
1

A Resolution Calculus for the Branching-Time Temporal Logic CTL

LAN ZHANG, Capital University of Economics and Business
ULLRICH HUSTADT, University of Liverpool
CLARE DIXON, University of Liverpool

The branching-time temporal logic CTL is useful for specifying systems that change over time and involve
quantification over possible futures. Here we present a resolution calculus for CTL that involves the trans-
lation of formulae to a normal form and the application of a number of resolution rules. We use indices in the
normal form to represent particular paths and the application of the resolution rules is restricted dependent
on an ordering and selection function to reduce the search space. We show that the translation preserves
satisfiability, the calculus is sound, complete and terminating and consider the complexity of the calculus.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Temporal logic;
F.4.1 [Mathematical Logic and Formal Languages]: Mechanical theorem proving; I.2.3 [Artificial In-
telligence]: Deduction and theorem proving

General Terms: Theory, Algorithms, Verification

Additional Key Words and Phrases: Temporal Logic, Automated Theorem Proving, Resolution

ACM Reference Format:
Zhang, L., Hustadt, U., and Dixon, C. 2013. A Resolution Calculus for the Branching-Time Temporal Logic
CTL. ACM Trans. Comput. Logic 1, 1, Article 1 (October 12), 39 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Computation Tree Logic (CTL) [Clarke and Emerson 1982] is a propositional
branching-time temporal logic whose underlying model of time is a choice of possi-
bilities branching into the future. CTL uses the path quantifiers A (for all paths)
and E (for some path) and temporal operators, for example 2 meaning now and at
all future moments. Additionally CTL has the restriction that each temporal oper-
ator must be paired with a path quantifier, for example A2ϕ means on all paths
ϕ always holds. There are many important applications that can be represented in
and reasoned about in CTL such as the verification of digital circuits [Clarke et al.
2000], analysis of real time and concurrent systems [Manna and Pnueli 1992], XPath
query processing [Afanasiev et al. 2004], communication protocol verification [Clarke
et al. 1986], and Grid Component system verification [Basso and Bolotov 2007]. A
variant on CTL has been used in [Attie 2003] applied to concurrent control protocols

This work was partially supported by the UK Engineering and Physical Sciences Research Council (EPSRC)
grant number EP/D060451.
The first author was partially supported by (1) the Technology Foundation for Selected Overseas Chinese
Scholars, Bureau of Human Resources and Social Security of Beijing and (2) National Natural Science Foun-
dation of China (Grant No. 61303018) and (3) Research Improvement Funding, Beijing Municipal Education
Commission.
Authors’ addresses: L. Zhang, School of Information, Capital University of Economics and Business, China;
U. Hustadt, C. Dixon, Department of Computer Science, University of Liverpool, UK
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 12 ACM 1529-3785/12/10-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:2 L. Zhang et al.

where the focus is synthesising a concurrent program from a specification. Addition-
ally branching-time logics have been used to specify and verify robustness in systems.
The logics RoCTL* [French et al. 2007] and RoCTL [McCabe-Dansted and Dixon 2010]
are branching-time temporal logics with additional operators to deal with obligation
and robustness (i.e. at most n failures can occur).

Given the specification of a system in some logic it is often useful to be able to verify
properties of that system. This is to show that desirable properties do hold on all runs
through the system and unwanted properties do not hold. There are two main ways
to do this: model checking and theorem proving. Using model checking one inputs a
model of the system, usually a state transition system and a property to be checked
that is a formula in some logical language, for example CTL. The output is a set of
states where the property holds. With theorem proving both the model of the system
and the property are given as logical formulae. A calculus for the logic is applied to
show that the property follows from the specification. In this paper we follow the theo-
rem proving route and provide a resolution-based calculus for CTL. The complexity of
the model checking problem for CTL is PTIME complete [Clarke et al. 1986] and the
complexity of satisfiability is EXPTIME-complete [Clarke and Emerson 1982; Emer-
son 1990; Emerson and Halpern 1985]. Whilst the complexity of satisfiability is higher
than for model checking, theorem proving approaches to CTL are still useful, for exam-
ple where a model of a system is not readily available or immediately obvious, or to use
in conjunction with model checkers for example to check that complex CTL properties
are in fact satisfiable before they are model checked.

This paper presents a sound, complete and terminating resolution calculus, R�,SCTL,
for the logic CTL. The overall approach involves transformation to a normal form,
called Separated Normal Form with Global Clauses for CTL, SNFg

CTL for short, and the
application of step and eventuality resolution rules in R�,SCTL that deal with constraints
on next states and on future states, respectively. This paper is a revised and extended
version of the calculus R�,SCTL for CTL described in [Zhang et al. 2009a] and formed part
of the thesis [Zhang 2010].

The calculus relates to that in [Bolotov 2000] that we have improved upon in the
following aspects.

(1) An idea introduced in [Bolotov 2000] is the use of indices as part of the CTL normal
form that relate to a particular path. We give a formal interpretation of indices and
a formal semantics for the indexed normal form, SNFg

CTL, which is missing from
[Bolotov 2000].

(2) An ordering and a selection function are introduced into the calculus which allow
us to reduce the number of possible applications of the inference rules during proof
search.

(3) We show that our calculus R�,SCTL is sound, complete and terminating. Using our
completeness proof we can show that two eventuality resolution rules in [Bolotov
2000] are redundant.

(4) A detailed complexity analysis of the calculus is provided, which is absent for the
earlier calculus.

(5) Finally, we have implemented R�,SCTL in the theorem prover CTL-RP [Zhang et al.
2009b] whereas no implementation was provided for the earlier calculus in [Bolo-
tov 2000].

The rest of this paper is organised as follows. We first present the syntax and se-
mantics of CTL in Section 2 and then introduce a normal form for CTL, SNFg

CTL, in
Section 3. In Section 4 the calculus R�,SCTL is presented. We provide proofs for sound-
ness and completeness of R�,SCTL in Section 5. In Section 6 we discuss the complexity of

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:3

our calculus R�,SCTL. Finally, related work is discussed in Section 7 and conclusions are
drawn in Section 8. Some of the proofs have been moved to an Electronic Appendix.

2. COMPUTATIONAL TREE LOGIC (CTL)
The language of CTL is based on

— a set of atomic propositions PPL;
— propositional constants, true and false;
— boolean operators, ∧,∨,⇒, and ¬ (∧ and ∨ are associative and commutative1); and
— temporal operators 2 (always in the future), # (at the next moment in time), 3

(eventually in the future), U (until), and W (unless); and the universal path quan-
tifier A (for all future paths) and the existential path quantifier E (for some future
path).

The set of (well-formed) formulae of CTL is inductively defined as follows:

(1) true and false are CTL formulae;
(2) all atomic propositions in PPL are CTL formulae; and
(3) if ϕ and ψ are CTL formulae, then so are ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ⇒ ψ), A2ϕ, A3ϕ,

A#ϕ, A(ϕU ψ), A(ϕW ψ), E2ϕ, E3ϕ, E#ϕ, E(ϕU ψ), and E(ϕW ψ).

Formulae of CTL over PPL are typically interpreted in model structures (see for ex-
ample [Emerson 1990]), M = 〈S,R,L〉, where S is a set of states; R is a serial binary
accessibility relation over S; and L : S → 2PPL is an interpretation function mapping
each state to the set of atomic propositions true at that state. These model structures
are not required to be tree structures. However, CTL formulae can also be interpreted
in tree model structures, which will be introduced later.

An infinite path χsi is an infinite sequence of states si, si+1, si+2, . . . such that for
every j ≥ i, (sj , sj+1) ∈ R. A state s′ ∈ S is reachable from the state s ∈ S iff there
exists an infinite path χs such that s′ ∈ χs. If there exists two states s, s′ ∈ S such that
(s, s′) ∈ R, we say that s is a predecessor of s′ and s′ is a successor of s.

The satisfaction relation |= between a pair consisting of a model structure M and a
state si ∈ S, and a CTL formula is inductively defined as follows:

〈M, si〉 |= true
〈M, si〉 6|= false
〈M, si〉 |= p iff p ∈ L(si) for an atomic proposition p ∈ PPL

〈M, si〉 |= ¬ϕ iff 〈M, si〉 6|= ϕ
〈M, si〉 |= (ϕ ∧ ψ) iff 〈M, si〉 |= ϕ and 〈M, si〉 |= ψ
〈M, si〉 |= (ϕ ∨ ψ) iff 〈M, si〉 |= ϕ or 〈M, si〉 |= ψ
〈M, si〉 |= (ϕ⇒ ψ) iff 〈M, si〉 6|= ϕ or 〈M, si〉 |= ψ
〈M, si〉 |= E#ψ iff there exists a path χsi such that 〈M, si+1〉 |= ψ
〈M, si〉 |= A(ϕU ψ) iff for every path χsi there exists sj ∈ χsi such that

〈M, sj〉 |= ψ and for every sk ∈ χsi , if i ≤ k < j,
then 〈M, sk〉 |= ϕ

〈M, si〉 |= E(ϕU ψ) iff there exists a path χsi and there exists sj ∈ χsi
such that 〈M, sj〉 |= ψ and for every sk ∈ χsi ,
if i ≤ k < j, then 〈M, sk〉 |= ϕ

1Used to simplify the presentation of the subsequent simplification and resolution rules.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:4 L. Zhang et al.

In addition, we use the following equivalences to define the remaining operators of
CTL.

A3ϕ ≡ A(trueU ϕ) E3ϕ ≡ E(trueU ϕ)
A2ϕ ≡ ¬E3¬ϕ E2ϕ ≡ ¬A3¬ϕ

A(ϕW ψ) ≡ ¬E(¬ψ U (¬ϕ ∧ ¬ψ)) E(ϕW ψ) ≡ ¬A(¬ψ U (¬ϕ ∧ ¬ψ))
A#ϕ ≡ ¬E#¬ϕ

A CTL formula ϕ is satisfiable, iff for some model structure M = 〈S,R,L〉 and some
state s ∈ S, M, s |= ϕ, and unsatisfiable otherwise. A model structure M such that ϕ is
true at some state s ∈ S is called a model of ϕ. A CTL formula ϕ is valid, written |= ϕ,
iff for every model structure M = 〈S,R,L〉 and for every state s ∈ S, M, s |= ϕ. The
satisfiability problem of CTL is known to be EXPTIME-complete [Clarke and Emerson
1982; Emerson 1990; Emerson and Halpern 1985].

The set of valid CTL formulae is not affected whether the model structures are tree
model structures or not [Emerson 1990; Emerson and Halpern 1982]. Essentially, as R
is a serial relation, any arbitrary model structure can be ‘unwound’ into an infinite tree
model structure. Therefore, in the following we restrict ourselves to model structures
M = 〈S,R,L, s0〉 such that

— there exists a unique state s0, called the root such that every state s ∈ S is reachable
from state s0 and there are no predecessors of s0;

— for every state s ∈ S except the root, state s has exactly one predecessor;

For model structures M = 〈S,R,L, s0〉, it is also convenient to use definitions of sat-
isfiability and validity which are slightly different from the version presented ear-
lier. In particular, we say a CTL formula ϕ is satisfiable iff for some model struc-
ture M = 〈S,R,L, s0〉, M, s0 |= ϕ and unsatisfiable otherwise. A model structure
M = 〈S,R,L, s0〉 such that ϕ is true at s0 is a model of ϕ. A CTL formula ϕ is valid iff
for every model structure M = 〈S,R,L, s0〉, M, s0 |= ϕ. Thus, our definition requires
that if M is a model of ϕ, then ϕ must be satisfied at the root of M , namely state s0,
whereas the previous definition allows ϕ to be satisfied at any state of M . It is not
hard to see that there exists a model for a CTL formula ϕ according to the previous
definition iff there exists a model for ϕ according to our definition. The reason we add
this restriction is that it can simplify the proof that our transformation rules preserve
satisfiability.

3. NORMAL FORM
The calculus R�,SCTL operates on formulae in a clausal normal form, called Separated
Normal Form with Global Clauses for CTL, denoted by SNFg

CTL. An important dif-
ference between CTL formulae and SNFg

CTL is an extension of the syntax of CTL to
use indices. These are associated with the existential path quantifiers. Formulae such
as E#p (or E3p) are decorated with an index ind to become E〈ind〉#p (respectively
E〈ind〉3p) to denote that p is satisfied on a particular successor state (respectively state
accessible by a particular path). They are used to preserve satisfiability during the
transformation into the normal form. The language of SNFg

CTL clauses is defined over
an extension of CTL. That is the language is based on

— the language of CTL;
— a propositional constant start; and
— a countably infinite index set Ind.

To improve the readability of clauses, we introduce an operator precedence which
allow us to reduce the number of parentheses required. We associate each operator
with one of the following five precedence groups, where (i) is highest and (v) is lowest:

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:5

(i). A#,E#,A3,E3,A2,E2,AU ,EU ,AW ,EW ,E#〈ind〉,E〈ind〉3,E〈ind〉2,
E〈ind〉 U ,E〈ind〉W , where ind ∈ Ind;

(ii). ¬;
(iii). ∧;
(iv). ∨; and
(v). ⇒.

Two operators in the same group have the same precedence. Higher precedence op-
erators are applied before lower precedence operators. Then the language of SNFg

CTL
clauses consists of formulae of the following forms:

A2(start⇒
∨k

j=1mj) (initial clause)

A2(true⇒
∨k

j=1mj) (global clause)

A2(
∧n

i=1 li ⇒ A#
∨k

j=1mj) (A-step clause)

A2(
∧n

i=1 li ⇒ E〈ind〉#
∨k

j=1mj) (E-step clause)

A2(
∧n

i=1 li ⇒ A3l) (A-sometime clause)

A2(
∧n

i=1 li ⇒ E〈ind〉3l) (E-sometime clause)

where k ≥ 0, n > 0, start is a propositional constant, li (1 ≤ i ≤ n), mj (1 ≤ j ≤ k)
and l are literals, that is, atomic propositions or their negation, and ind is an element
of Ind. For a literal l, ¬l denotes p if l is ¬p and it denotes ¬p if l is p, for some atomic
proposition p. We use ‘false’ to denote both the logical constant and empty disjunctions
in clauses. As all clauses are of the form A2(P ⇒ D), we often simply write P ⇒ D
instead. We assume that all SNFg

CTL clauses are always kept in condensed form, i.e.
there are no duplicate literals in either P orD. For example, a SNFg

CTL clause r∧q∧q ⇒
A#(q∨p∨q) is always represented as r∧q ⇒ A#(q∨p). We call a clause which is either
an initial, a global, an A-step, or an E-step clause a determinate clause. The formula
A3l is called an A-eventuality and the formula E〈ind〉3l is called an E-eventuality.

A key part of SNFg
CTL are indices. These indices can be used to preserve a particular

path context. For example,

— the formula E#p∧E#¬p is obviously satisfiable, as in general, these two existential
path quantifiers can refer to two different paths; whereas

— the formula E〈ind〉#p∧E〈ind〉#¬p is unsatisfiable, as two existential quantifiers hav-
ing the same index ind indicate p and ¬p are satisfied at the same successor state of
the current state.

Informally speaking, when an index ind is associated with a next operator (#), this
allows the identification of a particular successor state. For instance, if E〈ind〉#p is
satisfied at a state s, then there exists a state s′ such that the edge from s to s′ is
labelled by ind and p holds at s′. When an index ind is associated with a multi-step
operator (3,2, U or W), ind allows the identification of a particular path where the
edge to each successor state in the path is is labelled by ind . For instance, if E〈ind〉3p
is satisfied at state s, then there exists a state s′ reachable from s such that each edge
in the path from s to s′ is labelled by ind and p holds at s′.

We use indices in the transformation to normal form to preserve satisfiability. In
particular, they are necessary to translate until formulae (for example E(pU l)). Here
the transformation (see Section 3.2, Trans(11)) introduces global and E-step clauses
that enforce l ∨ p in the next moment on some path. However we must ensure that l
holds eventually by introducing a E-sometime clause with E3l on the right hand side.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:6 L. Zhang et al.

This must hold on the same path as the E-step clauses mentioned previously and we
use indices to ensure this.

3.1. Syntax and semantics of SNFg
CTL

To provide a semantics for SNFg
CTL, we extend model structures 〈S,R,L, s0〉 to

〈S,R,L, [], s0〉 where the unary function [] : Ind → 2(S×S) maps every index ind ∈ Ind
to a successor function [ind] which is a total functional relation on S and a subset of the
binary accessibility relation R, that is, for every s ∈ S, there exists exactly one state
s′ ∈ S such that (s, s′) ∈ [ind] and (s, s′) ∈ R. So [] applied to ind results in a set of
pairs denoting, for any state, exactly one ind-related successor state. A state s′ ∈ S is
an ind-successor state of state s ∈ S iff (s, s′) ∈ [ind]. An infinite path χ

〈ind〉
si is an infi-

nite sequence of states si, si+1, si+2, . . . such that for every j ≥ i, (sj , sj+1) ∈ [ind]. An
infinite path χ〈ind〉sk = s′k, s

′
k+1, . . . is a subpath of χ〈ind〉si iff there exists a natural number

l, l ≥ i, where sl ∈ χ〈ind〉si , such that for every j ≥ 0, s′k+j = sl+j . Note that since [ind]

is a function, for every state si ∈ S, there exists exactly one infinite path χ
〈ind〉
si and for

every state sj ∈ χ〈ind〉si , χ〈ind〉sj is a subpath of χ〈ind〉si . The semantics of SNFg
CTL is then

defined as shown below as an extension of the semantics of CTL defined in Section 2.
Although the operators E〈ind〉2, E〈ind〉 U and E〈ind〉W do not appear in the normal
form, we state their semantics, because they occur in the normal form transformation.
(The semantics of the remaining operators is analogous to that given previously but in
the extended model structure 〈S,R,L, [], s0〉.)

〈M, si〉 |= start iff si = s0

〈M, si〉 |= E〈ind〉#ψ iff for the path χ
〈ind〉
si , 〈M, si+1〉 |= ψ

〈M, si〉 |= E〈ind〉3ψ iff 〈M, si〉 |= E〈ind〉(trueU ψ)

〈M, si〉 |= E〈ind〉2ψ iff for every sj ∈ χ〈ind〉si , 〈M, sj〉 |= ψ

〈M, si〉 |= E〈ind〉(ϕU ψ) iff there exists sj ∈ χ〈ind〉si such that 〈M, sj〉 |= ψ and
for every sk ∈ χ〈ind〉si , if i ≤ k < j, then 〈M, sk〉 |= ϕ

〈M, si〉 |= E〈ind〉(ϕW ψ) iff 〈M, si〉 |= E〈ind〉2ϕ or 〈M, si〉 |= E〈ind〉(ϕU ψ)

A SNFg
CTL formula ϕ is satisfiable, iff for some model structure M =

〈S,R,L, [], s0〉,M, s0 |= ϕ, and unsatisfiable otherwise. A model structure M =
〈S,R,L, [], s0〉 such that ϕ is true at the state s0 ∈ S is called a model of ϕ and we
say that M satisfies ϕ. A SNFg

CTL formula ϕ is valid, written |= ϕ, iff for every model
structure M = 〈S,R,L, [], s0〉,M, s0 |= ϕ.

3.2. Transformation
We first introduce definitions of indexed CTL formula and CTL clauses, which will be
used in our definition of the transformation from an arbitrary CTL formula into a set
of formulae in normal form.

Definition 3.1. [Indexed CTL formula] The set of indexed CTL formulae is induc-
tively defined as follows:

(1) true, false and start are indexed CTL formulae;
(2) all atomic propositions in PPL are indexed CTL formulae; and
(3) if ϕ and ψ are indexed CTL formulae, then so are ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ⇒ ψ), A2ϕ,

A3ϕ, A#ϕ, A(ϕU ψ), A(ϕW ψ), E2ϕ, E3ϕ, E#ϕ, E(ϕU ψ), E(ϕW ψ), E〈ind〉2ϕ,
E〈ind〉3ϕ, E〈ind〉#ϕ, E〈ind〉(ϕU ψ), and E〈ind〉(ϕW ψ), where ind is an arbitrary in-
dex in Ind.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:7

Definition 3.2. [CTL clauses] A CTL formula of the form A2(P ⇒ ϕ), where P is a
conjunction of literals (possibly consisting of a single literal) or a propositional constant
and ϕ is an arbitrary indexed CTL formula, is a CTL clause or a clause.

We now define a set of transformation rules which allows us to transform an arbi-
trary CTL formula into an equi-satisfiable set of SNFg

CTL clauses.
Let nnf denote a function which transforms an arbitrary CTL formula into its nega-

tion normal form by pushing negations ‘inwards’. Let simp be a function which simpli-
fies an arbitrary CTL formula by exhaustive application of the following simplification
rules,

(ϕ ∧ true) −→ ϕ (ϕ ∧ false) −→ false

(ϕ ∨ true) −→ true (ϕ ∨ false) −→ ϕ

¬true −→ false ¬false −→ true

where ϕ is a CTL formula and ∨ and ∧ are commutative and associative, plus the
following rules which are based on the equivalences in [Emerson 1990].

PTfalse −→ false PTtrue −→ true

P(ϕU false) −→ false P(ϕU true) −→ true

P(falseU ϕ) −→ ϕ P(trueU ϕ) −→ P3ϕ

P(ϕW false) −→ P2ϕ P(ϕW true) −→ true

P(falseW ϕ) −→ ϕ P(trueW ϕ) −→ true

where P ∈ {A,E} and T ∈ {#,2,3}.
Let init(ϕ) be the set of CTL clauses {A2(start⇒ p),A2(p⇒ simp(nnf (ϕ)))}, where

p is a new atomic proposition in PPL that does not occur in ϕ.
Then the transformation of an arbitrary CTL formula ϕ into SNFg

CTL consists of a
sequence T0, T1, . . . , Tn of sets of CTL clauses such that (i) T0 = init(ϕ) and (ii) for every
t, 0 ≤ t < n, Tt+1 = (Tt\{ψ})∪Rt, where ψ is a formula in Tt not in SNFg

CTL and Rt is the
result of applying a matching transformation rule to ψ. Moreover, for every t, 0 ≤ t < n,
Tt contains at least one formula not in SNFg

CTL while all formulae in Tn are in SNFg
CTL.

Note that for each rule of Trans containing a proposition p, p represents a new atomic
proposition in PPL which does not occur in Tt when we apply the rule to a clause in Tt.
Furthermore, in the presentation of the rules, let

— q be an atomic proposition,
— l be a literal,
—D be a disjunction of literals (possible consisting of a single literal), and
— ϕ,ϕ1 and ϕ2, be CTL formulae.

The definition of the rule set Trans is as follows.

— Index introduction rules:
Trans(1) q ⇒ ETϕ −→ q ⇒ E〈ind〉Tϕ

Trans(2) q ⇒ E(ϕ1T
′ϕ2) −→ q ⇒ E〈ind〉(ϕ1T

′ϕ2)

where T ∈ {#,2,3}, T′ ∈ {U , W } and ind is a new index.

— Boolean rules:

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:8 L. Zhang et al.

Trans(3) q ⇒ ϕ1 ∧ ϕ2 −→
{
q ⇒ ϕ1

q ⇒ ϕ2

Trans(4) q ⇒ ϕ1 ∨ ϕ2 −→
{
q ⇒ ϕ1 ∨ p
p⇒ ϕ2

if ϕ2 is not a disjunction
of literals.

Trans(5) q ⇒ D −→ true⇒ ¬q ∨D

q ⇒ false −→ true⇒ ¬q

q ⇒ true −→ {}

— Temporal operator rules:

Trans(6) q ⇒ P#ϕ −→
{
q ⇒ P#p
p⇒ ϕ

if ϕ is not a disjunction
of literals.

Trans(7) q ⇒ P3ϕ −→
{
q ⇒ P3p
p⇒ ϕ

if ϕ is not a literal.

Trans(8) q ⇒ P(ϕ1 U ϕ2) −→
{
q ⇒ P(ϕ1 U p)
p⇒ ϕ2

if ϕ2 is not a literal.

Trans(9) q ⇒ P(ϕ1W ϕ2) −→
{
q ⇒ P(ϕ1W p)
p⇒ ϕ2

if ϕ2 is not a literal.

Trans(10) q ⇒ P2ϕ −→

{
q ⇒ p
p⇒ ϕ
p⇒ P#p

Trans(11) q ⇒ P(ϕU l) −→


q ⇒ l ∨ p
p⇒ ϕ
p⇒ P#(l ∨ p)
q ⇒ P3l

Trans(12) q ⇒ P(ϕW l) −→

{
q ⇒ l ∨ p
p⇒ ϕ
p⇒ P#(l ∨ p)

where P ∈ {A,E〈ind〉}

Example 3.3. In the following, we transform the unsatisfiable CTL formula ϕ2 =
E2¬l∧A3l into a satisfiability equivalent set of SNFg

CTL clauses. We apply the function
init to the CTL formula ϕ2:

Γ2 = init(ϕ2) = {A2(start⇒ p1),A2(p1 ⇒ E2¬l ∧A3l)}.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:9

Then we transform the set Γ2 of clauses into a set of SNFg
CTL clauses.

1. start⇒ p1

2. p1 ⇒ E2¬l ∧A3l
3. p1 ⇒ E2¬l [2,Trans(3)]
4. p1 ⇒ A3l [2,Trans(3)]
5. p1 ⇒ E〈1〉2¬l [3,Trans(1)]
6. p1 ⇒ p2 [5,Trans(10)]
7. p2 ⇒ ¬l [5,Trans(10)]
8. p2 ⇒ E〈1〉#p2 [5,Trans(10)]

9. true⇒ ¬p1 ∨ p2 [6,Trans(5)]
10. true⇒ ¬p2 ∨ ¬l [7,Trans(5)]

Then the set of SNFg
CTL clauses consisting of the following clauses is satisfiable iff the

CTL formula E2¬l ∧A3l is satisfiable.

1. start⇒ p1

4. p1 ⇒ A3l
8. p2 ⇒ E〈1〉#p2

9. true⇒ ¬p1 ∨ p2

10. true⇒ ¬p2 ∨ ¬l

We will return to this set of SNFg
CTL later.

4. THE CLAUSAL RESOLUTION CALCULUS R�,S
CTL

Our clausal resolution calculus R�,SCTL for CTL is based on, but not identical to, the reso-
lution calculus in [Bolotov 2000; Bolotov and Fisher 1999]. The calculus R�,SCTL consists
of

— eight step resolution rules SRES1 to SRES8,
— two eventuality resolution rules ERES1 and ERES2, and
— two rewrite rules RW1 and RW2.

Furthermore, all the rules of R�,SCTL operate on SNFg
CTL clauses. The calculus can be

used to develop an EXPTIME decision procedure for the satisfiability problem of CTL.

4.1. Step resolution
As the search space for resolution for classical propositional and first-order logic is
large, in practice, refinements for resolution are necessary. In particular, ordering and
selection function refinements are utilised by many efficient theorem provers, for ex-
ample, SPASS [Max-Planck-Institut für Informatik 2010], Vampire [Voronkov] and
Prover9 [McCune]. The need for such refinements in order to be efficient in practice is
also true for non-classical logics, for instance CTL. Moreover, R�,SCTL is designed in such
a way that the step resolution can be emulated by first-order resolution. Motivated
by refinements of propositional and first-order resolution [Bachmair and Ganzinger
2001], we restrict the applicability of step resolution rules by means of an atom or-
dering and a selection function. These refinements have two advantages: (i) we can
prove that they do not impair the completeness of R�,SCTL; and (ii) the efforts of imple-
menting them can be dramatically reduced by reusing some existing high performance
first-order resolution prover, which contains these refinements.

Before we introduce the atom ordering and the selection function we use for step
resolution, we first give the following definitions.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:10 L. Zhang et al.

Definition 4.1 (Partial ordering). A partial ordering R on a set S is the ordering
such that

— for every element s ∈ S, (s, s) 6∈ R;
— for all elements s, t, u of S, if (s, t), (t, u) ∈ R, then (s, u) ∈ R.

Definition 4.2 (Total ordering). A partial ordering R on a set S is a total ordering if
for every pair of distinct elements s and t of S, (s, t) ∈ R or (t, s) ∈ R.

Definition 4.3 (Well-founded ordering).
A partial ordering R on a set S is a well-founded ordering if every non-empty subset of
S has a minimal element with respect to R.

An atom ordering for R�,SCTL is a well-founded and total ordering � on the set PPL.
The ordering � is extended to literals such that for each p ∈ PPL, ¬p � p, and for each
q ∈ PPL such that q � p then q � ¬p and ¬q � ¬p.

A literal l is (strictly) maximal with respect to a propositional disjunction C iff for
every literal l′ in C, l′ 6� l (l′ 6� l).

A selection function is an arbitrary function S mapping every propositional dis-
junction C to a possibly empty subset S(C) of the negative literals occurring in C.
If l ∈ S(C) for a disjunction C, then we say that l is selected in C.

In the following presentation of the rules of R�,SCTL, ind is an index in Ind, P and Q are
conjunctions of literals, C and D are disjunctions of literals, neither of which contain
duplicate literals, and l is a literal.

SRES1
P ⇒ A#(C ∨ l)
Q⇒ A#(D ∨ ¬l)

P ∧Q⇒ A#(C ∨D)

SRES2
P ⇒ E〈ind〉#(C ∨ l)
Q⇒ A#(D ∨ ¬l)

P ∧Q⇒ E〈ind〉#(C ∨D)

SRES3
P ⇒ E〈ind〉#(C ∨ l)
Q⇒ E〈ind〉#(D ∨ ¬l)

P ∧Q⇒ E〈ind〉#(C ∨D)

SRES4
start⇒ C ∨ l
start⇒ D ∨ ¬l
start⇒ C ∨D

SRES5
true⇒ C ∨ l
start⇒ D ∨ ¬l
start⇒ C ∨D

SRES6
true⇒ C ∨ l
Q⇒ A#(D ∨ ¬l)
Q⇒ A#(C ∨D)

SRES7
true⇒ C ∨ l
Q⇒ E〈ind〉#(D ∨ ¬l)
Q⇒ E〈ind〉#(C ∨D)

SRES8
true⇒ C ∨ l
true⇒ D ∨ ¬l
true⇒ C ∨D

A step resolution rule, SRES1 to SRES8, is only applicable if and only if one of the
following two conditions is satisfied:

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:11

(C1) if l is a positive literal, then

(1) l must be strictly maximal with respect to C and no literal is selected in
C ∨ l, and

(2) (i) ¬l must be selected in D ∨ ¬l or (ii) no literal is selected in D ∨ ¬l and ¬l
is maximal with respect to D; or

(C2) if l is a negative literal, then

(1) (i) l must be selected in C ∨ l or (ii) no literal is selected in C ∨ l and l is
maximal with respect to C, and

(2) ¬l must be strictly maximal with respect to D and no literal is selected in
D ∨ ¬l.

Note that these two conditions are identical modulo the polarity of l, i.e. having or
not having the negation ¬ in front of l. If l in C ∨ l and ¬l in D ∨ ¬l satisfy condition
(C1) or condition (C2), then we say that l is eligible in C ∨ l and ¬l is eligible in D ∨¬l.

The rewrite rules RW1 and RW2 are defined as follows:
RW1

∧n
i=1mi ⇒ A#false −→ true⇒

∨n
i=1 ¬mi

RW2
∧n

i=1mi ⇒ E〈ind〉#false −→ true⇒
∨n

i=1 ¬mi

where n ≥ 1 and each mi, 1 ≤ i ≤ n, is a literal.
An example of how to apply step resolution and rewrite rules is given below.

Example 4.4.
In Example 3.3, we have seen that the application of our transformation rules to

the CTL formula ϕ = E2¬l ∧ A3l results in the following satisfiability equivalent
set of SNFg

CTL clauses. Using the ordering l � p1 � p2 and the selection function S
mapping every propositional disjunction C to an empty set, the underlined literals are
the eligible literals in these clauses.

1. start⇒ p1

2. p1 ⇒ A3l
3. p2 ⇒ E〈1〉#p2

4. true⇒ ¬p1 ∨ p2

5. true⇒ ¬p2 ∨ ¬l

Using step resolution we are able to generate the following derivation where the no-
tation [c1, . . . , cn,SRESi] indicates that we apply the ith step resolution rule to clauses
c1, . . . , cn, respectively.

6. start⇒ p2 [1, 4,SRES5]

Note that without ordering and selection we would also be able to derive the following
two clauses.

7. p2 ⇒ E〈1〉#¬l [3, 5,SRES7]
8. true⇒ ¬p2 ∨ ¬l [4, 5,SRES8]

The importance of the ordering and selection function is that they restrict the appli-
cability of the resolution rules. Example 4.4 illustrates that additional clauses may
be derived without this. Although this example has an empty selection function we
can use a non-empty selection function ‘simulate’ other well-known refinements of res-
olution. For example, we can ‘simulate’ positive resolution [Robinson 1965] using a

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:12 L. Zhang et al.

selection function which always selects some negative literal if a clause has one. The
completeness of this refinement of temporal resolution for the linear-time temporal
logic PLTL was independently shown by Gago [Fernández Gago 2004].

4.2. Eventuality resolution
The intuition underlying the eventuality resolution rule ERES1 below is to resolve an
eventuality A3¬l, which states that 3¬l is true on all paths, with a set of SNFg

CTL
clauses which together, provided that their combined left-hand sides were satisfied,
imply that 2l holds on (at least) one path.
ERES1

P † ⇒ E#E2l
Q⇒ A3¬l
Q⇒ A(¬(P †)W ¬l)

where P † ⇒ E#E2l represents a set, ΛE2, of SNFg
CTL clauses

P 1
1 ⇒ ∗C1

1 Pn
1 ⇒ ∗Cn

1...
...

P 1
m1
⇒ ∗C1

m1
· · · Pn

mn
⇒ ∗Cn

mn

where for every i, 1 ≤ i ≤ n, there is some ind ∈ Ind such that each ∗ is either empty or
an operator in {A#,E〈ind〉#} and for every i, 1 ≤ i ≤ n,

(
∧mi

j=1 C
i
j)⇒ l (1)

and

(
∧mi

j=1 C
i
j)⇒ (

∨n
i=1

∧mi

j=1 P
i
j) (2)

are provable. Furthermore, P † =
∨n

i=1

∧mi

j=1 P
i
j . Conditions (1) and (2) ensure that the

set ΛE2 of SNFg
CTL clauses implies P † ⇒ E#E2l.

Note that the conclusion of ERES1 is not stated in normal form. To present the con-
clusion of ERES1 in normal form, we use a new atomic proposition wA

¬l uniquely asso-
ciated with the eventuality A3¬l. Then the conclusion of ERES1 can be represented
by the following set of SNFg

CTL clauses:

{wA
¬l ⇒ A#(¬l ∨

∨mi

j=1 ¬P i
j) | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨
∨mi

j=1 ¬P i
j | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨ wA
¬l, w

A
¬l ⇒ A#(¬l ∨ wA

¬l)}.

The use of a proposition wA
¬l uniquely associated with the eventuality A3¬l is impor-

tant for the termination of our procedure. It allows us to represent all resolvents by
ERES1 using a fixed set of propositions depending only on the initial set of clauses, i.e.,
n different A-eventualities in the initial set of clauses require at most n new atomic
propositions to represent resolvents by ERES1.

In the following we give a concrete example to demonstrate an application of ERES1.

Example 4.5. We resolve the A-sometime clause u ⇒ A3¬l with the following set
ΛE2 of SNFg

CTL clauses

p⇒ E〈1〉#l q ⇒ E〈2〉#l
r ⇒ E〈1〉#q q ⇒ E〈2〉#p

q ⇒ E〈2〉#r

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:13

where each column satisfies (1) and (2). Therefore, P † = ((p∧ r)∨ q) and P † ⇒ E#E2l.
We then can resolve the clause u⇒ A3¬l with ((p ∧ r) ∨ q)⇒ E#E2l as follows.

((p ∧ r) ∨ q)⇒ E#E2l
u⇒ A3¬l
u⇒ A(¬((p ∧ r) ∨ q)W ¬l)

Then the resolvents of the application of ERES1 above in SNFg
CTL are as follows:

wA
¬l ⇒ A#(¬l ∨ ¬p ∨ ¬r)

wA
¬l ⇒ A#(¬l ∨ ¬q)

true⇒ ¬u ∨ ¬l ∨ ¬p ∨ ¬r
true⇒ ¬u ∨ ¬l ∨ ¬q
true⇒ ¬u ∨ ¬l ∨ wA

¬l
wA
¬l ⇒ A#(¬l ∨ wA

¬l).

Similar to ERES1, the intuition underlying the ERES2 rule below is to resolve an
eventuality E〈ind〉3¬l, which states that 3¬l is true on a path χ

〈ind〉
si , with a set of

SNFg
CTL clauses which together, provided that their combined left-hand sides were

true, imply that 2l also holds on the path χ
〈ind〉
si+1 .

ERES2
P † ⇒ E〈ind〉#(E〈ind〉2l)
Q⇒ E〈ind〉3¬l
Q⇒ E〈ind〉(¬(P †)W ¬l)

where P † ⇒ E〈ind〉#(E〈ind〉2l) represents a set, Λind
E2 , of SNFg

CTL clauses which is anal-
ogous to the set ΛE2 but each ∗ is either empty or an operator in {A#,E〈ind〉#} and for
every i, 1 ≤ i ≤ n, conditions (1) and (2) are provable. Furthermore, P † =

∨n
i=1

∧mi

j=1 P
i
j .

Again, conditions (1) and (2) ensure that the set Λind
E2 of SNFg

CTL clauses implies the
formula P † ⇒ E〈ind〉#(E〈ind〉2l).

Similarly, we use an atomic proposition wind
¬l uniquely associated with E〈ind〉3¬l to

represent the resolvent of ERES2 as the following set of SNFg
CTL clauses:

{wind
¬l ⇒ E〈ind〉#(¬l ∨

∨mi

j=1 ¬P i
j) | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨
∨mi

j=1 ¬P i
j | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨ wind
¬l , w

ind
¬l ⇒ E〈ind〉#(¬l ∨ wind

¬l)}.

As for ERES1, the use of atomic propositions uniquely associated with E-eventualities
allows us to represent all resolvents by ERES2 using a fixed set of atomic propositions
depending only on the initial set of clauses.

This completes the presentation of the resolution rules of R�,SCTL. We now introduce
some useful definitions which are needed when we discuss the calculus R�,SCTL further.

Definition 4.6 (Saturation with respect to step resolution rules). A set T of SNFg
CTL

clauses is saturated with respect to step resolution rules, if all clauses that can be de-
rived by an application of one of the step resolution rules SRES1 to SRES8 to premises
in T are contained in T .

Definition 4.7 (Saturation with respect to R�,SCTL). A set T of SNFg
CTL clauses is satu-

rated with respect to R�,SCTL if all clauses that can be derived by an application of a rule
of R�,SCTL to premises in T are contained in T .

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:14 L. Zhang et al.

Definition 4.8 (Derivation). A derivation from a set T of SNFg
CTL clauses by R�,SCTL is

a sequence T0, T1, T2, . . . of sets of clauses such that T = T0 and Tt+1 = Tt ∪ Rt where
Rt is a set of SNFg

CTL clauses obtained as the conclusion of an application of a rule of
R�,SCTL to premises in Tt.

Definition 4.9 (Refutation). A refutation of a set T of SNFg
CTL clauses (by R�,SCTL) is

a derivation from T such that for some i ≥ 0, Ti contains a contradiction, where a
contradiction is either the formula true⇒ false or start⇒ false.

Definition 4.10 (Termination). A derivation terminates iff either a contradiction is
derived or no new clauses can be derived by any further application of resolution rules.

Next, we present an example of a refutation of a set of SNFg
CTL clauses which in-

volves both step resolution and eventuality resolution rules.

Example 4.11. In Example 3.3, we have seen that application of our transforma-
tion rules to the CTL formula ϕ = E2¬l ∧ A3l results in the following satisfiability
equivalent set of SNFg

CTL clauses.

1. start⇒ p1

2. p1 ⇒ A3l
3. p2 ⇒ E〈1〉#p2

4. true⇒ ¬p1 ∨ p2

5. true⇒ ¬p2 ∨ ¬l

Using step resolution, eventuality resolution and rewrite rules with the ordering l �
p1 � p2 � wA

l and the selection function S mapping every propositional disjunction
C to an empty set, we are able to generate the following derivation. Note in steps 7–
9 we resolve the A-sometime clause (clause 2) with the set ΛE2 of SNFg

CTL clauses
containing clause 3 and 5.

6. start⇒ p2 [1, 4,SRES5]
7. wA

l ⇒ A#(l ∨ ¬p2) [2, 3, 5,ERES1]
8. true⇒ ¬p1 ∨ l ∨ ¬p2 [2, 3, 5,ERES1]
9. true⇒ ¬p1 ∨ l ∨ wA

l [2, 3, 5,ERES1]
10. wA

l ⇒ A#(l ∨ wA
l) [2, 3, 5,ERES1]

11. true⇒ ¬p1 ∨ ¬p2 [5, 8,SRES8]
12. start⇒ ¬p2 [1, 11,SRES5]
13. start⇒ false [6, 12,SRES4]

In the above the notation [c1, . . . , cn,ERESi] indicates that we apply the eventuality
resolution rule ERESi to the clauses c1, . . . , cn. Therefore, we have proved that E2¬l ∧
A3l is unsatisfiable.

4.3. Loop search
The expensive part of applying ERES1 and ERES2 is finding sets of step and global
clauses which can serve as premises for these rules, that is, for a given literal l stem-
ming from some eventuality, to find sets of SNFg

CTL clauses ΛE2, or Λind
E2 , satisfying

conditions (1) and (2). Such sets of SNFg
CTL clauses are also called E-loops in l and

the formula
∨n

i=1

∧mi

j=1 P
i
j is called a loop formula. Algorithms to find loops were first

presented in [Bolotov and Dixon 2000]. Two loop search algorithms are defined, called
A-loop search algorithm and E-loop search algorithm. An A-loop search algorithm is
not required for our calculus as an E-loop search algorithm is sufficient to find the
premises for both ERES1 and ERES2. Therefore, we only present an E-loop search

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:15

algorithm here, which is slightly different from the E-loop search algorithm in [Bolo-
tov and Dixon 2000] due to the presence of global clauses, an ordering and a selection
function we introduce into R�,SCTL. In Section 7, we will discuss in more detail why an
A-loop search algorithm is not required in our setting.

The E-loop search algorithm makes use of the notion of merged clauses which are
inductively defined as follows.

— Any global clause, A-step clause, and E-step clause is a merged clause.
— For some P, P ∈ {A#,E〈ind〉#} or empty if A1 ⇒ PB1 and A2 ⇒ PB2 are a pair of

merged clauses then (A1 ∧A2)⇒ P(B1 ∧B2) is also a merged clause.
— If A1 ⇒ B1, A2 ⇒ A#B2, and A3 ⇒ E〈ind〉#B3, are merged clauses, then so are (A1∧
A2)⇒ A#(B1∧B2), (A1∧A3)⇒ E〈ind〉#(B1 ∧B3), and (A2∧A3)⇒ E〈ind〉#(B2 ∧B3).

E-loop search algorithm:
The algorithm takes as input a literal l, stemming either from an A-sometime clause
Q ⇒ A3¬l or from an E-sometime clause Q ⇒ E〈ind〉3¬l, and a set T of SNFg

CTL
clauses among which we search for premises for the eventuality resolution rules. We
assume the set T is saturated with respect to step resolution rules, that is, the rules
SRES1 to SRES8.

The algorithm proceeds by constructing a sequence H0, H1, H2, . . . of formulae which
approximate a loop formula. In more detail, the algorithm works as follows:

(1) Search in T for merged clauses of the form Xj ⇒ Yj , Xj ⇒ A#Yj , and Xj ⇒
E〈ind〉#Yj such that Yj ⇒ l is provable (in propositional logic). Assuming there are
n0 such clauses, we construct the first formula, H0, as follows:

H0 =
∨n0

j=1Xj

Simplify H0 using boolean simplification. If H0 ≡ true a loop is found, we return
true and the algorithm terminates. If H0 ≡ false (which can only be the case if
n0 = 0), then no loop formula can be found and we return false.

(2) Given a formula Hi, where i ≥ 0, construct the next formula Hi+1 by look-
ing in T for merged clauses of the form Aj ⇒ (Bj ∧ l), Aj ⇒ A#(Bj ∧ l) or
Aj ⇒ E〈ind〉#(Bj ∧ l) such that Bj ⇒ Hi is provable (in propositional logic). Assum-
ing there are ni+1 such merged clauses, we construct the formula Hi+1 as follows:

Hi+1 =
∨ni+1

j=1 Aj

Simplify Hi+1 using boolean simplification.
(3) Repeat the previous step until one of the conditions below is provable (in proposi-

tional logic).
(a) Hi+1 ≡ true. A loop formula has been found. We return true and the algorithm

terminates.
(b) Hi+1 ≡ false (that is, ni+1 = 0). No loop formula can be found. We return false

and the algorithm terminates.
(c) Hi ≡ Hi+1. A loop formula has been found. We return Hi+1 and the algorithm

terminates.

If we try to apply an eventuality resolution rule to an E-sometime clause Q ⇒
E〈ind〉3¬l, then the input set T to the E-loop search algorithm consists of the set of
all global and A-step clauses we currently have at our disposal plus all E-step clauses
with index ind . If we try to apply an eventuality resolution rule to an A-sometime
clause Q ⇒ A3¬l, then the input set T to the E-loop search algorithm consists of the
set of all global, A-step clauses, and E-step clauses.

If the algorithm returns a formula Hi+1 6≡ false, then

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:16 L. Zhang et al.

1 procedure main(N)
2 // N is a set of SNFg

CTL clauses
3 begin
4 New := {C | C is a determinate clause in N};
5 ST := {C | C is a sometime clause in N};
6 Old := ∅;
7 do
8 Old := resolution sres(Old, New);
9 New := ∅;

10 if (⊥ 6∈ Old) then
11 foreach A-sometime clause and E-sometime clause C in ST
12 G := resolution eres(Old, C);
13 if (G 6= ∅) then
14 New := New ∪ G;
15 end if
16 end for
17 New := New\Old;
18 end if
19 while (⊥ 6∈ Old and New 6= ∅)
20 output();
21 end

Fig. 1. A decision procedure

—Hi+1 =
∨ni+1

j=1

∧tj
k=1 q

k
j , for some literals qkj , 1 ≤ j ≤ ni+1, 1 ≤ k ≤ tj , and

— there exists the following set of clauses in T ,

P 1
1 ⇒ ∗C1

1 P l
1 ⇒ ∗Cl

1...
...

P 1
m1
⇒ ∗C1

m1
· · · P l

ml
⇒ ∗Cl

ml

such that these clauses satisfy conditions (1) and (2) of ERES1/ERES2 as well as
the restrictions imposed on the form of ∗ and, moreover,∨l

r=1

∧mr

s=1 P
r
s ≡

∨ni+1

j=1

∧tj
k=1 q

k
j .

The proof of the correctness of this algorithm can be found in [Bolotov and Dixon 2000].
An important step in the algorithm is the task of “looking for merged clauses”.

We can use step resolution with ordering and selection to achieve this, see for ex-
ample [Zhang et al. 2009b].

4.4. A decision procedure

We present a decision procedure based on the calculus R�,SCTL for determining the satis-
fiability of a set of SNFg

CTL clauses in Figure 1.
The procedure takes a set of SNFg

CTL clauses N as input and then splits N into the set
New of determinate clauses and the set ST of sometime clauses (lines 4 and 5, respec-
tively). The set Old is initially set to be empty (line 6). We then enter the main loop of
the procedure which will be repeated until either the contradiction⊥ (i.e. start⇒ false
or true ⇒ false) has been derived or we cannot derive any new clauses (line 7 to 19).
We saturate the set New ∪ Old using the step resolution rules and the resulting set
of clauses becomes the set Old (line 8). If we have not derived the contradiction yet,
then we try to apply eventuality resolution rules to each of the sometime clauses (lines

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:17

11 to 16). The union of all the resolvents generated by applications of the eventuality
resolution rules becomes the set of new clauses New. Some of these resolvents may be
redundant. Therefore, we eliminate clauses from New which are already in Old (line
17). Finally, after the main loop terminates, we print out the satisfiability of N (line
20).

4.5. Implementation
The calculus has been implemented as the prover CTL-RP. The implementation uses a
classical, first-order resolution theorem prover, SPASS [Max-Planck-Institut für Infor-
matik 2010; Weidenbach et al. 2007] to implement the rules. In particular, all SNFg

CTL
clauses, except the A-sometime clauses and E-sometime clauses, are transformed into
first-order clauses. Then first-order ordered resolution with selection [Bachmair and
Ganzinger 2001] is used to emulate step resolution. However, A-sometime clauses
and E-sometime clauses cannot be translated into first-order logic. To apply the rules
ERES1 and ERES2 for inferences with A-sometime clauses and E-sometime clauses,
respectively, we use the loop search algorithm presented in Section 4.3 to find suitable
premises. We can again utilise first-order ordered resolution with selection to perform
the task of “looking for merged clauses” in the loop search algorithm and we compute
the results of applications of the eventuality resolution rules in the form of first-order
clauses. In general, we would expect CTL-RP to perform better on unsatisfiable than
satisfiable problems because, for the latter, the clause set must be saturated before it
can terminate. Similarly we would expect it to have more difficulty on problems with
a large number of complex eventualities.

More details about CTL-RP are given in [Zhang et al. 2009b; Zhang 2010] along
with an experimental comparison with a tableau prover for CTL (namely the CTL
module for the Tableau Workbench) [Abate and Goré 2003]. We will refer to the lat-
ter as TWB-CTL. As far as we know, there is no implementation of the calculus in
[Bolotov 2000]. There are no standard benchmarks for CTL provers so four types of
formulae are considered: standard CTL equivalences; formulae representing a small,
hand-crafted, finite state transition system; randomly generated state transition sys-
tems; and a specification of the Alternating Bit Protocol (see for example [Huth and
Ryan 2004]). Both provers solve the standard CTL equivalencies in 0.01 seconds or
less. CTL-RP outperforms TWB-CTL for the hand-crafted and random state transition
systems in terms of the time taken to solve problems and the number solved within
the specified time limit. CTL-RP completes all the Alternating Bit protocol problems
whereas TWB-CTL does not terminate on any of these problems.

In [Goré et al. 2011] a comparison of five CTL provers, including CTL-RP is carried
out. The provers compared are CTL-RP, BDDCTL [Marrero 2005], MLSolver [Fried-
mann and Lange 2009], GMUL [Ben-Ari et al. 1981] and TreeTab [Abate et al. 2007].
BDDCTL combines a Hintikka style approach with ordered binary decision digrams.
MLSover is a satiability solver for modal fixed point calculi. GMUL and TreeTab are
two pass and one pass tableau algorithms respectively. Each of these is discussed more
fully in Section 7. Goré et al. [2011] conclude that no one prover is the best for all
problems and that each prover has problems where it performed badly. Additionally
they state that CTL-RP (and BDDCTL) are “more robust than the tableaux methods
since they tend to succeed eventually rather than fail spectacularly or succeed spec-
tacularly”. They also note implementation flaws in BDDCTL. CTL-RP is the best or
second best performer for the problems in the category Alternating Bit Protocol and
for three of the formulae sets in the category of “step formulae” from [Marrero 2005].
Additionally it is the best performer in the satisfiable Montali’s formulae category.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:18 L. Zhang et al.

5. CORRECTNESS OF THE CALCULUS R�,S
CTL

Next we consider the correctness of the transformation into normal form, and the
soundness, completeness and termination of the calculus.

5.1. Correctness of the transformation to SNFg
CTL

In the following we show that our transformation

(1) preserves satisfiability,
(2) is terminating, and
(3) allows only a polynomially bounded number of transformation rule application.

The proofs of that each transformation rule preserves satisfiability have been moved
to the Electronic Appendix.

THEOREM 5.1. Let Tt = ∆∪ {ψ} and Tt+1 = ∆∪Rt be two sets of CTL clauses such
that Tt+1 is obtained by an application of a transformation rule of the form ψ → Rt in
the set Trans to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

PROOF. To prove this theorem, we need to show that every transformation rule in
the set Trans preserves satisfiability.

Lemma A.4, A.5, A.6, A.7, A.8 and A.9 prove that the transformation rules Trans(1),
Trans(3), Trans(5), Trans(6), Trans(10) and Trans(11) preserve satisfiability, respec-
tively.

The other operators and rules not proved explicitly are similar to the cases shown.
The proofs for Trans(2) are similar to Trans(1), for Trans(4), Trans(7), Trans(8) and
Trans(9) are similar to Trans(6) and for Trans(12) are similar to Trans(11).

The definitions relating to and the proof that each application of a transformation
rule to a clause Γ in a set T of CTL clauses results in a set T ′ of CTL clauses weighs
strictly less than T can be found in the Electronic Appendix.

THEOREM 5.2. Let T0, T1, . . . be a sequence of sets of CTL clauses such that T0 =
init(ϕ) for some CTL formula ϕ and Tt+1 is obtained from Tt by applying a transfor-
mation rule to a clause in Tt. Then the sequence T0, T1, . . . terminates, i.e. there exists
an index n, n ≥ 0, such that no transformation rule can be applied to any clause in Tn.
Furthermore, all clauses in Tn are in SNFg

CTL.

PROOF. Follows from Lemma A.17 and Theorem A.16.

Using the following notation of the size of a CTL formula we are able to characterise
the computational complexity of the normal form transformation.

Definition 5.3. [Size of a CTL formula] Let ϕ and ψ be arbitrary CTL formulae; and
p be an arbitrary atomic proposition in PPL. We inductively define the size sz of an
arbitrary CTL formula as follows:

(1) sz (true) = sz (false) = sz (p) = 1;
(2) sz (¬ϕ) = sz (A2ϕ) = sz (A3ϕ) = sz (A#ϕ) = sz (E2ϕ) = sz (E3ϕ) = sz (E#ϕ) =

sz (ϕ) + 1; and
(3) sz (ϕ∧ψ) = sz (ϕ∨ψ) = sz (ϕ⇒ ψ) = sz (A(ϕU ψ)) = sz (A(ϕW ψ)) = sz (E(ϕU ψ)) =

sz (E(ϕW ψ)) = sz (ϕ) + sz (ψ) + 1.

THEOREM 5.4. Let ϕ be an arbitrary CTL formula and Tn be a set of SNFg
CTL

clauses obtained from T0 = init(ϕ) by n applications of our transformation rules. Then
n is linearly bounded in the size of ϕ and the set Tn can be computed in polynomial time
in the size of ϕ.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:19

PROOF. By Lemma A.18 we show that Tn can be computed in less than 47m + 9
applications of the transformation rules where m is the size of ϕ.

Regarding the complexity of each application, we assume CTL clauses are stored
in a tree data structure. Then according to our transformation rules, by reusing the
subtrees representing subformulae as appropriate, generating the results of clauses
from the clause which the rule applies to can be accomplished in constant time in the
size of ϕ. The pattern matching procedure determining that for a given CTL clause not
in SNFg

CTL which rule to apply, requires linear time in the size of ϕ in the worst case.
Therefore, the set Tn can be computed in polynomial time in the size of ϕ.

THEOREM 5.5. Let ϕ be an arbitrary CTL formula and Tn be a set of SNFg
CTL

clauses obtained from T0 = init(ϕ) by a linearly bounded applications of our trans-
formation rules in the size of ϕ. Then ϕ is satisfiable iff Tn is satisfiable.

PROOF. Follows from Theorem 5.2, Lemma A.2, Theorem 5.1, and Theorem 5.4.

5.2. Soundness and completeness

THEOREM 5.6 (SOUNDNESS OF R�,SCTL). Let T be a set of SNFg
CTL clauses. If there is

a refutation of T by R�,SCTL, then T is unsatisfiable.

PROOF.
Let T0, T1, . . . , Tn be a derivation from a set of SNFg

CTL clause T0 = T by the cal-
culus R�,SCTL. We will show by induction over the length of the derivation that if T0 is
satisfiable, then so is Tn.

For T0 = T , the claim obviously holds. Now, consider the step of the deriva-
tion in which we derive Tt+1 from Tt for some t ≥ 0. Assume Tt is satisfiable and
M = 〈S,R,L, [], s0〉 is a model structure satisfying Tt.

We show that SRES2 is sound. Assume A2(P ⇒ E〈ind〉#(C ∨ l)) and A2(Q ⇒
A#(D ∨ ¬l)) are in Tt. Let Tt+1 be obtained by an application of SRES2 to A2(P ⇒
E〈ind〉#(C ∨ l)) and A2(Q ⇒ A#(D ∨ ¬l)), that is, Tt+1 = Tt ∪ {A2(P ∧ Q ⇒
E〈ind〉#(C ∨D))}. We show that M also satisfies Tt+1. Consider an arbitrary state
s ∈ S. If M, s 6|= P or M, s 6|= Q, then obviously M, s |= P ∧Q⇒ E〈ind〉#(C ∨D). Assume
that M, s |= P and M, s |= Q. From A2(P ⇒ E〈ind〉#(C ∨ l)), A2(Q ⇒ A#(D ∨ ¬l))
and the semantics of A2, we obtain that M, s |= P ⇒ E〈ind〉#(C ∨ l) and M, s |=
Q ⇒ A#(D ∨ ¬l). From the semantics of ⇒, we obtain that M, s |= E〈ind〉#(C ∨ l)
and M, s |= A#(D ∨ ¬l). From the semantics of A#, we obtain that for all successors
s′ of state s, M, s′ |= D ∨ ¬l. From the semantics of E〈ind〉#, we have that for the suc-
cessor s′′ of s such that s′′ is on the path χ

〈ind〉
s , M, s′′ |= C ∨ l. As s′′ is a successor

of s, M, s′′ |= D ∨ ¬l. As l and ¬l cannot both be true at state s′′, we conclude that
M, s′′ |= C ∨D. From the semantics of E〈ind〉#, we have M, s |= E〈ind〉#(C ∨D). There-
fore, M, s |= P ∧ Q ⇒ E〈ind〉#(C ∨D). As s is arbitrary, from the semantics of A2, we
have M, s0 |= A2(P ∧Q⇒ E〈ind〉#(C ∨D)).

The cases for SRES1, SRES5 and SRES6 are shown in the Electronic Appendix. For
the rule SRES3, the proof is analogous to that for SRES2; for the rules SRES4 and
SRES8, the proofs are analogous to that for SRES5; and for the rule SRES7, the proof
is analogous to that for SRES6.

Regarding RW1, from the semantics of A# and false we obtain that the formula
A2(Q ⇒ A#false) is true iff A2(Q ⇒ false) is true. This formula is propositionally
equivalent to A2(¬Q) which in turn, by the semantics of⇒ and true, is equivalent to
A2(true⇒ ¬Q). The proof for RW2 is analogous.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:20 L. Zhang et al.

Next, we show ERES1 is sound. Assume that A2(Q⇒ A3¬l) is in Tt and there ex-
ists a set ΛE2 of SNFg

CTL clauses in Tt together implying A2(P † ⇒ E#E2l), where P †
is a disjunction of conjunctions of literals (defined in Section 4.2). Therefore,M satisfies
A2(P † ⇒ E#E2l). We show that M also satisfies A2(Q ⇒ A(¬(P †)W ¬l)). Consider
an arbitrary state si ∈ S. If M, si 6|= Q, then obviously M, si |= Q⇒ A(¬(P †)W ¬l). As-
sumeM, si |= Q. From A2(Q⇒ A3¬l) and the semantics of A2 and⇒, we obtain that
M, si |= A3¬l. If M, si |= ¬l, then by the semantics of AW , M, si |= A(¬(P †)W ¬l).
From the semantics of ⇒, M, si |= Q ⇒ A(¬(P †)W ¬l). If, on the other hand,
M, si |= l, then from the semantics of A3, we know that for every path χsi , there
exists sj ∈ χsi , j > i such that M, sj |= ¬l and for every k, i ≤ k < j,M, sk |= l.

For an arbitrary state s ∈ S, if M, s |= A3¬l ∧ l then by the semantics of A# and
A3, M, s |= A#A3¬l. Therefore, for all the successors s′ of s, M, s′ |= A3¬l.

Due to the property above and M, si |= A3¬l ∧ l and M, sk |= l, by an inductive
augment we can conclude that for every k, i ≤ k < j,M, sk |= A3¬l. As we know,
M, sk |= l. Therefore, M, sk |= A3¬l ∧ l. From the semantics of A3, for all paths χsk ,
there exists sn ∈ χsk , n > k,M, sn |= ¬l. Next, we use a proof by contradiction to
establish that for all k, i ≤ k < j,M, sk |= ¬(P †). Assume that P † holds at sk. From the
semantics of A2 and⇒, we have M, sk |= E#E2l. From the semantics of E# and E2,
we know that there exists a path χsk such that for all states sm ∈ χsk ,m > k,M, sm |=
l. This is a contradiction. Therefore, ¬(P †) must hold at all the states sk. From the
semantics of AU , we obtain that M, si |= A(¬(P †)U ¬l). From the semantics of AW ,
we obtain that M, si |= A(¬(P †)W ¬l). Thus, M, si |= Q ⇒ A(¬(P †)W ¬l). As si is
arbitrary, from the semantics of A2, M, s0 |= A2(Q ⇒ A(¬(P †)W ¬l)). The proof for
ERES2 is analogous.

Our proof of the completeness of R�,SCTL makes use of (reduced) labelled behaviour
graphs, which will be defined later in this section. These graphs can be seen as finite
representations of the set of all models of a set of SNFg

CTL clauses.
First, we briefly discuss how our proof proceeds. We introduce the idea of augmen-

tation, which was originally developed for a resolution calculus for PLTL [Fisher et al.
2001]. Next, we create a finite labelled directed graph, called a labelled behaviour
graph, for an augmented set of SNFg

CTL clauses. However, some nodes and some sub-
graphs of the labelled behaviour graph for T cannot be used to create a CTL model
structure for a set T of SNFg

CTL clauses. For instance, a node without any successor
nodes in a labelled behaviour graph cannot be used to construct a CTL model struc-
ture, as all paths in a CTL model structure are infinite. To remove such nodes and
subgraphs from a labelled behaviour graph, we define a set of deletion rules. We call
a labelled behaviour graph H a reduced labelled behaviour graph if it is obtained by
exhaustively applying deletion rules to H. We show that, if an augmented set T of
SNFg

CTL clauses is unsatisfiable, then its reduced labelled behaviour graph is empty.
We also prove that each application of a deletion rule corresponds to a derivation from
T by R�,SCTL. Therefore, if T is unsatisfiable, its reduced labelled behaviour graph Hred is
empty and the sequence of applications of the deletion rules, which reduce the labelled
behaviour graph for T to an empty Hred, can be used to construct a refutation in R�,SCTL.
In the following, we show the detailed completeness proof.

Let T be a set of SNFg
CTL clauses obtained by applying the normal form transfor-

mation to a given CTL formula. Recall from Section 4.2 an application of ERES1 or
ERES2 to the set T may introduce new propositions, for example wA

¬l and wind
¬l , into T .

Our completeness proof makes use of the labelled behaviour graph, whose construction
depends on the set Prop(T) of propositions occurring in T . Due to this we do not want
Prop(T) to change during a derivation. Therefore, we introduce the notion of augmen-

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:21

tation, which adds clauses associated with these new propositions into T right from the
beginning, i.e. before any resolution rules are applied to T . In this way, we can be sure
that no new propositions appear during the application of the resolution rules. That is
Prop(T) stays the same, if T is augmented. Moreover, we also show that augmentation
is correct.

We adapt the augmentation procedure used in [Fisher et al. 2001] for PLTL to CTL
to establish a relation between the new atomic propositions introduced by applications
of ERES1 or ERES2 and eventualities associated with them.

Definition 5.7. [Augmentation] Given a set of SNFg
CTL clause T , we construct an

augmented set aug(T) as follows: the augmented set aug(T) is the smallest set con-
taining T and satisfying the following conditions:

— For every A-sometime clause in T , Q⇒ A3¬l, aug(T) contains the clauses

true⇒ ¬Q ∨ ¬l ∨ wA
¬l

wA
¬l ⇒ A#(¬l ∨ wA

¬l)

where wA
¬l is the proposition uniquely associated with A3¬l (i.e. wA

¬l is the same
proposition we used for ERES1).

— For every E-sometime clause in T , Q⇒ E〈ind〉3¬l, aug(T) contains the clauses

true⇒ ¬Q ∨ ¬l ∨ wind
¬l ,

wind
¬l ⇒ E〈ind〉#(¬l ∨ wind

¬l)

where wind
¬l is the proposition uniquely associated with E〈ind〉3l (i.e. wind

¬l is the same
proposition we used for ERES2).

Next, we formally prove that our augmentation preserves satisfiability.

LEMMA 5.8. Let T be a set of SNFg
CTL clauses and M be a model structure satisfying

T . If T ′ is a subset of T , then M also satisfies T ′.

PROOF. Straightforward.

LEMMA 5.9. Let T be a set of SNFg
CTL clauses. The augmented set aug(T) is satisfi-

able iff T is satisfiable.

PROOF. As T ⊂ aug(T), by Lemma 5.8 if aug(T) is satisfiable and a model structure
M satisfies aug(T), then M also satisfies T and, thus, T is satisfiable.

Conversely, if T holds in a model structure M1 at the state s0, then M1 can be ex-
tended to another model structure M2 by giving wA

¬l the same truth value as l ∧A3¬l
and wind

¬l the same truth value as l∧E〈ind〉3¬l in each state in M2 for each eventuality
¬l in T . We show that M2 satisfies aug(T) at the state s0 of M2.

Assume that Q⇒ E〈ind〉3¬l is in T . We show that M2 satisfies A2(true⇒ ¬Q∨¬l∨
wind
¬l) and A2(wind

¬l ⇒ E〈ind〉#(¬l ∨ wind
¬l)) i.e. the two clauses added by augmentation

for Q⇒ E〈ind〉3¬l. Let s be an arbitrary state in M2.

(1) We know that M1, s0 |= A2(Q ⇒ E〈ind〉3¬l). By the definition of M2 and
Lemma A.1, we know that M2, s0 |= A2(Q ⇒ E〈ind〉3¬l). From the semantics
of A2, M2, s |= Q ⇒ E〈ind〉3¬l. By propositional reasoning, M2, s |= (Q ∧ l) ⇒
(l ∧ E〈ind〉3¬l). By the definition of M2, M2, s |= (l ∧ E〈ind〉3¬l) ⇒ wind

¬l . There-
fore, by the semantics of ⇒, we obtain that M2, s |= (Q ∧ l) ⇒ wind

¬l . Thus,
M2, s |= true ⇒ ¬Q ∨ ¬l ∨ wind

¬l . Since s is an arbitrary state in M2, from the
semantics of A2, we obtain that M2, s0 |= A2(true⇒ ¬Q ∨ ¬l ∨ wind

¬l).
(2) From the definition of M2, we know M2, s |= wind

¬l ⇒ (l ∧E〈ind〉3¬l).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:22 L. Zhang et al.

— If M2, s 6|= wind
¬l , then M2, s |= wind

¬l ⇒ E〈ind〉#(¬l ∨ wind
¬l).

— If, on the other hand, M2, s |= wind
¬l , then M2, s |= l ∧ E〈ind〉3¬l. Thus, from

the semantics of E〈ind〉3, for the state s′ with (s, s′) ∈ [ind], either M2, s
′ |= ¬l

or M2, s
′ |= l ∧ E〈ind〉3¬l. By the definition of M2, we know that M2, s

′ |= (l ∧
E〈ind〉3¬l)⇒ wind

¬l . Thus, eitherM2, s
′ |= ¬l orM2, s

′ |= wind
¬l . From the semantics

of E〈ind〉# and ∨, M2, s |= E〈ind〉#(¬l ∨ wind
¬l). As M2, s |= wind

¬l , we obtain that
M2, s |= wind

¬l ⇒ E〈ind〉#(¬l ∨ wind
¬l).

As s is arbitrary, from the semantics of A2, M2, s0 |= A2(wind
¬l ⇒

E〈ind〉#(¬l ∨ wind
¬l)).

The proof for Q⇒ A3¬l in T is analogous. Therefore, aug(T) is satisfied in M2 at state
s0.

We now introduce the notion of a labelled behaviour graph. Given a set Ind of indices
an Ind -labelled graph H is an ordered pair H = (N,E), where N is a set of nodes and
E is a set of directed edges in H of the form (n, ind, n′), where n, n′ ∈ N and ind ∈ Ind .
If there exists an edge (n, ind, n′) ∈ E for some ind ∈ Ind , then n′ is a successor of n and
n is a predecessor of n′. If the label ind is also important for the relation of n and n′ in
the context, we also say that n′ is an ind-successor of n and n is an ind-predecessor of
n′. When the label on the edge is not important, we use (n, n′) to denote an edge, which
means the label can be any index in Ind .

Definition 5.10. [ind-reachable node in a graph] Given a set Ind of indices, an ind-
labelled graph (N,E), and a node n ∈ N , a node n′ ∈ N is ind-reachable from n iff
there exists an edge (n, ind, n′) ∈ E or there exists an edge (n′′, ind, n′) ∈ E and n′′ is
ind-reachable from n.

Definition 5.11. [reachable node in a graph] Given a graph (N,E) and a node n ∈
N , a node n′ ∈ N is reachable from n iff there exists an edge (n, n′) ∈ E or there exists
an edge (n′′, n′) ∈ E and n′′ is reachable from n.

Definition 5.12. [labelled behaviour graph] Let T be an augmented set of SNFg
CTL

clauses and Ind(T) be the set of indices occurring in T . If Ind(T) is empty, then let
Ind(T) = {ind}, where ind is an arbitrary index in Ind. Given T and Ind(T), we construct
a finite directed graph G = (N,E) for T as follows.

The set of nodes N of G consists of all ordered tuples n = (V,EA, EE), where

(1) V is a valuation of the atomic propositions occurring in T ;
(2) EA is a subset of {l | Q⇒ A3l ∈ T}; and
(3) EE is a subset of {l〈ind〉 | Q⇒ E〈ind〉3l ∈ T}.

Informally EA and EE contain eventualities that need to be satisfied either in the
current node or some node reachable from the current node.

To define the set of edges E of G we use the following auxiliary definitions. Let
n = (V,EA, EE) be a node in N . Let RA(n, T) = {D | Q⇒ A#D ∈ T, and V |= Q}. Note
if V does not satisfy the left-hand side of any A-step clause (i.e. RA(n, T) = ∅), then
there are no constraints from A-step clauses on successor node of the node n and any
valuation satisfies RA(n, T). Let Rind(n, T) = {D | Q⇒ E〈ind〉#D ∈ T and V |= Q}. Let
Rg(T) = {D | true⇒ D ∈ T}.

Let functions EvA(V, T) and EvE(V, T) be defined as

EvA(V, T) = {l | Q⇒ A3l ∈ T and V |= Q}

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:23

and

EvE(V, T) = {l〈ind〉 | Q⇒ E〈ind〉3l ∈ T and V |= Q},

respectively. Let functions UnsatA(EA, V) and Unsatind(EE , V) be defined as

UnsatA(EA, V) = {l | l ∈ EA and V 6|= l}
and

Unsatind(EE , V) = {l〈ind〉 | l〈ind〉 ∈ EE and V 6|= l},

respectively. For a node n = (V,EA, EE) in G, if l ∈ EA(lind ∈ EE) and V |= l, then we
say that l (lind) is satisfied in node n.

Then E contains an edge labelled by ind from a node (V,EA, EE) to a node
(V ′, E′A, E

′
E) iff V ′ satisfies the set RA(n, T)∪Rind(n, T)∪Rg(T), E′A = UnsatA(EA, V)∪

EvA(V ′, T) and E′E = Unsatind(EE , V) ∪ EvE(V ′, T). That is, there is an edge labelled
with ind from (V,EA, EE) to (V ′, E′A, E

′
E) iff (i) V ′ satisfies all constraints imposed by

A-step clauses, E-step clauses with the index ind, and global clauses whose left-hand
sides are satisfied by V , (ii) E′A consists of A-eventualities not satisfied by V plus ad-
ditional A-eventualities triggered by V ′, and (iii) E′E consists of E-eventualities with
the index ind not satisfied by V plus additional E-eventualities with the index ind
triggered by V ′.

Let R0(T) = {D | start ⇒ D ∈ T}. Then the node (V,EA, EE), where V satisfies
the set R0(T) ∪ Rg(T), EA = EvA(V, T) and EE = EvE(V, T), is an initial node of G.
That is, initial nodes are those nodes such that (i) V satisfies all constraints imposed
by initial clauses and global, (ii) EA consists of A-eventualities triggered by V , and (iii)
EE consists of E-eventualities with the index ind triggered by V .

The labelled behaviour graph H = (N ′, E′) for an augmented set of SNFg
CTL clauses

T is the subgraph of G such that the set N ′ ⊆ N of nodes and the set E′ ⊆ E of edges
are reachable from the initial nodes of G.

Definition 5.13. [Path from a node n to a node n′ through a graph] A path from
a node n1 to a node nk in a graph is a sequence of nodes n1, n2, . . . , nk such that
(n1, n2), (n2, n3), . . . , (nk−1, nk) are edges of the graph.

Definition 5.14. [Shortest path from a node n to a node n′ through a graph] A
shortest path from a node n to a node n′ in a graph is a path from the node n to the
node n′ with the least number of edges amongst all the paths from the node n to the
node n′.

Definition 5.15. [Distance] Given a graph (N,E), if a node n′ ∈ N is reachable from
another node n ∈ N , the distance from n to n′ is the number of edges in a shortest path
from n to n′.

Definition 5.16. [ind-distance] Given a graph (N,E), if a node n′ ∈ N is ind-
reachable from a node n ∈ N , the ind-distance from n to n′ is the number of edges
in a shortest path such that every edge in it is labelled by ind.

LEMMA 5.17. Let T be an augmented set of SNFg
CTL clauses and H = (N,E) be the

labelled behaviour graph for T . If H contains an edge from a node n = (V,EA, EE) ∈ N
to a node n′ = (V ′, E′A, E

′
E) ∈ N such that l ∈ E′A then either (i) there exists a clause

Q⇒ A3l ∈ T such that V ′ |= Q or (ii) l ∈ EA and V 6|= l.

PROOF. From the construction of the labelled behaviour graph, we know E′A =
UnsatA(EA, V) ∪ EvA(V ′, T). Therefore, if l ∈ E′A, then l is either from UnsatA(EA, V)
or from EvA(V ′, T). For the first case, l must be in EA and V 6|= l. For the latter, there
exists a clause Q⇒ A3l ∈ T such that V ′ |= Q.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:24 L. Zhang et al.

LEMMA 5.18. Let T be an augmented set of SNFg
CTL clauses and H = (N,E) be the

labelled behaviour graph for T . Then, for every node n = (V,EA, EE) in H, if l ∈ EA

and V 6|= l then V |= wA
l .

PROOF. The proof proceeds by induction over the nodes of a path (n0, n1, . . .) from
an initial node n0 = (V 0, E0

A, E
0
E) to the node n = (V,EA, EE).

In the base case, n is an initial node. If l ∈ E0
A, by the construction of initial nodes,

there must be an A-sometime clause Q ⇒ A3l ∈ T and V 0 |= Q. By augmentation,
true⇒ ¬Q ∨ l ∨ wA

l . If V 0 6|= l, we obtain that V 0 |= wA
l .

Otherwise we assume that the lemma holds from node n0 to ni = (V i, Ei
A, E

i
E), i > 0,

and we prove that it holds for node ni+1 = (V i+1, Ei+1
A , Ei+1

E). Based on the assumption
of the lemma, V i+1 6|= l and l ∈ Ei+1

A . By Lemma 5.17, since l ∈ Ei+1
A , either

(1) there exists a clause Q⇒ A3l ∈ T such that V i+1 |= Q or
(2) l ∈ Ei

A and V i 6|= l.

In case (1), by augmentation, true⇒ ¬Q∨l∨wA
l ∈ T and since V i+1 6|= l, we obtain that

V i+1 |= wA
l . In case (2) by the induction hypothesis we have V i |= wA

l . By augmentation
we have wA

l ⇒ A#(wA
l ∨ l) ∈ T . Thus by the construction of H, since V i+1 6|= l, we have

V i+1 |= wA
l . Thus, the lemma also holds for node ni+1.

LEMMA 5.19. Let T be an augmented set of SNFg
CTL clauses and H = (N,E) be the

labelled behaviour graph for T . If H contains an edge from a node n = (V,EA, EE) ∈ N
to a node n′ = (V ′, E′A, E

′
E) ∈ N such that l〈ind〉 ∈ E′E then either (i) there exists a clause

Q⇒ E3l〈ind〉 ∈ T such that V ′ |= Q or (ii) l〈ind〉 ∈ EE and V 6|= l.

PROOF. By the construction of the labelled behaviour graph, E′E = Unsatind(EE , V)∪
EvE(V ′, T). Therefore, if l〈ind〉 ∈ E′E , then l〈ind〉 is either from Unsatind(EE , V) or from
EvE(V ′, T). For the first case, l〈ind〉 must be in EE and V 6|= l. For the latter, there exists
a clause Q⇒ E〈ind〉3l ∈ T and V ′ |= Q.

LEMMA 5.20. Let T be an augmented set of SNFg
CTL clauses and H = (N,E) be the

labelled behaviour graph for T . Then for every node n = (V,EA, EE) in H, if l〈ind〉 ∈ EE

and V 6|= l, then V |= wind
l .

PROOF. The proof proceeds analogously to the proof of Lemma 5.18 and uses the
fact that T contains the clause wind

l ⇒ E〈ind〉#(wind
l ∨ l).

LEMMA 5.21. Let T be an augmented set of SNFg
CTL clauses and T ′ be a set of

SNFg
CTL clauses obtained from T by adding any combination of initial, A-step, E-step

or global clauses which only involve propositions and indices occurring in T . Then the
labelled behaviour graph H ′ = (N ′, E′) for T ′ is a subgraph of the labelled behaviour
graph H = (N,E) of T .

PROOF. This is established by induction on the length of the shortest path from an
initial node to a node in H ′. For the base case, where the length of the path is zero, we
show that any initial node in H ′ is an initial node in H.

As T ′ has been constructed by adding a combination of initial, A-step , E-step and
global clauses to T , we have R0(T) ⊆ R0(T ′) and Rg(T) ⊆ Rg(T ′). Take any initial
node n0 = (V 0, E0

A, E
0
E) in H ′. By Definition 5.12, V 0 satisfies R0(T ′) ∪ Rg(T ′). As

R0(T) ⊆ R0(T ′) and Rg(T) ⊆ Rg(T ′) then V 0 must also satisfy R0(T) ∪ Rg(T). As the
set of A- and E-sometime clauses in T and T ′ is the same, V 0 satisfies the left hand
side of the same A- and E-sometime clauses and the sets E0

A and E0
E will be the same

in both graphs. Therefore, n0 is also an initial node in H.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:25

Next we assume that every node ni = (V i, Ei
A, E

i
E), where the length of the shortest

path in H ′ from an initial node to ni is m, is in H. We show that every node ni+1 =
(V i+1, Ei+1

A , Ei+1
E) in H ′ with an incoming edge (ni, ind, ni+1) ∈ E′, ind ∈ Ind(T) is also

in H.
V i+1 satisfies Rg(T ′) ∪ RA(ni, T

′) ∪ Rind(ni, T
′). Thus V i+1 also satisfies Rg(T) ∪

RA(ni, T) ∪ Rind(ni, T), as Rg(T) ⊆ Rg(T ′), RA(ni, T) ⊆ RA(ni, T
′) and Rind(ni, T) ⊆

Rind(ni, T
′). Furthermore as T and T ′ contain the same A- or E-sometime clauses in

T , Ei+1
A and Ei+1

E will be the same in both graphs. Thus ni+1 is also present in H as is
the edge (ni, ind, ni+1).

The proof that all the edges in H ′ are also in H is analogous to the proof above for
nodes.

Therefore, N ′ ⊆ N,E′ ⊆ E and H ′ ⊆ H.

Definition 5.22. [Terminal node] A node n in a labelled behaviour graph for an
augmented set T of SNFg

CTL clauses is a terminal node iff there exists an index ind ∈
Ind(T) such that no edges labelled with ind depart from n.

Definition 5.23. [ind-labelled terminal subgraph for l〈ind〉] For a labelled behaviour
graph (N,E) for an augmented set T of SNFg

CTL clauses, a subgraph (N ′, E′) is an
ind-labelled terminal subgraph for l〈ind〉 of (N,E) iff

(ITS1) N ′ ⊆ N and E′ ⊆ E;
(ITS2) for all nodes n, n′ ∈ N and edges (n, ind′, n′) ∈ E, n′ ∈ N ′ and

(n, ind′, n′) ∈ E′ iff n ∈ N ′ and ind = ind′; and
(ITS3) for every node n = (V,EA, EE) ∈ N ′, l〈ind〉 ∈ EE and V |= ¬l.

Definition 5.24. [Terminal subgraph for l] For a labelled behaviour graph (N,E)
for an augmented set T of SNFg

CTL clauses, a subgraph (N ′, E′) is a terminal subgraph
for l of (N,E) iff

(TS1) N ′ ⊆ N and E′ ⊆ E;
(TS2) for every node n ∈ N ′ there exists some index ind ∈ Ind(T) such that for

all edges (n, ind, n′) ∈ E, n′ ∈ N ′ and (n, ind, n′) ∈ E′; and
(TS3) for every node n = (V,EA, EE) ∈ N ′, l ∈ EA and V |= ¬l.

LEMMA 5.25. Given a labelled behaviour graph H = (N,E) and a node n =
(V,EA, EE) ∈ N , if, for every eventuality l〈ind〉 ∈ EE , l〈ind〉 can be satisfied in n or in
some node ind-reachable from n, then n is not in any ind-labelled terminal subgraph
H ′ = (N ′, E′) for l〈ind〉 of H.

PROOF. Let H ′ = (N ′, E′) be an arbitrary ind-labelled terminal subgraph for some
arbitrary eventuality l〈ind〉 of H. Proving this lemma is equivalent to proving that if
n ∈ N ′, then l〈ind〉 cannot be satisfied in n nor in any nodes ind-reachable from n in H.
Assume that n ∈ N ′. According to property (ITS2), all nodes which are ind-reachable
from n are also in N ′. By property (ITS3), for every node n′ = (V ′, E′A, E

′
E) ∈ N ′,

l〈ind〉 ∈ E′E and l is not satisfied in n′. Therefore, l〈ind〉 cannot be satisfied in n nor in
any node ind-reachable from n in H.

Definition 5.26. [Reduced labelled behaviour graph] Given a labelled behaviour
graph H = (N,E) for an augmented set of SNFg

CTL clauses T , the reduced labelled
behaviour graph Hred for T is the result of exhaustively applying the following deletion
rules to H.

(1) If n ∈ N is a terminal node with respect to an index in Ind(T), then delete n and
every edge into or out of n.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:26 L. Zhang et al.

(2) If there is an ind-labelled terminal graph (N ′, E′) of H such that ind ∈ Ind(T), then
delete every node n ∈ N ′ and every edge into or out of nodes in N ′.

(3) If there is a terminal graph (N ′, E′) of H with respect to some indices in Ind(T),
then delete every node n ∈ N ′ and every edge into or out of nodes in N ′.

LEMMA 5.27. If an augmented set of SNFg
CTL clauses T is unsatisfiable, then its

reduced labelled behaviour graph H is empty.

PROOF. Proving this lemma is equivalent to proving that, if H is not empty, then T
is satisfiable. By the definition of the satisfiability of a CTL formula, it is also equiva-
lent to proving that if H is not empty, then a CTL model structure satisfying T can be
constructed from H. Therefore, we assume that the reduced labelled behaviour graph
H = (N,E) of T is non-empty and we show how to construct a CTL model structure
M = 〈S,R,L, [], s0〉 satisfying T from H.

According to the definition of a CTL model structure and the semantics of SNFg
CTL

clauses, the following properties are necessary and sufficient for M to satisfy T .

(P1) L(s0) must satisfy R0(T) ∪Rg(T).
(P2) Every pair (si, si+1) ∈ R must satisfy the set of A-step, E-step and global clauses

in T , that is,
—L(si) and L(si+1) satisfy Rg(T);
— for every A-step clause P ⇒ A#Q ∈ T , if L(si) satisfies P , then L(si+1) must

satisfy Q; and
— for every E-step clause P ⇒ E#Q〈ind〉 ∈ T , if L(si) satisfies P and (si, si+1) ∈

[ind], then L(si+1) must satisfy Q.
(P3) For every E-sometime clause P ⇒ E〈ind〉3l ∈ T and every state s ∈ S, if M, s |=

P , then the path χ
〈ind〉
s must contain a state s′ ∈ S such that l ∈ L(s′).

(P4) For every A-sometime clause P ⇒ A3l ∈ T and every state s ∈ S, if M, s |= P ,
then every path χs must contain a state s′ ∈ S such that l ∈ L(s′).

Now we inductively define the construction of a CTL model structure from a reduced
labelled behaviour graph H = (N,E) and a mapping h from M to H.

Let cs be a function such that cs(n), for every node n = (V,EA, EE), is a fresh state
s such that L(s) = V . In addition, by RP(sn) we denote a reverse path consisting of a
finite sequence sn, sn−1, . . . , s0 of states such that sn, sn−1, . . . , s0 ∈ S, s0 is the root of
M , and for every i, 0 ≤ i ≤ n− 1, (si, si+1) ∈ R.

The state s0 of M is given by s0 = cs(n0), where n0 is an arbitrary initial node in H,
and we define h(s0) = n0. By the construction of H, property (P1) holds for s0.

Suppose we have constructed the state si for M and RP(si) = si, si−1, . . . , s0. Then
our task is to choose for each index ind ∈ Ind(T) a pair (si, si+1) ∈ [ind] for M . Assume
h(si) = n and n has k ind-successors (n1, n2, . . . , nk) ordered in an arbitrary but fixed
order (k > 0 as otherwise n would be a terminal node in H). Let SRP be the set {sj |
sj−1, sj ∈ RP(si), h(sj−1) = n, h(sj) ∈ {n1, n2, . . . , nk} and (sj−1, sj) ∈ [ind]}.

— if the set SRP is empty, then si+1 = cs(n1) and h(si+1) = n1;
— else, let s ∈ SRP be the state such that the distance between si and s is the shortest

among all the distances between si and a state in SRP and assume h(s) = nm ∈
{n1, n2, . . . , nk}, 1 ≤ m ≤ k, then
— si+1 = cs(nm+1) and h(si+1) = nm+1, if m 6= k;
— si+1 = cs(n1) and h(si+1) = n1, if m = k.

By this algorithm, for an arbitrary path χs0 , if a node n is used infinitely often to
construct states s ∈ χs0 and the index ind is used infinitely often to construct the
successor states of s on χs0 , then ind-successors of the node n are fairly chosen to

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:27

construct the path χs0 . This ensures that all eventualities are satisfied in M , as will
be shown below.

Following the instructions we provided and using a breadth-first order for the con-
struction from the state s0, a CTL model structure M is constructed from H. By the
construction of M and H, property (P2) holds for M .

Now we prove the model structure M we constructed satisfies property (P3). Assume
the clause P ⇒ E〈ind〉3l is in T and let s be an arbitrary state in S such that M, s |= P .
We need to show that the path χ

〈ind〉
s contains a state s′ such that l ∈ L(s′). We give a

proof by contradiction.
Assume l does not hold on χ

〈ind〉
s . We know the path χ

〈ind〉
s is an infinite se-

quence, whereas the set of nodes in H is finite, which implies that there are nodes
{nt1, nt2, . . . , nt

k} ∈ H, k ≥ 1, that are used infinitely often to construct the path χ
〈ind〉
s .

As we assume that l does not hold on χ
〈ind〉
s , we obtain that, for every state s′′ ∈ χ〈ind〉s ,

M, s′′ 6|= l. Therefore, for every node h(s′′) = (V ′′, E′′A, E
′′
E), V ′′ 6|= l. Moreover, by the

construction of H and M , P ⇒ E〈ind〉#l ∈ T and M, s |= P , we obtain that l〈ind〉 ∈ E′′E .
Therefore, for 1 ≤ i ≤ k, nti = (V t

i , EA
t
i, EE

t
i), V t

i 6|= l and l〈ind〉 ∈ EE
t
i. By the way we

construct M , all the ind-successors of each node in the set ∆ = {nt1, nt2, . . . , nt
k} are also

in ∆. Thus, the set of nodes {nt1, nt2, . . . , nt
k} in H and all the ind-labelled edges depart-

ing from those nodes form an ind-labelled terminal subgraph for l〈ind〉 of H. However,
H is a reduced labelled behaviour graph, so no ind-labelled terminal subgraph exists
in H. We obtain a contradiction. Therefore, l must hold on the path χ〈ind〉s and property
(P3) holds for M .

The proof that property (P4) holds for M is analogous to the proof that property (P3)
holds for M .

LEMMA 5.28. If a set of initial and global clauses is unsatisfiable then there is a
refutation using only step resolution rules.

PROOF. If a set T of initial and global clauses is unsatisfiable, then the set T ′ = {D |
true⇒ D ∈ T or start⇒ D ∈ T} is unsatisfiable by the semantics of A2 and start.

The set T ′ only consists of propositional clauses. Therefore, it has a refutation by
propositional ordered resolution with selection using the same ordering and selec-
tion function as for R�,SCTL. Then, we can use step resolution rules SRES4, SRES5,
and SRES8 on this set T to derive a contradiction, namely either start ⇒ false or
true⇒ false.

LEMMA 5.29. If the unreduced labelled behaviour graph for an augmented set of
SNFg

CTL clauses T is empty then a contradiction can be obtained by applying step reso-
lution rules to clauses in or derived from T .

PROOF. If the unreduced labelled behaviour graph is empty then by the definition
of labelled behaviour graph, there are no initial nodes, which means there does not
exist a valuation V such that the right-hand sides of all initial and global clauses of T
are true under V . Thus, the subset of T containing all initial and global clauses in T
is unsatisfiable and by Lemma 5.28 there exists a refutation of T using step resolution
rules SRES4, SRES5, and SRES8.

THEOREM 5.30 (COMPLETENESS OF R�,SCTL). If a finite augmented set T of SNFg
CTL

clauses is unsatisfiable, then T has a refutation using the resolution rules SRES1 to
SRES8, ERES1 and ERES2 and the rewrite rules RW1 and RW2.

PROOF. Let T be an arbitrary augmented unsatisfiable set of SNFg
CTL clauses and

let � and S be an arbitrary ordering and arbitrary selection function, respectively. The

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:28 L. Zhang et al.

proof proceeds by induction on the sequence of applications of the deletion rules to the
labelled behaviour graph of T . If the unreduced labelled behaviour graph is empty then
by Lemma 5.29 we can obtain a refutation by applying step resolution rules SRES4,
SRES5 and SRES8.

Now suppose the labelled behaviour graph H is non-empty. The reduced labelled
behaviour graph must be empty by Lemma 5.27, so there must be a node that can be
deleted from H.

Suppose there is a node n which would be subject to the first deletion rule in Defini-
tion 5.26. So, there is an index ind ∈ Ind(T) such that n has no ind-successors. Then n
is a terminal node n = (V,EA, EE).

Let Prop be a function mapping determinate clauses to propositional clauses such
that Prop(P ⇒ ∗D) = D where ∗ is either empty or an operator in {A#,E〈ind〉#}. We
extend Prop to a set N ′ of determinate clauses by Prop(N ′) = {Prop(C) | C ∈ N ′}.

Let W ′ = {P ⇒ A#D | P ⇒ A#D ∈ T and V |= P} ∪ {P ⇒ E〈ind〉#D′ | P ′ ⇒
E〈ind〉#D′ ∈ T and V |= P ′} ∪ {true ⇒ D′′ | true ⇒ D′′ ∈ T}, where P and P ′ are
conjunctions of literals whereas D,D′, D′′ are disjunctions of literals, and let W =
Prop(W ′). By Definition 5.12, W must be unsatisfiable, for otherwise there would exist
a node n′ that could serve as an ind-successor of n.

Given that W is a set of propositional clauses, it has a refutation by propositional
ordered resolution with selection using the same ordering and selection function as
for R�,SCTL. In particular, let N0, N1, . . . , Nn where N0 = W and for every i, 0 ≤ i ≤
n− 1, Ni+1 = Ni ∪ {Ci+1} such that Ci+1 is a propositional clause derived from Ni and
Cn = false, be a refutation of W .

We inductively construct a derivation N ′0, N ′1, . . . , N ′n from T by SRES1 to SRES3 and
SRES6 to SRES8 such that for every i, 0 ≤ i ≤ n, the following two properties hold
for N ′i : (i) Prop(N ′i) = Ni and (ii) for every determinate clause P ⇒ ∗D in N ′i , where
∗ is either empty or an operator in {A#,E〈ind〉#}, V |= P . Then, by construction, N ′n
contains a clause true ⇒ false, P ⇒ A#false or P ⇒ E〈ind〉#false with ind ∈ Ind(T),
where P is a conjunction of literals and satisfied by V .

We prove the base case first. We define N ′0 = W ′. Then by definition of W ′ and W ,
N ′0 satisfies properties (i) and (ii).

Next we prove the induction step. Assume that we have already constructed a
derivation N ′0, . . . , N

′
i such that for every j, 0 ≤ j ≤ i, N ′j satisfies properties (i) and

(ii). For the refutation N0, N1, . . . , Ni, Ni+1, . . . , Nn of W , let Ni+1 = Ni ∪{Ci+1}. We de-
fineN ′i+1 byN ′i+1 = N ′i∪{C ′i+1}, where C ′i+1 is the form of true⇒ Ci+1, Pi+1 ⇒ A#Ci+1

with V |= Pi+1 or Pi+1 ⇒ E〈ind〉#Ci+1, ind ∈ Ind(T) with V |= Pi+1 and derived by an
application of one of the resolution rules SRES1 to SRES3 and SRES6 to SRES8 from
N ′i .

Suppose Ci+1 = B1∨B2 is derived from two clausesB1∨l andB2∨¬l, then by the con-
struction of W we are able to find a clause G = Pi ⇒ A#(B1 ∨ l), Pi ⇒ E〈ind〉#(B1 ∨ l)
or true⇒ B1 ∨ l and G′ = P ′i ⇒ A#(B2 ∨ ¬l), P ′i ⇒ E〈ind〉#(B2 ∨ ¬l) or true⇒ B2 ∨ ¬l
in N ′i . Note that if G and G′ are both E-step clauses, then the indices ind in them are
identical. Depending on the form of G and G′ we can distinguish the following cases.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:29

From G = Pi ⇒ A#(B1 ∨ l)
and G′ = P ′i ⇒ A#(B2 ∨ ¬l)

we can derive C ′i+1 = Pi ∧ P ′i ⇒ A#(B1 ∨B2) by SRES1

From G = Pi ⇒ E〈ind〉#(B1 ∨ l)
and G′ = P ′i ⇒ A#(B2 ∨ ¬l)

we can derive C ′i+1 = Pi ∧ P ′i ⇒ E〈ind〉#(B1 ∨B2) by SRES2

From G = Pi ⇒ A#(B1 ∨ l)
and G′ = P ′i ⇒ E〈ind〉#(B2 ∨ ¬l)

we can derive C ′i+1 = Pi ∧ P ′i ⇒ E〈ind〉#(B1 ∨B2) by SRES2

From G = Pi ⇒ E〈ind〉#(B1 ∨ l)
and G′ = P ′i ⇒ E〈ind〉#(B2 ∨ ¬l)

we can derive C ′i+1 = Pi ∧ P ′i ⇒ E〈ind〉#(B1 ∨B2) by SRES3

From G = true⇒ B1 ∨ l
and G′ = P ′i ⇒ A#(B2 ∨ ¬l)

we can derive C ′i+1 = P ′i ⇒ A#(B1 ∨B2) by SRES6

From G = Pi ⇒ A#(B1 ∨ l)
and G′ = true⇒ B2 ∨ ¬l

we can derive C ′i+1 = Pi ⇒ A#(B1 ∨B2) by SRES6

From G = true⇒ B1 ∨ l
and G′ = P ′i ⇒ E〈ind〉#(B2 ∨ ¬l)

we can derive C ′i+1 = P ′i ⇒ E〈ind〉#(B1 ∨B2) by SRES7

From G = Pi ⇒ E〈ind〉#(B1 ∨ l)
and G′ = true⇒ B2 ∨ ¬l

we can derive C ′i+1 = Pi ⇒ E〈ind〉#(B1 ∨B2) by SRES7

From G = true⇒ B1 ∨ l
and G′ = true⇒ B2 ∨ ¬l

we can derive C ′i+1 = true⇒ B1 ∨B2 by SRES8

where l is eligible in B1∨ l and ¬l is eligible in B2∨¬l for a given atom ordering � and a
given selection function S of R�,SCTL as otherwise we would not have been able to derive
Ci+1 = B1 ∨B2 on the propositional level using ordered resolution with selection given
the ordering � and the selection function S.

Because Ci+1 = B1 ∨ B2, C ′i+1 is one of the clauses Pi ∧ P ′i ⇒ A#Ci+1, Pi ∧ P ′i ⇒
E〈ind〉#Ci+1, Pi ⇒ A#Ci+1, P ′i ⇒ A#Ci+1, Pi ⇒ E〈ind〉#Ci+1, P ′i ⇒ E〈ind〉#Ci+1, or
true ⇒ B1 ∨ B2. It is easy to see that since V |= Pi and V |= P ′i , as Pi+1 = Pi ∧ P ′i we
have V |= Pi+1. Furthermore, the cases above (SRES1 to SRES3 and SRES6 to SRES8)
cover all the possibilities to derive C ′i+1. Thus, if there exists a derived clauseCi+1, then
C ′i+1 can be derived by R�,SCTL. Furthermore, by definition, N ′i+1 satisfies properties (i)
and (ii).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:30 L. Zhang et al.

Thus, it follows that we can derive a clause C ′n = Pn ⇒ A#false, Pn ⇒ E〈ind〉#false
or true ⇒ false from T . From Pn ⇒ A#false or Pn ⇒ E〈ind〉#false we can obtain the
clause true⇒ ¬Pn in normal form using RW1 or RW2.

By Lemma 5.21, the labelled behaviour graph H ′ for N ′n is a subgraph of H. In
particular, every node in H ′ has to satisfy ¬Pn. Obviously, the node n ∈ N does not
satisfy this global clause and is thus not a node in H ′.

Suppose the second (or third) deletion rule in Definition 5.26 is applicable to H.
Then there must exist an eventuality l〈ind〉 (or l), where l〈ind〉 (or l) is not satisfied
in an ind-labelled terminal subgraph for l〈ind〉 (or a terminal subgraph for l) of nodes
ind-reachable (or reachable). We have two cases depending on the type of terminal
subgraphs:

— ind-labelled terminal subgraph for l〈ind〉. Let Q⇒ E〈ind〉3l be a clause in T and
H ′ = (N ′, E′) be an ind-labelled terminal subgraph for l〈ind〉 of the behaviour graph
H. For each n = (V,EA, EE) ∈ N ′, let loop(n) be the set consisting of all global, A-
step, and E-step clauses labelled with ind in T whose left-hand sides are satisfied by
V , and let Fn ⇒ E〈ind〉#Gn be the clause, which is the result of merging all clauses
in loop(n) ∪ {true⇒ E〈ind〉#true}. To show the set

⋃
n∈N ′ loop(n) is an E-loop in ¬l,

we must check the following two conditions.
— For each n ∈ N ′, we must have |= Gn ⇒ ¬l. In the following, we use a proof by

contradiction to establish it. By the construction of H, Gn is the only constraint
on the valuations of ind-successors of n. Therefore, if the implication Gn ⇒ ¬l
is not valid, then, by the construction of H, there must be an ind-successor n′ =
(V ′, E′A, E

′
E) of n, such that V ′ |= l. By property (ITS2), every ind-successor of n is

in H ′. By property (ITS3), for every ind-successor ni = (V i, Ei
A, E

i
E) of the node n,

V i |= ¬l. Therefore, we obtain a contradiction. So, Gn ⇒ ¬l is valid.
— For each n ∈ N ′ we must have |= Gn ⇒

∨
n′∈N ′ Fn′ . Let {n1, n2, . . . , nk}, k ≥ 1

be the set of ind-successors of the node n. We show that the assumption that
Gn ⇒

∨
n′∈N ′ Fn′ is not valid leads to a contradiction. By property (ITS2), every

ind-successor of n is also in N ′. Thus, to prove |= Gn ⇒
∨

n′∈N ′ Fn′ , it is enough to
prove that |= Gn ⇒

∨k
i=1 Fni . By the construction of H, Gn is the only constraint

on the valuations of ind-successors of n. Therefore, if Gn ⇒
∨k

i=1 Fni is not valid,
then, by the construction of H, there must be an ind-successor n′′ = (V

′′
, E

′′

A, E
′′

E)

of n, such that V ′′ |= ¬(
∨k

i=1 Fni
), namely V ′′ |= ¬Fn1

∧ . . . ∧ ¬Fnk
. As we know,

for every ind-successor ni = (V i, Ei
A, E

i
E), 1 ≤ i ≤ k, of the node n, V ni |= Fni

.
Therefore, n′′ can not be in the set {n1, . . . , nk}. This is a contradiction. Thus,
Gn ⇒

∨k
i=1 Fni

is valid.
Since we show that the set

⋃
n∈N ′ loop(n) is an E-loop in ¬l, we are able to use it in

an application of ERES2 with the eventuality l〈ind〉 occurring in Q ⇒ E〈ind〉3l ∈ T .
Let L be defined as

L =
∨

n∈N ′

Fn

As L is a disjunction of conjunctions, in what follows, we use wind
l ⇒ E〈ind〉#(¬L ∨ l)

and true ⇒ ¬Q ∨ ¬L ∨ l as a shorthand to denote the set of clauses corresponding
to these formulae as specified in the ERSS2 rule given in Section 4.2. Then T ′ =
T∪{wind

l ⇒ E〈ind〉#(¬L ∨ l), true⇒ ¬Q∨¬L∨l} is the result of adding the resolvents
derived by ERES2 to T . Note that, for every node n = (V,EA, EE) in H ′, (i) V |=
L; and (ii) by property (ITS3), V |= ¬l and lind ∈ EE . Therefore, V |= ¬(¬L ∨ l).
Moreover, by Lemma 5.20, V |= wind

l . Recall that through augmentation the set T

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:31

contains clauses
wind

l ⇒ E〈ind〉#(l ∨ wind
l)

true ⇒ (¬Q ∨ l ∨ wind
l)

By Lemma 5.19 either (1) there is an edge (n′, ind, n) ∈ E, where n′ = (V ′, E′A, E
′
E),

l〈ind〉 ∈ E′E , and V ′ |= ¬l; or (2) V |= Q,V |= ¬l.
(1) In the case of (1), we have V ′ |= wind

l by Lemma 5.20. So, for the aforementioned
resolvent wind

l ⇒ E〈ind〉#(¬L ∨ l), V ′ satisfies wind
l but V does not satisfy (¬L∨l).

Thus, the labelled behaviour graph for T ′ does not contain an edge (n′, ind, n).
By the construction of the labelled behaviour graph for T ′, n is not a node in it.

(2) In the case of (2), we have V |= Q,V |= L, V |= ¬l. Thus, n does not satisfy the
aforementioned resolvent true⇒ ¬Q ∨ ¬L ∨ l in T ′ and so n is not a node in the
labelled behaviour graph for T ′.

Therefore, the labelled behaviour graph for T ′ is a strict subgraph of that for T and
by induction we assume that as T ′ has a refutation so must T .

— Terminal subgraph for l. The proof is analogous to the proof for ind-labelled ter-
minal subgraphs for l〈ind〉.

The behaviour graph construction and the use of deletion rules to remove parts of
the behaviour graph which cannot contribute to the model structure for a given clause
set is commonly used in completeness proofs for temporal and modal resolution cal-
culi [Fisher et al. 2001] and resembles the tableau construction and marking procedure
for propositional dynamic logic PDL in [Pratt 1980].

5.3. Termination
In this section, we show that all the derivations obtained by applying rules of the
calculus R�,SCTL to an arbitrary finite set of SNFg

CTL clauses terminate.

THEOREM 5.31. Any derivation from a finite set T of SNFg
CTL clauses by the calcu-

lus R�,SCTL terminates.

PROOF. Assume T is augmented. Let T be constructed from a set Θ of n atomic
propositions and a set Ind of m indices. Then the number of SNFg

CTL clauses con-
structed from Θ and Ind is finite. We can have at most 22n initial clauses, 22n global
clauses, 24n A-step clauses, m · 24n E-step clauses, n · 22n+1 A-sometime clauses, and
m · n · 22n+1 E-sometime clauses. In total, there can be at most (m + 1)24n + (m · n +
n+ 1)22n+1 different SNFg

CTL clauses. Any derivation from a set of SNFg
CTL clauses by

the calculus R�,SCTL will terminate when either no more new clauses can be derived or a
contradiction is obtained. Since there are only a finitely bounded number of different
SNFg

CTL clauses, one of these two conditions will eventually be true.

6. COMPLEXITY
The satisfiability problem of CTL is known to be EXPTIME-complete [Clarke and
Emerson 1982; Emerson 1990; Emerson and Halpern 1985]. Next we consider the com-
plexity of the decision procedure based on R�,SCTL and presented in Section 4.4.

THEOREM 6.1. The complexity of the R�,SCTL-based decision procedure is in EXP-
TIME.

PROOF. Assume that the set N of SNFg
CTL clauses is augmented and is constructed

from a set Θ of n propositions and a set Ind of m indices. The cost of deciding whether a
step resolution rule can be applied to two determinate clauses is A = 4n+1 in the worst
case, provided we can compute S(C) in linear time, compare literals in constant time

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:32 L. Zhang et al.

and check the identity of indices in constant time. From the proof of Theorem 5.31, we
know the number of determinate clauses is at most B = 22n +22n +24n +m ·24n. There-
fore, to naively compute a new clause from an application of some step resolution rule,
we might need to look at C = B(B−1)

2 combinations of two clauses and the associated
cost is (C ·A). Moreover, to decide whether the resolvent is a new clause or not, we need
to compare the resolvent with at most B clauses and the cost is D = B · (8n2 + 1). In the
worst case, where each pair of clauses generates a resolvent but the resolvent already
exists and only the last pair of clauses gives a new clause, to gain a new clause from an
application of some step resolution rule, the complexity is of the order (C · A · D), that
is, EXPTIME. According to the proof of Theorem 5.31, there can be at most different B
determinate clauses. Therefore, the complexity of saturating a set of SNFg

CTL clauses
by step resolution is the order of (C · A · D) · B. That is the complexity of resolution sres
(line 8) is in EXPTIME.

To compute a new clause from an application of some eventuality resolution rule, the
complexity depends on the complexity of the so-called CTL loop search algorithm which
computes premises for the eventuality resolution rules [Bolotov and Dixon 2000]. The
CTL loop search algorithm is a variation of the PLTL loop search algorithm [Dixon
1998] which has been shown to be in EXPTIME and we can show that the complexity
of the CTL loop search algorithm from [Bolotov and Dixon 2000] is also in EXPTIME.
Generally speaking, each iteration of the CTL loop search algorithm is a saturation of
the clause set, which is in EXPTIME, and there may be an exponential number of iter-
ations required. Therefore, the complexity of resolution eres (line 12) is in EXPTIME.
According to the proof of Theorem 5.31, there can be at most distinct n · 22n+1 A-
sometime clauses and m · n · 22n+1 E-sometime clauses. Thus, the number of iterations
for the for-loop (line 11 to 16) is at most (n · 22n+1 +m · n · 22n+1).

As we know, the cost of deciding whether a clause exists in the set Old is D and the
number of clauses in the set New at line 17 is at most B. Therefore, the cost of the
operation New \ Old is D · B (line 17). Analogously we can obtain that the cost of the
operation New ∪ G (line 14) is bounded by D · B.

Thus, the complexity of each iteration of the do-while-loop (line 8 to 18) is in EXP-
TIME. From the proof of Theorem 5.31, there can be at most B different determinate
clauses. The number of iterations of the do-while-loop is at most B. Therefore, the com-
plexity of the decision procedure is in EXPTIME.

7. RELATED WORK
First we provide a comparison with a previous resolution calculus for CTL and then
we consider other approaches to determine the satisfiability of CTL and related logics.

7.1. Comparison between R�,S
CTL and the previous resolution calculus

R�,SCTL is based on the resolution calculus for CTL in [Bolotov 2000]. Both follow the
spirit of the resolution calculus for PLTL in [Fisher et al. 2001] which translates to
a normal form and applies initial, step and eventuality resolution rules. The use of
indices to transform CTL formulae into Separated Normal Form for CTL was intro-
duced in [Bolotov 2000]. However, no formal interpretation was given for indices and
no formal semantics stated for SNFg

CTL. In this paper, we provide a formal semantics
for SNFg

CTL.
Compared to the definition of SNFCTL in [Bolotov 2000], we use an additional type

of clause, namely global clauses. Our definition of SNFg
CTL provides several advan-

tages over [Bolotov 2000]. Global clauses inevitably occur as a result of inferences by
step resolution rules. For example, from m1 ⇒ A#l and m2 ⇒ A#¬l we can derive
m1 ∧ m2 ⇒ A#false, while from m1 ⇒ E〈ind〉#l and m2 ⇒ E〈ind〉#¬l we can derive

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:33

TRES1 P † ⇒ A#A2l
q ⇒ A3¬l
q ⇒ A(¬P †W ¬l)

TRES2 P † ⇒ A#A2l
q ⇒ E〈ind〉3¬l
q ⇒ E〈ind〉(¬P † U ¬l)

where P † is a disjunction of conjunctions of literals and l and q are literals.

Fig. 2. Redundant eventuality resolution rules

m1 ∧ m2 ⇒ E〈ind〉#false. Both m1 ∧ m2 ⇒ A#false and m1 ∧ m2 ⇒ E〈ind〉#false are
transformed into a global clause true⇒ ¬m1 ∨ ¬m2 by RW1 and RW2, respectively.

As the normal form in [Bolotov 2000] does not allow for such clauses, in the approach
taken in [Bolotov 2000] such global clauses must further be rewritten into equivalent
pairs of an initial clause and an A-step clause as follows:

true⇒
∨k

j=1mj −→

{
start⇒

∨k
j=1mj

true⇒ A#
∨k

j=1mj

where eachmj , 1 ≤ j ≤ k, is a literal. For the same reason, in [Bolotov 2000] the rewrite
rules RW1 and RW2 will each produce two clauses, whereas in R�,SCTL the analogous
rewrite rules produce only one. Thus, one obvious advantage of allowing global clauses
is that compared to [Bolotov 2000] we will have fewer clauses transformed from the
original CTL formula and generated by resolution.

In [Bolotov 2000], a set of rules for the transformation of CTL formulae into a clausal
normal form is provided. The transformation rules are shown to preserve satisfiability.
However the proof for termination of the transformation process and the proof that
the result of the process is indeed in normal form are absent and the complexity of the
process is not studied. In contrast, we have provided the corresponding proofs and an
analysis of the complexity for our transformation process.

Another difference to [Bolotov 2000] is the approach taken in our completeness proof.
The proof in [Bolotov 2000] tries to relate the application of deletion rules on a CTL
tableau to a sequence of resolution steps. In contrast, to show completeness of our
calculus R�,SCTL we construct a graph known as a labelled behaviour graph. This is an
extension of the concept of a behaviour graph used in [Fisher et al. 2001] for proving
completeness of a clausal resolution for PLTL and related to the concept of a labelled
behaviour graph used [Dixon et al. 2002]. However, our labelled behaviour graph dif-
fers in its construction to capture the semantics of indices in SNFg

CTL. We believe our
completeness proof demonstrates a closer relationship between the application of res-
olution rules and deletions in the labelled behaviour graph. Moreover, it is relatively
easy to generate a CTL model structure from a non-empty reduced labelled behaviour
graph and the labelled behaviour graph for a set T of SNFg

CTL clauses saturated under
R�,SCTL that contains no contradiction, is a reduced labelled behaviour graph. Hence, we
could potentially use the labelled behaviour graph construction to generate counter
models for failed proofs.

Furthermore, in the resolution calculus for CTL presented in [Bolotov 2000; Dixon
et al. 2002] step resolution is not constrained by an ordering and a selection func-
tion. Therefore, the step resolution rules in [Bolotov 2000; Dixon et al. 2002] allow
for considerably more, and superfluous, inferences. In addition, this earlier resolution
calculus contains four eventuality resolution rules, TRES1 to TRES4, where ERES1
and ERES2 correspond to TRES3 and TRES4, respectively. The other two eventuality
resolution rules are given in Figure 2. Using our completeness proof we can prove that

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:34 L. Zhang et al.

the two eventuality resolution rules TRES1 and TRES2 in [Bolotov 2000; Dixon et al.
2002] are redundant.

We give a brief explanation why this is the case. Informally, the only difference
between TRES1 and ERES1 is their first premise. For TRES1, it is P † ⇒ A#A2l
and for ERES1, it is P † ⇒ E#E2l. In [Bolotov 2000; Dixon et al. 2002], A#A2l is
called an A-loop and E#E2l is called an E-loop. According to the semantics of CTL,
A#A2l ⇒ E#E2l, meaning if there exists an A-loop, there must be an E-loop as
well. So, whenever we can apply TRES1 (TRES2), ERES1 (ERES2) is applicable as
well. More formally, in our completeness proof we only identify two types of subgraphs
where some eventuality can not be fulfilled, namely, ind-labelled terminal subgraphs
and terminal subgraphs. Both are E-loops according to the definition in [Bolotov 2000]
and the deletion of both types of subgraphs correlates to applications of ERES1 or
ERES2. Thus, no further inference rules are required showing that TRES1 and TRES2
are redundant. Considering that the eventuality resolution rules are computationally
very expensive, we gain a significant improvement here.

Finally, complexity of the method is not discussed in [Bolotov 2000]. In this paper,
we prove that a decision procedure based on R�,SCTL is of the order EXPTIME.

7.2. Other approaches for the satisfiability problem of CTL and related logics
There are other approaches, which can also be used to solve the satisfiability prob-
lem of CTL, namely automata techniques [Vardi and Wolper 1986], Hintikka based
approaches [Emerson and Halpern 1985; Emerson 1990] and tableau calculi [Emer-
son and Halpern 1985; Emerson 1990; Abate et al. 2007; Attie 2003]. We give a brief
discussion of these approaches.

The automata-based decision procedure for CTL [Vardi and Wolper 1986] consists of
two separate phases. Firstly, the decision procedure constructs an automaton A for a
given CTL formula ϕ. This constructed automaton has a very useful property that it
accepts certain infinite tree models of ϕ iff the formula ϕ is satisfiable. In the second
phase, the decision procedure checks whether there exists a tree model accepted by
A, i.e. whether the language accepted by A is non-empty. If there is one tree model
accepted by A, then ϕ is satisfiable. Otherwise, ϕ is unsatisfiable. Constructing the
automaton requires exponential time in the size of ϕ while checking the emptiness of
the language accepted by the automaton requires polynomial time in the size of A.

Hintikka based approaches first generate a closure set of formulae that may occur
in the construction. All the possible states and edges are generated according a set of
constraints and some of these are deleted according to rules relating to the semantics
of formulae in the states. This is analogous to our behaviour graph construction. For
the former, the Fischer-Ladner closure for CTL formulae is defined. This defines all
formulae that may appear in the construction. For example if E3ϕ is in the closure
then both ϕ and E#E3ϕ are also in the closure. Additionally a list of constraints are
provided on formulae that appear in state labels. For example, if E3ϕ is in a state label
then either ϕ or E#E3ϕ must also be in the state label. Initially all possible states and
edges between them (with respect to formulae of the form A#ϕ) are constructed. States
are removed if they do not satisfy the list of constraints and if they do not satisfy E#
formulae or eventualities (i.e. formulae for the form P3ϕ or P(ψ U ϕ) where P is either
path operator). The downside of this approach is that as all the states are constructed
at the start the worst case complexity is always obtained.

With tableau calculi, the idea is to use the formula to be shown satisfiable to con-
struct a structure such that a model can be constructed from that structure. Usually
two types of rules are defined for the calculus, namely the construction rules and the
deletion rules. The construction rules, are used to expand an arbitrary CTL formula

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:35

ϕ into a (possibly cyclic) graph such that each node of this graph is a set of CTL for-
mulae. During the construction phase typically tableau calculi utilise alpha and beta
rules dependent on whether formulae are conjunctive or disjunctive. For example ϕ∧ψ
is an alpha formula where α1 = ϕ and α2 = ψ whereas ϕ ∨ ψ is an beta formula where
β1 = ϕ and β2 = ψ. Temporal formulae are unwound to equivalent formulae relating
to the current moment and the next moment, for example, A2ϕ ≡ ϕ ∧ A#A2ϕ and
E3ϕ ≡ ϕ ∨ E#E3ϕ where A2ϕ is an alpha formula with α1 = ϕ and α2 = A#A2ϕ
and E3ϕ is a beta formula with β1 = ϕ and β2 = E#E3ϕ. The structure is expanded
by selecting a formula to be expanded. If the formula is an alpha formula, a single suc-
cessor is constructed with the formula replaced by α1 and α2. For beta formulae two
successors are created one with the formula replaced by β1 and one with it replaced by
β2. The structure is expanded until all no further alpha and beta rules can be applied,
i.e. formulae are either literals or formulae beginning with A# or E# operators. Edges
to a set of nodes are made, one for each E# operator containing ϕ for every formula
A#ϕ and ψ for some E#ψ.

The deletion rules of a tableau calculus for CTL determine which nodes should be
removed from the constructed tableau. A node n is eliminated if any one of the follow-
ing condition is satisfied: (i) there are inconsistencies in the node, for example p and
¬p; (ii) the node has certain requirements on its successors and those requirements
are not fulfilled by its successors; or (iii) the node contains unrealised eventualities,
for example, E3p (or A(pU q)) in the node n and can not be realised in any (resp. all)
path reachable from the node n. The deletion rules remove all the nodes which are not
able to be used to construct a CTL model satisfying the CTL formula ϕ. If the tableau
has no nodes left after the deletion process, the tableau is a closed tableau for CTL and
the CTL formula ϕ is unsatisfiable, otherwise the tableau is an open tableau for CTL
and ϕ is satisfiable.

The papers [Emerson and Halpern 1985; Emerson 1990] define both Hintikka and
tableau algorithms for checking the satisfiability of CTL formulae in exponential time.
A complete axiomatisation for CTL is also provided. The Hintikka approaches follow
the above outline, first constructing all the states and then applying deletions. Addi-
tionally, a tableau algorithm that does not require all the states constructing initially
is described using the two phase construction and deletion rules along the lines de-
scribed above.

In [Marrero 2005] an algorithm to check satisfiability of CTL formulae is proposed
that is based on both the Hintikka approach from [Emerson and Halpern 1982; 1985]
and the use of ordinary binary decision diagrams (OBDDs), a technique used in model
checking. Rather than labelling states with formulae in a particular closure set, a sub-
set of this is defined using propositions and formulae with E# as the main connective.
These are used as the set of boolean state variables. An identical set of primed vari-
ables are used to denote variables in successor states. The states and relations in the
structure are also represented as quantified boolean formulae showing conditions re-
lating to successor states. The fulfilment of eventualities are represented by fixpoints
and computed iteratively. This has been implemented and run on a number of exam-
ples. However [Goré et al. 2011] notes flaws in the implementation and the prover does
not seem to be publicly available.

A two pass tableau algorithm which first constructs a structure and then carries out
deletions for the branching-time logic UB is provided in [Ben-Ari et al. 1981]. UB is a
sub logic of CTL which does not contain the operators AU and EU . Goré et al. [2011]
have implemented this tableau algorithm, extended to allow for until operators as part
of their evaluation of CTL provers.

Attie [2003] is primarily interested in synthesising a concurrent program from a
specification. A variant of CTL is used as the language for specification. In the mod-

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:36 L. Zhang et al.

els the relation R between states is labelled by an index relating to the number of
processes, I. In the syntax of CTL this is reflected by using an indexed some path next-
time operator E#iϕ (and its all paths equivalent). Whilst R is serial, i.e. for all s ∈ S
∃s′ ∈ S, i ∈ I s.t. (s, i, s′) ∈ R, there might not be a successor for each member of I.
Additionally the usual E# operator is defined as the disjunction of the indexed some
path operators. Note that the operators such as E3 and EU do not have indexed coun-
terparts. There seems to be some relationship to the indices we use in this paper. Here
indices are used for technical reasons (one for each some path operator) and are not
allowed in the input formula whereas in [Attie 2003] indices are there to capture the
specification of a particular process. Further, with our use of indices in the extended
model structures there is exactly one successor for each index which is not the case
in [Attie 2003]. Also here operators such as E3 and EU are provided with an indexed
semantics unlike [Attie 2003] where indices are only allowed with next operators. The
tableau algorithm provided in the paper uses a construction/deletion style algorithm
along the lines described above.

A one-pass tableau calculus for CTL is defined in [Abate et al. 2007]. This is an ex-
tension of the one pass tableau algorithm for PLTL in [Schwendimann 1998]. Rather
than having a two phase algorithm with a construction phase followed by a deletion
phase additional information is added to the tableau nodes to make such decisions lo-
cally. The tableau is explored in a depth-first, branch by branch manner. In the one
pass tableau for CTL, as well as a set of CTL formulae, nodes contain details of the
history of the branch, whether the node is closed, and information about the satis-
faction of eventualities. The history is determined by the parent of the node whereas
the closure and eventuality information is determined by the node’s children. However
the one pass tableau calculus results in a double-EXPTIME decision procedure [Abate
et al. 2007]. This is higher than the complexity of CTL-RP, which is EXPTIME.

The one pass tableau algorithm for CTL is implemented as a built-in module in the
Tableau Workbench (TWB) [Abate and Goré 2003]. The TWB is a generic framework
for building automated theorem provers for arbitrary propositional logics which pro-
vides a general architecture and a high-level language which allows users to specify
tableau rules and provers based on these rules. It provides a number of pre-defined
provers for a wide range of logics, for example, propositional logic, linear-time tempo-
ral logic and CTL. However the aim of TWB was extensibility rather than efficiency. An
optimised version of the one pass tableau, called TreeTab, has also been implemented
and used as part of the comparisons in [Goré et al. 2011].

A popular alternative to deductive methods for checking the satisfiability of CTL is
using model checking. Model checkers take a model of the system, usually some form of
state transition system, and a formula to be checked on that model and check whether
the formula is satisfied on all models from an initial state in the model. In [Clarke et al.
1986] a polynomial time model checking algorithm for properties specified in CTL is
given. The algorithm labels the states of the model with subformulae of the property
to be checked that hold there. Implementations of temporal logic model checkers have
been developed, for example, NuSMV [Cimatti et al. 2002] allows CTL properties and
has been applied to many systems.

CTL* [Emerson and Halpern 1986] is a branching-time temporal logic that includes
both CTL and PLTL as sub-logics. The satisfiability problem for CTL* is 2EXPTIME-
complete [Vardi and Stockmeyer 1985; Emerson and Jutla 1988] and for model-
checking is PSPACE [Clarke et al. 1986]. Reynolds has proposed a tableau calculus
for CTL* in [Reynolds 2011]. The logic RoCTL* [French et al. 2007] is a branching-
time temporal logic with additional operators to deal with obligation and robustness.
In [McCabe-Dansted and Dixon 2010] CTL-like restrictions of RoCTL* are proposed,
some of which can be translated into CTL to provide EXPTIME decision procedures

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:37

for these fragments. Additionally a tableau calculus for a bundled version of the logic
has been proposed [McCabe-Dansted 2008].

MLSolver [Friedmann and Lange 2009] is a prover for modal fixpoint logics. The im-
plementation supports both the linear and modal µ-calculi, CTL* (and therefore its sub
logics PLTL and CTL) and Propositional Dynamic Logic. The approach is to construct
both a tableau and a deterministic automaton, and take the product of these to obtain
a parity game. This is then solved. The prover is used as part of the comparisons of
CTL provers in [Goré et al. 2011] but it should be noted that it is applicable to a wider
class of logics than the other provers compared.

8. CONCLUSIONS
CTL [Emerson 1990] was introduced by Emerson et al in the 1980s and now is a well-
known branching-time temporal logic for the specification and verification of compu-
tational systems. Approaches to the satisfiability problem in CTL include automata
techniques [Vardi and Wolper 1986], tableau calculi [Abate et al. 2007; Emerson and
Halpern 1985] and a resolution calculus [Bolotov 2000].

The calculus for CTL in [Bolotov 2000] is based on the ideas underlying a resolution
calculus for PLTL [Fisher et al. 2001]. Here, we have provided a refined clausal reso-
lution calculus R�,SCTL for CTL. Compared with [Bolotov 2000], we use an ordering and
a selection function to restrict the applicability of step resolution rules and we have
fewer eventuality resolution rules. We present a new completeness proof based on la-
belled behaviour graphs. Our completeness proof demonstrates a closer relationship
between applications of resolution rules and deletions on labelled behaviour graphs.
The proof shows that the additional eventuality resolution rules in [Bolotov 2000],
which are the most costly rules, are redundant. In addition, we prove that the com-
plexity of a R�,SCTL-based decision procedure for CTL is EXPTIME. An implementation of
this calculus has been shown to be competitive with other CTL provers, demonstrating
“robustness” in that it tends to succeed eventually rather than failing (or succeeding)
spectacularly.

APPENDIX
ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their helpful comments.

REFERENCES
ABATE, P. AND GORÉ, R. 2003. The Tableaux Workbench. In Proc. TABLEAUX ’03. LNCS Series, vol. 2796.

Springer, 230–236.
ABATE, P., GORÉ, R., AND WIDMANN, F. 2007. One-Pass Tableaux for Computation Tree Logic. In

Proc. LPAR ’07. LNCS Series, vol. 4790. Springer, 32–46.
AFANASIEV, L., FRANCESCHET, M., MARX, M., AND DE RIJKE, M. 2004. CTL Model Checking for Process-

ing Simple XPath Queries. In Proc. TIME ’04. IEEE Comp. Soc. Press, 117–124.
ATTIE, P. C. 2003. On the implementation complexity of specifications of concurrent programs. In

Proc. DISC ’03. LNCS Series, vol. 2848. Springer, 151–165.
BACHMAIR, L. AND GANZINGER, H. 2001. Resolution theorem proving. In Handbook of Automated Reason-

ing. Vol. 1. Elsevier, Chapter 2, 19–99.
BASSO, A. AND BOLOTOV, A. 2007. Towards GCM Re-configuration Extending Specification by Norms. In

Proc. CoreGRID Workshop 2007. CoreGrid Technical Report TR-0080.
BEN-ARI, M., MANNA, Z., AND PNUELI, A. 1981. The temporal logic of branching time. In Proc. POPL ’81.

ACM Press, 164–176.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

1:38 L. Zhang et al.

BOLOTOV, A. 2000. Clausal Resolution for Branching-Time Temporal Logic. Ph.D. thesis, Manchester
Metropolitan University.

BOLOTOV, A. AND DIXON, C. 2000. Resolution for Branching Time Temporal Logics: Applying the Temporal
Resolution Rule. In Proc. TIME ’00. IEEE Comp. Soc. Press, 163–172.

BOLOTOV, A. AND FISHER, M. 1999. A Clausal Resolution Method for CTL Branching-Time Temporal Logic.
JETAI 11, 1, 77–93.

CIMATTI, A., CLARKE, E. M., GIUNCHIGLIA, E., GIUNCHIGLIA, F., PISTORE, M., ROVERI, M., SEBAS-
TIANI, R., AND TACCHELLA, A. 2002. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In
Proc. CAV ’02. LNCS Series, vol. 2404. Springer, 359–364.

CLARKE, E. M. AND EMERSON, E. A. 1982. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In Proc. Logic of Programs Workshop. LNCS Series, vol. 131. Springer,
52–71.

CLARKE, E. M., EMERSON, E. A., AND SISTLA, A. P. 1986. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Transaction on Programming Languages and
Systems 8, 2, 244–263.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. 2000. Model Checking. MIT Press.
DIXON, C. 1998. Temporal Resolution Using a Breadth-First Search Algorithm. Annals of Mathematics and

Artificial Intelligence 22, 1-2, 87–115.
DIXON, C., FISHER, M., AND BOLOTOV, A. 2002. Clausal Resolution in a Logic of Rational Agency. Artifical

Intelligence 139, 1, 47–89.
EMERSON, E. A. 1990. Temporal and Modal Logic. In Handbook of Theoretical Computer Science. Elsevier,

Chapter 16, 996–1072.
EMERSON, E. A. AND HALPERN, J. Y. 1982. Decision procedures and expressiveness in the temporal logic

of branching time. In Proc. STOC ’82. ACM Press, 169–180.
EMERSON, E. A. AND HALPERN, J. Y. 1985. Decision Procedures and Expressiveness in the Temporal Logic

of Branching Time. Journal of Computer and System Sciences 30, 1, 1–24.
EMERSON, E. A. AND HALPERN, J. Y. 1986. “Sometimes” and “not never” revisited: on branching versus

linear time temporal logic. Journal of the ACM 33, 1, 151–178.
EMERSON, E. A. AND JUTLA, C. S. 1988. Complexity of tree automata and modal logics of programs. In

Proc. FOCS ’88. IEEE Comp. Soc. Press, 328–337.
FERNÁNDEZ GAGO, M. C. 2004. Efficient control of temporal reasoning. Ph.D. thesis, University of Liver-

pool.
FISHER, M., DIXON, C., AND PEIM, M. 2001. Clausal Temporal Resolution. ACM Transactions on Compu-

tational Logic 2, 1, 12–56.
FRENCH, T., MCCABE-DANSTED, J., AND REYNOLDS, M. 2007. Temporal Logic of Robustness. In Proc.

FroCoS ’07. LNAI Series, vol. 4720. Springer, 193–205.
FRIEDMANN, O. AND LANGE, M. 2009. A solver for modal fixpoint logics. Electronic Notes in Theoretical

Computer Science 262, 99–111.
GORÉ, R., THOMSON, J., AND WIDMANN, F. 2011. An experimental comparison of theorem provers for CTL.

In Proc. TIME ’11. IEEE Comp. Soc. Press, 49–56.
HUTH, M. AND RYAN, M. 2004. Logic in Computer Science: Modelling and Reasoning about Systems. Cam-

bridge University Press.
MANNA, Z. AND PNUELI, A. 1992. The Temporal Logic of Reactive and Concurrent Systems. Springer.
MARRERO, W. 2005. Using BDDs to Decide CTL. In Proc. TACAS ’05. LNCS Series, vol. 3440. Springer,

222–236.
MAX-PLANCK-INSTITUT FÜR INFORMATIK. 2010. Automation of logic: Spass. http://www.spass-prover.org/

download/.
MCCABE-DANSTED, J. 2008. A tableau for RoBCTL. In Proc. JELIA ’08. LNCS Series, vol. 5293. Springer,

298–310.
MCCABE-DANSTED, J. AND DIXON, C. 2010. CTL-Like Fragments of a Temporal Logic of Robustness. In

Proc. TIME ’10. IEEE Comp. Soc. Press, 11–18.
MCCUNE, W. Prover9 and mace4. http://www.cs.unm.edu/∼mccune/prover9/.
PRATT, V. R. 1980. A near-optimal method for reasoning about action. Journal of Computer and System

Sciences 20, 2, 231–254.
REYNOLDS, M. 2011. A tableau-based decision procedure for CTL*. Formal Aspects of Computing 23, 6,

1–41.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL 1:39

ROBINSON, J. A. 1965. Automatic deduction with hyper-resolution. International Journal of Computer
Mathematics 1, 227–234.

SCHWENDIMANN, S. 1998. A New One-Pass Tableau Calculus for PLTL. In Proc. TABLEAUX ’98. LNAI
Series, vol. 1397. Springer, 277–291.

VARDI, M. AND STOCKMEYER, L. 1985. Improved upper and lower bounds for modal logics of programs. In
Proc. STOC ’85. ACM Press, 240–251.

VARDI, M. Y. AND WOLPER, P. 1986. Automata-Theoretic Techniques for Modal Logics of Programs. Journal
of Computer and System Sciences 32, 2, 183–221.

VORONKOV, A. Vampire. http://www.vprover.org/index.cgi.
WEIDENBACH, C., SCHMIDT, R. A., HILLENBRAND, T., RUSEV, R., AND TOPIC, D. 2007. System description:

Spass version 3.0. In Proc. CADE-21. LNCS Series, vol. 4603. Springer, 514–520.
ZHANG, L. 2010. Clausal Reasoning for Branching-Time Logics. Ph.D. thesis, University of Liverpool.
ZHANG, L., HUSTADT, U., AND DIXON, C. 2009a. A Refined Resolution Calculus for CTL. In Proc. CADE-22.

LNCS Series, vol. 5663. Springer, 245–260.
ZHANG, L., HUSTADT, U., AND DIXON, C. 2009b. CTL-RP: A Computational Tree Logic Resolution Prover.

AI Communications 23, 2-3, 111–136.

Received October 2012; revised May 2013; accepted September 2013

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

Online Appendix to:
A Resolution Calculus for the Branching-Time Temporal Logic CTL

LAN ZHANG, Capital University of Economics and Business
ULLRICH HUSTADT, University of Liverpool
CLARE DIXON, University of Liverpool

A. TRANSLATION TO THE NORMAL FORM
A.1. Preservation of Satisfiability

LEMMA A.1. Let T be a set of CTL formulae, and let M = 〈S,R,L, [], s0〉 be a model
structure such that T is satisfiable in M . Let p ∈ PPL be an atomic proposition not
occurring in T , and let M ′ = 〈S,R,L′, [], s0〉 be a model structure identical to M except
for the truth value assigned by L′ to p in each state of M ′. Then T is also satisfiable in
M ′.

PROOF. By the inductive definition of the semantics of SNFg
CTL, the truth value

assignments to propositions not occurring in T do not influence whether T is satisfiable
in a model. Therefore, T is satisfiable in M ′.

LEMMA A.2. A CTL formula ϕ is satisfiable iff the set of formulae {A2(start ⇒
p),A2(p⇒ ϕ)}, where p ∈ PPL does not occur in ϕ, is satisfiable.

PROOF. Assume {A2(start ⇒ p),A2(p ⇒ ϕ)} is satisfiable in a model M =
〈S,R,L, [], s0〉, i.e. M, s0 |= A2(start ⇒ p) ∧ A2(p ⇒ ϕ). From the semantics of
⇒,A2,∧, M, s0 |= (start⇒ p)∧(p⇒ ϕ). From the semantics of⇒,∧, M, s0 |= (start⇒
ϕ). Because start holds at s0, M, s0 |= ϕ. Thus, if {A2(start ⇒ p),A2(p ⇒ ϕ)} is
satisfiable, so is ϕ.

Assume ϕ is satisfiable in a model M = 〈S,R,L, [], s0〉, i.e. M, s0 |= ϕ. Let M ′ =
〈S,R,L′, [], s0〉 be identical to M except that p holds only at s0. From the semantics of
start,⇒,A2, M ′, s0 |= A2(start⇒ p). From Lemma A.1, M ′, s0 |= ϕ. From the seman-
tics of ⇒,A2, M ′, s0 |= A2(p ⇒ ϕ). From the semantics of ∧, M ′, s0 |= A2(start ⇒
p) ∧A2(p⇒ ϕ). Thus, if ϕ is satisfiable, so is {A2(start⇒ p),A2(p⇒ ϕ)}.

LEMMA A.3. Let T be a set of CTL clauses, and let M = 〈S,R,L, [], s0〉 be a model
structure such that T is satisfiable in M . Let Ind(T) be the set of indices occurring in T
and ind be an index, which is not in the set of indices Ind(T), i.e. ind does not occur in
T . Let M ′ = 〈S,R,L, []′, s0〉 be a model structure identical to M except that [ind]′ is an
arbitrary function on S. Then T is also satisfiable in M ′.

PROOF. By the inductive definition of the semantics of SNFg
CTL, the successor func-

tion [ind] such that ind 6∈ Ind(T), does not influence whether T is satisfiable in a model.
Therefore, T is satisfiable in M ′.

Next we show all of our transformation rules preserve satisfiability.

LEMMA A.4. Let Tt = ∆ ∪ {ψ}, where ψ = A2(q ⇒ E#ϕ), be a set of CTL clauses,
and let Ind(Tt) be the set of indices occurring in Tt. Let Tt+1 be the set of CTL clauses
obtained by an application of Trans(1), where T is #, to the formula ψ in Tt, that is,
Tt+1 = ∆∪Rt, where Rt = {A2(q ⇒ E〈ind〉#ϕ)} and ind 6∈ Ind(Tt). Then Tt is satisfiable
iff Tt+1 is satisfiable.

c© 12 ACM 1529-3785/12/10-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

App–2 L. Zhang et al.

PROOF. Assume a model M = 〈S,R,L, [], s0〉 satisfies Tt+1, i.e. M, s0 |= ∆∧A2(q ⇒
E〈ind〉#ϕ). From the semantics of ∧, M, s0 |= ∆ and M, s0 |= A2(q ⇒ E〈ind〉#ϕ).
From the semantics of A2, for every path χs0 and every state sj ∈ χs0 ,M, sj |=
(q ⇒ E〈ind〉#ϕ). From the semantics of ⇒ and E〈ind〉#, for every path χs0 and every
state sj ∈ χs0 ,M, sj |= q implies that there exists a state s′ such that (sj , s

′) ∈ [ind]
and M, s′ |= ϕ. From the semantics of E#, for every path χs0 and every state
sj ∈ χs0 ,M, sj |= q implies that M, sj |= E#ϕ. Therefore, from the semantics of
∨,⇒,∧,A2, we obtain M, s0 |= ∆ ∧ A2(q ⇒ E#ϕ). Thus, if Tt+1 is satisfiable, then
so is Tt.

Next we prove the ‘only if ’ part. Assume a model M = 〈S,R,L, [], s0〉 satisfies Tt,
i.e. M, s0 |= ∆ ∧ A2(q ⇒ E#ϕ). We can obtain that M, s0 |= ∆ and by the semantics
of ⇒,A2 and E#, for every path χs0 and every state sj ∈ χs0 ,M, sj |= q implies that
there exists a path χsj such that there exists a state s′ ∈ χsj , (sj , s

′) ∈ R and M, s′ |= ϕ.
Let the model M ′ = 〈S,R,L, []′, s0〉 be identical to M except that ind ∈ Ind(Tt+1) and
for every path χs0 and for every state sj ∈ χs0

(1) if M ′, sj |= q, then let s′ be an arbitrary state with (sj , s
′) ∈ R and M, s′ |= ϕ and

let (sj , s
′) ∈ [ind]; and

(2) if M ′, sj 6|= q, then let s′ be an arbitrary state with (sj , s
′) ∈ R and let (sj , s

′) ∈ [ind].

Since we have restricted ourselves to tree models and M ′, s0 |= A2(q ⇒ E#ϕ), [ind] is
well-defined and a total function.

From the semantics of E〈ind〉#, for every path χs0 and every state sj ∈ χs0 ,M
′, sj 6|= q

or M ′, sj |= E〈ind〉#ϕ. From the semantics of ∨,⇒,A2, M ′, s0 |= A2(q ⇒ E〈ind〉#ϕ).
Moreover, Lemma A.3 shows that M ′, s0 |= ∆. Therefore, from the semantics of ∧,
M ′, s0 |= ∆ ∧A2(q ⇒ E〈ind〉#ϕ). Thus, if Tt is satisfiable, then so is Tt+1.

In the following we show the transformation rule Trans(3) preserves satisfiability.

LEMMA A.5. Let Tt = ∆ ∪ {ψ}, where ψ = A2(q ⇒ ϕ1 ∧ ϕ2), and Tt+1 = ∆ ∪ Rt,
where Rt = {A2(q ⇒ ϕ1),A2(q ⇒ ϕ2)}, be two sets of CTL clauses such that Tt+1 is
obtained by an application of Trans(3) to the formula ψ in Tt. Then Tt is satisfiable iff
Tt+1 is satisfiable.

PROOF. Assume Tt = ∆ ∧A2(q ⇒ ϕ1 ∧ ϕ2) is satisfiable in a model structure M =
〈S,R,L, [], s0〉 at the state s0 in M . Based on the semantics of the logical connectives
involved, we have that

〈M, s0〉 |= ∆ ∧A2(q ⇒ ϕ1 ∧ ϕ2)
iff 〈M, s0〉 |= ∆ ∧A2((q ⇒ ϕ1) ∧ (q ⇒ ϕ2))
iff 〈M, s0〉 |= ∆ and for each future path χs0 , for each sj ∈ χs0 , 〈M, sj〉 |= (q ⇒ ϕ1)

and 〈M, sj〉 |= (q ⇒ ϕ2)
iff 〈M, s0〉 |= ∆ ∧A2(q ⇒ ϕ1) ∧A2(q ⇒ ϕ2)

Therefore, Tt is satisfiable iff Tt+1 is satisfiable.

Next, we show the transformation rule Trans(5) preserves satisfiability.

LEMMA A.6. Let Tt = ∆ ∪ {ψ}, where ψ = A2(q ⇒ D), and Tt+1 = ∆ ∪ Rt, where
Rt = {A2(true⇒ ¬q ∨D)}, be two sets of CTL clauses such that Tt+1 is obtained by an
application of Trans(5) to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

PROOF. A2(q ⇒ D) is obviously equivalent to A2(true ⇒ ¬q ∨ D) as q ⇒ D is
propositionally equivalent to true ⇒ ¬q ∨ D. Therefore, Tt is actually equivalent to
Tt+1.

The next rule we consider is the rule Trans(6) where P is A.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL App–3

LEMMA A.7. Let Tt = ∆∪{ψ}, where ψ = A2(q ⇒ A#ϕ), and Tt+1 = ∆∪Rt, where
Rt = {A2(q ⇒ A#p),A2(p⇒ ϕ)} and p ∈ PPL does not occur in Tt, be two sets of CTL
clauses such that Tt+1 is obtained by an application of Trans(6), where P is A, to the
formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

PROOF. We first show the ‘if ’ part. Assume Tt+1 is satisfiable in a model structure
M = 〈S,R,L, [], s0〉, i.e. M, s0 |= ∆ ∧A2(q ⇒ A#p) ∧A2(p⇒ ϕ). From the semantics
of ∧ and A2, we obtain that (1) M, s0 |= ∆ and (2) for each path χs0 and for each
sj ∈ χs0 ,M, sj |= ¬q or for each path χsj , M, sj+1 |= p and (3) for each path χs0 and for
each sk ∈ χs0 , M, sk |= p⇒ ϕ.

According to (2), if q holds at the state sj , then A#p must hold at the state sj and for
each path χsj , p must hold at the state sj+1 with (sj , sj+1) ∈ R. Furthermore, by (3) we
know ϕ must hold at the state sj+1 and therefore A#ϕ holds at the state sj and so does
q ⇒ A#ϕ. From the semantics of A2 and (1), we obtain M, s0 |= ∆ ∧A2(q ⇒ A#ϕ).
Therefore, if Tt+1 is satisfiable, so is Tt.

Next, we prove the ‘only if ’ part. Assume that Tt is satisfiable in a model structure
M = 〈S,R,L, [], s0〉, i.e. M, s0 |= ∆ ∧ A2(q ⇒ A#ϕ). Let M ′ to be a model structure
identical to M except that for every state si ∈ S, p is true at a state si iff ϕ is true at si.
By definition of M ′, we have that A2(p⇔ ϕ) holds in M ′, that is, M ′, s0 |= A2(p⇔ ϕ).
Furthermore, as q ⇒ A#ϕ is true at a state si in M ′ iff q ⇒ A#ϕ is true at si in M ,
A2(q ⇒ A#ϕ) is satisfiable in M ′, that is, M ′, s0 |= A2(q ⇒ A#ϕ). From M ′, s0 |=
A2(q ⇒ A#ϕ) and the semantics of⇒, ∨ and A2, for each path χs0 and for each state
sj ∈ χs0 ,M

′, sj 6|= q or M ′, sj |= A#ϕ. From the semantics of A#, for each path χs0 and
for each state sj ∈ χs0 , M ′, sj 6|= q or for each path χsj , M ′, sj+1 |= ϕ. From M ′, sj+1 |= ϕ
and M ′, s0 |= A2(p ⇔ ϕ), we obtain M ′, sj+1 |= p. So, for each path χs0 and for each
state sj ∈ χs0 ,M′, sj 6|= q or M ′, sj |= A#p. Therefore, from the semantics of ⇒ and
A2, M ′, s0 |= A2(q ⇒ A#p). Also, by Lemma A.1, M ′, s0 |= ∆. Thus, if Tt is satisfiable,
so is Tt+1.

Next we prove that the transformation rule Trans(10) preserves satisfiability where
P is A.

LEMMA A.8. Let Tt = ∆∪{ψ}, where ψ = A2(q ⇒ A2ϕ), and Tt+1 = ∆∪Rt, where
Rt = {A2(q ⇒ p),A2(p⇒ ϕ),A2(p⇒ A#p)} and p ∈ PPL does not occur in Tt, be two
sets of CTL clauses such that Tt+1 is obtained by an application of Trans(10), where P
is A, to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

PROOF. Assume Tt is satisfiable in M = 〈S,R,L, [], s0〉, i.e. M, s0 |= ∆ ∧ A2(q ⇒
A2ϕ). Let M ′ = 〈S,R,L′, [], s0〉 be identical to M except that M ′, s |= p iff M ′, s |=
A2ϕ, for every state s in S. Thus, we know that (1) M ′, s |= p⇔ A2ϕ. By Lemma A.1,
M ′, s0 |= ∆ ∧ A2(q ⇒ A2ϕ). From the semantics of ∧, we obtain that (2) M ′, s0 |=
A2(q ⇒ A2ϕ). From (2), (1) and the semantics of ⇒ and A2, as s is an arbitrary
state in S, we obtain that M ′, s0 |= A2(q ⇒ p). Moreover, from (1) and the semantics
of A2, we obtain that M ′, s |= (p ⇒ ϕ). As s is an arbitrary state, we obtain M ′, s0 |=
A2(p ⇒ ϕ). From (1) and as A2ϕ ⇒ A#A2ϕ is a valid CTL formula, we obtain that
M ′, s |= (p⇒ A#A2ϕ). From (1) and the semantics of A#, M ′, s |= (A#A2ϕ⇒ A#p).
From the semantics of⇒, we obtain that M ′, s |= (p⇒ A#p). As s is an arbitrary state,
we obtain that M ′, s0 |= A2(p ⇒ A#p). Therefore, M ′, s0 |= ∆ ∧A2(q ⇒ p) ∧A2(p ⇒
ϕ) ∧A2(p⇒ A#p). We prove that if Tt is satisfiable, so is Tt+1.

Next we prove the ‘if ’ part. Assume Tt+1 is satisfiable in M = 〈S,R,L, [], s0〉, i.e.
(3) M, s0 |= ∆ ∧ A2(q ⇒ p) ∧ A2(p ⇒ ϕ) ∧ A2(p ⇒ A#p). Let s be an arbitrary
state in S. If M, s 6|= p, then M, s |= (p ⇒ A2p). If, on the other hand, M, s |= p, then
by an inductive augment we can conclude from (3) and the semantics of A2 and A#
that for every path χs and for every state si ∈ χs, M, si |= p. Thus, we obtain that (4)

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

App–4 L. Zhang et al.

M, s |= (p⇒ A2p). From (3), we know that in every state p⇒ ϕ holds and, thus, from
(4) and the semantics of ⇒ and A2, we obtain that (5) M, s |= (p ⇒ A2ϕ). From (3),
(5) and the semantics of ⇒ and A2, we obtain that M, s |= (q ⇒ A2ϕ). As s is an
arbitrary state, we obtain that M, s0 |= A2(q ⇒ A2ϕ). From (3) and the semantics of
∧, we obtain that M, s0 |= ∆ ∧A2(q ⇒ A2ϕ). Thus, if Tt+1 is satisfiable, so is Tt.

The next rule we prove to preserve satisfiability is Trans(11) where P is A.

LEMMA A.9. Let Tt = ∆ ∪ {ψ}, where ψ = A2(q ⇒ A(ϕU l)), and Tt+1 = ∆ ∪ Rt,
where Rt = {A2(q ⇒ l ∨ p),A2(p ⇒ ϕ),A2(p ⇒ A#(l ∨ p)),A2(q ⇒ A3l)} and
p ∈ PPL does not occur in Tt, be two sets of CTL clauses such that Tt+1 is obtained by an
application of Trans(11), where P is A, to the formula ψ in Tt. Then Tt is satisfiable iff
Tt+1 is satisfiable.

PROOF. Assume Tt is satisfiable in the model structure M = 〈S,R,L, [], s0〉, at the
state s0, i.e. M, s0 |= ∆ ∧A2(q ⇒ A(ϕU l)). Let M ′ = 〈S,R,L′, [], s0〉 be identical to M
except that for every state si ∈ S, M ′, si |= p iff M ′, si |= A(ϕU l) ∧ ¬l. Thus it holds
that (1) M ′, si |= p⇔ A(ϕU l) ∧ ¬l.

By Lemma A.1, we have M ′, s0 |= ∆ ∧A2(q ⇒ A(ϕU l)) and consequently M ′, s0 |=
A2(q ⇒ A(ϕU l)). From the semantics of A2, we have, for every state si ∈ S,
(2) M ′, si |= q ⇒ A(ϕU l).
— From (2) and propositional reasoning, we obtain that (3) M ′, si |= (q ∧ ¬l) ⇒

(A(ϕU l)) ∧ ¬l). Together with (1), (3) give us M ′, si |= (q ∧ ¬l ⇒ p). Thus,
M ′, si |= (q ⇒ l ∨ p). From the semantics of A2, M ′, s0 |= A2(q ⇒ l ∨ p).

— From (1), we have M ′, si |= (p⇒ ¬l) and from the semantics of AU , (1) also implies
that M ′, si |= (p ⇒ ϕ ∨ l). Thus, we have M ′, si |= (p ⇒ ϕ). From the semantics of
A2, we obtain that M ′, s0 |= A2(p⇒ ϕ).

— From (1) and the semantics of AU , if M ′, si |= p, then for every path χsi , there
exists a state sj ∈ χsi , j > i such that M ′, sj |= l and for every state sk ∈ χsi , i ≤
k < j,M, sk |= ϕ. Thus, we know that for every successor state si+1 of si, M ′, si+1 |=
l∨(A(ϕU l))∧¬l). From (1),M ′, si+1 |= l∨p. Thus, from the semantics of A#,M ′, si |=
A#(l∨p). Therefore, from the semantics of⇒, we have M ′, si |= p⇒ A#(l∨p). From
the semantics of A2, we have M ′, s0 |= A2(p⇒ A#(l ∨ p)).

— From (2) and the semantics of AU and A2, we obtain that if M ′, si |= q, then for
every path χsi , there exists a state sj ∈ χsi such that M ′, sj |= l and for every state
sk ∈ χsi , i ≤ k < j,M, sk |= ϕ. Thus, M ′, si |= (q ⇒ A3l). From the semantics of A2,
we have M ′, s0 |= A2(q ⇒ A3l).

Thus, if Tt is satisfiable, then so is Tt+1.
Next, we prove ‘if ’ part. Assume that Tt+1 is satisfiable in the model structure M =

〈S,R,L, [], s0〉, i.e.M, s0 |= ∆∧A2(q ⇒ l∨p)∧A2(p⇒ ϕ)∧A2(p⇒ A#(l∨p))∧A2(q ⇒
A3l), and consequently (4) M, s0 |= A2(q ⇒ l ∨ p), (5) M, s0 |= A2(p ⇒ ϕ), (6)
M, s0 |= A2(p ⇒ A#(l ∨ p)), and (7) M, s0 |= A2(q ⇒ A3l). We need to show that
M, s0 |= A2(q ⇒ A(ϕU l)).

Let si be an arbitrary state in S.

— If M, si 6|= q, then M, si |= q ⇒ A(ϕU l));
— if, on the other hand, M, si |= q, then

— if M, si |= l, then, from the semantics of AU and ⇒, we have M, si |= q ⇒
A(ϕU l));

— if, on the other hand, M, si 6|= l, then from (4) and propositional reasoning, M, si |=
p. By an inductive argument, we can conclude from (6) that for every path χsi ,
either (8) for every state sj ∈ χsi ,M, sj |= p ∧ ¬l or (9) there exists a state sj such
that M, sj |= l and for every state sk, i ≤ k < j,M, sk |= p ∧ ¬l. From (7) and the

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL App–5

semantics of A2 and A3, as M, si |= q, the possibility of (8) can be eliminated
and this leaves (9) as the only possibility. Therefore, we obtain that M, si |= q ⇒
A(pU l). From (5), the semantics of A2 and propositional reasoning, we have
M, si |= q ⇒ A(ϕU l).

From the semantics of A2, we have M, s0 |= A2(q ⇒ A(ϕU l))). Therefore, M, s0 |=
∆ ∧A2(q ⇒ A(ϕU l))). Thus, if Tt+1 is satisfiable, then so is Tt.

A.2. Termination of Translation
A.2.1. Weight functions for CTL formulae. To show that the transformation terminates,

we assign weights to CTL clauses and sets of CTL clauses. Therefore, to show the
termination, as any weight of a formula can not be a negative number, we just need to
prove that every application of a transformation rule strictly reduces the weight of a
set of CTL clauses.

We define the following three weight functions:

(1) w(Γ), which assigns a weight to a CTL clause Γ;
(2) w(L, ϕ), which assigns a weight to a CTL formula ϕ occurring on the left-hand side

of a CTL clause; and
(3) w(R, ϕ), which assigns a weight to a CTL formula ϕ occurring on the right-hand

side of a CTL clause.

Except for the case for atomic propositions, w(L, ϕ) and w(R, ϕ) are defined analo-
gously. Therefore, to ease the following definition, we use w(x, ϕ) where a case of
definition applies to both w(L, ϕ) and w(R, ϕ). The inductive definition of the three
weight functions is as follows.

For every CTL clause Γ = A2(ϕ1 ⇒ ϕ2), the weight w(Γ) of Γ is defined as follows.

(1) w(A2(ϕ1 ⇒ ϕ2)) = w(L, ϕ1) + w(R, ϕ2) + 1;
(2) w(x, start) = 1;
(3) w(x, true) = w(x, false) = 1;
(4) w(L, p) = 5;
(5) w(R, p) = 1;
(6) w(x,¬ϕ) = w(x, ϕ);
(7) w(x, ϕ1 ∧ ϕ2) = w(x, ϕ1) + w(x, ϕ2) + 7;
(8) w(x, ϕ1 ∨ ϕ2) = w(x, ϕ1) + w(x, ϕ2) + 1, where both ϕ1 and ϕ2 are disjunctions of

literals;
(9) w(x, ϕ1 ∨ϕ2) = w(x, ϕ1) +w(x, ϕ2) + 9, where only one of ϕ1 and ϕ2 is a disjunction

of literals;
(10) w(x, ϕ1∨ϕ2) = w(x, ϕ1)+w(x, ϕ2)+17, where neither of ϕ1 and ϕ2 are a disjunctions

of literals;
(11) w(x,A2ϕ) = w(x,E〈ind〉2ϕ) = w(x, ϕ) + 16;
(12) w(x,E2ϕ) = w(x, ϕ) + 17;
(13) w(x,A3ϕ) = w(x,E〈ind〉3ϕ) = w(x, ϕ) + 9, where ϕ is not a literal;
(14) w(x,A3l) = w(x,E〈ind〉3l) = w(x, l) + 1;
(15) w(x,E3ϕ) = w(x, ϕ) + 10;
(16) w(x,A#ϕ) = w(x,E〈ind〉#ϕ) = w(x, ϕ) + 9, where ϕ is not a disjunction of literals;
(17) w(x,A#ϕ) = w(x,E〈ind〉#ϕ) = w(x, ϕ) + 1, where ϕ is a disjunction of literals;
(18) w(x,E#ϕ) = w(x, ϕ) + 10;
(19) w(x,A(ϕ1 U ϕ2)) = w(x,E〈ind〉(ϕ1 U ϕ2)) = w(x, ϕ1) + w(x, ϕ2) + 46, where ϕ2 is not

a literal;
(20) w(x,E(ϕ1 U ϕ2)) = w(x, ϕ1) + w(x, ϕ2) + 47;

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

App–6 L. Zhang et al.

(21) w(x,A(ϕU l)) = w(x,E〈ind〉(ϕU l)) = w(x, ϕ) + w(x, l) + 38;
(22) w(x,A(ϕ1W ϕ2)) = w(x,E〈ind〉(ϕ1W ϕ2)) = w(x, ϕ1)+w(x, ϕ2)+46, where ϕ2 is not

a literal;
(23) w(x,E(ϕ1W ϕ2)) = w(x, ϕ1) + w(x, ϕ2) + 47;
(24) w(x,A(ϕW l)) = w(x,E〈ind〉(ϕW l)) = w(x, ϕ) + w(x, l) + 38;

Note that a disjunction of literals can consist of a single literal. For every set ∆ of CTL
clauses,

w(∆) =
∑
Γ∈∆

w(Γ).

In the following, we prove that each application of a transformation rule to a clause
Γ in a set T of CTL clauses results in a set T ′ of CTL clauses that strictly weighs less
than T . First, we consider the transformation rule Trans(1) where T is #.

LEMMA A.10. Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ E#ϕ), be a set of CTL clauses.
Let Tt+1 = ∆ ∪ {Γ′}, where Γ′ = A2(q ⇒ E〈ind〉#ϕ), be a set of CTL clauses such that
Tt+1 is obtained by an application of Trans(1), where T is #, to the formula Γ in Tt.
Then the weight of Tt is strictly greater than the weight of Tt+1.

PROOF. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−w(∆)−w(Γ′) > 0.
According to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R,E#ϕ) + 1

= 5 + w(R, ϕ) + 10 + 1

= w(R, ϕ) + 16;

if ϕ is not a disjunction of literals, then

w(Γ′) = w(L, q) + w(R,E〈ind〉#ϕ) + 1

= 5 + w(R, ϕ) + 9 + 1

= w(R, ϕ) + 15;

or if ϕ is a disjunction of literals, then

w(Γ′) = w(L, q) + w(R,E〈ind〉#ϕ) + 1

= 5 + w(R, ϕ) + 1 + 1

= w(R, ϕ) + 7.

Therefore, w(Tt) − w(Tt+1) = w(∆) + w(Γ) − w(∆) − w(Γ′) is 1 or 9, which is greater
than 0.

LEMMA A.11. Let Tt = ∆∪{Γ}, where Γ = A2(q ⇒ ϕ1∧ϕ2), be a set of CTL clauses.
Let Tt+1 = ∆ ∪ {Γ1,Γ2}, where Γ1 = A2(q ⇒ ϕ) and Γ2 = A2(q ⇒ ϕ2), be a set of CTL
clauses such that Tt+1 is obtained by an application of Trans(3) to the formula Γ in Tt.
Then the weight of Tt is strictly greater than the weight of Tt+1.

PROOF. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−w(∆)−w(Γ1)−
w(Γ2) > 0. According to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R, ϕ1 ∧ ϕ2) + 1

= 5 + w(R, ϕ1) + w(R, ϕ2) + 7 + 1

= w(R, ϕ1) + w(R, ϕ2) + 13

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL App–7

and

w(Γ1) = w(L, q) + w(R, ϕ1) + 1

= 5 + w(R, ϕ1) + 1

= w(R, ϕ1) + 6

and

w(Γ2) = w(L, q) + w(R, ϕ2) + 1

= 5 + w(R, ϕ2) + 1

= w(R, ϕ2) + 6

Therefore, w(Tt)−w(Tt+1) = (w(∆)+w(Γ))−(w(∆)+w(Γ1)+w(Γ2)) = (w(∆)+w(R, ϕ1)+
w(R, ϕ2) + 13)− (w(∆) + w(R, ϕ1) + 6 + w(R, ϕ2) + 6) = 1 > 0.

LEMMA A.12. Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ D) and D is a disjunction of
literals, be a set of CTL clauses. Let Tt+1 = ∆ ∪ {Γ′}, where Γ′ = A2(true ⇒ ¬q ∨D),
be a set of CTL clauses such that Tt+1 is obtained by an application of Trans(5) to the
formula Γ in Tt. Then the weight of Tt is strictly greater than the weight of Tt+1.

PROOF. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−w(∆)−w(Γ′) > 0.
According to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R, D) + 1

= 5 + w(R, D) + 1

= w(R, D) + 6

and

w(Γ′) = w(L, true) + w(R,¬q ∨D) + 1

= 1 + w(R,¬q) + w(R, D) + 1 + 1

= 1 + w(R, q) + w(R, D) + 1 + 1

= 1 + 1 + w(R, D) + 1 + 1

= w(R, D) + 4

Therefore, w(Tt)− w(Tt+1) = w(∆) + w(Γ)− w(∆)− w(Γ′) = 2 > 0.

LEMMA A.13. Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ E〈ind〉#ϕ), be a set of CTL
clauses. Let Tt+1 = ∆ ∪ {Γ1,Γ2}, where Γ1 = A2(q ⇒ E〈ind〉#p) and Γ2 = A2(p ⇒ ϕ),
be a set of CTL clauses such that Tt+1 is obtained by an application of Trans(6), where P
is E〈ind〉, to the formula Γ in Tt. Then the weight of Tt is strictly greater than the weight
of Tt+1.

PROOF. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−w(∆)−w(Γ1)−
w(Γ2) > 0. According to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R,E〈ind〉#ϕ) + 1

= 5 + w(R, ϕ) + 9 + 1

= w(R, ϕ) + 15

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

App–8 L. Zhang et al.

and

w(Γ1) = w(L, q) + w(R,E〈ind〉#p) + 1

= 5 + w(R, p) + 1 + 1

= 5 + 1 + 1 + 1

= 8

and

w(Γ2) = w(L, p) + w(R, ϕ) + 1

= 5 + w(R, ϕ) + 1

= w(R, ϕ) + 6

Therefore, w(Tt)− w(Tt+1) = w(∆) + w(Γ)− w(∆)− w(Γ1)− w(Γ2) = 1 > 0.

LEMMA A.14. Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ A2ϕ), be a set of CTL clauses.
Let Tt+1 = ∆ ∪ {Γ1,Γ2,Γ3}, where Γ1 = A2(q ⇒ p), Γ2 = A2(p⇒ ϕ) and Γ3 = A2(p⇒
A#p), be a set of CTL clauses such that Tt+1 is obtained by an application of Trans(10),
, where P is A, to the formula Γ in Tt. Then the weight of Tt is strictly greater than the
weight of Tt+1.

PROOF. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−w(∆)−w(Γ1)−
w(Γ2) − w(Γ3) > 0. According to the definition of the weight function for CTL clauses,
we have

w(Γ) = w(L, q) + w(R,A2ϕ) + 1

= 5 + w(R, ϕ) + 16 + 1

= w(R, ϕ) + 22

and

w(Γ1) = w(L, q) + w(R, p) + 1

= 5 + 1 + 1

= 7

and

w(Γ2) = w(L, p) + w(R, ϕ) + 1

= 5 + w(R, ϕ) + 1

= w(R, ϕ) + 6

and

w(Γ3) = w(L, p) + w(R,A#p) + 1

= 5 + w(R, p) + 1 + 1

= 5 + 1 + 1 + 1

= 8

Therefore, w(Tt)−w(Tt+1) = w(∆) +w(Γ)−w(∆)−w(Γ1)−w(Γ2)−w(Γ3) = 1 > 0.

LEMMA A.15. Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ A(ϕU l)), be a set of CTL
clauses. Let Tt+1 = ∆ ∪ {Γ1,Γ2,Γ3,Γ4}, where Γ1 = A2(q ⇒ l ∨ p), Γ2 = A2(p ⇒ ϕ)

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL App–9

Γ3 = A2(p⇒ A#(l∨p)) and Γ4 = A2(q ⇒ A3l), be a set of CTL clauses such that Tt+1

is obtained by an application of Trans(11), where P is A, to the formula Γ in Tt. Then
the weight of Tt is strictly greater than the weight of Tt+1.

PROOF. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−w(∆)−w(Γ1)−
w(Γ2) − w(Γ3) − w(Γ4) > 0. According to the definition of the weight function for CTL
clauses, we have

w(Γ) = w(L, q) + w(R,A(ϕU l)) + 1

= 5 + w(R, ϕ) + w(R, l) + 38 + 1

= 5 + w(R, ϕ) + 1 + 38 + 1

= w(R, ϕ) + 45

and

w(Γ1) = w(L, q) + w(R, l ∨ p) + 1

= 5 + w(R, l) + w(R, p) + 1 + 1

= 5 + 1 + 1 + 1 + 1

= 9

and

w(Γ2) = w(L, p) + w(R, ϕ) + 1

= 5 + w(R, ϕ) + 1

= w(R, ϕ) + 6

and

w(Γ3) = w(L, p) + w(R,A#(l ∨ p)) + 1

= 5 + w(R, l ∨ p) + 1 + 1

= 5 + w(R, l) + w(R, p) + 1 + 1 + 1

= 5 + 1 + 1 + 1 + 1 + 1

= 10

and

w(Γ4) = w(L, q) + w(R,A3l) + 1

= 5 + w(R, l) + 1 + 1

= 5 + 1 + 1 + 1

= 8

Therefore, w(Tt) − w(Tt+1) = w(∆) + w(Γ) − w(∆) − w(Γ1) − w(Γ2) − w(Γ3) − w(Γ4) =
12 > 0.

THEOREM A.16. Let Tt+1 be the set of CTL clauses obtained by an application of a
transformation rule to a clause Γ in the set of CTL clauses Tt. Then the weight of Tt is
strictly greater than the weight of Tt+1.

PROOF. To show this theorem holds, we only need to prove that w(Tt)−w(Tt+1) > 0
for each transformation rule. For the transformation rules Trans(1), Trans(3), Trans(5),
Trans(6), Trans(10), and Trans(11) we have already done so in Lemma A.10, A.11, A.12,

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

App–10 L. Zhang et al.

A.13, A.14, and A.15, respectively. For the remaining transformation rules the result
can be shown analogously. Below we only list the result of w(Tt)−w(Tt+1) for each rule.

Rule w(Tt)− w(Tt+1) Rule w(Tt)− w(Tt+1)
(1) T ∈ {#,3} 1 or 9 (1) T ∈ {2} 1
(2) T ∈ {U , W } 1 or 9 (3) 1
(4) 1 (5) 2
(6) P ∈ {A,E〈ind〉} 1 (7) P ∈ {A,E〈ind〉} 1
(8) P ∈ {A,E〈ind〉} 1 (9) P ∈ {A,E〈ind〉} 1
(10) P ∈ {A,E〈ind〉} 1 (11) P ∈ {A,E〈ind〉} 12
(12) P ∈ {A,E〈ind〉} 20

LEMMA A.17. Let T be a set of CTL clauses. If T contains a clause Γ which is not in
SNFg

CTL, then there exists a transformation rule, which can be applied to Γ in T .

PROOF. According to the syntax of CTL formulae and SNFg
CTL formulae, the possi-

ble forms of formulae occurring on the right-hand side of a CTL clause are the follow-
ing: true, false, p, ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ⇒ ψ), A2ϕ, A3ϕ, A#ϕ, A(ϕU ψ), A(ϕW ψ),
E2ϕ, E3ϕ, E#ϕ, E(ϕU ψ), E(ϕW ψ), E〈ind〉2ϕ, E〈ind〉3ϕ, E〈ind〉#ϕ, E〈ind〉(ϕU ψ), and
E〈ind〉(ϕW ψ), where ind is an arbitrary index in Ind, p is a proposition and ϕ and ψ are
CTL formulae. As we apply the functions simp and nnf at the beginning of the trans-
formation, CTL formulae of the form ¬ϕ (for a formula ϕ which is not a proposition),
and ϕ ⇒ ψ can not occur on the right-hand side of a CTL clause in T . For the remain-
ing possible forms that Γ might take, the table below shows that if Γ is not a SNFg

CTL
clause, then there exists a transformation rule which can be applied to Γ.

Form Trans Form Trans Form Trans
q ⇒ true (5) q ⇒ A2ϕ (10) q ⇒ E2ϕ (1)
q ⇒ false (5) q ⇒ A3ϕ (7) q ⇒ E3ϕ (1)
q ⇒ p (5) q ⇒ A#ϕ (6) q ⇒ E#ϕ (1)
q ⇒ ¬p (5) q ⇒ A(ϕU ψ) (8) or (11) q ⇒ E(ϕU ψ) (2)
q ⇒ ϕ ∧ ψ (3) q ⇒ A(ϕW ψ) (9) or (12) q ⇒ E(ϕW ψ) (2)
q ⇒ ϕ ∨ ψ (4) or (5) q ⇒ E〈ind〉2ϕ (10)

q ⇒ E〈ind〉3ϕ (7)
q ⇒ E〈ind〉#ϕ (6)
q ⇒ E〈ind〉(ϕU ψ) (8) or (11)
q ⇒ E〈ind〉(ϕW ψ) (9) or (12)

LEMMA A.18. Let ϕ be an arbitrary CTL formula and Tn be a set of SNFg
CTL clauses

obtained from T0 = init(ϕ) by n applications of our transformation rules. Then Tn can
be computed in less than 47m + 9 applications of the transformation rules where m is
the size of ϕ.

PROOF. Let ϕ be of size m and we assume that ϕ is already in negation normal
form. By the definition of the weight function, we know that the weight of T0 = init(ϕ)
is w(A2(start ⇒ p)) + w(A2(p ⇒ ψ)), where ψ = simp(nnf (ϕ)). It is not hard to see
that the function simp only reduces the size of ϕ. Thus, the size of ψ is bounded by the

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

A Resolution Calculus for the Branching-Time Temporal Logic CTL App–11

size of ϕ. Furthermore,

w(A2(start⇒ p)) = w(L, start) + w(R, p) + 1

= 1 + 1 + 1

= 3

and

w(A2(p⇒ ψ)) = w(L, p) + w(R, ψ) + 1

= 5 + w(R, ψ) + 1

= w(R, ψ) + 6.

Therefore, w(T0) = w(R, ψ) + 9. As the maximal weight for a constant, proposition,
boolean operator or temporal operator is 47, then w(R, ψ) is bounded by 47m+ 9. Since,
by Theorem A.16, each application of a transformation rule to Tt results a Tt+1 with
w(Tt+1) ≤ w(Tt) − 1, Tn can be computed in less than 47m + 9 applications of the
transformation rules.

B. CORRECTNESS
Soundness

LEMMA B.1. Let T0, T1, . . . , Tn be a derivation from a set of SNFg
CTL clause T0 = T

by the calculus R�,SCTL and consider the step of the derivation in which we derive Tt+1

from Tt for some t ≥ 0. If Tt is satisfiable and M = 〈S,R,L, [], s0〉 is a model structure
satisfying Tt then so is Tt+1 where Tt+1 is dervied from from Tt by rule SRES1, SRES5,
or SRES6.

PROOF. First, we show that SRES1 is sound. Assume A2(P ⇒ A#(C ∨ l)) and
A2(Q ⇒ A#(D ∨ ¬l)) are in Tt. Let Tt+1 be obtained by an application of SRES1 to
A2(P ⇒ A#(C ∨ l)) and A2(Q ⇒ A#(D ∨ ¬l)), that is, Tt+1 = Tt ∪ {A2(P ∧ Q ⇒
A#(C ∨ D))}. We show that M also satisfies Tt+1. Consider an arbitrary state s ∈ S.
If M, s 6|= P or M, s 6|= Q, then obviously M, s |= P ∧ Q ⇒ A#(C ∨ D). Assume that
M, s |= P and M, s |= Q. From A2(P ⇒ A#(C ∨ l)), A2(Q ⇒ A#(D ∨ ¬l)) and the
semantics of A2, we obtain that M, s |= P ⇒ A#(C ∨ l) and M, s |= Q ⇒ A#(D ∨ ¬l).
From the semantics of ⇒, we obtain that M, s |= A#(C ∨ l) and M, s |= A#(D ∨ ¬l).
From the semantics of A#, we obtain that for all successors s′ of state s, M, s′ |= C ∨ l
and M, s′ |= D ∨ ¬l. As l and ¬l cannot both be true at state s′, we conclude that
M, s′ |= C ∨ D. From the semantics of A#, we have M, s |= A#(C ∨ D). Therefore,
M, s |= P ∧ Q ⇒ A#(C ∨ D). As s is arbitrary, from the semantics of A2, we have
M, s0 |= A2(P ∧Q⇒ A#(C ∨D)).

We show SRES5 is sound. Assume A2(true ⇒ C ∨ l) and A2(start ⇒ D ∨ ¬l)
are in Tt. Let Tt+1 be obtained by an application of SRES5 to A2(true ⇒ C ∨ l) and
A2(start ⇒ D ∨ ¬l), that is, Tt+1 = Tt ∪ {A2(start ⇒ C ∨ D)}. We show that M
also satisfies Tt+1. Consider an arbitrary state s ∈ S. If s is not s0, then obviously
M, s |= start ⇒ C ∨ D, because start is false at the state s. Assume the state s is s0.
From M, s |= A2(true ⇒ C ∨ l) and M, s |= A2(start ⇒ D ∨ ¬l) and the semantics of
A2, we obtain M, s |= true⇒ C ∨ l and M, s |= start⇒ D ∨ ¬l. From the semantics of
true,⇒ and start, we obtain M, s |= C ∨ l and M, s |= D ∨ ¬l. As l and ¬l can not both
be true at the state s, we conclude M, s |= C ∨ D. As s is s0, then from the semantics
of start we have M, s |= start ⇒ C ∨D. Since start ⇒ C ∨D holds in s0 and all other
states, from the semantics of A2, we conclude M, s |= A2(start ⇒ C ∨ D). Thus the
model structure M satisfies Tt+1, Tt+1 is satisfiable and SRES5 is sound.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

App–12 L. Zhang et al.

Next we show SRES6 is sound. Assume A2(true⇒ C ∨ l) and A2(Q⇒ A#(D∨¬l))
are in Tt. Let Tt+1 be obtained by an application of SRES6 to them, that is, Tt+1 =
Tt∪{A2(Q⇒ A#(C ∨D))}. We show that M also satisfies Tt+1. Consider an arbitrary
state s ∈ S. If M, s 6|= Q, then M, s |= Q ⇒ A#(C ∨ D). If, on the other hand, M, s |=
Q, then from M, s0 |= A2(Q ⇒ A#(D ∨ ¬l)) and the semantics of A2, we obtain
M, s |= A#(D ∨ ¬l). Consider an arbitrary successor state s′ ∈ S of s, we then have
M, s′ |= D ∨ ¬l. By the assumption M, s0 |= A2(true⇒ C ∨ l) and from the semantics
of A2, true,⇒, we also have M, s′ |= C ∨ l. As l and ¬l can not both be true at the state
s′, we conclude M, s′ |= C ∨D. As state s′ is an arbitrary successor state of s, we obtain
M, s |= A#(C ∨ D). As M, s |= Q, we have M, s |= Q ⇒ A#(C ∨ D). As state s is an
arbitrary state, from the semantics of A2, we obtain M, s0 |= A2(Q⇒ A#(C∨D)).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: October 12.

