules which stain red with PAS reagent where such material is either 

in discrete particles or absent in tachyzoites [20]. 

Tissue cysts are the final life-cycle stage in the intermediate host cells. The parasite 

may cause immediate toxoplasmosis or remain latent in the host for life. It has been 

found that a very small percentage (2 of 750, 0.27%) of tissue cysts rupture at any 

time during chronic infections and result in stage conversion back to the active 

tachyzoite form [21]. This interconversion mechanism is important to maintain a 

chronic infection and also causes disease reactivation in people with immune-

deficiencies, such as AIDS or malignancies [19, 22]. 

1.1.1.2  Life cycle in the definitive host 

Cats are the definitive host of T. gondii. They can be infected by ingesting oocysts, 

tachyzoites, bradyzoites or transplacentally. The bradyzoite-induced cycle is well-

characterized [23, 24]. After the ingestion of tissue cysts by cats, proteolytic 

enzymes in the stomach and small intestine dissolve the tissue cyst wall and 

bradyzoites are released. Bradyzoites then penetrate the epithelial cells of the small 

intestine and initiate the development of numerous generations of T. gondii, known 

as asexual enteroepithelial development [20, 24]. 
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1.1.1.2.1 Asexual development 

Five morphologically distinct types of T. gondii develop in intestinal epithelia cells 

in this stage and are designated types A to E [24]. Rather than generations 

conventionally known as schizonts in other coccidian parasites, “type” is used 

because there are several generations within each T. gondii type (see Figure 1.2). 

 

Figure 1.2 Coccidian cycle of T. gondii (Adapted from Dubey JP et al. [24]) 

These types were morphologically distinguishable from tachyzoites and bradyzoites 

that also occur in the cat intestine. Little is known about the structure or biology of 

type A [19]. Type B schizonts formed merozoites by endodyogeny [25], which has a 

similar relationship to that described for parasites invading the small intestine of the 

intermediate host [26, 27]. Type C, D, and E multiply by schizogony, which is also 

termed as endopolygeny [28]. In schizogony, the nucleus divides two or more times 
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without cytoplasmic division. Before or simultaneous with the last nuclear division, 

daughter organism (merozoite) formation is initiated near the centre of the schizont. 

The merozoites often remain attached to a small amount of residue cytoplasm at the 

posterior end; some merozoites are released from the host cell into the lumen, where 

they can reinvade enterocytes [24, 25]. 

1.1.1.2.2 Sexual development 

After the asexual development (types A-E), the sexual cycle starts. Merozoites 

released from the host cell reinvade new enterocytes and develop into either male 

(microgametocyte) or female (macrogametocyte) gametocytes [13]. In 

microgametogony, 15-30 male gametes (microgametes) are produced [29, 30]. Only 

one female gamete (macrogamete) is formed in macrogametogony [31, 32].  

Microgametes use their flagella to swim to and penetrate and fertilize mature 

macrogametes to form zygotes. That fertilization can occur has been proven from the 

identification of cross-fertilized parasites [33], however, the necessity and 

mechanism of fertilization remain uncertain [34]. After fertilization, an oocyst wall 

is formed around the parasite. Infected epithelial cells rupture and discharge oocysts 

into the intestinal lumen. 

1.1.1.2.3 Oocyst shedding and extracellular sporulation 

Cats can shed millions of oocysts in a few days [24, 35]. The oocyst is the only stage 

of T. gondii that can undergo extracellular development.  Oocysts are excreted in an 

unsporulated form and then form two sporocysts by asexual development 

(sporulation). Each sporocyst contains four sporozoites [13, 36-38]. Sporulated 

oocysts can survive for long periods under moderate environmental conditions 

before ingestion by an intermediate host [39, 40]. 
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1.1.2  Population structure of T. gondii 

Three different invasive forms make T. gondii a remarkably successful parasite. The 

rapid invasion of tachyzoites into virtually all types of animal cells followed by the 

ability of chronic infection maintained mainly in bradyzoites form and the spread of 

sporozoites shed in environmental resistant oocysts all contribute to its global 

distribution, and this suggests a large genetic diversity. 

The first genotyping studies on T. gondii in North America and Europe was 

published 15–20 years ago, led to the description of a clonal population structure of 

Toxoplasma with three main lineages, types I, II and III [41-43]. The clonal nature of 

three T. gondii lineages was confirmed by the high-fidelity sequencing of single-

copy genetic regions comprising both antigens and introns [44]. Within each lineage, 

the true rate of divergence were extremely low at less than 1 in 10,000 bp [45] and 

the genome wide polymorphism rate between three lineages has been estimated to be 

0.65% [46]. The absence of diversity within each of the three lineages and low 

divergence between lineages suggest the three lineages merged as the dominant 

strains relatively recently. Based on the assumption that mutations arise at a constant 

rate, it was estimated the three lineages were expanded from a common ancestor 

10,000 years ago [44]. The pattern of single-nucleotide polymorphisms (SNP) in the 

T. gondii genome also produced a model that types I and III strains are second and 

first generation offspring of a cross between a type II strain and one of two ancestral 

strains [46]. 

Strains which differ from the three well defined lineages have been described more 

frequently from more remote geographic areas [47, 48] and several studies on strains 

from South America revealed that they are genetically distinct from the Eurasian 

strains studied [49-52]. Combining T. gondii strains from Europe, North and South 
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America in a phylogenetic analysis of polymorphism in introns, a new picture of 

population structure is given. Eleven distinct haplogroups were recently defined with 

three major clonal lineages renamed as haplogroups 1, 2 and 3, and notably, all 

existing haplogroups are predicted to be derived from admixture of four ancestral 

lineages [53]. 

Although genetic diversities between the clonal lineages are small, they underlie 

large phenotypic differences that influence virulence. Studies in human cases 

(congenital, transplant and AIDS) from North Amedica and Europe indicate a major 

association with type II strains [42, 48, 54]. Type III strains are only seen in a few 

human cases with underlying immunodeficient state and type I strains have increased 

prevalence in some cases of congenital infection and AIDS patients [55, 56]. In 

mouse models, type I strains have been shown as highly virulent and type II and III 

strains are considered non-pathogenic [57]. Different degrees of mouse-virulence 

were shown in different clonal groups in South America [58]. Large molecular-

epidemiological studies will be needed to understand the distribution and virulence 

of different genotypes across the world, which will be important to develop 

intervention strategies and disease control. 

1.1.3  Host cell invasion, intracellular survival of tachyzoites and the 

role of related secretory organelles 

T. gondii is an obligate intracellular parasite; being able to invade a new host cell is 

crucial for survival and expansion of infection. During infection, most intracellular 

microbes and parasites take advantage of endocytosis or phagocytosis as a means of 

entry into cells [59, 60]. In contrast, T. gondii does not rely on existing routes, but 

uses its own active, parasite-driven penetration process [61]. 
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Figure 1.3 Host cell invasion process of tachyzoites  (a) Model of the 

glideosome system of T. gondii. As described in greater detail in section 1.1.3.1, the 

glideosome is the molecular machine that promotes gliding motility. (Adapted from 

Keeley A et al.[62])  (b) An integrated working model of Toxoplasma invasion. As 

decribed further in sections 1.1.3.2-5, the invasion process involves multiple steps 

including: initial attachment, formation of moving junction, injection of ROP 

proteins and the completion of invasion. (Adapted from Carruthers V et al.[63]) 
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1.1.3.1  Glideosome 

T. gondii, as well as other Apicomplexan parasites, utilizes a substrate-dependent 

locomotion called gliding motility for tissue migration and cell invasion [62, 64] (see 

Figure 1.3a). Gliding relies on a linear motor system (glideosome) in the pellicle of T. 

gondii between the outer plasma membrane and inner membrane complex (IMC). A 

class XIV myosin (MyoA), the myosin light chain and two gliding-associated 

proteins (GAPs) form the motor complex [65]. The motor complex is anchored in the 

outer membrane of the IMC and connected via filamentous actin (F-actin) and 

glycolytic enzyme aldolase. Aldolase links the complex to the cytosolic domain of 

transmembrane adhesive proteins (adhesins) that spans the outer plasma membrane 

[62]. Tachyzoites use this actin-based motility coupled with regulated protein 

secretion from apical organelles to actively invade host cells. 

1.1.3.2  Initial attachment 

An integrated multi-step working model has been shown in Figure 1.3b. The initial 

attachment of tachyzoites to the host cell surface is mediated by a family of GPI-

anchored surface antigens (SAGs) and SAG related sequence (SRS) proteins [66, 67]. 

A wide distribution of SAG and SRS proteins coated on the parasite surface [68], 

among which a few are known to dominate the surface of tachyzoites, SAG 1-3 and 

SRS 1-3 [69]. SAG and SRS proteins provide a low-affinity and lateral interactions 

between the parasite and host cell surface, which it has been postulated may allow 

the parasite to survey the host cell surface for an optimal invasion site [63]. 

The tachyzoite initiates penetration into the target cell exclusively using its apical 

end. Several lines of evidence suggest micronemes play an important role in the 

process. Firstly, many micronemal proteins (MICs) have been shown to migrate out 

to the apical surface of parasite during attachment under a calcium signal dependent 
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mechanism [70]. Secondly, many MICs possess domains that mediate protein-

protein or protein-carbohydrate interactions (for example thrombospondin-like, 

epidermal growth factor-like, lectin-like and so on) [71]. Finally, the genetic 

depletion of MIC genes such as MIC1 and MIC3 [72], MIC2 and MIC2-associated 

protein (M2AP) complex [73-75] substantially attenuates parasites invasion. The 

study of MIC1 and MIC3 also revealed that individual disruption of either MIC1 or 

MIC3 expression slightly reduced virulence in the mouse, whereas doubly depleted 

parasites are non-virulent and fail to produce a lethal infection [72]. Together, this 

evidence suggests that the parasite expresses a variety of adhesive MIC proteins to 

target a wide range of host cells and create a robust binding-interface by using 

multiple receptors. 

1.1.3.3  Moving junction 

Almost simultaneously as microneme secretion, a calcium-dependent conoid 

extrusion is observed [63, 76]. The precise role of conoid extrusion is unclear, it 

could serve to bring the apical tip closer to the host plasma membrane [63] or be an 

important requisite for microneme secretion [76]. At around the same time of these 

events, another attachment step is executed which depends on the expression of a 

micronemal protein apical membrane antigen 1 (AMA1) [77]. During or after 

secretion, AMA1 forms a stable complex with three rhoptry neck (RON) proteins 

(RON2, RON4, RON5), which together occupy a structure known as the moving 

junction (MJ) [78, 79]. 

The MJ is a ring-like band at the intimate contact of host and parasite plasma 

membranes. The first role of the MJ is likely to be an anchor, which allows the actin-

myosin motor to “pull” the parasites into the nascent vacuole in the host cell. AMA1 

is secreted from micronemes onto the plasma membrane and anchored by a 
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transmembrane domain. While RON4 and RON5 do not have transmembrane 

domains, RON2 has three predicted transmembrane domains that may act as a bridge 

by inserting into the host plasma membrane [80]. As invasion proceeds, the MJ 

migrates from anterior to the posterior end and forms the border or rim of the nascent 

parasitophorous vacuole (PV). This brings into play the other role of the MJ which is 

likely to act as a molecular sieve that selectively removes parasite proteins and 

restricts access of host proteins to the forming vacuole [81, 82]. All of the known 

MIC proteins other than AMA1 and other transmembrane proteins anchored in the 

cytoskeleton are selectively excluded suggesting the filtering takes place on the 

cytoplasmic face of the plasma membrane. Many proteins gain access to the vacuole 

by partitioning into lipid rafts which raises the possibility that the MJ actively orders 

lipids within the bilayer and thus influence the protein composition of the vacuolar 

membrane [80]. 

1.1.3.4  ROP proteins are injected into host cells 

Simultaneously or immediately thereafter the MJ is formed, the proteins located in 

rhoptry bulb (ROPs) are injected to the host cytoplasm [83]. A detailed proteomic 

analysis of the contents of the purified rhoptries provided a comprehensive list of 

RON and ROP proteins [84]. Thirty eight novel proteins were identified and the 

location of 11 out of 12 novel proteins was verified as rhoptry by the production of 

antibodies [84]. Furthermore, rhoptry proteins were distinguished according to their 

sub-organellar location as either bulb (ROP) or neck (RON). This study found that 

all of the RON proteins identified have homologues in Plasmodium which suggests 

their involvement in processes that are common to the Apicomplexa phylum [80, 84]. 

On the contrary, nearly all of the ROPs are unique to either Toxoplasma or 

Plasmodium indicating that ROPs are highly adapted to the intracellular niches that 
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they occupy [80, 84]. In Toxoplasma, ROPs migrate to one of three general locations 

after injection: the lumen of the nascent PV, the parasitophorous vacuole membrane 

(PVM) or the host cell nucleus. 

ROP1 is released during invasion and accumulates within the lumen of the nascent 

PV [85]. Interestingly, ROP1 synthesized in one parasite can migrate to the PV of 

another parasite [86]. The ROP2 family of proteins generally migrates to the host 

cytosolic side of the PVM [87-89]. The ROP2 family contains a conserved 

serine/threonine (S/T) kinase domain, although most other members lack key 

residues predicted to be necessary to phosphorylate proteins [80, 90]. Recently, a 

highly polymorphic member protein ROP18 was confirmed as having kinase activity 

and could have potential roles in parasite growth and virulence [91, 92].  ROP2 has 

also been suggested to be involved in the recruitment of host cell mitochondria by 

resembling a mitochondrial-import signal [88, 93]. Recent studies pointed out a third 

destination of ROPs; two rhoptry proteins, PP2C-hn [94] and ROP16 [95] have been 

observed in the host cell nucleus. PP2C-hn is a protein phosphatase of the 2C class 

(hn is the abbreviation for host nucleus) and ROP16 is a putative protein kinase; both 

proteins are directed to the nucleus by a conventional nuclear localization signal 

(NLS) [89]. ROP16 is likely to modulate host signalling by indirectly inducing the 

activation of the signal transducer and activator of transcription (STAT 3/6) 

signalling pathways with consequent effects on host IL-12. Furthermore, ROP16 has 

shown strain-specific polymorphism where the allele shared by types I and III is 

effective in mediating sustained phosphorylation of STAT3, while the allele found in 

type II does not [95]. This interaction may in part explain the much lower levels of 

IL-12 that are induced by type I or III versus type II strains following infection of 
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macrophages and subsequently the differences of Toxoplasma strain virulence [95, 

96]. 

RONs and ROPs are essential to the host cell invasions and PV establishment, 

however, the characterization of molecular interactions and biological functions are 

still at an early stage where great efforts are being carried out using genetic and 

cellular tools [80, 89]. 

1.1.3.5  Completion of invasion 

It takes only 15-20 seconds before the MJ completes its migration [97]. The invasion 

arrives to its final stage: pinching off and separation of a complete PVM. The 

process involves fission of the PVM and host plasma membrane that can take as long 

as two minutes. The exact mechanism is unclear, for example how are the residual 

MJ complex or other parasite and host fission proteins involved [63]. 

1.1.3.6  Intracellular survival 

Once inside the host cell, the PV is used as a platform for tachyzoites to modulate 

several host cell functions that support parasite replication and lead to a long-term 

chronic infection. Mitochondria and endoplasmic reticulum (ER) from the host cell 

rapidly surround the PVM and are recruited in the supply of a dedicated nutrient 

source for the support of parasite division [98]. The host intermediate filaments (IFs) 

and microtubules (MTs) are also reorganized around the PV providing intracellular 

localization and structural integrity support [99, 100]. Functionally, host cell 

modifications induced by the parasites includes the inhibition of inflammatory host 

responses, interference with regulatory and effector functions of immune cells, and 

manipulation of host cell apoptosis [101]. 
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Three functionally distinct membranous subcompartments are organized in the PV 

[102]. The PVM is a thin membranous extension prolonged within the host cell 

cytosol. The second subcompartment consists of host organelle-sequestering tubulo 

structures (HOSTs), which are microtubule-based PVM invaginations that channel 

cholesterol-enriched host endolysosomes into the PV [99]. The third 

subcompartment is the membranous nanotubular network (MNN), which extends 

into the vacuolar lumen that link the parasites together and to the PVM [103, 104]. 

MNN is thought to maintain parasites in an ordered arrangement within PV that 

allows their synchronous division [102].  

Up to now, the Toxoplasma proteins identified in the PV originate from either the 

rhoptries or the dense granules[102]. In addition to ROPs that are injected into the 

host cell during invasion (section 1.1.3.4), a burst of dense granule proteins (GRAs) 

are secreted into the PV within the first few minutes of PVM formation [83, 105]. 

GRA1 is a calcium-binding protein and the only completely soluble GRA protein 

within the vacuolar space [106]. All other GRAs associate with distinct PV 

membranous sub-compartments: GRA2, 4, 6, 9 and 12 associate with MNN, while 

GRA3, 5, 7 and 8 associate predominantly with the PVM and GRA7 with the 

HOSTs [102, 107]. GRAs share no obvious homology with proteins of known 

function but are likely to be involved in intracellular parasite development and 

multiplication and their secretion is likely to continue on a basal level as long as 

parasite multiplication takes place [102]. 

1.1.4  T. gondii genome 

The first output of T. gondii genome sequencing project was finished in 2003 [108]. 

The 10 × shotgun genome sequencing and annotation of the type II strain ME49 was 

performed by the Toxoplasma Genome Consortium, under collaboration between Ian 
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Paulsen from the Institute for Genomic Research (TIGR) and David Roos from the 

University of Pennsylvania, and led to a draft version of the 80 Mb genome sequence 

[108, 109]. In addition to this effort, the Wellcome Trust Sanger Institute determined 

the 5 × shotgun sequencing of type I strain RH chromosome 1a and 1b as well as a 

whole genome bacterial artificial chromosome (BAC) library [110]. The type II 

ME49 strain was the first strain to be sequenced followed by two other strains, GT1 

and VEG; all data are available on ToxoDB [108].  

A genetic linkage map was used to assemble the gene coordinates from scaffolds to 

14 chromosomes of ME49 strain [111]. The chromosome map for ME49 strain was 

used as a template to create GT1 and VEG strain chromosomes [108]. Gene 

prediction programs including GLEAN, GlimmerHMM, TigrScan and TwinScan 

were used for ME49 strain genome annotation in 2003, followed by the release of a 

major integrated and updated version on ToxoDB (version 4) in 2006 [108]. In the 

latest release of ToxoDB (version 5), genome sequences of the three strains are 

between 61-64 Mb in size. A newer version of genome annotation for ME49 strain is 

also updated together with a brand new genome annotation for GT1 and VEG strains 

[108]. The numbers of genes for T. gondii are currently predicted to be 8102 for the 

ME49 strain, 8145 for the GT1 strain and 7945 for the VEG strain [108]. 

All the raw genomic sequences and genome annotations of the latest version of 

genome sequencing project can be downloaded at ToxoDB [112]. This valuable 

information provided the foundation of many genome-wide researches of T. gondii 

including the whole proteomic analysis of tachyzoites carried out in this study. 
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1.2  Proteomics 

Proteins are the end products of most genes, the identification of expressed proteins 

and their functions are central to the understanding of biological meaning of the 

genome. The term proteome was introduced by Marc Wilkins in 1994 at a 

conference [113] to describe the entire complement of proteins expressed by a 

genome, cell, tissue or organism. More specifically, it is the set of expressed proteins 

at a given time under defined conditions. Papers that began to use the term were 

published thereafter [114, 115].  

The biological importance and interest of studying global protein expression and 

understanding functional genomics have driven the field of „proteomics‟ which has 

rapidly progressed in recent years. Around 200 research articles and reviews were 

published each month in the first half of 2009. The rapid growth of proteomics has 

been supported by technical advances in key areas of proteomics research.  

To start with, protein separation techniques were employed such as 2-D 

electrophoresis and 2-D liquid chromatography (LC) to deal with the complicated 

protein samples. The next step has benefited from advances in mass spectrometry in 

which the sensitivity and capability of measuring mass-to-charge ratio (m/z) of 

ionized peptides and proteins are consistently improving. The final step took 

advantage of the development of dedicated bioinformatics packages that analyse, 

visualise and interpret proteomic data to achieve a better understanding of the 

biological system under study. Simultaneously, the flood of draft and complete 

genome sequencing projects and new high-throughput sequencing platforms 

provided essential sequence databases for proteomics data searching.  
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Proteomics add such a value to biological research that it shifts the paradigm from a 

„one-protein-at-a-time‟ view to a new „global‟ view. Hundreds of expressed proteins 

can be identified and characterized in a high throughput manner that was not 

possible before. The following sections will discuss the current developments and 

applications of proteomics in detail. 

1.2.1  Proteomic strategies for high-throughput protein identification 

Several proteomic strategies have been developed to achieve high-throughput protein 

identifications. Typically, they can be divided into two groups, „top-down‟ and 

„bottom-up‟. „Top-down‟ proteomics is a straight forward approach in which intact 

proteins are analysed by MS. Due to the instrument limitations, analysing intact 

protein samples is more difficult to achieve by MS. „Bottom-up‟ proteomics is a 

more commonly used strategy which analyses enzymatically or chemically produced 

peptides of the protein samples (See Figure 1.4). 

Figure 1.4 Proteomic strategies for protein identification (Adapted from Han 

et al. [116]) 
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1.2.1.1  Bottom-up proteomics 

Bottom-up proteomics uses information acquired from peptide detection to infer the 

protein identification. According to the method by which the peptide mixture is 

produced, this approach can be further divided into two strategies.  

The first strategy is to separate the complex sample in protein space, by using protein 

fractionation and separation techniques such as gel electrophoresis. The resulting 

single protein or appreciably less complex protein mixture is then digested into 

peptides. The peptides can be analyzed by peptide mass fingerprinting (PMF) or 

following further peptide separation by LC coupled to a tandem mass spectrometer 

[116, 117]. 

The other strategy is to separate the complex sample in peptide space, which is also 

known as „shotgun proteomics‟. Protein digestion is carried out without or with 

minimum sample pre-fractionation. The peptides produced are separated by 

multidimensional chromatography and analyzed by tandem mass spectrometry [117, 

118]. 

1.2.1.2  Top-down proteomics 

Top-down proteomics is a relatively new strategy which is mainly restricted to the 

use of more powerful Fourier-transform ion cyclotron resonance (FTICR) mass 

spectrometers. In this approach, intact proteins are ionized and fragmented inside the 

mass spectrometer and high-resolution mass measurement is made [119]. 

FTICR utilises a new type of fragmentation technique called electron-capture 

dissociation (ECD). In ECD, the recombination of an electron with the multiply 

protonated peptide/protein ion makes differences in bond dissociation energies less 

important and induces protein backbone cleavages [120]. This technique provides 



 Chapter 1-Introduction 
 

21 

 

great fragmentation efficiency for small to medium sized proteins [121-123]. For 

protein ion molecules larger than ~ 50 kDa, protein tertiary structures become more 

complex with many non-covalent interactions which reduce the fragmentation 

efficiency and make top-down proteomics inefficient [124]. Recent developments to 

tackle this problem include prefolding dissociation (PFD) that dissociate ~240 

residues from each terminus of protein [125] or using limited digestion to produce 

larger peptides (>5 kDa) [126].   

Top-down proteomic approaches examine the entire protein sequence directly which 

enables a more complete characterization of protein isoforms and post-translational 

modifications (PTMs) [127, 128] and lead to exciting de novo sequencing [129]. 

However, the requirement for direct infusion of a single protein or simple protein 

mixture remains a major challenge for large-scale high throughput proteome 

characterization. Kelleher‟s group presented the first large-scale top-down 

proteomics on a LTQ-FTICR system that uses high-resolution MS/MS data obtained 

on a chromatographic time scale [130]. The study identified 22 proteins from a 

single LC-MS/MS run and 38 proteins were unambiguously identified in 

metabolically labelled proteome experiments. 

Despite the rich protein characterization information provided by the top-down 

proteomic strategy, the sophisticated instrumentation setup, technique restrictions 

and relatively small protein identification yields under the current development stage 

mean that bottom-up proteomics is still the most suitable strategy for large-scale 

protein identification projects. The following sections will discuss the bottom-up 

proteomic approach in more details. 
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1.2.2  Sample preparation and separation 

Sample preparation and fractionation are crucial in a successful proteomic analysis. 

The separation and fractionation of a sample benefits downstream applications 

enormously by improving the resolution of analysis. Proteins in the sample need to 

be extracted from cells, denatured, disaggregated and solubilised before being 

analysed by proteomic approaches. 

Cell lysis can be achieved by osmotic lysis, detergent lysis, enzymatic lysis of the 

cell wall, mechanical blending, sonication, freeze/thaw and manual grinding [131]. 

During or after cell lysis, interfering compounds such as salts, proteolytic enzymes, 

nucleic acids, polysaccharides, lipids and particulate material must be diluted, 

inactivated or removed. 

As discussed in section 1.2.1, before complex protein samples can be analysed by 

MS, sample separation needs to be achieved in either protein space or peptide space. 

Sample separation in protein space is typically achieved by gel electrophoresis 

followed by enzymatic digestion. Sample separation in peptide space is achieved by 

direct digestion of complex sample followed by liquid chromatography separations. 

1.2.2.1  Sample separation in protein space 

One-dimensional and two-dimensional gel electrophoresis (1-DE and 2-DE) are 

commonly used in proteomic studies. They separate solubilised proteins samples 

according to their physical properties and provide visualization representations of the 

proteome studied. 

1-DE is a well established widely used technique which separates proteins based on 

their molecular mass using SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

[132]. Proteins are reacted with the anionic detergent SDS to form negatively 
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charged complexes. Denatured proteins bind to SDS in a relationship proportion to 

mass and independent of amino acid composition and sequence. Proteins are 

separated by the polyacrylamide matrix on the basis of molecular mass. 

2-DE couples isoelectric focusing (IEF) in the first dimension with SDS-PAGE in 

the second dimension, and enables protein separation on the basis of isoelectric point 

(pI) followed by molecular mass [131]. 2-DE can resolve thousands of proteins 

simultaneously and detect < 1 ng of protein per spot [131].  

Separated proteins on the gel need to be visualized by staining methods. One big 

challenge is the huge differences of protein abundance in the sample, which can 

range between 7-8 orders of magnitude in a cell [133]. High sensitivity, high linear 

dynamic range and compatible with downstream protein identification procedures 

are required for a good staining method. Commonly used methods include organic 

dyes such as colloidal Coomassie Blue (detection limit ~30 ng) [134], negative stain 

with metal cations such as zinc chloride (20-50 ng) [135], silver stain such as silver 

nitrate stains (5-10 ng) [136] and fluorescence stain such as SYPRO Ruby (1-2 ng) 

[137]. This enables a frozen-in-time view of the proteome which reflects changes in 

protein isoforms, PTMs and expression levels. 

Bands and spots separated by 1-DE and 2-DE are excised followed by in-gel protein 

digestion. Trypsin is the most widely used enzyme for protein identification based 

proteomics. It cleaves specifically after arginine or lysine residues, producing 

peptides with an average size of 800-2000 Da [138]. 

1.2.2.2  Sample separation in peptide space 

Shotgun proteomics separates samples in peptide space. Complex samples are 

directly digested using one or a combination of proteases such as Lysine-C (Lys-C), 
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V8 and trypsin. One combination is using Lys-C followed by trypsin. Lys-C fully 

preserves its activity in the presence of 8 M chaotropic agent urea, the accessibility 

of this enzyme to peptide bonds is higher than the accessibility of trypsin, which 

remains active up to 2 M urea. 

Sample digestion results in a highly complex of peptide mixture. The peptides are 

then separated by multidimensional liquid chromatography before analysis by 

MS/MS. A typical setup using this strategy is called multidimensional protein 

identification technology (MudPIT) [139, 140]. MudPIT couples a strong cation 

exchange (SCX) column with a reversed phase (RP) column to separate peptides 

using 2D liquid chromatography. Peptides are displaced from SCX to the RP column 

using 12 salt step gradients. The RP column then progressively elutes peptides over a 

gradient of acetonitrile (ACN) with increasing hydrophobicity. Peptides are then 

analysed by MS/MS which is reviewed in section 1.2.3. 

Although a MudPIT experiment requires less labour with simple automated setup, it 

results in greatly increased complexity of the generated peptide mixture. Achieving a 

good result requires highly sensitive and efficient separation. Information is also lost 

upon the conversion of intact proteins into a mixture of peptides, and it also involves 

significantly more computer power for data analysis. 

1.2.3 Mass spectrometry used in protein identification based proteomics 

MS is a technology that measures the mass-to-charge ratio (m/z) of molecules. Mass 

spectrometers consist of three key components. An ion source that converts 

molecules into gas-phase ions, a mass analyzer that separates charged molecules 

according to their m/z and a detector that records the number of ions at each m/z 
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value. Various ionization sources and analyzers can be combined to facilitate 

proteomic research. 

1.2.3.1  Ionization 

Two soft ionization methods are used in proteomics due to their ability to produce 

intact ions from peptides and proteins, matrix-assisted laser desorption/ionization 

(MALDI) [141] and electrospray ionization (ESI) [142]. 

In MALDI, matrix (aromatic acids) is used to protect the analytes from being 

destroyed by laser light and to assist vaporization and ionization. The analytes are 

embedded into a crystalline matrix on a metal „target‟ plate. The target is then placed 

in the vacuum of a MALDI source and pulses of laser light (typically a nitrogen laser) 

are directed at the matrix. The matrix absorbs the laser energy and transfers its 

charge to the analyte molecules, as the matrix evaporates, analytes are liberated and 

ionized. The observed ion that contains a neutral molecule [M] is protonated to form 

a singly charged quasimolecule [M+H] 
+ 

[117, 141]. 

In ESI, the sample is presented in a liquid form and thus can be easily associated 

with online liquid chromatography. The typical solvents are prepared with water, 

volatile organic compounds (e.g. methanol, ACN) and acetic acid which increases 

the conductivity. The solution containing the analytes flows into a capillary that is 

subject to a high voltage (2-3 kV) which forms the solution into a fine spray of 

highly charged droplets. The flow of droplets is then directed through a counter-

current flow of heated gas, causing the solvent to evaporate and the charge 

concentration of the surface of the droplets to increase. It then reaches a critical 

unstable state, known as the Rayleigh limit; the droplets deform into smaller and 

lower charged particles in a process known as Rayleigh fission [143]. The Rayleigh 
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fission is repeated until individually charged analyte molecules remain. ESI 

generally produces a mixture of singly and multiply charged ions [M+nH] 
n+

 [117, 

142]. 

1.2.3.2  Mass analysis 

Four types of mass analysers are commonly used in proteomic research: quadrupole 

(Q), ion trap, time-of-flight (TOF), Fourier-transform ion cyclotron resonance 

(FTICR).  

Quadrupole mass analysers separate ions based on the stability of their trajectories in 

the oscillating electric fields. The quadrupole consist of four parallel metal rods, each 

opposing rod pair is connected together electrically with a radio frequency (RF) 

potential applied. A direct current voltage is superimposed on the RF potential to 

make ions travel along the central axis of the rod. Only ions of a certain m/z will 

reach the detector for a given ratio of potentials while other ions with unstable 

trajectories will collide with the rods. A range of m/z values can be scanned by 

continuously varying the voltages [117]. 

Ion trap mass analysers trap charged molecules using electric or magnetic fields. The 

Quadrupole ion trap (QIT) is most often used and includes the 3D ion trap (Paul ion 

trap) and the linear ion trap. In the 3D ion trap, ions are trapped by electric fields 

produced by a ring-shaped electrode (RF potential) and two end-cap electrodes (dc 

potential). Ions enter the trap from one of the end-cap electrodes and oscillate at the 

frequencies that related to their m/z values. By changing the voltages applied to 

electrodes, ions of certain m/z become excited and are ejected from the opposite end 

cap [144, 145]. The linear ion trap is similar to the 3D ion trap except that the 

electromagnetic signals are designed to trap ions in a rectangular-shaped space. Ions 
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are confined radially by a set of quadrupole rods with RF potentials and axially by a 

static electrical potential on end electrodes. Linear ion trap MS provides increased 

ion storage capacity (10 times compared to the 3D ion trap) and faster scanning 

speeds [117, 145, 146]. 

Orbitrap is a new type of ion trap mass analyser invented by Makarov [147]. It 

provides high mass accuracy and high-resolution capabilities which has the potential 

to be useful for proteomic research [148, 149]. It consists of an outer barrel-like 

electrode and a coaxial inner spindle-like electrode. Ions are trapped and orbit 

around an inner spindle-like electrode, and oscillate harmonically along its axis. The 

frequency of these harmonic oscillations is independent of the energy and spatial 

spread of ions and is inversely proportional to the square root of the m/z. These 

oscillations are detected using image current detection and are transformed into mass 

spectra using Fourier transform similar to FITCR [116, 147, 149]. 

In a TOF mass analyser, ions that are accelerated in an electrical field, then travel 

through a field-free vacuum tube towards an ion detector. All ions with the same 

charge receive the same amount of kinetic energy in the source, while the velocity of 

the ion depends on their m/z. A reflectron with a constant electrostatic field can be 

used to reverse the path of ions towards the detector. Given the tube length and the 

measured times of flight, the mass-to-charge ratio of the ion can be calculated. A 

delayed extraction device can be used to equilibrate the ions which allows the initial 

velocity of ions to be standardised prior to the entrance of the TOF analyser [117]. 

FTICR mass analysers provide the greatest capability for mass resolution and mass 

measurement accuracy. It determines the m/z of ions based on the cyclotron 

frequency of the ions in a fixed magnetic field. FT mass spectrometers consist of a 
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cubic cell inside a strong magnetic field. Injected ions rotate around the magnetic 

field with a frequency according to their m/z. By varying the electric fields, changes 

in the ion frequency of rotation can be measured and converted to m/z by performing 

a Fourier transform [117, 150]. 

1.2.4  Protein identification using MS data 

In bottom-up proteomic research, protein identification is made by matching the 

experimental peptide MS data to a virtual peptide mass database. A virtual database 

contains known protein sequences acquired from predicted gene models, open 

reading frames (ORFs) translated from genomic sequences or EST data. Theses 

sequences are then in silico digested using the same cleavage specificity of the 

protease employed in the experiment to produce theoretically determined peptide 

mass data.  

According to the instrument setup, two types of MS data can be used to determine 

protein identifications: Peptide mass fingerprinting (PMF) data generated by 

MALDI-MS and peptide fragment fingerprinting (PFF) data generated by tandem 

MS, typically ESI-MS/MS. 

1.2.4.1  Peptide mass fingerprinting based identification 

Using peptide mass fingerprinting to determine protein identification was 

independently developed in 1993 by several groups [151-155]. This method is based 

on the use of a list of the molecular masses of digested peptides, served as a 

fingerprint that uniquely defines a particular protein. Experimental spectra of a 

candidate protein which contain m/z ratios of digested peptides are compared with 

theoretical spectra produced by a virtual database and a similarity score is given.  
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Protein (or proteins, in the situation of homologues or multiple proteins in the sample) 

in the virtual database with the top-ranking similarity score is considered the protein 

identification for the spectra. Scoring algorithms for PMF take into account many 

factors such as dissimilarities in the peptide masses caused by calibration errors, 

contaminant or missing peaks, chemical modifications and post-translational 

modifications (PTMs), etc. 

Protein identification based on PMF data is fast and efficient; however, several 

limitations may lead to a poor or false identification. From the database point of 

view, if a protein sequence or an unknown sequence modification is not present in 

the virtual sequence database, the similarity score cannot be made or the result 

represents a false-positive. From the sample point of view, in the case of multiple 

proteins present in the sample, the increase in complexity of the spectra may result in 

poor or false-positive identifications; meanwhile, if the size of protein in the sample 

is too small or the concentration is too low, insufficient peptides MS data can be 

produced for confident protein identifications.   

1.2.4.2  Tandem mass spectrometry based identification 

Tandem mass spectrometry (MS/MS) uses two mass analysers in series. The first 

analyser separates the peptides according to their m/z values; selected peptides 

(precursors) are fragmented and the m/z ratios of the resulting fragments are 

measured by the second analyser. The most widely used fragment method is 

collision-induced dissociation (CID). It internally heats precursors by multiple 

collisions with neutral gas atoms. The C-N bond of the peptide backbone is 

fragmented into a series of b-fragment (charge remains at the N-terminus) and y-

fragment (charge remains at the C-terminus) ions [156]. 
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The principle of peptide fragment fingerprinting (PFF) based identification is very 

similar to the PMF approach. It correlates the experimental MS/MS spectrum with 

virtual MS/MS spectra generated from in silico digestion of proteins to peptides and 

fragmentation of these peptides. Protein identification can be made on several 

independent peptide identifications. The better the overall sequence coverage of the 

protein, the more confident the protein identification is. Scoring algorithms take into 

account the mass of the precursor peptide, chemical and post-translational 

modifications, etc. 

PFF based identification has several advantages over PMF. It does not require all the 

peptides of a given protein to be confirmed to achieve a confident identification. It 

can work with complex peptide mixtures or to search homologous databases. It can 

also provide detailed information about peptide sequences and about possible post-

translational modifications. However, the PFF approach also has limitations: firstly, 

same as PMF, a confident identification relies on the presence of protein sequence in 

the virtual sequence database, although small sequence variations like PTM can be 

partly compensated for by the identification of other peptides in the protein. 

Secondly, non-peptide contamination and poor fragmentation can influence the 

confidence of identification. 

1.2.5  Proteomic data interpretation and integration 

The output of protein identification based proteomic studies is usually a list of 

expressed proteins in the sample inferred by MS data. Whilst of considerable value 

in itself, subsequent characterization of the proteins identified is the next stage, from 

which important biological information about the sample can be gleaned. A further 

area in which proteome data is of great value is the integration of proteomic 

expression data with other genomic resources. The integration centralizes the current 
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knowledge about a particular organism on a genome expression level and proteomic 

data can also help confirm and refine existing genome annotations (see section 

1.2.6.1). 

1.2.5.1  Proteomic data interpretation 

Interpretation of proteomic data uses combined evidence from two approaches:  first, 

manual interpretation of information extracted from experimental data in the 

literature; secondly, information derived by automatically transferring existing 

knowledge about a homologous sequence to the targeting sequence. This latter 

approach is the basis of protein prediction programmes designed to predict protein 

sequence features or motifs based on a set of trained rules. 

1.2.5.1.1 Manual interpretation 

Manual interpretation process allows input from highly trained and knowledgeable 

curators. Curators are able to access and extract information from free text in 

literatures and assess all the information available. Several organism-specific and 

universal projects have been carried out for this purpose and publicly available 

online databases are designed to host the information gathered [157-161]. Among 

these efforts, UniProt is a universal database that commonly used for proteomic data 

interpretation. 

UniProt [157] provides a universal curated protein database that stores and 

interconnects information from various sources including a non-redundant collection 

of protein sequences, metagenomic data and functional annotation. The component 

site UniProtKB/Swiss-Prot contains manual records with the information extracted 

from literature and curator evaluated computational analysis [162]. Annotated 



 Chapter 1-Introduction 
 

32 

 

information includes protein function, catalytic activity, subcellular location, disease, 

structure and post-translational modifications. 

Although manual curation provides the most reliable information for proteomic data 

interpretation, it is very time consuming. To assist this, text mining methods have 

been recently developed to automatically extract information from literature [163-

165]. However, the current techniques are still under development due to 

complicated syntactic patterns in natural language and restrictions in the processing 

non-textual material i.e. figures [165].  

1.2.5.1.2 Automatic prediction 

The main aim of automatic prediction is to transfer previously characterized protein 

information to uncharacterized homologous proteins. Homologous proteins are 

descended from a common ancestral protein that similar sequences or structures are 

often found and similar functions are often observed. Homologues can be further 

divided into orthologues and paralogues where orthologues are separated by a 

speciation event and paralogues are the product of gene duplication [166]. In 

automatic prediction, both sequence similarity and structure similarity based 

approaches are commonly used. 

While there is no perfect protocol for automatic prediction, the most commonly used 

tool is Basic Local Alignment Search Tool (BLAST) [167]. A BLAST search 

compares the query sequence with protein sequences from various databases and 

reports a similarity score to exactly or partially matched sequences in the databases. 

However, it does not provide sufficient guidelines on whether the annotations can be 

safely transferred to the new sequence. Utilizing orthologues group mapping 
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databases like COG [168] and OrthoMCL[169] can improve confidence of the 

matching. 

A global sequence or structural similarity cannot always be found for a novel protein. 

In a study of 120 complete genomes, an average of 22.4% of proteins in a genome 

are reported as singleton (gene families containing only a single member) [170]. In 

these cases, signature-based resources can be used to infer protein functions when 

one or more protein signatures can be identified.  

Protein signatures are defined by either a regular expression method that shows 

patterns of conserved amino acid residues [171] or the Hidden Markov Model 

(HMM) method which provides a statistical profile based on probabilities of finding 

an amino acid at a given position in the sequence [172]. There are many publicly 

available signature databases of protein families and domains, including sequence-

based PROSITE [171], Pfam [173], PRINTS [174] PANTHER [175] and structure-

based SUPERFAMILY [176] and Gene3D [177]. 

Protein signatures can be used in combination to predict protein functions. For 

example, proteins with no significant sequence similarity but have similar functions 

might be expected to share some common features like post-translational 

modifications, protein-sorting signals and similar subcellular localizations. Universal 

or organism-specific software packages can be developed to predict certain protein 

features based on a set of trained rules [178-181]. 

1.2.5.1.3 Integration of annotations 

Manual curation provides the most accurate information about a certain protein, but 

handling large-scale proteomic data is very labour and time consuming while 

automatic approaches trade accuracy for a larger coverage and higher speed. As 
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many annotation methods and databases exist for genomic and proteomic data, using 

any single method will result in biased or even no predictions. However, trying to 

use all of them at the same time will not only increase the workload but also lead to 

confusion in rationalizing the different results obtained. Integration of different 

sources of data into a single comprehensive source would greatly support proteomic 

data interpretation.   

InterPro [182] is one such database that integrates all the protein signatures from 

multiple databases. Signatures from member database Gene3D, PANTHER, Pfam, 

PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY and TIGRFAMs 

that match the same set of proteins in the same region on the sequence, and that 

describe the same domain, family, repeat, active site, binding site or post-

translational modification, are grouped into single InterPro entries by a curator.  

Each InterPro entry contains high-quality manual annotation providing useful 

information on descriptive abstracts, taxonomy, structural links and cross-reference 

to external databases such as IntAct [183], MEROPS [184] and Enzyme Commission 

numbers [185], and Gene Ontology (GO) terms [186] where possible. Recent 

development has allowed links in InterPro to be made to distributed annotation 

system (DAS)-related tools such as the SPICE 3D structure viewer [187] and the 

Dasty Client [188]. DAS comprises a reference server that contains information for 

other client-servers to communicate and exchange biological annotations with [189].  

Integrated information provided by InterPro is used to aid the manual annotation 

process by curators in UniProtKB/Swiss-Prot as well as being the basis of the 

automatic annotation system in UniProtKB/TrEMBL [157]. For individual 

proteomic studies, information provided by InterPro provides valuable addition to 
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organism-specific manual and automatic data interpretations. Collectively, they 

provide a preliminary view of biological features contained within the proteomic 

data. 

1.2.5.2  Proteomic data repository and integration 

While data interpretation can be carried out at the level of the individual research 

group, proteomic data integrated with other proteomic resources can benefit the 

global research community. Using a public repository of proteomic data not only 

preserves the effort and information made by an individual group, but also provides 

significant advantages that small scale studies cannot achieve. 

Fundamentally, each proteomic study only samples a “snapshot” of the expressed 

proteins at a given time under a defined condition. By combining efforts from many 

research groups, a large volume of data with different time points and conditions can 

be acquired, which can highlight important trends by providing a dynamic view of 

the biological process. On the other hand, with access to large volumes of data 

generated from various proteomics platforms, limitations of different platforms can 

be assessed which will stimulate the development of improved methodology. 

1.2.5.2.1 Data format for MS output 

With the increasing complexity of evolving and diversifying methods and 

technologies used in proteomic research, the efficiency of data repository would 

benefit from a standardized data format. The minimum information about a 

proteomics experiment (MIAPE) is a project carried out by the Human Proteome 

Organization-Proteomics Standards Initiative (HUPO-PSI) [190]. This guideline 

aims to provide sufficient experimental details for publication and allow data 

exchange and comparison between different datasets.  
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A data format mzML was developed in 2008 under the auspices of the HUPO-PSI 

[191]. mzML replaced two competing data formats using vendor-neutral XML 

(Extensible Markup Language): mzData, developed by HUPO-PSI [192] and 

mzXML, developed at the Institute for Systems Biology [193]. The format is 

expected to become the single, unifying format for unprocessed proteomic MS data 

which is supported by nearly all the instrument and software vendors [191]. The 

other PSI standard format for peptide and protein identification, analysisXML, is still 

under development [194]. 

1.2.5.2.2 Public proteomic data repositories 

While the new standardized data formats are being developed and adopted, currently 

there are four main public repositories actively storing proteomic data for the 

research communities: the Proteomics identifications database (PRIDE), the Global 

Proteome Machine databases (GPMDB), PeptideAtlas and Tranche [195]. 

PRIDE is a database of protein and peptide identifications with their corresponding 

literature publication [192]. Closely related to HUPO-PSI, PRIDE supports the PSI 

standard reporting guideline (MIAPE) and data formats (mzML and analysisXML). 

PRIDE provides public access to the details of experiment by experiment accession 

number, protein accession number, literature reference and sample parameters 

including species, tissue, sub-cellular location and disease state [192]. It allows 

comparison of data generated from different research groups and allows referees to 

examine and validate the data before publication [196]. 

GPMDB hosts proteomic data of a number of eukaryotic species and is likely to be 

the first to categorise the whole human proteome [195]. It is part of the GPM (The 

Global Proteome Machine Organization), which is an open-source system for 
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analyzing, storing and validating proteomic data generated from MS/MS spectra 

[197]. GPM developed peptide identification search engine pipelines including 

X!Tandem (matching spectra to sequence) [198], X!P3 (proteotypic peptide profiling) 

[199] and X!Hunter (matching spectra to annotated spectrum libraries) [200]. The 

GPMDB uses its own data format XIAPE (Xml Information About a Proteomics 

Experiment) which is a simplification and extension of MIAPE and a new 

compressed format Common 1.0 to compress and depress MS/MS data files. 

PeptideAtlas is a project of Seattle Proteome Center (SPC) aims to achieve a full 

annotation of eukaryotic genomes through validation of expressed proteins [201]. 

PeptideAtlas integrates the Trans-Proteomic Pipeline (TPP) developed by SPC 

which is a collection of tools that uniformly analyse MS/MS data generated from 

different instruments, and assigned peptides using a variety of different database 

search programs [202]. All the sequences and spectra in the database are processed 

through the TPP to achieve a high quality database, along with false discovery rates 

at the whole atlas level [203]. 

Tranche software is an open source file sharing tool that enables collections of 

computers to easily share large amount of data sets [204]. Using the software, 

Tranche network can be created by anybody or any institution. The 

ProteomeCommons.org Tranche network is the first instance of a Tranche network 

in existence. It supports data sharing in proteomics as well as address the problem of 

data loss through computer hardware failure or changes in staff [195]. Any file type 

is allowed by the network, including glycomics, metabalomics and 2-D gel data, but 

MS/MS data is its main focus. Data uploaded to the network are replicated several 

times to protect against accidental loss, sharing and dissemination of data is secure 

and all datasets are citable in scientific journals [204]. 
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1.2.6  Data integration and applications 

Integration of proteomic data provides biological and technique advantages for 

proteomic research. Firstly, proteomic data can be used to verify and improve the 

prediction of genome annotations. Secondly, by comparing proteomic data with 

transcriptomic data, the importance of post-transcriptional and post-translational 

control of protein abundance in biological process can be examined. 

1.2.6.1  Proteogenomics 

Genome annotation normally comprises two components, identification of protein 

coding sequences (CDS) and the functional annotation of protein products (discussed 

in the previous sections). Identifying protein-coding genes is the primary process 

which provides the foundation to all the downstream analyses. While the 

conventional work flow for bottom-up protein identification based proteomics relies 

upon the accurate prediction of protein-coding genes within the genome, expression 

data acquired from proteomic research can also be used to feedback into the gene 

finding process to improve the quality of the flow from its source.  

Despite the significant effort that has been made in genome annotation, the estimate 

of correct gene structure prediction is only 50% for the human genome [205]. The 

correction rate is estimated to be higher at two-thirds in eukaryotes with compact 

genomes such as Arabidopsis thaliana [206]. Expressed sequence tags (ESTs) and 

cDNA alignments studies carried out in Apicomplexan genome annotations revealed 

slightly better results. However, even in the most studied Apicomplexan genome of 

P. falciparum, approximately 24% of the genes in the current databases are still 

predicted incorrectly [207]. The correction rate falls in the case of T. gondii, where 

41% of ToxoDB v4.3 gene models contained at least one inconsistency with full-

length cDNAs [208]. 
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By mapping peptides identified against predicted gene models and six-frame 

translation of the genomic DNA sequences (ORFs), proteomic data can be used to 

independently validate the prediction of protein-coding genes, confirm the 

translational expression of these genes and predict new genes. Initial studies tested 

this idea by querying MS/MS data against translated genomic sequence of bacteria 

Haemophilus influenza, Mycobacterium tuberculosis, plant Arabidopsis thaliana and 

human genomes on a small scale [209-212]. The approach was further tested on a 

small bacterium Mycoplasma pneumonia which validated the majority of the 

predicted genes (ORFs), as well as suggesting 16 new genes [213]. The success of 

the previous studies lead to the first use of proteomic data as a primary resource for 

Mycoplasma mobile genome annotation [214]. 

Proteogenomics approaches are increasingly used in various aspects of genome 

annotation including validating predicted gene models and detecting novel genes 

[213-216]; confirming the expression of hypothetical genes [217-220] and validating 

alternative splicing variants [220, 221]. The information gathered in proteogenomic 

researches can also provide a valuable training set to improve gene identification, 

predict peptide signals and improve the development of new genome annotation 

pipelines. 

1.2.6.2  The interaction of proteome and transcriptome 

Upon the completion of genome annotation, another important post genomic 

application is transcriptomics. The transcriptome is the complete set of transcripts in 

a cell at a specific developmental stage or physiological condition.  

Two types of technologies are widely used to measure the expression profile of the 

transcriptome, hybridization based and sequence based. Hybridization based 
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approaches typically involve incubating fluorescently labelled cDNA with custom-

made or commercial oligonucleotide microarrays and measuring the intensity of the 

fluorescent dye used [222, 223]. Sequence based approaches directly determine the 

cDNA sequence. Early techniques include the use of relatively low throughput 

cDNA or EST libraries [224, 225]. Tag-based methods such as serial analysis of 

gene expression (SAGE) [226], cap analysis of gene expression (CAGE) [227] and 

massively parallel signature sequencing (MPSS) [228] were developed to provide 

quantitative expression data in a high throughput manner.  

Recent technical development has seen a novel RNA-Seq (RNA sequencing) 

approach that is based on high-throughput sequencing. In summary, the technique 

starts with the conversion of a population of RNA (total for small RNAs, such as 

microRNA or short interfering RNAs, and fractionated for larger RNA, such as 

poly(A) tail) to a library of cDNA fragments with adaptors attached to one or both 

ends. Each molecule in the library is then sequenced with a high-throughput 

sequencing platform to obtain short sequences from one end or both ends [229]. 

RNA-Seq can be done on a variety of high-throughput sequencing platforms 

including Illumina IG [230], Applied Biosystems SOLiD [231] and Roche 454 Life 

Science systems [232]. The resulting sequences can be aligned to a reference 

genome or reference transcripts (intron eliminated), or assembled de novo without 

the genomic sequence to produce a genome-scale transcription map [229]. 

One of the main purposes of transcriptomic studies is to test how particular 

conditions (such as, differentiation, transformation and environment) influence 

global gene expression. These changes at transcriptional level are then used to 

assume the same changes happen at the protein expression level under the particular 

condition and therefore enable the putative functions of proteins to be assigned. This 
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concept is under the commonly accepted „guilt-by-association‟ hypothesis that the 

function of hypothetical genes may be similar to those of annotated genes that share 

the same expression profile [233]. However, with the availability of proteomic data, 

the real changes at the protein expression level can be directly and accurately 

measured first hand. 

In fact, using transcriptomic data to infer protein functions is not only indirect, but 

potentially very unreliable. The „guilty-by-association‟ hypothesis has been 

challenged by in silico approaches in which expression clusters found in microarray 

data do not in general agree with functional annotation classes [234]. This finding 

has been further verified and supported by several large scale studies comparing 

proteomic and transcriptomic expression profiles. Data from combined proteomic 

and transcriptomic analysis revealed discrepancies in the correlation between mRNA 

expression levels and protein abundance in plant seeds [235], mouse embryonic stem 

cells [236], yeast [237] and Plasmodium [238, 239]. 

Although the discrepancies between transcriptome and proteome weaken the 

application of protein function assignments using transcriptomic data, they enlighten 

new applications that allow a better understanding of basic biological processes. 

Despite the possibility that the discrepancies are caused by technical limitations 

whereby the same level of analytic resolution is not reached between transcriptome 

and proteome, the other possible explanations have more biological meaning and are 

worth further investigation. One possible explanation is the selective degradation of 

proteins. A study found that more than 80% of the cellular proteins are degraded 

through a proteasome-dependent pathway [240], while another study found the half-

lives of 576 human A549 adenocarcinoma cells range from many tens of hours to 

just 6 min [241], all adding to the complexity of the protein expression profile. On 
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the other hand, the role of post-transcriptional regulations such as mRNA decay and 

translational repression may also contribute to the discrepancies between mRNA 

expression level and protein abundance [242-244]. The integration of transcriptomic 

and proteomic expression data will provide a dynamic view of gene expression at 

mRNA and protein level, which will in turn increase the understanding of various 

biological processes.  
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1.3   Aims 

The knowledge of T. gondii biology has been steadily increasing in the last century. 

The last thirty years have seen a rapid progression in the understanding of gene 

expression of the parasite along with some major technical developments. 

In the 1980s, using immunocytochemical techniques, the identification of specific 

antibodies led to the cloning of individual genes [106, 245], which allowed the 

identification of the expression and localization of two surface antigens. In 1998, the 

development of expression sequence tags (ESTs) [246] rapidly accelerated the rate 

of gene discovery by generating >7000 ESTs that identified more than 500 new T. 

gondii genes. Moving onto 2002, microarray experiments were developed to provide 

large scale gene expression profiling of tachyzoite to bradyzoite differentiation [247-

249]. In the same year, a pioneering study on the T. gondii proteome has been carried 

out using reproducible 2-DE maps, which led to the identification of around 30 

proteins [250]. In 2003, the first output of the T. gondii genome sequencing project 

was completed followed by the continuing efforts towards genome annotation [108, 

112]. The focus of T. gondii research has gradually moved to the understanding of 

gene expression and gene functions on the genome scale. 

Inspired by the fascinating features of T. gondii and technical advantage developed 

in recent years, this PhD study aims to investigate some important biological and 

technical issues of the proteomic research of T. gondii. This study is achieved 

through the following steps: 

 Multiple proteomic platforms are used to identify T. gondii tachyzoite proteome. 

 A collection of bioinformatics tools are used to characterize and categorize the 

expressed tachyzoite proteome. 
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 The method of integrating the proteomic data with other genomic sources is 

examined, and the possibilities and applications of proteomic data in the field of 

proteogenomics are discussed. 

 A comparison of proteomes and transcriptomes of several Apicomplexan 

parasites has been carried out with data acquired from this study and other 

publicly available expression data, where the meanings of comparison results are 

discussed. 

 Finally, a preliminary case study has been carried out to test the applications of a 

quantitative proteomic method DIGE in understanding protein expression 

changes of T. gondii tachyzoites grown in the presence or absence of glucose. 

Together, this study aims to achieve a comprehensive coverage of the expressed T. 

gondii tachyzoite proteome and at the same time, examine and discuss the 

applications and potentials of this proteomic data in a broader integrative systems 

biology view. 
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Identifying the T. gondii tachyzoite proteome 
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2.1  Introduction 

The sequencing and annotation of the T. gondii genome has promoted the rapid 

development and application of proteomic analysis on the parasite. Studies have 

been carried out to investigate the mechanisms of host cell invasion, the structure 

and composition of the apical organelles, the organization of the cytoskeleton and 

the “entire” proteome of tachyzoites [84, 251-253]. 

Being the active, infectious stage of Toxoplasma, the tachyzoite has been the focus 

of proteomic studies and so far, no significant data has been published on the other 

life cycle stages. Type I strain RH tachyzoites have been used for most proteomic 

studies since they have almost no bradyzoite differentiation in vitro under standard 

culture conditions [254, 255].  

The success of a proteomic project is based on the combination of several 

components, such as good sample isolation and preparation techniques, access to 

expensive specialist equipment for protein separation and mass spectrometry and 

finally, comprehensive data analysis capability. Among the pioneering studies on the 

T. gondii proteome, reproducible 2-DE maps were developed in 2002, in which over 

1000 individual polypeptide spots could be resolved [250]. Of these, 71 protein spots 

were analysed by both MALDI-TOF and post-source decay mass spectrometry and 

due to the limited availability of genomic sequences at that time, this study resulted 

in around 30 protein identifications [250]. Another early attempt at the T. gondii 

tachyzoite proteome revealed up to 224 protein spots on a 2-DE gel and localized 13 

parasite excretory antigens on the gel by Western or T-cell blot [256]. Since then, 

equipped with a better understanding of parasite biology and number of technical 
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advances, the research interest has focused on biologically interesting T. gondii 

subproteomes. 

2.1.1  T. gondii subproteomes 

Studies on T. gondii subproteomes have been benefited from a greater understanding 

of Toxoplasma biology, which has enabled improved sample preparation methods 

such as organelle purification based on density [84] and the collection of apical 

molecules via secretion stimulated by the elevation of Ca
2+ 

[257]; the growing 

availability of sub-cellular markers and the increasingly accurate gene models 

provided by bioinformatics resources [112].  

For example, one study has characterised the proteome of rhoptry organelles [84]. A 

French press was used to disrupt tachyzoites, followed by the fractionation of a 

mixture of rhoptries, dense granules, mitochondria and apicoplasts from cell lysates 

by a Percoll gradient. Sucrose flotation gradient was used to improve the enrichment 

of rhoptry proteins and the sample was analysed by 1-DE LC-MS/MS [84]. This 

study identified 38 novel rhoptry protein candidates and distinguished rhoptry 

proteins according to their sub-organellar location as either bulb (ROP) or neck 

(RON) [84].  

Another subproteomic study prepared excretory/secretory antigens (mainly 

microneme and dense granule proteins) freely released from T. gondii tachyzoite by 

incubating filter-purified parasites in 1% (v/v) ethanol. The protein contents were 

characterized by 2-DE followed by N-terminal sequencing or MALDI-MS, and 

MudPIT [253]. A similar proteomic study used Ca
2+

 ionophore A23187 to stimulate 

calcium-mediated excretion of proteins from T. gondii tachyzoites. The protein 
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contents were characterized by 2-DE followed by N-terminal sequencing or MALDI-

MS [257].  

A proteomic analysis of enriched cytoskeletal components partially purified the 

conoid/apical complex. Parasites were extracted in lysis buffer which left a parasite 

ghost consisting of the apical complex, attached subpellicular MT and the cortical 

filament network. The conoid and remnants of the apical complex cytoskeleton were 

further purified by sonication and differential centrifugation [251]. This study has 

identified ~200 proteins which represents 70% of the cytoskeletal protein 

components, and characterized seven novel proteins among which the targeting 

sequence for recruitment into the cytoskeleton during invasion was determined for 

five proteins [251]. 

Together with these studies, many proteomic efforts have been made to understand 

the key proteins and post-translational modification events involved in host-cell 

invasion, and intracellular survival processes [258-260]. However, the global 

characterization of the T. gondii tachyzoite proteome has not seen many additions 

since the early effort in 2002. 

2.1.2  Whole proteome profiling of Apicomplexan parasites 

While no major global proteomic study has been published on T. gondii since 2002, 

several large-scale studies have investigated the global protein expression profile of 

other Apicomplexan parasites. 

Two whole cell proteome studies have characterized the proteomes of four different 

life cycle stages of Plasmodium falciparum using MudPIT and 1-DE LC-MS/MS in 

2002 [261, 262]. Comprehensive proteomic approaches have also been used to 

analyse the proteome of Plasmodium berghei, Plasmodium yoelii and Plasmodium 
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gallinaceum [238, 239, 263]. Together, these studies provided detailed proteomic 

coverage of several life cycle stages of the Plasmodium species making it one of the 

most studied microbial proteomes.  

Whole proteome studies have also been carried out on Cryptosporidium parvum 

sporozoites. One study investigated the non-excysted and excysted forms of 

sporozoites using LC-MS/MS coupled with iTRAQ isobaric labelling and MudPIT. 

Together, 303 C. parvum proteins were identified among which expression of 26 

proteins have been shown to increase significantly during excystation [264]. In 

addition to this, a comprehensive study to characterise the proteome of excysted 

sporozoites of C. parvum was performed using 2-DE MALDI-TOF or LC-MS/MS, 

1-DE LC-MS/MS and MudPIT. In total, 1237 non-redundant proteins were 

identified in this life cycle stage, which represents approximately 30% of the entire 

predicted proteome ([265] and Appendix X) and significantly expands upon current 

knowledge.  

2.1.3  Aims 

In this chapter, a multi-platform global proteome analysis of T. gondii tachyzoites 

was performed. The strategy was to harness technological advances developed in the 

field of proteomic research and the recent availability of extensive genomic 

sequences and genome annotation to enable the rapid identification of proteins at the 

whole-cell scale. The result had the potential to improve significantly the knowledge 

of protein expression in this important parasite, complement current transcriptional 

data and provide a useful dataset from which improvements in gene annotation can 

be made. 
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2.2  Materials and methods 

2.2.1  T. gondii tachyzoite culture 

Tachyzoites of T. gondii strain RH were maintained twice a week in vero cells 

(African Green Monkey kidney fibroblast-like cell) (purchased from ECACC, cat. 

84113001).  

Uninfected vero cells were grown routinely at 37°C in a 5% CO2 humidified 

incubator (BINDER
®

) in 25 cm
2
 bottom (T25) vented cell culture flasks (BD 

Falcon
TM

) using filter sterilised IMDM medium (Cambrex) supplemented with 5% 

FCS and 1% Pen/Strep (SIGMA-ALDRICH, 10,000 U/ml). Sub-confluent cultures 

(70-80%) were detached from the cell culture flask surface by washing the cells 

twice with 5 ml HEPES buffer and incubating the cells in 5 ml Trypsin-EDTA 

(Sigma) for 5 min at 37°C. Cells were flushed down and transferred to a centrifuge 

tube (BD) and centrifuged at 1500 g for 5 min. The cell pellet was resuspended with 

5 ml IMDM medium and cells were reseeded at 1×10
5
 in 5 ml of IMDM in a T25 

flask.  

Vero cells were infected with T. gondii tachyzoites after 24 hours incubation at a 

parasite-to-cell ratio of 4:1. Both vero cells and tachyzoites were counted using a 

neubauer haemacytometer (Assistent). Tachyzoites were incubated for 3 or 4 days 

prior to sample collection. 

T. gondii tachyzoites were scraped off from the cell culture flask using a sterile cell 

scraper (BD Falcon
TM

) and were separated from the cells by filtration through 3 µm 

pore-size Nuclepore
® 

polycarbonate filters (Whatman, UK). Tachyzoites were then 

washed twice with PBS (pH 7.4) with centrifugation at 1500×g for 20 min at 4°C. 

The pellet was resuspended with 1 ml PBS and transferred to a 1.5ml eppendorf tube; 
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a final centrifuge was then performed at 16,000×g for 5 min at 4°C. The supernatant 

was discarded and the pellet was stored at -20°C. 

2.2.2  Sample quantification 

To estimate protein content in the sample, protein quantifications of tachyzoites were 

performed as follows. The frozen pellet was first solubilised using 100mM Tris/HCl 

pH 8.5 and the soluble fraction was quantified with the BCA assay (Bio-Rad Protein 

Assay). The insoluble fraction was then further solubilised using 2% SDS 

supplemented with 100mM Dithiothreitol (DTT) and quantified with the 2-D Quant 

Kit (GE Healthcare). 

2.2.2.1  Solubilisation 

The T. gondii pellet containing approximately 1×10
8
 tachyzoites was kept on ice 

during the whole process. An aliquot of 500 µl of 100mM Tris/HCl pH8.5 was 

added to the pellet which was incubated on ice for one hour, with vigorous vortexing 

every 10 min during the incubation. Three cycles of freeze-thaw were performed 

after incubation. Each cycle consisted of 2 min vigorous vortexing, followed by fast 

freeze with liquid nitrogen and quick thaw to room temperature. The sample was 

centrifuged at 16,000×g for 30 min at 4°C. The supernatant was transferred into a 

new tube and quantified with BCA assay. A further 200 µl of 2% SDS and 100mM 

DTT buffer was added into the pellet. Three cycles of 5 min heating at 90°C and 2 

min vigorous vortexing were carried out to assist solubilisation. Solubilised protein 

was then quantified with 2-D Quant Kit. 

2.2.2.2  BCA assay 

Tachyzoite protein quantifications were performed using the Bio-Rad Protein Assay. 

Coomassie Plus reagent was diluted 1:4 with water. BSA standards were made by 
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serial dilutions from 1mg/ml stock. Samples were diluted into 1:10, 1:20, 1:40 and 

1:80. Each blank, sample and standard was prepared in triplicate and pipetted into 

the appropriate well in a 96-well plate. An aliquot of 200 µl of prepared Coomassie 

reagent was added into every well. The plate was incubated at room temperature 

between 5 min to 1 hour, and the absorbance was read at 560nm in a microplate 

photometer (Multiskan Ascent, Thermo). A standard curve of blank-corrected 

standard absorbance versus protein concentration was plotted and sample protein 

quantifications were calculated according to their absorbance. 

2.2.2.3  2-D Quant Kit 

Proteins solubilised with 2% SDS and 100mM DTT were quantified using the 2-D 

Quant Kit. Working reagent was prepared by mixing 100 parts of colour reagent A 

with 1 part colour reagent B. BSA standards were set up by adding different volumes 

of 2 mg/ml BSA standard solution. Sample was added undiluted and diluted 1:10 

and prepared in duplicate. Precipitant (500 µl) was added into each tube, vortexed 

briefly and incubated for 2-3 min at room temperature, then 500 µl of co-precipitant 

was added into each tube and mixed briefly. Tubes were centrifuged at 16,000×g for 

5 min. The supernatant was discarded and 100 µl of copper solution and 400 µl of 

distilled water were added to each pellet which was then vortexed briefly. Working 

colour reagent (1 ml) was added into each tube and incubated at room temperature 

for 15-20 min. Absorbance was read at 480nm with Ultrospec 2100 pro 

spectrophotometer. A standard curve of blank-corrected standard absorbance versus 

protein concentration was plotted and protein quantifications were calculated 

according to their absorbance. 
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2.2.3  1-D gel electrophoresis (1-DE) 

Sample was separated on a 16 cm long and 1.0 mm thick 1-D SDS-PAGE gel using 

PROTEAN
TM

 II Slab Cell kit (Bio-Rad). Gels were cast following the recipes listed 

in Table 2.1 for stacking gel and Table 2.2 for separating gel. 

Table 2.1 5% Stacking Gel 

Reagent Volume Comment 

dH2O 13.6 ml  

30% (w/v) Acrylamide 3.4 ml  

0.5 M Tris/HCl (pH 6.8) 5 ml  

10% (w/v) SDS 200 µl  

10% (w/v) APS 200 µl Add fresh 

TEMED 20 µl Add fresh 

Table 2.2 12% Separating Gel 

Reagent Volume Comment 

dH2O 33.5 ml  

30% (w/v) Acrylamide 40 ml  

1.5 M Tris/HCl (pH 8.8) 25 ml  

10% (w/v) SDS 1 ml  

10% (w/v) APS 500 µl Add fresh 

TEMED 100 µl Add fresh 

Electrode (Running) buffer was prepared as a 10 × stock solution according to Table 

2.3 and diluted to 1 × working solution prior to use. 

Table 2.3 10 × SDS-PAGE Electrode (Running) Buffer 

Reagent Volume Comment 

Tris base 30.3 g  

Glycine 144 g  

SDS 10 g  

dH2O to 1 litre  

40 µl 2× SDS-PAGE loading buffer (see Table 2.4) was added to the pellet which 

contains 1×10
8
 T. gondii tachyzoites. Three cycles of 5 min heating at 90°C and 2 

min vigorous vortexing were carried out to assist solubilisation followed by a final 

centrifugation at 16,000×g for 3 min.  
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Table 2.4 2×SDS-PAGE Loading Buffer 

Reagent Concentration Comment 

0.5 M Tris-HCl (pH 6.8) 100 mM  

SDS 4 % (w/v)  

Bromophenol Blue 0.2% (w/v)  

Glycerol 10 % (v/v)  

DTT 200 mM Add fresh 

dH2O   

 

The supernatant was loaded into a single sample well and separation was performed 

by electrophoresis at constant current of 16 mA for stacking and 24mA for 

separating gels. Run time was between 6-7 hours; after running, the gel was removed 

from the plate and fixed for 2 hours in 40 % (v/v) ethanol, 10 % (v/v) acetic acid. 

The gel was then washed twice with dH2O and stained in colloidal Coomassie blue 

(1 part methanol, 4 parts colloidal stock (50g Ammonium sulphate, 500 ml dH2O, 6 

ml phosphoric acid and 10 ml 5% (v/v) Coomassie stock)) for 1-7 days.  

2.2.4  2-D gel electrophoresis (2-DE) 

2.2.4.1  Sample preparation  

Two strategies have been used for sample preparation which resulted in similar 

preparation results determined by the sample quantification assay and the 

visualization of the stained gels. 

a) 120 µl of lysis buffer A (see Table 2.5) was added to the frozen pellet which 

contains 1×10
8
 T. gondii tachyzoites. Three cycles of freeze and thaw were 

performed; each cycle comprised 2 min of vigorous vortexing, followed by fast 

freeze with liquid nitrogen and quick thaw to room temperature. The sample was 

centrifuged at 16,000×g for 30 min at 4°C. 
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Table 2.5 Lysis buffer A 

Reagent Volume Comment 

Urea 8M  

CHAPS 4% (w/v)  

Tris-base 40mM  

DTT 60mM Add fresh 

IPG buffer 0.5% (v/v) Add fresh 

dH2O   

b) 120 µl of lysis buffer B (see Table 2.6) was added to a 1×10
8
 T. gondii tachyzoite 

pellet. The sample was incubated at room temperature for 2-4 hours with a vigorous 

vortex every half an hour. The sample was then centrifuged at 16,000×g for 5 min. 

Table 2.6 Lysis buffer B 

Reagent Volume Comment 

Urea 7M  

ThioUrea 2M  

ASB-14 2% (w/v)  

CHAPS 4% (w/v)  

Tris-base 20mM  

Protease Inhibitor 

Cocktail Tablets (Roche) 
1×  

DTT 60mM Add fresh 

IPG buffer 0.5% (v/v) Add fresh 

dH2O   

2.2.4.2  IPG strip rehydration 

From either 1a or 1b, the supernatant was transferred to a new tube and rehydration 

buffer (supplemented with 40mM DTT and 0.5% IPG buffer) was added to a final 

volume of 450 µl. The solution was then loaded to one reservoir slot of the 

immobiline DryStrip reswelling tray (GE healthcare). A 24 cm IPG strip (pH 4-7 or 

pH 3-11 NL) was placed in the reservoir slot with the gel side down. DryStrip cover 

fluid (3 ml) was then overlaid onto the strip and the tray covered with the lid. The 

tray was left at room temperature for a minimum of 10 hours for a complete 

rehydration.  
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2.2.4.3  First-dimension Isoelectric Focusing (IEF) 

The rehydrated strip was placed on an Ettan
TM

 IPGphor II
TM

 (GE healthcare) 

following the manufacturer‟s handbook. IEF was run at 20°C, with 75 µA per strip 

with the following steps (see Table 2.7). 

Table 2.7 IEF Protocol 

Step Voltage Mode Voltage Duration (Hour) 

1 Step 500 V 2 

2 Gradient 1000 V 8 

3 Gradient 10,000 V 3 

4 Step 10,000 V 4.25 

2.2.4.4  Second-dimension SDS-PAGE 

Second-dimension SDS-PAGE was performed on a precast DALT Gel 12.5(26 × 20 

cm) (GE Healthcare) using the Ettan DALTsix electrophoresis System (GE 

Healthcare).  

The IPG strip was removed from the Ettan
TM

 IPGphor II
TM

 and two steps of 

equilibration were carried out. Firstly, 100 µg of DTT was added into 10 ml of 

equilibration buffer (2% (w/v) SDS, 50 mM Tris-HCl pH 8.8, 6M urea, 30% (v/v) 

glycerol, and 0.002% (w/v) bromophenol blue). The IPG strip was washed in 

equilibration buffer I on a shaker for 15 min. Equilibration buffer II was made up by 

adding 250 µg of iodoacetamide (IAA) into 10 ml of equilibration buffer. The IPG 

strip was washed in equilibration buffer II on a shaker for 10-15 min. 

The equilibrated IPG strip was then assembled onto a DALT precast gel following 

manufacturer‟s instruction. The Ettan DALTsix System was setup according to the 

product handbook using the electrophoresis buffer kit supplied. The gel was run at 

20°C with an initial wattage of 3 W for 0.5 hour and 17 W per gel thereafter. 
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After electrophoresis, the gel was removed from the plate and fixed for 2 hours in 

40 % (v/v) ethanol, 10 % (v/v) acetic acid. The gel was washed twice in dH2O and 

stained in colloidal Coomassie blue (1 part methanol, 4 parts colloidal stock (50g 

Ammonium sulphate, 500 ml dH2O, 6 ml phosphoric acid and 10 ml 5% Coomassie 

stock)) for 1-7 days.  

2.2.5  Manual tryptic digestion 

Slices from 1-DE gels or plugs from 2-DE gels were cut out and placed in separate 

eppendorf tubes. An aliquot of 15 µl of 50 mM ammonium bicarbonate (Ambic)/ 50% 

(v/v) acetonitrile was added into each tube and incubated for 10 min at 37°C to 

destain the plugs/slices. The destain step was repeated 2-3 times until the gel plugs 

were fully destained and the destain buffer was discarded at each step.  

For 1-DE gel slices, two additional reduction steps were carried out before moving 

onto the next step. DTT (50 µl of 10 mM in 100 mM Ambic) was added to each tube 

and incubated for 30 min at 37°C. The DTT solution was discarded and 50 µl of IAA 

(55 mM in 100 mM Ambic) was added to each tube, followed by 1 hour incubation 

at 37
 
°C in the dark. IAA was discarded after incubation. 

For both 1-DE slices and 2-DE gel plugs, 15 µl of 100% acetonitrile was added into 

each tube, followed by 15 min incubation at 37°C. This step was repeated until the 

gel plugs turned completely white indicative of dehydration. The solvent was 

removed and tubes were incubated at 37°C for 10 min to evaporate the remaining 

solvent. 

25 µg of sequencing grade trypsin (Roche) was first diluted with 250 µl of 50 mM 

acetic acid to make a stock solution. Stock solution was further diluted into working 

reagent at a 1:10 ratio with 25 mM Ambic. An aliquot of 10-15 µl of trypsin 
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(according to the size of the gel plugs) was added to the evaporated plugs and the 

tubes were incubated at 37°C for 1 hour. An additional 10 µl of 25 mM Ambic was 

added into each tube, followed by overnight incubation at 37°C. The digested 

solution was run on the LTQ immediately afterwards or stored at -20°C. 

2.2.6  LTQ (LC-MS/MS) 

The LTQ work for the 1-D SDS PAGE gel slices and part of the 2-D SDS PAGE gel 

analysis was performed by Dr. S.J. Sanderson. Briefly, the LC-MS/MS platform was 

setup using a LTQ ion-trap mass spectrometer (Thermo-Electron) coupled on-line to 

a Dionex Ultimate 3000 (Dionex) HPLC system equipped with a nano pepMap100 

C18 reversed phase column (75 µm; 3 µm, 100 Angstroms). The column was 

equilibrated in 98.9% (v/v) water/ 2% (v/v) acetonitrile/ 0.1% (v/v) formic acid (FA) 

at a flow rate of 300 nl/min. Sample injections of 15 µl of tryptic peptides were 

loaded onto a C18 TRAP, desalted and washed for 3min at a flow rate of 25 µl/ min 

prior to being loaded onto a nano pepMap100 C18 column at 300 nl/ min. The 

peptides were eluted at a flow rate of 300 nl/ min with a linear gradient of 0-50% 

(v/v) acetonitrile/ 0.1% (v/v) FA over 30 min, followed by 80% (v/v) acetonitrile/ 

0.1% (v/v) FA for 5 min. The column was then equilibrated in 98.9% water/ 2% 

acetonitrile/ 0.1% (v/v) formic acid for 5 min (total run time per sample was 50 min). 

Ionised peptides were analysed in the mass spectrometer (0-106 m/z, global and Msx) 

using the “triple play” mode, consisting initially of a survey (MS) spectrum from 

which the three most abundant ions were determined (threshold = 200-500 TIC). 

Collision energy was set at 35% for 30 min. The charge state of each ion was then 

assigned from the C13 isotope envelope “zoom scan” and finally subjected to a third 

MS/MS scan. The LTQ was tuned using a 500 fmol/µl solution of glufibrinopeptide 

(m/z 785.8, [M+2H]
2+

) and calibrated according to the manufacturer‟s instructions. 
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The resulting MS/MS spectra (dta files) were merged into an mgf file which was 

submitted to Mascot searching.  

2.2.7  Mascot searching of MS data acquired 

Mascot searching was carried out on a local Mascot server. A local Toxoplasma 

database was selected which comprised of the following components retrieved from 

ToxoDB: ORF>50 aa from clustered EST; ORF>50 aa from whole genome shotgun 

(10×); Twinscan predictions; TigrScan predictions; GlimmerHMM predictions; 

Organellar Sequences and Annotated Proteins, release 4 (release 4 gene models). 

MS/MS Ion Search was used to search the data output from the LTQ. Database 

search parameters included: fixed carbamidomethyl modification of cysteine 

residues; variable oxidation of methionine; a peptide tolerance of ± 1.5 Da; MS/MS 

tolerance ± 0.8 Da; +1, +2, +3 peptide charge state; and a single missed trypsin 

cleavage. Instrument was set as ESI-TRAP.  

2.2.7.1  Manual Validation of Mascot Results 

For 1-DE and 2-DE results, additional manual validation was carried out on the 

proteins identified by Mascot that were based on a single peptide and/ or proteins 

which returned a Mascot score < 60. The protein identification was accepted if a) a 

matching peptide possessed an individual ion score above the significant threshold 

for identity or extensive homology (typically >44), or b) upon manual inspection of 

individual peptide MS/MS spectra at least 60% percent of the candidate y-ions were 

at a minimum signal to noise ratio of 10%. Spectra which failed to pass either rule 

were regarded as false positive identifications, which can result from an 

accumulation of several peptides with low ion scores. 
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2.2.8  Multidimensional protein identification technology (MudPIT) 

Sample preparation, mass spectrometric analysis and MS data searching were 

performed by Dr. Judith H. Prieto from John R.Yates‟s lab, Scripps Research 

Institute, La Jolla. The procedures are as follows: 

2.2.8.1  Sample preparation for MudPIT 

A pellet of 1 × 10
9
 tachyzoites resuspended to approximately 800 µg/ml in 500 l 

100 mM Tris/HCl buffer pH 8.5 was lysed by three cycles of freeze/ thaw and the 

Tris-soluble and insoluble protein fractions separated at 16,000×g for 30 min. 

Digestion of soluble fractions: MS compatible detergent Invitrosol was added to 1% 

(v/v), the solution heated to 60C for 5 min, vortexed for 2 min, denatured with 2 M 

urea, reduced with 5 mM TCEP, carboxyamidomethylated with 10 mM 

iodoacetamide, followed by addition of 1 mM CaCl2 and trypsin at a ratio of 1:100 

(enzyme: protein) and incubated at 37C overnight. Digestion of insoluble fractions: 

10% (v/v) Invitrosol was added to the pellet which was heated to 60C for 5 min, 

vortexed for 2 min and sonicated for 1 h. The sample was diluted to 1% (v/v) 

Invitrosol with 8 M urea/ 100 mM Tris/ HCl pH 8.5, reduced and 

carboxyamidomethylated as before, and digested with endoproteinase Lys-C for 6 h. 

The solution was diluted to 4 M urea with 100 mM Tris/ HCl pH 8.5 and digested 

with trypsin as described above. 

2.2.8.2  Mass spectrometric analysis by MudPIT 

Five soluble replicates and four insoluble samples were each subjected to MudPIT 

analysis with modifications to the method of Link et al.[266], using a quaternary 

Agilent 1100 series HPLC coupled to a Finnigan LTQ-ion trap mass spectrometer 

(Thermo, San Jose, CA) with a nano-LC electrospray ionization source. Peptide 
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mixtures were resolved by strong cation exchange LC upstream of RP-LC. Each 

sample (100 µg of protein) was loaded onto separate microcolumns and resolved by 

fully automated 12 step chromatography.  

2.2.8.3  SEQUEST searching of MS data acquired 

A local Toxoplasma database was used (as in section 2.2.7). To identify contaminant 

host proteins the parasite database was supplemented with a contaminant database 

(the complete prokaryote and mammalian databases from NCBI). To estimate the 

amount of false positives a reverse database was added. Poor quality spectra were 

removed from the data set using an automated spectral quality assessment algorithm. 

Tandem mass spectra remaining after filtering were searched with the SEQUEST 

algorithm version 27. All searches were in parallel and were performed on a Beowulf 

computer cluster consisting of 100 of 1.2 GHz Athlon CPUs. No enzyme specificity 

was considered for any search. SEQUEST results were assembled and filtered using 

the DTASelect (version 2.0) program which uses a quadratic discriminate analysis to 

dynamically set XCorr and DeltaCN thresholds for the entire data set to achieve a 

user-specified false positive rate (<5% peptides false positive in this analysis). The 

false positive rates are estimated by the program from the number and quality of 

spectral matches to the decoy database. 
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2.3  Results 

2.3.1  T. gondii tachyzoite proteomic analysis by 1-DE 

A large format 1-DE gel was performed to resolve solubilised proteins from 1.1 × 

10
8 

tachyzoites (220 µg of protein) (see Figure 2.1). In total, 129 gel slices were 

manually excised from the entire length of the resolving gel; each slice was 

tryptically digested, submitted to LC-MS/MS and searched against the local 

Toxoplasma database using Mascot (as in section 2.2.7).  

 

Figure 2.1 Tachyzoite proteins resolved by 1-DE. Proteins from 1.1×10
8
 T. 

gondii tachyzoites were resolved on a 16 cm 12% (w/v) SDS-PAGE gel and stained 

with colloidal Coomassie blue. The gel was cut into 129 contiguous gel slices. Each 

slice was tryptically digested and analysed by LC-MS/MS. The masses of protein 

standards and the positions of gel slices are shown. 

An average of approximately 20 proteins were identified from each gel slice (ranging 

from 2 proteins per slice from a region at the top of the gel to 51 proteins per slice in 

the middle of the gel) and the overall number of individual identification is 2778 (see 
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Figure 2.2 for a sample of the protein identification table and Appendix I for the list 

of individual protein identifications).  

 

Figure 2.2 A sample of protein identification table of Mascot results. Listed 

in the columns (from left to right) are: the gel slice number, ranking of each protein 

hit returned from the Mascot search for that gel slice, corresponding gene 

annotations and descriptions, Mascot scores, number of matching peptides to each 

protein and sequence coverage.  

In many instances the same protein was identified in multiple gel slices which could 

be due to proteolytic processing events, post-translational modifications, isoenzymes 

or simply that a given protein band spanned more than one gel slice. When 

redundancy between proteins with the same identification is removed, assuming the 

variants are the products of a single gene, the expression of 923 individual genes was 

identified (comprising 857 release 4 genes and 66 alternative gene models and ORFs; 

discussed in section 2.4.3). 

In addition to the first 1-DE gel, another 1-DE experiment was performed with prior 

sample fractionation of 9.85×10
7
 tachyzoites using 100mM Tris/HCl pH 8.5 with the 

aim of increasing sample resolution and thereby protein identification. Both Tris-

soluble (120 µg of protein) and Tris-insoluble (130 µg of protein) fractions were 
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resolved by 1-DE (see Figure 2.3). The most divergent region (~50-100 kDa) 

between soluble and insoluble fractions was determined by eye and 25 gel slices 

were excised correspondingly, followed by tryptic digestion, LC-MS/MS analysis 

and Mascot searching. When the redundancy was removed, expression of 351 

individual genes (335 release 4 genes and 16 alternative gene models and ORFs) was 

identified from the 50 gel slices on the second gel (see Appendix II for tables listing 

individual protein identifications). 

 

Figure 2.3 Tris-fractionated tachyzoite proteins resolved by 1-DE. Proteins 

from 9.85×10
7
 T. gondii tachyzoites previously fractionated into Tris-soluble (120 

µg of protein) and Tris-insoluble (130 µg of protein) fractions were resolved on a 16 

cm 12% (w/v) SDS-PAGE gel and stained with colloidal Coomassie blue. 

Contiguous gel slices (25) spanning ~50-100 kDa were excised from both lanes. 

Each slice was tryptically digested and analysed by LC-MS/MS. The masses of 

protein standards and the positions of gel slices are shown. 
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When redundancy between proteins with the same identification from both 1-DE 

gels was removed, 1012 individual gene products (939 release 4 genes and 73 

alternative gene models and ORFs) were identified (see Appendix III for non-

redundant list of protein identifications). 

2.3.2  T. gondii tachyzoite proteomic analysis by 2-DE 

Both broad, non-linear (pH 3-10NL) and narrow, linear (pH 4-7) range 2-DE gels 

were used to resolve tachyzoite proteins (see Figure 2.4). In total, 1217 protein spots 

were excised from 2-DE gels (783 spots from the pH 3-10NL separation and 434 

spots from the pH 4-7 separation). Each protein spot was tryptically digested, 

analysed by LC-MS/MS and searched for protein identity using Mascot. 

Similar to the 1-DE results, many proteins from separate spots shared the same 

identity and some gel spots contained more than one protein (discussed in 

section 2.4.2). When redundancy between proteins with the same identification 

from both 2-DE gels was removed, 616 individual gene products (547 release 4 

genes and 69 alternative gene models and ORFs) were identified (see Appendix 

IV for list of MS evidence obtained from 2-DE proteome maps of T. gondii 

tachyzoite proteins). 
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Figure 2.4 Tachyzoite proteins resolved by 2-DE. (a) Soluble proteins from 

2.53×10
8
 tachyzoites (516 μg of protein) resolved by IEF over a broad, non-linear 

pH 3-10 range. (b) Soluble proteins from 1×10
8
 tachyzoites (200 μg of protein) 

resolved by IEF over a narrow, linear pH 4-7 range. Both pH3-10NL and pH 4-7 IEF 

strips were further separated by molecular mass on a 12.5% (w/v) acrylamide gel 

under denaturing conditions. Protein spots are visualized using colloidal Coomassie. 

Spots with the same protein identification are boxed. Gel annotation was assisted by 

Dr. S.J. Sanderson.  
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2.3.3  MudPIT analysis of T. gondii tachyzoites 

Whole tachyzoite protein was fractionized into Tris-soluble and Tris-insoluble 

fractions, and each fraction processed for MudPIT analysis by Dr Judith Prieto in 

John R. Yates‟s lab, Scripps Research Institute, La Jolla as detailed in sections 

2.2.8.1-3. This resulted in 1300 and 2328 protein identifications, respectively. A total 

number of 2409 non-redundant proteins were identified, which comprises 2121 

release 4 genes and 288 alternative gene models and ORFs. Of the release 4 genes 

identified, 15.3% were uniquely identified in the Tris-soluble fraction and 48.0% 

were uniquely identified in the Tris-insoluble fraction (see Appendix V for protein 

identifications made by MudPIT). The higher number of proteins identified in the 

Tris-insoluble fractions is likely to reflect incomplete solubilisation in the Tris buffer. 

This is indicated by the transmembrane domain (TM domain) prediction results 

where 20.0% of proteins identified in the Tris-insoluble fractions possess at least one 

TM domain, compared to 8.4% in the Tris-soluble fractions.  

2.3.4  Comparison of protein identifications from the three proteomic 

platforms 

Prior to the commencement of this study in 2005, total protein expression evidence 

was limited to T. gondii sub-proteomes and the previous preliminary tachyzoite 

proteome study from the Wastling group [84, 250, 253]. In total just around 300 

release 4 genes were known to be expressed, representing less than 4% of the 

predicted genome. In this study, when the results from the three proteomic platforms 

were combined, a total number of 2252 non-redundant release 4 gene identifications 

were obtained from the tachyzoite stage of the parasite. This represents the 

expression of approximately 29% of the total number of release 4 predicted genes in 
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the genome. Notably, 813 of the 2252 (36%) proteins identified are annotated as 

hypothetical or conserved hypothetical proteins on ToxoDB. With the expression 

evidence acquired in this study, the status of these proteins can now be changed to 

“confirmed” proteins. Figure 2.5 illustrates the degree of overlap between the protein 

identification results derived from each of the three proteomic platforms. 

 

Figure 2.5 T. gondii tachyzoite expressed proteome: comparison of 

proteomic platforms. Venn diagram showing the number of unique and 

shared non-redundant release 4 gene identifications obtained from each of the three 

proteomic platforms. 

The comparison shows that MudPIT produced the largest number of identifications; 

however, a number of proteins were uniquely identified from gel-based approaches 

(59 for 1-DE; 40 for 2-DE). A more detailed comparison of the different proteomic 

platforms used is discussed in section 2.4.2. In addition to the identified release 4 

genes, 394 non-redundant alternative gene models and ORFs were identified from 

the entire dataset. The implication for genome annotation of these additional 

identifications out with the release 4 genes is further examined and discussed in 

chapter 4. 
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Searching against the contaminant database mostly returns trypsin and keratins with 

a wide range of identification scores for all three proteomic platforms used. This has 

been observed by other studies and [267] keratin contamination should be regularly 

monitored to keep the level to the minimum. 
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2.4  Discussion 

In this study, a significant proportion of the T. gondii predicted proteome has been 

identified. This result benefited from the careful consideration of several important 

technical challenges such as proteomic platform selection; database design and the 

searching strategy for MS data acquisition, which are discussed in detail in the 

following sections. 

2.4.1  Coverage of the predicted proteome 

Using multiple platforms has proven to be an efficient and powerful approach in 

protein identification based proteomic research [262, 265, 268, 269]. In this study, 

three independent proteomic platforms were used to maximise the coverage of the 

expressed proteome. More than two thousand (2252) unique release 4 genes have 

been identified, which represents almost one third (29%) of the predicted proteome 

of all life cycle stages. This work significantly improved the knowledge of the T. 

gondii proteome, increasing the percentage of known expressed genes from ~4% to 

29% of the total genome. The coverage was further expanded by the identification of 

394 non-redundant alternative gene models and ORFs.  

The coverage of the predicted proteome from one life cycle stage in this study is 

similar to or marginally better than other large scale Apicomplexan proteomic 

studies. For example, 32% for C. parvum excysted sporozoites [265], 20% for 

sporozoites and 16% for merozoites of P. falciparum [261], and 20% in a later T. 

gondii tachyzoite study [270]. Since the exact number of proteins in the predicted 

proteome of T. gondii tachyzoite is unknown, whether the 1/3 coverage of the whole 

predicted proteome represents a significant proportion of all the expressed proteins 

from the tachyzoite stage or rather a reflection of the detection limitation of the 
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proteomic techniques requires further investigation. For example, the detection of 

low abundance proteins is hampered in the presence of more abundant proteins 

during MS analysis and considering the continuous synthesis and degradation of 

proteins with varying turnover rates [271], it is difficult to include all the proteins in 

a single “snapshot” during sampling. The slightly higher coverage of the predicted 

proteome achieved by this study and the C. parvum study [265] is likely to have 

benefited from the three complementary proteomic platforms used which enhanced 

the detection of proteins with different properties. The difference and benefits of the 

three proteomic platforms are further discussed in section 2.4.2.     

In fact, higher proteomic coverage can be expected when more life stages are studied.  

A proteomic study in P. falciparum has revealed that 49% of expressed sporozoite 

proteins are unique to this stage and an average of 25% of proteins is shared with any 

other stage. Taking all four stages studied into consideration, only 6% of proteins are 

common to all stages [261]. A transcriptome study of T. gondii found that 50% of 

expressed tachyzoite genes (day 7) are shared with the genes expressed in mature 

bradyzoites (day 17) [272]. If a similar overlapping percentage can be applied to the 

T. gondii proteome, a much higher coverage of the predicted proteome can be 

expected when multiple life cycle stages are studied. 

2.4.2  Comparison of the three proteomic platforms used 

Complementary proteomic platforms, the gel based techniques of 1-DE and 2-DE 

followed by LC-MS/MS and the gel free technique, MudPIT were used in this study. 

While each platform contributed to the overall coverage of the proteome by 

identifying unique proteins shown in Figure 2.5, they also have their own advantages 

and limitations in proteomic studies. 



 Chapter 2-Identifying the T. gondii tachyzoite proteome 
 

72 

 

The gel based techniques used in this study generally detect more peptides per 

protein identification and hence deliver higher confidence scores than protein 

identification obtained from MudPIT. This can be explained by the sample 

separation in protein space prior to MS analysis, which results in a less complex 

peptide mixture to be analysed by MS and database searching. 

Among the gel based techniques, 1-DE has a wider application in protein separation 

compared to 2-DE, it has a higher loading capacity and the presence of SDS enables 

a better solubilisation of hydrophobic proteins (for example, membrane proteins, 

which are important for parasite invasion and survival in host cells). In fact, 14.2% 

of proteins identified by 1-DE possess at least one transmembrane domain (TM 

domain), which is higher than 9.7% for 2-DE. 1-DE has identified more proteins 

than 2-DE in this study, which has also been observed in previous studies [265, 269]. 

In addition to that, 1-DE benefits high throughput proteomic analysis with a simpler 

experiment setup and less labour intensity. 

In this study, a similar Tris solubilisation strategy as used for a Plasmodium 

proteome [261] was tested on a second 1-DE experiment. The analysis of 50 slices 

from the most divergent region led to the identification of 335 release 4 genes, of 

which 82 genes were not previously identified in the first 1-DE experiment. The 24.4% 

increase in protein identification may look encouraging initially. However, among 

359 release 4 genes identified from the equivalent region on the first 1-DE 

experiment, 108 genes have not been identified in the second 1-DE experiment. 

Taking into account that a 23-38% increase of protein identification can be expected 

simply by analysing the same sample twice by LC-MS/MS [273], and considering 

the extra labour required to complete the analysis, only the initial 50 slices have been 
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analysed in the second 1-DE experiment. The same Tris solubilisation strategy was 

applied for the more automated MudPIT platform. 

In comparison with 1-DE and MudPIT, 2-DE has difficulty in resolving very large or 

small proteins, low abundance proteins, hydrophobic proteins and proteins with 

extreme pIs. 2-DE experiments are also very labour intensive. However, despite 

these limitations, the 2-DE approach has uniquely identified 40 release 4 genes in 

this study. More importantly, 2-DE is able to provide additional information about 

the expressed proteome that other platforms fail to provide. It delivers a reference 

map of intact proteins, which reflects changes in protein expression levels, isoforms 

or post translational modification (PTM).  

In this study, clusters of proteins from different gel spots are often found to share the 

same identification as shown in Figure 2.4. These clusters of proteins are likely to 

represent isoenzymes or proteins with PTMs. This phenomenon highlights an 

important application of 2-DE, PTM analysis. For example, protein phosphorylation 

is a key PTM that is crucial in controlling enzyme activities, protein degradation and 

particularly, T. gondii invasion and host cell interaction [274, 275]. Several 

phosphoprotein groups identified in this study showed as horizontal strings of spots 

on the gel since proteins containing negatively charged phosphate groups are 

separated according to their pI differences. 2-DE provides a rapid and 

straightforward visualization method of the potential PTM events; peptides from 

proteins of interest can be enriched by affinity chromatography or chemical 

approaches [276-278] and analysed further by tandem MS. 

MudPIT identified the largest number of proteins in this study. Using a gel free 

platform, MudPIT can identify proteins with extremes of isoelectric point and 
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molecular weight [139]. Simplified sample separation in peptide space together with 

the use of two dimensional chromatography increases the resolution of separation 

and also provides higher loading capacity. This allows low abundance proteins and 

hydrophobic proteins to be identified [279]. In this study, 18.0% of proteins 

identified by MudPIT possess at least one TM domain, which is higher than the 

results from both 1-DE and 2-DE. In addition to this, MudPIT analysis is readily 

automated which benefits the high throughput requirement of proteomic research. 

However, MudPIT generates a highly complex peptide mixture, which requires 

considerable computing power for MS data searching. The dedicated and costly 

instrument setup and operational expertise required also prevent easy access for 

individual labs. 

With various protein identification techniques available in this rapidly developing 

proteomics field, choosing a good combination of techniques is central to providing 

the largest number of protein identifications whilst utilising limited amounts of 

sample and labour. In this study, 2-DE gels with two pH gradient ranges were used 

to enable a broad sampling from pH 3-10, and at the same time achieve increased 

resolution for the detection of low abundance proteins in pH 4-7 range. By running 

the second 1-DE experiment, it has been demonstrated that additional protein 

identifications can be achieved with repeated analysis, but it is unclear whether the 

extra proteins identified are the results of difference in 1-DE gel separation or the 

repeated LC-MS/MS analysis. It is hard to justify the extra material and labour 

required to complete the analysis of the second 1-DE experiment especially when a 

Tris pre-fractionation method has been applied to a more automated MudPIT 

platform where five soluble replicates and four insoluble replicates have been 

analysed. 
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2.4.3  Database design to maximize protein identification 

A successful translation of the raw MS data to protein identification relies on a good 

sequence database design that can maximize the coverage of potential protein coding 

sequences (CDS). This will make greatest use of the peptide information acquired in 

the previous steps. As reviewed in section 1.1.4, various gene prediction algorithms 

have been used for T. gondii genome annotation. These include ab initio gene 

prediction methods TigrScan and GlimmerHMM, and integrative methods such as 

GLEAN and TwinScan that combine experimental data, comparative genomic 

alignments and ab initio methods [280-282]. A major updated version was made 

available on ToxoDB version 4 in 2006 (release 4 gene model), which integrated 

experimental data such as expressed sequence tags (ESTs) [112].  

However, despite all the effort that has been made, the release 4 gene model is far 

from a perfect dataset that can be used as the only sequence database for MS data 

searching. It was shown that 41% of release 4 gene models are likely to be imperfect  

containing at least one inconsistency with full-length cDNAs [208]. Comparison of 

release 4 gene models and genes predicted by other methods revealed a more 

complicated mixture of gene models. It has been found that any two prediction 

methods used generally share less than 12% identical predicted genes (head to head 

comparison) and 68% to 87% of sequences predicted by each prediction methods are 

unique to other prediction methods [270]. 

The above finding confirmed that using any single gene model is not sufficient to 

cover all the possible coding sequences. In this study, a lot of effort has been made to 

overcome this issue. MS data generated from the 1-DE experiment was initially 

searched against a sequence database that comprised all applicable coding sequences 

on ToxoDB version 3. Upon the publication of release 4 gene models in 2006, a new 
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sequence database was designed to achieve the best coverage of potential T. gondii 

coding sequences. Both release 4 gene models and gene models provided by other 

prediction methods and experimental evidence such as clustered expressed sequence 

tags (collectively termed as alternative gene models) were used. These were 

complemented by the inclusion of open reading frames (ORFs) translated from 

genomic sequences. MS data generated from the 1-DE experiment was re-searched 

against the new sequence database and subsequent data analysis was repeated. 

Searching against the new sequence database enabled us to realize the imperfection 

of release 4 gene models and led to the development of strategies to improve genome 

annotation and shorten the time consuming data re-submission process, which is 

further discussed in Chapter 4. 

2.4.4  Search engines and result verification 

The successful identification of low-abundance proteins in the sample has been an 

important issue in proteomic research. For example, the expression of 9 surface 

antigen related genes in T. gondii, which serve important roles in host cell 

attachment and interfacing with the host immune response during invasion [69], 

were found to be below the 10 percentile in a microarray experiment [112]. If the 

expression of these genes remains low at a translational level, the successful 

identification of these genes in a proteomic study is expected to encounter some 

technical limitations. 

 Firstly, the stochastic nature of peptide sampling by the mass spectrometer leads to a 

bias towards more protein identifications from peptides of higher concentrations. 

Secondly, different search engines used in MS data analysis also vary the results 

because of the difference in the search engines themselves as well as different false 

discovery rates applied [273, 283]. A recent test sample study distributed 20 highly 
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purified recombinant human proteins to 27 independent laboratories and compared 

the protein identification results acquired. Although most of the laboratories 

generated high quality MS data which was sufficient to identify all 20 proteins tested, 

only seven laboratories correctly reported all the proteins due to the differences in 

database setup and the search engine used [267].  

In this study, manual inspection has been used to preserve the valuable expression 

evidence of low-abundance proteins acquired by MS data and protein identifications 

were also verified by searching against decoy and contaminant databases. Protein 

identification based on a single peptide and proteins that return a Mascot score < 60 

are normally regarded as low confidence identifications, but these can also represent 

real expression of low-abundance proteins. For 1-DE and 2-DE results, manual 

inspection of individual peptide MS/MS spectra has been carried out on the proteins 

identified by Mascot (as described in section 2.2.7.1).  

For MS data searching of MudPIT results, although manual inspection is not feasible, 

a decoy database that contains reversed sequences from the target database was used 

to estimate the false discovery rates (FDRs). The FDRs were calculated at 3.84% for 

Tris-insoluble fractions and 3.11% for Tris-soluble fractions, which are very 

respectable figures as < 5% is considered a low FDR for MudPIT [284, 285].  

Approaches have been developed to improve the performance of MS data searching 

by adapting the results from multiple searching engines. This approach can 

significantly reduce the FDR of the result [284] and improve the confidence of 

protein identification based on a single peptide [284, 286]. Using multiple search 

engines for MS data allows on average 35% more peptide identifications to be made 

at a fixed FDR of 1% compared with using a single search engine [286]. The 
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development of this multiple search engine platform is nearly completed in the 

Wastling group in collaboration with Dr Andy Jones, University of Liverpool. It is 

expected to bring significant benefits to the current study and on-going proteomic 

studies by re-querying raw MS data using this platform. 

2.4.5  Conclusion 

Through the years, the rapid improvement of genomic and proteomic techniques has 

provided us with an ever improving MS detection sensitivity and capability, more 

accurate genome annotations and more efficient MS data search engines. It is 

essential to harness the latest technical development in this dynamic proteomic 

research. In this study, the three complementary high-performance proteomic 

platforms as well as a carefully designed up-to-date database and searching strategy 

for MS data acquisition allowed us to achieve a comprehensive coverage of the 

expressed T. gondii tachyzoite proteome. Comparing the results of this study with 

what had been achieved in 2002, a great improvement has already been seen. It is 

safe to speculate that a better coverage can be achieved in the near future within this 

on-going field of proteomic research. 

While the identification of several thousand expressed proteins provides a milestone 

for proteomic research, in combination with the power of bioinformatics 

interpretation, the protein expression data will further benefit the understanding of T. 

gondii biology, which is investigated and discussed in Chapter 3. To harness the 

proteomic data in a broader, system biology level, the value of the proteomic data in 

the process of genome annotation and the comparison between proteomic and 

transcriptomic data are discussed in Chapters 4 and 5, respectively. 



 

 

 

 

 

 

 

 

Chapter 3 

Bioinformatics interpretation of the proteomic data 
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3.1  Introduction 

Once the expressed proteome has been identified, bioinformatics interpretation plays 

an important role in understanding the biological functions of the proteins. As 

reviewed in section 1.2.5, functional assignment of an unknown protein using a 

bioinformatics approach relies on the assumption that proteins which have similar 

amino acid sequences or similar structures share similar functions. Data 

interpretation typically combines evidence from two approaches: databases that 

provide manually curated data from literature and predictions made by computer 

programs that automatically transfer existing knowledge about a homologous 

sequence to the targeting sequence. 

For Toxoplasma gondii, ToxoDB (http://toxodb.org/toxo/) serves as a functional 

genomics resource that hosts the largest collection of T. gondii genome sequences 

and annotations [112] and is widely accredited as such by the T. gondii research 

community. On ToxoDB, product description and GO annotation of release 4 genes 

are provided where applicable [108]. This information provides valuable insights 

into the function of T. gondii genes and was used as the primary resource for data 

interpretation in this study. 

In addition to the information provided on ToxoDB, there are a range of specific and 

universal prediction programs that can be used to infer the biological functions of the 

proteins identified. SignalP [178] and TMHMM [179] predict the existence of signal 

peptides and transmembrane domains in a protein sequence, respectively. The entry 

of virtually all proteins into the secretory pathway is controlled by signal peptides 

[287, 288]. In T. gondii, signal peptides direct proteins to important localizations 

central to invasion, such as the extracellular surface during gliding motility [65], the 



Chapter 3-Bioinformatics interpretation of the proteomic data 

 

81 

 

secretory traffic to apical organelles [83], the dense granule [289] and the apicoplast 

[290]. Proteins with transmembrane domains also play an important role in the 

tachyzoite stage such as in gliding motility [62], the moving junction [80] and, the 

majority of the dense granule proteins (GRAs) are predicted to be transmembrane 

proteins [291]. The results of these two prediction programs can be used to infer the 

biological properties of the expressed proteome as well as to examine the quality of 

proteomic sampling when compared with whole genome predictions. 

With the exception of Cryptosporidium, most of the clinically important 

Apicomplexan parasites studied possess two endosymbiotic organelles which carry 

DNA in addition to the nucleus: the mitochondrion and the apicoplast [292-296]. 

The growth of T. gondii is inhibited by drugs that impair apicoplast autonomy at the 

level of DNA replication, transcription, RNA processing and translation [297, 298]. 

Its algal origin also means many proteins and pathways are not shared by the human 

host. Together, these properties make the apicoplast a very promising drug target. 

Comparatively little is known about the Toxoplasma mitochondrion. This may partly 

reflect the diversion of research interest to the apicoplast, and the difficulty in 

defining the mitochondrial genome [299]. However, studies have linked 

mitochondrial function with T. gondii stage conversion whereby the exposure of 

mitochondrial inhibitors stimulates the transition of tachyzoites to bradyzoites in 

vitro [300, 301]. Additionally, the exact role of the mitochondrion in energy 

metabolisms still requires more investigation [299, 302]. The importance of these 

two organelles in Apicomplexan parasites led to the development of two specific 

prediction programs PATS [180] and PlasMit [303] respectively, which were used in 

this study. 
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In addition to the resources provided on ToxoDB and programs that are designed to 

predict specific properties of a gene, the integrative protein information database 

InterPro [182] was used in this study to determine protein functions as well as GO 

annotations. Global sequence analysis tools were also used in the study, BlastP [167] 

and AmiGO [304] were used to infer functional information of proteins based on 

sequence similarity, and WoLF PSORT [181] was used to predict subcellular 

localizations of proteins identified. Together, the results of bioinformatics 

interpretation will not only represent the predicted distribution of the expressed 

proteome but also expand the knowledge of the functions of these proteins in the 

important biological processes of T. gondii.  
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3.2  Materials and Methods 

Several bioinformatics prediction programmes were used to assist protein function 

determination. Briefly, protein sequences were searched using BlastP to characterize 

protein functions and infer possible subcellular localizations. SignalP was used to 

predict proteins that contain signal peptides; TMHMM was used to predict 

transmembrane domains contained within a protein; results returned from PATS, 

PlasMit and WoLF PSORT together with release 4 gene descriptions and GO 

cellular component predictions provided by ToxoDB were combined to obtain 

subcellular localization predictions of proteins.  

Functional categorization was constructed using the GO classifications listed on 

ToxoDB for each release4 gene, which were then assigned to specific MIPS 

categories within the FunCatDB functional catalogue. Genes without a GO 

classification were assigned a putative MIPS category using additional information 

provided by Blast, Pfam domain alignments, InterPro and from independent 

literature searches. 

3.2.1  Protein-protein Blast (BlastP) 

BlastP (http://www.ncbi.nlm.nih.gov/BLAST/) is a powerful sequence alignment 

tool provided by National Centre for Biotechnology Information (NCBI). It 

compares protein sequences to other previously characterized protein sequences in 

the database. The alignment and conserved domain results based on sequence 

similarity are used to conjecture functional and evolutionary information of query 

sequences. Default settings were applied in this study. 
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3.2.2  SignalP  

SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/) is an online bioinformatics 

prediction server which predicts the presence and location of signal peptide cleavage 

sites in given amino acid sequences provided by The Centre for Biological Sequence 

Analysis at the Technical University of Denmark [178]. In this study, sequences 

were uploaded in fasta format, default settings were applied for searching. 

3.2.3  TMHMM 2.0  

TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0/) is a bioinformatics 

prediction server provided by The Centre for Biological Sequence Analysis at the 

Technical University of Denmark [179]. The server is programmed to predict 

transmembrane helices in proteins using a hidden Markov model. In this study, 

sequences were uploaded in fasta format and default settings were applied for 

searching. 

3.2.4  PATS 

PATS (prediction of apicoplast targeted sequences) (http://gecco.org.chemie.uni-

frankfurt.de/pats/pats-index.php) is an online bioinformatics program provided by 

the Molecular Design Laboratory, Goethe University, Frankfurt which provides 

predictions of apicoplast targeted sequences in Apicomplexan parasites. PATS uses a 

neural network analysis and has been trained with Plasmodium falciparum proteins 

[180].  In this study, default settings were applied. 

3.2.5  PlasMit 

PlasMit (http://gecco.org.chemie.uni-frankfurt.de/plasmit/index.html) is an online 

neural network software also provided by the Molecular Design Laboratory, Goethe 

University, Frankfurt, which predicts mitochondrial transit peptides in P.  falciparum 
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[303]. In this study, PlasMit was used to predict possible mitochondrial proteins in 

conjunction with other prediction software.  

3.2.6  WoLF PSORT Prediction 

WoLF PSORT (http://wolfpsort.org/) is an online server for protein subcellular 

localization predictions provided by the Computational Biology Research Centre, 

National Institute of Advanced Industrial Science and Technology (AIST), Japan 

[181]. The server has been trained with yeast sequences from SWISS-PROT with the 

annotation of Yeast Protein Database (YPD). In this study, the organism type was set 

as animal and default settings were applied. To be considered a valid prediction the 

possibility percentage of the first localization result must be at least twice that of the 

second localization percentage.  

3.2.7  AmiGO 

AmiGO (http://amigo.geneontology.org/cgi-bin/amigo/go.cgi) is the official online 

database for searching and browsing the Gene Ontology database and is provided by 

an international consortium [304]. In this study, AmiGO was used to match the 

protein function information retrieved from literature or other data sources to the 

controlled vocabulary of terms and identifiers defined by the Gene Ontology project. 

A Blast tool provided by AmiGO was also used to search GO descriptions of a 

protein when no GO annotation is available elsewhere. 

3.2.8  Munich Information Centre for Protein Sequences Functional 

Catalogue (MIPS FunCat) 

MIPS FunCat (http://mips.gsf.de/projects/funcat) is an annotation scheme for the 

functional description of proteins from prokaryotes, unicellular eukaryotes, plants 

and animals [305]. The FunCat consists of 28 main functional categories that cover 
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general fields like cellular transport, metabolism and cell rescue, defence and 

virulence. In this study, proteins identified were assigned to the most relevant 

category according to the functional information provided by GO annotation on 

ToxoDB, Blast, Pfam domain alignments, InterPro and independent literature 

searches. 

3.2.9  Metabolic Pathway Coverage 

The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway 

(www.genome.jp/kegg/) [306] was used to examine the coverage of identified 

proteins on key metabolic pathways. Conversion of T. gondii genes to key metabolic 

pathway components was determined using the Metabolic Pathway Reconstruction 

tool for T. gondii available on ToxoDB (http://roos-

compbio2.bio.upenn.edu/~fengchen/pathway/). Glycolysis and gluconeogenesis are 

important energy production pathways in Toxoplasma and were chosen as model 

pathways in this study. Proteins identified from tachyzoites were mapped onto the 

reconstructed glycolysis and gluconeogenesis pathways for T. gondii. 
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3.3  Results 

3.3.1  SignalP and TMHMM predictions 

Proteins identified from T. gondii tachyzoites were subjected to SignalP and 

TMHMM predictions. In this study, 10% of the identified official ToxoDB release 4 

genes were predicted to contain a signal peptide and 17.6% of the identified official 

ToxoDB release 4 genes contain transmembrane domains. Predictions of identified 

alternative gene models and ORFs returned results of 9% and 21% respectively.  

The results are closely similar to T. gondii genome predictions for signal peptide and 

transmembrane containing proteins provided on ToxoDB (11% and 18% 

respectively) and indicate unbiased sampling of the study. Similar proportions of 

signal peptide have been reported in the expressed proteome of Plasmodium 

falciparum [261] and similar proportions of transmembrane domain containing 

proteins are found in the expressed proteome of Cryptosporidium parvum and P. 

falciparum [261, 265]. Together they suggest a good sampling standard has been 

achieved in proteomic studies where signal peptide containing proteins and 

transmembrane domain containing proteins are not under represented. 

3.3.2  Subcellular Localization Prediction 

The subcellular localizations of proteins identified were collectively inferred by the 

predictions made from PATS, PlasMit, WoLF PSORT and release 4 gene 

descriptions and GO cellular component classification provided by ToxoDB. Figure 

3.1 shows the distribution of predicted subcellular localizations of expressed proteins 

in the tachyzoite stage. 
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Figure 3.1 Subcellular localization of the expressed tachyzoite proteome. (a) 

Subcellular localization of identified official ToxoDB release 4 genes. The 

prediction was first assigned according to gene descriptions and GO annotation 

provided by ToxoDB. The sequences of proteins with no information provided on 

ToxoDB were submitted to PATS, PlasMit and WoLF PSORT. The results were 

combined to obtain predicted subcellular localizations. (b) Subcellular localization of 

identified alternative gene models and ORFs. The prediction was made by the 

combined results of PATS, PlasMit and WoLF PSORT. 

A wide distribution of subcellular localizations in the expressed proteome was 

observed. The subcellular localization predictions of identified alternative gene 
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models and ORFs have shown a different distribution pattern, which was influenced 

by the resources available. The impact of prediction programs used was discussed in 

section 3.4.1.3. For release 4 genes identified, nuclear, cytoplasmic, plasma 

membrane and mitochondrial proteins are among the most represented categories 

which reflect the rapid gene expression, protein synthesis, extracellular interaction 

and energy generation events required in the tachyzoite stage which is the rapidly 

multiplicative, invasive form of the parasite. More than 100 proteins were predicted 

to be apicoplast proteins. A significant number of apical complex proteins (44) were 

detected which potentially have important roles in invasion and maintenance in host 

cells. There are also many proteins that are putatively involved in secretory pathways 

that are predicted to be located to the endoplasmic reticulum-golgi, plasma 

membrane and extracellular locations. 

3.3.3   Functional Categorization 

Functional information for the proteins identified was acquired from gene 

descriptions and GO annotations listed on ToxoDB, and these were then assigned to 

specific MIPS categories. Proteins that have no GO classification were assigned a 

putative MIPS category using additional information provided by BlastP, AmiGO, 

Pfam domain alignments, InterPro and from independent literature searches. Figure 

3.2 shows the functional categorization of proteins identified in this study. 
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Figure 3.2 Functional categorization of the expressed tachyzoite proteome. 

Functional assignments of identified official ToxoDB release 4 genes. The prediction 

was first determined by gene description and GO annotation provided on ToxoDB 

and then assigned to appropriate MIPS FunCat categories. Putative functional 

assignment was made to the remainder of identified proteins with information 

acquired from BlastP, Pfam domain alignments, InterPro and literature searches. (b) 

Functional assignment of identified alternative gene models and ORFs. The 

prediction was made by information acquired from BlastP, Pfam domain alignments, 

AmiGO blast and then assigned to appropriate MIPS FunCat categories. 
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Similar to subcellular localization predictions, functional categorization of identified 

alternative gene models and ORFs has shown a different pattern than that of release 

4 genes, which is further discussed in section 3.4.1.3. For release 4 genes identified, 

categories that are highly represented in the results are metabolism, cellular transport, 

protein synthesis and protein fate (folding, modification, destination) which reflect 

the highly active metabolism, protein synthesis and cell division functions required 

in the tachyzoite stage. Importantly, 77 proteins are assigned to the “cell rescue, 

defence and virulence” category, many proteins of which are required in the invasion 

of and maintenance in the host cell by the tachyzoite stage.  

3.3.4  Metabolic Pathway Coverage 

ToxoDB provided a reconstructed version of the KEGG pathway for T. gondii. 

Proteins identified in this study were cross-referenced with the glycolysis and 

gluconeogenesis pathways. Table 3.1 lists the Toxoplasma gene ascribed to each 

constituent of the glycolysis and gluconeogenesis pathways. The EC numbers are 

included for reference to Figure 3.3.  

Table 3.1 Component enzymes of the glycolysis and gluconeogenesis 

pathways, EC numbers and corresponding Toxoplasma gene identifiers. 

EC Numbers Description ToxoDB ID 

1.1.1.1 Alcohol dehydrogenase 583.m05453 

1.1.1.27 L-lactate dehydrogenase 44.m00006 

1.1.1.27 L-lactate dehydrogenase 80.m00010 

1.2.1.12 
Glyceraldehyde 3-phosphate dehydrogenase 

(phosphorylating) 
80.m00003 

1.2.1.3 Aldehyde dehydrogenase (NAD(+)) 41.m00032 

1.2.4.1 Pyruvate dehydrogenase (acetyl-transferring) 50.m03083 

1.2.4.1 Pyruvate dehydrogenase (acetyl-transferring) 50.m03618 

1.2.4.1 Pyruvate dehydrogenase (acetyl-transferring) 59.m03618 

1.8.1.4 Dihydrolipoyl dehydrogenase 20.m03954 

2.3.1.12 Dihydrolipoyllysine-residue acetyltransferase 20.m00373 

2.3.1.168 
Dihydrolipoyllysine-residue (2-

methylpropanoyl)transferase 
641.m00177 
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2.7.1.1 Hexokinase 57.m00001 

2.7.1.11 6-phosphofructokinase 42.m00123 

2.7.1.11 6-phosphofructokinase 49.m03242 

2.7.1.40 Pyruvate kinase 129.m00253 

2.7.1.40 Pyruvate kinase 55.m00007 

2.7.2.- 
Phosphotransferases with a carboxy group as 

acceptor 
37.m00745 

2.7.2.3 Phosphoglycerate kinase 41.m01331 

2.7.2.3 Phosphoglycerate kinase 641.m00193 

3.1.3.11 Fructose-bisphosphatase 20.m03907 

3.1.3.11 Fructose-bisphosphatase 46.m01668 

3.1.3.11 Fructose-bisphosphatase 50.m00005 

3.6.1.7 Acylphosphatase 55.m04800 

4.1.2.13 Fructose-bisphosphate aldolase 46.m00002 

4.1.2.13 Fructose-bisphosphate aldolase 46.m02920 

4.2.1.11 Phosphopyruvate hydratase 59.m03410 

4.2.1.11 Phosphopyruvate hydratase 59.m03411 

4.6.1.- Phosphorus-oxygen lyases 44.m02781 

4.6.1.- Phosphorus-oxygen lyases 52.m01648 

5.3.1.1 Triosephosphate isomerase 42.m00050 

5.3.1.1 Triosephosphate isomerase 44.m02801 

5.3.1.9 Glucose-6-phosphate isomerase 76.m00001 

5.4.2.1 Phosphoglycerate mutase 113.m00016 

5.4.2.1 Phosphoglycerate mutase 59.m03656 

6.2.1.1 Acetate--CoA ligase 57.m03124 

Note: Data acquired from the Metabolic Pathway Reconstruction for T. gondii 

available on the KEGG Pathway site accessed via ToxoDB (http://roos-

compbio2.bio.upenn.edu/~fengchen/pathway/). 

In the predicted T. gondii glycolysis and gluconeogenesis pathways, all but two 

enzyme components were detected in the expressed proteome, the exceptions being 

(EC 3.6.1.7-acylphosphatase and EC 1.1.1.1-alcohol dehydrogenase). Figure 3.3 

shows the coverage of the expressed tachyzoite proteome on the reconstructed 

KEGG pathway of glycolysis and gluconeogenesis for T. gondii.  
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Figure 3.3 Metabolic pathway coverage: Glycolysis and gluconeogenesis.  

Conversion of T. gondii genes to key pathway components was determined using the 

Metabolic Pathway Reconstruction for T. gondii available on the KEGG Pathway 

site accessed via ToxoDB (http://roos-compbio2.bio.upenn.edu/~fengchen/pathway/). 

EC number to ToxoDB gene mapping is listed in Table 3.1. Enzymes coloured in 

green and blue indicate expression evidence which has been confirmed by mass 

spectrometric data; blue also signifies genes identified by the 2-DE. Enzymes 

coloured in red are pathway components that have not been identified in this study. 

All other enzymes (shown in white) are those for which no corresponding T. gondii 

gene has been assigned.  



Chapter 3-Bioinformatics interpretation of the proteomic data 

 

94 

 

3.4  Discussion 

3.4.1  Coverage of the expressed tachyzoite proteome 

The results of the bioinformatics interpretation show the expressed proteome of 

tachyzoites identified in this study covers a wide spectrum of proteins. SignalP and 

TMHMM results are very similar to the whole genome prediction which probably 

indicates that the sampling method used in the study was unbiased towards 

membrane and secreted proteins. It is not known what proportion of the expressed 

proteome comprises signal peptide or transmembrane domain containing proteins in 

the individual life cycle stages; however, it is likely that the rapidly dividing, 

invasive tachyzoite would employ a significant number of secreted proteins. The 

prediction that nearly one fifth of proteins identified possess at least one 

transmembrane domain reflected the importance of transmembrane proteins in 

protein secretion during the host cell invasion and intracellular survival. 

A broad distribution of subcellular localizations and functional categories and a near 

complete coverage of the glycolysis and gluconeogenesis pathways are also evidence 

that a sensitive and non-biased sampling has been achieved. The profile of 

subcellular localization and functional categorization reflect well the biological 

requirements of rapidly dividing, invasive tachyzoites. The expressions of proteins 

from several important subcellular compartments that serve unique biological 

functions have been confirmed by proteomic techniques.  

Categories with particular biological interest include proteins secreted by the three 

distinct organelles micronemes, rhoptries and dense granules. The sequential 

secretion from these organelles plays an important role in host cell invasion and 

intracellular survival (as discussed in section 1.1.3). Additionally, structural proteins 
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that support cellular movement during invasion have been identified as well as 

proteins from the unusual apicoplast organelle.  

3.4.1.1 Invasion and survival-apical complex, secretory organelles and others 

Despite the lack of organelle specific prediction programs, the expression of several 

known secretory organelle proteins have been detected in this study according to the 

ToxoDB gene description. These include 12 microneme proteins, 7 rhoptry proteins 

and 7 dense granule proteins. The apical complex, which contains micronemes, 

rhoptries, dense granules, the conoid and cytoskeletal components, is essential in 

both host cell invasion and survival of Apicomplexan parasites [83, 307, 308]. Forty 

four proteins identified in this study are annotated to locate to the apical complex. To 

achieve an accurate result, the assignment was entirely based on ToxoDB either by 

gene description or annotated GO cellular component. However, there are two other 

published studies that focused on the sub-proteome of the apical complex which 

indicate a potentially broader collection of apical complex proteins that exist.  

3.4.1.1.1  Comparison with experimental data 

In a proteomic study that specifically enriched conoid/apical complex material [251], 

179 proteins (release 4 genes) were identified as apical complex proteins after 

excluding contaminants from other subcellular organelles. Of those, 59 proteins were 

detected in multiple replicates by multiple peptides which were regarded as good 

evidence of apical complex proteins. However, as the list of 59 proteins is not 

released, a direct comparison cannot be made with this study. Among the 179 

proteins identified at the first stage, 104 have been identified in this study but only 

one protein (583.m05259, conserved hypothetical protein) has been assigned as an 

apical complex protein.  
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In the other study that characterized the proteome of purified rhoptry organelles [84], 

56 proteins (release 4 genes) were identified, of which 50 proteins have been 

identified in this study. Out of the 50 proteins, seven have been assigned as apical 

complex proteins on ToxoDB. The comparison with the other organelle specific 

proteomic studies indicates the sensitivity of this study is high. However, it also 

highlighted the fact that with limited information confirmed by genome annotation 

and the lack of apical organelle specific prediction programmes, the results of this 

study are likely to under-represent apical complex proteins. It also indicates that 

potential apical complex proteins have been mistakenly assigned to other general 

categories. For example, among 104 proteins which overlapped with conoid/apical 

enrichment study, two proteins have been assigned to cytoskeleton and 22 proteins 

have been assigned to the cytoplasm.  

3.4.1.1.2  Comparison with in silico predictions 

A recent study that employs bioinformatic approaches to predict candidate proteins 

associated with the apical organelles [309], focused on signature Pfam domains like 

PAN, TSP-1 and EGF motifs found in microneme proteins, and then searched the 

domain patterns in all available completed Apicomplexan genome sequences. The 

results suggested 60 candidate microneme proteins in T. gondii [309]. The whole 

tachyzoite proteome confirmed the expression of 15 of those candidate microneme 

proteins, 8 of which have not been assigned as “apical” in this chapter as no further 

localization confirmation can be found elsewhere. 

Together, the comparison of the data acquired in the current study with other 

experimental and computational studies showed that this study has achieved a good 

coverage of potential apical complex proteins and provided important protein 

expression evidence for more focused apical complex studies in the future. In 
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addition to that, based on different results from several studies, no well-defined 

apical complex proteome has been agreed. The prediction method used here, which 

is largely based on ToxoDB annotation, is suited to a global proteome survey rather 

than an in-depth study and the result serves as a good starting point in understanding 

apical complex proteomes. 

3.4.1.1.3 Examples of other important proteins during invasion process 

During invasion, the motor complex is formed by a class XIV myosin (MyoA), the 

myosin light chain and two gliding-associated proteins (GAPs) [65]. There are five 

known class XIV myosins in T. gondii: myosin A, B, C, D and E [310-313]. In this 

study, 14 proteins identified are annotated as myosin related proteins on ToxoDB. 

These include the expression of four putative myosins: A, C, D and E. In fact, there 

is no myosin B annotated on ToxoDB possibly due to the fact that myosin B and 

myosin C are the products of differential RNA splicing and share the majority of 

their sequences [310]. Additionally, four myosin light chain proteins have also been 

identified as well as five actin proteins. Although gliding-associated proteins (GAPs) 

have not been annotated on ToxoDB from which no protein identification can be 

made, good proteomic coverage of the glideosome has been achieved in this study. 

Another interesting group of proteins are SRS (SAG-related sequences) proteins 

which are thought to mediate attachment to host cells and activate host immunity 

thereby regulating the parasite's virulence [69, 314]. There are 46 SRS proteins 

predicted on ToxoDB version 4, of which 17 proteins were identified in this study. 

Confirmation of protein expression of these genes in this study will provide higher 

confidence in further characterization of SRS proteins.  
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3.4.1.2  Endomembrane system, apicoplast and metabolic pathways 

The cell nucleus, cytoplasm and mitochondrion are among the subcellular locations 

that are well represented by protein constituents. Proteins involved in metabolism, 

transcription, protein synthesis, protein modification and degradation are required by 

the parasite for cell division and re-modelling and are highly represented in this 

study. 

The endomembrane system plays an important role in secretory pathways [315]. In 

this study, 23 proteins identified are predicted to locate to the endoplasmic reticulum 

(ER). The expression of three COPII-coated vesicle proteins are also detected which 

mediate the protein transportation between the ER and Golgi [316] as well as 9 

proteins that are predicted to locate to the Golgi. There are also a large proportion of 

proteins that are predicted to be involved in cellular transport and proteins with 

binding functions, which have potential roles in transporting host nutrients to the 

parasite and supporting cytoskeleton during invasion. In addition to the ER to Golgi 

route, proteins encoded by nucleus are also transported through the ER to an 

important endosymbiotic organelle, the apicoplast [290, 317]. 

3.4.1.2.1 Protein trafficking to the apicoplast 

With a genome size of just 35 kb, the apicoplast only encodes genes required for 

gene expression (such as ribosomal RNAs and tRNAs) and a few protein coding 

genes [318]. The majority of genes coding apicoplast proteins have been transferred 

to the nuclear genome, and their expression products are targeted back to the 

apicoplast post-translationally [319]. The apicoplast is the location of several 

anabolic pathways such as the biosynthesis of fatty acids, isoprenoids (i.e. sterols 

and ubiquinones), and iron-sulfur clusters [290, 320, 321]. Inhibition of the 

apicoplast metabolic function or interference with its DNA replication is lethal for 



Chapter 3-Bioinformatics interpretation of the proteomic data 

 

99 

 

the parasite which make it an attractive drug target [298]. Thus, valuable information 

is provided by a good understanding of the proteins targeted to the apicoplast. 

In this study, with the information from both ToxoDB annotation and bioinformatics 

program PATS, 110 proteins identified are predicted to target to the apicoplast. 

Comparing this to the 222 apicoplast genes annotated on ToxoDB, expression of 86 

(39%) of them have been confirmed in this study. Prediction of the remaining 24 

putative apicoplast proteins was made by PATS, a program that can predict 

apicoplast targeted sequences in Apicomplexan parasites.  

These include seven aminoacyl-tRNA synthetases (145.m00322, 145.m00604, 

27.m00832, 39.m00356, 50.m00020, 55.m04665 and 80.m00063) and genes 

involved in anabolic pathways. For example, five genes are annotated to be involved 

in fatty acid biosynthetic processes (44.m00012, 49.m05646, 42.m03469, 

55.m00019 and 76.m01567) and two genes are annotated to be involved in a 

mevalonate-independent pathway of the isopentenyl diphosphate biosynthetic 

process (42.m03570 and 55.m04989). 

The biosynthetic pathways of the apicoplast require effective mechanisms to provide 

the organelle with carbon sources, ATP, and reducing power. Carbohydrate 

metabolism plays a central role in energy production and the synthesis of metabolites. 

In this study, five proteins identified in the apicoplast are involved in the glycolysis 

and gluconeogenesis pathways (129.m00253, 20.m00373, 50.m03083, 55.m00007 

and 59.m03618) and two proteins are involved in the tricarboxylic acid (TCA) cycle 

pathway (42.m03524 and 76.m01567). A putative pyruvate dehydrogenase 

(50.m03083), a central enzyme for the carbohydrate metabolism that provides the 

link between the glycolytic pathway and the TCA cycle, is also identified in 
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apicoplast. The localization of pyruvate dehydrogenase (50.m03083) in the 

apicoplast, rather than its common localization of mitochondrion, has been 

confirmed by several reports [322-324]. However, a recent study has localized one of 

the TCA cycle enzymes (42.m03524, aconitate hydratase, putative) to the 

mitochondrion using a construct with a C-terminal myc epitope fusion [324], which 

contradicts the PATS prediction used in this study and likely indicates a prediction 

error. The reliability of PATS prediction is further discussed in section 3.4.2. 

When the metabolic pathways were examined with the entire list of the expressed 

proteins identified in this study, a very promising coverage of glycolysis and 

gluconeogenesis pathways, as well as other pathways has been shown. 

3.4.1.2.2 Metabolic pathway coverage 

Glycolysis, gluconeogenesis and the TCA cycle are central pathways of 

carbohydrate metabolism. They are essential for matching the cellular demand for 

energy, reducing power and precursors for biosynthesis pathways. 

With only two enzymes in the glycolysis and gluconeogenesis pathways not having 

been identified in this study (EC 3.6.1.7-acylphosphatase and EC 1.1.1.1-alcohol 

dehydrogenase), it has shown a good coverage of the proteome data on these 

important energy pathways in the tachyzoite stage. In fact, the protein expression of 

these two genes have not been detected by other proteomic studies listed on ToxoDB 

[112], which may reflect a technical limitation of the detection of these genes by 

proteomic approaches.  

A good coverage has also been achieved on other key energy production pathways 

with 15 out of 18 enzymes identified in the T. gondii TCA cycle pathway and 26 out 

of 34 enzymes identified in oxidative phosphorylation pathway. 



Chapter 3-Bioinformatics interpretation of the proteomic data 

 

101 

 

3.4.1.3  Coverage of bioinformatics prediction 

In functional categorization assignments, despite employing the strategy of using 

multiple prediction programs, the function of 817 proteins (36% of the proteome 

identified in this study) cannot be clearly determined based on a sequence similarity 

approach alone. The same difficulty was seen in a proteomic study of related 

Apicomplexan parasite C.parvum [265] where the function of 39% of the expressed 

proteome was unclassified. Similarly, in a P.falciparum study [261], more than 40% 

of expressed proteins from various life stages were listed as hypothetical, conserved 

hypothetical or functional unclassified proteins. 

The proportion of sequences with undetermined function is significantly higher for 

the 394 alternative gene models and ORFs at 70%. This reflects the larger proportion 

of atypical or truncated sequences that exists in the 394 sequences. At the same time, 

while subcellular localization prediction programs can make predictions on atypical 

or truncated sequences, sequence signatures and domain pattern based programs are 

very likely to misread the target sequences or completely miss an important domain, 

which can lead to biased prediction results. The reliability and coverage of 

bioinformatics prediction is further discussed in section 3.4.2. 

3.4.2  Choosing the right prediction programs 

With many free and commercial bioinformatics tools available for gene localization 

and function predictions, choosing the right programs is crucial in bioinformatics 

interpretations of proteome data. In this study, prediction programs were carefully 

selected. SignalP and TMHMM are commonly used in many studies as reliable 

prediction tools [265, 325-327]. They are also used in all EuPathDB online databases 

as standard prediction programs [112, 328-330], which allow the comparison of the 

proteomic data acquired in this study with T. gondii genome prediction on ToxoDB 
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feasible. For functional and subcellular localization predictions, evidence from 

universal prediction programs such as BlastP and WoLF PSORT as well as 

specifically designed Apicomplexan prediction programs such as PATS and PlasMit 

have been collectively used to achieve a more accurate prediction result. 

However, bioinformatics interpretation based largely on sequence and structural 

similarities to previously characterized proteins has its own drawbacks. The results 

of the present study illustrate the difficulty in predicting functional information for 

novel proteins in species where no similarities can be found.  For example, 36% of 

the expressed proteome has no functional annotation.  It also has been reported that 

proteins with highly similar sequences can have different functions in vivo, and, 

conversely, proteins may show similar activities while lacking apparent sequence or 

structural similarity [331].  

Different from functional assignment predictions where little information is available 

about novel proteins, subcellular localization prediction programs will give a 

prediction result on any sequences queried. The universal subcellular localization 

prediction program WoLF-PSORT used in this study gives a likelihood score of 

localization in percentage. A stringent parsing standard was applied in this study that, 

to be considered a valid prediction result the possibility percentage of the first 

localization result must be at least twice that of the second localization percentage. 

However, as discussed in section 3.4.1, comparing to the results of sub-protoeme 

studies, confilicts can still be found by using a univeral bioinformatics prediction. 

Using more species specific prediction tools with a better defined training dataset 

provides a more accurate prediction. As mentioned in previous sections, PATS used 

in this study, which is trained with P.falciparum sequences, is the closest program 
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available that can predict apicoplast sequences for T. gondii. However, although both 

parasites are within the Apicomplexan phylum and share a lot of similarities, using 

PATS on T. gondii sequences can still cause potential problems. The successful 

prediction of an apicoplast sequence is based on the recognition of two sequence 

components, a typical endomembrane signal peptide and a plant-like transit peptide 

[290, 317]. While the first canonical signal peptides are similar, T. gondii transit 

sequences are enriched for serine and threonine [332] while P.falciparum transit 

peptides are enriched for asparagine and lysine residues [319]. Since PATS was 

primarily trained with P.falciparum sequences, the difference of transit peptides 

compositions may lead to false predictions in T. gondii sequences and a T. gondii 

specific prediction tool is needed in this case. 

Another useful approach is to simplify the prediction effort by pre-fractionating a 

complex sample according to different biological properties, and characterizing the 

resulting sub-proteome. This will provide a useful training dataset for computer 

learning programs and result in a more focused and accurate bioinformatics 

interpretation. Several sub-proteome studies of Apicomplexan parasites are available 

[84, 253, 333, 334] and can be used to facilitate better bioinformatics program design. 

3.4.3  Choosing the right categorization system 

In addition to choosing the right prediction programs, another issue is to use the right 

categorization system. While subcellular localizations of proteins can be sorted on a 

relatively standard system with similar terminologies used, previous publications that 

study functional categorization of proteomic results often developed their own 

systems [335-337]. Several functional annotation schemes are available including the 

Riley scheme [338], MIPS FunCat [305] and GO [339]. 
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The Riley schema was originally proposed for the functional annotation of E.coli 

however it lacks categories that cover parasite specific functions. MIPS FunCat and 

GO are better candidates since they both have a larger spectrum of functional 

category coverage. 

MIPS FunCat was used in the study to categorise protein functional assignments. 

Although Gene Ontology provides organizing principles such as biological process 

and molecular function which make it a valid scheme for functional categorization, 

the MIPS catalogue has several advantages in this study.  

Firstly, despite the considerable effort which has been made to assign GO annotation 

to T. gondii genes, the coverage of GO annotation is still quite low (i.e. around 23% 

for annotated GO molecular function category). Manually assigning a putative GO 

biological process and molecular function annotation to a gene would cause potential 

bias in the following categorization. 

Secondly, with both “molecular function” and “biological process” annotation 

domains available in GO scheme, confusion might be caused whether to categorise 

protein functions based on their basic molecular functions or towards a broader 

system level classification of biological process. Although “biological process” was 

used in favour of “molecular function” in this study to represent a better system 

biology view, by only accepting one annotation category would make the GO 

coverage even lower.  

Moreover, GO annotation is supported by MIPS FunCatDB where GO numbers can 

be queried against MIPS FunCat. Proteins with valid GO annotations on ToxoDB 

have been assigned to correlating MIPS category directly in this study.  
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In addition to those points, MIPS FunCat is a stable scheme and only four major 

extensions have been made since 1996 [305] compared to the constantly evolving 

and changing GO. MIPS FunCat has been used by several large-scale transcriptomic 

and proteomic studies [234, 340-342] including studies on Apicomplexan parasites 

C.parvum and P.falciparum [261, 265].  

3.4.4  Conclusion 

Bioinformatics interpretation is the first step towards understanding the biological 

roles of the expressed proteome. Despite a few drawbacks of sequence similarity-

based prediction programs, they provide valuable inspections of the expressed 

proteins and enlighten further detailed studies on proteins of interest. 

The following chapters will examine and compare the proteome data with other 

genomic expression data and make use of the experimental protein expression 

evidence to improve genome annotation methods. 



 

 

 

 

 

 

 

 

Chapter 4 

Data repository, integration of proteomic data onto 

ToxoDB and the validation of genome annotation 
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4.1  Introduction 

In previous chapters, the importance of the proteomic data in expanding the current 

knowledge of protein expression as well as understanding biological functions using 

bioinformatics interpretation have been investigated and discussed. The standalone 

proteomic expression data have already added valuable input to the understanding of 

T. gondii biology. In this chapter, an effort has been made to investigate the benefit 

to the global research community of the integration of the proteomic data with other 

genomic and proteomic resources. 

4.1.1  MS data repository 

Several public repositories are actively hosting proteomic data for the research 

communities, such as the Proteomics identifications database (PRIDE) [192], the 

Global Proteome Machine databases (GPMDB) [197], PeptideAtlas [201], and 

Tranche [204]. As reviewed in section 1.2.5.2.2, data storing options offered by the 

first three platforms involve additional data processing using pipelines developed 

specifically for that repository. Compatibility issues have emerged due to the lack of 

a standardized data format for raw MS data. While collaborations between HUPO-

PSI and the Institute for Systems Biology have resulted in a new data format, mzML, 

being proposed [191], more efforts are required for the new data formats to be 

developed and adopted.  

This limitation made Tranche a good option for storing raw MS data. Firstly, any 

type of data file can be stored by the Tranche network. This allows the raw MS data 

generated from the various proteomic platforms used in this study to be hosted in one 

place. The valuable information embedded in raw MS data can be preserved for 

improved data analysis algorithms in the future. Secondly, by providing permanent 
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storage and  “peer-to-server-to-peer” distributed network, the Tranche network 

addresses the problem of data loss through computer hardware failure or changes in 

staff in individual groups as well as providing a rapid data sharing platform for the 

research communities [195].  

4.1.2 Integration of proteomic data onto ToxoDB and genome annotation 

While raw MS data can be safely stored in the publically accessible Tranche network, 

the integration of proteomic data with organism specific genomic and proteomic 

resources provides further biological and technical advantages to T. gondii research. 

ToxoDB (http://toxodb.org/toxo/) provides such a platform that is ideal for the 

integration of the proteomic data generated in this study. Various components of 

ToxoDB such as genome annotation, gene description and GO annotation have been 

used to facilitate this proteomic study. The addition of detailed whole proteome 

expression data within these integrated workspaces is able to assist the on-going 

annotation of the genome of T. gondii as discussed in this chapter, as well as 

enabling the examination of the value of protein expression data in interpreting 

global gene expression, a topic which is investigated and discussed in Chapter 5. 

While a typical bottom-up protein identification based proteomic study relies upon 

accurate predicted sequence databases, in chapter 2, we have shown the expression 

evidence for 394 non-redundant alternative gene models and ORFs that cannot be 

matched to release 4 gene models. This highlighted the incomplete nature of the 

release 4 genome annotation provided by ToxoDB. The integration of the proteomic 

data into ToxoDB has provided a good platform to systematically validate the 

accuracy of release 4 genome annotations such as providing evidence for the 

existence of genes and confirming exon-intron boundaries. With the ability to 

visualise proteomic data in a genomic context, discrepancies between proteomic 
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expression data and release 4 gene models can be examined in more detail leading to 

the confirmation of alternative gene models or previously unpredicted exons and 

genes. 

In this chapter, the methods of storing and sharing raw MS data and integrating the 

proteomic data with other genomic sources on ToxoDB are examined. With the 

facilities provided by ToxoDB, the possibilities and applications of proteomic data in 

the field of proteogenomics are discussed.  

During the production of this manuscript, ToxoDB release 5, the latest version of 

ToxoDB was released and a new version of genome annotation has been published. 

The proteomic data generated in this study have been integrated on ToxoDB using 

the same algorithm described here, followed by the addition of several latest 

proteomic studies [108]. In order to keep the consistency of nomenclature with 

analyses carried out in the previous chapters, ToxoDB release 4 was used in the 

examples shown this chapter. As an on-going effort of genome annotation, the 

implication of the proteomic data in the latest ToxoDB release 5 is discussed in 

section 4.4.1. 
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4.2  Materials and methods 

4.2.1  Data depository on Tranche 

A java based client was downloaded and installed from the Tranche website 

(https://proteomecommons.org/tranche/) onto a local computer. Following online 

instructions, MGF files generated by 1-DE and 2-DE experiments and MS2 files 

generated by MudPIT experiments were uploaded onto the Tranche network under 

the project name „Toxoplasma Proteome Liverpool‟. 

4.2.2  Peptide mapping for ToxoDB 

4.2.2.1  Collection of peptide expression evidence 

Proteomic data acquired in this study and from the C.parvum proteomic study 

performed by Dr. S.J. Sanderson ([265] and Appendix X), were mapped onto the 

genome scaffold on a peptide level at ToxoDB and CryptoDB, respectively. 

Identified peptides were collected by computer scripts written by Mark Heiges, 

University of Georgia (CryptoDB) and Brian Brunk, University of Pennsylvania 

(ToxoDB). For 1-DE and 2-DE results, the peptides identified were collected from 

the Mascot html result page of each individual protein identified. Peptides identified 

from MudPIT experiments of soluble and insoluble fractions were directly collected 

from Microsoft Excel spreadsheet results reported for the entire run. Each peptide 

identified was regarded as an individual entry and tagged with the identified protein 

and the related experimental platform that generated the data. 

4.2.2.2  Mapping peptide entries onto the genome scaffold 

The collected peptide entries were mapped onto the genome scaffold and aligned 

with other features (i.e. gene models, ORFs and other genome sources) by Mark 

Heiges from CryptoDB and Brian Brunk from ToxoDB. The following rules of 



Chapter 4-Repository, integration of proteomic data and the validation of genome annotation 

111 

 

mapping were developed based on discussions between the Wastling group and 

developers from ToxoDB and CryptoDB. For the C.parvum proteomic data, only one 

gene prediction model is available; peptides which identified a gene were directly 

mapped and the rest of the peptide entries were mapped to ORFs. For the T. gondii 

proteomic data, peptides that hit release 4 gene annotations have been directly 

mapped onto the ToxoDB genome scaffold. The rest of the peptide entries that hit 

alternative gene models or ORFs (collectively termed as alternative models) were 

sent through a six step mapping algorithm, successful mapping at any step would 

finish for that entry. 

Step 1, if all peptides from an alternative model could be mapped to an official 

release 4 gene, the release 4 gene was adopted and this is termed a 100% match; Step 

2, if more than 50% of the peptides from an alternative model could be mapped to a 

release 4 gene, this was considered a valid mapping and the matching peptides were 

aligned with the corresponding release 4 gene; Step 3, if a certain set of peptides 

from an alternative model could be mapped to more than one release 4 gene, the 

gene that could host most peptides was reported; Step 4, alternative models not 

conforming to step 2 were mapped to ORFs; Step 5, an alternative model can be 

mapped to an ORF only if 100% of the peptides can be mapped; Step 6, if any of the 

peptides from the alternative model cannot be mapped to a release 4 gene or an ORF 

by step 2-5, the peptides were mapped to the alternative gene models (i.e. 

TgTwinScan, TgTigrScan and TgGlimmer). 

4.2.3  ToxoDB integration and visualization 

Following discussions between the Wastling group and collaborators from ToxoDB 

and CryptoDB, the data integration and visualization process was performed by 

developers at ToxoDB and CryptoDB. In brief, the following steps were carried out 
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for T. gondii proteomic data generated in this study. Upon the completion of the T. 

gondii proteomic data mapping on the ToxoDB genome scaffold, peptide 

identifications were integrated into individual gene report pages. A separate tool has 

been created for querying protein expression data based on mass spectral evidence. 

The peptide identifications were also integrated into the ToxoDB genome browser 

(GBrowse) interface [343], where expressed peptides can be visualized in relation to 

various gene models and the genomic region from which the sequence is predicted to 

have been produced. 

4.2.4 Validation of release 4 genome annotation by peptide expression data 

Peptides identified that align across splice boundaries were reported by developers at 

ToxoDB during the mapping process. ToxoDB GBrowse was used in this study to 

visually confirm the correct predictions of gene models via peptide evidence as well 

as to examine discrepancies between gene predictions and peptide expression data. 
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4.3  Results 

4.3.1  Data repository for raw MS data 

All the raw MS data associated with this study can be viewed and downloaded from 

ProteomeCommons.org Tranche network [204] at 

https://proteomecommons.org/tranche/, using the following hash:   

Ulv/yTYTaaHin5Tv4InpsgoUY1uTJQtdoLRi9HbdtypXqztv+BiVE/wZieBkqu6d3k

U20Vyejo0HYCfswgwiGyPHQPAAAAAAAAOhng== 

A brief work flow to retrieve the data is shown in Figure 4.1. 

 

Figure 4.1 Data repository for raw MS data on ProteomeCommons.org 

Tranche network. All the raw MS data associated with this study have been 

stored on ProteomeCommons.org Tranche network at 

https://proteomecommons.org/tranche. The java interface of Tranche can be initiated 

by clicking „Launch Tranche!‟ on the homepage. Inside the java interface, raw data 

can be viewed by using the following workflow: View Contents By Hash/Input 

Tranche Hash 
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(Ulv/yTYTaaHin5Tv4InpsgoUY1uTJQtdoLRi9HbdtypXqztv+BiVE/wZieBkqu6d3k

U20Vyejo0HYCfswgwiGyPHQPAAAAAAAAOhng==)/Browse Project. Individual 

MS files output from each proteomic platforms can be browsed and downloaded 

under „Toxoplasma Proteome Liverpool‟ project. 

4.3.2  Data integration on ToxoDB 

The proteomic data was first published on ToxoDB release 4.2 in June 2007. The 

peptide sequences identified were aligned with release 4 genes and alternative gene 

models as described in Section 4.2.2. In total, peptide identifications have been 

mapped to 2252 release 4 genes, and the 394 alternative gene models and ORFs 

identified have been mapped to 226 ORFs sequences. Peptide identifications can be 

viewed on individual gene report pages under the “Protein/Protein Features” section. 

The summary of the dataset can be viewed on ToxoDB through “Queries and 

Tools/Protein Expression/Mass Spec. Evidence”. Proteomic data can be queried 

based on individual experimental platforms. Parameters can also be set with the 

minimum number of unique peptide sequences and /or spectra found that match a 

gene for it to be returned by the query. A related query “Identify ORFs based on 

Mass Spec. Evidence” is also created to view the peptide identifications that could 

not be mapped onto release 4 gene models. 

The peptide identifications have also been mapped as individual tracks onto the 

interactive GBrowse on ToxoDB, which hosts approximately 50 GBrowse tracks 

including predicted gene models, EST alignments, and Affymetrix Probes, etc [112]. 

The peptide identifications can be viewed by selecting the option “Mass Spec 

Peptides (Wastling, et al.)” for peptides mapped onto release 4 genes and “Mass 

Spec Peptides (Alternative Models)” for peptides mapped onto alternative gene 

models and ORFs (see Figure 4.2). 
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Figure 4.2 Visualization of peptide identifications on the ToxoDB Genome 

Browser. The peptide identifications are mapped onto ToxoDB GBrowse as 

individual tracks. Peptides that mapped onto release 4 genes or alternative gene 

models and ORFs can be viewed by selecting the option “Mass Spec Peptides 

(Wastling, et al.)” and “Mass Spec Peptides (Alternative Models)”, respectively. 

4.3.3  Examining the accuracy of the release 4 genome annotation 

For the majority of the 2252 release 4 gene models identified, the peptide 

identifications have confirmed the correct ORFs and the positioning of start and stop 

codons. The current study has also identified 2477 intron spanning peptides in the 

official release 4 genome annotation, comprising 1110 unique release 4 genes. This 

has provided important supporting evidence that these exon-intron (splice) sites have 

been correctly predicted. Examples of peptides spanning splice site can be seen in 

Figure 4.2. 
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 However, a significant number of peptides do not agree with the splice site 

predicted by the release 4 gene models. Peptide identifications have confirmed 421 

splice sites that are only predicted by alternative gene models, which suggests either 

incorrect predictions for the release 4 gene models or possibly, alternative splicing 

events. 

By using the GBrowse function, three types of discrepancies between the peptide 

identification data and release 4 gene models were discovered by this study. Firstly, 

peptide evidence can be used to indicate the expression of ORFs where release 4 

genome annotations failed to predict coding sequence. Secondly, peptide evidence 

can also support an alternative frame shift or strand orientation to the release 4 gene 

model predictions. Thirdly, other discrepancies involve the positioning of the exon-

intron boundaries as discussed above. 

An example of a region of the genome scaffold where peptide evidence supports the 

presence of an expressed ORF but no release 4 gene is predicted is shown in Figure 

4.3. Eleven peptides map to TgGlmHMM_3355 and TgTigrScan_5280, on the 

largest exon (ORF X-3-4725402-4726856) displayed in the figure. However, no 

annotated gene has been assigned to this region by the release 4 genome annotation. 

Additional peptides in this region map to the first exon of the neighbouring gene 

46.m02877. Importantly, there are four intron spanning peptides identified that link 

the extra exon predicted by TgGlmHMM_3355 to the first exon of 46.m02877, 

indicating that release 4 gene 46.m02877 could have an incorrect start methionine 

and be missing an amino-terminal exon. Indicated by the peptide expression 

evidence, the most successful gene prediction model in this region would be 

TgGlmHMM_3355. Both TgGLEAN_5869 and TgTwinScan_2711 failed to predict 

the full length of the first exon (ORF X-3-4725402-4726856) that is supported by the 
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11 peptides. The second exon also reflected some prediction challenges, where 

neither TgGLEAN_5869 nor TgTwinScan_2711 hosted the full length of the exon 

supported by the peptide evidence and TgTigrScan_5280 completely failed to predict 

the existence of the first exon of gene 46.m02877. 

 

Figure 4.3 Peptide evidence indicating a missing amino-terminal exon 

predicted by release 4 genome annotation.  The position of ORF X-3-

4725402-4726856 in the genome scaffold is indicated by a red line on the overview 

track at the top of the figure and a detailed view is expanded below with the red 

triangle demarking the ORF length. Different gene annotation models are presented 

and predicted exons are indicated as blue boxes, linked by zigzag lines to indicate 

the position of exon/intron boundaries. Part of the predicted sequence for 

TgGlmHMM_3355 is shown as an insert; sequence for which there is identified 

peptide evidence is shown in red. The intron spanning peptide is shown in purple. 

Peptides aligning with this region are shown in yellow and the detailed MS 

information for one example is shown. EST evidence is shown as dark blue or brown 

boxes. 
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The second type of discrepancy is shown in Figure 4.4. Here peptide evidence is able 

to identify errors in the predicted reading frame or strand orientation. Twelve 

peptides derived from 35 individual spectra originating from 1-DE and MudPIT 

approaches provided matching hits to TgGlean_7850, TgTwinScan_4462 and 

TgGlmHMM_1717, although the various alternative gene models in this region 

differ in the length and number of exons. The release 4 genome annotation assigned 

gene 50.m05694 in this region but it is predicted to lie on the opposite strand and 

TgTigrScan_8273 uses a different reading frame. In this example, peptide expression 

data have provided supporting evidence for the correct reading frame and the large 

number of peptide hits to one region only indicates that the gene is likely to comprise 

a single exon.  

 

Figure 4.4 Peptide evidence indicate alternative frame shift.   

The position of ORF XII-4-5562689-5562144 in the genome scaffold is indicated by 

a red line on the overview track at the top of the figure and a detailed view is 

expanded below with the red triangle demarking the ORF length. Different gene 

annotation models are presented and predicted exons are indicated as blue and red 

boxes, representing different strand orientation. Exons are linked by zigzag lines to 



Chapter 4-Repository, integration of proteomic data and the validation of genome annotation 

119 

 

indicate the position of exon/intron boundaries. Predicted sequences for 50.m05694 

and part of TgGlmHMM_1717 are shown as inserts. Sequence for which there is 

identified peptide evidence is shown in red. Peptides aligning with this region are 

shown in yellow and the detailed MS information for one example is shown. 

An example of the third type of discrepancy is shown in Figure 4.5, where peptide 

evidence indicates alternative exon-intron boundaries to that predicted by the release 

4 genome annotations. In Figure 4.5, 12 peptides identified using the MudPIT 

approach map to a region of the genome scaffold (X: 3917326-3920484) that is 

annotated with release 4 gene 28.m00300, comprising two exons. Five of twelve 

peptides match the second exon of gene 28.m00300. Of the remaining peptides, one 

maps to the predicted intron region of gene 28.m00300 and although it appears that 

six peptides match the scaffold in the region of the first exon of 28.m00300, these 

peptides actually relate to a different frame translation. Alternative gene models also 

vary considerably in this region in both the number and positioning of the exons, 

which indicates the difficulty in the prediction of splice sites in this region. All 12 

peptides identified in this study only appear in TgGlmHMM_2666, which does not 

have an intron at this location, providing evidence that this model is most likely to be 

correct. 
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Figure 4.5 Peptide evidence indicating alternative exon positioning and 

splice site. The position of ORF X-1-3917326-3920484 in the genome scaffold is 

indicated by a red line on the overview track at the top of the figure and a detailed 

view is expanded below with the red triangle demarking the ORF length. Different 

gene annotation models are presented and predicted exons are indicated as blue 

boxes, linked by zigzag lines to indicate the position of exon/intron boundaries. 

Peptides aligning with this region are shown in yellow. The predicted sequence for 

ORF X-1-3917326-3920484 is shown as an insert and sequence that is identical to 

exon 2 of gene 28.m00300 is shown in blue. Sequence for which there is matching 

peptide evidence is shown in red. Purple lettering indicates the positioning of the 

'intron-located' peptide, the detailed MS information for which is shown in the right 

hand insert. 
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4.4  Discussion 

In this chapter, efforts have been made to present the proteomic data within a 

broader application. Raw MS data have been made publically accessible online and 

peptide identification data have been integrated with other genomic resources on 

ToxoDB. The integration of the proteomic data into ToxoDB revealed an important 

application of the data to genome annotation, demonstrating the incomplete status of 

current genome annotation. 

By uploading the raw MS data onto the Tranche network, this valuable protein 

expression information is directly accessible to the research community. Moreover, 

storing the MS data in its raw format preserves important information about the 

biological sample and labour involved in the experiments, and enables future 

analysis to be carried out easily. For example, when the new standardized data 

format, i.e. mzML, becomes more established, the raw MS data generated from this 

study can be directly adapted into the new data processing pipelines. The Tranche 

facility also allows the raw MS data to be searched against the latest gene prediction 

models using improved search engines, the importance of which is further discussed 

in section 4.4.2. 

4.4.1  Data integration 

The integration of proteomic data with other genomic resources on ToxoDB was 

carried out on a peptide level. Since the genome sequence remains reasonably stable, 

matching the peptide identifications onto the corresponding genome scaffold avoids 

continual updating of peptide data mapping each time a new version of genome 

annotation is released. Peptide expression data can be directly mapped onto the new 

gene models according to their coordinates. However, as discussed in section 2.4.3, 
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multiple gene model databases have been used in the study to maximize protein 

identification. Although the benefit of including alternative gene models has been 

demonstrated in this chapter where in many cases peptide evidence supports the 

prediction made by alternative models, several technical issues in handling multiple 

gene models have been observed through the peptide mapping process. 

Firstly, the script used in this study can efficiently collect peptide identifications 

from various gene models and ORFs expressed. However, due to the requirement of 

integration with other genomic resources that are already stored on ToxoDB, the 

peptide mapping algorithm designed was orientated towards release 4 genome 

annotation. Particular examples are step 2 and step 3 used in the mapping algorithm, 

where priorities have been given to release 4 gene models during mapping.  

Step 2 states that if more than 50% of the peptides from an alternative model could 

be mapped to a release 4 gene, this was considered a valid mapping and the matching 

peptides were aligned with the corresponding release 4 gene. The remaining non-

matching peptides were separately mounted on the scaffold, aligned with the 

alternative model. Step 3 states that if a certain set of peptides from an alternative 

model could be mapped to more than one release 4 gene, the gene that could host 

most peptides was reported. Again, the remaining peptides were separately mounted 

on the scaffold, aligned with the alternative model. As shown in this Chapter, 

peptides identified in the neighbouring region of a release 4 gene model are of great 

interest to gene expression research as well as genome annotation. They provide 

strong evidence of alternative splice sites; missing exons and different positioning of 

start or stop codons, which could alter the function of the gene when expressed. 

However, due to the peptide mapping algorithm that was orientated towards release 

4 genome annotation, these important peptides have been mapped separately to 
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alternative gene models. Unfortunately the current version of the ToxoDB interface 

does not allow the user to query thesis alternative gene models. In other words, 

where once readily available, these peptides are no longer searchable. 

Additionally, steps 4, 5, and 6 state that peptides identified from an alternative model 

can be mapped to an ORF or alternative gene model only if 100% of the peptides can 

be mapped. The stringent threshold set here was due to the consideration that 

previous versions of EST and ORF databases used in MS data searching contain 

small sequencing errors that are not consistent with the release 4 gene models and 

ORFs. In total, there were 220 TgEST sequences and 184 ORF sequences identified 

in this study that cannot be mapped onto ToxoDB due to this reason, representing 4.9% 

of the total number of sequences mapped. This reflected the existence of sequencing 

errors in previous versions of EST and ORF databases. However, this also resulted in 

the loss of genuine peptide identifications that mapped to the correct part of the EST 

or ORF sequence. In addition to this, it was not possible to map peptides identified 

from 163 alternative gene models in this study (74 of TgGlmHMM, 58 of 

TgTwinScan and 31 of TgTigrScan) to the release 4 gene models and ORFs. While 

these peptides are presented on ToxoDB, it is not possible to query MS evidence for 

older gene models such as TgTwinScan, which means that this subset of peptide data 

is effectively “lost” to the wider research community. Solutions to this problem are 

discussed in the next section. 

Despite the limitations of the peptide mapping approach due to the multiple gene 

models and ORF database used, the integration of the proteomic data generated in 

this study onto ToxoDB has already assisted the genome annotation process by 

confirming the correct predictions of 2477 intron spanning peptides in the official 

release 4 genome annotations. More importantly, the discrepancies between the 
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proteomic data and the release 4 gene models also demonstrate the incompleteness of 

the release 4 genome annotation. The peptide identification data provided evidence 

for the expression of 394 alternative models, which were mapped to 226 ORFs, as 

well as 421 splice sites that have not been predicted by the release 4 genome 

annotation. In fact, even in the latest release 5.2 genome annotation which was 

recently published in July 2009, there is strong peptide evidence for the expression 

of alternative models that were mapped to 203 ORFs. The reduced number of ORFs 

that have peptide evidence from 226 to 203 reflects the improvement of release 5.2 

genome annotation where peptides previously mapped to 23 ORFs are now able to 

be mapped to release 5.2 genes. However, peptides mapped to those 203 ORFs still 

possess valuable information for the improvement of release 5.2 genome annotations. 

Moreover, if the “lost” peptide identifications during the mapping process were to be 

mapped onto ToxoDB, an even larger discrepancy between expression data and 

predicted gene models would be evident. This work has highlighted the importance 

of proteogenomic research which directly incorporates proteomic data into the 

genome annotation process. It has also highlighted the on-going problem for 

proteomic analysis of the need to re-submit raw MS data against the latest genome 

annotations, in order to obtain the highest quality dataset.  This is a time-consuming, 

manual task but which is of significant importance, if one is to avoid the situation of 

“lost”, out-dated and inaccessible annotations. 

4.4.2 The application of proteogenomics in T. gondii genome annotation 

As discussed in section 1.2.6.1, proteomic data can be used in various aspects of the 

genome annotation process such as validating predicted gene models and detecting 

novel genes as well as validating alternative splicing variants [213, 215, 218, 220, 

221, 344]. In this study, three examples have been shown to demonstrate the 
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potential usage of proteomic data in indicating missing exons, alternative frame 

shifts, as well as alternative exon positioning. 

The proteomic data acquisition in this study can be used to assist the development of 

new genome annotation pipelines. Firstly, protein expression data can be used as a 

valuable training set to improve the prediction of integrative gene prediction 

programs such as GLEAN [282] and TwinScan [280]. This application is particularly 

important for microbial genome annotation such as T. gondii, where few homologies 

have been characterized in comparison to the human genome. By analysing the 

composition and statistical properties of the expressed peptides, programs can be 

tuned to predict novel genes which homologies have not been previously identified 

in other organisms. 

Secondly, by searching the raw MS data against the latest update of genome 

annotation in the pipeline, peptide expression data can be directly used to validate 

the accuracy of the predictions. This information can then be fed back to the 

automated pipeline and generate an improved version of genome annotation, which 

can be validated by the raw MS data again. By performing this cycle several times, 

the accuracy of genome annotation can be rapidly improved. This automated pipeline 

will also significantly speed up the current proteomic research workflow, where 

successive upgrades of genome annotation require the raw data to be re-submitted in 

a slow manual fashion at the moment, as highlighted in the previous section. The 

pipeline will also resolve the peptide mapping problem on ToxoDB, for example, the 

raw MS data used to identify those 220 TgEST sequences and 184 ORF sequences 

that were not able to be mapped on ToxoDB would be preserved and searched 

against the new annotations. Likewise, the peptide identifications from those 163 
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alternative gene models that are no longer available for querying on ToxoDB could 

also be directly entered into the automatic pipeline. 

Of course, in order to efficiently initiate the cycle, large scale sampling of peptide 

identifications from the genome is required. This will enable the maximum number 

of peptide features to be picked up by gene prediction programs and preserved in the 

subsequent annotation cycles. Currently, the best approach to achieve the biggest 

coverage of peptide identifications in a genome is to search the MS data against all 

the ORFs with a length greater than 50 amino acids from the whole genome 

sequence database.  

Theoretically, the collection of all the ORFs covers the entire potential protein 

coding sequence (CDS) in the genome. However, the current program setup for ORF 

marking in the genome only processes the same region of sequence once and 

identifies a specific ORF as starting from the first start codon it encounters until it 

comes across a stop codon [112, 345]. This approach is particularly efficient in 

marking ORFs in organisms with no introns, such as prokaryotes. However, it has 

several limitations in covering the entire potential coding sequence in a typical 

eukaryotic gene which contains multiple exons. Firstly, the algorithm marks every 

ORF from the first start codon to the first stop codon, no matter how many other start 

codons are within the ORF. This prevents the identification of the second exon 

starting within the length of the original ORF. Secondly, in a gene that contains 

multiple exons, a frame shift between different exons means the coding sequence 

cannot be hosted within a single ORF. This particularly prevents the identification of 

intron-spanning peptides in the proteomic research which also contains critical 

information for genome annotation. 
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In fact, the 163 alternative gene models which could not be mapped onto release 4 

gene models and ORFs partly reflected the second limitation of the current ORF 

marking algorithm, where no single ORF could host 100% of the peptides identified 

to an alternative gene model. A new algorithm approach to design ORF databases for 

MS data searching is under development in the Wastling group in collaboration with 

Dr. Andy Jones, University of Liverpool. 

The new ORF database cannot be a simple collection of all the direct translations of 

genomic sequences from all the start codons which exist, as this would result in a 

giant sequence database which would require tremendous computing power for MS 

data searching and which would increase the false discovery rate. One possibility is 

to harness the latest development in the transcriptome, RNA-Seq. By using the high-

throughput sequencing approach offered by RNA-Seq, a genome-scale transcription 

map can be rapidly achieved [229]. The information can then be used as a reference 

map for the selection of gene coding ORFs and subsequently reduce the size of the 

ORF database for MS data searching. An on-going collaborative project between the 

Wastling group and Dr. Arnab Pain, at the Wellcome Trust Sanger Institute, 

Cambridge is developing a method for the integration of proteomic and 

transcriptome data in the genome annotation process for T. gondii and Neospora 

caninum. 

4.4.3  Conclusion 

In this chapter, the proteomic data acquired in this study have been placed in a 

broader platform. The raw MS data have been stored in the publically accessible 

Tranche network. The expression data have been integrated on a peptide level with 

other genomic resources on ToxoDB. Inspired by the issues raised during peptide 

mapping and the examination of the accuracy of the release 4 genome annotations 
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using these peptide identifications, the incompleteness of the release 4 genome 

annotation was highlighted and the potential application of a new genome annotation 

pipeline was discussed.  

In a conventional bottom-up protein identification based proteomic project, peptide 

identification relies on the predicted gene models. Successive upgrades of genome 

annotation mean that the proteomic researcher may have to re-submit the data which 

is a time consuming process. By using the new genome annotation pipeline 

discussed in this chapter, the manual re-submission can be carried out automatically 

and proteomic expression data can be directly used to improve genome annotation. 

Together with the information contained within the transcriptome, a near “perfect” 

genome annotation can be expected in the near future. 

In addition to the application of proteomic data in the field of proteogenomics, the 

integration of proteomic data into ToxoDB also allows an important comparison to 

be made, that of the transcriptomic data. This comparison will reveal implications of 

important biological processes such as protein degradation and post-transcriptional 

regulation. This interesting subject is investigated and discussed in chapter 5. 

 



 

 

 

 

 

 

 

 

 

Chapter 5 

A comparison of the proteome and transcriptome of 

Toxoplasma and other Apicomplexa parasites 
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5.1  Introduction 

In the previous chapter, the methods for the integration of proteomic data onto 

ToxoDB were investigated and the potential for directly using proteomic data in 

genome annotation was discussed. The integration with another genomic resource in 

the context of ToxoDB has led to another important application of proteomic data, 

that of the comparison of the proteome and transcriptome of Toxoplasma. 

As discussed in section 1.2.6.2, transcriptomic studies were used to infer putative 

functions of proteins under the commonly accepted „guilt-by-association‟ hypothesis 

[233]. However, with the increasing number of proteomic studies, data from several 

recent studies have suggested a relatively weak correlation between mRNA 

expression and protein expression in plant seeds [235], mouse embryonic stem cells 

[236], yeast [237], and even in Apicomplexan parasite Plasmodium [238, 239]. The 

discrepancies observed not only weaken the application of protein function 

assignments using transcriptomic data, but also highlight the requirements for more 

research which would allow a better understanding of basic biological processes. 

With the first example of a whole cell lysate proteome for Toxoplasma acquired in 

this study, the relationship between proteins and their mRNA can be examined in T. 

gondii. 

Several large scale transcriptomic analyses have been carried out on T. gondii and 

the data have been integrated on ToxoDB release 4 under the same genome scaffold 

and identifiers as used for proteomic data [112]. These large scale transcriptomic 

studies include transcript expression with microarray evidence, expressed sequence 

tag (EST) evidence and serial analysis of gene expression (SAGE) tag evidence. The 

microarray expression profiling of the three archetypal T. gondii lineages has been 



Chapter 5-A comparison of the proteme and transcriptome of Apicomplexa parasites 

131 

 

carried out by Dr. PH Davis and Prof. DS Roos, University of Pennsylvania, USA 

and the data have been released on ToxoDB pre publication. The EST evidence is 

mirrored from the dbEST (http://www.ncbi.nlm.nih.gov/dbEST/) site onto ToxoDB 

which contains various libraries of different strains and life stages. SAGE tag 

libraries were generated from T. gondii parasites at specific stages of development, 

representing key developmental transitions in primary parasite populations and in 

three laboratory strains [272]. The large amount of T. gondii transcriptomic data and 

the integration of these data and proteomic data on ToxoDB have made a systematic 

comparison between proteome and transcriptome of this important parasite feasible. 

In addition to the extensive coverage of T. gondii, a large amount of proteomic and 

transcriptomic data have also been acquired for other important Apicomplexan 

parasites, which enables a cross species comparison that would highlight common 

features between proteome and transcriptome in Apicomplexa. As reviewed in 

chapter 2, large scale proteomic studies have been carried out on several species of 

Plasmodium [238, 239, 261-263] and Cryptosporidium parvum sporozoites [264, 

265]. On-going whole cell proteomic studies are also being carried out in Neospora, 

Theileria and Eimeria by the Wastling group, University of Liverpool, UK. Large 

scale transcriptomic expression profiling projects have also been carried out. dbEST 

[346] and EuPathDB [347] host the largest collection of EST data for the 

Apicomplexa. SAGE projects have been carried out for P. falciparum [348-350] and 

microarray expression data are available for P. falciparum and P. berghei [238, 351-

353].  

Most of the proteomic and transcriptomic data here have been uploaded to 

corresponding component sites of EuPathDB, such as CryptoDB, PlasmoDB and 

ToxoDB [347]. EuPathDB provides a large collection of published data and hosts 
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valuable data from several unpublished studies that further expand the coverage of 

expression data for Apicomplexa. Moreover, similar to the process discussed in 

Chapter 4, great efforts have been made to integrate expression data generated from 

different experimental platforms together under the same identifier system.  

In this chapter, equipped with the large amount of expression data and valuable 

support from EuPathDB, a systematic comparison of the proteome and transcriptome 

of Toxoplasma and other Apicomplexa parasites has been carried out. Explanations 

for observed discrepancies and the potential applications of the interaction of 

proteomic and transcriptomic data were also discussed. 

 

  



Chapter 5-A comparison of the proteme and transcriptome of Apicomplexa parasites 

133 

 

5.2  Materials and methods 

To facilitate a genome wide comparison between proteome and transcriptome, 

relative expression data were collected primarily from component sites of EuPathDB 

(formerly known as ApiDB) [347]. 

5.2.1   Proteomic and transcriptomic data collection for T. gondii 

The 2252 release 4 genes identified in this study were used as the T. gondii 

tachyzoite proteomic dataset for the comparison. The collection of EST, SAGE and 

microarray data was carried out using ToxoDB (release 4.2) [112]. To identify the 

genes that have EST evidence, all tachyzoite EST libraries were selected in the query 

“ToxoDB Queries and Tools/Transcript Expression/Identify Genes based on EST 

evidence”, with default settings applied. The SAGE expression data were collected 

using the query “ToxoDB Queries and Tools/Transcript Expression/Identify Genes 

based on SAGE Tag evidence” with “T. gondii 3p SAGE tag frequencies_d6” and “T. 

gondii 3p SAGE tag frequencies_rh” libraries selected and default parameters were 

applied. The microarray expression percentile for T. gondii genes were collected 

using the query “ToxoDB Queries and Tools/Transcript Expression/ Identify Genes 

by Microarray Evidence/ Identify Genes based on Expression Percentile (T.g.)”. 

Data comparisons were carried out either on ToxoDB using the “My Query History” 

function or in Microsoft Office Excel with data downloaded from ToxoDB. 

5.2.2  Proteomic and transcriptomic data collection for other 

Apicomplexan parasites 

In order to identify Apicomplexa genes which exhibit discrepancies between 

transcriptomic data and proteomic data, a similar data collection process was carried 

out on C. parvum sporozoites using CryptoDB [330], and P. falciparum (all life 
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stages) using PlasmoDB [329]. All the published gene identifications from major 

proteome projects listed in CryptoDB (release 3.7) and PlasmoDB (release 5.4) were 

included in the analysis. Comparative EST libraries were used to collect EST 

evidence for C. parvum and P. falciparum and microarray expression data were 

collected for P. falciparum. Data comparisons were carried out either on CryptoDB 

and PlasmoDB using the “My Query History” function or in Microsoft Office Excel 

with data downloaded from CryptoDB and PlasmoDB. 

For N. caninum tachyzoites, preliminary proteome profiling results from a MudPIT 

experiment generated by the Wastling group was used for the comparison 

(unpublished). Briefly, N. caninum tachyzoites were collected from cell culture by 

Rebecca Norton. Sample preparation, mass spectrometric analysis and MS data 

searching of MudPIT analysis were performed by Dr. Judith H. Prieto from John R. 

Yates‟s lab, Scripps Research Institute, La Jolla. Proteomic expression data were 

obtained for 660 of the gene models in the latest set of gene predictions (available 

via GeneDB at http://www.genedb.org/) at the time of comparison (July, 2008). EST 

evidence for N. caninum was collected from NCBI dbEST 

(http://www.ncbi.nlm.nih.gov/dbEST/).  The alignment of EST evidence to genes 

that have proteomic evidence was carried out by Amandeep Sohal in Dr. Arnab 

Pain‟s group at the Wellcome Trust Sanger Institute, Cambridge. Briefly, EST 

evidence was mapped onto the genome using the Exonerate software [354] with the 

following parameters: “exonerate_farm --bestn 1 --showtargetgff yes --showvulgar 

no --showalignment no --query NeosporaESTsequences.fasta --target sequence.dna”. 

Artemis software [355] was then used to highlight the intersections of gene models 

and EST evidence. 
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5.2.3 Method for data comparison between three Apicomplexan parasites 

The comparison between proteomic and transcriptomic data was carried out at the 

individual parasite level using their own identifier systems. To determine the number 

of genes in the intersections between each parasites, OrthoMCL software [169] was 

used and the analysis was carried out by Amandeep Sohal at the Wellcome Trust 

Sanger Institute, Cambridge. Briefly, 5460 P. falciparum genes, 7793 T. gondii 

genes and 5589 N. caninum genes were used in the analysis and 5147 orthologue 

groups were formed. 
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5.3  Results 

5.3.1  Comparison of gene expression at the transcriptional and 

translational level in T. gondii 

A comparison of transcriptomic and proteomic data of T. gondii was done in two 

stages. Firstly, the proteomic data were compared with the entire microarray 

expression data. Since the microarray data have the largest coverage of the genome 

in all the current gene expression experiments, this comparison provides a good 

indication of the level of proteomic sampling. Secondly, the proteomic data were 

compared with various transcriptomic experiments such as microarray expression 

data (over 25 expression percentile), SAGE expression data and EST data. The 

SAGE data provide a more accurate measure of transcripts than microarray data and 

while providing direct evidence of gene expression, the application of EST data in 

genome annotation [112] has made it an important transcriptomic dataset. By 

comparing the proteomic data with all the three large scale transcriptomic datasets 

available, discrepancies between the transcriptional and translational levels of gene 

expression can be examined. 

5.3.1.1  Comparison with entire microarray expression data 

Microarray data provide extensive coverage of the genome; 7764 release 4 genes 

(99.5% of the genome) were assayed. Four release 4 genes (25.m01905, 8.m00178, 

80.m05040 and 83.m00013) which were identified by the proteomic data were not 

assayed by microarray and for this reason were not included in this comparison. T. 

gondii tachyzoites were assayed and all 7764 genes on the array exhibit some signal. 

It is difficult to determine the correct signal: noise ratio above which mRNA levels 

can be considered to be indicative of a gene being switched on since not all genes 

would be expected to be expressed in the tachyzoite stage. 
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 For the purposes of this comparison, in this study 7764 release 4 genes were divided 

into quartiles according to the mRNA expression levels determined by microarray. 

Those genes in the bottom 25% were considered as having zero detectable mRNA 

above the baseline while those genes in the top 75-100% were the genes that have 

the highest mRNA expression levels. Figure 5.1illustrates the number of genes in 

each microarray expression percentile which have been identified by this proteomic 

study. 

 

Figure 5.1 Comparison of proteomic data with microarray expression data. 

Release 4 genes assayed by microarray were divided into quartiles according to 

mRNA expression levels. The bar chart shows the number of genes also identified by 

proteomics for each of the four percentile ranges, 0-24%, 25-49%, 50-74% and 75-

100%. 

While the number of genes contained in each of the quartile ranges is the same (i.e., 

1941), there is a general trend for more proteins to have been detected for genes with 

higher mRNA expression levels (972 genes (50.1%) in the top mRNA expression 

range 75-100% and 644 genes (33.2%) in the second highest mRNA expression 

range compared with 22.1% and 10.5% in the lower two percentiles). This may 
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reflect a correlation between mRNA abundance and protein abundance, and that 

higher abundance proteins are easier to detect by proteomic approaches.  

Proteomic data also provided important expression evidence for 204 genes from the 

bottom 25% microarray expression range. This highlighted the discrepancies 

between proteomic expression and microarray expression data where genes in the 

bottom 25% microarray expression range were described as zero detectable mRNA 

above baseline. The discrepancies between protein level of expression and 

transcriptional level of expression were further demonstrated when EST data were 

included in the comparison. 

5.3.2  Comparison of proteomic data with microarray expression data 

(over 25 expression percentile), SAGE expression data and EST data 

The comparison of proteomic data with microarray expression data demonstrated the 

sensitivity of the proteomic approach and a general correlation between the number 

of proteins detected and mRNA expression levels. Whilst it is hard to decide a 

definitive microarray expression percentile for a gene to be considered expressed, 25% 

was used as a cut-off assuming 75% of the release 4 genes are expressed in the 

tachyzoite stage. Other important evidences of transcript expression provided on 

ToxoDB are EST and SAGE. In this study, cDNA evidence from all the tachyzoite 

EST libraries was collected, which represents a total coverage of 68.4% of all release 

4 genes. Expression evidence from laboratory strain RH library and primary VEG 

strain Day-6 library, which has the closest correlation with RH strain [272], were 

collected, representing the equivalent sampling of this study. The 1453 genes 

detected by these two SAGE libraries represent a total coverage of 18.6% of all 

release 4 genes. The comparisons between 2252 genes identified by proteomic data 
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and genes identified by various transcriptomic experiments are shown in Figure 5.2 

(Detailed gene identifications are listed in Appendix VI). 

 

Figure 5.2 Genes with proteome and transcriptome evidence in T. gondii.  

The relationships between proteomics and various transcriptomic techniques such as 

Microarray, EST, SAGE and total transcriptomic expression data in T. gondii are 

shown in separated columns. Genes identified by this proteomic study are compared 

with genes that have transcriptome evidence. The blue portion indicates proteins 

without transcriptome evidence, the red portion indicates proteins that have both 

proteome and transcriptome evidence, and the green portion indicates genes without 

proteome evidence.  

When considering all four platforms included in the comparison, 572 genes have 

expression evidence from all platforms which may reflect their strong expression at 

both transcriptional and translational levels. Proteomic data has provided protein 

expression evidence for 204 genes in the bottom 25% microarray expression range, 

266 genes that have no EST evidence and 1606 genes that have no SAGE evidence. 

Furthermore, 60 tachyzoite genes are exclusively identified by proteomic data and 

have no corresponding transcript expression evidence. 
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The identification of these 60 genes is of great research interest. This illustrates that 

some genes with zero or very low mRNA expression can still be identified by 

proteomic approaches, which may reflect the high sensitivity of the proteomic 

approach. One clear biological explanation is that these proteins were extant before 

the tachyzoite differentiated. Or these could be highly stable proteins, with low 

turnover rates which require low levels of transcription to be maintained in the cell. 

Another explanation is that substantial quantities of protein can be produced from 

very low abundance mRNA. In fact, many of those 60 genes were identified by large 

numbers of peptide identifications which usually indicates high protein abundance. 

As such these 60 genes represent interesting candidates for understanding the 

relationship between mRNA and protein abundance levels in Toxoplasma. Three 

examples from this group are „tubulin beta chain, putative‟ (28.m00301, 128 peptide 

hits), „thioredoxin, putative‟ (42.m03331, 57 peptide hits) and „coatomer protein 

gamma 2-subunit, putative‟ (59.m00090, 53 peptide hits).  

To further understand the properties of genes that only have proteomic data, a 

proteomic data based comparison was carried out with transcriptomic data across 

four species of Apicomplexa. As shown in Figure 5.2, the SAGE data provide a 

much smaller overlap with the proteomic data than that of EST and microarray data. 

In fact, when the SAGE data were excluded from the comparison, 1850 genes were 

shared among proteomic, EST and microarray experiments which are considerably 

more than 572 genes when all four platforms are included. The smaller overlap 

observed between SAGE and proteomics is very interesting, and may represent 

genuine biological discrepancies or differences in the experimental sampling and 

detection sensitivities (further discussed in section 5.4.2). However, including the 

SAGE data to the proteome and transcriptome comparison across four species of 
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Apicomplexa will add more complexity to the discrepancies while not adding much 

more value to the whole proteome and transcriptome comparison. Only 77 genes 

identified by SAGE were not detected by EST and microarray in T. gondii and 

SAGE data are not readily available across other Apicomplexa except Plasmodium. 

Due to the above considerations, the SAGE data were not included in the comparison 

across Apicomplexa. 

5.3.3  Proteome and transcriptome comparisons across four species of 

Apicomplexa 

Given the large amount of good quality transcriptional and translational data across 

the Apicomplexa, a general comparison was carried out to examine the relationship 

between proteins and their mRNA. The proteomic data based comparison allows us 

to identify the subsets of proteins for which no transcriptional evidence was acquired. 

Comparative EST libraries and microarray expression data (no microarray data were 

available for Neospora or Cryptosporidium) were compared with their respective 

proteomic datasets for four species of Apicomplexa including T. gondii tachyzoites, 

C. parvum sporozoites, P. falciparum (all life stages) and N. caninum tachyzoites 

(see Figure 5.3).  
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Figure 5.3 Proteome and transcriptome comparisons across four species of 

Apicomplexa. The numbers of proteins identified by peptide evidence in 

Toxoplasma gondii tachyzoites, Cryptosporidium parvum sporozoites, Plasmodium 

falciparum (all life-stages) and Neospora caninum tachyzoites are shown. The red 

portion indicates proteins without EST evidence and the green portion indicates 

genes without EST or microarray evidence (less than 25 expression percentile). No 

microarray data were available for Neospora or Cryptosporidium at the time of 

comparison. 

Each column represents the total number of proteins identified by proteomics, with 

the red portion indicating proteins without any EST evidence and the green portion 

showing proteins without either EST or microarray data. These data show that except 

for C. parvum, a large number of genes identified by proteomics were also identified 

at the transcriptional level. Importantly, in addition to those 72 genes identified in T. 

gondii, 103 of P. falciparum genes detected by proteomics have neither EST nor 

microarray evidence over and above the 25% cut-off. There were also proteomic 

evidence for 968 of C. parvum genes and 181 of N. caninum genes where no EST 

evidence existed. The large percentage of C. parvum genes (73%) which have 

proteomic evidence but no EST evidence is likely to represent a relatively poor EST 

coverage for C. parvum. Given this common discrepancy observed between 
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proteomic data and transcriptomic data across four Apicomplexa species, further 

analyses were carried out to test if these proteins that have no, or relatively low 

levels of transcription were related at the level of orthology. 

5.3.4  Apicomplexa genes which exhibit discrepancies between 

transcriptomic data and proteomic data 

Proteomic and transcriptomic data for P. falciparum, T. gondii and N. caninum were 

collected as described in section 5.2.2. C. parvum data were not included because the 

relatively poor EST coverage is likely to bias the comparison. Genes were sorted into 

the following three categories (a) transcript present but no protein detected, (b) 

protein detected but no EST evidence and no transcript detected by microarray at ≥ 

25% threshold, and (c) protein detected but no EST evidence. In each category, the 

numbers of genes which are shared between each species were determined by 

orthologue mapping using OrthoMCL [169] and the results of the comparison are 

shown in Figure 5.4 (Detailed gene identifications are listed in Appendix VII). 
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Figure 5.4 Genes from three Apicomplexa which exhibit discrepancies 

between transcriptional data and proteomic data. Each circle represents 

the number of genes for which a discrepancy was seen between transcriptomic and 

proteomic data for Plasmodium falciparum, Toxoplasma gondii and Neospora 

caninum based on: (a) transcript present but no protein detected, (b) protein detected 

but no EST evidence and no transcript detected by microarray ≥ 25% threshold, (c) 

protein detected but no EST evidence. The numbers of intersections were determined 

by orthologue mapping using OrthoMCL. 

Figure 5.4a shows that of the genes which have transcriptomic evidence but lack 

proteomic evidence, significant numbers (34% in Plasmodium, 39% in Toxoplasma 

and 63% in Neospora) had orthologues in other species, and 313 genes were 

common between all three species although no specific class of genes can be 

highlighted. This is perhaps a less surprising result, since low levels of protein 

synthesis or high rates of protein turnover and degradation may contribute to the 

under-representation of proteomic coverage and the ≥ 25% microarray expression 

criteria used in this study is rather loose and likely to include transcripts that have 

not been expressed. Figure 5.4b shows that there are 356 genes across all three 
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species which have proteomic data but no transcriptomic evidence. However, only 

several genes are shared between any two species as orthologues. Figure 5.4c shows 

the comparison only between proteomic and EST data. A larger number of proteins 

are shared, including two orthologues seen across all three species („small nuclear 

ribonucleoprotein, putative‟, 57.m01848 and „thioredoxin, putative‟, 42.m03331; 

ToxoDB annotation). These data revealed that there is little overlap across the three 

datasets for orthologous genes for which there is proteomic evidence, but little or no 

transcriptomic expression evidence (detected by ESTs or microarrays). 
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5.4  Discussion 

Following the effort of data integration discussed in chapter 4, in this chapter, the 

proteomic data generated from this study have been compared with various 

transcriptomic expression data using ToxoDB. A broader comparison of proteomic 

data and transcriptomic data across four species of Apicomplexa was also made 

available with the data and tools provided by EuPathDB. This has further highlighted 

the importance of data integration in the post-genomic era where large scale genome 

wide studies can be viewed and analysed together in a way that was not readily 

accessible before. The study of gene expression has been dominated by 

transcriptomic approaches where the level of mRNA expression is measured. Now, 

supplemented with the latest addition of proteomic data, a dynamic view of gene 

expression pattern can be analysed for the first time on T. gondii and other 

Apicomplexan parasites through the comparison of proteomic data and 

transcriptomic data. 

5.4.1 A weak correlation observed between proteome and transcriptome 

In T. gondii, the comparison of proteomic data with microarray data has revealed a 

weak correlation between mRNA abundance and protein abundance, where more 

genes in the higher microarray expression percentile range have been detected by 

proteomic approaches than those genes in the lower percentile range. In fact, a quick 

analysis of the number of EST counts and the number of peptide counts for genes 

that were identified by this proteomic study has revealed a spearman's rank 

correlation value of 0.29, which also indicated a weak correlation between mRNA 

abundance and protein abundance.  
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Of course, caution needs to be made when using both peptide counts and the number 

of proteins identified as direct indications of protein abundance. Firstly, variations 

introduced in the protein separation and digestion steps would affect the distribution 

of the peptide mixture and, the kinetics of peptides varies during MS analysis. 

Actually, it has been noted that only a few so-called „proteotypic‟ peptides are 

repeatedly and consistently identified for any given protein present in a mixture in 

relation to their different physicochemical properties [356]. Secondly, the length of 

the peptide identifications and the size of the protein are also a source of variations. 

Larger proteins would generally produce more peptides than proteins of a smaller 

size and depending upon the fragmentation, two short peptides identified from a 

protein does not guarantee a two times abundance over a protein identified by a 

single long peptide. Considering the above limitations, peptide counts are only able 

to provide a crude indication of the protein abundance. Quantitative approaches can 

be used for future investigation such as MS-based isotope labelling or lable free 

methods, as well as gel-based technique differential gel electrophoresis (DIGE), 

which is further investigated in chapter 6. Nonetheless, proteomic identifications can 

provide important evidence for the translational level of gene expression. The large 

number of genes identified by both proteomic and transcriptomic techniques and the 

general trend of a correlation between them reflected the comparable sensitivity of 

both techniques.  

5.4.2 The significance of discrepancies between proteome and transcriptome 

The correlation between proteomic data and transcriptomic data increased the 

confidence of the feasibility of the comparison between the two techniques and 

follows the central dogma of Gene-Transcription-Translation. However, perhaps 
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more significant finding was the discrepancies between proteomic data and 

transcriptomic data. 

The presence of proteomic evidence in the absence of detectable transcriptomic 

evidence has been noted in several other studies [235-237], as well as in Plasmodium, 

Cryptosporidium and Neospora as shown in this chapter. The detection of these 

genes by proteomic studies reflected the high sensitivity of the proteomic approaches. 

In the case of T. gondii, by combining expression evidence from microarray, EST 

and SAGE, there were 6736 release 4 genes which have transcriptomic evidence, 

representing 86.4% of the entire genome. It is unlikely that all those 6736 genes are 

expressed in the tachyzoite stage, especially with the inclusion of 75% of all the 

genes assayed on microarray; it is likely to include genes expressed in other life 

stages. Considering the vast coverage of transcriptomic data, the identification of the 

60 T. gondii genes for which no transcripts were observed is more fascinating. 

One possibility of the cause of discrepancies between proteomic data and 

transcriptomic data is technical limitations, whereby the same level of analytic 

resolution is hard to reach between the two techniques. Other possibilities involve 

biological explanations such as selective protein degradation and variations in 

protein turn-over rates [240, 241] as well as post-translational regulations such as 

mRNA decay and translational repression [242-244].  

Three examples of those 60 genes that have exclusive proteomic evidence indicated 

in section 5.3.2 were „tubulin beta chain, putative‟ (28.m00301, 128 peptide hits), 

„thioredoxin, putative‟ (42.m03331, 57 peptide hits) and „coatomer protein gamma 

2-subunit, putative‟ (59.m00090, 53 peptide hits). These three genes were identified 

by large numbers of peptide identifications in the absence of transcript evidence in 
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tachyzoite stage. Interestingly, although no evidence have been found from Day 6 

and RH libraries of SAGE experiment, both the tubulin beta chain, a component of 

microtubule that is critically important for shape and apical polarity [357, 358] and 

thioredoxin, a vital component in the antioxidant system of T. gondii, which is 

essential for the adaption and survival of the parasites in macrophages and other 

immune effecter cells [359] were detected in an earlier library-Day 4 (a VEG 

primary library representing a mixture of sporozoites and early stage of tachyzoites 

gene expression). It is possible that sufficient mRNA was produced in the early stage 

of tachyzoites to retain the required level of protein expression whereby no further 

mRNA is required in the later stage of the development.  

This observation coincides with the finding of the SAGE study that a major shift in 

gene expression happens from Day 4 to Day 6 libraries [272]. In fact, another 11 

genes out of those 60 genes have been detected in the Day 4 SAGE library, including 

a cell cycle control protein, putative (641.m01576, 7 peptide hits). The major shift in 

gene expression patterns could also partly explain the smaller size of the SAGE 

dataset and the reduced overlap with proteomic data compared to EST and 

microarray data, as shown in Figure 5.2. The SAGE data provided a more accurate 

measurement of mRNA expression at the specific Day 6 time point (and closely 

correlated RH strain [272]), while EST data were collected from a larger collection 

of various time points within the tachyzoite stage, and the arbitrary 25% cut-off used 

for microarray dataset is likely to include and exclude some genes that are not 

expressed at this life stage, as discussed earlier.  

Interestingly, while the SAGE study indicated the closest correlated mRNA 

expression to the laboratory strain RH library was the Day 6 library, the proteomic 

data actually had a larger overlap with an earlier Day 4 SAGE library. In total, 762 
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genes detected by proteomic data were shared with Day 4 SAGE library while only 

428 genes were shared with Day 6 SAGE library. The finding that the expression 

profile of proteomic data is closer to an earlier time point of transcriptomic data is 

likely to reflect the rapid changes in gene expression profiles and the temporal 

differences between mRNA and protein levels. 

While the discrepancies between transcriptome and proteome have been observed in 

T. gondii and other Apicomplexan parasites in this study, the analysis that was 

designed to check for common features of proteins with low levels of transcription 

across Apicomplexa have only identified a few candidates at the level of orthology. 

The larger overlap of orthologues observed between T. gondii and N. caninum than 

the overlaps with P. falciparum in all three comparisons shown in Figure 5.4 is likely 

to reflect a closer phylogenetic distance between T. gondii and N. caninum, although 

no specific class of proteins can be highlighted. In all the three Apicomplexan 

parasites analysed, there was no apparent underlying rule that can explain the 

discrepancies between proteomes and transcriptomes. 

There were some interesting candidates in the comparison, such as a coatomer 

protein gamma 2-subunit, putative, 59.m00090; ToxoDB annotation. It has been 

shown in T. gondii that although no transcript evidence has been found with 

microarray, EST and the three libraries of SAGE, convincing peptide evidence (53 

peptide hits) were detected. The protein orthologues of this gene have been 

consistently detected in P. falciparum, N. caninum and C. parvum but no EST 

evidence has been found in N. caninum and C. parvum, and only a single 

corresponding EST has been seen in a P. falciparum blood-stage EST library. 

Coatomer protein gamma 2-subunit resides in Golgi-derived vesicles which mediate 

both selective and non-selective transport between the ER and Golgi and/or within 
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the Golgi cisternae [360, 361]. It is possible that this protein has a very long turn-

over rate or an extremely high copy number from a single transcript. The precise 

reason of the consistent discrepancies observed between proteome and transcriptome 

of this gene across several Apicomplexan parasites and various life stages is very 

interesting and requires further investigation. 

5.4.3  Conclusions and future directions 

In this chapter, proteomic data and transcriptomic data have been compared in a 

systematic way across several Apicomplexan parasites. The general trend of 

correlations between mRNA abundance and protein abundance identified by both 

techniques has provided valuable experimental evidence for gene expression 

following the central dogma of Gene-Transcription-Translation. However, perhaps 

more importantly is the finding of discrepancies between these two datasets, which 

could result from either technical limitations or genuine biological phenomena. 

The observation that the proteomic data of T. gondii better overlaps the Day 4 SAGE 

library rather than the Day 6 and RH SAGE libraries is particularly interesting. It 

highlighted the potential latency of the changes to protein expression profile after the 

mRNA expression has been altered. Combined with many cases where strong 

proteomic evidence exists in the absence of transcriptomic evidence, the proteomic 

data have highlighted the limitations of using transcriptomic data in protein function 

assignments under the largely applied “guilty-by-association” hypothesis [233]. 

Both proteomics and transcriptomics are still relatively new technologies, 

representing some of the first generation of genome-wide data to follow the 

Apicomplexan genome sequencing projects. The attempt to find common features 

amongst genes that show discrepancies between transcriptome and proteome has 
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highlighted several interesting observations, but has not reached an overall 

conclusion due to the limitation of the data coverage and the lack of quantitative data.  

As the technology evolves, more sensitive and absolute quantitative proteomic data 

would provide accurate measurements of protein abundance, which together with 

more accurate and thorough coverage of transcriptomic expression provided by the 

latest RNA-Seq technique, a more meaningful comparison between transcriptome 

and proteome can be made. More importantly, with more temporal data models 

analysed, a dynamic and comprehensive understanding of the basic biological 

process involved in gene expression can be achieved in the near future.  

Knowing the importance of quantitative data and encouraged by the good proteomic 

coverage of metabolic pathways shown in chapter 3, a quantitative proteomic study 

has been carried out in the next chapter to characterize differential protein expression 

in T. gondii under different growing conditions. 

 



 

 

 

 

 

 

 

Chapter 6 
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6.1  Introduction 

In the previous chapter, the importance of quantitative proteomic data in the 

integration with other gene expression data was highlighted by the comparison of the 

proteome and transcriptome of Toxoplasma and other Apicomplexa parasites. In this 

chapter, a preliminary case study has been developed to test the applications of a 

quantitative proteomic method differential gel electrophoresis (DIGE), in 

understanding the changes of protein expression profiles of T. gondii between 

different growth conditions. 

Traditionally, a gel-based method for quantitative protein expression analysis relies 

on the statistical analysis of a number of replicate sets of one-sample-one-gel for 

samples of different status. Due to the poor reproducibility of 2-DE, this approach 

requires several replicate gels to overcome variations in gel running and therefore is 

very labour intensive and prone to experimental errors [362]. In 1997, an alternative 

technique which uses optical detection of proteins with a fluorescent tag in 

conjunction with 2-DE was developed and named DIGE [363]. Figure 6.1 shows a 

schematic representation of the DIGE workflow.  

 

Figure 6.1 Schematic representation of the DIGE workflow. 



Chapter 6-DIGE analysis of T. gondii +/- glucose samples 

155 

 

Equal protein amounts of sample A, sample B and a pooled internal standard are 

separately labelled by three spectrally distinct fluorescent dyes: Cy2, Cy3 and Cy5. 

The labelled samples are then mixed and subjected to 2-DE separation followed by 

fluorescence imaging. Computer-aided image analysis is then performed where the 

volumes of each spot detected from differentially labelled samples are compared. 

Four gels that contain four pairs of biological replicates are needed for each 

experiment to minimize the influences of biological variations in the statistical test. 

The pooled internal standard is used to calibrate gel-to-gel variations due to 

heterogeneities during acrylamide polymerisation, gel running and variable 

precipitation of samples in the first dimension. 

The ability of the 2-DE technique in identifying proteins with a broad range of 

functions and key components of metabolic pathways has been demonstrated in 

chapter 3. The extended utility of sensitive quantitation of protein expression offered 

by DIGE has inspired a case study to quantitatively compare changes in the protein 

expression profile between T. gondii grown in the presence and absence of glucose 

in the cell culture medium. 

It has been observed by Dr. Dhanasekaran Shanmugam (University of Pennsylvania, 

USA) that T. gondii tachyzoites are able to grow and replicate for several passages in 

the total absence of glucose in the growth medium (personal communication). The 

growth kinetics test of these parasites has revealed that the parasites growing in the 

absence of glucose are slower than those growing in the presence of glucose by an 

average of one round of parasite doubling after 48 hrs. Gene expression profiles have 

been compared between +/-glucose samples and no difference among genes involved 

in key metabolic pathways for glucose utilization and energy production has been 

observed (personal communication with Dr. Dhanasekaran Shanmugam). 
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Metabolomic analysis on +/-glucose samples is also in progress under the 

collaboration with Dr. Manuel Llinás from Princeton University, USA. 

As part of this collaborative project, a preliminary DIGE experiment was carried out 

and is reported in this chapter. The application and importance of the DIGE 

technique in the quantitative protein expression profiling and the role of proteomic 

data in understanding gene expression changes in the context of system is discussed. 

  



Chapter 6-DIGE analysis of T. gondii +/- glucose samples 

157 

 

6.2  Materials and Methods 

DIGE experiments were performed using an Ettan
TM

 DIGE platform, GE Healthcare. 

The DIGE experiment briefly included the following steps: sample preparation, 

DIGE labelling, 2-DE, gel imaging, gel analysis using DeCyder
TM

 software and MS 

analysis. 

6.2.1  Sample preparation 

Cell culture was carried out by Dr. Dhanasekaran Shanmugam, University of 

Pennsylvania, USA. Briefly, four pairs of (+) glucose/(-) glucose biological 

replicates of T. gondii tachyzoites were grown in DMEM medium (GIBCO, 

supplemented with 5.5 mM glucose and 4 mM glutamine for (+) glucose medium, 

and 4 mM glutamine for (-) glucose medium) on the same batch of confluent HFF 

host cells plated on T175 tissue culture flasks. For (+) glucose samples, parasites 

from 1 T175 flask were collected for each replicate while for (-) glucose samples, 

parasites from 2 T175 flasks were collected for each replicate. All the flasks were 

inoculated at the same time and 6 hours later the flasks were exchanged with fresh 

media (either +/-glucose containing as required) to wash out extracellular parasites 

that had not invaded host cells. Parasites were purified and harvested 48hrs after 

inoculation using the same method described in section 2.2.1. The frozen samples 

were then delivered on dry ice. 

To each sample (typically containing 2×10
8
 parasites), an aliquot of 60 µl of DIGE 

lysis buffer (8M urea, 4% (w/v) CHAPS, 40 mM Tris-base) was added together with 

10µl DNase mix and 5µl of protease inhibitors (Roche). Three cycles of freeze and 

thaw were performed; each cycle comprised 2 min of vigorous vortexing, followed 
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by fast freeze with liquid nitrogen and quick thaw to room temperature. The sample 

was centrifuged at 16,000×g for 30 min at 4 °C.  

The 2-D Clean-Up Kit (GE Healthcare) was used to precipitate protein and remove 

inferring contaminants such as detergents, salts, lipids, phenolics and nucleic acids. 

Protein samples were then resuspended in DIGE lysis buffer and the concentrations 

were adjusted to 5 mg/ml, as determined by 2-D Quant Kit (GE Healthcare). The pH 

of the sample was adjusted to pH8.5 using 1M NaOH for optimal CyDye
TM

 labelling. 

6.2.2  DIGE Labelling 

A pooled aliquot of sample A, (+) glucose and sample B, (-) glucose from all batches 

was prepared as an internal standard. The commercial kit CyDye
TM

 (GE Healthcare) 

was used for DIGE labelling. The kit contains three different fluorescent dyes Cy2, 

Cy3 and Cy5. Table 6.1 shows the sample labelling assignments of CyDyes in a 

typical two sample group comparison setup. 

Table 6.1 DIGE labelling Methods 

Gel Number Cy2 Cy3 Cy5 

1 Pooled Standard Sample A 1 Sample B 4 

2 Pooled Standard Sample B 3 Sample A 2 

3 Pooled Standard Sample B 2 Sample A 3 

4 Pooled Standard Sample A 4 Sample B 1 

 

To each CyDye channel, 50 µg of sample was prepared and 1 µl (400 ρmols/µl) of 

appropriate working dye (Cy2/Cy3/Cy5) was added and vortexed to mix. The sample 

was then centrifuged briefly and left on ice for 30 min in the dark. To stop the 

labelling reaction, 1 µl of 10 mM lysine was added to each sample; the sample was 

centrifuged briefly and left on ice for 10 min. The appropriate Cy2, Cy3 and Cy5 

labelled samples were combined into a single tube and vortexed to mix. 
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6.2.3  2-D gel electrophoresis (2-DE) 

First dimension IEF was carried out on 24 cm IPG strips (pH 4-7) following the 

procedure described in section 2.2.4.3. After the two step equilibration described in 

section 2.2.4.4, a modified second dimension separation was carried out as DALT 

precast gels are not compatible with DIGE due to the interference to fluorescent 

scanning from the plastic back. Low-fluorescence Glass Plates, 27 × 21 cm (GE 

Healthcare) were used to assemble manually casted gel. All glass plates were 

thoroughly cleaned with 1% (v/v) decon. The back plates were treated with bind-

silane solution (80% (v/v) EtOH, 18% (v/v) dH2O, 2% (v/v) acetic acid, 0.1% (v/v) 

γ-methacryloxypropyltrimethoxysilane), which sticks the gel to the glass plate, and 

left to dry for a minimum one hour at room temperature. Reference markers were 

applied to the back glass plate and the glass plates were assembled in the gel cast 

container supplied. SDS-PAGE gels were cast overnight with 30% (w/v) acryalmide, 

1.5 M Tris-HCl (pH 8.8), 10% (w/v) SDS, 10% (v/v) TEMED and 10% (w/v) APS. 

The equilibrated IPG strips were then assembled onto cast gels and sealed with 

agarose sealing solution (0.5% (w/v) agarose, trace bromophenol blue). The Ettan 

DALTsix System was setup according to the product handbook using the 

electrophoresis buffer kit supplied. The gel was run at 20°C with an initial wattage of 

3 W for 0.5 hour and 17 W per gel thereafter. 

A preparative gel was separately prepared with 400 µg of pooled sample from all 

sample A and sample B replicates. The preparative gel was run together with 4 

DIGE gels under same running conditions. The preparative gel was matched to other 

DIGE gels after the gel analysis and protein spots were picked from the preparative 

gel for further MS analysis. 
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6.2.4  Post stain-SYPRO
®
 Ruby 

To visualize the proteins present on the preparative gel, SYPRO
®
 Ruby protein gel 

stain (Invitrogen) was used. The gel was fixed in 40% (v/v) MeOH, 10% (v/v) acetic 

acid for one hour and stained with SYPRO
®

 Ruby gel stain overnight. The gel was 

then washed in 10% (v/v) MeOH, 7% (v/v) acetic acid for one hour followed by two 

5 min washes in dH2O prior to gel imaging. 

6.2.5  Gel imaging 

Both the preparative gel and all four DIGE gels (the latter using three channels of 

Cy2, Cy3 and Cy5) were scanned using the Ettan
TM

 DIGE Imager (GE Healthcare) 

following the instructions provided by manufacturer. The gels were scanned at the 

wavelengths which correspond to the dyes used as shown in Table 6.2. 

Table 6.2 The appropriate filter for gel imaging using the Ettan
TM

 DIGE 

Imager 

Dye Excitation Filter Emission Filter 

Cy2 480/30 nm 530/40 nm 

Cy3 540/25 nm 595/25 nm 

Cy5 635/30 nm 680/30 nm 

SYPRO
®
 Ruby 480/30 nm 595/25 nm 

 

To perform the analytical scan, the pixel size was set to 100 µm required by the 

image analysis software DeCyder
TM

. 

6.2.6  Gel image analysis using the DeCyder
TM

 software 

The DeCyder™ image analysis software (GE Healthcare) was used for the analysis 

of DIGE images. The software consists of five modules. (1) Image Loader: Imports 

gel image files into the DeCyder database making them accessible for the other 

modules; (2) DIA (Differential In-gel Analysis): protein spot detection and 

quantitation on a pair of image channels from the same gel; (3) BVA (Biological 

Variation Analysis): matches multiple images from different gels to provide 
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statistical data on differential protein expression levels between multiple groups; (4) 

Batch Processor: automated image detection and matching of multiple gels without 

user intervention; and (5) XML Toolbox: generates user specific data reports. 

Twelve gel images generated from three channels of four DIGE gels were loaded 

onto the DeCyder software and the DIA module was used to calculate the number of 

spots on one gel. All spots in every gel were then detected using the batch processor 

and the output files were then opened in the BVA module. Gel to gel matching of 

spots was carried out in the BVA module using the match detection algorithm 

allowing quantitative comparisons of protein expression across multiple gels. One of 

the Cy2 images representing internal standard was assigned master gel status and all 

other images were then matched to it either by automated Batch Processor or manual 

curation, identifying common protein spots across the gels. The student‟s T-test was 

used to determine whether changes in volume of specific spots were significant 

between samples from different experimental groups. Protein spots which appeared 

in at least 9 out of 12 images with greater than 1.3 fold changes (p<0.05) between (+) 

glucose and (-) glucose samples were reported. The preparative gel was loaded onto 

the DeCyder software and assigned as the pick gel in the BVA module. The protein 

spots of interest were matched onto the pick gel and a pick list was exported by 

DeCyder software. 

6.2.7  Protein identification 

The protein spots of interest were picked from the preparative gel by the Ettan
TM

 

Spot Picker (GE Healthcare). Manual tryptic digestion was carried out on individual 

protein spots as described in section 2.2.5. The LTQ (LC-MS/MS) analysis and 

Mascot searching were performed to acquire protein identifications of each spot 

using the process described in sections 2.2.6 and 2.2.7. 
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6.2.8  Protein function annotation 

The functional annotation of the proteins identified was carried out using ToxoDB 

annotation (http://toxodb.org/toxo/), BlastP (http://www.ncbi.nlm.nih.gov/BLAST/), 

AmiGO (http://amigo.geneontology.org/cgi-bin/amigo/go.cgi) and categorized using 

MIPS FunCat (http://mips.gsf.de/projects/funcat). The details of each process were 

described in section 3.2. 

6.2.9  Metabolic pathway coverage 

Conversion of T. gondii genes to key pathway components was determined using the 

information provided by ToxoDB (http://toxodb.org/toxo/). The enzymes identified 

in this study were mapped onto KEGG pathways using “Color Objects in KEGG 

Pathways” tool provided by KEGG 

(http://www.genome.jp/kegg/tool/color_pathway.html). 

6.2.10  Comparison with Microarray data 

Microarray expression data of +/-glucose samples were acquired from ToxoDB v4.3 

using the query “ToxoDB Queries and Tools/Transcript Expression/ Identify Genes 

by Microarray Evidence/ Identify Genes based on Differential Expression (T.g.)”. 

The expression library “RH (Type I) in High Glucose vs. RH (Type I) with No 

Glucose” was selected and the confidence value of ≥0.9 was used. A list of genes 

showing absolute microarray expression values in the +/-glucose experiment was 

also downloaded from ToxoDB and compared with DIGE results using Microsoft 

Office Excel.  
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6.3  Results 

6.3.1  Differential In-gel Analysis 

Four biologically replicated pairs of T. gondii tachyzoites grown in +/- glucose 

medium were resolved on four DIGE gels. Around 3800 spots were detected on each 

gel by the DIA module of DeCyder software. Using separated images generated 

from different fluorescent dyes on the same gel, the number of differentially 

expressed proteins on a single gel was determined. Table 6.3 shows the number of 

gel spots that have greater than a two-fold change between (+) glucose and (-) 

glucose samples on each of the four DIGE gels. 

Table 6.3 Result of individual gel analysis using DIA module of DeCyder 

 
Up-regulated in  

(-) glucose 

sample 

Down-regulated 

in (-) glucose 

sample 

Overall 

differentially 

expressed 

Spots detected 

on the gel 

Gel 1 55 116 171 3898 

Gel 2 49 20 69 3769 

Gel 3 29 38 67 3890 

Gel 4 28 51 79 3962 

6.3.2  Biological Variation Analysis 

In order to verify the statistical significance of the differentially expressed proteins 

determined by the DIA module across all the gels, the BVA module of DeCyder 

software was used. After matching all the 12 gel images generated from four gels, 

gel spots that appeared in at least 9 images were considered qualified candidates. 

Several thresholds were tested to decide the cut-off value to be used for the 

indication of gene regulation. The higher cut-off value would represent more 

significant changes between two sample groups but would also decrease the number 

of gel spots that can be qualified, while choosing a lower cut-off value would allow 

more gel spots to be analysed but inevitably weaken the significance of changes 

observed. In this study, if a 2.0 fold change is required, only 3 gel spots would be 
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qualified to be regulated and only 9 gel spots would be qualified if the threshold is 

set to a 1.5 fold change. Finally, a threshold of a 1.3 fold change was adopted as it 

allowed more gel spots to be analysed which would provide a clearer trend of 

expression profile changes and at the same time, the fold difference was still 

statistically significant. In total, 27 gel spots showed a greater than 1.3 fold change 

(p<0.05) between (+) glucose and (-) glucose samples, with 10 gel spots up-

regulated in (-) glucose sample and 17 gel spots down-regulated in (-) glucose 

sample. One example of the gel spot is shown in Figure 6.2. 

 

Figure 6.2 Screenshot of the BVA workshop in the Protein Table mode.  

The screen is split into 4 sections. The top left section is the gel image view which 

shows a Cy3 labelled image of (-) glucose sample on the left and the corresponding 

Cy5 labelled image of (+) glucose sample on the right. The Graph View on the top 

right section shows the volume comparison of the selected spot (ID: 3454), which is 

consistently higher in (+) glucose sample than in (-) glucose sample (as measured by 

standardised log abundance) across all gel images matched. The bottom left section 

shows the 3D view of the abundance of the matched protein in the two 
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corresponding gel images selected on the upper left section. The Protein Table on the 

bottom right section shows spot specific information including the master number of 

the spot, the T-test value and the average ratio of spot volume.  

In the 27 gel spots, 58 release 4 genes and 1 alternative gene model were identified 

by MS analysis. In many cases, more than one protein has been identified in a single 

gel spot, an observation seen before in other 2-DE experiments carried out in chapter 

2. The influence of this observation to the data interpretation is discussed in section 

6.4.1 and the list of proteins identified from each gel spot is provided in Appendix 

VIII. Of the 59 genes identified, 36 genes were down-regulated and 21 genes were 

up-regulated in the (-) glucose sample. Interestingly, there were two genes 

(25.m00211, cytochrome c oxidase, putative and 583.m00712, adenylyl cyclase 

associated protein) that have been identified from different gel spots that indicated 

contradictory changes. The possible reasons of this observation are discussed in 

section 6.4.1. 

6.3.3  Functional categorization and metabolic pathway coverage 

Functional categorization of the proteins identified was carried out using the same 

process described in chapter 3 and the result is shown in Figure 6.3. The proteins that 

have been regulated between +/-glucose were predicted to be involved in a variety of 

functional categories. Categories that are highly represented in the results are protein 

fate (folding, modification, destination), such as proteasome and ubiquitin proteins; 

as well as cell rescue, defence and virulence, including a few heat shock proteins. 

Notably, both a microneme protein (MIC1) and a dense granule protein (GRA5) 

were down-regulated over two fold in the (-) glucose sample, which may lead to a 

decreased invasion rate and disturbed intracellular survival and therefore contribute 

to the slower growth kinetics of T. gondii observed in the glucose depleted medium. 
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Figure 6.3 Functional categorization of the differentially expressed proteins. 

Functional assignments of identified official ToxoDB release 4 genes. The prediction 

was first determined by gene description and GO annotation provided on ToxoDB 

and then assigned to appropriate MIPS FunCat categories. Putative functional 

assignment was made to the remainder of identified proteins with information 

acquired from BlastP, Pfam domain alignments, InterPro and literature searches. 

Metabolic pathway coverage of the proteins was determined using the information 

provided on ToxoDB. Only three proteins that are directly involved in glycolysis and 

gluconeogenesis were modulated. Figure 6.4 shows the position of these enzymes in 

relation to other components of the pathway. Enzyme EC 4.2.1.11 (59.m03410, 

enolase, putative) was down-regulated, and enzyme EC 2.7.1.40 (55.m00007, 

pyruvate kinase, putative) was up-regulated in the (-) glucose sample. In pyruvate 

metabolism, enzyme EC 4.1.1.49 (80.m00002, phosphoenolpyruvate carboxykinase 

(PEP carboxykinase), putative) was up-regulated in the (-) glucose sample. 
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Figure 6.4 Metabolic pathway coverage of the differentially expressed 

proteins: Glycolysis and gluconeogenesis. Conversion of T. gondii genes to key 

pathway components was determined using the information provided on ToxoDB. 

The three enzymes identified in this study were mapped onto glycolysis and 

gluconeogenesis pathways using “Color Objects in KEGG Pathways” tool provided 

by KEGG (http://www.genome.jp/kegg/tool/color_pathway.html). The enzyme 

coloured in red is the pathway component that was down-regulated in (-) glucose 

sample and enzymes coloured in green are pathway components that were up-

regulated in (-) glucose sample. 
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Enolase (EC 4.2.1.11) catalyzes a reversible reaction of the dehydration of glycerate-

2-phosphate (glycerate-2P) to form phosphoenolpyruvate (PEP). It has also been 

found to be involved in invasion [364] as well as play some part in the control of 

gene regulation during parasite proliferation and differentiation [365, 366]. The 

precise role of 59.m03410 in the glycolysis and gluconeogenesis requires further 

investigation. It is possible that the down-regulation of enolase may be caused by the 

lack of glucose intake and influenced the invasion rate of the parasites. 

In gluconeogenesis, pyruvate kinase (EC 2.7.1.40) catalyzes the formation of 

pyruvate from PEP, and two molecules of ATP are formed for each molecule of 

glucose. Pyruvate kinase is inactivated by phosphorylation and as it is a control 

enzyme of flux through glycolysis, phosphorylation will down-regulate glycolysis 

[367]. In T. gondii, the unusual allosteric activation by glucose 6-phosphate (G6P) 

reported has suggested the involvement of pyruvate kinase to the parasitism [368, 

369]. 

PEP carboxykinase (EC 4. 1.1.49) is involved in the first stages of gluconeogenesis, 

the synthesis of PEP. After pyruvate converts to oxaloacetate (OAA), PEP 

carboxykinase then catalyzes it into PEP. This reaction is driven by the hydrolysis of 

GTP [367]. During starvation, PEP carboxykinase is up-regulated in response to 

increasing glycogen levels. [367]. In Toxoplasma, EC 4.1.1.49 (80.m00002) is the 

only gene to be predicted in this reaction (there is no evidence for the other enzymes 

in Toxoplasma on ToxoDB). It is possible that the up-regulations of pyruvate kinase 

and PEP carboxykinase have increased the efficiency of gluconeogenesis by up-

regulating the conversion of pyruvate to PEP. 
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In the biosynthesis pathway of serine, enzyme EC 2.6.1.52 (38.m00011, 

phosphoserine aminotransferase) was indicated to be down-regulated, which may be 

an indication that amino acids were used as carbon sources for T. gondii in the 

glucose depleted medium.  

6.3.4  Comparison with microarray data 

Microarray analysis has also been carried out on the +/- glucose samples. In the 7764 

release 4 genes assayed, the expression changes of 4444 release 4 genes between +/-

glucose samples were detected by microarray when the confidence value was set at 

≥0.9 (90% of them are expected to be correct, according to ToxoDB). In total, 208 

genes were up-regulated (> 1.3 fold) and 2405 genes were down-regulated (> 1.3 

fold) in the (-) glucose sample. The microarray expression value was downloaded 

from ToxoDB and compared with the DIGE results. Table 6.4 shows the comparison 

of DIGE results with the differential expression value indicated by microarray data. 

For 59 genes identified by the DIGE experiment, only 28 genes were also detected 

by microarray ≥0.9 confidence data. Eighteen of them showed less than 1.3 fold 

changes between (+) glucose and (-) glucose samples and are termed “modulated” in 

the table, while ten of them showed significant changes (greater than 1.3 fold) 

between the two samples. However, DIGE and microarray have indicated 

contradictory expression changes for 4 of those 10 genes. 
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Table 6.4 The comparison of DIGE and microarray results of +/-glucose sample. 

ID Description 
Average 

Ratio (DIGE) 

Average 

Ratio 

(Microarray) 

Correlates 

38.m00011 phosphoserine aminotransferase, putative -2.43 No data   

46.m00027 DEAD/DEAH box helicase, putative -2.43 No data   

50.m00006 heat shock protein 60 -2.43 No data   

50.m03132 hypothetical protein -2.43 No data   

50.m03261 hypothetical protein -2.43 No data   

57.m01695 hypothetical protein -2.43 -1.44 Yes 

80.m00012 microneme protein 1 (MIC1) -2.43 Modulated No 

44.m02755 
small heat shock protein, putative / bradyzoite-specific protein, 

putative 
-2.29 

Modulated No 

55.m11049 NAC domain containing protein -2.29 Modulated No 

44.m04681 hypothetical protein -2.09 No data   

59.m00008 surface antigen P22 -2.09 No data   

76.m00004 dense granule protein 5 precursor, putative -2.09 No data   

44.m00031 membrane skeletal protein IMC1, putative -1.74 7.29 No 

59.m03518 asparaginyl-tRNA synthetase, putative -1.74 Modulated No 

49.m00008 ribosomal protein L23a, putative -1.61 Modulated No 

583.m00626 hypothetical protein -1.61 Modulated No 

145.m00347 26S protease regulatory subunit 6a, putative -1.53 No data   

25.m00007 actin -1.53 No data   

38.m01067 alanyl-tRNA synthetase, putative -1.53 No data   

50.m03396 eukaryotic translation initiation factor 3 subunit 3, putative -1.43 No data   
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59.m03410 enolase, putative -1.43 Modulated No 

645.m00319 RNA recognition motif domain-containing protein -1.43 No data   

69.m00140 proliferation-associated protein 2G4, putative -1.43 Modulated No 

76.m00016 elongation factor 1-alpha, putative -1.43 Modulated No 

541.m01224 hypothetical protein -1.42 -1.38 Yes 

80.m02245 eukaryotic translation initiation factor 3 delta subunit, putative -1.42 No data   

44.m00051 prohibitin-related -1.41 No data   

50.m00042 GTP-binding nuclear protein RAN/TC4, putative -1.41 Modulated No 

583.m00630 purine nucleoside phosphorylase, putative -1.41 -1.43 Yes 

TgTwinScan_5606 No Significant Blast Hit -1.41 No data   

27.m00003 protein disulfide isomerase, putative -1.39 No data   

583.m00619 60s ribosomal protein L4, putative -1.39 No data   

583.m05569 hypothetical protein -1.36 -1.54 Yes 

42.m05838 hypothetical protein -1.35 No data   

25.m00211 cytochrome c oxidase, putative -1.33 No data   

55.m08199 hypothetical protein -1.33 Modulated No 

583.m00712 adenylyl cyclase associated protein -1.33 No data   

76.m01670 peroxiredoxin family protein/glutaredoxin, putative -1.33 -1.57 Yes 

20.m03912 elongation factor 2, putative 1.31 Modulated No 

38.m01113 heat shock protein, putative 1.31 No data   

55.m04729 heat shock protein, putative 1.31 No data   

55.m05071 26S proteasome non-ATPase regulatory subunit-related 1.31 -1.64 No 

50.m00016 bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) 1.38 1.99 Yes 

65.m00001 nucleoside-triphosphatase I 1.38 No data   

20.m03930 20k cyclophilin 1.39 No data   
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42.m00091 hypothetical protein 1.39 Modulated No 

80.m00002 phosphoenolpyruvate carboxykinase, putative 1.39 No data   

25.m00211 cytochrome c oxidase, putative 1.4 No data   

49.m03152 proteasome subunit alpha type 4, subunit 1.4 No data   

44.m00052 58 kDa phosphoprotein, putative 1.46 Modulated No 

27.m00081 hypothetical protein 1.58 No data   

44.m02723 
gi|22035894|emb|CAD43149.1|; putative PDI-like protein 

[Toxoplasma gondii]; 5e-125 
1.58 No data 

  

46.m00017 ubiquitin-conjugating enzyme, putative 1.58 Modulated No 

583.m00712 adenylyl cyclase associated protein 1.58 No data   

59.m03611 heat shock protein HSLV, putative 1.58 -1.89 No 

113.m00780 conserved hypothetical protein 1.75 Modulated No 

31.m00869 hypothetical protein 1.75 No data   

42.m00027 26S proteasome non-ATPase regulatory subunit 4, putative 1.75 Modulated No 

55.m00007 pyruvate kinase, putative 1.75 Modulated No 

55.m00139 46 kDa FK506-binding nuclear protein, putative 1.75 No data   

76.m01657 hypothetical protein 1.75 -2.30 No 

The first column shows the 59 genes identified by DIGE experiment and the gene descriptions are shown in the second column. The third 

column shows the average ratio of expression changes between +/-glucose samples indicated by DIGE. The fourth column shows the average 

ratio of changes indicated by microarray data where changes less than 1.3 fold are termed modulated. The fifth column shows the correlation 

between the two experiments. Genes coloured in red were down-regulated in (-) glucose sample and genes coloured in green were up-regulated. 

Genes coloured in blue showed contradicted results from different gel spots on DIGE.  
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6.4  Discussion 

In this chapter, DIGE analysis has been used to characterize the changes in T. gondii 

protein expression profiles in glucose depleted medium. The DIA module has shown 

that over 3000 protein spots can be detected on each of the four DIGE gels, which 

highlighted the good resolution of the technique. In the BVA module, the gel 

matching and statistical analysis helped to overcome the limitations introduced by 

both biological variations and handling variations. In total, 27 gel spots showed a 

greater than 1.3 fold change (p<0.05) between (+) glucose and (-) glucose samples 

and 58 release 4 genes and one alternative gene model have been identified. Both the 

functional categorization and metabolic pathway coverage analysis have highlighted 

some interesting groups of proteins that deserve further investigations. As the main 

focus of this chapter was to provide a preliminary test of the application of DIGE in 

quantitative proteomic studies, considerations are required to the following 

limitations observed in this chapter. 

6.4.1  Multiple proteins identified in a single gel spot 

As mentioned before, the directions of protein regulation were not definite due to the 

multiple proteins identified in a single gel spot and caution is required in the data 

interpretation. For example, among all the enzymes described in section 6.3.3, only 

one protein 80.m00002 (PEP carboxykinase) was identified by a single specific gel 

spot. 

In a gel spot from which several proteins can be identified, it is hard to determine 

which protein has dominated the changes detected at the gel spot level. On the other 

hand, a genuine protein expression change of a low abundance protein could be 

masked by a high abundance protein co-migrating that did not have any significant 
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changes. Multiple proteins identified in a single gel spot have also led to the 

observation of proteins that have been identified from different gel spots which 

indicated contradictory expression changes. 

The expression changes of a single protein candidate can be confirmed by using a 

quantitative MS platform that can specifically target signature peptides such as the 

multiple reaction monitoring (MRM) assay [370]. In this way, DIGE can serve as a 

preliminary step that provides a screening of protein expression changes in a high 

throughput fashion, while further MS analysis can be used to unambiguously 

confirm the expression changes of a specific protein. 

6.4.2  Repeatedly identified differentially expressed proteins 

A recent study has investigated the occurrence of individual differentially expressed 

proteins in 2-DE experiments reported in169 articles studying human and mouse or 

rat samples published in the Proteomics journal between 2004 and 2006 [371]. This 

meta-analysis study has revealed that among the most frequently identified 

differentially expressed proteins were enolase, heat shock proteins, proteasome 

subunits and pyruvate kinase [371] which have also been identified in this chapter.  

Since all the commonly identified proteins are highly abundant soluble proteins, it 

raised the concern whether their frequent identification represents a technical artefact, 

limitation of the method or universal cellular sensors that respond to multiple 

different stimuli [371]. Although the full list of 169 articles analysed in this study 

has not been released, it is likely that many of them were carried out using the 

conventional one-sample-one-gel setup. In fact, a quick search has revealed that only 

56 articles published in the Proteomics journal between 2004 and 2006 have used a 

DIGE platform (http://www.gopubmed.org/web/gopubmed/). It is possible that these 
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commonly identified proteins were easy to identify by 2-DE techniques and the 

changes in gel spot volume caused by gel to gel variations were falsely reported as 

biological expression differences.  

However, a higher confidence can be expected during the interpretation of DIGE 

results. One of the technical advantages provided by DIGE is the ability to minimize 

the technical limitations experienced in the conventional 2-DE gel. Firstly, by 

labelling with three fluorescent CyDyes, different samples can be separated on the 

same gel under the same running conditions. Secondly, the variations between 

different biological replicates as well as those introduced during sample handling 

and first dimension IEF are minimized using pooled internal standard and advanced 

statistical analysis. As shown in this chapter, around 70 to 170 gels spots on each 

DIGE gel have shown greater than a two-fold change between (+) glucose and (-) 

glucose samples in the DIA module. However, after matching the four DIGE gels 

together, only 27 gels spots have shown greater than a 1.3 fold change reported by 

the statistical analysis. 

Admittedly, the advantages of the DIGE technique over the conventional one-

sample-one-gel setup cannot bypass the limitations inherited from 2-DE, such as 

resolving very large or small proteins, low abundance proteins, hydrophobic proteins 

and proteins with extreme pIs as discussed in chapter 2. This would inevitably lead 

to an artificial enrichment of the identifications of high abundance, soluble proteins 

as observed in the meta-analysis study [371]. However, with the increased 

confidence provided by DIGE, it is more likely that the identifications of these 

repeatedly identified differentially expressed proteins in this chapter represent true 

universal cellular sensors responding to multiple different stimuli. 
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6.4.3  The comparison of DIGE results with the microarray data 

The comparison of DIGE results with the microarray data has shown a surprisingly 

low number of genes that have been detected by both DIGE and microarray. This 

may reflect the resolution limitations of the DIGE technique compared to microarray. 

However, more interestingly are those genes that showed different expression 

changes indicated by DIGE and microarray.  

There were 18 genes identified that have shown significant changes at protein 

expression level while the mRNA expression level has only been slightly modulated. 

Since the samples were collected after 48 hours of inoculation, it is possible that the 

significant changes of mRNA level in the initial response have returned to the basic 

level while protein expression level remains significantly altered. The similar delay 

of protein expression has been observed in chapter 5 when proteomic data were 

compared with SAGE data.  

There were also four genes that showed contradictory expression changes between 

mRNA and protein levels. The biggest discrepancy has been observed for 

44.m00031, a membrane skeletal protein (IMC1). The DIGE result indicated the 

expression of this protein in the (-) glucose sample was down-regulated 1.74 fold, 

while the mRNA expression was up-regulated 7.29 fold. Membrane skeletons play 

an important role in the maintenance of cell shape and integrity while IMC also plays 

a critical role as an anchor for the glideosome [65, 372]. It has been found that 

IMC1appears to be stable during the early stage of invasion but is degraded rapidly 

during the late stages of the endodyogeny, while the membrane skeleton of the 

daughter parasites is assembled at an earlier stage of cell division which does not 

involve recycling of components of the mother cell network [373]. This may partly 

contribute to the discrepancies observed between mRNA and protein levels where 
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the increase of the mRNA expression is required by the daughter parasites and the 

detected protein expression is affected by the degradation. However, the precise 

effect of the glucose depleted medium to the expression of IMC1 still requires 

further investigation. 

6.4.4   Conclusion and future directions 

In this chapter, the application of the quantitative proteomic approach DIGE in 

understanding protein expression changes of T. gondii tachyzoites in +/- glucose 

medium were investigated and discussed. Several interesting candidates have been 

identified such as enzymes that are involved in the glycolysis and gluconeogenesis 

pathways, as well as proteins involved in host cell invasion and intracellular survival. 

The quantitation accuracy of DIGE has been proved to be comparable to the MS-

based chemical and metabolic isotope labelling quantitation methods such as ICPL 

(Isotope Coded Protein Label), iTRAQ (isobaric tags for relative and absolute 

quantification), and cICAT (cleavable isotope-coded affinity tags) [374-376]. 

Compared to other MS-based quantitation methods that measure the protein 

abundances at the peptide level, DIGE measures the protein abundances at the 

protein level, where information on isoforms-specific expression can be preserved. 

As discussed before, DIGE is able to provide a high throughput large scale 

quantitative screening of protein expression changes. However, considerations are 

also required to the separation limitations inherited from 2-DE, as well as the 

frequently observed phenomena of multiple proteins co-migrating to the same gel 

spot. It should also be noted that, if a spot has been down-regulated to the point of 

disappearing from the gel, it would not be reported but which nevertheless, could 

represent a significant event. Data interpretation of DIGE results should be carried 
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out cautiously and in some cases, further investigations are required to confirm the 

expression changes observed. One possibility of the discrepancies observed between 

the DIGE results and microarray data is the temporal differences between mRNA 

and protein expression. The inclusion of more time-points in the investigation as 

well as the addition of metabolomic data will provide valuable insights into the 

dynamic changes of T. gondii under different conditions. 
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In the one hundred years since the discovery of Toxoplasma gondii, the 

understanding of the biology of the parasite has rapidly progressed along with the 

technical developments. Since the development of expression sequence tags (ESTs) 

[246], the rate of gene discovery has accelerated. With the first output of the T. 

gondii genome sequencing project completed in 2003, followed by the great and 

continuing efforts towards genome annotation consecutively published on ToxoDB 

[108], numerous applications have been made feasible. The focus of T. gondii 

research has gradually moved to the understanding of gene expression and gene 

functions on the genome scale. Equipped with the combination of protein separation 

techniques, the latest technical advances of mass spectrometry and bioinformatics, 

proteomics has rapidly established an important role in post-genomics era 

applications by providing first-hand data on the functional products of gene 

expression. In this study, the applications of proteomic technique in the 

understanding of the proteome of T. gondii have been investigated and discussed.  

In chapter 2, the use of three complementary proteomic separation platforms 

followed by powerful MS/MS analyses have harnessed the advantages provided by 

each technique and ensured the best coverage of the expressed proteome whilst 

utilising limited amounts of sample and labour. The raw MS data have been searched 

against a well designed, up-to-date database that provided comprehensive coverage 

of the predicted T. gondii proteome. After the careful verification of the MS data 

searching results, more than two thousand (2252) unique release 4 genes and 394 

non-redundant alternative gene models and ORFs have been identified from the 

tachyzoite proteome, which represents almost one third (29%) of the entire predicted 

proteome. Since the proteomic data were only collected from the tachyzoite stage, 

the actual proteomic coverage of tachyzoite proteome would be expected to be much 
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higher. Notably, 813 of the 2252 (36%) proteins identified are annotated as 

hypothetical or conserved hypothetical proteins. With the expression evidence 

acquired in this study, the status of these proteins can now be changed to “confirmed” 

proteins. This work has provided the first large scale proteomic profiling of T. gondii 

and greatly increased the knowledge of the T. gondii proteome, increasing the 

percentage of known expressed genes from ~4% in 2002 to 29% of the total genome. 

The acquisition of protein expression evidence for almost one third of the predicted 

T. gondii proteome has set the foundation for a diverse range of applications in the 

post-genomic era.  

In chapter 3, data interpretation has been carried out using multiple bioinformatics 

tools, which provided valuable insights into the potential biological roles of the 

expressed proteins. The SignalP and TMHMM predictions have predicted the 

composition of signal peptide and transmembrane domains in the expressed 

proteome and suggested a good sampling standard has been achieved. Both of the 

subcellular localization predictions and functional categorization have highlighted 

protein candidates with important biological functions, such as proteins involved in 

the host cell invasion process and apicoplast proteins. The confirmation of the 

expression of these proteins will enlighten further detailed studies on chosen proteins 

of interest. The analysis of metabolic pathway coverage has again demonstrated the 

sensitivity of this proteomic study and suggested a potential application of proteomic 

techniques in understanding key metabolism changes, which was further pursued in 

chapter 7. In addition to the bioinformatics interpretation of the standalone proteomic 

data, further efforts have been made to integrate proteomic data with other genomic 

resources in the context of ToxoDB. 
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In chapter 4, T. gondii proteomic data have been stored in the online data repository, 

Tranche, in the form of raw MS data; it has also been mapped on to ToxoDB in the 

form of peptide identifications for the first time. Both databases offer publically 

accessible interfaces for data downloading and examination, which will benefit the 

global research community. The integration of peptide identifications onto the 

ToxoDB genome scaffold has highlighted the incompleteness of the release 4 

genome annotations. While the majority of the peptide evidence supported the 

correct ORFs and the positioning of start and stop codons, peptide identifications 

have confirmed 421 splice sites that are only predicted by alternative gene models. 

Examined with peptide evidence, three types of annotation errors have been 

highlighted using GBrowse, such as missing exons, alternative frame shift or strand 

orientation and the incorrect positioning of the exon-intron boundaries. These 

important observations have led to the discussion of the limitation of the current 

peptide mapping algorithms. More importantly was the limitation experienced with 

the fundamental work flow of conventional bottom-up proteomics which exclusively 

relied upon the correct prediction of gene coding sequences and suffered labour 

intensive processing caused by the successive upgrades of genome annotations. 

Stimulated by the discrepancies observed between the predicted genome annotation 

and actual, expressed peptide identifications, the importance and potential of a new 

genome annotation pipeline was discussed. Despite some technical hurdles discussed 

that require further investigation, this future proteogenomic approach will harness 

the essence of the raw MS data and combined with the information contained within 

the transcriptome, should lead to a near “perfect” genome annotation in the future. 

In chapter 5, another important application of proteomic data was investigated that 

has been made available by the integration of the data with other genomic resources, 
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the comparison of the proteome and transcriptome of Toxoplasma and other 

Apicomplexa parasites. In T. gondii, a weak correlation between mRNA abundance 

and protein abundance has been observed, where more proteins have been detected 

by proteomics for genes with higher mRNA expression levels determined by 

microarray. More interesting were the discrepancies that were revealed by the 

comparison of the proteomic data with various transcriptomic data. The 60 

tachyzoite genes that were exclusively identified by proteomic data with no 

corresponding transcript expression evidence illustrated the sensitivity of proteomic 

approaches. This also provided interesting candidates for understanding the 

relationship between mRNA and protein abundance levels in Toxoplasma. Another 

interesting observation was that the proteomic data correlated better with a SAGE 

library from an earlier time point of sampling, which is likely to reflect the rapid 

changes in gene expression profiles and the temporal differences between mRNA 

and protein levels. The comparisons across four species of Apicomplexa have seen 

similar discrepancies between the proteome and transcriptome. The attempt to find 

common features amongst genes that show discrepancies between transcriptome and 

proteome at the level of orthology has highlighted several interesting observations 

and candidates that require further study. Although the analysis has not reached an 

overall conclusion, the process has highlighted the importance of temporal and 

quantitative data in a better understanding of the correlation between mRNA and 

protein expression. 

In chapter 6, a preliminary case study was carried out to test the applications of the 

quantitative proteomic approach DIGE in understanding protein expression changes 

of T. gondii tachyzoites grown in the presence or absence of glucose. DIGE has 

several technical advantages over the conventional gel based one-sample-one-gel 



Chapter 7-Summary and forward perspectives 

 

184 

 

quantitative approaches. The bioinformatics interpretation of the DIGE result has 

highlighted several interesting candidates such as enzymes that are involved in the 

glycolysis and gluconeogenesis pathways, as well as proteins involved in host cell 

invasion and intracellular survival. The comparison with microarray data has shown 

a surprisingly small number of genes that have been detected by both DIGE and 

microarray, which may reflect the resolution limitations of the DIGE technique. 

More interestingly, discrepancies have been observed for 18 genes which have 

shown significant changes at the protein expression level while the mRNA 

expression level has only been slightly modulated. In addition to that, four genes 

have shown contradictory expression changes between mRNA and protein levels. 

These observations have again highlighted the importance of proteomic data in the 

understanding of the correlation between mRNA and protein expressions. In order to 

better understand the DIGE results, considerations are required to the separation 

limitations inherited from 2-DE and more importantly, the frequently observed 

phenomena of multiple proteins co-migrating to the sample gel spot. Nonetheless, 

DIGE is able to provide a preliminary, high throughput, large scale quantitative 

screening of protein expression changes, while the data verification is readily 

available using the methods discussed in the chapter such as MRM assay. 

In this study, various proteomic techniques have been used to characterize the 

proteome of the T. gondii tachyzoite. The results have expanded the knowledge of 

diverse disciplines of T. gondii biology, such as the composition of the expressed 

proteome and differential expressed proteins in glucose depleted medium. The 

proteomic data have shown important applications in the validation of the existing 

gene models and more importantly, the integration into proteogenomic pipelines to 

improve future genome annotations. The discrepancies observed between proteomic 
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and transcriptomic data have highlighted the importance of gene expression 

regulation following the central dogma of Gene-Transcription-Translation and 

enlightened further investigations.  

Proteomic analysis of T. gondii can be expanded in several directions in the future. 

Firstly, with the current knowledge, little is known about the stage conversion of T. 

gondii from different life cycle forms, the proteomic profiling of more life stages of 

T. gondii would provide valuable insights into the complex life-cycle of the parasite 

and the stage differentiation.  

Secondly, more organelle specific or condition specific sub-proteomic studies would 

benefit the understanding of T. gondii virulence and disease pathogenesis in more 

detail. For example, the proteomic characterization of proteins involved in host cell 

invasion, subcellular localizations, proteins targeting to apicoplast, as well as the 

alteration of the protein expression profile in responds to various environmental 

changes.  

Thirdly, the recent attention of post-translational modifications has already identified 

some important candidates, such as the glycosylated proteins that are involved in 

host-cell interactions [259], SUMOylated proteins that play a putative role in host 

cell invasion and cyst genesis [258]. Further investigations can be carried out in the 

characterization of important post-translational modifications using techniques such 

as 2-DE or affinity chromatography.  

In addition to that, comparative proteomic studies can be designed in Apicomplexa to 

investigate subjects such as host specificities and the regulation of gene expressions 

in different life cycle stages. Together, this will lead to a better understanding of 

Apicomplexa biology. 
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Last but not least, the application of proteogenomics investigated in this study has 

already shown promising prospects in refining genome annotation, the further 

developments in this field could result in a closer involvement of proteomic data in 

genome annotation and fundamentally change the position of proteomic data in the 

future genome annotation pipelines. 

To harness the technical advantages provided by the latest development of 

proteomics, it is important to examine temporal changes using the quantitative 

proteomic approaches. This will in turn benefit the integration of proteomic data 

with other large scale expression data such as transcriptomics and metabolomics. As 

discussed in chapters 5 and 6, the expression profiles provided by transcriptomics 

and proteomics have dramatically increased the knowledge of global gene expression 

and gene function, the ease and pace of discovery and enabled more complex global 

analysis. Together, they have formed a milestone for a comprehensive understanding 

of biological processes. 

In the past, guided by the hypothesis-driven experimentation, every major technique 

and conceptual invention has promoted the understanding of biology to a new level  

[377], such as the invention of the microscope, modern genetics discovered by 

Mendel and the discovery of the genetic code which is still rapidly powering the 

developments of modern biology. Various omics techniques such as transcriptomics, 

proteomics, interactomics and metabolomics have already made a giant step towards 

the understanding of all the basic biological process. In order to make full use of 

these expression data, the ultimate aim would be to use an integrative approach that 

can utilize multiple data sources such as literature, public databases, and high 

throughput experimental data. These data, incorporated with mathematical modelling 

and computer simulation tools, will provide a dynamic view of systems biology 
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within temporal, spatial and physiological contexts, which will in turn extend the 

future experimentation by generating novel hypotheses for further experiments. 

The detailed data standards and modelling algorithms in systems biology are beyond 

the scope of the current study. However, a well designed algorithm will undoubtedly 

accelerate the knowledge accumulation process towards the understanding of the 

entire system. To take an example from ancient Chinese philosophy, a book called “I 

Ching”, written in the 9
th

 century BC, has described a system in which everything 

can be divided into two complementary parts (yin-yang). Yin and yang are further 

divided into 64 different hexagrams; each represents a description of a state or 

process. The hexagrams are connected by an algorithm where they either rule or are 

ruled (at various levels) by each other. The modern equivalent term to the hexagram 

would be “variable”; following the algorithm developed in “I Ching”, the correct 

input of a collection of known variables will lead to a prediction of the changes to 

the unknown variables. The philosophy developed in “I Ching” has influenced the 

development of various aspects of ancient Chinese science, such as traditional 

medicine. 

The process of knowledge accumulation towards an integrative understanding of 

every subject system can be summarized in a three-step cycle: macrocosmic-

microcosmic-macrocosmic. In the first macrocosmic step, there are too many 

variables that are unknown, everything is observed in a crude way. That is when “I 

Ching” was created to organize all the seemingly unrelated observations and guide 

the exploration. In the second step, when enough evidence and theories have been 

discovered, they are further divided into diverse disciplines, where everything can be 

studied into more detail microcosmically. In the third step, when sufficient 
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knowledge has been acquired, the subject system can be studied at a macrocosmic 

view again, only to a much higher integrative level. 

Through each cycle of the three steps, the knowledge accumulated will drive the 

development of the new cycle. In the post genomic era, it can be foreseen that the 

various omics techniques will rapidly fulfil the data requirements for the second 

microcosmic step in the current cycle. Followed by the macrocosmic step of 

integrative systems biology, this will soon uncover the mysteries of the majority of 

biological processes, which will bring the understanding of biology to a new level.  

Sharing the excitements of the post genomic era in biology with the latest 

development of physics, some potential limitations can be predicted for the 

integrative systems biology, through which perspectives can be speculated that will 

drive the development of the biology in the new cycle. In his book of “A Brief 

History of Time”, Stephen Hawking has reasoned that: “Even if we do find a 

complete set of basic laws, there will still be in the years ahead the intellectually 

challenging task of developing better approximation methods, so that we can make 

useful predictions of the probable outcomes in complicated and realistic situations” 

[378]. In physics, the limitations come from the uncertainty principle of quantum 

mechanics and the difficulty of modelling all theories to equations; whilst in biology, 

the organic world is much more difficult and complex to predict, with 

indeterminacies such as genetic mutations and stochastic behaviour.  

The proteomic study of T. gondii has emerged to be an important component of the 

rapidly developing integrative systems biology, fascinated by the power and 

applications of proteomics and other omics techniques in the pursuit of the 

comprehensive understanding of all basic biological process, I would like to end my 
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thesis quoting Stephen Hawking‟s prospect in “A Brief History of Time”: “A 

complete, consistent, unified theory is only the first step: our goal is a complete 

understanding of the events around us, and of our own existence” [378].  
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