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Abstract

We consider revenue maximization problem in banner advertisements under two fun-

damental concepts: Envy-freeness and truthfulness. Envy-freeness captures fairness

requirement among buyers while truthfulness gives buyers the incentive to announce

truthful private bids. A extension of envy-freeness named competitive equilibrium, which

requires both envy-freeness and market clearance conditions, is also investigated. For

truthfulness also called incentive compatible, we adapt Bayesian settings, where each

buyer’s private value is drawn independently from publicly known distributions. There-

fore, the truthfulness we adopt is Bayesian incentive compatible mechanisms.

Most of our results are positive. We study various settings of revenue maximizing

problem e.g. competitive equilibrium and envy-free solution in relaxed demand, sharp

demand and consecutive demand case; Bayesian incentive compatible mechanism in

relaxed demand, sharp demand, budget constraints and consecutive demand cases. Our

approach allows us to argue that these simple mechanisms give optimal or approximate-

optimal revenue guarantee in a very robust manner.
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Chapter 1

Introduction

1.1 Introduction

Arguably, online advertising has been the most successful new business enabled through

the World Wide Web. At the same time as it has grown to a modern media realm and

as it has evidenced the feasibility of Internet monetization, it has also been relied on as a

major, and sometimes the primary, source of financing to fuel the creations of thousands

of new Internet services. According to the Internet Advertising Bureau [47], the online

ad annual revenues hit $31 Billion in 2011. Moreover, the internet advertising revenues

of the first half year of 2012 continued to reach a new height of $17 billion, representing

a 14 percent increase year-on-year [48].

How to price the online advertisement has been a central problem in the important

industry. The search engine based advertising model, the sponsored search auction, has

been extensively studied in the literatures since the pioneer work of Edelman, Ostrovsky,

and Schwarz [28], as well as Varian [57], in the context of position auction, especially

on the generalized second price auction (GSP). Here each position for placing an ad is

associated with a quality value representing the prominence of the position for search

engine users to be attracted to click on it. On the other hand, each advertiser is as-

sociated with a value related to its potential gains from the attracted users because of

its profitability and possibly the attractiveness of its ad design. The product of the two

factors is used to decide on the placement and to price the ads by the GSP protocol

and created a success for the future designers of the Internet advertisement model to

emulate.

It is difficult to fully carry over the success of the sponsored search model to many

other settings of advertisement. One problem is caused by the use of banner ads which

may require more than one slot which was used by a single ad in the text mode. How

to allocate and price ads of different sizes efficiently to match up to the success of the

GSP protocol in placing the text ads in the sponsored search model is an important

challenge in the new form of advertisement. In banner advertisement other display-

related advertisement mode, a banner is often priced under the CPM (cost per thousand

impression) scheme based on bringing up the ads to webpage users impressions. Their

1
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market share has been steadily increasing. In 2011, 35 percent online advertisement

income came from the display-related advertising sector [47].

Such Internet banner advertising can involve various elements of mixed media, now

ranging from texts and graphics to streaming audios and videos. Hence, demand is a

practical consideration. Advertisers are granted options to choose the proper way to

display their own ads, which may occupy more than one slot for the traditional text ads,

which can be formulated as sharp/consecutive models. Subsequently, the Web designer

has to address the problem of how to display ads with distinct sizes and as a market

maker, to devise an allocation and pricing rule to increase her/his own revenue. There

may be different values (per unit slot) associated with those different types and sizes of

ads.

Another motivation of our study of banner ads on matching market comes from TV

advertising where inventories of a commercial break are usually divided into slots of sev-

eral seconds each, and slots have various qualities measuring their expected number of

viewers and corresponding attraction. We may have a longer ad of 3 slots or a short one

with simply one slot. Advancing into multiple choices of multi-slot ads from every ad-

vertiser, it has made obsolete the nice structures developed in the GSP auction protocol.

In banner (or newspaper) advertising, advertisers may request different sizes or areas for

their displayed ads, which may be decomposed into a number of base units. Some ad-

vertisers may only care about how many areas of ads displayed without concerning any

other things, which can be formulated as sharp demand models. The relaxed demand

model can be directly used to classic text ads in sponsored search advertisement.

In this thesis we develop new algorithmic insight to design a methodology for efficient

pricing mechanisms to achieve social optimality and to extract optimum revenue.

1.1.1 Our Modeling Approach

We have a set of buyers (advertisers) and a set of items to be sold (the ad slots on a

web page). We address the challenge of computing prices that satisfy certain desirable

properties. Next we describe the elements of the model in more details.

• Items. Our model considers the geometric organization of the ad slots, which

commonly has the slots arranged in some sequence (typically, from top to bottom

in the right-hand side of a web page). The slots are of variable quality. In the

study of sponsored search auctions, a standard assumption is that the quality

(corresponding to click-through rate) is highest at the beginning of the sequence

and then monotonically decreases. Here we consider a generalization where the

quality may go down and up, subject to a limit on the total number of local maxima

(which we call peaks), corresponding to focal points on the web page. As we will

show later in some pricing model, without this limit the revenue maximization

problem is NP-hard.
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• Buyers. A buyer (advertiser) may want to purchase multiple slots, so as to display

a larger ad. We will consider various case of demand models. Thus, consider each

buyer i has a fixed demand di, which is the number of slots she needs for her ad.

Three important aspects of this are

– relaxed multi-unit demand, where buyer i can buy the number of slots up to

di

– sharp multi-unit demand, referring to the fact that buyer i should be allocated

di items, or none at all; there is no point in allocating any fewer

– consecutive demand for the allocated items, where buyer i is allocated di

consecutive slots or nothing.

These constraints give rise to new and interesting combinatorial pricing problems.

• Valuations. We assume that each buyer i has a parameter vi representing the

value she assigns to a slot of unit quality. Valuations for multiple slots are additive,

so that a buyer with demand di would value a block or discrete sequence of di

slots to be their total quality, multiplied by vi. This valuation model has been

considered by Edelman et al. [28] and Varian [57] in their seminal work for keywords

advertising.

This scenario of sharp and consecutive demand captures some similarity but is still

quite different from single-minded buyers (i.e., each one desires a fixed combination of

items).

Pricing mechanisms. Given the valuations and demands from the buyers, the

market maker decides on a price vector for all slots and an allocation of slots to buyers,

as an output of the market. The question is one of which output the market maker

should choose to achieve certain objectives. We consider three approaches:

• Truthful mechanism whereby the buyers report their demands and values to

the market maker; then prices are set in such a way as to ensure that the buyers

have the incentive to report their true valuations. We give a revenue-maximizing

approach (i.e., maximizing the total price paid), within this framework.

• Envy-free solution whereby we prescribe certain constraints on the prices so as

to guarantee each buyer is envy-free (fairness), as explained below.

• Competitive equilibrium whereby we prescribe certain constraints on the prices

so as to guarantee certain well-known notions of fairness and efficiency, as explained

in Chapter 2.

The mechanisms we exhibit are computationally efficient.

Regarding the design of truthful mechanisms, the point here is that the value vi

of each buyer i is initially private information of that buyer. Truthful market design

relies on the general revelation principle [50] to simplify the search for mechanisms with
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desirable properties, such as one that brings in the maximum revenue. Therefore, it is

natural for us to consider market mechanisms that bring in the optimum revenue, while

ensuring the participants’ incentives to reveal the truth about their private values. Some

of the work is in a Bayesian setting, which assumes some prior knowledge of a buyer’s

value, represented by a probability distribution over her possible values. We exhibit a

Bayesian Incentive Compatible mechanism that always extracts the maximal revenue in

expectation.

Note that the private information about the value for each advertiser creates an

asymmetry among the participants and the market maker. Truthful market design

relies on the general revelation principle [50] to simplify the search for mechanisms

with desirable properties, such as one that brings in the maximum revenue. Therefore,

assuming some prior knowledge about advertisers’ valuations, in most of the cases, we

propose a Bayesian Incentive Compatible mechanism that always extracts the maximal

revenue in expectation.

While truthful mechanisms rule out the possibility of buyers’ deviations, it might

produce the price discrimination phenomenon that causes discontent among users and

lures the arbitrage behavior. If we insist on truthful markets, the unfair auction is

the only possibility [20, 33]. Market equilibrium (Competitive equilibrium) offers an

alternative which offers a sense of fairness to all customers in terms of that no one would

prefer to shift to another allocation under the current price vector. Further, all goods are

sold, and otherwise priced at zero (market clearance) which none would improve their

utility taking those in. In fact, all market participants have maximized their utilities

with their allocation under the current price vector.

As one of the central solution concepts in economics, competitive equilibrium has

been studied and applied in a variety of domains [49]. In particular, we show that, when

pricing with sharp/consecutive demand buyers, competitive equilibrium may not exist;

even if an equilibrium is guaranteed to exist, a maximum equilibrium (in which each

price is as high as it can be in any solution) may not exist. Thus, we design an algorithm

that determines the existence of an equilibrium, and computes a revenue maximizing

one if it does.

While (revenue maximizing) competitive equilibrium has a number of nice economic

properties and has been recognized as an elegant tool for the analysis of competitive

markets, its possible non-existence largely ruins its applicability. Such non-existence is

a result of the market clearance condition required in the equilibrium (i.e., unallocated

items have to be priced at zero). In most applications, however, especially in advertising

markets, market makers are able to manage the amount of supplies. For instance, in TV

advertising, publishers can ‘freely’ adjust the length of a commercial break. Therefore,

the market clearance condition becomes arguably unnecessary in those applications.

This motivates the study of envy-free pricing (here envy-free pricing we mean relaxed or

sharp or consecutive or bundle envy-free pricing [32]) which only requires the fairness

condition in the competitive equilibrium, where no buyer can get a larger utility from



Chapter 1. Introduction 5

any other allocation for the given prices. In contrast with competitive equilibrium,

an envy-free solution always exists (a trivial one is obtained by setting all prices to

∞). Once again, taking the interests of both sides of the market into account, revenue

maximizing envy-free pricing is a natural solution concept that can be applied in those

marketplaces.

The study of algorithmic computation of revenue maximizing envy-free pricing was

initiated by Guruswami et al. [39], where the authors considered two special settings with

unit demand buyers and single-minded buyers and showed that a revenue maximizing

envy-free pricing is NP-hard to compute. Because envy-free pricing has applications

in various settings and efficient computation is a critical condition for its applicability,

there is a surge of studies on its computational issues since the pioneering work of [39],

mainly focusing on approximation solutions and special cases that admit polynomial

time algorithms, e.g., [4, 5, 8, 9, 14, 18, 29, 34, 37, 40].

The NP-hardness result of [39] for unit demand buyers implies that we cannot hope

for a polynomial time algorithm for general vij valuations in the multi-unit demand

setting, even for the very special case when one has positive values for at most three

items [14]. However, it does not rule out positive computational results for special, but

important, cases of multi-unit demand. For viqj valuations with multi-unit demand,

where the hardness reductions of [14, 39] does not apply.

Despite the recent surge in the studies of algorithmic pricing, multi-unit demand

models have not received much attention. Most previous work has focused on two

simple special settings: unit demand and single-minded buyers, but arguably multi-unit

demand has much more applicability. While the relaxed demand model shares similar

properties to unit demand (e.g., existence, solution structure, and computation), the

sharp/consecutive demand model has a number of features that unit demand does not

possess.

• Existence of equilibrium. In unit or relaxed demand (viqj) case, the competitive

equilibrium always exists, moreover, the maximum and minimum equilibrium al-

ways exists. As discussed above, a competitive equilibrium may not exist in the

sharp/consecutive demand model. Further, even if a solutions exist, the solution

space may not form a distributive lattice.

• Over-priced items. In unit-demand, the price pj of any item j is always at most the

value vij of the corresponding winner i. This no longer holds for sharp multi-unit

demand. Specifically, even if pj > vij , buyer i may still want to get j since his net

profit from other items may compensate his loss from item j (see Example 2.2.4)1.

This property enlarges the solution space and adds an extra challenge to finding

a revenue maximizing solution.

1This phenomenon does occur in our real life. For example, in most travel packages offered by travel
agencies, they could lose money for some specific programs; but their overall net profit could always be
positive.
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Our main results in this thesis are summarized in the following table (Table 1.1), where

RM denotes revenue maximization.

RM Relaxed Demand Sharp Demand Consecutive Demand With Budget

NP-hard

Bayesian
P solved P solved

(arbitrary peak)
2-Approx

Auction P solved

(constant peak)

NP-hard

Competitive
P solved P solved

(arbitrary peak)
Unkown

Equilibrium P solved

(constant peak)

NP-hard NP-hard

Envy-free
P solved

(arbitrary demand) (same qualities)
Unkown

Solution P solved P solved

(constant demand) (same demand)

Table 1.1: Summary of main results of this thesis

1.2 Organization

This thesis is organized as follows. We begin in Chapter 2 with a detailed description

of our banner ads model and the related solution concepts. In Chapter 3, we study

the problem in Bayesian model and provide a Bayesian Incentive Compatible Auction

with optimal expected revenue for the special case of the single peak in quality values of

advertisement positions. Then we extend it to the general case of multiple peaks/valleys

in the same section, for multiple peaks the problem is shown to be NP-hard. Next, in

Chapter 4, we turn to the prior-free model and propose an algorithm to compute the

competitive equilibrium with maximum revenue. Finally, we present results related to

various envy-free concepts in Chapter 5. The simulation is presented in Section 6.

1.3 Related Works

This thesis merges three work [17, 23? ]. A study on search based text ads and display

based multi-media ads was conducted by Li and Li [46] to explore their profitabilities.

Hunter discussed experimental results identifying factors that affect the prices of banner

ads [56], for three types of ad size: 1 slot (mini), 2 slots (standard) and 6 lots (hi-rise).

The theoretical study of position auction (of 1 slot) under the generalized second price

auction was initiated in [28, 57]. There has been a series of studies of position auctions in

deterministic settings [45]. Our consideration of position auctions in the Bayesian setting

fits in the general one dimensional auction design framework. Our study considers
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continuous distributions on buyers’ values. For discrete distribution, [10] presents an

optimal mechanism for budget constrained buyers without demand constraints in multi-

parameter settings and very recently they also give a general reduction from revenue

to welfare maximization in [11]; for buyers with both budget constraints and demand

constraints, 2-approximate mechanisms [1] and 4-approximate mechanisms [6] exist in

the literature.

There are extensive studies on multi-unit demand in economics, see, e.g., [3, 12, 30].

While our study for relaxed demand model shares the similar property of unit demand

model where it is well known that the set of competitive equilibrium prices is non-empty

and forms a distributive lattice [38, 55]. This immediately implies the existence of an

equilibrium with maximum possible prices; hence, revenue is maximized. Demange,

Gale, and Sotomayor [21] proposed a combinatorial dynamics which always converges

to a revenue maximizing (or minimizing) equilibrium for unit demand. However, Our

study on sharp/consecutive demand buyers exhibit different structure property as unit

demand model.

From an algorithmic point of view, the problem of revenue maximization in envy-free

pricing was initiated by Guruswami et al. [39], who showed that computing an optimal

envy-free pricing is APX-hard for unit-demand bidders and gave an O(log n) approx-

imation algorithm. Briest [8] showed that given appropriate complexity assumptions,

the unit-demand envy-free pricing problem in general cannot be approximated within

O(logε n) for some ε > 0. Hartline and Yan [41] characterized optimal envy-free pricing

for unit-demand and showed its connection to mechanism design. Recently, Devanur,

Ha and Hartline generalize and characterize the envy-free benchmark from [41] to set-

tings with budgets and characterize the optimal envy-free outcomes for both welfare

and revenue, and give prior-free mechanisms that approximate these benchmarks [27].

For the multi-unit demand setting, Chen et al. [18] gave an O(logD) approximation

algorithm when there is a metric space behind all items, where D is the maximum de-

mand, and Briest [8] showed that the problem is hard to approximate within a ratio of

O(nε) for some ε, unless NP ⊆
⋂
ε>0BPTIME(2n

ε
). It should be noticed that recent

work by M, Feldman et al studies envy-free revenue maximization problem with budget

but without demand constraints and present a 2-approximate mechanism for envy-free

pricing problem [32]. Another stream of research is on single-minded bidders, including,

for example, [4, 5, 9, 19, 29, 39]. To the best of our knowledge, we are the first to study

algorithmic computation of multi-unit demand.

Several works in the literature also made an effort to model online advertising [7, 31,

53]. However their focus on the design of expressive auctions and clearing algorithms

is substantially different from this work. In their work, the advertisers’ consecutive

demand are not taken into consideration. Deng et al., had a study on the problem for

the VCG protocol, and various GSP type protocols, together with a simulated study [25].

However, it only works in the special case of the sponsored search model where the slots

are usually ranked from top to bottom in a decreasing order of their quality scores.
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It should be noticed that, besides the research on banner advertisements, we also

have some work [24] on Bayesian double auctions, which are motivated from mechanism-

s of groupon. In [24], optimal mechanisms or constant approximate mechanisms are

presented in various settings, e.g. single dimension versus multi dimension, continuous

distribution versus discrete distribution, supply limit versus demand limit. Double auc-

tion paradigm can be viewed as an extension of our Bayesian setting work in Chapter

3 from single side bidding market to two sides bidding market. The double auction

design problem becomes more complicated compared to single side auction since the

market maker acts as the middle man to bring buyers and sellers together. A guide to

the literature in micro-economics on this topic can be found in [35]. The profit maxi-

mization problem for the single buyer/single seller setting has been studied by Myerson

and Satterthwaite [52]. Our optimal double auction is a direct extension of their work

and, to our best knowledge, fills a clear gap in the economic theory of double auctions.

Deshmukh et al. [26], studied the revenue maximization problem for double auctions

when the auctioneer has no prior knowledge about bids. Their prior-free model is es-

sentially different from ours. More auction mechanism design problems were studied by

many researchers in recent years, but as far as we know, not in the context of optimal

double auction design in the Bayesian setting. The most related one is by Jain and

Wilkens [43], where they studied the market intermediation problem in a setting with a

single unit-demand buyer and a group of sellers. They gave several constant approximate

mechanism with various buyer behaviour assumptions. While our setting assumes the

existence of a monopoly platform, Rochet and Tirole [54] and Armstrong [2] introduced

several different models for two-sided markets and studied platform competition.



Chapter 2

Preliminaries

In our model, a banner advertisement instance consists of n advertisers andm advertising

slots (with same size) that are lined up in a line. Each slot is characterized by a number

qj which can be viewed as the quality or desirability of the slot. Each advertiser (or

buyer) i wants to display his own ad on the webpage, which may occupy slots in three

different demand types:

• relaxed demand where buyers can occupy the number of slots up to di;

• sharp demand where buyers occupy di not necessarily consecutive slots or nothing;

• consecutive demand where buyers occupy consecutive di slots or nothing.

In addition, each buyer has a private number vi representing her valuation and thus,

the ith buyer’s value for item j is vij = viqj . In other words, the valuation matrix for n

buyers and m items is the outer product of the vectors v = (vi)i and q = (qj)j . We use

slot and item interchangeably if there is no confusion. Let K be the number of distinct

values in the set {v1, . . . , vn}. Let A1, . . . , AK be a partition of all buyers where each

Ak, k = 1, 2, . . . ,K, contains the set of buyers that have the kth largest value.

The vector of all the buyers’ values is denoted by v or sometimes (vi; v−i) where

v−i is the joint bids of all bidders other than i. Let V denote the state space or the

distribution of v if there is no confusion. We represent a feasible assignment by a vector

x = (xij)i,j , where xij ∈ {0, 1} is simply the indicator variable where xij = 1 denotes

item j is assigned to buyer i. Thus we have
∑

i xij ≤ 1 for every item j. Given a fixed

assignment x, we use ti to denote the (expected) total quality of items that buyer i is

assigned, precisely, ti =
∑

j qjxij . In general, when x is a function of buyers’ bids v, we

define ti to be a function of v such that ti(v) =
∑

j qjxij(v).

Throughout this thesis, we will often say that slot j is assigned to a buyer set B to

denote that j is assigned to some buyer in B. We will call the set of all slots assigned

to B the allocation to B. In addition, a buyer will be called a winner if he succeeds

in displaying his ad and a loser otherwise. We use the standard notation [s] to denote

the set of integers from 1 to s, i.e. [s] = {1, 2, . . . , s}. We sometimes use
∑

i instead

9
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of
∑

i∈[n] to denote the summation over all buyers and
∑

j instead of
∑

j∈[m] for items,

and the terms Ev and Ev−i are short for Ev∈V and Ev−i∈V−i .

We also introduce a special case of the revenue maximizing problem of banner ad-

vertisement. In that case, the qualities of items are single peaked structured illustrated

in Figure 2.1. That is, there exists a peak slot k such that for any slot j < k on the left

side of k, qj ≥ qj−1 and for any slot j > k on the right side of k, qj ≥ qj+1. In Bayesian

settings, we will study this single peak case in Section 3.5 and show how to handle the

general case in Section 3.6. Similarly, we say the qualities of items with constant peak

if the number of peaks formed by qualities of items is bounded by a constant.

5

3
2

4

1

Slots

Qualities

Peak

   

Figure 2.1: A case with qualities {1,4,5,3,2}

2.1 Bayesian Mechanism Design

In Chapter 3, we consider the revenue maximization problem of the above banner ad-

vertisement instances in the context of mechanism design. Mechanism design studies

algorithmic procedures where the input data is not always objective but reported from

selfish agents. Following the work of [51], we consider this problem in a Bayesian setting

where the seller has a prior knowledge about the buyers’ distribution of valuations. This

has been shown to be a standard assumption if one wants to optimize the auctioneer’s

revenue. The auctioneer holds the set of items that can be sold, but does not know the

(true) valuations of these items for different buyers. Each buyer is a selfish entity, that

privately knows her own valuation for each item (which constitutes its type). Obviously,

a strategic buyer may choose to misreport her valuations, which are private, in order

to increase her utility, i.e. the valuation of assigned item minus her payment. Since we

only consider the auction setting, we may use auction and mechanism interchangeably

when there is no ambiguity.
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We consider direct-revelation mechanisms: each buyer reports her valuation, and the

reported valuation needs to be the same as the buyer’s true valuation. The mechanism

then computes a feasible assignment and charges the players (i.e., buyers) the payment

for the items they have been assigned. An auction M thus consists of a tuple (X,p),

where X specifies the allocation of items and p = (pi)i specifies the buyers’ payments

where both X and p are functions of the reported valuations v. Thus, the expected

revenue of the mechanism is Rev(M) = Ev [
∑

i pi(v)] where Ev denotes the expectation

with respect to components of v sampled from their respective distributions. From

the viewpoint of a single buyer i with private value vi, her expected utility is given by

Ev−i [viti(v)− pi(v)]. The goal of an auctioneer is to maximize her expected revenue;

a buyer i is however only interested in maximizing her own expected utility, and may

declare a false value if this could increase her utility. The mechanism therefore needs

to incentivize the buyers/players to truthfully reveal their values. This is made precise

using the notion of Bayesian Incentive Compatibility.

Definition 2.1.1 (Bayesian Incentive Compatible). A mechanism M is called Bayesian

Incentive Compatible (BIC) iff the following inequalities hold for all i, vi, v
′
i.

Ev−i [viti(v)− pi(v)] ≥ Ev−i
[
viti(v

′
i; v−i)− pi(v′i; v−i)

]
(2.1)

Besides, we say M is Incentive Compatible if M satisfies a stronger condition that

viti(v)− pi(v) ≥ viti(v′i; v−i)− pi(v′i; v−i), for all v, i, v′i,

To put it in words, in a BIC mechanism, no player can improve her expected utility

(expectation taken over other players’ bids) by misreporting her value. An IC mechanism

satisfies the stronger requirement that no matter what the other players declare, no

player has incentives to deviate.

In the Bayesian setting, we also assume all buyers’ values are distributed indepen-

dently according to publicly known bounded distributions and also the valuations have

known upper and lower bounds, i.e. vi ∈ [vi, vi] and v ∈ V =
∏
i[vi, vi]. The distri-

bution of each buyer is represented by a Cumulative Distribution Function (CDF) Fi

and a Probability Density Function (PDF) fi. In addition, we assume that the concave

closure or convex closure or integration of those functions can be computed efficiently.

We assume the buyers are self-interested and rational, thus, each buyer’s expected

utility is non negative.

Definition 2.1 (Individual Rationality). A mechanism M is called ex-interim Individual

Rational (IR) iff the following inequalities hold for all i, vi.

Ev−i [viti(v)− pi(v)] ≥ 0 (2.2)

If viti(v)− pi(v) ≥ 0 for all v, i, we say M is ex-post Individual Rational.

Obviously, an ex-post Individual Rational mechanism must be ex-interim Individual

Rational. The term “ex-interim” here indicates the non-negativity of each agent’s utility
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holds for every possible valuation of this agent, averaged over the possible valuations of

the other agents. Ex-post IR holds if and only if the utility of each player cannot be

negative for any bidding profile v.

2.2 Competitive Equilibrium and Envy-freeness

In Chapters 4 and 5, we study the revenue maximizing competitive equilibrium and envy-

free solution in the full information setting and Bayesian setting respectively. Various

concepts of envy-free solution and competitive equilibrium will be investigated. When

studying competitive equilibrium, we can make item-wise pricing, that is setting a price

for each advertising slot. When studying envy-freeness, we can do both item pricing and

bundle pricing (only the bundle of the items is priced). More precisely, an outcome of

the market is a tuple (X,p), where

• X = (X1, . . . , Xn) is an allocation vector, where Xi is the set of items that i wins.

If Xi 6= ∅, we say i is a winner and have Xi is a set with no more than di items or

exactly di items, which depends on the concept we’ll investigate. Precisely, if the

winner is relaxed demand, Xi is a set of items containing no more than di items; if

the winner is sharp demand, then Xi is a set of items containing exactly di items;

otherwise, if the winner is consecutive demand, Xi is a set of items containing

consecutive di items. If Xi = ∅, i does not win any items and we say i is a loser.

Further, since every item has unit supply, we require Xi ∩Xi′ = ∅ for any i 6= i′.

• p = (p1, . . . , pm) ≥ 0 is a price vector, where pj is the price charged for item j, we

also use pi denote the payment of buyer i if there is no confusion;

Given an output (X,p), recall vij = viqj , let ui(X,p) denote the utility of i. That

is, if Xi 6= ∅, then ui(X,p) =
∑
j∈Xi

(vij − pj); if Xi = ∅, then ui(X,p) = 0.

As mentioned above, in addition to the efficiency (market clearance) condition where

every unsold item is priced at zero, the competitive equilibrium also provide a “free

market” where buyers always pick their favorite bundles. This property is also called

envy-freeness or fairness in the literature of Economics and Computer Science. We

present various concepts of envy-freeness as follows. First, we consider relaxed envy-

freeness concept, which means the buyer would not envy the bundle of items up to his

demand.

Definition 2.2.1 (Relaxed Envy-free Pricing). We say a tuple (X,p) is an relaxed

envy-free pricing solution if every buyer is relaxed envy-free, where a buyer i is relaxed

envy-free if the following conditions are satisfied:

• if Xi 6= ∅, then (i) |Xi| ≤ di ui(X,p) =
∑
j∈Xi

(vij − pj) ≥ 0, and (ii) for any other

subset of items T with |T | ≤ di, ui(X,p) =
∑
j∈Xi

(vij − pj) ≥
∑
j∈T

(vij − pj);
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• if Xi = ∅ (i.e., i wins nothing), then, for any subset of items T with |T | ≤ di,∑
j∈T

(vij − pj) ≤ 0.

The sharp envy-free concept are presented in the following.

Definition 2.2.2 (Sharp Envy-free Pricing). We say a tuple (X,p) is an sharp envy-free

pricing solution if every buyer is sharp envy-free, where a buyer i is sharp envy-free if

the following conditions are satisfied:

• if Xi 6= ∅, then (i) Xi is a set of exactly di items. ui(X,p) =
∑
j∈Xi

(vij − pj) ≥ 0,

and (ii) for any other subset of items T with |T | = di, ui(X,p) =
∑
j∈Xi

(vij − pj) ≥∑
j∈T

(vij − pj);

• if Xi = ∅ (i.e., i wins nothing), then, for any subset of items T with |T | = di,∑
j∈T

(vij − pj) ≤ 0.

And consecutive envy-free is defined as follows.

Definition 2.2.3 (Consecutive Envy-free Pricing). We say a tuple (X,p) is an consec-

utive envy-free pricing solution if every buyer is consecutive envy-free, where a buyer i

is consecutive envy-free if the following conditions are satisfied:

• if Xi 6= ∅, then (i) Xi is di consecutive items w.r.t. a given total order on the

items. ui(X,p) =
∑
j∈Xi

(vij − pj) ≥ 0, and (ii) for any other subset of consecutive

items T with |T | = di, ui(X,p) =
∑
j∈Xi

(vij − pj) ≥
∑
j∈T

(vij − pj);

• if Xi = ∅ (i.e., i wins nothing), then, for any subset of consecutive items T with

|T | = di,
∑
j∈T

(vij − pj) ≤ 0.

Before defining (relaxed) bundle envy-free pricing, we will use the notation vi(T )

to denote the valuation of buyer i for a bundle T , which is given by vi(T ) =
∑

j∈T vij

if |T | ≤ di and vi(T ) = maxT ′{
∑

j∈T ′ vij |T ′ ⊂ T, |T ′| ≤ di}, otherwise. We make

clarification that

Definition 2.2.4 (Bundle Envy-free Pricing). We say a tuple (p,X) is an bundle envy-

free pricing solution if every buyer is bundle envy-free, where a buyer i is bundle envy-free

if the following conditions are satisfied:

• if Xi 6= ∅, then (i) ui(p,X) =
∑
j∈Xi

(vij − pj) ≥ 0, and (ii) for any other bundle Xj

received by buyer j, ui(p,X) =
∑
j∈Xi

(vij − pj) ≥ vi(Xj)−
∑

k∈Xj pk;

• if Xi = ∅ (i.e., i wins nothing), then, for any bundle Xj obtained by buyer j,

vi(Xj)−
∑

k∈Xj pk ≤ 0.
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To be precise, the above definition of bundle envy-freeness should be called relaxed

bundle envy-freeness. If we change the definition of vi(T ) to be the maximum value

among all the subsets of T with size exactly di or among all consecutive di subsets,

we can similarly get sharp bundle envy-free and consecutive bundle envy-free concept.

We use notations bundle envy-free pricing to denote one of relaxed/sharp/consecutive

bundle envy-free concepts if the definition is clear in the corresponding settings. It is

not difficult to see that differences among these envy-free concepts are that the set of

items the buyer envy is different, e.g. relaxed envy-freeness indicates that the buyer

would not envy any set with the number of items no more than the buyer’s demand.

Envy-freeness captures fairness in the market e.g. for consecutive envy-free pricing, the

utility of everyone is maximized at the corresponding allocation for the given prices.

That is, if i wins a consecutive subset Xi, then i cannot obtain a higher utility from

any other consecutive subset of the same size; if i does not win anything, then i cannot

obtain a positive utility from any consecutive subset with size di. It is easy to see that

envy-free solutions always exists (e.g., set all prices to be ∞ and allocate nothing to

every buyer).

Given the definition of above various envy-free concepts, it is interesting to see the

inclusion relationship among them. By their definitions we have the following inclusion

relationships:

relaxed envy-free ⇒ (relaxed) bundle envy-free,

sharp envy-free ⇒ (sharp) bundle envy-free,

consecutive envy-free⇒ (consecutive) bundle envy-free.

Example 2.2.1 (Four types of envy-freeness). Suppose there are two buyers i1 and i2

with values per unit of quality vi1 = 10, vi2 = 8 and di1 = 1, di2 = 2. The item j1, j2,

j3 with quality as qj1 = qj3 = 1 and qj2 = 3. By fundamental calculations, the optimal

solutions of the three types of envy-freeness are as follows:

• Optimal relaxed envy-free solution, Xi1 = {j2}, Xi2 = {j1, j3} and pj1 = pj3 = 8

and pj2 = 28 with total revenue 44;

• Optimal sharp envy-free solution, Xi1 = {j2}, Xi2 = {j1, j3} and pj1 = pj3 = 8

and pj2 = 28 with total revenue 44;

• Optimal consecutive envy-free solution, Xi1 = {j3}, Xi2 = {j1, j2} and pj1 = pj3 =

6 and pj2 = 26 with total revenue 38;

• Optimal (relaxed) bundle envy-free solution, Xi1 = {j2}, Xi2 = {j1, j3} and pj1 =

pj3 = 8 and pj2 = 30 with total revenue 46;

The other concept we will consider is competitive equilibrium, which requires that,

besides envy-freeness, every unsold item must be priced at zero (or at any given reserve

price). Such market clearance condition captures efficiency of the whole market.

Definition 2.2.5 (Competitive Equilibrium). We say a market mechanism (X,p) is a

relaxed/sharp/consecutive competitive equilibrium if it satisfies two conditions.
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• (X,p) must be a relaxed/sharp/consecutive envy-free pricing.

• the unsold items must be priced at zero.

For brevity, we can call a solution envy-free instead of relaxed/sharp/consecutive

envy-free, if there is no confusion in the following sections. For a given output (X,p), the

revenue collected by the market maker is defined as
∑m

j=1 pj (equivalently,
∑n

i=1

∑
j∈Xi pj).

We are interested in revenue maximizing solutions, specifically, revenue maximizing com-

petitive equilibrium.

It is well known that a competitive equilibrium always exists for unit demand buyers

(even for general vij valuations) [55]; for our sharp/consecutive multi-unit demand mod-

el, however, a competitive equilibrium may not exist, as the following example shows

(however, the relaxed competitive equilibrium always exists)

Example 2.2.2 (Sharp/consecutive competitive equilibrium need not exist). There are

two buyers i1, i2 with values vi1 = 10 and vi2 = 9, and demands di1 = 1 and di2 = 2,

respectively, and two items j1, j2 with unit quality qj1 = qj2 = 1. If i1 wins an item,

without loss of generality, say j1, then j2 is unsold and pj2 = 0; by envy-freeness of

i1, we have pj1 = 0. Thus, i2 envies the bundle {j1, j2}. If i2 wins both items, then

pj1 + pj2 ≤ vi2j1 + vi2j2 = 18, implying that pj1 ≤ 9 or pj2 ≤ 9; thus, i1 is not envy-free.

Hence, there is no competitive equilibrium in the given instance.

In the unit demand case, it is well-known that the set of equilibrium prices forms

a distributive lattice; hence, there exist extremes which correspond to the maximum

and the minimum equilibrium price vectors. In our sharp/consecutive demand model,

however, even if a competitive equilibrium exists, maximum equilibrium prices may not

exist (however, the maximum relaxed competitive equilibrium always exists).

Example 2.2.3 (Maximum equilibrium need not exist for sharp/consecutive buyers).

There are two buyers i1, i2 with values vi1 = 10, vi2 = 1 and demands di1 = 2, di2 = 1,

and two items j1, j2 with unit quality qj1 = qj2 = 1. It can be seen that allocating the

two items to i1 at prices (19, 1) or (1, 19) are both revenue maximizing equilibria; but

there is no equilibrium price vector which is at least both (19, 1) and (1, 19).

In the context of the sharp/consecutive multi-unit demand, an interesting and impor-

tant property is that it is possible that some items are ‘over-priced’; this is a significant

difference between sharp/consecutive multi-unit and unit demand models. Formally, in

a solution (X,p), we say an item j is over-priced if there is a buyer i such that j ∈ Xi

and pj > viqj . That is, the price charged for item j is larger than its contribution to the

utility of its winner.

Example 2.2.4 (Over-priced items in sharp/consecutive envy-freeness). There are two

buyers i1, i2 with values vi1 = 20, vi2 = 10 and demands di1 = 1 and di2 = 2, and three

items j1, j2, j3 with qualities qj1 = 3, qj2 = 2, qj3 = 1. We can see that the allocations

Xi1 = {j1}, Xi2 = {j2, j3} and prices (45, 25, 5) constitute a revenue maximizing envy-

free solution with total revenue 75, where item j2 is over-priced. If no items are over-

priced, the maximum possible prices are (40, 20, 10) with total revenue 70.
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In all, the relaxed envy-free solution and relaxed competitive equilibrium share the

similar property as unit demand model (One can replace each multi-unit demand bidder

by multiple unit-demand bidders, and the problem is then reduced to the unit-demand

case) while the sharp/consecutive model exhibits different structure property, which is

important in banner advertisement. While relaxed demand or sharp demand model

serves as general banner advertisements, the consecutive demand model fits properly

advertisement of rich media ads and TV ads, where the media (pic,video, flash) may

require a fix number of consecutive number of slots. Thus, when we refer to consecutive

buyers, we mean rich media advertisement buyers.



Chapter 3

Multi-unit Bayesian Auction with

Demand or Budget Constraints

In this chapter, we will study revenue maximization problem under Bayesian settings

for various demand or budget constraints. Our main theorem for this chapter is the

following theorem.

Theorem 3.1. For the relaxed demand, the sharp demand and consecutive demand

(when qualities have constant peak) case without budget constraints, an optimal mecha-

nism can be constructed efficiently. The problem for the consecutive demand model with

arbitrary peak is shown to be NP-hard; for the case with the budget constraint but without

demand constraint, a 2-approximate mechanism can be constructed efficiently.

The road map of this chapter are as follows. In Section 3.1, elementary settings are

introduced. We will review the classical characterization of Bayesian Incentive Com-

patibility in Section 3.2 and show how the payments can be discarded in the objective

by incorporating Myerson’s virtual value functions. We will solve the pure optimization

problems for relaxed demand and sharp demand in Section 3.3 and Section 3.4 respec-

tively. Section 3.5 and 3.6 contribute for consecutive demand buyers. At the end, in

Section 3.7, a 2-approximate mechanism is proposed for budget constrained buyers.

3.1 Preliminaries

3.1.1 Demand Constraints

In our auction design problem, recall we want to sell m items to n buyers. Each buyer

has a private number vi representing her valuation and each item is characterized by a

number qj which can be viewed as the quality or desirability of the item. Thus, the ith

buyer’s value for item j is viqj . In other words, the valuation matrix for n buyers and m

items is the outer product of v and q. Buyers are also assumed to abide by additional

constraints as follows. We consider four specific constraints of this problem.

17
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1 Relaxed Demand Constraint: Buyer i’s demand is relaxedly constrained by di if i

may buy any number of items up to a maximum di in this auction.

2 Sharp Demand Constraint: Buyer i’s demand is sharply constrained by di if i must

buy exactly di items in this auction or alternatively buys nothing.

3 Consecutive Demand Constraint: Buyer i’s demand is consecutively constrained

by di (w.r.t. a given total order on the items) if i must buy exactly di consecutive

items in this auction or alternatively buys nothing.

4 Budget Constraint: Buyer i’s budget is constrained by a publicly known number

Bi if i cannot pay more than Bi.

3.1.2 Goal and Objectives

Given the buyers’ value distributions, our goal is to design BIC and ex-interim IR mech-

anisms to allocate items to buyers so as to maximize the auctioneer’s expected revenue.

As is common in Computer Science, the optimal solution may be hard to compute

efficiently, so we also consider the mechanisms which implement this objective approxi-

mately. More precisely, our aim is to devise a mechanism that for any distributions of

buyers’ values, the mechanism guarantees at least 1/α times the optimum, where α is a

constant. We call such mechanisms α-approximate mechanisms.

Definition 3.2 (α-approximate Mechanism). We say a BIC and ex-interim IR mecha-

nism M is an α-approximate mechanism if and only if for any BIC and ex-interim IR

mechanism M ′, Rev(M) ≥ 1/α · Rev(M ′). We say a mechanism is optimal if it is a

1-approximate mechanism.

We are also interested in obtaining computationally efficient mechanisms, which is

made precise by requiring that they should be computable in polynomial time. That is

of course a standard requirement in the context of algorithmic mechanism design.

3.2 Characterization of Optimal Mechanism

In this section, we show that, in these auction domains, the optimal randomized, BIC

and ex-interim IR auction can be represented by a simple deterministic, IC and ex-post

IR auction. Furthermore, this optimal auction can be constructed efficiently.

Our constructions and proofs are simple and based on a basic idea of converting

the optimization problem with allocation rules and payment rules to a problem only

involving allocations. This can be done in two steps. First, due to the fact that our

mechanism design problems fall within the single parameter domain where each player
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can be represented by a single parameter (i.e., his value per unit of quality), we can

replace the complicated BIC conditions with a much simpler requirement of monotonicity

on allocation rules. After that, all of the constraints are related with allocation functions

instead of payments. Second, although the objective of our auction is to maximize the

revenue, we can show that to maximize the auctioneer’s revenue in a BIC auction is

equivalent to maximizing a specific function of allocations, more precisely, the virtual

surplus which is developed in [51]. Thus, we can get rid of the payments in our optimizing

goal as well.

After this transformation, the original revenue optimization problems can be viewed

as simple combinatorial optimization problems. As we will show later, our problems can

be solved efficiently and even in a deterministic way.

3.2.1 Monotonicity

Although the Incentive Compatibility is defined in the terms of payments, it can be

boiled down to a simple condition of monotonicity in single parameter settings. The

proof can be sketched as follows. Fix a player i and all other players’ bids v−i. Recall

that we use ti, a function of v to denote the total quality of items assigned to i. Consider

two possible values vi and v′i player i may hold. By the definition of IC, we have

viti(vi; v−i)−pi(vi; v−i) ≥ viti(v′i; v−i)−pi(v′i; v−i) and similarly v′iti(v
′
i; v−i)−pi(v′i; v−i) ≥

v′iti(vi; v−i)−pi(vi; v−i). Summing up these two inequalities, we got (vi−v′i)(ti(vi; v−i)−
ti(v

′
i; v−i)) ≥ 0. It follows that, ti(x; v−i) must be a monotone non-decreasing function of

x for any given v−i. Regarding the Bayesian setting, the BIC condition can be similarly

characterized in the following Lemma 3.3 adapted from [51]. For convenience in the

Bayesian model, let Ti(vi) be the expectation of ti(v) over all other players’ bids, more

precisely, Ti(vi) = Ev−i [ti(v)]. Similarly, we define an expected version of payment rules,

thus Pi(vi) = Ev−i [pi(v)].

Lemma 3.3 (From [51]). A mechanism M = (x, p) is Bayesian Incentive Compatible if

and only if:

a) Ti(x) is monotone non-decreasing for any buyer i.

b) Pi(vi) = viTi(vi)−
∫ vi
vi
Ti(z)dz

Proof. If M = (x, p) is Bayesian Incentive Compatible, then for any vi and v′i,

viTi(vi)− Pi(vi) ≥ viTi(v′i)− Pi(v′i)

v′iTi(v
′
i)− Pi(v′i) ≥ v′iTi(vi)− Pi(vi)

Plus above two inequality, we could get (vi − v′i)(Ti(vi) − Ti(v′i)) ≥ 0, hence, Ti(x) is

monotone non-decreasing for any buyer i. in addition, let Ui(vi, T, P ) = viTi(vi)−Pi(vi),
viTi(vi) − Pi(vi) ≥ viTi(v

′
i) − Pi(v

′
i) is equivalent to Ui(vi, T, P ) ≥ (vi − v′i)Ti(v

′
i) +

Ui(v
′
i, T, P ), for any i, vi, v

′
i. Therefore, Ui(vi, T, P ) = Ui(vi, T, P ) +

∫ vi
vi
Ti(z)dz. Since,
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w.l.o.g. Ui(vi, T, P ) = 0, thus,

Pi(vi) = viTi(vi)−
∫ vi

vi

Ti(z)dz.

Similarly, if a) and b) hold, then viTi(vi)−Pi(vi) ≥ viTi(v′i)−Pi(v′i) is equivalent to (by

b))
∫ vi
v′i
Ti(z)dz ≥ (vi − v′i)Ti(v′i), which is true by monotonicity of Ti(x).

3.2.2 Virtual Surplus

For single item settings where the auctioneer has only one item to be sold, [51] showed

that to maximize the seller’s revenue is equivalent to maximizing the social welfare when

each buyer’s bid is his virtual value defined as φi(vi) = vi − 1−Fi(vi)
fi(vi)

, where recall that

Fi(x) and fi(x) are respectively the Cumulative Distribution Function and Probability

Density Function of the buyer i’s value distribution. That is, the virtual value of an

buyer is her true value minus the Hazard Rate of her value and distribution. Then given

buyers’ distributions, we define the virtual surplus as the expectation of the summation

of every buyer’s virtual value times her allocation, more precisely, Ev[
∑

i φi(vi)ti(v)].

Then we can show that in both of our auction domains in this section, expected revenue

is equal to expected virtual surplus.

Lemma 3.4 (From [51]). For any BIC mechanism M = (x, p), the expected revenue

Ev[
∑

i Pi(vi)] is equal to the virtual surplus Ev[
∑

i φi(vi)ti(v)].

Proof.

Ev[Pi(vi)] = Ev[−Ui(vi, T, P ) + viTi(vi)]

= Ev[−Ui(vi, T, P )] + Ev[viTi(vi)]

= −Ev[

∫ vi

vi

Ti(z)dz] + Ev[viti(v)]

= −
∫ vi

vi

dvi

∫ vi

vi

fi(vi)Ti(z)dz + Ev[viti(v)]

= −
∫ vi

vi

Ti(z)dz

∫ vi

z
fi(vi)dvi + Ev[viti(v)]

= −
∫ vi

vi

Ti(z)(1− Fi(z))dz + Ev[viti(v)]

= −
∫ vi

vi

Ti(vi)
1− Fi(vi)
fi(vi)

fi(vi)dz + Ev[viti(v)]

= −Ev[Ti(vi)
1− Fi(vi)
fi(vi)

] + Ev[viti(v)]

= Ev[φi(vi)ti(v)]
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We assume φi(t) is monotone increasing, i.e. the distribution is regular. Otherwise,

Myerson’s ironing technique can be utilized to make φi(t) monotone — it is here that we

invoke our assumption that we can efficiently compute the convex closure of a continuous

function and integration. More precisely, let φ̄i(t) be the ironing virtual value of buyer i

(we refer to [51] for concrete definitions), where φ̄i(t) is regular. Myerson’s classic results

give the following lemmas.

Lemma 3.5 (From [51]). Let x be an allocation that maximizes the ironing virtual

surplus Ev[
∑

i φ̄i(vi)ti(v)], satisfying (1) monotone property (e.g. Ti(vi) is monotone

non-decreasing for any buyer i) and supply and demand constraints (2) if φ̄i(vi) =

φ̄i(v
′
i) then Ti(vi) = Ti(v

′
i), ∀vi 6= v′i, and p be the payment such that pi(v) = viti(v) −∫ vi

vi
ti(v−i, si)dsi ∀i, then (x, p) is an optimal BIC mechanism.

Since the allocation in the following sections is computed by deterministic algorithms,

the property (2) in Lemma 3.5 is satisfied naturally. Hence, by Lemma 3.5, w.l.o.g., we

always suppose virtual value φi(t) is regular (e.g. monotone increasing).

By Lemma 3.3 and 3.4, in order to maximize the expected revenue, one needs only to

design algorithms to find the allocation to maximize the virtual surplus
∑

i φi(vi)ti(v)

for each given v and simultaneously make the algorithm satisfy monotonicity (e.g. part

(a) in Lemma 3.3). Fortunately, we will prove in the following powerful lemma that any

deterministic algorithm maximizing the virtual surplus must be monotone. Hence, our

main task will be seeking deterministic algorithm to maximize virtual surplus in various

settings.

Lemma 3.6. Any deterministic algorithm that achieves the maximum virtual surplus∑
i φi(vi)ti(v) for any given v, must be monotone, that is, Ti(vi) is monotone non-

decreasing for any buyer i.

Proof. We will prove a stronger fact, that ti(vi, v−i) is non-decreasing as vi increas-

es. Given other buyers’ bids v−i, the monotonicity of ti is equivalent to ti(vi, v−i) ≤
ti(v

′
i, v−i) if v′i > vi. Assuming that v′i > vi, the regularity of φi implies that φi(vi) ≤

φi(v
′
i). If φi(vi) = φi(v

′
i), then ti(vi, v−i) = ti(v

′
i, v−i) and we are done.

Consider the case that φi(vi) < φi(v
′
i). Let Q and Q′ denote the total quantities

obtained by all the other buyers except buyer i in the mechanism when buyer i bids vi

and v′i respectively.

φi(v
′
i)ti(v

′
i, v−i) +Q′ ≥ φi(v′i)ti(vi, v−i) +Q

φi(vi)ti(vi, v−i) +Q ≥ φi(vi)ti(v′i, v−i) +Q′.

Above inequalities are due to the optimality of allocations when i bids vi and v′i respec-

tively. It follows that

φi(v
′
i)(ti(vi, v−i)− ti(v′i, v−i)) ≤ Q′ −Q

φi(vi)(ti(vi, v−i)− ti(v′i, v−i)) ≥ Q′ −Q
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By the fact that φi(vi) < φi(v
′
i), it must be ti(vi, v−i) ≤ ti(v′i, v−i).

3.3 Relaxed Demand Case

Recall that a mechanism M = (x, p) satisfies the relaxed demand constraint di for buyer

i if for any realization of the mechanism, any buyer i cannot be assigned more than di

items. Note that our mechanism only considers the allocation probability x, not the

realized allocations. To convert the randomized mechanism to a realized allocation, we

need a randomized rounding procedure satisfying the demand constraints. Fortunately,

such a procedure is explicit in the the Birkhoff-Von Neumann theorem [42]. Thus, the

relaxed demand constraint can be rewritten as
∑

j(xij) ≤ di for each buyer i. By

using the characterization of BIC and virtual surplus, we can transform the revenue

optimization problem to an essentially simpler combinatorial optimization problem. The

following lemma follows from Lemma 3.3 and 3.4.

Lemma 3.7. Suppose that x is the allocation function that maximizes Ev[
∑

i φi(vi)ti(v)]

subject to the constraints that Ti(vi) is monotone non-decreasing and inequalities∑
j

xij(v) ≤ di,
∑
i

xij(v) ≤ 1, xij(v) ≥ 0. (3.1)

Suppose also that

pi(v) = viti(v)−
∫ vi

vi

ti(v−i, si)dsi (3.2)

Then (x, p) represents an optimal mechanism for the relaxed demand case.

A main observation on Lemma 3.7 is that all inequalities in Eq. (3.1) only constrain

v independently, not correlatively with different vs. This allows us to consider the

optimization problem for each v separately. After that, we will prove Ti is still monotone

increasing in the resulting mechanism. In other words, we consider the problem of

maximizing
∑

i φi(vi)ti(v) for each v separately instead of maximizing its expectation

overall. This problem can be solved by a simple greedy algorithm in the spirit of assigning

items with good quality to buyers with higher virtual value. For completeness, we

describe our mechanism for the relaxed demand case in Algorithm 1.

Ultimately, we prove that the Ti deduced from our mechanism is monotone non-

decreasing in the following theorem — our summary statement.

Theorem 3.8. The mechanism that applies the allocation rule according to Algorithm 1

and payment rule according to Equation (3.2) is an optimal mechanism for the multi

unit auction design problem with relaxed demand constrained buyers.

Proof. It suffices to prove that Ti(vi) is monotone non-decreasing, which directly comes

from Lemma 3.6.
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Algorithm 1: Relaxed

Input: Demands di, CDFs Fi, PDFs fi, qualities qj and bids v
Output: Allocation xij

1 φi ← vi − 1−Fi(vi)
fi(vi)

;

2 Sort buyers in decreasing order of φi;
3 Sort items in decreasing order of qj ;
4 xij ← 0;
5 for each buyer i do
6 for each item j do
7 if φi > 0 and

∑
i xij < 1 and

∑
j xij < di then

8 xij ← 1;
9 end

10 end

11 end
12 return x;

3.4 Sharp Demand Case

We now describe how to design an optimal mechanism for sharp demand cases. Recall

that if a buyer is sharply constrained by di, he only wants to buy exactly di items

or nothing. Thus the only difference between this problem with the one with relaxed

constraints is that the inequalities (3.1) in Lemma 3.7 should be replaced by the following

inequalities1. ∑
j

xij(v) = di or 0,
∑
i

xij(v) ≤ 1, xij(v) ≥ 0 ∀i, j,v (3.3)

By Lemma 3.3 and 3.4, similar to the relaxed demand case, we can convert the revenue

optimization problem in the sharp demand case to a simple combinatorial optimization

problem.

Lemma 3.9. Suppose that x is the allocation function maximizing Ev[
∑

i φi(vi)ti(v)]

subject to the constraints that Ti(vi) is non-decreasing monotone and inequalities (3.3).

Suppose also that

pi(v) = viti(v)−
∫ vi

vi

ti(si, v−i)dsi.

Then (x, p) represents an optimal mechanism for the sharp demand case.

Considering each bidding profile v−i separately, we observe that the optimal mech-

anism always maximizes
∑

i φi(vi)ti(v) for all v subject to sharp demand constraints.

By incorporating the definition of ti, our goal is to maximize
∑

i

∑
j φi(vi)qjxij(v) sub-

ject to
∑

j xij(v) = di or 0 and
∑

i xij(v) ≤ 1. It is not hard to see this problem is

1The formula
∑
j xij(v) = di or 0 here is not precise since in the random mechanism

∑
j xij(v) may

be arbitrary number between 0 and di. More precise definition may be complex e.g. distribution over
deterministic mechanism. However, we didn’t explicitly use the randomized value of

∑
j xij(v) in our

algorithm, and our mechanism is deterministic implying xij ∈ {0, 1}, and,
∑
j xij(v) = di or 0 is correct

if xij ∈ {0, 1}, hence we still use this formula here.
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equivalent to a maximum weighted matching problem on a bipartite graph with n left

nodes and m right nodes. For any pair of nodes (i, j) ∈ [n] × [m], there exists an edge

with weight φi(vi)qj . Besides, the matching should satisfy an additional constraint that

each left node must be matched with exact di right nodes or nothing. We call this

problem maximum weighted matching with sharp constraints. An essential observation

our algorithm relies on is a property of the optimal solution as we will show in Lemma

3.10. For convenience, we sort all left nodes in decreasing order of their φi(vi) and all

right nodes in decreasing order of their qj .

Lemma 3.10. There must exist an optimal solution for the maximum weighted matching

problem with sharp constraints such that each left node is matched with consecutive di

right nodes or nothing.

Proof. Assume by contradiction, there exists a left node that the optimal match it with

a set of non-consecutive right nodes. Let i be the first left node (w.r.t. the decreasing

order of φi(vi)) with this property and Ui be the set of right nodes assigned to i. By

our assumption, Ui is not consecutive. Thus, there exists a right node j not in Ui such

that mink∈Ui{qk} ≤ qj ≤ maxk∈Ui{qk}. It is easy to see that j must be assigned to a

left node with smaller φ than i otherwise i is not the first left node with non-consecutive

matching set. Let r be the last node of Ui, i.e. with the largest index in Ui. Thus

qj ≥ qr. After that, we can refine the optimal solution by exchanging the assignment

of node j and node r. The resulting assignment is still feasible and has larger weight.

Keep doing this, we can get the desired optimal solution.

By using this property, the problem can be solved by dynamic programming precisely.

Let w[i, j] denote the weight of the maximum weighted matchings with first i left nodes

and all the first j right nodes being assigned. Initially, w[0, 0] = 0 and w[0, j] = −∞,

∀j 6= 0. Then we have the transition function,

w[i, j] = max
{
w[i− 1, j], w[i− 1, j − di] +

j∑
k=j−di+1

φi(vi)ck

}
Finding the maximum w[i, j] over i ∈ [n] and j ∈ [m] gives the maximum weighted

matchings and optimal solutions.

Theorem 3.11. The mechanism which applies the allocation rule w.r.t. the above Dy-

namic Programming and payment rule w.r.t equation (3.2) is an optimal mechanism for

multi unit auction design problem with sharp demand constrained buyers.

Proof. To complete the proof of Theorem 3.11, it is sufficient to show Ti(vi) is non-

decreasing, which follows directly from Lemma 3.6.
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3.5 Optimal Auction of Consecutive Demand for the Sin-

gle Peak Case

The goal of this section is to present our optimal auction for the single peak case that

serves as an elementary component in general case later. En route, several principal

techniques are examined exhaustively to the extent that they can be applied directly

in next section. By employing these techniques, we show that the optimal Bayesian

Incentive Compatible auction can be represented by a simple Incentive Compatible one.

Furthermore, this optimal auction can be implemented efficiently.

As mentioned above, we attempt to attain the BIC auction that maximizes the auc-

tioneer’s expected revenue. The same as above, we will transform the problem of BIC

revenue maximization problem to a optimization problem only involved with alloca-

tion in objective function and where BIC is replaced by monotonicity of total expected

qualities. After this transformation, the original revenue optimization problems can be

viewed as simple combinatorial optimization problems. Fortunately, we observe delicate

structures in the optimal solution that allow us to solve the problem entirely.

As pointed out in Section 3.1 and 3.2, a banner (maybe rich media) advertisemen-

t auction meets a buyer i’s demand denoted by a number di if for any realization of

the auction, the buyer i must be assigned either di consecutive slots or nothing. By

incorporating the characterization of BIC and virtual surplus, we can transform the rev-

enue optimization problem to an essentially simpler combinatorial optimization problem.

The following lemma that follows from Lemma 3.3 and 3.4, formalizes the optimization

problem.

Lemma 3.12. Suppose that x is the allocation function that maximizes Ev[
∑

i φi(vi)ti(v)]

subject to the constraints that Ti(vi) is monotone non-decreasing and for any bidders’

profile v, any buyer i is assigned either di consecutive slots or nothing. Suppose also

that

pi(v) = viti(v)−
∫ vi

vi

ti(v−i, si)dsi (3.4)

Then (x, p) represents an optimal mechanism for the rich media advertisement problem

in single-peak case.

A main observation on Lemma 3.12 is that except the monotonicity all requirements

on the mechanism only constrain v independently, not correlatively with different vs.

This allows us to consider the optimization problem for each v separately. In other words,

we consider the problem of maximizing
∑

i φi(vi)ti(v) for each v separately instead

of maximizing its expectation overall. After that, we will prove Ti is still monotone

increasing in the resulting mechanism.

Given above discussions, a very important component of the optimal banner adver-

tisement auction is to assign ad slots to advertisers consecutively and simultaneously to

maximize the summation of virtual values, i.e. φi(vi)ti(v). When exerting ourselves on

this specific problem, we make several preliminary observations that allow us to derive
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a dynamic programming for the single-peak case. Without loss of generality, we assume

all buyers are sorted in the decreasing order of their virtual values. First, we show that

the optimal assignment must be consecutive, i.e. there is no unassigned slots between

any bidders’ allocated slots (see Figure 3.1).

Lemma 3.13. There exists an optimal allocation x that maximizes
∑

i φi(vi)ti(v) in

single peak case, satisfies the following condition. For any unassigned slot j, it must be

either ∀j′ > j, slot j′ is unassigned or ∀j′ < j, slot j′ is unassigned.

Proof. We pick an arbitrary optimal allocation x that maximizes the summation of

virtual values. If x satisfies the property, it is the desired allocation and we are done.

Otherwise, we do the following modification on x. Let slot j (1 < j < m) be the

unassigned slot between buyers’ allocated slots. Since the quality function are single

peaked, we have qj ≥ qj+1 or qj ≥ qj−1. We only prove the lemma for the case qj ≥ qj+1

and the proof for the other case is symmetric. Let slot j′ > j be the leftmost assigned

slot on the right side of j. We modify x by assigning the buyer i who got the slot j′ the

di consecutive slots from j. It is easy to check the resulting allocation is still feasible

and optimal. Moreover, the slot j becomes assigned now. By keep doing this, we can

eliminate all unassigned slots between buyers’ allocations. Thus, the resulting allocation

must be consecutive.

Unassigned

Slot j Slot j'

Buyer i

Buyer i Unassigned

Slot j Slot j'

Figure 3.1: By re-assigning i the slots from j, we make the set of assigned slots
consecutive.

Next, we prove that this consecutiveness even holds for all set [s] ⊆ [n]. That is,

there exists an optimal allocation that always assigns the first s buyers consecutively

for all s ∈ [n]. For convenience, we call a slot is out of a set of buyers if the slot is not

assigned to any buyers in that set. Then the consecutiveness can be formalized in the

following lemma.
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Lemma 3.14. There exists an optimal allocation x in single peak case, satisfies the

following condition. For any slot j out of [s], it must be either ∀j′ > j, slot j′ is out of

[s] or ∀j′ < j, slot j′ is out of [s].

Proof. The idea is to pick an arbitrary optimal allocation x and modify it to the desired

one. Suppose x does not satisfy the property on a subset [s]. By Lemma 3.13, there is

no unassigned slots in the middle of allocations to set [s]. Then there must be a slot

assigned to a buyer i out of the set [s] that separates the allocations to [s] We use Wi

to denote the allocated slots of buyer i. Suppose slot k is the peak. There are two cases

to be considered:

Case 1. k /∈Wi.

Let j and j′ be the leftmost and rightmost slot in Wi respectively. We consider

two cases qj ≥ qj′ and qj < qj′ . We only prove for the first case and the proof for

the other case is symmetric. If qj ≥ qj′ , we find the leftmost slot j1 > j′ assigned

to [s] and the rightmost slot j2 < j1 not assigned to [s]. In addition, let i1 ∈ [s]

be the buyer that j1 is assigned to and i2 > s be the buyer that j2 is assigned to.

In single peak case, it is easy to check qj ≥ qj′ implies that all the slots assigned

to i2 have higher quality than i1’s. Thus swapping the positions of i1 and i2, as

illustrated in Figure 3.2, will always increase the virtual surplus,
∑

i φi(vi)ti(v).

By keep doing this, we can eliminate all slots out of [s] in the middle of allocation

to [s] and attain the desired optimal solution.

Case 2. k ∈Wi

Suppose Wi = {ji1, ji2, · · · , jiui} with ji1 < ji2 < · · · < jiui and there exists 1 ≤ e ≤ ui
such that k = jie. Let a and b be the left and right neighbour buyers of i winning

slots next to Wi. As we know a, b ∈ [s], hence, φa(va) ≥ φi(vi) and φb(vb) ≥ φi(vi).
Let Wa = {ja1 , ja2 , · · · , jaua} and Wb = {jb1, jb2, · · · , jbui} denote the allocated slots of

buyer a and b respectively, where ja1 < ja2 < · · · < jaua and jb1 < jb2 < · · · < jbub .

As k ∈ Wi, then qji1
≥ qjaua and qjiui

≥ qjb1
(noting that jaua and jb1 are the indices

of slots with the largest qualities in Wa and Wb respectively). We will show that

either swapping winning slots of i with a or with b will increase the virtual surplus.

To prove this, there four cases needed to be considered: (1). ui ≥ ua and ui ≥ ub;
(2). ui ≥ ua and ui < ub; (3). ui < ua and ui ≥ ub; (4). ui < ua and ui < ub. We

only prove the case (1) since the other cases can be proved similarly. Now, suppose

ui ≥ ua and ui ≥ ub, then we must have either (i).
∑ub

k=1 qjik
≥
∑ub

k=1 qjbk
or (ii).∑ua

k=1 qjiui−k+1
≥
∑ua

k=1 qjak . Suppose (i) is not true, that is
∑ub

k=1 qjik
<
∑ub

k=1 qjbk
,

if ub ≤ e, then we have qji1
≤ qjiub , as a result,

ubqji1
≤

ub∑
k=1

qjik
<

ub∑
k=1

qjbk
≤ ubqjb1 ≤ ubqjiui ,

thus, qji1
< qjiui

; otherwise ub > e, then it must also hold that qji1
≤ qjiub (otherwise,

for any 1 ≤ ` ≤ ub, qji`
≥ qjiub

≥ qjb1
implying that

∑ub
k=1 qjik

≥ ubqjb1
≥
∑ub

k=1 qjbk
,
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contradiction), hence, for any 1 ≤ ` ≤ ub, qji` ≥ qji1 , it follows,

ubqji1
≤

ub∑
k=1

qjik
<

ub∑
k=1

qjbk
≤ ubqjb1 ≤ ubqjiui ,

in both cases, it is obtained that qji1
< qjiui

, therefore,

ua∑
k=1

qjiui−k+1
> uaqji1

≥
ua∑
k=1

qjak

implying (ii) is true. Thus, if (i) is true, by simple calculations, swapping winning

slots of i with b will increase the virtual value (since φb(vb) ≥ φi(vi)), otherwise

swapping winning slots of i with a will increase the virtual surplus (since φa(va) ≥
φi(vi)). Then keep doing it by the method of Case 1 until eliminating all slots out

of [s] in the middle of allocation to [s] and attaining the desired optimal solution.

Buyer i Buyer i2

Slot j Slot j' Slot j2 Slot j1

Buyer i1

Buyer i Buyer i1 Buyer i2

Slot j Slot j' Slot j2 Slot j1

Figure 3.2: Slots with light color are assigned to [s]. By swapping the positions of i1
and i2, we make the allocations to [s] consecutive.

Lemma 3.14 reveals the optimal substructure that allows us to solve the problem by

dynamic programming. Since the optimal solution always assigns to [s] consecutively, we

can boil the allocations to [s] down to an interval denoted by [l, r]. Let g[s, l, r] denote

the maximized value of our objective function
∑

i φi(vi)ti(v) when we only consider

first s buyers and the allocation of s is exactly the interval [l, r]. Initially, we have

g[0, l, l − 1] = 0, 1 ≤ l ≤ m + 1 and g[0, l, r] = −∞, otherwise. Then we have the
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following transition function.

g[s, l, r] = max



g[s− 1, l, r]

g[s− 1, l, r − ds] + φs(vs)
∑r

j=r−ds+1 qj

g[s− 1, l + ds, r] + φs(vs)
∑l+ds−1

j=l qj

(3.5)

The optimality of the allocation obtained from the Dynamic Programming just fol-

lows from Lemma 3.14. More precisely, the optimal solution always assign the sth buyer

nothing or slots next to (on the left or right) the interval allocated to first s− 1 buyers.

Ultimately, by Lemma 3.12, we prove that the Ti deduced from our mechanism is

monotone non-decreasing in the following theorem — our summary statement.

Theorem 3.15. The mechanism that applies the allocation rule according to Dynamic

Programming (3.5) and payment rule according to Equation (3.4) is an optimal mecha-

nism for the banner advertisement problem with single peak qualities.

Proof. The proof comes straightforwardly from Lemma 3.6.

3.6 The General Case of Consecutive Demand Buyers

We now move to the general case where the qualities of item may have several peaks.

We assume the number of peaks h is constant. This is a reasonable assumption when

we consider the rich media advertisement and TV advertisement. For arbitrary peak,

NP-hardness will be shown. It should be emphasized again that we study the revenue

maximization problem in the Bayesian setting and our goal is to find out the optimal

auction (with maximum revenue) among all Bayesian Incentive Compatible auction.

As we have shown in Section 3.5, the Bayesian Incentive Compatibility can be re-

placed with a simple requirement for monotonicity of allocation functions. Moreover,

as Myerson showed in [51], to maximize the revenue in Bayesian setting is equivalent to

maximizing the virtual surplus. Similar with Lemma 3.12, Lemma 3.16 following from

Lemma 3.3 and Lemma 3.4 show the essential part of our optimal auction construction.

Lemma 3.16. Suppose that x is the allocation function that maximizes Ev[
∑

i φi(vi)ti(v)]

subject to the constraints that Ti(vi) is monotone non-decreasing and for any bidders’

profile v, any buyer i is assigned either di consecutive slots or nothing. Suppose also

that

pi(v) = viti(v)−
∫ vi

vi

ti(v−i, si)dsi (3.6)

Then (x, p) represents an optimal mechanism for the banner advertisement problem in

general case.

Consider the problem of maximizing
∑

i φi(vi)ti(v) for each v. Recall that there are

only h peaks (local maximum) in the qualities. Thus, there are at most h − 1 valleys
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(local minimum). Since h is a constant, we can enumerate all the buyers occupying the

valleys. After this enumeration, we can divide the qualities into at most h consecutive

pieces and each of them forms a single-peak. Then using similar properties as those in

Lemma 3.13 and 3.14, we can obtain a larger size dynamic programming (still runs in

polynomial time) similar to dynamic programming (3.5) to solve the problem.

Theorem 3.17. There is a polynomial algorithm to compute revenue maximization

problem in Bayesian settings where the qualities of slots have constant number of peaks.

Proof. Our proof is based on the single peak algorithm. Assume there are h peaks,

then there must be h− 1 valleys. Suppose these valleys are indexed j1, j2, · · · , jh−1. In

optimal allocation, for any jk, k = 1, 2, · · · , h − 1, jk must be allocated to a buyer or

unassigned to any buyer. If jk is assigned to a buyer, say, buyer i, since i would buy di

consecutive slots, jk may appear in `th position of this di consecutive slots. Hence, by

this brute force, each jk will at most have
∑

i di + 1 ≤ mn + 1 possible positions to be

allocated. In all, all the valleys have (mn + 1)h possible allocated positions. For each

of this allocation, the slots is broken into h single peak slots. We can obtain similar

properties as those in Lemma 3.13 and 3.14. Without loss of generality, suppose the

rest buyers are still the set [n], with non-increasing virtual value. Since the optimal

solution always assigns to [s] concentrating in h intervals, we can boil the allocations to

[s] down to intervals denoted by [li, ri], i = 1, 2, · · · , h, where [li, ri] lies in the i-th single

peak slot. Let g[s, l1, r1, · · · , lh, rh] denote the maximized value of our objective function∑
i φi(vi)ti(~v) when we only consider first s buyers and the allocations of [s] are exactly

intervals [li, ri], i = 1, 2, · · · , h. Then we have the following transition function.

g[s, l1, r1, · · · , lh, rh] = max
i∈[d]



g[s− 1, l1, r1, · · · , lh, rh]

g[s− 1, l1, r1, · · · , li, ri − ds, · · · , lh, rh] + φs(vs)
∑ri

j=ri−ds+1 qj

g[s− 1, l1, r1, · · · , li + ds, ri, · · · , lh, rh] + φs(vs)
∑li+ds−1

j=li
qj

Theorem 3.18. If the qualities of slots have arbitrary peaks, the revenue maximization

problem of Bayesian settings is NP-hard

Proof. We prove the NP-hardness by reducing the 3 partition problem that is to decide

whether a given multi-set of integers can be partitioned into certain number of subsets

that all have the same sum. More precisely, given a multi-set S of 3n positive integers,

can S be partitioned into n subsets S1, . . . , Sn such that the sum of the numbers in

each subset is equal? The 3 partition problem has been proven to be NP-complete in a

strong sense in [36], meaning that it remains NP-complete even when the integers in S

are bounded above by a polynomial in n.

Given a instance of 3 partition (a1, a2, . . . , a3n), we construct a instance for advertis-

ing problem with 3n advertisers and m = n+
∑

i ai slots. It should be mentioned that
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m is polynomial of n due to the fact that all ai are bouned by a polynomial of n. In

the advertising instance, the valuation vi for each advertiser i is 1 and his demand di is

defined as ai. Moreover, for any advertiser, his valuation distribution is that vi = 1 with

probability 1. Then everyone’s virtual value is exactly 1. By Lemma 3.16, to maximize

revenue is equivalent to maximize the simplified function
∑

i

∑
j xijqj .

Let B =
∑

i ai/n. We define the quality of slot j is 0 if j is times of B+ 1, otherwise

qj = 1. That can be illustrated as follows.

1 1 · · · 1︸ ︷︷ ︸
B

0 1 1 · · · 1︸ ︷︷ ︸
B

0 . . . 1 1 · · · 1︸ ︷︷ ︸
B

0

It is not hard to see that the optimal revenue is
∑

i ai iff there is a solution to this

3 partition instance.

3.7 Approximate Mechanism for Budget Constraints

In this section, we will present a 2-approximate mechanism for the Multi-item auction

with budget constrained buyers. It should be noted that there is no demand constraints

for all the buyers considered in this section. Recall that a mechanism M = (x, p) satisfies

the buyer i’s budget constraint iff pi(v) ≤ Bi for all buyer profiles v. If m = 1, i.e. the

auctioneer only has one slot, a 2- approximate mechanism has been suggested in [1] and

[6]. Thus, our approach is to reduce the Multi-item Auction to Single-item Auction,

i.e. the case for m = 1. Recall that Bi denotes bidder i’s budget, xij(v) denote the

probability of allocating item j to buyer i when the buyers’ bids revealed type is v and

recall we use ti(v) =
∑

j qjxij(v), a function of v to denote the total quality of items

assigned to i. Then the multi-item auction problem can be formalized as the following

optimization problem.

Max: Ev

[∑
i

pi(v)

]
s.t. Ev−i [viti(v)− pi(v)] ≥ Ev−i [viti(v

′
i, v−i)− pi(v′i, v−i)], ∀v, i, v′i

Ev−i [viti(v)− pi(v)] ≥ 0, ∀v, i

pi(v) ≤ Bi, ∀v, i

xij(v) ≥ 0 ∀v, i, j∑
i

xij(v) ≤ 1 ∀v, j

(Multi-item)

Now consider the following single-item problem. Denote B′i = Bi∑
j qj

, and let yi(v) be

the allocation function for bidder i and si(v) be the payment function for bidder i. The

single-item auction with budget constraints can be formalized as following optimization
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problem.

Max: Ev

[∑
i

si(v)

]
s.t. Ev−i [viyi(v)− si(v)] ≥ Ev−i

[
viyi(v

′
i, v−i)− si(v′i; v−i)

]
, ∀v, i, v′i

Ev−i [viyi(v)− si(v)] ≥ 0, ∀v, i

si(v) ≤ B′i, ∀v, i

yi(v) ≥ 0 ∀v, i∑
i

yi(v) ≤ 1 ∀v

(Single)

Our main observation for the above optimization problems is the following proposi-

tion.

Proposition 3.19. The problems Multi-item and Single are equivalent:

• for any feasible mechanism M(v) = (x(v), p(v)) of problem Multi-item, the

following mechanism M̂(v) = (y(v), s(v)) is a feasible mechanism for problem

Single where yi(v) = ti(v)∑
j qj

, si(v) = pi(v)∑
j qj

, ∀i ∈ [n].

• for any feasible mechanism M̂(v) = (y(v), s(v)) of problem Single, the follow-

ing mechanism M(v) = (x(v), p(v)), where xij(v) = yi(v) ∀i j and pi(v) =

si(v)(
∑

j qj) ∀i, is a feasible mechanism for problem Multi-item.

Proof. The proof is based on direct calculations. First, for any feasible mechanism

M(v) = (x(v), p(v)) of problem Multi-item, let yi(v) = ti(v)∑
j qj

, si(v) = pi(v)∑
j qj

, ∀i ∈ [n],

it is not difficult to check that M̂(v) = (y(v), s(v)) is a feasible mechanism to Single.

On the other hand side, for any feasible mechanism M̂(v) = (y(v), s(v)) of problem

Single, let xij(v) = yi(v) ∀i j, pi(v) = si(v)(
∑

j qj) ∀i, it is easy to show that

M(v) = (x(v), p(v)) is a feasible mechanism for problem Multi-item.

Ultimately, we reduce the multi-item auction design problem to the single-item auc-

tion design problem. By the results of [1] and [6], there exists a 2-approximate mech-

anism for problem Single. Thus, we have a 2-approximate mechanism for problem

Multi-item.

Remark 3.20. For the discrete distribution case, [10] presents an optimal mechanism, for

multi-buyers with multi-items. Their algorithm can be extended to the case where buyers

are budget constrained but not demand constrained. Given buyers’ discrete distribution

and bid profiles, a revised version of their mechanism is an optimal mechanism and

runs in time polynomial in
∑

i |Ti|, where |Ti| is the number of types of buyer i for

all the items. Hence, restricting their results to Multi-item auction, that optimal

mechanism is indeed an optimal mechanism for each buyer having a budget constraint

but no demand constraint, with values independently drawn from discrete distribution,

running in time polynomial in the input.



Chapter 4

Revenue Maximization of

Competitive Equilibrium

We study the revenue maximization problem of various competitive equilibriums in this

chapter. In the simple relaxed demand case, an algorithm to compute an optimal relaxed

competitive equilibrium is presented for the revenue maximization problem. The situa-

tion become complicated for the sharp demand and consecutive demand case. Indeed,

the equilibrium may not exist in these two cases, however, we find a polynomial algo-

rithm to decide whether an equilibrium exists or not and compute a revenue maximizing

one if one does in both settings. Hence, the problems are solved completely.

The structure of this chapter is as follows. In Section 4.1, the main results are

introduced. We solve the revenue maximization problem for relaxed demand buyers in

Section 4.2. A hardness result for deciding whether a sharp competitive equilibrium

exists or not for general valuation is proposed in Section 4.3. For the sharp demand

and consecutive demand cases, we present polynomial algorithms to decide whether an

equilibrium exists or not and find a revenue maximizing one if it does in Section 4.4 and

4.5 respectively.

4.1 Introduction

As discussed in Chapter 2, competitive equilibrium provides a solution concept that

captures both market efficiency and fairness for the buyers. In a competitive equilibrium,

every buyer obtains a best possible allocation that maximizes his own utility and every

unallocated item is priced at zero (i.e., market clearance). Competitive equilibrium is

one of the central solution concepts in economics and has been studied and applied

in a variety of domains [49]. Combining the considerations from the two sides of the

market, an ideal solution concept therefore would be revenue maximizing competitive

equilibrium. Strongly polynomial time is defined in the arithmetic model of computation.

In this model of computation the basic arithmetic operations (addition, subtraction,

multiplication, division, and comparison) take a unit time step to perform, regardless of

the sizes of the operands.

33
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Definition 4.1.1 (Strongly Polynomial Time). The algorithm runs in strongly polyno-

mial time if

• the number of operations in the arithmetic model of computation is bounded by

a polynomial in the number of integers in the input instance;

• the space used by the algorithm is bounded by a polynomial in the size of the

input

For relaxed demand buyers, the relaxed competitive equilibrium exhibits almost the

same property of the unit demand model. Since the maximum relaxed competitive

equilibrium always exists, simultaneously the maximum revenue is attained. The result

for relaxed competitive equilibrium are summarized as follows.

Theorem 4.1. There always exists a maximum equilibrium with relaxed demand con-

straint. Further, there is a strongly polynomial time algorithm to compute a maximum

equilibrium (i.e., a revenue maximizing equilibrium).

For sharp multi-unit demand buyers, when the valuations vij are arbitrary, even

determining the existence of a competitive equilibrium is NP-complete (see Section 4.3).

Theorem 4.2. It is NP-hard to determine the existence of a competitive equilibrium

for general valuations in the sharp demand model (even when all demands are 3, and

valuations are 0/1).

For our correlated valuation viqj model, the sharp and consecutive demand buyers

exhibit similar structure properties. As mentioned above, the equilibrium may not exist

and maximum equilibrium may not exist even if the competitive equilibrium exists.

Further , there may exist overpriced items (see Example 2.2.4) in sharp/consecutive

competitive equilibriums.

Theorem 4.3. For sharp multi-unit demand, a sharp competitive equilibrium may not

exist; even if an equilibrium is guaranteed to exist, a maximum sharp equilibrium (in

which each price is as high as it can be in any solution) may not exist. Further, there is

a polynomial time algorithm that determines the existence of a sharp equilibrium, and

computes a revenue maximizing one if it does.

The results for consecutive demand buyers are summarized as follows.

Theorem 4.4. For consecutive multi-unit demand, a consecutive competitive equilibri-

um may not exist; even if an equilibrium is guaranteed to exist, a maximum consecutive

equilibrium (in which each price is as high as it can be in any solution) may not exist.

Further, if the number of peaks is bounded by a constant number, there is a polynomial

time algorithm that determines the existence of a consecutive equilibrium, and computes

a revenue maximizing one if it does. If the number of peaks is arbitrary, the complexity

of determining the existence of a consecutive equilibrium is NP-hard, and computing

a revenue maximizing consecutive equilibrium is also NP-hard even if the equilibrium

exists.
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Recall K is the number of distinct values in the set {v1, . . . , vn}, and let A1, . . . , AK

be a partition of all buyers where each Ak, k = 1, 2, . . . ,K, contains the set of buyers

that have the kth largest value.

4.2 Relaxed Competitive Equilibrium

In this section, we study relaxed competitive equilibrium and assume that buyer i can

win any number of items, upper bounded by di. That is, in a feasible output (p,X), we

only require that |Xi| ≤ di for each buyer i.

The difference between Definition 2.2.1 and 2.2.2 is that in Definition 2.2.1, for

relaxed demand, any buyer i does not envy any other subset S of size |S| ≤ di, whereas

in Definition 2.2.2, for sharp demand, i does not envy any subset S of size |S| = di.

Hence, in the relaxed multi-unit demand model, as buyers are interested in a larger set

of candidate items, the definition of envy-freeness is stronger.

Given the new notion of relaxed envy-freeness, we have the following new definition

for relaxed competitive equilibrium.

Definition 4.2.1 (Relaxed Maximum Equilibrium). A price vector p is called a relaxed

maximum equilibrium price vector if for any other relaxed equilibrium price vector q,

pj ≥ qj for every item j. An relaxed equilibrium (p,X) is called a relaxed maximum

equilibrium if p is a relaxed maximum price vector.

Still we are interested in computing revenue maximizing relaxed competitive equi-

librium. Actually, we compute the relaxed maximum equilibrium, which simultaneously

is a revenue maximizing equilibrium.

Lemma 4.5. For any relaxed envy-free solution (p,X), there is no overpriced item in

(p,X).

Proof. Suppose there is an item j which is allocated to buyer i and j is overpriced (i.e.,

pj > viqj), then i would get more utility from the bundle Xi\{j} than Xi, which is a

contradiction.

Lemma 4.6. For any relaxed envy-free solution (p,X), suppose i is a winner, then for

any buyer i′ with vi′ > vi, i
′ is a winner as well. In addition, the number of items that

i′ wins equals di′, i.e., |Xi′ | = di′.

Proof. Since i is a winner, by the above Lemma 4.5, for any j ∈ Xi, vi′qj > viqj ≥ pj .

That is, i′ is able to obtain a positive utility from j. This implies that i′ must be a winner.

Further, if |Xi′ | < di′ , then i′ would envy bundle Xi′ ∪{j}, which is a contradiction.

Another significant difference between the relaxed demand models and sharp/consec-

utive demand is that a maximum competitive equilibrium may not exist in the sharp/-

consecutive demand model (as shown by Example 2.2.2), whereas as we will see in the

next subsection, a relaxed maximum equilibrium always exists in the relaxed demand

model.



Chapter 4. Competitive Equilibrium 36

4.2.1 Maximum Equilibrium

Theorem 4.7. There always exists a relaxed maximum equilibrium with relaxed demand

constraint. Further, there is a strongly polynomial time algorithm to compute a relaxed

maximum equilibrium (i.e., a revenue maximizing relaxed equilibrium).

Now we present the algorithm to compute a relaxed maximum equilibrium. Such an

algorithm denoted by alg-meq have two steps. The first step is to select the winner set

and the second step to allocate items and settle prices.

alg-max-eq

1. Assume buyers are ordered by i1, . . . , in where vi1 ≥ · · · ≥ vin.

2. Let imax = arg mink
∑
j=1,...,k dij ≥ m and S∗ = {i1, . . . , imax}.

3. Allocation X∗

• Let X∗i = ∅ for each buyer i /∈ S∗.

• Allocate items to buyers in S∗ according to the following rules:

Buyers with larger values obtain items with larger qualities.

(Note that imax gets min
{
dimax , m−

∑
i∈S∗\{imax} di

}
items.)

4. Price p∗

• Let p∗j = 0 for each unallocated item j.

• Let p∗j = vimaxqj for each item j ∈ X∗imax
.

• For each remaining item j in the reverse order.

– let iu be the buyer that wins item j.

– let k be the item with the smallest index that iu+1 wins.

– let p∗j = viu(qj − qk) + p∗k.

5. Output the tuple (p∗,X∗).

Proof of Theorem 4.7. It is easy to see that alg-max-eq takes strongly polynomial

time. Consider any relaxed competitive equilibrium (p,X) and let S = {i | Xi 6= ∅} be

its set of winners. By the rule of defining S∗ and Lemma 4.6, we know that S ⊆ S∗.

If S ⊂ S∗, then imax /∈ S (recall that imax = max(S)) and there is an item j which is

not allocated to any buyer in (p,X); thus, pj = 0. This would imply that imax is not

envy-free in (p,X), a contradiction. Hence, we have S = S∗. By the allocation and

pricing rules of alg-max-eq, we know that the price vector p∗ computed by alg-max-

eq is a maximum relaxed price vector and the tuple (p∗,X∗) is a relaxed maximum

equilibrium.
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4.3 Hardness of General Valuations of Sharp Competitive

Equilibrium

Theorem 4.8. It is NP-hard to determine the existence of a sharp competitive equilib-

rium for general valuations in the sharp demand model (even when all demands are 3,

and valuations are 0/1).

Proof. We reduce from exact cover by 3-sets (X3C): Given a ground setA = {a1, . . . , a3n}
and a collection of subsets S1, . . . , Sm ⊂ A where |Si| = 3 for each i, we are asked whether

there are n subsets that cover all elements in A. Given an instance of X3C, we construct

a market with 3n + 3 items and 9n + m + 1 buyers as follows. Every element in A

corresponds to an item; further, we introduce another three items B = {b1, b2, b3}. We

use index j to denote one item. For each subset Si, there is a buyer with value vij = 1

if j ∈ Si and vij = 0 otherwise; further, for every possible subset {x, y, z} where x ∈ A
and y, z ∈ B, there is a buyer with value vij = 1 if j ∈ {x, y, z} and vij = 0 otherwise;

finally, there is a buyer with value vij = 1 if j ∈ B and vij = 0 otherwise. The demand

of every buyer is 3.

We claim that there is a positive answer to the X3C instance if and only if there

is a sharp competitive equilibrium in the constructed market. Assume that there is

T ∈ {S1, . . . , Sm} with |T | = n that covers all elements in A. Then we allocate items in

A to the buyers in T and allocate B to the buyer who desires B, and set all prices to be

1. It can be seen that this defines a sharp competitive equilibrium.

On the other hand, assume that there is a sharp competitive equilibrium (p,X). We

first claim that all items are allocated out in the sharp equilibrium. Otherwise, there

must exist an item aj ∈ A that is not allocated to any buyer. (If all unallocated items

just belonged to B, then all 3 items in B would be unallocated, contradicting envy-

freeness of the buyer who values B.) Then we have paj = 0. Consider the buyers who

desire subsets {aj , b1, b2}, {aj , b1, b3}, {aj , b2, b3}. They do not win since aj is not sold.

Due to envy-freeness, we have

pb1 + pb2 ≥ 3

pb1 + pb3 ≥ 3

pb2 + pb3 ≥ 3

This implies that pb1 + pb2 + pb3 ≥ 4.5. Hence, the buyer who desires B cannot afford

the price of B and at least one item in B, say b1, is not allocated out. Thus pb1 = 0 and

pb2 + pb3 ≥ 4.5. This contradicts envy-freeness of the buyer who gets b2 and b3.

Now since all items in A are allocated out, because of the construction of the market,

we have to allocate all items in A to n buyers and allocate B to one buyer; the former

gives a solution to the X3C instance.
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4.4 Computation of Sharp Competitive Equilibrium

It is well known that a sharp competitive equilibrium always exists for unit demand

buyers (even for general vij valuations) [55]; for our sharp multi-unit demand model,

however, a sharp competitive equilibrium may not exist. In the unit (relaxed) demand

case, it is well-known that the set of equilibrium prices forms a distributive lattice; hence,

there exist extremes which correspond to the maximum and the minimum equilibrium

price vectors. In our multi-unit demand model, however, even if a sharp competitive

equilibrium exists, sharp maximum equilibrium prices may not exist. Because of the

sharp multi-unit demand, an interesting and important property is that it is possible

that some items are ‘over-priced’; this is a significant difference between sharp multi-unit

and unit (relaxed) demand models (see Example 2.2.4).

We have the following characterization for over-priced items in an equilibrium solu-

tion.

Lemma 4.9. For any given sharp competitive equilibrium (p,X), the following claims

hold:

• If there is any unallocated item, then there are no over-priced items.

• At most one winner can have over-priced items; further, that winner, say i, must be

the one with the smallest value among all winners in the sharp equilibrium (p,X).

That is, for any other winner i′ 6= i, we have vi′ > vi.

Proof. The first claim is obvious since any unallocated item j′ is priced at 0; thus if

there is a winner i and item j ∈ Xi such that pj > viqj , then i would envy the subset

Xi ∪ {j′} \ {j}.
To prove the second claim, suppose there are two winners i, i′ where vi ≥ vi′ , and

suppose that i has over-priced item j. Since i′ is envy-free, his own utility must be

non-negative; we know there is an item j′ ∈ Xi′ such that vi′qj′ ≥ pj′ . This implies that

viqj′ ≥ pj′ ; thus, i would envy the subset Xi ∪ {j′} \ {j}, a contradiction.

4.4.1 Properties

We present some observations regarding sharp envy-freeness and sharp competitive e-

quilibrium. Our first observation implies that a winner is sharp envy-free if and only if

he prefers each of his allocated items to any other item.

Lemma 4.10. Given any solution (p,X) and any winner i, if i is sharp envy-free then

vij − pj ≥ vij′ − pj′ for any items j ∈ Xi and j′ /∈ Xi. On the other hand, if i is not

sharp envy-free, then there is j ∈ Xi and j′ /∈ Xi such that vij − pj < vij′ − pj′.

Proof. If i is sharp envy-free but (for j ∈ Xi and j′ /∈ Xi) vij − pj < vij′ − pj′ , it is

easy to see that i would envy subset Xi ∪ {j′} \ {j}, a contradiction. If i is not sharp
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envy-free, then there is a subset T of items with |T | = di such that
∑

j∈Xi(vij − pj) <∑
j′∈T (vij′ − pj′). Since |Xi| = |T |, the inequality holds for at least one item, i.e., there

is j ∈ Xi and j′ /∈ Xi such that vij − pj < vij′ − pj′ .

Lemma 4.11. For any sharp envy-free solution (p,X), suppose there are two buyers

i, i′ with values vi > vi′ and two items j and j′ that are allocated to i and i′ respectively,

i.e., j ∈ Xi and j′ ∈ Xi′. Then qj ≥ qj′.

Proof. By the above Lemma 4.10, we have

viqj − pj ≥ viqj′ − pj′

vi′qj′ − pj′ ≥ vi′qj − pj

Adding the two inequalities together, we get (vi− vi′)(qj − qj′) ≥ 0, yielding the desired

result.

Lemma 4.11 implies that in any sharp envy-free solution, the allocation of items is

monotone in terms of their amount of qualities and the values of the winners, i.e., winners

with larger values win items with larger qualities. However, it does not imply that the

value of every winner is larger than or equal to the value of any loser. For instance,

consider three buyers i1, i2, i3 and two items j1, j2 with qj1 = 2 and qj2 = 1. The values

and demands are vi1 = 1.3, vi2 = 1, vi3 = 0.9 and di1 = 1, di2 = 2, di3 = 1. Then prices

pj1 = 2.2, pj2 = 0.9 and allocations Xi1 = {j1}, Xi2 = ∅, Xi3 = {j2} constitute a revenue

maximizing sharp envy-free solution. In this solution, vi2 > vi3 , but i2 does not win any

item (because of the sharp demand constraint) whereas i3 wins item j2.

Lemma 4.12. If there is a sharp competitive equilibrium (p,X), then for any winner

i, item j ∈ Xi and unallocated item j′, we have qj ≥ qj′.

Proof. Since item j′ is not allocated to any buyer, its price pj′ = 0. By sharp envy-

freeness, we have viqj ≥ viqj − pj ≥ viqj′ − pj′ = viqj′ , which implies that qj ≥ qj′ .

By the above characterization, in any sharp competitive equilibrium, all allocated

items have larger qualities. Hence, by Lemmas 4.11 and 4.12, we know that if the

set of winners is fixed in a sharp competitive equilibrium, the allocation is determined

implicitly as well. On the other hand, we observe that Lemma 4.12 does not hold if

(p,X) is a (revenue maximizing) sharp envy-free solution. For instance, consider two

buyers i1, i2 with values vi1 = 10, vi2 = 1 and demand di1 = 1, di2 = 10, and twelve

items j1, j2, . . . , j12 with qualities qj1 = 10, qj2 = 5, qj3 = · · · = qj12 = 1. It can be seen

that in the optimal sharp envy-free solution, we set prices pj1 = 91, pj2 =∞, pj3 = · · · =
pj12 = 1, and allocate Xi1 = {j1}, Xi2 = {j3, . . . , j12}, which generates total revenue

91 + 10 = 101. In this solution, qj2 > qj3 = · · · = qj12 , but item j2 is not allocated to

any buyer.
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Lemma 4.13. Given a sharp envy-free solution (p,X), a loser ` and any subset T of

d` items, the following property cannot hold:

A non-empty subset of items in T are either allocated to winners with values smaller

than v` or priced at 0; any other elements of T are allocated to winners having the same

value v` as `.

Note that Lemma 4.13 is not only for sharp equilibrium but also available for sharp

envy-free solutions.

Proof. Let (p,X) be a sharp envy-free pair of price and allocation vectors. Given the

loser ` and T satisfying the conditions of the statement of the lemma, we show how to

construct a set T ′ of items that ` envies.

Let T = T0 ∪ T1 ∪ · · · ∪ Ts be a partition of T where T0 consists of items priced at 0

in (p,X) and for i > 0, Ti = T ∩Xi. Note that any non-empty Ti satisfies vi ≤ v`, and

if T0 = ∅ then Ti 6= ∅ for some i > 0 with vi < v`.

Note that T0 satisfies
∑

j∈T0 viqj − pj ≥ 0, where the inequality is strict if T0 is

non-empty. Let T ′0 = T0.

Consider any non-empty Ti (with i > 0). Let T ′i be the |Ti| items j ∈ Xi that

maximize viqj−pj . We have
∑

j∈T ′i
viqj−pj ≥ 0. Hence

∑
j∈T ′i

v`qj−pj ≥ 0, with strict

inequality if vi < v`.

Summing these inequalities, we have
∑s

i=0

∑
j∈T ′i

v`qj − pj ≥ 0, and in fact the

inequality is strict since at least one of the s+ 1 inequalities is strict. Let T ′ = T ′0 ∪T ′1 ∪
· · · ∪ T ′s; |T ′| = |T | = d` and we have shown that ` envies T ′.

4.4.2 Algorithm

Our main result of this section is the following.

Theorem 4.14. There is a polynomial algorithm to determine the existence of a sharp

competitive equilibrium; and if one exists, it computes a revenue maximizing sharp equi-

librium.

Thus, both the existence problem and the maximization problem become tractable,

as a result of the correlated valuations vij = viqj .

The algorithm, called Max-CE, is divided into two steps. The first step is to compute

a set of ‘candidate’ winners if an equilibrium exists. The second step is to calculate a

‘candidate’ equilibrium and verify if it is indeed a (revenue maximizing) equilibrium.

Let Ak, 1 ≤ k ≤ K denotes all the buyers with the kth largest value in {v1, v2, · · · , vn}.
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Max-CE stage 1.

1. Let S∗ ← ∅ be the set of candidate winners

2. Let k ← 1 and let D ← m be the number of ‘‘available items’’

3. While k ≤ K

• If di > D for every i ∈ Ak, let k ← k + 1

• Else

– Let S = {i | i ∈ Ak, di ≤ D}
– If

∑
i∈S di > D

(a) If there is S′ ⊆ S s.t.
∑
i∈S′ di = D

let S∗ ← S∗ ∪ S′, and goto Max-CE stage 2

(b) Else, a sharp competitive equilibrium does not

exist, and return

– Else
∑
i∈S di ≤ D

(c) Let S∗ ← S∗ ∪ S, D ← D −
∑
i∈S di, k ← k + 1

4. Goto Max-CE stage 2

Note that in the above step 3(a) we check whether there is S′ ⊆ S such that∑
i∈S′ di = D; this is equivalent to solving a subset sum problem. However, in our

instance, each demand satisfies di ≤ m. Hence, a dynamic programming approach can

solve the problem in time O(n2m). Hence, stage 1 runs in strongly polynomial time.

An input to Max-CE is all the n buyers with valuation vi and demand di and all

the m items with qualities qj .

Lemma 4.15. If an input to Max-CE has a sharp competitive equilibrium (p,X), then

stage 1 will not return that a sharp equilibrium does not exist at step 3(b).

Proof. Let (p,X) be a sharp competitive equilibrium of an input to Max-CE. In this

proof, when we refer to winning/losing buyers, or allocated/unallocated items, we mean

with respect to (p,X). In particular, let W be the set of winners of (p,X).

Suppose that Max-CE stage 1 exits on the k-th iteration of the loop. We claim

that during the first k−1 iterations, all buyers added to S∗ must be winners. To see this,

suppose alternatively that at iteration k′ < k, buyer ` is the first loser to be added to

S∗. In that case, ` has d` items that satisfy the conditions of Lemma 4.13, contradicting

sharp envy-freeness. (Suppose that the winners found by the algorithm during the first

k′ − 1 iterations are given their allocation in (p,X). At iteration k′, the algorithm has

more than d` available items, some of which are allocated to buyers with value less than

`, or are unallocated.)

At the final iteration k we must have S 6= ∅ (otherwise the algorithm will begin a new

iteration). Since
∑

i∈S di > D, we have S\W 6= ∅ (members of S have too much demand

for them all to be able to win). Since there is no subset S′ ⊆ S such that
∑

i∈S′ di = D,

we have
∑

i∈S∩W di < D. Hence, there are items that are not allocated to buyers in
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S∗ ∪ (S ∩ W ). Let i′ ∈ S \ W ; we can find di′ items that satisfy the condition of

Lemma 4.13, implying that a buyer in S\W is not sharp envy-free, a contradiction.

Lemma 4.16. A revenue maximizing sharp competitive equilibrium (p,X) can be con-

verted to one with equal revenue whose winning set is S∗.

Proof. Assume that the given instance has a sharp competitive equilibrium (p,X) and

that Max-CE enters Max-CE stage 2 at the kth iteration with the set of candidates

S∗. Let W be the set of winners of (p,X), and let W ′ = W ∩ (A1 ∪ · · · ∪ Ak−1) and

W ′′ = W \W ′. Let S1 = S∗ ∩ (A1 ∪ · · · ∪Ak−1) and S2 = S∗ \ S1 (note that S2 ⊆ Ak).
From the analysis of the above lemma and Lemma 4.13, we know that (i) W ′ = S1, (ii)

W ′′ ⊆ Ak, and (iii)
∑

i∈W ′′ di =
∑

i∈S2 di. Thus, the only difference between S∗ and W

lies in the selection of buyers in Ak (this is due to possibly multiple choices in step 3(a)

in Max-CE stage 1). Due to envy-freeness, we have∑
i∈W ′′\S2

ui(p,X) =
∑

i∈W ′′\S2

∑
j∈Xi

(viqj − pj) ≥ 0 ≥
∑

i∈S2\W ′′
ui(p,X)

Since all buyers in W ′′ \ S2 and S2 \W ′′ have the same value, we know that the above

inequalities are tight. Thus, if we reassign the items in ∪i∈W ′′Xi to the buyers in S2

and keep the same prices, the resulting output will still be a sharp equilibrium.

Given the above characterization, the second step of the algorithm Max-CE is de-

scribed as follows.

Max-CE stage 2.

5. Allocation X∗ is constructed as follows:

• Let X∗i ← ∅, for each buyer i /∈ S∗

• For each i ∈ S∗ in non-increasing order of vi

– allocate di of the remaining items to i in non-increasing

order of qj

6. Price p∗ is computed according to the following linear program:

max
∑
i∈S∗

∑
j∈X∗i

p∗j

s.t. p∗j ≥ 0 ∀ j

p∗j = 0 ∀ j /∈ ∪i∈S∗X∗i
viqj − p∗j ≥ viqj′ − p∗j′ ∀ i ∈ S∗, j ∈ X∗i , j′ /∈ X∗i∑
j∈T (viqj − p∗j ) ≤ 0 ∀ i /∈ S∗, T with |T | = di

7. If the above linear program has a feasible solution, output the tuple

(p∗,X∗)

8. Else, return that a sharp competitive equilibrium does not exist
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In the above LP, there are m variables where each item j has a variable p∗j . The first

two constraints ensure that the price vector is a set of feasible market clearing prices.

The third condition guarantees that all winners are envy-free. The last condition says

that for each loser i and any subset of items T with T = |di|, i cannot obtain a positive

utility from T . Notice that it is possible that there are exponentially many combinations

of T ; thus the LP has an exponential number of constraints. However, observe that for

any given solution p∗, it is easy to verify if p∗ is a feasible solution of the LP or find a

violated constraint. In particular, for every loser i, we can order all items j in decreasing

order of viqj−p∗j and verify the subset T composed of the first di items; if i cannot obtain

a positive utility from such T , then i is envy-free. Therefore, there is a separation oracle

to the LP, and thus, the ellipsoid method can solve the LP in polynomial time. Hence,

the total running time of Max-CE is in polynomial time.

If the algorithm returns a tuple (p∗,X∗), certainly it is a sharp competitive equi-

librium; further, it is a revenue maximizing sharp equilibrium because of the objective

function in the LP. It is therefore sufficient to show the following claim to complete the

proof of Theorem 4.14.

Lemma 4.17. If there exists a sharp competitive equilibrium, then stage 2 will not

claim that an equilibrium does not exist at step 8.

Proof. If there is a sharp competitive equilibrium (p,X), let W be the set of winners of

the equilibrium. By Lemma 4.15, we know that Max-CE will enter Max-CE stage 2.

By the above discussions, we know that W and S∗ only differ in the last kth iteration of

the main loop of Max-CE stage 1 and replacing all winners in W ∩ Ak with S∗ ∩ Ak
gives a sharp equilibrium as well. Further, by Lemma 4.11 and 4.12, the allocation of

items to the winners in W is fixed. Hence, the sharp equilibrium price vector p gives

a feasible solution to the LP in the stage 2, which implies that the algorithm will not

claim that a sharp equilibrium does not exist.

4.5 Consecutive Competitive Equilibrium

In this section, we study the revenue maximizing consecutive competitive equilibrium

in the full information setting. To simplify the following discussions, we sort all buyers

and items in non-increasing order of their values, i.e., v1 ≥ v2 ≥ · · · ≥ vn.

We say an allocation Y = (Y1, Y2, · · · , Yn) is efficient if Y maximizes the total

social welfare e.g.
∑

i

∑
j∈Yi vij is maximized over all the possible allocations. We call

p = (p1, p2, · · · , pm) an equilibrium price if there exists consecutive an allocation X such

that (X,p) is a competitive equilibrium. The following lemma is implicitly stated in

[38], for completeness, we’ll prove it.

Lemma 4.18. Let allocation Y be efficient, then for any equilibrium price p, (Y,p) is

a consecutive competitive equilibrium.
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Proof. Since p is an equilibrium price, there exists an allocation X such that (X,p)

is a consecutive competitive equilibrium. As a result, by consecutive envy-freeness,

ui(X,p) ≥ ui(Y,p) for any i ∈ [n]. Let T = [m]\ ∪i Yi, then we have

∑
i

∑
j∈Yi

vij −
m∑
j=1

pj ≥
∑
i

∑
j∈Xi

vij −
m∑
j=1

pj

=
∑
i

∑
j∈Xi

vij −
∑
i

∑
j∈Xi

pj =
∑
i

ui(X,p)

≥
∑
i

ui(Y,p) =
∑
i

∑
j∈Yi

vij −
∑
i

∑
j∈Yi

pj

=
∑
i

∑
j∈Yi

vij −
m∑
j=1

pj +
∑
j∈T

pj

where the first inequality is due to Y being efficient and first equality due to ui(X,p)

being consecutive competitive equilibrium (unallocated item priced at 0). Therefore,∑
j∈T pj = 0 and the above inequalities are all equalities. ∀i : ui(X,p) = ui(Y,p).

Further, because the price is the same,

∀i a loser ∀Z consecutive items and |Z| = di, we have ui(Z) ≤ 0.

∀i a winner ∀Z consecutive items and |Z| = di, we have

ui(Yi) = ui(Xi) ≥ ui(Z).

Therefore, (Y,p) is a consecutive competitive equilibrium.

By Lemma 4.18, to find a revenue maximizing consecutive competitive equilibrium,

we can first find an efficient allocation and then use linear programming to settle the

prices. We develop the following dynamic programming to find an efficient allocation.

We first only consider there is one peak in the quality order of items. The case with

constant peaks is similar to the above approaches, for general peak case, as shown in

above Theorem 3.18, finding one consecutive competitive equilibrium is NP-hard if the

competitive equilibrium exists, and determining existence of consecutive competitive

equilibrium is also NP-hard.

Recall that all the values are sorted in non-increasing order e.g. v1 ≥ v2 ≥ · · · ≥ vn.

g[s, l, r] denotes the maximized value of social welfare when we only consider first s

buyers and the allocation of s is exactly the interval [l, r]. Then we have the following

transition function.

g[s, l, r] = max



g[s− 1, l, r]

g[s− 1, l, r − ds] + vs
∑r

j=r−ds+1 qj

g[s− 1, l + ds, r] + vs
∑l+ds−1

j=l qj

(4.1)
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By tracking procedure 4.1, an efficient allocation denoted by X∗ = (X∗1 , X
∗
2 , · · · , X∗n)

can be found. The price p∗ such that (X∗,p∗) is a revenue maximization consecutive

competitive equilibrium can be determined from the following linear programming. Let

Ti be any consecutive number of di slots, for all i ∈ [n].

max
∑
i∈[n]

∑
j∈X∗i

pj

s.t. pj ≥ 0 ∀ j ∈ [m]

pj = 0 ∀ j /∈ ∪i∈[n]X
∗
i∑

j∈X∗i

(viqj − pj) ≥
∑
j′∈Ti

(viqj′ − pj′) ∀ i ∈ [n]

∑
j∈X∗i

(viqj − pj) ≥ 0 ∀i ∈ [n]

Clearly there is only a polynomial number of constraints. The constraints in the first

line represent that all the prices are non negative (no positive transfers). The constraint

in the second lines means unallocated items must be priced at zero (market clearance

condition). And the constraint in third line contains two aspects of information. First

for all the losers e.g. loser k with Xk = ∅, the utility k gets from any consecutive

number of dk is no more than zero, which makes all the losers envy-free. The second

aspect is that the winners e.g. winner i with Xi 6= ∅ must receive a bundle with di

consecutive slots maximizing its utility over all di consecutive slots, which together with

the constraint in fourth line (winners’ utilities are non negative) guarantees that all

winners are consecutive envy-free.

Theorem 4.19. If the number of peaks is upper bounded by a constant. Then there

is a polynomial time algorithm to decide whether there exists a consecutive competitive

equilibrium or not and to compute a revenue maximizing consecutive market equilibrium

if one does exist. If the number of peaks is arbitrary, both problems (deciding existence

or computing the maximum one if one does exist) is NP-hard.

Proof. The efficient allocation can be found efficiently if the number of peaks is bounded

by a constant, see Theorem 3.17. Clearly the above linear programming and procedure

(4.1) run in polynomial time. If the linear programming output a price p∗, then by

its constraint conditions, (X∗,p∗) must be a consecutive competitive equilibrium. On

the other hand, if there exists a consecutive competitive equilibrium (X,p) then by

Lemma 4.18, (X∗,p) is a consecutive competitive equilibrium, providing a feasible so-

lution of the above linear programming. By the objective of the linear programming,

we know it must be a revenue maximizing one. For the general peak case, as shown

in the above Theorem 3.18, finding one consecutive competitive equilibrium is NP-hard

if the competitive equilibrium exists since finding the efficient allocation is NP-hard,

and determining existence of competitive equilibrium is also NP-hard. This is because
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that considering the instance in the proof of Theorem 3.18, it is not difficult to see the

constructed instance has an equilibrium if and only if 3 partition has a solution.



Chapter 5

Revenue Maximization of

Envy-free Multi-unit Models

We study revenue maximization problems of various envy-free buyers in this chapter.

The main work of this chapter focuses on relaxed/sharp/consecutive demand buyers.

For the relaxed demand case, as before, the problem is simple, which can be solved

completely by dynamic programming as shown in Section 5.2. The circumstances become

difficult for sharp demand cases. Indeed, if the demand of the buyers is arbitrary, the

problem is NP-hard, however, for the very important case where buyers’ demands are

bounded by a constant, a polynomial algorithm is presented to compute an optimal

sharp envy-free solution. The cases for consecutive demand buyers are still very hard.

If the demand is arbitrary, the problem is NP-hard even if all the qualities are the same,

yet, for uniform demand buyers, we present a polynomial algorithm solving the problems

if the qualities are ordered from top to down. Some partial results on bundle envy-free

buyers and budgets constraint buyers are also given.

This chapter is organized as follows. We begin in Section 5.1 to present the main

results in this chapter. Next, the revenue maximization problem for relaxed demand

buyers is totally solved in Section 5.2. For sharp envy-freeness, the general demand case

is NP-hard, see Section 5.4, however, a polynomial algorithm is presented to find an

optimal envy-free solution when the demand is bounded by a constant in Section 5.3.

The problem becomes more difficult in consecutive demand cases. Indeed, the problem is

NP-hard even if all the qualities are all the same, yet, a polynomial algorithm is presented

when the buyers have common demand in Section 5.5. Some results on bundle envy-

freeness are presented in Section 5.6. Studies on identical items with budgets for relaxed

demand buyers are shown in Section 5.7.

5.1 Introduction

First, we present the positive result for relaxed envy-free solutions as follows.

47
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Theorem 5.1. There is a strongly polynomial time algorithm to compute a revenue

maximizing (maximum) relaxed envy-free solution with relaxed demand constraint.

The NP-hardness result of [39] for unit demand buyers implies that we cannot hope

for a polynomial time algorithm for general vij valuations in the multi-unit demand

setting, even for the very special case when one has positive values for at most three

items [14]. However, it does not rule out positive computational results for special, but

important, cases of multi-unit demand. For viqj valuations with multi-unit demand,

where the hardness reductions of [14, 39] does not apply, we have the following results.

Theorem 5.2. There is a polynomial time algorithm that computes a revenue maximiz-

ing sharp envy-free solution in the sharp multi-unit demand model with viqj valuations

if the demand of every buyer is bounded by a constant. On the other hand, the problem

is NP-hard if the sharp demand is arbitrary, even if there are only three buyers.

Here, we have a complete overview of sharp/consecutive envy-free pricing with multi-

unit demand buyers. Most of our results are positive, suggesting that sharp/consecutive

envy-free pricing are candidate solution concepts to be applicable in the domains where

the valuations are correlated with respect to the quality of the items.

We prove that it is NP-hard to compute an optimal sharp envy-free solution even if

there are only three buyers. Hence, our efforts focus on the special, yet very important

bounded-demand case. To compute an optimal sharp envy-free solution for bounded

demand, certain candidate winner sets (the number of such sets is polynomial) are

defined and found; and crucially, there is at least one optimal winner set in our selected

candidate winner sets. For each candidate winner set, if the demand is bounded by a

constant, we present a linear programming to characterize its optimal solution when the

allocation is known. Finally, a dynamic programming algorithm is provided to find the

allocation sets when a candidate winner set is fixed. Both the linear programming and

the dynamic programming run in polynomial time. For consecutive demand buyers, the

problem of revenue maximizing consecutive envy-free solution is NP-hard. However, for

the very important case that the qualities are order from top to bottom, and all the

buyers’ demands are the same, a polynomial algorithm would be presented to compute

maximum revenue of consecutive envy-free solutions.

Theorem 5.3. The revenue maximization problem of consecutive envy-free buyers is

NP-hard even if all the qualities are the same.

Definition 5.1.1 (Uniform Demand). We say buyers have uniform demands if all the

buyers have the same demand in the model.

Definition 5.1.2 (PTAS). An algorithm is called a polynomial time approximation

scheme (PTAS) for a given problem with input I if for any ε > 0, the algorithm runs in

time polynomial in the size of input I to output a solution with value M(I) such that

M(I) ≥ (1− ε)OPT (I), where OPT (I) is the optimal value of the problem.
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For bundle envy-free case, the situation become much complicated, yet we still have

some positive results. Noting that taking budget into consideration, each winner i’s

payment should be no more than bi e.g.
∑

j∈Xi pj ≤ bi.

Theorem 5.4. For bundle envy-free pricing, each buyer only having uniform demand

constraints, a PTAS is presented for identical items and an exponential time algorithm

is presented for distinct items with valuation viqj; for relaxed envy-free pricing, each

buyer only have budget constraints, an optimal algorithm is proposed for identical items.

See Section 5.6 and 5.7 for the proof of Theorem 5.4.

Recall K is the number of distinct values in the set A = {v1, . . . , vn}, and A1, . . . , AK

is a partition of all buyers where each Ak, k = 1, 2, . . . ,K, contains the set of buyers

that have the kth largest value.

5.2 Relaxed Envy-Free Pricing

Theorem 5.5. There is a strongly polynomial time algorithm to compute a revenue

maximizing relaxed envy-free solution with relaxed demand constraint.

Next we present an algorithm denoted by alg-rle-ef to solve the relaxed envy-

free pricing problem. Suppose S = {i1, i2, . . . , it} to be a candidate winner set and

T = {j1, j2, . . . , j`} a subset of items, where i1 < i2 < · · · < it, j1 < j2 < · · · < j` and

d(S\{it}) < ` ≤ d(S). Let X be the allocation produced by the following procedure

denoted by rle-allocation.

rle-allocation

Allocation X:

• Let Xi ← ∅, for each buyer i /∈ S

• For each i ∈ S\{it} with the decreasing order of vi

– buers with smaller indices obtain items with smaller indices

• allocate all the remaining items in T to it

It is easy to check rle-allocation takes strongly polynomial time.
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alg-rle-ef

1. If d(A) ≤ m, let kmax ← K

2. Else let kmax = arg mink d
(
A1 ∪ · · · ∪Ak

)
≥ m

3. For k = 1 to kmax

• Let L← d
(
A1 ∪ · · · ∪Ak−1

)
and imin = |

⋃k−1
i=1 Ai|

• If k < kmax let `← d(Ak); else let `← m− L

• For r = 1 to `

– let imax = arg minj
∑j
i=imin+1 di ≥ `

– let S = {1, 2, . . . , imax}
– let T = {z1, z2, . . . , zL+`} ⊆ {1, 2, . . . ,m} with z1 < z2 < · · · < zL+` be

items to be defined

– run rle-allocation on S and T getting X, let wj ← vi if j ∈
Xi

– Pricing getting price vector p as follows

let pj =∞ for j /∈ T;
let pzL+`

= wL+`qzL+`
and pzj = wj(qzj − qzj+1) + pzj+1, for j ∈

T\{zL+`}
– getting T = {z1, z2, . . . , zL+`} from the optimal solution of the

following optimization

problem and denote the optimal value as Rk,w

Maximize R =

L+∑̀
j=1

(jwj − (j − 1)wj−1)qzj

Subject to z1 < z2 < · · · < zL+`, {z1, z2, . . . , zL+`} ⊆ {1, 2, . . . ,m}

4. Let Rk
∗,r∗ = max{Rk,r} and (p,X) be the corresponding tuple to Rk

∗,r∗;

Output Rk
∗,r∗ and the tuple (p,X)

Since the optimization problem of alg-rle-ef can be solved by dynamic program-

ming method as in Solve-DLP (see subsection 5.3.5) in strongly polynomial time, the

time taken in alg-rle-ef is strongly polynomial time.

Proof of Theorem 5.5. We need to prove alg-rle-ef actually outputs an optimal solu-

tion. First, it is easy to check our output is a relaxed envy-free solution. Second, there

must be an optimal winner set (a set is called an optimal winner set if there exists a

optimal relaxed envy-free solution such that the set is the winner set for this optimal

relaxed envy-free solution) in our select possible winner sets like S. For any optimal

winner set S′, suppose there is an optimal solution (p′,X′) corresponding to S′. Sup-

pose imax = max{i ∈ S′} and imax ∈ Ak, suppose w = |S′ ∩Ak|, then it is easy to check

that Rk,r ≥
n∑
i=1

∑
j∈X′i

p′j . Hence, the output is an optimal relaxed envy-free solution.
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5.3 Algorithm for Constant Sharp Demands

We noted earlier that a sharp envy-free solution always exists. We may use envy-free

instead of sharp envy-free alternatively in this section for convenience if there is no

confusion. Our main results are the following.

Theorem 5.6. If the demand of each buyer is bounded by a constant, then the revenue-

maximizing sharp envy-free pricing problem can be solved in polynomial time.

We note that the correlated viqj valuations are crucial to derive an efficient com-

putation when the demands are bounded by a constant; in contrast, for unit-demand,

the sharp envy-free pricing is NP-hard for general valuations vij even if every buyer is

interested in at most three items [14].

Throughout this section, let ∆ be a constant where di ≤ ∆ for any buyer i, and

again, buyers and items are sorted according to their values and qualities. For any tuple

(p,X), we assume that all unsold items are priced at∞. This assumption is without loss

of generality for sharp envy-freeness. We will first explore some important properties

of an (optimal) sharp envy-free solution, then at the end of the section present our

algorithm.

5.3.1 Candidate Winner Sets

For a given set S of buyers, let max(S) and min(S) denote the buyer in S that has

the largest and smallest index (buyers are indexed in increasing order with their values

decreasing), respectively.

Definition 5.3.1 (Candidate Winner Set). Given a subset of buyers S 6= ∅, let k =

max{r|Ar ∩ S 6= ∅}. We say S is a candidate winner set if the total demand of buyers

in S is at most m, i.e., d(S) ≤ m, and for any i ∈ A1 ∪ · · · ∪Ak−1 \ S, di >
∑

i′∈S: i′>i
di′ .

The definition of candidate winner set is closely related to sharp envy-freeness. In-

deed, due to Lemma 4.13, the above definition defines a slightly larger set (than all

possible sets of winners in sharp envy-free solutions) as the inequality does not consider

all the buyers completely in the same value category vj . However, this definition makes

it easier for us to describe and analyze the algorithm.

Proposition 5.7. For any sharp envy-free solution (p,X), let S = {i | Xi 6= ∅} be the

set of winners. Then S is either a candidate winner set or S = ∅.

Proof. The claim follows directly from Lemma 4.13.
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FindWinners(S): Input a set of buyers S

• Let imax = max(S) and assume imax ∈ Ak

• Initially let WS = S

• For each buyer j ∈ A1 ∪ · · · ∪Ak−1 in reverse order

– If j /∈ S and dj ≤
∑

i∈WS : i>j

di, let WS ←WS ∪ {j}

• Return WS

Proposition 5.8. For any subset of buyers S, let WS =FindWinners(S).

• If d(WS) ≤ m, then WS is a candidate winner set and for any candidate winner

set S′ ⊇ S, WS ⊆ S′.

• If d(WS) > m, then there is no candidate winner set containing S.

Proof. Obviously, if d(WS) ≤ m, then from the definition of candidate winner set, we

know WS is a candidate winner set. Still, by the definition of candidate winner set,

for any j in WS\S, any candidate winner set S′ ⊇ S, since dj ≤
∑

i∈WS : i>j

di, then

dj ≤
∑

i∈S′: i>j
di (since S′ ⊇ S), thus, j ∈ S′, hence, WS ⊆ S′. Therefore, the second

statement follows.

FindLoser(S): Input a candidate winner set S

• Let imin = min(S) and assume imin ∈ Aj

• Initially let LS = ∅, and α =∞

• For each k = j, j + 1, . . . ,K

– Let i0 = arg min{di | i ∈ Ak\ S}

– If di0 < α, let LS ← LS ∪ {i0} and α← di0

• Return LS

Proposition 5.9. For any given tuple (p,X) with winner set S, suppose that S is a

candidate winner set and let LS =FindLoser(S). If all losers in LS are sharp envy-free

with respect to (p,X), then all other losers are sharp envy-free as well.

Proof. For any i ∈ LS , if i is sharp envy-free, then for any subset T of items with

|T | = di,
∑

j∈T (viqj − pj) ≤ 0. Hence, for any v ≤ vi and T ′ with |T ′| ≥ di (Consider

sum of vqj−pj over all the elements j of subset T with di of T ′, then each value vqj−pj
is counted by

(|T ′|−1
di−1

)
times), we have

∑
j∈T ′

(vqj−pj) =
1(|T ′|−1

di−1

) ∑
T⊆T ′,|T |=di

∑
j∈T

(vqj−pj) ≤
1(|T ′|−1

di−1

) ∑
T⊆T ′,|T |=di

∑
j∈T

(viqj−pj) ≤ 0.
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Hence, by the rules of FindLoser, we know that if all the losers in LS are sharp envy-

free, all other losers in Aj ∪ · · · ∪ AK are sharp envy-free as well. On the other hand,

for any loser j ∈ A1 ∪ · · · ∪ Aj−1, since S is a candidate winner set, we know that

dj >
∑

i∈S: i>j

di =
∑
i∈S

di. Since all unsold items are priced at ∞, we know that j is sharp

envy-free. Hence, all losers are sharp envy-free.

5.3.2 Bounding the Number of Candidate Winner Sets

We have the following bound on the number of candidate winner sets.

Lemma 5.10. For any k ∈ {2, . . . ,K} and S ⊆ Ak, suppose d(S) ≤ m. Let

C =
{
S ∪ S′ | S′ ⊆ A1 ∪ · · · ∪Ak−1 and S ∪ S′ is a candidate winner set

}
Then |C| ≤

⌊
m
d(S)

⌋
.

Proof. Let a = d(S) and ` be the index of the buyer max(Ak−1). We add buyers

`, ` − 1, ` − 2, . . . , 1 into S in sequence and maintain all the possible candidate winner

sets. Let C0 = {S}. In general, we have constructed Ct containing all the candidate

winner sets of {`, `− 1, `− 2, . . . , `− t+ 1}∪S. We order Ct = {St,1, St,2, . . . , St,nt} such

that d(St,1) ≤ d(St,2) ≤ · · · ≤ d(St,nt) ≤ m. We should prove that d(St,i) ≥ i ∗ d(S).

We now add ` − t into Ct to construct Ct+1. Let ts = max{i : d(St,i) < d`−t}
if {i : d(St,i) < d`−t} 6= ∅, otherwise ts = 0. Let St+1,j = St,j for j = 1, 2, ·, ts,
St+1,j+ts = St,j ∪ {`− t} for j = 1, 2, . . . , nt. Clearly that d(St+1,i) ≥ i ∗ d(S) for i ≤ ts

by inductive hypothesis. And

d(St+1,j+ts) = d(St,j) + d`−t ≥ j ∗ d(S) + d(St,ts) ≥ (j + ts) ∗ d(S).

Let nt+1 = max{i : d(St+1,i) ≤ m}. Clearly the claim follows for `− t and Ct.
The lemma follows by the condition m ≥ d(S`,n`) ≥ n` ∗ d(S).

5.3.3 Optimal Winner Sets

Definition 5.3.2 (Optimal Winner Set). A subset of buyers S is called an optimal

winner set if there is a revenue maximizing sharp envy-free solution (p,X) such that S

is its set of winners.

Proposition 5.11. Let S be an optimal winner set and let k = max{r | Ar ∩ S 6= ∅}.
For any S′ ⊆ Ak, if d(S′) = d(S ∩ Ak), then S′ ∪ (S\Ak) is an optimal winner set as

well.

Before proving the proposition, we first establish the following claim.

Claim 5.3.1. Suppose there exists a revenue-maximizing sharp envy-free solution (p,X),

and let S be the winning set in (p,X), and let k = max{r | Ar ∩ S 6= ∅}. Then every

buyer in Ak has utility zero.
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Proof. Of course, every loser in Ak has utility zero. To show that every winner in Ak

has utility zero, we show that if such a winner has positive utility, then prices can be

raised to the point where his utility becomes zero, while maintaining sharp envy-freeness

(contradicting the assumption that (p,X) maximizes revenue).

Let imax = max(S). Let

δ =
uimax(p,X)

dimax

.

We claim that (p + δ,X) is an sharp envy-free solution as well, where the price of each

item is increased by δ.

Obviously we have δ ≥ 0, and the conclusion holds trivially if δ = 0. Suppose δ > 0.

For the tuple (p + δ,X), since all items have their prices increased by the same amount,

all losers are still sharp envy-free and all winners would not envy the items they don’t

get. Hence, we need only to check that each winner still gets a non-negative utility.

For imax, we have uimax(p + δ,X) = 0. For any other winner i 6= imax, it holds that

vi ≥ vimax . Since i does not envy any item in (p,X), for any item j′ ∈ Xi and j ∈ Ximax ,

it holds that viqj′ − pj′ ≥ viqj − pj , hence, pj′ ≤ vi(qj′ − qj) + pj . Then, we get

pj′ ≤
∑

j∈Ximax
(vi(qj′ − qj) + pj)

dimax

= viqj′ −
∑

j∈Ximax
(viqj − pj)

dimax

.

This implies that

pj′ + δ ≤ viqj′ −
∑

j∈Ximax

(
(viqj − pj)− (vimaxqj − pj)

)
dimax

= viqj′ −
∑

j∈Ximax
(vi − vimax)qj

dimax

≤ viqj′ .

Hence, ui(p + δ,X) =
∑

j′∈Xi(viqj′ − pj′ − δ) ≥ 0. Therefore, (p + δ,X) is an envy-free

solution.

We are now ready for the proof of Proposition 5.11.

Proof of Proposition 5.11. Since S is an optimal winner set, there is an optimal sharp

envy-free solution (p,X) such that S = {i | Xi 6= ∅}. We construct a new allocation X′

with winner set S′ ∪ (S\Ak) as follows:

• For any i /∈ Ak, X ′i = Xi.

• For any i ∈ Ak \ S′, X ′i = ∅.

• For all the buyers in S′, allocate items in
⋃
i∈S∩Ak Xi to them arbitrarily. (The

allocation is feasible as d(S′) = d(S ∩Ak).)

Obviously, (p,X′) generates the same revenue as (p,X). We claim that (p,X′) is an

envy-free solution (this implies our desired result that S′ ∪ (S\Ak) is an optimal winner

set). For any buyer i /∈ Ak, since prices are not changed, i is still sharp envy-free.



Chapter 5. Envy-free Multi-unit Models 55

Next we prove that all buyers i ∈ Ak are sharp envy-free in (p,X′). Let J =

∪i∈S∩AkXi be the set of items allocated to buyers in Ak; we also have J = ∪i∈S′X ′i.
Suppose first that |S ∩ Ak| = |S′| = 1; in this case (p,X) differs trivially from (p,X′),

so (p,X′) is sharp envy-free.

Alternatively, there is some buyer ī ∈ Ak with dī < d(S ∩ Ak). We show that

any item j ∈ J allocated to i ∈ Ak in (p,X′), affords zero utility to i, i.e. j satisfies

viqj = pj . Let v be the value shared by all i ∈ Ak, i.e. v = vi for any i ∈ Ak. Since

(p,X) is sharp envy-free, we have using Claim 5.3.1 that ui(p,X) = 0 for all i ∈ Ak,
hence

∑
j∈J vqj − pj = 0. Suppose some j ∈ J does not satisfy vqj − pj = 0. Arrange

all j ∈ J in descending order of vqj − pj . Any proper prefix P of this sequence satisfies∑
j∈P vqj − pj > 0. Then buyer ī envies this prefix.

5.3.4 Maximizing Revenue for a Given Set of Winners and Allocated

Items

Suppose that S is a candidate winner set and T is a subset of items, where |T | = d(S).

We want to know if there is an envy-free solution such that S is the set of winners and

S wins items in T ; if yes, we want to find one that maximizes revenue. This problem

can be solved easily by a linear program with an exponential number of constraints for

each i ∈ S. The following combinatorial algorithm does the same thing; the idea inside

is critical to our main algorithm.

We will use the following notations: S = {i1, i2, . . . , it} with i1 < i2 < · · · < it and

T = {j1, j2, . . . , j`} with j1 < j2 < · · · < j`. Let ib(s) be the winner of js, s = 1, 2, . . . , `.
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MaxRevenue(S, T ): Input a candidate winner set S and a subset of items T

where |T | = d(S)

• Let LS = FindLoser(S).

• Allocation X

– Let Xi ← ∅, for each buyer i /∈ S.

– Allocate items in T to buyers in S according to the following rule

(by Lemma 4.11):

Buyers with smaller indices obtain items with smaller indices.

• Price p

– Let Y = ∅

– For each item j /∈ T, let pj =∞.

– For each item k ∈ Xit, do the following

(a) Let J be the last 2∆ items with the largest indices in T. Run

the following linear program (denoted by LP(k)), which computes

prices for items in Xit−1
∪Xit

min vit−1
qk − pk

s.t. vit−1qk − pk ≥ vit−1qj − pj ∀ j ∈ Xit (1)∑
j∈Xit

(vitqj − pj) = 0 (2)

vit−1qj − pj = vit−1qk − pk ∀ j ∈ Xit−1 (3)

vitqj − pj ≤ vitqj′ − pj′ ∀ j ∈ Xit−1 , j
′ ∈ Xit (4)∑

j∈J′(viqj − pj) ≤ 0 ∀ i ∈ LS, J ′ ⊆ J with |J ′| = di (5)

pjs = vb(s)(qjs − qjs+1
) + pjs+1

∀js ∈ J −Xit −Xit−1
(6)

(b) If the LP(k) in (a) has a feasible solution, let Y ← Y ∪ {k}.
(c) For each item js ∈ Xi1 ∪ · · · ∪Xit−2 in the reverse order

∗ let pjs = vib(s)(qjs − qjs+1) + pjs+1

(d) Denote the price vector computed above by p(k).

• If Y = ∅, return that there is no price vector p such that (p,X) is sharp

envy-free.

• Otherwise,

– Let k∗ ∈ Y have the largest total revenue for which (p(k∗),X) is an

envy-free solution.

– Output the tuple (p(k∗),X) .

Remark 5.12. It should be noting that in LP k, the objective function is equivalent to

maximize pk. By the pricing rule (2), (3), (6) and (c) of MaxRevenue(S, T ), the total

revenue
∑

j∈T pj obtained is a linear increasing function of pk, hence maximizing pk is

equivalent to maximizing the total revenue.
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We establish the following properties:

Proposition 5.13. Let (p,X) is computed in terms of LP(k∗) where k∗ ∈ Xit in

MaxRevenue(S, T ). Let ib(u) be the winner of ju. Use the convention j`−dit+1 = k∗.

For i = 1, 2, . . . , l − dit, we have

1. vib(i)qji+1 − pji+1 ≥ 0;

2.
pji
qji
≥ pji+1

qji+1
;

3. pji ≥ pji+1.

Proof. For the first inequality, consider the last case, vit−1qk∗ − pk∗ ≥ 0. Assume it

does not hold. By Formula (1) in Algorithm MaxRevenue,
∑

j∈Xit
(vit−1qj − pj) < 0.

Therefore,
∑

j∈Xit
(vitqj−pj) < 0, which contradicts Formula (2). Further, viuqk∗−pk∗ ≥

0 for all u : 1 ≤ u ≤ t− 1. That is, all other buyers have nonnegative utility on item k∗.

Now consider s = 1, 2, . . . , `− dit . By (6) and (c) in the algorithm, using the convention

j`−dit+1 = k∗, item 1 holds as following

vb(s)qjs+1 − pjs+1 ≥ vb(s+1)qjs+1 − pjs+1 = vb(s+1)qjs+2 − pjs+2 ≥ · · · ≥ vit−1qk∗ − pk∗ ≥ 0.

For the second inequality, by pricing rule (c), we know that

pji
qji
≥
pji+1

qji+1

holds if and only if
vib(i)(qji − qji+1) + pji+1

qji
≥
pji+1

qji+1

which holds if and only if

(vib(i)qji+1 − pji+1)(qji − qji+1) ≥ 0,

which follows from the first inequality.

The third inequality follows immediately from the second one and the non-increasing

ordering of q’s.

Lemma 5.14. Suppose that S is a candidate winner set and T is a subset of items, where

|T | = d(S). Let X be the allocation computed in the procedure MaxRevenue(S, T ).

Then MaxRevenue(S, T ) determines whether there exists a price vector p such that

(p,X) is a sharp envy-free solution, and if the answer is ‘yes’, it outputs one that

maximizes total revenue given the allocation X.

Proof. Assume that there is a price vector p′ such that (p′,X) is a revenue maximizing

sharp envy-free solution, with the winner set S and the sold item set T . In one direction,

we prove that the algorithm given the input sets S and T returns a solution with at

least the same total revenue. On another direction, we prove that the solution found by
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the Algorithm is an envy-free solution for the fixed sets S and T . By Remark 5.12, this

sharp envy-free solution must be an optimal one. The two parts together complete the

proof.

For the first direction, let S = {i1, i2, . . . , it} with vi1 ≥ vi2 ≥ · · · ≥ vit and T =

{j1, j2, . . . , jl} with qj1 ≥ qj2 ≥ · · · ≥ qjl . By Claim 5.3.1,
∑

j∈Xit
(vitqj − p′j) = 0.

Consider an item k′ = arg maxk∈Xit (vit−1qk − p′k). Define a new price vector p as

follows:

• For j ∈ Xit , pj = p′j .

• For j ∈ Xit−1 , pj = vit−1(qj − qk′) + p′k′ .

• For j ∈ Xi1 ∪ · · · ∪ Xit−2 , pj is defined according to Step (c) of the procedure

MaxRevenue.

It is easy to see that the formulas (1), (2) and (3) of LP(k′) are satisfied for price vector p.

By induction on the reverse order of items, we can show that p′ ≤ p. This implies that

formula (4) of LPk′ is satisfied as well. Further, since prices are monotonically increasing,

all losers (in particular, those in LS) are still sharp envy-free, which implies formula (5)

is satisfied. Formula (6) is automatically satisfied. Hence, p is a feasible solution of

LP(k′). Hence, there is a feasible solution in the above procedure MaxRevenue(S, T )

for item k′; this implies that Y 6= ∅ in the course of the procedure.

In addition, again because of p′ ≤ p, the total revenue generated by (p,X) is at least

that by (p′,X). By the objective of the linear program, we know that the revenue gener-

ated by the solution at LP(k′) is at least that by (p,X) Therefore, MaxRevenue(S, T )

computes a revenue no less than that of (p,X).

For the second direction, let (p,X) be the output of the procedure MaxRevenue(S, T ).

We need to show that (p,X) is an envy-free solution. Suppose (p,X) is computed in

terms of LP(k∗), where k∗ ∈ Xit .

We first claim that all losers are sharp envy-free. By Proposition 5.9, we need only

to check if all the losers in LS are sharp envy-free for (p,X). Since pj =∞, ∀j /∈ T , we

only need to check that all the losers in LS would not envy the items in T .

According to (5) in Step (a) of MaxRevenue(S, T ), for any i ∈ LS , we know

that, for any buyer i,
∑

j∈T ′(viqj − pj) ≤ 0 for any T ′ ⊆ J with |T ′| = di. Choose

T ′ = {j`−dit−di+1, j`−dit−di+2, · · · , j`−dit} ⊆ J (as di ≤ ∆). Let jmax be the largest index

in T ′ such that viqjmax − pjmax ≤ 0. Then, by monotonicity of price-per-unit-quality in

Proposition 5.13, we have

qj1

(
vi −

pj1
qj1

)
≤ qj2

(
vi −

pj2
qj2

)
≤ · · · ≤ qjmax

(
vi −

pjmax

qjmax

)
≤ 0,

and viqj − pj > 0, ∀j ∈ {jmax +1, jmax +2, . . . , j`−dit}.
Hence, for every loser i in LS , its largest di values in the set {viqj − pj | j ∈ T}

are contained in
{
viqj − pj | j ∈ {j`−dit−di+1, j`−dit−di+2, . . . , j`} ⊂ J

}
. Therefore, the

requirement (5) in Step (a) of MaxRevenue(S, T ) would imply that for any T ′ ⊂ T
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with |T ′| = di, we have
∑

j∈T ′(viqj − pj) ≤ 0, which means that i is sharp envy-free.

Hence, all the losers are sharp envy-free for the tuple.

It remains to show that all winners are sharp envy-free as well. Before doing this,

by the pricing rule in subroutine (c), we can easily see that for any iu and j ∈ Xiu

with u < t, there exists item j′ ∈ Xiu+1 such that pj = viu(qj − qj′) + pj′ . We will use

this particular property to show all winners are sharp envy-free. Since pj = ∞ for any

j /∈ T , it suffices to show that any winner would not envy the items of other winners.

The claim follows from the following arguments.

• All winners get non-negative utility. Formula (2) guarantee that it gets nonnegative

utility for Xit . For any winner iu < it, none has over-priced item. It follows by

the fact that, ∀s ∈ J − Xit , pjs = vib(s)(qjs − qjs+1) + pjs+1 in the algorithm and

vib(s)qjs+1 − pjs+1 ≥ 0 in Proposition 5.13.

• Buyer it would not envy items won by any other winner iu, where iu < it. We

show this by induction. Formula (4) shows the base case hold (i.e., it would not

envy items won by it−1). Then, for any item j′ ∈ Xit and any item j ∈ Xiu , (notice

that by the pricing rule, there exists k ∈ Xiu+1 such that pj = viu(qj − qk) + pk),

we have

vitqj − pj = vitqj − (viu(qj − qk) + pk) = (vit − viu)(qj − qk) + vitqk − pk
≤ vitqk − pk ≤ vitqj′ − pj′ ,

where the first inequality follows from vit−viu ≤ 0 and qj−qk ≥ 0, and the second

inequality follows from the induction hypothesis.

• For any iu, iu < it, iu would not envy items won by it. Again, the proof is by

induction. The base case iu = it−1, for any item j ∈ Xit−1 and item j′ ∈ Xit , it

holds that

vit−1qj − pj = vit−1qj − (vit−1(qj − qk∗) + pk∗) = vit−1qk∗ − pk∗ ≥ vit−1qj′ − pj′ ,

where the first equality follows from formula (3) and the inequality follows from

formula (1). Hence, the base case holds. Next for any j ∈ Xiu and item j′ ∈ Xit ,

(notice by pricing rule, there exists k ∈ Xiu+1 such that pj = viu(qj − qk) + pk),

we have

viuqj − pj = viuqj − (viu(qj − qk) + pk) = viuqk − pk
= (viu − viu+1)(qk − qj′) + viuqj′ + (viu+1(qk − qj′)− pk).

Since viu − viu+1 ≥ 0 and qk − qj′ ≥ 0, and by the induction hypothesis, viu+1qk −
pk ≥ viu+1qj′ − pj′ , it holds that viuqj − pj ≥ viuqj′ − pj′ .

• Every winner in S\{it} would not envy the items won by other winner in S\{it}.
Use the convention j`−dit+1 = k∗, recall ∀u, 1 ≤ u ≤ ` − dit , pju = vib(u)(qju −
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qju+1) + pju+1 , then for 1 ≤ s < s′ ≤ `− dit ,

pjs − pjs′ =
s′−1∑
u=s

(pju − pju+1) =
s′−1∑
u=s

vib(u)(qju − qju+1)

≤ vib(s)
s′−1∑
u=s

(qju − qju+1) = vib(s)(qjs − qjs′ ).

Rewrite pjs −pjs′ ≤ vib(s)(qjs − qjs′ ) as vib(s)qjs −pjs ≥ vib(s)qjs′ −pjs′ , which means

buyer with smaller index would not envy items won by buyer with larger index.

Similarly, noting that

pjs − pjs′ =

s′−1∑
u=s

vib(u)(qju − qju+1) ≥ vib(s′)
s′−1∑
u=s

(qju − qju+1) = vib(s′)(qjs − qjs′ ).

Rewrite pjs−pjs′ ≥ vib(s′)(qjs−qjs′ ) as vib(s′)qjs−pjs ≤ vib(s′)qjs′−pjs′ , which means

buyer with larger index would not envy items won by buyer with smaller index.

In all, every winner in S\{it} would not envy the items won by other winner in

S\{it}.

Therefore, we know that the tuple (p,X) is an envy-free solution.

Observe that the computation of Step (a) of MaxRevenue does not depend on the

whole set T . In fact, we only need to know the last 2∆ items with largest indices in

T to check whether Y is empty or not. Therefore, whether MaxRevenue(S, T ) will

output a tuple only depends on the last 2∆ items in T . The prices for those 2∆ items

are determined in one of the linear programs there. Suppose that the last 2∆ items

in T are J and let jmin = min{j ∈ J}, then if MaxRevenue(S, T ) output a tuple

(p,X), we can re-choose any other set Z ⊆ {1, 2, 3, . . . , jmin − 1} with |Z| = `− 2∆ and

run MaxRevenue(S,Z ∪ J), which would always output an envy-free tuple (p′,X′) as

well. Similarly, if MaxRevenue(S, T ) claims that there is no tuple (p,X) which is an

envy-free solution, then MaxRevenue(S,Z ∪J) also claims that no tuple exists. These

observations are critical in our main algorithm Max-EF.

5.3.5 Only the Winner Set is Known

Suppose that we are given a candidate winner set S = {i1, i2, . . . , it} and a set of

items J = {j1, . . . , j2∆} with i1 < i2 < · · · < it and j1 < · · · < j2∆. Assume that

` = d(S) > 2∆. Let Y = {1, 2, . . . , j1 − 1} denote the set of items that have indices

smaller than j1. Our objective is to pick a subset Z ⊆ Y with |Z| = ` − 2∆ such

that the revenue given by MaxRevenue(S,Z ∪ J) is as large as possible. By Steps (a)

and (c) of MaxRevenue, for the given set of winners S, the prices of the items in

J are already fixed (no matter which Z is chosen). Hence, to maximize revenue from

MaxRevenue(S,Z ∪ J), it suffices to maximize revenue (or equivalently, prices) from
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the items in Z. To this end, we use the approach of dynamic programming to find an

optimal solution.

Consider any subset Z = {z1, z2, . . . , z`−2∆} ⊆ Y with z1 < z2 < · · · < z`−2∆; denote

z`−2∆+1 = j1. Suppose MaxRevenue(S,Z ∪ J) will output a tuple (p,X). As we

already know that each zj will be allocated to which winner by MaxRevenue(S,Z∪J),

let wj = vi if zj ∈ Xi, for j = 1, 2, . . . , ` − 2∆; further, let w0 = 0. An important

observation is that the values of all wj ’s are independent to the selection of Z. By the

pricing rule in MaxRevenue(S,Z ∪ J), it holds that pzj = wj(qzj − qzj+1) + pzj+1 , for

j = 1, 2, . . . , `− 2∆. Hence, we have

`−2∆∑
j=1

pzj =

`−2∆∑
j=1

`−2∆∑
u=j

(pzu − pzu+1) + pj1


=

`−2∆∑
j=1

`−2∆∑
u=j

(
(qzu − qzu+1)wu

)
+ (`− 2∆)pj1

=

`−2∆∑
j=1

(j · qzjwj − j · qzj+1wj) + (`− 2∆)pj1

=

[
`−2∆∑
j=1

(
j · wj − (j − 1) · wj−1

)
qzj

]
−
[
(`− 2∆)(qj1w`−2∆ − pj1)

]
, R1 −R2,

where R1 and R2 are the first and second term of the difference, respectively. By the

rule of MaxRevenue, the allocation of z`−2∆ (thus, the value w`−2∆) and the price pj1

are fixed. Hence, to maximize
`−2∆∑
j=1

pzj , it suffices to maximize R1. For any α, β with

1 ≤ α ≤ β ≤ j1 − 1, let opt(α, β) denote the optimal value of the following problem,

denoted by DLP (α, β), which picks α items from the first β items to maximize a given

objective (recall that wj is defined above for j = 1, . . . , `− 2∆).

max
α∑
j=1

(
j · wj − (j − 1) · wj−1

)
qzj

s.t. z1 < z2 < · · · < zα, {z1, z2, . . . , zα} ⊆ {1, 2, . . . , β}.

The problem that maximizes R1 is exactly DLP (`− 2∆, j1− 1), which can be solved by

the following dynamic programming.
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Solve-DLP

1. Compute opt(1, 1), opt(1, 2), . . . , opt(1, j1 − 1).

2. Compute

opt(α, β+1) =

{
max

{
opt(α, β), opt(α− 1, β) + (α · wα − (α− 1)wα−1)qβ+1

}
if β + 1 ≥ α

0 Otherwise

3. Find a subset Z∗ that maximizes opt(`− 2∆, j1 − 1).

4. Return the output of MaxRevenue(S,Z∗ ∪ J).

The following claim is straightforward from the definition of DLP (α, β) and the

above dynamic programming.

Proposition 5.15. Given a candidate winner set S and a subset J of 2∆ items, the

above Solve-DLP picks in polynomial time a subset Z ⊆ Y with |Z| = `−2∆ such that

the revenue given by MaxRevenue(S,Z ∪ J) is the maximum if we guessed S and J

correctly.

5.3.6 Algorithm

In this subsection, we will present our main algorithm Max-EF. The algorithm has two

stages: stage 1 is to select the set of possible winners (candidate winners) who will

be allocated items, and stage 2 is designed to calculate all the ‘candidate’ maximum

revenue and presents an optimal sharp envy-free solution and maximum revenue.

The algorithm is described as follows.
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Max-EF stage 1.

1. Initialize D = ∅ (denote the collection of candidate winner sets).

2. Find S ⊆ A1 such that d(S) = max
{
d(S′) | d(S′) ≤ m,S′ ⊆ A1

}
, let D ←

{S}.

3. For k = 2, . . . ,K

• Sort A1 ∪A2 ∪ · · · ∪Ak in the decreasing order of their values.

• For each d such that 1 ≤ d ≤ m

– Let S = argmaxS{d(S)|d(S) ≤ d, S ⊂ Ak}.
– Let S0,1 = S, n0 = 1 and C0 = {S0,1}.
– Let ` = |A1 ∪A2 ∪ · · · ∪Ak−1|.
– For t = 1, 2, . . . , ` do:

∗ In general, we have constructed Ct containing all the

candidate winner sets of {`− t+ 1, `− t+ 2, . . . , `} ∪ S.
∗ We order Ct = {St,1, St,2, . . . , St,nt

} such that d(St,1) ≤ d(St,2) ≤
· · · ≤ d(St,nt

) ≤ m.

∗ We now add `− t into Ct to construct Ct+1.

· Let ts = max{i : d(St,i) < d`−t} if {i : d(St,i) < d`−t} 6= ∅,
otherwise ts = 0.

· Let St+1,j = St,j for j = 1, 2, · · · , ts.
· Let St+1,j+ts = St,j ∪ {`− t} for j = 1, 2, . . . , nt.

· Let nt+1 = max{i ≤ ts + nt : d(St+1,i) ≤ m}.
· Let Ct+1 = {St+1,i : i ≤ nt+1}.

– D ← D ∪ C`.

4. return D

stage 1 of Max-EF is designed to select candidate winner sets one of which contains

exactly the winners in an optimal sharp envy-free solution. For each 1 ≤ k ≤ K ≤ n and

1 ≤ d ≤ m the problem is of one discussed in Lemma 5.10. It constructs C, consisting of

up to m
d subsets of total size O(m∗nd ) in time O(m∗n

2

d ). The total time complexity then

adds up to O(m ∗ n3 logm). Hence, Max-EF runs in strongly polynomial time.

Proposition 5.16. There is an optimal winner set contained in the set D.

Proof. Now suppose there is an optimal winner set W , if W ⊆ A1, then by Proposi-

tion 5.11, the set S selected in above algorithm is an optimal winner set and we are

done. Otherwise, let imax = max(W ); suppose imax ∈ Ak∗ , where k∗ ≥ 2, and let

w∗ = d(W ∩Ak∗). Now consider the k∗th and w∗th round of the for loop. There exists

T ⊆ Ak∗ such that d(T ) = w∗. By Proposition 5.11, we know that (W\(W∩Ak))∪T is an

optimal winner set. By the procedure of the algorithm and Proposition 5.8, the algorith-

m would find all the candidate winner sets with the form C∪T where C ⊆ A1∪· · ·∪Ak−1.

Hence, (W\(W ∩Ak)) ∪ T ∈ D.
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Max-EF stage 2.

5. For each candidate winner set S ∈ D

• Let ` = d(S)

• If ` ≤ 2∆

– For any set J ⊆ {1, 2, . . . ,m} with |J | = `

∗ Run MaxRevenue(S, J).

∗ If it outputs a tuple (p,X), let RS,J ←
n∑
i=1

∑
j∈Xi

pj

∗ Else, let RS,J ← 0.

• Else ` > 2∆

– For any set J ⊆ {`− 2∆ + 1, `− 2∆ + 2, . . . ,m} with |J | = 2∆

∗ Let jmin ← min{j ∈ J}
∗ Choose any Z ← {z1, . . . , z`−2∆} ⊆ {1, 2, . . . , jmin − 1}, where z1 >

z2 > · · · > z`−2∆.

∗ Run MaxRevenue(S, J ∪ Z)

∗ If it outputs a tuple

· run Solve-DLP on S and J to get a tuple (p,X)

· let RS,J ←
n∑
i=1

∑
j∈Xi

pj

∗ Else, let RS,J ← 0

6. Output a tuple (p,X) which gives the maximum RS,J.

Since MaxRevenue and Solve-DLP takes polynomial time, and |D| ≤ nm logm, we

know stage 2 of Max-EF runs in polynomial time.

Proof of Theorem 5.6. Since Max-EF takes polynomial time, we only need to check that

Max-EF will output an optimal sharp envy-free solution. By the above analysis, we

know that Max-EF will output an envy-free solution. Since there is an optimal winner

S ∈ D, there exists an optimal sharp envy-free solution (p,X) such that S = {i|Xi 6= ∅}.
W.l.o.g. suppose that the items in T =

⋃n
i=1Xi are allocated to S by the rules of

allocation of MaxRevenue(S, T ) (otherwise, there exists i > i′ and j < j′ such that

j ∈ Xi and j′ ∈ Xi′ , if vi = vi′ , then viqj − pj ≥ viqj′ − pj′ and vi′qj − pj ≤ vi′qj′ − pj′ ,
hence viqj − pj = viqj′ − pj′ , then exchanging the allocation j and j′ without changing

their prices would still make everyone sharp envy-free. If vi < vi′ , then by Lemma 4.11,

we have qj = qj′ , then exchanging allocation j and j′ and their prices would still make

everyone sharp envy-free). If d(S) ≤ 2∆, then by the argument of Lemma 5.14, we know

RS,T ≥
n∑
i=1

∑
j∈Xi

pj . Similarly if d(S) > 2∆, let J be the 2∆ largest values in T , by the

argument of Lemma 5.14 and Proposition 5.15, we know RS,J ≥
n∑
i=1

∑
j∈Xi

pj . Therefore,

the output (p,X) of Max-EF is an optimal sharp envy-free solution.
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5.4 Hardness of Arbitrary Sharp Demand

Theorem 5.17. For the sharp multi-unit demand with viqj valuations, it is NP-hard

to solve the revenue-maximizing sharp envy-free pricing problem, even if there are only

three buyers.

We next prove the NP-hardness result that is Theorem 5.17.

We reduce from the exact cover by 3-sets problem (X3C): Given a ground set A =

{a1, a2, . . . , a3n} and collection T = {S1, S2, . . . , Sm} where each Si ⊂ A and |Si| = 3,

we are asked if there are n elements of T that cover all elements in A. We assume that

n ≤ m ≤ 2n− 1; it is easy to see that the problem still remains NP-complete (as we can

add dummy elements x, y, z to A and subset {x, y, z} to T to balance the sizes of A and

T ).

Given an instance of X3C, we construct a market with 3 buyers and n + m items

as follows. Let M = 3nm + 1, L =
∑3n

i=1M
i. Note that L < 3nM3n, whose binary

representation is of size polynomial in m and n. Consider m values Ri =
∑

aj∈SiM
j , for

i = 1, 2, . . . ,m, and rearranging if necessary, let R1 ≥ R2 ≥ · · · ≥ Rm be a non-increasing

order of these values. The valuations and demands of buyers are

d1 = n, v1 = 3

d2 = 2n, v2 =
3n+ 1

n+ 1
d3 = n, v3 = 2

The qualities of items are defined as follows: Let qj = L, for j = 1, 2, . . . , n, and

qn+j = Rj , for j = 1, 2, . . . ,m. Obviously, the unit values and qualities are in non-

increasing order, and the construction is polynomial.

Consider the winner set in an optimal envy-free solution (p,X). Since n ≤ m ≤
2n − 1, the possible winner sets are {1}, {2}, {3}, and {1, 3}. There is no sharp envy-

free solution where {2} or {3} is the winner set, since buyer 1 would be envious. It

remains to consider {1} and {1, 3}. If the winner set is {1}, then the optimal revenue

is v1 ·
(∑n

i=1 qi
)

= 3nL where buyer 1 gets the first n items. If the winner set is {1, 3},
it is not difficult to see that in the optimal sharp envy-free solution (p,X), it holds

that X1 = {1, 2, . . . , n}. Suppose that X3 = {j1, j2, . . . , jn} ⊂ {n+ 1, n+ 2, . . . , n+m}
where j1 > j2 > · · · > jn. Applying the characterizations of optimal sharp envy-freeness

MaxRevenue(S, T ) and Lemma 5.14 in Section 5.3.4, in the optimal solution (p,X)

with X1 = {1, 2, . . . , n} and X3 = {j1, j2, . . . , jn}, we should prove the following claim

Claim 5.4.1.

v1qk − pk = v1qj − pj ∀k, j ∈ X3

proof of Claim 5.4.1. According to MaxRevenue(S, T ), there exists k∗ : n+ 1 ≤ k∗ ≤
m+ n such that (p,X) is the optimal solution of the following linear program (denoted

by LP (k∗)).
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min v1qk∗ − pk∗

s.t. v1qk∗ − pk∗ ≥ v1qj − pj ∀ j ∈ X3 (1∗)∑
j∈X3

(v3qj − pj) = 0 (2∗)

v1qj − pj = v1qk∗ − pk∗ ∀ j ∈ X1 (3∗)

v3qj − pj ≤ v3qj′ − pj′ ∀ j ∈ X1, j
′ ∈ X3 (4∗)∑

j∈X1∪X3
(v2qj − pj) ≤ 0 (5∗)

Please note that the last set of equations (6∗) in the original LP are not needed since

they are empty under the current restriction of three buyers. We first prove all the

inequalities in (1∗) must be equalities. Suppose it is not true. Then there exists ` ∈ X3

such that

v1qk∗ − pk∗ > v1q` − p`.

Set bj = v1qj − pj , j ∈ X3. From (2∗), it follows that
∑
j∈X3

bj = (v1 − v3)
∑
j∈X3

qj . Take

the average

b̄ =

∑
j∈X3

aj

|X3|
=

(v1 − v3)
∑
j∈X3

qj

|X3|

We introduce the price vector p′ = (p′1, p
′
2, · · · , p′n, p′j1 , p

′
j2
, · · · , p′jn) such that ∀j ∈ X3:

p′j = v1qj − b̄ and ∀j ∈ X1: p′j = v1(qj − qk∗) + p′k∗ . If we can prove that (p′,X) is still

a feasible solution for LP k
∗
, then p′k∗ > pk∗ (due to bk∗ > b̄ by (1∗)). It results in a

smaller objective value than v1qk∗ − pk∗ , a contradiction to the optimality of (p,X).

First, (1∗) (2∗) (3∗) follows directly from definition of p′. We need only to check (4∗)

and (5∗). From p′k∗ > pk∗ , ∀ j ∈ X1 p
′
j = v1(qj−qk∗)+p′k∗ > v1(qj−qk∗)+pk∗ = pj . We

have ∀j ∈ X1: p′j > pj . Hence, the inequality (5∗) holds. To see inequality (4∗), notice

v3qj − p′j = v3qj − v1(qj − qk∗)− p′k∗

= v3qj − v1(qj − qj′)− p′j′

= (v3 − v1)(qj − qj′) + v3qj′ − p′j′

≤ v3qj′ − p′j′ , ∀j ∈ X1, j
′ ∈ X3.

Claim 5.4.1 is proven.

By Claim 5.4.1 and the above condition (3∗), we have

v1qi − pi = v1qj − pj , ∀ i ∈ X1, j ∈ X3 (5.1)

By the above condition (2∗),

∑
j∈X3

pj = v3 ·
n∑
k=1

qjk . (5.2)
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Combining (5.1) and (5.2), the total revenue is

R =
n∑
i=1

pi +
∑
j∈X3

pj = v1 ·
n∑
i=1

qi + (2v3 − v1) ·
n∑
k=1

qjk .

Since buyer 2 is sharp envy-free, we have

v2 ·
( n∑
i=1

qi +

n∑
k=1

qjk

)
−R = (v2 − v1) ·

n∑
i=1

qi + (v1 + v2 − 2v3) ·
n∑
k=1

qjk ≤ 0.

Therefore, computing the maximum revenue when the winner set is {1, 3} is equivalent

to solving the following program:

max R = v1 ·
n∑
i=1

qi + (2v3 − v1) ·
n∑
k=1

qjk

s.t. (v2 − v1) ·
n∑
i=1

qi + (v1 + v2 − 2v3) ·
n∑
k=1

qjk ≤ 0

j1 > j2 > · · · > jn, jk ∈ {n+ 1, n+ 2, . . . , n+m}, k = 1, 2, . . . , n.

(5.3)

Considering v1 = 3, v2 = 3n+1
n+1 , v3 = 2, and qi = L, i = 1, 2, . . . , n, the program (5.3) is

equivalent to

max R = 3nL+
n∑
k=1

qjk

s.t.
n∑
k=1

qjk ≤ L

j1 > j2 > · · · > jn, jk ∈ {n+ 1, n+ 2, . . . , n+m}, k = 1, 2, . . . , n.

(5.4)

It is not difficult to see that the maximum revenue (i.e., the optimal value of the above

program) is (3n + 1)L if and only if there is a positive answer to the instance of X3C.

This completes the proof.

5.5 Consecutive Envy-free Solutions

We first prove a negative result on computing the revenue maximization problem in

general demand case. We show it is NP-hard if all the qualities are the same.

Theorem 5.18. The revenue maximization problem of consecutive envy-free buyers is

NP-hard even if all the qualities are the same.

Proof. We prove the NP-hardness by reducing the 3 partition problem that is to decide

whether a given multi-set of integers can be partitioned into triples that all have the

same sum. More precisely, given a multi-set S of n = 3m positive integers, can S be

partitioned into m subsets S1, . . . , Sm such that the sum of the numbers in each subset
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is equal? The 3 partition problem has been proven to be NP-complete in a strong sense

in [36], meaning that it remains NP-complete even when the integers in S are bounded

above by a polynomial in n.

Given a instance of 3 partition (a1, a2, . . . , a3n). Let B =
∑

i ai/n. we construct a

instance for advertising problem with 3n+1 advertisers and m = B+1+n+
∑

i ai slots.

It should be mentioned that m is polynomial of n due to the fact that all ai are bounded

by a polynomial of n. In the advertising instance, the valuation vi for each advertiser i

is 1 and his demand di is defined as ai and there is another buyer with valuation 2 for

each slot and with demand B + 1. The quality of each slot j is 1. It is not hard to see

that the optimal revenue is nB + 2(B + 1) if and only if there is a solution to this 3

partition instance, the optimal solution is illustrated as follows.

1 1 · · · 1︸ ︷︷ ︸
B+1

1︸︷︷︸
unassigned

1 1 · · · 1︸ ︷︷ ︸
B

1︸︷︷︸
unassigned

1 1 · · · 1︸ ︷︷ ︸
B

1︸︷︷︸
unassigned

. . . 1 1 · · · 1︸ ︷︷ ︸
B

Although the hardness in Theorem 5.18 indicates that finding the optimal revenue

for general demand in polynomial time is impossible , however, it doesn’t rule out the

very important case where the demand is uniform, e.g. di = d. We assume slots are

in a decreasing order from top to bottom, that is, q1 ≥ q2 ≥ · · · ≥ qm . The result is

summarized as follows.

Theorem 5.19. There is a polynomial time algorithm to compute the consecutive envy-

free solution when all the buyers have the same demand and slots are ordered from top

to bottom.

The proof of Theorem 5.19 is based on (consecutive) bundle envy-free solutions, in

fact we will prove the (consecutive) bundle envy-free solution is also a consecutive envy-

free solution by defining price of items properly. Thus, we need first give the result

on (consecutive) bundle envy-free solutions. Suppose d is the uniform demand for all

the buyers. Let Ti be the slot set allocated to buyer i, i = 1, 2, · · · , n. Let Pi be the

total payment of buyer i and pj be the price of slot j. Let ti denote the total qualities

obtained by buyer i, e.g. ti =
∑

j∈Ti qj and αi = ivi − (i− 1)vi−1, ∀i ∈ [n].

Theorem 5.20. The revenue maximization problem of (consecutive) bundle envy-freeness

is equivalent to solving the following LP.

Maximize:
n∑
i=1

αiti

s.t. t1 ≥ t2 ≥ · · · ≥ tn
Ti ⊂ [m], Ti ∩ Tk = ∅ ∀i, k ∈ [n]

(5.5)

Proof. Recall Pi denote the payment of buyer i, we next prove that the linear program-

ming (5.5) actually gives optimal solution of (consecutive) bundle envy-free. By the
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definition of (consecutive) bundle envy-free, where buyer i would not envy buyer i + 1

and versus, we have

viti − Pi ≥ viti+1 − Pi+1 (5.6)

vi+1ti+1 − Pi+1 ≥ vi+1ti − Pi (5.7)

Plus above two inequalities gives us that (vi − vi+1)(ti − ti+1) ≥ 0. Hence, if vi > vi+1,

then ti ≥ ti+1. From (5.6), we could get Pi ≤ vi(ti − ti+1) + Pi+1. The maximum

payment of buyer i is

Pi = vi(ti − ti+1) + Pi+1, (5.8)

together with ti ≥ ti+1, implying (5.6) and (5.7). Besides the maximum payment of n

is Pn = tnvn. (5.8) together with ti ≥ ti+1 and Pn = tnvn would make everyone bundle

envy-free, the arguments are as follows.

• All the buyers must be (consecutive) bundle envy free. By (5.8), we have Pi −
Pi+1 = vi(ti − ti+1), hence Pi =

∑n−1
k=i vk(tk − tk+1) + Pn. Noticing that if ti = 0,

then Pi = 0, which means i is loser. For any buyer j < i, we have Pj − Pi =∑i−1
k=j vk(tk− tk+1) ≤

∑i−1
k=j vj(tk− tk+1) = vj(tj − ti). rewrite Pj −Pi ≤ vj(tj − ti)

as vjti − Pi ≤ vjtj − Pj , which means buyer j would not envy buyer i. Similarly,

Pj −Pi =
∑i−1

k=j vk(tk − tk+1) ≥
∑i−1

k=j vi(tk − tk+1) = vi(tj − ti), rewrite Pj −Pi ≥
vi(tj − ti) as viti − Pi ≥ vitj − Pj , which means i would not envy buyer j.

Now let’s calculate
∑n

i=1 Pi based on (5.8) using notation tn+1 = 0, one has

n∑
i=1

Pi =
n∑
i=1

[
n−1∑
k=i

vk(tk − tk+1) + Pn

]
=

n∑
i=1

n∑
k=i

vk(tk − tk+1)

=

n∑
k=1

k∑
i=1

vk(tk − tk+1) =

n∑
k=1

kvk(tk − tk+1)

=

n∑
k=1

kvktk −
n∑
k=1

(k − 1)vk−1tk =

n∑
i=1

αiti

We know the revenue maximizing problem of bundle envy-freeness can be formalized as

(5.5).

Since consecutive envy-free solutions are a subset of (consecutive) bundle envy-free

solutions, hence the optimal value of optimization (5.5) gives an upper bound of optimal

objective value of consecutive envy-free solutions. Noting optimization LP (5.5) can be

solved by dynamic programming. Let g[s, j] denote the optimal objective value of the

following LP with some set in [j] allocated to all the buyers in [s]:

Maximize:

s∑
i=1

αiti

s.t. t1 ≥ t2 ≥ · · · ≥ ts
Ti ⊂ [j], Ti ∩ Tk = ∅ ∀i, k ∈ [s]

(5.9)
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Then

g[s, j] = max


g[s, j − 1]

g[s− 1, j − d] + αs
∑j

u=j−d+1 qu

Next, we show how to modify the (consecutive) bundle envy-free solution to consecutive

envy-free solutions by properly defining the slot price of Ti, for all i ∈ [n]. Suppose the

optimal winner set of bundle envy-free solution is [L]. Assume the optimal allocation

and price of bundle envy-free solution are Ti = {ji1, ji2, · · · , jid} with ji1 ≥ ji2 ≥ · · · ≥ jid
and Pi respectively, for all i ∈ [L].

Proof of Theorem 5.19. Define the price of Ti iteratively as follows:

pjLk
= vLqjLk

, for all k ∈ [d];

pjik
= vi(qjik

− qji+1
k

) + pji+1
k

for k ∈ [d] and i ∈ [n]

Now we could see that the price defined by above procedure is still a bundle envy-free

solution. This is because by induction, we have Pi =
∑d

k=1 pjik
. Hence, we need only to

check the prices defined as above and allocations Ti constitute a consecutive envy-free

solution. In fact, we prove a strong version, suppose Tis are consecutive from top to

down in a line S, we will show each buyer i would not envy any consecutive sub line of

S comprising d slots. For any i,

Case 1, buyer i would not envy the slots below his slots.

for any consecutive line T bellow i with size d, suppose T comprises of slots won by

buyer k (denoted such slot set by Uk) and k + 1 (denoted such slot set by Uk+1 and let

` = |Uk+1|) where k ≥ i. Recall that ti =
∑

j∈Ti qj , then∑
j∈Ti

pj −
∑
j∈T

pj

= vi(ti − ti+1) + Pi+1 −
∑

j∈Uk∪Uk+1

pj

= vi(ti − ti+1) + vi+1(ti+1 − ti+2) + · · ·+ Pk −
∑

j∈Uk∪Uk+1

pj

= vi(ti − ti+1) + vi+1(ti+1 − ti+2) + · · ·+
∑

j∈Tk\Uk

pj −
∑

j∈Uk+1

pj

= vi(ti − ti+1) + vi+1(ti+1 − ti+2) + · · ·+
∑̀
u=1

vk(qjku − qjk+1
u

)

≤ vi(ti − ti+1) + vi(ti+1 − ti+2) + · · ·+
∑̀
u=1

vi(qjku − qjk+1
u

)

= viti − vi
∑
j∈T

qj

Rewrite ∑
j∈Ti

pj −
∑
j∈T

pj ≤ viti − vi
∑
j∈T

qj
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as

viti −
∑
j∈Ti

pj ≥ vi
∑
j∈T

qj −
∑
j∈T

pj ,

we get the desired result.

Case 2, buyer i would not envy the slots above his slots.

for any consecutive line T above i with size d, suppose T comprises of slots won by

buyer k (denoted such slot set by Uk) and k − 1 (denoted such slot set by Uk−1 and let

` = |Uk−1|) where k ≤ i. Recall that ti =
∑

j∈Ti qj , then∑
j∈T

pj −
∑
j∈Ti

pj

=
∑

j∈Uk−1∪Uk

pj −
∑
j∈Ti

pj

=
d∑

u=d−`+1

vk−1(qjk−1
u
− qjku) +

∑
j∈Tk

pj −
∑
j∈Ti

pj

=
d∑

u=d−`+1

vk−1(qjk−1
u
− qjku) + vk(tk − tk+1) + · · ·+ vi−1(ti−1 − ti)

≥
d∑

u=d−`+1

vi(qjk−1
u
− qjku) + vi(tk − tk+1) + · · ·+ vi(ti−1 − ti)

= vi
∑
j∈T

qj − viti

Rewrite ∑
j∈T

pj −
∑
j∈Ti

pj ≥ vi
∑
j∈T

qj − viti

as

viti −
∑
j∈Ti

pj ≥ vi
∑
j∈T

qj −
∑
j∈T

pj ,

we get the desired result.

5.6 (Relaxed) Bundle Envy-free Pricing with Uniform De-

mand

The concept of bundle envy-free we investigate in this section refers to relaxed bundle

envy-free. To simplify the following discussions, we sort all buyers and items in non-

increasing order of their unit values and qualities, respectively, i.e., v1 ≥ v2 ≥ · · · ≥ vn

and q1 ≥ q2 ≥ · · · ≥ qm. Recall K is the number of distinct values in the set {v1, . . . , vn},
and A1, . . . , AK is a partition of all buyers where each Ak, k = 1, 2, . . . ,K, contains the

set of buyers that have the kth largest value.
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5.6.1 Identical Items

In this subsection, we consider the model with q1 = q2 = · · · = qm = 1 and each buyer

with the same demand d. Let di denote the number of items received by buyer i. Let

αi = ivi − (i − 1)vi−1, ∀i ∈ [n]. Then we have the following characterization of the

problem by ILP:

Theorem 5.21. The revenue maximizing problem with identical item and uniform de-

mand of bundle envy-freeness is equivalent to solve the following integer linear program-

ming:

Maximize:
n∑
i=1

αidi

s.t. d ≥ d1 ≥ d2 ≥ · · · ≥ dn
n∑
i=1

di ≤ m,

di ∈ Z+, ∀i ∈ [n]

(5.10)

Proof. Denote by pi the payment of buyer i, by the definition of envy-free bundle pricing,

we have

vidi − pi ≥ vidi+1 − pi+1 (5.11)

vi+1di+1 − pi+1 ≥ vi+1di − pi (5.12)

Plus above two inequalities gives us that (vi − vi+1)(di − di+1) ≥ 0. Hence, if vi > vi+1,

then di ≥ di+1. From (5.11), we could get pi ≤ vi(di − di+1) + pi+1. The maximum

payment of buyer i is

pi = vi(di − di+1) + pi+1, (5.13)

together with di ≥ di+1, implying (5.11) and (5.12). Besides the maximum payment

of n is pn = dnvn. (5.8) together with di ≥ di+1 and pn = dnvn would make everyone

envy-free, the arguments are as follows.

• All the buyers must be envy free. By (5.13), we have pi−pi+1 = vi(di−di+1), hence

pi =
∑n−1

k=i vk(dk − dk+1) + pn. Noticing that if di = 0, then pi = 0, which means i

is loser. For any buyer j < i, we have pj−pi =
∑i−1

k=j vk(dk−dk+1) ≤
∑i−1

k=j vj(dk−
dk+1) = vj(dj − di). rewrite pj − pi ≤ vj(dj − di) as vjdi − pi ≤ vjdj − pj , which

means buyer j would not envy buyer i. Similarly, pj − pi =
∑i−1

k=j vk(dk − dk+1) ≥∑i−1
k=j vi(dk−dk+1) = vi(dj−di), rewrite pj−pi ≥ vi(dj−di) as vidi−pi ≥ vidj−pj ,

which means i would not envy buyer j.
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Now let’s calculate
∑L

i=1 pi based on (5.13) using notation dn+1 = 0, one has

n∑
i=1

pi =
n∑
i=1

[
n−1∑
k=i

vk(dk − dk+1) + pn

]
=

n∑
i=1

n∑
k=i

vk(dk − dk+1)

=
n∑
k=1

k∑
i=1

vk(dk − dk+1) =
n∑
k=1

kvk(dk − dk+1)

=
n∑
k=1

kvkdk −
n∑
k=1

(k − 1)vk−1dk =
n∑
i=1

αidi

Since
∑n

i=1 di ≤ m, we know the revenue maximizing problem can be formalized as

(5.10).

Let yi = di − di+1, for i ≤ n− 1, and yn = dn then di =
∑n

j=i yj . the programming

(5.10) can be further simplified as follows:

Maximize:
n∑
i=1

iviyi

s.t.
n∑
i=1

iyi ≤ m,

n∑
i=1

yi ≤ d,

yi ∈ Z+, ∀i ∈ [n]

(5.14)

Since (5.14) is a special two dimensional knapsack, then there is a PTAS for (5.14)[13].

If d is a constant, a brute force method takes nd time to valuate all the yi’s and gives

the optimal solution.

Remark 5.22. If the demand is sharp demand (which means buyer i would buy exactly

di items or buy nothing), the problem is trivial and the optimal solution can be reached

easily.

5.6.2 Distinct Items with Different Qualities qj

In this subsection, we generalize the model for identical item to different items, where

each item j is associated with number qj representing the quality of the item. Each buyer

i has a per unit valuation vi, hence i’s valuation for item j is viqj . We still consider

uniform demand case where each buyer’s demand is bounded by same d. Let xij denote

variables whether item j is received by buyer i. Denote by αi = ivi − (i − 1)vi−1.

Similarly as uniform demand with identical items, we have the following theorem.
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Theorem 5.23. The revenue maximizing problem with uniform demand and distinct

qualities is equivalent to solve the following integer linear programming:

Maximize:
n∑
i=1

m∑
j=1

αixijqj

s.t.

m∑
j=1

xijqj ≥
m∑
j=1

xi+1jqj , ∀i ∈ [n− 1]

m∑
j=1

xij ≤ d, ∀i ∈ [n]

n∑
i=1

xij ≤ 1, ∀j ∈ [m]

xij ∈ {0, 1}, ∀i ∈ [n], j ∈ [m]

(5.15)

Proof. The proof is identical to identical item case.

Theorem 5.24. The programming (5.15) is NP-hard even if there are only three buyers.

Proof. We reduce the partition problem to (5.15). Given an instance of partition prob-

lem, A = {a1, a2, · · · , am} ,where ai, i = 1, 2, · · · ,m are positive integers, the partition

problem asks whether there is a subset B of A such that the sum of elements in B equal

half of the sum of elements of A. We construct an instance of (5.15) with 2m items,

three buyers with relaxed demand m. The values of buyers are v1 = 10, v2 = 6, v3 = 5

and the qualities are qj = aj for j ∈ [m] and qj =
∑m

k=1 ak for j = m+1,m+2, · · · , 2m.

Noting α1 = 10, α2 = 2, α3 = 3. Clearly, in optimal solution of such an instance, the

item m+1,m+2, · · · , 2m must be allocated to buyer 1. Therefore, optimization of such

an instance is equivalent to the following integer linear programming:

Maximize: (10m
m∑
j=1

aj) +
3∑
i=2

m∑
j=1

αixijqj

s.t.

m∑
j=1

xijqj ≥
m∑
j=1

xi+1jqj , i = 2

m∑
j=1

xij ≤ m, i = 2, 3

3∑
i=2

xij ≤ 1, ∀j ∈ [m]

xij ∈ {0, 1}, ∀i = 2, 3, j ∈ [m]

(5.16)
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In the optimal solution of (5.16), we must have
∑3

i=2 xij = 1, hence, (5.16) can be

simplified as

Maximize: [(10m+ 2)
m∑
j=1

aj ] +
m∑
j=1

x3jqj

s.t.

m∑
j=1

x2jqj ≥
m∑
j=1

x3jqj ,

m∑
j=1

xij ≤ m, i = 2, 3

3∑
i=2

xij ≤ 1, ∀j ∈ [m]

xij ∈ {0, 1}, ∀i = 2, 3, j ∈ [m]

(5.17)

It is not difficult to see that (5.17) has an optimal solution (10m + 2.5)
∑m

j=1 aj if and

only if the partition problem has a positive answer.

It should be noticed that the optimization problem (5.15) can be solved by the

following dynamic programming. Let W [i, j, T ] denote the optimal value when there are

i buyers, the total qualities of buyer i is larger than or equals j only items indexed in

T being sold. Noting that the optimal solution of (5.15) is given by W [L, 0, [m]]. Let

M =
∑d

j=1 qj and D = {S|
∑

k∈S qk ≥ j, |S| ≤ d, S ⊂ T}

Solve-IP(II)

1. Compute W [1, j, T ], j = 0, 1, 2, · · ·M, T = 2[m].

2. Compute

W [i, j, T ] =

{
maxSi∈D{αi

∑
k∈Si

qk +W [i− 1,
∑
k∈Si

qk, T\Si]} if D 6= ∅
0 Otherwise

3. Find Si, i = 1, 2, · · · , L that maximize W [L, 0, [m]].

5.7 Identical Items with Budget (Relaxed Envy-free)

In this section, we adapt relaxed envy-free pricing schemes, which mean the items re-

ceived by each buyer maximizes his total utility. In our model, there are n buyers facing

m identical items. The valuation of buyer i for each item is vi. Besides, buyer i has a

budget bi. We present an optimal solution for this problem, which improves the previous

2-approximate solution [32].

Lemma 5.25. The price of each sold item must be the same.
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Proof. Suppose there are more than two buyers and Lemma 5.25 is not true. The buyer

who receives item with higher price would envy the buyer who receives the item with

low price.

With Lemma 5.25, we first calculate revenues when p = v1, v2, · · · , vn. Now we need

only to consider p 6= vi ∀i case, which is given bellow.

Maximize:

n∑
i=1

min{m,
⌊
bi
p

⌋
}1vi>pp

s.t.

n∑
i=1

min{m,
⌊
bi
p

⌋
}1vi>p ≤ m,

p > 0.

(5.18)

Observation 5.7.1.
⌊
bi
p

⌋
≤ m, ∀i ∈ [n], where vi > p.

The optimization problem (5.18) can be further simplified as follows.

Maximize:
n∑
i=1

⌊
bi
p

⌋
1vi>pp

s.t.
n∑
i=1

⌊
bi
p

⌋
1vi>p ≤ m,

p > 0.

(5.19)

Lemma 5.26. In any optimal solution p∗ for optimization problem (5.19), there exists

i such that
⌊
bi
p∗

⌋
is integer.

Proof. Otherwise, we can increase the price by a small amount achieving high objective

value, contradicting that the price p∗ is optimal.

By Lemma 5.26, to get optimal solution of (5.19), we need only to calculate the

revenue when p ∈ { bij |i ∈ [n], j ∈ [m]}.



Chapter 6

Simulation

6.1 Simulation

Since the consecutive model has a direct application for rich media advertisement, the

simulation for comparing the schemes e.g. Bayesian optimal mechanism (Bayesian for

simplicity in this chapter), consecutive CE (CE for simplicity in this chapter), consec-

utive EF (EF for simplicity in this chapter), generalized GSP, will be presented in this

chapter. Our simulation shows a convincing result for these schemes. We did a sim-

ulation to compare the expected revenue among those pricing schemes. The sampling

method is applied to the competitive equilibrium, envy-free solution, Bayesian truthful

mechanism, as well as the generalized GSP, which is the widely used pricing scheme for

text ads in most advertisement platforms nowadays.

The value samples v come from the same uniform distribution U [20, 80]. With a

random number generator, we produced 200 group samples {V1, V2, · · · , V200}, they will

be used as the input of our simulation. Each group contains n samples, e.g. Vk =

{v1
k, v

2
k, · · · , vnk}, where each vik is sampled from uniform distribution U [20, 80]. For the

parameters of slots, we assume there are 6 slots to be sold, and fix their position qualities:

Q = {q1, q2, q3, q4, q5, q6}

= {0.8, 0.7, 0.6, 0.5, 0.4, 0.3}

(6.1)

The actual ads auction is complicated, but we simplified it in our simulation, we do

not consider richer conditions, such as set all bidders’ budgets unlimited, and there is no

reserve prices in all mechanisms. We vary the group size n from 5 to 12, and observe their

expected revenue variation. From j = 1 to j = 200, at each j, invoke the function EF

(Vj , D,Q), GSP (Vj , D,Q), CE (Vj , D,Q) and Bayesian (Vj , D,Q) respectively. Thus,

those mechanisms use the same data from the same distribution as inputs and compare

their expected revenue fairly. Finally, we average those results from different mechanisms

respectively, and compare their expected revenue at sample size n.

77



Chapter 6. Simulation 78

The generalized GSP mechanism for rich ads in the simulation was not introduced

in the previous sections. Here, in our simulation, it is a simple generalization of the

standard GSP which is used in keywords auction. In our generalization of GSP, the

allocations of bidders are given by maximizing the total social welfare, which is com-

patible with GSP in keywords auction, and each winner’s price per quality is given by

the next highest bidder’s bid per quality. Since the real generalization of GSP for rich

ads is unknown and the generalization form may be various, our generalization of GSP

for rich ads may not be a revenue maximizing one, however, it is a natural one. The

pseudo-codes are listed in Appendix A.

Incentive analysis is also considered in our simulation, except Bayesian mechanism

(it is truthful bidding, bi = vi). Since the bidding strategies in other mechanisms (GSP,

CE, EF) are unclear, we present a simple bidding strategy for bidders to converge to

an equilibrium. We try to find the equilibrium bids by searching the bidder’s possible

bids (bi < vi) one by one, from top rank bidders to lower rank bidders iteratively, until

reaching an equilibrium where no one would like to change his bid. If any equilibrium

exists, we count the expected revenue for this sample; if not, we ignore this sample. All

the pseudo-codes are listed in Appendix A.

Since the Envy-Free solution in our paper only works for the condition that all the

bidders have the same demand, thus, we did the simulation in 2 separate ways:

1. Simulation I is for bidders with a fixed demands, we set di = 2, for all i and

compares expected revenues obtained by GSP, CE, EF, Bayesian.

2. Simulation II is for bidders with different demands and compares expected revenues

obtained by GSP, CE, Bayesian.

Figure 6.1 shows I’s results when all bidders’ demand fixed at 2. Obviously, the

expected revenue is increasing when more bidders involved. When the bidders’ number

rises, the rank of expected revenue of different mechanisms remains the same in the

order Bayesian > EF > CE > GSP.

Simulation II is for bidders with various demands. With loss of generality, we as-

sume that bidder’s demand D = {d1, d2, · · · , di}, di ∈ {1, 2, 3}, we assign those bidders’

demand randomly, with equal probability.

Figure 6.2 shows our simulation results for II when bidders’ demand varies in {1,2,3},
the rank of expected revenue of different mechanisms remains the same as simulation I,

From this chart, we can see that Bayesian truthful mechanism and competitive equilib-

rium get more revenues than generalized GSP.
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Figure 6.1: Simulation results from different mechanisms, all bidders’ demand fixed
at di = 2
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Figure 6.2: Simulation results from different mechanisms, bidders’ demand varies in
{1,2,3}





Chapter 7

Conclusion and Open Problems

7.1 Conclusion

We study the optimal Bayesian truthful mechanism design issues for the multi-item

auction problem with correlated valuations vij = viqj . We focus on three demand

models, the relaxed demand, the sharp demand and the consecutive demand model.

We develop optimal (revenue) mechanisms for the seller. In addition, for the budget

constrained model (without demand constraints), we develop a 2-approximate truthful

mechanism. We prove that the solution is polynomial time solvable.

Question 7.1.1. A major open problem is to find a constant approximation scheme

when the demand constraints and the budget constraints are used simultaneously.

For discrete distribution, [1] and [6] suggested a constant approximate mechanism for

multi unit auction with budget and relaxed demand constrained buyers. However, their

approach which is based on solving an associated linear program cannot be extended

to the continuous distribution case. Of course, another direction is to improve the

approximation ratio for budget constrained cases.

Our models have potential applications to various settings. E.g. TV ads can also be

modeled under our consecutive demand adverts where inventories of a commercial break

are usually divided into slots of fixed sizes, and slots have various qualities measuring

their expected number of viewers and corresponding attractiveness (see Figure 7.1).

With an extra effort to explore the periodicity of TV ads, we can extend our multiple

peak model to one involved with cyclic multiple peaks.

Besides single consecutive demand where each buyer only have one demand choice,

the buyer may have more options to display his ads. e.g. select a large picture or a

small one to display his adverts. Our dynamic programming algorithm A.1 can also be

applied to this case (Transition function in each step selects maximum value from 2k+1

possible values, where k is the number of choices of the buyer).

Another remarkable extension of our model is to add budget constraints for sharp or

consecutive buyers, e.g., each buyer can’t afford the payment more than his budget. By

relaxing the requirement of Bayesian incentive compatible (BIC) to one of approximate
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Figure 7.1: Audience Rating Curve of One TV Channel of China with Several Peaks
in One Day

BIC, this extension can be obtained by the recent milestone work of Cai et al. [11]. It

remains an open problem how to do it under the exact BIC requirement. Further, it is

also interesting to handle it under the market equilibrium paradigm for our model.

We study revenue maximization problem under two concepts: envy-free bundle pric-

ing and envy-free item pricing, which is complementary compared with the recent work

[55]. For envy-free bundle pricing, we suppose the buyer are uniform demand constrains

meaning each buyer’s demand is up to the same number. A PTAS is presented for identi-

cal items and a exponential time algorithm is given for viqj valuations. Besides we show

the problem is NP-hardness for identical items model. For envy-free item pricing, we

present an optimal algorithm for budgets constraint buyer with no demand constraints

for identical items. Our work inspires the following problem, which leaves for future

work.

Question 7.1.2. viqj model. Revenue Maximization with budget no demand con-

straints (or unit demand), consider relaxed envy-free pricing case first, then consider

bundle envy-free pricing case.

Question 7.1.3. How to handle revenue maximization of the case q1 = q2 = · · · = qm =

1, with budget no demand (or unit demand) constraints? PTAS?

Question 7.1.4. How to calculate consecutive envy-free solution when the number of

distinct demands is bounded by a constant number, where the NP-hardness result in

Section 5.5 does not apply to this very important case.

Through out the thesis, our main focus is for correlated valuations vij = viqj except

in Section 4.3 of Chapter 4, we present a hardness result for finding sharp competitive

equilibria of revenue maximization problem for general valuation vij . The valuation we

will discuss in the following paragraph refers to general valuations vij unless specified.



Chapter 7. Conclusion and Open Problems 83

In fact, for general valuations, as introduced in Chapter 1, for the unit-demand setting,

Guruswami et al. [39] initialized the study of envy-freeness in computer science per-

spective and gave an O(log n) approximation algorithm, and Briest [8] showed that the

problem is hard to approximate within a ratio of O(logε n) for some ε, under some com-

plexity assumptions. Chen et al. [18] provided a polynomial time algorithm to compute

a revenue maximization envy-free pricing when there is a metric space behind all items.

One of major open problems is the following:

Question 7.1.5. How to generalize the results on envy-freeness for unit demand model

to multi-unit demand model (including generalization of hardness result)?

The work of Chen et al. [18] can be viewed as one direction of generalization to

answer open problem 7.1.5. Our results of relaxed/sharp/consecutive demand concepts

can also be viewed as other generalization of open problem 7.1.5. Another accompanied

open problem should be the following:

Question 7.1.6. How to generalize the results on envy-freeness for unit demand model

to the same setting with budget constraints (including generalization of hardness result)?

The study of Kempe et al. [44] and Devanur et al. [27] can be viewed as a general-

ization to solve problem 7.1.6.

Another streams of general valuations are competitive equilibria. Chen et al. [16] s-

tudies competitive equilibrium on unit demand matching market with budget constraints

(e.g. utility function has one discontinuity point) and consistent conditions for the utili-

ty function and propose a strongly polynomial time algorithm to determine whether the

equilibrium exists or not and output the minimum one if one does. One open problem

should be the following:

Question 7.1.7. How to generalize the results of Chen et al. [16] to multi-unit case

with budget constraints?

Chen et al. [15] study a Nash dynamic process for unit demand auction model

in matching market using maximum competitive equilibrium mechanism. They proved

that the aligned best response always converges and converges to a minimum competitive

equilibrium of truthful bidding of each buyer. Hence, we would like to investigate Nash

dynamic process for our envy-free case under envy-free mechanisms.

Question 7.1.8. How to do Nash dynamics under envy-free mechanism framework?

For the problem 7.1.8, as far as we know, there is no literature studying this interest-

ing problem. Convergence or uniqueness or converging results of Nash dynamics under

envy-free framework would be very interesting.





Appendix A

Pseudo-code

A.1 Pseudo-code of Simulation

We present the pseudo codes of simulation in Chapter 6.

A.1.1 Expected Revenue for Bayesian Truthful Mechanism (See Sec-

tion 3.5 of Chapter 3)

Suppose with loss of generality, b1 > b2 > . . . > bn > 10, and q1 > q2 > . . . > qn, let

φi(vi) = 2vi − bi − 10.

Algorithm 2: Bayesian Expected Revenue

Input: Demands di, qualities (CTR) qj and bids bi, number of samples K
Output: Expected Revenue R

1 Generate uniform distribution for bi as Ii uniformly distributed on
Ii = [bi − 10, bi + 10];

2 Repeat ;
3 for r = 1, 2, · · · ,K do
4 Generate vri from Ii independently, i = 1, 2, · · · , n;
5 Calculate φi(v

r
i ) and sort it decreasing order as φ′i(v

r
i ) > φ′i+1(vri ),

i = 1, 2, · · · , n;
6 Use dynamic programming

g[s, r] = max


g[s− 1, r]

g[s− 1, r − ds] + φ′s(v
r
s)
∑r

j=r−ds+1 qj

(A.1)

By tracking dynamic programming find allocation Xi;
7 Calculate Rr =

∑
i φi(v

r
i )
∑

j∈Xi qj
8 end

9 return R = 1
K

∑K
r=1R

r;
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The following the sub algorithm for finding the allocations Xi when φi, i = 1, 2, · · · , n
are known.

Algorithm 3: sharp

Input: virtual surplus φi qualities qj
Output: Allocation xij

1 Sort buyers i in decreasing order of φi;
2 g[i, j]← −∞; g[0, 0]← 0;
3 u[i, j]← 0; xij ← 0;
4 for each buyer i with positive φi do
5 for each item j do

6 tmp← g[i− 1, j − di] +
∑j

k=j−di+1 φiqk;

7 g[i, j]← g[i− 1, j];
8 if g[i, j] < tmp then
9 u[i, j]← 1;

10 g[i, j]← tmp;

11 end

12 end

13 end
14 g[i∗, j∗] = maxi,j{g[i, j]};
15 while i∗ > 0 do
16 if u[i∗, j∗] = 1 then
17 for each item k from j∗ − di∗ + 1 to j∗ do
18 xi∗,k ← 1;
19 end
20 j∗ ← j∗ − di∗ ;
21 end
22 i∗ ← i∗ − 1;

23 end
24 return x;



Appendix A. Pseudo Codes of Simulation 87

A.1.2 Revenue from Competitive Equilibrium (See Section 4.5 of Chap-

ter 4)

Suppose q1 ≥ q2 ≥ q3 ≥ · · · ≥ qn

Algorithm 4: Sub-algorithm for CE denoted by CE(d,q,b)

Input: Demands di, qualities (CTR) qj and bids bi
Output: Equilibrium (X,p)

1 Sort the bids bi in decreasing order e.g. b1 > b2 > · · · > bn;
2 Use dynamic programming

g[s, r] = max


g[s− 1, r]

g[s− 1, r − ds] + bs
∑r

j=r−ds+1 qj

(A.2)

By tracking dynamic programming find allocation X;
3 Using following LP to settle price p;
4 Let Ti be any consecutive number of di slots, for all i ∈ [n];

max
∑
i∈[n]

∑
j∈Xi

pj

s.t. pj ≥ 0 ∀ j ∈ [m]

pj = 0 ∀ j /∈ ∪i∈[n]Xi∑
j∈Xi

(viqj − pj) ≥
∑
j′∈Ti

(viqj′ − pj′) ∀ i ∈ [n]

∑
j∈Xi

(viqj − pj) ≥ 0 ∀i ∈ [n]

if LP has a feasible solution then
5 return (X,p)
6 end
7 else
8 return null;
9 end
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Algorithm 5: Main Algorithm for CE

Input: Demands di, qualities (CTR) qj and bids bi, Accuracy ε, biding times K
Output: R revenue

1 b1i = bi, vi = bi i = 1, 2, · · · , n.
2 invoke Sub-algorithm for CE on (d, q, b1),
3 if output is not null then
4 Suppose the output is (X,p)
5 calculate the utility for all i. e.g. ui = vi

∑
j∈Xi qj −

∑
j∈Xi pj

6 end
7 for r = 1, 2, · · · ,K do
8 for i = 1, 2, · · · , n do
9 let M r

i = bbri /εc;
10 for tri = ε, 2ε, · · · ,M r

i ∗ ε do
11 invoke Sub-algorithm for CE on input (d, q, (tri , b

r
−i))

12 if the output is not null then
13 Suppose the output is (X,p)
14 Calculate the current utility u = vi

∑
j∈Xi qj −

∑
j∈Xi pj

15 if u > ui then

16 let ui = u and br+1
i = tri , b

r
i = tri .

17 end
18 else

19 br+1
i = bri ;

20 end

21 end

22 end

23 end
24 Rr =

∑
j pj

25 end
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A.1.3 Revenue from generalized GSP (See more details in Chapter 6)

Algorithm 6: Algorithm GSP

Input: Demands di, qualities (CTR) qj and bids bi, Accuracy ε, biding times K
Output: R revenue

1 b1i = bi, vi = bi i = 1, 2, · · · , n.
2 Suppose the allocation of GSP is X = sharp(b, q);
3 calculate the utility for all i. e.g. ui = vi

∑
j∈Xi qj −

∑
j∈Xi pj

4 for r = 1, 2, · · · ,K do
5 for i = 1, 2, · · · , n do
6 let M r

i = bbri /εc;
7 for tri = ε, 2ε, · · · ,M r

i ∗ ε do
8 Suppose the output of GSP on (d, q, (tri , b

r
−i)) is (X,p)

9 Calculate the current utility u = vi
∑

j∈Xi qj −
∑

j∈Xi pj of bidder i

10 if u > ui then

11 let ui = u and br+1
i = tri b

r
i = tri .

12 end
13 else

14 br+1
i = bri ;

15 end

16 end

17 end
18 return Rr =

∑
j pj

19 end
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A.1.4 Revenue from Envy-free Solution (See Section 5.5 of Chapter 5)

Suppose q1 ≥ q2 ≥ q3 ≥ · · · ≥ qn

Algorithm 7: Sub-algorithm for EF denoted by EF(d,q,b)

Input: Demands d, qualities (CTR) qj and bids bi
Output: Equilibrium (X,p)

1 Sort the bids bi in decreasing order e.g. b1 > b2 > · · · > bn;
2 Use dynamic programming (similar as sharp) (initial values g[0, 0] = 0,
g[1, r] = −∞, r ≤ d)

g[s, r] = max


g[s, r − 1]

g[s− 1, r − d] + bs
∑r

j=r−d+1 qj

(A.3)

By tracking dynamic programming find allocation X;
3 The payment of buyers are P, where Pi is the payment of buyer i ;
4 Pn = bn

∑
j∈Xn qj , and Pi = bi(

∑
j∈Xi qj −

∑
j∈Xi+1

qj) + Pi+1 for
i = 1, 2, · · · , n− 1
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Algorithm 8: Main Algorithm for EF

Input: Demands d, qualities (CTR) qj and bids bi, Accuracy ε, true value vi,
biding times K

Output: R revenue
1 b1i = bi, i = 1, 2, · · · , n.
2 invoke Sub-algorithm for EF on (d, q, b1),
3 if output is not null then
4 Suppose the output is (X,P)
5 calculate the utility for all i. e.g. ui = vi

∑
j∈Xi qj − Pi

6 end
7 for r = 1, 2, · · · ,K do
8 for i = 1, 2, · · · , n do
9 let M r

i = bbri /εc;
10 for tri = ε, 2ε, · · · ,M r

i ∗ ε do
11 invoke Sub-algorithm for EF on input (d, q, (tri , b

r
−i))

12 if the output is not null then
13 Suppose the output is (X,P)
14 Calculate the current utility u = vi

∑
j∈Xi qj − Pi

15 if u > ui then

16 let ui = u and br+1
i = tri , b

r
i = tri .

17 end
18 else

19 br+1
i = bri ;

20 end

21 end
22 else

23 br+1
i = bri ;

24 end

25 end

26 end
27 Rr =

∑
i Pi

28 end
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