
 

 

 

 

Experimental investigation into non-Newtonian 

fluid flow through gradual contraction geometries 

 

 

Thesis submitted in accordance with the requirements of the 

University of Liverpool for the degree of Doctor in Philosophy 

 

by 

 

Fiona Lee Keegan 

 

September 2009 

 

 

 



  Acknowledgements 

  i   

Acknowledgements 

 

I would like to start by thanking my two supervisors, Dr. R.J. Poole and Professor 

M.P. Escudier. Without their constant guidance, support and encouragement this 

thesis would not have been possible. I must also thank EPSRC for funding my 

research. 

 

I am grateful to have shared an office and a lab at various times in the last four years 

with Dr. A.K. Nickson, Dr. S. Rosa and Mrs. A. Japper-Jaafar. They have been a 

great source of moral support as well as providing technical help and asking 

challenging (but useful!) questions. 

 

Without the assistance of our excellent technical support team I would not have been 

able to perform any of the experiments needed to write this thesis. I’d particularly 

like to thank John Curran, John McCulloch, Steven Bode and Derek Neary. I would 

also like to thank Janet Gaywood, Nataly Jones and Elaine Cross for their support to 

our research group. 

 

I am thankful for an opportunity to visit Unilever in Port Sunlight and use one of 

their rheometers to perform some measurements. For this I must thank Dr. A 

Kowalski and Mr. G. Roberts for taking time out from their work to assist me and 

for making me feel very welcome there. 

 

All of my friends have constantly supported me throughout the last 4 years. Special 

thanks go to Claire Jones for listening, trying to understand and remembering what 

I’ve been doing and Claire Batty for keeping me sane nearly every Wednesday night 

for the last 2 years. 

 

Finally I’d like to thank my (ever expanding) family for always being there for me 

and believing in me when things get difficult, especially my mum, Deborah, whose 

belief that you can achieve anything if you work hard enough is inspirational. 



  Summary 

  ii   

Summary 

 

This thesis presents the results of an investigation into the flow of several non-

Newtonian fluids through two curved gradual planar contractions (contraction ratios 

8:1 and 4:1). The objectives were to determine whether a newly discovered effect 

(velocity overshoots were observed in the flow of a 0.05% polyacrylamide solution 

close to the sidewalls of a gradual contraction followed by a sudden expansion by 

Poole et al., 2005) could be reproduced in the absence of the expansion, learn more 

about the phenomenon and to provide a comprehensive set of experimental results 

for numerical modellers to compare their results to. Previous research on contraction 

flows, both numerical and experimental, has been summarised.  

 

The fluids investigated were a Newtonian control fluid (a glycerine-water mixture), 

four concentrations of polyacrylamide (PAA), varying from the ‘dilute’ range to the 

‘semi-dilute’ range and two concentrations of xanthan gum (XG), both in the ‘semi-

dilute’ range. All fluids were characterised using shear rheology techniques and 

where possible extensional rheology measurements were also undertaken. This 

characterisation showed that both PAA and XG are shear-thinning fluids but XG is 

less elastic than PAA. The fluid properties determined from the characterisation were 

used to estimate various non-dimensional numbers such as the Reynolds and 

Deborah numbers, which can then be used to characterise the flow. 

 

The flow under investigation was the flow through a gradual contraction section. 

Two smooth curved planar gradual contractions were used: the contraction ratios 

were 8:1 and 4:1. The contractions were made up of a concave 40mm radius 

followed by a convex 20mm radius. The upstream internal duct dimensions were 

80mm by 80mm in both cases and the downstream internal duct dimensions were 

80mm by 10mm for the 8:1 contraction and 80mm by 20mm for the 4:1 contraction. 

Polymer degradation within the test rig was assessed and the maximum time that the 

solutions could be reliably used was found to be six hours. The fluid velocity was 

measured at discrete locations within the flow using laser Doppler anemometry 

(LDA), which is a non-intrusive flow measurement technique. In both contractions 
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measurements were taken across the XZ-centreplane (side to side) and in some cases 

across the XY-centreplane (top to bottom). 

 

The flow of the Newtonian control fluid through the 8:1 contraction was as expected 

with the flow flattening into the ‘top hat’ shape usually observed in Newtonian flow 

through a gradual contraction (as utilised in wind tunnel design for example). The 

flows of 0.01% PAA (‘dilute’) and 0.07% XG (‘semi-dilute’) also flattened as the 

flow progressed through the 8:1 contraction as the Deborah numbers in these flows 

were very low.  Velocity overshoots close to the plane sidewalls were observed in 

both the 0.03% and 0.05% PAA solutions through the 8:1 and 4:1 contractions. The 

overshoots through both contractions seemed to be influenced most by the Deborah 

number (i.e. the extensional properties of the flow and fluid). Velocity overshoots 

were observed in the 0.3% PAA solution through both contractions but they were 

different in shape to those seen at the lower concentrations. The overshoots were 

closer to the centre of the flow growing into one large ‘overshoot’ at the end of the 

contraction. 

 

This investigation showed that the velocity overshoots can be reproduced in both the 

8:1 and 4:1 gradual contraction in several concentrations of PAA providing the right 

parameters are met (i.e. fluid properties, flow rate etc.). Good quality sets of data 

have been produced, which can be used in the future by researchers interested in 

numerical modelling of non-Newtonian fluid flows through curved gradual 

contractions. 
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the velocity overshoots. 

 

Figure 5.2: K values for flows of 0.03% PAA at Re ≈ 140, DeC ≈ 0.24 (■) and 

Re ≈ 390, DeC ≈ 0.53 (▲). 

 

Figure 5.3: K values for flows of 0.05% PAA at Re ≈ 50, DeC ≈ 0.52 (■) and Re ≈ 110, 

DeC ≈ 0.96 (▲). 

 

Figure 5.4: K values for flows of 0.3% PAA at Re ≈ 5, DeC ≈ 34 (■) and Re ≈ 15, 

DeC ≈ 60 (▲). 

 

Figure 5.5: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, DeC ≈ 0.24, (b) 0.05% polyacrylamide at Re ≈ 110, 

DeC ≈ 0.96, (c) 0.03% polyacrylamide at Re ≈ 390, DeC ≈ 0.53 and (d) 0.05% 

polyacrylamide at Re ≈ 50, DeC ≈ 0.52 (In the 8:1 contraction □ represents x/L=-1, ◊ 

x/L=-0.72, � x/L=-0.45, ○ x/L=-0.27, � x/L=-0.17 and � x/L=0.10. These symbols 

are valid for all figures for the 8:1 contraction unless stated). 

 

Figure 5.6: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, DeC ≈ 0.24, DeN1 ≈ 5.2 and (b) 0.3% polyacrylamide at 

Re ≈ 5, DeC ≈ 34, DeN1 ≈ 5.3. 
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Figure 5.7: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 390, DeC ≈ 0.53, DeN1 ≈ 6.2 and (b) 0.3% polyacrylamide at 

Re ≈ 15, DeC ≈ 60, DeN1 ≈ 6.2. 

 

Figure 5.8: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 390, DeC ≈ 0.53 and (b) 0.05% polyacrylamide at Re ≈ 50, 

DeC ≈ 0.52, (c) 0.5% xanthan gum at Re ≈ 0.86, DeC ≈ 0.21 and (d) 0.5% xanthan gum 

at Re ≈ 2, DeC ≈ 0.34. 

 

Figure 5.9: Normalised velocity profiles along the XZ-centreplane for (a) 0.07% 

xanthan gum at Re ≈ 50, (b) 0.05% polyacrylamide at Re ≈ 50, DeC ≈ 0.52, (c) 0.07% 

xanthan gum at Re ≈ 120 (filled symbols represent reflected values) and (d) 0.05% 

polyacrylamide at Re ≈ 110, DeC ≈ 0.96. 

 

Figure 5.10: Normalised velocity profiles along the XZ-centreplane for (a) 0.3% 

polyacrylamide at Re ≈ 15, DeC ≈ 60 and (b) 0.5% xanthan gum at Re ≈ 0.86, 

DeC ≈ 0.21. 

 

Figure 5.11: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 290, DeC ≈ 0.13, (b) 0.05% polyacrylamide at Re ≈ 30, 

DeC ≈ 0.13, (c) 0.03% polyacrylamide at Re ≈ 115, DeC ≈ 0.06 and (d) 0.05% 

polyacrylamide at Re ≈ 65, DeC ≈ 0.24 (In the 4:1 contraction □ represents x/L=-1, ◊ 

x/L=-0.71, � x/L=-0.42, ○ x/L=-0.23, � x/L=-0.13 and � x/L=0.15. These symbols 

are valid for all figures for the 4:1 contraction unless stated). 

 

Figure 5.12: Velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, DeC ≈ 0.24 in the 8:1 contraction, (b) 0.05% 

polyacrylamide at Re ≈ 110, DeC ≈ 0.96 in the 8:1 contraction and (c) 0.03% 

polyacrylamide at Re ≈ 115, DeC ≈ 0.06 in the 4:1 contraction, the key shown in (b) is 

valid for (a). 
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Figure 5.13: Velocity profiles along the XZ-centreplane for (a) 0.05% 

polyacrylamide at Re ≈ 50, DeC ≈ 0.52 in the 8:1 contraction and (b) 0.05% 

polyacrylamide at Re ≈ 65, DeC ≈ 0.24 in the 4:1 contraction, the keys shown in 

Figure 5.10 are valid for the relevant contraction. 

 

Figure 5.14: Velocity profiles along the XZ-centreplane for 0.05% polyacrylamide at 

Re ≈ 50, DeC ≈ 0.52 in the 8:1 contraction (open symbols) and 0.05% polyacrylamide 

at Re ≈ 65, DeC ≈ 0.24 in the 4:1 contraction (filled symbols) at (a) x/L-1, (b) x/L=       

-0.72 and -0.71, (c) x/L=-0.45 and -0.42, (d) x/L=-0.27 and -0.23, (e) x/L=-0.17 and   

-0.13 and (f) x/L=0.10 and 0.15. 

 

Figure 5.15: Velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, DeC ≈ 0.24 in the 8:1 contraction and (b) 0.05% 

polyacrylamide at Re ≈ 65, DeC ≈ 0.24 in the 4:1 contraction, the keys shown in 

Figure 5.10 are valid for the relevant contraction. 

 

Figure 5.16: Velocity profiles along the XZ-centreplane for 0.03% polyacrylamide at 

Re ≈ 140, DeC ≈ 0.24 in the 8:1 contraction (open symbols) and 0.05% polyacrylamide 

at Re ≈ 65, DeC ≈ 0.24 in the 4:1 contraction (filled symbols) at (a) x/L-1, (b) x/L=       

-0.72 and -0.71, (c) x/L=-0.45 and -0.42, (d) x/L=-0.27 and -0.23, (e) x/L=-0.17 and   

-0.13 and (f) x/L=0.10 and 0.15. 

 

Figure 5.17: Velocity profiles along the XZ-centreplane for (a) 0.05% 

polyacrylamide at Re ≈ 110, DeN1 ≈ 9.4 in the 8:1 contraction (b) 0.05% 

polyacrylamide at Re ≈ 65, DeN1 ≈ 9.0 in the 4:1 contraction (c) 0.05% 

polyacrylamide at Re ≈ 50, DeN1 ≈ 9.2 in the 8:1 contraction and (d) 0.05% 

polyacrylamide at Re ≈ 30, DeN1 ≈ 8.9 in the 4:1 contraction, the keys shown in Figure 

5.10 are valid for the relevant contraction. 

 

Figure 5.18: Velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 290, DeN1 ≈ 5.3 in the 4:1 contraction (b) 0.03% 

polyacrylamide at Re ≈ 115, DeN1 ≈ 5.1 in the 4:1 contraction (c) 0.03% 

polyacrylamide at Re ≈ 140, DeN1 ≈ 5.2 in the 8:1 contraction and (d) 0.3% 
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Figure 5.19: Velocity profiles along the XZ-centreplane for (a) 0.3% polyacrylamide 

at Re ≈ 15, El1,C ≈ 3.9 in the 8:1 contraction and (b) 0.3% polyacrylamide at Re ≈ 2, 
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Figure 5.21: Velocity profiles along the XZ-centreplane for (a) 0.3% polyacrylamide 

at Re ≈ 5, El2,C ≈ 7.0 in the 8:1 contraction and (b) 0.3% polyacrylamide at Re ≈ 2, 

El2,C ≈ 8.3 in the 4:1 contraction, the keys shown in Figure 5.14 are valid for the 

relevant contraction. 

 

Figure 5.22: Velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, El2,N1 ≈ 0.020 in the 8:1 contraction and (b) 0.03% 

polyacrylamide at Re ≈ 115, El2,N1 ≈ 0.018 in the 4:1 contraction, the keys shown in 

Figure 5.10 are valid for the relevant contraction. 

 

Figure 5.23: Velocity profiles along the XZ-centreplane for (a) 0.05% 

polyacrylamide at Re ≈ 50, El2,N1 ≈ 0.089 in the 8:1 contraction and (b) 0.05% 

polyacrylamide at Re ≈ 65, El2,N1 ≈ 0.082 in the 4:1 contraction, the keys shown in 
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Figure 5.24: Non-dimensionalised (a) shear and (b) extensional stresses for 0.03% 

PAA in the 8:1 contraction at Re ≈ 140, DeC ≈ 0.24 (□) and Re ≈ 390, DeC ≈ 0.53 (■); 
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Figure 5.25: Non-dimensionalised (a) shear and (b) extensional stresses for 0.03% 

PAA in the 4:1 contraction at Re ≈ 115, DeC ≈ 0.06 (□) and Re ≈ 290, DeC ≈ 0.13 (■); 

(c) shear and (d) extensional stresses for 0.05% PAA in the 4:1 contraction at 

Re ≈ 30, DeC ≈ 0.13 (□) and Re ≈ 65, DeC ≈ 0.24 (■); (e) shear and (f) extensional 

stresses for 0.3% PAA in the 4:1 contraction at Re ≈ 2, DeC ≈ 8.4. 
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a power law index 

A cross sectional area (mm
2
) 

c concentration 

c* critical overlap concentration 

CR contraction ratio 

d downstream duct height (mm) 

D upstream duct height (mm) 

D1 fitting parameter (mm) 

De  Deborah number 

DeC Deborah number from CaBER 

DeN1 Deborah number from N1 

Df filament diameter (mm) 

DH hydraulic diameter (mm) 

Dmid(t) filament diameter (mm) 

DP platen diameter (mm) 

E modulus of elasticity (Young’s modulus) (Pa) 

El Elasticity number 

El1 Elasticity number found using a Deborah number 

El1,C Elasticity number 1 from CaBER 

El1,N1 Elasticity number 1 from N1 

El2 Elasticity number found using a Weissenberg number 

El2,C Elasticity number 2 from CaBER 

El2,N1 Elasticity number 2 from N1 

fD frequency of reflected light (Doppler burst) (Hz) 

FL focal length of laser lens (mm) 

F force (N) 

GC complex viscosity (Pa.s) 

G′  storage modulus (Pa) 

G ′′  loss modulus (Pa) 

h parallel plate gap height (m) 

hf final sample height (mm) 

hi initial sample height (mm) 

H double concentric cylinder height (mm) 

k power law index 

k1 fitting parameter (mm.s) 

K velocity overshoot quantifying factor 

l characteristic length scale (m) 

L contraction length (mm) 

m&  mass flow rate (kg.s
-1

) 

n parameter introduced by Yasuda et al. (1981) 

n, n1, n2 refractive indices 

nf refractive index of fluid 

nw refractive index of the wall 

N1 first normal stress difference (Pa) 

N1/2 recoverable shear (Pa) 

N2 second normal stress difference (Pa) 

NS sample size  

P wetted perimeter (mm) 
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t thickness of the wall (m) 

t time (s) 

t1 fitting parameter (s) 

t2 fitting parameter (s) 

T characteristic time of a deformation process (s) 

u velocity (m.s
-1

) 

u1 upstream flow velocity (m.s
-1

) 

u2 downstream flow velocity (m.s
-1

) 

U particle velocity (m.s
-1

) 

UB bulk velocity (m.s
-1

) 

UC centreline velocity (m.s
-1

) 

Ud bulk velocity at the end of the contraction (m.s
-1
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UL velocity at change in velocity gradient (m.s
-1
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UO maximum overshoot velocity (m.s
-1
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USQ bulk velocity in the square duct section (m.s
-1

) 

V2 fitting parameter (mm.s
-1

) 

w contraction width (mm) 

Wi Weissenberg number 

WiC Weissenberg number from CaBER 

WiN1 Weissenberg number from N1 

xexp experimental data point 

xth theoretical data point 

x longitudinal axis/direction 

y transverse axis/direction 

z spanwise axis/direction 

ZC constant defined by Yanta & Smith (1973) 

α angle of cone (°) 

γ&  shear rate (s
-1

) 

rγ&  relevant shear rate (s
-1

) 
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-1

) 
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-1

) 

δ interference fringe spacing (m) 

∆F reduction in force (N) 
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-1
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η ′  dynamic viscosity (Pa.s) 
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θ angle between laser beams (°) 

θ1, θ2 angles of refraction (°) 

λ characteristic time for the material / relaxation time (s) 

λw wavelength of laser light (m) 

λC relaxation time from CaBER (s) 

λCY constant representing onset of shear thinning in Carreau-Yasuda model (s) 

λN1 relaxation time from N1 (s) 

Λf final aspect ratio 

Λi initial aspect ratio 

µ  viscosity (Pa.s) 

CHµ  characteristic shear viscosity (Pa.s) 

CYµ  shear viscosity calculated using the Carreau-Yasuda model (Pa.s) 

EXPµ  experimental shear viscosity (Pa.s) 

Sµ  sample average 

wµ  shear viscosity at the wall (Pa.s) 

( )γµ &  shear viscosity (Pa.s) 

0µ  zero shear rate viscosity (Pa.s) 

∞µ  infinite shear rate viscosity (Pa.s) 

*µ  complex viscosity (Pa.s) 

ρ density (kg.m
-3

) 

σ extensional stress (Pa) 

σD standard deviation 

τ  shear stress (Pa) 

τc  centreline shear stress (Pa) 

τw  wall shear stress (Pa) 

ω angular velocity (rad.s
-1

) 
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1. Introduction  

 

Much less is known about non-Newtonian fluid flow compared with the 

comprehensive knowledge we have about Newtonian fluid behaviour. Newtonian 

laminar flow has previously been particularly well researched. Virtually all man-

made fluids, such as those used in manufacturing and other industries (for example 

polymer melts used to produce various plastic items and drilling mud used to assist 

oil retrieval) and everyday fluids like shampoo and toothpaste, are non-Newtonian 

and to this end it is extremely important to further develop the understanding of non-

Newtonian fluid behaviour. Contraction flows, such as those we investigate in the 

current study, are particularly important in polymer processing techniques such as 

extrusion and injection moulding and also as so called ‘benchmark’ flows for 

validating and developing numerical simulation techniques.  

 

1.1. Newtonian fluids 

 

In 1687 Newton postulated in his Principia (translated, 1999),  

The resistance which arises from the friction [lit. lack of lubricity or 

slipperiness] of the parts of a fluid is, other things being equal, proportional to 

the velocity with which the parts of the fluid are separated from one another. 

The resistance is equivalent to the shear stress (τ , Pa), the friction [lack of 

slipperiness] is now known as the viscosity ( µ , Pa.s) and the velocity with which the 

parts of the fluid are separated is the velocity or shear rate ( γ& , s
-1

). Using these 

definitions the postulate says that the shear stress is proportional to the shear rate and 

the viscosity is the constant of proportionality, which gives the following equation, 

γµτ &= .        (1.1) 

This law is linear and assumes that the shear stress is directly proportional to the 

strain, or rate of strain, regardless of the variation in stress. The most common fluids, 

water and air, followed Newton’s postulate and it was not until the 19
th

 century that 

scientists started to doubt that the postulate covered all fluids. 
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In the 19
th

 century Navier and Stokes, independently of one another, developed a 

three-dimensional theory for Newtonian fluid flow. The Navier-Stokes equations are 

the governing equations for the flow of a Newtonian fluid.  

 

Some examples of Newtonian fluid behaviour are: 

(a) At constant temperature and pressure the shear viscosity for a Newtonian 

fluid is constant and does not vary with shear rate. 

(b) The viscosities due to different types of deformation or flow (see Figure 1.1 

for examples of shear and extensional deformation) are always in simple 

proportion to one another, for example the uniaxial extensional viscosity is 

always three times the shear viscosity. 

(c) The only stress generated in simple shear flow is the shear stress. 

(d) The shear viscosity is constant regardless of the length of time of shearing. 

(e) In the absence of inertia, the shear stress in the fluid falls immediately to zero 

when shearing stops. 

 

Any deviation from the above would characterise a fluid as being ‘non-Newtonian’. 

 

1.2. Non-Newtonian fluids 

 

There are several types of non-Newtonian fluid, for example shear-thinning 

(breaking rule (a) above), thixotropic (breaking rule (d)) and viscoelastic (breaking 

rules (c) and (e) and possibly (a), (b) and (d)!). 

 

Newton’s postulate was obeyed by common fluids such as water, air and glycerine 

so it was believed to be true for all fluids, hence all fluids were assumed to be purely 

viscous. Similarly Hooke’s law, published in 1678, that the extension of a solid is 

directly proportional to the force exerted on the material had been used to describe 

solid behaviour and all solids were assumed to be elastic. Hooke’s law is given as 

 εσ E= ,        (1.2) 

 where σ  is extensional stress (Pa), E is Young’s modulus or the modulus of 

elasticity (Pa) and ε  is strain. If a stress is placed on an elastic solid obeying 

Hooke’s law the material will strain immediately and once the stress is removed the 
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material will immediately return to its original state (a viscous fluid would not return 

to its original state once the same stress was removed). In contrast to this behaviour 

if a stress is placed on a viscoelastic material the material will strain linearly over 

time and once the stress is removed the material will return to its original state over 

time, this phenomenon is known as ‘fading’ memory (Brinson and Brinson (2008)).  

 

In 1835 Weber experimented on silk threads and discovered that they were neither 

perfectly elastic nor perfectly viscous (Weber (1835)). He found that on applying a 

load to a silk thread the thread would immediately extend, then there would be a 

continuing elongation. On removing the load an immediate contraction was observed 

followed by a slow contraction to the initial thread length. The immediate extension 

and contraction both follow Hooke’s law, exhibiting elastic behaviour, however the 

slower elongation and contraction are viscous behaviour. This combination of 

viscous and elastic behaviour from one material seemed unusual at the time but is 

now known as viscoelastic behaviour. Viscoelasticity describes behaviour between 

the two extremes of Newtonian behaviour and the Hookean elastic response. Creep 

(increase in strain at constant stress) and relaxation (decrease in stress at constant 

strain) are both viscoelastic effects (Brinson and Brinson (2008)) occurring over a 

period of time, hence viscoelasticity is often observed as a time effect.  

 

1.2.1. Shear-thinning fluids 

 

Shear-thinning fluids are fluids that exhibit a decrease in shear viscosity with an 

increasing shear stress. If the applied shear stress is increased, the corresponding 

shear rate also increases and the shear viscosity is seen to decrease. Many inelastic 

mathematical models have been suggested to describe this relationship, such as the 

power law, Sisko and Carreau fits (Barnes et al. (1989)). Some of these models will 

be discussed further in Chapter 2. 

 

The shear viscosity of a shear-thinning fluid decreases with an increase in shear rate 

because the molecules in the fluid align under the shear stress that is being exerted 

on the sample (Rosen (1993)). For each shear-thinning fluid there are two plateaus 

on a log-log plot where the viscosity is constant, one at low shear rates (zero shear 
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rate viscosity, 0µ , Pa.s), which occurs when the molecules are entangled, and one at 

high shear rates (infinite shear rate viscosity, ∞µ , Pa.s), which occurs once the 

molecules are fully aligned and untangled. Some examples of every day shear-

thinning fluids are 

• Paint - it can be picked up by a brush or roller and transferred to walls or ceilings 

but will not run down the wall or drip from the ceiling. 

• Shampoo - it can be squeezed from the bottle but will sit on your hand without 

flowing. 

 

1.2.2. Shear-thickening fluids 

 

Shear-thickening fluids are less common than shear-thinning fluids and although 

shear-thickening fluids have not been investigated here they are considered to be of 

sufficient interest for a brief inclusion in this Introduction. The shear viscosity of a 

shear-thickening fluid increases with an increase in shear rate. As with shear-

thinning fluids for each shear-thickening fluid there are two plateaus on a log-log 

plot where the viscosity is constant, one at low shear rates and one at high shear 

rates. Examples of every day shear-thickening fluids include any sauces in which a 

thickening agent (for example corn starch) has been used such as gravy and custard – 

both appear to thicken as they are stirred. 

 

1.3. Reynolds, Deborah, Weissenberg and Elasticity numbers 

 

1.3.1. Reynolds number 

 

The Reynolds number, Re, is a dimensionless number used to characterise fluid 

flows in classical Newtonian fluid mechanics, it is the ratio of inertial forces to 

viscous forces within a flow (Escudier (1998)). A flow with a ‘low’ Reynolds 

number is more likely to be laminar as the viscous forces will dominate the flow. A 

flow with a ‘high’ Reynolds number is more likely to be turbulent as the inertial 

forces will dominate. For an internal flow the Reynolds number is determined using 

characteristics of the fluid (the density and the viscosity), a length scale from the 
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geometry of the test rig and a characteristic fluid velocity. The Reynolds number is 

usually defined as 

)(

lU
Re

γµ

ρ

&

B=         (1.3) 

where ρ is the density (kg.m
-3

), UB is the bulk velocity (m.s
-1

), l is a characteristic 

length scale (m) and )(γµ &  is the shear-viscosity (Pa.s). It is not possible to 

determine a single shear-viscosity for most non-Newtonian fluids. The fluids under 

investigation here are shear-thinning so the approach we adopt is to estimate a 

characteristic shear-viscosity at a characteristic shear rate. This problem is discussed 

in further detail in Chapter 3. Examples of typical flows expected across a range of 

Reynolds numbers for internal Newtonian flows are given in Table 1.1. 

 

1.3.2. Deborah number 

 

The Deborah number, De, is used to characterise the degree of viscoelasticity within 

a fluid flow or how ‘fluid’ a material will behave under different types of 

deformation. A Newtonian fluid flow always has a Deborah number equal to zero, 

whereas a perfectly elastic solid will have an infinite Deborah number (McKinley 

(1991), Phan-Thien (2002)). A viscoelastic fluid flow will have a Deborah number 

somewhere between these two extremes and significant elastic effects are generally 

not observed until De ≥ 0.5 (Haas and Durst (1982)). The Deborah number is defined 

as 

T
De

λ
=         (1.4) 

where λ is a characteristic time of the material (s) (often called a relaxation time) and 

T is a characteristic time of the deformation process being observed (s), usually taken 

as an inverse characteristic shear rate, e.g. UB/l. 

 

The Deborah number for a given material can vary greatly depending on the 

deformation process that it is undergoing (Bird et al. (1987)). If we take a nominal 

material with relaxation time 1s and a process such as flow through a section of 

converging duct taking 5s we obtain a Deborah number of 0.2 giving weakly 

viscoelastic behaviour. If however, we take the same material and subject it to an 

impact lasting, say, 10ms we obtain a Deborah number of 100 indicating much more 
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elastic behaviour. This example is an extreme simplification used to illustrate the 

importance of the process the material is undergoing when calculating the Deborah 

number and estimating viscoelastic effects. 

 

1.3.3. Weissenberg number 

 

The Weissenberg number, Wi, is defined as the ratio of elastic to viscous forces 

within a flow. For a pure shear flow, the Weissenberg number can be expressed as 

the ratio of the elastic recoverable shear (N1/2, Pa) to the applied shear stress 

 
τ

21N
Wi = .        (1.5) 

For arguably the simplest viscoelastic model (the upper convected Maxwell model 

(Samsal (1995), Owens and Phillips (2002))), γλτ &21 =N  and therefore 

 γλ
τ

γλτ
&

&
==Wi        (1.6) 

where γ&  is the shear (or strain, ε& ) rate (s
-1

). We note that this is essentially the same 

definition as the Deborah number where T is taken as the inverse of the shear rate.  

 

1.3.4. Elasticity number 

 

The Elasticity number, El, is another measure of how elastic a fluid flow is: the 

higher the Elasticity number the more elastic the flow. The Elasticity number is 

defined as the Deborah number divided by the Reynolds number (McKinley (1991)), 

21
lRe

De
El

ρ

λµ
== ,       (1.7) 

and can be seen to be dependent on the fluid properties and the dimensions of the test 

section only. For fluids of constant viscosity and relaxation time, El is the same no 

matter what the flowrate. However, for shear-thinning fluids where the viscosity and 

relaxation time are dependent on the shear rate, and hence also dependent on the 

flow velocity, El will vary with the flow rate. 

 

We can also define a second Elasticity number (Astarita and Marucci (1974)) using 

the Weissenberg number, i.e. 
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Re

Wi
El =2 .        (1.8) 

 

1.4. Gradual contractions 

 

Gradual contractions are used in pipe or duct flows to slowly decrease the cross-

sectional area that the flow passes through; this slowly increases the flow velocity 

whereas using a sudden contraction changes the area and the velocity immediately 

and causes recirculating flows/vortices at the corners of the contraction. Gradual 

contractions can be either tapered or curved and can be used in both planar and 

axisymmetric duct flow: Figure 1.2 shows schematics of curved and tapered gradual 

contractions and an abrupt contraction for comparison. The type of gradual 

contraction under investigation in this study is a planar curved gradual contraction 

and is discussed in detail in Chapter 3. It is well known that for Newtonian fluid flow 

at high Reynolds numbers through a curved gradual planar contraction the flow 

profile flattens producing a ‘top hat’ flow on exit from the section. This type of 

contraction is commonly used in wind tunnels to increase the flow velocity while 

producing a uniform flow within the test section (Pankhurst and Holder (1965), 

Mehta and Bradshaw (1979)). In contrast, little research has been undertaken on the 

study of non-Newtonian fluid flow through gradual contractions. However, due to it 

being a ‘benchmark’ problem in computational rheology (Hassager (1988), Phillips 

and Williams (2002)), there are numerous studies investigating abrupt contraction 

flow. 

 

1.5. Background 

 

As mentioned, much of the experimental work concerned with non-Newtonian fluid 

flow through contractions has concentrated on abrupt contractions, both 

axisymmetric and planar, and mostly focuses on two phenomena, the enhanced 

pressure drop and vortex enhancement. Vortex enhancement is the increase in the 

size and strength of the corner vortex observed as the relevant dimensionless number 

(the Deborah number, for example) is increased and the enhanced pressure drop is 

the difference between the actual observed pressure drop and the equivalent pressure 

drop that would be observed if only the pressure losses expected in fully developed 
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flow were considered. There is an abundance of literature in this area so we have 

concentrated on the most significant works, favouring that which is the most recent. 

Astarita et al. (1968 (a) and 1968 (b)) investigated the excess pressure drop in 

axisymmetric flow for both Newtonian (1968 (a)) and non-Newtonian (1968 (b)) 

fluids. They found that the pressure drop had been hugely underestimated for 

Newtonian flow (the pressure drop had been estimated previously using inaccurate 

Hagenbach and Couette corrections, however Astarita et al. were unable to provide 

alternative values for these corrections as they appear to be dependent on the 

contraction geometry). They also found that it is not always true that the observed 

enhanced pressure drop is larger for elastic fluids than for viscous fluids as 

previously hypothesised. Cable and Boger experimentally explored axisymmetric 

flow of viscoelastic fluids (1978 (a), 1978 (b), 1979). They investigated in detail 11 

flows of a polyacrylamide, with concentrations from 0.4% to 2% by weight, at 

different flow rates through a 4:1 abrupt axisymmetric contraction and six flows 

through a 2:1 abrupt axisymmetric contraction. They identified two distinct flow 

regimes: the vortex growth regime where the flow patterns appear to be independent 

of inertia effects and the divergent flow regime where inertia appears to affect the 

flow. Since this comprehensive study was performed many more investigations have 

been undertaken on axisymmetric contraction and expansion flows including, more 

recently, an experimental investigation into the effects of extensional rheology 

(Rothstein and McKinley (2001)). In this study the flow of a Boger fluid (an elastic 

fluid with constant viscosity, often used to separate viscous effects from elastic 

effects in viscoelastic flows (Boger (1977))) through abrupt axisymmetric 

contraction expansion ratios of 8:1:8, 4:1:4 and 2:1:2 with both a sharp and curved 

re-entrant corner was investigated and it was found that introducing a curved re-

entrant corner delays the vortex development. They observed an enhanced pressure 

drop larger than that seen in a Newtonian fluid, which was seen to grow with an 

increase in Deborah number. 

 

Evans and Walters (1986) investigated abrupt planar and square-square contractions. 

They tested Boger fluids and shear thinning aqueous polyacrylamide (PAA) 

solutions through several contraction ratios and attempted to change the re-entrant 

corner conditions by inserting ‘ramps’ and cutting away the re-entrant corners from 

the geometries. They had previously thought (Walters (1985)) that for Boger fluids 
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vortex enhancement would always be present in the square-square contraction and it 

would never be observed in the planar contraction. However, during this study, 

Evans and Walters observed no vortices in the square-square contraction for the low 

elasticity Boger fluid at the lowest flow rate while they did observe vortices and 

asymmetry in the higher elasticity Boger fluid through the planar contraction. In the 

1% PAA solution through the 4:1 planar contraction corner vortices are observed, 

which grow as the flow rate is increased. Through the 16:1 contraction, corner 

vortices are also observed but they grow more slowly and extend towards the re-

entrant corner until, for a range of Deborah numbers, two vortices are seen. This 

effect showed that contraction ratios above 4:1 might be worth investigating as, until 

then, they were thought to be of less interest (the selection of the 4:1 contraction 

ratio as the ‘benchmark’ (Hassager (1988)) supports this statement). A further study 

by Evans and Walters (1989) investigated flow of aqueous PAA solutions through 

abrupt and tapered planar contractions. In an attempt to observe a lip vortex they 

decreased the concentration of the PAA. While no lip vortex was seen in 

concentrations of 0.3% and 0.5% PAA, a lip vortex was observed in 0.2% PAA. The 

contraction angle was found to affect the occurrence and formation of both the 

corner and lip vortices: at an angle of 150° the lip vortex is not visible and the corner 

vortex barely so. 

 

A further experimental study by Nigen and Walters (2002) compares Boger fluid 

flow through both abrupt axisymmetric contractions and abrupt planar contractions 

of varying ratios. The vortices seen in the axisymmetric case were not observed in 

the planar contractions and the planar contractions appear to be much less sensitive 

to elasticity effects. They also note that for axisymmetric contractions the enhanced 

pressure drop is larger for a Boger fluid than for a Newtonian fluid; however in the 

planar contraction there is no difference in the pressure drop between the Newtonian 

and Boger fluids. Nigen and Walters question whether an axisymmetric contraction 

can be compared to a planar contraction. To this end, it is worth mentioning square-

square contractions, which may be considered more similar to an axisymmetric 

contraction than a planar contraction. Alves et al. (2005) investigated experimentally 

both Boger and Newtonian fluid flow through a 4:1 square-square contraction. For 

the Newtonian fluid flows, inertia was seen to cause a reduction in the corner vortex, 

which showed good agreement with their numerical simulations. The less elastic of 
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the two Boger fluids under investigation showed that as the Deborah number was 

increased the corner vortex initially increased slightly before shrinking to around a 

quarter of the maximum vortex size, while as the Deborah number was increased 

further divergent flow was observed (i.e. as was observed by Cable and Boger (1978 

(a))). The more elastic of the two Boger fluids shows a more intense initial increase 

in vortex size with increase in Deborah number and the divergence seen in the lower 

elasticity flow is also seen here. For the higher elasticity fluid a lip vortex is 

observed for a range of Deborah numbers whereas it is not seen in the lower 

elasticity fluid. 

 

There has also been much numerical research concerned with contraction flow, both 

axisymmetric and planar, but similar to the experimental works, the main focus has 

been on abrupt contractions and attempting to improve numerical methods. A 

growing interest in numerical simulations based on finite-volume methods rather 

than finite-element methods has been seen in recent years (Wachs and Clermont 

(2000)). This growth in interest may be due to the ease of use of finite-volume 

methods (Wachs and Clermont). It has also been found that results obtained using 

the finite-volume method provide a better approximation to theory in some cases 

(O’Callaghan et al. (2003)). Wachs and Clermont investigated flow of an upper 

convected Maxwell (UCM) fluid through an abrupt axisymmetric contraction using 

five meshes of varying refinement throughout the contraction. It was found that, 

although the coarsest mesh could qualitatively describe the vortex shape, finer 

resolution was required close to the re-entrant corner in order to predict the flow 

characteristics accurately and that with an increase in Weissenberg number the 

corner vortex is seen to grow. Alves et al. (2000) also used a finite-volume method 

to investigate the flow of a UCM fluid through a 4:1 abrupt planar contraction using 

four meshes of varying resolution and provided benchmark results up to a Deborah 

number, De, of three. Their results (similar to those of Wachs and Clermont (2000)) 

show that more refinement of the mesh is required close to the re-entrant corner in 

order to accurately predict the characteristics of the flow. Alves et al. also find that 

as the Deborah number increases the corner vortex decreases while the lip vortex 

increases until they merge into one vortex ( 5≈De ) and the pressure drop is seen to 

decrease with increasing De (however this is not greatly affected by mesh 

refinement). Further investigations by Alves et al. (2003) provide benchmark 
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solutions for Oldroyd-B and Phan-Thien/Tanner (PTT) fluids flowing through a 4:1 

abrupt planar contraction. For the Oldroyd-B fluid the corner vortex is seen to shrink 

with an increase in Deborah number while the lip vortex is seen to grow and the 

pressure drop is seen to decrease, agreeing with their previous work investigating a 

UCM fluid. For the linear PTT fluid the corner vortex is seen to grow with an 

increase in Deborah number and the exponential PTT fluid exhibits an increase in 

vortex size up to a maximum at 76 −≈De , followed by a decrease in vortex size. 

For both the linear and exponential PTT fluid they observe an initial decrease in 

pressure drop with an increase in Deborah number, followed by an increase in the 

pressure drop after minima observed at 20≈De  (linear PTT) and 1≈De  

(exponential PTT). 

 

Over the years there have been several papers that summarise the research on 

contractions. The interested reader is referred to the recent papers of Rodd et al. 

(2005, 2007) and Alves et al. (2005) along with earlier papers such as Cable and 

Boger (1978 (a)), White et al. (1987) and Boger (1987) for a more in-depth 

discussion. In order to briefly overview some of the most important works in Tables 

1.2 and 1.3 we present a summary of some of the previous works, both experimental 

(1.2) and numerical (1.3), on contraction and expansion flows. 

 

While experimentally investigating the flow of a viscoelastic fluid through a sudden 

expansion preceded by a curved gradual contraction section Poole et al. (2005) 

discovered an unusual phenomenon within their gradual contraction section. The aim 

of their study was to investigate the asymmetry seen in planar sudden expansion 

flows (bifurcation). This effect is known to occur in Newtonian fluid flow above a 

critical Reynolds number of the order of 10 (the exact critical Reynolds number is 

dependent on the expansion ratio, inlet velocity profile and several other factors 

(Drikakis (1997)). The aim of the investigation was to determine whether or not 

viscoelasticity has any effect on the occurrence of this asymmetry (numerical 

investigations had shown that viscoelasticity increases the critical Reynolds number, 

Oliveira (2003)). A gradual contraction was used prior to the sudden expansion 

because, for Newtonian fluid flow, this produces a virtually uniform velocity profile 

across the contraction exit as we have already mentioned. The geometry was a planar 

8:1 gradual contraction followed by a 1:4 sudden expansion and the fluid used was 
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0.05% polyacrylamide in water, which is a shear thinning viscoelastic fluid. A 

transverse velocity profile, shown in Figure 1.3, measured at the exit of the 

contraction indicated a major deviation from the ‘top hat’ profile that was 

anticipated. The figure clearly shows two peaks towards the top and bottom of the 

section when it would be expected that the flow would be uniform; this prompted 

further investigations into the flow within the contraction itself. Figure 1.4 shows 

spanwise velocity profiles measured within the gradual contraction along the XZ-

centreplane. Close to the sidewalls of the contraction huge velocity overshoots are 

clearly visible. These overshoots were dubbed ‘cat’s ears’ by the authors due to their 

appearance. Poole et al. (2007) extended their earlier work by investigating a gradual 

contraction followed by a sudden expansion with a lower contraction/expansion ratio 

than that used previously and also by conducting some numerical simulations. The 

velocity overshoots observed in the previous study were reproduced experimentally 

in the new geometry and the numerical results agreed qualitatively with the 

experimental results, although the overshoots were much weaker in the simulations. 

 

Afonso and Pinho (2006) conducted a detailed numerical investigation into the 

viscoelastic smooth contraction flow problem in an attempt to reproduce the results 

of Poole et al. (2007). These numerical investigations agreed qualitatively with the 

experimental results and showed that the velocity overshoots were dependent on 

large Weissenberg numbers, large second-normal stress differences, strain hardening 

of the extensional viscosity, intense shear-thinning of the fluid and non-negligible 

inertia. As discussed, previous numerical investigations were predominantly two 

dimensional in nature, again focussing mainly on abrupt contractions, and hence 

fundamentally different to the work of Poole et al. (2005). An exception is the work 

of Binding et al. (2006), who investigated abrupt contractions/expansions with 

rounded corners. However, their investigation was concerned primarily with the 

pressure at various locations within the flow and, in particular, with understanding 

the enhanced pressure drop that is known to occur for viscoelastic fluid flow through 

sudden contractions. Alves and Poole (2007) investigated the flow of viscoelastic 

fluids through smooth gradual planar contractions of varying contraction ratio in an 

attempt to determine the divergence of the flows (divergence is used to mean the 

divergence of the streamlines throughout the contraction, the streamlines would 

normally be expected to be parallel with one another then become closer together as 
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the flow progresses through a contraction but, actually, they have been seen to 

separate or ‘diverge’ inside contractions). They observed divergent flows with the 

degree of divergence increasing for smaller contraction ratios. 

 

1.6. Objectives of PhD 

 

The main objective of the research discussed in this thesis was to determine whether 

the effect observed by Poole et al. (2005) through a sudden expansion preceded by a 

gradual contraction can be reproduced when a sudden expansion is not present and to 

gain physical insight into the phenomenon. To this end the fluids investigated are 

aqueous polyacrylamide and xanthan gum solutions at various concentrations; they 

are tested at several Reynolds, Deborah and Weissenberg numbers in an attempt to 

‘separate out’ various effects (e.g. shear thinning vs increased elasticity effects, 

extensional effects) and determine the conditions required for the velocity overshoots 

or ‘cat’s ears’ to be observed. A further objective is to provide high quality data that 

can be utilised as a benchmark set of 3D experimental results, which can be used by 

researchers who investigate numerical flows of non-Newtonian fluids to test their 

codes: the gradual contraction alone is much more attractive from a modelling 

perspective as the, often troublesome (Afonso and Pinho (2006)), sharp corners of 

the sudden expansion are removed. 

 

The current work investigates the flow of several non-Newtonian fluids through two 

gradual planar contractions of contraction ratio of 8:1 and 4:1. The fluids have been 

characterised using a steady-state shear rheometer and a capillary break-up 

extensional rheometer in order to determine shear viscosities and relaxation times 

with which to estimate the appropriate Reynolds, Deborah, Weissenberg and 

Elasticity numbers for each flow. These techniques are discussed in detail in Chapter 

2. The shape of the 8:1 contraction section is identical to that used in Poole et al. 

(2005), the 4:1 contraction was designed using the same methodology as the 8:1 

contraction but the end height is necessarily different in order to produce a smaller 

contraction ratio. Both contractions are discussed in Chapter 3 along with a detailed 

description of the complete test rig. The technique utilised for measuring the flow 

velocities was laser Doppler anemometry, which can be used to measure the velocity 

at discrete locations within the flow without affecting the flow in any way. 
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Information regarding the laser Doppler anemometry set up is also provided in 

Chapter 3. The corresponding results of the investigations are presented in Chapter 4 

and the results are discussed in Chapter 5 where comparisons are drawn between the 

flows through both contractions. The thesis ends with some conclusions, which place 

the work in context, and recommendations for further studies. 
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1.7. Tables 

 

Table 1.1: Flow characteristics for approximate ranges of Reynolds Numbers for 

internal flows of Newtonian fluids (from White (1999)). 

Re Flow characteristics 

0 < 1 Highly viscous, laminar ‘creeping’ motion 

1 < 100 Laminar, strong Reynolds number dependence 

100 <1000 Laminar, boundary layer theory useful 

1000 < 10
4
 Transition to turbulence 

10
4
 < 10

6
 Turbulent, moderate Reynolds number dependence 

10
6
 < ∞  Turbulent, slight Reynolds number dependence 
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Table 1.2: Summary of experimental works on contraction and expansion flow. 
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Table 1.3: Summary of numerical works on contraction and expansion flow. 
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1.8. Figures 

 

 

 

 

 

 

 

 

 

 

 

 

  (a)          (b) 

Figure 1.1: Examples of (a) extensional deformation and (b) shear deformation.  

 

 

 
(a)     (b) 

 

 
(c) 

 

Figure 1.2: Examples of different types of contraction (a) curved gradual contraction, 

(b) tapered gradual contraction and (c) abrupt contraction.  
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Figure 1.3: Transverse profile measured at the start of the sudden expansion section 

of an 8:1:4 gradual contraction sudden expansion geometry, which prompted further 

investigation into the gradual contraction. (Taken from Poole et al. (2005)) 

 

 

Figure 1.4: Spanwise profiles measured inside the gradual contraction section of an 

8:1:4 gradual contraction sudden expansion geometry. (Taken from Poole et al. 

(2005))
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2. Fluid Characterisation 

 

2.1. Shear rheology 

 

The TA Instruments Rheolyst AR-1000N is a rotational controlled-stress rheometer 

used in conjunction with the manufacturer’s software (Rheology Advantage 

Instrumental Control V5.5.0), which can be adapted for use with several different 

geometries, e.g. the double-concentric cylinder, cone and plate and parallel plates.  

 

The double-concentric cylinder geometry (see Figure 2.1 for schematic) comprises 

two stationary concentric cylinders and a rotating cylinder; the rotating cylinder fits 

between the two stationary cylinders. The working fluid is placed between the two 

stationary cylinders and the rotating cylinder is lowered into position. A metal 

‘jacket’ surrounds the geometry and water is pumped through the jacket to control 

the temperature. Double-concentric cylinders are used to test samples that have 

relatively low shear viscosities because they have a much larger contact area than 

other geometries, this means that for the same viscosity the torque, and consequently 

the force, is much greater. As a result they can also be used to test at lower shear 

stresses and their corresponding shear rates and may be used to determine the zero 

shear rate viscosity for some fluids. 

 

The cone and plate geometry (see Figure 2.2 for schematic) comprises a stationary 

plate and a rotating cone; the cone is positioned directly above the plate. The 

working fluid is placed on the plate and the cone is lowered to trap the fluid sample 

between the plate and the cone. The plate is a Peltier plate, which uses the Peltier 

effect to control the temperature of the working fluid. The tip of the cone is slightly 

truncated so that the tip cannot become worn or damage the plate and there is a small 

gap between the plate and the cone to adjust for this truncation. The main advantage 

of the cone and plate geometry is that the shear rate is uniform throughout the 

sample (in the parallel plate geometry it is not).  

 

The parallel plate (see Figure 2.3 for schematic) works in the same way as the cone 

and plate except the cone is replaced with a flat plate, which is parallel to the 
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stationary plate and the user can define the gap between the two plates. The shear 

rate is not uniform across the sample when parallel plates are used, however the 

software can compensate for this effect (by calculating a ‘relevant’ shear rate, 

Rr
R

d
dωγ =& , where R is the radius (m) and ω is the angular velocity (rad.s

-1
)) and the 

resulting shear viscosity measurements are still accurate. Parallel plates can be used 

to reach higher shear stresses and shear rates than the double concentric cylinder or 

the cone and plate geometries because parallel plates are available with smaller 

surface areas than the cone and plate and double concentric cylinder geometries. 

Parallel plates can often be useful in determining the infinite shear rate viscosity, ∞µ  

(Pa.s), of a fluid because the gap can be defined by the user, hence controlling the 

resultant Reynolds number of the flow within the fluid sample. In steady state shear 

at high rotational speeds the shear viscosity appears to increase implying that the 

fluid becomes shear thickening at high shear rates, however this is not necessarily 

the case if the flow is no longer viscometric
1
 (Barnes et al. (1989)). High rotational 

speeds may induce so-called secondary flows, secondary flows absorb energy hence 

increasing the torque and making the ‘shear viscosity’ appear to increase. Secondary 

flows occur within the fluid sample when the Reynolds number is high 

(approximately 1000 (White (1999))) but if parallel plates are used with a small gap 

then the Reynolds number will be lower (in this case µωρ /hR=Re , where ρ is the 

density of the sample (kg.m
3
), R is the radius (m), ω is the angular velocity (rad.s

-1
) 

and h is the gap between the two plates (m)) than if the cone and plate geometry 

( µρω /2
RRe = ) were used for example (Pipe and McKinley (2009)). 

 

2.1.1. Steady-state shear 

 

Steady-state shear measurements are taken over a range of shear stresses determined 

by the user. The software calculates a torque to correspond to each shear stress. The 

rheometer applies the calculated torque, and hence shear stress, to the working fluid 

sample by rotating the non-stationary component from each geometry (see Figures 

2.1, 2.2 and 2.3). The resulting shear rate can be found by measuring the angular 

velocity of the geometry and the shear viscosity can be calculated using  

                                                 
1
 In viscometric flow each fluid element undergoes a steady shearing motion only (Tanner (1985)) 

and no secondary flows are present. 
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γ

σ
µ

&
=          (2.1) 

where σ  is a function of the torque and γ&  is a function of the angular velocity, both 

functions are dependent on the geometry in use. The rheometer changes the torque 

nominally instantaneously. However even for a Newtonian fluid the corresponding 

shear rate does not change instantaneously, as it takes some time to come to 

equilibrium due to inertia effects (due to the instrument, geometry and fluid for 

example). To determine that a steady-state has been reached the shear rate is 

calculated (from measurements of the angular velocity) every 15 seconds until three 

consecutive values are within 3% (3% is an arbitrary value, 1% would have been 

ideal but time constraints led to 3% being selected) of each other, once these 

conditions are achieved the corresponding shear viscosity can be calculated. The 

shear stress is varied as required and the shear viscosities for each shear rate are 

calculated to enable the variation of shear viscosity with respect to shear rate to be 

determined. 

 

Several empirical inelastic models can be fitted to steady-state shear data, such as the 

power law (Barnes et al. (1989)) and Cross (Cross (1965)) models for shear-thinning 

fluids and the Bingham model (Barnes et al. (1989)) for fluids exhibiting a yield 

stress amongst many others. Here we use the Carreau-Yasuda model, which is used 

to model the complete range for shear-thinning fluids, 

( )
( )[ ] a

na

 1 CY

0

CY
γλ

µµ
µµ

&+

−
+= ∞

∞       (2.2) 

where CYλ  is a constant representing the onset of shear thinning (s), a  is a 

parameter introduced by Yasuda et al. (1981) and n  is a power law index. 

 

The zero and infinite shear rate viscosities can be used to estimate Reynolds numbers 

at zero shear and infinite shear. The shear viscosity for other characteristic shear 

rates can be estimated using the Carreau-Yasuda model once all parameters have 

been determined. The parameters are determined using the least-squares-fitting 

method as described by Escudier et al. (2001), this method minimises the standard 

deviation 
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 ∑ 





 −

2

CY

EXP1
µ

µ
        (2.3) 

where µEXP is the shear viscosity measured by the rheometer and µCY is  the viscosity 

determined using equation 2.2. This standard deviation is preferable because the 

fluids investigated during this study cover a wide range of values for the shear 

viscosity and it will not be heavily weighted toward higher viscosities as other 

deviations may be (e.g. ( )2

CYEXP µµ − ). 

 

2.1.2. Critical overlap concentration, c* 

 

The critical overlap concentration, c*, for a polymer in solution is defined as the 

concentration at which the polymer coils start to overlap with each other (Lapasin 

and Pricl (1995), Tirtaatmadja et al. (2006)). Fluids with concentrations below c* are 

said to be in the dilute range, the polymer molecules in a dilute solution are spaced 

so that they will not interact with each other; fluids with concentrations above c* are 

said to be in the semi-dilute range as the polymer molecules are close enough 

together to begin to interact with each other. One way of estimating the critical 

overlap concentration of an aqueous polymer is to determine the zero shear-rate 

viscosity, 0µ  (Pa.s), using the Carreau-Yasuda model fit for example (as described 

earlier) for several concentrations of the specified polymer (see for example Rodd et 

al. (2000), for a series of xanthan gums). When 0µ  is plotted against concentration 

two power-law ranges become apparent (See Figure 2.4 for an example). These two 

ranges are representative of the dilute range and the semi-dilute/concentrated range 

and the point of intersection between these two ranges is called the critical overlap 

concentration. In the dilute range the shear viscosity has been found to be 

proportional to the concentration with a slope approximately equal to one ( 1
c∝µ ) 

and in the semi-dilute range the shear viscosity has been found to be proportional to 

the concentration with a slope of around three to four ( 43−∝ cµ ) depending on how 

rigid the polymer is (Lapasin et al. (1990), Rodd et al. (2000)). If the slope is close 

to 3 then the polymer is flexible and if it is closer to 4 it is rigid (Lapasin et al. 

(1990)). 
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2.1.3. Normal-stress difference 

 

In a polymer solution at rest one polymer-chain molecule occupies a spherical 

volume and the entropic forces within the polymer solution determine this shape 

(Barnes et al. (1989)). When a polymer solution is under shear deformation the same 

molecule becomes ellipsoidal in shape with its major axis tilted in the direction of 

shearing and internal restoring forces attempt to return the molecule to its original 

spherical shape. These restoring forces are larger along the molecule’s major axis 

and the total restoring forces are greater in the direction normal to the shear 

deformation and this gives rise to the first and second normal-stress differences N1 

and N2 (Pa). 

 

Several effects are attributed to the development of significant normal forces within 

a flow, including the Weissenberg or rod climbing effect in which polymer solutions 

climb a rotating shaft and extrudate swell (also known as die swell) where polymer 

melts or solutions commonly swell to two or three times the die exit diameter 

(Barnes et al. (1989)) 

 

The normal force is generally measured under steady-state shear at the same time as 

the shear viscosity. During this investigation the geometry used to measure the 

normal force was a cone and plate; the cone had a diameter of 6cm and an angle of 

1º. From the total normal force we can find the first normal-stress difference using 

(Walters (1975)), 

 
211

2 2

2 R

F
NN

R
F

π

π
=⇒= ,      (2.4) 

where F is the total normal force (N) and R is the radius (m). The experimental 

values for F may be slightly lower than the true values due to the effects of inertia, 

this effect is known as the ‘negative normal stress effect’ (Barnes et al. (1989)) and 

can be corrected using (Walters (1975)), 

 
40

3 42
R

F
πρω

=∆        (2.5) 
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where F∆  is the reduction in F due to inertia (N), ρ is the density of the sample and 

ω is the angular velocity (rad.s
-1

). 

 

2.1.4. Small amplitude oscillatory shear 

 

The rheometer can also be used to apply an ‘oscillatory’ shear stress to the working 

fluid by rotating the non-stationary component alternately clockwise and then anti-

clockwise. A ‘stress sweep’, in which the oscillatory shear stress is varied while the 

frequency of oscillations is kept constant, is performed as a check to determine the 

linear viscoelastic region for the fluid (i.e. the region where the results are 

independent of the applied oscillatory stress). A ‘frequency sweep’ is subsequently 

performed at an oscillatory shear stress within the linear viscoelastic region, the 

oscillatory shear stress is kept constant and the oscillation frequency (ω, rad.s
-1

) is 

varied in this case. Two frequency sweeps are performed at different values of 

constant oscillatory shear stress from within the linear viscoelastic region in order to 

confirm that the observed viscoelastic properties (the storage modulus ( G′ , Pa) and 

the loss modulus (G ′′ , Pa)) are independent of the oscillatory shear stress. The 

storage modulus and the loss modulus can be used to calculate the dynamic rigidity 

(Pa.s
2
) and the dynamic viscosity (η′ , Pa.s) respectively, using (Barnes et al.) 

Dynamic Rigidity
2

2

ω

G′
= ,      (2.6) 

Dynamic Viscosity
ω

η
G ′′

=′= .     (2.7) 

The dynamic viscosity should tend towards the same value as the zero shear rate 

viscosity as the frequency decreases as it is a requirement of continuum mechanics 

that at low shear rates and frequencies the shear viscosity and the dynamic viscosity 

are equal (Barnes et al. (1989), Al-Hadithi et al. (1992)) , 

 ( ) ( )
00 →→ =′

γω γµωη
&

& .       (2.8) 

 

G′  is zero for an inelastic fluid, hence the dynamic rigidity is also zero for an 

inelastic fluid; if G′  is non-zero it shows that the fluid is viscoelastic to some 

degree. When small amplitude oscillatory shear measurements are performed on 

water, or another Newtonian fluid, the rheometer may indicate a non-zero value for 
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the storage modulus. This error is again due to the effects of inertia and this value 

provides information on the rheometer’s resolution: such ‘limit’ data is highlighted 

in the results. Any small amplitude oscillatory shear measurements for polymer 

solutions that are close to these limits (within 10%) have been discounted, as they 

are unlikely to be reliable.  

 

A maximum relaxation time may be estimated using the storage and loss modulus 

data by performing a Maxwell model fit using (Bird et al. (1977)) 

 
( )∑

+
=′

n

i i

ii
G

2

2

1 ωλ

ωλη
       (2.9) 

 
( )∑

+
=′′

n

i i

i
G

2
1 ωλ

ωλ
.       (2.10) 

The maximum relaxation time is then determined from 

 

∑

∑
=

n

i

i

n

i

ii

η

ηλ

λ .        (2.11) 

 

It is also possible to estimate the shear viscosity variation for polymeric solutions 

from the G′  and G ′′  data using a relationship known as the Cox-Merz rule (Cox and 

Merz (1958)),  

 ( ) ( )[ ] 2
1

22

ωωµ GG ′′′∗ +=       (2.12) 

where ∗µ  is the complex viscosity. The rule suggests that the complex viscosity, 

when plotted against the angular frequency, should coincide with the shear viscosity 

variation against shear rate data. This essentially empirical rule has been shown to be 

applicable for many polymer solutions including polyisobutylene in decalin and a 

polypropylene copolymer melt (Al-Hadithi et al. (1992)). Similarly it is possible to 

estimate the first normal stress difference N1 from oscillatory data. Al-Hadithi et al. 

suggest that when the elastic equivalent of the complex viscosity, GC, is plotted 

against the angular frequency this curve coincides with N1/2 plotted against γ& . They 

give GC to be 
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( )

( )
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2
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ω

ω

ω

µ

G

G

C

G
GG .      (2.13) 

This rule was found to hold for the same polymer solutions for which the Cox-Merz 

rule is valid and would be expected to also hold for the polyacrylamide and xanthan 

gum solutions that are under investigation here. 

 

2.2. Extensional rheology 

 

For a Newtonian fluid the uniaxial extensional viscosity is always three times that of 

the shear viscosity (Barnes et al. (1989)). This is not true, however, for non-

Newtonian fluids. It is not possible to estimate the extensional viscosity from the 

shear viscosity or vice versa for a non-Newtonian fluid because of the huge variation 

in properties. Throughout this investigation extensional rheology is used to 

determine a relaxation time, from which both Deborah and Weissenberg numbers 

may be estimated and hence Elasticity numbers may also be obtained. It is now well 

known that the extensional properties of fluids have a strong influence on flow 

through contractions (see, for example, Debbaut and Crochet (1988), Purnode and 

Crochet (1998)). 

 

The Thermo Haake Capillary Break-up Extensional Rheometer (CaBER) exerts a 

uniaxial step strain, e.g. by creating a fluid filament, on a sample of the working 

fluid and measures the reduction in filament diameter due to surface tension over 

time (Rodd et al. (2005)). In the configuration used here a small column of fluid 

(less than 0.2ml) is placed between two cylindrical platens with diameters of 4mm, 

the upper platen is moved away from the lower platen almost instantaneously 

(approximately 50-100ms) (see Figure 2.5 for schematic). An extensional strain is 

exerted on the fluid sample and an unstable cylindrical fluid filament is formed. 

Once the stretching has stopped the fluid is subject to an extensional strain rate, 

which is determined by the extensional properties of the fluid (i.e. not controlled by 

the instrument). The midpoint of the filament diameter decreases over time due to 

surface tension and the extensional stresses within the fluid element resist this 

thinning. A laser micrometer, resolution 10µm, measures the reduction in the 

midpoint diameter in order to provide information on the extensional properties of 
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the fluid. Analysis of the filament diameter decay over time gives an estimated 

relaxation time, which can be used to estimate a Deborah number, the relaxation 

time can be found using (from Oliveira et al. (2006)) 

 [ ] ( )223

1

1
1 exp)( ttV

tt

k
DtD

t

mid
−−









+
+= −

λ     (2.14) 

where t is time, λ is the relaxation time for the fluid (perhaps, more correctly, 

‘characteristic time scale for viscoelastic stress growth in a uniaxial elongational 

flow’ due to the fact that the stress does not relax as such, it grows as the filament 

diameter decays (Rodd et al. (2005)). D1, t1, k1, V2 and t2 are fitting parameters 

(determined using the least-squares-fitting method described in 2.1.1.). Equation 

2.14 describes the three regimes usually observed during capillary break-up of 

flexible polymer solutions, the initial necking, the exponential thinning and the final 

drainage regimes. 

 

The CaBER experiment and the results are affected by several factors, such as the 

initial and final aspect ratios and the strike time (Rodd et al. (2005)). The initial 

aspect ratio ( iΛ ) is the ratio of the initial sample height to the sample (or platen) 

diameter. If the initial aspect ratio of the column of fluid is too large sagging will 

occur because of gravitational effects, i.e. the column will not be cylindrical as there 

will be more fluid towards the base of the sample than the top. Numerical 

simulations suggest that the optimal range for the initial aspect ratio is 15.0 i ≤Λ≤  

(Yao & McKinley (1998) and Rodd et al. (2005)). The final aspect ratio ( fΛ ) is the 

ratio of the final sample height to the platen diameter. If the final aspect ratio is too 

small the filament that is formed will not be cylindrical causing the flow at the mid 

point not to be purely extensional, but if it is too large the sample will break during 

the platen separation and the required cylindrical filament will not form. The strike 

time is the time taken for the top platen to move from its initial position to its final 

position. It can be varied according to requirements; normally the strike time is of 

the order 50-100ms. When the strike time is low, e.g. 50ms, and a very elastic fluid 

is being tested, e.g. 0.05% polyacrylamide, oscillations can be seen within the 

sample once the filament has formed, this means that the rheometer will not always 

be measuring the correct part of the fluid filament. If the strike time is increased 

slightly the oscillations become smaller and the results more reliable. 
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The Thermo Haake CaBER should be used in conjunction with a high-speed camera 

in order that the required final aspect ratio and strike time can be correctly selected 

and amended as necessary. It is useful to be able to view a magnified image of the 

sample before performing the test to assess whether the correct amount of fluid has 

been used, and to confirm that the sample is cylindrical and neither slightly concave 

nor convex. The camera also shows any small air bubbles that may not be visible to 

the naked eye and the sample can be reloaded before performing the test. Use of a 

high-speed camera can also provide another method of estimating the filament break 

up time (by estimating the equivalent length of each pixel) and this result can be 

compared with results from the laser micrometer. Unfortunately, however, the 

resolution of the camera used during these investigations was not good enough to 

precisely determine the variation in the filament diameter over time. 

 

2.3. Fluid selection 

 

2.3.1. Polyacrylamide (PAA) 

 

Polyacrylamide is a water-soluble polymer and was selected because 0.05% PAA in 

water had previously been used by Poole et al. (2005) during the first observations of 

the ‘cat’s ears’ effect. PAA is transparent making it ideal for obtaining laser Doppler 

anemometry measurements (see Chapter 3 for details). It is a viscoelastic shear-

thinning fluid and generally thought of as having a ‘very flexible’ molecular 

structure (Walters et al. (1990)). This flexibility means that the fluid has more 

pronounced elastic properties than other water-soluble polymers such as xanthan 

gum or carboxymethylcellulose. The polyacrylamide used during the investigation 

was Separan AP 273 E with a molecular weight of approximately 2x10
6
g/mol. 

 

Figure 2.6 shows the variation of shear viscosity with shear rate for 16 

concentrations of PAA in water varying between 25ppm (i.e. 0.0025% w/w) and 

0.35%. It can clearly be seen that even at low concentrations PAA is a weakly shear-

thinning fluid. The Carreau-Yasuda model (Equation 2.12) has been fitted to each set 

of results and the corresponding curve is also shown in Figure 2.6. The filled 

symbols indicate those results deemed to be below the effective resolution of the 
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rheometer or adversely affected by secondary flows and hence not included in the fit. 

Table 2.1 presents the corresponding fitting parameters for the fits shown in Figure 

2.6. From the Carreau-Yasuda fit a zero shear rate viscosity can be estimated for 

each concentration of PAA, these values allow the determination of the critical 

overlap concentration. 

 

Figure 2.7 shows the oscillatory shear data for concentrations above 0.05% PAA, the 

results for concentrations below 0.05% were deemed to be too close to the limits of 

the rheometer and hence are not presented. Figure 2.7 (a) shows the variation in the 

storage modulus with angular frequency and Figure 2.7 (b) shows the variation in the 

loss modulus; from this data it is possible to calculate the dynamic viscosity and the 

dynamic rigidity as described earlier in the chapter and these values can be seen in 

Figures 2.7 (c) and 2.7 (d). Figure 2.7 (c) shows the dynamic rigidity for the various 

concentrations, calculated from G′ , which should be zero for an inelastic fluid. As 

can be seen from Figures 2.7 (a) and (c) neither G′  nor the dynamic rigidity are zero 

hence the fluids are elastic. G′ and G ′′  both increase as the concentration of 

polyacrylamide increases, hence the dynamic viscosity and dynamic rigidity are also 

seen to increase with an increase in concentration. 

 

Figure 2.8 shows the variation in zero shear rate viscosity with concentration. Two 

clear power-law ranges can be seen indicating the dilute range and the semi-dilute 

range. The point at which the curves intersect allows the determination of the critical 

overlap concentration, c*, here found to be approximately 0.03% PAA. As 

mentioned earlier in the chapter the slope of the dilute curve should be around 1 and 

Figure 2.8 shows that for this polymer it is, in fact, 0.78. The slope of the semi-dilute 

power law curve is 3.3 confirming that polyacrylamide is a flexible polymer. The 

filled symbols show the concentrations selected for the detailed fluid dynamic 

investigation. The concentrations of PAA chosen for these investigations were 

0.05% (c/c*=1.67) to correspond to the measurements performed by Poole et al. 

(2005), 0.03% because this concentration was determined to be approximately equal 

to c*, 0.01% (c/c*=0.33), which is well within the dilute range and 0.3% (c/c*=10) 

was selected with the intention of decreasing the Reynolds number in an attempt to 

minimise the effects of inertia. Extensional rheology measurements were performed 
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on these fluids in order to determine a relaxation time for the fluid, which could be 

used to estimate a Deborah number, DeC. 

 

Because 0.01% PAA is in the dilute range neither N1, oscillatory nor extensional 

measurements were obtainable. The shear viscosity variation with shear rate for this 

fluid can be seen in Figure 2.6 (b). Figure 2.9 shows the material properties for 

0.03% PAA. It is seen to be shear thinning and, although the oscillatory data for 

0.03% PAA was deemed to be too close to the limits to be reliable, the dynamic 

viscosity has been included in this figure. At this concentration the G ′′  data makes 

up approximately 99% (Barnes et al.) of the measurement while the G′  data is the 

remaining 1% meaning the G ′′  data is still effectively reliable. The dynamic 

viscosity, which corresponds to the G ′′  data, agrees well with the zero shear rate 

viscosity as the shear rate tends towards zero. Figure 2.10 shows the material 

properties for 0.05% PAA and Figure 2.11 the material properties for 0.3% PAA. 

Both fluids are seen to be shear thinning and elastic with the dynamic viscosity 

tending towards the same value as the zero shear rate viscosity as the shear rate tends 

towards zero as expected (Equation 2.8).  

 

Figure 2.12 presents the normal force data for the 0.03%, 0.05% and 0.3% PAA, 

along with the corresponding relaxation times (estimated using γλτ &21 =N  as 

discussed in Chapter 1). For each concentration the first normal-stress difference is 

observed to increase with an increase in the shear rate and the relaxation time is seen 

to decrease with an increase in the shear rate. As might be expected at a given shear 

rate, the higher the concentration, the larger N1 and the relaxation time. The power 

law index of the first-normal stress difference (on a log-log plot at shear rate ranges 

between approximately 700 and 6000) is approximately the same for each of the 

three concentrations of polyacrylamide with a value of 0.8 as shown by the full black 

lines. This result implies that the polymer itself determines this slope, rather than the 

concentration. 

 

Figure 2.13 shows the extensional rheology data for two samples of 0.03% PAA.  

The filament diameter is seen to decay over time as expected and is fully broken up 

after approximately 0.1s. The formula given in equation 2.14 was fitted to the data 



  Fluid Characterisation 

 36 

(shown as a full line in Figure 2.13) and a relaxation time of λ=0.025s was estimated 

from this fit. The fitting parameters are given in Table 2.2. Figure 2.14 is a selection 

of photographs taken with a high-speed camera during the tests. It is clear from these 

images that the initial sample is correctly loaded and the filament diameter decay 

over time can be seen. Figure 2.15 gives the extensional rheology measurements for 

two samples of 0.05% PAA, again the filament diameter is seen to decay over time 

but for the 0.05% PAA solution the break-up time is longer than for the 0.03% 

solution, indicating that 0.05% PAA has a longer relaxation time than 0.03% PAA. 

As for the 0.03% PAA, the data was fitted to Equation 2.14 and a relaxation time of 

λ=0.056s was estimated. Figure 2.16 shows some of the high-speed camera images 

taken during the 0.05% PAA measurements. Clearly the sample has been correctly 

loaded and a suitable cylindrical filament has formed during the test. Figure 2.17 

shows the experimental data for two samples of 0.3% PAA. As might have been 

expected the 0.3% PAA solution takes much longer to break up than either the 

0.03% or 0.05% solutions. In this case the relaxation time was estimated to be 

λ=3.44s, which is an order of magnitude larger than that for the lower concentrations. 

Figure 2.18 is a sample of the high-speed images obtained during a test on 0.3% 

PAA. The images show that the fluid sample was loaded correctly and that the 

filament is cylindrical throughout its decay. On closer inspection of the high-speed 

camera images (Figures 2.14, 2.16 and 2.18) the filament in each case was found to 

be perfectly cylindrical with no discernible ‘bowing’, which means that the flow at 

the filament mid-point is purely extensional and provides a level of confidence in 

any relaxation times obtained from the fitted data. 

 

2.3.2. Xanthan gum (XG) 

 

Xanthan gum is classed as ‘semi-flexible’ (Rodd et al. (2000)) i.e. less flexible than 

polyacrylamide and was chosen for comparison with PAA in an attempt to isolate 

any effects that may be due to shear thinning. Similar to PAA, xanthan gum is also 

soluble in water and transparent making it ideal for obtaining LDA measurements. 

The xanthan gum used during this investigation was Keltrol TF from Kelco with a 

molecular weight of approximately 10
6
g/mol. 
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Figure 2.19 shows the variation in shear viscosity with shear rate for 13 

concentrations of XG varying from 0.01% to 1%. As for polyacrylamide, the 

Carreau-Yasuda model was fitted to this data (fitting parameters are given in Table 

2.3) to estimate the zero shear rate viscosities and determine the critical overlap 

concentration. Figure 2.20 shows where the dilute and concentrated ranges intersect, 

giving an estimate for c* of 0.064%. The slope of the dilute curve is 1.4 and the 

slope of the semi-dilute curve is 4.6, which means that xanthan gum is more of a 

rigid polymer than a flexible polymer similar to the polyacrylamide described earlier 

(Lapasin and Pricl (1995)). 

 

The filled symbols in Figure 2.20 represent the two concentrations chosen for the 

detailed fluid dynamic measurements. 0.07% xanthan gum was selected because its 

viscosity at the relevant characteristic shear rates approximately matches that of 

0.05% polyacrylamide. Figure 2.21 shows the variations in shear viscosity with 

shear rate for 0.07% XG and 0.05% PAA for comparison. Figure 2.22 includes a 

complete set of material properties for 0.07% xanthan gum showing that it is a 

weakly elastic shear thinning fluid. 

 

Extensional rheology measurements could not be obtained for 0.07% xanthan gum 

using the CaBER technique previously described, presumably as it is more rigid than 

polyacrylamide and therefore less tension thickening (Barnes et al. (1989)). 

Measurements of the first normal-stress difference for this fluid were also below the 

sensitivity of the rheometer and confirm the less elastic nature of xanthan gum in 

comparison to PAA. This lack of data prevents estimating a Deborah number for 

0.07% xanthan gum. 

 

0.5% xanthan gum was selected because a relaxation time can be estimated from 

CaBER extensional rheology measurements. The relaxation time is similar to that for 

0.03% PAA so 0.5% XG was chosen in the hope that velocity overshoots might be 

observed for the flow of this fluid through the gradual contraction. Figure 2.23 

provides a full set of material properties for 0.5% xanthan gum showing that the 

fluid is shear thinning and much more elastic than the lower concentration. Figure 

2.24 shows the extensional rheology results for two samples of 0.5% XG. From 

these results a relaxation time of 0.034s was estimated for 0.5% xanthan gum and the 
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fitting parameters are given in Table 2.4. Figure 2.25 shows a selection of images 

taken by the high-speed camera. They clearly show that the sample was correctly 

loaded and how the filament diameter decays over time. 
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2.4. Tables 

 

Table 2.1: Table of fitting parameters for the Carreau-Yasuda fits performed on 

polyacrylamide solutions. 

Conc (%) 
0µ  (Pa.s) ∞µ  (Pa.s) λCY (s) a n 

0.0025 0.0017 0.0014 0.017 1.23 1.96 

0.00375 0.0024 0.0015 0.037 0.94 1.10 

0.005 0.0027 0.0016 0.041 0.87 0.95 

0.01 0.0058 0.0018 0.095 0.82 0.77 

0.02 0.0086 0.0026 0.043 0.70 1.37 

0.03 0.012 0.0025 0.086 0.48 1.50 

0.04 0.029 0.0023 0.27 0.72 0.56 

0.05 0.073 0.0025 0.45 0.52 0.61 

0.075 0.28 0.0033 8.89 1.04 0.57 

0.1 0.63 0.0031 13.86 1.25 0.56 

0.125 1.75 0.0034 13.01 0.72 0.63 

0.15 2.90 0.0044 62.12 0.91 0.61 

0.2 5.17 0.0076 50.93 0.78 0.68 

0.3 22.68 0.0096 104.5 0.77 0.72 

0.35 39.91 0.0097 100.9 0.74 0.75 

 

 

Table 2.2: Table of fitting parameters for the fits performed on the extensional 

rheology measurements for the polyacrylamide solutions. 

Conc (%) D1 (mm) t1 (s) k1 (mm.s) V2 (mm.s
-1

) t2 (s) 

0.03 -0.25 0.23 0.085 0.70 0.10 

0.05 -0.16 2.16 0.82 0.26 0.51 

0.3 2.32 0.55 0.20 -0.099 20.91 
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Table 2.3: Table of fitting parameters for the Carreau-Yasuda fits performed on 

xanthan gum solutions. 

Conc (%) 
0µ  (Pa.s) ∞µ  (Pa.s) λCY (s) a n 

0.01 0.0040 0.0013 0.44 0.37 0.56 

0.025 0.015 0.0013 0.30 0.38 0.51 

0.04 0.026 0.0013 0.49 0.42 0.53 

0.05 0.041 0.014 0.78 0.51 0.51 

0.07 0.17 0.0017 1.12 0.34 0.64 

0.1 0.18 0.0021 0.73 0.55 0.67 

0.15 2.37 0.0028 1.77 0.28 0.85 

0.2 11.08 0.0033 7.40 0.27 0.87 

0.25 16.01 0.0031 41.50 0.52 0.75 

0.38 350 0.0051 563 1.15 0.81 

0.5 870 0.0069 500 0.67 0.88 

0.75 1200 0.0094 650 1.37 0.85 

1 9000 0.018 650 0.74 1.01 

 

 

Table 2.4: Table of fitting parameters for the fits performed on the extensional 

rheology measurements for the xanthan gum solutions. 

Conc (%) D1 (mm) t1 (s) k1 (mm.s) V2 (mm.s
-1

) t2 (s) 

0.5 5.32 2.52 5.94 4.37 -1.46 
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2.5. Figures 

 
 

Figure 2.1. Schematic diagram of the double concentric cylinder geometry: (a) 

Rotating cylinder, (b) Stationary cylinders, (c) Cross section of geometry while in 

use (R1=20mm, R2=20.38mm, R3=21.96mm and R4=22.34mm).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Schematic diagram of the cone and plate geometry while in use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Schematic diagram of the parallel plate geometry while in use. 
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Figure 2.4: Example of the two power law ranges apparent when plotting zero shear 

rate viscosity against polymer concentration. 

 

 

 
Figure 2.5: Schematic showing the dimensions and aspect ratios for initial and final 

CaBER plate positions. 
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Figure 2.6: Variation of shear viscosity with shear rate and Carreau-Yasuda model 

fits for various concentrations of polyacrylamide (NIF indicates points not included 

in the fit). 
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Figure 2.7: Oscillatory shear data for PAA, (a) storage modulus ( G′ ) data, (b) loss 

modulus (G ′′ ) data, (c) dynamic viscosity data ( ωG ′′= ) and (d) dynamic rigidity 

data (
2

2 ωG′= ), the black line shown in (a) and (b) indicates the limits of the 

rheometer and the key given in (d) is valid for all figures. 
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Figure 2.8: Variation in zero shear rate viscosity, determined using the Carreau-

Yasuda model fit, with increase in concentration of polyacrylamide showing the 

critical overlap concentration (�0.03% PAA), the filled symbols identify the 

concentrations used during the detailed fluid dynamical measurements. 

 

 

 
Figure 2.9: Material properties for 0.03% polyacrylamide (� represents the shear 

viscosity and � the dynamic viscosity). 
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Figure 2.10: Material properties for 0.05% polyacrylamide (� represents the shear 

viscosity, � the dynamic viscosity and � the dynamic rigidity). 

 

 

  
Figure 2.11: Material properties for 0.3% polyacrylamide (� represents the shear 

viscosity, � the dynamic viscosity and � the dynamic rigidity). 

10
-1

10
0

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-2

10
-1

10
0

10
1

10
2

10
3

Z
er

o
 s

h
ea

r 
v

is
co

si
ty

, 
µ

0
, 

P
a.

s,
 D

y
n

am
ic

 v
is

co
si

ty
, 
η
’, 

P
a.

s 

D
y

n
am

ic
 r

ig
id

it
y
, 

P
a.

s2
 

Z
er

o
 s

h
ea

r 
v

is
co

si
ty

, 
µ

0
, 

P
a.

s,
 D

y
n

am
ic

 v
is

co
si

ty
, 
η
’, 

P
a.

s 

D
y

n
am

ic
 r

ig
id

it
y
, 

P
a.

s2
 

Shear rate, �� , s-1, Angular frequency, �, rad.s-1 

 

Shear rate, �� , s-1, Angular frequency, �, rad.s-1 

 



  Fluid Characterisation 

 47 

 

Figure 2.12: First normal-stress difference (open symbols) and relaxation time (filled 

symbols) data for 0.3% polyacrylamide (■), 0.05% polyacrylamide (▲) and 0.03% 

polyacrylamide (●). 

 

 

 
Figure 2.13: Extensional rheology data for 0.03% polyacrylamide, the lines 

correspond to the fit given in Equation 2.14. 

 

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

0 0.02 0.04 0.06 0.08 0.1 0.12

10
-3

10
-2

10
-1

10
0

Shear rate, �� , s
-1

 

F
ir

st
 n

o
rm

al
 s

tr
es

s 
d

if
fe

re
n

ce
, 
N

1
, 

P
a

 

 

R
elax

atio
n

 tim
e, λ

N
1 , s 

 

Time, t, s 

F
il

am
en

t 
d

ia
m

et
er

, 
D

f,
 m

m
 

 



  Fluid Characterisation 

 48 

 

 

     
 

Figure 2.14: High-speed camera images of extensional rheology tests for 0.03% 

polyacrylamide at (a) -0.1s, (b) -0.05s, (c) 0.0s, (d) 0.05s and (e) 0.1s iΛ =0.5, fΛ

=1.78 and the strike time is 100ms. 

 

 

 
Figure 2.15: Extensional rheology data for 0.05% polyacrylamide, the lines 

correspond to the fit given in Equation 2.14. 
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Figure 2.16: High-speed camera images of extensional rheology tests for 0.05% 

polyacrylamide at (a) -0.1 s, (b) -0.05s, (c) 0.0s, (d) 0.05s, (e) 0.10s, (f) 0.20s, (g) 

0.25s, (h) 0.35s, (i) 0.40s, and (j) 0.50s iΛ =0.5, fΛ =1.78 and the strike time is 

100ms. 

 

 
Figure 2.17: Extensional rheology data for 0.3% polyacrylamide, the lines 

correspond to the fit given in Equation 2.14. 
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Figure 2.18: High-speed camera images of extensional rheology tests for 0.3% 

polyacrylamide at (a) -0.1s, (b) -0.05s, (c) 0s, (d) 0.5s, (e) 1s, (f) 1.5s, (g) 2s, (h) 

2.5s, (i) 3s and (j) 3.5s in 0.5s intervals iΛ =0.5, fΛ =2.08 and the strike time is 

100ms. 
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Figure 2.19: Variation of shear viscosity with shear rate and Careau-Yassuda model 

fits for various concentrations of xanthan gum (NIF indicates not included in fit). 

(Japper-Jaafar, 2009) 
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Figure 2.20: Variation in zero shear rate with increase in concentration of xanthan 

gum showing the critical overlap concentration (�0.064% XG), the filled symbols 

identify the concentrations used during the detailed fluid dynamical measurements. 

 

 
Figure 2.21: Variation in shear viscosity with shear rate and Careau-Yassuda fits for 

0.07% xanthan gum and 0.05% polyacrylamide for comparison (NIF indicates points 

not include in the fit). 
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Figure 2.22: Material properties for 0.07% xanthan gum (� represents the shear 

viscosity, � the dynamic viscosity and � the dynamic rigidity). 

 

 

 
Figure 2.23: Material properties for 0.5% xanthan gum (� represents the shear 

viscosity, � the dynamic viscosity and � the dynamic rigidity). 
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Figure 2.24: Extensional rheology data for 0.5% xanthan gum (Japper-Jaafar, 2009) 

the lines correspond to the fit given in Equation 2.14. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25: High speed camera images of extensional rheology tests for 0.5% 

xanthan gum at (a) -0.1s, (b) 0s, (c) 0.04s, (d) 0.08s and (e) 0.12s, iΛ =0.5, fΛ =2.2 

and the strike time is 50ms (Japper-Jaafar, 2008). 
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3. Experimental Test Rig and Instrumentation 

 

3.1. Test rig and mixing protocol 

 

A schematic diagram of the flow loop is shown in Figure 3.1. A stainless steel tank 

with a capacity of approximately 80 litres feeds a progressive cavity pump 

(manufactured by Mono Pumps, type Monobloc B021) capable of pumping up to 

3m3/hr at maximum power. The flow enters a square duct comprising 1.2m long 

sections, which have internal dimensions of 80mm by 80mm, i.e. hydraulic diameter 

DH = 80mm (where ( ) PAD 4H = , A being the cross-sectional area (mm2) and P the 

wetted perimeter of the duct (mm)). The sections of square duct were manufactured 

from stainless steel and precision ground to the correct size, two of these sections 

precede the contraction test section (described below), giving a distance of at least 32 

hydraulic diameters before the contraction to ensure that the flow is fully developed 

(Durst et al. (2005)) when it reaches the contraction. The contraction test section is 

then followed by another 1.2m section of square duct. The flow returns to the tank 

through a 1¼” plastic pipe via a Coriolis flowmeter (manufactured by Endress and 

Hauser, type Promass 63), which measures the mass flow rate, m&  (kg.s-1), from 

which the bulk velocity, UB (m.s-1), can be estimated. The uncertainty in the flow 

rate was estimated to be approximately 1.5%. A Coriolis flowmeter was used since 

they have been found to be more accurate for non-Newtonian fluids than other 

flowmeters such as electromagnetic and especially ultrasonic flowmeters (Fyrippi et 

al. 2004). The fluid temperature is monitored using a platinum resistance 

temperature probe, with resolution of ±0.01°C, mounted within the tank. The 

variation in fluid temperature was within 1°C for each velocity profile, which 

typically took 1 hour to measure. 

 

Although a mixing loop is incorporated into the test rig, for the majority of the 

results in this investigation it was not used to mix the fluids. Initially the polymer 

solutions were mixed within the mixing loop and the test rig, but early measurements 

indicated that the polymer solution was degrading before the solution had reached 

homogeneity. Shear viscosity measurements of the solution were taken during 

mixing and compared to benchtop results in order to determine whether the fluid was 
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correctly mixed. In the ‘mixing loop’ case the shear viscosity never reached the 

expected level, even after several days of mixing. To overcome this problem an 

alternative mixing protocol was developed. The polymer solutions were mixed 

outside of the rig in 10 litre batches using an overhead stirrer then transported into 

the tank where the solution was mixed for around 30 minutes using the mixing loop 

before being drained into the rest of the test rig. This mixing method proved to be 

both more efficient and more reproducible than the previous method. In addition, 

mixing the polymer solutions external to the rig meant that it was possible to 

perform velocity measurements on one batch and mix further batches at the same 

time. This method also meant that the exact amount of polymer was added to the 

exact amount of water required. When mixing in the rig, ensuring the correct amount 

of water was more problematic as often there were air bubbles trapped in sections of 

the rig that were not immediately apparent. 

 

Degradation of the polymer solution before the fluid was fully mixed highlighted 

that the fluids would have a limited lifetime during which they would produce 

reliable and repeatable results. To this end a set of degradation tests was performed 

to determine the length of time that 0.05% polyacrylamide (at two different flow 

rates) could be used within the test rig in conjunction with the 8:1 contraction 

section. Velocity profiles were measured and the time at which the maximum 

velocity was observed for each profile recorded. A fluid sample was taken from the 

rig (via a tapping immediately upstream of the contraction section) between each 

velocity profile measurement, then both shear and extensional rheology 

measurements were performed and the total time that the fluid was pumped for was 

also recorded. The velocity profiles in the contraction were seen to change 

dramatically, as shown in Figure 3.2, with the maximum near wall velocity 

decreasing significantly over time; however there was a period of approximately 5-6 

hours where the results, particularly the maximum overshoot velocity, exhibited little 

variation, as shown in Figure 3.3. The shear viscosity of the fluid and the relaxation 

time were also seen to decrease with time (see Figures 3.4 and 3.5). The shear 

viscosities and relaxation times for the first sample and the sample taken after 6 

hours give the ‘window’ in which the shear viscosity or relaxation time is still within 

acceptable limits (see Figures 3.6 and 3.7). Interestingly, the extensional rheology 

appeared to be affected to a greater extent than the shear rheology by the degradation 
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of the polymer. As a consequence, for the remainder of the tests reported here the 

extensional rheology was used as the primary check to monitor fluid degradation. 

 

3.1.1. Gradual Contraction Test Section 

 

The gradual contraction section is made up of three components, the first being a 

square cross section with internal dimensions 80mm by 80mm (i.e. the same 

dimensions as the upstream square duct), the second being the smooth gradual planar 

contraction of either 8:1 or 4:1 contraction ratio, and the final part being a 

rectangular cross section with internal dimensions of either 80mm by 10mm or 

80mm by 20mm to accommodate the contraction ratio. In order to aid visualisation 

of the flow at various positions, the walls of the contraction section are all made 

from Perspex and the section can be rotated about the x-axis. The dimensions for 

both contractions are given in Table 3.1 and an isometric diagram of both test 

sections is shown in Figure 3.8. Figure 3.9 is a photograph of the 8:1 contraction test 

section. 

 

Figure 3.10 shows a schematic of the 8:1 contraction, which is a smooth gradual 

planar contraction. The contraction has a length, L, of 54.54mm and constant width, 

w, of 80mm. The contraction comprises two radii, the first being a 40mm concave 

radius followed by a 20mm convex radius and the height of the contraction varies 

gradually between the upstream duct height, D=80mm and the downstream duct 

height d=10mm. A rectangular channel, with internal dimensions 80mm by 10mm, 

follows the contraction. The end of the contraction is defined as x=0, which means 

x/L =-1 represents the beginning of the contraction section. 

 

For every fluid investigated in the 8:1 contraction, measurements were made from 

wall to wall across the XZ-centreplane at six positions, x/L=-1, x/L=-0.72, x/L=-0.45, 

x/L=-0.27, x/L=-0.17 and x/L=0.10. These positions correspond to the start of the 

contraction then 15mm, 30mm, 40mm, 45mm and 60mm from the start of the 

contraction. Once symmetry had been confirmed it was decided to measure only half 

profiles in the spanwise direction because of the time limit on each batch of fluid 

imposed by the rate of fluid degradation. For some of the fluids, measurements were 

made at the same six positions across the XY-centreplane. For 0.3% PAA extra 
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profiles were measured at x/L=-1.18 and x/L=-0.22 (i.e. 10mm before the start of the 

contraction and 42.5mm into the contraction). In addition, for all fluids profiles were 

measured at x/L=-3.2, approximately 120mm upstream of the contraction, across 

both the XY- and XZ-centreplanes in order to confirm that the flow is fully 

developed and a ‘centreline’ profile (i.e. –3.2<x/L<0 along z/w = 0) was measured to 

determine the strain rate profile and also to provide a consistency check with the 

profiles in the XZ-centreplane. 

 

Figure 3.11 shows a schematic of the 4:1 contraction section. It is similar in shape to 

the 8:1 contraction but there are obvious differences to accommodate the change in 

contraction ratio. The contraction still comprises two radii, a 40mm concave 

followed by a 20mm convex, however as the contraction ratio has been changed the 

downstream duct height, d, is now 20mm and the length, L, is 51.98mm. Again x=0 

has been defined at the end of the contraction, making x/L=-1 the start of the 

contraction. 

 

In the 4:1 contraction measurements were made across both the XY- and XZ-

centreplanes at six positions, x/L=-1, x/L=-0.71, x/L=-0.42, x/L=-0.23, x/L=-0.13 and 

x/L=0.15. These positions, similar to in the 8:1 contraction, correspond to the start of 

the contraction, 15mm, 30mm, 40mm, 45mm and 60mm from the start of the 

contraction. For 0.3% PAA two extra profiles were measured 10mm prior to the start 

of the contraction and 42.5mm after the start of the contraction (i.e. x/L=-1.19 and 

x/L=-0.18). As for the 8:1 contraction profiles were measured at x/L=-3.2 across both 

centreplanes to confirm that the flow is fully developed before it reaches the 

contraction and a ‘centreline’ profile was also measured. 

 

The following ‘definitions’ will be used throughout the results and discussion in 

reference to both contractions. Transverse and top to bottom profiles are measured 

on XY planes and the ‘top’ and ‘bottom’ of the contraction are the curved walls. 

Spanwise and side to side profiles are those measured on XZ planes and the ‘side’ 

walls are the plane walls. 

 

Figure 3.12 is a schematic of both contractions, provided for comparison. Both 

contractions are identical to start with, changing towards the end of the contraction 
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resulting in a different end height, d, length, L, and contraction ratio. The differences 

between the two contractions are highlighted when the Hencky strain (Collier et al. 

2002)) is determined for each contraction. The Hencky strain may be calculated 

using 

 CRln
u

u
ln

t u 

u u

u
t

 
H ⇒=⇒= ∫ ∫

1

22

10

d
dεε &     (3.1) 

where CR is the contraction ratio and u1 and u2 are the velocities upstream and 

downstream of the contraction respectively. This gives Hencky strains of 08.2=Hε  

for the 8:1 contraction and 39.1=Hε  for the 4:1 contraction. It is clear that the 

Hencky strain exerted on the fluids is much larger (approximately 50%) through the 

8:1 contraction than through the 4:1 contraction. 

 

3.2. Estimation of Reynolds, Deborah and Elasticity numbers 

 

As stated in Chapter 1, the Reynolds number is defined as ( )γµρ &lURe B=  

(Equation 1.3). In this investigation the velocity scale has been defined as the bulk 

velocity at the end of both contractions (i.e. Ud), which can be determined using the 

contraction width and end heights along with the measured mass flow rate, the length 

scale is defined as the end height of each contraction (i.e. d). For non-Newtonian 

shear thinning fluids it is impossible to unambiguously define a single value of the 

viscosity. The method adopted here was to determine a characteristic shear rate, 

CHγ& , using the same velocity and length scales as used to calculate the Reynolds 

number, giving dU dCH =γ& , and then to use the Carreau-Yasuda model fit 

(Equation 2.2) to determine a characteristic shear viscosity, CHµ , corresponding to 

this shear rate. This gives us a redefined Reynolds number of 

 
CH

d

µ

ρ dU
Re = .        (3.2) 

 

The quantities used to calculate the Reynolds numbers and other parameters for both 

contractions are given in Table 3.2. The Reynolds number could of course be 

calculated using different values for the shear viscosity, such as the infinite shear-

rate viscosity ( ∞µ ) or the zero shear-rate viscosity ( 0µ ). These viscosities are 
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measured at shear rates much larger or much smaller than those observed throughout 

these investigations and as such would lead to either very high or very low Reynolds 

numbers, which would not provide a very good estimate of the importance of inertia 

forces in the flow. Another alternative is to use the wall shear rate instead of defining 

a characteristic shear rate, however this method is best suited to fully-developed flow 

as for contraction flows the wall shear rate is continually changing with location. 

 

The Deborah number was also defined in Chapter 1 as T/De λ=  (Equation 1.4). T 

is taken to be the inverse of the characteristic shear rate, i.e. dUd . It is possible to 

determine the relaxation time in a number of deformation modes, as discussed in 

detail in Chapter 2. In this investigation relaxation times have been found using both 

CaBER extensional viscosity measurements and, where possible, from steady-state 

shear measurement of the first normal-stress difference. The flow is a combination of 

shear flow close to the sidewalls of the contraction and extensional flow along the 

centre of the contraction, which is why relaxation times have been estimated using 

these two different methods. To this end two relaxation times, λC and λN1 are defined 

for each contraction ratio. These relaxation times lead us to define the Deborah 

numbers as 

 
d

U
De dC

C

λ
= ,        (3.3) 

 
d

U
De d1N

1N

λ
= .       (3.4) 

 

The Weissenberg number was defined in Chapter 1 as γλ &=Wi  or ελ &=Wi  

(Equation 1.6). Because the strain rate, ε& , is not uniform throughout the contraction 

it has been estimated along the centreline of the contraction (i.e. where the XY- and 

XZ-centreplanes intersect) from streamwise velocity measurements taken along the 

centreline. The strain rate is then simply the change in velocity divided by the 

change in distance (i.e. dUC/dx). As discussed above the relaxation time, λ , has been 

estimated in two different ways, hence two Weissenberg numbers are defined as 

 ελ &
CC =Wi ,        (3.5) 

 ελ &
N1N1 =Wi .        (3.6) 
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Two Elasticity numbers have been defined in Chapter 1 as El1=De/Re and El2=Wi/Re 

(Equations 1.7 and 1.8). Since there are two Deborah and Weissenberg numbers for 

each contraction there will be four Elasticity numbers, which are also defined in 

Table 3.2. As there are so many alternative values for El, De and Wi it was decided 

to focus primarily on DeC as we had a priori knowledge of the CaBER relaxation 

times and could easily estimate the characteristic shear rates from the flow rates. As 

a consequence of this, DeC was used to ‘match’ the Deborah number for some of the 

fluids in an attempt to isolate various effects. 

 

3.3. Laser Doppler Anemometry (LDA) 

 

Laser Doppler anemometry is a method for measuring the flow velocity of a fluid at 

discrete locations within a flow. LDA does not disturb the flow so can be used in 

place of intrusive mechanical probes, such as hot-wire anemometers or pitot tubes, 

which may become contaminated over time by polymer deposits (Rudd (1972)). 

 

In 1964 Yeh and Cummins measured the velocity profiles in fully-developed laminar 

pipe flow of water in the first application of LDA to fluid mechanics. Since then 

many advancements to the technique have been made, including progress in optical 

arrangements, signal-processing systems and light scattering or seeding particles 

(Durst et al. (1976)). These developments and a thorough description of LDA are 

given by Durst et al. and more recent developments are noted by Tropea (1995). As 

the technique is so well developed only a brief overview is given here. 

 

3.3.1. Theory 

 

A laser produces a single beam, which is split into two beams by a beam splitter 

within the probe. The two beams are then focussed on an intersection volume within 

the flow. Interference fringes form within this intersection volume (see Figure 3.13) 

and the spacing between these interference fringes (δ , m) can be calculated using 

( )2

w

2 θ

λ
δ

sin
=         (3.7) 

where λw (m) is the wavelength of the laser light and θ (˚) is the angle between the 

two laser beams. 
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When a particle crosses one of the interference fringes a burst of reflected and 

scattered light, known as a Doppler burst, is produced. The frequency of this light 

( Df , Hz) is dependent on the fringe spacing (Equation 3.7) and the particle velocity 

normal to the laser beams. The Doppler burst is detected by a receiving optic and this 

information is sent to a burst spectrum analyser (BSA) for analysis. The BSA 

calculates the particle velocity (U , m.s-1) using 

 
( )2

wD

2 θ

λ

sin

f
U = .        (3.8) 

The probe is set up so that the interference fringes form normally to the direction of 

the flow and a component of the flow velocity can be measured. 

 

The LDA system may be arranged in either forward scatter or backward scatter. This 

refers to the position of the receiving optics in relation to the intersection volume and 

also the direction of the reflected light. If we say that the laser light is travelling 

forwards from the probe then receiving optics on the same side of the intersection 

volume as the probe are set up for backward scatter and will see the reflected light 

from the Doppler burst. Receiving optics on the opposite side of the intersection are 

set up for forward scatter and will see the scattered light from the burst. Some laser 

systems have receiving optics incorporated into the laser probe and this may be used 

for backward scatter rather than separate optics being required. It is, however, 

preferable to use forward scatter as this will provide a much better data rate (van 

Maanen (1999)) since more light from the Doppler burst is scattered forwards than is 

reflected backwards.  

 

3.3.2. Equipment 

 

The LDA system used here (see Figure 3.14 for a schematic) is composed of an 

integrated laser-optics system comprising a laser connected to a probe by a fibre 

optic cable (see below for details), receiving optic set up to receive in forward scatter 

with a focal length of 300mm connected to a photomultiplier (PM) tube and a burst 

spectrum analyser (BSA), Dantec model number 57N21, in conjunction with a PC to 

run the accompanying data-processing software. Throughout this investigation two 
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integrated laser-optics systems were used, the Dantec Flowlite and the Dantec 

Fibreflow, Table 3.3 presents the specifications for both systems. The Flowlite was 

used due to the initial unavailability of a Fibreflow system. The Fibreflow has a 

much smaller measuring volume, which means that the transit time of each particle is 

shorter, as such there will be less noise in the data and broadening effects are 

reduced. The average number of bursts collected at each point while using the 

Flowlite was between 9500 and 10000, while when using the Fibreflow it was 

increased to between 19000 and 20000 bursts per point. The maximum statistical 

uncertainty for the data was estimated to be approximately 0.6% using 

 
SN

ZError S

D

µ

σ

Cmean =        (3.9) 

where NS is the sample size, µS is the sample average, σ is the standard deviation and 

ZC is a constant, with value 2, defined by Yanta and Smith (1973). 

 

In order to increase the available data rate seeding particles are used within the flow. 

These particles have no effect on the fluid characteristics and increase the number of 

bursts that will be picked up by the BSA (Ikeda et al. (1994)). The seeding particles 

used throughout this investigation were Timiron Supersilk MP-1005, manufactured 

by S. Black Ltd. These particles have an average particle size of 5µm and 

approximately 0.05g were added to each solution (total mass approximately 70kg). 

 

Movement of the LDA probe is achieved through use of an in-house three-

dimensional traverse with step size resolution of ±5µm. The traverse can be 

automated or controlled manually and can move in the x, y and z planes, allowing 

optical access to any region in the flow.  

 

3.3.3. Refraction Correction 

 

When light travels through different materials, such as glass, plastic and water, it 

travels at different speeds (Overheim and Wagner (1982)). The same is true of a 

laser beam. The refractive index of a material (n) is the factor by which the speed of 

the laser light is slowed by the material. As well as being slowed the beam bends at 
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the interface between the materials, a process called refraction. Snell’s Law, which 

describes this phenomenon, is commonly written as  

 2211 sinsin θθ nn =        (3.10) 

and is used to calculate the degree of refraction when light travels from one material 

to another. This process is shown schematically in Figure 3.15.  

 

Bicen (1982) introduced a refraction correction calculation for use when 

investigating flow through cylindrical pipes. The laser beam is perpendicular to the 

refracting surface and the intersection volume is moved along this perpendicular 

plane, hence the calculation can also be used for flat boundaries, as the laser beam 

will always be perpendicular to the refracting surface in this case. Bicen’s original 

equation is rearranged to give 
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where fr  is the position within the flow (m), ar  is the position of the probe (m), fn  

and wn  are the refractive indices of the fluid and the wall respectively, t  is the 

thickness of the wall (m) and w is the internal width of the duct (m). Equation 3.5 is 

used to calculate the required position of the probe in terms of the position of the 

intersection volume within the flow. From this equation it was found that the actual 

distance required to traverse the section (80mm) when the test rig was filled with 

water or polymer solutions was only 60 mm making a probe movement of 0.75mm 

outside the flow equivalent to a movement of 1mm inside the flow. 

 

3.3.4. LDA system error 

 

In circular pipe flow it is possible to validate continuity and determine whether mass 

is conserved within the flow by integrating the velocity profiles. This validation is 

only possible if the flow is axisymmetric. An alternative for square duct flow is to fit 

the perform an RMS (root mean square) fit of the experimental data to the fully 

developed theoretical data using 
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The error within the LDA system was found to be approximately 4.5% using the 

experimental data from the fully developed velocity profiles in the Newtonian case 

(presented in detail in Chapter 4). 
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3.4. Tables 

 

Table 3.1: Dimensions for each contraction. 

Contraction ratio 8:1 4:1 

Length, L (mm) 54.54 51.98 

Width, w (mm) 80 80 

Start height, D (mm) 80 80 

End height, d (mm) 10 20 

First radius, RD (mm) 40 40 

Second radius, Rd (mm) 20 20 
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Table 3.2: Values used to calculate Reynolds, Deborah, Weissenberg and Elasticity 

numbers. 

Quantity Definition 

UB (m.s-1) Ud 

l (m) d 

µCH (Pa.s) µCH is determined at CHγ&  

CHγ& (s-1) CHγ& =Ud/d 

Re 

CH

d

µ

ρ dU
Re =  

T (s) T=d/Ud 

λC (s) λC 

λN1 (s) λN1 is determined at CHγ&  

DeC 
d

U
De dC

C

λ
=  

DeN1 
d

U
De d1N

1N

λ
=  

El1,C El1,C= DeC/Re 

El1,N1 El1,N1= DeN1/Re 

WiC ελ &
CC =Wi  

WiN1 ελ &
N1N1 =Wi  

El2,C El2,C= WiC/Re 

El2,N1 El2,N1= WiN1/ Re 
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Table 3.3: Specifications for the Dantec Flowlite and Fibreflow. 

 Flowlite Fibreflow 

Type 10mW Helium Neon 500mW Argon Ion 

Colour Red Green 

Focal length, FL (mm) 160 160 

Beam Diameter (mm) 0.998 0.998 

Wavelength, λw (nm) 633 514.5 

Beam separation, (mm) 38.4 51.5 

Beam angle, θ (°) 14 18 

Fringe spacing, δ (µm) 2.656 1.619 

Measuring volume 
diameter (µm) 

75 20 

Measuring volume length 
(mm) 

0.63 0.21 
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3.5. Figures 

Figure 3.1: Schematic diagram of the test rig (the flow is clockwise). 
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Figure 3.2: Variation in velocity profiles measured at identical positions over a 

period of approximately 50 hours pumping. 
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Figure 3.3: Variation in velocity profiles over a period of six hours pumping, inset 

highlights effect on overshoots. 
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Figure 3.4: Variation in shear viscosity for each sample taken from the test rig over a 

period of approximately 50 hours pumping. 
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Figure 3.5: Variation in filament diameter decay for each fluid sample taken from the 

test rig over a period of approximately 50 hours pumping. 
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Figure 3.6: Variation in the shear viscosity over the first six hours of pumping 

(power law fit shown as thick black line). 
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Fig 3.7: Variation in the filament diameter decay over the first six hours of pumping, 

the full black lines shows the data fitted to equation 2.14 for the limiting cases. 

 

 

 

 

(a)             (b) 

Figure 3.8: Isometric diagrams of (a) the 8:1 contraction test section and (b) the 4:1 

contraction test section. 
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Figure 3.9: Photograph of the contraction section (8:1 contraction shown). 
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Figure 3.10: Dimensions of the 8:1 contraction. 
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Figure 3.11: Dimensions of the 4:1 contraction. 
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Figure 3.12: Both contractions for comparison, the 8:1 contraction shown as dash/dot 

line and 4:1 as full line. 
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Figure 3.13. Interference fringes, shown in green, formed within the intersection 

volume. 

 

 

Figure 3.14: Schematic diagram detailing the set up of an LDA system set up in 

forward scatter. 

Figure 3.15. Figure showing the refraction angles between air and Perspex and 

Perspex and water. 
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4. Presentation of Results 

 

This chapter presents the results of LDA measurements taken in the 8:1 contraction 

followed by those taken in the 4:1 contraction. Measurements were taken at various 

positions along the XZ-centreplane and any of the fluids that exhibited ‘interesting’ 

results across this plane prompted further investigation into the flow along the XY-

centreplane. A schematic diagram indicating the positions of each flow profile 

accompanies each set of results. All of the flow profiles are non-dimensionalised 

with respect to the bulk velocity at the end of the contraction, Ud. In each case half 

profiles were measured on the XZ-centreplane due to the time constraints on the 

fluids from the degradation effects. Full profiles were measured on the XY-

centreplane since these could be measured more quickly due to the reduction in 

height through the contraction. The velocity profiles presented in this chapter have 

been offset with respect to the axial distance between each profile unless stated 

otherwise. 

 

4.1. 8:1 contraction 

 

The fluids selected for measurement in the 8:1 contraction were a Newtonian fluid, 

four concentrations of polyacrylamide and two concentrations of xanthan gum. 

These results are presented below. Table 4.1 gives the non-dimensional numbers 

estimated for each fluid and flow condition in the 8:1 contraction. 

 

4.1.1. Newtonian fluid 

 

As discussed in detail in Chapter 1, it is expected that the velocity profile for 

Newtonian fluid flow at ‘high’ ( ≥ 10) Reynolds numbers flattens into a ‘top hat’ 

shape as the flow progresses through a gradual planar contraction. The Newtonian 

fluid here investigated was a mixture of glycerine and water (approximately 10% 

glycerine to 90% water) and it was tested at a Reynolds number of approximately 

115, which has been defined at the contraction exit. 
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Velocity measurements were obtained upstream of the contraction in the square duct 

in order to ensure that the flow is well developed prior to the contraction. Figure 4.1 

shows the spanwise and transverse centreline velocity profiles measured within the 

square duct section approximately 120mm prior to the start of the contraction (i.e. 

x/L ≈ -3). In this case the profiles are non-dimensionalised with respect to the bulk 

velocity in the square duct USQ. Also included is the theoretical velocity profile for 

fully-developed Newtonian fluid flow through a square duct (White (2006)). The 

measured values have been reflected about y/w=0 and z/w=0 respectively and these 

reflected values are shown as filled symbols in Figure 4.1. A good degree of 

symmetry is observed, which provides confidence in the quality of the flow loop. 

The measured velocities also agree with the theoretical velocity profile for fully-

developed Newtonian fluid flow through a square duct showing that the flow is 

indeed fully developed before it reaches the contraction. 

 

Figure 4.2 shows six velocity profiles measured at x/L=-1, -0.72, -0.45, -0.27, -0.17 

and 0.10 on the XZ-centreplane as indicated; the profiles have been offset with 

respect to the axial distance between each profile. The velocity profiles are clearly 

seen to flatten as expected as the flow progresses through the contraction. Velocity 

overshoots are not anticipated for Newtonian fluid flow through a gradual 

contraction. The final velocity profile at x/L=0.10, which is measured just after the 

end of the contraction does indeed look like a ‘top hat’. 

 

Figure 4.3 shows the velocity measured along the ‘centreline’ of the contraction (i.e. 

z/w and y/w are both zero) for the Newtonian fluid. The flow velocity is seen to 

increase smoothly as the flow progresses through the contraction as expected of a 

Newtonian fluid flow. 

 

4.1.2. Polyacrylamide 

 

The flow of four concentrations of a polyacrylamide was investigated. The polymer 

solutions were characterised in Chapter 2 and each concentration was tested at two 

flowrates through the 8:1 contraction. 0.05% PAA is discussed first, for reasons that 

will become apparent to the reader as the discussion progresses. 
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4.1.2.1. 0.05% PAA 

 

As previously discussed 0.05% PAA was chosen to compare to the results of Poole 

et al. (2005). Some of the results from that investigation are given in Figure 4.4, 

which clearly shows velocity overshoots close to the sidewalls of the contraction. 

These profiles were measured along the XZ-centreplane at a Reynolds number of 

approximately 110 (and a Deborah number (from CaBER) of 0.96) at x/L=0, -0.28,   

-0.46 and -0.92. It should be borne in mind that a sudden expansion directly followed 

the contraction in this case and that the results were obtained in a completely 

different test facility to the one used in this work. Figure 4.5 shows velocity profiles 

measured along the same plane at the same Reynolds and Deborah numbers at 

x/L=0.10, -0.17, -0.27, -0.45. -0.72 and -1 in the current 8:1 contraction (i.e. not 

followed by a sudden expansion). Qualitative agreement is observed between the two 

flows and clear similarities are observed when comparing Figures 4.4 and 4.5. 

Comparing the profile x/L=-0.46 (Figure 4.4) to x/L=-0.45 (Figure 4.5) shows that 

the width of the overshoot in both cases is very similar (x/L~0.06). The profiles at 

x/L=-0.28 (Figure 4.4) and x/L=-0.27 (Figure 4.5) both show large overshoots with a 

maximum overshoot velocity of u/Ud ≈ 1. Any slight differences between the two sets 

of results may be explained by the fact that the profiles were measured at slightly 

different locations within the contraction and that the two sets of results were 

obtained using two different test facilities. Degradation effects may also play a role 

in the differences between the two sets of data (see detailed discussion in Chapter 3). 

These results show that the sudden expansion appears to play no significant role in 

the ‘cat’s ears’ phenomenon. 

 

Figure 4.6 shows the flow profiles seen in Figure 4.5 on the XZ-centreplane along 

with the profiles measured on the XY-centreplane. The open symbols are the 

measured velocities and the filled symbols are values reflected about the XY-

centreplane to highlight the symmetry of the flow. The profiles on the XZ-

centreplane clearly show velocity overshoots close to the sidewalls of the 

contraction. The overshoots appear to grow in size as the flow progresses through the 

contraction. The profiles on the XY-centreplane show little of interest except the 

profile at x/L=0.10, which shows very small overshoots (approximately 1.5% above 

the centreline velocity) much as was observed in Poole et al. (2005). 
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Once the flow profiles at Re ≈ 110, DeC ≈ 0.96 had confirmed that the overshoots 

could be reproduced in a contraction alone (i.e. not followed by a sudden expansion) 

it was decided to investigate the flow of 0.05% PAA at a lower flowrate (Re ≈ 50, 

DeC ≈ 0.52). The corresponding flow profiles are presented in Figure 4.7. The XZ 

profiles show that the velocity overshoots do occur in 0.05% PAA at the lower 

flowrate. They appear to be narrower, confined more closely to the sidewalls (for 

example at x/L=-0.27 the overshoots are within 0.1 z/w at the higher flowrate and 

within 0.06 z/w at the lower flowrate) and less pronounced than at the higher 

flowrate. The XY profiles show nothing of note and the overshoots apparent at x/L=0 

at Re=110, DeC ≈ 0.96 are not present in this case. 

 

Figure 4.8 shows the velocity measured along the centreline for both flows of 0.05% 

PAA. At the lower flowrate, Re ≈ 50, DeC ≈ 0.52, we see a slight increase in the 

velocity then a small ‘dip’ before the flow smoothly increases to a maximum 

velocity of u/Ud = 1.14 at the end of the contraction. At the higher flowrate, Re ≈ 110, 

DeC ≈ 0.96, we see a slight increase in the velocity around x/L=-0.7 and an apparent 

plateau between x/L=-0.5 and x/L=-0.3 followed by an increase to a maximum 

velocity of u/Ud = 1.07, which is lower than that seen at the lower flowrate. 

 

4.1.2.2. 0.01% PAA 

 

Having determined that the velocity overshoots could be reproduced in 0.05% PAA 

at two flowrates a much lower concentration of PAA was selected next to see if the 

same effect would be observed in a more dilute solution. 0.01% PAA was chosen 

because it is well within the ‘dilute’ range of concentrations for polyacrylamide as 

described in Chapter 2. As this solution is much less viscous than 0.05% PAA the 

Reynolds numbers for this solution are much higher at the same flowrate. As such it 

is difficult to ‘separate out’ effects that may be due to changes in the Reynolds 

number. In addition, as was shown in Chapter 2, CaBER data could not be obtained 

for this solution, which would indicate λ<1ms (Rodd et al. (2005)) and therefore 

observing elastic effects with this experimental setup for this concentration would 

require much higher flowrates. 
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Figure 4.9 shows velocity profiles for 0.01% PAA across the XZ-centreplane at 

Reynolds numbers of approximately 420 (Figure 4.9 (a)) and 830 (Figure 4.9 (b)). It 

is quite clear that velocity overshoots are not seen at either flowrate. If we compare 

this figure to Figure 4.2, the 0.01% PAA solution appears to behave as a Newtonian 

fluid. The velocity profile clearly flattens as it progresses through the contraction 

section appearing similar in shape to a ‘top hat’ at x/L=0.10 for both cases, however 

the flow flattens to a greater extent at the higher flowrate as seen in Figure 4.9 (b). 

 

4.1.2.3. 0.03% PAA 

 

After testing polyacrylamide at concentrations in the dilute range and in the semi-

dilute range, the next concentration chosen for examination was at the critical 

overlap concentration, c* ≈ 0.03%. This concentration was tested at two Reynolds 

numbers, Re ≈ 140, DeC ≈ 0.24 was chosen to approximately match Re ≈ 110 for 

0.05% PAA and Re ≈ 390, DeC ≈ 0.53 was chosen because at this Reynolds number 

the Deborah number estimated from λC approximately matches DeC ≈ 0.52 for 0.05% 

PAA at Re ≈ 50. These Reynolds numbers were chosen to compare the fluids in terms 

of non-dimensional groups and again attempt to ‘separate out’ effects. However 

observing the differences due solely to concentration is only possible when both the 

Reynolds and Deborah numbers match, not just one of the two. 

 

Figure 4.10 shows the flow profiles for 0.03% PAA at Re ≈ 140, DeC ≈ 0.24 along the 

XZ- and XY-centreplanes. The profiles show overshoots very close to the sidewalls 

in the XZ-centreplane. The overshoots are smaller in magnitude and narrower in 

width (within 0.05 z/w) than those seen for 0.05% PAA and they also develop further 

into the contraction at x/L=-0.45 whereas for 0.05% PAA they are seen to develop at 

x/L=-0.72. The profiles in the XY-centreplane again exhibit little of note. Figure 4.11 

shows the flow profiles at Re ≈ 390, DeC ≈ 0.53. Again the overshoots are clearly 

visible along the XZ-centreplane but they are much smaller and narrower (maximum 

width 0.06 z/w) than those seen for 0.05% PAA. The overshoots are very similar to 

the results at the lower flowrate (Figure 4.10) apart from the two profiles measured 

at x/L=0.10, which clearly differ from one another. At the lower Reynolds number 

the overshoots are ‘smooth’ whereas at the higher Reynolds number they are more 

‘pointed’. These results indicate that more dilute concentrations of polyacrylamide 
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can exhibit the ‘cat’s ears’ effect provided the correct Re-De parameter space can be 

achieved. 

 

Figure 4.12 presents the centreline velocity for 0.03% PAA at both flowrates. In both 

cases the centreline velocity increases smoothly as the flow passes through the 

gradual contraction but there are some subtle differences between the two flows. The 

flow at Re ≈ 140, DeC ≈ 0.24 appears to take slightly longer before the velocity 

increase begins and at the end of the contraction its final velocity (u/Ud = 1.18) is 

larger than at the higher flowrate (u/Ud = 1.01), similar to the final velocities seen in 

the 0.05% solution.  

 

4.1.2.4. 0.3% PAA 

 

0.3% PAA was chosen because it is approximately ten times the critical overlap 

concentration for PAA. Increasing the concentration increases the viscosity, which in 

turn will decrease the Reynolds number at the same flowrate thereby reducing the 

effects of inertia within the flow. This concentration should therefore reveal whether 

significant inertial effects are required for overshoots to occur. 

 

0.3% PAA was initially tested at a Reynolds number of approximately 5 and a 

Deborah number (from CaBER) of 34 and the resulting velocity profiles are shown 

in Figure 4.13. Overshoots are visible in the XZ-centreplane, although they are very 

different to those previously seen at the lower concentrations. At the start of the 

contraction (x/L=-1) the flow is almost stagnant close to the sidewalls and the 

overshoot peaks are located further away from the sidewall, seemingly growing into 

a single large overshoot in the centre at the end of the contraction (the velocity at the 

centre is approximately equal to 2Ud). A profile measured prior to the contraction at 

x/L=-1.18 also shows overshoots, indicating that the combined effects of the 

contraction and the fluid properties occur upstream of the contraction. It is possible 

that this effect is caused by diffusion, which is more likely to be observed when 

inertia effects are low. For the first time, significant overshoots are also present in 

the XY-centreplane. Figure 4.13 shows that the flow is almost stagnant through a 

large part of the contraction near to the top and bottom curved walls but the flow 

velocities nearer to the centre of the contraction are much higher than might be 
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expected (assuming 1d flow for example) to compensate for this. The lack of data in 

the areas close to the curved top and bottom walls caused by a loss of the LDA 

signal, presumably due to the very low velocity, does not allow us to see if the flow 

may be recirculating, as would be expected in flow through a sudden contraction (see 

background discussion in Chapter 1). 

 

In an attempt to aid the reader’s visualisation of the flow, particularly as the 

contraction height becomes smaller, the data has been replotted in Figure 4.14. In 

this case the velocity profiles are identical to those shown in Figure 4.13 but they 

have all been offset by an equal distance rather than by the distance between the 

actual measurement positions. 

 

Figure 4.15 shows profiles at the same locations as Figure 4.13 but the Reynolds 

number has been increased to about 15 (DeC ≈ 60). Again overshoots are visible in 

both planes and are very similar in appearance to those observed at Re ≈ 5, DeC ≈ 34. 

The overshoots at Re ≈ 15, DeC ≈ 60 are more pronounced than those seen at the lower 

flowrate with a larger difference between the centreline velocity and the overshoot 

peak. However at Re ≈ 5, DeC ≈ 34 the maximum velocity for each profile is higher 

than at Re ≈ 15, DeC ≈ 60. Figure 4.16 has been plotted in the same manner as Figure 

4.14, again to aid the reader’s visualisation of the 0.3% PAA flow through the 

contraction at Re ≈ 15, DeC ≈ 60. It becomes particularly difficult to distinguish 

between the profiles towards the end of the contraction and into the rectangular duct. 

 

Figure 4.17 shows the centreline velocities for both flowrates of 0.3% PAA. 

Throughout the contraction the flow at the lower flowrate has a higher velocity along 

the centreline in agreement with the earlier discussion. In both cases the flow along 

the centreline is almost constant over a long section of the contraction before a rapid 

increase to a maximum velocity at the end of the contraction, which is more or less 

identical for both flows.  

 

4.1.3. Xanthan gum 

 

Xanthan gum was tested at two concentrations: their rheological characterisation is 

discussed in Chapter 2. Each concentration was tested at two different flowrates. 
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4.1.3.1. 0.07% XG 

 

0.07% XG was chosen to match the shear viscosity of 0.05% PAA at the relevant 

characteristic shear rates in order to be able to match the Reynolds numbers and the 

degree of shear thinning that 0.05% PAA was tested at. To that end 0.07% XG was 

tested at Re ≈ 50 and Re ≈ 120 and the results are presented in Figure 4.18. In both 

cases the flow flattens as the fluid travels through the contraction in a similar manner 

to that seen in the Newtonian fluid (Figure 4.2) and in the 0.01% PAA fluid flow 

(Figure 4.9). The xanthan gum appears to show a slightly more curved profile than 

the flat ‘ top hat’ shape observed for glycerine. This may be due to the effects of the 

shear-thinning exhibited by 0.07% xanthan gum that is not seen at all in the 

glycerine nor to such a degree in the 0.01% PAA. It is well known that in pipe flow 

shear-thinning causes flattening of velocity profiles (Fortin et al. (2004)). The 

velocity overshoots observed in 0.05% PAA are not seen in the 0.07% XG. 

 

Figure 4.19 shows the centreline velocities for both flows of 0.07% XG. The flow 

along the centreline appears to be almost identical up until x/L=-0.2 where it 

diverges and the higher flowrate tends towards a lower final velocity than the lower 

flowrate. The lower flowrate also exhibits a very small overshoot (approximately 2% 

of the final velocity) at the end of the contraction. 

 

4.1.3.2. 0.5% XG 

 

0.5% xanthan gum was tested at Re ≈ 0.86, DeC ≈ 0.21 and Re ≈ 2, DeC ≈ 0.34. Figure 

4.20 shows the flow profiles across the XZ-centreplane for both flowrates. In each 

case the flow appears to flatten as it progresses through the contraction however in 

both flows small ‘bumps’ are visible (around z/w=0.2 at the lower Re and z/w=0.3 at 

the higher Re). As these ‘bumps’ are at most 3% of the centreline velocity this is 

close to the level of experimental uncertainty in the velocity measurements (see 

Chapter 3). But it is possible that the ‘bumps’ could be ‘embryonic’ velocity 

overshoots and if it were possible to measure higher concentrations of XG, 

overshoots might be observed similar to those we have seen in polyacrylamide. 
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Figure 4.21 shows the centreline velocities for 0.5% XG at Re ≈ 0.86, DeC ≈ 0.21 and 

Re ≈ 2, DeC ≈ 0.34. At these low Reynolds numbers there is little difference between 

the flows and the data essentially collapse. 

 

4.2. 4:1 contraction 

 

Three concentrations of PAA were investigated through the 4:1 contraction. The 

non-dimensional numbers corresponding to each flow are given in Table 4.2. 

 

4.2.1. 0.03% PAA 

 

0.03% polyacrylamide was tested at two flow conditions, Re ≈ 115, DeC ≈ 0.06 and Re

≈ 290, DeC ≈ 0.13. The flow profiles for Re ≈ 115, DeC ≈ 0.06 are presented in Figure 

4.22. It is clear that along the XZ-centreplane velocity overshoots are not present and 

the profiles start to flatten into the ‘top hat’ shape typical of Newtonian fluid flow. 

The profiles at x/L=-1 and x/L=-0.71 along the XY-centreplane are of interest due to 

their shape. The fluid in the top section (0.5>y/w>0.35) and bottom section               

(-0.35<y/w<-0.5) of the contraction (i.e. close to the curved walls) is flowing much 

more slowly than the fluid towards the centre, i.e. the fluid is jetting through the 

central section. This shape is known as an inflection and is usually observed when 

there is an adverse pressure gradient present (i.e. a positive pressure) (White (2006)). 

The profile at x/L=0.15 appears to show the beginnings of overshoots that are 

approximately 0.4% greater than the centreline velocity. This value is within the 

experimental uncertainty but it is repeatable so it is believed to be a true effect.  

 

Figure 4.23 shows the velocity profiles for 0.03% PAA at Re ≈ 290, DeC ≈ 0.13. Small 

overshoots are visible close to the flat sidewall along the XZ-centreplane. The 

overshoots appear much later (x/L=-0.23) and start to disappear much sooner than 

those seen in the 8:1 contraction and are not as pronounced with the peak overshoot 

velocity still lower than the centreline velocity. The profile at x/L=-1 along the XY-

centreplane shows an inflection, similar to that seen at the same position at Re ≈ 115, 

DeC ≈ 0.06, however the slower moving part of the flow is confined closer to the 

curved walls (0.5>y/w>0.4 and -0.4<y/w<-0.5). In the final profile at x/L=0.15 small 

overshoots are visible and they are slightly larger at approximately 1% above the 
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centreline velocity compared to 0.4% at the lower flowrate. This value is also within 

the experimental uncertainty but is again repeatable. 

 

Figure 4.24 shows the centreline velocities for 0.03% PAA at Re ≈ 115, DeC ≈ 0.06 

and Re ≈ 290, DeC ≈ 0.13. The figure shows that as the flow travels through the 

contraction the centreline velocity increases steadily in both cases in agreement with 

the profiles shown in Figure 4.22 and Figure 4.23. The centreline velocities are the 

same for both flows at the start of the contraction but as the flow progresses the flow 

at the lower flowrate exhibits a higher centreline velocity than at the higher flowrate. 

This pattern is similar to that observed in the flows of 0.03% and 0.05% PAA 

discussed earlier in the chapter. 

 

4.2.2. 0.05% Polyacrylamide 

 

0.05% PAA was tested at Re ≈ 30, DeC ≈ 0.13 and Re ≈ 65, DeC ≈ 0.24. The velocity 

profiles measured at Re ≈ 30, DeC ≈ 0.13 are presented in Figure 4.25. The profiles 

along the XZ-centreplane show velocity overshoots that develop midway through the 

contraction. These overshoots are larger than those observed in 0.03% PAA but the 

peak overshoot velocity is still lower than the centreline velocity, except for the final 

profile at x/L=0.15. As previously observed for 0.03% PAA at Re ≈ 290, DeC ≈ 0.13, 

along the XY-centreplane we see small overshoots at x/L=0.15 (approximately 1.4% 

greater than the centreline velocity) and slower moving flow towards the top and 

bottom curved walls of the contraction at x/L=-1. 

 

Figure 4.26 shows the velocity profiles at Re ≈ 65, DeC ≈ 0.24. Velocity overshoots 

are clearly visible along the XZ-centreplane. The overshoots are more pronounced 

(the maximum overshoot velocities in this case are larger than the centreline 

velocities at x/L=-0.27, x/L=-0.17 and x/L=0.10) and develop closer to the start of the 

contraction than at the lower flowrate. Again in the XY-centreplane profiles we see 

the inflections at the start of the contraction where the fluid is moving much more 

slowly towards the top and bottom curved walls of the contraction. In this case the 

effect is still present at x/L=-0.71 whereas at the lower flowrate it had disappeared by 

this location. The overshoots after the end of the contraction at x/L=0.15 are 

observed again; in this case they are more pronounced than at the lower flowrate 
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(approximately 3.6% larger than the centreline velocity compared to 1.4% at the 

lower flowrate and 0.4% and 1% in the 0.03% PAA solution).  

 

Figure 4.27 shows the centreline velocities for 0.05% PAA at Re ≈ 30, DeC ≈ 0.13 and 

Re ≈ 65, DeC ≈ 0.24. The non-dimensionalised centreline velocity at the higher 

flowrate is lower than that for the lower flowrate throughout the contraction in 

agreement with the data at the lower concentration. 

 

4.2.3. 0.3% Polyacrylamide 

 

0.3% PAA was tested at a single flow condition Re ≈ 2, DeC ≈ 8.4. The XY- and XZ-

centreplane flow profiles are shown in Figure 4.28. The profiles along the XZ-

centreline show clear velocity overshoots that are similar in appearance to those 

previously seen in the 0.3% PAA flow through the 8:1 contraction (see Figures 4.13 

and 4.15). The overshoots are not as pronounced as previously and the region of 

essentially stagnant fluid, seen in the 0.3% PAA flow through the 8:1 contraction, is 

not present in the 4:1 contraction although the near wall shear rates are quite low. 

Velocity overshoots are also visible along the XY-centreplane but again are not as 

pronounced as previously seen in the 8:1 contraction. The profiles at x/L=-0.71 and 

x/L=-0.42 show almost stagnant zones ( 0≈u ) close to the curved top and bottom 

walls of the contraction. 

 

The centreline velocity for 0.3% PAA at Re ≈ 2, DeC ≈ 8.4 is shown in Figure 4.29. 

The velocity increases slowly at the start of the contraction followed by a rapid 

increase in velocity towards the end resulting in a significant velocity overshoot. 

Downstream of the contraction the velocity slowly decreases through the rectangular 

section of duct. The maximum velocity in this case is approximately 2Ud whereas for 

both of the lower concentrations the maximum velocity is between Ud and 1.4Ud. 

 

4.3. 0.05% PAA in the 8:1 contraction 

 

Since the velocity overshoots readily occurred in the 0.05% PAA solution (and this 

solution was substantially quicker (1 day compared with 5) and easier to mix than 

the 0.3% PAA solution) it was decided to measure some velocity profiles away from 
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the centrelines in this fluid to investigate off-centreline behaviour and provide some 

indication of the three dimensionality of the flow. Velocity measurements were 

performed in the 8:1 contraction at both z/w and y/w = 0, 0.125, 0.25 and 0.375 

provided the contraction shape allowed. The flow condition chosen for investigation 

was Re ≈ 110, DeC ≈ 0.96. 

 

Figures 4.30 and 4.31 are 3D visualisations of a quarter of the flow (the top right 

quadrant as you look downstream into the duct) shown for slightly different angles. 

These figures shows the development of the velocity overshoots in the spanwise 

direction as one might expect from the results presented earlier in this chapter. 

Figures 4.32 and 4.33 are presented in an attempt to aid the reader’s visualisation of 

the flow. The figures show the side view and the top view of the velocity profiles 

respectively.  

 

A high level of internal consistency has been achieved within the flow. This 

consistency is seen most significantly in Figures 4.31 and 4.32 where the cross 

sectional area of the contraction is at its largest. More spanwise off-centreline 

velocity profiles could be measured at these locations than further into the 

contraction. 

 

Interestingly Figures 4.30 and 4.31 show the development of velocity overshoots in 

the transverse plane at x/L=-0.17 and x/L=0.10 (show circled in Figure 4.30). The 

overshoots observed at x/L=0.10 might have been expected since it was these 

overshoots that first prompted Poole et al. (2005) to investigate the flow through 

their gradual contraction and they have also been observed throughout this 

investigation at y/w=0. The overshoots seen in the transverse plane at x/L=-0.17 are 

more unexpected as we have not previously observed transverse velocity overshoots 

at this location during the centreplane measurements. The overshoots develop 

somewhere between x/L=-0.27 and -0.17, this distance in dimensional terms is only 

5mm so these overshoots develop fairly rapidly within the latter half of the 

contraction (i.e. after the change in radius of the contraction at x/L≈0.3) before 

shrinking towards the end of the contraction. 
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4.4. Tables 

 

Table 4.1: Reynolds, Deborah, Weissenberg and Elasticity numbers estimated for 

flows through the 8:1 Contraction. 

Fluid Re 

=
CH

d

µ

ρ dU
 

DeC  

=
d

U dCλ
 

El1,C  

=DeC/Re 

DeN1  

=
d

U d1Nλ
 

El1,N1 

 =DeN1/Re 

0.01% PAA 420 <<1 <<1 <<1 <<1 

0.01% PAA 830 <<1 <<1 <<1 <<1 

0.03% PAA 140 0.24 0.0016 5.2 0.036 

0.03% PAA 390 0.53 0.0013 6.2 0.016 

0.05% PAA 50 0.52 0.012 9.2 0.20 

0.05% PAA 110 0.96 0.0091 9.4 0.088 

0.3% PAA 5 34 5.6 5.3 0.87 

0.3% PAA 15 60 3.9 6.2 0.41 

0.07% XG 50 <<1 <<1 <<1 <<1 

0.07% XG 120 <<1 <<1 <<1 <<1 

0.5% XG 0.86 0.21 4.1 <<1 <<1 

0.5% XG 2 0.34 6.1 <<1 <<1 
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Table 4.1 (continued) 

Fluid Re 

=

CH

d

µ

ρ dU
 

WiC  

= ελ &
C  

El2,C  

=WiC/Re 

WiN1  

= ελ &
N1  

El2,N1  

=WiN1/ Re 

0.01% PAA 420 <<1 <<1 <<1 <<1 

0.01% PAA 830 <<1 <<1 <<1 <<1 

0.03% PAA 140 0.13 0.00091 2.9 0.020 

0.03% PAA 390 0.21 0.00054 2.5 0.006 

0.05% PAA 50 0.23 0.0051 4.1 0.089 

0.05% PAA 110 0.58 0.0054 5.6 0.053 

0.3% PAA 5 42 7.0 6.6 1.09 

0.3% PAA 15 62 4.0 6.4 0.42 

0.07% XG 50 <<1 <<1 <<1 <<1 

0.07% XG 120 <<1 <<1 <<1 <<1 

0.5% XG 0.86 0.24 0.28 <<1 <<1 

0.5% XG 2 0.24 0.12 <<1 <<1 
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Table 4.2: Reynolds, Deborah, Weissenberg and Elasticity numbers estimated for 

flows through the 4:1 Contraction. 

Fluid Re 

=
CH

d

µ

ρ dU
 

DeC  

=
d

U dCλ
 

El1,C  

=DeC/Re 

DeN1  

=
d

U d1Nλ
 

El1,N1 

 =DeN1/Re 

0.03% PAA 115 0.06 5.3x10
-4 

5.1 0.045 

0.03% PAA 290 0.13 4.6x10
-4 

5.3 0.018 

0.05% PAA 30 0.13 4.7x10
-3 

8.9 0.31 

0.05% PAA 65 0.24 3.8x10
-3 

9.0 0.14 

0.3% PAA 2 8.4 3.7 3.5 1.5 

Fluid Re 

=

CH

d

µ

ρ dU
 

WiC  

= ελ &
C  

El2,C  

=WiC/Re 

WiN1  

= ελ &
N1  

El2,N1  

=WiN1/ Re 

0.03% PAA 115 0.02 2.1x10
-4 

2.0 0.018 

0.03% PAA 290 0.07 2.4x10
-4 

2.8 0.010 

0.05% PAA 30 0.08 2.8x10
-3 

5.3 0.18 

0.05% PAA 65 0.14 2.2x10
-3 

5.3 0.082 

0.3% PAA 2 18.9 8.3 7.9 3.5 
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4.5. Figures 

 

 

Figure 4.1: Normalised velocity profiles for 10% glycerine measured in the square 

duct section, prior to the contraction at x/L=-3, along (a) the XY-centreplane (�) and 

(b) the XZ-centreplane (�) at Re ≈ 115. The filled symbols represent reflected values 

and the full black line represents the theoretical solution (Equation 3-48 in White 

(2006) p.113). 
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Figure 4.2: Normalised velocity profiles along the XZ-centreplane for 10% glycerine 

at Re ≈ 115 measured at x/L=-1 (□), -0.72 (◊), -0.45 (�), -0.27 (○), -0.17 (�) and 0.10 

(�). 

 

 

Figure 4.3: Normalised centreline velocity for 10% glycerine at Re ≈ 115. 
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Figure 4.4: Normalised velocity profiles along the XZ-centreplane for 0.05% 

polyacrylamide at Re ≈ 110, DeC ≈ 0.96 measured at x/L=-0.92 (□), -0.46 (�), -0.28 

(○) and 0 (�), taken from Poole et al. (2005). 

 

Figure 4.5: Normalised velocity profiles along the XZ-centreplane for 0.05% 

polyacrylamide at Re ≈ 110, DeC ≈ 0.96 measured at x/L=-1 (□), -0.72 (◊), -0.45 (�),  

-0.27 (○), -0.17 (�) and 0.10 (�). 
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Figure 4.6: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.05% polyacrylamide at Re ≈ 110, DeC ≈ 0.96 measured at x/L=  

-1 (□), -0.72 (◊), -0.45 (�), -0.27 (○), -0.17 (�) and 0.10 (�), filled symbols 

represent reflected values. 
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Figure 4.7: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.05% polyacrylamide at Re ≈ 50, DeC ≈ 0.52 measured at x/L=-1 

(□), -0.72 (◊), -0.45 (�), -0.27 (○), -0.17 (�) and 0.10 (�), filled symbols represent 

reflected values. 

 

Figure 4.8: Normalised centreline velocities for 0.05% polyacrylamide at Re ≈ 50, 

DeC ≈ 0.52 (□) and Re ≈ 110, DeC ≈ 0.96 (�). 
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Figure 4.9 Normalised velocity profiles along the XZ-centreplane for 0.01% 

polyacrylamide at (a) Re ≈ 420 and (b) Re ≈ 830 measured at x/L=-1 (□), -0.72 (◊),      

-0.45 (�), -0.27 (○), -0.17 (�) and 0.10 (�). 
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Figure 4.10: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.03% polyacrylamide at Re ≈ 140, DeC ≈ 0.24 measured at x/L=  

-1 (□), -0.72 (◊), -0.45 (�), -0.27 (○), -0.17 (�) and 0.10 (�), filled symbols 

represent reflected values. 
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Figure 4.11: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.03% polyacrylamide at Re ≈ 390, DeC ≈ 0.53 measured at x/L=  

-1 (□), -0.72 (◊), -0.45 (�), -0.27 (○), -0.17 (�) and 0.10 (�), filled symbols 

represent reflected values. 

 

Figure 4.12: Normalised centreline velocities for 0.03% polyacrylamide at Re ≈ 140, 

DeC ≈ 0.24 (□) and Re ≈ 390, DeC ≈ 0.53 (�). 
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Figure 4.13: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.3% polyacrylamide at Re ≈ 5, DeC ≈ 34 measured at x/L=-1.18 

(○), -1 (□), -0.72 (◊), -0.45 (�), -0.27 (○),-0.22 (�), -0.17 (�) and 0.10 (�), filled 

symbols represent reflected values. 
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Figure 4.14: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.3% polyacrylamide at Re ≈ 5, DeC ≈ 34 measured at x/L=-1.18 

(○), -1 (□), -0.72 (◊), -0.45 (�), -0.27 (○),-0.22 (�), -0.17 (�) and 0.10 (�), filled 

symbols represent reflected values.  

y/w
-0.5 -0.25 0 0.25 0.5

(b)
z/w

0 0.25 0.5

(a)

u/U
d

1

0

Re ≈ 5 

DeC ≈ 34 



 Presentation of Results 

  101 

  

     
 

Figure 4.15: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.3% polyacrylamide at Re ≈ 15, DeC ≈ 60 measured at x/L=-1.18 

(○), -1 (□), -0.72 (◊), -0.45 (�), -0.27 (○),-0.22 (�), -0.17 (�) and 0.10 (�), filled 

symbols represent reflected values. 
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Figure 4.16: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.3% polyacrylamide at Re ≈ 15, DeC ≈ 60 measured at x/L=-1.18 

(○), -1 (□), -0.72 (◊), -0.45 (�), -0.27 (○),-0.22 (�), -0.17 (�) and 0.10 (�), filled 

symbols represent reflected values. 

y/w
0 0.1 0.2 0.3 0.4 0.5

(a)
z/w

-0.5 -0.25 0 0.25 0.5

(b)

1

u/U
d

0

Re ≈ 15 

DeC ≈ 60 



 Presentation of Results 

  103 

 

Figure 4.17: Normalised centreline velocities for 0.3% polyacrylamide at Re ≈ 5, DeC

≈ 34 (□) and Re ≈ 15, DeC ≈ 60 (�). 

 

  

  

     
Figure 4.18: Normalised velocity profiles along the XZ-centreplane for 0.07% 

xanthan gum at (a) Re ≈ 50 and (b) Re ≈ 120 measured at x/L=-1 (□), -0.72 (◊), -0.45 

(�), -0.27 (○), -0.17 (�) and 0.10 (�). 
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Figure 4.19: Normalised centreline velocity for 0.07% xanthan gum at Re ≈ 50 (□) 

and Re ≈ 120 (�). 

  

  

     
Figure 4.20: Normalised velocity profiles along the XZ-centreplane for 0.5% 

xanthan gum at (a) Re ≈ 0.86, DeC ≈ 0.21 and (b) Re ≈ 2, DeC ≈ 0.34 measured at x/L=  

-1 (□), -0.72 (◊), -0.45 (�), -0.27 (○), -0.17 (�) and 0.10 (�). 
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Figure 4.21: Normalised centreline velocities for 0.5% xanthan gum at Re ≈ 0.86, DeC

≈ 0.21 (□) and Re ≈ 2, DeC ≈ 0.34 (�). 

 

   

     
Figure 4.22: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.03% polyacrylamide at Re ≈ 115, DeC ≈ 0.06 measured at   

x/L=-1 (□), -0.71 (◊), -0.42 (�), -0.23 (○), -0.13 (�) and 0.15 (�). 
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Figure 4.23: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.03% polyacrylamide at Re ≈ 290, DeC ≈ 0.13 measured at   

x/L=-1 (□), -0.71 (◊), -0.42 (�), -0.23 (○), -0.13 (�) and 0.15 (�). 

 

Figure 4.24: Normalised centreline velocities for 0.03% PAA at Re ≈ 115, DeC ≈ 0.06 

(□) and   Re ≈ 290, DeC ≈ 0.13 (�). 
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Figure 4.25: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.05% polyacrylamide at Re ≈ 30, DeC ≈ 0.13 measured at x/L=-1 

(□), -0.71 (◊), -0.42 (�), -0.23 (○), -0.13 (�) and 0.15 (�). 
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Figure 4.26: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.05% polyacrylamide at Re ≈ 65, DeC ≈ 0.24 measured at x/L=-1 

(□), -0.71 (◊), -0.42 (�), -0.23 (○), -0.13 (�) and 0.15 (�). 

 

Figure 4.27:Normalised centreline velocities for 0.05% PAA at Re ≈ 30, DeC ≈ 0.13 

(□) and Re ≈ 65, DeC ≈ 0.24 (�). 
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Figure 4.28: Normalised velocity profiles along (a) the XZ-centreplane and (b) the 

XY-centreplane for 0.3% polyacrylamide at Re ≈ 2, DeC ≈ 8.4 measured at x/L=-1.19 

(○), -1 (□), -0.71 (◊), -0.42 (�), -0.23 (○), -0.18 (�), -0.13(�) and 0.15 (�).  

 

Figure 4.29: Normalised centreline velocity for 0.3% PAA at Re ≈ 2, DeC ≈ 8.4. 
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Figure 4.30: 3D visualisation of the flow of 0.05% PAA solution through the 8:1 

contraction at Re ≈ 110, 

0.10 (flow is from left to right)

 

 

 

 

Figure 4.31: 3D visualisation of the flow of 0.05% PAA solution through the 8:1 

contraction at Re ≈ 110, 

0.10 (flow is from left to right)
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Figure 4.30: 3D visualisation of the flow of 0.05% PAA solution through the 8:1 

110, DeC ≈ 0.96 measured at x/L=-1, -0.72, -0.45, 

0.10 (flow is from left to right). 

Figure 4.31: 3D visualisation of the flow of 0.05% PAA solution through the 8:1 

110, DeC ≈ 0.96 measured at x/L=-1, -0.72, -0.45, 

0.10 (flow is from left to right). 
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Figure 4.30: 3D visualisation of the flow of 0.05% PAA solution through the 8:1 

0.45, -0.27, -0.17 and 

 

Figure 4.31: 3D visualisation of the flow of 0.05% PAA solution through the 8:1 

0.45, -0.27, -0.17 and 
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Figure 4.32: Visualisation of the flow of 0.05% PAA solution through the 8:1 

contraction at Re ≈ 110, DeC ≈ 0.96 measured at x/L=-1, -0.72, -0.45, -0.27, -0.17 and 

0.10 (flow is from left to right viewed from the side). 

 

 

 

 

Figure 4.33: Visualisation of the flow of 0.05% PAA solution through the 8:1 

contraction at Re ≈ 110, DeC ≈ 0.96 measured at x/L=-1, -0.72, -0.45, -0.27, -0.17 and 

0.10 (flow is from left to right viewed from the top). 
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5. Discussion of Results 

 

5.1. Quantification of velocity overshoots 

 

A factor, K, can be determined using 

d

C

d

L

d

U

U

U

U

U

U

K
−

=
0

       (5.1) 

where UO/Ud is the maximum overshoot velocity, UC/Ud is the centreline velocity 

and UL/Ud is the velocity at the change in the gradient of the velocity profile 

observed at the bottom of the overshoot as defined in Figure 5.1.  

 

Table 5.1 presents the estimated values for K along with the corresponding velocities 

used to calculate the factors for all fluids in which velocity overshoots were seen 

along the XZ-centreplane in the 8:1 contraction. The values of K are used to 

determine the approximate location at which the overshoots develop and the 

positions of the maximum overshoot for each fluid/flowrate. Figures 5.2 to 5.4 are 

graphic representations of the K values presented in Table 5.1. 

 

Table 5.1 shows that for both cases of 0.03% PAA the overshoots are seen to 

develop between x/L=-0.72 and x/L=-0.45 whereas in the 0.05% solution the 

overshoots are seen to develop earlier, between x/L=-1 and x/L=-0.72. This earlier 

development agrees with the results seen in Figure 5.2. In all cases the magnitude of 

the velocity overshoots increases up to a maximum then decreases. 

 

Figure 5.2 shows that the velocity overshoots observed in 0.03% PAA are slightly 

larger at the lower flowrate than at the higher flowrate, which would not be 

immediately apparent from looking solely at Figures 4.10 and 4.11. In 0.03% PAA at 

Re ≈ 140, DeC ≈ 0.24 the location of the maximum overshoot size is at x/L=-0.17, 

whereas for 0.03% PAA at Re ≈ 390, DeC ≈ 0.53 and both sets of 0.05% PAA the 

location of the maximum overshoot is located at x/L=-0.27. This location is 

approximately at the crossover point between the concave radius and the convex 

radius that make up the 8:1 contraction. 

 



  Discussion of Results 

  113 

Table 4.1 shows that as the concentration of PAA increases so does the Elasticity 

number. The velocity overshoots are seen to develop between x/L=-0.72 and -0.45 in 

0.03% PAA, between x/L=-1 and –0.72 in 0.05% PAA and before x/L=-1.18 in 0.3% 

PAA. This result suggests that the Elasticity number has an effect on where the 

velocity overshoots develop within the test section, i.e. the larger El the earlier the 

overshoots develop. 

 

Table 5.2 presents the overshoot and centreline velocities and the K values for the 

four flows in which velocity overshoots are observed along the XZ-centreplane of 

the 4:1 contraction. This table shows that the 0.03% PAA flow at Re ≈ 115, 

DeC ≈ 0.13 the overshoots develop between x/L=-0.23 and x/L=-0.13 and disappear 

between x/L=-0.13 and x/L=0.15. In 0.05% PAA at Re ≈ 30, DeC ≈ 0.13 the overshoots 

develop between x/L=-0.42 and x/L=-0.23 with the maximum overshoot occurring at 

x/L=0.15 whereas at Re ≈ 65, DeC ≈ 0.13 the overshoots develop earlier, between 

x/L=-0.71 and x/L=-0.42, with the maximum overshoot also earlier at x/L=-0.13. The 

overshoots develop before the start of the contraction in the 0.3% PAA flow and the 

maximum overshoot is seen at x/L=-0.71. 

 

Table 5.3 gives the overshoot velocities, the centreline velocities and the K values 

for the flow of 0.05% PAA measured at locations away from the centreplanes. There 

are two locations where side to side overshoots were observed (x/L=-0.72 and x/L=-

0.45) away from the centreplane. Table 5.3 shows that the K values decrease (hence 

the overshoots decrease in size) as the distance from the centreplane increases at 

x/L=-0.72, but at x/L=-0.45 the opposite is true and the K values increase as the 

distance from the centreplane increases. Overshoots were observed away from the 

centreplane in the transverse direction in two locations (x/L=-0.17 and x/L=0.10). In 

these cases the overshoots are seen to increase in size the further away from the 

centreplane they are measured, i.e. the closer the flow is to the plane side walls. 

 

5.2. Comparison between concentrations in the 8:1 contraction 

 

The velocity profile sets presented in this chapter are the same sets that were shown 

in Chapter 4 but they have not been offset in order to draw comparisons between the 

data sets. Table 4.1 presents estimated values for Reynolds, Deborah, Weissenberg 
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and Elasticity numbers for the flows of all the fluids discussed in Chapter 4 through 

the 8:1 contraction; the values are estimated as described in Chapter 3. This table 

shows that 0.03% PAA and 0.05% PAA were measured at comparable Reynolds 

numbers of Re ≈ 140 and Re ≈ 110 but different Deborah numbers (both CaBER and 

N1) and also at comparable Deborah and Weissenberg numbers (DeC ≈ 0.53 and 

DeC ≈ 0.52 and WiC ≈ 0.21 and WiC ≈ 0.23) but different Reynolds numbers. 

Comparisons may also be drawn between the Deborah numbers for 0.03% PAA 

(DeN1 ≈ 5.2 and DeN1 ≈ 6.2) and 0.3% PAA (DeN1 ≈ 5.3 and DeN1 ≈ 6.2) and between 

the Weissenberg numbers for 0.03% PAA (WiC ≈ 0.21), 0.05% PAA (WiC ≈ 0.23) and 

0.5% XG at two Reynolds numbers (WiC ≈ 0.24 and WiC ≈ 0.24). The table also shows 

that 0.05% PAA and 0.07% XG were both measured at Re ≈ 50 and at comparable 

Reynolds numbers of Re ≈ 110 and Re ≈ 120 and that 0.3% PAA and 0.5% XG may 

be compared in terms of Elasticity number (ElC ≈ 3.9 and ElC ≈ 4.1 respectively). 

These comparisons will be discussed in what follows.  

 

Figure 5.5 (a) and (b) show the velocity profiles for 0.03% PAA at Re ≈ 140, 

DeC ≈ 0.24 and 0.05% PAA at Re ≈ 110, DeC ≈ 0.96; these profiles were measured at 

comparable Reynolds numbers but it is clear that the profiles are very different. The 

overshoots in the 0.03% PAA develop between x/L=-0.72 and x/L=-0.45 whereas in 

0.05% PAA they are seen to develop earlier between x/L=-1 and x/L=-0.72. In both 

cases the overshoots increase with respect to Ud through the contraction. The profiles 

in the 0.05% PAA solution are much broader and rounder than those seen in 0.03% 

PAA, particularly at x/L=-0.17 and x/L=-0.27; there is a much greater difference 

between the maximum velocities and the centreline velocities in 0.05% PAA (Table 

5.1 shows that the K values are much larger for 0.05% PAA than for 0.03% PAA). 

The difference in the structure of the overshoots suggests that although the Reynolds 

numbers are comparable the effects of a larger Deborah number (approximately four 

times for DeC and nearly seven times for DeN1) are of key importance. 

 

Figure 5.5 (c) and (d) present the velocity profiles for 0.03% polyacrylamide at 

Re ≈ 390, DeC ≈ 0.53 and 0.05% PAA at Re ≈ 50, DeC ≈ 0.52; the estimated DeC 

numbers for these flows are obviously similar as are the WiC numbers but it is clear 

that the flows themselves are quite different as seen in the figure. In the 0.03% PAA 

the overshoots develop between x/L=-0.72 and x/L=-0.45 and in the 0.05% they 



  Discussion of Results 

  115 

develop earlier, between x/L=-1 and x/L=-0.72. The overshoots seen in the 0.05% 

solution appear to be more ‘pointed’ than those seen in the 0.03% solution. 

 

On inspection of the results in order of increasing Reynolds number (Figure 5.5 (d), 

(b), (a), (c)) it seems that no obvious trend can be deduced solely based on this 

information. However if we look at the results in order of increasing Deborah 

number (Figure 5.5 (a), (d), (c), (b)) the velocity profiles appear to broaden and 

become more ‘rounded’, in particular those at x/L=-0.17 and x/L=-0.27. These subtle 

changes confirm that the Deborah number, and in particular the extensional 

properties of the fluid, based on the CaBER relaxation time play a key role in the 

appearance and strength of the velocity overshoots. It must be borne in mind that 

there is a notable difference between the Elasticity numbers (both ElC and ElN1) for 

the 0.03% PAA flow and the 0.05% PAA flow; this difference may be the reason for 

the velocity overshoots developing earlier in the 0.05% PAA flow than in the 0.03% 

flow. 

 

Figures 5.6 and 5.7 include data for both 0.03% PAA and 0.3% PAA at different 

Reynolds numbers but comparable Deborah numbers based on N1 data (DeN1 ≈ 5.2 

and DeN1 ≈ 6.2 respectively). Velocity overshoots are clearly observed in all cases 

but, although the Deborah numbers are comparable, there is a major difference 

between the sets of profiles depending on the fluid concentration. This effect is 

possibly due to the difference in the shear viscosities of the two fluids, as indicated 

by the difference in the Reynolds and Elasticity numbers. Given that the flow in the 

contraction is an extensional one, it may also be that DeC is a more appropriate 

measure of elastic effects than DeN1. 

 

Figure 5.8 shows 0.03% and 0.05% polyacrylamide along with 0.5% xanthan gum 

(at two flowrates) at comparable Weissenberg numbers (WiC) of around 0.2. The 

results in this figure suggest that although the Weissenberg numbers are similar this 

number cannot be used alone in the determination of the occurance of the velocity 

overshoots. The Reynolds numbers are much lower for the xanthan gum flows 

implying that inertia might also play a role in the ‘cat’s ears’ effect. However the 

results for 0.3% PAA at comparable Re are very different to the 0.5% XG results. It 

should also be noted that xanthan gum is a more rigid polymer than polyacrylamide, 
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which may affect the appearance of the velocity overshoots. This rigid behaviour is 

emphasised by the lack of CaBER data for the XG polymer solution at the lower 

concentration. The relaxation time for the xanthan gum solution is much lower than 

for both concentrations of PAA. 

 

Figure 5.9 shows velocity profiles for 0.07% xanthan gum and 0.05% 

polyacrylamide at similar Reynolds numbers: velocity overshoots are seen in the 

polyacrylamide solution but not in the xanthan gum solution in agreement with the 

discussion above. A Deborah number could not be calculated for 0.07% XG as the 

relaxation time was below the sensitivity of our CaBER so the Deborah number is 

estimated to be essentially negligible (if λ<1ms, then DeC<0.0013 and 0.0024). The 

occurrence of the overshoots in the PAA solution and not in the XG solution agrees 

with the previous suggestion that the Deborah number is vitally important in the 

appearance of the velocity overshoots. 

 

Figure 5.10 presents the velocity profiles for 0.3% PAA and 0.5% XG at comparable 

elasticity numbers of 3.9 and 4.1 respectively. The figure clearly shows overshoots 

in the PAA and not in the XG confirming that the elasticity number alone cannot be 

used to determine whether the velocity overshoots will occur. 

 

5.3. Comparison across the concentrations in the 4:1 contraction 

 

Table 4.2 presents estimated Reynolds, Deborah, Weissenberg and Elasticity 

numbers (determined as described in Chapter 3) for the various fluid flows through 

the 4:1 contraction. The table shows that 0.03% PAA and 0.05% PAA were 

measured at comparable values of DeC. 

 

Figure 5.11 shows the velocity profiles for both flows of 0.03% polyacrylamide and 

both flows of 0.05% polyacrylamide. Figure 5.11 (a) and (b) are the profiles for 

0.03% PAA at Re ≈ 290, DeC ≈ 0.13 and 0.05% PAA at Re ≈ 30, DeC ≈ 0.13. The first 

four velocity profiles (x/L=-1 to x/L=-0.23) are very similar for both sets of results. 

In the lower concentration (a) the overshoot at x/L=-0.13 is larger than in the higher 

concentration (b) but by x/L=0.15 the overshoot has disappeared in the 0.03% PAA 

solution, whereas in 0.05% PAA solution the overshoot continues to grow. 



  Discussion of Results 

  117 

Looking at the velocity profile sets in Figure 5.11 in order of increasing Reynolds 

numbers (Figure 5.11 (b), (d), (c), (a)) the overshoots occur more easily at the lower 

Reynolds numbers, although it must be noted that these fluids are at the higher 

concentration and are therefore more elastic. On inspection of the profile sets in 

order of increasing Deborah numbers (both DeC and DeN1) (Figure 5.11 (c), (a), (b), 

(d)) the overshoots grow in size as the Deborah number increases. This agrees with 

the earlier suggestion that the Deborah number and the elastic properties of the flow 

play an important role in the development of the velocity overshoots. 

 

5.4. Comparison across the contractions 

 

Figure 5.12 shows 0.03% polyacrylamide and 0.05% polyacrylamide in the 8:1 

contraction along with 0.03% polyacrylamide in the 4:1 contraction all at 

comparable Reynolds numbers (110 to 140). Clearly the profile sets differ greatly 

and Re alone is not a good indicator as to whether the velocity overshoots will occur. 

Both DeC and DeN1 increase in order (c), (a), (b) and it is obvious that as the Deborah 

numbers increase the velocity overshoots become much more pronounced.  

 

Figure 5.13 presents 0.05% PAA in both contractions at comparable Reynolds 

numbers of Re ≈ 50, DeC ≈ 0.52 in the 8:1 contraction and Re ≈ 65, DeC ≈ 0.24 in the 

4:1 contraction. Both DeC and DeN1 are larger in the 8:1 contraction flow than in the 

4:1 contraction flow in this case and although the overshoots look to be very similar 

in shape, being quite ‘pointed’, they seem to be slightly larger in the 8:1 contraction. 

Tables 5.1 and 5.2 confirm that the overshoots are more pronounced in the 8:1 

contraction as the K values are larger in this case. 

 

In an attempt to ‘eliminate’ the effects of the contraction ratio the data presented in 

Figure 5.13 has been normalised with respect to the centreline velocity at each axial 

location and this replotted data is presented in Figure 5.14. The flow through the 8:1 

contraction is represented by open symbols and that through the 4:1 contraction 

filled symbols. This figure highlights some similarities and differences between the 

two flows that are not immediately apparent in the original normalisation (Figure 

5.13). The flows have comparable Reynolds numbers but the Deborah number (from 

CaBER data) is higher for the 8:1 flow than the 4:1 flow. The velocity overshoots 
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observed in the 8:1 flow clearly develop earlier than in the 4:1 flow, they are also 

larger at each location in the 8:1 flow. Interestingly, the width of the velocity 

overshoots observed in (c), (d) and (e) is very similar at each location with the 

change in velocity gradient occurring at more or less the same position for each 

location. Over the majority of the flow, towards the centre of the contraction, the 

velocity profiles in all cases, except (f), appear the same at each location for both 

flows, i.e. the ‘cat’s ears’ effect is confined to within z/w=0.2 of the sidewalls. 

 

Figure 5.15 presents the velocity profiles for 0.03% PAA at Re ≈ 140, DeC ≈ 0.24 in 

the 8:1 contraction and 0.05% PAA at Re ≈ 65, DeC ≈ 0.24 in the 4:1 contraction. 

DeC ≈ 0.24 for both flows, while the WiC values are compared at 0.14 and 0.13 

respectively. The overshoots observed in the 4:1 contraction are larger than those in 

the 8:1 contraction. However the K values for both sets of profiles are very similar. 

In the 8:1 contraction the overshoots develop between x/L=-0.72 and x/L=-0.45 and 

in the 4:1 contraction they develop between x/L=-0.71 and x/L=-0.42. The K values 

for x/L=-0.27, -0.17 and 0.10 in the 8:1 contraction are nearly identical to those for 

x/L=-0.23, -0.13 and 0.15 in the 4:1 contraction showing that the difference between 

the maximum overshoot velocities and the centreline velocities are the same for the 

profiles measured after the radius change in both contractions (i.e.x/L ≈ 0.3). 

 

The data from Figure 5.15 has been replotted in Figure 5.16 in the same manner as 

the data shown in Figure 5.14. In this case the flows have the same Deborah number 

(DeC ≈ 0.24) but the 8:1 contraction flow (represented by open symbols) has a higher 

Reynolds number than the 4:1 contraction flow (represented by closed symbols). The 

two flows are obviously very similar. A larger overshoot is observed at the lower 

Reynolds number in (c) but this is in fact a higher concentration of polyacrylamide. 

The overshoots in (d) and (e) have the same magnitude but in the 8:1 contraction 

they are confined closer to the sidewalls (within 0.06 z/w) than in the 4:1 contraction 

(within 0.1 z/w). The opposite is true, however, of the profiles at (f), in this case the 

magnitude of the overshoots is the same but the overshoot observed at the higher 

flowrate is wider than at the lower flowrate. 

 

Figure 5.17 shows four profile sets for 0.05% PAA at two Reynolds numbers in both 

contractions at comparable DeN1 values of between 8.9 and 9.2. Velocity overshoots 
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are observed to a different extent in each case. On the whole the overshoots are more 

pronounced in the 8:1 contraction ((a) and (c)), however the Reynolds numbers are 

higher for these two flows so no direct conclusions can be drawn from the 

comparison of these velocity profile sets, except that Re is a minor influence. Figure 

5.18 shows the velocity profiles along the XZ-centreplane for 0.03% polyacrylamide 

at Re ≈ 290, DeC ≈ 0.13 and Re ≈ 115, DeC ≈ 0.06 in the 4:1 contraction and at Re ≈ 140, 

DeC ≈ 0.24 in the 8:1 contraction along with 0.3% polyacrylamide at Re ≈ 5, DeC ≈ 34 

in the 8:1 contraction: these profiles were measured at comparable DeN1 numbers of 

between 5.1 and 5.3. It is clear from these profiles that DeN1 alone is not a good 

indicator of whether the velocity overshoots will occur. The overshoots are 

obviously more pronounced within the 8:1 contraction when we look at (b) and (c) 

which are at similar Re. As discussed earlier the flow through the gradual contraction 

is predominantly extensional flow so the Deborah number found using the relaxation 

time from CaBER is more likely to be a better indicator of the flow behaviour than 

the Deborah number found using the N1 data. 

 

Figures 5.19 to 5.23 each present velocity profile sets that have comparable 

Elasticity numbers. There are clear differences observed between each set of velocity 

profiles and the more pronounced overshoots are always seen at the higher Deborah 

numbers (and also in the 8:1 contraction). Figures 5.19 to 5.23 show that the 

Elasticity numbers alone cannot be used to determine whether ‘cat’s ears’ will be 

observed or the magnitude of the effect when it does occur. 

 

5.5. Stresses acting within the flow 

 

The shear rate on the flat side wall in the XZ-centreplane ( wγ& , s
-1

) at a given location 

can be found by estimating the gradient of the velocity profile next to the wall 

(
z

u

∂
∂≡ ). Similarly the strain rate along the centreline ( cε& , s

-1
) can be found at a given 

location by estimating the gradient of the centreline velocity profile at the same 

location (
x

u

∂
∂≡ ). The estimated shear rates may then be used to calculate a shear 

stress ( wτ , Pa) along the plane wall and the strain rates an extensional stress ( cτ , Pa) 

along the centreline using the following equations. 

 www µγτ &=        (5.2) 
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 Ccc λετ &= ,       (5.3) 

where wµ  (Pa) is the shear viscosity estimated at the wall shear rate using the 

Carreau-Yasuda model fit as described in Chapter 2 (Equation 2.2) and Cλ  (s) is the 

relaxation time determined from CaBER measurements. To non-dimensionalise both 

the shear stress and the extensional stress we use the dynamic pressure, 
2

2
1

d
Uρ .  

 

Figure 5.24 presents the non-dimensionalised shear stresses at the wall and 

extensional stresses along the centreline for all flows of 0.03%, 0.05% and 0.3% 

PAA through the 8:1 contraction. In the 0.03% PAA cases (Figure 5.24 (a)) the shear 

stresses are fairly constant throughout the first half of the contraction before 

increasing to maxima around x/L=-0.3 then decreasing and stabilising. In the 0.05% 

case (Figure 5.24 (c)) the shear stresses start to increase immediately up to a 

maximum value around x/L=-0.45 followed by a decrease to minima around x/L=-0.3 

for the lower flowrate and x/L=-0.2 for the higher flowrate. The shear stress at the 

lower flowrate then increases slightly towards a constant value whereas at the higher 

flowrate the shear stress suddenly increases again. In the 0.3% PAA flow (Figure 

5.24 (e)) at the lower flowrate the shear stress is seen to increase monotonically as 

the flow progresses through the contraction with a sudden increase observed at 

around x/L=-0.2. The shear stress for the 0.3% PAA flow at the higher flowrate 

decreases slightly at the start of the contraction until around x/L=-0.2 when it begins 

to increase rapidly. In all cases the extensional stresses (Figure 5.24 (b), (d) and (f)) 

are low and fairly constant throughout the first half of the contraction, which might 

be expected due to the very small changes in the cross sectional area. The 

extensional stresses then increase suddenly around x/L=-0.3, which is the 

approximate location of the crossover between the 40mm concave radius and the 

20mm convex radius and where the change in cross sectional area of the flow 

becomes more significant. The maximum extensional stress is observed around x/L=-

0.2 (later than the maxima observed in the shear stress) except in the 0.03% PAA 

flow at the higher flowrate where it occurs slightly earlier at around x/L=-0.3. After 

the contraction ends the extensional stresses return to zero as should be expected 

once the cross sectional area of the flow stops changing. The shear stress data for the 

0.03% and 0.05% PAA (Figure 5.24 (a) and (c)) collapses onto approximately the 

same curve in both cases whereas the 0.3% PAA data (Figure 5.24 (e)) does not to 
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the same degree. This data shows that for the 0.03% and 0.05% PAA flows the shear 

stresses along the walls behave in a similar manner regardless of the flow rate. The 

extensional stress data for the 0.03% PAA solution (Figure 5.24 (b)) collapses onto 

the same curve for the first half of the contraction then diverges in the second half of 

the contraction. For the 0.05% and 0.3% PAA (Figure 5.24 (d) and (f)) the data 

collapses onto approximately the same curve in each case. 

 

Figure 5.25 shows the non-dimensionalised shear and extensional stresses for the 

flows of 0.03%, 0.05% and 0.3% PAA through the 4:1 contraction. In all cases, 

except the 0.05% PAA flow at the higher flowrate, the shear stress at the wall 

increases monotonically through the contraction. The shear stress for the 0.05% PAA 

flow at the higher flowrate exhibits a similar pattern to that observed in the 8:1 

contraction for both the 0.03% and 0.05% flows and the maximum is around the 

same location as for the 0.03% PAA flow through the 8:1 contraction. This 

information shows that for all flows in which velocity overshoots do not occur 

throughout the whole contraction the shear stresses at the wall increase 

monotonically and where velocity overshoots are present throughout the whole 

contraction the shear stresses increase non-monotonically. The extensional stresses 

through the 4:1 contraction for 0.03% and 0.05% PAA (Figure 5.25 (b) and (d)) 

slowly increase to a maxima at around x/L=-0.2. The pattern seen in 0.03% PAA at 

the lower flowrate is similar to that seen in the 8:1 contraction; the extensional stress 

is around zero for over half of the contraction in this case. For 0.03% PAA at the 

higher flowrate and the 0.05% PAA the extensional stresses increase from the start 

of the contraction. In the 0.3% PAA flow the extensional stress along the centreline 

is around zero until x/L=-0.3 before a large increase followed immediately by a 

decrease towards the end of the contraction. The data collapses to the same order of 

magnitude in each case, the collapse is better for the 0.05% PAA than for the 0.03% 

PAA solution.  

 

In both the 8:1 and 4:1 contractions the centreline extensional stresses are much 

larger than the sidewall shear stresses. It is also noted that the stresses in the 0.03% 

and 0.05% PAA solutions are much lower than those in the 0.3% PAA, most likely 

due to the difference in shear viscosity at the relevant shear rates. 
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Since this investigation is looking at contraction flow the shear stresses along the 

curved walls will probably be more useful than those along the plane walls since the 

curved walls of the contraction must be causing the velocity overshoots to occur. It is 

not possible however, to estimate the shear stresses along the curved walls as the 

flow component that has been measured is along a plane that is not perpendicular to 

the curved wall. 
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5.6. Tables 

 

Table 5.1: Non-dimensionalised maximum overshoot and centreline velocities used 

to quantify velocity overshoots for all fluids where the overshoots are seen along the 

XZ-centreplane of the 8:1 contraction. 

Fluid Re DeC x/L UO/Ud UC/Ud UL/Ud K 

0.03% 

PAA 

140 0.24 -1.00     

-0.72     

-0.45 0.26 0.34 0.24 0.06 

-0.27 0.67 0.52 0.43 0.46 

-0.17 0.93 0.68 0.61 0.47 

0.10 1.37 1.18 1.17 0.17 

0.03% 

PAA 

390 0.53 -1.00     

-0.72     

-0.45 0.38 0.37 0.28 0.27 

-0.27 0.76 0.61 0.54 0.36 

-0.17 0.98 0.81 0.78 0.25 

0.10 1.26 1.10 1.10 0.15 

0.05% 

PAA 

50 0.52 -1.00     

-0.72 0.35 0.30 0.30 0.17 

-0.45 0.44 0.29 0.22 0.76 

-0.27 0.76 0.43 0.33 1.00 

-0.17 1.05 0.69 0.64 0.59 

0.10 1.37 1.14 1.14 0.20 
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Table 5.1 (continued) 

Fluid Re DeC x/L UO/Ud UC/Ud UL/Ud K 

0.05% 

PAA 

110 0.96 -1.00     

-0.72 0.28 0.27 0.17 0.67 

-0.45 0.61 0.38 0.29 0.84 

-0.27 0.98 0.40 0.30 1.70 

-0.17 1.06 0.67 0.58 0.72 

0.10 1.24 1.07 1.08 0.15 

0.3% 

PAA 

5 34 -1.18 0.70 0.60 0.59 0.18 

-1.00 0.84 0.73 0.73 0.16 

-0.72 0.96 0.77 0.77 0.25 

-0.45 1.07 0.71 0.71 0.49 

-0.27 1.22 0.91 0.91 0.34 

-0.22 1.29 1.10 1.10 0.18 

-0.17     

0.10     

0.3% 

PAA 

15 60 -1.18 0.59 0.36 0.36 0.65 

-1.00 0.69 0.39 0.39 0.77 

-0.72 0.81 0.34 0.34 1.41 

-0.45 0.87 0.36 0.36 1.44 

-0.27 1.10 0.61 0.61 0.80 

-0.22 1.12 0.80 0.80 0.40 

-0.17 1.22 1.13 1.13 0.082 

0.10     
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Table 5.2: Non-dimensionalised maximum overshoot and centreline velocities used 

to quantify velocity overshoots for all fluids where the overshoots are seen along the 

XZ-centreplane of the 4:1 contraction. 

Fluid Re DeC x/L UO/Ud UC/Ud UL/Ud K 

0.03% 

PAA 

115 0.13 -0.13 0.72 0.82 0.67 0.06 

0.05% 

PAA 
30 0.13 

-0.13 0.78 0.85 0.76 0.02 

0.15 1.34 1.23 1.24 0.08 

 

0.05% 

PAA 

 

65 

 

0.24 

-0.42 0.48 0.51 0.39 0.20 

-0.23 0.84 0.65 0.55 0.45 

-0.13 1.08 0.78 0.70 0.49 

0.15 1.34 1.14 1.13 0.18 

 

 

0.3% 

PAA 

 

 

2 

 

 

8.4 

-1.19 0.36 0.28 0.28 0.31 

-1.00 0.44 0.33 0.33 0.33 

-0.71 0.63 0.42 0.42 0.49 

-0.42 0.90 0.65 0.65 0.38 

-0.23 1.16 0.97 0.97 0.19 

-0.18 1.28 1.19 1.19 0.072 

-0.13 1.40 1.34 1.34 0.044 
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Table 5.3: Non-dimensionalised maximum overshoot and centreline velocities used 

to quantify velocity overshoots for all off centreplane locations where the overshoots 

are seen in 0.05% PAA solution flowing through the 8:1 contraction. 

x/L y/w z/w UO/Ud UC/Ud UL/Ud K 

-0.72 0  0.28 0.27 0.17 0.41 

-0.72 0.125  0.23 0.25 0.15 0.32 

-0.72 0.25  0.13 0.18 0.10 0.17 

-0.45 0  0.61 0.38 0.28 0.87 

-0.45 0.125  0.54 0.30 0.20 1.13 

-0.27 0  0.98 0.40 0.30 1.70 

-0.17 0  1.06 0.67 0.58 0.72 

-0.17  0.125 0.68 0.66 0.65 0.05 

-0.17  0.25 0.74 0.64 0.64 0.16 

-0.17  0.375 0.78 0.58 0.58 0.34 

0.10 0  1.24 1.07 1.08 0.15 

0.10  0 1.09 1.07 1.07 0.02 

0.10  0.125 1.09 1.08 1.08 0.01 

0.10  0.25 1.12 1.09 1.09 0.03 
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5.7. Figures 
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Figure 5.1: Diagrams indicating UC/Ud, UL/Ud and UO/Ud, which are used to quantify 

the velocity overshoots. 
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Figure 5.2: K values for flows of 0.03% PAA at Re ≈ 140, DeC ≈ 0.24 (■) and 

Re ≈ 390, DeC ≈ 0.53 (▲). 
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Figure 5.3: K values for flows of 0.05% PAA at Re ≈ 50, DeC ≈ 0.52 (■) and Re ≈ 110, 

DeC ≈ 0.96 (▲). 
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Figure 5.4: K values for flows of 0.3% PAA at Re ≈ 5, DeC ≈ 34 (■) and Re ≈ 15, 

DeC ≈ 60 (▲). 
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Figure 5.5: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, DeC ≈ 0.24, (b) 0.05% polyacrylamide at Re ≈ 110, 

DeC ≈ 0.96, (c) 0.03% polyacrylamide at Re ≈ 390, DeC ≈ 0.53 and (d) 0.05% 

polyacrylamide at Re ≈ 50, DeC ≈ 0.52 (In the 8:1 contraction □ represents x/L=-1, ◊ 

x/L=-0.72, � x/L=-0.45, ○ x/L=-0.27, � x/L=-0.17 and � x/L=0.10. These symbols 

are valid for all figures for the 8:1 contraction unless stated). 
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Figure 5.6: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, DeC ≈ 0.24, DeN1 ≈ 5.2 and (b) 0.3% polyacrylamide at 

Re ≈ 5, DeC ≈ 34, DeN1 ≈ 5.3. 
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Figure 5.7: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 390, DeC ≈ 0.53, DeN1 ≈ 6.2 and (b) 0.3% polyacrylamide at 

Re ≈ 15, DeC ≈ 60, DeN1 ≈ 6.2. 
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Figure 5.8: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 390, DeC ≈ 0.53 and (b) 0.05% polyacrylamide at Re ≈ 50, 

DeC ≈ 0.52, (c) 0.5% xanthan gum at Re ≈ 0.86, DeC ≈ 0.21 and (d) 0.5% xanthan gum 

at Re ≈ 2, DeC ≈ 0.34. 
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Figure 5.9: Normalised velocity profiles along the XZ-centreplane for (a) 0.07% 

xanthan gum at Re ≈ 50, (b) 0.05% polyacrylamide at Re ≈ 50, DeC ≈ 0.52, (c) 0.07% 

xanthan gum at Re ≈ 120 (filled symbols represent reflected values) and (d) 0.05% 

polyacrylamide at Re ≈ 110, DeC ≈ 0.96. 
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Figure 5.10: Normalised velocity profiles along the XZ-centreplane for (a) 0.3% 

polyacrylamide at Re ≈ 15, DeC ≈ 60 and (b) 0.5% xanthan gum at Re ≈ 0.86, 

DeC ≈ 0.21. 
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Figure 5.11: Normalised velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 290, DeC ≈ 0.13, (b) 0.05% polyacrylamide at Re ≈ 30, 

DeC ≈ 0.13, (c) 0.03% polyacrylamide at Re ≈ 115, DeC ≈ 0.06 and (d) 0.05% 

polyacrylamide at Re ≈ 65, DeC ≈ 0.24 (In the 4:1 contraction □ represents x/L=-1, ◊ 

x/L=-0.71, � x/L=-0.42, ○ x/L=-0.23, � x/L=-0.13 and � x/L=0.15. These symbols 

are valid for all figures for the 4:1 contraction unless stated). 
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Figure 5.12: Velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, DeC ≈ 0.24 in the 8:1 contraction, (b) 0.05% 

polyacrylamide at Re ≈ 110, DeC ≈ 0.96 in the 8:1 contraction and (c) 0.03% 

polyacrylamide at Re ≈ 115, DeC ≈ 0.06 in the 4:1 contraction, the key shown in (b) is 

valid for (a). 
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Figure 5.13: Velocity profiles along the XZ-centreplane for (a) 0.05% 

polyacrylamide at Re ≈ 50, DeC ≈ 0.52 in the 8:1 contraction and (b) 0.05% 

polyacrylamide at Re ≈ 65, DeC ≈ 0.24 in the 4:1 contraction, the keys shown in 

Figure 5.10 are valid for the relevant contraction. 
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Figure 5.14: Velocity profiles along the XZ-centreplane for 0.05% polyacrylamide at 

Re ≈ 50, DeC ≈ 0.52 in the 8:1 contraction (open symbols) and 0.05% polyacrylamide 

at Re ≈ 65, DeC ≈ 0.24 in the 4:1 contraction (filled symbols) at (a) x/L-1, (b) x/L=       

-0.72 and -0.71, (c) x/L=-0.45 and -0.42, (d) x/L=-0.27 and -0.23, (e) x/L=-0.17 and   

-0.13 and (f) x/L=0.10 and 0.15. 
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Figure 5.15: Velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, DeC ≈ 0.24 in the 8:1 contraction and (b) 0.05% 

polyacrylamide at Re ≈ 65, DeC ≈ 0.24 in the 4:1 contraction, the keys shown in 

Figure 5.10 are valid for the relevant contraction. 

Re ≈ 140 

DeC ≈ 0.24 
Re ≈ 65 

DeC ≈ 0.24 



  Discussion of Results 

  139 

z/w

u
/U

c

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(a) z/w

u
/U

c

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(b)

z/w

u
/U

c

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(c) z/w

u
/U

c

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(d)

z/w

u
/U

c

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(e) z/w

u
/U

c

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(f)
 

Figure 5.16: Velocity profiles along the XZ-centreplane for 0.03% polyacrylamide at 

Re ≈ 140, DeC ≈ 0.24 in the 8:1 contraction (open symbols) and 0.05% polyacrylamide 

at Re ≈ 65, DeC ≈ 0.24 in the 4:1 contraction (filled symbols) at (a) x/L-1, (b) x/L=       

-0.72 and -0.71, (c) x/L=-0.45 and -0.42, (d) x/L=-0.27 and -0.23, (e) x/L=-0.17 and   

-0.13 and (f) x/L=0.10 and 0.15. 
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Figure 5.17: Velocity profiles along the XZ-centreplane for (a) 0.05% 

polyacrylamide at Re ≈ 110, DeN1 ≈ 9.4 in the 8:1 contraction (b) 0.05% 

polyacrylamide at Re ≈ 65, DeN1 ≈ 9.0 in the 4:1 contraction (c) 0.05% 

polyacrylamide at Re ≈ 50, DeN1 ≈ 9.2 in the 8:1 contraction and (d) 0.05% 

polyacrylamide at Re ≈ 30, DeN1 ≈ 8.9 in the 4:1 contraction, the keys shown in Figure 

5.10 are valid for the relevant contraction. 
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Figure 5.18: Velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 290, DeN1 ≈ 5.3 in the 4:1 contraction (b) 0.03% 

polyacrylamide at Re ≈ 115, DeN1 ≈ 5.1 in the 4:1 contraction (c) 0.03% 

polyacrylamide at Re ≈ 140, DeN1 ≈ 5.2 in the 8:1 contraction and (d) 0.3% 

polyacrylamide at Re ≈ 5, DeN1 ≈ 5.6 in the 8:1 contraction, the keys shown in Figure 

5.10 and 5.14 are valid for the relevant contraction. 
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Figure 5.19: Velocity profiles along the XZ-centreplane for (a) 0.3% polyacrylamide 

at Re ≈ 15, El1,C ≈ 3.9 in the 8:1 contraction and (b) 0.3% polyacrylamide at Re ≈ 2, 

El1,C ≈ 3.7 in the 4:1 contraction. 
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Figure 5.20: Velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 390, El1,N1 ≈ 0.0016 in the 8:1 contraction and (b) 0.03% 

polyacrylamide at Re ≈ 290, El1,N1 ≈ 0.0018 in the 4:1 contraction, the keys shown in 

Figure 5.10 are valid for the relevant contraction. 
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Figure 5.21: Velocity profiles along the XZ-centreplane for (a) 0.3% polyacrylamide 

at Re ≈ 5, El2,C ≈ 7.0 in the 8:1 contraction and (b) 0.3% polyacrylamide at Re ≈ 2, 

El2,C ≈ 8.3 in the 4:1 contraction, the keys shown in Figure 5.14 are valid for the 

relevant contraction. 
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Figure 5.22: Velocity profiles along the XZ-centreplane for (a) 0.03% 

polyacrylamide at Re ≈ 140, El2,N1 ≈ 0.020 in the 8:1 contraction and (b) 0.03% 

polyacrylamide at Re ≈ 115, El2,N1 ≈ 0.018 in the 4:1 contraction, the keys shown in 

Figure 5.10 are valid for the relevant contraction. 
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Figure 5.23: Velocity profiles along the XZ-centreplane for (a) 0.05% 

polyacrylamide at Re ≈ 50, El2,N1 ≈ 0.089 in the 8:1 contraction and (b) 0.05% 

polyacrylamide at Re ≈ 65, El2,N1 ≈ 0.082 in the 4:1 contraction, the keys shown in 

Figure 5.10 are valid for the relevant contraction. 
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Figure 5.24: Non-dimensionalised (a) shear and (b) extensional stresses for 0.03% 

PAA in the 8:1 contraction at Re ≈ 140, DeC ≈ 0.24 (□) and Re ≈ 390, DeC ≈ 0.53 (■); 

(c) shear and (d) extensional stresses for 0.05% PAA in the 8:1 contraction at 

Re ≈ 50, DeC ≈ 0.52 (□) and Re ≈ 110, DeC ≈ 0.96 (■); (e) shear and (f) extensional 

stresses for 0.3% PAA in the 8:1 contraction at Re ≈ 5, DeC ≈ 34 (□) and Re ≈ 15, 

DeC ≈ 60 (■). 
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Figure 5.25: Non-dimensionalised (a) shear and (b) extensional stresses for 0.03% 

PAA in the 4:1 contraction at Re ≈ 115, DeC ≈ 0.06 (□) and Re ≈ 290, DeC ≈ 0.13 (■); 

(c) shear and (d) extensional stresses for 0.05% PAA in the 4:1 contraction at 

Re ≈ 30, DeC ≈ 0.13 (□) and Re ≈ 65, DeC ≈ 0.24 (■); (e) shear and (f) extensional 

stresses for 0.3% PAA in the 4:1 contraction at Re ≈ 2, DeC ≈ 8.4. 
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6. Conclusions and Recommendations 

 

One of the main objectives of this research was to determine whether the velocity 

overshoots first observed by Poole et al. (2005) could be reproduced when a sudden 

expansion did not follow the gradual contraction. The results presented in Chapter 4 

clearly show that ‘cat’s ears’ are reproducible in a gradual contraction (both 8:1 and 

4:1 contraction ratios) when a sudden expansion is not present. Another objective 

was to provide a set of ‘benchmark’ experimental results for researchers interested in 

numerical modelling of non-Newtonian contraction flow to use to compare their 

results to and to test the accuracy of the constitutive equations and their codes. A 

wide variety of high quality velocity data of quantified accuracy has been presented 

for two contraction ratios, two types of polymer and several concentrations of each 

polymer. All of the fluids have been carefully characterised in terms of both shear 

and, more importantly, extensional behaviour. In addition great care was taken to 

ensure that the results were free from polymer degradation effects. 

 

6.1. Contraction ratio effects 

 

Two contraction ratios were investigated during this work: 8:1 and 4:1. The results 

show that the velocity overshoots are more likely to occur in the 8:1 contraction and 

in this contraction the overshoots will be larger than those seen in the 4:1 

contraction. This is most likely due to the difference in the strain exerted on the flow 

through the two contractions. The Hencky strain (discussed in Chapter 3) is larger 

for the 8:1 contraction than the 4:1 contraction meaning that the flow through the 4:1 

contraction undergoes a less severe extension than the flow through the 8:1 

contraction. This fact implies that the extensional properties of the contraction, i.e. 

the shape and the ratio, are important in the development of the velocity overshoots. 

However when the velocity data is renormalized by the local centreline velocity in 

an attempt to eliminate the effect of contraction ratio a fairly good collapse of the 

data is observed, particularly when the flows have comparable Deborah numbers. 
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6.2. Effect of polymer type and concentration 

 

The polymers under investigation throughout this thesis were polyacrylamide 

(classed as flexible) and xanthan gum (classed as semi-rigid). Velocity overshoots 

were observed in polyacrylamide solutions at concentrations above the critical 

overlap concentration whereas the same was not true of xanthan gum. The reason for 

the overshoots occurring in the PAA solutions and not the XG solutions is probably 

due to the way the polymers behave under extension. The PAA will stretch more 

readily than the XG because it is more flexible. This difference in behaviour is seen 

most strikingly in the results of the CaBER tests. We know that the extensional 

properties of the contraction are important to the occurrence of ‘cat’s ears’ but it is 

also clear that the behaviour of the polymer solution under extension also plays a 

role. 

 

Polyacrylamide was tested at four concentrations: 0.01%, 0.03%, 0.05% and 0.3%. 

Velocity overshoots were not observed in the 0.01% PAA solution. These flows 

were at high Reynolds numbers but extremely low Deborah numbers. Velocity 

overshoots were seen to differing degrees in 0.03%, 0.05% and 0.3% PAA. Those 

seen in the 0.3% solution were very different to those on 0.03% and 0.05% PAA 

solutions. At the lower concentrations the effect is confined close to the sidewalls 

and the central section of the flow seems to be largely unaffected. At the higher 

concentration the entire flow is affected and the overshoots are a different shape to 

those seen in the 0.03% and 0.05% PAA solutions. In this case the overshoots are 

further away from the sidewalls and grow into one large central overshoot at the end 

of the contraction. The shape of the overshoots observed in the 0.3% PAA solution 

may be due to the concentration of the polymer and the greater effects of shear 

thinning or it could also be the lower Reynolds and higher Deborah numbers than 

those at the lower concentrations. Further tests with a high-viscosity Boger fluid may 

help unravel which effects are responsible for the occurrence of the velocity 

overshoots. 

 

Xanthan gum was tested at two concentrations, 0.07% and 0.5%. The lower 

concentration was seen to flatten as the flow progressed through the gradual 

contraction, similar to the Newtonian fluid and the 0.01% PAA solution. In the 
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higher concentration xanthan gum solution very small ‘bumps’ were observed, 

which may have been the start of velocity overshoots. Testing this (or a higher) 

concentration of xanthan gum solution over a wider range of flow conditions may 

provide an insight into how the overshoots develop. 

 

6.3. Reynolds, Deborah and Elasticity numbers 

 

It has not been possible to determine whether the Reynolds number alone has an 

effect on the occurrence of ‘cat’s ears’, although in the absence of elastic effects (i.e. 

when De=0 and the flow is Newtonian) the overshoots are never observed. In both 

contractions 0.03% and 0.05% PAA were each measured at two Reynolds numbers – 

giving a total of eight Reynolds numbers. No conclusions can be drawn solely from 

looking at the variations in Reynolds numbers for these two concentrations of PAA. 

At the higher concentration (0.3%) the Reynolds numbers are much lower and a 

different shape of overshoot is seen. In these cases, however, the Deborah numbers 

from CaBER are much larger so this effect cannot be attributed only to the effects of 

inertia. 

 

As the flow is predominantly an extensional flow the Deborah, Weissenberg and 

Elasticity numbers found using the extensional properties of the fluid, i.e. CaBER 

data, are more realistic values by which to judge the fluid behaviour. In the lower 

concentrations of PAA the velocity overshoots increase in size as the Deborah 

number determined from the CaBER data increases. In both contractions there are 

two flows that have comparable Deborah numbers but the flows are visibly different 

to each other. This is because the flows have different Reynolds numbers and the 

solutions are different concentrations. This makes providing a definitive ‘reason’ for 

the ‘cat’s ears’ occurrence incredibly difficult. It seems that the Deborah number and 

the extensional fluid properties play more of a role but the extent to which the flow 

rate or the concentration of the polymer affects the overshoot cannot, at this time, be 

determined. This effect of the extensional properties is highlighted in Figures 5.14 

and 5.16 where an attempt has been made to eliminate the effects of the contraction. 

The flows with comparable De (Figure 5.16) are very similar for different Reynolds 

numbers whereas the flows with comparable Re (Figure 5.14) are different to each 

other and the flow with the higher Deborah number produces much larger velocity 
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overshoots, which might be expected given that when De=0 (i.e. Newtonian flow) no 

overshoots are observed. 

 

In the polyacrylamide solutions the Elasticity number seems to be responsible for the 

location at which the velocity overshoots develop. The higher the Elasticity number 

the earlier the overshoots are seen to develop. At the highest El (i.e. in the 0.3% PAA 

solutions) the overshoots develop even before the start of the contraction. 

 

6.4. Off-centre velocity profiles 

 

The velocity profiles measured away from the two centreplanes in the 0.05% PAA 

solution (Figures 4.30-4.36) show that it is important to measure a broader range of 

locations than just the XY- and XZ-centreplanes. The transverse velocity profiles 

measured towards the end of the contraction show velocity overshoots that were not 

apparent on the XY-centreplane. Ideally detailed 3D flow visualisation (such as 

Particle Image Velocimetry) would be performed to provide a better insight into the 

flow. 

 

6.5. Recommendations 

 

In order to understand the ‘cat’s ears’ phenomenon completely more research must 

be completed in this area. 

 

• Pressure-drop measurements made across the gradual contraction would 

determine whether an ‘enhanced’ pressure drop occurs as it does across a sudden 

contraction and whether the ‘cat’s ears’ effect has any effect on the pressure drop 

(increasing or decreasing it for example) across the contraction.  

• Investigation of variations in contraction ratio, shape and length in an attempt to 

vary the total strain and the strain rate exerted on the flow would determine how 

important the contraction properties are in the development of the velocity 

overshoots. 

• Measuring the flow of a Boger fluid, which is elastic but has constant viscosity 

(Boger (1977)), would eliminate the effects of shear thinning (if any). 
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• Examining different polymer solutions such as carboxymethylcellulose (CMC, 

semi-rigid) and polyethylene oxide (PEO, flexible) would confirm whether the 

conclusion drawn above that the polymer type affects the occurrence of ‘cat’s 

ears’ is correct. 

• Studying a wider range of concentrations of PAA and observing differences in 

the overshoot shapes would determine whether there is a ‘critical’ concentration 

at which the overshoots shape changes between those seen in the 0.03% and 

0.05% PAA solutions and those seen in the 0.3% PAA solution. This difference 

in shape may be due to the lower Reynolds numbers and the higher Deborah 

numbers. The Reynolds and Deborah numbers investigated here were 

constrained by the test rig design. Different pumps may be able to reach higher 

or lower flow rates to adjust Re and De accordingly. 

• Performing particle image velocimetry (PIV) measurements would enable 

visualisation of the entire flow rather than discrete profiles within the flow. At 

present profiles have only been measured along the XY- and XZ-centreplanes 

and we have no idea what is happening in the corners of the contraction or on the 

other planes in most cases, for example. 
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