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Abstract 

It was hypothesised that the application of cyclical hyperosmolar loading on 

chondrocytes enhanced extracellular matrix (ECM) production and was due to p38 

mitogen activated protein kinase (MAPK) and extracellular signal-regulated kinase 

signalling and increased SOX9 mRNA half life. In addition the regulation of COX-2 

mRNA was effected by hyperosmotic loading. 

SOX9 is a transcription factor required for cartilage formation and is essential for 

cartilage ECM formation. In man SOX9 gene expression is regulated by osmotic 

loading. COX-2 is a bifunctional enzyme with both oxygenase and peroxidase 

activities, responsible for the formation of prostanoids. Aberrant expression of COX-

2 protein in articular tissues
 
is a feature of arthritis. SOX9 and COX-2 mRNA 

regulation was characterised through static and cyclical application of hyperosmotic 

conditions in human articular cartilage (HAC) derived from OA joints and in 

addition normal and osteoarthritic of equine chondrocytes in monolayer culture. The 

roles of ERK1/2 and p38 MAPK signalling pathways were investigated using 

pharmacological inhibition to identify mechanisms of SOX9 regulation. SOX9 and 

COX-2 half lives (t1/2) were determined in HAC (SOX9 and COX-2) and equine articular 

cartilage (SOX9). ECM production was measured by de novo glycosaminoglycan 

(GAG) synthesis of equine articular during static hyperosmolar loading and the 
expression of the ECM genes aggrecan and COL2A1was identified. 
Decay curves generated in freshly isolated HAC for SOX9 and COX-2 identified 

that hyperosmolarity increased the mRNA stability of both genes and ERK 

signalling was not required for the stabilisation of SOX9. HAC exposed to static and 

dynamic hyperosmotic loading showed a significant increase in SOX9 and COX-2 

mRNA. There was a significant increase in SOX9 and COX-2 mRNA following 

treatment with MEK1/2 inhibitor during normosmotic static loading. Equine 

chondrocytes in contrast demonstrated that static hyperosmotic conditions 

significantly reduced SOX9 mRNA but increased COX-2 mRNA in normal P2 and 

OA P0 but not normal P0 chondrocytes. Cyclical loading of equine derived normal 

P2 and OA P0 but not normal P0 cells led to an increase in SOX9 gene expression 

and this was prevented by both p38 MAPK and MEK1/2 inhibition. Furthermore in 

equine articular chondrocytes there was no effect on COX-2 mRNA of cyclic 

hyperosmolar loading, although p38 MAPK signalling reduced COX-2 expression. 

Hyperosmotic loading in HAC increased the activation of p44/42 MAPK and p38 

MAPK. In HAC the presence of either the MEK1/2 inhibitor U0126 or the p38 

MAPK inhibitor SB202190 in conjunction with cyclical hyperosmotic loading 

reduced the induction of SOX9 mRNA. Only the presence of the p38 MAPK 

inhibitor SB202190 effected a reduction in COX-2 under these conditions. In equine 

articular explants static hyperosmolar loading increases GAG synthesis and this was 

reduced by ERK inhibition. 

The response to osmotic loading of SOX9 and COX-2 mRNA is dependent on the 

nature of the osmotic stimulation, the chondrocyte phenotype and the species. MEK- 

The p38 MAPK and ERK1/2 pathways were involved in the induction of SOX9 

under cyclical hyperosmotic loading in most chondrocytes. Additionally COX-2 is 

regulated by hyperosmotic conditions post transcriptionally.  

These findings suggest that the response of chondrocytes from OA cartilage is 

significantly different from that of normal chondrocytes. The altering sensing of the 

osmotic environment and inappropriate responses of the resident cell population may 

be important in the progression of OA. 
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Abbreviations 
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CREB   Cyclic-AMP responsive element binding protein 
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MKP   MAPK phosphatase 

M-MLV  Moloney Murine Leukemia Virus 

MMP   Metalloproteinase 

mRNA   Messenger ribonucleic acid 

MSC   Mesenchymal stem cell 



7 
 

NaCl   Sodium chloride 

NFκB   Nuclear factor kappa-light-chain-enhancer of activated B cells 
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Introduction 

1.  General remarks 

The Arthritis Research Campaign web site states that more than 6 million people in 

the UK suffer from osteoarthritis (OA) of the knee and 650,000 have osteoarthritis of 

the hip. More than 1 million adults consult their GP each year with 

OA(http://www.arc.org.uk/). In the future OA is projected to rank second for women 

and fourth for men in the developed countries in terms of years lived with a 

disability (Lohmander, 2000). Osteoarthritis is an extremely common cause of 

morbidity in both man and animals. OA involves the biomechanical failure f 

articular cartilage, together with changes in the underlying (subchondral) bone and 

inflammation of the joints and leads to a variety of symptoms including pain, 

stiffness and reduced mobility.  One of the ways to provide new insights into the 

development and treatment of osteoarthritis is to obtain an understanding of how 

cartilage responds to physical stress in the joint at the cellular and molecular level.  

This study investigates the specific signalling processes p38 MAPK and MEK- 

which occur following the application of one such stress: hyperosmolarity to 

cartilage cells (chondrocytes) are involved. The aim is to link these processes to 

tissue maintenance. 

1.1 The structure and function of cartilage 

Cartilage is a specialised connective tissue, which consists, like other connective 

tissues, of cells (the chondrocyte) and extracellular components; the extracellular 

matrix (ECM) (Poole et al., 2001). Unlike other adult connective tissues it does not 

contain blood vessels and nerves and so receives nutrients via synovial fluid and 

subchondral bone. Depending on the composition of the matrix, cartilage is 

classified into elastic, fibro-cartilage and hyaline cartilage. The gliding surfaces of 

synovial joints are covered with hyaline cartilage, also known as ‘articular cartilage’. 

Hyaline cartilage provides a low-friction gliding surface, which compared to bone 

has increases compressive strength and resistance to wear under normal 

physiological conditions (Buckwalter and Mankin, 1997). The main function of 

articular cartilage is load-bearing. In low friction articulation it acts as a shock 

absorber and minimizes peak pressure on subchondral bone. Cartilage is customarily 
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subjected to high stresses and during normal activity pressures may arise to 100-200 

atmospheres (10-20MPa) within msec (Hodge et al., 1986). Compressive forces are 

transient and rise from 1-2 atmospheres when unloaded (Grushko et al., 1989, Afoke 

et al., 1987) to 100-200 atmospheres on standing, and cycle between 40-50 

atmospheres when walking (Afoke et al., 1987). 

During embryonic development cartilage arises from mesenchymal condensations. 

Mesenchymal cells aggregate to form a blastema, the cells of which begin to secrete 

cartilage matrix and are then called chondroblasts. Further development pushes the 

cells apart due to ECM production. The ECM consist of, ground substance 

(hyaluronan, chondroitin sulphates and keratin sulphate) and tropocollagen, which 

polymerises extracellularly into fine collagen fibres. The cells encased in this tough 

and specialized matrix are called chondrocytes. The mesenchymal tissue surrounding 

the blastema gives rise to a membrane called the perichondrium. After growth has 

ceased there is no detectable cell division of chondrocytes in healthy adult articular 

cartilage (Muir, 1995). 

In diarthrodial joints the hyaline cartilage faces the joint cavity on one side and is 

linked to the subchondral bone on the other by a narrow layer of calcified cartilage 

tissue. A capsule encloses the entire joint and retains the synovial fluid (Figure 1.1). 

 

 

Figure would be here. 

 

Figure 1.1 Hierarchical structures of diarthrodial joints and articular cartilage 

(Mow and Hayes, Basic Orthopaedic Biomechanics 1997). Clockwise from top 

left (following the arrows) illustrates the composite structure of diarthriodal joints. 

The next level indicates in more detail the actual bearing surface of the joint. The 

next level shows the existence of the structural features of articular cartilage 

including the chondrocytes and the organization of type II collagen fibrils. 

1.2 Mechanotransduction 
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Mechanotransduction refers to the many mechanisms by which cells convert 

mechanical stimulus into chemical activity (Katsumi et al., 2004). Chondrocytes 

sense and convert the mechanical signals they receive into biochemical signals, 

which subsequently direct and mediate both anabolic and catabolic processes. These 

processes include the synthesis of matrix proteins (type II collagen and 

proteoglycans), proteases, protease inhibitors, transcription factors, cytokines and 

growth factors (Fitzgerald et al., 2004). A four-step mechanism has been proposed 

for bone which can be extended to cartilage (Duncan and Turner, 1995); 

1. Mechanocoupling, applied force is converted to a detectable force or physical 

phenomena.  

2. The various forces (primary or secondary) are converted into electrical, chemical 

or biochemical responses.  

3.  Transduction, i.e., intracellular conversion of a signal into other signals then 

occurs. 

 4. In the fourth step a terminal cellular response is seen, i.e., up or down regulation 

of gene expression or cellular proliferation, autocrine or paracrine factors may be 

released 

Furthermore a number of mechanisms involved in the first two steps have been 

proposed (Stoltz et al., 2000). 

1.3 Components of cartilage  

1.3.1  Chondrocyte 

Chondrocytes fulfil two major roles in mammals. During development, most bones 

form through endochondral ossification in which bone is first laid down as cartilage 

precursors (Karsenty and Wagner, 2002). However, in the adult, chondrocytes are 

the sole cell type of articular cartilage and play crucial roles in joint function (Aigner 

et al., 2002). 

Articular cartilage has the lowest cellular density of any tissue in the human body. In 

humans, chondrocytes contribute to only about 1% of the tissue volume and are 

http://en.wikipedia.org/wiki/Mechanism
http://en.wikipedia.org/wiki/Wolff%27s_law
http://en.wikipedia.org/wiki/Anabolic
http://en.wikipedia.org/wiki/Catabolic
http://en.wikipedia.org/wiki/Type_II_collagen
http://en.wikipedia.org/wiki/Proteoglycans
http://en.wikipedia.org/wiki/Proteases
http://en.wikipedia.org/wiki/Transcription_factors
http://en.wikipedia.org/wiki/Cytokines
http://en.wikipedia.org/wiki/Growth_factors
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situated in small cavities called lacunae within the cartilage and have an average size 

of 13μm. The spherical cells are found in a ‘chondron’, a structural unit comprising 

one or two chondrocytes and its pericellular microenvironment (Benninghoff, 1925). 

Even in chondrons there is no cell-cell contact (Elfervig et al., 2001). A single cilia 

extends into the surrounding ECM (Buckwalter and Mankin, 1998, Scherft and 

Daems, 1967). Recently it has been elucidated that the cilium act like switches, that 

when toggled by cyclical pulses of lacunocanalicular fluid or cartilage compression 

send signals such as Ca
2+. 

 This surges into the cell to trigger a cascade of events that 

include appropriate gene activations to maintain and strengthen bone and cartilage 

(Whitfield, 2008). The cells sense the structure and composition of the ECM and 

carry out their primary function which is to maintain it. Furthermore is the 

chondrocytes themselves that synthesize all the ECM components (Buckwalter and 

Mankin, 1998).  

Irrespective of the size of a given animal, there is an inverse relationship between 

cell density and cartilage thickness (Stockwell, 1971). As cartilage is avascular, its 

nutrition depends on diffusion from outside and this may limit the total number of 

cells that can be sustained in a given volume (Stockwell, 1979). Moreover 

chondrocytes can exist under very low oxygen tensions and metabolise glucose 

primarily by glycolysis to produce lactate. This anaerobic pathway is maintained 

even under aerobic conditions (Marcus, 1973). 

 Articular chondrocytes have great longevity and normally live as long as their 

owners. The metabolic state of the arrested cell division breaks down, however, 

whenever the integrity of the collagen network is compromised, as happens in the 

vicinity of lesions in OA. Here cell division appears to be reactivated, although any 

division is slow (Muir, 1995). 

1.3.2  Collagen 

Collagen accounts for two thirds of the dry weight of adult articular cartilage with 

the large aggregating proteoglycan aggrecan accounting for a large part of the 

remainder. The materials strength depends upon the extensive cross-linking of the 

collagen as well as the zonal changes in fibrillar architecture with tissue depth. 

Collagen concentration is highest at the surface and collagen is under constant 

tension. Currently, there are at least 28 members of the collagen super family, which 
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function as structural components of the peri- and ECM in vertebrate tissue (Eyre et 

al., 2004). Articular cartilage contains at least eight collagens types; II, VI, IX, X, 

XI, XVI, XX and XXVII Types II, IX and XI form the characteristic basic 

architecture whilst the remainder are found in small fractions (Eyre, 2002). Recently 

collagen XXVII has been discovered and is thought to play a role in the later stages 

of the cartilage modelling phase of endochondral bone formation. It is also a 

candidate for a scaffold of mineralization in cartilage and as the supporting 

environment for invading blood vessels (Pace et al., 2003, Hjorten et al., 2007). In 

articular cartilage type II collagen constitutes 90-95% of collagen in the ECM. In 

association with type XI it forms a meshwork wherein type IX member of the 

collagen subgroup FACIT (Fibril Associated collagens with Interrupted Triple 

Helices) is covalently linked to the surfaces of the type II fibrils and further enables a 

cross-linked framework to aggrecan (Eyre, 1995). Thus collagen II, IX and XI 

consist as heterotypic copolymers. The non-fibrillating type VI forms elastic fibres 

and can be found pericellularly in middle zone and throughout the ECM in small 

amounts of up to 1% of overall collagen (Wu and Eyre, 1989). Furthermore it has 

been shown that Collagen-VI interacts directly with the cell surface (Poole et al., 

1988).  

Collagen has a high level of structural organization (Figure 1.3) and is represented as 

extended extracellular proteins composed of three polypeptide chains (α-chains), 

each possessing a characteristic tripeptide sequence (gly-x-y) that forms a left-

handed helix. The three α-chains in each molecule are twisted tightly into a right-

handed helix to form a rope-like structure that is stabilised by hydrogen bonds. 

Figure would be here. 

Figure 1.3  Schematic representation of the collagen fibril structure (Mow, 

1991) 

Glycine placed at every third residue of the tripeptide sequence, is small enough to 

occupy interior of the helix, while frequent other amino acids are proline and 

hydroxyproline.  The collagen precursors, or procollagen are synthesized with large 

C- and N- terminal extensions which aid in chain assembly. These extension 

propeptides are cleaved by procollagen peptidases after secretion but before fibril 

formation. Furthermore collagen fibrils are stabilized by cross-links that involve 
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lysine residues with fibrillar collagen,  the biologically functional form, resulting 

from a series of post translational modifications (Muir, 1995).  

Mature collagen fibres provide the capacity to withstand tensile and shear forces. 

Type II collagen (a fibrillar collagen), the dominant type in mature collagen, is 

specific to cartilage, and is a marker of chondrocyte differentiation. Moreover the 

triple helix is composed of three identical alpha chains synthesized from the 

COL2A1 gene. Type II exists in two splice variants (IIA and IIB), in IIB, the 

dominant form found in mature cartilage, exon 2 is spliced out (encodes a 69 amino 

acid cys-rich domain in the N-terminal propeptide). In IIA, a transient embryonic 

form found in prechondrogenic mesenchyme, perichondrium and vertebrae, this 

domain is retained (Sandell, 1994). 

1.3.3. Proteoglycans 

Proteoglycans (PG) are protein polysaccharide molecules that form 10-20% wet 

weight and provide a compressive strength to articular cartilage. There are two major 

classes of PG found in articular cartilage, large aggregating PG monomers or 

aggrecan and small proteoglycans including decorin, biglycan and fibromodulin 

(Buckwalter, 1997). The cartilage PG aggregate is a unique structure of 

macromolecules that, together with type II collagen and a number of minor 

accessory molecules, gives cartilage its specific biomechanical properties. What’s 

more, aggrecan is immobilized in the collagen network and the importance of 

aggrecan in articular cartilage function is emphasized by altered metabolism and 

abnormal expression in animal models with arthritis (Pfander et al., 2004). 

Aggrecan has a 220- to 250-kDa multiple domain protein core which is substituted 

with both chondroitin sulphate (CS) and keratin sulphate (KS) chains in addition to 

N- and O-linked oligosaccharides (Kiani et al., 2002). There are two types of CS, 

type 4 and type 6. Whilst type 6 remains constant throughout life,  type 4 decreases 

with age (Bhosale and Richardson, 2008). The core protein possesses two globular 

regions near the amino-terminus, known as G1 and G2, separated by an interglobular 

domain (IGD). A third globular region, G3, is found at the carboxy terminal end of 

the core protein, whilst an extended region containing KS and CS attachment sites is 

found between G2 and G3 domains. The cartilage PG aggregate is made from 

aggrecan monomers bound into large aggregates with hyaluronan were the 
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interaction is stabilized by link protein. This is a 45- to 50-kDa glycoprotein, which 

is bivalent and so binds to both G1 and hyaluronan. Hyaluronan (HA) is a 

polysaccharide having repeating disaccharide structure and in cartilage, HA 

functions in the supramolecular assembly of PG and link protein into aggregates. 

Furthermore there are  receptors on the surface of chondrocytes for HA and these 

function to provide a gel to which chondrocytes attached (Hardingham, 1981). 

The glycosaminoglycan chains impart many of the physical properties to the 

molecule. CS is composed of repeating disaccharide units of glucuronic acid and 

galactosamine, with a sulphate group per disaccharide. KS consist of repeating 

disaccharide units of glucosamine and galactose, also averaging a sulphate group per 

disaccharide. The sulphate and carboxy groups on the CS and KS chains become 

charged in solution and in-situ. The total fixed charge density (FCD) in cartilage 

ranges from 0.05 to 0.3 mEq/g wet weight of tissue (Mow et al., 1999b) and it is this 

FCD that is responsible for the high Donnan equilibrium ion distribution in the 

interstitium. It is  the Donnan osmotic pressure measured in cartilage (Lai et al., 

1991), which contributes to the overall compressive stiffness of cartilage. The fixed 

negative charges of the PG serve to maintain a high degree of hydration in articular 

cartilage by generating a substantial osmotic pressure within the tissue (Hopewell 

and Urban, 2003, Urban, 1994). This explains why cartilage has a tendency to swell, 

but this is resisted by the collagen network, which is therefore under constant 

tension, even when unloaded. High transient loads are accommodated by changes in 

osmotic and hydrostatic pressure when fluid is forced from loaded to unloaded areas, 

while aggrecan remains immobilized within the collagen network provided it is 

intact and bound to the hyaluronan. 

1.3.4 Other molecules in cartilage 

Cartilage contains a large number of extracellular matrix proteins in addition to 

collagen and PG. These have a wide range of roles e.g., in facilitating matrix 

assembly, in maintaining mechanical properties of the tissue, in sequestering growth 

factors and proteinases to specific parts of the matrix, and in interacting with the 

cells important in regulating the cellular activities. Examples include 

thrombospondins such as cartilage oligomeric matrix protein (COMP), matrilins, 

cartilage intermediate layer proteins and small leucine-rich repeat proteoglycans. 
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1.4 Collagen-proteoglycan interactions 

In articular cartilage there are molecular interactions through collagen-collagen 

covalent (cross-links) and non-covalent interactions, and proteoglycan-proteoglycan 

and collagen-proteoglycan noncovalent interactions. The size of the PG and its 

ability to form large aggregates play important roles in keeping the molecules in the 

tissue and in providing an elastic  network that contributes to the material properties 

of the cartilage (Kimura et al., 1979). Moreover it is the collagen interactions which 

provide cohesion for the collagen network and a means to immobilize the special 

arrangement of the collagen network. Furthermore it is the pore size in articular 

cartilage which is very small,  ranging from 25 to 74 Å (Armstrong and Mow, 1982) 

and this provides an effective barrier against the transport of large molecules through 

the tissue. Thus the shape and size of the branching PG aggregates serve to 

immobilize the molecules within the matrix, as long as the integrity of the 

surrounding collagen network is maintained (Hardingham et al., 1984).  

There are electrostatic interactions between  the positive charge groups along the 

collagen and the negative charge groups along the PG molecules which may 

contribute to the overall mechanical properties of the tissue (Hardingham et al., 

1983). 

1.5 Organisation of ECM  

The thickness of the cartilage varies in the human. In the human medial femoral head 

it measures 2 to 3 mm thick and on the patella it can be up to 5mm thick. The 

organisation of the ECM and its distribution into zones differs between immature 

and mature cartilage. In immature cartilage the articular cartilage is thicker and 

unstratified. Chondrocytes are distributed in a random fashion and as the tissue 

matures the matrix becomes arranged in defined zones. An increase in the 

mechanical competence of the cartilage occurs with these changes. The zones of 

articular cartilage are superficial (tangential), the middle (transitional), the deep 

(radial) and calcified cartilage. Where different zones are isolated and cultured, 

differences in terms of morphology, metabolism, phenotypic stability and 

responsiveness to signalling molecules,  such as the cytokine IL-1 are evident 



16 
 

(Homandberg et al., 1992a). The superficial zone includes the articular surface, is 

approximately 200μm thick and has collagen fibres tangential to the articular 

surface, with transition to more randomly orientated fibres in deeper regions. This 

parallel arrangement of fibrils is responsible for providing the great tensile and shear 

strength. Additionally chondrocytes in this zone (which are flattened ellipsoid) 

synthesize high concentrations of collagen and low concentrations of PG. The 

middle zone is approximately 1mm thick and has randomly orientated collagen 

fibres. Here collagen fibres are orientated perpendicular to the joint surface in the 

deep zone, which is approximately 600μm thick. This zone contains the highest 

concentration of PG; however, the cell density is the lowest. It is at this point that a 

smoothly undulating tidemark separates the deep zone from the calcified cartilage. 

This is characterised by rounded chondrocytes arranged in columns, a high PG 

content and a radial collagen network (Figure 1.2). 

 

Figure would be here. 

Figure 1.2 Schematic of the zones within articular cartilage 

(www.kneejointsurgery.com) 

Articular cartilage is composed of a ‘fluid phase’ consisting of water and electrolytes 

(Na
+
,
 
CL

-
 ,Ca

2+
 etc.) and a ‘solid phase’ containing collagen, PG,  glycoproteins and 

cells,  together with other proteins and lipids (Heinegard and Oldberg, 1989). Whilst 

60-87% of articular cartilage is water, 30% of this water is in the intrafibrillar space 

of the collagen. What’s more the amount of water present depends upon the ‘fixed 

charge density’ (FCD), organisation of the collagen network and the strength and 

stiffness of the network (Buckwalter and Rosenberg, 1988). Water allows load 

dependant deformation of the cartilage as well as providing nutrition and medium for 

lubrication, creating a low friction gliding surface. In osteoarthritis water content can 

increase to approximately 90% due to increased permeability and disruption of the 

matrix (Aigner and McKenna, 2002). 

1.5.1 Osmotic stress 

The response of articular cartilage to loading is a complex phenomenon due to the 

numerous factors related to the mechanical strain of the tissue. At the beginning of 
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the load application, a hydrostatic pressure gradient develops in the matrix and the 

proportion of the interstitial fluid is driven out. The fluid escaping carries positive 

counterions and induces streaming potentials and currents (Frank and Grodzinsky, 

1987). External compression of the cartilage deforms chondrocytes (Broom and 

Myers, 1980). Decreased water content of cartilage leads to physicochemical 

changes in the matrix by both increasing the osmotic pressure, and FCD and by 

reducing interstitial pH (Parkkinen et al., 1993). Any of these phenomena have 

biological consequences. Therefore models in which individual physical phenomena 

can be studied separately are important in revealing the cellular mechanisms of joint 

loading.  

The mechanical environment of the chondrocytes is an important factor that 

influences the health and function of the diarthrodial joint. Chondrocytes in articular 

cartilage utilize mechanical signals in conjunction with other environmental and 

genetic factors to regulate their metabolic activity. This capability provides a means 

by which articular cartilage can change its structure and composition to meet the 

physical demands of the body. Under loading, water is expressed from articular 

cartilage, the matrix deforms and the hydrostatic pressure of tissue increases; if the 

load is maintained for any length of time, the PG concentration increases, due to 

water loss and effects the counter ion concentration in the matrix and around the 

chondrocyte. Thus physiologically, load bearing cartilages experience changes in 

extracellular ion composition and hence osmotic pressure under cyclic and static 

loading (Urban and Bayliss, 1989). In addition the physicochemical environment   

has a strong influence on the viscoelastic and physical properties of the chondrocyte 

(Guilak et al., 2002).  

Cartilage has a highly negative FCD due to the ability of aggrecan to concentrate 

negative charge. In addition aggrecan also forms macromolecular aggregates with 

HA (Hardingham and Fosang, 1992). Articular cartilage thus contains high cation 

concentrations and tissue osmolarity relative to other body fluids, 380 - 

450mOsm/kg water depending on the type and zone, with cation concentrations and 

hence interstitial osmolarity, following PG gradients (Urban et al., 1993, Urban and 

Hall, 1994). Thus it is very different to plasma which is about 280mOsm/l.  Along 

with zonal variations across cartilage, the osmotic environment of the chondrocyte 

also changes under loading and in pathological states (Bush and Hall, 2001b, Urban, 
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1994). Periods of static loading or prolonged cyclical loading without recovery 

disturb the osmotic balance of cartilage(McArthur and Gardner, 1992). Furthermore 

joint loading of articular cartilage leads to matrix deformation and so fluid is 

expressed from the tissue, increasing the concentration of PGs and hence cations and 

osmotic pressure in the matrix, thus exposing chondrocytes to a hypertonic 

environment. Once the load is removed fluid is slowly reimbibed and normal 

cartilage hydration and osmolarity re-established (Urban, 1994). Thus the 

combination of fluid-flow and deformation-induced changes in FCD expose the 

chondrocytes to osmotic changes in their milieu. These osmotic variations represent 

one important physical stimulus in the regulation of chondrocyte activities (Mow et 

al., 1999a) and even isolated chondrocytes behave as perfect osmometers (Bush and 

Hall, 2001b, Borghetti et al., 1995). 

Under pathological conditions osmotic gradients are also altered, with an increase in 

hydration being an early indicator of osteoarthritis (OA) (McArthur and Gardner, 

1992). When the collagen network is damaged PG are able to imbibe water and 

hence decrease interstitial osmolarity (Maroudas, 1976). Later stage OA is 

characterised by PG loss from the tissue, this further exacerbates osmotic 

perturbations (Maroudas and Venn, 1977). What’s more when loaded, OA 

chondrocytes are subjected to a greater daily variation in osmolarity compared to 

normal chondrocytes, due to an increase in the rate and extent of fluid loss from 

swollen cartilage tissue (Hopewell and Urban, 2003).  

 

 

1.5.2 Charged nature of cartilage and the Donnan Osmotic Pressure 

 FCD is produced by the charged sulphate and carboxy groups attached to the 

hyaluronan chains that comprise the major glycosaminoglycans (GAG) of the 

proteoglycan aggregate in cartilage (Lai et al., 1991). These charges have profound 

effects on the tissue hydration and control of fluid and ion transport through the 

interstitium  (Maroudas and Venn, 1977). As well as determining the distribution of 

osmotically active ions, the concentration of fixed negative charges in the matrix 

also determines the distribution of H
+
 and thus the pH. The H

+
  concentration of 
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cartilage is always higher in the tissue than in the external solution, and so the pH is 

lower (Gray et al., 1988) and hence the extracellular pH of articular cartilage may be 

as low as pH 6.9-7.0.   

Ion distributions in cartilage matrix are governed by the Gibbs-Donnan equilibrium 

conditions (Grodzinsky, 1983). The Donnan osmotic pressure is used to describe 

cartilage swelling. It may be considered as an elemental volume of articular cartilage 

containing typical amounts of collagen, proteoglycan, water, ions and cells. On this 

micro-scale the elemental volume acts as a microscopic osmotic chamber. The semi-

permeable membrane of the osmotic chamber is analogous to the collagen network 

that surrounds and traps the PG within the tissue. If the semi-permeable membrane 

of the micro-osmotic chamber is placed against an external electrolyte solution (for 

example NaCl solution at any concentration) water and ions will flow into and out of 

the micro-osmotic chamber in order to maintain the electroneutrality and to achieve 

electrochemical equilibrium with the charged PG contained within the micro-

osmotic chamber (Donnan, 1924,(Gu et al., 1998). Donnan derived a mathematical 

expression for the equilibrium ion concentration (e.g., Na
+)

 within such a semi-

permeable chamber of charged molecules (Donnan, 1924). 

1.5.3 Regulation of matrix synthesis rates by osmotic environment 

The metabolic activity of chondrocytes in articular cartilage is influenced by 

alterations in the osmotic environment of the tissue, which occur secondary to 

mechanical compression. When chondrocytes are isolated by digesting away the 

collagens and PG of the matrix using enzymes and then suspended in standard tissue 

culture media, the chondrocytes are exposed to an environment different from that in 

the tissue. The Donnan distribution does not apply and Na
+
 and Cl

-
 have a similar 

concentration of 140 mM and the extracellular osmolarity falls to that of the culture 

medium. The K
+
 and Ca

2+
 concentrations in the media are lower than in tissue, and 

the anion concentration is higher. Therefore the pH rises to that of the medium, pH 

7.4, and lactate gradients are dissipated. The osmolarity of culture media is 250-

280mOsm instead of 350-480 mOsm in the tissue  

The mechanisms by which chondrocytes ‘sense’ and respond to their physico-

chemical environment is poorly understood (Urban et al., 1993). 
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Loading patterns that cause fluid loss, result in a fall in matrix synthesis in cartilage 

explants (Sah et al., 1989), whereas those that result  in a rise in hydrostatic pressure 

(Hall et al., 1991), or fluid flows/ stream potentials, tend to stimulate matrix 

synthesis.  Although some of these effects in the short term are significant in terms 

of matrix turnover, their roles in long term control of ECM remodelling are 

unknown.  

Caution should be exercised when extrapolating in-vitro experiments into the in-vivo 

situation, especially as  the relative turnover of matrix molecules, which for 

sulphated PGs in adult animals can be hundreds of days (Bush and Hall, 2001a).  

Previously the effects of osmolarity, on chondrocyte ECM synthesis have been 

undertaken in a number of studies with differing outcomes. Urban and Hall (Urban et 

al., 1993) indicated that maximum measured synthesis rate occurred when 

chondrocytes were closest to their in-vivo osmolarity and synthesis rates decreased in 

proportion to the increase or decrease in osmolarity. These effects were evident in 

both explants culture and freshly isolated cell experiments indicating that isolated 

chondrocytes may be used as model for investigating the effects of osmotic 

environment on articular cartilage. This was similar to findings from experiments  

undertaken in bovine cartilage explants (Urban and Bayliss, 1989). Work carried out 

in isolated chondrocytes demonstrated that hyperosmotic loading conditions 

regulates aggrecan gene expression (Palmer et al., 2001). Culture of cartilage 

explants from human femoral heads in osmotically active solutions resulted in a 

reduction in the sulphate uptake by chondrocytes  (Schneiderman et al., 1986). In 

contrast Hopewell and Urban (Hopewell and Urban, 2003) demonstrated that after 

24 hour culture in hyper-osmotic conditions there was an increase in s
35 

incorporation, indicating an increase in GAG synthesis.  Furthermore a more recent 

study demonstrated that the application of dynamic hypo-osmotic conditions caused 

an increase in cartilage ECM genes (Chao et al., 2006). There is a potential pitfall on 

the conditional equivalence of chemical loading versus mechanical loading on 

articular cartilage experiments. Osmotic loading has been used, in studies as an 

equivalent to mechanical loading. The exact conditions under which osmotic 

pressure loading of cartilage can be considered to be equivalent to a mechanical 

loading have been derived. The mechanical loading conditions that satisfy this 

equivalency criterion are an isotropic loading delivered via a porous-permeable rigid 
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platen, uniformly applied around the specimen, and is not practically achievable. 

Furthermore, the interstitial fluid pressure caused by the two loading conditions is 

not the same (Lai et al., 1998). Care must therefore be taken when interpreting 

changes due to osmotic stress as they do not necessarily relate to an equivocal 

change due to mechanical loading. However the interest in osmotic loading is not 

always as an equivalent to mechanical load. There are other mechanisms involved in 

the cells ability to identify mechanotransduction, for instance by integrins (Millward-

Sadler and Salter, 2004). Thus one question that needs to be addressed in this field is 

the difference between mechanotransduction and osmotic loading. 

Dynamic osmotic loading may modulate chondrocyte signalling and gene expression 

differently than static osmotic loading. Using a flow machine that minimized fluid 

shear stress effects, Chao et al.,(Chao et al., 2006) demonstrated that dynamic 

loading increased chondrocyte aggrecan gene expression. Work undertaken on 

bovine explants using dynamic and static compression in a polysulphone loading 

chamber revealed that most matrix genes were up regulated by 24 hours of dynamic 

compression, but down regulated by 24 hours of static compression, suggesting that 

cyclic matrix deformation is a key stimulator of matrix protein expression. In 

addition, in the static compression of cartilage, in contrast to dynamic compression, 

causes a dose dependant decrease in biosynthetic activity (Gray et al., 1988, Sah et 

al., 1989, Schneiderman et al., 1986).   As periods of cyclical loading together with 

data from compressive loading experiments show that dynamic compression of 

cartilage induces increases in ECM synthesis  by chondrocytes (Sah et al., 1989), one 

of the aims of this project is to assess the nature of the osmotic load applied. 

Unpublished data in our laboratory using cyclical osmotic loading on chondrocytes 

supports a model where increased frequencies of compression in cartilage leads to 

enhanced ECM production by the residing chondrocytes.  

 1.6.1 Osteoarthritis 

Osteoarthritis (OA), the most common form of arthritis, is a chronic disease that 

affects diarthrodial joints. The disease is characterized by progressive destruction of 

articular cartilage, but it also affects the entire joint, including the synovial 

membrane, joint capsule, ligaments, peri-articular muscles and tendons and 

subchondral bone (Altman et al., 1986).  Primary OA is a chronic degenerative 
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disorder related to but not caused by aging. It is characterised by its late onset and no 

obvious cause. Secondary OA has an earlier onset and an identifiable cause such as 

injury or a developmental abnormality (Goldring and Goldring, 2007). Clinical 

manifestations include pain, stiffness and impairment of joint motion. There are, as 

yet no recognisable disease modifying treatments for OA. More recently it has been 

demonstrated that OA is not exclusively a disorder of articular cartilage (Brandt et 

al., 2006) and it has been suggested that the collateral ligaments could be a principle 

sits of wear and tear in early disease. Additionally,  there is a suggested role for 

subchondral bone adaptation in traumatic overload arthrosis in the racehorse (Barr et 

al., 2009) and this is in agreement with proposals that one of the mechanisms of 

initiation of joint failure may be steep stiffness gradient in the underlying 

subchondral bone (Radin and Rose, 1986). 

1.6.2 Risk Factors 

In OA a variety of potential forces; hereditary, developmental, metabolic and 

mechanical may initiate processes leading to a loss of cartilage matrix. There are two 

fundamental mechanisms that segregate the risk factors for the development of OA. 

These are related to the effects of ‘abnormal’ loading on normal cartilage or of 

‘normal’ loading on abnormal cartilage. Aging has been suggested as the main factor 

contributing to the state of abnormal cartilage. While changes in the composition and 

structure of the cartilage matrix are inevitable, the development of OA with ageing, 

while common, is not universal (Carrington, 2005). Genetic factors can cause 

disruption of chondrocyte differentiation and function and influence the composition 

and structure of the cartilage matrix thus contributing to abnormal biomechanics 

despite age. Genetic abnormalities can result in earlier onset of OA (Valdes et al., 

2006). Various epidemiological studies have implicated hereditary predisposition as 

a risk factor (Anderson and Felson, 1988, Felson et al., 1998). There are also rare 

subtypes of arthritis that that have a basis in single gene mutations and are associated 

with early age onset (Jimenez et al., 1997). Environmental factors can interact with 

the variable genetic background. Joint malalignment, overloading and injury are 

recognized risk factors that predispose to OA to varying degrees (Hunter and Felson, 

2006). Systemic factors that increase the vulnerability of the joint to OA include 

increasing age, female sex, and possibly nutritional deficiencies. 
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1.6.3 Pathophysiology 

OA is characterized by progressive destruction of articular cartilage, remodelling of 

bone and intermittent inflammation. Changes in subchondral bone, synovium and 

ligaments are also seen at an early stage.  The cellular pattern during the OA process 

is heterogeneous. This variety is reflected in the widespread changes observed in 

osteoarthritic chondrocyte phenotype and behaviour (Figure 1.4). However the 

reaction patterns can actually be summarised into five categories (Sandell and 

Aigner, 2001):  

1) proliferation and cell death 

2) changes in synthetic activity 

3) changes in degradation 

4) phenotypic modulation of the articular chondrocytes  

5) formation of osteophytes  

 

 

 

Figure would be here. 

Figure 1.4  Cell biology of osteoarthritis Osteoarthritic chondrocytes are exposed 

to severely abnormal extracellular stimuli, including autocrine and paracrine factors, 

synovial factors and altered matrix constituents, that induce a plethora of abnormal 

cellular responses made apparent by the changes in anabolism, catabolism, and 

phenotype that have been demonstrated in the cells. Also, chondrocyte numbers are 

modified by proliferation or apoptosis. In addition, cells might become presenescent, 

leading to an overall loss of chondrocyte function. In this schematic, an osteoarthritic 

chondrocyte is embedded in a cartilaginous extracellular matrix of type II collagen, 

aggrecan, and fibronectin, for simplicity. Other collagens, proteoglycans and 

noncollagenous proteins are also present at varying levels (Aigner et al., 2007). 
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Osteoarthritic chondrocytes show very low proliferative activity which is, in contrast 

to normal chondrocytes, which show no activity. A potential explanation for this 

may be the better access of the chondrocytes to proliferative factors due to loosening 

of the collagen network (Meachim and Collins, 1962) or damage to the collagen 

matrix itself (Lee et al., 1993). The (Rozenblatt-Rosen et al., 2002) Apoptosis is also 

a feature of OA though there has been a large variation in the amount of cell death 

reported ranging from un published data of 0.1% (Sandell and Aigner, 2001) to 51% 

(Kouri et al., 2000), both in knee OA cartilage samples. 

The complexity of the osteoarthritis process is underlined by this increase in the 

synthesis of cartilage matrix components that can be detected concurrently with an 

increase in the degradation of cartilage ECM (Matyas et al., 1999). The degeneration 

in OA can also be characterized in two phases which occur simultaneously: a 

biosynthetic phase, during which the chondrocytes attempt to repair the ECM; and a 

degradative phase, in which the activity of the enzymes produced by the chondrocyte 

digests the matrix, matrix synthesis is inhibited and erosion of cartilage is evident 

(Howell et al., 1976). One of the first events in articular cartilage degeneration is the 

disruption of the molecular structure and composition of the ECM (Buckwalter and 

Mankin, 1997).  There is an early and potentially reversible degradation of PG which 

is then followed by an irreversible breakdown of collagen. Furthermore there is a 

loss of proteoglycan and cleavage of type II collagen resulting in an increase in water 

content and loss of tensile strength in the cartilage matrix as the lesion progresses. 

The tissue damage stimulates a chondrocyte synthetic and proliferative response that 

may maintain or even restore the cartilage. In progressive joint degeneration the 

chondrocytic anabolic response declines and the imbalance between synthesis and 

degradation leads to the thinning of articular cartilage. 

The degradation and synthesis of ECM in OA are driven by mediators released by 

chondrocytes and synoviocytes. These include cytokines (a number of substances 

that are secreted by certain cells of the immune system and which carry signals 

locally between cells) such as IL-1 (a degradative cell signalling molecule released 

during inflammation), nitric oxide (Studer et al., 1999) and pro-inflammatory 

cytokines with a role in the regulation of immune cells, for example TNF-α (a 

cytokine with a role in the regulation of immune cells) (Amin, 1999). The 

inflammatory cytokines IL-1, TNF-α, IL-17 and IL-18 (the latter two are cytokines 
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that has a role in inducing and mediating proinflammatory responses in the joint) act 

to increase synthesis of matrix metalloproteinases (MMP) and other proteinases, 

decrease MMP enzyme inhibitors, and decrease extracellular matrix synthesis. The 

anabolic growth factors IGF-1, 2, 3, fibroblast growth factors (FGF) 2, 4 and 8 and 

the bone morphogenetic proteins (BMP) as well as TGFβ1-3 generally act to 

stimulate ECM synthesis. Platelet derived growth factor BB may also have a tissue 

protective role in inflammatory joint disease (Roth, 2002). It is believed that the 

production of catabolic and anabolic cytokines activates the chondrocyte, but no 

single cytokine can stimulate the metabolic reactions observed in OA (Goldring, 

1999). The increased release of these mediators may induce changes in chondrocyte 

loading, caused by joint overload or injury (Lohmander, 2000). 

Proteases derived from cartilage and synovium play an important part in ECM 

degradation, including matrix metalloproteases(MMP-1, MMP-3, MMP-8, MMP-

13) and aggrecanases (ADAMTS 4 and 5) (Lark et al., 1997, Porter et al., 2005) as 

well as tissue inhibitors of metalloproteinases (TIMPs) (Dean et al., 1989). 

ADAMTS 4 and 5 have been implicated in the early cleavage of the proteoglycans 

aggrecan, verisan and brevican and show altered expression in OA (Porter et al., 

2005). The MMPs and aggrecanases cleave aggrecan at distinct sites in the core 

protein (Tortorella et al., 2000). Most MMP activity is increased in OA, either by 

mechanisms of increased synthesis, increased activation of proenzymes by other 

MMPs or decreased inhibitor activity. In nearly all OA cells, MMP-3 (stromelysin), 

MMP-8 (collagenase-2) and MMP-13 (collagenase-3) are elevated (Sandell and 

Aigner, 2001). The  levels of TIMPs are reduced in OA (Naito et al., 1999). MMP-

13 is responsible for most of the collagen degradation (Billinghurst et al., 1997). In 

addition, MMP-3 can cleave the non-helical telopetide of type II  and type IX 

collagen, leading to the breakdown of a collagen crosslink (Wu et al., 1991). 

Disruption of the collagen network will eventually lead to the destabilization of the 

joint. Together, the proteases have the ability to degrade the major macromolecular 

constituents of the cartilage matrix; collagens, aggrecan and matrix proteins, leading 

to a complete loss of cartilage function. 

 Phenotypic modulation may be one of the reasons for anabolic failure of 

chondrocytes in OA cartilage. Changes in chondrocyte phenotype occur in 

chondrocyte differentiation in foetal growth plate cartilage. Several factors such as 
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IL-1 and retinoic acid induce so called ‘dedifferentiation’ or modulation of the 

phenotype to a fibroblastic state. The chondrocytes stop expressing cartilage specific 

anabolic genes; aggrecan and collagen type II and express collagen types I,III and V 

(Benya et al., 1978). 

The presence of osteophytes more than any other pathological feature distinguishes 

OA from other arthritides (Altman et al., 1986) Bone remodeling and osteophyte 

formation rarely take place in active rheumatoid arthritis (RA) although a small 

number may be evident on remission (Cabral et al., 1989). Osteophytes represent a 

new cartilage and bone development in OA joints. They arise from tissue association 

with the chondro-synovial junction or from progenitor cells residing in the 

perichondrium (Matyas et al., 1997) and may play a role in stabilizing joints affected 

by OA (Pottenger et al., 1990). 

1.6.4 Tissue Engineering 

 Tissue engineering, applies the principles of biology and engineering to the 

development of functional substitutes for damaged tissue (Langer and Vacanti, 

1993). Moreover tissue engineering is emerging as a treatment option for cartilage 

repair and provides a potential method for the production of 3-dimensional implants 

(Langer and Vacanti, 1993). Effective engineering protocols have already been 

developed in which chondrocytes, usually from young animals, are seeded onto 

biodegradable scaffolds and cultured in a bioreactor (Freed et al., 1998). Due
 
to its 

avascular nature, articular cartilage exhibits a very limited
 
capacity to regenerate and 

to repair (Hunziker, 1999). Although much of the
 
tissue-engineered cartilage in 

existence has been successful in mimicking the
 
morphological and biochemical 

appearance of hyaline cartilage, it is generally
 
mechanically inferior to the natural 

tissue. 

The restoration of the three-dimensional collagen structure and the integration of 

newly synthesized matrix with the resident tissue is a major challenge in tissue 

engineering. Procedures currently adopted include tissue debridement, microfracture 

of the subchondral bone, and the transplantation of autologous (from the patient) or 

allogenic (from another donor) osteochondral grafts (Hunziker, 2002). The 

feasibility of using mesenchymal stem cells (MSCs) from bone marrow and other 

tissue sites is under research as bone marrow derived MSCs have the capacity to 
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differentiate into cartilage (Barry and Murphy, 2004). One strategy for improving 

cartilage tissue engineering is the transduction of the chondrogenic transcription 

factor Sox9, either alone or together with L-Sox5 and Sox6, into MSCs ex vivo or 

into joint tissue in vivo to induce cartilage formation (Ikeda et al., 2004, Tew et al., 

2005).  

1.7 The transcription factor SOX9 

1.7.1 Introduction 

SOX9 is a transcription factor; a protein that binds to specific DNA sequences and 

thereby controls the transcription of DNA to mRNA (Latchman, 1997). 

Transcription factors use a variety of mechanisms for the regulation of gene 

expression (Gill, 2001). Thus they provide important biological roles in functions 

including basal transcription regulation, differential enhancement of transcription, 

development, response to intracellular signals and the environment as well as cell 

cycle control. 

The identification of the mammalian testis-determining factor, SRY, first led to the 

description of a class of genes encoding transcription factors, the Sox gene family. 

Sox genes are involved in governing cell fate decisions in a number of diverse 

developmental processes. Sox proteins are a sub-family of 20 members, identified in 

human and the mouse, in a large family of transcription factors that contain 1 or 

more high-mobility-group (HMG) DNA-binding domains (Denny et al., 1992).The 

DNA-binding domain is encoded by a variant of HMG box (the acronym of Sox is 

derived from the term SRY-type HMG box) (Figure 1.5). The HMG domain itself 

consists of a 79 amino acid motif with 3 α-helices arranged in a twisted L-shape. The 

HMG domain of SOX proteins is 50% identical or more to the founding member of 

the group, mouse SRY, a testis-determining factor (Sinclair et al., 1990, Gubbay et 

al., 1990). Sox HMG domain recognizes DNA sequences with the consensus C 

(A/T)TTG(A/T)(A/T). Target gene specificity is achieved by subtle preferences for 

flanking nucleotides and this is dictated by signature amino acids in their HMG box 

(Mertin et al., 1999). 

Sox proteins are classed into 7 subgroups A to G. Sox9 belongs to subgroup E, 

whose members have a well conserved HMG domain and a transactivation domain. 
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Sox proteins have been shown to bind to DNA and activate transcription in vitro 

(Dubin and Ostrer, 1994). There is a  tissue specific expression pattern of some Sox 

genes (Dunn et al., 1995). Furthermore the expression of a particular Sox gene is not 

necessarily restricted to a particular cell type or lineage. The Sox9 protein has critical 

functions in many developmental processes, including sex-determination, skeletal 

formation, pre-B and T cell development and neural induction (Pevny and Lovell-

Badge, 1997). Mutations of Sox genes in mouse and human produce severe 

developmental defects and disease; mutation of Sry (which maps to the Y 

chromosome and is involved in testis differentiation) results in sex reversal in XY 

humans (Yuan et al., 1995). 

 

Figure would be here. 

Figure 1.5 Schematic representation of Sox9. Sox9 is a typical transcription factor 

with a DNA-binding domain and a transcriptional activator domain. The DNA 

binding domain consists of a HMG high-mobility-group box which binds to a 

specific sequence in the minor groove of DNA (de Crombrugghe et al., 2000). 

In contrast to other types of transcription factors which contact DNA in the major 

grove, Sox (and other HMG proteins) target the minor grove of DNA.  The binding 

of the Sox proteins forms a sharp DNA bend so that the concave binding surface of 

the HMG domain perfectly fits with the DNA groove (Ferrari et al., 1992, Pineda et 

al., 1992). Due to this bending property SOX proteins in addition to acting as 

classical transcription factors,  are believed to act as architectural proteins that 

organize chromatin structure to promote assembly of macromolecular regulatory 

complexes involving transcription factors bound to DNA at proximal sites (Laudet et 

al., 1993). 

1.7.2 Sox9 the master chondrogenic transcription factor 

 SOX9 was identified as the first chondrogenic transcription factor (Bi et al., 1999). 

Indeed it is now recognized as a master chondrogenic transcription factor. To qualify 

as a master chondrogenic transcription factor, Lefebvre et al., 2001 stated that the 

gene must be expressed during chondrogenesis and in all sites; it must activate 

chondrocyte specific genes and thus bind to chondrocyte marker genes. Finally 
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mutation of the gene must produce dramatic consequences on cartilage formation.  

Mutant mice experiments using both loss and gain of function analyses indicates 

Sox9 is essential for the commitment of osteochondroprogenitors, chondrogenic 

mesenchymal condensations and chondrocyte proliferation, differentiation,  

maturation and hypertrophic conversion, suggesting that Sox9-L-Sox5, Sox6 form 

the regulatory axis of chondrogenesis (Smits et al., 2001, Lefebvre et al., 2001, 

Lefebvre and de Crombrugghe, 1998) 

L-Sox5 and Sox6 are co-expressed with Sox9 in all precartilaginous condensations 

and also in mouse embryo cartilage (Lefebvre and de Crombrugghe, 1998). They 

bind the Col2A1 chondrocyte specific enhancer in vitro and induce its expression in 

non-chondrocytic cells (Bell et al., 1997). Along with Sox9 they induce the 

endogenous expression of chondrocyte differentiation marker genes in vivo.L-Sox5 

and Sox6, consistent with their identical pattern of expression, have redundant 

function in vivo as single-gene null mutant mice are apparently normal. Deletion of 

both L-Sox5 and Sox6 leads to embryo lethality due to chondrodysplasia (Smits et 

al., 2001), demonstrating their essential role in chondrocyte differentiation. 

Sox9 commits undifferentiated mesenchymal cells to osteochondroprogenitors. Sox9 

is also needed for chondrogenic mesenchymal condensation, whilst both overt 

chondrocyte differentiation, and normal chondrocyte proliferation, are in part 

mediated by Sox5 and Sox6, the expression of which requires Sox9. Meanwhile 

Sox9 has also been shown in mice embryos to inhibit the transition of proliferating 

chondrocytes to hypertrophy (Akiyama et al., 2002). 

 

Figure would be here. 

Figure 1.6 Diagram of the action of Sox5, Sox6, and Sox9 in the different steps 

of chondrogenic differentiation pathway during endochondral ossification 

(Akiyama et al., 2002). 

1.7.3 Role of Sox9 in chondrogenic differentiation 

Sox9 has essential roles in successive steps of the chondrocyte differentiation 

pathway (Akiyama et al., 2002). A Cre/loxP recombination system of bacteriophage 
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P1 was used to generate mouse embryos in which either Sox9 was absent from 

undifferentiated mesenchymal limb buds or the Sox9 gene was inactivated after 

chondrogenic mesenchymal condensations. A summary of their findings is 

summarized in figure 1.6.  The inactivation of Sox9 in limb buds prior to 

mesenchymal condensations resulted in a complete lack of cartilage and bone, and in 

this model expression of Sox5 and Sox6 was no longer detected. When Sox9 was 

deleted after mesenchymal condensations a severe, generalized chondrodysplasia 

was evident, similar to that seen in Sox5:Sox6 double null mutant mice. 

The earliest molecule required for specifying a cell fate during skeletogenesis is 

Sox9 (Yang and Karsenty, 2002). The role of Sox9 in chondrocyte differentiation is 

summarised by figure 1.7.  

Figure would be here. 

Figure 1.7 Role of Sox9 in chondrocyte differentiation. Sox9 homozygous mutant 

cells are unable to express chondrocyte-specific markers such as Col2A1, Col9A2, 

Col11A2 and Aggrecan. The cells have the aspect of mesenchymal cells. The block 

in differentiation occurs at the stage of mesenchymal condensation (de Crombrugghe 

et al., 2000). 

Initially there were two lines of evidence that suggested SRY-related gene Sox9 was 

important in chondrogenesis in mammalian embryos. Firstly Wright et al. (Wright et 

al., 1995) showed that Sox9 mRNA was expressed in chondrocyte condensations in 

mice. Bi et al. (Bi et al., 1999) also showed that Sox9 was expressed in all 

chondroprogenitor cells and in differentiating chondrocytes but not in hypertrophic 

cells. Secondly, mutations of the SOX9 gene are associated with the skeletal 

malformation disorder campomelic dysplasia (CD) (Wagner et al., 1994, Foster et 

al., 1994). Most children affected with CD die in the perinatal period. CD represents 

an autosomal dominant condition caused by haploinsufficiency of the gene i.e. 50% 

of Sox9 being insufficient to fulfil the physiological function of Sox9. Heterozygous 

mutations in and around Sox9 causes clinical features in patients including 

disproportionally short stature, bowing of the limbs, low ears, a depressed nasal 

bridge. Radiological findings suggest an important role of Sox9 in developing bone 

and cartilage (Akiyama, 2008). Further convincing evidence that Sox9 was required 

for the formation of mesenchymal condensations was seen from mouse genetic 
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studies (Bi et al., 1999). In these studies chimaeric mouse embryos, Sox9
-/- 

embryonic stem cells (ES) but not wild type ES cells were excluded from 

mesenchymal condensations, indicating that Sox9 was essential for their formation. 

Teratomas derived from Sox9
-/-

 ES but not wild type ES failed to develop cartilage 

in mouse chimaeras. Also Sox9
+/-

 mice were seen to be phenotypically similar to 

human patients with CD. Ectopic expression of Sox9 also activated the Col2A1 gene 

in transgenic mice. 

Evidence has been established that there is an interaction between Sox9 and β-

catenin/ Wnt signalling pathway in the control of chondrocyte differentiation 

(Akiyama et al., 2004). 

1.7.4 Targets for Sox9 

 

Once Sox9 was identified as a transcription factor it was necessary to identify target 

genes in order to clarify its developmental role.  It has been demonstrated that SOX9 

protein binds SOX/SRY consensus sequence present in the regulatory region of 

human COL2A1 (Ng et al., 1997). Work carried out by Kypriotou et al. (Kypriotou 

et al., 2003) in the rabbit, demonstrated that Sox9 exerted a bifunctional effect on the 

transcription activity of human COL2A1 gene, which was dependent upon its 

expression level and the differentiation state. The differential action implicated two 

distinct regions of the COL2A1gene are involved in its regulation. The activation of 

COL2A1 in freshly isolated cells and dedifferentiated chondrocytes involved the first 

intron specific enhancer, whereas inhibition in dedifferentiated chondrocytes was 

mediated by a short promoter region. The work concluded that although Sox9 played 

a crucial role in chondrocyte differentiation, it cannot restore the phenotype of 

osteoarthritic chondrocytes alone.  

In contrast, studies undertaken by Aigner and Dudhia (Aigner and Dudhia, 2003), in 

adult articular chondrocytes suggested that Sox9 was not a key regulator of COL2A1 

promoter activity. Here it was shown that normal adult articular chondrocytes in vivo 

contained high Sox9 mRNA levels, which decreased in osteoarthritic cartilage. No 

positive correlation between Sox9 and COL2A1 was observed, the expression of 

COL2A1 was actually significantly increased in the diseased chondrocytes. In 

equine articular cartilage in early post-traumatic osteoarthritis  (OA) Sox9 gene 
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expression is up-regulated and is expressed at equivalent levels to normal tissue in 

late OA. Furthermore the differences may be species related or there may be 

contrasts in the disease phenotype between the studies (Clegg  PD, 2005).  

 In addition to its major role in chondrogenesis, it has also been suggested that Sox9 

was important for other developmental processes, with expression observed in CNS, 

notochord, lungs, heart and the urogenital system (Elluru and Whitsett, 2004). The 

functional significance of these sites was previously evident  by observations that 

SOX9 mutations in CD patients commonly affect a variety of non skeletal organs 

(Lee et al., 1972). Bell et al. (Bell et al., 1997) later discovered that SOX9 protein 

specifically binds to sequences in the first intron of human COL2A1, directly 

regulating the type-II collagen gene. Moreover in chondrocytes, Sox9 binds as a 

homodimer (Bell et al., 1997) to a pair of the consensus sequences of Col2A1. This 

binding is mediated by a dimerisation domain located closer to the N-terminus than 

the HMG domain (Jenkins et al., 2005, Bernard et al., 2003, Genzer and 

Bridgewater, 2007). Following initial work in transgenic mice and transient 

transfection experiments, it was shown that SOX9 binds directly to a 48 base pair 

Col2A1 enhancer at a site essential for chondrocyte specific expression (Lefebvre et 

al., 1997). Mutations in the enhancer that inhibited Sox9 abolished the enhancer 

activity.Sox9 effect is also enhanced by two other cooperative members of the same 

family, L-Sox5 and Sox6 (Lefebvre and de Crombrugghe, 1998) . Zhao et al. (Zhao 

et al., 1997) found a correlation between high levels of Sox9 expression and high 

levels of Col2a1 expression in mouse chondrocytic cells. However, no Sox9 

expression was evident in hypertrophic chondrocytes and only low levels of Col2a1 

RNA were detected in the upper hypertrophic zone. Together with the previous 

results from the author showing that the chondrocyte-specific enhancer element of 

the Col2a1 gene is a direct target for Sox9, these findings suggest that Sox9 plays a 

major role in the expression of Col2a1 and indicates that high levels of Sox9 are 

needed for the full expression of the chondrocyte phenotype. 

Sox9 is also required for the expression of a series of chondrocyte-specific marker 

genes apart from Col2a1. In work by Bi et al (Bi et al., 1999), with mouse embryo 

chimeras, Sox9
-/-

 mutant cells were not able to express chondrocyte-specific marker 

genes for collagen types II, IX, XI and aggrecan. Thus the genes Col9a1 (Zhang et 

al., 2003), Col11a2 (Bridgewater et al., 1998), and aggrecan  (Bi et al., 1999, Sekiya 
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et al., 2000), but also Col27a1 (Jenkins et al., 2005), and cartilage link protein (Kou 

and Ikegawa, 2004) require Sox9 for their expression. 

Experiments undertaken in TC6, a clonal chondrocyte cell line derived from articular 

cartilage, examined the effects of Sox9 on the aggrecan gene promoter and 

regulation of Sox9 gene expression in TC6 cells. It was found that Sox9 enhances 

the promoter activity of the aggrecan gene. Bi et.al. (Bi et al., 1999) also reported 

that SOX9
-/-

 cells do not express aggrecan in mouse chimaeras, suggesting that Sox9 

activates aggrecan gene expression in vivo as well. Further evidence for a role for 

Sox9 in aggrecan expression was found when the Sox9 transduction of cultured 

human articular chondrocytes caused an increase in aggrecan gene expression. 

However, Sox9 transduction did not increase the expression of chondroitin sulphate 

glycosyltransferase and sulfotransferase genes (two of the enzymes responsible for 

GAG chain synthesis); therefore the chondroitin sulphate synthetic capacity increase 

may occur by indirect regulation of enzyme activity through control of enzyme 

protein translation or enzyme organisation (Tew et al., 2008b). 

1.7.5 Regulation of Sox9 expression 

Some of the mechanisms responsible for the regulation of Sox9 expression in 

chondrocytes have been elucidated (Gordon et al., 2009). A number of factors 

increase Sox9 expression, including fibroblast growth factor (FGF) (Murakami et al., 

2000b), insulin-like growth factor (IGF-1) (Shakibaei et al., 2006), human cartilage 

glycoprotein (Jacques et al., 2007), and Src inhibitor (Bursell et al., 2007), Sonic 

hedgehog (Tavella et al., 2004), CCAAT-binding factor (Colter et al., 2005), CREB 

(Piera-Velazquez et al., 2007) and hypoxia-inducible factor 1α (Robins et al., 2005) 

activate the Sox9 proximal promoter. Interleukin-1 (IL-1) and tumour necrosis factor 

α (TNFα) down regulate the expression of Sox9 in chondrocytes and the activity of a 

Col2a1 chondrocyte specific enhancer. Both are these effects are mediated by the 

NFκB pathway (Murakami et al., 2000a).   

Huang et al. (Huang et al., 2000), showed that posttranslational modification of Sox9 

protein affects the activity of Sox9. Using a yeast two-hybrid method  it was shown 

that Sox9 is a target of cAMP signalling and that phosphorylation of Sox9 by protein 

kinase A (PKA), a downstream intracellular signalling molecule of parathyroid 

hormone related peptide (PTHrP)/PTHrP receptor enhances its transcriptional and 
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DNA-binding activity. For example it increases Sox9 binding to COL2A1 enhancer 

element and stimulates Sox9 transcriptional activity. Sox9 is phosphorylated at one 

of two PKA phosphorylation sites, mainly localized to the prehypertrophic zone of 

the growth plate in vivo, suggested that Sox9 may be a target for PTHrP signalling. 

Sox9 translocation into the nucleus is controlled by Sox9-calmodulin interaction 

through the nuclear localization signal of the HMG domain. Mutations within the 

calmodulin-binding region decrease the ability of Sox9 to activate the transcription 

of cartilage genes (Argentaro et al., 2003) and causes CD. 

The RhoA/ROCK pathway (Rho effector kinase) is a well recognised regulator of 

cytoskeletal organization in chondrogenesis. Studies undertaken in mouse revealed 

that inhibition of ROCK signalling with the pharmacological  inhibitor Y27632 

resulted in an increase in the expression of Sox9 mRNA and protein, whereas over 

expression of RhoA in the chondrogenic line ATDC5 had the opposite effect. The 

suppression of Sox9 seen was achieved through the repression of Sox9 promoter 

activity. Further experiments using compounds that affected the cytoskeletal 

dynamics revealed that RhoA/ROCK signalling suppresses chondrogenesis through 

the control of Sox9 expression and actin organization (Woods et al., 2005). RhoA is 

an important regulator of cytoskeletal structure and focal adhesion maturation 

(Burridge and Wennerberg, 2004). Its activity increases the formation of actin stress 

fibres through downstream effector kinases; ROCK-1 and 2. These act by both 

increasing tension in the cell through direct phosphorylation of myosin II regulatory 

light chain (Kimura et al., 1996) and controlling events downstream that inhibit the 

actin depolymerising protein cofilin (Maekawa et al., 1999). Work undertaken by 

Tew and Hardingham, (Tew and Hardingham, 2006) using cyclohexamide (a protein 

synthesis inhibitor, known to superinduce gene expression) to stimulate SOX9 in 

monolayer, showed that HAC from passaged cells only responded by increasing 

SOX9 gene expression (by 4-fold) when actin stress fibre formation was abrogated.  

Furthermore, studies in passaged HAC revealed that a hyperosmotic induction of 

SOX9 mRNA was only observed when the formation of actin stress fibres by the 

ROCK inhibitor Y27632 was prevented. However on re-differentiation of the 

chondrocytes in alginate culture for 72 hours a 5 hour exposure to hyperosmotic 

conditions increased SOX9 mRNA without a requirement for Y27632. Freshly 
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isolated HAC also did not require Y27632 treatment in order to respond to 

hyperosmotic conditions (Tew and Hardingham, 2006). 

1.7.6 Sox9 in articular cartilage repair 

Changes in the expression of ECM genes and the down regulation  of Sox9 are 

characteristic of cartilage in OA (Aigner and Dudhia, 2003). Sox9 decreases in the 

cartilage of individuals with osteoarthritis (Tew et al., 2007). Furthermore the 

expression of Sox9 declines rapidly in chondrocytes that are isolated and cultured in 

monolayer (Stokes et al., 2001).  

Salminen et al. (Salminen et al., 2001), characterized the involvement of Sox9 in 

articular cartilage repair and in the maintenance of the articular chondrocyte 

phenotype. An experiment was carried out in transgenic Del1 mice, which develop 

early onset OA, and in their non-transgenic littermates. Results indicated that 

chondrocytes in mature articular cartilage were capable of inducing the production of 

Sox9 and type IIA procollagen, which is typical of early chondrogenesis. The group 

concluded that stimulation of the expression of Sox9, and possibly L-Sox5 and Sox6 

in OA joints could have a favourable effect on type II collagen production, which is 

one of the limiting factors in articular cartilage repair. Evidence has been provided of 

the ability of Sox9 to compensate for the loss of extra cellular matrix (ECM) 

components in human OA cartilage. The synthesis and content of proteoglycans and 

type II collagen, in 3 dimensional cultures of human normal and OA articular 

cartilage, following direct application of a recombinant adeno-associated virus 

(rAAV) SOX9 vector, in vitro and in-situ was monitored. After gene transfer the 

amounts of proteoglycan and type II collagen increased over time in normal and OA 

articular chondrocytes in vitro. In situ, over expression of Sox9 in normal and OA 

articular cartilage stimulated proteoglycan and type II collagen, two key ECM 

components of cartilage in a dose dependant manner (Cucchiarini et al., 2007). 

Transduction with Sox9 in passaged human articular chondrocytes with adenoviral, 

retroviral and lentiviral vectors has been investigated as a method to reinitiate 

cartilage matrix gene expression (Li et al., 2004). Results indicated that adenoviral 

and retroviral vectors efficiently induced Sox9 expression. Efficient transduction 

with a retroviral vector expressing Sox9 resulted in the up-regulation of chondrocyte 

matrix protein genes and showed the potential for the recovery of key features of 
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chondrocyte phenotype. Previously it has been shown that passaged human articular 

chondrocytes, after retroviral transduction of Sox9, regain their chondrogenic 

response to three-dimensional cell aggregate culture and to growth factors and 

greatly increased their production of GAG-rich cartilage matrix (Tew et al., 2005). 

Given the importance of Sox9 in the development and maintenance of the 

chondrocyte phenotype, its reduction in OA is likely to contribute to the cartilage 

pathology. These findings suggest that approaches which control SOX9 expression 

have a potential clinical value. 

Cell therapy and tissue engineering have the potential to become important 

treatments in human articular repair but suffer a major limitation, as chondrocytes in 

vitro lose the differentiated phenotype.  The use of autologous chondrocytes as a cell 

source in cartilage repair procedures has been in place for a number of years 

(Peterson et al., 2002). Establishing the ideal chondrocyte phenotype is paramount. If 

Sox9 expression and chondrogenic commitment of expanded cells was preserved cell 

based therapy could be successful. Malpeli et al. (Malpeli et al., 2004) developed a 

serum-free medium that supported cell proliferation and preserved the differentiation 

potential; indeed expression of Sox9 was maintained. The system may have potential 

implications for future cartilage regeneration strategies.  

 

1.8 The MAPK signalling cascade 

 The mitogen-activated protein kinase (MAPK) signaling pathways play important 

roles in the regulation of gene expression in eukaryotic cells.  One of the major 

mechanisms for effecting changes in gene expression is through MAPKs altering the 

activity of transcription factors and hence the transcription of their target genes. 

Numerous mammalian transcription factors have been identified as targets of the 

different MAPK cascades (Johnson and Lapadat, 2002). 

Protein kinases are enzymes that covalently attach phosphate to the side chain of 

serine, threonine or tyrosine of specific proteins.  Phosphorylation in this way can 

modify the target protein and regulate enzymatic activity, cellular location and 

interactions with other proteins/molecules (Johnson and Lapadat, 2002). The 

MAPKs are a class of protein-serine kinases that are involved in the transduction of 
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messages from the membrane to the nucleus.  A key characteristic of MAPKs is the 

formation of a core functional unit of three sequentially activated kinases.  Each 

kinase is activated by dual phosphorylation within a group of amino acids known as 

the activation loop by the kinase immediately upstream of it  (Canagarajah et al., 

1997). Thus, a MAP kinase kinase kinase (MAPKKK, MAP-3-kinase) will 

phosphorylate and activate a MAP kinase kinase (MAPKK, MAP-2-kinase), which 

will then phosphorylate and activate a MAP kinase (MAPK) (Hoeflich and 

Woodgett, 2001).  The final MAPK in the cascade will then activate a target 

transcription factor such as AP-1 by phosphorylation.  

The activity of MAPKs is reversed when they are dephosphorylated by the MAPK 

phosphatases (MKPs). These dual specificity phosphatases (DSPs), dephosphorylate 

MAPKs at both threonine and tyrosine residues. Each MKP has a specific tissue and 

subcellular localization pattern and specific target recognition sequence (Camps et 

al., 2000). The expression and function of MKPs is regulated by growth factors and 

inflammatory cytokines and the MAPKs themselves creating an effective negative 

feedback loop for MAPK signalling (Lasa et al., 2002). 

Figure would be here. 

Figure 1.7 Organisation of mammalian MAPK cascades. MAPK cascades feature 

a core triple kinase module consisting of MAPKKKs, MAPKKs and MAPKs. There 

are a number of MAPKKK families and individual MAPKKKs are often 

components of more than one MAPK cascade. MAPKKs selectively target a 

particular MAPK. A potential exception is MKK4 which has been reported to 

activate p38 (dashed line) in addition to its major target JNK. MAPKs can 

phosphorylate transcriptional targets directly or this can occur via the indicated 

downstream protein kinases (Yang et al., 2003).  

There are 4 major groups of MAPKs in mammalian cells, each named after the final 

MAPK in the cascade, the extracellular-signal related kinase (ERK), c- jun kinase 

(JNK), p38 and extracellular signal regulated kinase-5 MAPK cascades (Figure 1.7). 

These groups contain a number of gene products and additional isoforms are 

generated by alternative splicing of the pre-mRNAs. For example 10 JNK isoforms 

are expressed in cells and these are derived from three JNK genes (Whitmarsh et al., 

1997). The best-described MAPK pathway is the ERK or p42/44 MAPK pathway. 
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This pathway is activated mainly by growth and differentiation factors through 

specific tyrosine kinase receptors but can also be activated by cytokines and G-

protein coupled receptors (Cobb et al., 1991, Zanke et al., 1996, Widmann et al., 

1999). The pattern of MAPK cascade is not restricted to growth factor signaling and 

it is now known that signaling pathways initiated by phorbol esters, ionophors, heat 

shock, and ligands for seven transmembrane receptors use distinct MAPK cascades 

with little or no cross-reactivity between them (Yang et al., 2003). Activated 

receptors recruit the small G-protein Ras
GTP

 as a second messenger.  Members of the 

low molecular weight G-protein families such as Ras, Rho/Rac/Cdc42, Rab, 

Sar1/Arf and Ran act as molecular switches in cell signalling. They are switched off 

when bound to guanidine diphosphate (GDP), and are switched on when bound to 

guanidine triphosphate (GTP). G-proteins act as relays for various cell signals, the 

most common of which is from the tyrosine kinase receptors. These receptors 

activate G-proteins causing a conformational/allosteric change, the displacement of 

GDP and the binding of GTP. The activated G-protein can then bind to a second 

enzyme effector such as phospholipase C which catalyses a further reaction (Lodish 

et al., 1995). There are around 20 different G-proteins and they all have different 

responses.  For example, G s stimulates adenylyl cyclase and G q activates 

phospholipase C. Most G-proteins possess intrinsic GTPase activity which 

hydrolyses the GTP back to GDP and thus deactivates itself (Takai et al., 2001). 

 In the case of ERK signalling, Ras-
GTP

 acts to recruit Raf1, a MAP-3-kinase, to the 

cell membrane where it is activated by membrane bound tyrosine kinases including 

c-Src.  Activated Raf1 can then phosphorylate the MAP-2-kinases, MEK1 and 

MEK2. The final MAPK in this family is ERK, and this is normally sequestered in 

the cytoplasm by MEK1. ERK1 and ERK2 are isoforms of the classical MAPK 

pathway and are referred to as ERK1/2. MEK1/2 phosphorylates ERK1/2 releasing it 

from the cytoplasm so that it can translocate to the nucleus and phosphorylate 

transcription factors (Widmann et al., 1999).  To date, 8 ERK MAP kinases have 

been identified, but ERK 1/2 are the most ubiquitous and well-characterised family 

members (Court et al., 2004). ERK has many transcription factors substrates 

including the transcription factors Ets, Elk and Myc (Widmann et al., 1999). It has 

also been shown that ERK1/2 mediates the up-regulation of the transcription factor 
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Sox9  by fibroblast growth factor in mouse primary chondrocytes (Murakami et al., 

2000a).                                                                         

The JNK pathway (also known as the stress activated protein kinase (SAPK) 

pathway) is activated by inflammatory cytokines and stress factors (Kyriakis et al., 

1994). There are around 13 MAP-3 kinases that activate the JNK pathway (Johnson 

and Lapadat, 2002), these include the MEK kinases 1-4, the TGF-  activated kinase-

1 (TAK1) and the apoptosis signal-regulated kinase-1 (ASK1) (Hoeflich and 

Woodgett, 2001). Two MAP-2 kinases have been identified upstream of JNK, these 

are SAPK/ERK kinase-1 (SEK1) (also known as MAPK kinase-4 (MKK4) or JNK 

Kinase-1 (JNKK1)) and SEK2 (also known as MKK7 or JNKK2) (Hoeflich and 

Woodgett, 2001). There are 3 major members of the JNK family, termed JNK1, 2 

and 3 (SAPK- ,  and γ). The major targets of JNKs are the Jun family components 

of the AP-1 complex (Hoeflich and Woodgett, 2001).  

The p38 MAPK pathway (also known as the p54 MAPK pathway) is activated by 

inflammatory cytokines and stress factors (Raingeaud et al., 1995). The major 

MAPK-3 kinases that activate p38 are TAK1 and ASK1 (Ichijo et al., 1997, Wang et 

al., 2001). The MAP-2 kinases involved in p38 MAPKs are MKK3 and MKK6 

(Raingeaud et al., 1996). There are 4 members of the p38 MAPK family termed p38-

, ,δ and γ (New and Han, 1998). The major targets of p38 MAPKs are the 

transcription factor ATF-2 (Raingeaud et al., 1995) the kinase, MAPK activated 

kinase-2 (MAPKAPK-2) (Rouse et al., 1994) and its substrate, heat shock protein 27 

(Hsp27) (Freshney et al., 1994). One transcription factor that may be a target of the 

p38 MAPK pathway is SOX9 were it was shown that its regulation is controlled at 

the transcriptional level by complex long range enhancer elements (Bagheri-Fam et 

al., 2006). Studies under taken in transgenic mice provided in vivo evidence for the 

role of p38 in endochondral ossification and suggested that Sox9 was a likely 

downstream target of the p38 MAPK pathway (Zhang et al., 2006). Furthermore 

work undertaken in HAC has determined that there is evidence of the early 

involvement of SOX9 in chondrocyte redifferentiation in which a novel post-

transcriptional regulatory mechanism activated by p38 MAPK, stabilized SOX9 

mRNA (Tew and Hardingham, 2006). 
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The ERK 5 pathway is stimulated by both stress stimuli and growth factors (Kyriakis 

and Avruch, 2001). The MAPKKK that activates ERK 5 is MEKK2 and MEKK3. 

The MAPK-2 kinase involved is MEK 5 (Chao et al., 1999). The ERK5 mitogen-

activated protein kinase (MAPK) differs from other MAPKs in possessing a potent 

transcriptional activation domain (Sohn et al., 2005), an alternative mode of 

activation utilized by the ERK5 MAPK. ERK5 possesses a unique transcriptional 

coactivator domain, which mediates protein-protein interactions with the myocyte 

enhancer factor 2 (MEF2) transcription factors and provides a potent coactivator 

function toward MEF2-driven transcription (Karasseva et al., 2003). Major targets of 

ERK5 include c-myc and SAP-1 (Yang et al., 2003). 

Nearly all aspects of cell life are controlled by the reversible phosphorylation of 

proteins. About one-third of mammalian proteins contain covalently bound 

phosphate, and there are likely to be 1000 protein kinases encoded by the human 

genome. Furthermore the `average' protein kinase phosphorylates about 30 proteins. 

A major challenge is therefore to identify the physiological substrates of each protein 

kinase. The availability of inhibitors has helped to clarify the roles of MAPK 

pathways in the cell and may ultimately offer therapeutic benefit. Several small, cell-

permeable inhibitors of protein kinases have been developed that exhibit a relatively 

high degree of specificity for a particular protein kinase, and which may be useful 

for identifying the physiological substrates and cellular functions of these enzymes 

(Cohen, 1999). Pharmacological inhibitors have been identified that impact on the 

MAPKs ERK1, ERK2, two of the four p38 isoforms, three Jun-N-terminal 

kinase/stress activated kinases (JNK/SAPKs) and ERK5. Most significantly, the 

identification of p38 MAPK as a target for pyridinyl imidazole anti-inflammatory 

drugs reaffirmed the idea that intracellular enzymes with multiple functions are 

potentially valuable therapeutic agents for specific applications (Lee et al., 1994). 

The pyridinyl imidazoles like SB202190 are specific inhibitors of p38α and p38β 

and have been widely used in investigation of the biological functions of p38. They 

act as specific inhibitors through competition with ATP for the same binding site on 

the p38 kinase (English and Cobb, 2002). The development of MEK1 and MEK2 

inhibitors has progressed but a lack of three-dimensional structures for many 

members of the MEK family has impeded efforts. This is particularly relevant with 

the inhibitor U0126 as this does not appear to compete with ATP and so is likely to 
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have a distinct binding site on MEK (Favata et al., 1998). In a comparison of 

multiple kinase inhibitors, the MEK1/2 inhibitors appeared to be the most specific 

kinase inhibitors because they inhibited the fewest non-target kinases in a panel of 

24 kinases (Davies et al., 2000).  

 

1.9 COX-2 

Cyclooxygenase (COX) is a bifunctional enzyme with both oxygenase and 

peroxidase activities,  and is responsible for the formation of prostanoids 

(Needleman et al., 1986). Prostanoids are members of a large group of hormonally 

active, oxygenated C18, C20, and C22 fatty acids collectively known as eicosanoids 

that are derived from n-3 and n-6 polyunsaturated fatty acids (Smith et al., 2000). 

There are three main groups of prostanoids; prostaglandins, prostacyclins and 

thromboxanes; each involved in the inflammatory process. Two isoforms of COX 

have been identified: a housekeeping enzyme, COX-1 is constitutively expressed and 

produces low physiological levels of prostanoids, whereas the expression of the 

inducible isoforms, COX2, is inducible by a wide variety of stimuli including 

proinflammatory cytokines or bacterial products (Vane, 1998) and physical and 

chemical stresses (Sun et al., 2008). COX-3 is a splice variant of COX-1, which 

retains intron one and has a frameshift mutation; this is also known as COX-1b 

(Chandrasekharan et al., 2002). There is a high degree of homology between COX-1 

and COX-2: 61% of amino-acids are identical and 84% are similar (Hawkey, 2001). 

COX-1 is involved in the maintenance of the normal gastric mucosa and is also 

involved in kidney and platelet function. COX-2 is primarily present at sites of 

inflammation. 

COX converts arachidonic acid to prostaglandin H2, the precursor of the series-2 

prostanoids (Figure 1.8). The enzyme contains two active sites; a heme with 

peroxidase activity, responsible for the reduction of PGG2 to PGH2, and 

cyclooxygenase site, where arachidonic acid is converted into hydroperoxy 

endopeptidase prostaglandin G2 (PGG2). The reaction proceeds through H atom 

abstraction from arachidonic acid by a tyrosine radical generated by the peroxidase 

active site. Two molecules of oxygen then react with the arachidonic acid radical, 

yielding PGG2 (Smith et al., 2000). 
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Figure would be here. 

Figure  1.8 Biosynthetic pathway for the formation of prostanoids derived from 

arachidonic acid (Smith et al., 2000) 

The action of COX-2 isoenzyme is characterized first by the need for latency (at 

least half an hour) before induction of the protein; and secondly by the short duration 

of the gene expression, which is due to a long 3’ untranslated region of COX-2 

mRNA, that contains several different polyadenylation signals and multiple 

’AUUUA’ instability sequences that mediate the rapid degradation of the transcript 

(Kujubu et al., 1991, Ristimaki et al., 1994).  

COX-2 is highly expressed in rheumatoid (RA) and osteoarthritic cartilage (Amin et 

al., 1997, Pelletier et al., 2001). COX-2 selective inhibitors have been developed, for 

the use in diseases include OA since the late 1990s, due to their anti-inflammatory 

and analgesic effects. Theoretically drugs which were developed as COX-2 selective 

inhibitors have less side effects (ulcers, prolonged bleeding time, nephrotoxicity) 

than general non-steroidal anti-inflammatory (NSAID) treatment such as aspirin and 

ibuprofen, as the latter inhibit both COX-1 and COX-2 (Hawkey, 2001). 

In experiments previously undertaken in synovia from patients with rheumatoid 

arthritis (RA) and OA, as well as joints of rats with streptococcal cell wall and 

adjuvant arthritis it was concluded that COX expression was upregulated in 

inflammatory joint diseases. Furthermore the level of expression was genetically 

controlled and was a biochemical correlate of disease severity. Additionally, the 

expression was down-regulated by antiinflammatory glucocorticoids (Sano et al., 

1992). Moreover unstimulated chondrocytes did not contain detectable COX-2 

mRNA. 

Interestingly OA-affected cartilage in ex vivo conditions shows an up-regulation of 

COX-2 (Amin et al., 1997). Furthermore a study using IL-1 activated  human 

articular chondrocytes either at passage 0 or passage 1 in monolayer, determined that 

there was an increase in the expression of COX-2 mRNA and protein which was a 

protein tyrosine kinase-dependant response (Geng et al., 1995).  

 It has also been previously shown that hyperosmolarity  stimulates COX-2 

expression in cultured medullary epithelial cells (Yang et al., 1999) and colonic 

epithelium (Arbabi et al., 2001). Furthermore a study has shown that p38 MAPK 

regulates COX-2 gene expression in cardiocytes. Therefore we were interested in the 
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role that hyperosmotic conditions played in controlling COX-2 in normal and OA 

chondrocytes. 

 

The regulation of SOX9 in chondrocytes is beginning to be revealed. One way in 

which SOX9 mRNA levels are controlled is through p38 MAPK-dependant 

regulation of its mRNA stability (Tew and Hardingham, 2006). Medium osmolarity, 

a known regulator of p38 MAPK ,controls SOX9 by the same mechanism (Tew et 

al., 2009). This represents an important means of chondrocyte mechanotransduction. 

Consequently there is a need to further investigate other potential mechanisms of 

control of SOX9 in order to allow us to understand more clearly how chondrocytes 

are able to respond to, and regulate, their extracellular environment. This will allow 

new insights into developing treatments of diseases such as OA. The central 

hypothesis of this study was to determine whether cyclical hyperosmolar loading of 

chondrocytes enhances ECM production and occurs as a consequence of p38 

MAPK/ERK signaling and increased SOX9 mRNA half life.  

The three main aims of the project were; 

1. To determine activation of the ERK1/2 and p38 MAPK pathways by 

hyperosmotic conditions in human and equine chondrocytes and explore 

whether regulation of SOX9 under these conditions can be controlled by 

the pharmacological inhibition of these pathways. 

2. To characterize the induction of SOX9 mRNA by cyclical application 

of hyperosmotic conditions in monolayer cultures of human and equine 

chondrocytes. 

3. To explore the regulation of SOX9 mRNA half life and ECM 

production by hyperosmolarity in equine cartilage explants cultures. 

In addition the project will investigate the role of COX-2 in under 

hyperosmotic conditions in normal and OA chondrocytes of both human 

and equine monolayers.  
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ABSTRACT 

Objective: To assess the role of the MEK-ERK and p38MAPK signalling pathways 

in hyperosmotically-induced, regulation of SOX9 and COX-2 in human articular 

chondrocytes.  

Method: Freshly isolated and passage 2 human articular chondrocytes (HAC) from 

total knee arthroplasty were subjected to different osmotic loading patterns in 

monolayer culture. The involvement of p38 MAPK and MEK-ERK signalling was 

determined by using pharmacological inhibitors. SOX9 and COX-2 half lives 

(t1/2)for freshly isolated cells were determined by measuring decay following 

administration of 1μM actinomycin D. Samples were analyzed for SOX9, Cox-2, 

aggrecan and COL2A1 using qT-PCR gene expression analysis and for p44/42 

MAPK, P38 MAPK, COX-2 SOX9 protein using western blotting. 

 

Results: Decay curves generated for SOX9 and COX-2 showed that hyperosmolarity 

increased the mRNA stability of both genes. HAC exposed to static and dynamic 

hyperosmotic loading showed a significant increase in SOX9 and COX-2 mRNA. 

Under static control conditions in freshly isolated HAC there was a significant 

increase in SOX9 and COX-2 mRNA following treatment with the MEK1/2 

inhibitor, U0126. Hyperosmotic loading increased the activation of p44/42 MAPK 

and p38 MAPK. The presence of either the MEK1/2 inhibitor U0126 (10μM) or the 

p38 MAPK inhibitor SB202190 (20μM) in conjunction with cyclical hyperosmotic 

loading reduced the induction of SOX9 mRNA. Only the presence of the p38 MAPK 

inhibitor SB202190 effected a reduction in COX-2 under these conditions 

Conclusions: Static and cyclical hyperosmotic loading increased SOX9 mRNA. 

MEK-ERK signalling was not required for the stabilisation of SOX9 in static 

hyperosmotic conditions. However, both p38 MAPK and MEK-ERK signalling were 

involved in the induction of SOX9 under cyclical hyperosmotic loading. We have 

identified that COX-2 is regulated by hyperosmotic conditions post transcriptionally 

whilst under normosmolar conditions MEK-ERK signalling results in suppression of 

COX-2 expression.  
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Introduction 

The surface of long bones within diarthrodial joints is lined with articular cartilage, 

an avascular connective tissue that provides a nearly frictionless bearing surface for 

transmitting and distributing mechanical loads between the bones of the skeleton. 

The unique load bearing properties of articular cartilage are dependent upon its 

structural composition and organisation, particularly the interactions between 

collagens and proteoglycans of the extracellular matrix (ECM) (Poole et al., 2001). 

These matrix macromolecules are regulated by chondrocytes embedded within the 

cartilage. Chondrocytes utilize mechanical signals (Guilak et al., 1999), such as 

mechanical loading and local osmotic environment (Schulz and Bader, 2007), in 

conjunction with environmental and genetic factors to regulate their metabolic 

activity(Guilak, 2000). Under loading, water is expressed from articular cartilage 

causing the matrix to deform and the proteoglycan concentration to increase due to 

water loss which, along with elevated counter ion concentration exposes the 

chondrocytes to a hyperosmotic environment. Thus physiologically, load bearing 

cartilages experience changes in extracellular ion composition and hence osmotic 

pressure under cyclic and static loading (Urban and Bayliss, 1989).  

The effects of osmolarity on chondrocyte ECM synthesis have been undertaken in a 

number of studies with differing outcomes. These studies have shown that 

proteoglycan synthesis can be reduced in the presences of hyper-, or hypo-osmotic 

conditions (Hopewell and Urban, 2003, Schneiderman et al., 1986, Palmer et al., 

2001, Urban and Hall, 1994, Urban et al., 1993). A reduction in COL2A1 gene 

expression has also been identified as a consequence of hyperosmotic 

conditions(Urban and Bayliss, 1989). Although a further study demonstrated that the 

application of dynamic hypo-osmotic conditions caused an increase in cartilage 

ECM genes (Chao et al., 2006).  The mitogen activated protein kinases (MAPK); 

extracellular signal-regulated protein kinase (ERK) and p38 mitogen-activated 

protein kinase (p38 MAPK) have been implicated in the adaptive responses of 

chondrocytes to hyperosmotic conditions (Hopewell and Urban, 2003). The  MAPK 

families are a cell signalling transduction pathway which connect extracellular 

signals to intracellular responses such as gene expression in eukaryotic cells (Yang et 

al., 2003). Both p38 MAPK and JNK signalling pathways have previously been 

implicated in osmotic stress signalling in studies in yeast and many mammalian cells 
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(Sheikh-Hamad and Gustin, 2004, Brewster et al., 1993, Galcheva-Gargova et al., 

1994, Rouse et al., 1994, Capasso et al., 2001).  

It has been previously identified that SOX9 (Tew et al., 2009) and COX-2 (Le et al., 

2006) expression are regulated by hyperosmotic conditions. The chondrogenic 

transcription factor SOX9 controls the expression of many cartilage ECM genes 

including collagen type II (Bell et al., 1997) and aggrecan (Bi et al., 1999, Sekiya et 

al., 2000). Campomelic dysplasia, a severe syndrome caused by inadequate cartilage 

formation during development, is due to a haploinsufficiency of SOX9 and 

underlines its importance to the chondrocyte phenotype (Foster et al., 1994, Wagner 

et al., 1994). One of the mechanisms responsible for the control of SOX9 expression 

in chondrocytes is the p38 MAPK-dependant regulation of its mRNA stability (Tew 

and Hardingham, 2006). Further studies have concluded that human articular 

chondrocytes (HAC) exposed to hyperosmotic culture resulted in an increase in the 

stability of SOX9 mRNA, a process which was also sensitive to p38 MAPK 

inhibition (Tew et al., 2009).   

COX-2 is a bifunctional enzyme with both oxygenase and peroxidase activities, 

responsible for the formation of prostanoids (Needleman et al., 1986). A 

superinduction of COX-2 in human osteoarthritic affected cartilage and aberrant 

expression of COX-2 protein in articular tissues
 
is a feature of arthritis (Kang et al., 

1996, Amin et al., 1997, Sano et al., 1992). However  normal mature unstimulated 

HAC did not contain detectable COX-2 mRNA (Geng et al., 1995). It has  been 

previously shown that hyperosmolarity  stimulates COX-2 expression in cultured 

medullary epithelial cells (Yang et al., 1999), colonic epithelium (Arbabi et al., 

2001) and kupffer cells (Zhang et al., 1995). In juvenile bovine cartilage there is an 

osmolarity dependant potentiation of COX-2 (Le et al., 2006) Furthermore 

involvement of the intracellular signalling proteins p38 MAPK and ERK in inducing 

COX-2 gene expression has been reported (Chen et al., 2001). Moreover, COX-2 

mRNA stability at the post-transcriptional level is necessary for maximal COX-2 

expression (Newton et al., 1997, Inoue et al., 1995). 

The response of articular cartilage to loading is a complex phenomenon due to 

numerous factors related to the mechanical strain of the tissue. Therefore models in 

which individual physical phenomena can be studied separately are important in 
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revealing the cellular mechanisms of joint loading. With this in mind our present 

study was performed to explore the effects of osmolarity on SOX9 and COX-2 

expression, in particular by examining whether the activation of the ERK or p38 

MAPK signalling pathways were required. We also wished to examine the nature of 

the osmotic load applied to the cells, as data from compressive loading experiments 

clearly indicate that dynamic compression of cartilage produces increases in ECM 

synthesis by chondrocytes (Sah et al., 1989).  

 

MATERIALS AND METHODS 

Chondrocyte isolation and cell culture 

HAC were obtained following total knee arthroplasty with informed consent and 

ethical approval. Isolation of chondrocytes has been described previously (Tew et al., 

2008a). The chondrocytes were grown as monolayers in Dulbecco’s modified eagles 

medium (DMEM) (Invitrogen, Paisley, UK), supplemented with 10% foetal calf 

serum (FCS), 100units/ml penicillin, 100μg/ml streptomycin (all from Invitrogen, 

Paisley, UK) and 500ng/ml amphotericin B (BioWhittaker, Lonza, USA).  

Experiments were undertaken using either freshly isolated chondrocytes plated at 

100,000 cells/cm
2
 within 48 hours, or with cells at the end of passage 2 (with a 1:2 

split ratio). Experiments were replicated using cells from different donors with an 

age range of 48 – 85 years (mean 69 years). In order to elucidate the effects of the 

osmolarity of the media on the cells they were grown for 5 hours in serum-free and 

antibiotic-free DMEM containing either 207mM NaCl or 527mM NaCl in order to 

yield 380mOsm.kg
-1

.H2O(mOsm) or 550mOsm solutions. Following production of 

the defined media a freezing point depression osmometer (Loser, Berlin, Germany) 

was used to confirm the osmolarity was within an acceptable range of +/- 2% 

variation.  The osmotic loading magnitude was chosen from existing literature. The 

use of these osmolarities was based upon previous experiments in bovine articular 

cartilage where 380mOsm (control) is close to that experienced by healthy 

chondrocytes in-situ and 550mOsm represented a hyperosmotic condition similar to 

that experienced by chondrocytes under load (Hopewell and Urban, 2003, Urban et 

al., 1993). Previously it has been demonstrated that an increase in SOX9 mRNA in 

550mOsm conditions was observed when the formation of actin stress fibres by the 
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cells was prevented in the presence of the ROCK1/2 inhibitor Y27632 (Tew et al., 

2009). However we have previously demonstrated that the up-regulation of SOX9 in 

response to osmolarity in freshly isolated HAC is not dependant on actin stress fibres 

(Tew et al., 2009). Therefore passaged cultures only were supplemented with 10μM 

of the ROCK1/2 inhibitor Y27632 (Calbiochem, Nottingham, UK). In addition 

where necessary cultures were supplemented at doses which have been shown to 

maximally inhibit the MEK-ERK; 10μM (data not shown) or p38 MAPK; 20μM 

(Tew et al., 2009) signalling pathways (both Sigma-Aldrich, Dorset, UK), for  2 

hours prior to the commencement of experiments.  

Gene expression analysis 

Total RNA was prepared from monolayer cultures in 12 well culture plates using 

0.5ml Tri Reagent (Ambion, Warrington, UK) per well. The Guanidium-thiocyanate-

phenol-chloroform extraction technique was used as previously described 

(Chomczynski and Sacchi, 1987). M-MLV reverse transcriptase and random 

hexamer oligonucleotides were used to synthesize cDNA from RNA (both from 

Promega, Southampton, UK) in a 25μl reaction. Aliquots (1μl) were amplified by 

PCR in 20μl reaction volumes on an ABI 7700 Sequence Detector using either a 

SYBR Green PCR mastermix or a Taqman mastermix were appropriate (Applied 

Biosytems, Warrington, UK). The fitness of GAPDH as a valid normalisation factor 

under different osmolarities has been previously established by us (Tew et al 2009) 

(Appendix1). Relative expression levels were normalized to GAPDH and calculated 

using the 2
-Ct

 method (Livak and Schmittgen, 2001). Primers and probe for SOX9 

were designed by Applied Biosystems Assays-by-Design and had the following 

sequences: Forward 5’-3’ CGCCGAGCTCAGCAAGA; Reverse 5’-3’ 

CGCTTCTCGCTCTCGTTCA; and Probe 5’-3’ AAGCTCTGGAGACTTC. 

GAPDH primers and probes have been described previously (Martin et al., 2001). 

For determination of aggrecan, collagen II (COL2A1) and cyclo-oxygenase (COX-

2), SYBR Green detection was used. The primer sequences for aggrecan, COL2A1 

and COX-2 have been previously reported (Martin et al., 2001, Johnson et al., 2002) 

and were synthesised by Eurogentec (Seraing, Belgium).  

For decay experiments freshly isolated HAC was grown in monolayers and treated 

under experimental conditions for 2 hours before the addition of 1μM of the 
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transcription inhibitor actinomycin D (Sigma- Aldrich, Dorset, UK) mRNA decay 

was then measured following total RNA extraction at a number of time points 0-3 

hours later. For SOX9 mRNA decay experiments, the copy number in each sample 

was calculated using a calibration curve created from known dilutions of the 

pcDNA3SOX9_UT_FLAG vector (Lefebvre et al., 1997). Copy numbers were then 

normalized to input RNA concentrations, which were measured using a Nanodrop 

ND-100 spectrophotometer (Labtech, East Sussex, UK). For COX-2 mRNA decay 

curves were generated using GAPDH as a normalization factor. For both genes data 

was plotted on semi-log charts and exponential regression lines generated in 

Microsoft Excel. The slope (m) of the regression lines were used to calculate the 

mRNA half life (t1/2) using the equation t1/2 = ln(2)/m. 

 

Western blot analysis of cell extracts 

For western blot analysis, culture media was removed from the 12 well plate and cell 

layers washed with cold PBS. SDS sample-extraction buffer (62.5mM Tris-HCL, pH 

6.8, 2% w/v SDS, 10% glycerol, and 0.01% w/v bromophenol blue)(100μl) was used 

to extract the cells with the aid of a cell scraper. Samples were reduced by adding 

dithiothreitol to a final concentration of 50mM, heated to 80
o
C for 10 minutes and 

then run on Novex 4-12% SDS-PAGE gels (Invitrogen, Paisley, UK). Protein 

transfer to nitrocellulose was performed using the Invitrogen X Cell Sure Lock 

apparatus according to standard protocol.  Membranes were probed with the 

following antibodies: anti p38 MAPK phospho Th180/Tyr182 #9219, anti phospho 

p44/42 MAPK (ERK1/2) (Thr202/Tyr204) #9101, anti p44/42 MAPK (ERK1/2) 

(Thr202/Tyr204) #4344, anti COX-2 #4842 (all used at 1:1000 dilution and obtained 

from Cell Signalling Technologies, Danvers, USA), anti SOX9 (used at 1:2000 from 

Chemicon, Hampshire, UK) and anti GAPDH-horseradish peroxidase (HRP) 

conjugate (used at 1:10,000 from Sigma, Dorset, UK). Primary antibodies were 

detected using a HRP-conjugated goat anti-rabbit secondary antibody (Sigma, 

Dorset, UK) at 1:2000 and Western Lightning™ and Western Lightning Plus 

Chemiluminescence reagents (Perkin Elmer, Beaconsfield, USA). 
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Statistical analysis 

Statistically significant differences between gene expression values of control and 

treated cultures were analysed using mixed effects linear regression to allow for 

donors with significant biological variation. Significant changes in t1/2 data was 

performed using paired student t-test. The analyses were undertaken using S-Plus, 

SPSS and Excel software. 

 

RESULTS 

Hyperosmotic dependant increase in SOX9 and COX-2 mRNA 

Hyperosmotic conditions for 5 hours significantly increased SOX9 mRNA in freshly 

isolated human articular chondrocytes (2.5 fold, p=0.0027) (Figure 1a). In addition a 

significant 50-fold increase (p=0.0001) in COX-2 mRNA was also evident in these 

conditions (Figure 1b). Interestingly with western blot analysis there was no 

apparent alteration in either SOX9 or COX-2 protein levels in hyperosmotic 

conditions (data not shown). 

Examining the role of ERK in hyperosmotic loading 

Hyperosmolar loading activates ERK signalling 

Western blot analysis using a phosphorylated p44/42 MAPK specific antibody 

demonstrated an increase in p44/42 activation following 5 hours incubation at 

550mOsm medium in freshly isolated HAC (Figure 1c). This activation of p44/42 in 

hyperosmotic conditions was abolished by addition of U0126, a selective inhibitor 

for the upstream kinase MEK1 and 2, a specific inhibitor of ERK1/2 [43]. 
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Figure 1: Effect of hyperosmotic conditions on SOX9 and COX-2 mRNA. Real time PCR analysis of 

(a) SOX9 mRNA levels and (b) COX-2 mRNA levels in freshly isolated  HAC cultured at 380 or 

550mOsm in the presence or absence of MEK1/2 inhibitor U0126 (10μM) for 5 hours. Data are 

presented as the fold change in expression compared to cells under 380mOsm conditions without the 

inhibitor. Histograms represent means ± SEM (n=6 freshly isolated HAC). Data was evaluated using 

mixed effect linear regression and * # ~ indicates significant difference relative to 380mOsm control. 

Statistical significance is defined for this study as *P<0.05, # P<0.01, ~P<0.001.  
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Figure 1c: Effect of hyperosmotic conditions on SOX9 and phosphorylated p44/42 protein levels in 

freshly isolated HAC. Western blot analysis, using antibodies to phosphorylated p44/42 MAPK and 

SOX9, of cell extracts from freshly isolated HAC which had been cultured in 380 and 550 mOsm 

media with and without the MEK inhibitor U0126 (10μM) for 5 hours. 

ERK signalling reduces SOX9 and COX-2 in normosmolar conditions 

Experiments undertaken in freshly isolated chondrocytes in the presence of the 

MEK1/2 inhibitor; U0126, significantly increased SOX9 and COX-2 gene 

expression in 380mOsm (control) cultures (2 fold, p=0.002 and 7 –fold, p<0.012 

respectively) (Figure 1a and b respectively) but no effect of the inhibitor was seen on 

this gene expression at 550mOsm.  

ERK signalling has no effect on SOX9 mRNA stability 

Interestingly, it has previously been demonstrated that hyperosmotic conditions 

increase the SOX9 mRNA t1/2 which is partially controlled by p38 MAPK signalling 

(Tew et al., 2009). Therefore we investigated the effect of hyperosmolarity and 

MEK-ERK inhibition on the decay of SOX9 mRNA in freshly isolated HAC. Decay 

curves generated using mean values for all donors showed that culture in 550mOsm 

increased the t1/2 of SOX9 mRNA (Figure 2a). To further quantify this we calculated 

the t½ for each donor individually and performed Student t-test analysis on the values 

(Table 1). At control conditions, the t ½ of SOX9 mRNA was 2.9 ±2.3 hours, but this 

was increased to 8.1±3.6 hours when the culture medium was 550mOsm. Statistical 

analysis showed a significant effect of 550 mOsm on the t ½ of SOX9 mRNA in  

freshly isolated HAC (p <0.01). There was no evidence that the MEK1/2 inhibitor, 

U0126 had any effects on SOX9 mRNA stability under either condition. 
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Figure 2: Hyperosmolarity acts post transcriptionally in freshly isolated HAC (a) SOX9 and (b) COX-

2decay in freshly isolated HAC cultured at different osmolarities. HAC were cultured at 380 or 

550mOsm for 2 hours prior to the addition of actinomycin D. RNA was then extracted at time periods 

over 3.5 hours for reverse transcription and analysed by real-time PCR. Histograms represent means ± 

SEM of the fold changes in mRNA levels compared to time point 0 (n=5 for SOX9 and  n=3 for 

COX-2). 

Medium 

Osmolarity 

(mOsm) 

Inhibitor Present Number of 

Donors 

SOX9 mRNA t ½ 

(hours) # 

380 None 5 2.9 (SD2.3) 

550 None 5 8.1 (SD3.6) 

380 U0126 3 3.3 (SD1.4) 

550 U0126 4 8.9 (SD7.9) 

 

Table 1: Half life of SOX9 mRNA in freshly isolated HAC cultured in osmotically defined media, 

with and without the MEK ½ inhibitor, U0126 at 10mM.# Results shown are mean values, with 

standard deviation in brackets. Significant effect of 550 mOsm on SOX9 mRNA t ½ compared to 

380mOsm (p<0.01) tested by Student t-test. 
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In addition an RNA decay curve was also generated for COX-2 using mean values 

for donors, as we wished to determine if COX-2 was post-transcriptionally regulated 

in HAC.  We found that hyperosmolarity also increased the t1/2 of COX-2 mRNA, 

from 3.27±0.9 hours to 16±5.1hours (p<0.05) (Figure 2b). 

Effect of hyperosmolarity on cartilage ECM genes 

We next looked at the gene expression of COL2A1 and aggrecan in freshly isolated 

HAC and found that application of hyperosmotic conditions for a 5 hour period 

resulted in a significant decrease in aggrecan and COL2A1 mRNA (p<0.0012,       

p< 0.0008 respectively). The MEK1/2 inhibitor U0126 (10μM) had no significant 

effect on this decrease although, interestingly, its presence in control cultures 

(380mOsm) elicited a greater than 3-fold increase in COL2A1 (data not shown). 

Effect of static versus cyclic osmotic loading on SOX9 and COX-2 mRNA levels  

We wished to quantify the effects of hyperosmolarity and the MEK1/2 inhibitor 

U0126 on passaged HAC, which are a useful model system given the restricted 

number of freshly isolated chondrocytes that could be studied in a given experiment. 

HAC which were expanded in monolayer to passage 2 (P2), were used to investigate 

the effects of different hyperosmotic loading regimes. To identify whether passaged 

HAC acted in a similar manner to primary cultures of these cells, we initially 

assessed whether static hyperosmotic loading of these cells induced a similar up 

regulation of SOX9 and COX2 in P2 HAC. We identified an induction of SOX9 and 

COX-2 mRNA caused by culture under 550mOsm conditions (3 fold, p <0.003 and 

7-fold p<0.037 respectively) in comparison to that seen at 380mOsm (control). 

We were interested in investigating how the nature of the osmotic load applied to 

cells effected SOX9 expression. In vivo, chondrocytes are subjected to periods of 

cyclical loading which will generate fluid flow and osmotic fluctuations within the 

tissue. First we investigated the effect of exposure to hyperosmolarity (550mOsm), 

for different time periods before returning to control (380mOsm) conditions. During 

a 5 hour experiment, HAC were exposed to hyperosmotic stress for a time period 

ranging from between 10 minutes to 4 hours prior to returning to control conditions 

for the remainder of the 5 hour period. In both freshly isolated HAC and passaged 

HAC there were small but significant increases in SOX9 mRNA when chondrocytes 

were exposed to 550mOsm for 2, 3, 4 and 5 hours (Figure 3). 
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Figure 3: Effect of different hyperosmotic stress loading patterns on SOX9 mRNA in  HAC Real time 

PCR analysis of SOX9 mRNA levels in freshly isolated and passaged  HAC, cultured for different 

amounts of time initially at 550mOsm, prior to culture in 380mOsm media. For example 10 minutes 

denotes the initial time the HAC were exposed to 550 mOsm prior to culture at 380mOsm for a total 

of 5 hours. Passaged HAC had the addition of the ROCK1/2 inhibitor Y27632 (10μM). Data point 5 

hour represents HAC exposed to 550mOsm for the whole time period of 5 hours. Data are presented 

as the fold change in expression compared to cells under 380mOsm conditions. Histograms represent 

means ± SEM for 3 donors. * # ~ indicates significant difference relative to 380mOsm control. 

Statistical significance is defined for this study as *P<0.05, # P<0.01, ~P<0.001.  

There was no statistically significant up-regulation in either cell type when the cells 

were cultured in hyperosmolar conditions for 10, 30 or 60 minutes. Next we 

examined the effect of a cyclical application of hyperosmotic conditions on 

monolayer cultures of P2 HAC. Media was adjusted with periods of 380 or 

550mOsm alternating every 30 (c30) or 60 (c60) minutes over a 5 hour period. 

Chondrocytes cultured in serum-free media at 380mOsm was used as the control as 

we had previously determined that there was no change in SOX9 when media was 

changed for the same osmolarity, every 30 or 60 minutes over a 5 hour period (data 

not shown). At each frequency the final incubation period was under 550mOsm. 

Cyclical application of hyperosmotic conditions up-regulated SOX9 and COX-2 

mRNA more than static application. For SOX9 (Figure 4a) and COX-2 (Figure 4b) 

this was significant at both 30 and 60 minute frequencies (SOX9; 3.25 fold; p=0.03, 

3.75 fold p=0.006 and COX-2; 118fold, p<0.0003 and 78 fold, p<0.003 

respectively). There was no significant difference between the frequencies of 
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cyclingfor either gene. Despite the changes in mRNA levels, when we examined 

SOX9 and COX-2 protein we again found no difference in protein levels. 

4a 

 

4b 

 

Figure 4: Effect of cyclical hyperosmotic loading on passaged HAC Real-time PCR analysis of (a) 

SOX9 mRNA levels and (b) COX-2 mRNA levels in monolayer culture of passage 2 HAC, incubated 

with cyclical application of 380mOsm and 550mOsm every 30 or 60 minutes for the 5 hour period 

with the addition of the ROCK1/2 inhibitor Y27632 (10μM) and either p38 MAPK inhibitor 

SB202190 (20μM) or the MEK1/2 inhibitor U0126 (10μM). In unloaded cultures media was changed 

at the same frequencies to account for possible shear induced effects on the cells during the loading 

period. At each frequency, the final incubation period was under 550mOsm conditions. Histograms 

represent means ± SEM of fold change in expression compared to cells at 380mOsm (n=3). * # ~ 

indicates significant difference relative to 380mOsm control. Statistical significance is defined for this 

study as *P<0.05, # P<0.01, ~P<0.001,represents a trend (P<0.1). 
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 Interestingly exposure of passaged HAC to cyclical hyperosmotic loading did not 

cause a change in the expression of either aggrecan or COL2A1 (data not shown). 

 

Role of MAPK signalling on SOX9 and COX-2 expression following cyclical 

hyperosmotic loading 

We examined the activity of the ERK1/2 pathway in passaged HAC which had been 

exposed to cyclical hyperosmotic stimulation. We found that similarly to the freshly 

isolated chondrocytes, culture in 550mOsm conditions for 5 hours induced p44/42 

MAPK (ERK 1/2) phosphorylation. However, both c30 and c60 cultures had greater 

levels of p44/42 MAPK phosphorylation than that observed under static 

hyperosmotic conditions (Figure 5). We therefore examined the effect of the 

MEK1/2 inhibitor U0126 on the response of the chondrocytes to cyclical osmotic 

loading. Real-time PCR analysis showed that inhibition prevented the further 

increase in SOX9 mRNA caused by cyclical osmotic loading at both time points 

(c30; p=0.02, c60; p=0.005) (Figure 4a). Similarly to SOX9 mRNA, addition of the 

MEK1/2 inhibitor U0126 increased COX-2 mRNA levels in control conditions 

(p<0.001). However, there was also evidence of a variable effect in the presence of 

the  MEK1/2 inhibitor U0126 on COX-2 mRNA in cyclical hyperosmotic loading, 

with a down regulation under c30 conditions (p<0.0001) but an up regulation in c60 

cultures (p<0.001) (Figure 4b).   

 

Figure 5: ERK activation following cyclical hyperosmolar loading  Western blot analysis, using 

phosphorylated p44/42 ERK and GAPDH antibodies, of cell lysates from passage 2 HAC cultured in 

380, 550mOsm media or following cyclical hyperosmotic loading every 30 (c30) or 60 (c60) minutes 

for  5 hours. 2 donors representative of the findings are shown here. 

Phospho p44/42 MAPK 

GAPDH 
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Further western blot analysis using a phosphorylated p38 MAPK specific antibody 

confirmed the previous findings of Tew et al. (Tew et al., 2009)  by identifying an 

increase in activation of p38 MAPK at 550mOsm compared to 380mOsm (control) 

under static hyperosmolar conditions. Cyclical hyperosmolar loading every 60 

minutes led to an increase in p38 MAPK activation compared to control, although 

this was at a much lower level than seen with 5 hours of static hyperosmolar loading. 

There was no identified regulation of p38 MAPK by hyperosmolar loading every 30 

minutes (Figure 6a). Western blot analysis was undertaken, using SOX9 specific 

antibodies. p38 MAPK inhibition with SB202190, but not MEK1/2 inhibition with 

U0126 caused a reduction in SOX9 protein expression in all conditions (Figure 6b). 

 

Figure 6: p38 MAPK activation is required for hyperosmotic induction of SOX9 mRNA in passaged 

HAC (a) Western blot analysis, using phosphorylated p38 MAPK and GAPDH specific antibodies, of 

cell extracts from passage 2 HAC cultured in 380, 550mOsm media or following on-off hyperosmotic 

loading every 30 (c30) or 60 (c60) minutes for a 5 hour period. 2 donors are shown here. (b) Western 

blot analysis, using SOX9 and total p44/42 ERK antibodies of cell extracts from passage 2 HAC 

cultured in 380, 550mOsm media or following on-off hyperosmotic loading every 30 (c30) or 60 

(c60) minutes for a 5 hour period, in the presence of the ROCK1/2 inhibitor Y27632 (10μM) with or 

without the p38 MAPK inhibitor SB202190 or the MEK1/2 inhibitor U0126. The p38 inhibitor 

SB202190 but not the MEK1/2 inhibitor U0126 reduced SOX9 protein expression. The figure 

represents data from 1 of the two independent experiments that produced similar result. 

6a 

6b 
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Following the p38 MAPK  inhibition by SB202190 of cultured P2 HAC, real-time 

PCR analysis showed that this inhibition reduced SOX9 during cyclical loading 

(p<0.0001) (Figure 4a). In addition p38 MAPK inhibition with SB202190 also 

prevented COX-2 induction by hyperosmolarity under both static and dynamic 

loading when compared to controls (p<0.03) (Figure 4b). 

The ROCK1/2 inhibitor Y27632 was present in all passage cell cultures as it had 

previously been demonstrated that an increase in SOX9 mRNA in 550mOsm 

conditions was observed more consistently when the formation of actin stress fibres 

by the cells was prevented (Tew et al., 2009). We wished to identify whether the 

presence of the ROCK1/2 inhibitor Y27632 was indeed required for the 

hyperosmotic induction of SOX9 in passaged chondrocytes. Monolayer culture of 

passaged HAC, for 3 donors was incubated at 380mOsm and 550mOsm for 5 hours 

in the presence or absence of the ROCK1/2 inhibitor Y27632 (10μM).  It was 

identified that the inhibition of actin stress fibres has no significant effect on 

hyperosmolar induction of SOX9 in P2 HAC (data not shown). 

 

DISCUSSION 

The expression of SOX9 is essential for the ability of the chondrocyte to produce 

cartilage matrix (Stokes et al., 2001, Tew et al., 2005). Given the importance of 

SOX9 in the development and maintenance of the chondrocyte phenotype, its 

reduction in OA (Haag et al., 2008, Tew et al., 2005, Aigner et al., 2003, Tchetina et 

al., 2005) may contribute to the cartilage pathology. Cell therapy and tissue 

engineering have the potential to become important treatments in human articular 

repair but suffer a major limitation, as chondrocytes in vitro lose the differentiated 

phenotype (Aulthouse et al., 1989, Lin et al., 2008). Finding ways of regulating 

chondrocyte phenotype is an important goal of cell based therapies and so our 

findings demonstrating means of controlling SOX9 mRNA expression have a 

potential clinical value. The regulation of SOX9 in chondrocytes is beginning to be 

identified. One mechanism for the regulation of SOX9 gene expression is through 

p38 MAPK-dependant signalling leading to post-transcriptional stabilisation of its 
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mRNA. Furthermore medium osmolarity, a known regulator of p38 MAPK, controls 

SOX9 by this mechanism (Tew et al., 2009). This represents one method of 

chondrocyte mechanotransduction. Consequently there is a need to further identify 

other potential mechanisms of control of SOX9 in order to understand more clearly 

how chondrocytes are able to respond to, and regulate, their extracellular 

environment. It is known that SOX9 gene expression is influenced by many different 

signalling pathways (Murakami et al., 2000a, Tavella et al., 2004, Piera-Velazquez et 

al., 2007). In this study, in addition to confirming the role of p38 MAPK during 

osmotic stress, we examined whether MEK-ERK signalling pathway was involved in 

regulating SOX9 in our system. 

We were interested in characterising how loading patterns of hyperosmolarity could 

affect SOX9 expression levels. Osmotic changes will occur in vivo as a consequence 

of mechanical loading. These changes will naturally occur dynamically as water is 

expelled and drawn into the tissue as its levels of load change. It has formerly been 

shown that subjecting chondrocytes to different patterns of osmotic loading affects 

their biosynthetic activity (Urban and Hall, 1994, Borghetti et al., 1995, Urban and 

Bayliss, 1989, Urban et al., 1993) and there is a differential effect of variable 

mechanical loading regimes on the chondrocyte biosynthetic response. Static 

compression has been found to decrease proteoglycan and protein synthesis (Gray et 

al., 1988, Sah et al., 1989, Schneiderman et al., 1986, Korver et al., 1992), while 

dynamic compression at certain frequencies and amplitudes stimulated synthesis of 

these matrix constituents (Korver et al., 1992, Parkkinen et al., 1993, Sah et al., 

1989). Our experiments show that a constant application of hyperosmolarity is not 

necessary for SOX9 mRNA induction. Significant increases in SOX9 gene 

expression were observed after just a 2 hour exposure to hyperosmotic media 

following which the chondrocytes were returned to control conditions for the 

remaining 3 hours. Furthermore, when the HAC are exposed to alternating 

applications of hyperosmotic and control conditions over 5 hours, the induction of 

SOX9 mRNA is significantly higher than that seen following static hyperosmotic 

exposure alone. Whilst these conditions are not meant to precisely simulate the 

osmotic conditions experienced by a chondrocyte in vivo, they do demonstrate that 

chondrocytes are able to perceive periods of hyperosmotic stimulation over differing 

time scales and that repeated applications of these stimuli can enhance their 
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production of factors such as SOX9. A previous study, undertaken using immature 

bovine chondrocytes, showed some evidence of increased aggrecan mRNA 

expression following exposure of the cells to dynamic 0.0017Hz fluctuations in 

osmolarity (Palmer et al., 2001). We examined aggrecan and COL2A1 mRNA 

levels. Although there was no apparent change in the gene expression of these matrix 

genes in cyclical loading of passaged HAC, in our freshly isolated HAC cultures 

hyperosmolarity caused a reduction in their expression agreeing with the majority of 

studies that have noted a decrease in ECM production under static hyperosmotic 

loading (Palmer et al., 2001, Hung et al., 2003, Urban and Bayliss, 1989, 

Schneiderman et al., 1986, Urban et al., 1993). We recently showed that post-

transcriptional control of COL2A1 occurs under hyperosmotic conditions and that 

COL2A1 mRNA is destabilised (Tew et al., 2009). This may explain the reduced 

levels of collagen type II produced by chondrocytes under hyperosmotic conditions. 

Equally, this may be a result of osmotic stress inhibiting translational machinery 

which has been demonstrated in other cell types (Gray et al., 1988, Tew and 

Hardingham, 2006). Indeed, this could account for our failure to detect an increase in 

SOX9 protein levels following 5 hours of hyperosmotic stimulation, a process that 

would appear to be slow in relation to the change in the mRNA levels. Interestingly 

SOX9 protein levels are increased by p38 MAPK signalling but not MEK-ERK 

signalling. We have formerly demonstrated that hyperosmotic culture led to an 

increase in the half life of SOX9 mRNA, a process that is dependent on p38 MAPK 

signalling (Tew et al., 2009), but we have established here, that MEK-ERK 

signalling is not involved. We show here that p38 MAPK inhibition leads to a rapid 

decrease in levels of SOX9 protein within HAC, although when p38 MAPK is 

stimulated, by hyperosmolar loading, no accumulation of SOX9 protein was seen 

within the 5 hour duration of experiments performed.  However, previously we had 

found that hyperosmotic stimulation for 24 hours led to an increase in SOX9 protein 

levels (Tew et al., 2009). It is unclear why there is a difference in this process, 

although it is possible that the narrow range of regulation of SOX9 mRNA produces 

no discernible effect using the detection techniques used here, which may be 

relatively insensitive. There is a much bigger effect on SOX9 destabilisation, and 

hence reduction of cellular levels when p38 MAPK signalling is abrogated. ERK1/2 

has no effect on SOX9 protein production in our system. 
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Both static and cyclic hyperosmotic stimulation led to a rapid increase in ERK1/2 

phosphorylation. Hyperosmotic stress has been previously shown to activate ERK in 

tissue culture in a variety of cells (Terada et al., 1994, Kwon et al., 1995, Itoh et al., 

1994). However, blocking this pathway using the MEK1/2 inhibitor U0126 

demonstrated that the activation of the MEK-ERK pathway is not required for 

hyperosmotic induction of SOX9 mRNA. We were interested to note though that 

control cultures which had been treated with MEK1/2 inhibitor U0126 had 

significantly increased SOX9 mRNA levels. This was not associated with mRNA 

stabilisation and indicates that constant low level ERK activity has a repressive role 

on SOX9 mRNA levels in HAC. Contrasting roles for ERK signalling in SOX9 

regulation have been previously demonstrated. Chick limb mesenchyme showed an 

increase in SOX9 mRNA when treated with the MEK1/2 inhibitor U0126 (Bobick 

and Kulyk, 2004) whilst in young murine primary chondrocytes increased Sox9 

expression, caused by FGF2 stimulation was inhibited by U0126 (Murakami et al., 

2000a). This could suggest that ERK signalling represses basal SOX9 expression but 

may also be a signalling component controlling SOX9 induction under some 

circumstances. Alternatively these results could simply demonstrate a significant 

contrast between the reactions of young murine costal chondrocytes and the 

osteoarthritic HAC which were used in this study.   

It has previously been demonstrated that 550mOsm conditions only induced SOX9 

mRNA in passaged cells when the formation of actin stress fibres by the cells was 

prevented (Tew and Hardingham, 2006) therefore in all our passaged cell 

experiments we co-cultured with the ROCK inhibitor Y27632. However, 

experiments performed at the end of this study did identify that the presence of actin 

stress fibres in these current experiments did not inhibit the identified hyperosmolar 

response. It is unclear why there is a difference between our data and previous 

studies (Tew et al., 2009, Tew and Hardingham, 2006). 

Many cells exist in an environment where osmolarity can fluctuate and have a 

variety of responses, many of which appear to be controlled by a signalling network 

of protein kinases and transcription factors. In mammalian cells hypertonicity 

activates many MAP kinases including ERK1/2 and p38 MAPK. In yeast cells 

although ERK activity is not essential for the transcriptional regulation of BGT1 and 

SMIT, two genes that encode for osmolyte transporters (Kwon et al., 1995), 
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inhibition of MEK1 down regulated TonE-mediated reporter gene expression 

(Nadkarni et al., 1999) and it has been proposed that the activation of ERK pathway 

in hyperosmotically stressed cells serves as a cell survival signal (Michea et al., 

2000). Interestingly studies undertaken in rat nucleus pulposus cells, which produce 

an extracellular matrix similar to that of chondrocytes, have found that exposure to a 

hyperosmotic environment caused an increase in the transcription factor TonEBP 

with a subsequent activation of its target genes including aggrecan (Tsai et al., 2006). 

This transactivation was sensitive to inhibition of ERK and p38 signalling (Tsai et 

al., 2006). Intriguingly, others have demonstrated that MEK-ERK signalling is 

activated in articular chondrocytes at normosmotic conditions exposed to fluid-flow 

leading to a down-regulation of aggrecan (Hung et al., 2000). In the present study, 

the adaptive response of SOX9 to dynamic hyperosmotic loading is reduced by 

MEK-ERK inhibition. Meanwhile, inhibition of p38 MAPK leads to a general down 

regulation of SOX9 mRNA in all cultures and inhibits hyperosmotic induction of 

SOX9 and stabilisation of SOX9 mRNA (Tew et al., 2009). The dynamic 

hyperosmotic loading of HAC is associated with the activation of ERK1/2 above that 

of both control and static hyperosmotic conditions whilst activation of p38 MAPK is 

greatest under static hyperosmotic loading. These results indicate that MEK-ERK 

signalling plays a role in the elevated response of SOX9 mRNA under dynamic 

hyperosmotic loading, whereas the findings with p38 MAPK inhibitor are consistent 

with previous studies where SOX9 mRNA levels are controlled through p38 MAPK-

dependant regulation of its mRNA stability (Tew and Hardingham, 2006). The same 

group recently determined that medium osmolarity, a known regulator of p38 MAPK 

controls SOX9 by the same mechanism(Tew et al., 2009). Results from this study 

suggest that the activation of MEK-ERK signalling is important for the increase in 

SOX9 evident in cyclical hyperosmotic loading. 

We have demonstrated that the regulation of COX-2 under hyperosmotic loading is 

remarkably similar to SOX9. COX-2 has been shown to be regulated by 

hyperosmotic conditions in a number of cells including lipopolysaccaharide-

activated macrophages, (Zhang et al., 1995) renal medullary interstitial cells (Hao et 

al., 2000) and human umbilical vein endothelial cells (Arbabi et al., 2000). In bovine 

articular chondrocytes, hyperosmotic-dependent potentiation of COX-2 occurred 

only in IL-1 stimulated bovine cartilage explants culture (Le et al., 2006). In this 
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study we demonstrate for the first time that COX-2 mRNA is up-regulated in 

hyperosmotic conditions alone. We were interested that COX-2 was regulated post 

transcriptionally by hyperosmotic conditions. Post transcriptional control of COX-2 

mRNA levels is well established and there is good evidence for a role for p38 

MAPK in stabilising COX2 mRNA in response to a number of external stimuli 

including IL-1α, dexamethasone and IL-17 (Miyazawa et al., 1998, Lasa et al., 2000, 

Faour et al., 2001). However, in contrast Thomas et al (Thomas et al., 2002) found 

that p38 MAPK had no effect on COX-2 half-life in chondrocyte cell lines. It will be 

interesting to investigate whether increased stability of COX-2 mRNA evident under 

hyperosmotic conditions is acting through  p38 MAPK mediated post transcriptional 

regulation similar to that described previously in SOX9 (Tew and Hardingham, 

2006).  

Under control conditions the expression of COX-2 mRNA was increased following 

MEK1/2 inhibition. It was also shown that the increase in COX-2 gene expression 

under dynamic hyperosmotic loading was abrogated by p38 MAPK inhibition but 

MEK1/2 inhibition had a variable effect on the hyperosmotic induction of COX-2. 

Nieminen et al (2005) (Nieminen et al., 2005) suggested that the activation of 

ERK1/2 and p38 MAPK pathways are two of the signalling cascades that mediate 

the up regulation of COX-2 expression in HAC exposed to IL-1. However others 

have found that in chondrocytes p38 MAPK signalling alone is involved (Thomas et 

al., 2002). Inhibitors of p38 MAPK and ERK1/2 have been associated with a 

suppression of the hypertonicity stimulated COX-2 expression in cultured medullary 

epithelial cells (Yang et al., 2000). Other reports in human monocytes and RAW264 

macrophages (Jones et al., 1999, Subbaramaiah et al., 2000, Caivano and Cohen, 

2000, Dean et al., 1999, Shalom-Barak et al., 1998) have indicated that p38 MAPK 

and ERK1/2 signalling pathways are involved in the cellular events leading to the 

up-regulation of COX-2 gene transcription. Our findings support a major role for 

p38 MAPK in the hyperosmotic induction of COX-2; however our results indicate 

that the role of MEK-ERK signalling is more complex. As mentioned previously, 

under normosmotic conditions MEK-ERK signalling results in a reduction in COX-

2. This may indicate that constant low-level ERK activity has a repressive role on 

COX-2 mRNA levels in HAC. The variable effect of the signalling cascade on the 

up-regulation of COX-2 under cyclical osmolar loading requires further investigation 
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as these findings are in contrast to our studies in freshly isolated HAC grown as 

monolayers where MEK-ERK signalling had no affect on the increase in COX-2 

mRNA evident under static hyperosmotic conditions. It would be interesting to 

further investigate the role of hyperosmotic stress in the regulation of COX-2 in 

normal HAC. 

In summary we have shown that, in freshly isolated HAC, hyperosmolarity increases 

SOX9 mRNA and that induction is highest when osmolarity is cyclically applied. 

MEK-ERK signalling has a role in controlling SOX9 gene expression under normal 

osmotic conditions but is not involved in SOX9 regulation by static hyperosmotic 

stimulation. However, MEK-ERK signalling does control the enhanced SOX9 

mRNA response to cyclical osmotic variation.  We have demonstrated that COX2 is 

regulated in these cells in a similar way to SOX9 with a role for post-transcriptional 

regulation following exposure to increased osmolarity. 
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APPENDIX TO MANUSCRIPT 1 

 

Introduction 

A useful model system given the restricted number of freshly isolated chondrocytes 

that could be obtained from HAC derived from knees from total knee replacement 

surgery was passaged chondrocytes. HAC expanded in monolayer to passage 2 (P2) 

were therefore used in some of the experiments in this thesis. The effects of 

hyperosmolarity and the MEK1/2 inhibitor U0126 on passaged HAC,were 

demonstrated by undertaking identical studies, over a 5 hours, for static 

hyperosmotic loading in freshly isolated and passaged HAC. This was in order to 

assess whether static hyperosmotic loading of these cells induced a similar up 

regulation of SOX9 in P2 HAC and in addition to determine the effect of the ME1/2 

inhibitor U0126.  

Materials and Methods 

Materials and methods were as described in the previous manuscript. 

Results 

Hyperosmotic (550mOsm) conditions significantly increased SOX9 in passaged 

chondrocytes (3 fold, p<0.003) in comparison to controls as described previously 

(Manuscript 1). In passaged cells there was a reduction in SOX9 mRNA gene 

expression when the MEK1/2 inhibitor U0126 was present (50% reduction, 

p<0.008). 
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Figure 1: Effect of static hyperosmotic loading on SOX9 mRNA expression in freshly isolated (n=6) 

and passaged HAC (n=3). Histograms represent means ± SEM of fold change in expression compared 

to cells at 380mOsm. # ~ indicates significant difference relative to 380mOsm control where 

statistical significance is defined for this study as # P<0.01, ~P<0.001. Hyperosmotic conditions 

significantly increased SOX9 mRNA levels in freshly isolated cells and passaged cells (P<0.001 and 

P<0.003 respectively). In freshly isolated chondrocytes overall there was a trend for the MEK1/2 

inhibitor U0126 (10μM) to increase SOX9 gene expression (P<0.06), however there was a significant 

statistical interaction, with the MEK1/2 inhibitor causing a significant increase in SOX9 in 380mOsm 

alone (P<0.002). In passaged cells there was a significant reduction in both osmotic conditions 

(P<0.008).  

 

Discussion 

In primary cells it would appear that the effect of ERK1/2 signalling on the 

expression of SOX9 mRNA is dependent upon the osmolarity of the media to which 

the chondrocytes are exposed. Although this alteration in fold change of SOX9 is 

small, changes in SOX9 mRNA gene expression in chondrocytes are restricted and 

the importance of small changes is evident from mouse Sox9 knock-out/knock-in 

studies (Akiyama et al., 2004). In contrast in passaged cells, which have lost their 

chondrocyte phenotype and become more fibroblastic in appearance, it seems that 
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the presence of ERK1/2 signalling has a positive effect on SOX9 induction. These 

differences would suggest that the mode of regulation is dependent upon the 

differentiation state of the cell.  
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Abstract 

Introduction SOX9 is a transcription factor required for cartilage formation and is 

essential for cartilage extracellular matrix (ECM) formation. Osteoarthritis (OA) is 

characterized by a loss of ECM. In human SOX9 gene expression is regulated by 

osmotic loading. Here we characterize SOX9 and COX-2 mRNA regulation through 

static and cyclical application of hyperosmotic conditions in normal and 

osteoarthritic monolayer cultures of equine chondrocytes. The roles of ERK1/2 and 

p38 MAPK pathways were investigated using pharmacological inhibition to identify 

mechanisms of SOX9 regulation. 

Methods Equine chondrocytes harvested from normal or OA joints were subjected 

to different osmotic loading patterns in monolayer culture as either primary (P0) or 

passaged (P2) cells. The involvement of p38 MAPK and MEK-ERK signalling was 

determined by using pharmacological inhibitors; SB212190 (p38 MAPK inhibitor, 

20 µM) and U0126 (MEK1/2 inhibitor, 10 µM). SOX9 mRNA stability for freshly 

isolated cells was determined by measuring decay following administration of 1μM 

actinomycin D. Levels of transcripts encoding SOX9, COX-2, Col2A1 and aggrecan 

were measured using qRT-PCR. De novo glycosaminoglycan (GAG) synthesis of 

explants was determined with 
35

S sulphate during static hyperosmolar loading. 

Statistical analyses were undertaken using S-Plus, SPSS and Excel software. 

Results Static hyperosmotic conditions significantly reduced SOX9 mRNA but 

increased COX-2 mRNA in normal P2 and OA P0 but not normal P0 chondrocytes. 

Cyclical loading of normal P2 and OA P0 but not normal P0 cells led to an increase 

in SOX9 gene expression and this was prevented by both p38 MAPK and MEK1/2 

inhibition. In these cells there was no effect on COX-2 mRNA of cyclic 

hyperosmolar loading although p38 MAPK signalling reduced COX-2 expression. 

Static hyperosmolar loading in explants increases GAG synthesis and this was 

reduced by ERK inhibition. 

Conclusions The response to osmotic loading of SOX9 and COX-2 mRNA is 

dependent on the nature of the osmotic stimulation and the chondrocyte phenotype. 

The p38 MAPK and ERK1/2 pathways are involved in the adaptive response in 

SOX9 regulation, to cyclical osmotic loading in normal P2 and OA P0 chondrocytes. 
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Thus the response of chondrocytes from OA cartilage is significantly different from 

that of normal chondrocytes suggesting that altering sensing of the osmotic 

environment and inappropriate responses of the resident cell population may be 

important in disease progression.  

Introduction 

The surfaces of long bones within diarthrodial joints is lined with articular cartilage, 

an avascular connective tissue that provides a nearly frictionless bearing surface for 

transmitting and distributing mechanical loads between the bones of the skeleton 

(Mow et al., 1992). The unique load bearing properties of articular cartilage are 

dependent upon its structural composition and organization, particularly the 

interactions between collagens and proteoglycans of the extracellular matrix (ECM) 

(Poole et al., 2001). These matrix macromolecules are turned over by chondrocytes 

embedded within the cartilage. Chondrocytes utilise mechanical signals (Guilak et 

al., 1999), such as mechanical loading and local osmotic environment (Schulz and 

Bader, 2007), in conjunction with environmental and genetic factors to regulate their 

metabolic activity (Guilak, 2000). During loading, water is expressed from articular 

cartilage causing the matrix to deform and the proteoglycan concentration to increase 

due to water loss which, along with elevated mobile cation concentration exposes the 

chondrocytes to a hypertonic environment. Thus physiologically, load bearing 

cartilages experience changes in extracellular ion composition and hence osmotic 

pressure under cyclic and static loading (Urban and Bayliss, 1989). 

 Progressive degeneration of articular cartilage leads to joint pain and dysfunction 

that is clinically identified as osteoarthritis. Under normal circumstances, there is 

equilibrium between matrix deposition and degradation; however this equilibrium is 

disrupted in OA leading to the excessive degradation of matrix and progressive loss 

of important matrix components such as collagen and aggrecan (Martel-Pelletier et 

al., 1994, Poole et al., 1993). In early OA, disruption of the collagen network results 

in an increase in water content of the tissue (Guilak et al., 1994, Maroudas, 1976) 

and a corresponding decrease in pericellular osmolarity (Maroudas et al., 1985). PG 

loss in later stage OA further exacerbates osmotic perturbations resulting in a 

decrease in interstitial osmolarity (Venn and Maroudas, 1977). Under loading OA 

chondrocytes are subject to greater variations in osmolarity than normal 
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chondrocytes due to an increase in the rate and extent of fluid loss in this swollen 

cartilage (Hopewell and Urban, 2003, Bush and Hall, 2005). 

 The effects of osmolarity on chondrocyte ECM synthesis have been undertaken in a 

number of studies with differing outcomes. These studies have shown that 

proteoglycan synthesis can be reduced in the presences of hyper-, or hypo-osmotic 

conditions (Hopewell and Urban, 2003, Schneiderman et al., 1986, Palmer et al., 

2001, Urban and Hall, 1994, Urban et al., 1993). A reduction in COL2A1 gene 

expression has also been identified as a consequence of hyperosmotic conditions 

(Tew et al., 2009, Urban and Bayliss, 1989, Urban et al., 1993). A further study 

demonstrated that the application of dynamic hypo-osmotic conditions caused an 

increase in cartilage ECM genes (Chao et al., 2006).  The mitogen activated protein 

kinases (MAPK); extracellular signal-regulated protein kinase (ERK) and p38 

mitogen-activated protein kinase (p38 MAPK) have been implicated in the adaptive 

responses of chondrocytes to hyperosmotic conditions (Hopewell and Urban, 2003). 

The  MAPK families are a cell signalling transduction pathway which connect 

extracellular signals to intracellular responses such as gene expression in eukaryotic 

cells (Yang et al., 2003). Both p38 MAPK and Jun N-terminal Kinase (JNK) 

signalling pathways have previously been implicated in osmotic stress signalling in 

studies in yeast and many mammalian cells (Sheikh-Hamad and Gustin, 2004, 

Brewster et al., 1993, Galcheva-Gargova et al., 1994, Rouse et al., 1994, Capasso et 

al., 2001).  

SOX9 is an essential transcription factor controlling the expression of many cartilage 

ECM genes including collagen type II (Bell et al., 1997) and aggrecan (Bi et al., 

1999, Sekiya et al., 2000). Campomelic dysplasia, a severe syndrome caused by 

inadequate cartilage formation during development, is due to a haploinsufficiency of 

SOX9 and underlines its importance to the chondrocyte phenotype (Foster et al., 

1994, Wagner et al., 1994). One of the mechanisms responsible for the control of 

SOX9 expression in chondrocytes is the p38 MAPK-dependant regulation of its 

mRNA stability (Tew et al., 2009, Tew and Hardingham, 2006). Further studies have 

concluded that human articular chondrocytes (HAC) exposed to hyperosmotic 

culture resulted in an increase in the stability of SOX9 mRNA, a process which was 

also sensitive to p38 MAPK inhibition (Tew et al., 2009).  
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Another gene COX-2 has also been identified as being regulated by osmolarity. 

Hyperosmolarity stimulates COX-2 expression in  activated chondrocytes (Le et al., 

2006) in addition to cultured medullary epithelial cells (Yang et al., 1999), colonic 

epithelium (Arbabi et al., 2001) and kupffer cells (Zhang et al., 1995).  COX-2 is a 

bifunctional enzyme with both oxygenase and peroxidase activities, responsible for 

the formation of prostanoids (Needleman et al., 1986). IL-1 stimulated HAC have 

been shown to express COX-2 mRNA and protein (Geng et al., 1995). Additionally 

there is a superinduction of COX-2 in human OA cartilage and aberrant expression 

of COX-2 protein in articular tissues
 
is a feature of arthritis (Kang et al., 1996, Amin 

et al., 1997, Sano et al., 1992). Furthermore studies in animal models
 
demonstrated 

that COX-2 expression was detected in inflamed,
 
but not normal, paw tissue from 

rats with adjuvant-induced arthritis
 
(Anderson et al., 1996, Sano et al., 1992). The  

involvement of the intracellular signalling proteins p38 MAPK and ERK in inducing 

COX-2 gene expression has also been reported (Chen et al., 2001). Moreover,   

COX-2 mRNA stability at the post-transcriptional level is necessary for maximal 

COX-2 expression (Newton et al., 1997, Inoue et al., 1995).  

 Few studies have been undertaken comparing the effects of hyperosmotic loading on 

normal versus OA chondrocytes, which are known to undergo changes in phenotype. 

Hence, the objective of this study was to compare the response to hyperosmotic 

loading of cultured normal and OA primary chondrocytes. In addition we also 

wished to identify whether the altered phenotype demonstrated in passaged 

chondrocytes effects SOX9 and COX-2 gene expression during hyperosmotic 

loading. The response of articular cartilage to loading is a complex phenomenon due 

to numerous factors related to the mechanical strain of the tissue. Therefore models 

in which individual physical phenomena can be studied separately are important in 

revealing the cellular mechanisms of joint loading. With this in mind our present 

study was performed to explore the effects of osmolarity on SOX9 and COX-2 

expression and the biosynthetic response, by examining whether the activation of the 

p38 MAPK or ERK signalling pathways were required. As data from compressive 

loading experiments clearly indicate that dynamic compression of cartilage produces 

increases in ECM synthesis by chondrocytes (Sah et al., 1989) we also examined the 

nature of the osmotic load applied to cells. We found that the nature of the response 
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to osmotic loading of SOX9 and COX-2 mRNA is dependent on the character of the 

osmotic stimulation and on the chondrocyte phenotype. 

Materials and methods 

Chondrocyte isolation, expansion and culture 

Equine articular cartilage was obtained from the surfaces of metacarpophalangeal 

joints of skeletally mature horses with grossly normal or arthritic joints. OA joints 

were derived from clinically diagnosed cases following euthanasia, which on visual 

inspection exhibited typical patterns of cartilage fibrillation and erosion. Sample 

collection was subject to institutional ethical review. Isolation of chondrocytes has 

been described previously (Tew et al., 2008a). Chondrocytes were grown as 

monolayers in Dulbecco’s modified eagles medium (DMEM) (Invitrogen, Paisley, 

UK), supplemented with 10% foetal calf serum (FCS), 100 units/ml penicillin, 

100μg/ml streptomycin (all from Invitrogen, Paisley, UK) and 500ng/ml 

amphotericin B (BioWhittaker, Lonza, USA).  Experiments were undertaken using 

either freshly isolated chondrocytes plated at 100,000 cells/cm
2
 within 48 hours, or 

with cells at the end of passage 2 (with a 1:2 split ratio). Experiments were replicated 

using cells from different donors. In order to elucidate the effects of medium 

osmolarity on the cells they were grown for 5 hours in serum-free and antibiotic-free 

DMEM containing either 207mM NaCl or 527mM NaCl in order to yield 380mOsm 

or 550mOsm solutions. Following production of the defined media a freezing point 

depression osmometer (Loser, Berlin, Germany) was used in order to check the 

osmolarity was within an acceptable range of +/- 2% variation. The use of these 

osmolarities was based upon previous experiments in bovine articular cartilage 

where 380mOsm, used as a control, is close to that experienced by healthy 

chondrocytes in-situ, and 550mOsm represented a hyperosmotic condition similar to 

that experienced by chondrocytes under load (Hopewell and Urban, 2003, Urban et 

al., 1993). Previously it has been demonstrated that an increase in SOX9 mRNA in 

550mOsm conditions was observed when the formation of actin stress fibres by the 

cells was prevented in the presence of the ROCK1/2 inhibitor Y27632 (Tew et al., 

2009). Therefore passaged cultures were supplemented with 10μM of the ROCK1/2 

inhibitor Y27632 (Calbiochem, Nottingham, UK). Where necessary, cultures were 

supplemented with the MEK1/2 inhibitor U0126 or the p38 MAPK inhibitor 
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SB202190 at doses which have been shown to maximally inhibit the MEK-ERK; 

10μM (data not shown) or p38 MAPK; 20μM (Tew et al., 2009) signalling pathways 

(both Sigma- Aldrich, Dorset, UK), for  2 hours prior to the commencement of 

experiments.  

Gene Expression analysis 

Total RNA was prepared from monolayer cultures in 12 well culture plates using 

0.5ml Tri Reagent (Ambion, Warrington, UK) per well. The Guanidium-thiocyanate-

phenol-chloroform extraction technique was used as previously described 

(Chomczynski and Sacchi, 1987). M-MLV reverse transcriptase and random 

hexamer oligonucleotides were used to synthesize cDNA from RNA (both from 

Promega, Southampton, UK) in a 25μl reaction. 1μl aliquots were amplified by PCR 

in 20μl reaction volumes on an ABI 7700 Sequence Detector using either a SYBR 

Green PCR mastermix or a Taqman mastermix were appropriate (Applied 

Biosytems, Warrington, UK). The fitness of GAPDH as a valid normalisation factor 

under different osmolarities has been previously established by our laboratory (Tew 

et al., 2009) (see Appendix 1). Relative expression levels were normalized to 

GAPDH and calculated using the 2
-Ct

 method (Livak and Schmittgen, 2001). 

Primers and probes for SOX9 and GAPDH were designed by Applied Biosystems 

Assays-by-Design and had the following sequences: SOX9  Forward; CGC-CGA-

AGC-TCA-GCA-AGA, Reverse; CGC-TTC-TCG-CTC-TCG-TTCA, Probe; CAA-

GCT-CTG-GAG-ACT-GC; GAPDH Forward; ACT-GGT-GTC-TTC-ACT-ACC-

TTG-GA, Reverse; AGC-AGA-GAT-GAT-GAC-CCT-TTT-GG; Probe; AAG-

TGA-GCC-CCA-GCC-TT. For determination of aggrecan, collagen II (COL2A1) 

and cyclo-oxygenase (COX-2), SYBR Green detection was used and primers were 

obtained from Eurogentec (Seraing, Belgium). The primer sequences for aggrecan 

were designed in Primer Express (Applied Biosystems) software and were: Forward; 

AGG-AGC-AGG-AGT-TTG-TCA-ACA; Reverse; CCC-TTC-GAT-GGT-CCT-

GCT-AT. The sequences for  COL2A1 (Taylor and Pinchbeck, 2008) and COX-2 

(Figueiredo et al., 2009) have been previously reported. GAPDH primer sequences 

used in mRNA stability experiments have been reported formerly (Taylor and 

Pinchbeck, 2008). All primers used were predicted to cross exon boundaries. For 

decay experiments freshly isolated equine articular cartilage was grown in 
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monolayers and treated under experimental conditions for 2 hours before the 

addition of 1μM of the transcription inhibitor actinomycin D (Sigma- Aldrich, 

Dorset, UK).  Decay of SOX9 mRNA was then measured following extraction of 

purified total mRNA at a number of time points 0-3 hours later. This was reverse 

transcribed and real-time PCR undertaken; decay curves were generated using 

GAPDH as a normalisation factor. Data was plotted on semi-log charts and 

exponential regression lines generated in Microsoft Excel. The slope (m) of the 

regression lines were used to calculate the mRNA half life (t1/2) using the equation 

t1/2 = ln (2)/m. 

 

Quantification of proteoglycan  

GAG synthesis was quantified by measuring the incorporation of radioactive 
35

S 

sulphate into GAGs. Cartilage explants were obtained from mature grossly normal 

metacarpophalangeal joints of horses following institutional ethical review. Full 

thickness cartilage was excised and cut into 3mm diameter explants from the entire 

surface of P1 from 3 donors. The explants were gently blotted on sterile gauze pads 

and weighed in pre-weighed sterile eppendorf tubes. They were then transferred into 

DMEM (Invitrogen, Paisley, UK), supplemented with 10% FCS, 100units/ml 

penicillin, 100μg/ml streptomycin (all from Invitrogen, Paisley, UK) and 500ng/ml 

amphotericin B (BioWhittaker, Lonza, USA) and maintained in 12-well culture 

plates for 48 h at 37°C in a 5% CO2 incubator, as this has been shown to be 

sufficient time for synthetic activity to reach equilibrium after harvesting (Gray et 

al., 1989).  To evaluate the effect of osmotic loading and MEK-ERK signalling on  

de novo GAG synthesis cartilage explants were labelled in DMEM containing 

2μCi/μl of 
35

S sulphate ( MP Biomedicals Inc, Irvine , USA) at either 380 or 

550mOsm and where appropriate with the MEK1/2 inhibitor U0126 (10μM) and 

cultured for 24 hours. Sulphate incorporation was determined following papain 

digestion of the explants as described previously (Homandberg et al., 1992b). 

Unincorporated radiolabel was separated  from macromolecular products in all 

samples using PD-10 size exclusion columns (GE Healthcare Lifesciences, 

Amersham, UK) eluted in phosphate-buffered saline (Sigma-Aldrich, Dorset, UK) 

(Barker and Seedhom, 2001). The 
35

S sulphate radioactivity was measured by liquid-

scintillation counting (1410 liquid-scintillation counter; Wallac Oy, Turku, Finland) 



78 
 

of aliquots from void volume fractions. Total sulphate incorporation rate was 

calculated for the 
35

S
 
sulphate incorporation rate and normalized to wet weight. The 

sulphate incorporation rate is expressed as counts per minute per mg wet tissue. 

Statistical analysis 

Statistically significant differences between gene expression values of control and 

treated cultures were analysed using mixed effects linear regression to allow for 

donors with significant biological variation. Significant changes in t1/2 data was 

performed using paired student t-test. The analyses were undertaken using S-Plus, 

SPSS and Excel software. 

Results 

Effect of hyperosmotic loading on SOX9 and COX-2 gene expression 

Equine articular chondrocytes grown or expanded in monolayer from normal or OA 

joints were exposed to static hyperosmolar loading of 550mOsm for a 5 hour period 

in order to determine the effect of hyperosmotic stress on SOX9 mRNA expression. 

Culture media with an osmolarity of 380mOsm was used as the control condition. 

The ROCK1/2 inhibitor Y27632 was present in all passaged cell cultures as it had 

previously been demonstrated that an increase in SOX9 mRNA in 550mOsm 

conditions was observed more consistently when the formation of actin stress fibres 

by the cells was prevented. (Tew et al., 2009). We wished to identify whether the 

presence of the ROCK inhibitor Y27632 was indeed required for the hyperosmotic 

induction of SOX9 in passaged chondrocytes. Monolayer culture of passaged HAC, 

for 3 donors was incubated at 380mOsm and 550mOsm for 5 hours in the presence 

or absence of the ROCK1/2 inhibitor Y27632 (10μM).  It was identified that the 

inhibition of actin stress fibres has no significant effect on hyperosmolar induction of 

SOX9 in P2 HAC (data not shown). 
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Figure 1: Effect of static hyperosmotic loading and the MEK1/2 inhibitor U0126 on SOX9 and 

COX-2 mRNA in equine articular chondrocytes Real time PCR analysis of (a) SOX9 mRNA 

levels and (b) COX-2 mRNA in monolayer culture of normal freshly isolated (P0), passaged normal 

(P2) and OA P0 chondrocytes cultured at 380 or 550mOsm in the presence or absence of the MEK1/2 

inhibitor U0126 for 5 hours. In addition Y27632 (10μM) was present in cultures of normal P2. Data 

are represented as the fold change in expression compared to cells under 380mOsm conditions and 

without the inhibitor. Histograms represent means ± SEM. Data were evaluated using mixed effect 

linear regression and # ~ indicates significant difference relative to 380mOsm control. Statistical 

significance is defined for this study as # P<0.01, ~P<0.001 (n=3). 
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statistically significant. No change in COX-2 gene expression was evident.   In 

contrast, in P2 normal and P0 OA chondrocytes static hyperosmotic loading 

significantly reduced SOX9 mRNA (Figure 1a) (65%±2.0; p=0.0004, 55%±1.0; 

p=0.0096). Additionally COX-2 mRNA was increased in normal P2 and OA P0 

chondrocytes under these conditions (24 fold, p=0.005; 7 fold, p=0.0054) (Figure 

1b).  

Examining the role of ERK in hyperosmotic loading 

In normal P0 chondrocytes only, MEK1/2 inhibition with U0126 significantly 

reduced SOX9 mRNA under both normosmolar and hyperosmolar conditions (50% 

and 80% respectively, p=0.0003) (Figure 1a). Moreover MEK1/2 inhibition in OA 

P0 chondrocytes reduced COX-2 expression under static hyperosmotic conditions (2 

fold, p=0.006) (Figure 1b). 

Previously we found in HAC derived from OA tissue, that hyperosmotic conditions 

led to an increase in the half life of SOX9 mRNA, a process which is sensitive to 

p38 MAPK (Tew et al., 2009). We were therefore interested in identifying whether 

ERK1/2 affects this same mechanism in freshly isolated normal equine articular 

chondrocytes. Decay curves generated using mean values for all donors showed that 

culture in 550mOsm increased the t1/2 of SOX9 mRNA (Figure 2). To further 

quantify this we calculated the t½ for each donor individually and performed mixed 

effects linear regression analysis on the data (Table 1). At 380mOsm, the t1/2 of 

SOX9 mRNA was 2.2 ±0.18hours; this was increased to 5.8±1.88 hours when the 

culture medium was 550mOsm. However statistical analysis identified that this 

increase did not reach statistical significance. The MEK1/2 inhibitor U0126 had no 

effect on the t½ of SOX9. Taken together these data suggest counter-intuitively that 

while 550mOsm conditions increase the stability of SOX9 mRNA there was a 

paradoxical reduction in SOX9 gene expression. Moreover in normal P0 

chondrocytes MEK-ERK signalling increases SOX9 and COX-2 mRNA. 
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Figure 2: Decay curve for SOX9 in freshly isolated equine articular chondrocytes SOX9 decay in 

freshly isolated equine articular chondrocytes cultured at different osmolarities. Chondrocytes were 

cultured at 380 or 550 mOsm for 2 hours prior to the addition of actinomycin D. RNA was then 

extracted in triplicate at time periods over 3.5 hours for reverse transcription and analysed by real-

time PCR. Data represents the means and standard errors of the fold changes in SOX9 mRNA levels 

compared to time point 0 for three donors 

 

Osmolarity 

(mOsm) 

Inhibitor U0126 

(10μm) 

Mean Half Life 

(Hours) 

Standard Error 

380 - 2.2 0.81 

550 - 5.8 1.88 

380 + 3.4 1.05 

550 + 3.05 1.07 
 

Table 1: Half life of SOX9 mRNA in freshly isolated chondrocytes cultured in osmotically 

defined media with, or without the MEK 1/2 inhibitor U0126 (10μM). Results demonstrated that 

although there was an increase in the t ½  in 550mOsm conditions this was not statistically significant 

compared to 380 mOsm tested by mixed effects linear regression (Data represents 7 donors). 
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MEK1/2 inhibitor U0126 in the cultures significantly reduced this effect at 

550mOsm (32%; p=0.03) (Figure 3). These results suggest that hyperosmotic 

loading for 24 hours increases GAG synthesis and this is dependent on MEK-ERK 

signalling. Next to define further the downstream effects of static hyperosmolar 

loading on normal and OA chondrocytes, we investigated the expression of the 

cartilage matrix genes COL2A1 and aggrecan, known downstream targets of SOX9. 

In normal P0 chondrocytes during static hyperosmotic loading for a 5 hour period no 

difference in the expression of the two genes was evident. However there was a 

reduction in COL2A1 in normal P2 chondrocytes (3 fold, p=0.045) and an increase 

in aggrecan mRNA in OA P0 chondrocytes (3 fold, p=0.05).  

 

 

Figure 3: Sulphate incorporation rate 24 hours post hyperosmotic loading Radioactive 
35

S  

sulphate incorporation rate was determined in normal equine cartilage explants obtained aseptically 

from the metacarpophalangeal joints of skeletally mature equines. Explants were cultured in 

380mOsm or 550mOsm with or without the presence of the MEK/ERK inhibitor U0126 and labelled 

with 
35

S sulphate for 24 hours. The incorporated radiolabel in the newly synthesized matrix 

macromolecules was then measured and normalized to wet weight of the explants. Histograms 

represent means ± SEM. Data were evaluated using mixed effect linear regression and * indicates 

significant difference relative to 380mOsm control. Statistical significance is defined for this study as 

P<0.05 (n=3). 
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Effect of cyclical hyperosmotic loading on SOX9 and COX-2 expression   

It is known that in vivo, chondrocytes are subjected to periods of cyclical loading 

which will generate fluid flow and osmotic fluctuations within the tissue (Urban and 

Bayliss, 1989). Therefore we examined the effect of a cyclical application of 

hyperosmotic conditions on monolayer cultures of normal P0, normal P2 and OA P0 

chondrocytes. Media was adjusted to 550mOsm or with periods of 380 or 550mOsm 

alternating every 30 (c30) or 60 (c60) minutes. At each frequency the final 

incubation period was under 550mOsm. In P0 normal chondrocytes dynamic 

hyperosmolar loading had no affect on SOX9 mRNA. However in normal P2 and 

OA P0 there was an increase in SOX9 mRNA of 2-3 folds. This was only 

statistically significant for OA P0 chondrocytes when the culture media was changed 

every 60 minutes (p=0.017) though a trend was evident for OA P0 at changes every 

30 minutes (p=0.07). There was no increase in COX-2 during on-off loading for a 5 

hour period in normal P0, normal P2 or OA P0 chondrocytes (Figure 4). 

 

Figure 4: Effect of cyclical hyperosmotic loading on SOX9 mRNA in equine articular 

chondrocytes Real-time PCR analysis of SOX9 mRNA levels in monolayer culture of freshly isolate 

(P0), passaged normal and OA P0 equine articular chondrocytes incubated with cyclical application of 

380mOsm and 550mOsm every 30 or 60 minutes for the 5 hour period. In control cultures of 

380mOsm media was changed at the same frequencies to account for possible shear induced effects 

on the cells during the loading period. At each frequency, the final incubation period was under 

550mOsm conditions. In addition Y27632 (10μM) was present in cultures of normal P2. Data are 

represented as the fold change in expression compared to cells under 380mOsm conditions and 

without the inhibitor. Histograms represent means ± SEM. Data were evaluated using mixed effect 

linear regression and * indicates significant difference relative to 380mOsm control. Statistical 

significance is defined for this study as P<0.05 (n=3). 
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Matrix gene expression (Col2A1 and aggrecan) was then investigated during cyclic 

hyperosmotic loading experiments. No change in matrix gene expression was 

evident in normal P0, P2 or OA P0 chondrocytes.  

 

Effects of p38 MAPK and MEK1/2 inhibition on SOX9 and COX-2 gene 

expression in cyclic hyperosmotic loading  

Having identified a role for MEK-ERK signalling in SOX9 expression in static 

hyperosmotically loaded normal P0 chondrocytes and following our previous 

findings that p38 MAPK activity is a requirement in HAC for hyperosmotic 

stimulation of SOX9 mRNA (Tew et al., 2009), further experiments were undertaken 

in order to determine if p38 MAPK or MEK-ERK signalling would affect SOX9 or 

COX-2 during cyclic hyperosmotic loading.  Real time PCR determined that 

although cyclic hyperosmotic loading over a 5 hour in normal P0 chondrocytes 

demonstrated  no affect of p38 MAPK inhibition,  MEK1/2 inhibition significantly 

reduced  SOX9 gene expression in all conditions (>50 %, p<0.0005) (Figure 5a).  

The presence of p38 MAPK or MEK1/2 inhibitors in cultures of both normal P2  and 

OA P0 chondrocytes prevented the increase in SOX9 mRNA evident at cyclic 

loading (normal P2 chondrocytes U0126;  77%; p=0.001, SB202190; 88%; 

P=0.0001 and OA P0 chondrocytes U0126; 50%; p=0.044, SB202190; 35%; 

p=0.016) (Figure 5a and 5b respectively). These findings indicate that the p38 

MAPK and MEK-ERK signalling pathways are necessary for the elevation of SOX9 

mRNA evident in cyclic hyperosmotic loading of normal P2 and OA P0 

chondrocytes. 
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Figure 5: Elevated SOX9 mRNA associated with cyclical hyperosmotic loading of normal P0, 

normal P2 and OA P0 chondrocytes is reduced by the presence of either the MEK1/2 inhibitor 

U0126 or the p38 MAPK inhibitor SB202190. Real-time PCR analysis of SOX9 mRNA levels in 

monolayer culture of normal P0, P2 and OA P0 , with cyclical application of 380mOsm and 

550mOsm every 30 or 60 minutes for the 5 hour period, with or without the presence of either (a) 

MEK1/2 inhibitor U0126(10μM) or (b) p38 MAPK inhibitor SB202190 (20μM). At each frequency, 

the final incubation period was under 550mOsm conditions. In addition Y27632 (10μM) was present 

in cultures of normal P2. Data are represented as the fold change in expression compared to cells 

under 380mOsm conditions and without the inhibitor. Histograms represent means ± SEM. Data were 

evaluated using mixed effect linear regression and * # ~ indicates significant difference relative to 

380mOsm control. Statistical significance is defined for this study as *P<0.05 # P<0.01, ~P<0.001 

(n=3). 
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p38 MAPK inhibition reduced COX-2 in normal P0, normal P2 and OA P0 

chondrocytes (p=0.0001, p=0.0001 and p=0.033 respectively) (Figure 6). In contrast 

the addition of MEK1/2 inhibitor had no effect on COX-2 mRNA (data not shown). 

These findings indicate that 550mOsm culture conditions have no effect on COX-2 

mRNA in normal P0 chondrocytes irrespective of its application, however in normal 

P2 and OA P0 chondrocytes static but not dynamic hyperosmotic loading 

significantly increases COX-2 gene expression. In addition p38 MAPK signalling 

has a role in the regulation of COX-2 gene expression. 

 

 

Figure 6 : COX-2 gene expression in cyclical hyperosmotic Real-time PCR analysis of SOX9 

mRNA levels in monolayer culture of normal P0, P2 and OA P0 , with cyclical application of 

380mOsm and 550mOsm every 30 or 60 minutes for the 5 hour period, with or without the presence 

of either the p38 MAPK inhibitor SB202190 (20μM). At each frequency, the final incubation period 

was under 550mOsm conditions. In addition Y27632 (10μM) was present in cultures of normal P2. 

Data are represented as the log of the fold change in expression compared to cells under 380mOsm 

conditions and without the inhibitor. Histograms represent means ± SEM. Data were evaluated using 

mixed effect linear regression and * ~ indicates significant difference relative to 380mOsm control. 

Statistical significance is defined for this study as * P<0.05, ~P<0.001 (n=3). 
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Discussion 

In chondrocytes some of the changes in matrix expression in response to osmolarity 

have been well studied (Hall et al., 1991, Hopewell and Urban, 2003, Hung et al., 

2003, Palmer et al., 2001, Schneiderman et al., 1986, Urban and Bayliss, 1989, 

Urban et al., 1993), however much less is known about these changes in OA 

chondrocytes. The expression of SOX9 is essential for the ability of the chondrocyte 

to produce a cartilage matrix (Stokes et al., 2001, Tew et al., 2005) and so we were 

interested in investigating the expression of SOX9 in normal and OA chondrocytes 

under osmotic loading, which is previously undocumented in equine tissue. Given 

the importance of SOX9 in the development and maintenance of the chondrocyte 

phenotype, its reduction in OA (Haag et al., 2008, Tew et al., 2005, Aigner et al., 

2003, Tchetina et al., 2005) may contribute to the cartilage pathology. Mechanical 

stimulation of chondrocytes induces numerous physicochemical changes including 

alterations in osmotic pressure (Urban, 1994). This produces a number of 

physiological and biochemical responses resulting in changes in expression of matrix 

genes. The nature of the response, in part, depends on the nature of the mechanical 

stimulation. In general dynamic stimuli results in an anabolic response, whereas 

static compression more frequently inhibits chondrocyte activity (Gray et al., 1988, 

Sah et al., 1989, Schneiderman et al., 1986). The response of chondrocytes from OA 

cartilage is significantly different from that of normal chondrocytes (Salter et al., 

2002, Bush and Hall, 2001a) suggesting that altered sensing of the osmotic 

environment and inappropriate responses of the resident chondrocyte population may 

be important in disease progression.  

 Previous work has shown that static hyperosmotic loading for 5 hours of passaged 

HAC derived from OA joints of patients undergoing total knee arthroplasty results in 

an increase in SOX9 mRNA (Tew et al., 2009). In contrast here we were intrigued to 

find that in equine articular chondrocytes there was a reduction in SOX9 mRNA 

although this was only significant statistically in normal P2 and OA P0, not in 

normal P0 cells. However, similar to HAC there was also an increase in the stability 

of SOX9 mRNA in hyperosmotic conditions (Tew et al., 2009). This latter finding 

would suggest that more SOX9 mRNA should be present. In yeast hyperosmotic 

stress represses the transcription of HXT2 and HXT4 (Turkel, 1999) and the effect 

evident here may be due to a reduction in the transcription of SOX9 in equine 
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articular chondrocytes under hyperosmotic loading. Further studies using nuclear 

run-on assays (Gariglio et al., 1981), would need to be undertaken to investigate 

whether this is indeed the case.  Surprisingly in normal equine articular chondrocytes 

there is no effect of p38 MAPK signalling on SOX9 mRNA. This would lead one to 

surmise that the p38 MAPK-dependant regulation of  mRNA stability demonstrated 

in HAC derived from OA cartilage (Tew et al., 2009) is not likely to be occurring in 

equine normal cartilage and the former finding may be due to either species variation 

or disease. 

Interestingly there is an increase in SOX9 during cyclic hyperosmotic loading in 

normal P2 and OA P0 but not normal P0 chondrocytes, which is in agreement with 

our findings in HAC OA P2 chondrocytes (See manuscript 1). These data suggest 

that there is only an effect on SOX9 mRNA of both static and cyclic hyperosmotic 

loading on chondrocytes with altered phenotype, from either culture dedifferentiation 

or phenotypic alteration from disease in equine tissue.  Modifications of the articular 

chondrocyte phenotype are commonly observed in OA cartilage, including 

suppression of genes involved in the phenotypic stability of articular chondrocytes 

(Aigner et al., 2006, Aigner and Dudhia, 2003, Castagnola et al., 1988, Lemare et al., 

1998), reduced ECM protein production (Yagi et al., 2005), proliferation (Aigner et 

al., 2001) and change in morphology (Tchetina et al., 2005). During expansion of 

normal chondrocytes and in OA chondrocytes there is a loss of the specific 

chondrocytic phenotype and a reversion to a more fibroblast-like phenotype (von der 

Mark et al., 1977, Mandl et al., 2004, Sandell and Aigner, 2001). This phenotypical 

change is accompanied by decreased gene expression of cartilage specific markers 

like COL2A1 and aggrecan. This process could also alter the response of 

chondrocytes to extracellular stimuli such as a change in osmolarity. In human 

normal chondrocytes cyclic stretch has an anabolic effect as shown by increases in 

aggrecan and matrix metalloproteinase 3 expression. However, this effect was not 

evident in OA chondrocytes, where no change in the expression of either gene was 

observed (Millward-Sadler et al., 2000). This difference might be attributed to a 

change in mechanotransduction pathways between normal and OA chondrocytes 

(Salter et al., 2002, Salter et al., 2004, Millward-Sadler and Salter, 2004). It would be 

interesting to investigate the effect of osmotic loading on SOX9 and matrix gene 

expression in normal HAC. 
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In normal equine cartilage explants we have demonstrated an increase in GAG 

synthesis in response to hyperosmotic loading. Furthermore this was dependant on 

MEK-ERK signalling. This is in agreement with a previous study undertaken in 

bovine chondrocytes encapsulated in alginate beads for 48 hours in which the 

increase in sulphate incorporation in response to hyperosmotic conditions was 

abrogated in the presence of the MEK inhibitor PD98059 (Hopewell and Urban, 

2003). We examined aggrecan and COL2A1 levels in our cultures and found that 

hyperosmolarity had little effect on their expression in most experimental conditions.  

However, there was a reduction in COL2A1 in normal P2 chondrocytes agreeing 

with the majority of studies that have noted a decrease in ECM production under 

static hyperosmotic loading (Palmer et al., 2001, Hung et al., 2003, Urban and 

Bayliss, 1989, Schneiderman et al., 1986, Urban et al., 1993). Intriguingly there was 

an increase during static hyperosmolar loading in aggrecan mRNA in OA P0 

chondrocytes, similar effects have been revealed in human and bovine intervertebral 

disc cells exposed to hyperosmotic conditions (Wuertz et al., 2007). This is in 

contrast to other studies in normal chondrocytes where an increase in osmolarity 

results in a reduction in aggrecan mRNA (Hung et al., 2003, Palmer et al., 2001, 

Guilak et al., 2002). 

 

Many cells exist in an environment where osmolarity can fluctuate and have a 

variety of responses, countless of which appear to be controlled by a signalling 

network of protein kinases and transcription factors. In mammalian cells 

hypertonicity activates many MAP kinases including ERK1/2 and p38 MAPK. In 

yeast cells although ERK activity is not essential for the transcriptional regulation of 

BGT1 and SMIT, two genes that encode for osmolyte transporters (Kwon et al., 

1995), inhibition of MEK1 down regulated TonE-mediated reporter gene expression 

(Nadkarni et al., 1999) and it has been proposed that the activation of ERK pathway 

in hyperosmotically stressed cells serves as a cell survival signal (Michea et al., 

2000). Interestingly studies undertaken in rat nucleus pulposus cells, which produce 

an extracellular matrix similar to that of chondrocytes, have found that exposure to a 

hyperosmotic environment resulted in an increase in the transcription factor TonEBP 

with a subsequent activation of its target genes including aggrecan. This 

transactivation was sensitive to inhibition of ERK and p38 signalling (Tsai et al., 

2006). Others have demonstrated that MEK-ERK signalling is activated in articular 
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chondrocytes experiencing normal osmotic conditions, exposed to fluid-flow leading 

to a down-regulation of aggrecan (Hung et al., 2000). In the present study the 

elevated response of SOX9 mRNA under cyclic hyperosmotic loading is dependent 

on p38 MAPK and MEK-ERK signalling which is comparable to findings in HAC 

(Manuscript 1). Although MEK-ERK signalling was not required for the reduction in 

SOX9 apparent in static hyperosmotic loading of normal P2 and OA P0 equine 

chondrocytes, in normal P0 chondrocytes blocking this pathway using the MEK1/2 

inhibitor U0126 demonstrated that MEK-ERK signalling represses SOX9 expression 

in normal chondrocytes. Hyperosmotic stress has been previously shown to activate 

ERK in tissue culture (Terada et al., 1994, Kwon et al., 1995, Itoh et al., 1994). 

Furthermore in young murine primary chondrocytes there was an increased Sox9 

expression, caused by FGF-2 stimulation which was inhibited by U0126 (Murakami 

et al., 2000a). These results demonstrate a similarity between the reactions of young 

murine costal chondrocytes and normal equine chondrocytes which were used in this 

study.  

COX-2 has been shown to be regulated by hyperosmotic conditions in a number of 

cells including lipopolysaccharide-activated macrophages, (Zhang et al., 1995) renal 

medullary interstitial cells (Hao et al., 2000) and human umbilical vein endothelial 

cells (Arbabi et al., 2000). In 2-4 week old bovine articular chondrocytes, 

hyperosmotic-dependent potentiation of COX-2 occurred only in IL-1 stimulated 

bovine cartilage explants culture (Le et al., 2006). In the latter experiment there was 

an osmolarity dependant potentiation of COX-2 in IL-1 activated chondrocytes in 

cartilage explants culture, but without the presence of IL-1 no COX-2 protein was 

evident. Similarly  normal mature unstimulated HAC did not contain detectable 

COX-2 mRNA (Geng et al., 1995). This is consistent with our findings in normal P0 

equine chondrocytes subjected to static hyperosmotic loading and all chondrocyte 

types in cyclical hyperosmotic loading where no change in COX-2 mRNA is 

evident. In contrast our studies in static hyperosmotic loading in monolayer culture 

of normal P2 and OA P0 equine chondrocytes, an increase in COX-2 gene 

expression was apparent in the presence of hyperosmotic conditions alone. A 

previous study in dedifferentiated immortalised HAC demonstrated lower levels of 

COX-2 expression compared to differentiated immortalised HAC following alginate 

culture (Thomas et al., 2002). The association of COX-2 expression with 
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differentiation has also been reported in keratinocyte, adipocyte, and tracheal 

epithelial cells (Borglum et al., 1997, Leong et al., 1996, Hill et al., 1998). In our 

study in normal P2 and OA P0 chondrocytes there are higher levels of COX-2 

mRNA compared to normal P0 and this may make them more responsive to static 

hyperosmotic loading (data not shown). In addition a recent study investigating 

ectopic expression of COX-2 induced differentiation in articular chondrocytes 

established that COX-2 over-expression caused a suppression of SOX9 expression 

(Lee et al., 2008). It is possible that in static hyperosmotic loading, where there is a 

reduction in SOX9,  and cyclical hyperosmolar loading, where there is an increase in 

SOX9, that this has a feedback on COX-2 gene expression in a similar manner. In a 

recent study undertaken in renal medullary cells it was found that hypertonicity 

induces TNF converting enzyme (TACE)-mediated ectodomain shedding of pro-

TGFα, which subsequently activates COX-2 expression via epidermal growth factor 

receptor (EGFR) and MAPKs. The expression of TGFα is increased in an 

experimental model of knee OA (Appleton et al., 2007a) and in a subset of human 

patients with OA (Appleton et al., 2007b). In our experiment it is possible that in OA 

chondrocytes, continual osmotic stress is inducing TACE which in turn activates 

ERK and p38 MAPK resulting in an increase in COX-2 expression. Nieminen et al 

(2005) (Nieminen et al., 2005) suggested that the activation of ERK1/2 and p38 

MAPK pathways are two of the signalling cascades that mediate the up regulation of 

COX-2 expression in HAC exposed to IL-1. Inhibitors of p38 MAPK and ERK1/2 

have been associated with a suppression of the hypertonicity stimulated COX-2 

expression in cultured medullary epithelial cells (Yang et al., 2000). Other reports in 

human monocytes and RAW264 macrophages (Jones et al., 1999, Subbaramaiah et 

al., 2000, Caivano and Cohen, 2000, Dean et al., 1999, Shalom-Barak et al., 1998) 

have indicated that p38 MAPK and ERK1/2 pathways are involved in the cellular 

events leading to the up-regulation of COX-2 gene transcription. Our findings 

demonstrate that in the presence of the p38 MAPK inhibitor, SB202190 there is a 

reduction in COX-2 mRNA. These data suggest that p38 MAPK signalling may 

repress basal COX-2 expression. However with static hyperosmolar loading of OA 

P0 chondrocytes, there is a reduction in COX-2 in the presence of the MEK1/2 

inhibitor U0126. Overall it appears that MEK1/2 inhibition has little effect on the 

expression of COX-2 in equine articular chondrocytes. 



92 
 

Conclusions 

In this study we investigated how static and cyclical hyperosmotic loading of normal 

and OA equine chondrocytes regulates SOX9 and COX-2 gene expression and the 

role of the MEK-ERK and P38 MAPK signalling pathways. We have shown that in 

contrast to HAC there is a reduction in SOX9 mRNA in static hyperosmolar loading. 

The nature of the response to osmotic loading of SOX9 and COX-2 mRNA is 

dependent on the nature of the osmotic stimulation and on the chondrocyte 

phenotype. The response of chondrocytes from OA cartilage is significantly different 

from that of normal chondrocytes suggesting that altering sensing of the osmotic 

environment and inappropriate responses of the resident cell population may be 

important in disease progression.  
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Concluding Remarks 

 

The work in this thesis supports the hypothesis that MEK-ERK and p38 MAPK 

signalling have roles, though by distinct mechanisms, in the control of SOX9 and 

COX-2 during osmotic loading.  However, additional work needs to be undertaken 

in order to further elucidate the mechanisms by which the signalling pathways act in 

both normal and OA chondrocytes. It has been demonstrated here that 

hyperosmolarity stabilizes SOX9 mRNA in chondrocytes, irrespective of the species 

or phenotype and MEK-ERK signalling is not involved. In addition COX-2 is also 

regulated post transcriptionally in HAC in a similar way to SOX9. Supplementary 

work is required in order to establish if this is also through p38 MAPK-dependant 

regulation of its mRNA stability (Tew et al., 2009). A role for p38 MAPK in post 

transcriptional control of COX-2 mRNA levels is well established in response to a 

number of external stimuli including IL-1α, dexamethasone and IL-17 (Miyazawa et 

al., 1998, Lasa et al., 2000, Faour et al., 2001). Interestingly there is evidence of 

distinct species differences in the effect of static osmolar loading on SOX9 mRNA. 

In agreement with previous studies in HAC (Tew et al., 2009) hyperosmolar loading 

increased SOX9 mRNA, however in studies undertaken here in equine articular 

chondrocytes exposed to identical conditions intriguingly there was a reduction in 

SOX9 mRNA despite evidence of SOX9 mRNA stabilisation. Finally the response, 

in terms of the COX-2 and SOX9 gene expression due to osmotic loading of 

chondrocytes from OA cartilage is significantly different from that of normal 

chondrocytes, and the OA chondrocytes show similarity to dedifferentiated passaged 

chondrocytes. This would suggest that altered sensing of the osmotic environment 

and inappropriate responses of the resident cell population may be important to 

cartilage degeneration in OA.  

One of the most interesting findings from this thesis was that in equine chondrocytes 

although hyperosmolar conditions stabilize SOX9 and increase its half-life there is a 

reduction in SOX9 mRNA in static hyperosmolar loading. Further studies are 

required to identify the cause of these conflicting results. A nuclear run-on assay 

(Gariglio et al., 1981) would allow changes in transcription rates to be measured, 

which often differ from steady-state mRNA levels. The principle involved is that, 
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when a cell is lysed and the intact nuclei retrieved, the isolated nuclei contain 

transcription complexes which are stalled on the DNA template due to an acute loss 

of ribonucleotide substrates. Transcription has been halted at the point in time where 

the nuclei were removed. However, it but can be started up again in vitro with the 

addition of new ribonucleotides. The use of radiolabelled nucleotides, would allow 

transcription to finish, and be observed as well as identifying SOX9 mRNA 

transcripts produced from the stalled RNA polymerase reactions and thus the level of 

SOX9 being transcribed at the time the cells were lysed can be quantified. By 

comparing the amount of gene-specific radiolabelled RNA synthesized in one nuclei 

preparation with another you can get an idea of the transcriptional initiation events in 

the cells of interest under differing conditions. This would be the most reliable 

method to assess transcription of SOX9 directly although it would be time 

consuming and require the use of radioactivity and a large number of cells. 

Previous studies in HAC demonstrated that in passaged chondrocytes the increase in 

SOX9 mRNA in hyperosmotic conditions was only observed when actin stress fibre 

formation was prevented (Tew and Hardingham, 2006). Therefore in both human 

and equine chondrocytes the effect of the addition of the ROCK inhibitor Y27632 to 

passage cell cultures was determined in 5 hour static hyperosmolar loading. 

Surprisingly there was no effect on SOX9 gene expression in hyperosmolar loading 

in the presence of the inhibitor in either species in comparison to cultures where 

there was no inhibitor present. Hence if more osmolar loading studies are undertaken 

utilizing passaged chondrocytes, actin stress fibre formation would not require 

prevention.   

The result from cyclical hyperosmolar loading experiments demonstrated that a 

constant application of hyperosmolarity is not necessary for SOX9 mRNA induction. 

Indeed the cyclical application of hyperosmolar loading enhanced the increase in 

SOX9 further than static hyperosmolar loading alone in HAC and equine 

chondrocytes derived from either OA or passaged normal populations. Chondrocytes 

from different species derived from normal and OA joints are able to perceive 

periods of cyclical hyperosmotic stimulation which can enhance their production of 

factors such as SOX9. In passaged HAC derived from OA joints and equine articular 

chondrocytes derived from passaged normal and OA freshly isolated monolayer 

culture, induction of SOX9 mRNA was significantly higher than that seen following 

http://www.iscid.org/encyclopedia/DNA
http://www.iscid.org/encyclopedia/In_vitro
http://www.iscid.org/encyclopedia/mRNA
http://www.iscid.org/encyclopedia/Polymerase
http://www.iscid.org/encyclopedia/The_Cell
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static hyperosmotic exposure. However in normal equine chondrocytes there was no 

change in SOX9 mRNA in these conditions. Together these findings suggest that 

there is only an effect on SOX9 mRNA of cyclic hyperosmotic loading when 

chondrocytes have an altered phenotype. Whilst previous studies have indicated that 

the expression of many genes is dependent upon differentiation state in chondrocytes 

(Castagnola et al., 1988, Lemare et al., 1998, Thomas et al., 2002, Aigner et al., 

2003) additional work needs to be undertaken in normal HAC in order to elucidate if 

the increase in SOX9 gene expression evident in cyclical hyperosmotic loading is 

indeed an adaptation by the chondrocyte to disease. Furthermore in order to produce 

and maintain a properly functional cartilage matrix, the chondrocyte displays a 

specific pattern of gene expression both during development and in the adult 

(Hering, 1999, Cancedda et al., 1995). It has previously been found that diseased 

chondrocytes alter their pattern of gene expression in response to changes in their 

surrounding matrix. The response of the chondrocyte may lead to long term changes 

in the phenotype of the cell and result in the inability to properly repair or maintain 

the ECM (Buckwalter et al., 2005).  

The cyclical hyperosmotic loading experiments undertaken were not meant to 

precisely simulate the osmotic conditions experienced by a chondrocyte in vivo. It 

was identified that repeated applications of hyperosmotic media increased the 

production of SOX9 mRNA and it would therefore be fascinating to undertake 

further studies using a system in which cyclical changes could be undertaken at a 

higher frequency more relevant to normal loading patterns. Indeed Chao et al (Chao 

et al., 2006) developed a microfluidic system to deliver osmotic loading via 

composition modulated flow. The device is able to apply osmotic loading to a 

frequency of 0.1Hz with minimal fluid shear stress and the use of such a device 

would be beneficial in future work. The frequency of osmotic loading used in this 

experiment is still not entirely physiologically relevant as it equates to a step every 

10 seconds. A frequency of more significance would be if the osmotic load was 

applied at a walking frequency of 1 Hz or a running frequency of 3 Hz. 

From the studies in this thesis it has been established that MEK/ERK signalling 

plays an important part in the elevated response of SOX9 mRNA under cyclic 

hyperosmotic loading in OA derived HAC from human and equine as well in 

passaged normal equine articular chondrocytes. The dynamic hyperosmotic loading 
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of HAC is associated with the activation of ERK1/2 above that of both control and 

static hyperosmotic conditions. Although ERK, SOX9 and p38 MAPK activation 

was looked at in equine experiments no signal or a weak signal was produced which 

did not allow conclusions to be made. This was despite the use of higher 

concentrations of the antibodies, the use of more lysate and longer exposure time 

during enhanced chemiluminescence. Thus the poor results obtained from equine 

samples were probably due to a lack of antibody specificity as no antibodies that can 

be purchased for these proteins are validated against the horse. Although a search for 

equine studies undertaking western blotting, using the antibodies to p44/42 MAPK 

and SOX9 revealed no experiments have been published, there was evidence that 

p38 MAPK antibody was reactive against equine p38 MAPK in equine digital vein 

endothelial cells (Brooks et al., 2009).  Future studies investigating signalling 

pathway activation would require equine specific antibodies to be produced. In 

contrast the activation of p38 MAPK is greatest under static hyperosmotic loading. 

Generally p38 MAPK signalling increases SOX9 and COX-2 mRNA under all 

conditions in all chondrocyte phenotypes. This was consistent with previous studies 

where SOX9 mRNA levels were found to be controlled through p38 MAPK-

dependant regulation of its mRNA stability (Tew et al., 2009) and provides a 

possibility that COX-2 mRNA stability is controlled in a similar manner. However 

the exception to this is in normal equine chondrocytes where p38 MAPK signalling 

has no effect on SOX9 mRNA indicating that p38 MAPK signalling does not have a 

role in SOX9 gene expression in normal equine chondrocytes in our system. The p38 

MAPK inhibitor SB202190 did have an effect on COX-2 gene expression in the 

horse and others have also used this inhibitor with effect in equine studies (Eckert et 

al., 2007, Eckert et al., 2009), demonstrating that the inhibitor does react with the 

equine p38 MAPK signalling pathway. Therefore is the p38 MAPK-dependant 

regulation of SOX9 mRNA stability reliant on the phenotype of the tissue and was 

the effect previously demonstrated in HAC derived from OA joints due to an altered 

phenotype evident in OA. Additional work is required to establish how the 

stabilisation of SOX9 in hyperosmotic conditions of normal equine chondrocytes 

demonstrated here is controlled.  
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MAPK pathways are major information highways from the cell surface to the 

nucleus. The output of these pathways is transduced via MAPK family members that 

phosphorylate and regulate a wide array of substrates including transcription factors 

and other protein kinases. Small cell permeable inhibitors of protein kinases have 

been used widely to investigate the physiological roles of protein kinases, as they can 

be used simply and rapidly to block specific pathways in normal cells. Considerable 

caution in using small molecule inhibitors of protein kinases to assess the 

physiological roles of these enzymes is required. As there are more than 500 protein 

kinases encoded by the human genome, selectivity is critical. A number of studies 

have been undertaken to examine the specificity of these inhibitors (Davies et al., 

2000, Bain et al., 2007, Bain et al., 2003). U0126 targets MEK1 and the closely 

related MEK2 and has been exploited in thousands of studies. It is a non-competitive 

inhibitor that interacts with the inactive unphosphorylated kinase more strongly than 

the active phosphorylated equivalent and thus exerts its effects by preventing  the 

activation of MEK1/2 and not by blocking its activity (Davies et al., 2000).  In 

additionU0126 has been reported to inhibit MEK5 with a similar potency to MEK1, 

(Kamakura et al., 1999). SB202190 has been used to assess the physiological roles 

of p38α and p38β MAPKs. Recently studies have identified other protein kinases 

that they inhibit with similar (Cyclin G-associated kinase; GAK and casein kinase; 

CK1) or greater (RIP2) potency (Godl et al., 2003). Therefore there is a danger with 

the use of either of these inhibitors that observed effects on cells result from the 

inhibition of targets distinct from those investigated here. Additional studies are 

required in order to confirm the effects of the specific pathways investigated here. 

One of the simplest methods to do this is the use of two structurally unrelated 

inhibitors, whose specificities have been tested towards a wide range of protein 

kinases in vitro. For ERK signalling pathways PD 184352 (Squires et al., 2002) has 

been identified as having no effect on ERK5 when used at1-2μM (Bain et al., 2007). 

Thus a study using both these inhibitors would be useful. For p38 MAPK studies in 

addition to SB202190 BIRB 0796 could be used in parallel. This interacts with p38α 

in a manner distinct from that exhibited by SB202190 and its binding induces a slow 

conformational change that locks the protein into an inactive conformation (Pargellis 

et al., 2002).  
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 From this thesis it is apparent that in normosmotic conditions the effect of the MEK-

ERK signalling on SOX9 mRNA is variable and dependant on the differentiation 

state and species of origin of the chondrocytes used. In order to clarify the role of 

MEK-ERK signalling in experiments here, future studies could use alternative 

methods to modulate MAPK activities. The use of dominant negative or 

constitutively active mutants of MAP kinase subtypes is an alternative and possibly 

more physiological way to modulate MAPK activities. These consist of mutations, 

engineered in the protein of interest that either activate or abolish its function as well 

as either activating or inhibiting the function of simultaneously expressed wild type 

protein. For example, mutating Lys71 and Lys52 to Arg in ERK-1 and -2, 

respectively, generates dominant negative kinase forms (Robbins et al., 1993).  

Infection of primary chondrocytes with lentivirus (Yin et al., 2009), adenovirus or 

retrovirus carrying mutant MAP kinase cDNA resulted in approx 80% of cells over-

expressing the mutant (Chun, 2004). A further method that could be used to 

modulate ERK1/2 activity would be the use of Small interfering RNA (siRNA). 

These serve as a guide for cleavage of homologous mRNA. Degradation of a 

targeted mRNA would lead to specific suppression of the gene of interest, here 

ERK1 or 2.  

 

Additionally studies require to be undertaken in systems that are more relevant to 

biological situations. Future studies could be undertaken in explants of articular 

cartilage. The experiments in this thesis could be applied to explants cultures derived 

from normal and OA donors. It is also possible to undertake mRNA decay studies on 

explants (McQuillan et al., 1986, Maurer and Wray, 1997). Alternatively 

experiments could be performed in culture conditions which allow a more usual 

chondrocyte phenotypic expression. In the some studies in this thesis passaged 

chondrocytes were used. This allowed a sufficient number of cells to be produced for 

high density seeding of plates. However the use of cells at passage 2 and no greater 

passage number was an attempt to reduce the effects of phenotypic change evident in 

cells from monolayers subject to repeated passage, which leads to a change in 

morphology and in gene expression patterns (Benya et al., 1978, Stokes et al., 2002, 

Aulthouse et al., 1989, Lin et al., 2008). However it is well known that even during 

early passage there is a great alteration in the chondrocyte phenotype (Lin et al., 
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2008, Cournil-Henrionnet et al., 2008). In the future osmolarity studies could be 

undertaken within 3D suspensions such as agarose, alginate beads or on a hydrogel 

substrate as chondrocyte phenotype can be reexpressed in these systems (Watt and 

Dudhia, 1988, Guo et al., 1989, Reginato et al., 1994). One potential problem with 

the use of these systems is that it is more difficult to extract the protein for protein 

quantification, although this has been achieved in previous studies of bovine 

chondrocytes in alginate culture (Mok et al., 1994). Finally one factor that was not 

studied in this thesis was the nature of the substance used to undertake osmolar 

loading experiments. Although some groups have demonstrated the use of both 

sucrose and sodium chloride as chemicals to produce the osmotically defined media, 

similar results with each have been found (Chao et al., 2006, Hung et al., 2003, 

Urban et al., 1993, Tew et al., 2009). Therefore in the experiments in this thesis 

sodium chloride was used to produce osmotically defined media and the use of saline 

alone has been demonstrated in many previous chondrocyte osmolar loading studies 

(Borghetti et al., 1995, Palmer et al., 2001, Bush and Hall, 2001b, Schneiderman et 

al., 1986).  

In this thesis it has been demonstrated for the first time that in chondrocytes COX-2 

mRNA is upregulated in hyperosmotic conditions alone. This was evident in human 

and equine OA and normal equine passaged cells subject to static hyperosmotic 

loading. However, interestingly no effect was evident in cyclic hyperosmolar loading 

of equine chondrocytes which could be a species variation.  Although in bovine 

articular chondrocytes, hyperosmotic-dependent potentiation of COX-2 has been 

demonstrated it occurred only in the presence of  IL-1 (Le et al., 2006). The 

difference between normal and OA or passaged chondrocytes in COX-2 mRNA 

induced by hyperosmolarity, suggests an increased sensitivity in dedifferentiated 

chondrocytes. In a recent study undertaken in renal medullary cells it was found that 

hypertonicity induces TNFα converting enzyme (TACE)-mediated ectodomain 

shedding of pro-TGFα, which subsequently activates COX-2 expression via 

epidermal growth factor receptor (EGFR) and MAPKs. The expression of TGFα was 

increased in an experimental model of knee OA (Appleton et al., 2007a) and in a 

subset of human patients with OA (Appleton et al., 2007b). In our experiment it is 

possible that in OA chondrocytes, continual osmotic stress is inducing TACE which 

in turn activates MAPKs resulting in an increase in COX-2 expression. Although 
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COX-2 protein was demonstrated in HAC OA chondrocytes, no difference in COX-

2 protein production was evident when monolayer cultures were subjected to 

hyperosmotic load. This latter finding may be due to already elevated levels of COX-

2 protein in diseased tissues.  This has been demonstrated in rat where COX-2 is 

detected in arthritic limbs and but is absent from normal limbs (Kang et al., 1996). 

Similarly  normal mature unstimulated HAC did not contain detectable COX-2 

mRNA (Geng et al., 1995).  

The role of the ERK and p38 MAPK signalling pathways in the response of 

chondrocytes to periods of osmotic stress is complex. p38 is the mammalian 

homologue of the yeast hyperosmolarity glycerol (HOG) proline directed kinase, 

which controls osmotically regulated genes involved in the protection against 

osmotic and other stresses (Han et al., 1994). It is possible that signal transduction 

pathways initiated by osmotic stress in chondrocytes converge on this pathway 

resulting in downstream effects. Studies in this thesis indicate a major role for p38 

signalling in the hyperosmotic induction of COX-2 gene expression in both normal 

and OA chondrocytes and this is species independent (Yang et al., 2000). Post 

transcriptional control of COX-2 mRNA levels is well established and has also been 

implicated in this thesis. There is evidence for a role for p38 MAPK in stabilising 

COX2 mRNA in response to a number of external stimului including IL-1α, 

dexamethasone and IL-17 (Miyazawa et al., 1998, Lasa et al., 2000, Faour et al., 

2001). In contrast Thomas et al (Thomas et al., 2002) found that p38 MAPK had no 

effect on COX-2 half-life in chondrocyte cell lines. It would be interesting to 

investigate whether increased stability of COX-2 mRNA evident under hyperosmotic 

conditions is acting through  p38 MAPK mediated post transcriptional regulation 

similar to that described previously in SOX9 (Tew and Hardingham, 2006).  

The role of ERK in our system is more complex. In normosmolar conditions in HAC 

MEK-ERK signalling results in a reduction in COX-2 and this may indicate that 

constant low level ERK activity has a repressive role on COX-2 mRNA. However, 

the variable effect of this signalling on the up regulation of COX-2 under cyclical 

osmolar loading in passaged HAC requires further investigation as these findings are 

in contrast to our studies in both freshly isolated HAC and all equine cells, where 

MEK-ERK signalling generally had no affect on COX-2 mRNA. Further studies are 

required in this field in order to establish what role ERK signalling has in the 
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hyperosmotic increase in COX-2 mRNA in chondrocytes. Clinical studies have 

documented the efficacy of COX-2 inhibitors in OA (Cannon and Breedveld, 2001). 

However there are certain gastrointestinal, renal and cardiovascular side effects with 

COX-2 specific drugs. Thus the elucidation of COX-2 transcriptional activation in 

human chondrocytes in response to physical or chemical stimuli such as osmotic 

stress may aid in the identification of alternative therapeutic targets. 

Hyperosmotic conditions have been demonstrated to affect articular cartilage ECM 

production (Urban et al., 1993, Urban and Bayliss, 1989, Palmer et al., 2001, 

Schneiderman et al., 1986, Chao et al., 2006, Hopewell and Urban, 2003). In 

addition it has established that dynamic osmotic loading modulates chondrocyte 

signalling and gene expression differently than static loading (Gray et al., 1988, Sah 

et al., 1989, Schneiderman et al., 1986). The results from this thesis also indicated 

that both proteoglycan synthesis and matrix gene regulation can be effected by 

hyperosmolarity. In addition hyperosmolarity affects SOX9 gene expression. Results 

from this thesis do not indicate a specific correlation, under hyperosmotic loading, 

between chondrocyte matrix gene expression and SOX9 gene expression. This is 

interesting as previously SOX9 retroviral transduction of chondrocytes has been 

shown to up-regulate chondrocyte matrix protein genes (Li et al., 2004). The 

expression of COL2A1 has been previously identified to be SOX9 dependant 

(Lefebvre et al., 1997) however a lack of correlation between SOX9 and COL2A1 

has been identified previously (Gebhard et al., 2003, Aigner et al., 2003, Brew, 

2009). This suggests that whilst SOX9 is necessary for cartilage formation (Lefebvre 

and de Crombrugghe, 1998) there may be other mechanisms that regulate COL2A1 

transcription. Thus the control of the downstream effects of hyperosmotic loading is 

complex. Several authors have noted differing responses of chondrocytes following 

exposure to hyperosmotic conditions. In contrast to previous experiments in bovine 

explants cultures (Urban et al., 1993) and osmotic solute loaded HAC 

(Schneiderman et al., 1986, Urban and Bayliss, 1989), results from equine explants 

in this thesis indicated an increase, though moderate, in 
35

S-sulphate incorporation 

rates in hyperosmotic conditions. This was dependant on MEK-ERK signalling and 

was in agreement with a previous study undertaken in bovine chondrocytes 

encapsulated in alginate beads for 48 hours in which the increase in sulphate 

incorporation in response to hyperosmotic conditions was abrogated in the presence 
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of the MEK inhibitor PD 098059 (Hopewell and Urban, 2003). Additionally, no 

change was identified in matrix gene expression in any isolated equine chondrocytes 

exposed to hyperosmolar loading in this thesis. Future studies would be necessary to 

explore these findings further in order to elucidate whether this is a species variation 

and if this is due to differential SOX9 expression in the horse  or due to post 

transcriptional control as elucidated in HAC previously (Tew et al., 2009). In HAC 

derived from OA tissue there was a difference in the matrix gene expression of 

aggrecan and COL2A1 between static and cyclical hyperosmolar loading. Static 

hyperosmotic loading reduced matrix gene expression whereas cyclical 

hyperosmotic loading produced no change. This is in contrast to Palmer et al (Palmer 

et al., 2001) who demonstrated that in contrast to static hyperosmolar loading, 

dynamic hyperosmolar loading stimulated aggrecan gene expression. There are 

dramatic alterations in the chondrocytes surroundings as a result of cell isolation, 

which may affect matrix gene expression and hence matrix synthesis. For instance 

the change in ionic environment, the loss of chondrocyte attachment to matrix 

molecules, gradients of nutrients such as oxygen are disturbed, access to exogenous 

growth factors is enhanced and mechanical forces disappear (Sommarin et al., 1989, 

Urban et al., 1993, Newman and Watt, 1988, Archer et al., 1990). All these factors 

could contribute to differences in matrix synthesis and therefore future work under 

taken in explants cultures would be beneficial.  

The effect of hyperosmotic loading in normal and OA chondrocytes on the 

regulation of two genes identified as being regulated by hyperosmotic conditions; 

SOX9 and COX-2, has been examined in this thesis. These responses are not unique 

to chondrocytes and could be used as a basis to further elucidate the roles of 

hyperosmolarity in the regulation of these genes in other tissues. In addition the 

osmotic responsiveness of cells is complex and involves the participation of multiple 

MAPKs (Burg, 1995). The regulation of SOX9 and COX-2 has wider implications 

than in cartilage alone. SOX9 has multiple functions in vertebrate development. In 

addition to chondrocyte differentiation it is involved in the cellular differentiation of 

sertoli cells (Moniot et al., 2009), neural crest cells (Stolt and Wegner, 2009), neural 

retina cells (Yokoi et al., 2009), prostate gland (Thomsen et al., 2008) and  the  heart 

(Lincoln et al., 2007). COX-2 is a highly inducible gene product expressed in 

response to a variety of stimuli, and is the rate limiting step in the production of 
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prostaglandins in some circumstances. Hyperosmotic conditions have been 

demonstrated to stimulate COX-2 expression in  cultured medullary epithelial cells 

(Yang et al., 1999), colonic epithelium (Arbabi et al., 2001) and kupffer cells (Zhang 

et al., 1995). As it has been demonstrated in this thesis that hyperosmotic conditions 

can stimulate COX-2 dependant on the cell phenotype this may have consequences 

in the study of other disease processes. For instance in colonic epithelium it has been 

predicted that an increase in luminal osmolarity of the colon can induce COX-2 and 

thereby promote a neoplastic phenotype (Arbabi et al., 2000).  

This thesis has demonstrated the response to osmotic loading of SOX9 and COX-2 

mRNA is dependent on the nature of the osmotic stimulation and on the chondrocyte 

phenotype. The response of chondrocytes from OA cartilage is significantly different 

from that of normal chondrocytes suggesting that altering sensing of the osmotic 

environment and inappropriate responses of the resident cell population may be 

important in disease progression.  
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Appendix 1 

 

Identification and selection of endogenous controls for relative 

quantification in osmolar loading studies of chondrocytes 

RT-PCR is used as a method for the quantification of mRNA control. A critical stage 

in relative quantification design is the selection of an appropriate internal standard, 

sometimes known as endogenous controls (Thellin et al., 1999). All relative RT-PCR 

require internal standards, mainly housekeeping genes, so called because their 

synthesis occurs in all nucleated cell types since they are necessary for the cell 

survival. The synthesis of those molecules is often considered as being less erratic in 

comparison to that of others and, by their commonplace use, their expressions are 

considered as constant and secure. However numerous studies have indicated that 

even in these genes, their expression does vary in given situations between different 

tissues and between the same tissue under different conditions (Huitorel and 

Pantaloni, 1985, Chang et al., 1998, Hobbs et al., 1993). 

 RT-PCR-specific errors in the quantification of mRNA transcripts are easily 

compounded by any variation in the amount of starting material between samples. 

This is especially relevant when the samples have been obtained from different 

individuals, and will result in the misinterpretation of the expression profiles of the 

target genes. Therefore endogenous control expression levels must be the same in all 

samples in the study. It is therefore important to determine if the study treatment is 

affecting the expression level of the candidate endogenous genes. Consequently, an 

important aspect of experimental design in this thesis is determining an appropriate 

internal standard for chondrocyte studies, that is expressed at a constant level and 

which is unaffected by the changes in osmolarity. 

In previous studies in chondrocytes looking at gene expression in osmolarity 

experiments GAPDH has been used (Aigner and Dudhia, 2003, Tew et al., 2007, 

Hung et al., 2003, Palmer et al., 2001). Therefore, prior to commencement of gene 

expression studies the validation of GAPDH as an appropriate internal control was 

investigated. 

A human endogenous control plate, part number 4396929 (Applied Biosystems, 

Warrington, UK) was used to undertake this study. The plate evaluates the 
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expression of thirty two select housekeeping genes in total RNA samples using RT-

PCR. 

The following genes were evaluated; 

ACTB POP4 PSMC4 PPIA IP08 RPS17 GUSB TBP 

PGK1 GAPDH ELF1 CDKN1B TFRC PUM1 MRPL19 CDKN1A 

UBC B2M RPL37A EIF2B1 POLR2A YWHAZ PES1 ABL1 

CASC3 RPLP0 HPRT1 MTATP6 GADD45A HMBS RPL30 18S 

 

Samples of cDNA from human articular chondrocytes exposed to 380mOsm and 

550mOsm with and without the MEK/ERK inhibitor U0126 were used in duplicate. 

Total RNA was prepared from monolayers in culture plates using Tri Reagent 

(Ambion, Warrington, UK). The Guanidium-thiocyanate-phenol-choloform 

extraction technique was used as previously described (Chomczynski and Sacchi, 

1987). M-MLV reverse transcriptase and random hexamer oligonucleotides were 

used to synthesize cDNA from RNA (both from Promega, Southampton, UK) 

.Aliquots were amplified by PCR in 20μl reaction volumes on an ABI 7700 

Sequence Detector using a Taqman gene expression mastermix (Applied Biosytems, 

Warrington, UK). 

Data was analyzed by first determining the average CT of each sample for each 

control gene. A ratio was then made by successively dividing each sample by the 

first for each control gene. This data was then manipulated in order to run it through 

the GeNorm programme (www.medgen.ugent.be/~jvdesomp/genorm/). GeNorm is 

a collection of ‘Visual Basis for Applications’ (VBA) macros for Microsoft Excel to 

determine the most stable reference internal control genes from a set of tested 

candidate reference genes in a given sample panel. From this, a gene expression 

normalization factor can be calculated for each sample based on the geometric mean 

of a user-defined number of reference genes. The underlying principles and formulas 

have been described (Vandesompele et al., 2002). 

 

http://www.medgen.ugent.be/~jvdesomp/genorm/
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Figure 1: Average expression stability values (M) of the candidate reference 

genes. Average expression stability measure (M) of control genes during stepwise 

exclusion of least stable reference genes. M represents from the least stable (left) to 

the most stable (right), analysed by the geNorm programme.  

 

The results are expressed as ‘Average Expression Stability’ (M). Within this system 

the least stable gene has the highest M value and the most stable gene has the lowest 

M value. To assess the validity of the established gene-stability measure, that is, that 

genes with the lowest M values have the most stable expression, the gene specific 

variation for each control gene is determined as the variation coefficient of the 

expression levels after normalization. This coefficient should be minimal for proper 

housekeeping genes. It has been proposed that M values inside the ranges M ≤ 1, are 

acceptable (Hellemans et al., 2007). Interestingly 18S which has been used in a wide 

variety of studies in various tissues (Gorzelniak et al., 2001, Liu et al., 2005) had a 

relatively high value of 0.06 and expressed the 5
th

 worst gene stability. The findings 
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confirmed that with an M value of 0.035, GAPDH was a suitable normalisation 

factor for the osmolarity studies in chondrocytes. The majority of studies quantifying 

gene expression in connective tissues also use GAPDH as the reference gene  (Ayers 

et al., 2007). 

 

Despite many qRT-PCR studies having reported the use of a single endogenous 

control gene (Suzuki et al., 2000), a normalisation strategy based on a single 

housekeeping gene may lead to erogenous errors (Vandesompele et al., 2002, 

Tricarico et al., 2002). Hence the use of a panel of reference genes has been 

proposed (Vandesompele et al., 2002, Thellin et al., 1999). The geometric mean of 

multiple carefully selected housekeeping genes would then be calculated. However 

as many gene expression studies in cartilage osmolarity studies have used GAPDH 

as a single reference gene (Tew et al., 2009, Hung et al., 2003, Palmer et al., 2001) 

and following the validation using the endogenous control plate of GAPDH in this 

thesis GAPDH was used as a single endogenous control gene for this study. 
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Appendix 2 

 

Equine SOX9 vector production 

Determination of mRNA half-life is important to our understanding of gene 

expression and mechanisms involved in the regulation of the level of transcripts in 

response to environmental changes. In addition, the stability of mRNA may 

determine how rapidly the synthesis of the encoded protein can be shut down after 

transcription ceases (Yang et al., 2003). One method of determining the stability of 

mRNA is through RNA samples removed from cells treated with transcriptional 

inhibitors such as actinomycin D (Sobell, 1985). In order to determine the half-life of 

SOX9 mRNA in the horse, a plasmid vector containing equine SOX9 sequence was 

produced. This was to produce a calibration curve from known dilutions using qRT-

PCR in order to calculate SOX9 mRNA copy number. Copy numbers could then be 

normalised to input RNA concentrations. 

Method 

Amplification and purification of the DNA sequence to be cloned was undertaken in 

order to produce a DNA fragment (for insertion into a plasmid) of equine SOX9. 

Three donors were initially used. First strand cDNA was synthesized as previously 

described (Tew et al., 2009). In brief, M-MLV reverse transcriptase and random 

hexamer oligonucleotides were used to synthesize cDNA from RNA obtained from 

normal equine chondrocytes (Promega, Southampton, UK). A region of the SOX9 

within the coding regions of exon 1 and exon2 between 99bp  and   157bp (accession 

number AF322898) was amplified using the following equine SOX9 primers; 

forward; CGCCGAGCTCAGCAAGA, reverse; CGCTTCTCGCTCTCGTTCA 
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(Eurogentec, Hampshire, UK) using Taq DNA Polymerase (Sigma-Aldrich, Dorset, 

UK). 

 

Figure 1: 1% agarose mini gel showing amplification products  

The PCR products produced were then examined using agarose gel electrophoresis. 

Bands of the correct expected product size (58 bp) were found and were excised 

from the gel (Figure 1). DNA was purified from the gel using a Qiagen QIAquick 

Gel Extraction Kit (Qiagen LTD, Sussex, UK) and eluted in 30 l of Qiagen EB 

Buffer. 10 l of this DNA solution was then ligated into the pGEM®-T Easy Vector 

(Promega, Southampton, UK) using T4 DNA Ligase (Promega) overnight at 4
o
C. 

The ligation product was then transformed into One Shot®TOP10 Chemically 

Competent E.Coli (from Invitrogen, Paisley, UK) following the manufacturer’s 

procedures. Transformed cells were mixed with Isopropyl β-D-1-
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thiogalactopyranoside (IPTG) and 5-Bromo-4-chloro-3-indolyl β-D-

galactopyranoside (X-Gal) (Sigma-Aldrich, Dorset, UK), applied onto LB agar 

plates containing 50μg/ml ampicillin (Sigma-Aldrich, Dorset, UK), and incubated 

overnight at 37⁰C. Blue-white screening was used to detect the successful ligations 

and a number of white colonies were selected. Each colony selected was incubated 

for overnight at 37⁰C in a Stuart Orbital Incubator 5150 in 3ml LB broth starter 

culture (Sigma-Aldrich, Dorset, UK) containing 3μl of ampicillin. Plasmid DNA was 

purified from the cultures using a Qiagen QIAprep Spin Miniprep Kit Qiagen LTD, 

Sussex, UK). Further investigations of the resulting purified colonies were 

performed by digesting the plasmid DNA with the EcoR1 restriction enzyme (Roche 

Hertfordshire, UK). Webcutter (www.rna.lundberg.gu.se/cutter2) was used to 

ascertain that EcoR1 did not cut through the projected sequence so should only cut 

within the vector, either side of the insert.  
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Figure 2: pGEM-T vector map and reference points 
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Figure 3: 1% agarose mini gel following EcoR1 restriction 

Digests were examined on 1% agarose gels (Figure 3). Product was identified at just 

below 100bp. This correlated with 58bp from the SOX9 sequence and additionally a 

few base pairs either side of the sequence which would correlate to the site of 

restriction by digestion by Eco R1.Samples of the purified plasmid containing the 

required sequence of SOX9 were sent to Macrogen, Korea for sequencing with T7 

promoter primer, designed for sequencing inserts cloned in the pGEM®-T Easy 

Vector (Promega, Southampton, UK). Sequence profiles returned from Macrogen 

were run through ClustalW (a general purpose multiple sequence alignment program 

for DNA or proteins (www.ebi.ac.uk/clusatlw/)) in order to identify the required 

sequence. Samples containing the SOX9 sequence in the correct orientation, between 

the 2 primers described previously here, were identified. A standard curve was 

created using the pGEM-T Easy-equine SOX9 identified as containing the SOX9 

sequence in the correct orientation. Here LOG10 of copy number was plotted against 

CT; R
2
 was 0.9859. In order to calculate the half life of equine SOX9 mRNA in 

PRODUCT 

 

http://www.ebi.ac.uk/clusatlw/))%20in%20order%20to%20identify%20the%20required%20sequence.%20Samples
http://www.ebi.ac.uk/clusatlw/))%20in%20order%20to%20identify%20the%20required%20sequence.%20Samples
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decay studies copy numbers were normalised to input RNA concentrations. However 

in the experiments undertaken in 12 well plates the RNA concentrations in freshly 

isolated cultures were consistently too low when measured using a NanoDrop 8000 

spectrophotometer, to allow the use of this method. Therefore in order to calculate 

the half life experiments were undertaken using GAPDH as the non-target message 

normalization factor. The use of GAPDH as a normalisation factor has been 

validated in a wide variety of decay studies (Morris et al., 2008, Laroia et al., 2002). 
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