
Ontology Modularization: Principles and Practice

Thesis submitted in accordance with the requirements of
the University of Liverpool for the degree of Doctor in Philosophy

by
Paul Doran

October 2009

Abstract

Technological advances have provided us with the capability to build large intelligent

systems capable of using knowledge, which relies on being able to represent the knowl-

edge in a way that machines can process and interpret. This is achieved by using

ontologies; that is logical theories that capture the knowledge of a domain. It is widely

accepted that ontology development is a non-trivial task and can be expedited through

the reuse of existing ontologies. However, it is likely that the developer would only

require a part of the original ontology; obtaining this part is the purpose of ontology

modularization.

In this thesis a graph traversal based technique for performing ontology module

extraction is presented. We present an extensive evaluation of the various ontology

modularization techniques in the literature; including a proposal for an entropy inspired

measure. A task-based evaluation is included, which demonstrates that traversal based

ontology module extraction techniques have comparable performance to the logical

based techniques.

Agents, autonomous software components, use ontologies in complex systems; with

each agent having its own, possibly different, ontology. In such systems agents need

to communicate and successful communication relies on the agents ability to reach an

agreement on the terms they will use to communicate. Ontology modularization allows

the agents to agree on only those terms relevant to the purpose of the communication.

Thus, this thesis presents a novel application of ontology modularization as a space

reduction mechanism for the dynamic selection of ontology alignments in multi-agent

systems. The evaluation of this novel application shows that ontology modulariza-

tion can reduce the search space without adversely affecting the quality of the agreed

ontology alignment.

i

To my family

ii

Contents

Abstract i

Contents vi

List of Figures viii

List of Tables x

Acknowledgements xi

I Background and Context 1

1 Introduction 2

1.1 Background & Motivation . 2

1.2 Research Aims & Contributions . 5

1.3 Thesis Structure . 6

II Principles 10

2 Ontology 11

2.1 Ontologies . 11

2.1.1 What is an ’ontology’? . 12

2.1.2 Components of Ontologies . 15

2.1.3 Types of Ontologies . 16

2.2 Ways to Represent an Ontology . 18

2.2.1 First-order Logic . 18

2.2.2 Frames . 18

2.2.3 Conceptual Graphs . 19

2.2.4 Description Logic . 19

2.3 Description Logic (DL) . 19

2.3.1 Open World Assumption . 23

2.3.2 Reasoning with DLs . 24

iii

2.3.3 When is a DL TBox an Ontology? 25

2.4 Representing a TBox as a Graph . 25

2.5 An Example Ontology . 27

2.6 Ontologies In The Semantic Web . 29

3 Ontology Modularization 31

3.1 Motivation . 31

3.2 Ontology Modularization . 33

3.3 Ontology Partitioning . 33

3.3.1 Stuckenschmidt and Klein . 34

3.3.2 Cuenca Grau et al. 35

3.4 Ontology Module Extraction . 35

3.4.1 Traversal Based Extraction . 36

3.4.2 Logical Based Extraction . 43

3.5 Classifying Ontology Module Extraction Techniques 44

3.5.1 Anecdotal Comparison . 44

3.5.2 Traversal Based Extraction Feature Comparison 46

3.5.3 Logical Based Extraction Feature Comparison 47

3.5.4 Summary of Classification . 47

3.6 Common Frameworks for Ontology Modularization 48

3.6.1 Tell/Ask Interface . 48

3.6.2 Graph Transformations . 48

3.6.3 SPARQL Based Extraction . 49

3.7 Modular Ontology . 50

III Evaluation 52

4 Evaluating Ontology Modularization and Ontology Modules 53

4.1 Motivation . 53

4.2 Ontology Evaluation . 55

4.2.1 Ontology Evaluation Methods . 56

4.3 Metrics for Evaluating Module Extraction 60

4.3.1 Size . 60

4.3.2 Precision & Recall . 61

4.3.3 Entropy Inspired Metric . 62

4.4 Metric Based Evaluation . 68

4.4.1 Using Precision & Recall for Module Evaluation 68

4.4.2 Using Entropy for Module Evaluation 70

4.4.3 Critique . 78

iv

4.5 Task Based Evaluation . 78

4.5.1 Instance Retrieval . 79

4.5.2 Subclass Retrieval . 79

4.5.3 Superclass Retrieval . 80

4.5.4 Capability Evaluation . 80

4.5.5 Evaluation Setup . 81

4.5.6 Discussion . 84

4.6 Conclusions . 85

IV Practice 87

5 Applying Ontology Module Extraction to Ontology Reuse 88

5.1 Motivation . 88

5.2 Methodologies for Ontology Engineering 89

5.2.1 Ontology 101 . 89

5.2.2 METHONTOLOGY . 90

5.2.3 On-To-Knowledge . 92

5.2.4 NEON Methodology . 93

5.3 Methodologies for Ontology Module Reuse 94

5.3.1 Doran et al. Methodology . 95

5.3.2 Logic Based Methodology . 98

6 Applying Ontology Modularization to the Dynamic Selection of On-

tology Alignments in Multi-Agent Systems 100

6.1 Motivation . 100

6.2 Preliminaries . 102

6.2.1 What is an Agent? . 103

6.2.2 What is a Multi-Agent system? 103

6.2.3 Characterisation of an Open Environment 104

6.2.4 Semantic Heterogeneity . 105

6.3 What is Argumentation? . 109

6.3.1 Argumentation Framework . 109

6.3.2 Value-Based Argumentation Framework (VAF) 110

6.4 Argumentation over Ontology Alignments 112

6.4.1 Combining Ontology Modularization and Argumentation 113

6.5 An Illustrative Example . 115

6.6 Possibility for Information Loss . 117

6.6.1 Preventing Information Loss . 118

6.6.2 Revisiting The Example . 118

v

6.7 Evaluation . 119

6.7.1 Ontologies and Tracks . 119

6.7.2 Quality of Alignments . 120

6.7.3 Evaluation Setup . 122

6.7.4 Results Discussion . 124

6.8 Conclusion . 127

V Synopsis 129

7 Conclusions and Future Work 130

7.1 Review of Contributions . 130

7.2 Future Work . 133

7.2.1 Ontology Modularization . 133

7.2.2 Ontology Module Evaluation . 134

7.2.3 Dynamic Selection of Ontology Alignments 135

VI Appendices 138

A Experimental Results 139

A.1 Detailed Tables For The Task Based Evaluation (Section4.5) 139

A.2 Tables Argumentation . 144

B Thesis Ontology 151

B.1 Thesis Ontology Axiomatization . 151

B.2 Thesis Ontology TBox in TURTLE . 157

B.3 Thesis Ontology ABox in TURTLE . 168

Bibliography 174

vi

List of Figures

2.1 The intended models of a logical language reflect its commitment to a

conceptualization. An ontology indirectly reflects this commitment (and

the underlying conceptualization) by approximating this set of intended

models. [61] . 14

2.2 An example of a conceptual graph representing the “all men are mortal”

example. 19

2.3 A Venn diagram representing description logic interpretations 21

2.4 Graphical representation of the Thesis ontology taxonomy. 28

3.1 Graphical representation of the Thesis ontology taxonomy. 41

3.2 Attributed graph representation of the expression PersonWithDogAndCat ≡
Person u ∃hasPet.Dog u ∃hasPet.Cat 49

3.3 An example graph transformation for downwards traversal of a subclass

hierarchy. 49

3.4 The SOMET framework. [32] . 50

4.1 Two graphs with equal entropy. 63

4.2 Ontology taxonomy. 67

4.3 Ontology object properties. 67

4.4 Ontology taxonomy and object properties. 68

4.5 More axiomatized ontology. (NB Not all restrictions shown, the restric-

tions with {} would be split out so there is only one instance value per

restriction) . 68

4.6 The Normalized Entropy (based on the HL(X) and HD(X) values) for

each of the OAEI ontologies. 76

4.7 The mean Normalized Integrated Entropy for the modules generated for

each of the ontologies. 77

5.1 A methodology for reusing an ontology module. [33] 96

5.2 Logic based methodology. Taken from [79] 99

6.1 An example of an ontology alignment. 108

6.2 A simple example of an attack graph. 110

vii

6.3 UML Sequence Diagram of Ontology Modularization and Argumentation.114

6.4 Example ontology for combining argumentation and modularization. . . 116

6.5 Attack graph. 117

viii

List of Tables

2.1 Basic (atomic) semantics . 20

2.2 Constructors semantics . 20

2.3 Description Logics constructor subsets 22

3.1 Anecdotal comparison of module extraction techniques using the Thesis

ontology. 45

3.2 Comparison of features for traversal based ontology module extraction. . 46

3.3 Comparison of features for logical based ontology module extraction. . . 47

4.1 The entropy values generated for the different ontologies in Figures 4.2

- 4.5 . 67

4.2 Table showing ontology properties. 68

4.3 Experimental Results . 69

4.4 Classes, properties, expressivity, and normalized H(X) values for each of

the OntoFarm (http://nb.vse.cz/ svatek/ontofarm.html) ontologies used

in the OAEI. 70

4.5 Intervals in the entropies for the Family, AKT Portal, and Mindswap

ontologies . 71

4.6 Comparison between d’Aquin and Doran approaches on LCO 72

4.7 Entropy values for LCO modules. 74

4.8 Comparison of the Module Size (in terms of named entities) and the re-

sulting H(X) values for each of the different modularization approaches.

Both the number of modules generated containing more than two named

concepts, and this value as a percentage of all modules for each ontology

are given. 75

4.9 Classes, properties, and expressivity for each of the OAEI ontologies. . . 82

4.10 Comparison of the Module Size (in terms of named entities) for each

of the different modularization approaches. The percentage size of all

modules for each ontology are given. See Table A.4 for more detail. . . . 83

6.1 Arguments made by Ag1 and Ag2 , along with the arguments they

attack(A) and the value(V) of the argument itself. 117

ix

6.2 Arguments for and against m1 and m2 117

6.3 Classes, properties and DL expressivity for the OAEI ontologies. 122

6.4 Modules statistics: DL expressivity and number of modules (upper sec-

tion) and average and standard deviation for number of classes, object

and datatype properties, and anonymous classes (lower section). 123

6.5 Average over all runs for each modularization technique (upper half) and

for each information loss solution (lower half) 125

6.6 Average over all runs for each modularization technique (upper half) and

for each information loss solution (lower half). Alignments of size zero

are not included in the average. 125

6.7 Instance, Subclass and Superclass Retention values 125

6.8 A snapshot of the lower retention values 126

6.9 Average accepted alignment sizes (averaged by modularization technique)127

A.1 Results broken down by ontology and technique; all the modules for a

single ontology and a single technique are averaged together; this table

only reports the instances results. 140

A.2 Results broken down by ontology and technique; all the modules for a

single ontology and a single technique are averaged together; this table

only reports the subclasses results. 141

A.3 Results broken down by ontology and technique; all the modules for a

single ontology and a single technique are averaged together; this table

only reports the superclasses results. 142

A.4 Comparison of the Module Size (in terms of named entities) for each of

the different modularization approaches. Both the number of modules

generated containing more than two named concepts, and this value as

a percentage of all modules for each ontology are given. 143

A.5 Average candidate alignment sizes with and without modularization . . 145

A.6 Average candidate alignment sizes with and without modularization (ex-

cluding alignments of size 0) . 146

A.7 Average alignment sizes with and without modularization 147

A.8 Average alignment sizes with and without modularization (excluding

alignments of size 0) . 148

A.9 Average accepted alignment sizes (averaged by modularization tech-

nique, excluding alignments of size 0) . 149

A.10 Percentage of empty alignments by modularization technique and align-

ment system . 150

x

Acknowledgements

Whilst one name appears on the front of this work it would not have been possible

without the help of so many people.

My deepest gratitude must go to Dr. Valentina Tamma for giving me the chance,

opportunity and freedom to explore my ideas, even if some of them were a little crazy!

Your help, guidance and friendship has proved invaluable.

I also thoroughly thank all past and present members of the Semantic Web Lab,

but I especially thank: Ian for knowing the answers to all my questions; Lori for always

putting a smile on my face; Luigi for providing me with some solid advice and many

memorable nights out; and last, but not least, Ignazio for always being dependable,

reliable and honest.

My thanks, also, go to thank Prof. Frank Wolter and Dr. Terry Payne for critiquing

my work. Your feedback has made me a better researcher and this thesis better.

I must thank the EPSRC for funding my studentship and the Department for award-

ing it to me; it truely wouldn’t have been possible without their money.

Finally, I am indebted to my whole family who are always their for me and keeping

my feet firmly on the ground. I must particulalry thank my parents for always encour-

aging me to grow and learn, both emotionally and intellectually. It is also essential

that I thank my grandparents for showing me that strong principles and hard work

take you far.

A special thank you must go to Elisa; your support, understanding and love has

been immense.

xi

Part I

Background and Context

1

Chapter 1

Introduction

‘For we are all ants on beaches of knowledge.’ - Edward A. Feigenbaum

Summary The aim of this thesis is to outline the principles underlying the the

process of ontology modularization; the process of identifying subsets of an ontology.

From this it is possible to consider how to use ontology modularization in practice.

This thesis applies ontology modularization to the problem of ontology reuse and to

the novel problem of using ontology modularization as a space reduction mechanism

for the dynamic selection of ontological alignments in multi-agent systems.

This chapter presents the background and motivation for this thesis, and it provides

the research aims and contributions before moving on to give an outline of the thesis

structure.

1.1 Background & Motivation

The last 60 years have seen a rapid growth in the use and exploitation of computer

systems, in academia, industry and through the growth of the Internet wider society

too. This has changed the way people perceive and access knowledge. How often, when

one needs a question answering, is the Internet the first port of call?

This development in computer technology coincided with the birth of Artificial In-

telligence. Ever since Alan Turing proposed his test [136], the ‘Turing Test’, people

have attempted to build intelligent machines or, at least, machines that appear intelli-

gent. The Turing Test requires a machine to fool a human observer into believing that

it is human, based not on appearance but on its ability in a conversational task.

This has motivated researchers to consider many ways of giving a machine intelli-

gence. In this direction Artificial Intelligence has two important results relevant to this

thesis: the physical symbol system hypothesis (PSSH) [99] and the knowledge principle

(KP) [86]. The physical symbol system hypothesis states that “A physical symbol sys-

tem has the necessary and sufficient means for general intelligent action”; this implies

that intelligence is some kind of symbolic manipulation and as such a machine can be

2

intelligent because a symbol system is sufficient for intelligence. The knowledge prin-

ciple states that “if a program is to perform a complex task well then it must know

about the world in which it operates”; the implication being that knowledge is needed

to be intelligent.

Searle’s Chinese Room [114] is a famous retort to the physical symbol system hy-

pothesis. The Chinese Room is a thought experiment where there is a room that

receives a question as input, in Chinese, a rule book for answering all the questions,

and a human that can match the input to the rules and generate an answer, in Chinese.

Searle argues that because the human in the room does not understand Chinese then

the Room is only a simulation of intelligence. Levesque [88] presents a riposte to the

Chinese Room by considering, a simpler room, the Summation Room. This is similar

to the Chinese Room but involves the task of adding up twenty, ten-digit numbers.

Levesque shows that the rule book required even for this simple task is not feasible

(in terms of the number of entries required in the rule book) and, thus, undermines

Searle’s argument.

Why is all this relevant today? In today’s society large computer systems are the

norm and they are expected to perform ever more complex tasks, and with this the

expectation that computer systems need to be more ‘intellignet’. Indeed, interacting

systems are now the norm in the everyday computing world, even trivial systems contain

sub-systems that need to interact [146]. An obvious example being the Internet, where

countless computers interact to perform a myriad of tasks; but even your television

interacts with a remote control!

We have all experienced the Internet and its vast swathe of content. However, “the

Internet is one big ocean of unedited data, without any pretense of completeness” [126].

It is hard to find what you need, for example a query for “jaguar” will give results

about both cars and cats. So, with the Internet there is the need to move toward a

more ‘intelligent’ Web; a web that ‘knows’ what things are. This requires a shift from

data to knowledge. For example, the shift from “red light” to “red light” from a “traffic

light” allows us to discern that we should probably stop. We need to ‘know’ what a

page is about; in other words we should follow the knowledge principle; if we want to

be able to separate the “jaguar” cars from the “jaguar” cats then the program running

the query needs to be able to make the distinction.

In Computer Science this shift from data to knowledge came with a new perspective,

the knowledge level [98]. The knowledge level provides us with a level of abstraction

above implementation concerns; allowing us to specify what something knows without

concerning ourselves with the mechanics.

One way to encode this knowledge is to use ontologies (see Section 2.1), these pro-

vide us with a logical theory which gives an explicit, partial account of a conceptualiza-

tion [64]. They provide a vocabulary of terms and express relations that hold between

3

them. Ontologies have been successfully employed in order to solve problems, such as

interoperability and heterogeneity, deriving from the management of shared, distributed

knowledge, and the efficient integration of information across applications [38].

Much of this success depends on the ability to share and reuse existing ontolo-

gies [54]. However, as some ontologies1 are sizable, such as SNOMED CT2 and the

NCI Thesaurus3, then there is a motivation to reduce them to more manageable chunks.

For example, if one is building an ontology and wishes to reuse only part of an existing

ontology. Even more so when considering that ontology construction is deemed to be

a time consuming and labour intensive task [33]. Ontology modularization allows one

to identify subsets of an ontology, with these subsets being termed ontology modules.

Ontology modularization can be used for efficiency gains in a diverse range of tasks,

such as reasoning, query answering, reuse (see Chapter 5), etc. The common theme for

all tasks being that why should one use something which is larger than necessary for

the task. This thesis presents a technique for ontology module extraction (see Section

3.4.1) based on graph traversal.

Technological advancement has brought with it ever more possibilities to exploit

the knowledge level perspective. The latest effort being the Semantic Web [134] which

aims to add a layer of meaning to the World Wide Web and is gaining mainstream

attention [4, 121, 144].

The Semantic Web is one example of an open, distributed environment as few con-

straints are placed on the participants (agents). The participants can enter and leave

the environment at will and have their own separate internal models of the world. Some

constraints are, however, required, for example the adoption of a standard ontology lan-

guage to encode knowledge in order to prevent knowledge systems from being “isolated

monoliths” [57]; without this the agents would be unable to exchange knowledge.

However, even with the same ontology language agents are likely to have mismatches

that need to be reconciled, a fundamental problem to be overcome for agent communi-

cation [137]. These mismatches occur when the agents internal models model the same

thing in different ways. For example, one agent could model Transport as Car and

Train, and another agent could model Transport as AirBased and LandBased. Thus,

the agents require some way to reconcile their differences.

Typically this reconciliation is achieved through the use of ontology alignments,

which provide a mapping from entities in one ontology to entities in another ontology.

Unfortunately, however, the techniques for ontology alignment generation either take

a long time or are user-led making them unsuitable for the type of environment being

considered here. That is the agents must be capable of doing everything for themselves
1For the purposes of this discussion no distinction is made between lightweight ontologies, such as

thesauri, and more heavyweight ontologies; all are termed ontology here.
2Systematized Nomenclature of Medicine-Clinical Terms - http://www.ihtsdo.org/snomed-ct/
3National Cancer Institute - http://ncit.nci.nih.gov/

4

without intervention.

However, it is viable to assume that these alignments exist somewhere in the envi-

ronment; the alignments could be stored, for example, in a repository that the agents

can access to retrieve the relevant ones. The problem is now that there are likely to be

many alignments available to the agents. Thus, the two agents now need some way to

agree upon a solution based on the existence of multiple solutions for the reconciliation

of their internal models.

Argumentation, a systematic process of reasoning, allows the agents to arrive at a

mutually acceptable solution. Agents can put forth arguments as to why one ontology

mapping should or should not be accepted; allowing both of their views to be considered.

However, the argumentation process is computationally complex. Thus, we shall again

apply the knowledge principle.

Agents perform tasks, that is they are trying to actively achieve something. It is

likely that only some of the terms (concepts) in their ontology are relevant to the task

at hand, after all, why should they agree upon things that are irrelevant? Agents have

bounded resources so they should not want to waste them arguing over unimportant

concepts. Thus, we can apply ontology modularization to produce a module that is

relevant and appropriate for the task (see Chapter 6). The agents are able to select the

subset of their ontology that is relevant to the task and only argue over the concepts

in these subsets. So, now the agents are able to reach a mutually agreeable solution

on only those concepts that are relevant for their task, which as a consequence reduces

the cost of reaching an agreement.

1.2 Research Aims & Contributions

This section summarises the aims and objectives of this thesis and aims to characterise

the contributions made to the state of the art.

The research aim of this thesis is to investigate what principles underlie ontology

modularization in such a way that ontology modularization can be used in practice.

This can be summarised by the following two research questions:

1. How can part of an ontology be reused instead of the whole?

2. How can the ontology modules, obtained as a result of ontology modularization,

be used in practice?

In order to answer these questions three main research directions arose.

1. Ontology Module Extraction. This led to the development of a traversal

based ontology module extraction method that aimed to extract a module about

a single concept that could be refined by an Ontology Engineer.

5

2. Module Evaluation. From the need to effectively evaluate the disparate ontol-

ogy modularization techniques a further research direction arose in the area of

ontology evaluation. Despite the significant bodies of work in the areas of ontol-

ogy modularization and ontology evaluation, few efforts had directly considered

the problem of evaluating ontology modules. This resulted in the development

of an entropy inspired metric for evaluating ontology modules. All this work

was carried out with the consideration of applying ontology modularization to

ontology reuse.

3. Novel Application. A novel application of ontology modularization in the

area of interoperability in distributed and open systems. Specifically, various

ontology modularization techniques were investigated for their suitability as a

space reduction mechanism for the dynamic selection of ontology alignments in

multi-agent systems.

1.3 Thesis Structure

This thesis presents the principles of ontology modularization and how it can be used

in practice; these meet the research aims described above. The thesis is divided into

five parts, which are further divided into seven chapters and the appendices. Part I

presents the background and context of the research relevant to the contributions of

this thesis. Part II describes the principles of both ontology for artificial intelligence

and ontology modularization. Part III details an evaluation of the different ontology

modularization techniques. Then Part IV shows how ontology modularization can be

used in practice in two areas: ontology reuse and the dynamic selection of ontology

alignments. Finally, Part V outlines the main results of the thesis and discusses some

possibilities for future work.

A more detailed description of the structure of the thesis is as follows:

Chapter 1. Defines the motivation and background for this thesis, as well as detailing

the research aims and contributions.

Chapter 2. Introduces the fundamental principles of ontology in artificial intelligence.

Giving an overview of the differing definitions of ontology in the literature, as well

as detailing different representation formalisms. A detailed overview of Descrip-

tion Logics is provided as it is the chosen ontology representation for this thesis.

This allows the reader to follow the principles of ontology modularization detailed

in the next chapter.

Chapter 3. Addresses the problem of ontology modularization. The existing tech-

niques for ontology modularization are reviewed, highlighting the principles un-

6

derlying them. Possible definitions of a common framework for ontology modu-

larization are also presented and discussed.

Chapter 4. Evaluates some of the different ontology modularization techniques pre-

sented in the previous chapter. Before this the literature regarding ontology

evaluation is reviewed. Then the evaluation is conducted along two dimensions:

metric based and task-based. The metric based evaluation applies the previously

presented metrics to assess the performance of the different ontology modular-

ization techniques. Lastly, the task-based evaluation is presented to compare the

performance of the different ontology modularization techniques with respect to

three tasks relevant to query answering.

Chapter 5. Applies ontology modularization to the problem of ontology reuse. Exist-

ing Ontology Engineering methodologies are presented, noting how they include

steps for ontology reuse. Then two methodologies are detailed that allow an

Ontology Engineer to reuse an ontology module instead of the whole ontology.

Chapter 6. Applies ontology modularization to the dynamic selection of ontology

alignments in multi-agent systems, showing how ontology modularization is used

as a space-reduction mechanism. Then the notions of agent and multi-agent sys-

tems are given; along with a discussion of the problem of semantic heterogeneity

and how ontology alignments overcome this. Next argumentation, specifically the

value-based argumentation framework, is introduced and it is shown how this can

be used by agents to reach a mutually acceptable alignment. This solution suffers

high-complexity so ontology modularization is applied as a space reduction mech-

anism; this could result in information loss and two solutions are offered. Lastly,

an evaluation is presented that shows that ontology modularization successfully

reduces the space for the argumentation process without negatively affecting the

quality of the agreed alignment.

Chapter 7. Presents some conclusions and identifies some areas of future work based

on some open issues of the work presented in this thesis.

This thesis contains some content that has previously been published; detailed as

follows:

• Doran, P., Tamma, V., Palmisano, I. and Payne, T. Ontology Modularization as

a space reduction mechanism for the dynamic selection of ontological alignments

in MAS. IEEE Transactions on Knowledge and Data Engineering (TKDE). (In

Submission).

• Palmisano, I., Tamma, V., Payne, T. R., Doran, P. Task Oriented Evaluation

of Module Extraction Techniques In: The Eighth International Semantic Web

Conference (ISWC’09) October 25th-29th 2009 Washington, D.C., USA

7

• Doran, P., Tamma, V., Payne, T. R., Palmisano, I. An entropy inspired mea-

sure for evaluating ontology modularization. In: 5th International Conference

on Knowledge Capture (KCAP’09). September 1st-4th, 2009. Redondo Beach,

California, USA.

• Doran, P., Tamma, V., Payne, T. R., Palmisano, I. Dynamic selection of on-

tological alignments: a space reduction mechanism. In: Twenty-First Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-09). July 11th-17th,

2009. Pasadena, California, USA.

• Doran, P., Tamma, V., Payne, T. R., Palmisano, I. Applying Ontology Modu-

larization to Argumentation over Ontology Correspondences in MAS. In: The

Eighth International Conference on Autonomous Agents and Multiagent Systems

(AAMAS-09). May 10th-15th, 2009. Budapest, Hungary.

• P. Doran, V. Tamma, I. Palmisano, L. Iannone. Evaluating Ontology Modules

using an Entropy Inspired Metric. Proceedings of the 2008 IEEE/WIC/ACM

International Conference on Web Intelligence (WI 2008). 9-12th December 2008.

Sydney, Australia.

• I. Palmisano, V. Tamma, L. Iannone, T. Payne, P. Doran. Dynamic Change

Evaluation for Ontology Evolution in the Semantic Web. Proceedings of the 2008

IEEE/WIC/ACM International Conference on Web Intelligence (WI 2008). 9-

12th December 2008 Sydney, Australia.

• Doran, P., Tamma, V., Palmisano, I., Payne, T., Iannone, L. Evaluating Ontology

Modules Using an Entropy Inspired Metric. ULCS Technical Reports (ULCS-08-

017).

• Palmisano, I., Tamma, V., Iannone, L., Payne, T., Doran, P. Dynamic Ontology

Evolution in Open Environments. ULCS Technical Reports (ULCS-08-012).

• Doran, P., Palmisano, I., Tamma, V. SOMET: algorithm and Tool for SPARQL

Based Ontology Module Extraction. International Workshop on Ontologies: Rea-

soning and Modularity (WORM-08), ESWC 2008. June 2, 2008. Tenerife, Spain.

• Doran, P., Tamma, V., Iannone, L. Ontology Module Extraction for Ontology

Reuse: An Ontology Engineering Perspective. Proceedings of the 2007 ACM

CIKM International Conference on Information and Knowledge Management.

November 6-9, 2007. Lisbon, Portugal.

• d’Aquin, M., Doran, P., Motta, E., Tamma, V. Towards a Parametric Ontology

Modularization Framework Based on Graph Transformation. Workshop: Inter-

8

national Workshop on Modular Ontologies (WoMo), K-CAP 2007. October 28,

2007. Whistler, British Columbia, Canada.

• P.Doran. Ontology Reuse via Ontology Modularisation. In Proceedings of Knowl-

edgeWeb PhD Symposium 2006 (KWEPSY2006). 17th June 2006. Budva, Mon-

tenegro.

9

Part II

Principles

10

Chapter 2

Ontology

‘Human beings, who are almost unique in having the ability to learn from

the experience of others, are also remarkable for their apparent

disinclination to do so. - Douglas Adams

Summary This chapter introduces the fundamental principles of ontology for arti-

ficial intelligence. First, the various definitions of ontology are considered before moving

on to the components and types of ontologies. From here an overview of various ways to

represent ontologies are considered. This leads to Description Logics being introduced

as the formalism for representing ontologies in this thesis, with consideration given to

the open world assumption and reasoning in Description Logics. Lastly, an example

ontology is presented which will be used at various places throughout the thesis.

2.1 Ontologies

Ontology is the ‘branch of metaphysics concerned with the nature or essence of being

or existence’ [31]. The differing philosophical views of ontology are varied, for example

those of Leibniz and Newton [15]. Newton postulated a reductionist view whereby the

noise of our experience is reduced to that which is considered necessary; Newton’s Laws

of Motion being a perfect example. Conversely, Leibniz postulated a constructionist

view whereby our experience shapes our Ontology, the many ‘parts’ of our experience

form the ‘whole’. For example, over many interactions (parts) with an internet search

engines it will adjust its output (the whole) to fit us. Discussions surrounding these

philosophical differences would be out of context in this thesis, see Guarino and Gia-

retta [64] for a discussion on these philosophical issues; thus the focus shall be on the

definition of ontology within the context of Artificial Intelligence.

Guarino and Giaretta [64] provide a useful distinction. They state that ‘Ontol-

ogy’ denotes the philosophical discipline concerned with the nature of being and that

‘ontology’ denotes its use in knowledge base systems. This thesis is concerned with

‘ontology’, not ‘Ontology’.

11

2.1.1 What is an ’ontology’?

It does seem somewhat ironic that it is necessary to provide a definition for a word that

supposedly describes what exists; but there are disparate views within literature that

are worthy of consideration. One definition frequently used in the literature, arguably

the de facto definition, is the one provided by Gruber [59] which is that an ontology

is a “specification of a shared conceptualization”. The majority of the definitions

[10, 6, 64, 61, 129] can be seen as refinements on Gruber’s. Let us first consider these

alternative definitions:

Guarino and Giaretta. “A logical theory which gives an explicit, partial

account of a conceptualization.” [64]

Here the ontology is characterised as only providing a partial account of the

intended conceptualization. The assumption being that it is not possible to con-

struct an ontology that completely expresses the intended conceptualization.

Bernaras, Laresgoiti and Corera. “The ontology provides the means for

describing explicitly the conceptualization behind the knowledge rep-

resented in a knowledge base.” [6]

This definition reflects the role that the ontology will play, but still it suggests

that an ontology provides the description of a particular viewpoint about the

knowledge base.

Borst. “An ontology is a formal specification of a shared conceptualiza-

tion.” [10]

This definition introduces the notion of a shared conceptualization, this being

that an ontology reflects the common understanding of the modelled domain.

One would expect this consensus to be achieved by a community of users.

Guarino. “An ontology is a logical theory accounting for the intended mean-

ing of a formal vocabulary, i.e. its ontological commitment to a partic-

ular conceptualization of the world.” [61]

This takes into account not only the conceptualization but also the language

used to describe it and the commitments that come with this. It also suggests

that this language should be formal. The ontological commitment should be

made explicit when applying the ontology, this should facilitate its accessibility,

maintainability and integrity. This is analogous to including comments in your

programming code.

Studer, Benjamins and Fensel. “An ontology is a formal, explicit speci-

fication of a shared conceptualization.” [129]

12

This extends Borst’s definition by adding the constraint that the ontology should

be explicit meaning that the type of concepts used, and how they are to be used

are explicitly defined.

The above definitions demonstrate that the refinements to Gruber’s definition occur

along two dimensions, specification and conceptualization. Thus two more questions

need to be posed:

1. What is a specification?

2. What is a conceptualization?

What is a Specification?

A specification, especially in Computer Science, tends to be a formal description of

how something could be constructed to meet certain criteria. Indeed, this notion of

specification concurs with Gruber’s [58] whereby a specification can be the formal

specification of a program. For example, using Backus-Naur Form (BNF) to express

context-free grammars as used by some programming languages. With ontology lan-

guages it is usual to specify both the syntax and semantics.

Borst [10] states that the specification of an ontology should be formal, agreeing

with the general notion above. Studer, Benjamins and Fensel [129] go one step further

and suggest that the specification should also be explicit; in the sense that all concepts

be explicitly defined. Whilst explicit definitions are of use they could possibly introduce

unwanted arbitrary concept labels into the ontology. For example, in Description Logics

(see Section 2.3) not every restriction requires a concept label, so whilst the restriction is

formal and unambiguous it is an implicit part of some other explicit concept definition.

What is a Conceptualization?

Once the language of the ontology has been specified it needs to be put to use; this

requires conceptualization. Conceptualization involves grounding the symbols of the

ontology language in a domain. For example, the propositional logic formula

A(x)→ B(x)

is abstract and can be grounded into a domain as

Man(x)→Mortal(x)

The conceptualization alone is of limited use unless the interpretation of the symbols

used to conceptualize can be shared. This requires an ontological commitment; an

agreement to use a vocabulary in a coherent and consistent manner. An ontological

commitment is an agreement on the meaning of the vocabulary used to share knowledge;

13

a mapping between a concept and its chosen intended meaning. An agent is said to

commit to an ontology if its knowledge conforms to the ontology with respect to the

semantics and interpretations of the symbols.

Figure 2.1 shows this notion. The conceptualization (C) allows the models of some

language (M(L)) to be constrained to a subset of intended models (IK(L)) due to a

commitment (K) to a specific conceptualization. Thus, the conceptualization identifies

the objects (both abstract and real) that exist in some world and the relationships that

exist between them.

Figure 2.1: The intended models of a logical language reflect its commitment to a
conceptualization. An ontology indirectly reflects this commitment (and the underlying
conceptualization) by approximating this set of intended models. [61]

Bernaras, Laresgoiti and Corera [6] says that the contents of a knowledge base

should be a conceptualization of its knowledge. A major drawback of early expert sys-

tems was that the knowledge base contained both domain knowledge and knowledge on

how to use the domain knowledge (rules). These were highly interconnected making it

difficult to replicate success in one domain to another domain. For example, Mycin [16]

was a rule-based expert system for blood analysis. Mycin was able to diagnose blood

infections, for example menigitis, and then propose appropriate medication; this was

its domain knowledge. If this knowledge had been properly conceptualized then it

should have been possible to separate out the domain knowledge from the application

knowledge, but the rules used for the inference encoded this knowledge directly and it

proved difficult to separate them.

14

Studer, Benjamins and Fensel [129] and Borst [10] argue that the conceptualization

should be shared. This notion of shared conceptualization is important as it implies

that an ontology can be applied across a variety of applications if the conceptualization

of the domain is (at least partially) shared.

Verdict

Despite these contrasting views a definition of ontology needs to be adopted for this

thesis. Guarino and Giaretta [64] define an ontology as:

“A logical theory which gives an explicit, partial account of a conceptu-

alization.”

This definition is useful to adopt for our purposes as it captures that there is an

expectation that an ontology has a formal underpinning (in this thesis it is Description

Logics) and that there is no assumption, or expectation, that an ontology is complete.

Assuming that an ontology is complete would mean, according to Figure 2.1, that the

set of ontology models was equivalent to the set of intended models. However, the

ontology would only be complete with respect to the given conceptualization and it is

possible that the same domain can be conceptualized differently according to a number

viewpoints. This fits nicely with the Open World Assumption (see Section 2.3.1) made

by Description Logics which assumes that no agent has complete knowledge.

2.1.2 Components of Ontologies

Ontologies formalise the knowledge in a domain by means of a set of components:

concepts, relations, functions, axioms and instances [58, 50]. The aim here is to

introduce and clarify this terminology.

• Concepts (C) A concept represents the abstractions used to describe objects

in the world. It is described by a term (a symbol), an extension and an

intension.

• Relations (R) The set of relationships defined over the set of concepts (C), such

that each r ∈ R is an ordered n-ple r = (C1 × C2 × . . .× Cn)

• Functions (F) The set of functions defined over the set of concepts that return

a concept, such that each f ∈ F : (C1 × C2 × . . .× Cn−1 7→ Cn)

• Axioms (A) A set of assertions, taken to be true, that constrain the meaning

of concepts, relations and functions. They can also provide provision for

correctness checking and inference.

• Instances (I) The set of individuals whereby an individual is an object of the

world. Subsets of I can correspond to the extension of a concept, in this

case those individuals are said to be instances of that concept.

15

Depending on the ontology language chosen and the scope of the ontology it is

possible that only a subset of the above will be used.

2.1.3 Types of Ontologies

There are numerous types of ontology and these can be broadly split along two dimen-

sions: level of generality and the type of knowledge being modelled. From Guarino [61]

and van Heijst, Schreiber and Wielinga [139] it is possible to identify the following

classifications of ontologies:

• Upper-level/Generic Describe very general concepts or ‘common-sense’ knowl-

edge, such as space, time, etc., which are independent from a particular

problem or domain. They express conceptualizations that are specific not

to a domain, but apply across multiple domains. For example, the IEEE

Standard Upper Ontology Working Group (SUO WG)1 is trying to define

an upper ontology containing concepts not unique to a domain so that its

concepts can be used when creating domain ontologies.

• Domain Model specific domains, such as medicine, academia, etc., which means

that they are not independent from a particular domain. The concepts in

domain ontologies can usually be seen as specialisations of concepts defined

in an upper level ontology [54]. For example, Location in a domain ontol-

ogy is a specialization of Spatial Point that could be defined in an upper

ontology.

• Task Describe generic or domain-specific activities, such as diagnosis or selling.

They provide a vocabulary of terms associated with a task that may or may

not be in the same domain.

• Application Describe concepts depending both on a particular domain and par-

ticular task. They are often specialisations of domain, task and generic on-

tologies, corresponding to the roles played by domain entities when they

perform certain activities. For example, an application ontology could be

created for a travel agent which covers the different destinations, etc., and

the tasks a travel agent needs to carry out, booking tickets, etc.

• Representation Describe the conceptualizations that underlie knowledge rep-

resentation formalisms [29]. They provide no claims about the world, but

just a representational [63]. For example, the Frame Ontology used by On-

tolingua [58].
1http://suo.ieee.org/

16

Along with this both Uschold and Gruninger [138] and McGuinness [94] suggest

that ontologies can be classified along a dimension of formality, from highly informal

to highly formal. Uschold and Gruninger [138] provide the following classification:

• Highly-informal The ontology is expressed in natural language, thus, suffering

from the inherent ambiguity of natural language.

• Semi-informal The ontology is expressed in a restricted and structured form of

natural language. This achieves improvement in clarity and reduces the pos-

sibility for ambiguity. For example, Hart, Johnson and Dolbear [67] present

a controlled natural language that can be translated into the Description

Logic (DL) equivalent to OWL (see Section 2.3); so the sentence “Car is a

kind of Transport” is equivalent to the DL axiom

Car v Transport

• Semi-formal The ontology is expressed in a formally defined artificial language.

For example the Ontolingua [58] language for describing ontologies.

• Highly-formal The ontology is expressed in a language whose terms have a

formal semantics. Section 2.2 provides some examples of this kind.

Whereas, McGuinness [94] provides an “ontological continuum” of different types

of models, but this can broadly by split into the following classification:

• Informal Models This includes, in increasing formality, glossaries, thesauri and

informal taxonomies (for example, Wikipedia’s classification system).

• Formal Models This begins at formal taxonomies and by adding further se-

mantics, such as value restrictions and disjointness we arrive at a point near

to Description Logics (see Section 2.3).

Informal models would include WordNet [95] and the ACM Classification2 and for-

mal models, as they are expressed in description logic, would include many of the ontolo-

gies available for use on the Semantic Web, such as Friend of a Friend (FOAF)3 which

models descriptions of people and the links between them; Semantically-Interlinked

Online Communities(SIOC)4 [14] whose model facilitates the integration of online com-

munities.; and GoodRelations5 [70] which models descriptions of goods, and the terms

and conditions of items and services offered on the Web.
2http://www.acm.org/about/class/
3http://www.foaf-project.org
4http://sioc-project.org/
5http://purl.org/goodrelations/

17

2.2 Ways to Represent an Ontology

There are numerous formalisms to represent ontologies: first-order logic, frames, se-

mantic nets and description logics to name a few.

2.2.1 First-order Logic

First-order logic (FOL) [72, 145] is a formal deductive system that allows predicates

and quantification along with the declarative propositions of propositional logic. The

benefits of FOL for ontologies are its freedom in predicate choice and its use of variables,

which allows us to easily capture the “all men are mortal” example with the following:

∀x(Man(x)→Mortal(x))

Unfortunately FOL is undecidable although semidecidable [7]6. This means that

for FOL we can have sound (the answers obtained are correct) but not complete (we

might not always get all the answers) reasoning.

The Knowledge Interchange Format (KIF) [49] is based on first-order logic and was

intended to represent the content of messages that were exchanged between two agents.

Its syntax has a LISP-like structure, so the example above represented in KIF would

be:

(forall (?x Man) (=> (?x Mortal)))

2.2.2 Frames

Frames [96] are data structures that can be used for knowledge representation. A frame

allows for a typical situation to be captured, connecting these frames together allows

an ‘idea’ to be captured. The reasoning capabilities of frames are usually restricted to

inheritance. The representation of the “all men are mortal” example in Frames requires

to know that Frames represent a typical situation. For example:

Man :

isMortal : True

This says that Man stereotypically has the property isMortal set to True, but it

would be possible to create a subclass of Man, say ImmortalMan, where this property is

to False.

KL-ONE [12] is an early example of a frame based language attempting to overcome

the lack of formal semantics in semantic networks. KL-ONE allowed for subclass and

superclass relations among its frames. Gruber [58] proposed to model ontologies using

frames and first order logics using the modelling primitives stated in Section 2.1.2; that

is concepts, functions, roles, axioms and instances. This resulted in Ontolingua [58]
6A theory is decidable if and only if both it and its complement are semidecidable

18

which was a frame based language that allowed ontologies to be translated from one

ontology language to another. FLogic [80] and OKBC [18] are examples of other frame

languages. OIL [44] was also a frame based language, this developed into DAML+OIL

which later became OWL (see below).

2.2.3 Conceptual Graphs

Attr MortalMan: ∀

Figure 2.2: An example of a conceptual graph representing the “all men are mortal”
example.

Conceptual Graphs (CGs) [122] combine the graphical notation of semantic net-

works with the algebraic notation of predicate logic defined by Pierce [107]; as such

they have both a graphical and linear notation. CGs allow conceptual relations to be

stated between concepts. The reasoning capabilities of CGs are essentially a variant on

those offered by first-order logic (see [123] for a more detailed account). The “all men

are mortal” example in the linear notation is:

[Man : ∀]− > (Attr)− > [Mortal]

This says that all Man has an attribute of Mortal; the graphical notation for this

example is shown in Figure 2.2.

2.2.4 Description Logic

Description Logics are intended to be decidable subsets of FOL. The ontology language

that is used throughout the rest of this thesis is Description Logics. Description Logics

are the underlying model defining the W3C Web Ontology Language (OWL) [106, 74]

and is the language used in the context of the Semantic Web. Section 2.3 presents

the definition of Description Logic. The “all men are mortal” example in Description

Logics is represented by the following axiom:

Man v Mortal

That is the set of things Man is a subset of all things Mortal.

2.3 Description Logic (DL)

Description logics can be used to specify concept definitions within a domain, a ter-

minological specification, in a structured and well formed manner. Description logics

are intended to be decidable subsets of first-order logic(FOL) meaning that sound and

19

Name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅
atomic concept A AI(⊆ ∆I)
value restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}

existential restriction ∃R.> {x ∈ ∆I | ∃y (x, y) ∈ RI}

Table 2.1: Basic (atomic) semantics

Name Syntax Semantics

atomic negation ¬A,A ∈ NC ∆I \AI
full negation ¬C ∆I \ CI

concept intersection C1 u C2 CI1 ∩ CI2
concept union C1 t C2 CI1 ∪ CI2

full existential re-
striction

∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}
at most restriction ≤ nR {x ∈ ∆I | |{y ∈ ∆I | (x, y) ∈ RI}| ≤ n}
at least restriction ≥ nR {x ∈ ∆I | |{y ∈ ∆I | (x, y) ∈ RI}| ≥ n}
qualified at most
restriction

≤ nR.C {x ∈ ∆I | |{y ∈ ∆ | (x, y) ∈ RI ∧ y ∈
CI}| ≤ n}

qualified at least
restriction

≥ nR.C {x ∈ ∆I | |{y ∈ ∆I | (x, y) ∈ RI ∧ y ∈
CI}| ≥ n}

one-of {x1, x2, . . . , xn} {x ∈ ∆I | x = xi, 1 ≤ i ≤ n}
has value ∃R.{x} {y ∈ ∆I | (y, x) ∈ RI}
inverse of R− {(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI}

Table 2.2: Constructors semantics

complete reasoning is possible. They rose from the need to provide frame based systems

with a formal semantics, aided by Hayes [69] who demonstrated that frames could be

given a formal semantics by using subsets first-order logic. This allowed reasoning to

be done without the need for first-order logic theorem provers [3]. The combination of

formal semantics and practical reasoning has led Description Logics to become the de

facto ontology language; and it is the ontology language we adopt for the rest of this

thesis.

A description logic knowledge base (KB) consists of two components, the TBox(T),

containing intensional knowledge, and the ABox(A), containing extensional knowl-

edge [3]. The TBox defines the terminology (vocabulary) and the ABox contains as-

sertions about named individuals in terms of the TBox.

The terminology comprises of concepts, denoting sets of individuals, and roles,

which denote binary relations between the individuals. Complex descriptions can be

assigned a name in the TBox allowing Knowledge Engineers to extend beyond atomic

concepts and roles, for example Mother ≡ Woman u ∃hasChild.Person.

Each DL system is distinguished by their language for building descriptions (de-

scription language). Description languages are assumed to have two kinds of symbols,

atomic concepts (denoted by A and B) and atomic roles (denoted by R). The semantics

20

of atomic concepts and roles can be seen in Table 2.1. Atomic concepts and atomic roles

are the basic building blocks that are used in concept and role constructors to build

complex descriptions. The letters C and D denote arbitrary more complex descriptions.

The semantics of these constructors can be seen in Table 2.2.

As can be seen from Table 2.1 and 2.2 the formal semantics of a concept is considered

in terms of interpretations, I, that are a non-empty set ∆I , this is the domain of

interpretation, and an interpretation function. The interpretation function assigns for

every atomic concept A a set AI ⊆ ∆I , this is then extended, as shown in Table 2.1

and 2.2, to cover concept description.

Let us consider an example of how interpretations work; assume we have the fol-

lowing TBox that consists of two axioms from the ontology presented in Section 2.5:

Academic v Person

Student v Person

This has the following semantics in terms of interpretations:

AcademicI ⊆ PersonI

StudentI ⊆ PersonI

This situation can be represented using a Venn diagram, as shown in Figure 2.3.

This clearly shows that the set of individuals represented by Academic and Student

are subsets of Person.

PersonAcademic Student

Figure 2.3: A Venn diagram representing description logic interpretations

By taking different DL operators we can construct different description logics. For

example, the description logic ALC (AL+ C) gives us:

21

DL Name Constructors

ALN u,∀R.C,∃R.>,≥ R,≤ R
ALC u,t,¬C,∀R.C,∃R.C
SHOIN ALN ∪ALC, R−,

role hierarchies, role transitivity,
role symmetry,

(inverse) functional properties

Table 2.3: Description Logics constructor subsets

• AL = Atomic negation, concept intersection, universal restrictions and limited

existential quantification.

• C = Negation of arbitrary concepts.

The differences between some of the different description languages are shown in

Table 2.3.

Lastly, the W3C7 have defined the Web Ontology Language (OWL) [106]. OWL

comes in three flavours: OWL Lite, OWL DL and OWL Full. OWL DL is equivalent

to SHOIN (D);meaning we have the following operators:

• S = ALC with transitive roles. Allowing one to create transitive properties. For

example, if John isWith Paul and Paul isWith Ringo and isWith is transitive

then John isWith Ringo.

• H = Role hierarchy. Allowing one to create subproperties of properties. For

example, hasAuthor has the subproperty hasCoAuthor.

• O = Nominals. Allowing one to state that a class is restricted to a given set of

individuals. For example, BeatlesMember is one of the set {John, Paul, Ringo

and George}, where this set is a set of instance names.

• I = Inverse properties. Allowing one to state an inverse property of a property.

For example, isAuthor is the inverse of hasAuthor

• N = Cardinality restrictions. Allowing one to restrict the number of times an

individual can have a certain property. For example, a Person can have at most

one dateOfBirth.

• D = Datatypes. Allowing one to assign a datatype to a property. For example,

the range of name must be a string.

There are two other variants of OWL, these are:
7http://www.w3.org

22

• OWL Lite. Is a syntactic subset of OWL DL and has expressivity SHIF(D)

[75]. This results in the following: prohibits unions and complements, does not

allow individuals to occur in the description of a class, and limits cardinalities to

0 or 1. This results in more efficient reasoning than OWL DL, but less expressive

power.

• OWL Full. Contains OWL DL, but has more expressive power than Description

Logics. OWL Full was designed to be fully upwardly compatible with RDF and

RDFS [3] (see Section 2.4). For example, it is possible to represent a resource

simultaneously as a set of individuals and an individual. This kind of construct

means reasoning in OWL Full is undecidable [3].

OWL provides a standardised syntax, based on XML, for representing description

logic ontologies. This facilitates the sharing of ontology specifications as it allows

humans and computers to successfully give the syntax of the ontology specification the

appropriate semantics.

There is a proposed W3C recommendation for OWL 28. OWL 2 is a compatible

extension to OWL providing some new features, such as providing extra restrictions

for datatypes and qualified cardinality restrictions.

2.3.1 Open World Assumption

DLs adopt the open world assumption which informally means that no single knowledge

base has complete knowledge and therefore cannot assume a closed world. A closed

world is one where any statement that is not known to be true is assumed to be false,

the notion being that everything is known. The adoption of the open world assumption

affects what kind of inferences can be made. Furthermore, it is a fair assumption to

make when considering open and distributed environments (see Section 6.2.3), such as

the Semantic Web, where it would be unwise to assume an agent knew everything.

Let us consider the following example to highlight this important distinction. As-

sume we have the following statement.

Statement: ‘Turing’ is a ‘Machine’

Now if we ask the following question.

Question: ‘John’ is a ‘Machine’?

The answer from a closed and open world would be as follow.

Closed World: No

Open World: Unknown

8http://www.w3.org/TR/owl2-profiles/

23

So, the closed world system is able to state that ‘John’ is not a ‘Machine’ because

nowhere does it state that he is. However, this absence of information in the open

world means that we could equally derive that both ‘John’ is a ‘Machine’ and that

‘John’ is not a ‘Machine’, and so we cannot definitively answer the question.

This raises an interesting problem for Knowledge Engineers who choose to use DLs

because it means that one cannot fully specify what can be said about a concept; it is

only possible to constrain the individuals that will be entailed to be an instance of the

concept.

2.3.2 Reasoning with DLs

The following reasoning services9 are supported by DLs [3]:

TBox

• Concept Satisfiability. Can the concept definition admit instances? C is satisfiable

iff there is some model I of T such that

CI 6= ∅

• Concept Subsumption. Is one concept subsumed by another concept? T |= C v D
if CI ⊆ DI for every model I of T . Concept equivalence and concept disjointness

can be reduced to concept subsumption as follows:

– T |= C ≡ D ↔ T |= C v D,D v C

– CI ∩DI = ∅ ↔ T |= (C uD) v ⊥

ABox

• Consistency. Is the ABox satisfiable with respect to some TBox? A is consistent

iff there exists some model I of T and A

• Instance Checking. Is an individual an instance of a concept? a is an instance of

C iff for every model I of T and A

aI ∈ CI

• Realization. For all individual in the ABox compute their most specific concept

names with respect to some TBox such that A |= C(a) and C is minimal with

respect to the subsumption ordering.

There are now several software implementations for carrying out these reasoning

tasks, such as Pellet [120], KAON [143] and FACT++ [135].
9All of these services can be reduced to satisfiability, see [3]

24

2.3.3 When is a DL TBox an Ontology?

Having a collection of DL axioms does not mean that you have an ontology; an ontology

is more than a collection of axioms; it is the result of some form of conceptualization

(see Section 2.1.1). Thus, a TBox is an ontology when it actually represents a con-

ceptualization specified by a Knowledge Engineer. For example, consider the following

axioms: A v B t C and Politician v Left tRight. Under the semantics of DL these

two axioms are equivalent; the semantics of DL place no semantics on the label of a

concept, it is entirely possible that two concepts with different labels can be inferred to

be the same concept. However, the intended meaning of the second axiom is the result

of some process of conceptualization and the resulting ontological commitment. That

is the second axiom contains labels that are intended to convey meaning beyond the

semantics of DL and relate to the domain being modelled by the axiom.

2.4 Representing a TBox as a Graph

The Web Ontology Language (OWL) [106] is a vocabulary extension of the Resource

Description Framework (RDF) [68]. RDF provides a language for describing resources

on the web. For example, one could have a resource describing a person that has

properties such as name, age, etc. RDF has 3 syntactic representations, one of which

is a graph. Thus, every OWL ontology has an RDF graph representation. Therefore,

by extension every DL TBox that falls within the expressivity of OWL has a graph

representation.

Being able to represent an ontology as a graph will be important in the upcoming

chapters, particularly Section 3.4.1 where the ontology module extraction techniques

require the graphical representation of the ontology in order to perform a conditional

traversal upon it. As such, an explanation and example will be provided below to show

how these transformations in representation are achieved10.

Let us consider the following TBox:

Academic v Person

Student v Person

The above two axioms represent a DL ontology that falls within the expressivity of

OWL, as such we can encode these axioms in a valid OWL/XML file as follows:

<owl:Class rdf:about="#Person">

</owl:Class>

<owl:Class rdf:about="#Academic">
10The full mapping of OWL to RDF Graphs can be found at http://www.w3.org/TR/

owl-semantics/mapping.html

25

<rdfs:subClassOf rdf:resource="#Person"/>

</owl:Class>

<owl:Class rdf:about="#Student">

<rdfs:subClassOf rdf:resource="#Person"/>

</owl:Class>

The above is a fragment of a valid OWL file so we know that it has an RDF graph

representation. Thus, to obtain the RDF graph we just need to produces the RDF

triples for the above fragment. An RDF triple is of the form <subject, predicate,

object> whereby the subject and object are nodes in the graph, and the predicate is

the directed labelled edge connecting the subject and object. Therefore, we have the

following RDF triples:

#Student rdf:type owl:Class.

#Person rdf:type owl:Class.

#Academic rdf:type owl:Class.

owl:Thing rdf:type owl:Class.

#Academic rdfs:subClassOf #Person.

#Student rdfs:subClassOf #Person.

The first four state that the classes we defined in the original OWL are RDF re-

sources that are of the type owl:Class. The last two express the subclass relations

between the classes. The above is a straightforward example, but the translation be-

comes, perhaps, a little less obvious with other forms of axiom. For example, consider

the following axiom:

PhDThesis v ∃hasAuthor.PhDStudent

This would be expressed in OWL/XML as follows:

<owl:Class rdf:about="#PhDStudent">

</owl:Class>

<owl:ObjectProperty rdf:about="#hasAuthor"/>

<owl:Class rdf:about="#PhDThesis">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasAuthor"/>

26

<owl:someValuesFrom rdf:resource="#PhDStudent"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Note that the existential restriction is represented as an owl:Restriction which

contains the property and class that the restriction applies to. This fragment can be

trasnformed into the following RDF graph:

#PhDStudent rdf:type owl:Class.

#PhDThesis rdf:type owl:Class.

#hasAuthor rdf:type owl:ObjectProperty.

#PhDThesis rdfs:subClassOf :blank.

:blank rdf:type owl:Restriction.

:blank owl:someValuesFrom #PhDStudent.

:blank owl:onProperty #hasAuthor.

Here the first three triples state that PhDStudent and PhDThesis are classes, plus

that hasAuthor is an object property. The final four triples represent the existential

restriction. They make use of a blank node (:blank). The blank node allows the

various components of the restriction to be represented in the graph. For example, in

the above PhDThesis is a subclass of the blank node :blank and :blank is defined

as a restriction on property hasAuthor with some values from PhDStudent.

2.5 An Example Ontology

The example ontology presented here is an ontology about theses; passing reference

will be made throughout this thesis to this example ontology. Appendix B provides the

full Axiomatization along with the OWL file, with TURTLE serialisation. A graphical

representation of the ontology can be seen in Figure 2.4

The ontology states that a Thesis is written by one Student, has at least one

Academic as a supervisor and consists of Chapters. Instances of Person play different

roles, such as Academic and Student. These roles are played by a Person for a lim-

ited time, but this can not be represented in Description Logic. Therefore, there is a

dichotomy between what an ontology should model and the constraints posed by the

chosen ontology language.

27

Po
st

G
ra

dS
tu

de
nt

Pe
rs

on
Ro

le

{p
ro

fe
ss

or
, l

ec
tu

re
r,

ph
d,

 u
nd

er
gr

ad
, m

as
te

rs
}

Ch
ap

te
r

Se
ct

io
n

Th
in

g

Th
es

is

Po
st

G
ra

dT
he

sis
Un

de
rG

ra
dT

he
sis

Ph
DT

he
sis

M
as

te
rs

Th
es

is
Un

de
rG

ra
dS

tu
de

nt

St
ud

en
t

Ac
ad

em
ic

Po
st

G
ra

dS
tu

de
nt

Po
st

G
ra

dS
tu

de
nt

F
ig

ur
e

2.
4:

G
ra

ph
ic

al
re

pr
es

en
ta

ti
on

of
th

e
T

he
si

s
on

to
lo

gy
ta

xo
no

m
y.

28

2.6 Ontologies In The Semantic Web

The Semantic Web aims to add a layer of meaning to the World Wide Web [134]. It

is characterised as an open and distributed environment, where few assumptions can

be made about the parties involved (for more on environments see Section 6.2.3). The

result of this is to turn the Web from a web of documents into a web of knowledge,

whereby the knowledge becomes machine understandable. For example, a query such

as “Give me a list of Jaguars built before 1980”. This query on the ‘syntactic’ (current)

Web is useless because the search engine has no notion of what the query is about; for

that we need semantics. If all the pages containing information about jaguars were

marked up in such a way as to describe the information they contained in a machine

understandable way11 then, it may be possible, for a computer to disambiguate the

terms used in the query. For example, it would be able to tell the difference between

Jaguar the car manufacturer and jaguar the animal. On the Semantic Web it is assumed

that every resource is given a uniform resource identifier (URI) so that “anyone can

link to it, refer to it or retrieve a representation of it” [116].

“The challenge of the Semantic Web, therefore, is to provide a language that ex-

presses both data and rules for reasoning about the data” [134]. Thus, ontologies

provide the mechanism by which we can assign semantics to the Web, but having an

ontology is not enough. The adoption of a standard ontology language to encode on-

tologies is required to prevent the Web from becoming a set of “isolated monoliths” [57].

By agreeing upon a standard ontology language, for the Semantic Web this is OWL

(see Section 2.3), we are agreeing upon both a shared syntax and a shared semantics

to interpret this syntax. For example, if one ontology contains the following statement

in OWL:

<owl:Class rdf:ID="PhDStudent">

<rdfs:subClassOf rdf:resource="#Student"/>

</owl:Class>

This states that PhDStudent is a subclass of Student. However, for this to be

machine understandable this syntax needs to be given a standard semantics so that

the notion of ‘subclass’ remains the same across machines. In the case of OWL, the

standard semantics are Description Logic semantics, see Section 2.3, which in this case

means that every instance of PhDStudent is also an instance of Student and it is

possible, though not necessary, that PhDStudent and Student are equivalent. Thus, a

standard syntax and semantics, or ontology language, provides a way to unambiguously

interpret a set of symbols.
11This kind of markup is possible through the use of RDFa (http://www.w3.org/TR/

xhtml-rdfa-primer/) as it allows RDF statements to be embedded in an HTML page.

29

In Semantic Web ontologies facilitate interoperability by allowing the different par-

ticipants to agree on the meaning of the terms they use to communicate. An important

step towards this is to achieve a form of consensus. Section 6.4 demonstrates a mecha-

nism by which agents are able to reach consensus over a set of mappings between their

ontologies. However, consensus can be achieved in another way and that is through

the use of a shared ontology, with the shared ontology representing a shared concep-

tualization. For example, the Friend of a Friend (FOAF)12 ontology is an ontology for

describing people and the links between them. Thus, if two separate ontologies reuse

FOAF to describe the people in their ontology then they will be interoperable with

respect to the terms described by FOAF; each ontology will be able to interpret the

description of a person provided by the other ontology.

12http://www.foaf-project.org

30

Chapter 3

Ontology Modularization

‘Peace comes from within. Do not seek it without.’ - Buddha

Summary This chapter details the research relating to ontology modularization,

the process of identifying subsets of an ontology. Both ontology partitioning and on-

tology module extraction are approaches to ontology modularization. The different

ontology modularization techniques are discussed, including both logical and traver-

sal based ontology module extraction techniques. A classification of ontology module

extraction techniques based on their properties is also provided. Work covering the is-

sue of producing a common framework for ontology module extraction is also discussed.

3.1 Motivation

Ontologies are increasingly being used in knowledge management systems, e-Science,

and bio-informatics [124]. As such, ontologies are used to perform a diverse range of

tasks, such as reasoning, query answering, reuse, etc.; with each of these tasks placing

different constraints upon the ontology. However, the design, maintenance, reuse, and

integration of ontologies are complex tasks [24]. In order to provide efficiency gains for

these tasks one can use ontology modularization.

Ontology modularization overcomes the problem of identifying a fragment of an

existing ontology to be reused and is listed as one of the principles for building good

ontologies in Ontology Engineering good practices [6]. It enables ontology developers to

include only those concepts and relations that are relevant for the application they are

modelling an ontology for. In essence, why use the whole ontology when an ontology

module would suffice?

Consider the example ontology presented in Section 2.5 that presents an ontology

about theses, and in the application under consideration there is only a need to talk

about PhDStudent. There are several choices available:

• Reuse the whole ontology. This requires all the definitions in the existing ontology

31

to be included in the ontology for the application, such as those concerning Aca-

demic. This creates an unnecessary overhead, which is even bigger if the ontology

being reused is large. The overhead being in terms of reasoning and maintenance.

• Build a new ontology. If the overhead in reusing the whole of the existing ontology

is large then one solution would be to create the definitions needed in the ontology

for the application. This requires much work on the part of the developer and,

as mentioned above, ontology design is a complex task. Furthermore, if the

ontology being reused has definitions that are popular or a standard, such as the

Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT)1, then it

makes little sense to reinvent what is already there.

• Reuse part of the existing ontology. This allows for the reuse of part, a module, of

the existing ontology. It can be seen as a compromise between the above two. The

application ontology only gets added to it what is needed and existing resources

can be taken advantage of.

With this in mind Rector et al. [108] present the following goals for ontology mod-

ularization:

1. Scalability. This is concerned with the scalability of Description Logic (DL) rea-

soning (see Section 2.3.2). It is widely understood that, in general, the perfor-

mance of DL reasoners degrade as the size of the ontology grows.2 Thus, there

is a motivation to reduce the size of the ontology that needs to be reasoned over

to that which is necessary, i.e. an ontology module. The scalability issue also

concerns the evolution of the ontology, the aim being to localise the change within

an ontology module.

2. Complexity Management. With human designed ontologies it becomes increas-

ingly difficult to control the accurateness of the ontology. Ontology modulariza-

tion allows the designer to just focus on the relevant portion of the ontology.

3. Understandability. Intuitively smaller modules are easier to understand than

larger ones. This is the case for both humans and agents (for more on agents see

Section 6.2).

4. Reuse. This is common practice in Software Engineering and Ontology Engineer-

ing would benefit from such an approach; Chapter 5 addresses this goal. This

goal emphasises the need for mechanisms to produce modules in such a way that

increases their chances of being reused; i.e., they only contain what is relevant

and useful.
1http://www.ihtsdo.org/snomed-ct/
2It is also possible that small ontologies can degrade performance, for example by including numerous

general concept inclusion (GCI) axioms. This is discouraged in practice.

32

This Chapter details the principles underlying the many techniques for ontology

modularization. Indeed, the existence of numerous techniques for ontology modular-

ization has motivated research into creating a common framework for ontology modu-

larization; this work is detailed in Section 3.6.

3.2 Ontology Modularization

An ontology O can be defined as a pair

O = (Ax(O), Sig(O))

where Ax(O) is a set of axioms (intensional and extensional), remember that Section

2.1.2 defined axioms as consisting of concepts, relations and functions. Sig(O) is the

signature of O 3. The signature of an ontology O is the set of entity names (both

concepts and properties) used by O, i.e., its vocabulary. Ontology modularization is

therefore the process of defining a module M = (Ax(M), Sig(M)); where M is a subset

of O, M ⊆ O, so Ax(M) ⊆ Ax(O) and Sig(M) ⊆ Sig(O). No assumptions beyond

this are made at this point about the nature of a module.

The aim of modularization in general, regardless of the task, is to some extent to

reduce the size of an ontology, but this is not an end in itself because it introduces the

paradox that the optimum module size is 0; Section 4.3.1 discusses this in more detail.

Ontology modularization can be split into two distinct tasks: ontology partitioning

and ontology module extraction. Ontology partitioning divides an ontology into a set

of subsets with each subset being termed a partition, see Section 3.3; whilst ontology

module extraction extracts a subset of an ontology, an ontology module, see Section

3.4. It should be noted that ontology partitioning is not the focus of this study, but is

included for completeness.

Throughout this section reference will be made to the example ‘Thesis’ ontology

introduced in Section 2.5.

3.3 Ontology Partitioning

Ontology partitioning is the task of splitting O into a set of, not necessarily disjoint4,

modules M= {M1,M2,,Mn}. The union of all the modules should be equivalent

to the ontology O that was partitioned, {M1 ∪M2 ∪ ... ∪Mn} = O. Thus, a function

partition(O) can be defined as follows:

3This definition is agnostic with respect to the ontology language used to represent the ontology,
but it should be noted that the modularization techniques detailed in this section assume a description
logic representation.

4This is in contrast to the mathematical definition of partitioning that requires partitions to be
disjoint.

33

Definition (Ontology Partitioning Function)

partition(O)→M = {{M1,M2,,Mn}|{M1 ∪M2 ∪ ... ∪Mn} = O}

3.3.1 Stuckenschmidt and Klein

Stuckenschmidt and Klein [128] present a method for automatically partitioning on-

tologies based on the structure of the class hierarchy. The underlying assumption of

the approach is that dependencies between concepts can be derived from the structure

of the ontology; as such, the ontology is represented as a weighted graph O = 〈C,D,w〉
where nodes (C) represent concepts and edges (D) represent links between concepts

that represent different kinds of dependencies that can be weighted (w) according to

the strength of the dependency. The dependencies are based on the representation

language, but include features such as subclass relations between concepts. The par-

titioning method can be broken down into three steps, the first step is to extract the

dependency graph, which is a subgraph of the original ontology. The second step is

to calculate the strength of the dependencies between the concepts; this is done by

calculating the proportional strength (pij) between two concepts(ci and cj) where aij

is the weight preassigned to the link:

pij =
aij + aji∑
k aik + aki

The intuition here being that the fewer the individual social contacts then the more

important they are. The assumption being that concepts in a module should be more

interconnected, so being able to identify those with fewer connections means that they

can be separated out. To determine the partitions, the last step, a network analy-

sis algorithm is applied; this induces a connected subgraph where the vertices inside

the subgraph are more strongly related among themselves than with the neighboring

vertices. The size of these subgraphs is given as a parameter to the partitioning al-

gorithm. The limiting factors of this approach are the dependency measures and the

termination point of the partitioning process. The dependency measures are a limiting

factor because they are agnostic with respect to the semantics of the ontology and the

context for which the ontology partitions are being generated for. Stuckenschmidt and

Klein [128] suggest that context-aware or semantics-based measures could replace the

existing dependency measure. In addition, the termination point is a limiting factor

because it is somewhat arbitrary and it could take several runs of the algorithm to

generate partitions that are satisfactory, but whilst the termination point is arbitrary

it is plausible due to the fact that one motivation for performing partitioning is that

the ontology is too large in itself.

34

3.3.2 Cuenca Grau et al.

Cuenca Grau et al. [25] address the problem of partitioning an OWL ontology (O)

into an E-connection (Σ). E-connections [83] allow the interpretation domains of n

combined systems (here each system can be seen as a description logic knowledge base)

to be disjoint, where these domains are connected by means of n-ary ‘link relations’.

These ‘link relations’ allow connections to be drawn between the different partitions, as

such reasoning can be done on each partition individually or reasoning can be done over

a combination of linked partitions. Kutz et al. [83] show that Distributed Description

Logics [9] are a special case of E-connections linking a finite number of DL knowledge

bases.

The partitions produced by Cuenca Grauet al. [25] are both structurally (Σ ∼ O)

and semantically (Σ ≈ O) compatible. Structural compatibility ensures that no entities

or axioms are added, removed or altered during partitioning; that is every axiom that

exists in the E-connection also exists in the ontology. Semantic compatibility is a

desirable relation between the input and the output of a partitioning process as it

ensures that the interpretation of the ontology with partitions is equivalent to the

interpretation of the ontology without partitions. Thus, it ensures that equivalent KBs

have exactly the same set of compatible E-connections. Thus, consistency is preserved

and existing subsumptions are ensured in the E-connection. The algorithm to produce

the partitions, ensuring structural and semantic compatibility, identifies the properties

(roles) in O that can link O to Σi or Σi to O; to ensure this is maximal roles are

transformed into links whenever possible.

The two partitioning approaches detailed in the above approach the problem from

totally different perspectives. Stuckenschmidt and Klein [128] do not consider the

semantics of the ontology, so their approach is applicable across different ontology

languages; whereas Cuenca Grau et al. [25] consider fully the Description Logics giving

their approach guarantees about not altering the definitions contained in the partitions

with respect to the original ontology. However, Cuenca Grau et al.’s approach is a

one-shot approach, it is possible that an ontology can not be partitioned using E-

connections; but Stuckenschmidt and Klein’s technique allows for the parameters to be

tweaked in order to obtain a set of partitions that meet ones requirements.

3.4 Ontology Module Extraction

In contrast to ontology partitioning, ontology module extraction is the task of extract-

ing a module M from an ontology O that covers a specified signature Sig(M), such

that Sig(M) ⊆ Sig(O). M is the relevant part of O that is said to cover the elements

defined by Sig(M), as such M ⊆ O. M is an ontology itself and it is possible that

further modules could be extracted from it. Thus, a function extract(O,Sig(M)) can

35

be defined as follows:

Definition (Ontology Module Extraction Function)

extract(O,Sig(M))→ {M |M ⊆ O}

The techniques for ontology module extraction in the literature can be further sub-

divided into two distinct groups: traversal approaches and logical approaches. Traversal

approaches [27, 33, 103, 115] represent the extraction as a graph traversal, with the

module being defined by the conditional traversal of the graph, which implicitly con-

siders the ontological semantics. Logical approaches [24, 82] focus on maintaining the

logical properties of coverage and minimality, these approaches explicitly consider the

ontological semantics when extracting an ontology module.

3.4.1 Traversal Based Extraction

All of the following methods for ontology module extraction can be considered as traver-

sal based extraction techniques. Each represent the ontology as a graph and the on-

tology module is defined as a conditional traversal over this graph; Section 2.4 details

how a description logic ontology can be a graph. It should be noted that traversal

techniques could extract an ontology module that is not a proper subset of the axioms

defined in the ontology.

d’Aquin et al.

d’Aquin et al. [27] describe an ontology module extraction technique that is integrated

into the larger process of knowledge selection. Knowledge selection aims to dynamically

retrieve the relevant components from online ontologies to automatically annotate a web

page that is currently being viewed in a web browser. Knowledge selection comprises

three steps:

1. Selection of relevant ontologies. Given a set of terms that the ontology is required

to cover the appropriate ontologies can be identified.

2. Modularization of selected ontologies. Using the ontologies from the previous

step an ontology modularization technique is used to obtain modules that are

considered relevant for the current task.

3. Merging of the relevant ontology modules. This step merges the ontology modules

obtained previously; d’Aquin et al.do not provide details on how this should be

done.

36

The focus here is on 2. The principle used for the extraction of an ontology module is to

include all the elements that participate in the definition, either directly or indirectly, of

the already included entities. That is if a concept or property is involved in a definition

not already included in the module then that definition is included. This is similar to

Seidenberg and Rector [115]. However, there are two distinct characteristics to this

approach:

• Inferences are used during the extraction rather than just taking the input as

it is allowing the method to extract both implicit and explicit knowledge. For

example, the transitivity of the subClassOf edge allows new subclass relations to

be inferred in the input ontology or definitions of superconcepts can be inherited

by subconcepts being included in the module. It should be noted that other

techniques, such as Doran et al. [33], assume that the input ontology is the inferred

model, i.e. that all inferences are made a priori to extraction, as the constraints of

the application they consider does not place time constraints upon the extraction

process.

• Shortcuts are taken in the class hierarchy by including only the named classes

that are the most specific common super-classes of the included classes. This is

done by restricting the possible values of the Least Common Subsumer (LCS)

algorithm [20] to the classes in the ontology; the LCS being the most specific

concept that subsumes two other concepts already in the module.

In addition, it is possible that instances also get included into the module. An

instance is included in the module when they form an enumerated class definition,

when they are part of a role and the other instance involved is already in the module,

or when they are instances of a concept included in the input signature.

Doran et al.

Doran et al. [33] tackle the problem of ontology module extraction from the perspective

of an Ontology Engineer wishing to reuse part of an existing ontology. The approach

aims to extract an ontology module about a single user supplied concept that is self-

contained, concept centred and consistent; defined as follows:

- Self-contained. Ontology modules should be a self-contained subset of a parent

ontology. Given a set of relations the ontology module should be transitively

closed with respect to these relations. Transitive closure means that all relations

in between two concepts, even if the relation identifies an intermediate concept,

are included.

- Concept centred. The ontology module contains enough information to describe

the start concept. Direct superclasses are considered unimportant because they

37

only place the start concept in context. It is assumed that the Ontology Engineer

already has a context in mind for the ontology module. In addition including

superclasses would increase the chances of the ontology module being equal to

the whole ontology.

- Consistent. Ontology modules should be consistent. Given a consistent ontology to

extract a module from, the module produced should be consistent.

Doran et al.’s approach is agnostic with respect to the language the ontology is

represented in, but the ontology language must be able to be transformed into the

Abstract Graph Model they present. The conditional traversal is done via two sets: one

set of edges to traverse and one set of edges not to traverse; with exceptions allowed

in the first iteration of the algorithm. For example, when an extracting an ontology

module from an OWL DL ontology the owl:disjointWith edges are not traversed in

the first iteration, but in subsequent iterations they are. Evidently, the labels placed

on the edges can be changed to suit the ontology language.

Doran et al. [33] provide an ontology module extraction method that is language

neutral. The Abstract Graph Model proposed is an edge-labeled directed graph G, given

an alphabet
∑

E , is an ordered pair G = (V,E) where:

• V is a finite set of vertices,

• E ⊆ V ×
∑

E ×V is a ternary relation describing the edges (including label).

(N.B. E is not symmetric which gives us direction. Therefore to properly capture

the definitions of ‘disjoint’ and ‘equivalent’ two edges are required.)

Using this abstract model, it is possible to define an ontology module as GM =

(VM , EM), where VM ⊆ V ∧ VM 6= ∅ and EM ⊆ E. This implies that GM ⊆ G.

Doran et al. reduce module extraction to the traversal of a graph given a starting

point x such that x ∈ VG. The only exception being that there is no need to traverse

‘disjoint’ labeled edges of x in the first iteration. Thus, the module is a graph GM =

(VM , EM) where VM and EM are the sets of traversed vertices and edges respectively.

The minimum number of possible GM derivable from G should be equal to the number

of elements in V . This is because a single module could be generated for each concept.

Algorithm 15 presents the pseudo-code description of the ontology module extrac-

tion method. The complexity of the algorithm is O(n2); in this case the graph is a

complete graph (each distinct pair of vertices is connected by an edge) thus requiring

as many as n traversals from each node. The graph is conditionally traversed to extract

the ontology module.

In the case of OWL DL in the first iteration of the extraction process the disjoint

relation is not traversed, but in subsequent iterations it is. This exception is justified
5Implementation available at: http://code.google.com/p/modtool/

38

Algorithm 1 Module Extraction
INPUT

• A directed graph G = (V,E)

• s a starting vertex such that s ∈ VG

• Excluded - a container of E not to be followed

• Visited - a container of V that have been visited

• ToVisit - a container of V to be visited.

OUTPUT

• A directed graph GM = (VM , EM)

procedure extractModule(Vertex s)
if s /∈ Visited then

insert s into Visited
create container X = {e ∈ E|s×

∑
E ×v}

while X is not empty do
y =first element of X
if y /∈ Excluded then
y ∪ EM

insert r such that y = s×
∑

E ×r into ToVisit
end if
if ToVisit is not empty then
t =first element of ToVisit
remove t from ToVisit
extractModule(t)

else
output GM

end if
end while

end if

39

because the user explicitly chooses the concept that the process will start on. If this

concept has disjoint sibling concepts the assumption is made that the user is not in-

terested in these concepts. The reason behind this assumption is that disjointedness

requires that the concepts have no instances in common. If the user had wished to

include the disjoint concepts they should have started the process on their common

superclass.

An interesting result of applying this algorithm to generate an ontology module,

is that the ontology module produced will be transitively closed with respect to the

relations that are traversed. The only caveat is that the ontology being used to obtain

the module must be transitively closed with respect to these relations in order to

guarantee that the module will also have transitive closure.

It is important to note that there is no upward navigation of the subclass hierarchy

from the concept the process was started on. Again this is justified because the user

chooses the starting concept. Furthermore, allowing upward navigation of the subclass

hierarchy would substantially increase the chance of extracting a module that is equal

to the whole ontology. This choice does not seem to impact upon the quality of the

modules in the task based evaluation considered in Section 4.5.

The abstract graph model means that the module extraction process is independent

of the language. For example, the alphabet for OWL-DL is∑
E

= {subClassOf, disjointWith, equivalentTo, subPropertyOf, property}

and for RDFS it is ∑
E

= {subClassOf, subPropertyOf, property}

Notionally these labels correspond to the primitives of OWL-DL apart from ‘property’.

If an edge is labelled ‘property’ then it means the starting vertex is the domain and

the ending vertex is the range.

A Walkthrough Example. Section 2.5 presents a simple ontology about Theses,

see Figure 3.1 From this ontology we shall extract an ontology module about ‘Post-

GradStudent’, this is the starting concept.

Iteration 1 ‘PostGradStudent’ is added to Visited. ‘PostGradStudent’ is disjoint

with ‘UnderGradStudent’ so ‘UnderGradStudent’ is not added to the container ToVisit.

‘PostGradStudent’ has two subclasses, ‘MastersStudent’ and ‘PhDStudent’, these are

added to ToVisit. ‘PostGradStudent’ has no more edges to traverse and is removed from

ToVisit; the extraction now continues with ‘MastersStudent’ as the concept of focus.

40

PostGradStudent

Person Role

{professor, lecturer, phd, undergrad, masters}

Chapter Section

Thing

Thesis

PostGradThesisUnderGradThesis

PhDThesisMastersThesisUnderGradStudent

StudentAcademic

PostGradStudentPostGradStudent

Figure 3.1: Graphical representation of the Thesis ontology taxonomy.

Iteration 2 ‘MastersStudent’ is added to Visited. ‘MastersStudent’ has no more

edges to traverse and is removed from ToVisit; the extraction now continues with ‘PhD-

Student’ as the concept of focus.

Iteration 3 ‘PhDStudent’ is added to Visited. ‘PhDStudent’ has no more edges

to traverse and is removed from ToVisit. ToVisit is now empty; the extraction process

ends and the ontology module is outputted.

Noy and Musen

Noy and Musen [103] define the notion of traversal view extraction, which defines

an ontology view. An ontology view is analogous to an ontology module because it

encapsulates a subset of the original ontology. As such, this technique can be considered

as an ontology module extraction technique.

Starting from one class of the ontology being considered, relations from this class

are recursively traversed to include the related entities. The relations to be traversed

are selected by the user and for each relation selected a depth of traversal is assigned, a

traversal directive, when this depth is reached the algorithm will stop ‘traversing’ this

relation. A traversal directive is defined as a pair 〈C,PT 〉, where C is a concept in the

ontology, the start point for the traversal, and PT is a set of property directives. A

property directive is a pair 〈P, n〉, where P is a property in the ontology, the property

to be traversed, and n is a non-negative integer specifying the depth of the traversal.

Thus, a traversal view specification is defined as a set of traversal directives. The

result of a traversal view specification is a traversal view which is the union of all the

results of the traversal directives in the traversal view specification. A traversal view,

therefore, contains all classes and instances encountered on the path of the specified

traversal.

41

This technique is interactive, and incorporated into PROMPT [101], which is a

plugin for the Protege ontology editor that allows the user to manage multiple ontologies

by allowing them to compare versions, merge them and extract ontology modules. This

is a very flexible approach and allows an Ontology Engineer to iteratively construct the

ontology module that they require by extending the current ‘view’, but it can require

the Ontology Engineer to have a deep understanding of the ontology that is being used

in order to define the appropriate traversal directives.

Seidenberg and Rector

Seidenberg and Rector [115] developed a technique specifically for extracting an ontol-

ogy module from the GALEN6,7 medical ontology. However, the core of the technique

is generic and can be applied to other ontologies. The technique takes one or more

classes of the ontology as input, the Sig(M), and anything that participates, even indi-

rectly, to the definition of an included class is added to the ontology module too. The

algorithm can be broken down as follows, assume we have a Sig(M) = {A}. Firstly

the hierarchy is upwardly traversed (analogous to Upper Cotopy defined in [93], which

calculates the set of super-concepts of a concept), so all of the A’s superclasses are

included. Next the hierarchy is downwardly traversed so that all the A’s subclasses are

included. It should be noted that the sibling classes of A are not included, they could

be included by explicitly adding them to the Sig(M). The restrictions, intersection,

union and equivalent classes of the already included classes can now be added to the

module. Lastly, properties across the hierarchy from the previously included classes

are traversed; the target of these links are only upwardly traversed.

The traversal via properties is terminated when a boundary class is reached. A

boundary is class is reached when a certain recursion depth is reached in the property

traversal resulting in all links from this class to be removed. It is important to note

that the named superclass of a boundary class must be included in order to retain the

correct hierarchical structure.

Seidenberg and Rector [115] tailored their approach to the GALEN ontology. As

such, there are certain features of this technique which may only be applicable to

GALEN; such as property filtering. The properties are filtered by removing all restric-

tions in which they occur. The result of property filtering can lead to class definitions

becoming equivalent, whilst this is not incorrect it does introduce unnecessary defini-

tions as they are turned into primitive concepts by the algorithm.
6http://www.co-ode.org/galen/
7http://www.opengalen.org/index.html

42

3.4.2 Logical Based Extraction

In contrast to the traversal based ontology module extraction techniques the logical

based extraction techniques are based on the notion of conservative extension [90].

An ontology module is a subset of the ontology is was extracted from, this ontology

is a conservative extension if the entailments regarding the ontology module are cap-

tured totally within its signature. More formally Lutz et al. [90]present the following

definition:

Definition (Conservative Extension) Let T1 and T2 be TBoxes formulated in a

DL L, and let Γ ⊆ sig(T1) be a signature. Then T1 ∪ T2 is a Γ-conservative extension

of T1 if for all C1, C2 ∈ L(Γ), we have T1 |= C1 v C2 iff T1 ∪ T2 |= C1 v C2.

Thus, all the entailments regarding the signature of the ontology module are the

same as if you take the union of the ontology module and the ontology it was taken from.

In essence, the ontology contains nothing more about the signature of the ontology

module. In this sense, the ontology module is minimal. Unfortunately, Lutz et al. [90]

also show that deciding if an O is a conservative extension is undecidable for OWL

DL. However, Konev et al. [82] have developed an algorithm, MEX, for extracting

conservative extensions from acyclic terminologies formulated in ALCI or ELI. Whilst

these restrictions limit this approaches use, it can be successfully used on large real

world ontologies such as SNOMED CT.

Grau et al. [24] overcome the limitations of conservative extensions for more expres-

sive description logics by considering a relaxation of the minimality constraint; they

term these modules as locality-based modules. Coverage and safety are the properties

that locality-based modules can guarantee, but this is done at the expense of minimal-

ity which is in addition guaranteed by conservative extensions. Coverage and safety

[23] are defined in terms of a module being imported by a local ontology (L) as follows:

Coverage Extract everything the ontology says about the specified terms. The module

O′ covers the ontology O for terms from some signature X if for all classes A and

B built from terms in X, such that if L ∪O |= A v B then L ∪O′ |= A v B.

Safety The meaning of the extracted terms is not changed. L uses the terms from X

safely if for all classes A and B built from terms in X, such that if L∪O′ |= A v B
then O′ |= A v B.

Two different variants of locality are described by Grau et al. [56]. Syntactic local-

ity can be computed in polynomial time, but semantic locality is PSPACE-complete.

Syntactic locality is computed based on the syntactic structure of the axiom whereas

semantic locality is computed based on the interpretation (I) of the axiom. Jimènez-

Ruiz et al. [79] propose two different locality conditions for extracting ontology modules.

43

⊥-locality (upper module) extracts a module that is suitable for refinement; it should

contain all the super-concepts of the signature. Whereas, >-locality (lower module)

extracts a modules that is suitable for generalisation; it should contain all the sub-

concepts of the signature. For example, consider a TBox with the following three

axioms:

Periodical v Publication

Newspaper v Periodical

Journal v Periodical

Now consider that we want to extract a module about Periodical (Sig(Periodical)),

a ⊥-locality module would include only the first axiom and a >-locality module would

include only the second and third axioms.

The issue concerning the syntactic locality is that syntactically different but se-

mantically equivalent axioms can be treated differently. For example, Borgida and

Giunchiglia [8] raise this issue of the syntactic approximation via the following exam-

ple; consider the two sets of axioms {A v (B uC)} and {A v B,A v C}, these axioms

are semantically equivalent but the syntactic difference will effect the extraction pro-

cess; this would also pose a problem to the traversal based ontology module extraction

techniques. The syntactic locality also can not handle tautologies, but this is unlikely to

affect real world applications as ontologies with tautologies would be considered badly

engineered.

3.5 Classifying Ontology Module Extraction Techniques

As a diverse range of techniques exist for ontology module extraction, it is useful to

provide a comparative summary to classify the techniques. First, an anecdotal com-

parison is made amongst the techniques, based on the example ontology presented in

Section 2.5. However, as the starting assumptions made by the traversal and logical

approaches are diametrically opposed, that is the starting assumptions made by both

are different , it would be misleading to compare their features. For example, as traver-

sal techniques are not designed to provide minimality it is not possible to state such

assertions or guarantees about these techniques. As such, a comparison is made within

each category, traversal and logical, before providing some general remarks in summary.

3.5.1 Anecdotal Comparison

For the following five techniques (described in Section 3.4) we extracted a module using

the signature PhDStudent (Sig({PhDStudent})): Doran et al. [33], d’Aquin et al. [27],

Seidenberg and Rector [115] and the two variants of the technique proposed by Cuenca

Grau et al. [24].

44

Traversal Logical
Thesis Ontology Doran d’Aquin Seidenberg Cuenca U Cuenca L

C
la

ss
es

Chapter 3 3

Person 3 3 3 3

Academic 3 3 3

Student 3 3 3 3

PostGradStudent 3 3 3 3

MastersStudent 3 3 3

PhDStudent 3 3 3 3 3

UnderGradStudent 3 3 3

Role 3 3 3 3

Section
Thesis 3 3

PostGradThesis 3 3

MastersThesis 3 3

PhDThesis 3 3

UnderGradThesis 3 3

P
ro

pe
rt

ie
s

authorOf 3 3

chapterOf 3 3

hasAuthor 3 3

hasChapter 3 3

hasRole 3 3 3 3

hasSection
hasSubSection
hasSupervisor 3 3

hasFirstSupervisor 3 3

hasSecondSupervisor 3 3

supervisorOf 3 3

Table 3.1: Anecdotal comparison of module extraction techniques using the Thesis
ontology.

45

Table 3.1 shows the classes and properties that were included in the PhDStudent

modules for the different techniques. It should be noted that the Thesis ontology

is small and highly interconnected which biases it slightly against the Cuenca Grau

variants. However, Table 3.1 still shows that d’Aquin aims to be as small as possible

by including only one class due to the definitions of the super classes being moved to

PhDStudent. Furthermore, Table 3.1 also shows the contrasting traversal conditions of

Doran and Seidenberg because Doran includes classes that are linked to PhDStudent

but Seidenberg only includes the super classes of PhDStudent.

3.5.2 Traversal Based Extraction Feature Comparison

Interactive Traversal Direction Property Filtering Use Reasoner
Whole Ontology 7 N/A 7 7

d’Aquin et al. 7 Up & Down 7 3
Doran et al. 7 Down 7 7

Noy and Musen 3 Up & Down 7 7
Seidenberg and Rector 7 Up & Down 3 7

Table 3.2: Comparison of features for traversal based ontology module extraction.

Table 3.2 compares the following features of the traversal based extraction tech-

niques:

• Interactive. Does the traversal based extraction technique require interaction

from the user beyond specifying the signature of the ontology module?

• Traversal Direction. Does the traversal based extraction technique go up (in-

cluding super concepts of the signature) or down (including sub concepts of the

signature) the hierarchy?

• Property Filtering. Does the traversal based extraction technique carry out prop-

erty filtering? That is removing the definitions in which the properties occur.

• Use Reasoner. Does the traversal based extraction technique use a description

logic reasoner?

The techniques operate in a broadly similar way with a few important distinctions.

d’Aquin is the only one who uses a reasoner. This could be major drawback if an

ontology is encountered that is particularly difficult to reason over; for example one

containing numerous GCIs. Seidenberg and Rector’s is the only technique to do prop-

erty filtering which is due to the technique being be designed to work over GALEN,

where this feature was desirable. Perhaps the most important distinction to note here

is that Doran is the only technique that does not consider upwards traversal. As this

technique was intended for use by an Ontology Engineer in the context of ontology reuse

where the assumption is that the Engineer knows the ‘context’ to place the module in.

46

3.5.3 Logical Based Extraction Feature Comparison

Coverage Minimality DL Expressivity Tractable
Whole Ontology 3 7 Any 3
Locality Based 3 7 OWL DL (SHOIN(D)) 3

MEX 3 3 EL+ 3
Conservative Extension 3 3 Any 7

Table 3.3: Comparison of features for logical based ontology module extraction.

Table 3.3 compares the following features of the logical based extraction techniques:

• Coverage. Do the module produced by the logical based extraction technique

guarantee coverage? That is the module covers everything about the specified

terms that is in the ontology.

• Minimality. Are the modules produced by the logical based extraction technique

minimal? That is the module contains only that which is necessary.

• DL Expressivity. What is the maximum expressivity level that the logical based

extraction technique will operate?

• Tractable. Is the logical based extraction technique tractable?

The important contrast to make when considering the logical techniques is the

trade-off between the properties of minimality, coverage and tractability. If one wishes

to preserve both properties then you must restrict the expressivity of the DL you use;

if a higher expressivity is required then the minimality constraint must be removed to

make the problem tractable.

3.5.4 Summary of Classification

Whilst it is possible to classify the techniques based on certain inherent properties,

such as safety, the utility of such a classification is questionable due to the problem of

deciding which technique to use for which task. Of course, the choice of task places

different constraints on which technique is applicable.

However, this classification does allow one to draw immediate comparisons between

the techniques within each area. Perhaps, more difficult is drawing comparisons be-

tween the logical and traversal approaches. Their different starting positions mean

it is hard to draw fair comparisons. Whilst the logical techniques guarantee certain

properties the proponents of the traversal techniques may question the utility of such

properties for the scenario their technique was designed for. For example, d’Aquin’s

scenario of knowledge selection has a high tolerance for inaccuracies; but using conser-

vative extensions for maintenance tasks of SNOMED has a low tolerance for inaccuracy.

47

3.6 Common Frameworks for Ontology Modularization

There are a plethora of techniques for carrying out ontology module extraction, see

Section 3.4. All of these techniques are designed for different applications and contain

different assumptions about the problem as whole. Thus, there is a need to draw this

work together within a common framework; the key advantage of a common framework

is the ability to select, adapt and combine the different approaches. This would greatly

facilitate an objective evaluation and comparison of the different ontology modulariza-

tion techniques; Chapter 4 presents an in-depth evaluation of ontology modularization,

including a metric and task based evaluation.

Also, the development of new techniques is made easier, since common technical

issues, such as whether reasoning is used or not, are already tackled in the framework

and little effort is required by the developer.

3.6.1 Tell/Ask Interface

Borgida and Giunchiglia [8] present a Tell/Ask interface for ‘importing knowledge’,

that is reusing knowledge from existing ontologies. This work can be viewed as a

common framework for ontology module extraction. Inspired by Levesque’s functional

approach to knowledge representation [87], which allows the user to interact with a

knowledge base via Tell and Ask operators. You ‘Tell’ the TBox facts and then ‘Ask’

the TBox queries about the facts it contains. Borgida and Giunchiglia cast this to

Description Logics. In this context, Tell operations allow a TBox to be built and Ask

operations allow the knowledge base to be interrogated.

Therefore, this work can be cast to an approach for a common framework for on-

tology module extraction. A series of Ask operations would simulate the extraction

approach. The answers of these operations would form Tell operations to construct a

new TBox, the ontology module. This allows for a flexible framework, but adding new

operations is likely to be costly as each will have to be implemented separately.

3.6.2 Graph Transformations

d’Aquin et al. [26] suggest graph transformations as a possible common framework.

Firstly, d’Aquin et al. [26] present a way to transform ontologies into a directed at-

tributed graphs, which is a directed graph where attributes, in terms of types and

values can be added to the nodes and edges. Thus, a node representing a concept C

can have type Class and value name = C. For example, the axiom

PersonWithDogAndCat ≡ Person u ∃hasPet.Dog u ∃hasPet.Cat

would be transformed into the graph shown in Figure 3.2

The existing techniques ([27], [33], [103] and [115]) are then represented as a series

of graph transformations. A graph transformation takes one graph as a pre-condition

48

N1:Class (name=PersonWithDogAndCat)

N2:Class (const=u) N3:Class (name=Person)

N4:Class (const=u) N5:Class (const=∃)

N6:Class (const=∃) N7:Class (name=Dog)

N9:Class (name=Cat) N8:Property (name=hasPet)

≡

op2

op2

someV aluesFrom

op1

op1

p someV aluesFrom
p

Figure 3.2: Attributed graph representation of the expression
PersonWithDogAndCat ≡ Person u ∃hasPet.Dog u ∃hasPet.Cat

and one graph as a post-condition. For example, Figure 3.3 shows the graph transfor-

mation for the downwards traversal of the subclass hierarchy. This allows for an easily

extensible framework, but graph transformations are not widely applied in the Ontol-

ogy Engineering and Semantic Web communities, thus there could be a considerable

user overhead in learning how they operate.

Premiss Transformation

C1:Class (inc)

C2:Class

v

C1:Class (inc)

C2:Class (inc)

v (inc)

Figure 3.3: An example graph transformation for downwards traversal of a subclass
hierarchy.

3.6.3 SPARQL Based Extraction

The work by Borgida and Giunchiglia [8] and d’Aquin et al. [26] require the user to

become familiar with non-standard formalisms, but the work by Doran et al. [32] uses

the W3C standards of RDF and SPARQL as the basis for a common framework for

ontology module extraction. All OWL ontologies can be represented as an RDF graph

(see Section 2.4) and SPARQL is a query language for RDF. Thus, Doran et al. [32]

present SOMET which shows that it is possible to cast the traversal based ontology

module extraction approaches as a series of SPARQL queries upon an RDF graph.

Thus, the selection, adaptation and combinations of the techniques are manipulations

of SPARQL queries.

The SOMET framework (see Figure 3.4) already includes the SPARQL representa-

tions of the techniques presented in [27], [33], [103] and [115]. For example, some of

the queries required for Doran et al.’s [33] technique, where ?c is the current concept

49

Traversal
Extraction

Engine

Ontology
Module

Ontology

SPARQL Queries

PROMPT Galen DoranD'Aquin

Signature

Figure 3.4: The SOMET framework. [32]

of focus, are:

• DESCRIBE ?c

Describes the current resource. That is the list of the statements in which the ?c.

appears as subject, plus the closure computed from any blank nodes involved.

• CONSTRUCT {?y rdfs : domain ?c.}WHERE{?y rdfs : domain ?c.}

Returns all the ?y where ?c. is the domain of a property.

• DESCRIBE ?y WHERE {?y rdfs : subClassOf ?c.}

Returns all the subclasses of ?c.

• CONSTRUCT {?y owl : equivalentClass ?c.} WHERE {?y owl : equivalentClass ?c.}

Returns all the ?y where ?y is an equivalent class to ?c.

Furthermore, the framework allows these queries to be modified or new ones to

be added. Thus, the framework is fairly flexible and allows for experimentation in a

formalism that is standard and utilised within the Semantic Web community.

3.7 Modular Ontology

All of the work considered so far has considered taking a monolithic ontology and

producing partitions or modules. The alternative to this is to design ontologies in a

modular way from scratch, this is analogous to the notion of modularity in Software

50

Engineering. There has been some work in this area by Euzenat et al. [43] and Ensan

and Du et al. [40, 41]; both approaches use the notion of interface for constructing a

modular ontology.

Through the use of ontology module interfaces and ontology alignments (see Sec-

tion 6.2.4) Euzenat et al. [43] are able to construct a modular ontology. An ontology

module imports a set of interfaces from other ontology modules and a set of ontol-

ogy alignments connects these interfaces to the local definitions; the ontology module

should also declare what terms are in its export interface. This specification allows for

the flexible composition of ontology modules to create a modular ontology.

Ensan and Du et al. [40, 41] define an interface as a triple: 〈CN , RN , T 〉, where T is

the TBox of the interface and CN and RN are sets of concept and role names used in T .

A module then declares which interfaces it exposes and uses; thus allowing a modular

ontology to be defined as a set of modules, a set of interfaces and a configuration

function. The configuration function which chooses one exposing module for every

utilizer module-interface pair.

These approaches are comparable to the use of Distributed Description Logics

(DDL) [9]. DDL defines a modular ontology as a set of ontology modules connected

through bridge rules, whereby a bridge rule constructs a mapping between two concepts

in two different ontology modules.

51

Part III

Evaluation

52

Chapter 4

Evaluating Ontology
Modularization and Ontology
Modules

‘The most exciting phrase to hear in science, the one that heralds new

discoveries, is not ‘Eureka!’ (I found it!) but ‘That’s funny ...’ - Isaac

Asimov

Summary The aim of this chapter is to evaluate the different ontology modu-

larization techniques in terms of their performance. First, an overview of the existing

literature on ontology evaluation is given. Then suitable metrics for evaluating ontology

modularization are given, including an entropy inspired metric. These metrics are then

applied to evaluate the different ontology modularization techniques. Lastly, a task

based evaluation is carried out on the different ontology modularization techniques.

Three tasks related to query answering are considered.

4.1 Motivation

Chapter 3 outlined the various techniques currently available in the literature for per-

forming ontology modularization; this Chapter aims to look at the issue of deciding

how ‘good’ an ontology module is and what ‘good’ means. The current literature on

ontology modularization does not contain a definitive notion of what a ‘good’ module

is. Thus, there is a need to define an objective measure, such as the entropy inspired

metric presented in Section 4.3.3.

Whilst a number of different approaches for modularizing ontologies have been pro-

posed in the literature, each with different characteristics and purposes, there are few

efforts aimed at providing objective measures for the evaluation of the outcome of mod-

ularization techniques [28]. This motivates the need for objective criteria for evaluating

the ontology modules produced as a result of modularization. Section 4.3 introduces

53

three objective metrics that have been proposed for evaluating modularization; these

metrics are then used to carry out an evaluation in Section 4.4.

The prevalent measure to discriminate between ontology modules is the module size,

that is the number of named concepts and properties that compose the module [56].

Other criteria have been proposed by Schlicht and Stuckenschmidt [112] that look

at the structure of the ontology modules produced and attempt to assess the trade-

off between maintainability and efficiency of reasoning in distributed systems. These

criteria are [112]:

• Redundancy. The extent to which ontology modules overlap. The inclusion of

redundancy in modules improves efficiency and robustness but in contrast it re-

quires a higher effort to maintain the modules.

• Connectedness: The number of edges shared by the modules generated by a mod-

ularization approach. This criterion assumes that the modules are represented

as a graph, where the vertices are the axioms in the ontology, and the edges are

the properties (roles) connecting two axioms with a shared symbol. Connected-

ness estimates the degree of independence of the set of modules generated by the

modularization approach.

• Distance: The process of modularization can simplify the structure of the mod-

ule with respect to the ontology in input. Two different distance measures, inter-

module distance and intra-module distance have been defined that count the num-

ber of modules that relate to entities, and the number of relations in the shortest

path from two entities in a module, respectively.

All these criteria (including size) assess a specific aspect of the module obtained

that depends on the task for which modularization is carried out [28]. However, there

is no measure that attempts to capture the combined effect and aggregates the quan-

titative estimates of the dimensions represented by the criteria. This is the motivation

behind the introduction of the entropy inspired measure in Section 4.3.3; which aims

to facilitate a comparative analysis of the modularization approaches.

However, before considering this it is important to consider the general area of ontol-

ogy evaluation; after all, ontology modules are ontologies. Uschold and Gruninger [138]

introduce the notion of formal competency questions to evaluate the quality of an on-

tology. These are used to verify that what the ontology contains is sufficiently rich

to answer some questions defined by the Ontology Engineers to limit the scope of the

ontology; indeed these form part of Ontology Engineering methodologies, see Section

5.2.

54

4.2 Ontology Evaluation

With the increased availability of ontologies the need to evaluate the suitability of an

ontology becomes more pressing; we need to have a way to decide that one ontology

is better than another. The aim of ontology evaluation is to move away from the

subjective to the objective. With this in mind Yu, Thom and Tam [148] classify the

main approaches to ontology evaluation into 3 groups, these are:

1. Gold standard evaluation. One ontology is deemed the benchmark, or ‘gold

standard’, and the ontology being evaluated is compared against it. For ex-

ample, Maedche and Staab [93] present a collection of similarity measures

to compare one ontology with a gold standard ontology. This kind of eval-

uation is typically carried out when assessing ontology learning algorithms,

that is algorithms that can induce an ontological structure from a set of data

[92].

2. Criteria based evaluation. Takes the ontology being evaluated and evaluates

based on the proposed criteria [52]. These criteria are generally isolated from

the applications; thus, meeting the criteria may not be enough to meet the

needs of the application. Yu, Thom and Tam [148] also identify 8 distinct

criteria, based on the criteria proposed in the literature [58, 60, 52, 62, 66],

these are:

(a) Clarity. Is the ontology clear and easy to understand?

(b) Consistency. Is the ontology consistent or does it contain contradic-

tions?

(c) Conciseness. Is the ontology concise or are its defintions unnecessarily

obfuscated?

(d) Expandability. Is the ontology easy to expand?

(e) Correctness. Is the ontology correct? The ontology may be correct

for its conceptualization, but it could be incorrect with respect to your

conceptualization.

(f) Completeness. Is the ontology complete? Whilst this might be demon-

strated it is unlikely that it could be proven.

(g) Minimal Ontological Commitment. Is the ontological commitment weak

or a strong? Strong ontological commitments may make the ontology

harder to reuse.

(h) Minimal Encoding Bias. Could the definitions in the ontology be easily

translated to another ontology language?

3. Task-based evaluation. The ontology being evaluated has its competency checked

in completing tasks. Here the evaluation is done in the context of the appli-

55

cation and the ontology’s competence can be quantitatively measured. The

downside being that the evaluation done for one task may not be applicable

for another task.

4.2.1 Ontology Evaluation Methods

The above provides an overview of the main principles for ontology evaluation that

are relevant in the context of this thesis. The following subsections detail the major

ontology evaluation techniques in more detail.

OntoClean

OntoClean [66] presents a methodology based on formal ontology, the philosophical

study of ontology, for the evaluation of a taxonomic structure; its focus has been on

cleaning up taxonomies and it has been applied to the WordNet [95] taxonomy. The

core of this methodology is based around the following four philosophical notions:

1. Rigidity. Based on the idea of essence. A property is essential to an individual

if and only if it necessarily holds for that individual. Thus, a property is rigid

(+R) if and only if it is essential to all its instances. Essential here means that

the property is true in every possible world [89]. Thus, a property is non-rigid

(-R) if and only if it is not essential to some of its instances, and anti-rigid if and

only if it is not essential to all its instances.

2. Unity. Defined as an individual who is whole if and only if it is made by a set

of parts unified by a relation R. A property is said to carry unity (+U) if there

is a common unifying relation R such that all the instances of the property are

wholes under R. A property carries anti-unity if all its instances can possibly be

non-wholes.

3. Identity. The logical relation of numerical sameness, in which a thing stands only

by itself. “Identity is related to the problem of distinguishing a specific instance

of a certain class from other instances of that class by means of a characteristic

property, which is unique for it (that whole instance)”. [65]

4. Dependence. Allows us to distinguish between extrinsic and intrinsic properties

based on whether they depend or not on the objects other than the one they

are ascribed to. Intrinsic properties are those characterising an object and do

not depend on another object; usually good to become identity conditions, for

example inverse-functional properties in DL (see Section 2.3). Extrinsic properties

are not inherent properties and a are usually given by some external agent.

The above are attached to concepts in the taxonomy as meta-relations to represent

the behaviour of the concepts. OntoClean also contains a set of axioms that can be

56

used in conjunction with the meta-relations to suggest how a taxonomy can be cleaned.

For example, one OntoClean axiom is that “a property carrying anti-unity has to be

disjoint of a property carrying unity”; thus if you have meta-relations in contradiction

to this then this is an area that should be cleaned. A comprehensive list of these axioms

can be found in [65].

This method is useful for fixing an existing ontology, but it does not provide any

mechanism by which different ontology modules could be compared. This makes it

unsuitable for evaluating the results of different ontology modularization processes.

Furthermore, if the ontologies have problems which are identified by OntoClean then it

is likely that these problems will also pass into the module, this suggests the ontology

requires fixing before the ontology module can be extracted.

OntoMetric

OntoMetric [133] presents a set of processes for the user to carry out to obtain the

measure of how suitable an ontology is for a particular application. Five dimensions

are considered in making this decision, these are:

1. Ontology content. This is what the ontology contains and how that contents is

organised.

2. Ontology language. This is the language in which the ontology is encoded.

3. Methodology followed to develop ontology. This is the methodology followed to

develop the ontology. Section 5.2 discusses several methodologies for Ontology

Engineering.

4. Software used to build the ontology. The software tools used to develop the on-

tology. This includes software such as ontology editors and reasoners.

5. Cost of using the ontology. This considers the license of the ontology and the

software needed. It also considers the hardware and software costs.

These dimensions are used to obtain the overall measure of suitability which is

generated by following these processes:

1. Specify objectives. The developers should know the constraints of their environ-

ment, as such they should be able to rank the importance of the dimensions stated

above.

2. Build decision tree. The root node is “select most appropriate ontology” and the

first level nodes being the five dimensions stated above. Each dimension can then

have different factors placed underneath it and then sub-trees of characteristics

can be added. These characteristics will vary depending on the project and its

constraints.

57

3. Pairwise comparison matrixes. Each set of brother nodes has a comparison ma-

trix [110] computed. These comparisons depend on the objectives and aims iden-

tified in Process 1. This results in a weight to represent the relative importance

of each criteria.

4. Assess alternative ontologies. For each alternative ontology its characteristics are

assessed. Using the values calculated in the previous step we can ascend up the

tree, building a vector as we go, until we reach a node.

5. Combine vectors. The vector of weights (Processs 3) is combined with the values

of the alternatives (Process 4). Based on these results an appropriate choice can

now be made.

This method allows a developer to justify their decision by forcing them to consider

the importance of the project objectives, and to carefully study the characteristics of

each ontology. However, it is a time-consuming method and requires a huge effort on

the part of the developer. Considering there are numerous ontology modularization

techniques it is likely that the developer would have to apply this to several ontologies

making it unsustainable. Furthermore, it requires a human and cannot easily be fol-

lowed by an agent of the type detailed in Section 6.2.2, whereby they are considered to

be autonomous and proactive in achieving their goals.

Ontology Evaluation Framework

Gangemi et al. [46, 47] present a collection of metrics focusing on the structure, function

and usability of an ontology the aim being to integrate the various ontology evaluation

methods. They ground the various measures they present in an ontology of ontology

evaluation and validation.

Numerous measures are presented by Gangemi et al. [46]; and here we present the

most relevant to the subject of this thesis. The assumption underlying the measures

being that the ontology structure is represented as a graph and that the relevant compo-

nents can be retrieved from the graph as required. The measures are presented within

the relevant category of structural, functional and usability.

Structural Measures These measure the structural dimension of an ontology, focus-

ing on syntax and graph structure. Measures in this category include:

• Measures for depth. Depth is the cardinality of paths in a graph; here the

edges are assumed to represent subclass relations.

• Measures for breadth. Breadth is the cardinality of levels in a graph; here

the edges are assumed to represent subclass relations.

58

• Measures for tangledness. Tangledness relates to the multihierarchical nodes

of a graph; here the edges are assumed to represent subclass relations. Tan-

gledness computes the ratio of the number of nodes in the graph to the

number of nodes with more than one outgoing subclass edge.

• Measures for fan-outness. Fan-outness is related to the dispersion of graph

nodes, i.e. how much the graph spreads; here the edges are assumed to

represent subclass relations.

• Measures for density. Density is defined as the presence of clusters of classes

with many non-taxonomical relations holding between them.

• Measures for modularity. Modularity relates to the asserted modules of a

graph whereby disjoint modules are related via one or more subclass edges.

• Measures for logical adequacy. Logical adequacy relates to the graph having

formal semantics; for example the ratio of consistent classes to inconsistent

classes.

Functional Measures These measure the functional dimension of an ontology aiming

to find the extent to which an ontology mirrors a given expertise or competency.

• O Precision and O Recall. Analogous to the traditional precision and recall

measures [140] that allow one to measure how well a document retrieval task

performs based on the ratio of relevant and correct documents returned (see

Section 4.3.2 for the formulation). The models of an ontology are considered

rather than considering documents, so precision and recall become measures

over the ontology models and the intended ontology models.

• O Accuracy. This tries to measure the fitness of an intended conceptual-

ization by mapping states of affairs, which are intended conceptualizations

even those not possible due to a mismatch between cognitive and formal

semantics, to possible worlds.

Usability Measures These measure the usability dimension of an ontology aiming to

understand the relation between users and ontologies. This is done along three

levels:

1. Recognition. This requires the ontology to have an adequate set of annota-

tions to allow the user to access in an easy way information on using the

ontology in an effective way. Thus, recognition requires having a properly

documented ontology to ensure effective access. Therefore, the ontology re-

quires the proper annotations. The assumption being that providing such

information makes the ontology more usable.

59

2. Efficiency. This concerns enabling users to achieve their goals in an efficient

manner. This includes annotations about the organisation, the commercial

and the development. Having adequate annotations in these areas facilitates

efficient use of the ontology within an organisation.

3. Interfacing. This concerns the problem of constructing a user interface to

the ontology. For the purpose of ontology evaluation the ontology should

include ‘interface’ annotations. For example (taken from [47]), a contract

negotiation ontology might contain annotations to allow an implementation

of a visual contract modelling language.

Whilst the framework provides numerous metrics for evaluating ontologies it does

not provide a method for understanding which metrics are suitable in different situa-

tions. Furthermore, the majority of the metrics only consider the taxonomic structure

and do not exploit the richer semantics offered by Description Logics (see Section 2.3).

4.3 Metrics for Evaluating Module Extraction

Section 4.2 provides an introduction to the general area of ontology evaluation. Many

of the existing ontology evaluation approaches have a sizable cost in terms of time

and effort. They require time to follow through the methodology and to properly,

and accurately, interpret the results which are sometimes subjective. Therefore, this

Section introduces and discusses the metrics for evaluating ontology modularization

that have been proposed in the literature. These measures have a low cost and try to

be as objective as possible.

It seems that ontology modularization requires a quick objective way to decide how

‘good’ a module is because there are numerous techniques for generating them. An

Ontology Engineer needs to decide which module is best and the existing techniques

for ontology evaluation are rather time-consuming.

4.3.1 Size

Nearly all evaluations carried out on ontology modularization techniques, see [33, 26,

115, 24, 127], consider size as a metric in their evaluations. Size is the number of

entities, named classes and properties, in an ontology. Thus, the size of an ontology,

O, can be calculated as follow:

size(O) = |Sig(O)| (4.1)

It is possible that size may also be considered as just the number of named classes

in an ontology. One important thing to note about the size metric is that it does not

take account of the number of unnamed classes in an ontology; depending on how the

60

ontology is constructed this could be of great importance, for example if the ontology

contains a few named classes but many class restrictions.

The Paradox Of Size

The aim of modularization in general is to reduce the size of an ontology, but this is not

an end in itself because it introduces the obvious paradox that the optimum module

size is 0 [32]. Whilst an ontology module of size 0 is highly reusable and the effort

required to reuse it is negligible, it is evident that it is also fairly useless. This inverse

relation between reusability and usability is noted by Gomez-Perez, Fernandez-Lopez

and Corcho [54]. They note that whilst general, upper-level ontologies are highly

reusable and applicable to different applications they are unlikely to prove useful, for a

given application, without modification; whereas, application level ontologies are very

useful for specific cases and this specificity decreases its reusablity.

Therefore size must be traded off with some other metric. The following will intro-

duce two metrics, precision and recall; and entropy, that could be used in a trade off

with size.

4.3.2 Precision & Recall

Doran et al. [33] adapt the precision and recall metrics used by Dellschaft & Staab [30],

for evaluating ontology learning, to evaluate module extraction. These metrics are

based on those used in Information Retrieval [140].

In information retrieval precision and recall are defined as:

Precision(p) =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
(4.2)

Recall(r) =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
(4.3)

Precision tells us the proportion of documents retrieved that are relevant, i.e., what

proportion of documents returned were correct, and recall tells us the proportion of

documents that are relevant are actually retrieved, i.e., how many correct documents

were retrieved. The harmonic mean of precision and recall can then be calculated to

give the fMeasure as follows:

fMeasure =
2(p× r)
(p+ r)

(4.4)

These metrics are adopted by Dellschaft & Staab [30] for performing gold standard

evaluations of ontology learning where they use precision and recall for evaluating

taxonomies. Therefore, the taxonomic precision of two concepts, c1 ∈ OC and c2 ∈ OR,

is defined as:

tpce(c1, c2, OC , OR) :=
|ce(c1, OC) ∩ ce(c2, OR)|

|ce(c1, OC)|
(4.5)

61

The characteristic extract function (ce()) needed for the purpose of this thesis is

the semantic cotopy(sc) [91]1, the set of all a given concepts super- and subconcepts,

which given the concept c ∈ C, the set of all concepts, and the ontology O is defined

as:

sc(c,O) := {ci|ci ∈ C ∧ (ci ≤ c ∨ c ≤ ci)} (4.6)

Doran et al. [33] adopt the Dellschaft & Staab metric for evaluating ontology mod-

ules and define what precision and recall mean in this context.

- Precision (pM). All the taxonomical relations that are in the module are also in the

parent ontology. Thus, given Equation 4.5 and 4.6, this can be expressed as:

pM (c1, c2, OM , O) :=
|sc(c1, OM) ∩ sc(c2, O)|

|sc(c1, OM)|
(4.7)

such that OM is the module and O is the ontology it was extracted from and

c1 ∈ OM = c1 ∈ O.

- Recall (rM). Everything that is in the parent ontology is in the module. This can

be expressed as:

rM (c1, c2, OM , O) :=
|sc(c1, OM) ∩ sc(c2, O)|

|sc(c2, O)|
(4.8)

Recall objectively measures how much of the original ontology is retained in the

module, as such it could be seen as some measure of competence. Precision ensures

that all the taxonomic relations that are in the module were in the ontology it was

extracted from; i.e. no new taxonomic relations have been introduced.

4.3.3 Entropy Inspired Metric

The notion of entropy was been applied to information theory by Shannon [117] in

order to provide a quantitative measure of the information contained in a message.

Shannon defines entropy as a measure of the average information content the recipient

is missing when they do not know the value of a random variable, that is the measure

of uncertainty associated with the random variable, calculated as:

H(X) = −
n∑
i

p(xi) log p(xi) (4.9)

where p(xi) = Pr(X = xi) and X is a discrete random variable. Calmet & Daemi [17]

exploited this notion for measuring the reduction of uncertainty of one concept with

respect to another, by considering possible target concepts in between them. This is

represented through a probability mass function, p(xi), which is calculated for each
1For module extraction we do not need to worry about lexical changes to the concepts; this issue

may be relevant for ontology learning and Dellschaft & Staab [30] propose a solution.

62

vertex in the graph (corresponding to some concept), by dividing the degree of the

vertex; i.e. number of edges (i.e. properties) connected to that concept, with the sum

of all degrees of V (where vi, v ∈ V are vertices):

p(vi) =
deg(vi)∑

v∈V deg(v)
(4.10)

However, this entropy-based approach is limited as it considers all edges as equal.

Doran et al. [34] show that this leads to some counter intuitive results. For example,

consider the two graphs in Figure 4.1 where both graphs have an entropy value of 2.81.

A B

Figure 4.1: Two graphs with equal entropy.

This is counter intuitive, however, if we hypothesise that in one instance all the

edges are <owl:equivalentClass> and in the other they are <owl:ObjectProperty>

then the entropy values are expected to be different. When the edges represent

<owl:equivalentClass>, then graph A represents the uninferred model and graph B

the inferred model (i.e. the extra edges in graph B are implicit in graph A), where these

edges have been made explicit and effect the entropy measure. Analogously, when each

edge represents a different <owl:ObjectProperty> then the entropy values should be

different because the second graph has many more properties linking the concepts.

Doran et al. [34] overcome the limitations of this approach via a reformulation

of the entropy measure of Calmet & Daemi that accounts for the different types of

relationships that can exist between concepts. This reformulation splits the entropy

into two levels:

1. Language Level. Estimates the information content carried by the edges that

represent language level constructs. These constructs are part of the onto-

logical representation that is being used, for instance the OWL statements

<owl:equivalentClass> or <rdfs:subClassOf>. These statements only

require knowledge of the OWL semantics to be understood; whilst edges at

this level may encode domain knowledge they do not require domain knowl-

edge to be understood.

2. Domain Level. Concerned with the domain specific relationships; these are the

constructs that allow an Ontology Engineer to tailor the ontology to their

63

domain. Such a construct in OWL would be the definition of an object prop-

erty, <owl:ObjectProperty>. This level captures the information content

that a relationship contributes to an ontology or module. The edges at this

level require knowledge of the domain to be properly understood; for exam-

ple, to fully comprehend an object property knowing the OWL semantics is

insufficient. The label of the property will carry information regarding the

conceptualization of the domain.

This reformulation requires the ontologies to be represented as an edge-labelled

directed multigraph G = (V,E) where:

• V is a finite set of vertices, representing the concepts defined in the ontology.

• E = L ∪D, where:

– L ⊆ V ×ΣL×V is a ternary relation whose elements (vm, li, vn) are language

level edges, where l ∈ ΣL, and ΣL is the set of all the constructs in the

ontology language that represent relationships between concepts.

– D ⊆ V × ΣD × V is a ternary relation whose elements (vt, dj , vu), where

d ∈ ΣD, and ΣD is the set of relationships defined to capture links between

domain entities.

• ΣL = {l1, ..., ln} and ΣD = {d1, ..., dn} are sets of labels which will label the edges

of L and D respectively. Whilst the labels in ΣL are defined by the specification

of the ontology language used to represent the ontology2, the labels in ΣD are

decided by the ontology developer.

The following functions assign a label to each edge from the respective alphabets:

• labell(L) : L→ ΣL

• labeld(D) : D → ΣD

For the purpose of this thesis we will consider ΣL and ΣD to be the following sets.

It should be noted that these sets could be changed by the ontology developer if it is

required.

• ΣL = {<owl:disjointWith>,<owl:equivalentClass>,<owl:intersectionOf>,

<owl:unionOf>,<rdfs:subClassOf>}

• ΣD = {<owl:ObjectProperty>}
2In OWL, ΣL is equivalent to the set of properties in the OWL vocabulary. The complete list of

properties is available in Appendix C of the OWL reference document (http://www.w3.org/TR/owl-
ref/)

64

Language Level Entropy - HL(X)

The language level entropy (HL(X)) calculates the entropy of the language level edges.

Consider GL = (V,L) where GL ⊆ G. We assume that all language level edges have

equal weight and thus the probability mass function p(vi) is defined as:

p(vi) =
degOut(vi)
|L|

(4.11)

where

degOut() : V → R

for each v that exists in V such that degOut(v) = |Lv| where Lv = {(v, l, x)|v ∈ V }.

The function degOut(v) counts the number of outgoing edges from a given v, i.e.

the degree of the node (concept) v. Thus∑
v∈V

degOut(V) = |L|

because for every element of V , the outgoing edges are considered and all the elements

of L (vi, l, vm) must have v ∈ V as the first element.

Domain Level Entropy - HD(X)

The domain level entropy (HD(X)) calculates the entropy associated with the domain

level edges. We consider GD = (V,D) where GD ⊆ G. We assume that the elements

of ΣD that appear more frequently in D split their information content evenly, thus

the weight associated with these edges should be lower. For example, in an ontology

modelling the relationships between a PhD Student and their Supervisors the rela-

tionships coAuthorOf can link a PhD Student and a Supervisor, or two PhD Students,

thus appearing more than once. Therefore, the information carried by this relationship

is split between the contribution to the definition of PhD Student, and the contribution

to the definition of Supervisor.

For every d ∈ D we define a weighting function

w() : ΣD → R

that assigns a real number corresponding to the weight to every element of the alphabet

ΣD. The weights wd, d ∈ ΣD are defined as

w(d) =
1
|Dd|

where

Dd = {(x× σD × y)|labeld(d) = σD}

65

that is, the weights are determined on the number of elements of the relationship

D ⊆ V × ΣD × V for which the label σD ∈ ΣD is the same. The weights of the edges

are normalised between 0 and 1, with the edges that appear more frequently getting

a lower weight and the edges that appear less frequently getting a higher weight. The

probability mass function p(i) that we use for calculating HD(X) is:

p(i) =
weightsFromNode(i)∑

v∈V weightsFromNode(v)
(4.12)

where

weightsFromNode() : V → R

for each v that exists in V such that

weightsFromNode(v) =
∑
f∈F

w(f)

where F is the set of edges from D involving v. Thus, the weights of the edges outgoing

from v are summed and divided by the sum of the weights of the outgoing edges for all

elements of V .

Recombining The Entropy Measure

The ontology entropy measure H(X) is calculated as the sum of the language and

domain entropies:

H(X) = HL(X) +HD(X) (4.13)

Depending on the semantics encoded in the graph it may be necessary to consider >
and ⊥. Assuming that > and ⊥ are elements of V , then they are included in the above

formula. However, one may just wish to consider the entropy amongst the user declared

elements of V , as > and ⊥ are usually required elements of the language (e.g., OWL).

Thus, in this case, the entropy measure for the ontology would be:

H(X) = (HL(X) +HD(X))− (H(>) +H(⊥)) (4.14)

which subtracts the entropy values associated with > and ⊥ from the overall entropy

value (H(X)).

Example of Entropy Computation

This example, based on the ontology given in Section 2.5, aims to illustrate what domain

and language entropy are calculating and, thus, what contributes to the entropy of an

ontology. We consider four variations of this ontology, whose entropy values can be

seen in Table 4.1.

First consider the ontology in Figure 4.2. This ontology is simple a taxonomy, i.e. it

only contains subclass relations. As such, it’s score for HD(X) in Table 4.1 is 0 because

this variant only contains language level edges.

66

Ontology HL(X) HD(X) H(X)
Figure 4.2 2.459 0.000 2.459
Figure 4.3 0.000 1.057 1.057
Figure 4.4 2.459 1.057 3.516
Figure 4.5 3.533 2.654 6.187

Table 4.1: The entropy values generated for the different ontologies in Figures 4.2 - 4.5

Person

Academic Student

PostGradS
tudent

UnderGrad
Student

Role

Figure 4.2: Ontology taxonomy.

Secondly consider the ontology in Figure 4.3. This ontology has no simple taxonomic

relations, it only has three object properties. Thus, it’s score for HL(X) in Table 4.1

is 0 because this variant only contains domain level edges.

Person

Academic Student

PostGradS
tudent

UnderGrad
Student

Role
hasRole

hasSupervisor

supervisorOf

Figure 4.3: Ontology object properties.

The above two example show how the HL(X) and HD(X) are independent. Even

when we consider the ontology in Figure 4.4, which is the union of Figure 4.2 and 4.3.

The values in Table 4.1 now show that we have the HD(X) from Figure 4.3 and the

HL(X) from Figure 4.2, which is to be expected. Note, however, that the H(X) is now

higher than in the previous two cases.

Lastly, consider the ontology in Figure 4.5 which is a further axiomatization of

Figure 4.4. The addition of the extra restrictions results in an increase in both HL(X)

and HD(X) as the restrictions contain both language and domain level elements. This

is intuitive with respect to the definition of the entropy formula as it is a function over

the edges in the graph. Essentially the more that is added to the graph the higher the

entropy.

67

Person

Academic Student

PostGradS
tudent

UnderGrad
Student

Role
hasRole

hasSupervisor

supervisorOf

Figure 4.4: Ontology taxonomy and object properties.

PostGradS
tudent

UnderGrad
Student

Academic Student

hasSupervisor

supervisorOf

Person

Role

hasRole

∃hasRole.
Role

∃hasRole.
{prof,lecturer}

∃hasRole.
{phd,masters,undergrad}

∃hasRole.
{phd,masters}

∃hasRole.
{undergrad}

Figure 4.5: More axiomatized ontology. (NB Not all restrictions shown, the restrictions
with {} would be split out so there is only one instance value per restriction)

4.4 Metric Based Evaluation

The aim of the metric based evaluation is to investigate the suitability of different

objective measures for evaluating the results of an ontology modularization process.

Firstly, precision and recall is investigated as it allows one to measure how much of the

ontology is in the ontology module. Secondly, an entropy inspired metric is investigated

which allows one to measure the information content of an ontology module.

4.4.1 Using Precision & Recall for Module Evaluation

Ontology Species Equivalent Disjoint Restriction
AKT-Portal ALCHIOF(D) X X

MindSwappers ALCHIF(D) X
Family ALC X X X

Table 4.2: Table showing ontology properties.

Doran et al. [33] conducted experiments to evaluate their extraction method (see

Section 3.4.1) using precision and recall on three ontologies: the AKT-Portal, MindSwap-

pers and Family ontologies. These ontologies were chosen because of their varying

expressiveness, see Table 4.2. Whilst the Family ontology is the least expressive it is

highly interconnected and contains complex restrictions. For example, the Grandfather

concept is defined as a father who has a child who is a parent.

68

A module was produced for each concept. The metric was then run to calculate

the precision and recall, see Section 4.3.2, of the module with respect to the original

ontology. The hypothesis is that precision will be high because the approach does not

make any changes to the concepts that are placed in the module. In addition, intuitively,

the recall should vary dependent on how large the module is and where it appears in the

taxonomy. For example, large modules at the top of the taxonomy should have a high

recall; whilst small modules at the bottom of the taxonomy should have a low recall.

There should be little expectation that recall scores highly. Indeed it is undesirable to

score highly on recall because this indicates that the ontology module is fairly similar

to the original ontology, which nullifies the benefits of the module extractions process.

Thus, it is expected that the score for recall will be lower than that for precision.

Ontology Average Precision Average Recall Average fMeasure
Portal 1 0.54 0.68

MindSwappers 1 0.72 0.79
Family 1 0.84 0.9

Table 4.3: Experimental Results

The results are shown in Table 4.3. They concur with the expectations. Precision

was high for all three ontologies; recall was lower, as expected.

The difference in recall between Portal and Mindswappers can largely be attributed

to the difference in the average depth of the class tree. The average depth of the

class tree for Portal is 5.89 and for Mindswappers it is 3.9. The average branching

factor and the average number of object properties per concept are not significantly

different. The average branching factor of Portal is 2.53 and for Mindswappers it is

2.58. Whilst the average number of object properties per concept for Portal is 1.56 and

for Mindswappers it is 1.26.

The difference in the average depth of the class tree attributes to the difference in

recall because of the way the subclass rule works in the extraction process. The greater

the depth of the class tree means that as the process gets further down the hierarchy,

then less of the hierarchy is placed into the ontology module. Thus, the less in the

ontology module the lower the recall.

Because the precision and recall metric only considers the taxonomic structure of

an ontology it is perhaps not best suited for evaluating ontology modules as a sizable

amount of module content might be missed. Of course, if the ontology language is

restricted to a taxonomy then precision and recall would have a higher value due to

them taking account of the full expressivity of the ontology language being used. In

this case, small modules would correspond to a low value for recall.

69

Ontology # Total # # DL Normalized
Name Cl. Prop. ObjProp expressivity H(X)

Conference 59 64 46 ALCHIF(D) 0.1658
cmt 29 59 49 ALCIF(D) 0.2928

confOf 38 36 13 SIF(D) 0.2701
crs-dr 14 17 15 SHIN 0.5127
edas 103 50 30 ALCIF(D) 0.1097
ekaw 73 33 33 SHIN (D) 0.1413

MICRO 31 26 17 ALCIOF(D) 0.3030
OpenConf 62 45 24 ALCIO(D) 0.1811
paperdyne 45 78 17 ALCHIOF(D) 0.1946

PCS 23 38 24 ELUIF(D) 0.3754
sigkdd 49 28 17 ELI(D) 0.1744

Table 4.4: Classes, properties, expressivity, and normalized H(X) values for each of
the OntoFarm (http://nb.vse.cz/ svatek/ontofarm.html) ontologies used in the OAEI.

4.4.2 Using Entropy for Module Evaluation

The entropy evaluation is split into three parts, as follows:

1. Intra-technique Evaluation. Determines if the entropy based measures discrimi-

nate between modules of the same size when the signatures supplied to the algo-

rithm were different.

2. Inter-technique Evaluation. Reflects the perspective of an Ontology Engineer

wishing to reuse an ontology module; where there is a need to discriminate be-

tween two equally sized ontology modules produced by different techniques.

3. Characterising the Entropy Measure. Contrasts the different modularization tech-

niques using the entropy metrics discussed in Section 4.3.3 over several different

ontologies.

The Intra (1) and Inter (2) evaluations use the ontologies (AKT-Portal, Mindswap-

pers and Family) used in the previous section, shown in Table 4.2. This dataset was

chosen because it was small allowing the evaluation to be conducted in depth. The

inter-evaluations was only run for the techniques of Doran and d’Aquin because they

require the ontology modules to be inspected and it was felt that just two techniques

would be sufficient.

However, the characterisation of the entropy measure (3) uses the ontologies listed

in Table 4.4, complete with a brief characterisation in terms of the number of classes and

properties, and the level of DL expressivity used to represent them. A larger dataset

was required for this evaluation to provide more data in order to properly characterise

the entropy measure. Indeed, this is the reason for also running the evaluation over the

techniques by Cuenca-Grau et al.and Seidenberg and Rector.

70

Family ontology
Interval of OE HL(X) HD(X) H(X)

Module Size
Doran 18 0.157 0.249 0.208 0.431

d’Aquin 5 0.004 0.241 1 1.241
Cuenca Lower 26 0.126 0 0 0

AKT Portal ontology
Doran 1 0.018 0 0 0

34 0.005 0 0.013 0.012
36 0.015 0.002 0.018 0.018
37 0.012 0.003 0.010 0.013
38 0.088 0.064 0.050 0.112
39 0.012 0 0.024 0.025
186 0.121 0.137 0.156 0.291

d’Aquin 40 0.162 0.680 2.030 1.475
41 0.283 0.709 2.053 1.511
42 0.168 0.629 2.075 1.509
43 0.202 0.702 2.071 1.511
46 0.187 0.644 2.05 1.501
48 0.176 0.690 1.396 0.933

Cuenca Upper 20 0.370 0.741 1.437 1.128
21 0.416 0.849 1.182 0.346
22 0.450 0.762 1.536 1.397
23 0.507 0.843 1.573 1.258
24 0.473 0.698 1.600 1.212
25 0.504 0.733 1.642 1.415
27 0.450 0.857 1.506 1.084
28 0.644 1.005 1.427 1.027
29 0.487 0.690 1.450 1.201
30 0.483 1.036 1.025 0.383
40 0.394 0.892 0.464 0.428
42 0.396 0.606 0.996 0.692

Cuenca Lower 9 0.299 0.322 0 0.322
14 0.243 0.590 0.722 1.000
15 0.412 0.965 0.906 1.004
24 0.216 0.319 0.066 0.384
Mindswap ontology

Doran 1 0.142 0 0 0
17 0.004 0.011 0 0.011
19 0.018 0.024 0.300 0.309
20 0.067 0.024 0.291 0.291
23 0.002 0.016 0 0.016

d’Aquin 1 0 0 0 0
Cuenca Upper 11 0 0 0 0
Cuenca Lower 1 0 0 0 0

Table 4.5: Intervals in the entropies for the Family, AKT Portal, and Mindswap on-
tologies

71

Intra-technique Evaluation

Each of the module sets extracted were grouped by size, and the entropy was calculated

(each of the four metrics under evaluation were used). An interval was then determined

for a set of some given size, based on the difference between the maximal and minimal

entropy calculations for the modules in that set. These intervals are listed in Table

4.5 for each of the three ontologies using the four module extraction techniques. No

results are shown for those sets where the interval value was zero for all entropy metrics

evaluated.

LCO Concept d’Aquin Doran
Import Directives none support.owl

Expressivity ALCF ALCOF(D)
Defined Imported Total Defined Imported Total

Classes 22 0 22 9 17 26
Datatype Properties 0 0 0 4 10 14
Object Properties 10 0 10 1 5 6

Annotation Properties 1 0 1 1 3 4
Individuals 6 0 6 2 13 15

General Concept Inclusion 5 0 5 0 0 0
SubClass Axioms 18 0 18 23 0 23
Disjoint Axioms 0 0 0 7 0 7

Defined Imported Defined Imported
Base Model Triple No. 359 0 359 64 284 348

Inferred Model Triple No. 572 0 572 120 575 692

Table 4.6: Comparison between d’Aquin and Doran approaches on LCO

For the Family ontology, the results show that in two cases the new entropy based

metrics are more discriminating than the original entropy metric (OE), whilst in the

case of Cuenca-Grau et al ’s ‘lower’ technique, only the OE metric provided some

discrimination (i.e. there was a difference of 0.126 between the highest and lowest

entropy values for different modules of size 26). However, for many of the ontol-

ogy modules produced (seven sets, which are not reported in the table), there was

no difference in entropy values. This is due to the ontology being highly intercon-

nected, it contains many concepts in terms of complex class restrictions (for example,

Son ≡ Male u ∃hasParent.Parent).

For most of the modules generated from the AKT-Portal ontology, the improved

entropy metric (H(X)) provided greater discrimination than the OE metric. This

difference varied, depending on the module extraction technique; from an average of

0.039 (OE) compared to 0.067 (H(X)) for the Doran technique, to an average of 0.196

(OE) compared to an average of 1.407 (H(X)) for d’Aquin’s technique. The OE metric

identified the smallest intervals for the majority of module sets, and in general, the

domain level entropy metric produced the greatest intervals.

72

The MindSwap ontology produced some anomalous results, with two of the four

techniques (d’Aquin et al and Cuenca-Grau et al ’s ‘lower’ technique)3 producing mod-

ules of size 04 or 1. As the entropy metrics rely on there being edges between concepts,

they fail on graphs with single (or a very small number of) concepts. Doran et al ’s

technique produced several modules with a range of sizes. However, unlike the inter-

vals generated for the other ontologies, a greater number of sets had intervals at the

language level rather than at the domain level, suggesting that the modules tend to

contain the same domain level edges.

Inter-technique Evaluation

Two modules extracted from the Portal with the signature set to ‘Learning Centered

Organization’ (LCO) by the d’Aquin and Doran approaches are described by means of

some metrics computed with SWOOP5 in Table 4.6. These results show that the two

approaches generate similar modules w.r.t. size, but their entropy values are different

(see Table 4.7) and indeed their content is largely different. This shows that two

modules of the same size extracted by different techniques that produce an ontology

module about the same concept are better discriminated objectively via an entropy

based measure; and that the improved measure allows an Ontology Engineer to better

identify where the difference is. The following now examines some of the differences

between the two modules.

One important difference is the fact that the Doran approach leaves the owl:imports

directives in the module. This helps to keep track of dependencies, as well as allowing

the extracted module to be reused should the imported ontologies change, but importing

large ontologies may lead to very large modules. The d’Aquin approach would require

the ontology module to be rebuilt if any change occurs in the imported ontologies, but

the module is self contained.

Another difference is the expressivity: d’Aquin does not include datatypes and

nominals in the module. However, the relation between traversal modularization meth-

ods and expressivity needs deeper investigation before meaningful conclusions can be

drawn. Looking at the specific differences, we note that the only common named

concept between the two modules, not including the imported ontology, is the root

of the model: LCO. Focusing on the differences, in the d’Aquin module 13 subclass

relationships where LCO is the subject were included, one with Organization and 12

with anonymous classes, which represent the definition of LCO. In the Doran mod-

ule, there is only one isDefinedBy property that states that LCO is defined according
3These results suggest that the extraction techniques of d’Aquin et al and Cuenca-Grau et al place

strict criteria in certain circumstances on what is included within a module, and thus may fail to
produce usable modules.

4An ontology module of size zero would typically contain either > or ⊥. This may be of value when
considering the modularization process itself, but of little pragmatic use to the Ontology Engineer.

5http://code.google.com/p/swoop/

73

to http://www.aktors.org/ontology/portal, and 7 statements relating LCO to its

named subclasses. d’Aquin seems to capture the definition of the root concept, while

Doran aims to capture the portion of the ontology that specialises the root concept;

this is confirmed by the respective motives outlined in [33, 27].

Approach OE HL(X) HD(X) H(X)
Doran 4.048 4.963 3.864 8.826

d’Aquin 4.975 4.655 3.936 8.591

Table 4.7: Entropy values for LCO modules.

Characterising the Entropy Measure

The aim of this evaluation is to contrast the different modularization techniques using

the entropy metrics discussed in Section 4.3.3 over several different ontologies. By

utilizing the constituent entropies, Language Entropy (HL(X)) and Domain Entropy

(HD(X)), further insights regarding the characteristics of the resulting modules should

be possible over simply considering their size. Five ontology modularization techniques

have been evaluated: the upper and lower variants of Cuenca Grau et al. [24], the

technique proposed by Seidenberg and Rector [115], d’Aquin et al.’s approach [27]

and the approach proposed by Doran et al. [33]. The eleven ontologies used in the

evaluation were taken from the OAEI 2007 Conference Track repository6 (with the

exception of three ontologies7). The dataset is switched from the one used in the

previous evaluations as the OAEI has a larger number of real world ontologies covering

the same domain; this will aid the characterisation of the entropy measure.

The ontologies used in this evaluation are listed in Table 4.4, complete with a brief

characterization in terms of the number of classes and properties, and the level of

DL expressivity used to represent them. The Integrated Entropy (H(X)) has been

calculated, and normalized with respect to the number of named classes, to indicate

the mean H(X) per named concept for each of the ontologies.

For each modularization evaluation, a module was created for each of the named

concepts (i.e. the concept is used as the signature for each modularization method)

within each ontology, resulting in a module set. The size of the module (in terms of the

number of named concepts included within it) and the three entropy metrics (HL(X),

HD(X) and H(X)) were calculated based on the inferred model for each of the modules

and recorded. The entropy values were then normalized with respect to the size of the

module to give a per-concept entropy.

Table 4.8 lists the results for the modules generated by each of the modularization

techniques across each of the ontologies, as well as the number of named classes defined
6
http://oaei.ontologymatching.org/2007/conference/

7These ontologies have memory requirements of more than 2GB.

74

T
ab

le
4.

8:
C

om
pa

ri
so

n
of

th
e

M
od

ul
e

Si
ze

(i
n

te
rm

s
of

na
m

ed
en

ti
ti

es
)

an
d

th
e

re
su

lt
in

g
H

(X
)

va
lu

es
fo

r
ea

ch
of

th
e

di
ffe

re
nt

m
od

ul
ar

iz
at

io
n

ap
pr

oa
ch

es
.

B
ot

h
th

e
nu

m
be

r
of

m
od

ul
es

ge
ne

ra
te

d
co

nt
ai

ni
ng

m
or

e
th

an
tw

o
na

m
ed

co
nc

ep
ts

,a
nd

th
is

va
lu

e
as

a
pe

rc
en

ta
ge

of
al

lm
od

ul
es

fo
r

ea
ch

on
to

lo
gy

ar
e

gi
ve

n.
D

A
Q

U
IN

D
O

R
A

N
S
E
ID

E
N

B
E
R

G
C

G
-L

C
G

-U
O

n
to

lo
g
y

#
M

o
d
u
le

s
(>

1
)

M
o
d
u
le

s
(>

1
)

M
o
d
u
le

s
(>

1
)

M
o
d
u
le

s
(>

1
)

M
o
d
u
le

s
(>

1
)

N
a
m

e
C

l.
N

u
m

%
C

l.
H

(X
)

N
u
m

%
C

l.
H

(X
)

N
u
m

%
C

l.
H

(X
)

N
u
m

%
C

l.
H

(X
)

N
u
m

%
C

l.
H

(X
)

C
o
n
fe

re
n
ce

5
9

2
6

4
4
.1

%
0
.3

1
2

2
4

4
0
.7

%
0
.4

3
3

4
9

8
3
.1

%
0
.4

1
8

3
5

5
9
.3

%
0
.4

0
4

3
5

5
9
.3

%
0
.4

0
6

cm
t

2
9

1
4

4
8
.3

%
0
.3

4
7

1
1

3
7
.9

%
0
.4

7
2

2
2

7
5
.9

%
0
.4

5
9

9
3
1
.0

%
0
.3

7
3

9
3
1
.0

%
0
.3

7
5

co
n
fO

f
3
8

7
1
8
.4

%
0
.3

7
6

8
2
1
.1

%
0
.4

6
9

3
3

8
6
.8

%
0
.2

9
8

2
5

6
5
.8

%
0
.2

4
2

2
5

6
5
.8

%
0
.2

4
2

cr
s-

d
r

1
4

9
6
4
.3

%
0
.4

2
6

3
2
1
.4

%
0
.4

7
0

1
0

7
1
.4

%
0
.4

4
8

0
0
.0

%
0
.0

0
0

0
0
.0

%
0
.0

0
0

ed
a
s

1
0
3

1
8

1
7
.5

%
0
.4

4
2

2
5

2
4
.3

%
0
.3

2
9

8
9

8
6
.4

%
0
.4

7
4

1
0
2

9
9
.0

%
0
.4

5
6

1
0
2

9
9
.0

%
0
.4

6
2

ek
a
w

7
3

1
4

1
9
.2

%
0
.5

3
5

2
3

3
1
.5

%
0
.4

6
6

6
7

9
1
.8

%
0
.4

8
9

1
5

2
0
.5

%
0
.3

1
0

1
5

2
0
.5

%
0
.3

1
1

M
IC

R
O

3
1

1
4

4
5
.2

%
0
.3

2
7

6
1
9
.4

%
0
.4

9
3

2
8

9
0
.3

%
0
.2

1
7

2
4

7
7
.4

%
0
.3

4
9

2
4

7
7
.4

%
0
.3

5
0

O
p
en

C
o
n
f

6
2

1
2

1
9
.4

%
0
.4

7
5

2
5

4
0
.3

%
0
.2

5
4

6
0

9
6
.8

%
0
.4

8
3

6
2

1
0
0
.0

%
0
.3

2
6

6
2

1
0
0
.0

%
0
.3

2
5

p
a
p
er

d
y
n
e

4
5

2
2

4
8
.9

%
0
.1

7
9

8
1
7
.8

%
0
.4

7
7

4
1

9
1
.1

%
0
.1

7
1

3
6

8
0
.0

%
0
.2

0
2

3
6

8
0
.0

%
0
.2

0
2

P
C

S
2
3

1
3

5
6
.5

%
0
.3

6
7

1
0

4
3
.5

%
0
.4

5
6

1
7

7
3
.9

%
0
.3

6
7

7
3
0
.4

%
0
.3

1
6

7
3
0
.4

%
0
.3

1
7

si
g
k
d
d

4
9

1
1

2
2
.4

%
0
.4

0
4

1
4

2
8
.6

%
0
.4

4
8

4
3

8
7
.8

%
0
.3

7
5

8
1
6
.3

%
0
.3

7
3

8
1
6
.3

%
0
.3

7
4

M
ea

n
va

lu
es

fo
r

a
ll

o
n
to

lo
gi

es
:

3
6
.7

%
0
.3

8
1

2
9
.7

%
0
.4

3
3

8
5
.0

%
0
.3

8
2

5
2
.7

%
0
.3

0
5

5
2
.7

%
0
.3

0
6

75

by each ontology. For each technique, the number of modules containing two or more

named concepts is given, as well as the mean normalised H(X) values. Cases where

no modules can be generated, or where modules of size one are generated are not

given. This is in part due to the fact that some techniques (such as DORAN and

SEIDENBERG) are guaranteed to generate a module containing at least the concept

specified in the module signature, whereas Cuenca Grau et al.’s techniques (CG-L and

CG-U) can generate empty modules (i.e. of size zero, > and ⊥ are not considered by

the size measure; meaning no concept could be added to the module to conform with

the safety condition, see Section 3.4.2). In addition, as the entropy metrics defined

above determine the level of connectivity between concepts, modules of size less than

two result in zero-based entropy values. Finally, the number of modules (of size > 1)

generated for each ontology is given as a percentage of the total number of named

concepts. The mean values across all the ontologies for the percentage of modules

considered, and the normalised H(X) values are given at the bottom of the table.

0

0.1

0.2

0.3

0.4

0.5

0.6

Co
nfe
re
nc
e

cm
t

co
nf
Of

crs
‐d
r

ed
as

ek
aw

M
ICR
O

Op
en
Co
nf

pa
pe
rd
yn
e

PC
S

sig
kd
d

N
or
m
al
iz
ed

 E
nt
ro
py

DE

LE

Figure 4.6: The Normalized Entropy (based on the HL(X) and HD(X) values) for each
of the OAEI ontologies.

Discussion

The metrics given in Table 4.4 provide a baseline measure for each of the ontologies prior

to modularization. The normalised entropy values indicate the level of connectivity

associated with each of the concepts. Figure 4.6 illustrates this value graphically,

in terms of the Language Entropy (HL(X)), forming the lower segment of each bar,

and Domain Entropy (HD(X)), forming the upper segment. Whilst there is no clear

76

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Co
nf
er
en

ce

cm
t

co
nf
O
f

cr
s‐
dr

ed
as

ek
aw

M
IC
RO

O
pe

nC
on

f
pa
pe

rd
yn
e

PC
S

si
gk
dd

Integrated Entropy (Normalized)

D
AQ

U
IN

D
O
RA

N

SE
ID
EN

BE
RG

BE
RN

A
RD

O
‐L

BE
RN

A
RD

O
‐U

F
ig

ur
e

4.
7:

T
he

m
ea

n
N

or
m

al
iz

ed
In

te
gr

at
ed

E
nt

ro
py

fo
r

th
e

m
od

ul
es

ge
ne

ra
te

d
fo

r
ea

ch
of

th
e

on
to

lo
gi

es
.

77

correlation, the results suggest a possible weak trend whereby as the ratio of properties

to concepts increases, then the entropy rises. However, this trend is difficult to verify as

the size and complexity of ontologies increases, as the distribution of properties across

the concepts is far from uniform.

The results in Table 4.8 suggest that SEIDENBERG produces the largest number

of modules (and also the largest average module size8), varying between 71.4% and

96.8% of the concepts yielding modules, whereas the smallest number of modules were

generated by DORAN (generating modules for only an average of 29.7% concepts).

However, the corresponding normalised H(X) values suggest that the modules gener-

ated by DORAN contain a greater number of edges (and hence a greater connectivity)

than those modules created by other methods. Although the Cuenca Grau et al. vari-

ants produce the smallest mean H(X) values across all the ontologies, in most cases

the individual H(X) value falls within the minimum and maximum H(X) for a given

ontology. The only outlier here is for the crs-dr ontology, whereby the Cuenca Grau et

al. variants were unable to find any modules for any of the concepts tested. However,

this was the smallest of the ontologies tested, and was highly interconnected; which

is reflected by the ontology having the highest normalised H(X) value (0.5127, Table

4.4). Figure 4.7 illustrates the individual normalised Integrated Entropy values for each

of the modularization approaches (for each of the ontologies tested). In eight of the

eleven ontologies, DORAN produces the highest H(X) value; however, in two of the

other three cases (edas and OpenConf), it produced the worst H(X) results.

4.4.3 Critique

The metric based evaluation has shown that it is difficult to objectively assess how

‘good’ an ontology module is. Indeed, it is possible to define objective measures and use

them to assess the modules; the problem then being in deciding what these measures

mean. These problems suggested that a more focused evaluation was needed. We

previously considered how the different ontology module extraction techniques were

created for a particular task. Therefore, it was natural to consider a comparison of

the different techniques in a task-based evaluation. This allows one to characterise the

performance of the different techniques over a standard task. The next Section presents

this evaluation.

4.5 Task Based Evaluation

The metric based evaluation (Section 4.4) considers the modularization process in iso-

lation and the metrics attempt to objectively quantify how ‘good’ an ontology is. How-

ever, this does not tell us if an ontology module is fit for purpose. Therefore, we
8The average module size is not given in the Tables above.

78

have identified three problems that support a number of common tasks such as query

answering or service retrieval:

1. Instance retrieval. Asking for instances of a concept in an ontology.

2. Subclass retrieval. Asking for the subclasses of a concept in an ontology.

3. Superclass retrieval. Asking for the superclasses of a concept in an ontology.

These three tasks are considered as statistical classification problems over the origi-

nal ontology O, and the module Mi computed using a modularization technique whose

input signature is SigMi = {Ci}.
Let O = 〈T ,A〉 be a knowledge base; let Ind(A) be the set of all individuals

occurring in A, and let C = {C1, C2, · · · , Cs} be the set of both primitive and defined

concepts in O.

4.5.1 Instance Retrieval

The InstanceRetrieval(O,Ci) problem can be defined as follows: given an individual

a ∈ Ind(A), and a class Ci ∈ C determine the set

IO = {Instance(Ci) ⊆ Ind(A)|O |= Ci(a)}

For the purpose of this evaluation Mi is to be considered an ontology itself, so the

evaluation distinguishes between the task of instance retrieval in the original ontology

O, InstanceRetrieval(O,Ci), from the task of instance retrieval in the module Mi where

the signature of the module SMi = {Ci}, therefore the problem becomes determining

IMi = {Instance(Ci) ⊆ Ind(A)|Mi |= Ci(a)}

4.5.2 Subclass Retrieval

The SubclassRetrieval(Mi,Ci) problem can be defined as follows: given a class Ci ∈ C
determine the set

SubO = {{X1, X2, · · · , Xm} ⊆ C|∀Xj , j = 1, · · ·m : O |= IXj ⊆ ICi}

Analogously, we define the problems SubclassRetrieval(Mi,Ci), with the set SubMi

for the module M i as follows:

SubMi = {{X1, X2, · · · , Xm} ⊆ C|∀Xj , j = 1, · · ·m : Mi |= IXj ⊆ ICi}

79

4.5.3 Superclass Retrieval

The SuperclassRetrieval(O,Ci) problem can be defined as follows: given a class Ci ∈ C
determine the set

SupO = {{X1, X2, · · · , Xm} ⊆ C|∀Xj , j = 1, · · ·m : O |= ICi ⊆ IXj}

Analogously, we define the problems SuperclassRetrieval(Mi,Ci), with the set SupMi

for the module M i as follows:

SupMi = {{X1, X2, · · · , Xm} ⊆ C|∀Xj , j = 1, · · ·m : Mi |= ICi ⊆ IXj}

4.5.4 Capability Evaluation

To evaluate the capability of a modularization technique, a named concept Ci is selected

in O; the corresponding module Mi is then built. Then we consider the following three

problems:

1. InstanceRetrieval(O,Ci) and InstanceRetrieval(Mi,Ci). These define respectively

IO and IMi , the set of instances of Ci in O and in Mi.

2. SubclassRetrieval(O,Ci) and SubclassRetrieval(Mi,Ci). These define respectively

SubO and SubMi , the set of subclasses of Ci in O and in Mi.

3. SuperclassRetrieval(O,Ci) and SuperclassRetrieval(Mi,Ci). These define respec-

tively SupO and SupMi , the set of superclasses of C in O and in IM .

For the above three pairs of results, (IO,IMi) and (SubO,SubMi) and (SupO,SupMi),

the following are computed:

• True Positive. This is the number of entities (classes or instances) that are clas-

sified correctly (i.e. as Subclass, Superclass or Instance of a class Ci). For the

pair (IO,IMi) this is defined as:

truepositive = |IO ∩ IMi |

Giving us the number of instances of Ci in both O and Mi. This can be computed

for (SubO, SubM) and (SupO, SupM) by substituting them for (IO,IMi).

• False Positive. This is the number of entities that were incorrectly classified as

positive. For the pair (IO,IMi) this is defined as:

falsepositive = |IO \ IM |

Giving us the number of instances of Ci in O which are not instances of Ci in

MCi . This can be computed for (SubO, SubM) and (SupO, SupM) by substituting

them for (IO,IMi).

80

• False Negative. This is the number of correct entities that were missed (i.e.

entities that were not classified as belonging to the true positive class but should

have been). For the pair (IO,IMi) this is defined as:

falsenegative = |IM \ IO|

Giving us the number of instances of Ci in Mi which are not instances of Ci in

O. This can be computed for (SubO, SubM) and (SupO, SupM) by substituting

them for (IO,IMi).

False negatives can occur when the modularization approach does not preserve

all the constraints on class definitions by not taking a proper subset of the axioms

that were present in the original ontology. Thus new class definitions are gener-

ated and are included in the module, for instance a disjunction axiom is lost in the

modularization process (this can occur in those modularization approaches that

do not guarantee safety, that is to leave the concept definitions unchanged, as

discussed in 3.4.2). If a disjunction axiom is lost between two concepts then it is

now possible that the instances of these concepts could be inferred to be instances

of the other concept. This is discussed in more in detail in Section 4.5.5.

These values enable classical precision and recall measures (see Section 4.3.2) to

be computed for the three problems in consideration, where precision and recall are

defined as follows:

precision =
truepositive

truepositive+ falsepositive
(4.15)

recall =
truepositive

truepositive+ falsenegative
(4.16)

To synthesise the values of precision and recall into a single value, the F-measure is

used:

F −measure =
2× precision× recall
precision+ recall

(4.17)

4.5.5 Evaluation Setup

The dataset for this evaluation consists of eleven ontologies from the OAEI 2007 Con-

ference Track9; the full list, as well as some metrics for these ontologies, such as ex-

pressivity, number of named concepts and roles, and number of anonymous concepts,

is available in Table 4.9.

The modularization techniques available (see Section 3.4) for the experiment are:

1. Cuenca Grau et al [24], lower variant, shortened in the following as CGL ;

2. Cuenca Grau et al [24], upper variant, shortened as CGU ;
9http://oaei.ontologymatching.org/2007/conference/

81

Ontology # Total # # Object # Anon DL
Name Concepts Properties Properties Concepts Expressivity

Conference 59 64 46 33 ALCHIF(D)
cmt 29 59 49 11 ALCIF(D)

confOf 38 36 13 42 SIF(D)
crs-dr 14 17 15 0 SHIN
edas 103 50 30 30 ALCIF(D)
ekaw 73 33 33 27 SHIN (D)

MICRO 31 26 17 33 ALCIOF(D)
OpenConf 62 45 24 63 ALCIO(D)
paperdyne 45 78 17 109 ALCHIOF(D)

PCS 23 38 24 26 ELUIF(D)
sigkdd 49 28 17 15 ELI(D)

Table 4.9: Classes, properties, and expressivity for each of the OAEI ontologies.

3. d’Aquin et al [27], shortened as DAQ ;

4. Doran et al [33], shortened as DOR ;

5. Seidenberg and Rector [115], shortened as SEID .

For each one of these techniques, the implementation made available by the authors

has been used to guarantee the behaviour of each approach as intended by the original

authors. Wrappers have been used to fit the techniques into the testing framework,

such as changes to the expected input method, from a URL for the ontology to load to

a local file. However, these do not modify the data, and have no affect on the results

of the evaluation.

For each ontology, the set of named concepts has been considered. For each named

concept, each technique has been used to produce the related module; the modular-

ization signature was in each case the single named concept. The total number of

modules obtained in this way is the sum of the # Concepts column in Table 4.9, mul-

tiplied by the number of techniques; this gives a total of 2630 modules, of which 526

were generated for each technique.

For each module, precision, recall and F-measure have been computed, as outlined

in Section 4.5.4. The results have then been presented by ontology and technique

(Table A.1, A.2 and A.3).

Table 4.10 lists the results for the modules generated by each of the modularization

techniques across each of the ontologies, as well as the number of named classes defined

by each ontology. For each technique, the number of modules containing two or more

named concepts is given. Cases where no modules can be generated, or where modules

of size one are generated are not given. This is in part due to the fact that some

techniques (such as DOR and SEID) are guaranteed to generate a module containing

82

DAQ DOR SEID CG-L CG-U
Ontology # Mod. (> 1) Mod. (> 1) Mod. (> 1) Mod. (> 1) Mod. (> 1)

Name Cl. % Cl. % Cl. % Cl. % Cl. % Cl.
Conference 59 44.1% 40.7% 83.1% 59.3% 59.3%
cmt 29 48.3% 37.9% 75.9% 31.0% 31.0%
confOf 38 18.4% 21.1% 86.8% 65.8% 65.8%
crs-dr 14 64.3% 21.4% 71.4% 0.0% 0.0%
edas 103 17.5% 24.3% 86.4% 99.0% 99.0%
ekaw 73 19.2% 31.5% 91.8% 20.5% 20.5%
MICRO 31 45.2% 19.4% 90.3% 77.4% 77.4%
OpenConf 62 19.4% 40.3% 96.8% 100.0% 100.0%
paperdyne 45 48.9% 17.8% 91.1% 80.0% 80.0%
PCS 23 56.5% 43.5% 73.9% 30.4% 30.4%
sigkdd 49 22.4% 28.6% 87.8% 16.3% 16.3%

Mean values: 36.7% 29.7% 85.0% 52.7% 52.7%

Table 4.10: Comparison of the Module Size (in terms of named entities) for each of
the different modularization approaches. The percentage size of all modules for each
ontology are given. See Table A.4 for more detail.

at least the concept specified in the module signature, whereas Cuenca Grau et al.’s two

techniques (CGL and CGU) can generate empty modules (i.e. of size zero). Finally, the

number of modules (of size > 1) generated for each ontology is given as a percentage

of the total number of named concepts. The mean values across all the ontologies for

the percentage of modules considered.

Monotonicity in DL and False Negatives

Some of the extracted modules cause some instances to be misclassified with respect

to the whole ontology, i.e., there is some concept Ci for which there are instances in

Mi that are not instances of C in O; this seems counterintuitive given the monotonic

nature of Description Logics. According to monotonicity, all the inferences that can

be drawn from a subset of axioms can be drawn against the whole set of axioms in

a knowledge base, so no inferences that can be drawn from a module Mi should be

lost when considering O. This intuition, however, is based on the assumption that the

module is a proper subset of the original axioms, but this is not guaranteed by all the

techniques considered.

The same problem can arise with subclasses and superclasses; in the current evalu-

ation, these problems have been detected in 31 cases, involving two ontologies: Paper-

dyne and OpenConf. These two ontologies are both complex and highly interconnected

thus increasing the chances that an extraction technique will miss something when

extracting concept definitions.

83

4.5.6 Discussion

The results presented demonstrate that all the modularization techniques evaluated

perform reasonably well in terms of precision and recall across all but two of the con-

sidered ontologies. However, all the approaches but Seidenberg’s experienced some

degradation in performance when applied to OpenConf and Paperdyne. This could be

due to the fact that these two ontologies are both very complex and interconnected

ontologies that cause all the approaches to degrade.

Furthermore, we note that Seidenberg’s technique seems to have the greatest degree

of variation with respect to the considered ontology, with many cases in which the

precision is either 0 or 100%. This result seems to indicate that some of the heuristics

used by Seidenberg’s modularization approach might have been overly specific to the

characteristics of the GALEN ontology, and thus are not so well suited for ontologies

that have different characteristics with respect to GALEN.

One interesting result is that there is no discernible difference between the logic

based approaches and the traversal based approaches in terms of precision and recall.

However, the modules differ in size and the percentage of modules with 0 or one concept

only. This seems to indicate that users need to look at the characteristics of the task

they have in mind in order to choose the most appropriate modularization approach;

thus, making up the intuition outlined in Section 3.2 that the different techniques have

different purposes. Hence, for instance, we might want to distinguish the task of single

instance retrieval from the more generic task of Instance Retrieval. The former is

typical of queries where a single instance of a concept is required. For example, in

service provision, where a request is made for a service that is of a certain class, such

as “Give me a service that is an instance of Weather service”. The Instance Retrieval

task provides all the instances of a class. In the first case, any of the modularization

approaches with high precision results (Cuenca Grau upper and lower variants, d’Aquin

and Doran) would perform equally well; whilst Doran’s has the lowest precision, it is

still within a 0.05% error. Recall, in this scenario would not be as important as finding

just one correct instance which would suffice to satisfy the user request.

Conversely, if we are looking at the problem of generalized instance retrieval, then

recall becomes important, and in this case Doran has a better recall (whilst maintaining

a good performance) followed by d’Aquin, and Cuenca Grau’s variants, whose recall

values are very similar.

If the problem consists of retrieving all the subclasses, then Doran once again per-

forms better than the others. This is an artifact of the type of traversal used by the

approach (see Section 3.4.1), that traverses mainly downwards from the signature con-

cept. Interestingly enough, the results for subclass retrieval and superclass retrieval on

this dataset seem to indicate that the content of a module is defined by the definition

of the subclasses of the signature concept, whilst the superclasses seem to provide a

84

lesser contribution to the module definition. For this reason Doran’s approach, that

includes only the constraints from the superclasses of the signature that are inherited

down the hierarchy, performs as well as other approaches like d’Aquin or Cuenca Grau.

Other considerations that a user might want to take into account when choosing a

module are related to the specific characteristics of the task. If the module produced

is to be used for extensive reasoning, then Cuenca Grau’s approach is to be preferred

as it is the only one amongst those considered that guarantees safety. This guarantee,

for example, would be important in critical systems, such as medical systems, where a

misclassification could have serious consequences. However, if safety is not a concern,

then Doran and d’Aquin are good candidates.

4.6 Conclusions

The metric-based evaluation (Section 4.4) shows that the intra-technique evaluation of

the entropy inspired measure in most cases is a preferable discriminating factor than

size. Furthermore, the entropy measure presented allows the Ontology Engineer to

assess what contributes to the overall entropy of the ontology module by calculating

the entropy at the domain and language levels. The characterisation of the entropy

measures suggests that as the number of properties (with respect to concepts) increase,

then the entropy values also increase. However, no clear trend was observed, suggesting

that further investigation is needed.

In addition, the assumptions made at the moment (such as all language level edges

being equal, etc.) could possibly be relaxed to further improve the entropy measure.

For example, it is possible to argue that a ‘disjoint’ edge carries more information than

a ‘subclass’ edge and, as such, should be weighted differently. This may further enhance

the discriminating power of the measure and allow for a clearer characterisation.

The metrics could also be extended in future work to link information content to

a notion of usability and reusability. In principle, an ontology with low entropy has

less information content, and thus is likely to be highly reusable, as it is unlikely to

contain in depth axiomatizations making it widely applicable; but not highly usable

for an application because it is unlikely to contain enough information. Whereas, an

ontology with high entropy, in contrast, will be more likely to be usable because it

should contain more information. Such an entropy metric could help to bridge the gap

between the subjective evaluation of an Ontology Engineer and the objective measures

available to them, and provide additional insight into the characteristics of different

modules.

The task-based evaluation (Section 4.5) was conducted because there has been little

systematic analysis and comparison of the modularization approaches with respect to a

set of common tasks. Objective measures such as size or entropy give some information

about a module, but fail to capture task-related information, such as whether the

85

module is fit for purpose, or can lose information (with respect to using the original

ontology). To this end, the task-based evaluation was a systematic and extensive

empirical evaluation of various module extraction approaches, from the perspective

of their suitability for a specific task. Three related problems were identified that

supported a number of common tasks such as query answering or service retrieval:

Instance retrieval, Subclass retrieval, and Superclass retrieval.

The results suggest that pragmatic, heuristic approaches such as those that assume

graph traversal may be as good as logical-based approaches for some scenarios. Whilst

better for tasks that may require safety guarantees or extensive reasoning, logical based

approaches may not offer many benefits when used for generalized instance retrieval.

However, in nearly all cases, little utility is gained by considering the definition of

concepts that are more general than those appearing in the signature. Future work

could extend this analysis to better identify boundary cases whereby certain techniques

may be more suitable than others.

86

Part IV

Practice

87

Chapter 5

Applying Ontology Module
Extraction to Ontology Reuse

‘Consider fully, act decisively.’ - Jigoro Kano

Summary This chapter considers the practical application of ontology modular-

ization to the problem of ontology reuse. Firstly, an overview of existing Ontology

Engineering methodologies is given, which covers how they include steps for the reuse

of existing ontologies. Then two methodologies for reusing ontology modules are pre-

sented. These methodologies explicitly consider the problem of reusing ontology mod-

ules and the associated issues that come with this.

5.1 Motivation

Ontologies have been successfully employed in order to solve problems deriving from

the management of shared, distributed knowledge, and the efficient integration of in-

formation across applications [38]. Much of this success depends on the ability to share

and reuse existing ontologies [54]. Ontology construction is deemed to be a time con-

suming and labour intensive task, but is mediated by the possibility of reusing existing

ontologies [33]. This is greatly facilitated by the existence of Ontology Libraries (for

example, the DAML Ontology Library1), and the emergence of search engines such as

Swoogle2 and Watson3 which support the retrieval of web ontologies.

Many ontology development methods and methodologies, such as the Ontology 101

method [100] and Methontology [55], include a reuse step in the ontology development

lifecycle that allow Ontology Engineers to integrate into the ontology they are currently

designing and implementing an ontology that has already been developed. The reuse of

existing ontologies can occur at the design stage and at the implementation stage. Some

ontology editors, for example Protégé 3 [102], allow the reuse of another ontology by
1http://www.daml.org/ontologies/
2http://swoogle.umbc.edu/
3http://watson.kmi.open.ac.uk/WatsonWUI/

88

including it in the model that is being designed. In Protégé this happens through the

inclusion of other projects, which operates at the knowledge level. The web ontology

language OWL4 offers the possibility of importing an OWL ontology by means of the

<owl:imports> statement, and many ontology development tools allow the import of

OWL files. In both cases, the whole ontology is included, which can create a huge

overhead. However, ontology developers might only be interested in a portion of the

original ontology, especially when the ontology being reused is very large. For example,

a developer might only be interested in concepts about and relating to diabetes; but

they have to import a whole medical ontology, such as UMLS 5, in order to get what

was required. Thus, there is a need for methods that allow for part of an ontology to

be specified and reused; these ontology modularization methods are covered in Section

3.2.

Thus, an Ontology Engineer now has the means to extract a subset of the ontology,

with the subset being the portion of the ontology that they wish to reuse. However,

none of the existing Ontology Engineering methodologies provides guidance in how the

reuse of an ontology module should be mediated; hence, the emergence of methodologies

for ontology module reuse (Section 5.3).

5.2 Methodologies for Ontology Engineering

Ontology Engineering is to ontology as Software Engineering is to software. As such,

Ontology Engineering “refers to the set of activities that concern the ontology devel-

opment process, the ontology life cycle, and the methodologies, tools and languages

for building ontologies” [54]. The literature provides many examples of Ontology En-

gineering Methodologies and the following Sections shall describe some of them.

5.2.1 Ontology 101

The Ontology 101 method [100] prescribes a series of steps for an Ontology Engineer

to follow to iteratively construct an ontology. Those steps are the following:

Step 1: Determine the domain and scope of the ontology. This step should de-

fine what domain the ontology is going to cover, what use the ontology is going

to be put to, what demands will be placed on the ontology and who will maintain

it. A set of competency questions should also be written in this step; these are

the questions that the ontology must answer.

Step 2: Consider reusing existing ontologies. In this step the Ontology Engineer

should check if there are existing ontologies that cover the domain of interest or
4http://www.w3.org/2004/OWL/#specs
5An OWL translation is available from: http://swpatho.ag-nbi.de/owldata/ swpatho1/umlssn.owl

89

sources that can be extended and refined. This could be of particular concern if

the ontology under development must be integrated into a larger system.

Step 3: Enumerate important terms in the ontology. The Ontology Engineer should

list all the terms that the ontology needs to talk about and what needs to be said

about these terms.

Step 4: Define the classes and the class hierarchy. Uschold and Gruninger [138]

highlight several approaches to developing a class hierarchy: top-down, bottom-

up and a combination of both. The Ontology 101 Methodology does not advocate

one approach above another; but the class hierarchy should be based on the terms

defined in Step 3.

Step 5: Define the properties of classes. It is likely that the classes alone will not

meet the needs of the ontology so internal structure can be given to them via

properties. Again inspiration for properties should be drawn from the terms

defined in Step 3. The Methodology notes that the property should be attached

to the most general class that is possible.

Step 6: Define the facets of the slots. This step attaches cardinalities to the prop-

erties previously defined. Data types of the relevant properties should also be set.

Step 7: Create instances. The last step is to populate the ontology with individu-

als. This should allow the ontology to be tested against the competency questions

defined in Step 1.

These steps can be repeated and they do not necessarily have to be done in sequence.

For example, property definitions could be added to the classes at the same time the

class hierarchy is being created.

5.2.2 METHONTOLOGY

The METHONTOLOGY methodology [55] groups the development activities into

three groups, which are:

Management Activities. These activities include scheduling, quality assurance and

control. As these are not concerned directly with building the ontology they will

not be discussed here; for more information see [55]

Support Activities. These activities are aimed to support the Development Activ-

ities. They include knowledge acquisition, integration, evaluation, etc. In this

step the ontologies that are candidates for reuse are selected and evaluated; but

no detail on how to do this is given in the methodology.

90

Development Activities. The five activities within this group form the backbone of

the process to construct the ontology. These activities are:

1. Specification. This step identifies the users and uses of the ontology. This

should determine the granularity level and scope of the ontology.

2. Conceptualization. This activity involves structuring the knowledge. METHON-

TOLOGY defines eleven tasks to follow in order to structure the knowledge.

• Task 1: Build glossary of terms. A glossary of terms relevant to the

domain is constructed. It is possible that multiple terms refer to the

same concept.

• Task 2: Build concept taxonomies. From the terms identified in the pre-

vious task a concept hierarchy is constructed. The constructed hierarchy

should be checked for errors before moving on to the next task.

• Task 3: Build ad hoc binary relation diagrams. This task identifies

binary relations between the concepts in the previously built hierarchy.

These relations include things such as saying that Thesis hasAuthor

Person.

• Task 4: Build concept dictionary. The concept dictionary contains all

the domain concepts, their relations, their instances and their attributes.

• Task 5: Describe ad hoc binary relations. Provides a description to the

relation contained in the concept dictionary. This should add a name,

the source and target concepts, the cardinality, and any mathematical

properties that the relation might have.

• Task 6: Describe instance attributes. Provides a description of the in-

stance attributes contained in the concept dictionary. This should iden-

tify which concepts the attribute belongs to and specify the value and

type of the relation.

• Task 7: Describe class attributes. Provides a description of the class

attributes contained in the concept dictionary. These attributes belong

to the class rather than a particular instance, but their description is the

same as for the previous task. An example of a possible class attribute

is, numberOfAuthors for the class PhDThesis where the value would be

1.

• Task 8: Describe constants. Provides a description of the constants con-

tained in the concept dictionary. Constants specify information related

to the domain and always take the same value. A possible constant for

a thesis ontology is maxNumberOfPages, which would set the maximum

number of pages in a thesis to its value.

91

• Task 9: Describe formal axioms. Formal axioms are logical expressions

that are always true [54]. The description should include both a natural

language description and a logical formulation of the axiom.

• Task 10: Describe rules. Rules are used to infer new knowledge in the

ontology. The description is the same as for the formal axioms, but the

logical expression should specify pre and post conditions; that is the set

of conditions necessary to infer the new knowledge.

• Task 11: Describe instances. After all the above tasks have been com-

pleted instances can be added to the conceptualization. A description

of an instance includes its name, the concept it is an instance of, and

the attributes and their values that belong to the instance.

These tasks are in a similar vein to the steps defined by the Ontology 101

methodology (see Section 5.2.1).

3. Formalization. The conceptualization is put into a formal model. Depending

on how the ontology is developed then this step maybe skipped. For example,

one could use an ontology editor in the conceptualization step; thus also

formalizing and implementing the ontology at the same time.

4. Implementation. The formal ontology model is implemented into an ontol-

ogy language. Essentially the knowledge level model is transformed into a

language level model.

5. Maintenance. Whilst stating that this activity should be carried out METHON-

TOLOGY does not prescribe a particular way to perform it. This is due to

the fact that the METHONTOLOGY methodology can be used to develop

ontologies for a large variety of applications/tasks/purposes and, as such,

the maintenance strategy for each would need to be different.

5.2.3 On-To-Knowledge

The On-To-Knowledge methodology [125] is aimed at creating ontologies for intelligent

access to large volumes of semi-structured and textual sources; as such the ontologies

developed are dependent on the application. The methodology defines five processes

to follow to, theses are:

Process 1: Feasibility Study. This serves as a basis for the next process. The fea-

sibility study should be conducted following the method in Schreiber et al. [113].

This should cover both technical feasibility, organisational feasibility and project

feasibility.

Process 2: Kickoff. This process defines the ontology requirements that describes:

the domain and goal of the ontology, the design guidelines, available knowledge

92

sources, possible users and use cases. Competency questions could be created to

add detail to the requirements. Doing this should informally identify the most

important concepts and relations.

Process 3: Refinement. This process should produce a mature ontology conforming

to the specification. This process is divided into two activities:

1. Knowledge Elicitation. The ontology defined in the previous step should

be refined with the help of domain experts. The axioms added in this step

should be agreed by all the experts.

2. Formalization. This activity encodes the ontology into the ontology language

of choice.

Process 4: Evaluation. This process should show that the ontology developed in the

previous Processes is useful. To do this two activities are required:

1. Checking the requirements and competency questions. Simply checking if the

ontology meets the requirements outlined and if all the competency questions

are answered correctly.

2. Testing the ontology in the target application. This should highlight possible

issues in the context of the ontology being used. This might lead to a further

refinement of the ontology.

Process 5: Maintenance. On-To-Knowledge proposes that the maintenance of the

ontology is folded into the system software maintenance. However, it is still

important to clarify who should do the maintenance and how it should be done;

but no concrete steps are provided by the methodology.

5.2.4 NEON Methodology

The NEON methodology [53, 131, 130] is a scenario based methodology; rather than

focusing on building a single isolated entity it is focussed on building a network of

ontologies. A network of ontologies is a collection of ontologies related via relations;

these relations can be via: mapping (see Section 6.2.4), modularization (see Chapter 3),

version, etc. The scenarios fall around the backbone identified by METHONTOLOGY

(see Section 5.2.2) with each scenario being broken down into different processes.

The nine scenarios identified, not intended to be exhaustive, for building ontology

networks are:

1. From scratch without reusing existing knowledge resources. Development starts

from scratch with no reuse of existing resources. The developers should clearly

specify the requirements of the ontology, this should result in the ontology re-

quirements specification document (ORSD). This can then be used to check that

there are no relevant resources that could be reused.

93

2. By reusing and reengineering non ontological resources. Developers should decide

which existing non ontological resource can be reused; this should been done

according to the ORSD defined in the scenario above.

3. By reusing ontological resources. Existing ontology resources are reused, these

resources include whole ontologies, possibly ontology modules, etc.

4. By reusing and re-engineering ontological resources. Developers reuse and re-

engineer existing ontological resources.

5. By reusing and merging ontological resources. Arises only when several resources

from the same domain are selected for reuse and there is a need to create a new

resource.

6. By reusing, merging and reengineering ontological resources. Similar to the sce-

nario above except that the developers decide to re-engineer the set of resources;

for example, by translating the ontology language.

7. By reusing ontology design patterns. Developers access ontology design pat-

terns [48] in repositories to reuse them6. Ontology design patterns, analogous

to design patterns [45] in Software Engineering, provide templates that encode

best practice principles for ontology engineering.

8. By restructuring ontological resources. Developers restructure an existing re-

source to integrate it into the network being built. One possible way to restructure

is via ontology modularization (see Chapter 3).

9. By localizing ontological resources. Developers obtain a multilingual ontology by

adapting an existing ontology.

5.3 Methodologies for Ontology Module Reuse

Whilst the methodologies described in Section 5.2 consider some notion of ontology

reuse none of them explicitly consider how one should reuse an ontology module. Evi-

dently there are similarities between reusing an ontology and an ontology module, after

all, they are both ontologies. However, it is necessary to consider extra issues when

reusing an ontology module, for example evaluating its competency or whether con-

cepts mean the same; the following will explain two methodologies for reusing ontology

modules and will outline the associated issues.
6http://ontologydesignpatterns.org provides an explanation and repository of ontology design

patterns.

94

5.3.1 Doran et al. Methodology

Doran et al. [33] present a methodology for reusing an ontology module, see Figure

5.1. This descriptive methodology gives an Ontology Engineer guidance in how to

best tackle the problem of ontology reuse via ontology module extraction. Whilst the

steps in the methodology are fairly self-explanatory it is worth saying more about the

‘ontology evaluation’ and ‘check competency’ steps. Firstly, ontology evaluation is non-

trivial and various methods for evaluating ontologies have been proposed, in addition to

Chapter 4 both [13] and [51] provide useful surveys of ontology evaluation; see Section

6.7 for metrics to evaluate ontology modules. Secondly, checking the competency of an

ontology module is an issue solely raised by Doran et al. [33]; an ontology module is

competent if it fits the requirements stated for it, these requirement are usually, within

Ontology Engineering, expressed as a set of competency questions.

With this in mind Doran et al.’s methodology consists of the following steps:

Define competency of module Before the module extraction process begins the

Ontology Engineer needs to define competency questions for the module; these

should state what the Ontology Engineer wants the ontology module to express.

The competency questions could be expressed in terms of SPARQL queries. Defin-

ing the competency of the ontology module is important so the Ontology Engineer

can ensure the extracted ontology module meets their requirements.

Ontology Selection The Ontology Engineer needs to select the relevant ontology

that they wish to extract a module from, as the number of ontologies available

continues to increase this step will become increasingly important, especially as

ontologies can be discovered by browsing the available repositories or by using

search engines like Swoogle7 or Watson8. Sabou et al. [111] provide an extensive

review on this area of research and also distinguish the elements of the ontology

selection process; these are:

• Information Need. The application scenario that the ontology is being se-

lected for will place different needs upon the information that is required

of it. For example, it may be required that the ontology can fulfil a set of

queries, or that it contains certain logical axioms.

• Selection Criteria. The ontologies need to be evaluated to ensure they meet

selection criteria such as topic coverage, ontology structure, ontology popu-

larity, etc.

• Ontology Library. Ontologies can be selected from a pre-existing library, for

example Swoogle or Watson. The libraries should facilitate the selection of
7http://swoogle.umbc.edu/
8http://watson.kmi.open.ac.uk

95

F
ig

ur
e

5.
1:

A
m

et
ho

do
lo

gy
fo

r
re

us
in

g
an

on
to

lo
gy

m
od

ul
e.

[3
3]

96

an ontology by allowing ontology statistics to be compared. For example,

which ontology is smaller or the expressivity levels of the different ontologies.

• Output. This should be a list of ontologies that could possibly be selected

for reuse, possibly ranked according to criteria suggested by the Ontology

Engineer.

The major effort in this task will be carrying out the ontology evaluation, for

more on ontology evaluation see Section 4.2.

- Ontology Evaluation The Ontology Engineer needs to evaluate any ontology

that is discovered to see how suitable it is for reuse. There are several

criteria that can be applied to evaluate an ontologies suitability for reuse.

One criterion could be the ontologies popularity; if an ontology is popular

and widely used then it is likely to be correct and of some quality. Another

criterion could be to check the ontology against the competency questions

the Ontology Engineer defined for the ontology module. If the ontology does

not meet the competency questions then the ontology module will most likely

not either.

Ontology Translation This step aims to change the representational language used

to implement the ontology. This may be necessary to make the ontology compat-

ible with the module extraction process being used. However, the application of

this step requires some care to be taken by the Ontology Engineer. Translating

an ontology from a more expressive formalism such as OWL-DL to RDFS will

cause the loss of some ontological features, such as restrictions on the classes or

cardinality constraints. Conversely, the translation from a less expressive formal-

ism into a more expressive one will cause the Ontology Engineer to perform a

further enrichment step that is needed to complement the less expressive model

obtained through translation. Ontolingua [58] and WebODE [21] provide inter-

mediary ontologies that allow an ontology in one formalism to be translated into

a different formalism.

A complete treatment of the problems associated to ontology translation can be

found in [21]; they are too numerous too detail in this thesis and are worthy of

separate treatment.

Extract module The ontology module is extracted from the selected ontology. The

amount of effort required by the Ontology Engineer in this step will depend on

the method of extraction that is being used, see Section 3.4 for the details of

different extraction techniques.

Check Competency The extracted ontology module is checked against the compe-

tency questions, in order to see if they are met. One possible way to automatically

97

check whether the competency questions are met is by formulating them as a set

of SPARQL queries. If the competency questions are met then the Ontology

Engineer can integrate the ontology module into the ontology that they are con-

structing. If the competency questions are not met then the Ontology Engineer

should refine the ontology module.

Refine When the competency questions are not satisfied then the Ontology Engineer

should refine the module in a way that ensures the competency questions are met.

This refinement could take two possible forms. Firstly, the Ontology Engineer

could alter the ontology module, i.e. by adding or removing statements, in order

to make it meet the requirements defined by the competency questions. However,

under certain circumstances the Ontology Engineer may decide that this would

take too much effort and thus decide to run the module extraction process again,

or indeed run a different module extraction process.

Integrate Once the ontology module satisfies the competency questions it can be

integrated into the ontology being constructed.

5.3.2 Logic Based Methodology

Jimenez-Ruiz et al. [79] present a methodology9 which provides Ontology Engineers

with a precise set of guidelines to follow in order to ensure that certain logical properties

such as safety, the meaning of the extracted terms remains the same, and coverage,

everything the ontology says about the extracted terms is in the module; see Section

3.4.2) for the definitions.

The methodology is split into two phases: offline and online, see Figure 5.2. The

two phases are detailed below:

Offline Phase The Ontology Engineer has the ontology, T , that is being developed.

The next step is for the Ontology Engineer to specify the signature, S, that is to

be reused from the external ontologies; each element of the signature is associated

to the external ontology it was taken from. Thus, S = S1] . . .] Si; where each

Si ⊆ S represents the symbols from the external ontology T ′i .

In the next step the Ontology Engineer needs to decide how each Si will be

reused. Will it be generalised (>-locality) or specialised (⊥-locality)10? This step

is required to ensure safety.

Online Phase In this step the Ontology Engineer imports the locality based module

from each of the external ontologies identified in the previous step. Once the

external ontology is loaded, implying that the Ontology Engineer is committing
9This methodology is implemented as a Protégé plugin

10See Section 3.4.2 for more information about >-locality and ⊥-locality

98

Figure 5.2: Logic based methodology. Taken from [79]

to this particular version, there is an opportunity for Si to be extended. Then the

actual module, TSi , is extracted from the external ontology; which is guaranteed

to cover the elements specified by Si.

The final step is to import the module previously extracted into the ontology;

thus we now have a new ontology T ∪ TSi . It is possible that this inclusion com-

promises the safety guarantee of the other external ontologies. This is considered

undesirable so a module independence guarantee is required; this states that given

an ontology T and two signatures S1, S2 then T guarantees module independence

if for all T1 with Sig(T) ∩ Sig(T) ⊆ S1 it holds that T ∪ T1 is safe for S2.

99

Chapter 6

Applying Ontology
Modularization to the Dynamic
Selection of Ontology Alignments
in Multi-Agent Systems

‘Arguments are to be avoided; they are always vulgar and often

convincing.’ - Oscar Wilde

Summary This chapter considers the practical, and novel, application of ontol-

ogy modularization to the problem of the dynamic selection of ontology alignments

in multi-agent systems where modularization is used as as space reduction mechanism.

First some preliminary information is given concerning agents, multi-agent systems and

how ontology alignments can overcome the problem of semantic heterogeneity. Next

the definition of the argumentation framework is given, including the value-based ar-

gumentation framework that is used in the rest of the chapter. From this it is possible

to show how argumentation can be used to argue over ontology alignments and, thus,

how modularization can be used as a space reduction mechanism to this process. It is

possible that there is information loss when applying modularization to this problem.

This is discussed and two solutions are proposed. Finally, an evaluation is presented

that shows that modularization successfully reduces the space, but does not have a

negative impact on the quality of the alignment agreed.

6.1 Motivation

Interacting systems are now the norm in the everyday computing world, even trivial

systems contain sub-systems, termed agents, that need to interact [146]. Furthermore,

as these systems are likely to be distributed and have decentralised management, sys-

tems such as the Internet, then it is challenging to impose global constraints upon the

system. This type of environment is called an open environment.

100

An open environment places no constraints on an agent’s, i.e. a software compo-

nent, ability to enter or leave the environment, furthermore no assumptions can be

made about the agents that will be encountered now or in the future. We assume that

each agent has its own ontology, its own model of the world. Each agent having its

own ontology, about which no assumptions can be made, leads to the problem of se-

mantic heterogeneity. That is agents have differing specifications or conceptualizations

of concepts in their ontology [142].

In order to enable inter-agent communication semantic heterogeneity must be over-

come. Effective communication within open and dynamic environments is dependent

on the ability of agents to reach a mutual understanding over a set of messages, where

no prior assumptions can be made on the vocabulary used to communicate. Unlike

small, closed environments (where all the components are known at design time), open,

Web-scale environments are typically characterised by large numbers of services which

are continually evolving or appearing, and where semantic heterogeneity is the norm.

Semantic heterogeneity can be divided into two levels: language and ontology [81].

Language level heterogeneity occurs when two ontologies are written in different lan-

guages, for example description logic and first-order logic. Ontology level heterogeneity

occurs when either there is a mismatch in the conceptualization of the ontology, for

example a difference in the extensions of the same concept; or a difference in the way

that the conceptualization was specified, for example giving the same name to two

different concepts.

Thus, semantic heterogeneity means few assumptions can be made about the ser-

vices on offer at any time, the way in which they are modeled, or the terminology or

vocabulary that they use. In such cases, it becomes imperative to specify the explicit

vocabularies or ontologies used to facilitate meaningful communication as environments

open up, or the heterogeneity of large systems increases. This has been facilitated by

the emergence of standards for representing ontologies and optimised reasoners capable

of processing them within a tractable timeframe [134].

In addition, transactions should be interpreted by both service providers and con-

sumers based on the underlying semantics of the messages themselves, and thus these

agents should resolve any type of mismatch that may exist due to the use of different,

but conceptually overlapping ontologies. However, this reconciliation has to be achieved

automatically and at run-time (without human intervention) if such components are to

transact as the size of the environment grows.

Early systems avoided the problem of ontological heterogeneity by relying on the

existence of a shared ontology, or simply assuming that a canonical alignment, possi-

bly defined at design time, could be used to resolve the mismatches. However, such

assumptions work only when the environment is (semi-) closed and carefully managed,

and no longer hold in open environments where a plethora of ontologies exist. How-

101

ever, semantic heterogeneity can be overcome by using ontology alignment (see Section

6.2.4). An ontology alignment defines a set of relations between the entities of two

ontologies, thus, allowing entities in one ontology to be explicitly related to entities

in another ontology. Unfortunately, however, the techniques for ontology alignment

generation either take a long time, for example [76], or are user-led, for example [101].

These constraints prevent the agents from dynamically generating the alignments as

and when they are needed.

However, we can assume that the ontology alignments exist somewhere in the envi-

ronment, for example from an Ontology Alignment Service (OAS) [84], thus, the agents

will now be able to acquire the relevant alignment when needed. Relevant alignments

are those that align the ontologies of the two agents who wish to cooperate. There

is a problem, however, as it is possible that more than one alignment exists between

the two agent ontologies, and so the agents now have the problem of deciding which

to use. Laera et al. [85] define a framework, based on argumentation (see Section 6.3).

Argumentation allows the agents to argue over the ontology alignments and reach a mu-

tually acceptable agreement. They are able to argue for or against a mapping based on

their preferences. However, the complexity of this process can reach Πp
2−complete [37]

making it impractical.

In this Chapter we propose a new task for ontology modularization (see Section 3.2)

that is to reduce the search space that the agents have to argue over in order to reach

an agreement over ontology alignments. However, before it is necessary to consider

what agents and multi-agent systems are, as well as characterising the environment

they operate in. This is detailed in Section 6.2 along with an outline of the problem

of semantic heterogeneity and an explanation of how ontology alignments overcome

it. Section 6.3 provides an introduction to argumentation and details the value-based

argumentation framework. It is then possible in Section 6.4 to show how agents can

argue over ontology alignments and how modularization can act as a space reduction

mechanism. An illustrative example is given in Section 6.5. The application of modu-

larization to argumentation over ontology alignments can lead to information loss and

this is outlined in Section 6.6, alongside two possible solutions. Finally, an evaluation of

applying ontology modularization to the problem of arguing over ontology alignments

is provided in Section 6.7.

6.2 Preliminaries

Before detailing how ontology modularization can be used as a space reduction mecha-

nism for ontology modularization it is necessary to cover some preliminary information

concerning multi-agent systems, specifically those in open distributed environments,

and ontology alignment. The purpose here is not to give a complete overview of these

fields, but to cover those aspects relevant to this Chapter.

102

6.2.1 What is an Agent?

Wooldridge and Jennings [147] present two notions of agent: weak and strong. The

weak notion of agency is characterised by the following properties:

• Autonomy. Autonomous agents must be capable of carrying out actions without

direct human intervention. This is essential for situated agents; those agents in

an environment shared by others.

• Social ability. Social agents interact and co-operate with each other in order to

share resources or achieve their goals.

• Reactivity. Reactive agents perceive their environment and can react to changes

that occur in the environment in a timely manner. (See Section 6.2.3 for more

on agent environments.)

• Pro-activeness. Pro-active agents have goal-directed behaviour and do not merely

react to their environment but create opportunities to pursue their goals.

The stronger notion of agency ascribes mentalistic properties to the agents, such

as knowledge, belief, intention and obligation [118]. Subsets of theses properties will

be used depending on the situation. For the purposes of this thesis the only property

we need to consider an agent to have is knowledge; that is knowledge encoded in a

description logic ontology.

The above is nicely summarised by Wooldridge [146] and this is the definition of

agent adopted for the this Chapter.

“An agent is a computer system that is situated in some environment, and

that is capable of autonomous action in this environment in order to meet

its design objectives.”

This thesis assumes that one of the design objectives of the agents is rationality. A

rational agent takes the action that will cause it to the be the most successful [109].

6.2.2 What is a Multi-Agent system?

Interacting systems are the norm in the everyday computing world, even trivial systems

contain sub-systems that need to interact [146]. Hence, a multi-agent system (MAS)

is a system composed of multiple (semi-) autonomous components [78]. Sycara [132]

identifies the following main characteristics of MAS:

• Incomplete Information. Each agent has a limited viewpoint and does not possess

the information or capabilities needed to solve the problem by itself.

• No Global Control. The agents behaviour is a result of social rules and the

interactions that result, rather than being dictated by a central authority.

103

• Decentralised. Resources in the system are divided and distributed.

This advances the definition beyond a simple collection of agents, who happen to

share an environment, toward that of an organization with rules and interactions that

allow the members to co-operate and collaborate.

Before moving on to characterise open distributed environments it is important to

note what class of MAS this Chapter assumes. Zambonelli, Jennings and Wooldridge [149]

identify the following two classes of MAS:

• Distributed Problem Solving Systems. Agents are explicitly designed to co-operate

to achieve a common goal.

• Open Systems. A term first coined by Hewitt [71] in open systems agents are not

necessarily explicitly designed to share a common goal and can dynamically leave

and enter the system. Here the agents can be said to be in competition.

This Chapter assumes that the MAS under consideration are open systems because

no assumptions are being made about the nature of the agents in the system and

the ontologies that they possess. This means that the solutions proposed here could

be applicable in real-world scenarios such as the Semantic Web. The Semantic Web

[134] is an open, distributed environment where few assumptions are made about the

participants. The participants can enter and leave the environment at will and have

their own separate internal ontological models.

6.2.3 Characterisation of an Open Environment

Section 6.2.2 introduced open multi-agent systems (MAS) as systems where the agents

do not necessarily share a goal and are free to enter and leave the system as they

wish. Now we need to consider what characterises this type of environment in order

to understand the constraints imposed upon the solution to dynamic reconciliation

presented in this Chapter. Russell and Norvig [109] provide the following classification

of environment properties.

Fully observable vs. partially observable. If an environment is fully observable

then an agent is able to obtain the complete state of the environment at any

point in time. Most real-world environments, such as the Internet, are partially-

observable.

Deterministic vs. stochastic. An environment is deterministic if the next state of

the environment is completely determined by the current state and the action

executed by the agent; there is no uncertainty with respect to the result of the

agent’s action. Conversely, in stochastic environments agents only have partial

control over their environment; they can not predict what actions other agents

will take and how this will affect the environment.

104

Episodic vs. sequential. If an environment is episodic then the agent’s experience

is divided into atomic episodes where an action taken in the current episode does

not depend on previous actions. Whereas, in sequential environments an agent’s

past decisions can affect future decisions; thus, requiring the agent to think ahead.

For example, consider a game of chess where early moves affect how the game

progresses at a later stage.

Static vs. dynamic. If the environment can change whilst an agent is deciding what

to do then it is dynamic, but if it only changes as a result of the agent’s action

then it is static. The environment can be termed strategic if it is deterministic

except for the actions of other agents.

Discrete vs. continuous. If an environment is discrete then there are a fixed, finite

number of states and actions. A continuous environment has a range of continuous

values that change over time. For example, consider driving a car in a city.

Single agent vs. multiagent. A single agent system is one in which only one agent

exists in the environment. For example, a crossword puzzle solving agent. Section

6.2.1 characterises these agents as being in an environment where they are capable

of action to achieve their goal. Whereas, multiagent environments are those in

which there are a collection of agents each capable of autonomous action, as

detailed in Section 6.2.2.

Thus, we are now able to properly characterise the type of environment under

consideration in this thesis. It is defined as follows:

Definition (Open Multi-Agent System) An open multi-agent system is an open

system, where agents are free to enter and leave as they choose, and the environment is

characterised as partially observable, stochastic, sequential, dynamic and continuous.

6.2.4 Semantic Heterogeneity

As noted in Section 6.1 the problem of semantic heterogeneity can be divided into

language level and ontology level mismatches. For this Chapter we are not concerned

with language level mismatches as we assume that the agents adhere to the OWL

standard (see Section 2.3). Thus, we will only cover ontology level mismatches here.

Klein [81] defines ontology level mismatches as the differences that occur when

either there is a mismatch in the conceptualization of the ontology, for example a

difference in the extensions of the same concept; or a difference in the way that the

conceptualization was specified, for example giving the same name to two different

concepts. Visser et al. [142] postulate that ontology level mismatches can occur in the

conceptualization and explication stages of ontology design.

105

An explication mismatch would occur when the concepts are specified in a different

way. Whereas, a conceptualization mismatch would occur when there is a difference

in the way the domain is modeled, which could result in different concepts or different

relations among those concepts. For example, one ontology concerning Animals organ-

ises itself around the concepts Birds and Mammals, and another ontology concerning

Animals organises itself around the concepts Herbivores and Carnivores [142]. This

results in two ontologies with a conceptualization mismatch, they are modelling the

same thing in different ways.

Klein [81] further subdivides both explication and conceptualization mismatches.

Explication mismatches are subdivided into the following:

• Paradigm. Two ontologies model the same domain but with different representa-

tion paradigms. For example, different paradigms can be used to model time, is it

a continuum or a set of discrete points? This mismatch could also occur because

a different knowledge representation paradigm has been adopted. For example,

using temporal logic or Allen’s interval algebra [2] to model time.

• Concept description. Two ontologies model the same concept in a different way.

See the Animals example above.

• Synonym terms. Two ontologies have the same entity but with different labels.

For example, Car and Automobile

• Homonym terms. Two ontologies have an entity with the same label but different

semantics. For example, Graph in Computer Science has a different meaning to

the widely used meaning of a diagram showing relations between variables.

• Encoding values. Two ontologies encode the same values in different ways. For

example, in the US dates are represented as mm/dd/yy, but in the UK they are

represented as dd/mm/yy.

Conceptualization mismatches are subdivided into the following:

• Concept scope. Two ontologies have a different extension (set of instances) for

the same concept. For example, different UK Universities would have different

concept scopes for the Lecturer concept.

• Model coverage and granularity. Two ontologies cover different portions of the

same domain. For example, a difference in coverage would mean that an ontology

about accommodation might or might not include Hostels, and a difference in

granularity would mean that the ontology does or does not distinguish between

the different types of Room.

Euzenat and Shvaiko [42] reduce these types of heterogeneity to those that which

are addressed by ontology alignment, these are:

106

• Terminological. This refers to synonym and homonym mismatches.

• Conceptual. This refers to differences in coverage, granularity and scope.

What is Ontology Alignment?

When few constraints are placed on the agents in the environment it is unreasonable to

assume that they share the same ontology, it is reasonable to assume that each agent

has its own ontology. This leads to semantic heterogeneity because each agent has its

own model of the world and possesses no way to express what it knows in a way that the

other agents can understand. An ontology alignment expresses the mapping1 between

entities belonging to two different ontologies [42]. Thus, ontology alignments should

help overcome semantic heterogeneity (see Section 6.2.4) by allowing agents to express

the terms they wish to communicate in terms the other agent understands. Thus, an

ontology mapping [42] is defined as:

Definition (Ontology Mapping) Given two ontologies O and O′ a mapping is the

tuple: m = {e, e′, n, r}, such that:

• e ∈ O and e′ ∈ O′ where e and e′ are concepts, roles or individuals;

• n is a degree of confidence in the mapping m;

• r is the relation (≡,v, etc.) holding between e and e′.

It is possible that multiple mappings exist between e and e′, with different relations,

r, or confidence values, n2. An ontology alignment can now be defined as a set of

ontology mappings.

Definition (Ontology Alignment) Given two ontologies O and O′ an alignment is

a set of mappings.

Thus, an ontology alignment allows agents with different ontologies to express rela-

tions between entities in their ontologies. However, it is possible that multiple ontology

alignments exist for a pair of ontologies, as such, agents now have the problem of

deciding which to use to overcome the problem of semantic heterogeneity.

An Example of an Ontology Alignment

This Section provides a brief example of an ontology alignment to illustrate how they

overcome semantic heterogeneity. Figure 6.1 depicts two ontologies in the domain of

publishing; they express similar terms using different conceptualizations. In addition,
1N.B. Correspondence is used a synonym for mapping in the literature.
2Note that the n does not provide a fuzzy characterisaton of the expressed relation, but reflects a

confidence value in that relation holding between the entities.

107

Newspaper

Publication

Periodical

Journal

Publication

Journal

Press

Newspaper

m1

m2

m3

Figure 6.1: An example of an ontology alignment.

Figure 6.1 also shows an example of an ontology alignment consisting of the following

three ontology mappings:

1. m1 = {PressPeriodical, 0.45,≡} - Maps Press to Periodical with an ≡ rela-

tion with a confidence of 0.45.

2. m2 = {Newspaper, Newspaper, 0.85,≡} - Maps Newspaper to Newspaper with an

≡ relation with a confidence of 0.85.

3. m3 = {Journal, Journal, 0.85,≡} - Maps Journal to Journal with an ≡ relation

with a confidence of 0.85.

These mappings overcome the problem of semantic heterogeneity by mapping enti-

ties in one ontology to entities in another. Thus, when the agents wish to communicate

using these two ontologies they can do so by using the mappings to translate the mes-

sages into entities that they understand.

Generating Ontology Alignments

There are numerous systems for generating ontology alignments, for example [76, 101,

1, 39]. Each alignment system has different underlying methods for computing the

alignments; but, generally speaking, they can be classified according to the following

categories suggested by Euzenat and Shvaiko [42]:

Terminological Methods. Compares the lexical labels of the entities, including the

name and comments. This comparison can be done using string similarity [19] or

by using some linguistic knowledge, for example by using WordNet [95].

Internal Structural Methods. Compares the internal structure of the entities. In

DL (see Section 2.3) terms this means considering criteria such as the value range

of properties, their cardinality, and their transitivity, etc.

108

External Structural Methods. Compare the relations of the entities with other en-

tities. For example, their position within a taxonomy. The intuition here is that

if entities in two ontologies are similar then their neighbours may also be similar.

Extensional Methods. Compare the known extension of the entities. In DL (see

Section 2.3) terms this means comparing the given instances of the entities.

Semantic Methods. Compare the interpretations of the entities. In DL (see Sec-

tion 2.3) terms this means comparing the interpretations (I). These methods

are limited because they require the existence of some mapping(s) between the

ontologies to compute more; if no mappings are given then these methods cannot

derive them.

These methods can be combined by an ontology alignment technique in different

ways and, therefore, many ontology alignment techniques exist in the literature. The

existence of several alternative methods led to the establishment of the Ontology Align-

ment Evaluation Initiative (OAEI)3. The OAEI aims to compare the different alignment

techniques through controlled experimentation over a standardised data set. The OAEI

has run a competition annually since 2004.

6.3 What is Argumentation?

Ontology alignments (Section 6.2.4) can overcome the problem of semantic heterogene-

ity. However, in open environments (see Section 6.2.3) it is possible that multiple

alignments will exist between the ontologies of two agents. Thus, the agents need to

rationally reach an agreement. Various techniques allow agents to reach an agreement,

but in this thesis we focus on the use of argumentation. Argumentation is a process of

systematic reasoning in support of an idea, action or theory.

Argumentation facilitates the agents in reaching an agreement over the mappings

they will use to communicate. Within Artificial Intelligence it has been applied in

a number of areas as a way to approach and frame problems, and to develop novel

solutions. In the context of this thesis it is used as a way to bring about a mutually

acceptable agreement, where agents have incomplete knowledge [84].

6.3.1 Argumentation Framework

This thesis adopts the framework used by Laera et al. [85], which is based upon Bench-

Capon’s Value-Based Argument Framework (VAF) [5], that introduces the notions of

audience and preference values. An audience represents a group of agents who share

the same preferences over a set of values, with a single value being assigned to each

argument. The VAF is based on the seminal work by Dung [36]. Dung showed that
3http://oaei.ontologymatching.org/

109

many forms of non-monotonic reasoning and logic programming are special forms of

his argumentation theory.

An Argumentation Framework [36] is defined as follows:

Definition (Argumentation Framework) An Argumentation Framework (AF) is

a pair AF = 〈AR,A〉, where AR is a set of arguments A ⊂ AR × AR is the attack

relation for AF . A comprises a set of ordered pairs of distinct arguments in AR. A

pair 〈x, y〉 is referred to as “x attacks y”.

Let R, S be subsets of AR, we say that:

(a) s ∈ S is attacked by R if there is some r ∈ R such that 〈r, s〉 ∈ A.

(b) x ∈ AR is acceptable with respect to S if for every y ∈ AR that attacks x there

is some z ∈ S that attacks y.

(c) S is conflict-free if no argument in S is attacked by any other argument in S.

(d) A conflict-free set is admissible if every y ∈ S is acceptable with respect to S.

(e) S is a preferred extension if it is a maximal (with respect to set inclusion, ⊆)

admissible set.

A preferred extension represents a consistent position within an AF ; it is defensible

against all attacks and it cannot be further extended without becoming inadmissible. It

is important to note that AF can be represented as a directed graph where the vertices

correspond to elements of AR and edges correspond to elements of A. For example, “x

attacks y” would give the attack graph shown in Figure 6.2.

x y

Figure 6.2: A simple example of an attack graph.

6.3.2 Value-Based Argumentation Framework (VAF)

In Dung’s framework [36] attacks always succeed; in essence they are all given equal

value. For deductive arguments this suffices, but in our scenario, ontology alignment

negotiation, the persuasiveness of an argument could change depending on the audi-

ence, where an audience represents a certain set of preferences. One alternative is to

use an extension of Dung’s framework called Value-Based Argumentation Framework

(VAF) [5], which assigns different strengths to arguments on the basis of the values

110

they promote and the ranking given to these values by the audience for the argument.

Thus, it is possible to systematically relate strengths of arguments to their motivations

and to accommodate different audience interests.

Definition (Value-Based Argumentation Framework) A Value-Based Argumen-

tation Framework (VAF) is defined as 〈AR,A,V, η〉, where:

• 〈AR,A〉 is an argumentation framework;

• V is a set of k values which represent the types of arguments;

• η : AR → V is a mapping that associates a value η(x) ∈ V with each argument

x ∈ AR.

The notion of audience is central to the VAF. Audiences are individuated by their

preferences over the values. Thus, potentially, there are as many audiences as there are

orderings of V4. The set of arguments is assessed by each audience in accordance to its

preferences. An audience is defined as follows:

Definition (Audience) An audience for a VAF is a binary relation R ⊆ V × V
whose irreflexive transitive closure, R∗, is asymetric, i.e. at most one of (v, v′), (v′, v)

are members of R∗ for any distinct v, v′ ∈ V. We say that vi is preferred to vj in the

audience R, denoted vi �R vj , if (vi, vj) ∈ R∗

This notion allows us to consider that different agents (represented by an audience)

can have different perspectives on the same candidate mapping. Thus, the VAF [5]

defines what it means for an argument to be acceptable relative to some audience; it is

defined as follows:

Definition (Argument Acceptability) Let 〈AR,A,V, η〉 be a VAF, with R and S

as subsets of AR, and an audience R :

(a) For x, y ∈ AR, x is a successful attack on y with respect to R if (x, y) ∈ A and

η(y) 6�R η(x).

(b) x ∈ AR is acceptable with respect to S with respect to R if for every y ∈ AR that

successfully attacks x with respect to R, there is some z ∈ S that successfully

attacks y with respect to R.

(c) S is conflict-free with respect to R if for every (x, y) ∈ S × S, either (x, y) 6∈ A
or η(y) �R η(x)

(d) A conflict-free set S is admissible with respect to R if every x ∈ S is acceptable

to S with respect to R
4Number of audiences = |V|!

111

(e) S is a preferred extension for the audience R if it is a maximal admissible set

with respect to R

(f) x ∈ AR is subjectively acceptable if and only if x appears in the preferred extension

for some specific audience.

(g) x ∈ AR is objectively acceptable if and only if x appears in the preferred extension

for every specific audience.

(h) x ∈ AR is indefensible if it is neither subjectively nor objectively acceptable.

6.4 Argumentation over Ontology Alignments

Laera et al. [85] adopt the VAF (see Section 6.3.2), allowing agents to express pref-

erences for different mapping types, and restrict the arguments to those concerning

ontology mappings allowing agents to explicate their mapping choices. An agent is

considered to be:

Definition (Agent) An agent, Agi, is characterised by the tuple< Oi, V AFi, P refi, εi >

where Oi is an ontology, V AFi is the Value-based argumentation framework, Prefi is

the private pre-ordering of preferences over the possible values, V, and εi is the private

threshold value.

Laera et al.define the arguments as follows:

Definition (Mapping Argument) An argument x ∈ AR is a triple x = 〈G,m, σ〉
where:

• m is a mapping

• G is the grounds justifying the prima facie belief that the mapping does or does

not hold

• σ is one of {+,−} depending on whether the argument is that m does or does

not hold

Laera [84] presents an algorithm for the agents to generate the arguments. The

agents will argue for (+) a mapping if it is the agent’s most preferred value in V and

the degree of confidence, n, of the mapping is greater than the agents private threshold,

ε; otherwise the agent will argue against (−) the mapping.

Laera et al. also address the notion of attack; x is attacked by the assertion of its

negation, ¬x, this counter-attack is defined as follows:

Definition (Counter Attack) An argument x ∈ AR attacks an argument y ∈ AR
if x and y are arguments for the same mapping, m, but with different σ.

112

For example, if x = 〈G1,m,+〉 and y = 〈G1,m,−〉, x counter-argues y and vice-

versa.

Laera et al.also provide the elements required for instantiating V, these relate to the

methods used to generate the mappings outlined in Section 6.2.4,they are as follows:

M - Semantic. The sets of models for two entities do or do not compare.

IS - Internal Structural. Two entities share more or less internal structure.

ES - External Structural. The set of relations each of the two entities have with

other entities do or do not compare.

T - Terminological. The names of the two entities share more or less lexical features.

E - Extensional. The known extensions of the two entities do or do not compare.

The agents can now express, and exchange, their arguments about ontology map-

pings and decide from their perspective, audience, what arguments are in their preferred

extension; but the agents still need to reach a mutually acceptable position with regards

to what ontology alignment they actually agree upon. Laera et al.define the notion of

agreed and agreeable alignment as follows:

Definition (Agreed Alignment) An agreed alignment is the set of mappings sup-

ported by those arguments which are in every preferred extension of every agent.

Definition (Agreeable Alignment) An agreeable alignment extends the agreed align-

ments with those mappings supported by arguments in some preferred extensions of

every agent.

Thus, a mapping is rejected if it is in neither the agreed nor agreeable alignment.

Given the context of agent communication it is rational for the agents to accept as

many candidate mappings as possible [85], thus both sets of alignments are considered.

The agents should only completely disagree when they want the opposite, indeed, the

agents gain little by arguing and not reaching some kind of agreement.

6.4.1 Combining Ontology Modularization and Argumentation

Ontology modularization (see Chapter 3) can be used as a pre-processing step to im-

prove the efficiency of an argumentation framework, when used to search the space of

all candidate ontology mappings [35].When two agents communicate, only the initiat-

ing agent (Ag1) is aware of its task, and consequently, what concepts are relevant to

this task. It can therefore select these relevant concepts within the signature of the

desired ontology module. The signature of the resulting ontology module can then be

used to filter the correspondences, and consequently the number of arguments neces-

sary within the argumentation process. The steps below describe this process whilst

113

Ag1 Ag2 VAFOAS

3) M=om(O, Sig(A))

5) filter(align(O,O'),
Sig(M))

1) ask(query)
2) tell(invoke alignment service)

4) invoke(O, Sig(M))

4) invoke(O')

6) argument(x)

6) argument(y)Loop

8) ask(query, agr)

9) answer(query, agr)

Alignments filtered
according to m

7) Agreed
Alignments (agr)

Alignments filtered
according to m

7) Agreed
Alignments (agr)

Figure 6.3: UML Sequence Diagram of Ontology Modularization and Argumentation.

Figure 6.3 depicts the process as a UML Sequence Diagram; it is assumed that two

agents, Ag1 and Ag2 have ontologies O and O′ respectively.

1. Ag1 asks a query, query(A ∈ Sig(O)), to Ag2.

2. Ag2 does not understand the query, A /∈ Sig(O′), and informs Ag1 they need to

use an Ontology Alignment Service (OAS)

3. Ag1 produces, om(O,Sig(A)), an ontology module, M , to cover the concepts

required for its task.

4. Ag1 and Ag2 invoke the OAS. Ag1 sends its ontology, O and the signature of M ,

Sig(M).

114

5. The OAS aligns the two ontologies and filters the correspondences according to

M . Only those correspondences featuring an entity from M are returned to both

agents. The set of ontology correspondences are filtered according to the following

function:

Definition (Mapping Filtering Function) A filtering function, filter(), fil-

ters the set of candidate mappings prior to argumentation, Z, into a subset Z ′ ⊆ Z
such that:

filter(Z, Sig(M)) : Z → Z ′ | ∀m ∈ Z ′, m = 〈e, e′, n,R〉 ∧ e ∈ Sig(M)

6. The agents begin the Meaning-Based Argumentation process, and iterate it, with

each agent generating arguments and counter-arguments.

7. The iteration terminates when the agents reach an agreement on a set of corre-

spondences, and this set is returned to both agents.

8. Ag1 asks a query to Ag2 but uses the correspondences so that Ag2 understands,

query(A ∈ Sig(O) ∧B ∈ Sig(O′)) where A and B are aligned.

9. Ag2 answers the query making use of the resulting alignment.

Steps 6 and 7 represent a black-box process, which is the argumentation process.

Modularization is therefore used to filter the correspondences that are passed to this

process. The combination of these two processes reduces the cost of reaching an agree-

ment over the set of correspondences, by reducing the size of the set of correspondences,

and hence the number of arguments that can be made. Thus, the agent is able to over-

come semantic heterogeneity with a mutual agreement that is cheaper to obtain.

6.5 An Illustrative Example

This succinct example illustrates the ideas presented previously and relates them to

the steps identified in Section 6.4.1. Assume that we have two agents; Ag1 wishes to

ask a query of Ag2(Step 1), Ag1 wants to know the instances of Press. Ag1 uses O1 a

BibTex ontology5 and Ag2 uses O2 the General University Ontology6 ontology. Here

we only consider a subset of these ontologies, see Figure 6.4. Until the agents have

aligned their ontologies Ag2 (Step 2) will be unable to fulfil the request of Ag1.

Ag1 knows the concepts that are relevant for its task and extracts an ontology mod-

ule (Step 3), M , in this example the M will include the concepts Press, Publication
5http://www.cs.toronto.edu/semanticweb/maponto/ontologies/BibTex.owl
6http://http://www.mondeca.com/owl/moses/univ.owl

115

Publication

Periodical

JournalNewspaper

Newspaper

Press

Publication

Journal

m1

m2

m3

Figure 6.4: Example ontology for combining argumentation and modularization.

and Newspaper. Now when the agents invoke the Ontology Alignment Service (OAS)

Ag1 will send its ontology O1 and the signature of M(Step 4).

Sig(M) = {Paper Author, Publication, Newspaper}

The OAS produces the following set of possible correspondences:

m1 = 〈O1 : Press, O2 : Periodical, 0.45,=〉
m2 = 〈O1 : Newspaper, O2 : Newspaper, 0.85,=〉
m3 = 〈O1 : Journal, O2 : Journal, 0.85,=〉

The OAS will now filter the alignments according to the Sig(M) using the function

defined in Section 6.4.1(Step 5). The result of this process is the following reduced set

of ontology correspondences:

m1 = 〈O1 : Press, O2 : Periodical, 0.45,=〉
m2 = 〈O1 : Newspaper, O2 : Newspaper, 0.85,=〉

This reduced set of ontology correspondences will now be used as input to the

argumentation process(Step 6). The preference ordering that the agents possess affects

how the argumentation phase advances. However, this preference should not affect the

premise that the fewer alignments there are to argue over then the fewer arguments that

are generated. If we assume now that Ag1 prefers terminological to external structure

(T � ES), whilst Ag2 prefers external structure to terminological (ES � T).

The arguments and counter arguments made during the argumentation phase are

shown in Table 6.1. This set of arguments allows the agents to build the argument

graph, shown in Figure 6.5; whereby the nodes represent the arguments and the arcs

represent the attacks relation, with the direction indicating the direction of attack.

The graph shows that arguments B and D support m1 and m2 respectively, but

that arguments A and C argue against m1. Given the different preferences of the two

116

Id Argument A V Agent
A 〈6 ∃m = 〈superconcept(Press), superconcept(Periodical), n,≡〉, m1,−〉 B, O ES Ag1

B 〈∃m = 〈subconcept(Press), subconcept(Periodical), n,≡〉, m1, +〉 A, C ES Ag2

C 〈Label(Press) 6≈T Label(Periodical), m1, −〉 B T Ag2

D 〈∃m = 〈superconcept(Newspaper), superconcept(Newspaper), n,≡〉, m2, +〉 ES Ag2

Table 6.1: Arguments made by Ag1 and Ag2 , along with the arguments they attack(A)
and the value(V) of the argument itself.

A
ES

B
ES

C
T

D
ES

Figure 6.5: Attack graph.

agents, the preferred extensions are shown in Table 6.2. Since no argument is in every

preferred extension then there is no agreed alignment ; this need not always be the case.

However, we can say that the from the set of arguments {A,B,C,D}7 there is the

agreeable alignment is {m1,m2}, which is returned to both agents (Step 7) is .

Agent Preferred Extensions
Ag1 {A,C},{B,D}, {C,D}
Ag2 {A,C},{B,D}

Table 6.2: Arguments for and against m1 and m2

Now Ag1 can ask Ag2 the query (Step 8) and Ag2 is able to answer (Step 9) due

to the agreed set of alignments.

6.6 Possibility for Information Loss

In the work presented so far it’s assumed that an agent knows all the concepts that

are relevant to its task. However, in practice it may be possible that this assumption

does not hold. Consider the scenario presented in Section 6.5. In the case where no

modularization is used, the following alignments are used:

m1 = 〈O1 : Press, O2 : Periodical, 0.45,=〉
m2 = 〈O1 : Newspaper, O2 : Newspaper, 0.85,=〉
m3 = 〈O1 : Journal, O2 : Journal, 0.85,=〉

If Ag1 were to ask Ag2 to give them all the instances of Press then Ag1 would
7Remember that for the agreeable alignment we take the union of all the preferred extensions.

117

be able to also make sense of the concept Journal, even if it does not know a property

that connects them.

The example in Section 6.5 used modularization and Ag1extracted an ontology that

didn’t include Journal. Thus, in this case, m3 is discarded and this mapping does not

enter the argumentation phase. However, when Ag2 answers the query “Give me all

the instances of Press” it can decide whether or not to return the information regarding

Journal. In the case that it decides not to then there is no problem, in this case the

assumption is that Ag1 knows all the concepts that are relevant to its task. In the

other case where it does return the information regarding Journal then Ag1will not be

able to make full use of it as m3 is missing from the alignment; a mapping such as m3

would be useful in an information gathering scenario.

6.6.1 Preventing Information Loss

A possible way to deal with the possible loss of information is for Ag2 to also carry out

a modularization step. Once the alignments have been filtered Ag2 uses the entities

identified as a signature for modularization and filters the mappings according to its

module. There are two possible ways for Ag2 to carry out this process:

Sol. 1 Ag1 filters the alignment according to the signature of its module, Sig(M),

which would produce the set of alignments A. Ag2 then uses A as the input to

its own modularization step, om(). Ag2 now filters the alignments according to

the signature of its module, Sig(M ′).

Sol. 2 Rather than using A Ag2 uses a subset defined by the input signature to

Ag1’s modularization step.

Either of these solutions would solve the problem presented above. However, since

Ag2 may identify new, possibly relevant, entities Ag1 should now also include the

previously missing entities to the signature of its ontology module. Evidently this

recursive process could be expensive, and both agents could end up with ontology

modules equal to the original ontology. One possible way to prevent this would be via

conservative extensions [90] that guarantee inferential completeness, but due to their

undecidability above EL++ it would require the relaxation of the assumption made in

this thesis. The effect of the two possible solutions above are investigated further in

Section 6.7; showing that both perform adequately.

6.6.2 Revisiting The Example

Revisiting the example detailed in Section 6.5 with the above solutions in mind would

lead to m3 being included in the argumentation phase; thus, possibly, overcoming the

information loss if the agents produce arguments which result in m3 being acceptable.

118

6.7 Evaluation

The evaluation has two main objectives:

1. to quantify the impact of the use of modularization techniques on the number of

mappings that the argumentation process receives as input

2. to quantitatively evaluate the quality of the resulting alignments compared with

the alignments obtained without modularization.

These two objectives are explained in the following sections.

6.7.1 Ontologies and Tracks

Objective (1) requires a diverse set of ontologies, ideally covering different domains, and

a diverse set of alignment techniques for the generation of alignments. This is required

to overcome the bias deriving from the alignment technique being used, since a specific

technique might produce extremely small or extremely large modules, thus skewing the

reduction results, but the modules produced might not be useful for the agents task.

On the other hand, it is not easy to find extensive sets of ontologies covering different

domains and for which there are reliable or verifiable mappings available, so a trade off

must be chosen.

The eleven ontologies used in the evaluation were taken from the OAEI 2007 Con-

ference Track repository (with the exception of three ontologies whose memory re-

quirements for reasoning were over 2 GB). Table 6.3 recalls again the ontologies used,

complete with a brief characterization in terms of the number of classes and properties,

and the level of DL expressivity used to represent them.

The alignment techniques available are those used by each system participating in

the OAEI tracks; in order to simplify the experimental setup, the systems themselves

are not involved in the evaluation; the Alignment API8 is used instead to access the

submitted results. For the chosen track, five systems have submitted a sufficient number

of alignments for an overall comparison, i.e., they align each ontology with the others;

some systems also provide reverse alignments, i.e., the alignments are of the form

OA ↔ OB and OB ↔ OA.

The modularization techniques used in this evaluation are some of those described

in Sect. 6.4.1; in particular, Cuenca Grau’s lower and upper techniques, d’Aquin’s,

Doran’s and Seidenberg’s have also been used; the implementations for these techniques

are all available, and only minor modifications to the code have been implemented,

to enable them to work in our experimental framework. For clarity, the techniques

have been labelled Techs = {BASELINE, CUENCAGRAUU , CUENCAGRAUL,

DAQUIN, DORAN, SEIDENBERG} (shortened to {B, CGU , CGL, DAQ, DOR,

8http://alignapi.gforge.inria.fr/

119

SEID}); BASELINE corresponds to the original alignment, i.e., the alignment as is

produced by the alignment techniques where no modularization is used, and is used as

the baseline for averaging the results.

6.7.2 Quality of Alignments

Objective (2) requires either a gold standard alignment as a reference to evaluate the

resulting mappings, or a method to compare the reduced alignments with the original

ones, i.e., a way to verify whether a reduced alignment is equivalent to the original one

with respect to correctness and completeness of the results; for the latter evaluation,

the following use case is being considered, based on query answering, this follows a

similar task style to the evaluation carried out in Section 4.5.

Agent A1 and agent A2 engage in communication; A1 is asking queries of the kind

QI = {x | x is a Y }

i.e., instance retrieval queries, to A2; alternatively, queries of the kind

Qsup = {x | x is a superclass of Y }

and

Qsub = {x | x is a subclass of Y }

i.e., queries that explore the concepts’ structure.

The original alignment M0 enables A2 to give the set of answers X0; given a reduced

alignment Mi, the corresponding set of answers Xi is computed and compared to X0.

To do this, three retention measures are defined:

Definition (Instance Retention) Given an OWL ontology O, an OWL class C not

defined in O and two alignments M0 and Mi, with Mi ⊆M0, such that:

IR : {O,C,M0,Mi} → [0, 1]

is the function defined as

IR(O,C,M0,Mi) =
|{x | instanceOf(x,C) ∈ O tMi}|
|{x | instanceOf(x,C) ∈ O tM0}|

the number of instances of C described in O tMi divided by the number of instances

of C described in O tM0.

Similar definitions can be given for Subclass Retention and Superclass Retention:

Definition (Subclass Retention) Given an OWL ontology O, an OWL class C not

defined in O and two alignments M0 and Mi, with Mi ⊆M0, such that:

SubR : {O,C,M0,Mi} → [0, 1]

120

is the function defined as

SubR(O,C,M0,Mi) =
|{x | subClass(x,C) ∈ O tMi}|
|{x | subClass(x,C) ∈ O tM0}|

the number of subclasses of C defined in O tMi divided by the number of subclasses

of C defined in O tM0.

Definition (Superclass Retention) Given an OWL ontology O, an OWL class C

not defined in O and two alignments M0 and Mi, with Mi ⊆M0, such that:

SupR : {O,C,M0,Mi} → [0, 1]

is the function defined as

SupR(O,C,M0,Mi) =
|{x|superClass(x,C) ∈ O tMi}|
|{x|superClass(x,C) ∈ O tM0}|

the number of superclasses of C defined in OtMi divided by the number of superclasses

of C defined in O tM0.

These functions can be used to quantify what information is lost by using a smaller

alignment Mi, obtained by using a modularization technique, in place of the original

alignment M0, taking into account the task at hand, which is represented by the OWL

classes used as a signature for the modularization process. The closesr the result of a

retention measure is to 1, the less information is being lost due to the reduction in the

alignment size.

Retention functions work well under the hypothesis that for all possible OWL classes

on which the measure is computed there are instances available (respectively, subclasses

and superclasses). In the ontologies used in the evaluation, this is not always true, i.e.,

some concepts do not have instances and some classes do not have superclasses or

subclasses defined in the ontology. Artificial instances can be added, but it is not

meaningful to add artificial subclasses or superclasses in the cases in which they are

missing; those cases are left out of the evaluation presented in this thesis.

It is possible that for some concepts there are no alignments that generate answers,

i.e., there is no correspondence that generates an answer for C with respect to OtM0,

therefore the retention measures give 0/0 indetermined form. These cases are not

averaged in the evaluation, since they depend on the quality of the alignment itself,

i.e., on the suitability of the original alignment for communication, and not on the

modularization techniques or on the argumentation process. Evaluating and discussing

this issues would be outside the scope of this thesis as it is not concerned with evaluating

the alignment techniques themselves.

A corner case is raised when the alignment Mi is empty, i.e., when the modular-

ization techniques generate modules that do not refer to any concept mentioned in the

121

mappings. In this case, the retention measures can only report 0 or 0/0 indetermined

form.

A value of 0 would mean that some answers that were available with respect to M0

have been lost by reducing the alignment, while a 0/0 would instead mean that there

was no retrievable answer; in this second case, reducing the alignment to 0 has the

advantage of skipping the argumentation and the query answering phases, since it is

already known that no answers will be generated.

The number of cases in which this last hypothesis is true has been evaluated in the

current experiments, and there is indeed evidence that this hypothesis is wrong only

in 0.15% of the cases, i.e., trusting an empty alignment obtained from modularization

to signify that no answers are available is wrong in one case over six hundred. More

details are given in the following.

Ontology name # of classes # of properties DL expressivity
cmt 31 64 ALCHIF(D)

Conference 61 69 ALCHIF(D)
confOf 40 41 SHIF(D)
crs dr 16 22 ALCHIF(D)
edas 105 55 ALCHIF(D)
ekaw 75 38 SHIN

MICRO 33 31 ALCHOIF(D)
OpenConf 64 50 ALCHOI(D)
paperdyne 47 83 ALCHOIF(D)

PCS 25 43 ALCHIF(D)
sigkdd 51 33 ALCHI(D)

Table 6.3: Classes, properties and DL expressivity for the OAEI ontologies.

6.7.3 Evaluation Setup

The experiments are divided into runs; each run is described as a tuple< O1, O2, A, T, S, I >,

where:

• O1 and O2 are distinct ontologies from the same track (the order is important,

so each track produces n ∗ (n− 1) pairs);

• A is the alignment being produced by a specific alignment technique on the pair

of ontologies, and therefore a set of mappings;

• T is a modularization technique, with S being the signature used for the extraction

process;

• I is the technique being used to fix the information loss problem described in

Section 6.6.

122

CGU CGL DAQ DOR SEID Total
ALC 32 32 2 31 145 242

ALC(D) 2 2 0 0 0 4
ALCF 1 1 25 0 0 27

ALCF(D) 17 17 0 0 170 204
ALCH(D) 10 10 0 0 0 20

ALCHI 18 18 0 4 0 40
ALCHIF 32 32 0 38 0 102

ALCHIF(D) 6 6 0 0 0 12
ALCHIN 7 7 0 0 0 14

ALCHOF(D) 0 0 0 0 45 45
ALCHOI 10 10 0 17 0 37

ALCHOIF 25 25 0 0 0 50
ALCN 0 0 0 0 73 73
ALCO 0 0 0 0 62 142
ALCOI 53 53 0 5 31 62

EL 196 198 349 363 0 1106
EL+ 90 90 103 69 0 352
SHI 7 7 0 0 0 14

Classes 6.02 6.04 2.22 14.78 62.36 18.82
stdev 8.42 8.42 3.38 28.02 25.82 28.78

Object Properties 1.94 1.95 0 1.15 11.49 3.33
stdev 5.16 5.17 0 3.75 7.06 6.4

Datatype Properties 0.28 0.28 0 0 2.81 0.68
stdev 1.17 1.17 0 0 3.78 2.15

Anonymous Classes 4.98 5 0.43 3.08 33.52 9.81
stdev 11.13 11.14 1.42 10.48 25.96 19.01

Table 6.4: Modules statistics: DL expressivity and number of modules (upper sec-
tion) and average and standard deviation for number of classes, object and datatype
properties, and anonymous classes (lower section).

123

The modularization technique T is one of the elements in Techs; when T = B,

i.e., the baseline, no modularization happens, and therefore the signature S is ig-

nored, as well as I. For the other values of T , three new runs are generated for each

named concept C in O1, with S = {C} and I being one of {NONE, COMPLETE,

SIGNATURE −ONLY } (shortened to {N, C, SO}), see Section 6.6.1.

Called NC(O) the number of named concepts in ontology O and n the number of

ontologies in a track, therefore, the number of runs with O as first ontology for a track

is 6 ∗ (3 ∗NC(O) + 1) ∗ (n− 1).

Information being recorded includes:

• for each ontology, number of concepts, properties, anonymous concepts and DL

expressivity (in Table 6.3);

• for each module with |S| > 1, number of concepts, properties, anonymous con-

cepts and DL expressivity;

• for each pair of ontologies (O1, O2)

– Modules extracted from O1, and percentage reduction in concept and prop-

erty number with respect to the original ontology, these values are given in

Table 6.4);

– Number of mappings and arguments being generated without modulariza-

tion (baseline technique B, values in columns Original size (B) and Original

alignments in Table A.5 and Table A.6);

– Number of mappings and arguments resulting from modularization with each

value for T and I (Table A.5 and Table A.6);

– Number of mappings being accepted and rejected by the argumentation

process for all cases above (Table A.7 and Table A.8);

Where relevant, tables report also the values for each run excluding the cases in

which the reduced alignments had size 0, i.e. no correspondences were found to be

relevant.

6.7.4 Results Discussion

The results presented in Table 6.5 and in Table 6.6 show that the overall impact of us-

ing a modularization technique for reducing the amount of candidate correspondences

can vary from 57% to 95% (candidate column in both tables). Three broad categories

emerge from this: (i) those cases where modularization yields a significant reduction

in the number of correspondences argued; (ii) those cases where no reduction occurs;

and (iii) those cases where no correspondences are identified, and thus no argumenta-

tion occurs. This third category was unexpected, and corresponds to those scenarios

124

accepted / % candidate / % arguments / %
DAQ 3.16 / 12.73% 2.46 / 8.50% 6.37 / 11.00%
DOR 2.67 / 10.75% 2.15 / 7.43% 5.47 / 9.44%
CGU 1.93 / 7.77% 1.35 / 4.66% 3.92 / 6.77%
CGL 1.93 / 7.77% 1.35 / 4.66% 3.92 / 6.77%
SEID 12.65 / 50.89% 12.41 / 42.87% 26.26 / 45.36%
C 4.51 / 21.74% 3.95 / 19.20% 10.40 / 24.67%
SO 5.07 / 24.55% 3.95 / 19.20% 9.28 / 21.55%
N 3.82 / 19.47% 3.95 / 19.20% 7.89 / 19.20%

Table 6.5: Average over all runs for each modularization technique (upper half) and
for each information loss solution (lower half)

accepted / % candidate / % arguments / %
DAQ 6.05 / 24.34% 4.98 / 17.19% 12.61 / 21.78%
DOR 5.96 / 24.00% 5.80 / 20.02% 13.50 / 23.32%
CGU 3.96 / 15.92% 3.65 / 12.60% 9.09 / 15.70%
CGL 3.96 / 15.92% 3.65 / 12.60% 9.09 / 15.70%
SEID 19.08 / 76.78% 23.70 / 81.85% 48.84 / 84.34%
C 7.89 / 38.84% 8.35 / 33.37% 20.37 / 42.27%
SO 8.66 / 43.03% 8.35 / 33.37% 18.80 / 37.59%
N 6.85 / 34.70% 8.35 / 33.37% 16.71 / 33.37%

Table 6.6: Average over all runs for each modularization technique (upper half) and
for each information loss solution (lower half). Alignments of size zero are not included
in the average.

whereby no suitable correspondences exist for the alignment of the original signature,

and thus any argumentation would be redundant.

Technique IR stdev SubR stdev SupR stdev
DAQ 99.87% 0.61% 100% 0% 100% 0%
DOR 99.97% 0.26% 100% 0% 100% 0%
CGU 99.59% 2.85% 99.73% 2.79% 99.73% 2.79%
CGL 99.59% 2.85% 99.73% 2.79% 99.73% 2.79%
SEID 100% 0% 100% 0% 100% 0%
Overall
average 99.80% 1.83% 99.89% 1.77% 99.89% 1.77%

Table 6.7: Instance, Subclass and Superclass Retention values

Depending on the modularization technique being chosen; the impact of the infor-

mation loss solution is more contained: whichever technique is being used, the expected

reduction in candidate alignments is close to 80% and the search space for the argu-

mentation is reduced from 75% to 80%.

Paired with the results presented in Table 6.7, that evaluate the quality of the re-

sulting alignments in terms of the retention measures defined in Sect. 6.7.2, the data

outlines the following conclusion: there is a trade off between reduction of the argu-

125

O1 O2 System I MT IR SubR SupR

OpenConf paperdyne Ontodna N CGL CGU 50.00% 50.00% 50.00%
OpenConf Conference Ontodna N CGL CGU 66.67% 66.67% 66.67%
OpenConf cmt Lily N CGL CGU 71.43% 71.43% 71.43%
OpenConf crs dr Lily N CGL CGU 78.57% 78.57% 78.57%
OpenConf paperdyne Lily N CGL CGU 82.00% 82.50% 82.50%
OpenConf edas Lily N CGL CGU 82.05% 82.05% 82.05%
OpenConf confOf Lily N CGL CGU 87.50% 87.50% 87.50%
OpenConf paperdyne Falcon N CGL CGU 87.50% 87.50% 87.50%

Table 6.8: A snapshot of the lower retention values

mentation search space and retention, where a reduction of the search space close to

95% (for the CGU and CGL techniques) corresponds to the highest loss on retention,

averaged at 0.05%. Some examples, reported in Table 6.8, show that in a very restricted

number of cases these techniques can lead to a higher loss in retention, when coupled

with a lack of information loss solutions. On the other hand, there is a lower impact

on the number of candidate correspondences, such as in the SEID technique, which

produces maximal retention values. Thus, guaranteeing that no information is being

lost, but the average reduction in the search space for this technique (see Table 6.9 and

Table A.9) is slightly lower than 24%, and, as shown in the more detailed breakdown

in Table A.6 when SEID is used over the results of the Ola system, it can be as small

as 5 %.

These possibilities suggest a flexible architecture able to use more than one mod-

ularization technique, where a lower than expected number of results to a query can

trigger the use of a more conservative modularization technique; this would enable the

system to guarantee the lowest possible loss of information, while ensuring maximum

reduction of the search space in the average case.

The quality of the resulting alignments in terms of the retention measures is quite

high: only a handful of cases show retention lower than 0.95, and a great majority show

retention equal to 1, therefore granting that the choice of modularization technique and

information loss solution can safely be done on the basis of the size of the resulting

alignment.

Moreover, there are a large number of cases in which the use of modularization yields

an empty alignment, as shown in Table A.10. Experimental evaluation shows that in

the largest majority of these cases (99.85%) an empty alignment is correlated with

no answers being available for the concepts in the signature, even with the complete

original alignment. This confirms that there are cases in which the argumentation

process can be skipped altogether without hampering the reliability of the system in

terms of retention; it is in fact always higher than 99% on average. Thus, preventing

agents from wasting time arguing over mappings that will not help them achieve their

task.

126

Average original alignment size (B): 24.84
DAQ DOR CGU CGL SEID

Accepted C 3.26 2.97 1.89 1.89 12.53
alignment SO 3.78 2.94 2.57 2.57 13.47
size N 2.43 2.08 1.32 1.32 11.92
Accepted C 16.00% 13.10% 8.88% 8.88% 61.85%
alignment SO 18.39% 13.39% 11.64% 11.64% 67.70%
size (%) N 13.28% 10.25% 6.94% 6.94% 59.91%

Average candidate alignment size: 28.95
Average # of arguments: 57.90

DAQ DOR CGU CGL SEID

Avg candidates C 2.46 2.15 1.35 1.35 12.41
with mod. SO 2.46 2.15 1.35 1.35 12.41

N 2.46 2.15 1.35 1.35 12.41
Avg # args C 7.62 6.01 5.22 5.22 27.93
with mod. SO 6.57 6.08 3.85 3.85 26.04

N 4.92 4.30 2.70 2.70 24.83
Avg candidates C 13.34% 10.27% 6.97% 6.97% 58.45%
with mod. SO 13.34% 10.27% 6.97% 6.97% 58.45%
(%) N 13.34% 10.27% 6.97% 6.97% 58.45%
Avg # args C 18.49% 13.66% 11.98% 11.98% 67.22%
with mod. SO 16.04% 13.26% 8.94% 8.94% 60.56%
(%) N 13.34% 10.27% 6.97% 6.97% 58.45%

Table 6.9: Average accepted alignment sizes (averaged by modularization technique)

6.8 Conclusion

Agents need to reconcile ontological differences, especially within the context of open

and dynamic environments where no a priori assumptions about the nature of the

ontology can be made. Negotiation frameworks (such as the value-based argumenta-

tion framework) allow agents to negotiate over different ontology correspondences, and

identify those alignments that are mutually acceptable. However, this collaborative

search is computationally costly, as the complexity of the decision problems reach Π(p)
2 -

complete. This Chapter proposed the use of ontology modularization as a mechanism

to reduce the size of the search space for finding acceptable alignments.

The use of ontology modularization as a filter-based pre-processing stage was eval-

uated empirically over eleven ontologies used in the OAEI initiative. The results show

that the use of ontology modularization can significantly reduce the average number of

correspondences presented to the argumentation framework, and hence the size of the

search space – in some cases by up to 97%, across a number of different ontology pairs.

In addition, three patterns emerged:

• where no reduction in size occurred;

• where the number of correspondences was reduced;

127

• where modules of size zero were found.

This latter case corresponded to failure scenarios; i.e. where the subsequent trans-

action could fail due to insufficient alignment between the ontologies. Thus, we demon-

strated that ontology modularization not only reduces the cost of negotiating over

correspondences and establishing communication, but that it can be effectively used to

predict cases where negotiation will fail to identify relevant correspondences to support

meaningful queries.

Furthermore, the experiments demonstrated that in most cases the reduction in the

search space did not affect the quality of the alignment. Indicating that agents can

argue over less and have comparable performance. Considering that the argumentation

is computationally complex then the agents can reduce the cost of this step without

adversely affecting their performance.

128

Part V

Synopsis

129

Chapter 7

Conclusions and Future Work

‘Every day you may make progress. Every step may be fruitful. Yet there

will stretch out before you an ever-lengthening, ever-ascending,

ever-improving path. You know you will never get to the end of the

journey. But this, so far from discouraging, only adds to the joy and glory

of the climb.’ - Sir Winston Churchill

Summary This chapter provides a review of the contributions of this thesis along

with a number of avenues for future work. Initially the contributions are discussed

along with the implications of the key achievements. The discussion of future work

concludes this chapter and addresses possible further contributions emerging from this

thesis.

7.1 Review of Contributions

This section shall review the contributions of this thesis in light of the two research

questions given in Section 1.2; they were:

1. How can part of an ontology be reused instead of the whole?

2. How can the ontology modules, obtained as a result of ontology modularization,

be used in practice?

Below the work carried out is summarised with respect to its contribution and how

it addressed the above questions.

In Chapter 2 the required background was introduced. This included a definition of

what an ontology is (see Section 2.1.1) and how they can be represented. This included

an explanation of Description Logics (see Section 2.3) and their reasoning tasks. Lastly,

an original example ontology is given (see Section 2.5) which is used at various parts

throughout the thesis.

A comprehensive review of the ontology modularization literature is conducted in

Chapter 3. This outlines the principles that underlie the differing modularization

130

techniques. These principles maybe different depending on whether a logical extraction

technique (see Section 3.4.2) or a traversal extraction technique (see Section 3.4.1)

is being used. This chapter also includes the contribution of a sound heuristic for

extracting ontology modules via a graph traversal. In addition, a classification of

the different techniques is provided to highlight the differences that exist between the

disparate techniques. It was considered unreasonable to provide an overall classification

of the techniques because of the diverse starting assumptions made. For example,

classifying the traversal based techniques in terms of their logical properties would

have little value.

The notion of a common framework is also explored in Chapter 3. A common

framework would allow the different modularization techniques to be implemented on

a common framework to facilitate a more objective comparison of performance. Three

possibilties for common frameworks are provided (see Section 3.6). The pursuit of a

common framework would greatly facilitate further comparisons between the various

modularization techniques than is currently possible.

One issue not addressed in this thesis or by any of the ontology modularization

techniques in the literature is the practical issue of what URI to assign to a module?

Whilst the URI should be different to the ontology it was extracted from, it will contain

concepts with the same URI as the original ontology. Unless the module has been

extracted using a logical extraction method (see Section 3.4.2) it is possible that the

concepts will have different definitions; essentially meaning that there are two different

concepts with the same URI. This could present itself as a problem if those two concepts

ever end up in the same ontology.

Chapter 4 is devoted to the issue of evaluating modularization techniques and the

ontology modules that they produce. Firstly, the existing literature on ontology evalua-

tion is reviewed to highlight why it is unsuitable for evaluating modularization. Several

metrics are then introduced as possible candidates for evaluating ontology modular-

ization. These include the contribution of an entropy inspired metric which aims to

capture the information content of an ontology module; as such, it better represents a

module contents than size.

Two evaluations are then conducted: an evaluation of the different metrics when

comparing different modularization techniques, and a task based evaluation which as-

sesses the suitability of different modularization techniques for three tasks. Whilst

the metric based evaluation showed that entropy was more discriminate than size it

was unable to show a proper characterisation of the entropy measure. From the eval-

uation carried out it is clear that entropy has some value, but it is rather tricky to

properly characterise it. In order to obtain this characterisation the weighting function

and the mechanics of the measure need to be deeply scrutinised. However, the task

based evaluation showed that the traversal based approaches have a comparable per-

131

formance to the logical approaches; at least on the tasks considered. Whilst, of course,

this could just be luck it could also suggest that under certain condition/circumstances

that the traversal extraction methods also have some desirable formal properties. Thus,

it would be interesting to consider if it was possible to observe comparable performance

over different tasks.

Ontology reuse is a popular scenario for considering the use of ontology modular-

ization and this is examined in Chapter 5. Ontology Engineering methodologies whilst

including a step for ontology reuse do not prescribe a methodology for reuse via ontology

modularization. Thus, two methodologies for reusing ontology modules are presented;

one is a general purpose methodology and the other is a methodology for reusing lo-

cality based modules. The general purpose methodology can be followed regardless of

the modularization technique being used, but the locality based methodology requires

the modularization technique being used to provide the appropriate guarantees.

Chapter 6 contributes a novel application of how ontology modularization can be

used in practice as a space reduction mechanism for the problem of dynamically select-

ing ontological alignments in open multi-agent systems. This shows that modularization

is an effective space reduction mechanism for the complex argumentation process. A

problem with information loss is noted and two solutions are provided. The effective-

ness of this application of modularization is demonstrated by the evaluation carried out

in Section 6.7 which shows an 80% reduction in the search space when using modular-

ization with argumentation and that this reduction does not reduce the quality of the

produced alignment, particularly when the information loss (see Section 6.6) solutions

are used. In addition, agents were also able to identify those cases where argumentation

would have been a waste of their time. This suggests that not only can ontology mod-

ularization reduce the cost of reaching an agreement, but that it can also help identify

those cases where agents would have been unable to reach an agreement.

In summary then this thesis makes four original contributions, these are:

1. Sound Heuristic for Module Extraction. Section 3.4.1 presented a detailed

explanation of a graph traversal based technique for ontology module extraction.

This technique allows an ontology module to be extracted that is centered around

a specified concept. The technique presented is ontology language agnostic, as

long as the ontology language being used can be transformed into the abstract

graph model that this technique operates over.

2. Entropy Metric. Section 4.3.3 presented a detailed explanation of the entropy

inspired metric for evaluating ontology modules. This metric allows one to evalu-

ate the information content of an ontology module, allowing the full expressivity

of the ontology language to be considered.

132

3. Comprehensive Evaluation. Sections 4.4 details an evaluation of the differ-

ent ontology modularization techniques. The evaluation shows that whilst the

entropy measure is a more discriminate measure than size it is still difficult to

evaluate how ‘good’ an ontology module is based solely on an isolated objective

metric. In addition, Section4.5 details a task-based evaluation of the different on-

tology modularization techniques. The tasks considered is query answering and

the results show that the traversal based extraction techniques have compara-

ble performance to the logical based extraction techniques, at least, for the task

considered.

4. Novel Application of Modularization. Chapter 6 details a new application

of ontology modularization. The Chapter explains how ontology modularization

can be successfully applied to the problem of dynamically reaching an agreement

over ontology alignments. Ontology modularization allows the search space for

the argumentation process to be reduced. The evaluation conducted shows that

ontology modularization successfully reduces the search space whilst not having

an adverse effect upon the quality of the agreed alignment. Furthermore, it

showed that agents were able to identify cases where an agreement could not be

achieved prior to the argumentation phase preventing the agents from wasting

time.

7.2 Future Work

There are numerous issues that stem from the research in this thesis that, unfortu-

nately, due to time constraints there has not been opportunity to investigate further.

These issues broadly fall into three areas: ontology modularization, ontology module

evaluation and the dynamic selection of ontology alignments. They are presented here

as we consider them worthy of future research.

7.2.1 Ontology Modularization

As discussed in Section 3.2 there are numerous techniques in the literature for ontol-

ogy modularization broadly split into logical extraction (3.4.2) and traversal extraction

(3.4.1). The logical extraction methods have formal properties, such as safety, coverage,

etc. This leads to the natural question as to whether the traversal extraction methods

also have desirable formal properties. Interest in this issue is further piqued due to the

task based evaluation (see Section 4.5) carried out in this thesis, as it shows that the

traversal extraction methods, at least on the task evaluated, show comparable perfor-

mance to the logical extraction methods. This aspect is worthy of future investigation

to fully explore the reasons for the performance of the traversal based techniques in the

evaluation.

133

Despite an increasing number of mechanisms proposed for ontology modularization,

there are few studies, to the best of our knowledge only Palmisano et al. [105], that have

systematically evaluated different approaches over a number of ontologies. There is a

distinct need for there to be a structured evaluation of modularization techniques over

a standard data set, similar to the Ontology Alignment Evaluation Initiative (OAEI).

Such an initiative for modularization would allow the strengths and weaknesses of the

different systems to be assessed. It should enable the performance of the different

techniques across a number of objective measures which would be of benefit to people

who have the problem of deciding what technique they should use.

Furthermore, the establishment of an initiative similar to the OAEI for modular-

ization should increase communication and foster collaboration among ontology mod-

ularization researchers. More importantly, perhaps, is that it should promote the de-

velopment and uptake of improved evaluation techniques; this is a distinct weakness in

the current literature.

Given that nobody has addressed the issue of what URI to assign a module then

future work could include the development of a protocol for controlling the reuse of

extracted modules. For example, if the same module is extracted from an ontology by

two different people then it could be convenient if they assigned them the same URI.

7.2.2 Ontology Module Evaluation

As well as requiring a more systematic and structured approach to evaluate ontology

modularization in general, the development of the entropy measure brought up some

interesting areas of future work. Firstly, whilst an extensive evaluation of the entropy

measure was carried out there is a need for there to be a user-study to be conducted.

It would be of particular interest to consider how understandable an ontology is. Intu-

itively an ontology, or module, with low entropy should be easier to understand.

Perhaps it would be interesting to implement numerous evaluation metrics, give

them to users and collect feedback on which they found useful, intuitive, informative,

etc. Having them implemented would also allow them to be applied in application

scenarios where no human is involved, such as the one considered in Section 6.4.1.

Given that a proper characterisation of the entropy measure was not possible it

would be interesting to explore a more ‘semantic’ entropy measure. The current entropy

measure produces different entropy values for axioms that are semantically equivalent

but syntactically different; intuitively a ‘semantic’ entropy measure would give the

same value. One possible way to do this might be by considering how much it takes

to explain why certain axioms are entailed; some work on computing justifications for

OWL already exists in the literature, for example Horridge, Parsia and Sattler [73]

present an algorithm to compute laconic and precise justifications.

Section 4.5 carried out a task based evaluation of the ontology module extraction

134

techniques showing that traversal approaches can have a comparable performance to

the logical approaches. It would be interesting to extend this analysis to better identify

boundary cases whereby certain techniques may be more suitable than others. This

task is likely to benefit by considering some of the issues raised in Section 7.2.1.

7.2.3 Dynamic Selection of Ontology Alignments

In Section 6.4.1 modularization was used as a space reduction mechanism for the dy-

namic selection of ontological alignments. Whilst this novel application did not bring

to light many issues concerning modularization it did bring to light numerous issues

regarding the problem of dynamically reaching an agreement in open environments.

Firstly, the actual use of argumentation raises several issues. Currently, Laera et

al. [85] only consider one-stop argumentation and it would be interesting to consider

iterative argumentation, thus allowing the agents to argue and counter-argue in a more

gregarious manner. However, introducing the iterative argumentation would raise the

need to consider strategies for argumentation. For example, is it possible for one agent

to argue in a certain way to affect the outcome in its favour?

Furthermore, the actual arguments that are possible, based on the schema presented

by Laera [84], are limited. As such, it would be interesting to investigate richer grounds

for the arguments themselves. For example, an agent would be able to argue against

a mapping because it would make its ontology unsatisfiable. This would require the

agents to be able to place DL entailments in the grounds of the arguments; Moguillansky

and Wassermann [97] use arguments of this form to reason about inconsistencies.

One overriding concern, and indeed the motivation for applying modularization, is

the high complexity of the approach presented in [85]. Thus, it would be useful to

characterise precisely the cases (i.e. the structure of the attack graph) where this worst

case complexity actually occurs. This would be useful to know either for the agents to

avoid creating attack graphs that trigger the worst case complexity or by being able

to design a protocol for the argumentation which prevents worst case attack graphs

from occurring. Whilst being able to circumvent the worst case may seem to lessen

the incentive for using modularization this is not the case because modularization has

value in that it restricts the argumentation to those elements of the ontologies that are

relevant.

In addition to the issues concerning the argumentation aspect noted above some

general issue about dynamic agreement have also been raised, particularly in open

environments where the agents are assumed to be rational. The first issue concerning

agent utility; a bounded rational agent should only reach an agreement when it is going

to be of benefit, i.e. bring about an increase in its utility. Under the scenario being

considered here requires answers to the following three questions:

1. What is the cost of reaching an agreement? There is evidently a cost in

135

reaching an agreement in terms of complexity, hence the application of mod-

ularization to the problem. However, this concerns only one dimension of

the cost. Other costs that an agent might consider would be communication

and time. When the agents engage in an argumentation process there is a

communication overhead, this could be significant if the ontologies are large

or the argumentation process proceeds iteratively. Both the complexity and

communication cost directly affect the next dimension, time. In a highly

dynamic fast changing environment an agent may prefer ‘quick’ agreements

to ‘correct’ agreements so that it can capitalise on the current state of affairs

more effectively. Conversely if an agent is going to commit a sizable amount

of time to reach an agreement then the following two points become more

important.

2. What is the cost of the agreement? Once an agreement has been reached

then an agent may need to reclassify its ontology, this incurs a cost. De-

pending on this cost the agent may choose to make the agreement temporary

or permanent. These issues fall under ontology evolution and some work in

the area of open environments can be found in Palmisano et al. [104] where

they present an algorithm for estimating the cost of including a new axiom

in your existing ontology.

3. What is the value of the agreement? So far we have considered the cost of

getting the agreement and of the agreement itself, but this cost can be offset

by the value of the agreement. Value can be derived from the agreement

because it should facilitate the agent in completing its tasks. An agreement

would be of greater value to an agent if it were robust and long lasting

because it would delay the need to reach an agreement again. The notion

of robustness for an agreement could be linked to the notion of objective

acceptability in argumentation; in that objectively acceptable arguments

are accepted by all parties and are not a source of dispute. It maybe more

troublesome to evaluate the lifespan of an agreement, particularly given the

nature of open environments.

The notion of minimal agreement is interesting; and modularization may play a

part in achieving them. An agreement is minimal if it is the minimum number of map-

pings required to successfully complete the agents task. The motivation for applying

modularization was to prevent the agents from wasting time by arguing over irrelevant

concepts. The same idea could be applied to the agreement; why should the agents

agree on more than they need? This is more pertinent when you consider the issues

raised above. The agreement should just be enough to allow the agent to do what they

need to do, a sub-minimal agreement would mean that the agent wouldn’t be able to

136

do what it wanted and a non-minimal agreement would add unnecessary overhead for

the agent in achieving its task. In essence the agents need the adequate amount of the

relevant knowledge.

137

Part VI

Appendices

138

Appendix A

Experimental Results

A.1 Detailed Tables For The Task Based Evaluation (Section4.5)

139

C
G

L
C
G

U
D
A
Q

D
O
R

S
E
I
D

P
R

F
M

P
R

F
M

P
R

F
M

P
R

F
M

P
R

F
M

C
on

fe
re

nc
e

1.
00

0.
84

0.
91

2
1.

00
0.

84
0.

91
2

1.
00

0.
80

0.
88

8
1.

00
1.

00
1.

00
0

0.
83

0.
72

0.
77

3
cm

t
1.

00
0.

76
0.

86
2

1.
00

0.
76

0.
86

2
1.

00
0.

78
0.

87
5

1.
00

1.
00

0.
99

8
0.

76
0.

60
0.

67
0

co
nf

O
f

1.
00

0.
83

0.
90

9
1.

00
0.

83
0.

90
9

1.
00

0.
83

0.
90

9
1.

00
1.

00
1.

00
0

0.
87

0.
74

0.
80

1
cr

s
dr

1.
00

0.
84

0.
91

1
1.

00
0.

84
0.

91
1

1.
00

0.
84

0.
91

1
1.

00
1.

00
1.

00
0

0.
71

0.
71

0.
71

4
ed

as
1.

00
0.

86
0.

92
6

1.
00

0.
86

0.
92

6
1.

00
0.

83
0.

90
7

1.
00

0.
99

0.
99

5
0.

87
0.

81
0.

83
8

ek
aw

1.
00

0.
76

0.
86

5
1.

00
0.

76
0.

86
5

1.
00

0.
76

0.
86

5
1.

00
1.

00
1.

00
0

0.
92

0.
73

0.
81

3
M

IC
R

O
1.

00
0.

87
0.

92
8

1.
00

0.
87

0.
92

8
1.

00
0.

82
0.

90
3

1.
00

0.
97

0.
98

7
0.

94
0.

81
0.

86
9

O
pe

nC
on

f
0.

90
0.

78
0.

83
5

0.
90

0.
78

0.
83

5
1.

00
0.

73
0.

84
1

0.
89

1.
00

0.
94

2
0.

97
0.

81
0.

88
5

pa
pe

rd
yn

e
0.

96
0.

82
0.

88
4

0.
96

0.
82

0.
88

4
0.

99
0.

87
0.

92
4

0.
84

1.
00

0.
91

0
0.

91
0.

82
0.

86
2

P
C

S
1.

00
0.

75
0.

86
0

1.
00

0.
75

0.
86

0
1.

00
0.

76
0.

86
4

1.
00

1.
00

1.
00

0
0.

74
0.

61
0.

66
7

si
gk

dd
1.

00
0.

81
0.

89
3

1.
00

0.
81

0.
89

3
1.

00
0.

81
0.

89
3

0.
99

1.
00

0.
99

6
0.

88
0.

76
0.

81
6

A
ve

ra
ge

0.
98

7
0.

81
0

0.
88

9
0.

98
7

0.
81

0
0.

88
9

0.
99

9
0.

80
2

0.
88

9
0.

97
4

0.
99

7
0.

98
4

0.
85

4
0.

73
9

0.
79

2

T
ab

le
A

.1
:

R
es

ul
ts

br
ok

en
do

w
n

by
on

to
lo

gy
an

d
te

ch
ni

qu
e;

al
lt

he
m

od
ul

es
fo

r
a

si
ng

le
on

to
lo

gy
an

d
a

si
ng

le
te

ch
ni

qu
e

ar
e

av
er

ag
ed

to
ge

th
er

;
th

is
ta

bl
e

on
ly

re
po

rt
s

th
e
in
st
a
n
ce
s

re
su

lt
s.

140

C
G

L
C
G

U
D
A
Q

D
O
R

S
E
I
D

P
R

F
M

P
R

F
M

P
R

F
M

P
R

F
M

P
R

F
M

C
on

fe
re

nc
e

1.
00

0.
87

0.
92

8
1.

00
0.

87
0.

92
8

1.
00

0.
84

0.
91

0
1.

00
1.

00
1.

00
0

0.
83

0.
74

0.
78

4
cm

t
1.

00
0.

80
0.

89
2

1.
00

0.
80

0.
89

2
1.

00
0.

82
0.

90
1

1.
00

1.
00

0.
99

9
0.

76
0.

64
0.

69
2

co
nf

O
f

1.
00

0.
86

0.
92

4
1.

00
0.

86
0.

92
4

1.
00

0.
86

0.
92

4
1.

00
1.

00
1.

00
0

0.
87

0.
76

0.
81

3
cr

s
dr

1.
00

0.
87

0.
92

9
1.

00
0.

87
0.

92
9

1.
00

0.
87

0.
92

9
1.

00
1.

00
1.

00
0

0.
71

0.
71

0.
71

4
ed

as
1.

00
0.

88
0.

93
9

1.
00

0.
88

0.
93

9
1.

00
0.

87
0.

92
9

1.
00

1.
00

1.
00

0
0.

87
0.

82
0.

84
5

ek
aw

1.
00

0.
80

0.
88

9
1.

00
0.

80
0.

88
9

1.
00

0.
80

0.
88

9
1.

00
1.

00
1.

00
0

0.
92

0.
77

0.
83

5
M

IC
R

O
1.

00
0.

89
0.

94
1

1.
00

0.
89

0.
94

1
1.

00
0.

88
0.

93
4

1.
00

1.
00

1.
00

0
0.

94
0.

83
0.

88
2

O
pe

nC
on

f
0.

90
0.

81
0.

85
2

0.
90

0.
81

0.
85

2
1.

00
0.

83
0.

90
7

0.
98

1.
00

0.
99

2
0.

97
0.

90
0.

93
1

pa
pe

rd
yn

e
0.

96
0.

84
0.

89
6

0.
96

0.
84

0.
89

6
0.

99
0.

89
0.

93
7

0.
98

1.
00

0.
99

0
0.

91
0.

83
0.

87
1

P
C

S
1.

00
0.

81
0.

89
3

1.
00

0.
81

0.
89

3
1.

00
0.

81
0.

89
6

1.
00

1.
00

1.
00

0
0.

74
0.

63
0.

68
2

si
gk

dd
1.

00
0.

84
0.

91
2

1.
00

0.
84

0.
91

2
1.

00
0.

84
0.

91
2

0.
99

1.
00

0.
99

7
0.

88
0.

78
0.

82
6

A
ve

ra
ge

0.
98

7
0.

84
2

0.
90

9
0.

98
7

0.
84

2
0.

90
9

0.
99

9
0.

84
5

0.
91

5
0.

99
6

1.
00

0
0.

99
8

0.
85

4
0.

76
6

0.
80

7

T
ab

le
A

.2
:

R
es

ul
ts

br
ok

en
do

w
n

by
on

to
lo

gy
an

d
te

ch
ni

qu
e;

al
lt

he
m

od
ul

es
fo

r
a

si
ng

le
on

to
lo

gy
an

d
a

si
ng

le
te

ch
ni

qu
e

ar
e

av
er

ag
ed

to
ge

th
er

;
th

is
ta

bl
e

on
ly

re
po

rt
s

th
e
su
bc
la
ss
es

re
su

lt
s.

141

C
G

L
C
G

U
D
A
Q

D
O
R

S
E
I
D

P
R

F
M

P
R

F
M

P
R

F
M

P
R

F
M

P
R

F
M

C
on

fe
re

nc
e

0.
87

0.
82

0.
84

5
1.

00
0.

53
0.

68
9

0.
98

0.
70

0.
82

1
0.

71
0.

54
0.

61
2

1.
00

0.
64

0.
78

3
cm

t
1.

00
0.

61
0.

75
8

1.
00

0.
55

0.
71

1
1.

00
0.

53
0.

69
3

1.
00

0.
67

0.
80

6
1.

00
0.

75
0.

86
0

co
nf

O
f

0.
74

0.
65

0.
68

9
0.

99
0.

56
0.

71
8

0.
88

0.
80

0.
83

7
0.

83
0.

71
0.

76
7

1.
00

0.
77

0.
87

1
cr

s
dr

1.
00

0.
55

0.
70

7
1.

00
0.

72
0.

83
9

1.
00

0.
77

0.
87

1
1.

00
0.

56
0.

71
8

1.
00

0.
61

0.
75

8
ed

as
1.

00
0.

52
0.

68
4

1.
00

0.
83

0.
90

6
0.

97
0.

83
0.

89
2

1.
00

0.
53

0.
68

9
1.

00
0.

51
0.

67
8

ek
aw

1.
00

0.
66

0.
79

2
0.

94
0.

91
0.

92
2

0.
99

0.
57

0.
72

2
0.

92
0.

77
0.

83
7

1.
00

0.
84

0.
91

2
M

IC
R

O
0.

76
0.

63
0.

68
7

0.
95

0.
79

0.
86

3
1.

00
0.

47
0.

64
3

1.
00

0.
60

0.
75

2
1.

00
0.

51
0.

67
6

O
pe

nC
on

f
1.

00
0.

84
0.

91
2

1.
00

0.
55

0.
70

8
1.

00
0.

57
0.

72
4

0.
90

0.
85

0.
87

7
1.

00
0.

57
0.

72
3

pa
pe

rd
yn

e
0.

90
0.

73
0.

81
0

1.
00

0.
89

0.
94

0
1.

00
0.

55
0.

71
1

1.
00

0.
55

0.
70

8
1.

00
0.

55
0.

70
8

P
C

S
1.

00
0.

89
0.

94
0

0.
99

0.
61

0.
75

9
0.

87
0.

69
0.

76
9

0.
90

0.
73

0.
81

0
0.

99
0.

65
0.

78
6

si
gk

dd
1.

00
0.

56
0.

71
8

1.
00

0.
55

0.
70

6
1.

00
0.

60
0.

75
3

1.
00

0.
64

0.
78

3
0.

95
0.

79
0.

86
3

A
ve

ra
ge

0.
93

4
0.

67
7

0.
77

7
0.

98
8

0.
68

0
0.

79
6

0.
97

2
0.

64
4

0.
76

7
0.

93
3

0.
65

1
0.

76
0

0.
99

4
0.

65
4

0.
78

3

T
ab

le
A

.3
:

R
es

ul
ts

br
ok

en
do

w
n

by
on

to
lo

gy
an

d
te

ch
ni

qu
e;

al
lt

he
m

od
ul

es
fo

r
a

si
ng

le
on

to
lo

gy
an

d
a

si
ng

le
te

ch
ni

qu
e

ar
e

av
er

ag
ed

to
ge

th
er

;
th

is
ta

bl
e

on
ly

re
po

rt
s

th
e
su
p
er
cl
a
ss
es

re
su

lt
s.

142

D
A

Q
D

O
R

S
E

ID
C

G
-L

C
G

-U
O

n
to

lo
gy

#
M

od
ul

es
(>

1)
M

od
ul

es
(>

1)
M

od
ul

es
(>

1)
M

od
ul

es
(>

1)
M

od
ul

es
(>

1)
N

am
e

C
l.

N
um

%
C

l.
N

um
%

C
l.

N
um

%
C

l.
N

um
%

C
l.

N
um

%
C

l.
C

on
fe

re
nc

e
59

26
44

.1
%

24
40

.7
%

49
83

.1
%

35
59

.3
%

35
59

.3
%

cm
t

29
14

48
.3

%
11

37
.9

%
22

75
.9

%
9

31
.0

%
9

31
.0

%
co

nf
O

f
38

7
18

.4
%

8
21

.1
%

33
86

.8
%

25
65

.8
%

25
65

.8
%

cr
s-

dr
14

9
64

.3
%

3
21

.4
%

10
71

.4
%

0
0.

0%
0

0.
0%

ed
as

10
3

18
17

.5
%

25
24

.3
%

89
86

.4
%

10
2

99
.0

%
10

2
99

.0
%

ek
aw

73
14

19
.2

%
23

31
.5

%
67

91
.8

%
15

20
.5

%
15

20
.5

%
M

IC
R

O
31

14
45

.2
%

6
19

.4
%

28
90

.3
%

24
77

.4
%

24
77

.4
%

O
pe

nC
on

f
62

12
19

.4
%

25
40

.3
%

60
96

.8
%

62
10

0.
0%

62
10

0.
0%

pa
pe

rd
yn

e
45

22
48

.9
%

8
17

.8
%

41
91

.1
%

36
80

.0
%

36
80

.0
%

P
C

S
23

13
56

.5
%

10
43

.5
%

17
73

.9
%

7
30

.4
%

7
30

.4
%

si
gk

dd
49

11
22

.4
%

14
28

.6
%

43
87

.8
%

8
16

.3
%

8
16

.3
%

M
ea

n
va

lu
es

:
36

.7
%

29
.7

%
85

.0
%

52
.7

%
52

.7
%

T
ab

le
A

.4
:

C
om

pa
ri

so
n

of
th

e
M

od
ul

e
Si

ze
(i

n
te

rm
s

of
na

m
ed

en
ti

ti
es

)
fo

r
ea

ch
of

th
e

di
ffe

re
nt

m
od

ul
ar

iz
at

io
n

ap
pr

oa
ch

es
.

B
ot

h
th

e
nu

m
be

r
of

m
od

ul
es

ge
ne

ra
te

d
co

nt
ai

ni
ng

m
or

e
th

an
tw

o
na

m
ed

co
nc

ep
ts

,
an

d
th

is
va

lu
e

as
a

pe
rc

en
ta

ge
of

al
l

m
od

ul
es

fo
r

ea
ch

on
to

lo
gy

ar
e

gi
ve

n.

143

A.2 Tables Argumentation

144

O
ri

gi
na

l
O

ri
gi

na
l

R
et

ai
ne

d
al

ig
nm

en
t

si
ze

an
d

#
of

ar
gu

m
en

ts
A

vg
pe

rc
en

t

Sy
st

em
M

T
si

ze
(B

)
ar

gu
m

en
ts

C
M

C
A

SO
M

SO
A

N
M

N
A

C
M

C
A

SO
M

SO
A

N
M

N
A

A
sm

ov
C
G

L
13

.2
2

26
.4

5
0.

94
2.

98
0.

94
2.

18
0.

93
1.

87
7.

10
%

11
.2

7%
7.

10
%

8.
26

%
7.

10
%

7.
10

%
C
G

U
0.

94
2.

98
0.

94
2.

18
0.

93
1.

87
7.

10
%

11
.2

7%
7.

10
%

8.
26

%
7.

10
%

7.
10

%
D
A
Q

1.
49

4.
38

1.
49

3.
55

1.
49

2.
99

11
.3

1%
16

.5
6%

11
.3

1%
13

.4
4%

11
.3

1%
11

.3
1%

D
O
R

1.
41

4.
01

1.
41

3.
59

1.
41

2.
83

10
.7

0%
15

.1
8%

10
.7

0%
13

.6
0%

10
.7

0%
10

.7
0%

S
E
I
D

8.
68

21
.0

0
8.

68
17

.8
8

8.
68

17
.3

6
65

.6
4%

79
.3

8%
65

.6
4%

67
.5

9%
65

.6
4%

65
.6

4%
Fa

lc
on

C
G

L
13

.1
0

26
.2

1
1.

07
4.

28
1.

07
2.

90
1.

07
2.

14
8.

17
%

16
.3

5%
8.

17
%

11
.0

9%
8.

17
%

8.
17

%
C
G

U
1.

07
4.

28
1.

07
2.

90
1.

07
2.

14
8.

17
%

16
.3

5%
8.

17
%

11
.0

9%
8.

17
%

8.
17

%
D
A
Q

2.
59

6.
67

2.
59

5.
86

2.
59

5.
19

19
.8

1%
25

.4
6%

19
.8

1%
22

.3
7%

19
.8

1%
19

.8
1%

D
O
R

2.
21

5.
47

2.
21

5.
23

2.
21

4.
42

16
.8

8%
20

.8
9%

16
.8

8%
19

.9
5%

16
.8

8%
16

.8
8%

S
E
I
D

10
.2

3
23

.1
2

10
.2

3
21

.1
1

10
.2

3
20

.4
7

78
.0

9%
88

.2
1%

78
.0

9%
80

.5
5%

78
.0

9%
78

.0
9%

L
ily

C
G

L
46

.9
4

93
.8

9
3.

67
16

.3
0

3.
67

11
.9

0
3.

67
7.

35
7.

83
%

17
.3

7%
7.

83
%

12
.6

8%
7.

83
%

7.
83

%
C
G

U
3.

67
16

.3
0

3.
67

11
.9

0
3.

67
7.

35
7.

83
%

17
.3

7%
7.

83
%

12
.6

8%
7.

83
%

7.
83

%
D
A
Q

6.
71

23
.5

5
6.

71
20

.2
6

6.
71

13
.4

3
14

.3
1%

25
.0

9%
14

.3
1%

21
.5

9%
14

.3
1%

14
.3

1%
D
O
R

5.
81

17
.7

1
5.

81
18

.8
1

5.
81

11
.6

3
12

.3
9%

18
.8

7%
12

.3
9%

20
.0

3%
12

.3
9%

12
.3

9%
S
E
I
D

33
.4

5
74

.7
6

33
.4

5
71

.6
7

33
.4

5
66

.9
0

71
.2

6%
79

.6
3%

71
.2

6%
76

.3
4%

71
.2

6%
71

.2
6%

O
la

C
G

L
65

.5
6

13
1.

12
0.

40
0.

81
0.

40
0.

81
0.

40
0.

81
0.

62
%

0.
62

%
0.

62
%

0.
62

%
0.

62
%

0.
62

%
C
G

U
0.

40
0.

81
0.

40
0.

81
0.

40
0.

81
0.

62
%

0.
62

%
0.

62
%

0.
62

%
0.

62
%

0.
62

%
D
A
Q

0.
25

0.
50

0.
25

0.
50

0.
25

0.
50

0.
39

%
0.

39
%

0.
39

%
0.

39
%

0.
39

%
0.

39
%

D
O
R

0.
70

1.
40

0.
70

1.
40

0.
70

1.
40

1.
07

%
1.

07
%

1.
07

%
1.

07
%

1.
07

%
1.

07
%

S
E
I
D

5.
62

11
.2

5
5.

62
11

.2
5

5.
62

11
.2

5
8.

58
%

8.
58

%
8.

58
%

8.
58

%
8.

58
%

8.
58

%
O

nt
od

na
C
G

L
5.

91
11

.8
3

0.
65

1.
69

0.
65

1.
42

0.
65

1.
31

11
.1

3%
14

.3
1%

11
.1

3%
12

.0
2%

11
.1

3%
11

.1
3%

C
G

U
0.

65
1.

69
0.

65
1.

42
0.

65
1.

31
11

.1
3%

14
.3

1%
11

.1
3%

12
.0

2%
11

.1
3%

11
.1

3%
D
A
Q

1.
23

2.
95

1.
23

2.
65

1.
23

2.
47

20
.8

9%
24

.9
5%

20
.8

9%
22

.4
3%

20
.8

9%
20

.8
9%

D
O
R

0.
61

1.
45

0.
61

1.
37

0.
61

1.
22

10
.3

2%
12

.3
1%

10
.3

2%
11

.6
4%

10
.3

2%
10

.3
2%

S
E
I
D

4.
06

9.
50

4.
06

8.
25

4.
06

8.
12

68
.7

0%
80

.2
8%

68
.7

0%
69

.7
5%

68
.7

0%
68

.7
0%

T
ab

le
A

.5
:

A
ve

ra
ge

ca
nd

id
at

e
al

ig
nm

en
t

si
ze

s
w

it
h

an
d

w
it

ho
ut

m
od

ul
ar

iz
at

io
n

145

O
ri

gi
na

l
O

ri
gi

na
l

R
et

ai
ne

d
al

ig
nm

en
t

si
ze

an
d

#
of

ar
gu

m
en

ts
A

vg
pe

rc
en

t

Sy
st

em
M

T
si

ze
(B

)
ar

gu
m

en
ts

C
M

C
A

SO
M

SO
A

N
M

N
A

C
M

C
A

SO
M

SO
A

N
M

N
A

A
sm

ov
C
G

L
13

.2
3

26
.4

5
1.

99
6.

21
1.

99
4.

74
1.

99
3.

97
15

.0
1%

23
.4

7%
15

.0
1%

17
.9

3%
15

.0
1%

15
.0

1%
C
G

U
1.

99
6.

21
1.

99
4.

74
1.

99
3.

97
15

.0
1%

23
.4

7%
15

.0
1%

17
.9

3%
15

.0
1%

15
.0

1%
D
A
Q

3.
47

10
.5

1
3.

47
8.

47
3.

47
6.

94
26

.2
3%

39
.7

4%
26

.2
3%

32
.0

1%
26

.2
3%

26
.2

3%
D
O
R

3.
69

10
.4

0
3.

69
9.

37
3.

69
7.

38
27

.9
1%

39
.3

0%
27

.9
1%

35
.4

3%
27

.9
1%

27
.9

1%
S
E
I
D

8.
68

21
.0

0
8.

68
17

.8
8

8.
68

17
.3

6
65

.6
4%

79
.3

8%
65

.6
4%

67
.5

9%
65

.6
4%

65
.6

4%
Fa

lc
on

C
G

L
13

.1
1

26
.2

2
2.

21
8.

22
2.

21
5.

89
2.

21
4.

43
16

.8
9%

31
.3

4%
16

.8
9%

22
.4

7%
16

.8
9%

16
.8

9%
C
G

U
2.

21
8.

22
2.

21
5.

89
2.

21
4.

43
16

.8
9%

31
.3

4%
16

.8
9%

22
.4

7%
16

.8
9%

16
.8

9%
D
A
Q

5.
36

14
.4

6
5.

36
12

.5
9

5.
36

10
.7

1
40

.8
5%

55
.1

4%
40

.8
5%

48
.0

2%
40

.8
5%

40
.8

5%
D
O
R

5.
43

13
.1

5
5.

43
12

.5
8

5.
43

10
.8

6
41

.4
3%

50
.1

5%
41

.4
3%

47
.9

7%
41

.4
3%

41
.4

3%
S
E
I
D

10
.2

4
23

.1
3

10
.2

4
21

.1
2

10
.2

4
20

.4
7

78
.0

9%
88

.2
1%

78
.0

9%
80

.5
5%

78
.0

9%
78

.0
9%

L
ily

C
G

L
46

.9
4

93
.8

9
4.

58
20

.5
8

4.
58

15
.1

1
4.

58
9.

15
9.

75
%

21
.9

2%
9.

75
%

16
.0

9%
9.

75
%

9.
75

%
C
G

U
4.

58
20

.5
8

4.
58

15
.1

1
4.

58
9.

15
9.

75
%

21
.9

2%
9.

75
%

16
.0

9%
9.

75
%

9.
75

%
D
A
Q

9.
76

35
.5

6
9.

76
30

.4
7

9.
76

19
.5

2
20

.7
9%

37
.8

7%
20

.7
9%

32
.4

5%
20

.7
9%

20
.7

9%
D
O
R

8.
97

26
.3

5
8.

97
27

.8
5

8.
97

17
.9

4
19

.1
1%

28
.0

6%
19

.1
1%

29
.6

6%
19

.1
1%

19
.1

1%
S
E
I
D

33
.4

5
74

.7
6

33
.4

5
71

.6
7

33
.4

5
66

.9
1

71
.2

6%
79

.6
3%

71
.2

6%
76

.3
4%

71
.2

6%
71

.2
6%

O
la

C
G

L
65

.5
6

13
1.

12
7.

66
15

.3
3

7.
66

15
.3

3
7.

66
15

.3
3

11
.6

9%
11

.6
9%

11
.6

9%
11

.6
9%

11
.6

9%
11

.6
9%

C
G

U
7.

66
15

.3
3

7.
66

15
.3

3
7.

66
15

.3
3

11
.6

9%
11

.6
9%

11
.6

9%
11

.6
9%

11
.6

9%
11

.6
9%

D
A
Q

3.
16

6.
32

3.
16

6.
32

3.
16

6.
32

4.
82

%
4.

82
%

4.
82

%
4.

82
%

4.
82

%
4.

82
%

D
O
R

8.
62

17
.2

4
8.

62
17

.2
4

8.
62

17
.2

4
13

.1
5%

13
.1

5%
13

.1
5%

13
.1

5%
13

.1
5%

13
.1

5%
S
E
I
D

61
.9

0
12

3.
80

61
.9

0
12

3.
80

61
.9

0
12

3.
80

94
.4

1%
94

.4
1%

94
.4

1%
94

.4
1%

94
.4

1%
94

.4
1%

O
nt

od
na

C
G

L
5.

91
11

.8
3

1.
81

4.
48

1.
81

3.
97

1.
81

3.
61

30
.5

4%
37

.8
6%

30
.5

4%
33

.5
7%

30
.5

4%
30

.5
4%

C
G

U
1.

81
4.

48
1.

81
3.

97
1.

81
3.

61
30

.5
4%

37
.8

6%
30

.5
4%

33
.5

7%
30

.5
4%

30
.5

4%
D
A
Q

3.
14

7.
75

3.
14

6.
95

3.
14

6.
28

53
.0

8%
65

.5
3%

53
.0

8%
58

.7
7%

53
.0

8%
53

.0
8%

D
O
R

2.
27

5.
37

2.
27

5.
06

2.
27

4.
54

38
.3

5%
45

.3
7%

38
.3

5%
42

.7
5%

38
.3

5%
38

.3
5%

S
E
I
D

4.
22

9.
87

4.
22

8.
57

4.
22

8.
44

71
.3

4%
83

.3
7%

71
.3

4%
72

.4
3%

71
.3

4%
71

.3
4%

T
ab

le
A

.6
:

A
ve

ra
ge

ca
nd

id
at

e
al

ig
nm

en
t

si
ze

s
w

it
h

an
d

w
it

ho
ut

m
od

ul
ar

iz
at

io
n

(e
xc

lu
di

ng
al

ig
nm

en
ts

of
si

ze
0)

146

Avg size with mod. Avg retained size
System MT C SO N C SO N
Asmov CGL 1.09 1.49 0.93 9.23% 12.08% 8.05%

CGU 1.09 1.49 0.93 9.23% 12.08% 8.05%
B size DAQ 1.77 2.19 1.49 14.16% 17.27% 11.87%
13.22 DOR 1.79 2.01 1.41 13.97% 15.33% 10.98%

SEID 8.94 10.50 8.68 71.64% 81.22% 69.96%
Falcon CGL 1.45 2.14 1.07 11.38% 16.36% 8.40%

CGU 1.45 2.14 1.07 11.38% 16.36% 8.40%
B size DAQ 2.93 3.33 2.59 22.26% 25.53% 19.69%
13.11 DOR 2.61 2.73 2.21 20.69% 21.42% 17.61%

SEID 10.55 11.56 10.23 82.37% 89.50% 79.99%
Lily CGL 5.95 8.15 3.67 12.70% 17.13% 7.88%

CGU 5.95 8.15 3.67 12.70% 17.13% 7.88%
B size DAQ 10.13 11.77 6.71 22.05% 25.55% 14.50%
46.95 DOR 9.40 8.85 5.81 18.95% 17.81% 11.69%

SEID 35.83 37.38 33.45 76.32% 79.53% 71.55%
Ola CGL 0.25 0.25 0.25 0.70% 0.70% 0.70%

CGU 0.25 0.25 0.25 0.70% 0.70% 0.70%
B size DAQ 0.15 0.15 0.15 0.41% 0.41% 0.41%
45.05 DOR 0.38 0.38 0.38 1.03% 1.03% 1.03%

SEID 3.20 3.20 3.20 8.60% 8.60% 8.60%
Ontodna CGL 0.71 0.84 0.65 10.40% 11.94% 9.70%

CGU 0.71 0.84 0.65 10.40% 11.94% 9.70%
B size DAQ 1.32 1.47 1.23 21.14% 23.19% 19.96%
5.92 DOR 0.68 0.72 0.61 10.88% 11.34% 9.94%

SEID 4.12 4.75 4.06 70.30% 79.62% 69.44%

Table A.7: Average alignment sizes with and without modularization

147

Avg size with mod. Avg retained size
System MT C SO N C SO N
Asmov CGL 2.36 3.09 1.99 19.00% 23.95% 16.15%

CGU 2.36 3.09 1.99 19.00% 23.95% 16.15%
B size DAQ 4.23 5.26 3.47 33.89% 41.64% 27.49%
13.22 DOR 4.69 5.20 3.69 36.87% 40.32% 28.92%

SEID 8.94 10.50 8.68 71.64% 81.22% 69.96%
Falcon CGL 2.93 4.07 2.21 23.59% 31.68% 17.92%

CGU 2.93 4.07 2.21 23.59% 31.68% 17.92%
B size DAQ 6.30 7.23 5.36 47.96% 55.35% 40.80%
13.11 DOR 6.29 6.57 5.43 50.66% 52.45% 44.05%

SEID 10.56 11.56 10.24 82.37% 89.50% 79.99%
Lily CGL 7.45 10.13 4.58 16.19% 21.62% 10.11%

CGU 7.45 10.13 4.58 16.19% 21.62% 10.11%
B size DAQ 15.23 17.78 9.76 34.23% 39.89% 21.87%
46.95 DOR 13.93 13.17 8.97 29.40% 27.79% 19.06%

SEID 35.84 37.38 33.45 76.32% 79.53% 71.55%
Ola CGL 4.85 4.85 4.85 13.55% 13.55% 13.55%

CGU 4.85 4.85 4.85 13.55% 13.55% 13.55%
B size DAQ 1.87 1.87 1.87 5.44% 5.44% 5.44%
45.05 DOR 4.68 4.68 4.68 13.20% 13.20% 13.20%

SEID 35.20 35.20 35.20 94.61% 94.61% 94.61%
Ontodna CGL 1.97 2.23 1.81 36.32% 39.30% 33.57%

CGU 1.97 2.23 1.81 36.32% 39.30% 33.57%
B size DAQ 3.48 3.88 3.14 60.01% 65.71% 54.97%
5.92 DOR 2.53 2.68 2.27 44.20% 46.22% 40.90%

SEID 4.29 4.93 4.22 73.00% 82.68% 72.11%

Table A.8: Average alignment sizes with and without modularization (excluding align-
ments of size 0)

148

Average original alignment size (B): 24.84
DAQ DOR CGU CGL SEID

Accepted C 6.22 6.42 3.91 3.91 18.96
alignment SO 7.20 6.46 4.87 4.87 19.92
size N 4.72 5.01 3.09 3.09 18.36
Accepted C 36.31% 34.87% 21.73% 21.73% 79.59%
alignment SO 41.61% 36.00% 26.02% 26.02% 85.51%
size (%) N 30.11% 29.23% 18.26% 18.26% 77.64%

Average candidate alignment size: 28.95
Average # of arguments: 57.90

DAQ DOR CGU CGL SEID

Avg candidates C 4.98 5.80 3.65 3.65 23.70
with mod. SO 14.92 14.50 10.96 10.96 50.51

N 4.98 5.80 3.65 3.65 23.70
Avg # args C 12.96 14.42 9.01 9.01 48.61
with mod. SO 4.98 5.80 3.65 3.65 23.70

N 9.95 11.59 7.30 7.30 47.40
Avg candidates C 29.16% 27.99% 16.78% 16.78% 76.15%
with mod. SO 29.16% 27.99% 16.78% 16.78% 76.15%
(%) N 29.16% 27.99% 16.78% 16.78% 76.15%
Avg # args C 40.62% 35.21% 25.26% 25.26% 85.00%
with mod. SO 35.22% 33.79% 20.35% 20.35% 78.26%
(%) N 29.16% 27.99% 16.78% 16.78% 76.15%

Table A.9: Average accepted alignment sizes (averaged by modularization technique,
excluding alignments of size 0)

149

MT System Size 0 Size 6= 0 Total Size 0 %
DAQ Asmov 1446 737 2183 66.24%

Falcon 1725 904 2629 65.61%
Lily 1034 1581 2615 39.54%
Ola 4924 336 5260 93.61%
Ontodna 3838 1276 5114 75.05%

Average 68.01%
DOR Asmov 1374 809 2183 62.94%

Falcon 1624 1005 2629 61.77%
Lily 977 1638 2615 37.36%
Ola 4924 336 5260 93.61%
Ontodna 3902 1212 5114 76.30%

Average 66.40%
CGU Asmov 1235 948 2183 56.57%

Falcon 1370 1259 2629 52.11%
Lily 713 1902 2615 27.27%
Ola 5041 219 5260 95.84%
Ontodna 3548 1566 5114 69.38%

Average 60.23%
CGL Asmov 1235 948 2183 56.57%

Falcon 1370 1259 2629 52.11%
Lily 713 1902 2615 27.27%
Ola 5041 219 5260 95.84%
Ontodna 3548 1566 5114 69.38%

Average 60.23%
SEID Asmov 0 2183 2183 0.00%

Falcon 0 2629 2629 0.00%
Lily 0 2615 2615 0.00%
Ola 4880 380 5260 92.78%
Ontodna 208 4906 5114 4.07%

Average 19.37%
Over all techniques

Asmov 5290 5625 10915 48.47%
Falcon 6089 7056 13145 46.32%
Lily 3437 9638 13075 26.29%
Ola 24810 1490 26300 94.33%
Ontodna 15044 10526 25570 58.83%

Overall average 54.85%

Table A.10: Percentage of empty alignments by modularization technique and align-
ment system

150

Appendix B

Thesis Ontology

B.1 Thesis Ontology Axiomatization

Classes

Academic

Academic ≡ ∃ hasRole {lecturer} t ∃ hasRole {professor}
Academic v Person

Chapter

Chapter v Thing

Chapter v ¬ Person

Chapter v ¬ Role

Chapter v ¬ Section

Chapter v ¬ Thesis

Chapter v ¬ Person

Role v ¬ Person

Section v ¬ Person

Thesis v ¬ Person

Chapter v ¬ Role

Person v ¬ Role

Section v ¬ Role

Thesis v ¬ Role

Chapter v ¬ Section

Person v ¬ Section

Role v ¬ Section

Thesis v ¬ Section

Chapter v ¬ Thesis

Person v ¬ Thesis

Role v ¬ Thesis

151

Section v ¬ Thesis

MastersStudent

MastersStudent ≡ ∃ hasRole {masters}
MastersStudent v PostGradStudent

MastersThesis

MastersThesis ≡ ∃ hasAuthor MastersStudent

MastersThesis v PostGradThesis

MastersThesis v ¬ PhDThesis

Person

Person v ∃ hasRole Role

Person v Thing

Person v ¬ Chapter

Role v ¬ Chapter

Section v ¬ Chapter

Thesis v ¬ Chapter

Person v ¬ Chapter

Person v ¬ Role

Person v ¬ Section

Person v ¬ Thesis

Chapter v ¬ Role

Person v ¬ Role

Section v ¬ Role

Thesis v ¬ Role

Chapter v ¬ Section

Person v ¬ Section

Role v ¬ Section

Thesis v ¬ Section

Chapter v ¬ Thesis

Person v ¬ Thesis

Role v ¬ Thesis

Section v ¬ Thesis

PhDStudent

PhDStudent ≡ ∃ hasRole {phd}

152

PhDStudent v PostGradStudent

PhDThesis

PhDThesis ≡ ∃ hasAuthor PhDStudent

PhDThesis v PostGradThesis

PhDThesis v ¬ MastersThesis

PostGradStudent

PostGradStudent ≡ ∃ hasRole {masters} t ∃ hasRole {phd}
PostGradStudent v Student

PostGradThesis

PostGradThesis ≡ ∃ hasAuthor PostGradStudent

PostGradThesis ≡ = hasFirstSupervisor Academic

PostGradThesis ≡ = hasSecondSupervisor Academic

PostGradThesis v Thesis

PostGradThesis v ¬ UnderGradThesis

Role

Role ≡ {professor} t {lecturer} t {phd} t {undergrad} t {masters}
Role v Thing

Person v ¬ Chapter

Role v ¬ Chapter

Section v ¬ Chapter

Thesis v ¬ Chapter

Chapter v ¬ Person

Role v ¬ Person

Section v ¬ Person

Thesis v ¬ Person

Role v ¬ Chapter

Role v ¬ Person

Role v ¬ Section

Role v ¬ Thesis

Chapter v ¬ Section

Person v ¬ Section

Role v ¬ Section

Thesis v ¬ Section

Chapter v ¬ Thesis

Person v ¬ Thesis

153

Role v ¬ Thesis

Section v ¬ Thesis

Section

Section v Thing

Person v ¬ Chapter

Role v ¬ Chapter

Section v ¬ Chapter

Thesis v ¬ Chapter

Chapter v ¬ Person

Role v ¬ Person

Section v ¬ Person

Thesis v ¬ Person

Chapter v ¬ Role

Person v ¬ Role

Section v ¬ Role

Thesis v ¬ Role

Section v ¬ Chapter

Section v ¬ Person

Section v ¬ Role

Section v ¬ Thesis

Chapter v ¬ Thesis

Person v ¬ Thesis

Role v ¬ Thesis

Section v ¬ Thesis

Student

Student ≡ ∃ hasRole {masters} t ∃ hasRole {phd} t ∃ hasRole {undergrad}
Student v Person

Thesis

Thesis ≡ ∃ hasChapter Chapter

Thesis ≡ = hasAuthor Person

Thesis ≡ ≥ 1 hasSupervisor Academic

Thesis v Thing

Thesis v = hasAuthor Person

154

Person v ¬ Chapter

Role v ¬ Chapter

Section v ¬ Chapter

Thesis v ¬ Chapter

Chapter v ¬ Person

Role v ¬ Person

Section v ¬ Person

Thesis v ¬ Person

Chapter v ¬ Role

Person v ¬ Role

Section v ¬ Role

Thesis v ¬ Role

Chapter v ¬ Section

Person v ¬ Section

Role v ¬ Section

Thesis v ¬ Section

Thesis v ¬ Chapter

Thesis v ¬ Person

Thesis v ¬ Role

Thesis v ¬ Section

Thing

UnderGradStudent

UnderGradStudent ≡ ∃ hasRole {undergrad}
UnderGradStudent v Student

UnderGradThesis

UnderGradThesis ≡ ∃ hasAuthor UnderGradStudent

UnderGradThesis v Thesis

UnderGradThesis v ¬ PostGradThesis

Object properties

authorOf

authorOf ≡ hasAuthor−

chapterOf

chapterOf ≡ hasChapter−

155

hasAuthor

authorOf ≡ hasAuthor−

∃ hasAuthor Thing v Thesis

> v ∀ hasAuthor Student

hasChapter

chapterOf ≡ hasChapter−

∃ hasChapter Thing v Thesis

> v ∀ hasChapter Chapter

hasFirstSupervisor

v hasSupervisor

hasRole

∃ hasRole Thing v Person

> v ∀ hasRole Role

hasSecondSupervisor

v hasSupervisor

hasSection

∃ hasSection Thing v Chapter

> v ∀ hasSection Section

hasSubSection

∃ hasSubSection Thing v Section

> v ∀ hasSubSection Section

hasSupervisor

supervisorOf ≡ hasSupervisor−

∃ hasSupervisor Thing v Thesis

> v ∀ hasSupervisor Academic

supervisorOf

supervisorOf ≡ hasSupervisor−

156

Individuals

lecturer

lecturer : Role

{professor} 6≡ {lecturer} 6≡ {phd} 6≡ {undergrad} 6≡ {masters}

masters

masters : Role

{professor} 6≡ {lecturer} 6≡ {phd} 6≡ {undergrad} 6≡ {masters}

phd

phd : Role

{professor} 6≡ {lecturer} 6≡ {phd} 6≡ {undergrad} 6≡ {masters}

professor

professor : Role

{professor} 6≡ {lecturer} 6≡ {phd} 6≡ {undergrad} 6≡ {masters}

undergrad

undergrad : Role

{professor} 6≡ {lecturer} 6≡ {phd} 6≡ {undergrad} 6≡ {masters}

B.2 Thesis Ontology TBox in TURTLE

@prefix : <http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#> .

@prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl2: <http://www.w3.org/2006/12/owl2#> .

@prefix thesis: <http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@base <http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl> .

<http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl> rdf:type owl:Ontology .

###

#

Object Properties

157

#

###

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#authorOf

:authorOf rdf:type owl:ObjectProperty ;

owl:inverseOf :hasAuthor .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#chapterOf

:chapterOf rdf:type owl:ObjectProperty ;

owl:inverseOf :hasChapter .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasAuthor

:hasAuthor rdf:type owl:ObjectProperty ;

rdfs:range :Student ;

rdfs:domain :Thesis .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasChapter

:hasChapter rdf:type owl:ObjectProperty ;

rdfs:range :Chapter ;

rdfs:domain :Thesis .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasFirstSupervisor

:hasFirstSupervisor rdf:type owl:ObjectProperty ;

158

rdfs:subPropertyOf :hasSupervisor .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasRole

:hasRole rdf:type owl:ObjectProperty ;

rdfs:domain :Person ;

rdfs:range :Role .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasSecondSupervisor

:hasSecondSupervisor rdf:type owl:ObjectProperty ;

rdfs:subPropertyOf :hasSupervisor .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasSection

:hasSection rdf:type owl:ObjectProperty ;

rdfs:domain :Chapter ;

rdfs:range :Section .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasSubSection

:hasSubSection rdf:type owl:ObjectProperty ,

owl:TransitiveProperty ;

rdfs:range :Section ;

rdfs:domain :Section .

159

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasSupervisor

:hasSupervisor rdf:type owl:ObjectProperty ;

rdfs:range :Academic ;

rdfs:domain :Thesis .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#supervisorOf

:supervisorOf rdf:type owl:ObjectProperty ;

owl:inverseOf :hasSupervisor .

###

#

Data properties

#

###

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#endDate

:endDate rdf:type owl:DatatypeProperty ;

rdfs:domain :Role ;

rdfs:range xsd:date .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#startDate

:startDate rdf:type owl:DatatypeProperty ;

rdfs:domain :Role ;

160

rdfs:range xsd:date .

###

#

Classes

#

###

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Academic

:Academic rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Class ;

owl:unionOf ([rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :lecturer .

]

[rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :professor .

]

) .

] ;

rdfs:subClassOf :Person .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Chapter

:Chapter rdf:type owl:Class ;

rdfs:subClassOf owl:Thing .

161

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#MastersStudent

:MastersStudent rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :masters .

] ;

rdfs:subClassOf :PostGradStudent .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#MastersThesis

:MastersThesis rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasAuthor ;

owl:someValuesFrom :MastersStudent .

] ;

rdfs:subClassOf :PostGradThesis ;

owl:disjointWith :PhDThesis .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Person

:Person rdf:type owl:Class ;

rdfs:subClassOf owl:Thing ,

[rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:someValuesFrom :Role .

] .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#PhDStudent

162

:PhDStudent rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :phd .

] ;

rdfs:subClassOf :PostGradStudent .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#PhDThesis

:PhDThesis rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasAuthor ;

owl:someValuesFrom :PhDStudent .

] ;

rdfs:subClassOf :PostGradThesis .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#PostGradStudent

:PostGradStudent rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Class ;

owl:unionOf ([rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :masters .

]

[rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :phd .

]

) .

] ;

rdfs:subClassOf :Student .

163

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#PostGradThesis

:PostGradThesis rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasFirstSupervisor ;

owl2:onClass :Academic ;

owl:cardinality "1"^^xsd:nonNegativeInteger .

] ,

[rdf:type owl:Restriction ;

owl:onProperty :hasAuthor ;

owl:someValuesFrom :PostGradStudent .

] ,

[rdf:type owl:Restriction ;

owl:onProperty :hasSecondSupervisor ;

owl2:onClass :Academic ;

owl:cardinality "1"^^xsd:nonNegativeInteger .

] ;

rdfs:subClassOf :Thesis ;

owl:disjointWith :UnderGradThesis .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Role

:Role rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Class ;

owl:oneOf (:professor

:lecturer

:phd

:undergrad

:masters

) .

] ;

164

rdfs:subClassOf owl:Thing .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Section

:Section rdf:type owl:Class ;

rdfs:subClassOf owl:Thing .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Student

:Student rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Class ;

owl:unionOf ([rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :masters .

]

[rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :phd .

]

[rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :undergrad .

]

) .

] ;

rdfs:subClassOf :Person .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Thesis

:Thesis rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasChapter ;

165

owl:someValuesFrom :Chapter .

] ,

[rdf:type owl:Restriction ;

owl:onProperty :hasAuthor ;

owl2:onClass :Person ;

owl:cardinality "1"^^xsd:nonNegativeInteger .

] ,

[rdf:type owl:Restriction ;

owl:onProperty :hasSupervisor ;

owl2:onClass :Academic ;

owl:minCardinality "1"^^xsd:nonNegativeInteger .

] ;

rdfs:subClassOf owl:Thing ,

[rdf:type owl:Restriction ;

owl:onProperty :hasAuthor ;

owl2:onClass :Person ;

owl:cardinality "1"^^xsd:nonNegativeInteger .

] .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#UnderGradStudent

:UnderGradStudent rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasRole ;

owl:hasValue :undergrad .

] ;

rdfs:subClassOf :Student .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#UnderGradThesis

:UnderGradThesis rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasAuthor ;

166

owl:someValuesFrom :UnderGradStudent .

] ;

rdfs:subClassOf :Thesis .

http://www.w3.org/2002/07/owl#Thing

owl:Thing rdf:type owl:Class .

###

#

Individuals

#

###

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#lecturer

:lecturer rdf:type :Role .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#masters

:masters rdf:type :Role .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#phd

:phd rdf:type :Role .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#professor

:professor rdf:type :Role .

167

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#undergrad

:undergrad rdf:type :Role .

###

#

General axioms

#

###

[rdf:type owl2:AllDisjointClasses ;

owl2:members (:Chapter

:Person

:Role

:Section

:Thesis

) .

][rdf:type owl:AllDifferent ;

owl:distinctMembers (:professor

:lecturer

:phd

:undergrad

:masters

) .

]

B.3 Thesis Ontology ABox in TURTLE

@prefix : <http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#> .

@prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl2: <http://www.w3.org/2006/12/owl2#> .

@prefix thesis: <http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

168

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@base <http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl> .

<http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl> ;

rdf:type owl:Ontology owl:imports null:thesis.owl .

###

#

Object Properties

#

###

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasAuthor

thesis:hasAuthor rdf:type owl:ObjectProperty .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasChapter

thesis:hasChapter rdf:type owl:ObjectProperty .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasFirstSupervisor

thesis:hasFirstSupervisor rdf:type owl:ObjectProperty .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasRole

thesis:hasRole rdf:type owl:ObjectProperty .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasSecondSupervisor

thesis:hasSecondSupervisor rdf:type owl:ObjectProperty .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasSection

169

thesis:hasSection rdf:type owl:ObjectProperty .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#hasSubSection

thesis:hasSubSection rdf:type owl:ObjectProperty .

###

#

Classes

#

###

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Chapter

thesis:Chapter rdf:type owl:Class .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Person

thesis:Person rdf:type owl:Class .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Section

thesis:Section rdf:type owl:Class .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#Thesis

thesis:Thesis rdf:type owl:Class .

170

###

#

Individuals

#

###

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#chapter1

:chapter1 rdf:type thesis:Chapter ;

thesis:hasSection :section1 ,

:section2 .

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#chapter2

:chapter2 rdf:type thesis:Chapter .

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#florianagrasso

:florianagrasso rdf:type thesis:Person ;

thesis:hasRole thesis:lecturer .

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl

#ontologymodularization

:ontologymodularization rdf:type thesis:Thesis ;

thesis:hasChapter :chapter1 ,

:chapter2 ;

thesis:hasSecondSupervisor :florianagrasso ;

thesis:hasAuthor :pauldoran ;

171

thesis:hasFirstSupervisor :valentinatamma .

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#pauldoran

:pauldoran rdf:type thesis:Person ;

thesis:hasRole thesis:phd .

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#section1

:section1 rdf:type thesis:Section ;

thesis:hasSubSection :subsection1 ,

:subsection2 .

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#section2

:section2 rdf:type thesis:Section .

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#subsection1

:subsection1 rdf:type thesis:Section ;

thesis:hasSubSection :subsubsection1 .

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#subsection2

:subsection2 rdf:type thesis:Section .

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#subsubsection1

:subsubsection1 rdf:type thesis:Section .

172

http://www.csc.liv.ac.uk/~pdoran/ontologies/thesisInstances.owl#valentinatamma

:valentinatamma rdf:type thesis:Person ;

thesis:hasRole thesis:lecturer .

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#lecturer

.

http://www.csc.liv.ac.uk/~pdoran/ontology/thesis.owl#phd

.

173

Bibliography

[1] Sivan Albagli, Rachel Ben-Eliyahu-Zohary, and Solomon Eyal Shimony. Markov

network based ontology matching. In Boutilier [11], pages 1884–1889.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Communica-

tions of the ACM, 26(11):832–843, 1983.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,

Implementation and Applications. Cambridge, 2007.

[4] Claudine Beaumont. The web that thinks for itself. The Daily Telegraph, page 33,

March 20, 2008.

[5] Trevor J.M. Bench-Capon. Persuasion in practical argument using value-based

argumentation frameworks. Journal of Logic and Computation, 13(3):429–448,

2003.

[6] Amaia Bernaras, Iñaki Laresgoiti, and Jose Manuel Corera. Building and reusing

ontologies for electrical network applications. In Wolfgang Wahlster, editor,

ECAI, pages 298–302. John Wiley and Sons, Chichester, 1996.

[7] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and

logic. Cambridge University Press, 2007.

[8] Alex Borgida and Fausto Giunchiglia. Importing from functional knowledge bases

- a preview. In Cuenca-Grau et al. [22].

[9] Alex Borgida and Luciano Serafini. Distributed description logics: Directed do-

main correspondences in federated information sources. In R. Meersman, Z. Tari,

and et al, editors, On the Move to Meaningful Internet Systems 2002: CoopIS,

DOA, and ODBASE : Confederated International Conferences CoopIS, DOA, and

ODBASE 2002. Proceedings, volume 2519 of Lecture Notes in Computer Science,

pages 36–53. Springer Berlin, 2002.

174

[10] Willem N. Borst. Construction of Engineering ontologies for knowledge shar-

ing and reuse. PhD thesis, Centre for Telematica and Information Technology,

University of Twente, 1997.

[11] Craig Boutilier, editor. IJCAI 2009, Proceedings of the 21st International Joint

Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17,

2009, 2009.

[12] Ronald J. Brachman and James G. Schmolze. An overview of the kl-one knowl-

edge representation system. Cognitive Science, 9(2):171 – 216, 1985.

[13] Janez Brank, Marko Grobelnik, and Dunja Mladenic. A survey of ontology evalua-

tion techniques. In Proceedings of 8th International multi-conference Information

Society, pages 166–169, 2005.

[14] John G. Breslin, Andreas Harth, Uldis Bojars, and Stefan Decker. Towards

semantically-interlinked online communities. In Asunción Gómez-Pérez and

Jérôme Euzenat, editors, ESWC, volume 3532 of Lecture Notes in Computer

Science, pages 500–514. Springer, 2005.

[15] Christopher Brewster, Kieron O’Hara, Steve Fuller, Yorick Wilks, Enrico Fran-

coni, Mark A. Musen, Jeremy Ellman, and Simon Buckingham Shum. Knowledge

representation with ontologies: The present and future. IEEE Intelligent Systems,

19(1):72–81, 2004.

[16] Bruce G. Buchanan and Edward H. Shortliffe. Rule Based Expert Systems:

The MYCIN Experiments of the Stanford Heuristic Programming Project. The

Addison-Wesley series in artificial intelligence. Addison-Wesley, 1984.

[17] Jacques Calmet and Anusch Daemi. From entropy to ontology. In AT2AI-4 -

Fourth International Symposium ”From Agent Theory to Agent Implementation”

at 17th European Meeting on Cybernetics and Systems Research, Vienna, April

2004., 2004.

[18] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and James P.

Rice. Open knowledge base connectivity 2.0. Technical Report KSL-98-06, Knowl-

edge Systems Laboratory, Stanford University, 1998.

[19] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A comparison of

string metrics for matching names and records. In Proceedings of KDD Workshop

on Data Cleaning and Object Consolidation, pages 73–78, 2003.

[20] William W. Cohen, Alexander Borgida, and Haym Hirsh. Computing least com-

mon subsumers in description logics. In AAAI, pages 754–760, 1992.

175

[21] Oscar Corcho. A Layered Declarative Approach to Ontology Translation with

Knowledge Preservation (Frontiers in Artificial Intelligence and Applications).

IOS Press, US, 2005.

[22] Bernardo Cuenca-Grau, Vasant Honavar, Anne Schlicht, and Frank Wolter, ed-

itors. Proceedings of the 2nd International Workshop on Modular Ontologies,

WOMO’07, Whistler, Canada, October 28, 2007, 2007.

[23] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Just

the right amount: Extracting modules from ontologies. In WWW 2007, Proceed-

ings of the 16th International World Wide Web Conference, Banff, Canada, May

8-12, 2007, pages 717–727, 2007.

[24] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler.

Modular reuse of ontologies: Theory and practice. Journal of Artificial Intel-

ligence Research (JAIR), 31:273–318, 2008.

[25] Bernardo Cuenca-Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Au-

tomatic Partitioning of OWL Ontologies Using E-Connections. In Proceedings of

the 2005 International Workshop on Description Logics (DL-2005), 2005.

[26] Mathieu d’Aquin, Paul Doran, Enrico Motta, and Valentina Tamma. Towards a

parametric ontology modularization framework based on graph transformation.

In Cuenca-Grau et al. [22].

[27] Mathieu d’Aquin, Marta Sabou, and Enrico Motta. Modularization: a key for

the dynamic selection of relevant knowledge components. In First International

Workshop on Modular Ontologies, ISWC 2006, First International Workshop on

Modular Ontologies, ISWC 2006, Athens, Georgia, USA., 2006.

[28] Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and Marta Sabou. On-

tology modularization for knowledge selection: Experiments and evaluations.

In Database and Expert Systems Applications, 18th International Conference,

DEXA 2007, Regensburg, Germany, September 3-7, 2007, Proceedings, pages

874–883, 2007.

[29] R. Davis, H. Shrobe, and P. Szolovits. What is a knowledge representation? AI

Magazine, 14(1):17–33, 1993.

[30] Klaas Dellschaft and Steffen Staab. On how to perform a gold standard based

evaluation of ontology learning. In Isabel F. Cruz, Stefan Decker, Dean Allemang,

Chris Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo,

editors, International Semantic Web Conference, volume 4273 of Lecture Notes

in Computer Science, pages 228–241. Springer, 2006.

176

[31] Oxford Dictionaries. Oxford English Dictionary. Oxford University Press, 2008.

[32] Paul Doran, Ignazio Palmisano, and Valentina Tamma. SOMET: Algo-

rithm and Tool for SPARQL Based Ontology Module Extraction. In Ul-

rike Sattler and Andrei Tamilin, editors, Proceedings of the Workshop on On-

tologies: Reasoning and Modularity (WORM-08). http://ftp.informatik.rwth-

aachen.de/Publications/CEUR-WS/Vol-348/, 2008.

[33] Paul Doran, Valentina A. M. Tamma, and Luigi Iannone. Ontology module

extraction for ontology reuse: an ontology engineering perspective. In Silva et al.

[119], pages 61–70.

[34] Paul Doran, Valentina A. M. Tamma, Ignazio Palmisano, Terry R. Payne, and

Luigi Iannone. Evaluating ontology modules using an entropy inspired metric. In

Jain [77], pages 918–922.

[35] Paul Doran, Valentina A. M. Tamma, Terry R. Payne, and Ignazio Palmisano.

Dynamic selection of ontological alignments: A space reduction mechanism. In

Boutilier [11], pages 2028–2033.

[36] Phan Minh Dung. On the acceptability of arguments and its fundamental role

in nonmonotonic reasoning, logic programming and n-person games. Artificial

Intelligence, 77(2):321 – 357, 1995.

[37] Paul E. Dunne and Trevor J.M. Bench-Capon. Complexity in value-based argu-

ment systems. In In Proceedings 9th European Conference, JELIA, volume 3229

of Lecture Notes in Artificial Intelligence, pages 360–371. Springer Verlag, 2004.

[38] John Davies (Editor), Dieter Fensel (Editor), and Frank van Harmelen (Editor).

Towards the Semantic Web: Ontology-driven Knowledge Management. John Wi-

ley and Sons Ltd, UK, 2002.

[39] Marc Ehrig and Steffen Staab. QOM – Quick Ontology Mapping. In The Semantic

Web – ISWC 2004: Third International Semantic Web Conference, Hiroshima,

Japan, November 7-11, 2004. Proceedings, volume 33298 of Lecture Notes in Com-

puter Science, page 683. Springer Berlin, 2004.

[40] Faezeh Ensan. Formalizing ontology modularization through the notion of inter-

faces. In Aldo Gangemi and Jérôme Euzenat, editors, EKAW, volume 5268 of

Lecture Notes in Computer Science, pages 74–82. Springer, 2008.

[41] Faezeh Ensan and Weichang Du. An interface-based ontology modularization

framework for knowledge encapsulation. In Amit P. Sheth, Steffen Staab, Mike

Dean, Massimo Paolucci, Diana Maynard, Timothy W. Finin, and Krishnaprasad

177

Thirunarayan, editors, International Semantic Web Conference, volume 5318 of

Lecture Notes in Computer Science, pages 517–532. Springer, 2008.

[42] Jerome Euzenat and Pavel Shvaiko. Ontology Matching. Springer, 2007.

[43] Jérôme Euzenat, Antoine Zimmermann, and Frederico Luiz Gonçalves de Freitas.

Alignment-based modules for encapsulating ontologies. In Cuenca-Grau et al.

[22].

[44] Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, and

Peter F. Patel-Schneider. Oil: An ontology intrastructe for the semantic wen.

IEEE Intelligent Systems, 16(2):38–45, 2001.

[45] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-

terns : elements of reusable object-oriented software. Addison Wesley, 1995.

[46] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, Jos Lehmann Aldo

Gangemi, Carola Catenacci, Massimiliano Ciaramita, Jos Lehmann Aldo

Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann. On-

tology evaluation and validation: an integrated formal model for the quality

diagnostic task. Technical report, Laboratory for Applied Ontology, 2005.

[47] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann.

Modelling ontology evaluation and validation. In ESWC, pages 140–154, 2006.

[48] Aldo Gangemi and Valentina Presutti. Handbook of Ontologies (2nd edition),

chapter Ontology Design Patterns. Springer: Berlin, 2009.

[49] Michael R. Genesereth and Richard E. Fikes. Knowledge interchange format,

version 3.0 reference manual. Technical Report Technical Rerot Logic-92-1, Com-

puter Science Department, Stanford University, 1992.

[50] Michael R. Genesereth and Nils J. Nilsson. Logical foundations of Artificial In-

telligence. Morgan Kaufmann, 1987.

[51] Alain Giboin, Diana Maynard, Jens Hartmann, Maria del Carmen Suarez-

Figueroa, Roberta Cuel, and York Sure. Methods for ontology evaluation. KWeb

Deliverable D1.2.3, University of Karlsruhe, DEC 2004.

[52] Asunción Gómez-Pérez. Towards a framework to verify knowledge sharing tech-

nology. Expert Systems With Applications, 11(4):519–529, 1996.

[53] Asunción Gómez-Pérez and Maŕıa del Carmen Suárez-Figueroa. Scenarios for

building ontology networks within the neon methodology. In Yolanda Gil and

Natasha Fridman Noy, editors, K-CAP, pages 183–184. ACM, 2009.

178

[54] Asuncion Gomez-Perez, Mariano Fernandez-Lopez, and Oscar Corcho. Ontolog-

ical Engineering. Springer, London, 2003.

[55] Asunción Gómez-Pérez and Dolores Rojas-Amaya. Ontological reengineering for

reuse. In Dieter Fensel and Rudi Studer, editors, EKAW, volume 1621 of Lecture

Notes in Computer Science, pages 139–156. Springer, 1999.

[56] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. A

logical framework for modularity of ontologies. In Veloso [141], pages 298–303.

[57] Thomas R. Gruber. The role of common ontology in achieving sharable, reusable

knowledge bases. In KR, pages 601–602, 1991.

[58] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2):199–220, 1993.

[59] Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-

edge sharing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.

[60] Michael Grüninger and Mark Fox. Methodology for the design and evaluation

of ontologies. In IJCAI’95, Workshop on Basic Ontological Issues in Knowledge

Sharing, April 13, 1995.

[61] Nicola Guarino. Formal ontology in information systems. In Proceedings of

FOIS’98, pages 3–15. IOS Press, 1998.

[62] Nicola Guarino. Some ontological principles for designing upper level lexical re-

sources. In Proceedings of the First International Conference on Lexical Resources

and Evaluation, pages 527–534, 1998.

[63] Nicola Guarino and Luca Boldrin. Ontological requirements for knowledge shar-

ing. In IJCAI93 Workshop on Knowledge Sharing and Information Interchange,

1993.

[64] Nicola Guarino and Pierdaniele Giaretta. Ontologies and knowledge bases: To-

wards a terminological classification. In N Mars, editor, Towards very large knowl-

edge bases: knowledge building and knowledge sharing (KBKS’95). IOS Press,

1995.

[65] Nicola Guarino and Christopher Welty. Supporting ontological analysis of taxo-

nomical realtionships. Data and knowledge engineering, 39(1):51–74, 2001.

[66] Nicola Guarino and Christopher Welty. Evaluating ontological decisions with

ontoclean. Commun. ACM, 45(2):61–65, 2002.

179

[67] Glen Hart, Martina Johnson, and Catherine Dolbear. Rabbit: Developing a

control natural language for authoring ontologies. In Sean Bechhofer, Manfred

Hauswirth, Jörg Hoffmann, and Manolis Koubarakis, editors, ESWC, volume

5021 of Lecture Notes in Computer Science, pages 348–360. Springer, 2008.

[68] Patrick Hayes. Rdf semantics, 2004.

[69] Patrick J. Hayes. The logic of frames. In J. Brachman and Hector J. Levesque,

editors, Readings in Knowledge Representation. Morgan Kaufmann, 1985.

[70] Martin Hepp. Goodrelations: An ontology for describing products and services of-

fers on the web. In Proceedings of the 16th International Conference on Knowledge

Engineering and Knowledge Management (EKAW2008), volume 5268 of LNCS,

pages 332–347. Springer, 2008.

[71] Carl Hewitt. Offices are open systems. ACM Transactions on Information Sys-

tems, 4(3):271–287, 1986.

[72] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik (Prin-

ciples of Mathematical Logic). Springer-Verlag, 1928.

[73] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and precise justifi-

cations in owl. In ISWC 08 The International Semantic Web Conference 2008,

Karlsruhe, Germany, 2008.

[74] Ian Horrocks. Ontologies and the semantic web. Communications of the ACM,

51(12):58–67, 2008.

[75] Ian Horrocks and Peter Patel-Schneider. Reducing owl entailment to description

logic satisfiability. Web Semantics, 1(4):345 – 357, 2004. International Semantic

Web Conference 2003.

[76] Wei Hu and Yuzhong Qu. Falcon-ao: A practical ontology matching system.

Web Semantics: Science, Services and Agents on the World Wide Web, 6(3):237

– 239, 2008. World Wide Web Conference 2007Semantic Web Track.

[77] L. Jain, editor. 2008 IEEE / WIC / ACM International Conference on Web

Intelligence, WI 2008, 9-12 December 2008, Sydney, NSW, Australia, Main Con-

ference Proceedings. IEEE, 2008.

[78] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of

agent research and development. Journal of Autonomous Agents and Multi-Agent

Systems, 1(1):7–38, 1998.

180

[79] Ernesto Jimenez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Thomas Schneider,

and Rafael Berlanga. Safe and economic re-use of ontologies: A logic-based

methodology and tool support. In The Semantic Web: Research and Applications,

volume 5021 of LNCS, pages 185 – 199. Springer, 2008.

[80] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-

oriented and frame-based languages. Journal of the ACM, 1995.

[81] Michel Klein. Combining and relating ontologies: An analysis of problems and so-

lutions. In Proceedings of the IJCAI’01 Workshop on Ontologies and Information

Sharing, 2001.

[82] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Semantic modu-

larity and module extraction in description logics. In Proceedings of ECAI-2008:

18th European conference on Artificial Intelligence, 2008.

[83] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract

description systems. Artificial Intelligence, 156(1):1–73, 2004.

[84] Loredana Laera. Toward Shared Understanding - An Argumentation Based Ap-

proach for Communication in Open Multi-Agent Systems. Phd thesis, University

of Liverpool, 2008.

[85] Loredana Laera, Ian Blacoe, Valentina A. M. Tamma, Terry R. Payne, Jérôme

Euzenat, and Trevor J. M. Bench-Capon. Argumentation over ontology corre-

spondences in mas. In Edmund H. Durfee, Makoto Yokoo, Michael N. Huhns,

and Onn Shehory, editors, AAMAS, page 228. IFAAMAS, 2007.

[86] Douglas B. Lenat and Edward A. Feigenbaum. On the thresholds of knowledge.

Artificial Intelligence, 47:185–250, 1991.

[87] Hector J. Levesque. Foundations of a functional approach to knowledge repre-

sentation. Artificial Intelligence, 23(2):155–212, 1984.

[88] Hector J. Levesque. Is it enough to get the behavior right? In Boutilier [11],

pages 1439–1444.

[89] E.J. Lowe. Kinds of being. A study of individuation, identity and the logic of

sortal terms. Basil Blackwell, 1989.

[90] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions in ex-

pressive description logics. In Veloso [141], pages 453–458.

[91] Alexander Maedche and Steffen Staab. Measuring similarity between ontologies.

Technical report, University of Karlsruhe, 2001.

181

[92] Alexander Maedche and Steffen Staab. Ontology learning for the semantic web.

IEEE Intelligent Systems, 16(2):72–79, 2001.

[93] Alexander Maedche and Steffen Staab. Measuring similarity between ontologies.

In Asunción Gómez-Pérez and V. Richard Benjamins, editors, EKAW, volume

2473 of Lecture Notes in Computer Science, pages 251–263. Springer, 2002.

[94] Deborah L. McGuinness. Ontologies come of age. In Spinning the Semantic Web:

Bringing the World Wide Web to Its Full Potential. MIT Press, 2002.

[95] George A. Miller. Wordnet: A lexical database for english. Communications of

the ACM, 38(11), 1995.

[96] Marvin Minsky. A framework for representing knowledge. Ai laborartory memo,

MIT, 1974.

[97] Mart́ın O. Moguillansky and Renata Wassermann. Inconsistent-tolerant dl-lite

reasoning: An argumentative approach. In Automated Reasoning about Context

and Ontology Evolution - ARCOE 2009 (at IJCAI 2009), 2009.

[98] Allen Newell. The knowledge level. Artificial Intelligence, 18(1):87 –127, 1982.

[99] Allen Newell and Herbert A. Simon. Computer science as empirical inquiry:

symbols and search. Communications of the ACM, 19(3):113–126, 1976.

[100] Natalya F. Noy and Deborah L. McGuinness. Ontology development 101: A

guide to creating your first ontology. Technical Report SMI-2001-0880, Stanford

Medical Informatics (SMI), Department of Medicine, Stanford University School

of Medicine, 2001.

[101] Natalya F. Noy and Mark A. Musen. The PROMPT suite: interactive tools

for ontology merging and mapping. International Journal of Human-Computer

Studies, 59(6):983–1024, December 2003.

[102] Natalya Fridman Noy, Ray W. Fergerson, and Mark A. Musen. The knowledge

model of protégé-2000: Combining interoperability and flexibility. In Rose Dieng

and Olivier Corby, editors, EKAW, volume 1937 of Lecture Notes in Computer

Science, pages 17–32. Springer, 2000.

[103] Natalya Fridman Noy and Mark A. Musen. Specifying ontology views by traversal.

In International Semantic Web Conference, pages 713–725, 2004.

[104] Ignazio Palmisano, Valentina A. M. Tamma, Luigi Iannone, Terry R. Payne, and

Paul Doran. Dynamic change evaluation for ontology evolution in the semantic

web. In Jain [77], pages 34–40.

182

[105] Ignazio Palmisano, Valentina A. M. Tamma, Terry R. Payne, and Paul Doran.

Task oriented evaluation of module extraction techniques. In Abraham Bern-

stein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico

Motta, and Krishnaprasad Thirunarayan, editors, International Semantic Web

Conference, volume 5823 of Lecture Notes in Computer Science, pages 130–145.

Springer, 2009.

[106] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontology

Language Semantics and Abstract Syntax, 2004.

[107] Charles S. Peirce. On the algebra of logic. American Journal of Mathematics,

3(1):15–57, 1880.

[108] Alan Rector, Amedeo Napoli, Giorgos Stamou, Giorgos Stoilos, Holger Wache,

Jeff Pan, Mathieu d’Aquin, Stefano Spaccapietra, and Vassilis Tzouvaras. Report

on modularization of ontologies. Technical report, Knowledge Web Deliverable

D2.1.3.1, 2005.

[109] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach

(International Edition). Pearson Education, 2003.

[110] Thomas Saaty. A scaling method for priorities in hierarchical structures. Journal

of Mathematical Psychology, 15:234–281, 1977.

[111] Marta Sabou, Vanessa Lopez, Enrico Motta, and Victoria Uren. Ontology se-

lection: Ontology evaluation on the real semantic web. In Proceedings of the

EON’2006 Workshop, ”Evaluation of Ontologies on the Web”, held in conjunc-

tion with WWW’2006, 2006.

[112] Anne Schlicht and Heiner Stuckenschmidt. Towards structural criteria for on-

tology modularization. In First International Workshop on Modular Ontologies,

ISWC 2006, First International Workshop on Modular Ontologies, ISWC 2006,

Athens, Georgia, USA., 2006.

[113] Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog, Nigel

Shadbolt, Walter Van de Velde, and Bob Wielinga. Knowledge Engineering and

Management: The CommonKADS Methodology. MIT Press, 1999.

[114] John R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences,

3(3):417–457, 1980.

[115] Julian Seidenberg and Alan Rector. Web ontology segmentation: analysis, classi-

fication and use. In WWW ’06: Proceedings of the 15th international conference

on World Wide Web, pages 13–22, New York, NY, USA, 2006. ACM Press.

183

[116] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revisited.

IEEE Intelligent Systems, 21(3):96–101, Jan-Feb 2006.

[117] Claude E. Shannon. A mathematical theory of communication. Technical Report

27:379-423, 623-656, Bell System Technical Report, July and October 1948.

[118] Yoav Shoham. Agent-oriented programming. Artificial Intelligenct, 60(1), 1993.

[119] Mário J. Silva, Alberto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L.

McGuinness, Bjørn Olstad, Øystein Haug Olsen, and André O. Falcão, editors.

Proceedings of the Sixteenth ACM Conference on Information and Knowledge

Management, CIKM 2007, Lisbon, Portugal, November 6-10, 2007. ACM, 2007.

[120] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 5(2),

2007.

[121] David Smith. Focus: Internet explorers: www.thenewrevolutionaries after

youtube and myspace, what next? The Observer, November 26, 2006.

[122] John F Sowa. Conceptual Structures: Information Processing in Mind and Ma-

chine. Addison-Wesley, 1984.

[123] John F. Sowa. Knowledge Representation: Logical, Philosophical and Computa-

tional Foundations. Brooks/Cole, 2000.

[124] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. Springer, 2004.

[125] Steffen Staab, Rudi Studer, Hans-Peter Schnurr, and York Sure. Knowledge

processes and ontologies. IEEE Intelligent Systems, 16(1):26–34, 2001.

[126] Clifford Stoll. The internet? bah! Newsweek, February 1995.

[127] Heiner Stuckenschmidt and Michel C. A. Klein. Integrity and change in modular

ontologies. In Georg Gottlob and Toby Walsh, editors, IJCAI, pages 900–908.

Morgan Kaufmann, 2003.

[128] Heiner Stuckenschmidt and Michel C. A. Klein. Structure-based partitioning of

large concept hierarchies. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank

van Harmelen, editors, International Semantic Web Conference, volume 3298 of

Lecture Notes in Computer Science, pages 289–303. Springer, 2004.

[129] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engineering,

principles and methods. Data and Knowledge Engineering, 25(1-2):161–197, 1998.

184

[130] Mari Carmen Suarez-Figueroa, Eva Blomqvist, Mathieu D’Aquin, Mauricio Es-

pinoza, Asuncion Gomez-Perez, Holger Lewen, Igor Mozetic, Raul Palma, Maria

Poveda, Margherita Sini, Boris Villazon-Terrazas, Fouad Zablith, and Martin Dz-

bor. Revision and extension of the neon methodology for building contextualized

ontology networks. NeOn Deliverable D5.4.2, UPM, 2009.

[131] Mari Carmen Suarez-Figueroa, Guadalupe Aguado de Cea, Carlos Buil, Klaas

Dellschaft, Mariano Fernandez-Lopez, Andres Garcia, Asuncion Gomez-Perez,

German Herrero, Elena Montiel-Ponsoda, Marta Sabou, Boris Villazon-Terrazas,

and Zheng Yufei. Neon methodology for building contextualized ontology net-

works. NeOn Deliverable D5.4.1, UPM, 2008.

[132] Katia P. Sycara. Multiagent systems. AI Magazine, 19(2):79–92, 1998.

[133] Adolfo Lozano Tello and Asunción Gómez-Pérez. Ontometric: A method to

choose the appropriate ontology. Journal Database Management, 15(2):1–18,

2004.

[134] James Hendler Tim Berners-Lee and Ora Lassila. The semantic web. Scientific

American, May 2001.

[135] Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner: System

description. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR

2006), volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297.

Springer, 2006.

[136] Alan M. Turing. Computing machinery and intelligence, chapter 1, pages 12–35.

Computers and Thought. McGraw-Hill, Inc., New York, NY, USA, 1963.

[137] M. Uschold. Where is the semantics in the semantic web? In Proceedings of

the Workshop on Ontologies in Mutli-Agent Systems at the 5th Conference on

Autonomous Agents, 2001.

[138] Michael Uschold and Michael Grüninger. Ontologies: principles, methods and

applications. Knowledge Engineering Review, 11(2), 1996.

[139] Gertjan van Heijst, A. Th. Schreiber, and Bob J. Wielinga. Using explicit on-

tologies in kbs development. Int. J. Hum.-Comput. Stud., 46(2-3):183–292, 1997.

[140] Cornelis J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 1979.

[141] Manuela M. Veloso, editor. IJCAI 2007, Proceedings of the 20th International

Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,

2007, 2007.

185

[142] Pepijn R.S Visser, Dean M. Jones, T.J.M. Bench-Capon, and M.J.R. Shave.

Assessing heterogeneity by classifying ontology mismatches. In Nicola Guarino,

editor, Formal Ontology In Information Systems, pages 148–162. IOS Press, 1998.

[143] Raphael Volz, Daniel Oberle, Steffen Staab, and Boris Motik. Kaon server - a

semantic web management system. In Alternate Track Proceedings of the Twelfth

International World Wide Web Conference, WWW2003, Budapest, Hungary, 20-

24 May 2003. ACM, 2003.

[144] Richard Waters. World-wise web? finally on the horizon are computers that can

reason. Financial Times, March 3, 2008.

[145] Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cam-

bridge University Press, 1910-13.

[146] Michael Wooldridge. An introduction to multiagent systems. John Wiley & Sons,

2002.

[147] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: theory and

practice. Knowledge Engineering Review, 10(2):115–152, 1995.

[148] Jonathan Yu, James A. Thom, and Audrey M. Tam. Ontology evaluation using

wikipedia categories for browsing. In Silva et al. [119], pages 223–232.

[149] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Organiza-

tional abstractions for the analysis and design of multi-agent system. In First in-

ternational workshop, AOSE 2000 on Agent-oriented software engineering, pages

235–251, Secaucus, NJ, USA, 2001. Springer-Verlag New York, Inc.

186

