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ABSTRACT 

Investigating population performance and factors that influence reproductive 
success in the eastern black rhinoceros (Diceros bicornis michaeli). 

Katie L. Edwards 

With fewer than 5000 black rhinoceros remaining, ex situ populations play a vital role 
in the conservation of this species. To reinforce in-situ conservation efforts, captive 
populations must be self-sustaining, both demographically and genetically, to maximise 
future viability. The aim of this thesis was to determine the sustainability of the 
European captive population of eastern black rhinoceros, and investigate factors that 
may influence population performance in this species. 

Population viability analysis of demographic data from in situ managed black 
rhinoceros populations were used to establish the variability in population growth 
rates across reserves. Secondly, these data were used to calculate fecundity, mortality 
and population structure performance indicators, as a reference for how this species 
can perform under natural conditions. The same analyses were then applied to the 
European ex situ population, to determine whether the population is demographically 
and genetically self-sustaining, and identify areas for potential improvement. The 
European captive population of eastern black rhinoceros, although currently self-
sustaining, is performing sub-optimally both with respect to their in situ counterparts, 
and to a proposed target of 5% growth per annum. Population performance is 
primarily limited by sub-optimal reproduction, both in terms of individuals producing 
fewer calves per annum, and due to a high degree of reproductive skew across the 
population, leading to a large proportion of individuals failing to produce offspring. 

A multi-institutional study was conducted on 90% of the European population, to 
investigate intrinsic differences in faecal reproductive hormone metabolites between 
breeding and non-breeding individuals. In females, irregular oestrous cyclicity was 
observed, with longer than average cycles observed more frequently in females that 
had never bred, and periods of acyclicity more common in females that had not bred 
for at least seven years. Non-proven females also had higher body condition scores, and 
were less likely to exhibit regular signs of oestrus. In males, non-breeding males had 
reduced faecal testosterone compared to males that had previously sired offspring. 
Extrinsic factors were also investigated, to determine whether differences in 
reproductive success could be attributed to aspects of the social or physical 
environment. However, no consistent relationships were observed between breeding 
and non-breeding males or females. Furthermore, adrenal activity and testosterone 
concentration were not correlated with environmental factors, indicating that extrinsic 
factors alone may not explain differences in reproductive success. However, within 
females, differences in hormone concentration were associated with irregular oestrous 
cyclicity. Long cycles were associated with increased glucocorticoid metabolite 
concentration, and oestradiol metabolites were lower during periods of acyclicity. The 
duration of the preceding luteal phase varied between cycle types, indicating that the 
occurrence of regular and irregular oestrous cyclicity may be influenced by hormone 
exposure during the preceding oestrous cycle. 

In summary, a number of intrinsic differences in reproductive hormones in both males 
and females have been identified, which may be related to differential reproductive 
success. A better understanding of the causes of these differences would be beneficial 
to maximise growth rates and overall population performance of this ex situ 
population.  
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1. INTRODUCTION AND LITERATURE REVIEW 

 

Captive breeding programs are an important component of ex situ conservation for a 

wide variety of species. However, in order for these populations to successfully fulfil 

their role, it is important that they are self-sustaining and managed cooperatively and 

effectively, to maximise their potential. Furthermore, animal managers have a duty of 

care to provide optimal conditions for welfare. There is increasing pressure on 

population managers both in situ and ex situ to maintain healthy and viable 

populations, and a number of tools are available to guide decision making for such 

managed populations. In particular, population viability analysis can be used to predict 

the likely future status of a population based on demographic parameters such as 

mortality and fecundity, and allow identification of areas of sub-optimal performance 

that may require targeted management. However, in order to provide the conditions 

required for optimal growth of a population, a better understanding of the factors that 

may influence population performance is often required. In this thesis, this approach 

will be utilised to investigate population performance and factors that influence 

reproductive success in the eastern black rhinoceros (Diceros bicornis michaeli). 

Although this thesis will focus upon the black rhinoceros, the methodologies involved 

could be applied to a variety of taxa, to investigate similar issues regarding population 

viability, factors that may influence population performance and specifically 

reproduction and differential reproductive success. 
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1.1. Ex situ conservation 

1.1.1. The importance of species conservation 

Although extinction is a naturally occurring process, as evidenced by the fossil record, 

the current rate is elevated due to anthropogenic influences such as destruction of 

habitats for farming or human habitation, over-exploitation of natural resources, 

introduction of alien species, pollution and climate change, and harvesting of animal 

and plant species at unsustainable levels either for food, the pet trade or for traditional 

medicines. According to the International Union for Conservation of Nature (IUCN), the 

current species extinction rate is estimated between 1,000 and 10,000 times higher 

than it would naturally be (IUCN 2012). Of the 25,780 species categorised on the IUCN 

red list in 2010, one-fifth of these were threatened with extinction (Hoffmann et al. 

2010), a figure that continues to increase, with on average 52 species of mammals, 

birds and amphibians moving one category closer to extinction each year. However, 

without the work of conservation organisations around the world, extinctions would 

be at least one fifth higher than current figures. However, many of the species at risk 

today have become conservation dependent, such as 84% of those listed under the US 

endangered species act (Scott et al. 2010), and with an ever-increasing list, there is a 

need for evidence based conservation (Sutherland et al. 2004), to ensure that resources 

can be best applied.  

Although conservation may be most effective within a species’ natural habitat (Redford 

et al. 2012), with the added benefit that conservation work focused upon so-called 

‘umbrella species‘ can actually be beneficial in preserving ecosystems, this approach is 

not always feasible. For example, if the threat of disease remains, as is the case of the 

amphibian fungal disease Chytridiomycosis (Zippel et al. 2011), it may not be safe to 

conserve species in situ while the source of population declines still exists. Therefore ex 

situ conservation can be used in conjunction, to provide a safe and secure back up 

population, whilst attempting to tackle the cause of species declines. Although there 

has been some debate over the use of captive breeding programmes (Bowkett 2009), 

the consensus seems to be that the best approach to global conservation is through a 

combination of in situ and ex situ techniques (Balmford et al. 2011; Conde et al. 2011a, 

b; Pritchard et al. 2012). Indeed, a cooperative in situ-ex situ metapopulation, with the 

potential for future movement between the two if required, may indeed be the best 

approach to endangered species management (Lacy 2013). 
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1.1.2. Captive breeding programs 

Ex situ populations can contribute to global conservation strategies in a number of 

ways, both for the species involved, and for wider conservation initiatives (Baker 2007; 

IUCN 2002; WAZA 2005). Through the establishment of captive populations, away 

from the threats experienced in situ, a demographic and genetic reservoir can be 

established. If a founder population is established that is a good representation of their 

wild counterparts, with careful management, a high level of genetic diversity can be 

maintained away from the potential dangers experienced in the wild. Particularly for 

species that have undergone habitat loss and fragmentation, or where only small 

isolated populations remain, genetic diversity can be maximised through breeding 

management, and may allow a higher retention than leaving animals in situ where 

limited mixing may be feasible. Additionally, for species that have been pushed to the 

brink of extinction, removing vulnerable individuals to a safe captive environment, 

where for example, disease risk can be minimised, can provide a buffer against further 

decline while population breeding and recovery programs can be initiated.  

Furthermore, in situations where species have the potential for future reintroduction 

and suitable habitat remains, captive breeding can provide a means whereby 

proliferation can occur ex situ. Successful captive breeding programs have been used to 

re-establish populations of a number of species including the black footed ferret 

(Mustela nigripes; (Jachowski and Lockhart 2009; Vargas et al. 1998)), golden lion 

tamarin (Leontopithecus rosalia;(Kierulff et al. 2012)), California condor (Gymnogyps 

californianus; (Walters et al. 2010)), Przewalski’s horse (Equus ferus przewalskii; 

(Ryder 1993)), and red wolf (Canis rufus; (Phillips et al. 2003)). 

Whilst species are maintained in captivity, they can also provide other opportunities, 

including a chance to conduct research in a controlled environment that can then be 

applied to conservation in situ. Areas of research such as the effect of inbreeding (Ralls 

et al. 1988), can not only be beneficial for ex situ conservation, but can also be applied 

in situ (Redford et al. 2012; Seddon et al. 2007) to improve management of 

populations. Similarly, controlled conditions in a captive environment enable us to 

learn about species biology, that would be difficult to achieve under natural conditions 

(Watts et al. 2006). Research can also be beneficial when little is known about a 

species’ requirements, so that the correct conditions can be provided ex situ, but also to 

guide conservation priorities in situ, for example to determine social relationships or 

dietary requirements, which can have an impact on required reserve size. In other 
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cases, where disease outbreaks may be to blame for species decline, it may be 

necessary to research the potential causes and develop treatment before any 

reintroduction programme could be put into place.  

Flagship species in zoos and aquaria also act as important ambassadors to educate, and 

increase both public awareness of conservation issues, as well as acting as catalysts for 

local involvement (Baker 2007). Zoological institutions have a tremendous potential to 

educate the public about conservation issues (Moss and Esson 2013), both in the form 

of educational programmes, and by demonstrating the fantastic biodiversity that exists 

in real and tangible terms, giving people more of a connection to the issues we face. 

Zoological institutions do not only contribute to raising awareness of global 

conservation issues, but also raise financial support that can be used to support in situ 

conservation (Gusset and Dick 2011), indeed many zoos have direct links to in situ 

initiatives to which both expertise and financial support are provided.  

Ex situ populations have an important role to play in global conservation strategies, 

which with the current rate of extinction, may become even more important in the 

future, which makes it vital that a science-based approach is taken towards 

conservation, to ensure the best use of finite resources. 

 

1.1.3. Population management 

However, to fulfil these goals, captive populations must be self-sustaining, often 

without supplementation from the wild (Lees and Wilcken 2009, 2011), and 

populations must be managed scientifically, and cooperatively, to ensure their long-

term viability (Foose 1980; Foose and Wiese 2006; Leus et al. 2011b). To support 

conservation efforts, coordinated captive breeding programs including the European 

Endangered Species Breeding Program (EEP) in Europe and the Species Survival Plan 

(SSP) and Population Management Plan (PMP) in America have been established for a 

wide variety of species (Baker 2007). These coordinated programs mean that although 

individuals may be physically separated at multiple institutions, they can be managed 

as a single population, thereby increasing the potential sustainability of captive 

breeding programs. One particular concern of cooperative breeding programs is to 

maintain healthy, demographically sustainable populations with sufficient genetic 

diversity for future viability (Lacy 2013).  
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Captive breeding programs are often limited both in terms of the number of founders, 

and total population size (Lacy 2013). However, to act as a viable reserve for 

endangered species, it is important that ex situ populations are genetically sustainable, 

to retain the natural characteristics representative of their in situ counterparts 

(McPhee and Carlstead 2010) and sufficient genetic diversity for individuals to survive 

and reproduce, while the population maintains the potential to adapt to future changes 

in the environment, without becoming adapted to captivity (Frankham 2008; Williams 

and Hoffman 2009). A population is generally considered to be sustainable in the long-

term, according to certain criteria: reproduction should at least equal mortality; 

populations should be demographically stable, with 95-99% probability of population 

survival over a given time period; and genetic diversity should be maintained above 

90% for 100 years (Amin et al. 2006; Foose et al. 1995; WAZA 2005). 

However, more recently, it has been suggested that many cooperative breeding 

programs are failing to reach these targets (Conway 2011; Leus et al. 2011a; Long et al. 

2011), and these initial criteria may not be sufficiently strict to preserve the viability of 

ex situ populations in the longer term (Lacy 2013). An initial founder population of 20 

individuals can be sufficient to achieve the specified 90% genetic diversity for 100 

years (Lacy 1989; Soule et al. 1986). However, this calculation was based on effective 

population size, and in reality, founder contribution is often uneven, meaning that a 

minimum of 30-50 founders is often required to achieve an effective population of 20, 

and retain the necessary level of diversity (Lees and Wilcken 2009; Leus et al. 2011a). 

An important aspect of captive management is therefore to minimise reproductive 

skew, ensuring that all founders are well represented within the population (Ballou et 

al. 2010), to slow the rate of genetic change. For some species, it may also be necessary 

to manage ex situ populations globally, and even exchange individuals with in situ 

populations, taking a metapopulation approach (Conway 1995; Lacy 2013; Stanley-

Price and Fa 2007) in order to achieve these goals. 

To maximise the conservation potential of ex situ populations, it is vital to understand 

the factors that may influence current and future viability. Population viability analysis 

(PVA) is a useful management tool in conservation biology, which uses quantitative 

methods to predict the likely future status of a population, and can be applied to both 

in situ (Carrete et al. 2009; Daleszczyk and Bunevich 2009) and ex situ populations 

(Faust et al. 2006; Faust et al. 2003) to assess population performance, and investigate 

effective management strategies. PVA can be used to estimate the likely future growth 
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rate of a population (Wittmer et al. 2010), the risk of extinction over a given time 

period (Lee et al. 2011), or the time required to reach a target population size 

(Earnhardt et al. 2001). PVA can also guide management decisions, by quantifying the 

relative contribution of particular groups of individuals to overall population growth 

(Dunham et al. 2008; Fernandez-Olalla et al. 2012), enabling targeted management and 

making PVA an integral part of species management (Boyce 1992). For example if such 

analyses indicate that reduced fecundity is limiting population growth, it is then 

important to understand the reproductive physiology of the species in question, to 

guide breeding management. 

 

1.2. Endocrine control of reproduction 

In order to maximise population performance, an understanding of how intrinsic and 

extrinsic factors that influence reproduction may be required, so that optimal 

conditions can be provided. However, before species differences in reproductive 

function or sub-optimal performance can be investigated, an understanding of the 

endocrine control of reproduction is first required. The endocrine system is one of the 

main control systems within the body, which acts through the production of hormones. 

Hormones are chemical substances produced by specialised cells, acting as messengers 

to communicate with target cells throughout the body. In both males and females, 

reproduction is controlled by series of hormones from the hypothalamic-pituitary-

gonadal (HPG) axis, including the hypothalamus and higher brain centres, the pituitary 

gland and either the testes or ovaries in males and females respectively. 

 

1.2.1. Female mammals: the oestrous cycle 

Once a female reaches puberty, she enters into a period of cyclicity that may last her 

entire reproductive life. This period of cyclicity, termed the oestrous cycle, varies in 

length depending on the species, ranging from as short as 4-6 days in the house mouse 

(Mus musculus) (Parkening et al. 1982) to 14-16 weeks in the elephant (Elephas 

maximus, Loxodonta africana) (Hodges 1998), and is defined as the time from one 

period of receptivity, known as oestrus, to the next. Oestrus is often the only period of 

the cycle when the female is receptive to the male, and when ovulation occurs. This 

cyclicity is controlled by a series of hormones from the hypothalamic-pituitary-ovarian 
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axis (Figure 1.1) (Johnson and Everitt 2000). The primary hypothalamic hormone of 

the reproductive system is gonadotropin release hormone (GnRH), which is pulsatile, 

and stimulates the pituitary gland to release the gonadotropins follicle stimulating 

hormone (FSH) and luteinising hormone (LH). FSH controls the development of the 

gametes, whereas LH controls ovulation and post-ovulatory changes in the female. 

FSH allows the development of a cohort of oocytes, which split from the germinal 

epithelium and migrate in to the body of the ovary. They become surrounded by theca 

cells, which when bound by LH, produce oestrogens. Prolactin is released from the 

pituitary gland in response to the elevation in oestrogens, and FSH converts oestrogens 

into oestradiol. Prolactin has a twofold influence on follicular development, both 

increasing LH production, and the number of LH receptors present on the follicles. 

Recruitment of a new cohort of follicles occurs when FSH levels are high. Follicular 

development occurs continuously throughout the oestrous cycle, but the fate of the 

follicles depends on the timing of LH production.  

The release of LH from the pituitary is pulsatile, and the frequency of these pulses is 

the critical factor as to whether a wave of follicles will progress or undergo atresia. A 

high LH pulse frequency will result in the production of androgens, to be converted to 

oestradiol, a low frequency will not result in androgen production, and the oocytes will 

degenerate. If the follicles remain, a dominant follicle will emerge, as FSH levels 

decrease. The dominant follicle becomes less reliant on FSH, due to growth factors such 

as insulin-like growth factor IGF-1, and continues to mature while the other follicles 

undergo atresia. The oestradiol produced initially has a negative feedback effect on 

GnRH, allowing the build-up of LH in the pituitary gland. Oestradiol then switches to 

having a positive feedback, resulting in the LH surge. The follicle moves to the surface 

of the ovary, and the LH surge caused by prolactin and oestradiol then results in an 

influx of sodium, and consequently the inflow of water through osmosis. This causes an 

increase in pressure, resulting in ovulation, as the oocyte bursts from the follicle.  

Once the follicle has ruptured, local haemorrhage forms a structure known as the 

corpus haemorrhagicum. Luteinisation of the theca and granulosa cells then results in 

the formation of the corpus luteum on the ovary at the site of ovulation. The LH peak 

also stimulates the corpus luteum to convert oestradiol to progesterone and begin 

producing progesterone. Progesterone has an inhibitory effect on GnRH, suppressing 

any further release of gonadotropins. If fertilisation has occurred, the corpus luteum 

may remain for the length of pregnancy, producing progesterone along with the 
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placenta, and preventing the resumption of cyclicity. The corpus luteum also produces 

oxytocin, which if no conception has occurred, stimulates the production of 

prostaglandin F2α from the uterus, which inhibits progesterone and allows the 

resumption of cyclicity. Prostaglandin F2α also stimulates further oxytocin, and a 

positive cascade results in yet more prostaglandin F2α to reduce progesterone levels 

rapidly. As progesterone levels drop markedly, the restraint of GnRH is released, and 

LH/FSH production resumes. A new wave of follicles now emerges, and the cycle 

begins again.  

All the hormones produced by the pituitary gland (LH, FSH, prolactin and oxytocin), in 

combination with the hormones from the gonads (oestrogens, progesterone, inhibin, 

oxytocin and relaxin), work in a positive and negative feedback loop to the 

hypothalamus, pituitary gland, and the higher brain centres, to regulate production of 

hormones, and ultimately control reproductive function. The oestrous cycle depends 

on the correct pattern of hormone secretion, at the required time and the necessary 

concentrations. Disruption at any point of the cycle can result in a failure to ovulate. In 

non-seasonal breeders, cyclicity should only be suspended by pregnancy and lactation. 

However, the reproductive system is susceptible to disruption, and is one of the first 

systems to shut down under periods of stress or imbalance of homeostasis (Schatten 

and Constantinescu 2007).  
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Figure 1.1: Schematic diagram illustrating the relative secretion of pituitary gonadotropins LH 

and FSH and ovarian steroid hormones oestradiol and progesterone during the oestrous cycle, 

relative to ovulation. 

 

 

1.2.2. Endocrine control of oestrus 

Concurrent with the final growth of the dominant follicle, an increase in oestradiol 

production also prepares the body for oestrus. This increase in oestradiol 

concentration, in the relative absence of progesterone, acts on the hypothalamus to 

induce oestrus behaviours (Allrich 1994). The particular behaviours involved in 

proceptivity (proactive behaviour to increase the chances of mating) and receptivity 

(responsiveness to those proceptive behaviours from a potential mate) are species 

specific, as is the duration of expression. However the hormones involved in inducing 

sexual behaviour appear to be relatively consistent across species.  

In ovariectomised cows (Asdell et al. 1945; Carrick and Shelton 1969; Katz et al. 1980), 

sheep (Fabre-Nys and Martin 1991a; Fabre-Nys et al. 1993), horses (Asa et al. 1984), 

and pigs (Ford 1985), oestrus has been induced using oestradiol. However, the effect of 

oestradiol in inducing oestrus seems to be an ‘all or nothing’ scenario, where 

behaviours are not expressed until a certain threshold has been reached (Allrich 1994). 

Progesterone is inhibitory to the expression of oestrus behaviour (Asa et al. 1984; 
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Davidge et al. 1987; Fabre-Nys and Martin 1991b; Ford 1985), and concentrations 

must be low during proestrus, or oestrus will be suppressed regardless of oestradiol 

concentration (Vailes et al. 1992). However, prior exposure to progesterone may 

facilitate the expression of oestrus (Asa et al. 1984; Fabre-Nys and Martin 1991b; 

Melampy et al. 1957), and lower prior progesterone exposure may be related to 

reduced intensity of oestrus (Walker et al. 2008). 

 

1.2.3. Male mammals: spermatogenesis 

As in the female system, the hypothalamus, pituitary gland and gonads play a key role 

in reproduction of male mammals (Johnson and Everitt 2000). The testis, made up of 

Leydig cells and Sertoli cells, also then influence the accessory glands, and negative 

feedback prevents overloading of the system. Hormone production is low prior to 

puberty, but thereafter spermatogenesis is often continuous. 

Initiation of spermatogenesis is largely reliant on the concentration of the hormones 

testosterone and follicle stimulating hormone (FSH). Luteinising hormone (LH) is 

released in pulses from the pituitary gland, in response to gonadotropin release 

hormone (GnRH) pulses from the hypothalamus. In the male, LH stimulates the Leydig 

cells to produce testosterone, and controls development of secondary sexual 

characteristics. Testosterone then feeds back to the hypothalamus to prevent GnRH 

secretion, and further FSH and LH release from the pituitary. FSH stimulates 

conversion of testosterone to oestradiol, and promotes inhibin and androgen-binding 

protein (ABP) production. Oestradiol also has a negative feedback effect on GnRH from 

the hypothalamus. The primary spermatogonia divide to produce two daughter cells. 

One of these returns to the germinal epithelium to replace the primary spermatogonia, 

while the other divides further to produce sperm. After the final division, some residual 

cell mass remains, and is taken up by the Sertoli cells. This residual cell mass is high in 

cholesterol, and as this builds up, androgen-binding protein is inhibited, and inhibin is 

produced to prevent gonadotropin release. Spermatogenesis is reduced, and 

cholesterol levels decrease, resulting in an increase in ABP production, and resumption 

of the cycle. 

As a male cannot predict when a female will come into oestrus, it is important for the 

male to be continuously fertile, or within the breeding season in seasonally breeding 
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species. Unless influenced by season, spermatogenesis is therefore continuous, despite 

the cyclicity of GnRH and gonadotropin release. Continuous sperm production is 

possible by an uneven distribution of Sertoli cells across the testis, meaning that only 

around a third of the cells are active at any one time. 

 

1.3. Factors that can lead to disruption of reproduction 

Reproduction may be disrupted under normal circumstances, for example in seasonal 

breeders, where reproduction only occurs during part of the year. Alternatively, 

females will cease their normal pattern of cyclicity during pregnancy and in many cases 

during lactation. However, there may be incidences where infertility is not a normal 

process, but can be brought about due to physiological disruption. 

 

1.3.1. Adrenal activity 

When an individual experiences a threat to its homeostasis, the response to that 

potential stressor is organised into three stages; recognition, biological defence, and 

consequences of the stress response (Moberg 2000). Recognition by the central 

nervous system is followed by a combination of autonomic nervous system, 

behavioural, immune and neuroendocrine responses, that will lead to altered biological 

function. If a behavioural response of avoidance is not feasible or sufficient, the 

autonomic nervous system may be activated, allowing a ‘fight or flight’ response 

(Cannon 1929), resulting in changes in heart rate, blood pressure, or gastrointestinal 

activity. The main neuroendocrine response to a potential stressor involves the 

activation of the hypothalamic-pituitary-adrenal (HPA) axis (Matteri et al. 2000). In 

response to a stimulus, corticotropin releasing hormone (CRH) is released from the 

hypothalamus, stimulating the pituitary to produce adrenocorticotrophic hormone 

(ACTH) and finally glucocorticoids such as cortisol and corticosterone from the adrenal 

gland (Figure 1.2). This response is regulated through positive and negative feedback 

mechanisms, allowing the body to respond accordingly to the perceived stimulus and 

maintain homeostasis (Moberg and Mench 2000).  

A wide range of both positive and negative stimuli can elicit a stress response 

(Buwalda et al. 2012), including social (Creel 2001), physical (Neumann et al. 1998) 
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and physiological stressors (Gasparotto et al. 2005). The body’s response to a certain 

stressor can also depend on a number of factors, including the genetics or the age of the 

individual (Moberg 2000), the physiological state of the individual (Nisenbaum et al. 

1991) and how the stressor is perceived. This perception of the potential stressor may 

depend on the predictability of the stressor, the prior experience and the personality of 

the individual (Sapolsky 1994). The stress response itself is primarily an adaptive 

response, facilitating the mobilisation of energy stores (Moberg 2000), allowing the 

body to respond to changes in the environment (McEwen and Wingfield 2003). 

However, if the body is not able to cope appropriately with the stimulus, negative 

consequences can result, leading to disruption of other processes including the 

immune response (Khansari et al. 1990) and reproduction (Dobson et al. 2003; Dobson 

and Smith 2000), as priority is given to coping with the stress and restoring 

homeostasis. Consequently, a state of stress is commonly defined as a disruption of 

homeostasis (Rivier and Rivest 1991) or failure of an individual to cope with its 

environment (Dobson and Smith 2000), potentially leading to the development of 

pathology. 
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Figure 1.2: Schematic diagram of the neuroendocrine hypothalamic-pituitary-adrenal (HPA) 

axis in response to the perception of internal or external stimuli. Activation includes the 

production of corticotropin-releasing-hormone (CRH), arginine vasopressin (AVP) and oxytocin 

from the hypothalamus, adrenocorticotrophic hormone (ACTH) and β-endorphins from the 

anterior pituitary and glucocorticoids from the adrenal cortex. The system is regulated via 

negative feedback at the pituitary and hypothalamus. Figure adapted from Moberg and Mench 

(2000), and Wingfield and Sapolsky (2003).  

HYPOTHALAMUS 

ANTERIOR PITUITARY 

ADRENAL CORTEX 

CRH AVP 

ACTH 

GLUCOCORTICOIDS 

Negative 
Feedback 

Negative 
Feedback 

PERCEIVED CHALLENGE TO 
HOMEOSTASIS 

Oxytocin 

Β-endorphins 



 
38 

1.3.2. Disruption of reproduction due to stress 

Although a wide range of stressors have the potential to impact reproduction, all are 

alike in that disruption occurs through the interaction of the HPA and HPG axes 

(Uphouse 2011). Much of the research investigating the mechanisms by which 

disruption occurs has been conducted in rodents (Brann and Mahesh 1991; Rivier and 

Rivest 1991), domestic ungulates (Dobson et al. 2003; Dobson and Smith 2000; 

Tilbrook et al. 2002), primates (Olster and Ferin 1987; Tamashiro et al. 2005) and 

humans (Chrousos et al. 1998; Schenker et al. 1992), but differences in reproductive 

function associated with adrenal activity have also been observed in free-ranging 

populations, such as the effect of predation risk on reproduction in the 10-year cycles 

of snowshoe hare, Lepus americanus abundance (Boonstra et al. 1998), or sustained 

social stress on testicular function in olive baboons, Papio anubis (Sapolsky 1985). This 

process been also been addressed in a wide range of taxa including amphibians and 

reptiles (Carr 2011; Moore and Jessop 2003; Tokarz and Summers 2011), fish (Fuzzen 

et al. 2011; Schreck 2010) and birds (Breuner 2011). Furthermore, physical (Dobson 

and Smith 2000), behavioural (Moberg 1991), social (Sapolsky 1985), nutritional 

(Wade and Schneider 1992), and environmental (Boonstra et al. 1998) stressors have 

all been illustrated to disrupt reproduction through activation of the stress response. 

Stress can disrupt reproductive function on all levels of the HPG axis (Dobson and 

Smith 2000; Rivier and Rivest 1991) (Figure 1.3), through the action of CRH and ACTH 

primarily on the hypothalamus and higher brain centres, while glucocorticoids may 

potentially act on every level of the HPG axis and associated reproductive structures 

(Wingfield and Sapolsky 2003). Females are particularly sensitive to disruption during 

the period prior to ovulation, as a delicate balance of hormonal events occurs, during 

which the precise timing is crucial (Dobson and Smith 2000). During this pre-ovulatory 

period, reproduction can be disrupted via inhibition of GnRH secretion from the 

hypothalamus, influencing both the frequency and amplitude of pulsatile secretion 

(Dobson et al. 2003). Inappropriate GnRH pulsatility then reduces LH release from the 

pituitary gland, perhaps further impacted by a direct inhibitory effect of 

glucocorticoids on the pituitary gland, making it less responsive to GnRH. Finally, 

glucocorticoids act on the ovaries, to decrease sensitivity to LH, perhaps through a 

reduction in receptor availability (Wingfield and Sapolsky 2003). In combination, this 

reduction of GnRH/LH pulsatility and decreased sensitivity can potentially have 

multiple effects. Firstly, insufficient GnRH/LH frequency may prevent follicular 



 
39 

development, leading to an extended follicular phase, and anoestrous (Dobson and 

Smith 2000). Another scenario may occur whereby pulse frequency is sufficient for 

normal follicular development, but not of sufficient strength to enable the final LH 

surge, and ultimately ovulation, to occur. This can result in a persistent follicle, known 

as cystic ovarian syndrome (Dobson and Smith 2000), or chronic anovulatory 

syndrome (Ferin 1999). Finally, ovulation may occur, but inappropriate priming of the 

oocyte could reduce viability, leading to a lower chance of successful establishment of 

pregnancy (Dobson and Smith 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Schematic diagram of some of the ways in which stress can potentially disrupt the 

hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic and pituitary products of the HPA 

axis may primarily act upon the higher levels of the HPG axis, but glucocorticoids may act at all 

levels including other reproductive structures such as the uterus. Figure adapted from 

Wingfield and Sapolsky (2003).  
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In females, stress can also influence uterine growth and implantation success 

(Kalantaridou et al. 2004; Kalantaridou et al. 2010; Rabin et al. 1990), perhaps due to a 

decline in the progesterone required for uterine maturation, or via a stress-induced 

production of prolactin, which inhibits the actions of progesterone in the uterus 

(Wingfield and Sapolsky 2003). Even if conception does occur, stress can also play a 

role in early pregnancy failure (Einarsson et al. 1996; Parker and Douglas 2010). 

Furthermore, due to GnRH and gonadotropin insufficiency, biosynthesis of sex steroids 

can also be inhibited (Kalantaridou et al. 2010). As the expression of sexual behaviour 

is also controlled by the neuroendocrine system, disruption of sex steroids can impact 

the expression of proceptive (Carter 1992) and receptive behaviours in response to 

stress (Papargiris et al. 2011). 

In males, HPA activity can similarly impact GnRH/LH pulsatility at the level of the 

hypothalamus and pituitary (Kalantaridou et al. 2010). Furthermore, increases in 

glucocorticoid concentration inhibit testosterone-biosynthetic enzyme activity (Orr et 

al. 1994), leading to a reduction in testosterone secretion (Hardy et al. 2005). There is 

also evidence that there may be a direct impact on fertility through reduction in the 

number, as well as the function of Leydig cells, perhaps through apoptosis, a form of 

controlled cell death (Hardy et al. 2005). Furthermore, severe psychosocial stress, in 

humans has been associated with reduced sperm count, perhaps related to the 

reduction in testosterone, but possibly also due to direct effects upon the seminiferous 

epithelium (Fenster et al. 1997). Cumulatively, these effects can lead to diminished 

libido and fertility (Phillips et al. 1989). 

Although the interaction between the HPA and HPG axes are involved in disruption in 

both sexes, there may be differences in the mechanism by which stress interrupts 

normal function. One example was demonstrated in gonadectomised ewes and rams, 

subjected to isolation and restraint, and injected with GnRH (Tilbrook et al. 1999). The 

amplitude of LH pulsatility was reduced in rams, whereas frequency of pulses, but not 

amplitude was affected in ewes, indicating that there may have been a sex-difference in 

the mechanism and site of action by which stress was influencing reproduction 

(Tilbrook et al. 2000). 

The effect of stress on reproduction can also be moderated by a number of factors, that 

may reduce the potential disruption on fertility (Wingfield and Sapolsky 2003). 

Differences in the relative cost of disruption in particular may influence whether an 

individual’s reproduction is disrupted. For example, seasonal breeders which only have 
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a finite window of opportunity to breed may be more resistant to acute stressors 

(Boonstra et al. 2001). Similarly, in individuals that may have limited opportunity for 

breeding due to their age (Boivin et al. 2006) or their social status (Sapolsky 1985), if 

the costs of failed reproduction are higher than the potential costs of the stressor it 

may be beneficial to become resistant to stress. Additionally, there is some evidence to 

suggest that acute stressors may not always be inhibitory, but under certain 

circumstances could in fact stimulate reproductive function (Brann and Mahesh 1991; 

Rivier and Rivest 1991; Tilbrook et al. 2000). 

 

1.3.3. Nutrition and body condition 

Research investigating reproduction in both humans and domestic animals in 

particular, has indicated that either too low body condition or too high body condition 

can potentially inhibit reproduction. For example, in dairy cattle, too low body 

condition has been associated with ovulatory failure, whereas too high body condition 

may be related to impaired folliculogenesis, reduced oocyte quality and embryonic 

failure (Ferguson 2005). Similarly, in humans, under-nutrition can lead to delayed 

puberty and amenorrhea (Frisch and McArthur 1974), whereas obesity has been linked 

to a number of reproductive problems including oocyte development, ovulation, 

endometrial development, implantation, embryo development, and pregnancy loss 

(Brewer and Balen 2010; Norman 2010). Obesity has also been linked to fertility 

problems in males, as excess adipose tissue increases the conversion of testosterone to 

oestradiol, resulting in reproductive axis suppression and reduced testosterone 

concentration (Michalakis et al. 2013). Furthermore oxidative stress resulting from fat 

accumulation has also been linked to decreased spermatogenesis (Michalakis et al. 

2013).  

 

1.3.4. Health 

Another factor that has been associated with reduced reproductive function, 

particularly in long-lived, slow breeding species such as the elephant and rhinoceros in 

captivity is that of asymmetric reproductive aging (Hermes et al. 2004). Long periods 

without reproduction can have detrimental effects on their reproductive system, 

leading to the development of pathologies, reduced fertility, and irreversible acyclicity 
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leading to premature senescence. It is thought that prolonged exposure to endogenous 

sex steroids during continuous cyclicity without conception play a role in this decline, 

as females that fail to reproduce early in their reproductive life may have already 

exhibited as many oestrus cycles by middle-age as a regularly breeding female would 

in her entire lifetime. In captive elephants, a non-breeding female’s active reproductive 

lifespan may be shortened by as much as 15 years compared to that of a breeding 

female (Hildebrandt et al. 2000). The constant exposure to ovarian sex steroids have 

been linked to the development of reproductive pathologies, which together with the 

exhaustion of finite numbers of follicles, reduced chances of conception due to oocyte 

viability and uterine function, and reduced capability of corpora lutea to support early 

pregnancy, the chances of reproduction also decline with age (Hermes et al. 2004).  

 

1.4. The black rhinoceros 

1.4.1. Species information and distribution 

The family Rhinocerotidae are odd-toed ungulates, which along with Tapiridae and 

Equidae, make up the order Perissodactyla. The ancestors of this family have been on 

Earth for approximately 60 million years (Bradley Martin and Bradley Martin 1982; 

Toon and Toon 2002), and were a diverse and wide ranging group. Throughout history 

there were numerous species of rhinoceros, with at least 30 genera, but the majority 

are now extinct; today only four genera and five species of rhinoceros remain. All of 

these remaining rhinoceros species are threatened with extinction; the most 

endangered being the Javan rhinoceros (Rhinoceros sondaicus; critically endangered) 

and Sumatran rhinoceros (Dicerorhinus sumatrensis; critically endangered), followed 

by the black rhinoceros (Diceros bicornis; critically endangered), greater one-horned 

rhinoceros (Rhinoceros unicornis; vulnerable) and white rhinoceros (Southern 

Ceratotherium simum simum; near threatened and Northern Ceratotherium simum 

cottoni; critically endangered). 

There are three remaining subspecies of black rhinoceros, ranging across central and 

southern Africa. The eastern black rhino (D. b. michaeli) used to range across eastern 

Africa, from southern Sudan and Ethiopia, through Somalia, Kenya, and Rwanda as far 

as northern Tanzania. The current stronghold of this species is Kenya, with a smaller 

population in Tanzania, and an out-of-range population in South Africa. The south-

western black rhino (D. b. bicornis) is the largest subspecies, and lives in more arid 
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regions. The current stronghold of this subspecies is the desert and arid savannah 

regions of Namibia, with smaller populations also in South-western South Africa, and 

possibly a small number of animals in Angola. The most numerous of the remaining 

subspecies, the south-central black rhino (D. b. minor) historically occupied a large 

range from western and southern Tanzania in the north, down to eastern South Africa. 

This subspecies may also have been present as far west as northern Angola. The 

current stronghold of this species is South Africa, with individuals also remaining in 

Zimbabwe, and southern Tanzania. This subspecies has also been reintroduced to areas 

within its original range, including Botswana, Malawi, Zambia and Swaziland (Emslie 

2012b; Emslie and Brooks 1999). The fourth subspecies, the western black rhino (D. b. 

longipes) native to the savannah zones of central-west Africa was declared extinct in 

2011 (Emslie 2011). 

 

1.4.2. Current conservation status 

The black rhinoceros (Diceros bicornis) has been listed as critically endangered on the 

IUCN Red List of Endangered Species since 1996, following an estimated 97.6% decline 

in the wild population since 1960 (Emslie 2012b). The black rhinoceros was once 

numerous across central and southern Africa, with perhaps several hundred thousand 

individuals in the early nineteenth century (Emslie and Brooks 1999). However, 

unsustainable hunting and land clearance meant numbers were reduced to 

approximately 100,000 in 1960. By 1970 this had been further reduced to 65,000, and 

by 1995 the black rhino had been pushed to the brink of extinction, with only 2,412 

individuals remaining (Emslie and Brooks 1999) (Figure 1.4). Illegal poaching for rhino 

horn was the main cause of this dramatic decline, and remains the greatest threat to 

rhinoceros populations.  
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Figure 1.4: Estimated population decline in black rhinoceros (Diceros bicornis) since 1960. Data 

from AfRSG status survey and action plan (Emslie and Brooks 1999); * denotes estimated 

population size. 

 

As with numerous other species, rhinoceroses have been killed by humans for 

thousands of years; they have suffered from habitat loss and human encroachment, and 

as human expansion has led to the need of more land for agriculture, been killed as 

vermin and agricultural pests. They have also been killed for sport, as much sought 

after hunting trophies; have been hunted for their meat and a variety of other body 

parts, including their skin which has been used to make armour, shields and good luck 

charms, and their blood, urine, bones and dung have all been used in traditional 

medicines (Bradley Martin and Bradley Martin 1982). However, by far the greatest 

threat to the rhinoceros has been in the second half of the twentieth century, with 

demand for their horn escalating uncontrollably. Although rhino horn is made from 

keratin, similar to compressed hair or fingernails, the supposed properties make it one 

of the most expensive substances on the black market, costing around $65,000 per 

kilogram (Biggs et al. 2013). 

The main demand for rhino horn in Asia has been for use in traditional Chinese 

medicine, where rhino horn has been used to treat a wide variety of illnesses including 

fevers, headaches, epilepsy, AIDS, jaundice, stroke, influenza, poisoning, convulsions, 
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typhoid, abscesses, hepatitis, leukaemia, haemorrhages, rhinitis, cerebrovascular 

diseases, and external burns (Emslie and Brooks 1999; Toon and Toon 2002), despite 

there being no scientific evidence for these claims. The other main demand for rhino 

horn comes from Yemen and Oman, where it is used to create elaborate ceremonial 

daggers, called Jambiyas. Rhino horn has a translucent amber glow when held up to the 

light, and with age develops a unique patina, or sayfani (Emslie and Brooks 1999) 

which makes these daggers an important status symbol. The larger size of African 

rhino horn makes them more desirable for crafting Jambiyas, and the massive increase 

in demand during the 1970s had a catastrophic effect on African rhino populations.  

Since 1995, conservation efforts and increased security have resulted in an increase in 

the wild population, reaching 4,880 continentally by the end of 2010 (KWS 2012), an 

increase of 102% in 15 years (Emslie and Knight 2011). However, remaining wild 

populations of black rhinoceros are highly fragmented, and many are enclosed within 

fenced reserves. In-situ conservation therefore not only requires the on-going 

protection of black rhinos, but biological management of the metapopulation to 

enhance population growth and genetic diversity. Active management such as on-going 

monitoring of demographic and reproductive parameters, estimating ecological 

carrying capacity and management of populations for maximum productivity is a 

necessary part of black rhino conservation. Translocation is required to move rhinos to 

safer areas, for genetic management, to promote breeding and to re-establish 

populations in areas where rhinos have become locally extinct (Emslie and Brooks 

1999). However, a resurgence in poaching in recent years has threatened the recovery 

of the species, with the highest rates of poaching for the last 15 years, including 53 

black rhinos killed in Kenya between 2007 and 2011 (Emslie 2008).  

 

1.4.3. Rhinoceros reproduction 

Much of what we know about black rhinoceros reproduction stems from in situ studies 

in the 1960’s, ‘70’s and ‘80’s (Goddard 1967, 1970; Hall-Martin 1986; Hitchins and 

Anderson 1983; Schenkel and Schenkel-Hulliger 1969). From these observational 

studies, both age at sexual maturity (3½ - 4 years (Schenkel and Schenkel-Hulliger 

1969); 3 years 8 months (Goddard 1970); 6.3 years (Hall-Martin 1986); 7- 8 years 

(Hitchins and Anderson 1983)), and age at first reproduction (4.75-5.25 years 

(Schenkel and Schenkel-Hulliger 1969); 5 years 7 months (Goddard 1970); 6.25 years 
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when adequate males were present or 8.9 years when only a single male was present 

(Hall-Martin 1986); 12 years (Hitchins and Anderson 1983)) were estimated based on 

either observation of sexual behaviour or based on subtraction from dates of 

parturition. In captivity, early published reports based on behavioural observations 

indicated a mean age at sexual maturity of 5.25 years (range 3-10 years), and average 

age at first birth of 8.8 years (Smith and Read 1992). However, reports from individual 

zoos suggested conception could occur earlier, with a female at Hiroshima conceiving 

at 3.75 years (Smith and Read 1992). 

Observational data for age at sexual maturity for males was more difficult to obtain, as 

males are often not able to maintain a territory until 8-10 years, and so may not have 

access to receptive females until this time (Schenkel and Schenkel-Hulliger 1969). 

However, based on histological investigation of testes (Hitchins and Anderson 1983) 

spermatogenesis may commence between the ages of 7 and 8 years, and individual 

reports exist of males mating as early as 4 years 5 months (Goddard 1970), 4 years 6 

months (Greed 1967), or 7 years of age (Dittrich 1967).  

Black rhinos are polyoestrous (Hitchins and Anderson 1983), meaning a non-pregnant 

female has the potential to come into oestrus multiple times over the course of a year. 

There has been some evidence for seasonality in situ (Hitchins and Anderson 1983), 

but not ex situ (Roth 2006). Reports of oestrous cycle length and duration of oestrus 

obtained from observations of sexual behaviour indicated that a bull may be in 

attendance for 6-7 days, but the female was only receptive for a single day, with mean 

oestrus cycle length recorded as 35 days (normal range 26-46 days) (Hitchins and 

Anderson 1983). Captive reports based on behavioural signs and attempted matings 

suggest oestrous cycles of between 18 days (Hallstrom 1967), 21-45 days (Greed 

1967), 26-30 days (Dittrich 1967), 28-30 days (Yamamoto 1967), and 30-35 days 

(Gowda 1967). Estimates of gestation length were based on observations of mating 

behaviour to parturition, and early reports varied from 450-545 days (15-18 months) 

(Goddard 1967; Ritchie 1963). However, although variation in length does exist, such 

as 419-476 days (Jarvis 1967), current estimates agree on a gestation length of 15-16 

months in this species (Roth 2006) (Table 1.1).  

Black rhinoceros females may lactate for at least 18 months (Gregory et al. 1965), but 

do not appear to exhibit lactational anoestrous. One report from a captive female at 

Hannover zoo was observed to be in oestrus 20 days following giving birth (Dittrich 

1967), and the same female was reported as cycling regularly every 25-30 days 
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(Goddard 1967) until conception approximately 12 months after having given birth. 

Other captive females have been reported as resuming cyclicity 7 months post-partum 

(Yamamoto 1967). In situ, Goddard (1967) also reported a female that lactated for 17.5 

months, but had resumed cyclicity 3 months after parturition. Perhaps rhinoceros 

ovarian activity resembles that of the horse, where the ovary is not suppressed by 

lactation and the female continues to cycle regularly after the first post-partum oestrus 

(King 1965). This lack of prolonged lactational anoestrous has subsequently been 

confirmed with hormone analysis (Brown et al. 2001), where females generally 

resumed cyclicity within 3-10 months post-partum. However, despite this apparent 

resumption of cyclicity following parturition, inter birth intervals can also be quite 

variable between females, but have been reported as 27 months (Goddard 1967), 26 

months (Joubert and Eloff 1971), and 32 months (Hall-Martin 1986). The shortest 

interval reported in captivity is 16 months (Smith and Read 1992), indicating potential 

conception during first post-partum oestrus. However, this is relatively rare, and 

generally calving intervals of 2-2 ½ years are considered to be ideal (Smith and Read 

1992).  

In recent years the use of hormone analysis has enabled the additional measure of 

physiological state, either using serum (Berkeley et al. 1997), urine (Brett et al. 1989; 

Hindle et al. 1992; Hodges and Green 1989; Ramsay et al. 1987), faeces (Berkeley et al. 

1997; Brown et al. 2001; Garnier et al. 2002; Lance et al. 2001; Schwarzenberger et al. 

1993; Schwarzenberger et al. 1996b) or saliva (Czekala and Callison 1996) to measure 

reproductive hormones. These techniques have not only proven useful for determining 

oestrous cycle length in situ (Garnier et al. 2002), but can also be used for pregnancy 

diagnosis in the field (MacDonald et al. 2008). Furthermore, research on ex situ black 

rhinos has taught us a great deal about the reproductive physiology of this species, 

through the use of longitudinal studies of known individuals, and the use of ultrasound 

(Radcliffe et al. 2001) to observe the ovarian and foetal changes that occur during the 

oestrous cycle and pregnancy.  

Although most studies had agreed on average oestrous cycles of around 26 days (Table 

1.1), based on endocrine data, there is still much that we do not know about black 

rhinoceros reproduction, including the occurrence of erratic oestrous cyclicity. Erratic 

patterns of oestrous cyclicity have been reported, with cycles shorter than 20 days, and 

longer than 32 days also being reported in a longitudinal survey on black rhinoceros in 

America (Brown et al. 2001). There has also been some indication of variable oestrous 

cycle length in situ from behavioural observations of oestrus, where one female was 
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observed in oestrus every 67-84 days prior to her first calf, only cycling more regularly 

every 21 days following her first calf (Hitchins and Anderson 1983). Garnier et al 

(2002) also reported that although three-quarters of oestrous cycles observed had a 

total duration (mean ± s.e.m) of 26.8+/- 1 days, extended cycles lasting approximately 

twice as long were also observed.  

The existence of two distinct cycle lengths has also been observed across multiple 

studies in captive white rhinoceros (Ceratotherium simum); with both 30-35 day cycles 

(Brown et al. 2001; Hindle et al. 1992; Patton et al. 1999; Radcliffe et al. 1997) and 65-

70 day cycles (Brown et al. 2001; Patton et al. 1999; Schwarzenberger et al. 1998) 

being described, and may both occur within an individual over a number of months 

(Patton et al. 1999). However, the reason behind these two cycle lengths is not yet 

understood (Roth 2006), although as yet, only the shorter type has been observed to be 

fertile (Brown et al. 2001; Schwarzenberger et al. 1998). Furthermore in this species, 

prolonged periods of acyclicity are also apparent, all of which have been a recognised 

factor leading to poor reproductive output in captivity (Brown et al. 2001; Patton et al. 

1999; Roth 2006; Schwarzenberger et al. 1998).  

A number of hypotheses have been proposed for the occurrence of irregular cyclicity in 

the white rhinoceros, including premature reproductive ageing, as long periods 

without reproducing in captivity could lead to oocyte depletion and development of 

pathologies (Hermes et al. 2004). Another possibility is the role of adrenal activity, as 

acyclic females exhibit more variable faecal glucocorticoid concentration than cycling 

females (Carlstead and Brown 2005). However, other possibilities indicate a social 

mechanism, as females introduced to novel males have resumed cyclicity (Patton et al. 

1999), and the potential influence of the captive diet (Berkeley et al. 2011; Patisaul 

2012; Tubbs et al. 2012). Furthermore, social influences may also be involved in this 

species, particularly in the F1 generation that exhibit particular poor reproductive 

success in captivity (Swaisgood et al. 2006). However, the presence of irregular 

cyclicity in the black rhinoceros has to date been far less studied, but could also be a 

contributing factor to the inconsistent rates of reproduction reported for this species in 

captivity (Smith and Read 1992). 

Reproductive endocrinology of males has been less common, with to date, testosterone 

concentration being determined in only one study in situ (Brett et al. 1989), and two 

studies ex situ (Brown et al. 2001; Christensen et al. 2009). Faecal testosterone 

metabolites remain relatively constant across the seasons (Brown et al. 2001), but 
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early indications suggest that there may be differences in males according to their 

social environment (Christensen et al. 2009), with the presence of both males and 

females perhaps stimulating testosterone production.  

 

1.4.4. Rhinoceros in captivity 

Rhinoceros have been held under human care for over 2000 years (Rookmaaker 1998). 

Currently, four of the five species of rhinoceros are currently kept in captivity, 

including two of the three subspecies of black rhinoceros (Diceros bicornis michaeli and 

D. b. minor), both subspecies of white rhinoceros (Ceratotherium simum simum and C. s. 

cottoni), the Indian rhinoceros (Rhinoceros unicornis) and one of the three subspecies 

of Sumatran rhinoceros (Dicerorhinus sumatrensis). These populations play a vital role 

in the conservation of these species; not only are they involved in captive breeding 

programs in an attempt to maintain viable populations as a vital reserve for 

endangered wild populations, but they also play a crucial role in raising awareness to 

these species’ plight, and act as a potential source for re-introduction (Candra et al. 

2008; Emslie 2012a; Fyumagwa and Nyahongo 2010; Holečková 2010). 

However, captive populations of rhinoceros are generally not self-sustaining (Roth 

2006), with sub-optimal reproduction and high mortality in the black rhinoceros 

(Smith and Read 1992), poor F1 reproduction in white rhinoceros (Swaisgood et al. 

2006), and Sumatran rhinoceros (Roth 2006), and the Indian rhinoceros suffering from 

a lack of genetic diversity (Roth 2006). Careful management is therefore required to 

maximise the conservation potential of these ex situ populations, and understand 

factors that may influence population performance. The focus of this thesis is the 

European captive population of black rhinoceros, which as yet has not been the focus of 

research investigating population viability, but which could benefit from a 

collaborative multi-institutional approach to improving population performance (M. 

Pilgrim, pers. comm.). As of 31st December 2012, there were 82 black rhinos in Europe, 

housed at 17 institutions. Of these, all but two were of the eastern subspecies, D. b. 

michaeli, which will be the focus of this study. 



 
 

Table 1.1: Reproductive parameters including oestrous cycle length, gestation and the resumption of cyclicity post-partum for the black rhinoceros, based on 

endocrine data using a number of sample media from published studies. 

Location Sample media 
Oestrous cycle 

length 
(days ±s.e.m) 

range 
Irregular cyclicity 

observed 
Gestation 

length 

Resumption of 
oestrous post-

partum 
Reference 

Ex situ Serum/Faeces 26   468  (Berkeley et al. 1997) 

Ex situ Faeces 26.8 ±0.5 14-60 <20, >32, acyclic  3-10 months (Brown et al. 2001) 

In situ Faeces    450-456  (Garnier et al. 1998) 

In situ Faeces 26.8 ±1 19-48 
IIa ≥40d, ++ luteal 

IIb ≥40d, ++ follicular 
 4-4.5 months (Garnier et al. 2002) 

Ex situ Urine 21/22     (Hindle et al. 1992) 

Ex situ 
Ultrasound 26 ±1.4  

Persistent structure up to 
30 days 

  
(Radcliffe et al. 2001) 

Faeces    465-475  

Ex situ Faeces 24-26.5   440-470 3 months (Schwarzenberger et al. 1993) 

 

5
0

 



 

 
51 

1.5. Aims of this thesis 

With fewer than 5000 black rhinoceros remaining across continental Africa and the 

threat of poaching on-going, ex situ populations play a vital role in the conservation of 

this species. However, for ex situ populations to fulfil their role, it is important that they 

are self-sustaining, both demographically and genetically, to maximise their future 

viability. However, as is the case with many other captive breeding programmes (Leus 

et al. 2011a; Long et al. 2011), ex situ populations of black rhinoceros in North America 

have not previously been self-sustaining (Carlstead and Brown 2005; Carlstead et al. 

1999a; Carlstead et al. 1999b; Smith and Read 1992), as high rates of mortality and 

inconsistent rates of reproduction have prevented population growth. However, the 

cause of sub-optimal performance is not yet understood, and the performance of the 

European population of eastern black rhinoceros has yet to be formally assessed. The 

aim of this thesis was therefore to determine the sustainability of European captive 

population of eastern black rhinoceros, and investigate factors that may influence 

population performance, to maximise its conservation potential.  

The first aim of this thesis was to gain a better understanding of factors that may 

influence population performance in this species, to determine biological limits for key 

demographic parameters relating to fecundity, mortality and population structure, and 

identify where there may be potential to improve population performance. In Chapter 

3 demographic data compiled on in situ populations of eastern black rhinoceros in 

eight Kenyan reserves were used to ascertain how this species performs under natural 

conditions. This allowed a comparison of growth rates between populations, and the 

estimation of several indicators of population performance relating to mortality, 

reproduction and population structure. Through a better understanding of the normal 

range and variability both between individuals and across reserves, this information 

could then also be used as a reference, by which to guide the next chapter of this thesis. 

The second aim of this thesis was to determine the viability of the European captive 

population of eastern black rhinoceros, and investigate ways in which population 

performance could be improved. In Chapter 4, historical demographic data from the 

European endangered species breeding programme (EEP) studbook were used to 

calculate demographic parameters for this population. These were then used to 

estimate the demographic sustainability of the population through simulated 

population projection, and through comparison of performance indicators to those 

calculated in Chapter 3, potential areas for improvement could be determined. 
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Furthermore, the genetic viability of the population was also assessed using known 

pedigrees to determine historical founder representation within the current 

population. 

The third aim of this thesis was to investigate reproductive hormones within breeding 

and non-breeding males and females within this population, to determine whether 

intrinsic differences may be related to differential reproductive success. The necessary 

endocrine methods were developed and validated for use in Chapter 2, allowing the 

use of non-invasive faecal sampling to investigate reproductive and adrenal hormones 

in this species. In Chapter 5, faecal samples collected from 23 male and 39 female 

eastern black rhinos at 13 institutions across Europe, representing 90% of the 

population, were analysed for either testosterone or progesterone metabolite 

concentration. In females, progesterone metabolites were used to characterise 

oestrous cyclicity, based on previously established techniques. Mature rhinos were 

separated into categories according to whether they had previously produced a living 

calf, and whether they had produced a calf during the last seven year period, to 

determine whether any differences in reproductive hormones were related to prior 

reproductive success. 

The fourth aim of this thesis was perform an exploratory analysis to investigate 

whether extrinsic factors relating to the captive environment may be related to adrenal 

activity, or to differences in reproductive success. To achieve this, the same faecal 

samples as used in Chapter 5 were used in Chapter 6, and analysed for glucocorticoid 

metabolite concentration, in both males and females. Information was also gathered on 

the social and physical environment and on behavioural characteristics of each 

individual, to determine whether either environmental factors, or how individuals 

respond to their environment, may influence either adrenal activity or reproductive 

success. Furthermore, this same information was also analysed with respect to male 

testosterone metabolite concentration, to investigate whether any differences in 

testosterone between individuals might be related to extrinsic factors relating to the 

captive environment. 

The final aim of this thesis was to investigate reproductive cyclicity within females, 

using a longitudinal approach to investigate whether any differences in hormone 

metabolite concentration were apparent between different cycle types. The occurrence 

of erratic oestrous cyclicity and irregular cycle lengths have previously been described 

in this species (Brown et al. 2001; Garnier et al. 2002), but the potential causes and 
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consequences of these different cycle types has yet to be established. In Chapter 7, 

faecal samples collected every other day from 18 females within this population, over a 

period of 9-15 months, were used to investigate changes in hormone metabolite 

concentrations over time. In particular, hormone concentrations were compared 

between different cycle types, and during the preceding period, to determine whether 

differences in current or prior exposure to hormones may influence the occurrence of 

irregular cyclicity. Furthermore, any potential differences between females that had 

previously produced offspring, and those that had not were investigated.  

Finally, in Chapter 8 of this thesis, the findings of this research are summarised, and the 

implications for future population management discussed. Potential avenues for 

further investigation are also suggested, to better understand reproduction and 

maximise population performance in this species. 
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2. MEASURING REPRODUCTIVE AND ADRENAL HORMONES IN THE BLACK RHINOCEROS: 

METHOD DEVELOPMENT AND VALIDATION. 

 

Summary 

Endocrinology can be a useful tool to help understand the physiology behind processes 

such as reproduction, response to potential stressors, and behaviour. However in free-

ranging or endangered species, or where longitudinal sampling is important, collecting 

blood samples to measure circulating hormones can be problematic, so a non-invasive 

method of sample collection can be beneficial.  

In order to investigate reproductive and adrenal hormones in the European captive 

population of eastern black rhinoceros, methods to utilise non-invasive faecal hormone 

analysis were required. Prior to embarking on this study, a number of previously 

established enzyme immunoassays (EIAs) designed to measure progesterone (CL425; 

C.J. Munro), oestradiol (R4972; C.J. Munro), testosterone (R156/7; C.J. Munro) and 

corticosterone (CJM006; C.J. Munro) were first validated, to ensure their appropriate 

use in this species. Furthermore, a number of modifications were necessary to improve 

the reliability of data obtained, by minimising environmental influences. Once 

protocols were established, standard validation techniques were conducted, including 

parallelism, matrix interference assessment and high-performance liquid 

chromatography. This also allowed confirmation that a potential confound of cross-

reactivity between assays, as highlighted by previous studies, was not an issue with the 

EIAs used for this study. Finally, biological validation was conducted opportunistically, 

to confirm that hormone metabolites present in faeces were indeed representative of 

the biological response within the body. 

Following all of these validation procedures, these enzyme immunoassays could 

confidently be used to investigate reproductive and adrenal hormones in the black 

rhinoceros. 
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2.1. Introduction 

The endocrine system is one of the main control systems within the body which, along 

with the nervous system, monitor the internal and external environment and make any 

necessary adaptive changes. The endocrine system acts through the production of 

hormones; chemical substances produced by specialised cells, which act as messengers 

to communicate with target cells in response to a stimulus. This communication can 

occur on different levels; intracrine cells produce hormones which act within the same 

cell; autocrine cells secrete hormones into the intracellular space which then act upon 

the same cell; paracrine cells transmit their messages to neighbouring cells within a 

tissue; whereas endocrine cells produce hormones to transmit signals through the 

circulatory system to target cells around the body. Endocrine glands may also 

communicate with the central nervous system, known as the neuroendocrine system, 

enabling the production of hormones in response to external stimuli. Hormones are 

involved in many processes within the body, including growth and development, 

metabolism, reproduction, maintenance of homeostasis, and responses to changes in 

the environment.  

As hormones are carried in the circulatory system, measuring their presence or 

absence allows us to monitor internal physiology. For example, reproductive hormones 

can be used to determine basic reproductive parameters, such as seasonality (Walker 

et al. 2002), reproductive cyclicity and pregnancy diagnosis (Schwarzenberger et al. 

1996a); to understand reproductive behaviour (Ganswindt et al. 2003), or to allow the 

discrimination between pregnancy and pseudopregnancy (Dehnhard et al. 2012). 

Measuring glucocorticoids allows us to investigate how individuals respond to a 

variety of potential challenges in their environment, such as the impact of 

anthropogenic disturbance (Arlettaz et al. 2007; Creel et al. 2002), habitat change (Ben 

Cash and Holberton 2005; Martinez-Mota et al. 2004), population density (Elsey et al. 

1990; Nicholson et al. 2009), social interactions (Edwards et al. 2013), environmental 

conditions (Boinski et al. 1999; Moreira et al. 2007), and translocation (Viijoen et al. 

2008). Furthermore, hormones play a role in orchestrating behaviour, and can be 

useful in understanding social bonds, parental care, aggression and reproductive 

behaviours (Anestis 2010; Whitten et al. 1998). 

However, measuring hormones in blood can have certain limitations, not least the 

difficulty in obtaining samples from free-ranging subjects, and the potential stress of 

sample collection (Wielebnowski and Watters 2007). A number of alternative sample 
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media can be used however, including faeces, urine, saliva, hair and feathers. Faeces 

and urine in particular can be beneficial as they can be completely non-invasive, and 

provide an integrated measure of physiological response over a number of hours, as 

opposed to blood measures that can be pulsatile and affected by diurnal rhythms 

(Touma and Palme 2005). However, hormones measured in excreta have been 

processed by the body, meaning hormone metabolites and conjugates are generally 

present in much higher quantities than the native hormones present in the circulatory 

system. The precise metabolites present in faeces and urine will vary between species 

(Palme et al. 2005), and even between sexes of the same species (Touma et al. 2003).  

Hormones and their metabolites can often be measured in biological substances using 

immunoassays that incorporate antibodies raised against the hormone of interest. 

Antibodies are produced by immunising an animal with the antigen, before collecting 

and purifying the immune serum (Vaitukaitis et al. 1971). A normal immune response 

to an antigen includes multiple B-lymphocytes, each targeting a specific recognition 

site (known as an epitope), on the antigen (Lipman et al. 2005). As a result, a number of 

different antibodies are produced, with slightly different specificity and affinity; known 

as polyclonal antibodies. Polyclonal antibodies are relatively quick and inexpensive to 

produce, and often offer a higher response due to the number of epitopes recognised, 

but are limited to the lifetime of the animal used to produce the antiserum (Lipman et 

al. 2005).Alternatively, monoclonal antibodies are produced by fusing immortal 

myeloma cells with a single B-lymphocyte, which is specific to a single epitope on the 

antigen (Köhler and Milstein 1975). The resulting ‘hybridoma’ takes on the 

characteristics of both cell types; so that a single cell-line can be stored frozen under 

liquid nitrogen and cloned to produce the same highly-specific antibody. This has the 

benefit that production can be potentially unlimited, and removes the variation of 

antibody production between batches (Lipman et al. 2005).  

Immunoassays work by establishing a competition between a synthetic labelled 

antigen, and the unlabelled endogenous antigen in the sample. These two components 

compete for access to a specific antibody, raised against the hormone of interest. The 

concentration of this antibody is limited, to ensure that the higher the concentration of 

endogenous antigen, the greater the competition with the labelled antigen. A 

calibration curve is created by adding serial dilutions of a synthetic standard to 

compete with the labelled antigen, and plotting the proportion of labelled antigen that 

is bound to the antibody. All unknown samples are compared against this curve to 



 
60 

quantify the concentration of hormone in the sample. There are two types of 

immunoassays that are often used; radio immunoassays (RIA) and enzyme 

immunoassays (EIA). Both allow the measurement of small quantities of hormones by 

utilising a competition reaction, but differ in the label used to quantify the hormone. 

RIA utilise radioactive labelled hormones which require special licences; whereas EIA 

use enzyme-conjugated hormones. EIAs have been developed that have the added 

benefit that they are relatively cheap and easy to use, and do not have the same 

problems associated with the use and disposal of radioactive material (Hodges et al. 

2010).  

Monoclonal and polyclonal antibodies can both be produced to be either hormone- or 

group-specific; designed to recognise a single hormone or metabolite of interest; or a 

number of different metabolites that possess a similar structure at the antibody 

binding site (Hodges et al. 2010). Group-specific antibodies can be advantageous for 

measuring excreted hormone metabolites, when the native form of the hormone as 

found in the circulatory system is often present in negligible amounts, and the exact 

identity of metabolites in a given species may be unknown. However, before an EIA can 

be used to measure hormone metabolites in any species, assays must be properly 

validated to ensure they are measuring the desired compounds accurately. 

This chapter details the development of endocrine methods used for this study, 

including some necessary modifications to EIAs to ensure reliable results could be 

obtained, and validation steps carried out to ensure the suitability of use of EIAs in this 

species. Specifically, EIA methods were developed 1) to measure reproductive 

hormones progesterone and oestradiol (females) and testosterone (males), and 

glucocorticoids in black rhino faecal extract. These methods were then validated to 

ensure 2) the EIAs were accurately measuring hormone metabolites in black rhino 

faeces 3) there was minimal cross-reactivity between EIAs in measuring the hormones 

of interest, and 4) the desired metabolites were reflective of biological changes. 

 

2.2. General EIA methods 

An EIA consists of certain vital components including a specific antibody raised against 

the antigen of interest; a polystyrene microtitre plate to which the antibody is bound; a 

standard antigen of known concentration; the unknown sample to be measured; and an 
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enzyme-conjugated antigen with which the standard and unknown antigen compete 

for access to the antibody. There are also several reagents that are also necessary, 

including coating buffer which causes the antibody to adsorb to the plate; assay buffer 

in which all standards, sample dilutions and labelled antigen are diluted; substrate 

which reacts with the labelled antigen and produces a colour change for quantification; 

and wash solution which terminates each incubation step and removes any unbound 

compounds. There are some differences in the exact reagents utilised by different assay 

systems, such as the type of label and corresponding substrate, but the concept 

remains the same for all enzyme immunoassays. 

 

2.2.1. Reagent development1 

To measure reproductive and adrenal hormones in black rhino faecal extract, EIAs 

were used to measure progesterone (CL425), oestradiol (R4972 or R0008), 

testosterone (R156/7) and corticosterone (CJM006), all produced and supplied by 

Coralie Munro, UC Davis, California. The monoclonal antibody CL425 (Quidel 

Corporation, San Diego, CA) was raised in mice, against 4-pregene-11-ol-3, 20-dione 

(Bateman et al. 2009), and purified by C.J. Munro. The polyclonal antisera were all 

developed by C.J. Munro (modified from (Munro and Stabenfeldt 1984)); raised against 

corticosterone(Watson et al. 2013); 17β-oestradiol (Walker et al. 2002); and 

testosterone (Walker et al. 2002). The three polyclonal antibodies were developed in 

New Zealand White rabbits by C.J. Munro according to an immunization protocol 

described by Vaitukaitis et al. (1971). The hormone-enzyme conjugate (HRP) labels for 

all four EIAs were also made by C.J. Munro, using the mixed anhydride method methods 

described by Munro and Stabenfeldt (1984). 

 

 

                                                             
1 Carried out at University of California, Davis, California, by Coralie Munro.  
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2.2.2. Initial assay set-up 2 

The next step in EIA development is to determine the suitable concentration of 

antibody for use within the assay. The lower the concentration of antibody used, the 

more sensitive the assay, as the greater the competition between the labelled and 

unlabelled antigens. However, there must also be sufficient colour-change for 

quantification following addition of the substrate, as it binds to the labelled antigen. It 

is also necessary to determine the correct concentration of the enzyme conjugated 

(labelled) antigen, as similarly, increasing the concentration used increases the final 

colour change but decreases the sensitivity of the assay. In order to determine the 

optimum concentration of these two components, a checkerboard titration can be used, 

which varies concentrations of each reagent, to find a combination that gives good 

assay sensitivity and suitable colour change.  

When this has been established, the next step is to set up the standard calibration 

curve, which is run on every assay, and to which the unknown concentration is 

compared. A suitable top standard is determined and then serially diluted two-fold, 

and these are incubated with the established concentration of antibody and labelled 

antigen. The curve is formed by plotting the percentage of bound conjugate relative to a 

zero standard well (i.e. full binding by the labelled antigen), against the known 

concentration of standard from the serial dilution. The standard concentration is 

inversely proportional to the percentage binding (and depth of colour produced), and 

the curve is plotted with standard concentration to log10. Ideally the curve should have 

a linear and relatively steep mid-section, to give high assay sensitivity, and should 

cover a large range of binding with 10 standards used for the calibration curve.  

 

 

  

                                                             
2 Carried out at Chester Zoo’s Wildlife Endocrinology Laboratory by Sue Walker (corticosterone, 
oestradiol, progesterone and testosterone EIAs), Katie Edwards (corticosterone, oestradiol and 
testosterone EIAs) and Vicki Norton (testosterone EIA). 
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2.2.3. Faecal sample preparation and extraction 

Steroid hormones are hydrophobic, and easily extracted from faecal material using a 

solvent such as ethanol or methanol. For this study, hormone metabolites were 

extracted from black rhinoceros faecal material using a shaking extraction method (see 

Appendix 1) and 90% methanol adapted from Walker et al. (2002). The inclusion of 

10% water in the extracting solvent assists with recovery of more hydrophilic 

conjugated steroids that could be present in excreted material (Brown 2006; Brown 

2011). In brief, 0.5 g of faecal material was weighed from each sample, and 5ml of 90% 

methanol added. This was then shaken overnight on an orbital shaker before being 

centrifuged for 20 minutes at 598g and the supernatant collected. This was then 

evaporated to dryness under air in a fume cupboard, before being subsequently re-

suspended in 1ml 100% methanol. The faecal extract was then stored at -20°C, before 

being diluted as necessary for running on the enzyme immunoassay (EIA) of interest. 

 

2.2.4. Enzyme immunoassays 

2.2.4.1. Single antibody EIA 

In a single antibody EIA, the antigen-specific antibody is adsorbed to the microtitre 

plate, before standards, controls, labelled conjugate, and unknown samples are added. 

Hormone metabolites were measured in black rhino faecal extract using single 

antibody EIAs for progesterone, corticosterone and oestradiol EIA’s, after Munro and 

Stabenfeldt (1984), and modified from Young et al. (2004) (for detailed EIA protocols, 

see Appendix 1). In brief, polyclonal antibody (CL425; CJM006 or R4972; all provided 

by C.J. Munro, U.C. Davis; See Appendix 2 for antibody cross-reactivities) was diluted in 

coating buffer (0.05M NaHCO3, pH 9.6), 1:10,000, 1:15,000 or 1:20,000 respectively, 

and 50μl added to columns 2-12 (See Appendix 1 for plate layout) of a 96-well NUNC 

Maxisorb microtitre plate (Thermo Fisher Scientific, UK). Plates were incubated 

overnight at 4°C, and were ready to use the following day (CL425 and R4972) or the 

subsequent day (CJM006). Once coated, plates could be used for up to 1 week. Plates 

coated with R4972 antibody were washed five times with wash solution (0.15M NaCl, 

0.05% Tween 20), before loading with 50μl EIA buffer (0.1M NaPO4, 0.149M NaCl, 0.1% 

bovine serum albumin, pH 7.0) and incubated at room temperature for 1-5 hours prior 

to use. Plates coated with CL425 or CJM006 were washed five times with wash solution 

immediately prior to use. Standards (P0130: 0.0156 – 4.0ng/ml; C2505: 0.078 – 
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20ng/ml; or E8875: 0.0975 – 25ng/ml; Sigma-Aldrich, Dorset, UK), synthetic controls 

(30% and 70% binding), biological control (female black rhino extract diluted 1:70; 

1:20 or 1:50) or samples diluted in EIA buffer (diluted 1:70 or 1:1050 for cyclicity and 

pregnancy respectively; 1:20 or 1:50), were run in duplicate (CL425 and CJM006 50μl 

per well; R4972 20μl per well), followed by 50μl per well hormone-horseradish 

peroxidase conjugate (diluted 1:35,000, 1:70,000 or 1:65,000 in EIA buffer; C.J. Munro, 

U.C. Davis). Plates were sealed and incubated for two hours at room temperature (the 

standard protocol); the corticosterone EIA protocol was modified prior to use to 

improve reliability (see section 2.3 for details), and so plates were incubated in the 

dark. 

Following incubation, plates were washed five times with wash solution before 

addition of 100μl per well substrate (0.4mM 2,2’-azino-di-(3-ethylbenzthiazoline 

sulfonic acid) diammonium salt, 1.6mM H2O2, 0.05M citrate, pH 4.0), and incubated at 

room temperature (CJM006 in the dark), before reading at 405nm once optical density 

of 0 wells reached 0.8 to 1.0.  

 

2.2.4.2. Double antibody EIA 

In double antibody EIAs, a second (non-specific) antibody that recognises the first 

(antigen-specific) antibody, is used to coat the plate, and a blocking buffer is added to 

prevent non-specific binding. The first antibody is added along with the samples, 

standards, controls and labelled conjugate, which then compete to bind to the second 

antibody during the incubation period. This type of EIA is often used when very small 

amounts of hormone are present in the sample, or when problems are encountered 

with drift across the plate (See section 2.3.2; (Graham et al. 2001)), since the 

competition can only begin when the primary antibody is added in the final loading 

step. 

Testosterone metabolites were measured in black rhino faecal extract using a double 

antibody EIA (for modification of EIA procedure see section 2.3; for final protocol, see 

Appendix 1). In brief, a non-specific immunoglobulin (goat anti-rabbit IgG R2004, 

Sigma-Aldrich, Dorset, UK) was diluted in coating buffer (1.0μg in 250μl per well) 

added to 96-well NUNC Maxisorb microtitre plate, including non-specific binding wells 

(NSB) (See Appendix 1 for plate layout). Plates were incubated at room temperature 
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overnight, before IgG was discarded and 300μl Tris blocking buffer (0.02M Trizma, 

0.30M NaCl, 1.0% BSA, pH 7.5) added per well. Once blocked, plates could be used after 

two hours, or for up to one week. Plates were then washed five times with wash 

solution, before 50μl assay buffer added per well, followed by standards (T1500: 0.046 

– 12ng/ml; Sigma-Aldrich, Dorset, UK), synthetic controls (30% and 70% binding), 

biological control (male black rhino extract diluted 1:20) or samples diluted in assay 

buffer (1:20), all run in duplicate (50μl per well), followed by 50μl per well hormone-

horseradish peroxidase conjugate (diluted 1:45,000 in assay buffer; C.J. Munro, U.C. 

Davis). Finally, 50μl per well primary antibody (R156/7 diluted 1:25,000 in assay 

buffer; C.J. Munro, U.C. Davis; See Appendix 2 for antibody cross-reactivities) was 

added to all wells excluding the NSB’s. Plates were sealed and incubated for two hours 

at room temperature in the dark. 

Following incubation, plates were washed five times with wash solution before 

addition of 100μl per well substrate (0.4mM 2,2’-azino-di-(3-ethylbenzthiazoline 

sulfonic acid) diammonium salt, 1.6mM H2O2, 0.05M citrate, pH 4.0), and incubated at 

room temperature in the dark, before reading at 405nm once optical density of 0 wells 

reached 0.8 to 1.0.  
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2.3. Improving reliability 

As part of the validation process for this study, a number of inconsistencies were 

encountered with some of the EIAs. In order to improve the reliability of data for this 

study, existing protocols were modified where necessary; to ensure intra- and inter-

assay coefficients of variation (CVs) were maintained within acceptable limits of 5-10% 

and 10-15% respectively (Kurstak 1985; Munro and Stabenfeldt 1984). 

 

2.3.1. Light and temperature3 

Following the standard protocol as described in section 2.2.4.1, adapted from Munro 

and Stabenfeldt (1984), and using the newly developed polyclonal corticosterone 

antibody CJM006, a high degree of optical density variability was observed across 

plates when the same amount of either synthetic corticosterone standard or faecal 

extract was added to each well. Over a period of 10.5 weeks, the concentration of the 

same black rhino faecal extract varied from 91 to 249 ng/g faeces, a CV of 26.8%; and 

to a lesser extent in synthetic corticosterone (12.8 and 13.5% for high and low binding 

controls respectively). This led to highly inconsistent and therefore unreliable results. 

The EIA, therefore, had to be modified prior to use for this study. 

Under standard conditions, two aberrant patterns were observed within the observed 

optical density, illustrated in Figure 2.1 Type 1 patterns showed a gradual increase or 

decrease down each column (a-h) or across each row (1-12) within the plate; and type 

2 patterns were characterized by the outside wells being noticeably higher or lower 

within a row or column than the inside wells. These patterns did not occur on every 

plate, but when present, occurred either individually or in combination. Although the 

amount of variability was greater when plates were loaded with faecal extract, patterns 

were also observed with synthetic corticosterone. 

                                                             
3 The work for this section was carried out by Rebecca Watson, Katie Edwards and Sue Walker, 
and is adapted from Watson, R., Munro, C., Edwards, K.L., Norton, V., Brown, J.L., Walker, S.L., 
2013. Development of a versatile enzyme immunoassay for non-invasive assessment of 
glucocorticoid metabolites in a diversity of taxonomic species. General and Comparative 
Endocrinology 186, 16-24. 
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a) 

 

 

 

 

b) 

 

 

 

 

 

 

 

Figure 2.1: Adapted from Watson et al. (2013). Illustration of the two optical density pattern 

types observed prior to EIA modification. Instead of a consistent optical density between all 

wells, a) type 1 patterns show a gradual increase or decrease in optical density down each 

column (2-12) on the plate from row a ( ) to row h ( ); b) type 2 patterns show outer wells on 

the plate (typically both a ( ) and h ( )) being noticeably different (higher or lower within a 

row) than the inner wells ( ). 
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A series of experiments were conducted within the laboratory ((Watson et al. 2013); 

see Appendix 7), to minimise the intra- and inter-assay variation. Firstly, the type of 

microtitre plate used was investigated, since different plate types are known to affect 

antibody binding (Kricka et al. 1980; Shekarchi et al. 1984), with lower affinity binding 

plates previously found to exhibit lower variation (Rebeski et al. 1999). The standard 

Nunc MaxiSorp® plates were compared with lower binding affinity Immulon IB 

microtitre plates. However, the occurrence of patterns in optical density were still 

apparent using both plate types (Figure 2.2), and were in fact increased when using the 

lower affinity Immulon IB plates, with patterns observed within 100% of plates, 

compared to only 40% of Nunc MaxiSorp® plates run in parallel.  

a) 

 

 

 

 

b) 

 

 

 

 

 

 

Figure 2.2: Adapted from Watson et al. (2013). Representative patterns observed on the 

corticosterone enzyme immunoassay run on (a) Nunc MaxiSorp® and (b) Immulon IB microtitre 

plates, following the addition of either synthetic corticosterone ( ) or black rhino faecal extract 

( ). 
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Secondly, when excessive variation is observed within an EIA, a common solution is the 

addition of a secondary antibody. This addition has previously been found to reduce 

time-dependant drift across a plate, which is associated with the duration of plate 

loading, and results in differential incubation times between wells (Meyer and 

Hoffmann 1987). Furthermore, secondary antibody can minimise the deviation of 

readings from outer to inner wells caused by uneven binding of primary antibody to 

the well surface (Meyer and Guven 1986). The standard EIA protocol (section 2.2.4.1) 

was modified to include a secondary antibody coating step, use of blocking buffer to 

reduce non-specific binding, and the addition of the primary antibody delayed until the 

sample loading step (section 2.2.4.2 for full details). However, in this case, utilising a 

secondary antibody was beneficial only with synthetic corticosterone; it did not 

alleviate the patterns observed with faecal extracts (Figure 2.3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Adapted from Watson et al. (2013). Representative patterns observed on the 

corticosterone enzyme immunoassay run on Nunc MaxiSorp® microtitre plates coated with a 

secondary antibody, and run following the addition of either synthetic corticosterone ( ) or 

black rhino faecal extract ( ).  
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Instead, by manipulating the direction of a light source, the same patterns that had 

previously been apparent under standard conditions were artificially induced, with 

optical densities gradually decreasing closer to the light source (Figure 2.4). By 

modifying the EIA protocol to conduct all incubation steps in the dark, type 1 patterns 

were eliminated. However, variability was still higher than expected, and type 2 

patterns were still apparent, suggesting that the observed patterns were not entirely 

due to variation in light. Temperature can be a common cause of the ‘edge effect’ 

observed in many EIAs (Gibbs 2001), which occurs when the outer wells of a plate have 

different optical densities to the inner wells. This may be due to outer wells being more 

exposed to ambient temperatures, and therefore changing temperature more quickly 

than inner wells, resulting in altered enzymatic activity (Burt et al. 1979; Gibbs 2001). 

Indeed, the type 2 patterns observed here, including the patterns observed in the dark, 

reflected an ‘edge effect’ with dramatically different optical densities only observed in 

the outer-most wells. 

 

 

 

 

 

 

 

 

 

Figure 2.4: Adapted from Watson et al. (2013). Three-dimensional graph representing the 

variation in optical density observed between wells following the addition of black rhino faecal 

extract across a 96-well microtitre plate, and exposure during incubation to a natural light 

source from the right hand side. Each vertical column represents one well on the microtitre 

plate; the height of each column represents the optical density of the well. 
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Indeed, it is most likely that an interaction between light and temperature underlies 

the variation previously seen in this EIA, as ambient temperature and levels of daylight 

are highly variable from day to day. Prior to modification, this EIA had produced highly 

variable results, with the existence of two pattern types, which on different occasions 

may occur either alone, together or not at all. Following modification, this EIA is run 

using room temperature plates and reagents (as opposed to 4°C), and incubated in the 

dark to minimise the existence of these two pattern types (Figure 2.5), and improve the 

reliability of results obtained using this system. 

 

 

 

Figure 2.5: Aberrant pattern observed in corticosterone metabolite concentration (ng/g faeces) 

observed in black rhino faecal extract using standard protocol prior to modification ( ), and 

pattern removed using modified protocol ( ), with plates run using room temperature reagents 

and incubated in the dark.  
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2.3.2. Plate drift 

Similarly, whilst validating the testosterone EIA (R156/7) for use in this study, the 

existence of type 1 and type 2 patterns were observed (Figure 2.6). The existing 

protocol was modified as with the corticosterone EIA, to include room temperature 

reagents and dark incubation. However, results obtained from this modified EIA were 

still exceeding the desired intra- and inter-assay CVs of 10% and 15% respectively. 

Furthermore, the variation in this case included ‘plate drift’, where the concentration 

measured increased across the plate (Figure 2.7). The problem of plate drift (Munro 

and Stabenfeldt 1984) is associated with the duration of plate loading, and results in 

differential incubation times of samples and labelled antigen between wells. The wells 

towards the end of the plate have a reduced incubation time to those at the start, which 

results in slightly reduced competition by the labelled conjugate, reduced substrate 

conversion and an apparent increase in sample concentration. 

 

Figure 2.6: Male black rhino faecal extract run on two plates under standard conditions (full 

light) prior to modification, run on two separate days. An aberrant pattern was observed on day 

one (  CV 25.52%), but not on day two (  CV 16.45%). 
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Figure 2.7: Male black rhino faecal extract run on two plates run on the same day under dark 

conditions, either using a single antibody, or double antibody protocol. Plate drift was more 

extreme on the single antibody plate (  CV 14.27%), but much reduced on the double antibody 

plate ( CV 5.41%). 

 

When excessive variation is observed within an EIA, the addition of a secondary 

antibody has previously been found to reduce this time-dependant drift across a plate 

(Meyer and Hoffmann 1987). A double antibody system means that instead of using the 

primary (hormone-specific) antibody to bind to the microtitre plate, an antibody raised 

against the primary antibody is used. Samples, standards, controls, and labelled antigen 

are all then added before the primary antibody, which can be added almost 

simultaneously across the plate. The primary antibody is immobilized to the plate by 

being bound by the second antibody, and as the competition reaction can only begin 

once the primary antibody is present, drift across the plate due to differential 

competition is minimised (Graham et al. 2001). The standard EIA protocol (section 

2.2.4.1) was modified to include a secondary antibody coating step, use of blocking 

buffer to reduce non-specific binding, and the addition of the primary antibody delayed 

until the sample loading step (section 2.2.4.2 for full details). This modification reduced 

intra-assay CVs from approximately 15-20% to 5-10%. 
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2.4. Assay suitability and species validation 

Due to the wide application of EIA’s with a range of sample media and numerous 

species, it is vital that assay suitability and performance is carefully determined and 

monitored. For each new species and each new hormone of interest, the enzyme 

immunoassay must be validated. This is to ensure that the hormone or group of 

metabolites of interest are present in the sample medium e.g. faeces, are present in 

sufficient quantities to be detected accurately, and can be measured reliably by the 

assay system, without any interference. There are a number of established methods for 

checking the suitability of an assay system for measuring a particular hormone in a 

particular species. Different species do not always have the same metabolites present 

in their faeces or urine, and the metabolites are not necessarily the same as the native 

hormone present in the circulatory system. Even closely related species do not 

necessarily have the same metabolites present, and so every new species for analysis 

must first go through the following validation steps. It is also important to determine 

that the hormones of interest are biologically relevant to the research question. For 

example, if measuring glucocorticoids, it is important to determine whether the 

substance the assay is measuring is released in response to a stressor. Biological 

validation is therefore necessary before any associations with behaviours or events can 

be made. 

 

2.4.1. Parallelism 

Performing a parallelism allows the assessment of two aspects of assay suitability. 

Firstly, a parallelism is used to determine whether the EIA is measuring the hormone 

metabolites present in a faecal extract in a similar way to the synthetic hormone to 

which the antibody was raised. A serial dilution of faecal extract is run in duplicate on 

the EIA of interest, alongside a serial dilution of the synthetic standard. Parallelism is 

typically assessed visually by plotting the displacement curves of the synthetic 

standard and the faecal extract on the EIAs. However, it is also important that the 

relationship be confirmed with linear regression to provide a less subjective 

assessment of the suitability of the EIA. A significant linear regression indicates that the 

percentage binding of the synthetic standard can be used to determine the percentage 

binding of the endogenous hormone metabolites, as binding to the antibody is 

proportional along the range of serial dilutions used for assessment. 
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Successful parallelism was obtained for female black rhino faecal extract on the 

progesterone, oestradiol and corticosterone EIAs, and male faecal extract on 

testosterone and corticosterone EIAs (Figures 2.8–2.9; Table 2.1), indicating that the 

metabolites in the sample are immunologically similar to the synthetic standards, and 

are being measured proportionately by the EIAs.  

Secondly, if the EIA is indeed suitable for measuring hormone metabolites of interest, a 

parallelism can then be used to determine the correct dilution to run biological 

samples. To obtain accurate results, faecal samples should be run on the EIA at a 

dilution to give approximately 50% binding. This is generally the most sensitive and 

accurate portion of the calibration curve, being both steep and linear, so that relatively 

small changes in sample binding are representative of a greater difference in 

concentration. 

 

2.4.2. Matrix interference assessment 

Matrix interference assessment determines how accurately the EIA measures the 

concentration of a sample, and determines whether the sample matrix causes any 

interference to that measurement. A serial dilution of synthetic standard is spiked with 

an equal volume of a working dilution of the faecal extract, based upon the parallelism 

(section 2.4.1) to achieve 50% binding. Once the background concentration of the 

faecal extract has been accounted for (observed minus background), the observed 

concentration is compared to the expected concentration of the synthetic standard, 

using linear regression.  

For all EIAs used, there was no evidence of matrix interference, as addition of diluted 

faecal extract to synthetic standards did not significantly alter the amount observed 

(Figures 2.10-2.11; Table 2.1). A high R2 indicates that the EIA is accurately measuring 

the hormone metabolites, without significant interference from the matrix at the 

working dilution. Ideally the regression coefficient representing the gradient should be 

close to 1 to indicate that the faecal extract is having no influence upon the 

measurement of the expected concentration of synthetic standard used. However, in 

the case of the oestradiol EIA (R4972), the amount of immunoreactivity observed was 

over-estimated relative to the expected concentration, with a gradient of 3.0552. 

Although this EIA may be overestimating the observed concentration, a significant 
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regression suggests that this over-estimation is consistent across the range of 

concentrations used, so changes in concentration can still be inferred and this EIA can 

be used to investigate differences in faecal oestradiol metabolite concentration. 
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Figure 2.8: Female black rhino faecal extract demonstrates parallelism with (a) progesterone, 

(b) oestradiol and (c) corticosterone standard curves. Standards () and pooled faecal extract 

(). 
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Figure 2.9: Male black rhino faecal extract demonstrates parallelism with (a) testosterone and 

(b) corticosterone standard curves. Standards () and pooled faecal extract (). 



 

 

Table 2.1: Validation of black rhino faecal extracts on multiple EIA’s, through parallel displacement of faecal extract and standard curves, and matrix interference 

assessment. 

EIA Extract Parallelism Matrix interference assessment 

Progesterone 

CL425 
Female black rhino 

Sample % binding = 0.851 (standard % binding) + 2.014  

R2=0.969, F1,7=222.140, P<0.001 

Observed = 0.775 (Expected) + 0.807 

R2 = 0.998, F1,7 = 4338.484, p<0.001 

Testosterone 

R156/7 
Male black rhino 

Sample % binding = 0.879 (standard % binding) + 7.298 

R2=0.997, F1,7=2563.486, P<0.001 

Observed = 1.107 (Expected) – 1.872  

R2 = 0.996 F1,7 = 1668.608, p< 0.001 

Oestradiol 

R4972 
Female black rhino 

Sample % binding = 1.094 (standard % binding) – 14.257 

R2=0.986, F1,7=506.114, P<0.001 

Observed = 3.0552 (Expected) – 10.087 

R2 = 0.983 F1,5 = 288.582, p< 0.001 

Corticosterone 

CJM006 
Female black rhino 

Sample % binding = 0.971 (standard % binding) – 0.873 

R2=0.982, F1,7=377.007, P<0.001 

Observed = 1.082 (Expected) + 2.266 

R2 = 0.999 F1,7 = 7133.701, p< 0.001 

Corticosterone 

CJM006 
Male black rhino 

Sample % binding = 0.850 (standard % binding) + 11.823 

R2=0.987, F1,7=537.761, P<0.001 

Observed = 1.013 (Expected) – 0.698 

R2 = 0.995 F1,7 = 1471.256, p< 0.001 

7
9
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Figure 2.10: Assessment of matrix interference of female black rhino faecal extract on (a) 

progesterone, (b) oestradiol and (c) corticosterone standards with CL425, R4972 and CJM006 

EIAs respectively.  
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Figure 2.11: Assessment of matrix interference of male black rhino faecal extract on (a) 

testosterone and (b) corticosterone standards with R156/7 and CJM006 EIAs respectively. 
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2.4.3. High performance liquid chromatography 

High performance liquid chromatography (HPLC) is a separation technique used to 

identify substances within a sample, based on their chemical characteristics. HPLC can 

be either normal- or reverse-phase, depending on the polarity of the compounds of 

interest; hydrophobic molecules, such as steroid hormones, can be separated by 

reverse-phase HPLC. Samples are first adsorbed onto a hydrophobic, non-polar 

stationary phase, before gradual elution with an increasing concentration of an organic 

solvent mobile phase. More polar compounds with lower affinity for the stationary 

phase are eluted off the column first, followed by less polar compounds as the 

concentration of solvent increases. As compounds are eluted, they are detected with a 

UV detector to create a chromatogram. Additionally, the eluting solvent can be 

separated into fractions, collected and analysed on the EIA of interest for quantification 

of immunoreactivity. 

Faecal hormone analysis usually means measuring the metabolites of the hormone of 

interest which have been modified in some way to aid their excretion. As the native 

hormone in often not present in great quantities (Mostl and Palme 2002; Palme et al. 

2005), it is therefore important to determine whether the metabolites being measured 

by a particular EIA are immunologically similar to the native hormone. Often the 

compounds that elute will not be identical to the synthetic standards used for 

reference, as the metabolism prior to excretion may have altered their structure 

and/or polarity. However, performing HPLC allows determination of the number of 

metabolites being detected by the EIA, and whether they have similar polarity to the 

standard to which the antibody was raised. 

Additionally, this fractionation technique allows investigation of whether faecal 

metabolites are detected on multiple EIAs, exhibiting potential cross-reactivity. Since 

antibodies are often designed to detect a range of structurally similar metabolites, 

previous studies have highlighted a potential confound whereby EIAs designed to 

measure glucocorticoids also detect structurally similar, but biologically distinct 

androgens (Ganswindt et al. 2003). To investigate whether this might be an issue with 

the EIA used for this study, the same fractions were run on CJM006 and R156/7 EIAs, 

to determine whether significant immunoreactivity peaks were detected at the same 

elution positions, perhaps indicating that the same compounds may be being measured 

by the two EIA.  
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2.4.3.1. Sample preparation and Reverse-Phase HPLC 

Male and female black rhino faecal extracts were prepared as described in section 

2.2.3. Faecal extracts were evaporated to dryness, and reconstituted in 1ml 40% 

methanol before loading the total volume onto a pre-conditioned (4ml methanol; 4ml 

distilled water) C-8 cartridge (Thermo Hypersep™ C18; Thermo Fisher Scientific, 

Runcorn, UK). Two 0.5g extracts from the same samples were loaded onto each 

cartridge, to give the equivalent of 1.0g (wet-weight) faecal matter per extract. The 

cartridge was then washed with 5ml distilled water, before total steroids were eluted 

with 5 ml 100% methanol, evaporated to dryness, and reconstituted in 300l 50% 

methanol. This was transferred to a microtube and centrifuged at 12,000 rpm for 5 

minutes to remove any further sediment. Each filtered faecal extract (50l aliquot) was 

then separated on a C-18 column (Thermo Fisher Scientific Hypersil GOLDTM 150 x 

4.6mm, particle size 5; Runcorn, UK) with a column guard (Thermo Fisher Scientific 

Hypersil GOLDTM 10 x 4mm; Runcorn, UK) using a linear gradient of 20–100% 

methanol (MeOH; glucocorticoids and androgens) or 20-100% acetonitrile (MeCN; 

androgens and oestrogens) in water over 80min (1ml/min flow rate, 1ml fractions). 

Elution peaks were detected using a UV detector at 254nm, or using a full scan for 

particular standards where the chemical structure is not suited to UV detection. 

Additionally, reference standards known to cross react more than 0.1% with the 

corticosterone (CJM006), testosterone (R156/7) and oestradiol (R4972) antibodies 

(see Appendix 2 for cross-reactivities) were also separated using the same reverse-

phase HPLC protocol. All fractions were collected, evaporated to dryness, reconstituted 

in 300l assay buffer and an aliquot (50l on CJM006 and R156/6; 20l on R4972) 

assayed in duplicate for immunoreactivity on the respective EIAs.  
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2.4.3.2. Corticosterone EIA CJM006 

Immunoreactivity profiles illustrate which fractions eluted from the HPLC contain any 

compounds recognised by the respective antibodies, allowing comparison of the 

elution positions of unknown metabolites in black rhino faecal extract with known 

synthetic standards.  

In female faecal extract separated with a methanol mobile-phase, three main peaks of 

immunoreactivity were detected on the corticosterone EIA (Figure 2.12), which eluted 

at 37, 43 and 51 minutes respectively. These same elution positions were also detected 

for male faecal extract (Figure 2.13), with main peaks of immunoreactivity under 

methanol separation also at 37, 43 and 51 minutes. Under methanol separation, the 

synthetic reference standard corticosterone eluted at 37 minutes, indicating that one of 

the immunoreactive peaks in both male and female faecal extract was immunologically 

very similar to corticosterone. Another of the reference standards, 

desoxycorticosterone, eluted at 44 minutes, indicating that one of the other 

metabolites present may be similar to this compound. The third immunoreactive peak 

did not co-elute near any of the other reference standards used. 

The male faecal extract separated using the acetonitrile mobile-phase was also 

analysed on the corticosterone EIA, and illustrated immunoreactive peaks at 17 and 24 

minutes, co-eluting with corticosterone and desoxycorticosterone respectively. 

Although in some species the metabolites present in faeces can be different (Touma et 

al. 2003), in black rhino faecal extract the same elution peaks were present on 

immunoreactivity profiles for the corticosterone EIA, indicating that the assay is 

measuring a number of metabolites in faecal extract, but the same appear to be present 

in both males and females.  
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Figure 2.12: Immunoreactivity of female black rhino faecal extract, separated with methanol 

gradient, on corticosterone EIA CJM006. Arrows denote elution positions of synthetic standards 

1) cortisol, 2) corticosterone, 3) tetrahydrocorticosterone, 4) desoxycorticosterone, 5) 

testosterone and 6) progesterone. 
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(a)  

 

 

 

 

 

 

 

 

(b)  

 

 

 

 

 

 

 

Figure 2.13: Immunoreactivity of male black rhino faecal extract, separated with (a) methanol 

and (b) acetonitrile gradient, on corticosterone EIA CJM006. Arrows denote elution positions of 

synthetic standards 1) cortisol, 2) corticosterone, 3) tetrahydrocorticosterone, 4) 

desoxycorticosterone, 5) testosterone and 6) progesterone.  
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2.4.3.3. Testosterone EIA R156/7 

Immunoreactivity profiles using both MeOH and MeCN separation of male black rhino 

faecal extract are shown in Figure 2.14, illustrating a number of peaks of 

immunoreactivity observed on the testosterone EIA. Using methanol separation, there 

were 5 clear elution peaks, three of which were in the region of the reference standards 

(40-50 minutes) which were known to cross-react with the R156/7 antibody. The first 

of these co-eluted with the reference standard testosterone at elution position 45, and 

the third co-eluted with 5α-dihydrotestosterone at position 49, suggesting that some of 

the metabolites measured by this antibody are immunologically very similar to these 

two compounds. The second of these three peaks eluted at position 47, but no 

reference standard co-eluted at this point. This peak is likely to be a compound slightly 

less polar than testosterone, but slightly more polar than 5α-dihydrotestosterone. The 

two earlier elution peaks at 25 and 33 minutes respectively could not be identified 

based on the reference standards used, but are more polar than all of the androgen 

reference standards tested on this occasion.  

The acetonitrile immunoreactivity profile was slightly less clear, with a relatively large 

amount of immunoreactivity detected between 4-10 minutes. Other than this region, 

the main immunoreactivity peak eluted at 18 minutes, and could not be identified. 

There were also small immunoreactivity peaks at 24 and 26 minutes, around the same 

region as the three reference standards. However, it is felt that this separation was 

possibly unsuitable for detecting androgens, or alternatively, insufficient mass was put 

through the column to allow sufficient immunoreactivity on the EIA. 

Although we cannot identify the exact metabolites being measured using this approach, 

when the same fractions of male faecal extract were run in parallel on the 

corticosterone and testosterone EIAs, no peaks of immunoreactivity were evident at 

the same elution positions on the two EIAs using either mobile phase (Figure 2.15). 

This suggests that the two EIA are not measuring significant quantities of the same 

compounds, indicating that cross-reactivity does not appear to be an issue with results 

obtained using these EIAs. 

  



 
88 

(a)  
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Figure 2.14: Immunoreactivity of male black rhino faecal extract, separated with (a) methanol 

and (b) acetonitrile gradient, on testosterone EIA R156/7. Arrows denote elution positions of 

synthetic standards 1) androstenedione, 2) testosterone and 3) 5α-dihydrotestosterone. 
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(a) 
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Figure 2.15: Immunoreactivity of male black rhino faecal extract, separated with (a) methanol 

and (b) acetonitrile gradient, on corticosterone EIA CJM006 ( ) and testosterone EIA R156/7 

( ). 
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2.4.3.4. Progesterone EIA CL425 

Immunoreactivity profiles using both MeOH and MeCN separation show one clear peak 

at elution positions 58 and 38 respectively (Figure 2.16), with a number of smaller 

peaks at higher and lower retention times. Although there seems to be only a small 

amount of immunoreactivity at the same elution position as the synthetic progesterone 

standard (4-Pregnene-3, 20-dione) (52 and 35 respectively), the CL425 antibody is 

known to cross-react > 1% with 11 different P4 metabolites (Appendix 2), and it is 

likely that a slightly less polar metabolite of P4 is the main immunoreactivity peak seen 

in female black rhino faeces. 
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(a) 
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Figure 2.16: Immunoreactivity of female black rhino faecal extract, separated with (a) 

methanol and (b) acetonitrile gradient, on progesterone EIA CL425. Arrow (1) denotes elution 

position of synthetic progesterone (4-Pregnene-3, 20-dione). 
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2.4.3.5. Oestradiol EIA R4972 

The oestradiol reference standards (oestradiol and oestrone) co-eluted at elution 

position 38 when using the methanol mobile phase, therefore only the acetonitrile 

separation was used for this assay. When these female black rhino extract fractions 

were run on the oestradiol EIA (R4972), there were three immunoreactivity peaks 

observed (Figure 2.17); one is likely to be a conjugate, as it was eluted almost 

immediately (elution position 3), indicating that it is more polar than the other 

compounds eluted. The other two immunoreactivity peaks observed in the faecal 

extract fractions eluted at 16 and 30 minutes. The first of these co-eluted with 

oestradiol-17β, whereas the other peak could not be identified based on the reference 

standards used, but is a less-polar compound than all of the reference standards used. 

 

 

 

 

 

 

 

 

 

Figure 2.17: Immunoreactivity of female black rhino faecal extract, separated with acetonitrile 

gradient, on oestradiol EIA R4972. Arrows denote elution positions of synthetic standards 1) 

oestradiol-17β, 2) testosterone, 3) oestrone and 4) progesterone. 
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2.5. Biological validation 

In addition to biochemically validating an EIA to ensure that the metabolites of interest 

are being accurately measured by the chosen assay, it is also important to ensure that 

those metabolites detectable in faeces are reflective of biological changes within the 

body. In order to do this, physiological validation is often used, such as an ACTH 

(Brown et al. 2001; Santymire et al. 2012) or GnRH challenge (Amaral et al. 2009; 

Chelini et al. 2011), which stimulate the hypothalamic-pituitary-adrenal axis, or the 

hypothalamic-pituitary-gonadal axis, resulting in the downstream production of 

glucocorticoids or reproductive hormones respectively, which can then be measured in 

faeces. 

However, in the UK, scientific procedures including such physiological challenges are 

regulated under the Animals (Scientific Procedures) Act (1986). Conducting such 

procedures purely for research purposes would require a Home Office licence (Bishop 

et al. 2013), which was not deemed suitable for this study. Therefore for the purposes 

of this study, samples could only be utilised if such a procedure was already being 

carried out for veterinary purposes (RCVS 2012), or samples could be collected 

opportunistically elsewhere. As part of the validation for this study, we were fortunate 

enough to obtain faecal samples from a female black rhinoceros that required GnRH 

vaccination for a non-regulated procedure related to contraception, and archived faecal 

samples collected from four male black rhinoceros that had previously undergone a 

GnRH challenge at another institution (animal welfare and ethics for the procedure had 

previously been approved by the relevant local authorities; M. Bashaw, pers. comm.). 

These samples were therefore re-analysed in our laboratory, allowing us to assess the 

biological validity of hormone metabolites measured with our EIAs. 

An alternative option is to use naturally occurring events that stimulate the desired 

response, which can be relatively easy to achieve in the case of adrenal activity, as 

stressors may occur either naturally, or as part of normal management practices. 

Biological validation has the added benefit that hormone metabolites measured in 

faeces are reflective of a natural response, so biologically relevant concentrations can 

be detected, as opposed to physiological challenges where the concentration of 

hormone metabolites measured in faeces is reflective of the amount of GnRH or ACTH 

injected. 
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2.5.1. Biological validation of corticosterone EIA for measuring adrenal activity in male 

and female black rhinoceros. 

As it was not possible for us to perform an ACTH challenge as part of the validation 

process for this study, and no opportunities arose to utilise previously collected 

samples from elsewhere, it was necessary to use a biological validation. In this case, we 

have utilised inter-zoo transfers, during which 4 males and 5 females were moved from 

one zoological institution to another during the course of this study, as part of the 

European endangered species breeding program. Faecal samples were collected daily 

for 10 days prior to and 30 days following the transfer, which were frozen immediately 

following collection, and sent to Chester Zoo, UK for analysis as described in sections 

2.2.3 and 2.2.4. Figure 2.18 illustrates a representative profile of faecal glucocorticoid 

metabolites prior to, and following an inter-zoo transfer in a female black rhinoceros. 

In females, using a generalised linear mixed model (GLMM) controlling for multiple 

samples from multiple individuals (N=5), log10 transformed glucocorticoid metabolite 

concentration was significantly higher during the 30 days post-transfer than the 10 

days pre-transfer (χ2 =7.545, df=1, P=0.006; Figure 2.19), indicating that an increase in 

adrenal activity associated with this event could be detected in faecal samples.  

However, in males (N=4), when controlling for repeated sampling within multiple 

individuals, there was no difference in log10 transformed glucocorticoid metabolite 

concentration before compared to after the translocation (pre 10 days vs. post 30 days, 

χ2 =2.074, df= 1,P=0.15; Figure 2.19), and concentrations were in fact generally lower 

post-transfer. Although this does not follow the same trend as with the females, this 

does not necessarily mean that we are not measuring adrenal activity in male black 

rhino faeces. Indeed, Santymire et al. (2012) have previously demonstrated that this 

EIA (corticosterone CJM006) is capable of detecting the physiological response to an 

ACTH challenge in male black rhino. Instead, the lack of a response to the biological 

validation observed here may perhaps indicate a difference in how males and females 

respond to the potentially challenging event of an inter-zoo transfer, which requires 

further investigation. Furthermore, as all individuals were crate-trained prior to 

transfer (K. Edwards, pers. obs.), perhaps this event does not invoke the same response 

as a translocation in situ (Linklater et al. 2010). 
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Figure 2.18: Faecal glucocorticoid metabolite concentration measured on the corticosterone 

CJM006 EIA following the inter-zoo transfer of a female black rhino. The dashed line represents 

the day of transfer, day 0. 
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(a) 
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Figure 2.19: Average (± s.e.m) faecal glucocorticoid metabolite (fGCM) concentration in (a) five 

female and (b) four male black rhinoceros before compared to after inter-zoo translocation. 

When taking into account repeated sampling form multiple individuals in a GLMM, fGCM was 

significantly elevated in females during the 30 days post-transfer compared to the 10 days pre-

transfer (*), but the reduction in fGCM observed in males was not significant.  
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2.5.2. Biological validation of the testosterone EIA for measuring male gonadal activity 

As we were unable to conduct a GnRH challenge ourselves without a home-office 

licence, faecal samples that had already been collected by Taronga Western Plains Zoo, 

Dubbo, NSW, Australia, surrounding a series of GnRH challenges on four males 

previously conducted in 2005/6 were kindly provided for analysis. Archived faecal 

samples were shipped to Chester Zoo, UK for analysis following extraction and 

testosterone and corticosterone EIA protocols as previously described (sections 2.2.3 

and 2.2.4). Figure 2.20 illustrates a representative profile of faecal testosterone and 

glucocorticoid metabolites prior to, and following a GnRH challenge in a male black 

rhinoceros. 

Although the response to the GnRH challenge was variable among individuals, using a 

GLMM controlling for multiple samples from multiple individuals, testosterone 

metabolite concentration was significantly higher during the 5 days post-challenge 

than the 5 days pre-challenge (χ2 =8.379, df=1, P=0.004), and showed a tendency (χ2 

=3.735, df=1, P=0.053) of returning to pre-challenge concentrations during the 

subsequent 5 days. However, no increase in corticosterone metabolite concentration 

was observed over the same period (pre 5 days vs. post 5 days, χ2 =2.056, df=1, P=0.15; 

post 5 days vs. post 10 days, χ2 =0.021, df=1, P=0.88) (Figure 2.21). 

This indicates that a biological response to the GnRH challenge was detected using the 

testosterone EIA, with an increase in testosterone metabolite concentration as 

expected. However, a similar response was not observed in faecal glucocorticoid 

concentration, indicating that any potential cross-reactivity between these two EIA is 

minimal, and should not confound potential results obtained using these two assays. 

Furthermore, faecal samples collected as part of this study have demonstrated that 

faecal testosterone metabolite concentration increases with age, being significantly 

lower in immature than mature males (Chapter 5). This also acts as a form of biological 

validation, as testosterone production would be expected to increase with sexual 

maturity (August et al. 1972), and this was reflected in the faecal metabolites measured 

by this EIA. 



 
98 

 

Figure 2.20: Faecal testosterone ( ) and corticosterone ( ) metabolite concentration for 4 

days prior to and 16 days following a GnRH challenge in a male black rhinoceros. The dashed 

line represents the day of GnRH challenge, day 0. 
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Figure 2.21: Average faecal testosterone (a) and corticosterone (b) metabolite concentration (± 

s.e.m) in four black rhinos before and after a GnRH challenge. Annotation (*) represents a 

statistically significant difference (P<0.05) between pre-challenge samples (days -4 to 0) and 

post-challenge samples (days 1 to 5) in testosterone, but not in corticosterone. 

 

 

 

 



 
100 

2.5.3. Biological validation of progesterone and oestradiol EIAs for measuring female 

gonadal activity. 

 

A 13 year old female black rhinoceros at Chester Zoo, UK developed a number of 

reproductive pathologies, and for her on-going health and welfare, it was decided that a 

contraceptive treatment using a GnRH vaccination regime was required in an attempt 

to minimise further development of her condition (R. Hermes, pers. comm.). As the 

GnRH vaccine used contains a GnRH protein conjugate, it initially acts in a similar way 

to a GnRH challenge, stimulating the HPG axis. Subsequently the immune system 

develops anti-GnRH antibodies to neutralise endogenous GnRH, blocking its biological 

activity, reducing the secretion of LH, FSH and sex hormones, to shut down the 

reproductive system (Feltrer 2010; Kirkpatrick et al. 2011). Therefore, the veterinary 

requirement to carry out this treatment was opportunistically used as a physiological 

validation to assess the hormone metabolites measured in faeces. Faecal samples were 

collected from this female prior to, and following the treatments, and were extracted 

and analysed on progesterone and oestradiol EIAs according to previously described 

protocols (sections 2.2.4.1-2.2.4.2). 

Figure 2.22 illustrates faecal progesterone and oestradiol metabolites prior to, and 

following treatment with a GnRH vaccine in this female. When samples were divided 

into five day periods (pre: days -4 to 0; post 1: days1-5; post 2: days 6-10; and post 3: 

days 11-15), progesterone metabolites were significantly elevated during the 5 days 

following treatment (post 1 vs. pre: χ2 =5.807, df=1, P=0.016). During the following 10 

days, faecal progesterone metabolites were then suppressed below pre-treatment 

concentration, and were significantly lower than the initial 5 days following treatment 

(post 2 vs. post 1: χ2 =13.499, df=1,P<0.001; post 3 vs. post 1: χ2 =11.174, df=1,P<0.001; 

Figure 2.23). Faecal oestradiol concentration was also increased during the first 5 days 

following treatment, although this did not quite reach significance (post 1 vs. pre: χ2 

=3.436, df=1, P=0.064). During the following 5 days, faecal oestradiol concentration 

was suppressed compared to the initial 5 days following treatment (post 2 vs. post 1: χ2 

=4.217, df=1, P=0.04; Figure 2.23), returning to around pre-treatment concentration. 

This indicates that a biological response to the GnRH treatment was detected using the 

progesterone, and to a lesser degree the oestradiol EIAs, with an increase in metabolite 

concentration observed as expected. 
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Figure 2.22: Faecal hormone metabolite concentrations measured on progesterone ( ) and 

oestradiol ( ) EIAs following GnRH vaccination for contraception purposes in a single female 

black rhino. 

 

Furthermore, by way of biological validation of the progesterone and oestradiol EIAs, 

samples collected as part of this study have indicated two things. Firstly, cyclic changes 

in progesterone metabolite concentration have been detected using the progesterone 

CL425 EIA (Chapter 5). This cycle pattern is reflective of progesterone production from 

the corpus luteum following ovulation, which then regresses and ceases progesterone 

production in preparation for the next period of oestrus. Secondly, oestradiol 

metabolite concentration as determined using the oestradiol R4972 EIA was 

significantly lower during periods of acyclicity than during normal oestrous cycles 

(Chapter 7). This indicates that the absence of oestradiol metabolites detected in faeces 

may be reflective of reduced follicular activity during acyclic periods. 

 

 

 

 



 
102 
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Figure 2.23: Average hormone metabolite concentrations (± s.e.m) in faecal extracts from a 

single female black rhino before and after a GnRH vaccination. Extracts were run on a) 

progesterone and b) oestradiol EIAs. Annotations represent statistically significant differences 

(* P<0.05; *** P<0.001) between pre-challenge samples (days -4 to 0) and post-challenge 

samples (days 1 to 5; 6 to 10 and 11 to 15). 
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2.6. Conclusion 

 Endocrinology can be a useful tool to help understand the physiology behind 

processes such as reproduction, response to potential stressors, and behaviour.  

 In order to conduct the proposed research on the black rhinoceros, where 

longitudinal sampling was important, a practical, non-invasive method of 

sample collection was required.  

 Enzyme immunoassays to measure progesterone, oestradiol, testosterone and 

glucocorticoid metabolites have been biochemically validated to measure 

hormone metabolites in the faeces of male and female black rhinoceros through 

illustration of parallel displacement curves and no evidence of matrix 

interference. 

 To ensure reliability of data for use in this study, modifications were made to 

the corticosterone and testosterone EIA protocols used, to ensure variation due 

to environmental effects was kept to a minimum. 

 High-performance liquid chromatography (HPLC) separation of faecal extracts 

revealed a number of immunoreactive peaks on each EIA, some of which co-

eluted with reference standards, indicating that although a number of 

metabolites are being detected, they are immunologically similar to the 

hormone to which the EIA was developed. 

 Where possible, biological validation was also conducted, to confirm that 

hormone metabolites measured in faeces were indeed reflective of biological 

changes. 
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3. POPULATION PERFORMANCE OF IN SITU EASTERN BLACK RHINOCEROS (DICEROS 

BICORNIS MICHAELI) IN KENYA. 

 

Summary 

Following an estimated 96% decline in black rhino numbers across Africa, biological 

management of remaining populations has become essential, not only to halt further 

decline, but also to maximise population growth and genetic diversity. Demographic 

monitoring of these populations allows information to be gained on performance, both 

at the individual and population level, which can be used to guide management 

decisions to maximise metapopulation growth and viability. Demographic information 

from eight populations of eastern black rhinoceros in Kenya were used to fulfil the two 

main aims of this chapter. Firstly, historical data was used to create simulated 

population projection models, to determine the current performance of in situ 

populations, and how growth rates vary under natural conditions. Secondly, data were 

used to estimate indicators of population performance relating to mortality, 

reproduction and population structure, to establish the normal range and variability 

both between individuals and across reserves. Projected growth rates across reserves 

ranged from 2.26% to 7.02%, with only five of the eight reserves currently predicted to 

achieve the target of 5% growth per annum. Although mortality and population 

structure indicators were generally achieved, indicators relating to individual 

reproductive success were often sub-optimal. This information provides a better 

understanding of how this species is performing in situ, which is not only beneficial to 

the biological management these populations, but can also be used as a biological 

reference for the ex situ population to determine where there may be room for 

improvement (see Chapter 4). If black rhinoceros populations are to be managed 

effectively, both in situ and ex situ, it is essential to gain a better understanding of 

measures of individual and population performance, and how demographic parameters 

can be used as indicators for where improvements could be made. 
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3.1. Introduction 

The eastern black rhinoceros (Diceros bicornis michaeli) was once numerous in Kenya, 

with an estimated population of 20,000 individuals in 1970; the larger reserves such 

as Tsavo National Park and Selous Game Reserve each containing perhaps twice the 

current global population of all three remaining subspecies of black rhino combined 

(KWS 2012). However, by 1990, less than 400 individuals remained in Kenya, 

predominantly due to the wide scale poaching occurring across the continent (Bradley 

Martin and Bradley Martin 1982). Populations were left vulnerable and highly 

fragmented, so individuals were captured and translocated into designated reserves, 

where security could be concentrated to protect populations against further decline 

(Emslie and Brooks 1999). As a result, numbers have steadily increased over the last 

two decades (Figure 3.1); Kenya remains the stronghold for the eastern subspecies, 

with 623 individuals at the end of 2011, 80.3% of the remaining wild population (KWS 

2012). Other significant populations of the eastern subspecies include two populations 

in Tanzania, and an out of range population in South Africa. 

 

 

Figure 3.1: Eastern black rhino numbers in Kenya from 1970 to 2011, shown on a logarithmic 

scale. After a rapid decline between 1970 and the mid 1980’s, Kenya’s black rhino populations 

have been slowly increasing, from a minimum size of 381 in 1987 up to 623 by the end of 2011. 

Adapted from (KWS 2012) with permission from KWS rhino programme. 
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However, poaching remains a threat to the survival of rhinoceros species globally, with 

a significant resurgence over recent years (Emslie et al. 2012), threatening the positive 

trends in population growth achieved over the last two decades. This has been 

particularly severe in southern Africa, but has also led to the loss of 53 eastern black 

rhinos in Kenya between 2007 and 2011, when 2.3% of the existing rhino population 

was lost to poaching within a 12-month period (KWS 2012). With this continuing 

threat, the future of the black rhino is heavily dependent on the biological management 

of remaining populations, to maximise the rate of growth and ensure genetically and 

demographically viable populations, and continuing to expand their current range, 

whilst maintaining suitable levels of protection (KWS 2012).  

The key to the success of black rhino conservation over the last two decades has been 

the intensive biological management and protection of remaining populations, and the 

translocation of surplus individuals to establish new populations elsewhere in their 

native range. The aim of biological management is to maintain rapid population 

growth, and to minimise inbreeding and maximise genetic diversity through the 

translocation of rhinos between reserves. Due to security demands, rhino populations 

are maintained within small and mostly fenced reserves (Okita-Ouma et al. 2010), and 

as such, each reserve has a finite ecological carrying capacity that can be supported, 

before detrimental effects on growth may occur (Adcock 2001). Black rhinos within 

these reserves are ideally managed at the ‘maximum productivity carrying capacity’ 

(Adcock 2001; KWS 2012), generally around 75% of the ecological carrying capacity, 

meaning translocations may be necessary to relieve pressure on existing populations 

(Patton et al. 2008), to prevent any decline in growth.  

The IUCN African rhino specialist group (AfRSG) has proposed a minimum 

metapopulation growth rate of 5%, with well-established populations in good habitat 

hoped to attain 6.5-9% growth per annum, or even higher for young breeding 

populations with low mortality (KWS 2012). This growth rate has been specified to 

promote rapid growth and minimise the loss of genetic diversity from the remaining 

populations. Kenya’s long-term vision is to maintain 2000 black rhinos nationally, and 

in the shorter term, to achieve 750 black rhinos in Kenya alone by 2016. To achieve 

these goals, at least 5% annual growth rates must be maintained both nationally, and 

within each individual reserve, and man-induced and disease-related deaths must be 

limited to less than 1% of the population (KWS 2012). High biological growth rates 

result from good breeding performance; however, this is heavily dependent on 
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conditions such as habitat quality (Okita-Ouma et al. 2008), and population density 

(Patton et al. 2008), and on demographic parameters such as sex ratio (Okita-Ouma et 

al. 2010) and age structure of the population (Hrabar and du Toit 2005). In order to 

maintain such high rates of growth, demographic monitoring is essential to understand 

population performance and prevent any decline in population growth (Emslie 2001b), 

either within individual reserves, or at a national level.  

A number of performance indicators have been established (du Toit et al. 2001) to 

assess individual and population performance in parameters such as age at first birth, 

inter-calving intervals, what proportion of the population breed each year, age and sex 

structure of the population, and mortality. However, it is not only important to assess 

performance against these optimal targets, but also to investigate why certain 

individuals or sub-populations may fail to meet them. On-going population monitoring 

of past and current trends and the projection of likely future performance using 

population viability analysis (PVA) based on structured demographic data can be 

beneficial to management, as it can give an indication of overall performance, but also 

allow identification of areas that may not be performing as expected. This also allows 

an understanding of the variability in demographic parameters, and how these may be 

related to environmental constraints or social structure, which can be beneficial when 

establishing new populations.  

This variability in performance is important to understand differences within reserves 

over time and between reserves, but also to understand differences between 

individuals in their contribution to population growth. If a population is to achieve the 

necessary targets for growth, and to retain maximum genetic diversity for the future, it 

is important that all individuals are reproducing equally (Muya et al. 2011). Using 

individual measures of reproduction, such as age at first birth and inter-birth intervals, 

it is possible to determine whether breeding females are performing optimally, but it is 

also important to determine the number of males and females that are not reproducing. 

Skewed reproductive output across individuals has implications for overall growth 

rates, as although a proportion of the population may be achieving the necessary 

targets for 5% growth, any non-reproducing individuals will reduce the percentage 

growth that can be achieved. Furthermore, reproductive skew also has implications for 

the genetic diversity of the population, as the difference between effective population 

size (Ne) of breeding individuals, and overall population size has implications for the 

rate of loss of genetic diversity within finite populations (Frankham 1995).  
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Conservation of the black rhinoceros requires a global strategy, with in situ and ex situ 

populations both playing a role in long-term viability of this species (Emslie and 

Brooks 1999; Foose 1993). As such, a better understanding of black rhino demography 

can also be beneficial to ex situ conservation, where inconsistent rates of reproduction 

and high rates of mortality have been limiting population growth (Emslie and Brooks 

1999; Smith and Read 1992). There are two aims of this chapter; firstly, to determine 

the current performance of in situ eastern black rhinoceros and how population 

performance varies across reserves; and secondly, to generate demographic 

information compiled on these populations, to determine how performance indicators 

may vary between individuals. It is important to gain a better understanding of how 

this species is performing in situ, to establish baseline performance indicators, and the 

variability in these measures both between individuals and across reserves. This 

information can not only be beneficial to the biological management of in situ 

populations, but can also be used as a biological reference for the ex situ population, to 

determine where there may be room for improvement (see Chapter 4). If black 

rhinoceros populations are to be managed effectively, both in situ and ex situ, it is 

essential to gain a better understanding of individual and population performance, and 

how demographic parameters can be used as indicators for where improvements could 

be made.  



 
112 

Figure 3.2: Distribution of black rhino conservation areas in Kenya, 2011. Adapted from (KWS 

2012) with permission from KWS rhino programme. 
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3.2. Methods 

3.2.1. Study populations and demographic information 

Data were compiled on rhinos at eight reserves across Kenya (Figure 3.2), managed by 

Kenya Wildlife Service (KWS), as described in Table 3.1. Data were only used for 

analysis if monitoring records were sufficiently complete for a given year; resulting in 

data being truncated for Masai Mara (1984-2008) and Nairobi (1985-2010), and for Ol 

Jogi (1989-2010; prior to this there were only three founders on the reserve, so 

parameters were excluded from this period due to small sample size). For all other 

reserves, records began at reserve establishment, and were current up to 2010 or 

2011. Additionally, for the seven reserves that were established prior to 2000, a 

shorter time-frame of the latest 10-years was used in addition, to give an indication of 

more recent population trends (see Table 3.3 for time-frames used).  

For relatively small populations of long-lived species, year-to-year differences in age-

specific vital rates due to demographic stochasticity (random fluctuations in 

reproduction and survival due to chance, which are emphasised in small populations) 

may be quite apparent. The benefit of using longer time frames of demographic 

parameters is that these stochastic effects are smoothed out over time, giving a more 

reliable measure. However, these longer time-frames do not necessarily reflect changes 

in growth over time, for instance whether growth rates have improved or declined in 

recent years; therefore a more current perspective is gained by using shorter time-

frames. Since both approaches have potential advantages and disadvantages, using the 

two in parallel, allow a more robust prediction of population growth. Further details 

about each reserve can be found in (Brett 1993; KWS 2012; Okita-Ouma et al. 2007). 

Information was compiled by KWS staff, using the Kenya Black Rhino Information 

Management System (KIFARU©); including all translocations, births and deaths of 

rhinos in the eight reserves. This information was transferred into Microsoft Excel®, 

condensed into individual records and checked for errors, missing data, or duplication. 

Any queries were clarified with KWS staff, and using previous records or published 

data. For each individual within the dataset, a date of birth (approximate or known) 

was determined, to allow calculation of either current age or age at death. Where 

known, the mother (dam) and father (sire) of each calf born was recorded, to allow 

calculation of the age at calving (age of dam when she gave birth to calf) or conception 

(age of sire when female conceived), and for use in calculation of female age-specific 

fecundity (See section 3.2.2). For any cases where the dam was unknown, the birth was 
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included for calculations of percentage adult females breeding per year, but not 

included in age-specific fecundity calculations. Demographic data were compiled 

separately for each reserve, and any individuals translocated between reserves were 

recorded in the relevant reserve according to the date of translocation. Data was then 

summarised for each reserve, and detailed population history tables produced in order 

to calculate vital rates for population modelling (See section 3.2.2). 



 

 

Table 3.1: Name, year of establishment and approximate area of designated rhino sanctuaries, where either the entire park or a sub-section has been set-aside for 

this purpose. Further description of the location and habitat of each of the parks can be found in the provided references. 

Name of reserve 
(rhino sanctuary within) 

a Year 
established 

b Area 
(km2) 

Ring-
fenced 

Additional information References 

Lewa Downs Conservancy 1984 247 Yes 
Ngare Sergoi Rhino Sanctuary extended to 

incorporate Lewa Downs (1988) and Ngare Ndare 
Forest Reserve (1991). 

(Merz 1991) 

Masai Mara Nature Reserve 
(Masai Mara triangle) 

1948 1510 No 
Masai Mara complex (Masai Mara Nature Reserve 

and Triangle) adjoins the Serengeti - free movement 
of rhinos between areas.  

(Morgan-Davies 1996; Walpole et 
al. 2001) 

Mugie Ranch 
(Mugie Rhino Sanctuary) 

2004 89 Yes 
Ceased to be a rhino sanctuary in 2012 following 

relocation of rhinos due to elevated risk of poaching 
in the area. 

(KWS 2012; Okita-Ouma et al. 
2007) 

Nairobi National Park 1963 117 Partially 
National Park since 1945; 

rhino sanctuary since 1963 
(Muya and Oguge 2000) 

Lake Nakuru National Park 1987 144 Yes Total size 188km2, of which 44km2 is the lake (Mwangi and Western 1998) 

Tsavo West National Park 
(Ngulia Rhino Sanctuary ) 

1986 92 Yes 
Situated within Tsavo West NP but separated by 

fence line.  
(Okita-Ouma et al. 2008) 

Ol Jogi Conservancy 
(Ol Jogi Ranch & 

Pyramid Black Rhino Sanctuary) 
1979 

249 
(Pyramid 50) 

Yes 
Pyramid reserve and main ranch separated by fence 
line, rhinos in both sections but no free movement 

between areas.  
(Ndeereh et al. 2012) 

Ol Pejeta Conservancy 1989 300 Yes Ol Pejeta extended in 2007. (Patton et al. 2010a, b) 

a Year established as designated rhino sanctuary, park may have existed prior to this; b The area refers to that which is used as a designated rhino sanctuary, and 

may be located within a larger Park area; sizes taken from Okita-Ouma (2004) and Muya et al. (2011). 

1
1

5
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3.2.2. Population modelling 

Population viability analysis was carried out for each reserve, using a single-sex, 

female-based transition matrix model constructed in MATLAB® (The MathWorks Inc 

2008) using code adapted from Morris and Doak (2002) (See Appendix 4 for examples 

of code used). This method allowed model parameters to be specified to suit this 

species, and the type of data available. In this case, the published code was adapted to 

incorporate six age classes, which were based on similarities in vital rates. Using these 

vital rates, the matrix elements were specified (KEmxdef.m, Appendix 4), and the 

distributions used to simulate the different vital rates were specified to suit the life 

history of this species, as detailed below. Data were calculated 1) using the entire time-

frame available (all eight reserves), and 2) using the last ten-year time period (except 

for Mugie established in 2004). The transition matrix, A, contained six age-classes, and 

represents the potential contribution by each class j individual to the population at the 

next census.  

Age-specific fecundity was calculated as the number of same sex offspring born to 

females aged x, divided by the total number of females at risk of giving birth at age x in 

the population during a given year. Age-specific mortality was calculated as the 

number of females that died age x, divided by the total number of females at risk of 

dying at age x in the population during a given year. Mortality was converted to age-

specific survival, as 1-mortality. Due to the small population size, and long-lived nature 

of this species, females were divided into six age-classes based on similarities in age-

specific fecundity and mortality. These six classes included individuals aged 0-1, 1-5, 5-

9, 9-17, 17-33 and 33+, and the transition probability of individuals in one class at time 

t progressing to the next class by time t+1 was also calculated. Models were performed 

based on no further imports or exports, to give a prediction of the natural growth rate 

of each population due to births and deaths alone. 

The vital rates of fecundity (f1-6), survival (s1-6) and transition probability (g1-6) 

were calculated for each age-class, for each year, and the mean and variance in each 

rate calculated between years. In two reserves, the calculated variance in survival vital 

rates were considered to be unrealistic due to the relatively small number of females 

that had been at risk in these age classes during the study period (Mugie, s1 and Ol 

Pejeta s6). In these cases, the variance was adjusted to a more conservative estimate 

based on the variance values calculated for those particular vital rates from the other 

reserves. The vital rates were then transformed into matrix elements to reflect the 
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potential contributions an average individual in each class would contribute to all 

other classes in the following census. 

In the black rhinoceros, where reproduction can occur at any point throughout the 

year, and a maximum of one offspring is produced during an inter-census interval 

(Estes 1991), fecundity can be interpreted as a probability. The contribution through 

reproduction by each class j individual to the population at the next census therefore 

consists of i) the probability that a class j individual survives to the midpoint of the 

inter-census interval (√sj), ii) the probability that a class j individual will reproduce (fj), 

and iii) the probability that the produced offspring will survive to the following census 

(√s1). Individuals in class j can therefore contribute to the population at the following 

census (t + 1) by 1) surviving and progressing to the next age class, sj g j, or 2) surviving 

and staying in the same age class, sj (1-g j), and 3) through reproduction fj √sj √s1 

(Figure 3.3). 

 

 

 

 

 

 

Figure 3.3: Schematic diagram of the potential contribution by female black rhinoceros in six 

age-classes at time t to the population at time t+1. Dashed lines represent the recruitment of 

new individuals into the population through reproduction; solid lines represent the individuals 

moving between, or remaining within age classes. sj is the survival rate for individuals in class j, 

gj is the probability that an individual in class j transfers to class j+1 by the following census, and 

fj is the rate of fecundity of individuals in class j. 

 

Stochastic simulations were conducted using mean vital rates and variance calculated 

from raw demographic data from each population. To incorporate this variance into 

the model, for each year of the projection, the vital rates were simulated from a set of 

random numbers taken from the beta distribution, specified by the observed mean and 

variance for each vital rate. The beta distribution was selected for the simulation in this 

1-5 33+ 5-9 9-17 17-33 0-1 

f5√s5√s1 f4√s4√s1 f3√s3√s1 

s1g1 s2g2 s3g3 s4g4 s5g5 

s2(1-g2) s3(1-g3) s4(1-g4) s5(1-g5) s6 

f6√s6√s1 f2√s2√s1 
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species, as both survival and fecundity represent probabilities. The vital rates were 

converted into matrix elements as described above, and the resulting transition matrix 

was multiplied by the population vector, n, to give the population size the following 

year. This was repeated as single-year time steps for 100 years, and each simulation 

was repeated 1000 times, to allow good representation of parameter combinations and 

produce a reliable estimate of future population size and growth rate. If the quasi-

extinction threshold of 20 individuals (or 0 for smaller populations) was met within a 

given simulation, the model moved onto the next iteration, and the probability of 

extinction was calculated for the population. The simulation also included a 

deterministic projection, using the average vital rates to calculate λ1, the dominant 

eigenvalue of transition matrix A. 

 

3.2.3. Demographic performance indicators 

Effective biological management of black rhinoceros populations requires on-going 

monitoring to determine whether they are achieving the specified target of >5% 

growth per annum. A number of performance indicators have been established, which 

can be used to assess whether individual populations are performing as required. 

These indicators were discussed during a SADC (Southern African Development 

Community) rhino management group (RMG) workshop on biological management to 

meet continental and national black rhino conservation goals, in 2001 (du Toit et al. 

2001; du Toit 2001; Knight and Emslie 2001) and benchmarks established for each of 

these parameters (see Table 3.2). The following performance indicators were 

calculated for each reserve separately, and compared between reserves with respect to 

growth rate, and to the pre-determined targets.  

 Age at first reproduction (birth) (females): Below 7 years is optimal, 

although can be as young as 4-5. Age at first birth includes only calves viable 

at birth, does not include premature or stillborn calves, or mid-term abortion. 

This indicator provides a good individual measure, but requires detailed 

monitoring and accurate dates of birth, and can be misleading if neonatal 

deaths are not observed.  

 

 Age at first reproduction (conception) (males): no benchmark established. 

Age at first conception represents the age of the male when a female conceived 



 

 
119 

– i.e. the first known successful mating resulting in the birth of a viable calf, and 

is estimated as 450 days prior to birth. Males are generally considered to be 

sexually mature at 7-10 years, around the age at which they may become 

territorial (Garnier et al. 2001). However, anecdotal reports suggest that males 

have been known to sire earlier than this (ex situ 4-5 years (EEP studbook, pers. 

obs.); in situ 4 years 5 months (Goddard 1970) 6yrs (Hall-Martin 1986),). 

Spermatogenesis commences at 7-8 years (Hitchins and Anderson 1983). 

 

 Inter-birth interval (IBI) (females): With a gestation of 15-16 months, an 

inter-calving interval of less than 3 years is good. Hormone data suggest that 

post-partum anoestrous may occur, lasting between 3-10 months (Brown et al. 

2001; Garnier et al. 2002) and pers. obs.), but with lactation lasting on average 

18-24 months, females are able to conceive prior to weaning. This indicator 

also provides a good individual measure and correlates well with the 

percentage of females breeding per annum. However, this requires detailed 

monitoring of individual females over long time-frames, and can become 

misleading if post-natal deaths are not detected.  

 

 Percentage of adults breeding per annum (females): Greater than 30% is 

good. This indicator correlates well with inter-calving interval, assuming all 

adult females in the population are breeding. However, it also requires detailed 

monitoring of females, and can become misleading if post-natal deaths are not 

detected. Especially in small populations, this measure should be averaged over 

3-year windows to allow for synchronised calving.  

 

 Percentage of adults breeding per annum (males): no benchmark 

established. Black rhinos have a polygynous mating system, with dominant 

males defending access to receptive females in their territory from subordinate 

males, therefore some degree of reproductive skew in males is to be expected 

(Garnier et al. 2001). However, minimising skew through management of males 

is beneficial for genetic diversity of the population (Muya et al. 2011).  

 

 Mortality (males and females): Whole population <4%, calves (0-1yr) 

<10%, sub-adults <5%. This indicator provides a true reflection of a problem, 

although once deaths have occurred, the cause of the problem may already be 

difficult to remove through management. This indicator requires averaging 
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over multiple years to allow for catastrophes e.g. drought or disease, and 

thorough monitoring to distinguish ‘not-seen’ and ‘known-to-have-died’, 

especially in reserves with incomplete fencing, and to distinguish between 

natural and unnatural mortality.  

 

 Adult sex ratio: (>1F:1M). Optimal growth is achieved with close to two 

females per adult male, whereas social constraints occur when close to parity 

(Knight and Emslie 2001).  

 

 Proportion of calves in the population: calves aged i) 0-3.5 years <27%, ii) 

1-3.5 years > 17% and iii) <1 year >8%. This indicator tracks recruitment of 

calves into the population, but does not give a measure of birth sex ratio, or of 

the occurrence of neonatal deaths. Additionally, unless date of birth is known 

through long-term monitoring, accurate ageing can be problematic for 

distinguishing calves of 3.5 years from sub-adults.  

 

 Average annual growth rates : > 5% minimum. This is one of the best 

performance indicators, as it demonstrates the change in population size over 

time, and is useful for comparing different populations. A good knowledge of 

population size is required, which requires good monitoring. This measure is 

more reliable if averaged over 3-5 years to allow for uneven reproduction 

across years in small populations, and can allow prediction of future population 

trends. However, as a population measure, it does not allow understanding of 

why growth may be slowing, and can be retrospective.  

Black rhinos have a theoretical intrinsic maximum rate of increase of around 9% 

(Knight and Emslie 2001; Owen-Smith 2001), or even higher (see equation 3.1 below, 

from (Caughley and Krebs 1983), but >5% growth is considered a minimum for 

established populations in good habitat (KWS 2012).  

rmax = 1.5 W -0.36 (weight in kg)    equation 3.1 

Based on a female eastern black rhinoceros, weighing approximately 1000-1200kg; 

rmax = 11.7-12.5%. 
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3.2.4. Relationship between performance indicators and natural growth rate across 

reserves 

Generalised linear mixed models (GLMM’s) in MLwiN version 2.02 (Rasbash et al. 

2005) were used to investigate the relationship between performance indicators, 

population density, and population growth. Natural population growth rate was used 

as opposed to overall growth rate to remove the effect of net migration on population 

change within a given year. Parameters were calculated for each year and each reserve 

where records were available, and a three-year rolling average was then calculated to 

allow for stochasticity in population parameters such as synchronised calving. The 

density of rhinos within the reserve was also calculated, based on the approximate 

reserve size, as an indicator of how extrinsic factors may influence population growth. 

GLMMs allow nested random effects to be incorporated into the model (Bolker et al. 

2009) to control for relatedness of data, which in this case were parameters calculated 

over multiple years and within multiple reserves; therefore ‘year’ and ‘reserve’ were 

included as random effects. Natural growth rate was used as the dependant variable, 

and performance indicators or density of rhinos within the reserve were then added to 

the model as fixed effects, to investigate their effect on population growth.  

To investigate how each of these variables were related to natural growth rate, a 

minimal model was constructed, which contained all of the performance indicators that 

explained a significant proportion of the variance in natural growth rate. Each fixed 

effect was added to the GLMM, and non-significant terms were sequentially removed 

until only significant terms remained. Any fixed effects that did not contribute to this 

minimal model were then added back in, to assess their level of non-significance. A 

normal error structure was used for all models of natural growth rate, and the 

significance of each fixed effect was determined using the Wald statistic and chi-

squared (χ2) distribution, with alpha set to 0.05. 

 

3.3. Results 

3.3.1. Population demography 

All eight populations increased in size over the monitoring period (See Appendix 3 for 

population trends and statistics over time), with average annual population growth 

rates ranging from 3.40% at Nairobi to 17.79% at Ol Pejeta (Figure 3.4 (a)). Although 
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the average annual population growth rate at Nairobi was below the 5% target, when 

the growth rate was divided into the natural rate of increase (births and deaths), 

compared to the rate of increase due to net migration (imports and exports), the 

natural growth rate at Nairobi was in fact above this target, at 6.93% (Figure 3.4 (b)). 

The overall growth of this population appears lower due to the translocation of rhinos 

to establish or supplement other reserves. Furthermore, although the overall growth at 

Ol Pejeta has been the highest across all the reserves, 12.62% was due to importation, 

with 20 imports between 1989 and 1993, and 30 imports between 2007 and 2010; 

whereas the average natural growth over this period was 5.17%. 
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(a) 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

Figure 3.4: Average annual growth rate across the eight reserves; (a) overall growth of the 

populations per annum; and (b) separated into natural increase (change in population size due 

to births and deaths), and net migration (change due to imports and exports). Dashed line at 5% 

represents the minimum growth target, and error bars represent standard error of the mean 

across years.  
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3.3.2. Simulated population projection 

Results from the MATLAB population projection models are given in Table 3.2, 

including the deterministic and stochastic growth rates (λ) for each reserve. The 

deterministic growth rate is based on average vital rates, and represents the projected 

growth per annum of a population under constant environmental conditions. 

Stochastic growth rates incorporate observed variance in vital rates and are obtained 

from computer simulations of the population projected 100 years into the future, over 

1000 iterations. These predictions (mean and standard deviation, SD) reflect the 

natural growth rate of the population, based on demographic parameters calculated 

from either the last 10-year period, or the entire period where records were available. 

The eight populations were all projected to grow at a rate of between 2.26% and 7.04% 

per annum. However, the two time-frames used for calculating input parameters for 

the simulated projections reflect differences in the projected growth rates (Figure 3.5). 

Of the seven reserves where this comparison was made (excluding Mugie established 

in 2004), the growth rate projected from the last 10 years data was lower in three of 

the reserves, Masai Mara, Nairobi and Ngulia, indicating that annual growth may have 

slowed over the later decade. Based on these predictions (excluding Mugie which was 

closed in 2012), only the Masai Mara population is unlikely to achieve the target 

growth of 5% per annum. The four other reserves, Lewa, Nakuru, Ol Jogi and Ol Pejeta, 

are all projected to grow at a higher rate based on the later 10-year data, and all four of 

these populations, along with Nairobi and Ngulia, are all projected to grow above the 

target of 5% per annum. 
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Figure 3.5: Projected annual growth rate (%) across the eight reserves from simulations run 

using two different time scales where applicable, based on the entire data period available 

(green) or the later 10 year period (blue). Dashed line at 5% represents the minimum growth 

target, and error bars represent standard deviation of simulated growth rates, based on 1000 

iterations.
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Table 3.2: Projected population growth rates for eight populations of eastern black rhinoceros 

in Kenyan reserves, based on vital rates calculated from all available data, or from the latest 10-

year period. Deterministic growth rate (λ) represents growth of a population under constant 

environmental conditions, whereas stochastic growth rates (and standard deviation, SD) 

incorporate observed variance in vital rates. 

Reserve 
Time-

frame 

Deterministic 

λ 

Stochastic 

λ (mean) 

Stochastic 

λ (SD) 

Projected annual 

growth rate 

Lewa Downs 
1984-2010 1.0440 1.0425 0.0072 4.25% 

2001-2010 1.0701 1.0704 0.0031 7.04% 

Masai Mara 
1985-2008 1.0380 1.0357 0.0056 3.57% 

1999-2008 1.0226 1.0226 0.0040 2.26% 

Mugie 2004-2010 1.0361 1.0336 0.0054 3.36% 

Nairobi 
1985-2010 1.0576 1.0567 0.0035 5.67% 

2001-2010 1.0541 1.0538 0.0026 5.38% 

Lake Nakuru 
1987-2010 1.0591 1.0588 0.0047 5.88% 

2001-2010 1.0640 1.0635 0.0035 6.35% 

Ngulia 
1986-2008 1.0628 1.0608 0.0050 6.08% 

1999-2008 1.0547 1.0532 0.0037 5.32% 

Ol Jogi 
1989-2010 1.0644 1.0628 0.0077 6.28% 

2001-2010 1.0654 1.0641 0.0064 6.41% 

Ol Pejeta 
1989-2010 1.0345 1.0346 0.0048 3.46% 

2001-2010 1.0508 1.0504 0.0035 5.04% 
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3.3.3. Demographic performance indicators across reserves 

Performance indicators calculated for each reserve, two potential time-frames, and 

compared to the pre-defined targets are summarised in Table 3.3. 

 

3.3.3.1. Mortality and population structure 

Generally average mortality rates across populations and age-categories were well 

below the targets set for optimal growth, and in most cases, below 1-2% per annum. 

However there were a number of incidences of relatively high mortality, for example at 

Lewa in 2009, presumably due to severe drought (Anon 2009) resulting in high first-

year mortality, at Ol Jogi in 2010 due to a disease outbreak (Ndeereh et al. 2012), and 

at Mugie where two calves born within 6-months of their mothers’ translocation died 

within 30 days of birth. 

In terms of population structure, the majority of reserves achieved the optimal sex-

ratio target of greater than 1 female per male, with the exception of Nakuru, where the 

ratio was close to parity (0.99). With the exception of Lewa, Ol Jogi (1989-2010) and 

Nakuru (2001-2010) the proportion of calves in the population was generally below 

the optimal target of >8% calves aged 0-1 and >28% calves aged 0-4, presumably 

related to the under-performance on a number of reproductive parameters. 

 



 

 
 

Table 3.3: Mean performance indicators calculated for each reserve over the specified time-frames, compared against the pre-defined targets to achieve minimum 
5% annual growth (du Toit et al. 2001), as established at the SADC rhino management group (RMG) workshop on biological management to meet continental and 
national black rhino conservation goals (Emslie 2001a). Indicators in green are where reserves have on average achieved targets across the monitoring period; 
indicators in red have on average failed to achieve the optimal targets for that performance indicator; indicators in black are where no benchmark has been 
established. 

Average Demographic Parameter Target 
Lewa  
1984-
2010 

Lewa  
2001-
2010 

Mara 
1984-
2008 

Mara 
1999-
2008 

Mugie 
2004-
2011 

Nairobi 
1985-
2010 

Nairobi 
2001-
2010 

Nakuru 
1987-
2010 

Nakuru 
2001-
2010 

Ngulia 
1986-
2008 

Ngulia 
1999-
2008 

Ol Jogi 
1989-
2010 

Ol Jogi 
2001-
2010 

Ol Pejeta 
1989-
2010 

Ol Pejeta 
2001-
2010 

Females:                                 

Age at first reproduction <7 years 7y 9m   9d 
7y 0m 

25d 
10y 0m 

20d 
10y 7m 

9d 
7y 0m 

20d 
8y 7m 

20d 
8y 3m 

21d 
6y 10m 

28d 
6y 1m 

26d 
8y 7m 

21d 
10y 8m 

14d 
7y 9m 

24d 
7y 10m 

13d 
8y 4m   

3d 
8y 8m 

15d 

Inter-birth interval <3 years 
2y 8m 

14d 
2y 5m 

25d 
3y 1m   

2d 
3y 1m   

2d 
2y 7m   

4d 
3y 2m 

21d 
3y 0m 

18d 
3y 2m 

25d 
2y 11m 

7d 
4y 0m 2d 

4y 3m 
15d 

2y 9m 
11d 

2y 10m 
10d 

3y 2m   
6d 

3y 0m   
2d 

Adult females a breeding per annum >30% 28.74% 32.75% 15.76% 12.02% 22.29% 25.10% 26.32% 25.40% 27.07% 17.78% 17.97% 30.19% 23.59% 25.14% 25.58% 

Annual population mortality rate b <4% 1.71% 0.99% 0.63% 0.62% 2.00% 0.55% 0.81% 0.78% 0.99% 0.05% 0.08% 1.60% 2.42% 1.87% 1.86% 

Annual infant c mortality rate <10% 1.31% 3.21% 3.40% 0.00% 14.29% 0.00% 0.00% 0.00% 2.98% 0.00% 0.00% 3.72% 0.00% 0.00% 0.00% 

Annual sub-adult d mortality rate <5% 0.68% 1.69% 0.00% 0.00% 0.00% 0.23% 0.60% 0.00% 0.00% 0.19% 0.42% 1.19% 2.50% 3.01% 0.72% 

Males:                                 

Age at first reproduction - 
12y 0m 

24d 
- 

14y 7m 
27d 

14y 7m 
27d 

6y 6m   
5d 

10y 5m 
26d 

10y 5m 
26d 

10ys 3m 
4d 

10ys 3m 
4d 

8y 7m 
31d 

- 
11y 3m 

18d 
13y 1m 

13d 
- - 

Adult males a siring per annum - 38.4% 46.9% 28.21% 12.62% 17.56% 31.03% 31.02% 24.77% 29.73% 26.55% 29.87% 57.00% 22.06% 27.1% 29.04% 

Annual population mortality rate b <4% 3.34% 1.63% 0.69% 0.63% 2.96% 0.56% 0.39% 0.68% 0.69% 1.11% 1.64% 1.47% 1.36% 2.24% 2.20% 

Annual infant c mortality rate <10% 10.87% 17.00% 0.00% 0.00% 10.98% 0.84% 2.18% 0.00% 0.00% 0.00% 0.00% 6.43% 4.15% 5.88% 0.00% 

Annual sub-adult d mortality rate <5% 4.71% 1.98% 0.83% 0.00% 0.00% 0.56% 1.79% 0.37% 0.57% 0.00% 0.00% 2.07% 3.04% 2.50% 1.67% 

Adult sex ratio (#F:1M) >1 2.38 1.94 1.66 1.04 1.08 1.27 1.24 0.99 1.12 1.48 1.67 2.10 1.36 1.10 1.11 

Proportion of calves 0-4 years >28% 29.62% 34.36% 20.95% 15.93% 24.02% 24.78% 27.54% 25.36% 30.60% 23.75% 19.75% 30.97% 27.06% 23.61% 27.54% 

Proportion of calves <1 year old >8% 8.88% 9.25% 5.89% 4.01% 6.64% 7.33% 7.52% 7.68% 7.85% 6.74% 5.17% 9.02% 6.76% 7.42% 7.67% 

Average annual growth rate >5% 8.57% 7.94% 5.23% 3.45% 5.11% 3.40% 3.14% 6.57% 3.11% 13.01% 6.66% 7.97% 8.19% 17.79% 11.92% 

(Natural growth rate)   5.95% 8.91% 5.23% 3.45% 6.26% 6.93% 6.79% 7.75% 7.47% 7.68% 6.66% 8.43% 5.45% 5.17% 6.34% 

(Migration rate)   2.62% -0.97% 0.00% 0.00% -1.15% -3.54% -3.65% -1.17% -4.36% 5.33% 0.00% -0.46% 2.74% 12.62% 5.58% 

a adult females age 5-32; adult males age 7-32; b average mortality of population as a whole, not separated by age class or category; c infant refers to calves age 0-1; d sub-adult 
females are age 1-5; sub-adult males are 1-7; e benchmarks use calves 0-3.5, but this is difficult to distinguish in practice, and for simplicity 0-4 has been used with data as yearly 
census.  

1
2
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3.3.3.2. Reproductive parameters 

Average age at first reproduction in females was generally above the optimal target of 

7 years old, except for at Nakuru. In this reserve, females on average began breeding 

earlier at around the age of 6-7 years. Where this indicator could be estimated, 61% of 

females achieved this target. However, as can be seen in Figure 3.6(a), the variation in 

age at first birth was high both within and across reserves, with known dams starting 

to breed from 4 years 7 months to 18 years of age. Furthermore, no other reserve 

achieved this target in more than 50% of females; Ol Pejeta being the closest, with 42% 

of females breeding before age 7 (Table 3.4). However, as only births to known dams 

could be used to calculate these data, there is a possibility that if a female’s first calf 

was not assigned to a dam, and therefore a female may have only been recorded with a 

subsequent calf, age at first birth could potentially be over-estimated. 

Although no target has yet been established, average age at first conception for males is 

higher than age at first birth for females (Figure 3.6(b)), ranging from around 6 years 

of age, to 17 years. Published estimates of sexual maturity are around 7-10 years 

(Garnier et al. 2001), but this is often based upon acquiring a territory and being able 

to defend a potential mate against rival males, as opposed to physiological sexual 

maturity. The data compiled here indicates that similar to other reports (Garnier et al. 

2001), males may be able to breed earlier, if given the opportunity. Similarly to the 

females above, there were a high proportion of unknown sires in the dataset, which 

could potentially over-estimate age at first conception, if males had bred but not been 

recorded. However, despite the number of unknown dams and sires, it is clear that a 

high degree of inter-individual variation exists in the age at which they first reproduce. 

Similarly, there is high variation in the length of inter-birth intervals (Figure 3.7), with 

three out of the eight reserves achieving the target of less than 3 years on average 

(Lewa 73%, Mugie 71% and Ol Jogi 69% of all intervals <3years). Additionally, 65% of 

intervals at Nakuru between 2001 and 2010 were also less than 3 years. At Mara, 

Nairobi and Ol Pejeta, although the average IBI was just over 3 years, more than 50% of 

intervals calculated were below this target (Table 3.4),whereas at Ngulia the average 

IBI was higher, at around 4 years. Again, some caution should be used when 

interpreting these data however, particularly with a view to the outliers and extreme 

outliers marked on Figure 3.7, as calves born to unknown dams could not be used in 

this calculation, leaving the possibility that females with an IBI of 6 years or more could 
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have produced a calf without it being correctly assigned. Similarly, IBI could be over-

estimated if neonatal deaths were not detected or recorded.  

The average percentage of adult females breeding per annum was also sub-optimal 

across reserves over the study period. With the exception of Lewa (32.8% 2001-2010) 

and Ol Jogi (30.19% 1989-2010), reserves were not meeting the target of at least 30% 

females breeding each year (Table 3.4). As can be seen in Figure 3.8 (a), again there 

was wide variation in the percentage of females breeding each year, both within and 

between reserves. Lewa was the only reserve where this target was achieved during 

more than half of the years recorded, and in contrast, both Mara and Ngulia failed to 

meet this target in more than three-quarters of the monitoring period. However, with 

the exception of these two reserves, average percentage of females breeding exceeded 

20%. The percentage of males siring was also highly variable (Figure 3.8 (b)), but 

again, no benchmark has yet been established for this parameter.  



 

 
 

Table 3.4: Percentage of occasions where female reproduction performance indicator targets were achieved across the monitoring period at eight Kenyan 

reserves. 

 

Lewa  
1984-2010 

Mara 
1984-2008 

Mugie 
2004-2011 

Nairobi 
1985-2010 

Nakuru 
1987-2010 

Ngulia 
1986-2008 

Ol Jogi 
1989-2010 

Ol Pejeta 
1989-2010 

Age at first reproduction:<7years         

Total number of females where age at first 
birth could be estimated 

21 16 6 25 23 15 7 12 

% females achieving target 38.1% 12.5% 33.3% 32.0% 60.9% 20.0% 14.3% 41.7% 

% females not achieving target 61.9% 87.5% 66.7% 68.0% 39.1% 80.0% 85.7% 58.3% 

Inter-birth interval :<3years         

Total number of subsequent calf pairs 
where intervals could be estimated 

60 41 7 96 67 30 36 29 

% intervals achieving target 73.3% 61.0% 71.4% 52.1% 52.2% 40.0% 69.4% 55.2% 

% intervals not achieving target 26.7% 39.0% 28.6% 47.9% 47.8% 60.0% 30.6% 44.8% 

Adult females breeding:>30% per annum         

Total number of years where parameter 
could be estimated 

27 25 8 26 24 23 22 21 

% years achieving target 55.6% 12.0% 37.5% 26.9% 37.5% 21.7% 31.8% 38.1% 

% years not achieving target 44.4% 88.0% 62.5% 73.1% 62.5% 78.3% 68.2% 61.9% 

1
3
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Figure 3.6: Boxplot of age at first birth for known dams (a), and age at estimated conception for 

known sires (estimated as 450 days prior to birth) (b) in each of the eight Kenyan reserves. The 

shaded box represents the interquartile range (IQR; 25th and 75th percentile of the data); the 

line through the box represents the median value; lower and upper whiskers represent the 

minimum and either the maximum value or 1.5x IQR respectively; hollow dots represent 

outliers (>1.5x IQR). As not all dam and sire identities were known, numbers in brackets are the 

number of known individuals from which parameters could be estimated. The dashed line at 7 

years represents the ideal maximum age at first birth for females, as proposed for optimal 

population growth; there is no dashed line representing the ideal maximum age at first 

conception for males, as none has yet been proposed.  
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Figure 3.7: Boxplot of inter-birth interval for known dams with more than one calf in each of 

the eight Kenyan reserves. The shaded box represents the interquartile range (IQR; 25th and 

75th percentile of the data); the line through the box represents the median value; lower 

whiskers represent the minimum value; upper whiskers represent either the maximum or 1.5x 

IQR; hollow dots represent outliers (>1.5x IQR) and closed dots represent extreme outliers (>3x 

IQR). Dams are only included once they have had two calves, and may be included more than 

once, if three or more calves have been born. The numbers in brackets are the number of 

subsequent calf pairs from known dams which could be used to estimated inter-birth interval. 

The dashed line at 3 years represents the optimal inter-birth interval, above which may indicate 

sub-optimal performance. 
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Figure 3.8: Boxplot of percentage of (a) females and (b) males breeding per annum in each of 

the eight Kenyan reserves. The shaded box represents the interquartile range (IQR; 25th and 

75th percentile of the data); the line through the box represents the median value; lower and 

upper whiskers represent the minimum and either the maximum value or 1.5x IQR respectively; 

hollow dots represent outliers (>1.5x IQR). As individual females cannot produce more than a 

single calf within a particular year, all births were included, regardless of whether dam’s 

identity was known. The dashed line at 30% represents the minimum percentage females 

breeding each year, as proposed for optimal population growth. As the identity of the sire is not 

always known, any births that could not be assigned to a sire were counted as a new sire, 

potentially over-estimating the number of actual sires in a given year. There is no dashed line, 

as the minimum percentage males breeding each has not yet been proposed. 
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To determine whether the variation observed in reproductive performance indicators 

might be due to differences over time, reproductive parameters were compared 

between original wild-caught founder females, and females that were born within 

reserves. Although the exact origin was not known for every female, females were 

considered to be wild-caught if their origin was unknown but they were born prior to 

1985, and those that were transferred from another reserve were considered to be 

‘reserve-born’ regardless of whether their dam was known, as it is relatively 

uncommon for females to be re-translocated (Benson Okita-Ouma, pers. comm.). 

According to these criteria, out of a total of 256 females aged 5-35 during the recording 

period, 41 were considered to be wild-caught and 215 were considered to be reserve-

born. 

Firstly, the number of calves born to females for each year spent in the reproductive 

age-class (5-35) was compared. When all females were included (whether having 

produced offspring or not), wild-caught females produced more calves per year in the 

reproductive age-class than reserve-born females (Median test χ2=5.692, df=1, 

P=0.017), Figure 3.9 (a)). However, when including only females that have been 

recorded as having produced at least one calf (non-breeding females excluded), there 

was no difference between wild-caught and reserve-born females, although there was a 

non-significant tendency for reserve-born females to produce more calves per year in 

the reproductive age-class (Median test χ2=1.202, df=1, P=0.273; Figure 3.9 (b))). 

Secondly, age at first reproduction and inter-birth interval were compared between 

wild-caught and reserve-born females. There were no differences observed in either 

age at first reproduction (Median test χ2=2.926, df=1, P=0.087), or inter-birth interval 

(Median test χ2=2.237, df=1, P=0.135) between females of different origins. The 

difference in reproductive output between the two groups appears to be the number of 

reserve-born females that have not yet bred; compared to only 2/41 wild-caught 

females age 5-35 that died before breeding (4.88%), there were 7/215 reserve-born 

females age 5-35 that died without breeding (3.26%) and 79/215 reserve-born females 

age 5-35 are still alive but have not yet bred (36.74 %), of which 39 are age 5-9 

(18.14%), 25 are age 9-17 (11.63%) and 15 are age 17-33 (6.98%). 

 

  



 

 
136 

(a)  

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

Figure 3.9: Boxplot of number of calves born per year in the reproductive age-class, comparing 

wild-caught and reserve-born females; (a) all females and (b) only females that have been 

recorded as producing a calf. The shaded box represents the interquartile range (IQR; 25th and 

75th percentile of the data); the line through the box represents the median value; lower and 

upper whiskers represent the minimum and either the maximum value or 1.5x IQR respectively; 

hollow dots represent outliers (>1.5x IQR); the dashed line represents the grand mean of the 

two groups. 
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3.3.4. Performance indicators and natural growth rate across reserves 

The relationship between performance indicators and natural growth rate across 

reserves are given in Table 3.5. Natural growth rate is determined by the change in 

population size due to the number of births and deaths in a population; as expected, 

natural growth rate was higher when a higher proportion of adult females were 

breeding each year, when the proportion of calves in the population was higher, and 

when both male and female mortality was lower. Interestingly, natural growth rate was 

also higher across reserves when population density was lower, and adult sex ratio was 

skewed towards more females in the population. These performance indicators are 

good predictors of natural population growth rate, and therefore can prove useful in 

assessing population performance.  

However, it is also likely that many of these parameters may be correlated with one 

another, explaining similar portions of the observed variance in natural growth rate. 

This could impact the results of these analyses, and could potentially explain why no 

relationship was observed between female age at first reproduction and natural 

growth rate, and why the relationship with inter-birth interval is actually contrary to 

that expected, with higher natural growth rate when IBI is slightly longer. The 

inconsistent relationships between these performance indicators and natural growth 

rate might also be related to the high degree of variation observed in these parameters, 

and the impact that births to unknown dams could have an influence on these 

measures. There was however a relationship between male age at first reproduction, 

with higher natural growth rates when males sire their first calf at a younger age. 

Additionally, natural growth rate was also higher when a lower proportion of males 

were siring each year. Again, this sounds counterintuitive, but may be a population size 

effect, as when population size is small, a higher proportion of adult males may be 

siring offspring, perhaps even a single dominant male, but actually producing fewer 

calves than in a larger population where a lower proportion of adult males may be 

siring in a given year, but producing multiple calves. 
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Table 3.5: Factors affecting natural population growth rate, across eight Kenyan reserves, using 

3-year rolling averages, and controlling for repeated measures of parameters calculated across 

multiple years and multiple reserves. Each parameter was entered into a single GLMM to assess 

the combined effect on natural growth rate, using random effects to control for year and 

reserve. Any non-significant terms were sequentially removed to reach the minimal model, and 

then re-entered to obtain their level of non-significance. The table shows the direction of the 

relationship, parameter estimates (effect), standard errors (SE), statistical values (Wald 

statistic) and significance evaluated against a χ2 distribution (P) based on 177 annual 

parameters taken across eight Kenyan reserves. 

 Relationship Effect Size (SE) 
Wald 

statistic 
df P 

Significant terms in minimal model:      

Male mortality rate Negative -0.613 (0.046) 176.852 1 <0.001 

Female mortality rate Negative -0.686 (0.084) 88.893 1 <0.001 

Proportion adult females breeding per 
annum 

Positive 0.216 (0.025) 76.170 1 <0.001 

Proportion of calves <1 year old Positive 0.612 (0.085) 51.992 1 <0.001 

Population Density (rhinos per km2) Negative -0.035 (0.006) 34.210 1 <0.001 

Adult sex ratio (#F:1M) Positive 0.012(0.002) 24.339 1 <0.001 

Proportion adult males siring per 
annum 

Negative -0.047 (0.013) 13.732 1 0.001 

Male age at first reproduction Negative -0.003 (0.001) 18.898 1 <0.001 

Inter-birth interval Positive 0.020 (0.004) 20.827 1 <0.001 

Non-significant terms:      

Female age at first reproduction None 0.002 (0.002) 1.152 1 0.28 
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3.4. Discussion 

As with other rhinoceros species globally, Kenyan populations of eastern black 

rhinoceros (Diceros bicornis michaeli) were decimated by poaching during the 1970’s 

and 1980’s, reaching a low of around 400 individuals. Since the early 1990’s, numbers 

have been steadily increasing, thanks to conservation efforts and the intensive 

management of remaining populations. On-going biological management of black rhino 

populations is essential to achieve target growth rates of at least 5% per annum, and to 

maintain genetic diversity to maximise future viability. In order to manage these 

populations effectively, it is important to understand how demographic parameters 

influence population performance, to ensure that high rates of growth are maintained. 

Of the eight populations included in this study, all have increased in size since the 

beginning of the monitoring period, and simulated population projections predict 

natural growth rates based on historical demographic data of between 2.26% and 

7.04% per annum. However, the populations at Masai Mara and Mugie were not 

predicted to reach the optimal target of 5% growth per annum. Newly established 

reserves are generally not expected to achieve this target (KWS 2012), and with this in 

mind, Mugie had been a relatively successful population, with average annual growth 

rates over the initial 5-year period of 9.9%. However, due to the increased threat of 

poaching in the area, the reserve had to be decommissioned as a rhino sanctuary in 

2012 (KWS 2012). The Masai Mara population on the other hand was a well-

established population, but the reduced growth rates could potentially be linked to 

habitat effects.  

The Masai Mara is the only free-ranging population included in this study, and such 

populations often fail to meet the 5% target (KWS 2012). One theory for the reduced 

growth rates recorded for this population could be related to the migration of rhinos 

out of the reserve into neighbouring areas (Walpole and Bett 1998; Walpole 2002), 

particularly across the border into Tanzania, making monitoring of individuals more 

difficult to achieve. Alternatively, habitat degradation and limited suitable browse 

availability could be limiting growth within this reserve (Okita-Ouma et al. 2007). In 

Ngulia, the problem of habitat degradation has already been the focus of active 

management, including the removal of competing herbivores from the reserve (Okita-

Ouma et al. 2008). This may have explained the slowed rate of growth during the 10 

year period from 1999-2008. 
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In order to understand what factors may influence population performance, a number 

of indicators have been developed to assess whether populations are likely to achieve 

optimal growth rates of at least 5% per annum (du Toit et al. 2001; du Toit 2001; 

Knight and Emslie 2001). These indicators can be useful to population management, 

providing information on population dynamics and individual performance, potentially 

providing early warning signs to indicate when changes need to be made. These 

indicators provide measures of performance based on more than one aspect of 

demography, including mortality, population structure and reproduction.  

Applying these performance indicators to the reserves in this study indicates that none 

of these populations appear to be achieving the specified targets on all parameters, but 

are growing close to or exceeding the 5% target annual growth rate. In general, 

mortality targets are being achieved across reserves, with the exception of particularly 

bad years, either resulting from drought (Lewa 2009), disease (Ol Jogi 2010), or 

potentially as a consequence of pregnant females translocated to a new reserve (Mugie 

2004/5). With the exception of these extreme events, the number of neonatal deaths 

recorded was quite low, although there is a possibility that there could be some births 

and early deaths going undetected or unrecorded. If this were the case, this could 

potentially also impact on reproductive performance indicators such as age at first 

birth and inter-birth intervals, where performance was often sub-optimal. Similarly, 

any mid-term pregnancy losses would likely go undetected, but could also increase the 

interval between successful calves and age at first birth. The percentage of adult 

females breeding each year was also generally below the target of 30%, and the 

proportion of calves in the population was also slightly sub-optimal across reserves. 

However, with most reserves maintaining an adult sex ratio skewed towards females, 

growth rates tended to be on target. 

However, it is clear from the estimates summarised in this study that these 

performance indicators can be quite variable both between individuals, and across 

years. It is therefore important to consider not only average parameters, but also the 

amount of variation that is acceptable within a population. In particular, reproductive 

parameters calculated from these data have been quite variable over time, with 

average age at first reproduction, inter-birth interval and percentage females breeding 

per year often failing to reach the specified targets needed to achieve 5% growth. 

However, this does not appear to be a difference between females that were wild-

caught and those that have been born within reserves, but instead may reflect 
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individual differences. It is not yet clear whether these differences may be intrinsic, or 

could potentially be the result of extrinsic factors such as density and local population 

structure (Hrabar and du Toit 2005; Okita-Ouma et al. 2010; Patton et al. 2008), or 

habitat quality (Okita-Ouma et al. 2008); areas of particular interest for further 

investigation.  

This highlights the importance of long-term monitoring, not only at a population level, 

but also of sub-populations within reserves, and on an individual basis to gain a better 

understanding of why success may vary. Furthermore, none of the indicators used here 

give any representation of the proportion of individuals failing to reproduce or only 

producing a single calf during their lifetime. Although reproductive skew in males is a 

normal occurrence in this species (Garnier et al. 2001), the proportion of females 

failing to reproduce is species such as this has yet to be fully addressed. However, due 

to the finite size of remaining populations, the number of both males and females 

breeding should ideally be maximised to maintain genetic diversity within reserves. 

Although a proportion of the females in each reserve are achieving the specified 

targets, not all females are performing equally. This results in higher average age at 

first birth, longer average inter-birth intervals and a lower proportion of females 

breeding each year. These parameters have been calculated over a time-frame of 

between 8 and 27 years, and some error may be expected due to unrecorded dam 

identities in some cases, or the potential for unrecorded deaths within these 

populations. However, that many of the reserves appear to have not consistently met 

the reproductive parameter targets may mean that there is still room for improvement. 

If we could better understand what intrinsic and extrinsic factors may affect these 

parameters, growth could potentially be increased further, which would be beneficial 

for the black rhino conservation rhino programme as a whole. 

Despite the variation observed in some of these indicators, 3-year rolling averages 

calculated for each of the performance indicators were good predictors of natural 

growth rate across populations. In particular, mortality, population structure and 

measures of overall reproductive output such as the percentage of adults breeding and 

proportion of calves in the population were strong predictors of growth. Individual 

statistics such as inter-birth interval and age at first reproduction were less useful at 

predicting overall population growth, perhaps due to the variation that exists between 

individuals. Again this highlights the need to incorporate both population performance, 

and individual performance indicators, to gain an overview of the demographic and 
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genetic health of populations. However, some caution should be taken with 

interpreting the relative strength of these performance indicators, due to the potential 

issue of correlation between these variables. This could explain why individual 

measures seem to be slightly less useful predictors, if the variance in growth was 

already explained by correlated terms within the model. Similarly, this could explain 

the perhaps counterintuitive positive relationship observed between inter-birth 

intervals and population growth rate.  

Furthermore, rhino density was also negatively correlated with natural growth rate. 

This highlights the importance of the biological management that is already a key 

aspect of in situ black rhino management. Black rhinos are ideally managed at the 

maximum productivity carry capacity (Adcock 2001; KWS 2012), which is generally 

around 75% of the ecological carrying capacity, to maintain rapid population growth 

within these reserves. This illustrates that monitoring of population performance is 

vital, so that changes can be made before population growth begins to decline, to 

ensure overall rates of growth remain high. 

Although every effort was made to ensure the accuracy of demographic data used in 

this study, the possibility remains that some data may not have been recorded. In 

particular, the possibility that individual deaths may not have been recorded if a 

carcass was never found. If this were the case, this could have an impact upon both 

mortality (and therefore survival) rates, and also on other demographic rates if the 

number of individuals at risk in a given age category may have been affected. This 

could therefore impact upon predictions made and ultimately on population 

management based on these data. This highlights the importance of good quality 

demographic monitoring, including a measure of the level of confidence in records 

obtained, for example how recently an individual has been observed (Brett 1993; du 

Toit 1989). This factor is of particular relevance in the data presented here from the 

Masai Mara, where one of the potential confounds could be the dispersal of individuals 

across the park boundary into Tanzania (Walpole and Bett 1998; Walpole 2002), so 

there is a possibility that some individuals may have died, but deaths may not 

necessarily have been recorded.  

This study provides a thorough review of demographic information across multiple 

reserves, to estimate important performance indicators and population growth rates. 

This information can be a useful tool to improve our understanding of individual and 

population responses to social and environmental factors, which may impact upon 
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overall performance. Ultimately, a better understanding of performance indicators in 

situ will also help us understand the biology of the species for optimal biological 

management. Furthermore, this information can also help manage both newly 

established in situ populations and ex situ populations, by providing a measure of what 

this species can achieve under managed natural conditions, and act as a target to which 

other populations can aim towards to maximise growth rates and overall viability. In 

Chapter 4 of this thesis, this information will be used as a reference for the ex situ 

population, to evaluate population performance and investigate where there may be 

potential improvement. 

 

3.5. Conclusion 

 Demographic data were compiled from eastern black rhinos in eight Kenyan 

reserves, to assess population growth rates and performance indicators. 

 All eight reserves had positive rates of growth over the monitoring period; with 

simulated population projections also predicting varying degrees of positive 

growth. 

 In four of seven reserves where multiple time-frames were used for analysis, 

simulations using demographic data over the last decade produced higher 

growth rate projections, indicating that perhaps growth may have been 

increasing over the last decade. 

 However, two reserves were not predicted to meet the annual growth rate 

target of 5% per annum. 

 Performance indicators were calculated for each reserve, and on average, 

mortality and population structure indicators were achieving targets 

established for optimal growth. 

 However, average reproduction indicators often failed to meet these targets, 

with a high degree of variation between individuals possibly resulting in sub-

optimal population measures. 

 Furthermore, although performance indicators were good predictors of natural 

population growth rate, due to this variation individual measures such as age at 

first reproduction and inter-birth intervals may be better suited to assessing 

individual, rather than overall population performance. 
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 To maximise the future viability of populations, measures of individual success 

are important, to recognise what proportion of the population are not currently 

reproducing, or are consistently failing to reach optimum targets. 

 This study has provided a thorough assessment of demographic parameters 

across reserves, providing information on demographic parameters and 

population performance that can be a useful tool for guiding management both 

in situ and ex situ (Chapter 4). 

 

3.6. Acknowledgements 

The work in this chapter would not have been possible without the contributions of 

the following people, to whom I am very grateful. 

 Benson Okita-Ouma, Cedric Khayale and Antony Wandera from Kenya Wildlife 

Service, for providing demographic information on KWS managed rhino 

populations for use in Chapters 3 and 4. 

 Amy Dunham for technical advice on population viability analysis 

  



 

 
145 

 

 

 

 

 

CHAPTER 4 

  



 

 
146 

 



 

 
147 

4. MAXIMISING THE CONSERVATION POTENTIAL OF THE EUROPEAN CAPTIVE 

POPULATION OF EASTERN BLACK RHINOCEROS: USING DEMOGRAPHIC PARAMETERS 

AND POPULATION VIABILITY ANALYSIS TO UNDERSTAND POPULATION 

PERFORMANCE. 

 

Summary 

Ex situ populations play an important role in the conservation of endangered species, 

acting as a vital reserve should reintroduction or supplementation become required, as 

well as enhancing public awareness of global conservation issues. However, in order to 

fulfil these roles, captive populations must be sustainable, and should be managed 

scientifically and cooperatively, to ensure their long-term viability.  

The aim of this chapter was to determine whether the European population of black 

rhinoceros is self-sustainable in the long term, and determine factors that influence 

population performance. Demographic information from the European Association of 

Zoos and Aquariums (EAZA) studbook of the eastern black rhinoceros were used to 

calculate age-specific fecundity and mortality rates from the last 25 years, and 

stochastic simulations were run to predict the likely future growth rate of the 

population. The relative impacts of survival and reproduction on population growth 

were assessed, and demographic parameters from this captive population were 

analysed over two different time-frames, and additionally compared with data from 

managed in-situ populations in Kenya (Chapter 3) to assess where potential for 

improvement may exist.  

The European captive population is currently self-sustaining, but is under-performing 

compared to its in situ counterparts, only growing at a rate of 1-2% per annum, 

compared to the target of 5%, and the average growth per annum in situ of 7.47%. For 

this population to be sustainable in the long-term, a higher rate of reproduction is 

required, and founder representation could be improved, by reducing the proportion of 

non-reproductive individuals in the population. 
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4.1. Introduction 

Ex situ populations can play an important role in global conservation strategies (Baker 

2007; IUCN 2002; WAZA 2005), acting as a vital reserve to safeguard endangered 

species against extinction, whilst allowing propagation in captivity should 

reintroduction or supplementation become required. Species such as the Arabian oryx 

(Oryx leucoryx; (Stanley-Price 1989)), black footed ferret (Mustela nigripes; (Jachowski 

and Lockhart 2009; Vargas et al. 1998)), California condor (Gymnogyps californianus; 

(Walters et al. 2010)), Przewalski’s horse (Equus ferus przewalskii; (Ryder 1993)), and 

red wolf (Canis rufus; (Phillips et al. 2003)), were all considered to be extinct in the 

wild, but are now conservation success stories, following successful captive breeding 

and reintroduction programs. Flagship species in zoos and aquaria also act as 

important ambassadors to educate, and increase both public awareness (Moss and 

Esson 2013) and financial support for global conservation issues (Gusset and Dick 

2011). Furthermore, maintaining species in captivity allows research into species 

biology and optimal husbandry practices, which can be of benefit to captive breeding 

programs, and information gained can also be applied in situ (Redford et al. 2012; 

Seddon et al. 2007). 

However, to fulfil these goals, captive populations must be self-sustaining, often 

without supplementation from the wild (Lees and Wilcken 2009, 2011), and 

populations must be managed scientifically, and cooperatively, to ensure their long-

term viability (Foose 1980; Foose and Wiese 2006; Leus et al. 2011b). To support 

conservation efforts, coordinated captive breeding programs including the European 

Endangered Species Breeding Program (EEP) in Europe and the Species Survival Plan 

(SSP) and Population Management Plan (PMP) in America have been established for a 

wide variety of species (Baker 2007). These coordinated programs mean that although 

individuals may be physically separated at multiple institutions, they can be managed 

as a single population, thereby increasing the potential sustainability of captive 

breeding programs. One particular concern of cooperative breeding programs is to 

maintain healthy, demographically sustainable populations with sufficient genetic 

diversity for future viability (Lacy 2013).  

Captive breeding programs are often limited both in terms of the number of founders, 

and total population size (Lacy 2013). However, to act as a viable reserve for 

endangered species, it is important that ex situ populations are genetically sustainable, 

to retain the natural characteristics representative of their in situ counterparts 
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(McPhee and Carlstead 2010) and sufficient genetic diversity for individuals to survive 

and reproduce, while the population maintains the potential to adapt to future changes 

in the environment, without becoming adapted to captivity (Frankham 2008; Williams 

and Hoffman 2009). A population is generally judged to be sustainable in the long-

term, according to certain criteria; reproduction should at least equal mortality; 

populations should be demographically stable, with 95-99% probability of population 

survival over a given time period; and genetic diversity should be maintained above 

90% for 100 years (Amin et al. 2006; Foose et al. 1995; WAZA 2005). 

However, more recently, it has been suggested that many cooperative breeding 

programs are failing to reach these targets (Conway 2011; Leus et al. 2011a; Long et al. 

2011), and these initial criteria may not be sufficiently strict to preserve the viability of 

ex situ populations in the longer term (Lacy 2013). An initial founder population of 20 

individuals can be sufficient to achieve the specified 90% genetic diversity for 100 

years (Lacy 1989; Soule et al. 1986). However, this calculation was based on effective 

population size, and in reality, founder contribution is often uneven, meaning that a 

minimum of 30-50 founders is often required to achieve an effective population of 20, 

and retain the necessary level of diversity (Lees and Wilcken 2009; Leus et al. 2011a). 

An important aspect of captive management is therefore to minimise reproductive 

skew, ensuring that all founders are well represented within the population (Ballou et 

al. 2010), to slow the rate of genetic change. For some species, it may also be necessary 

to manage ex situ populations globally, and even exchange individuals with in situ 

populations, taking a metapopulation approach (Conway 1995; Lacy 2013; Stanley-

Price and Fa 2007) in order to achieve these goals. 

Captive breeding programs have the potential to play a vital role in the conservation of 

the black rhinoceros (Diceros bicornis) (Emslie and Brooks 1999), both in terms of 

maintaining an ex situ population as a safeguard, but also as a potential source of 

surplus individuals for reintroduction where safe and practical to do so (Fyumagwa 

and Nyahongo 2010; Holečková 2010). Accordingly, a target growth rate of 5% per 

annum has been proposed by the EEP (M. Pilgrim, personal communication). However, 

captive populations of black rhinoceros in North America have not been self-sustaining 

(Carlstead and Brown 2005; Carlstead et al. 1999a; Carlstead et al. 1999b; Smith and 

Read 1992). Growth has been limited by high rates of mortality, attributed to a number 

of health problems exhibited in captive black rhinos (Dennis et al. 2007a), and 

inconsistent rates of reproduction (Foose and Wiese 2006). The European captive 



 

 
150 

population of eastern black rhinoceros (D. b. michaeli) currently consists of 

approximately 10% of the global population of this sub-species (KWS 2012), but the 

sustainability of this population has yet to be formally assessed.  

To maximise the conservation potential of this population, it is vital to understand the 

factors that may influence its current and future viability. Population viability analysis 

(PVA) is a useful management tool in conservation biology, which uses quantitative 

methods to predict the likely future status of a population, and can be applied to both 

in situ (Carrete et al. 2009; Daleszczyk and Bunevich 2009) and ex situ populations 

(Faust et al. 2006; Faust et al. 2003). This approach is commonly used to assess 

population performance, determine whether factors such as low reproduction or high 

mortality may be limiting population growth, and investigate effective management 

strategies. Simple count-based approaches to PVA can be conducted with minimal data, 

but may assume that all individuals within a population will contribute equally to the 

future population. However, in structured populations this is often not the case, as 

individuals may vary in their contribution according to characteristics such as their 

age, size, developmental stage, or their social rank. By dividing individuals in a 

population into unambiguous classes based on these characteristics, structured 

demographic models incorporate information about how reproduction and survival 

varies between classes. 

PVA can be used to estimate the likely future growth rate of a population (Wittmer et 

al. 2010), the risk of extinction over a given time period (Lee et al. 2011), or the time 

required to reach a target population size (Earnhardt et al. 2001). This information can 

be useful to guide management decisions, by quantifying the relative contribution of 

particular groups of individuals to overall population growth (Dunham et al. 2008; 

Fernandez-Olalla et al. 2012), enabling targeted management. This makes PVA an 

integral part of species management (Boyce 1992). Furthermore, through the on-going 

monitoring of demographic parameters, the factors that influence the viability of a 

population can be established. This allows necessary changes to be made, to achieve 

the goals of the population, and of the metapopulation as a whole. 

The aim of this chapter was therefore to use demographic information and PVA to 

determine whether the European captive population of eastern black rhinoceros is 

demographically and genetically self-sustaining, and to investigate where changes 

could potentially be made to maximise population performance. Specifically, 

differences in demographic parameters were compared within this population over 
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time, and between in situ and ex situ populations of eastern black rhinoceros, to 

identify sources of variation in population growth and potential viability, which can be 

used to inform future management decisions.  

 

4.2. Methods 

4.2.1. Demographic information 

Demographic data were compiled from the European Association of Zoos and 

Aquariums (EAZA) studbook for the Eastern black rhinoceros (D. b. michaeli), 

contained within the Single Population Animal Record Keeping System (SPARKS; (ISIS 

2004)), using a data collection window from 1st January 1986 to 31st December 2010. 

The population as of 31st December 2010 consisted of 78 individuals; 27 males and 51 

females, situated at 15 institutions across Europe. The age structure of the population 

on 31st December 2010 is given in Figure 4.1; grouped into classes according to 

demographic characteristics.  

Data were compiled on all births and deaths in the population during this time period 

and used to calculate age-specific fecundity and mortality rates. During the period from 

1st January 2001 to 31st December 2010, growth had been noticeably slower than 

during the preceding 15 years (Figure 4.2); therefore to reflect any potential 

differences, vital rates for use in computer simulations were calculated from two time 

periods; 1) 1st January 1986 to 31st December 2010, and 2) 1st January 2001 to 31st 

December 2010. 
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Figure 4.1: Population structure of the European captive population of Eastern black 

rhinoceros (Diceros bicornis michaeli) as of 31st December 2010; number of a) females and b) 

males in each of six age-classes; labels indicate the number of individuals in each class. Classes 

are divided into infant (0-1), pre-reproductive (1-5 for females and 1-7 for males), early 

reproductive (5-9 for females and 7-9 for males), 9-17, 17-33 and post-reproductive (33+).  
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Figure 4.2: European captive population of black rhinoceros (Diceros bicornis), from 1900 to 

2010. Column height represents the total population size, which is composed of a) number of 

males () and females (), and b) wild-born () and captive-born () individuals. Dashed lines 

reflect the two time periods for data collection; 1) 1st January 1986 to 31st December 2010 and 

2) 1st January 2001 to 31st December 2010. 
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4.2.2. Population viability analysis 

To assess the demographic sustainability of the EEP population, PVA was carried out 

using a single-sex, female-based transition matrix model constructed in MATLAB (The 

MathWorks Inc 2008) using code adapted from Morris and Doak (2002), as described 

in full in Chapter 3 (section 3.2.2). In brief, the vital rates of age-specific fecundity, 

survival and transition probability were calculated for the six age classes (0-1, 1-5, 5-9, 

9-17, 17-33 and 33+) (Table 4.1). A stochastic simulation was conducted using mean 

vital rates and variance calculated from raw data over the two time periods 1st January 

1986 to 31st December 2010, and 1st January 2001 to 31st December 2010. Simulations 

were projected for 100 years into the future, and each simulation consisted of 1000 

iterations to allow good representation of parameter combinations and produce a 

reliable estimate of future population size and growth rate. A quasi-extinction 

threshold of 20 individuals was used to assess extinction risk, and the simulation 

included a deterministic projection, to estimate growth of the population in a constant 

environment. Code used to perform these simulations is given in Appendix 4. 

To investigate the potential impact of the different vital rates on overall population 

growth, a variance stabilised sensitivity analysis (VSS) was also performed, based on 

an arcsine square-root transformation (Link and Doherty 2002) (equation 4.1). When 

applied to vital rates that are probabilities, this transformation does not scale the 

variance in a vital rate to the size of the mean, so the absolute magnitude of a change 

has meaning independent of the value of the vital rate (Dunham et al. 2008). Sensitivity 

analysis code from Morris and Doak (Morris and Doak 2002) was modified to 

incorporate VSS (Appendix 4) calculated as follows, where θ is the vital rate under 

analysis (Link and Doherty 2002): 

 

VSS =                    ∂ log λ             =      √θ (1 - θ)       ∂λ  equation 4.1 
                         ∂ [2 sin -1 (√θ)]                           λ               ∂θ 

 

 

4.2.3. Comparison of computer programs for conducting population viability analysis 

To test the robustness of model predictions, the same data were also used to run 

simulations in three other PVA computer programs; Vortex (Lacy et al. 2005; Miller 
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2005), RAMAS Metapop (Akçakaya 2005)and ZooRisk (Earnhardt et al. 2008). These 

different programs represent two main differences commonly used in modelling 

population projections. Projections were based on either female-based transition 

matrix models (MATLAB, as described in Chapter 3, and RAMAS Metapop), or 

individual based models (Vortex and ZooRisk), where individuals and their theoretical 

offspring are tracked into the future. However, as these alternative programs are pre-

constructed, certain assumptions have been made about the data, which were not 

always suited to this particular dataset. As the MATLAB model allowed the best control 

over how the simulation was conducted, this model was deemed to be the most robust, 

and so was chosen as the final method for use in these analyses. Basic results are 

reported for the other three programs as a comparison, but additional details on 

methods and full results using additional programs are provided in Appendix 5. 

Two different time-scales for projection were also utilised, to obtain approximations of 

future population size in the short and long term; the first being more useful from a 

current population management perspective, and the second to approximate risk of 

extinction or population trends over the longer-term for species persistence (see 

Appendix 5 for full details). Finally, as the ZooRisk model was developed with zoo 

populations in mind, this was also used to incorporate a number of alternative 

scenarios in to the population projection. Firstly, the composition of a potential 

breeding group was specified as either one male with one female (1:1), or one male 

with two females (1:2), which are two common breeding management strategies 

currently used within the population. Secondly, the birth sex ratio (BSR) of the EEP 

population during the 25 year period between 1st January 1986 and 31st December 

2010 was significantly different from parity (BSR=0.3853, χ2=5.7339, df=1, P<0.05 

based on 42 male and 67 female births). This ratio reflects a greater number of females 

calves born into this population over this time-frame, and this ratio was taken into 

account in simulated projections, again using the ZooRisk model. 
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Table 4.1: Vital rates calculated from the EAZA studbook for female eastern black rhinoceros 

(Diceros bicornis michaeli), based on two time periods for data collection 1) 1st January 1986 to 

31st December 2010 and 2) 1st January 2001 to 31st December 2010. Vital rates include survival 

(s1-6), transition (g1-5) and fecundity (f3-5). Individuals in age class 33+ cannot transition to a 

higher age class; and based on historical studbook data, only individuals age 5-32 have been 

known to reproduce. 

  1986-2010 2001-2010 

Age class Vital Rate Mean Variance Mean Variance 

0-1 s1 0.8718 0.0447 0.9054 0.0261 

1-5 s2 0.9921 0.0009 1.0000 0.0000 

5-9 s3 0.9832 0.0053 0.9941 0.0004 

9-17 s4 0.9879 0.0007 0.9769 0.0011 

17-33 s5 0.9748 0.0019 0.9775 0.0018 

33+ s6 0.9465 0.0249 0.9704 0.0024 

0-1 g1 1.0000 0.0000 1.0000 0.0000 

1-5 g2 0.2486 0.0197 0.2815 0.0084 

5-9 g3 0.2337 0.0231 0.2311 0.0098 

9-17 g4 0.1142 0.0119 0.0800 0.0056 

17-33 g5 0.0455 0.0047 0.0815 0.0898 

5-9 f3 0.0664 0.0076 0.0322 0.0009 

9-17 f4 0.1029 0.0141 0.0518 0.0026 

17-33 f5 0.0768 0.0048 0.0772 0.0048 

 

 

4.2.4. Genetic analysis of the EEP studbook 

Due to the finite size of captive breeding programs, effects such as random drift and 

inbreeding can be more pronounced (Lacy 1989), and can lead to the loss of genetic 

diversity over time. Smaller populations tend to lose genetic diversity at a greater rate, 

but it is not necessarily the total population size that is important, but rather the 

effective population size (Ne). The effective population size represents the size of an 

ideal population that would lose genetic diversity at the same rate as the population 

under consideration (Wright 1969), with genetic diversity lost at a rate of 1/Ne. The 

effective population size is often smaller than the census population size (N), due to 

factors such as fluctuating population size across generations, high variance in family 

sizes, and an unequal sex ratio (Frankham et al. 2010). The effective population size 

was calculated for the current population (equation 4.2) based on the number of living 

males and females that have produced offspring. The ratio of Ne to Nc can then be used 
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to determine the proportion of the population that are actually contributing to the next 

generation (Lees and Wilcken 2009). 

 

Ne = (4*Nm*Nf)/(Nm+Nf)    Equation 4.2 

 

One way in which the negative effects of small population size can be minimised in 

captive breeding programmes is through genetic management. Detailed pedigrees 

allow the on-going monitoring of the genetic health of a population, so that breeding 

can be managed to maximise the retention of founder genetics. Population 

management software, pm2000 (Lacy and Ballou 2002; Pollak et al. 2002), was used 

alongside SPARKS to extract population demography and pedigree information from 

the studbook, to investigate the genetic sustainability of the population. A number of 

population statistics were obtained, and used to estimate the genetic health of the 

current population based on known pedigrees. Firstly, the level of genetic diversity in 

the current population was estimated relative to the wild population from which the 

founders came, and predictions made about how this diversity could be maintained in 

the future based on the current population and maximum potential population growth 

rate based on the two population projection scenarios. Secondly, the founder genome 

equivalent (Lacy 1989) was calculated, which indicates how many founders would 

have resulted in the same genetic diversity as the current population, had they all 

reproduced equally.  

 

4.2.5. Comparisons of population performance 

As previously mentioned in section 4.2.1 and illustrated in Figure 4.2, growth rate of 

the ex situ population has varied over the last 25 years. To try to understand what may 

have led to this change in growth rate, demographic parameters were compared across 

the two specified time scales (1st January 1986 to 31st December 2010 and 1st January 

2001 to 31st December 2010). Additionally, comparisons were also made to an in situ 

reference population, to assess how the ex situ population may be performing relative 

to their in situ counterparts. Firstly, a set of performance indicators for black 

rhinoceros as previously established to evaluate the relative success of different 
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populations (du Toit et al. 2001) (for description of indicators, see Chapter 3, section 

3.2.3) were used to assess the performance of the EEP population. Secondly, data 

compiled from eight managed populations in Kenya (Chapter 3, section 3.2.1; Table 

3.1) were summarised and used to calculate demographic parameters comparable to 

the captive population, as a direct comparison between the performance of in situ and 

ex situ populations over a similar timescale.  

 

 

4.3. Results 

4.3.1. Population performance over the last 25 years 

In the EEP population of eastern black rhinoceros during the period from 1st January 

1986 to 31st December 2010, there was a total of 104 calves (38 males, 63 females, and 

3 of unknown sex) born to 46 dams. Unlike the SSP population of black rhinos, where a 

male biased birth sex ratio skew has been observed (Dennis et al. 2007b; Foose and 

Wiese 2006; Roth 2006), in the EEP population there was a significant birth sex ratio 

skew in the opposite direction, with 62.4% female and 37.6% male calves born 

(P=0.017). Additionally, there were 68 deaths (31 males, 34 females, and 3 of unknown 

sex), 11 imports from outside the EEP, and 14 exports, resulting in an average annual 

growth rate of 2.19% (standard deviation (SD) 5.07%). As mentioned above, the 

average growth of the population had been noticeably slower between 1st January 2001 

and 31st January 2010 (1.15%; SD 4.24%) compared to the preceding 15 years (2.89%; 

SD 5.59%).  

 

4.3.2. Population viability analysis 

Based on the simulated population projection, the European captive population of 

eastern black rhinoceros is demographically self-sustaining. The deterministic growth 

rate of the population, based on average vital rates calculated from 1986-2010 and 

2001-2010, was 1.0211 and 1.0012 respectively. Incorporating observed variance in 

vital rates into the model to simulate stochasticity produced mean stochastic growth 

rates (± SD) of 1.0212 (0.0048) and 1.0052 (0.0033) over the next 100 years, 

representing a projected growth per annum of 2.12% and 0.52% respectively. Based 
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on a starting population of 51 females, this simulated growth resulted in an average 

final population size at 100 years of 463.21 (SD 237.14) and 89.87 (SD 29.89) females 

respectively. Although the deterministic projection is closer to the stochastic projection 

(Figure 4.3) using the data calculated from 1st January 1986 to 31st December 2010 

(within 1SD of the mean) than that calculated from 1st January 2001 to 31st December 

2010 (outside of 1SD from the mean), both are within with range of simulated 

stochastic predictions. This may be related to the greater amount of data used to 

calculate the average and variance in vital rates from the last 25 year period compared 

to the last 10 year period. 

Variance-stabilised sensitivity analysis using data from the last 25 years indicates that 

there is more potential for increasing the growth rate of the population through 

increasing reproduction of females aged 9-17 (0.0264), followed by increasing 

neonatal survival (0.0194) and reproduction of females aged 17-33 (0.019). Using data 

from the last 10 years in this analysis, the potential growth could be most influenced by 

increasing reproduction in both 17-33 and 9-17 year old females (0.0192 and 0.0186, 

respectively), followed by increasing the survival of 9-17 year old females (0.013). 

 

4.3.3. Comparison of computer programs for conducting population viability analysis 

The simulated population projections obtained from the different computer programs 

were very similar to those obtained using the MATLAB model reported above. Based 

on demographic information from the last 25 years, the population was projected to 

grow at between 2.22% (Vortex) and 2.34% (RAMAS Metapop), compared to 2.12% 

from the MATLAB projection. Projections based on the last 10 year data were also very 

similar, and still below that based on the 25 year data (Vortex 0.60% and RAMAS 

Metapop 0.35%, compared to 0.52% from MATLAB). This indicates that once 

demographic data has been compiled over a suitable time-frame to reduce the impact 

of demographic stochasticity on estimates of fecundity and mortality, the models were 

relatively comparable, despite the differences in assumptions that had been made.  

Using the ZooRisk program, population projections were also run using the same 

demographic data, but were modified according to breeding group composition and 

birth sex ratio. When simulations were restricted to a single female paired with a male 

at any given time (1:1), this resulted in lower projected growth rates of 0.22% or 
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1.38% based on 10 year and 25 year data respectively. However, if the model was 

specified to allow two females per male (1:2), projected growth rates were increased to 

1.36% and 3.02% from the two data time-frames respectively. This indicates that if 

breeding groups could be managed with two females per male, then growth of the 

population could potentially be more than doubled. 

When a reduced sex ratio was incorporated into the ZooRisk simulation (25 year data 

BSR=0.3853; 10 year data BSR=0.4; see Appendix 5 for details), growth was further 

reduced when a 1:1 breeding group was simulated (growth of 1.10% based on 25 year 

data and decline in population size of -0.54% based on 10 year data). However, when 

allowing two females per male, growth was projected at the highest rate of all 

scenarios used (3.94% and 2.10% based on the two time-frames respectively). This 

suggests that although the number of males in the population has the potential to limit 

growth, especially if only one female is paired with each male, if breeding groups were 

to consist of two females with each male, growth of the population could be increased.  
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a) 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

Figure 4.3: Population size (females only) projection from MATLAB model showing results 

from simulations using a) 25 and b) 10 year data. The average projected population size based 

on stochastic simulations is represented by the red line; error bars represent one standard 

deviation in population size across 1000 iterations; red markers represent the minimum and 

maximum population size estimates obtained from simulations for each year of projection. The 

black line represents the deterministic population projection, which is the projected growth of 

the population under a constant environment. Note the difference in scale on the y-axis between 

the two scenarios, representing the difference in final population size by 100 years. 
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4.3.4. Genetic analysis of EEP studbook 

Of the 135 potential founders, all of which are assumed to be unrelated, and include 

either wild-caught black rhinos imported directly into the EEP population, or the wild-

caught founders of captive born individuals imported from non-EEP populations, 41 

still have living descendants. However, the contribution of these founders to the 

current population has been unequal, with percentage representation ranging from 

0.26% to 10.24% (Figure 4.4) and 33% of the current population are related to the 5 

most represented founders. This has resulted in a founder genome equivalent of 13.39 

wild-caught founders had they all reproduced equally.  

The effective population size (Ne) was estimated as 31.54 based on 12 male and 23 

female breeders (Equation 4.2). Although this estimate will reflect the current Ne of the 

population, it may be an overestimate because some of the animals that have bred may 

no longer be reproductive, and reproduction may not be equal across the population 

(Lacy and Ballou 2002). Based on a census population size of 78, this gives a Ne/N ratio 

of 0.4044, representing around 40% of the population that are actually contributing to 

the next generation. 

The current population has retained an estimated 96.27% of the genetic diversity (GD) 

of the founder population, but slow rates of growth and continued unequal 

representation could mean that this level of diversity may not be retained over the next 

100 years. Using the two projected stochastic growth rates (as determined in section 

4.3.2) based on the last 10 years and 25 years demographic data of 1.005 and 1.021, 

and a theoretical maximum population size of 100 individuals, deterministic 

projections suggest that 90% GD can only be retained for the next 88 and 93 years 

respectively. Even with a potentially unlimited population size, with the lower growth 

rate, it is likely that only 89.65% can be retained for 92 years, whereas the higher 

growth rate, and a theoretical growth rate of 5% per annum would require a 

population size of 107 and 106 individuals, respectively, to retain 90% genetic 

diversity over the next 100 years. 
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Figure 4.4: Percentage representation of the 41 wild-born founders within the current EEP 

population of eastern black rhinoceros (D. b. michaeli). Founder number 17 (black) has only a 

single living descendant that will not reproduce due to health problems, and so will be lost from 

the population. 

 

 

4.3.5. Comparisons of population performance 

4.3.5.1. EEP population over the last 25 years 

There are marked differences between the projected population growth rates obtained 

from simulations using demographic data from the last 10 years compared to the last 

25 years (section 4.3.2). It is therefore important to investigate what differences in the 

following population performance indicators may exist between these two time-

frames.  

 

4.3.5.2. Female reproduction 

The vital rates calculated from these two time-frames (Table 4.1) and the predictions 

made using sensitivity analysis, both indicate that reproduction appears to be limiting 

the growth of the EEP population. Furthermore, Table 4.2 contains performance 
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indicators (du Toit et al. 2001) for the EEP population calculated from the two time-

frames, which indicate that during the ten year period from 2001-2010, on average 

females were starting to breed later, with longer inter-birth intervals, and a lower 

proportion of females were breeding each year, compared to the 25 year time-frame. 

To investigate potential differences in reproduction in the EEP population over time, 

two non-overlapping time frames were used, which reflect periods when the average 

annual population growth rate was relatively high 1986-1995, and relatively low 2001-

2010 (Figure 4.2). 

Of the females that did breed during either of these two 10-year periods, females 

produced a higher average number of calves in the period between 1986-1995 (38 

calves born to 18 dams 86-95 (mean 2.11), than females between 2001-2010 (37 

calves born to 24 dams 01-10 (mean 1.54) (Mann Whitney U;P=0.032) (Figure 4.5). 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 4.5: Mean number of calves (± s.e.m) per female that reproduced during the 10 year 

periods from 1986-1995, or 2001-2010 
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However, the difference in fecundity between the two periods may not just be due to 

individual females reproducing at a slower rate; but also due to a high degree of 

reproductive skew. As indicated in section 4.3.4, unequal reproduction has been an 

issue historically throughout the studbook. Of the 144 D. b. michaeli females in the EEP 

studbook, 52 (36.1%) produced at least one calf, whereas 64 (44.4%) either died or left 

the population without reproducing, and 28 (19.4%) have not reproduced, but are still 

alive and have the potential to contribute. This reproductive skew continues to be an 

issue; the current EEP population on the 31st December 2010 consisted of 51 females, 

37 of which were in the reproductive age-class, but 49% had yet to produce offspring. 

Additionally, of the reproductive-age females that had previously produced offspring, 

43.5% females had not bred for at least 5 years (mean inter-birth interval (IBI) +1SD); 

and 39.1% females had not bred for at least 7 years (mean IBI +2SD). 

This reproductive skew amongst females could contribute towards the differences in 

growth rate between the two different time-frames. During the 10 year period from 

1986-1995, when growth was relatively high, there were 48 females of reproductive 

age, of which 52.9% gave birth during that 10-year period. In comparison, during the 

10-year period from 2001-2010, when population growth was slowest, there were 71 

females of reproductive age; of which only 40.7% gave birth (Figure 4.6). Although 

there tended to be a higher proportion of non-breeding females age 5-32 in latter 10 

year period, this difference was not significant across the two time periods (Mann 

Whitney U; P=0.255). 
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Figure 4.6: Proportion of females in the reproductive age class (age 5-32) that produced a calf, 

or did not produce a calf, during the 10-year periods of 1986-1995 and 2001-2010. 

 

 

4.3.5.3. Male reproduction 

Similarly for males, unequal reproduction appears to have been an issue, both 

historically, and in the current population. Out of a total of 124 D. b. michaeli males in 

the EEP studbook, 46 (37.1%) sired calves, whereas 63 (50.8%) either died or left the 

population without reproducing, and 15 (12.1%) have not reproduced, but are still 

alive. Of the 27 males in the current population, 19 are in the reproductive age class, 

and 42.1% of these are yet to sire offspring. Additionally, of the reproductive-age males 

that had previously sired offspring, 33.3% of males had not contributed for at least 5 

years (mean inter-birth interval (IBI) +1SD); and 16.7 % of males for at least 7 years 

(mean IBI +2SD). 
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4.3.5.4. Mortality 

Infant mortality was elevated over the last 25 years (12.87% and 22.59% for females 

and males respectively), but was reduced, particularly in males over the last 10 years 

(9.57% and 5.75%). Rates of mortality in other age classes were generally more similar 

between the last 25 and 10 year time-frames, and were below 2% for sub-adults 

(females age 1-5 and males age 1-7), and below 4% for the population overall. 

 

4.3.5.5. Comparison to reference population 

With annual growth rates in the EEP population well below the 5% target, it is 

important to determine where there may be potential for improvement. Average 

demographic parameters calculated from the ex situ population of eastern black 

rhinoceros in Europe, and the in situ managed population in Kenya are given in Table 

4.2, alongside performance indicators as explained in Chapter 3, section 3.2.3. 

 

4.3.5.5.1. Female reproduction 

The EEP population is not currently achieving the targets necessary for optimal growth 

in any of the measures of reproduction, with females starting to reproduce later, and 

producing calves with longer inter-birth intervals. Although the average age at first 

reproduction and inter-birth interval in the in situ populations are still higher than the 

optimal target, both parameters are lower (i.e. closer to the target) in situ than both the 

25 year time-period and the 10 year time-period in the ex situ population. 

Furthermore, on average across the 25 year period, only 15.7% of females were 

breeding per year, compared to the target of >30%, and compared to an average of 

23.7% females breeding per annum in Kenya. As a result, the percentage of calves in 

the population is below the desired target, both in terms of infant calves aged 0-1, and 

total calves age 0-3.  

As highlighted in section 4.3.4.1, reproductive skew amongst females in the EEP 

population may be one factor potential behind the reduced reproductive output of the 

population, leading to limited growth. To investigate this possibility, the percentage of 

females in each age class that have either bred successfully, died or left the population 
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without breeding, or are still alive but have not yet reproduced, were compared to the 

in situ reference population (Figure 4.7). Firstly, using females in the current 

population (i.e. alive on 31/12/2010), of reproductive age (5 years and older), 49% of 

the ex situ population had yet to reproduce, compared to 37% of the in situ reference 

population. However, if only females age 9 years and older are included, to allow for 

the later age at first reproduction observed in both populations, 43% of the ex situ 

population had yet to reproduce, compared to only 24% of the in situ population. 

Secondly, when looking at the historical populations (i.e. including individuals that 

have died or left the population), the percentage of females that did not reproduce is 

significantly higher in the ex situ population compared to the in situ population, in all 

three reproductive age classes (Mann Whitney U; 5-9 (P=0.001), 9-17 (P=0.003), 17-33 

(P<0.001)), but there is no difference in females that reached the final age class (33+ 

(P=0.397)). 

 



 

 

Table 4.2: Average demographic parameters calculated from the EEP population of eastern black rhinoceros (D. b. michaeli) over the two time periods 1st January 

1986 to 31st December 2010 and 1st January 2001 to 31st December 2010, compared to data from managed populations in Kenya, and against targets for population 

success (du Toit et al. 2001; Okita-Ouma 2004). Figures in green are currently achieving targets; figures in red are failing to achieve the optimal targets for that 

demographic parameter; indicators in black are where no benchmark has been established. 

  EEP 2001 - 2010 EEP 1986-2010 KWS 

Demographic Parameter Target Average SD Average SD Average SD 

Females: 
 

      

Age at first reproduction <7y 9y 10m 25d 3y 2m 31d 9y 7m 21d 3y 10m 25d 8y 2m 24d 2y 7m 17d 

Inter-birth interval <3y 3y 10m 17d 11m 30d 3y 5m 4d 1y 2m 30d 3y 2m 17d 1y 5m 24d 

Adult females a breeding per year >30% 11.30% 4.79% 15.70% 7.76% 23.74% 5.08% 

Annual population mortality rate b <4% 2.22% 11.29% 2.49% 12.74% 1.19% 0.67% 

Annual infant c mortality rate <10% 9.57% 16.23% 12.87% 21.17% 2.84% 4.88% 

Annual sub-adult d mortality rate <5% 0.00% 0.00% 0.79% 2.99% 0.66% 1.04% 

Males: 
 

      

Age at first reproduction - 11y 1m 7d 5y 6m 8d 10y 10m 17d 5ys 3m 30d 11y 0m 9d 3y 1m 4d 

Adult males a siring per year - 22.00% 9.78% 29.20% 15.18% 31.20% 11.96% 

Annual population mortality rate b <4% 2.80% 15.38% 3.56% 16.49% 1.61% 1.10% 

Annual infant c mortality rate <10% 5.75% 16.25% 22.59% 32.78% 4.37% 4.81% 

Annual sub-adult d mortality rate <5% 1.76% 5.6% 0.71% 3.53% 1.38% 1.63% 

Adult sex ratio (#F:1M) >1 1.92 0.08 1.81 0.27 1.50 0.51 

Proportion of calves (age 0-4) >28% 17.63% 1.96% 20.35% 5.95% 25.4% 3.3% 

Proportion of calves (age 0-1) >8% 4.60% 1.56% 5.60% 2.73% 7.4% 1.1% 

Average annual growth rate >5% 1.15% 4.24% 2.19% 5.07% 7.47% 5.16% 

a adult females age 5-32; adult males age 7-32; b average mortality of population as a whole, not separated by age class or category; c infant refers to calves age 0-1;  
d sub-adult females are age 1-5; sub-adult males are 1-7. 
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Figure 4.7: Percentage of females in each age class (5-9, 9-17, 17-33 and 33+) that produced a 

calf (blue), died or left the population before producing a calf (red) or have yet to produce a calf 

but are still alive and still have the potential to contribute (green); a) ex situ EEP population and 

b) in situ KWS reference population. 
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4.3.5.5.2. Male reproduction 

Although there are no established benchmarks for male reproduction, the age at first 

conception is very similar across the two populations (Table 4.2). However, the 

percentage of adult males siring each year was slightly higher in situ than in the EEP 

population, particularly during 2001-2010.  

 

4.3.5.5.3. Mortality 

Unlike reproductive parameters, the targets for mortality are generally being achieved 

within the EEP population, with overall female mortality <4% across both data 

collection periods, and male mortality also within this target over the last 10 years. 

Overall male mortality was slightly elevated over the 25 years however, perhaps due to 

the elevated first-year mortality during this period. Female first-year mortality was 

also slightly higher than optimal over the last 25 years, but both male and female 

neonatal mortality appear reduced over the last 10 years, and were both below the 

target of <10%. Compared to the in situ population however, annual population 

mortality rate in the EEP population was slightly higher. The difference in mortality in 

the 0-1 age class should be considered with some caution however, as neonatal death 

may be underestimated in the in situ population, as stillborn calves, or those that die 

within the first few days of life, may not always be recorded. 
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4.4. Discussion 

Although the EEP population of eastern black rhinoceros (D. b. michaeli) is currently 

self-sustaining, achieving demographic sustainability, and maintaining genetic 

diversity above 90%, it is currently performing below its potential. Growth of the 

population is currently below the target of 5% per annum, with PVA models predicting 

a future growth rate of between 0.52% and 2.12% per annum over the next 100 years. 

The difference in these predictions reflects the observed variation in demographic 

parameters and population growth over the last 25 years, which has decreased over 

the last decade. If this ex situ population is to fulfil its role, not only acting as a 

safeguard against further decline of the wild population, but also providing a source for 

reintroductions, it is essential that it grows at a sufficient rate to support any exports 

that may become necessary, whilst maintaining the viability of the ex situ population in 

the long term (Lacy 2013).  

As indicated by the variance-stabilised sensitivity (VSS) analysis, increasing fecundity 

could have the greatest impact on future population growth. This is supported by the 

low rates of reproduction observed in this population, both in comparison to the in situ 

reference population, and in relation to the targets set for 5% growth, suggesting there 

may indeed be potential for improvement. Within the EEP population age-specific 

fecundity was lower in females aged 5-17 (age classes 5-9 and 9-17) over the last 10 

years, approximately half that calculated from the last 25 years, which is likely to have 

contributed to the lower projected growth rate obtained. Analysis of the EEP studbook 

has further indicated that not only did the total proportion of females breeding 

decrease over the two time-frames, from 52.9% between 1986 and 1995 to 40.7% 

between 2001 and 2010; but those females that were breeding were on average 

producing fewer calves (2.11 compared to 1.54 calves per breeding female), resulting 

in a lower percentage of females reproducing each year (1986-2000 18.7%; 2001-2010 

11.3%).This indicates that the main factor limiting growth in this population is low 

reproductive output, and more specifically, insufficient females reproducing each year.  

This not only has the potential to impact the overall growth rate of the population, but 

with 42% males aged 7-32 and 49% females aged 5-32 in the EEP population yet to 

successfully reproduce, could also impact the effective population size (Ne) and 

maintenance of genetic diversity for the future. The Ne/N ratio calculated from this 

population based on the number of male and female breeders, was 0.4044, indicating 

that the effective population size is around 40% of the census population size. Although 
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estimates from wild populations suggest that effective population sizes are often only 

around 10% of the total population (Frankham et al. 2010), in captivity this proportion 

tends to be higher. In a meta-analysis of 40 managed captive populations (Earnhardt et 

al. 2004), the average Ne/N was 0.27, with values reported between 0.07 (king penguin, 

Aptenodytes patagonicus (Denton 1999)) and 0.48 (slender loris, Loris tardigradus 

(Fitch-Snyder 1999)); although values as high as 0.7 have been reported (Willis and 

Wiese 1993). This suggests that the Ne reported here is actually relatively high 

compared to other species. However, when maintaining maximum genetic diversity is a 

key objective in captive populations of endangered species, the reduced effective 

population size in this population may be limiting population growth, and the genetic 

potential of future generations. 

As indicated by the founder genome equivalent, historical reproductive output of the 

population has also been unequal across individuals, with a high degree of 

reproductive skew within the population. This has important consequences for the 

captive breeding program, and the viability of the ex situ population in general. 

Reproductive skew and variance in lifetime reproductive success is not necessarily 

uncommon (Clutton-Brock 1988), and the loss of lineages is a natural process in wild 

populations, often due to differences in competitive ability, or in response to natural 

catastrophes (Gompper et al. 1997). However, reproductive skew in females is more 

commonly associated with cooperative breeders (Cant 1998), where dominant females 

produce the majority of offspring, and reproductive skew can be high, both within 

years and in lifetime reproductive success. In non-cooperative group-living species, 

there is often variance in reproductive success within years, based on female age 

(Rubenstein and Nunez 2009), but overall reproductive skew is often lower. However, 

in a species such as the black rhinoceros, where adult females are generally considered 

to be relatively solitary (Goddard 1967), the occurrence of a strong reproductive skew 

over time seems unusual, and the high variance in reproductive success observed in 

the ex situ population is not reflected to the same degree in the in situ reference 

population, particularly the percentage of females that died without leaving offspring 

(44.4% ex situ, 6.6% in situ). The current proportion of non-breeding females in situ is 

more similar (5-32 49% ex situ compared to 37% in situ; 9-32 43% ex situ compared to 

24% in situ), although there may be some over-estimation in situ as some of the 

recorded births could not be attributed to known dams (57 calves born to unknown 

dams between 1984 and 2010). This suggests that perhaps the reproductive skew 
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observed in the EEP population may be an artefact of captivity, rather than a natural 

degree of variation. 

Black rhinos naturally have a polygynous or even polygynandrous mating system 

(Christensen et al. 2009; Hutchins and Kreger 2006), and reproductive skew in males is 

more common, with dominant males tending to monopolise a high proportion of 

matings. Garnier et al. (2001) analysed the genetic relatedness of black rhinoceros in 

Zimbabwe, and found high reproductive skew amongst males; a single male sired 

52.6% of all offspring during a 10 year period, and 64% of the males in the population 

did not sire at all. However, in captivity where founders are limited, and most 

institutions only hold one adult male (currently 12 out of 16 institutions in Europe only 

have a single mature male), unequal reproduction across males can also be 

problematic, automatically limiting chances of females to breed if no other potential 

mate is available. Historically 50.8% of males in the EEP studbook failed to leave 

descendants, and 42.1% of current reproductive-age males are yet to sire offspring. 

Furthermore, the birth sex-ratio skew apparent in this population (40:60), and the 

resulting adult ratio of 1:1.92, potentially limits the number of available breeding 

males; in fact, there are only 9 males at 5 institutions that have bred in the last 5 years, 

and currently 14 institutions with breeding-age females. This poses the question of 

how to minimise reproductive skew in captivity, to increase reproductive output and 

population growth rates. 

As illustrated by the hypothetical population projection scenarios using the ZooRisk 

program, managing breeding groups as a trio of one male and two females could 

potentially enhance growth rates. This is a logical finding, as if an institution had such a 

trio, and the male successfully mated both females, two calves could be born every 2-3 

years, based on an optimal inter-birth interval. However, if only one male and one 

female were kept, only a single calf could be born every 2-3 years. However, this is 

limited by both the number of mature males currently in the population, and 

furthermore by the large proportion that are currently non-proven. It is therefore 

important for the management of this population to gain a better understanding of any 

potential differences between individuals that could explain the differences in previous 

reproductive success. In Chapter 5 of this thesis, intrinsic differences in reproductive 

hormones between these breeding and non-breeding individuals will therefore be 

investigated. 
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Coordinated captive breeding programs can play a vital role in species conservation, 

both in terms of a genetic reserve, but also as a source for reintroduction into protected 

reserves to supplement the in situ population. However, the EEP population of black 

rhinoceros is not currently achieving its target of 5% growth per annum, limited by low 

reproductive output and a high proportion of individuals failing to reproduce. Within 

captive breeding programs, the maintenance of genetic diversity becomes a vital aspect 

of population management, and it is important to maximise founder genetics by 

equalising the contribution of lesser represented founders (Lacy 1989). A better 

understanding of factors influencing reproduction and differences in reproductive 

success in this species is essential, if the population is to reach the targets set for its 

performance, and the performance of its in situ counterparts. 

 

4.5. Conclusion 

 Although the EEP population of eastern black rhinoceros (D. b. michaeli) is self-

sustaining, it is not currently achieving its potential.  

 In particular, reproductive performance indicators are reduced compared to in 

situ populations, limiting population growth. 

 Furthermore, the proportion of captive females reproducing each year has 

decreased in the last 10 years, compared to the last 25 year period.  

 Population projections estimate future annual growth rates of between 0.5% 

and 2%, based on parameters calculated from the last 10 and 25 years 

respectively. 

 If growth rates could be increased, this population could fulfil its role as a 

source for reintroduction and/or exchange with other captive breeding 

programs as part of a global metapopulation approach to conserving this 

species.  

 However, at present, high reproductive skew, and a large proportion of the 

population failing to reproduce, is not only limiting the reproductive output of 

the population, but could have a big impact on the future genetic viability of the 

population.  

 To maximise the viability of this population, and its contribution to 

conservation, a better understanding of what is limiting reproductive success is 

required. 
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5. INVESTIGATING INTRINSIC FACTORS ASSOCIATED WITH REPRODUCTIVE SUCCESS IN 

MALE AND FEMALE EASTERN BLACK RHINOCEROS. 

 

Summary 

Ex situ populations of endangered species such as the black rhinoceros can play an 

important role in global conservation strategies. However, at present, the European 

captive population is performing sub-optimally, both with respect to in situ populations 

and to specified targets for population growth (Chapters 3 and 4). Growth and future 

viability of this population is potentially being limited by low reproductive output and 

reproductive skew among both males and females, resulting in a high proportion of 

reproductive-age individuals currently not reproducing.  

In order to improve the reproductive output of this population, the aim of this chapter 

was firstly to establish the current reproductive status of breeding and non-breeding 

individuals, and secondly to investigate intrinsic differences between individuals that 

may warrant further investigation. Faecal samples were collected from approximately 

90% of the EEP population of eastern black rhinoceros, to establish reproductive 

hormone concentration in both males and females.  

Faecal progesterone metabolite concentration was used to determine reproductive 

cyclicity among breeding and non-breeding females, and although 94% of 

reproductive-age females showed at least some evidence of ovarian cyclicity, periods of 

irregular cyclicity were common. Cycles both longer (>40d), and shorter (<20d) than 

the average of 27.1 (±5) days were observed, as well as periods of acyclicity. Although 

the overall proportion of regular compared to irregular cycles did not differ between 

proven and non-proven females, longer cycles were more common in non-proven 

females. Furthermore, within proven females, acyclicity was more common in females 

that had not bred during the last 7 years. In males, differences in testosterone 

concentration were observed, not only with increasing age, but also with higher 

testosterone concentration in breeding than non-breeding males.  

In addition to differences in reproductive hormones, non-proven females were also 

assigned higher body condition scores than proven females, indicating a potential 

relationship between weight and reproductive success in females, but not males in this 
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population. Non-breeding females were also less likely to exhibit regular oestrous 

behaviours than proven females. 

In summary, differences in reproductive hormones were observed between breeding 

and non-breeding males and females in this ex situ population, and in females, body 

condition and the expression of oestrus behaviours were also correlated with 

reproductive success. 
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5.1. Introduction 

Although the European captive population of eastern black rhinoceros (Diceros bicornis 

michaeli) is currently self-sustaining, low rates of growth and high reproductive skew 

are limiting the long-term viability of this population. Historically, only 37.1% of males 

and 36.1% of females from the European studbook of D. b. michaeli have produced 

offspring in their lifetime, and over the last 25 years, on average only 15.7% of females 

breed per year. Furthermore, 42.1% of mature males and 48.6% of mature females in 

the current population are yet to reproduce, and a further 16.7% and 39.1% of 

previously proven males and females have not bred for over seven years. This has 

potential consequences, not only for overall growth rates, but also for the genetic 

health of the ex situ population, potentially resulting in a loss of diversity relative to the 

founder population and their in situ counterparts. It is therefore essential to investigate 

differences in reproductive success between individuals, to increase the overall 

reproductive output and optimise growth of the population.  

Endocrinology has become a valuable tool in captive breeding programs, and many 

studies have been conducted with female black rhinoceros, both in situ (Brett et al. 

1989; Garnier et al. 2002; MacDonald et al. 2008) and ex situ (Berkeley et al. 1997; 

Czekala and Callison 1996; Graham et al. 2001; Hindle et al. 1992; Radcliffe et al. 2001; 

Ramsay et al. 1987; Schwarzenberger et al. 1993; Schwarzenberger et al. 1996b), to 

establish basic reproductive parameters such as characterising reproductive cyclicity 

and pregnancy determination. However, a review of the reproductive physiology of 

captive black rhinos in America by Brown et al. (2001), revealed that cyclicity can be 

quite erratic in this species, with longer and shorter cycles than normal, as well as 

periods of acyclicity also observed. Although irregular cyclicity, prolonged periods of 

anoestrus and reproductive pathologies (Hermes et al. 2004; Hermes et al. 2006) are a 

common problem in captive white rhinoceros (Ceratotherium simum simum) (Brown et 

al. 2001; Carlstead and Brown 2005; Hermes et al. 2006; Metrione and Harder 2011; 

Patton et al. 1999; Schwarzenberger et al. 1998; Swaisgood et al. 2006), the potential 

causes of irregular cyclicity and possible effects on fecundity in the black rhinoceros 

have not yet been fully determined, nor has the prevalence of these different cycle 

types been investigated in the European population.  

Reproductive endocrinology can also be key to understanding reproductive success in 

males, as androgens have the potential to influence reproduction through their effect 

on spermatogenesis, libido, and sexual behaviour (Roser 2008). Studies on the 
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reproductive endocrinology of male black rhinos have been less common than those in 

females (although see Brett et al. (1989); Brown et al. (2001) and Christensen et al. 

(2009)). No differences in testosterone concentration were observed between 

breeding and non-breeding males in the American captive population (Brown et al. 

2001). However, variation in testosterone between individuals has been observed in 

captivity, and was attributed to differences in sociosexual environment (Christensen et 

al. 2009), with higher testosterone concentration observed in males housed with a 

greater number of males or females. This suggests that social factors may play an 

important role in testosterone concentration, and ultimately in reproductive success, 

although this was not addressed directly. In the white rhinoceros, testosterone 

concentration is higher in dominant than subordinate males, and dominant males 

achieve more matings (Kretzschmar et al. 2004; Rachlow et al. 1998), suggesting that 

higher testosterone concentration may indeed be beneficial, and there is also evidence 

that sperm quality and motility may also correlate with social status (Hermes et al. 

2005).  

In wild black rhinos, Garnier et al. (2001) observed that dominant males achieved 

higher reproductive success, mating with several different females and resulting in a 

high degree of reproductive skew. Recent research in situ has also indicated that 

reproductive success may be linked to heterozygosity, with more heterozygous males 

holding larger territories and siring more offspring (Cain and Watts et al., pers. comm.). 

However, in neither of these cases where differences in reproductive success were 

observed between males was testosterone concentration also determined. It is 

therefore important to investigate whether the variation in male reproductive success 

observed in this ex situ population could be related to differences in testosterone 

concentration. Furthermore, as both males and females in captivity are under-

performing when it comes to reproduction, it is important to understand whether 

there are any underlying physiological differences between breeding and non-breeding 

individuals, either in reproductive hormones themselves, or whether other intrinsic 

factors could be involved. 

One area that warrants investigation in ex situ populations is the influence of body 

condition on reproductive status. Research investigating reproduction in both humans 

and domestic animals in particular, has indicated that either too low body condition or 

too high body condition can potentially inhibit reproduction. For example, in dairy 

cattle, too low body condition has been associated with ovulatory failure, whereas too 
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high body condition may be related to impaired folliculogenesis, reduced oocyte 

quality and embryonic failure (Ferguson 2005). Similarly, in humans, under-nutrition 

can lead to delayed puberty and amenorrhea (Frisch and McArthur 1974), whereas 

obesity has been linked to a number of reproductive problems including in oocyte 

development, ovulation, endometrial development, implantation, embryo 

development, and pregnancy loss (Brewer and Balen 2010; Norman 2010). Obesity has 

also been linked to fertility problems in males, as excess adipose tissue increases the 

conversion of testosterone to oestradiol, resulting in reproductive axis suppression and 

reduced testosterone concentration (Michalakis et al. 2013). Furthermore oxidative 

stress resulting from fat accumulation has also been linked to decreased 

spermatogenesis (Michalakis et al. 2013). As captive diets are often over nutrient-rich 

compared to natural diets (Berkeley et al. 2011; Dierenfeld 1997), and particularly for 

the black rhinoceros which is predominantly a browsing species, natural diets may be 

difficult to adhere to. Subsequently, over-feeding of unsuitable food types could lead to 

obesity (Clauss and Hatt 2006). It is therefore necessary to take this into account when 

investigating factors that may influence reproductive success in this species. 

Additionally, in captive black rhinoceros, breeding pairs are often kept separately, and 

only introduced during oestrus. Reliable detection of oestrus therefore becomes very 

important, to ensure opportunities for mating are provided. However, oestrous 

behaviours in the absence of a male are often difficult to distinguish (Fouraker and 

Wagener 1996), and the occurrence of overt signs can be highly variable (Radcliffe et 

al. 2001). Furthermore, even when a female is receptive, rhino courtship can be very 

aggressive; prior to full oestrus, the female will often chase the male away through 

mock charges and defensive displays (Hutchins and Kreger 2006). This leaves the 

possibility that reduced fecundity could be related to insufficient opportunities to mate, 

either through failure to make introductions, or by prematurely separating potential 

breeding pairs due to observed aggression. The occurrence and variability of oestrous 

behaviours in the black rhinoceros has so far received little attention, and therefore the 

relative occurrence of overt signs versus silent oestrus in this species is unknown. This 

may be one factor that could lead to reduced fecundity in this population, either 

through females not becoming receptive as expected, or through reduced reproductive 

management if overt signs are not observed by keepers. Therefore any potential 

differences in the expression of behavioural oestrous between breeding and non-

breeding females warrant investigation.  
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The long term viability and sustainability of ex situ populations are essential for them 

to fulfil their purpose, and furthermore, captive breeding programs have a duty of care 

to provide optimal conditions. Chapters 3 and 4 of this thesis have indicated that 

reproduction may be lower in the EEP population of eastern black rhinoceros as 

compared to in situ populations, limiting the growth and future viability of this 

population. It is therefore necessary to determine whether differences between 

breeding and non-breeding individuals could be related to differences in reproductive 

hormones, and to identify intrinsic factors that may influence reproductive success in 

this species. There are therefore two main aims to this chapter. Firstly, to establish the 

current reproductive status of the EEP population of eastern black rhinoceros, using 

hormone analysis to determine whether and how regularly females are cycling, and to 

establish testosterone concentration and variability among males. Secondly, to 

investigate in both males and females whether intrinsic factors such as body condition, 

and the expression of oestrous behaviours in females could be related to reproductive 

success, and to explain potential differences between breeding and non-breeding 

individuals. 

 

5.2. Methods 

5.2.1. Study population 

This study included 62 eastern black rhinos situated at 13 zoological institutions across 

Europe (Table 5.1), and consisted of 23 males between the ages of 2y 10m and 32y 6m 

and 39 females between the ages of 1y 3m and 40y 9m (Figure 5.1). This represents 

around 90% of the EEP population that had been at or approaching reproductive age 

during the study period.  

The reproductive history of each individual was determined from the EAZA studbook, 

and individuals were categorised as follows. Firstly, individuals were categorised by 

their age, with females between the ages of 5-32 and males between the ages of 7-32 

considered to be of breeding age; females aged under five and males under seven were 

classed as immature, and individuals aged 33 and over classed as being post-

reproductive. Those individuals in the reproductive age class (n=17 males; n=31 

females) were then further categorised as proven breeders if they had ever produced a 

live calf by the end of 2010 (premature births and stillbirths were not considered for 

this purpose, in case pregnancy loss could be a factor in poor reproductive success), 
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whereas those that had never produced a live calf were considered non-proven. 

However, to distinguish between individuals that were currently breeding and those 

that may have bred previously but have not reproduced for some time, a further 

category was established that included individuals that had not produced a calf for 

more than 7 years. The average inter-birth interval in this population is around 3 ½ 

years, so this timescale represents double the period in which a female would ideally 

have produced a subsequent calf. Therefore breeding age individuals were also 

categorised as either 1) proven breeders that had produced a calf within the last 7 

years, 2) proven breeders that had not produced a calf within the last 7 years, and 3) 

non-proven individuals. 
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Table 5.1: Summary of individuals from which faecal samples were collected as part of the 

study, including their age and reproductive category during the period of sample collection. 

SB # Name Location a Sex Age b Breeding status c Breeding status (last 7 years) d 
384 Rosie Chester F 21.1 NP NP 
680 Kitani Chester F 13.6 P P<7 
696 Manyara Chester F 12.4 NP NP 
883 Zuri Chester F 5.0 Y  
898 Ema Elsa Chester F 8.2 P P<7 
947 Malindi Chester F 6.1 NP NP 
956 Bashira Chester F 3.1 Y  
532 Tisa Doué la Fontaine F 16.0 NP NP 
910 Binti Doué la Fontaine F 7.2 NP NP 
387 Jessi Dvur Kralove F 25.4 P P<7 
619 Elba Dvur Kralove F 13.7 P P<7 
685 Jola Dvur Kralove F 12.6 P P<7 
689 Jane Lee Dvur Kralove F 12.3 NP NP 
876 Maischa Dvur Kralove F 4.4 Y  
878 Etosha Dvur Kralove F 3.7 Y  
417 Sany Hannover F 20.5 P P>7 
436 Sabah Hannover F 19.1 P P>7 
754 Rufiji Howletts F 10.9 NP NP 
762 Salome Howletts F 10.3 NP NP 
437 Nane Krefeld F 20.7 P P<7 
295 Mana Magdeburg F 28.5 P P<7 
559 Maleika Magdeburg F 14.2 NP NP 
428 Sita Paignton F 21.1 P P<7 
454 Siwa Pont Scorff F 18.8 NP NP 
195 Rukwa Port Lympne F 40.8e P P>7 
342 Arusha Port Lympne F 27.8 P P>7 
408 N'akuru Port Lympne F 21.5 P P>7 
455 Etna Port Lympne F 19.0 P P<7 
456 Jaga Port Lympne F 18.1 P P>7 
558 Vuyu Port Lympne F 19.8 P P<7 
663 Ruaha Port Lympne F 14.3 P P<7 
879 Zawadi Port Lympne F 4.3 Y  
880 Grumeti Port Lympne F 4.3 Y  
888 Solio Port Lympne F 9.7 NP NP 
911 Nyasa Port Lympne F 8.4 NP NP 
950 Damara Port Lympne F 5.3 NP  
968 Nyota Port Lympne F 1.3 Y  
662 Wanda Zurich F 14.3 NP NP 
861 Samira Zurich F 9.6 NP NP 
714 Magadi Chester M 12.8 P P<7 
750 Sammy Chester M 12.0 P P<7 
955 Asani Chester M 2.8 Y  
268 Isis Dvur Kralove M 32.5 P P<7 
283 Jimm Dvur Kralove M 31.2 P P<7 
483 Baringo II Dvur Kralove M 17.5 NP NP 
659 Mweru Dvur Kralove M 13.7 NP NP 
877 Davu Dvur Kralove M 4.2 Y  
926 Dzanti Dvur Kralove M 2.5 Y  
927 Thabo Ebeltoft M 4.3 Y  
928 Kito Ebeltoft M 4.4 Y  
349 Kifaru II Hannover M 27.9 P P>7 
890 Vungu Howletts M 8.4 NP NP 
533 Taco Koln M 15.5 NP NP 
528 Usoni Krefeld M 15.8 P P<7 
653 Madiba Magdeburg M 20.1 P P<7 
892 Manyara Paignton M 8.6 NP NP 
438 Jakob Pont Scorff M 19.5 NP NP 
341 Kingo Port Lympne M 27.5 P P<7 
430 Quinto Port Lympne M 20.4 P P>7 
903 Zambezi II Port Lympne M 8.3 NP NP 
951 Monduli Port Lympne M 5.3 Y  
857 Jeremy Zurich M 9.8 NP NP 

a current location when samples were collected for study; b age at the end of the sample collection period;  
c P=Proven – has produced a live offspring, NP=Non-proven – has never produced a live offspring;  
d P<7=Proven and has bred during last 7 years, P>7=Proven but not bred during last 7 years, NP=Non-
proven – has never produced a live offspring; e estimated date of birth. 
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a) 

 

 

 

 

 

 

 

b)  

 

 

 

 

 

 

 

Figure 5.1: Age and breeding status of a) male and b) female black rhinoceros in the European 

population at the end of 2010, and included in the study. 
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5.2.2. Faecal sample collection and preparation 

A total of 11,222 faecal samples (9743 female samples and 1479 male samples) were 

collected over a sample collection period that ranged between 4 months, and 6 years; 

the latter as part of a routine reproductive monitoring programme for females at 

Chester Zoo. Faecal samples were collected at least weekly from males, and every other 

day from females across the monitoring period. In 27 individuals (9 males and 18 

females), samples were collected for over 12 months, to rule-out any seasonal 

differences in hormone metabolite concentration or cyclicity patterns. Samples were 

collected by keepers as soon as possible after defecation, taking multiple sub-sections 

from different areas of the faecal bolus to allow for potential uneven distribution 

within the sample, and combined in a zip-lock plastic bag. Samples were then frozen at 

-20°C following collection, and stored before shipment to Chester Zoo, UK for analysis. 

Hormone metabolites were extracted from faecal samples according to an established 

wet-weight shaking extraction method (Edwards et al. 2013; Walker et al. 2002) (see 

Chapter 2 section 2.2.3 and Appendix 1 for detailed description of methods and 

protocols respectively). In brief, each sample was thawed, thoroughly mixed and 

weighed (0.5g ± 0.003g), before adding 5ml 90% methanol, vortexing and shaking 

overnight on an orbital shaker. Each sample was then vortexed and centrifuged for 20 

minutes at 598g. The supernatant was decanted, dried under air, re-suspended in 1ml 

100% methanol and the resulting faecal extract stored at -20°C until analysis. 

 

5.2.3. Enzyme immunoassay 

Previously described enzyme immunoassays adapted from Munro and Stabenfeldt, 

(1984), were used with some modifications to measure faecal progesterone (Walker et 

al. 2008) and testosterone (Edwards et al. in prep) metabolites (see Chapter 2 section 

2.2.4 and Appendix 1 for detailed description of methods and protocols respectively). 

Each EIA utilised an antiserum (monoclonal progesterone CL425 or polyclonal 

testosterone R156/7; C.J. Munro, University of California, Davis); corresponding 

horseradish peroxidase (HRP) conjugated label (C.J. Munro, University of California, 

Davis); and standards (Sigma-Aldrich, UK) on a Nunc-Immuno Maxisorp (Thermo-

Fisher Scientific, UK) microtitre plate. Black rhino faecal extracts were diluted as 
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necessary in EIA buffer (female 1:70 for progesterone (or 1:1050 during pregnancy) 

and males 1:20 for testosterone), and run in duplicate (50μl) on the respective EIA’s.  

 

5.2.4. Biochemical validation 

EIAs were biochemically validated for measuring 1) progesterone metabolites in 

female and 2) testosterone metabolites in male black rhino faecal extracts through 

parallelism 1) R2=0.969, F1,7=222.140, P<0.001; 2) R2=0.997, F1,7=2563.486. P<0.001) 

and matrix interference assessment 1) R2=0.998, F1,7=4338.484, P<0.001; 2) R2=0.996, 

F1,7=1668.608, P<0.001) (see Chapter 2, section 2.4 for full details). Intra- and inter-

assay CVs for progesterone and testosterone EIAs were 17.3%, 14.6% and 12.9%, and 

12.9%, 7.2% and 8.5% for high and low binding synthetic and biological controls 

respectively. The cross reactivities for testosterone and progesterone antisera have 

been reported elsewhere (deCatanzaro et al. 2003; Walker et al. 2008) (See Appendix 2 

for full details).  

 

5.2.5. Oestrous behaviours 

Concurrent with the faecal sample collection, keepers that work with the rhinos on a 

daily basis were asked to complete a number of questions regarding oestrous 

behaviours observed from the study females. In particular, keepers were asked to 

select from a list of potential behaviours (listed in Table 5.2), which were regularly 

expressed during oestrus by a given female, and the regularity (monthly, irregular, not 

seen) with which that female was considered to be in oestrus during the study period.  
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Table 5.2: Potential oestrous behaviours described in female black rhinoceros. 

Female oestrous behaviours 

+/- Restlessness/pacing 4 

+/- Vocalisations 3 

+/- Increased urine spraying 1,2,3,4 

+/- Tail up 5 

+/- Swelling of vulva 2,3 

+/- Vulva wink 4 

+/- Discharge 2 

+/- Less cooperative with keepers (or) more cooperative with keepers 

+ Interest in male 

+ Female presenting hind-quarters to male 2 

+ Female standing for male 2,3 

 

+/- may be seen with or without male present; + only seen when male present 

1 Hutchins and Kreger (2006) 

2 Goeltenboth et al. (1995) 

3 Fouraker and Wagener (1996) 

4 Berkeley et al. (1997) 

5 Hitchins and Anderson (1983) 
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5.2.6. Body condition 

Body condition scoring (BCS) involves the visual assessment of specific parts of the 

body for muscle and fat content, and can be a useful indicator of general health 

condition of an individual. A standardised body condition scoring system as previously 

developed for in situ black rhinoceros (Reuter and Adcock 1998), which assesses seven 

key areas of the body on a five-point scale, was applied to the ex situ population. Body 

condition assessment was first conducted at four institutions, using a combination of 

direct assessment and photographs, to score individuals according to the standardised 

protocol. Once these two methods of assessment were consistent, BCS was done for all 

other institutions included in the study using photographs alone. Photos of each rhino 

were taken from multiple angles; a front view of the rhino, ideally with its head up, to 

assess condition of the neck region; a side-view, preferably while standing still; and a 

rear view, when the rhino was standing with its tail down. All photos were taken 

avoiding bright sunlight which can prevent accurate assessment of body condition. 

Overall body condition scores were assigned to each individual, using 0.5 point 

increments between 1 and 5, with a BCS of 1.0 being considered to be very 

poor/emaciated, 2.0 as poor/thin, 3.0 as average/fair, 4.0 as good/ideal, and 5.0 as 

excellent/heavy (Reuter and Adcock 1998). 

 

5.2.7. Data analysis 

In females, samples collected at least every other day were analysed for progesterone 

metabolite concentration and used to investigate reproductive cyclicity. Oestrous 

cycles were determined from faecal progesterone metabolite concentration (PG), and 

characterised according to a previously established method, where samples with 

baseline hormone concentrations are distinguished from those with elevated hormone 

concentrations, using an iterative process (Brown et al. 2001; Brown et al. 1994b). All 

non-pregnant samples from an individual female were used to calculate the mean and 

standard deviation (SD). An iterative process was then used to remove all samples 

greater than 1.5SD above the mean, before the mean was re-calculated and the process 

repeated until no samples exceeding 1.5SD from the mean remained. These samples 

were considered to have baseline concentrations of PG, and represented the follicular 

phase of the cycle. The onset of the luteal phase was considered to be the first sample 

where PG concentration exceeded 1.5SD above the mean, and the end of the luteal 
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phase was considered to be when at least two consecutive samples were below the 

threshold of 1.5SD of the mean. This cyclic pattern represents one oestrous cycle. Cycle 

length was calculated from the last sample of the follicular phase prior to the increase 

in PG concentration, to the same point on the following cycle. As per previously 

established criteria (Brown et al. 2001), sustained periods (> 10 days) where PG 

concentration remained at baseline without any increase above this threshold of 1.5 SD 

above the mean were categorised as acyclic periods. 

To investigate differences in testosterone metabolite concentration between males, 

weekly samples were analysed for hormone metabolite concentration, and compared 

using generalised linear mixed models (GLMM’s) in MLwiN version 2.02 (Rasbash et al. 

2005). GLMMs allow nested random effects to be incorporated into the model (Bolker 

et al. 2009) to control for relatedness of data, such as repeated faecal samples per 

subject. Normality tests were conducted in IBM® SPSS® statistics version 20, and 

hormone data were transformed where necessary, using log10 transformations to 

improve the distribution of data. To investigate the effect of explanatory variables on 

hormone concentration, random (date of sample collection and subject ID) and fixed 

effects, either categorical (age class, reproductive category) or continuous (age) were 

incorporated into a GLMM. Within categorical GLMM’s, a reference category was 

assigned, to which all other categories were compared (reproductive class age 17-33 

and proven breeders respectively). A normal error structure was used for all models of 

log10hormone metabolite concentration, and the significance of each fixed effect was 

determined using the Wald statistic and chi-squared (χ2) distribution, with alpha set to 

0.05.  

Differences in the relative proportions of different cycle types observed between 

proven and non-proven females were investigated using cross-tabulation with 

Pearson’s chi-square test, in IBM® SPSS® statistics version 20. The percentage of each 

cycle type across reproductive categories was compared using z-tests, with P-values 

adjusted with the Bonferroni method. To investigate any potential differences in body 

condition (males and females) and the regularity of oestrus (females only) across 

reproductive categories, comparisons were made using either Mann Whitney U tests 

(two groups) or Kruskal Wallis (three or more groups), both conducted in IBM® SPSS® 

statistics version 20. 
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5.3. Results 

5.3.1. Reproductive cyclicity and breeding status in female black rhinoceros 

Oestrous cycles, as determined by faecal progesterone metabolite concentration 

(section 5.2.7), were observed in all but two of reproductive-age females (age 5-32; 

29/31). However, of the two females where no evidence of cyclicity was observed, one 

female was pregnant throughout the monitoring period, and another had given birth 

but had not yet resumed cyclicity post-partum. Therefore, with these two females 

excluded, 100% of mature females exhibited at least some cyclicity during the study 

period. In the immature age class (n=7 females), young females age 4y 11m, 4y 4m, 4y 

3m and 3y 8m were already showing clear signs of cyclicity, whereas one female age 4y 

3m, and two females aged less than 3 years were not yet showing signs of cyclicity. This 

indicates that although females are considered mature at age five, they may commence 

reproductive cyclicity earlier than this, but may also show individual variation. 

Additionally, one female considered to be post-reproductive still showed signs of 

cyclicity at age 40. 

A total of 436 oestrous cycles were characterised during this study (N=34 females age 

range 3y 8m-40y); with cycles observed during all months of the year, indicating no 

seasonal differences in cycle occurrence. However, there was substantial variation in 

cycle lengths both within and between females (Figure 5.2). The majority of cycles 

ranged from 20-40 days (63.3%); with an average length of 27.1days (standard 

deviation 5.0 days). However, irregular cyclicity was also observed, including short (< 

20 days; 12.4%) or long (> 40 days; 14.7%) cycles, and prolonged periods where faecal 

progesterone metabolite concentration remained at baseline (hereafter termed acyclic 

periods), ranging from 12-127 days (9.6%) (Figure 5.3).  
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Figure 5.2: Distribution of oestrous cycle lengths as determined from faecal progesterone 

metabolite concentration, according to iteration method (Brown et al. 2001; Brown et al. 

1994b). Cycles were categorised as <20 days (blue), 20-40 days (green) or >40 days (red) in 

length. In accordance with other studies, cycles of 20-40 days in length were considered normal 

(Roth 2006), with mean (±SD) length 27.1 (±5) days (dashed line).  
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Figure 5.3: Four individual profiles of faecal progesterone metabolite concentration illustrating 

periods of regular cyclicity, with cycles 20-40 days in length (**), and periods of irregular 

cyclicity, including extended luteal phases characteristic of long cycles >40 days in length (***), 

short cycles <20 days in length (*), and acyclic periods (#). 
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A total of 411 oestrous cycles were characterised within females of reproductive age 

(5-32) during the study period, 263 were categorised as regular cycles of 20-40 days in 

length, whereas 148 were categorised as irregular cycles (<20 days, >40 days and 

acyclic periods combined) (Table 5.3). The occurrence of these regular and irregular 

cycles were compared by reproductive category, but there was no difference between 

the percentage of cycles classed as regular and the percentage classed as irregular 

between proven females (N=14) and non-proven females (N=15) (χ2=0.548, df=1, 

P=0.459). 

However, when comparing the occurrence of the four different cycle types (<20 days. 

20-40 days, > 40 days and acyclic periods) across reproductive categories, the relative 

proportion of cycle types observed were different between proven and non-proven 

females (χ2=9.116, df=3, P=0.028). Further tests revealed that there was no difference 

in the proportion of<20d cycles, 20-40d cycles or acyclic periods according to 

reproductive category (P>0.05), but a higher percentage of longer cycles (>40 days in 

length) were observed in non-proven females (P<0.05). Furthermore, when comparing 

these four cycle types between proven females that had produced a calf during the last 

seven years (N=9), and proven females that had not produced a calf during the last 

seven years (N=5), again there was a difference in the proportion of different cycle 

types observed (N=140 cycles) (χ2=15.282, df=3, P=0.002), with acyclic periods more 

common in females that had not reproduced during the last seven years (P<0.05), but 

no difference in the proportion of other cycles types (P>0.05). 

These differences in cycle type occurrence between females of different reproductive 

categories are further exaggerated if we consider not only the frequency of cycles 

observed, but also the proportion of the study period that females exhibited the 

different cycle types (Table 5.4, Figure 5.4). Each cycle was characterised as described 

above, and the total number of days that a particular female was exhibiting short 

cycles< 20 days in length were added together. This was repeated for 20-40 day cycles, 

> 40 day cycles and acyclic periods to give the proportion of the study period days 

during which each cycle type was observed. As many of the long cycles (>40 days) that 

occurred during the course of this study were at least two or three times the length of a 

normal cycle in this species (here categorised as 20-40 days) (Figure 5.2), only 49% of 

sampling days in non-proven females were considered to be normal periods of cyclicity 

compared to 63% for proven females.   
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Table 5.3: Number (and percentage) of cycles of each type exhibited by females in each 

reproductive category during the study period. 

 
Non-Proven Proven 

Proven and has 
bred during 

the last 7 years 

Proven but has 
not bred during 
the last 7 years 

<20 28 (10%) 21 (15%) 15 (14%) 6 (19%) 

20-40 170 (63%) 92 (67%) 75 (71%) 17 (53%) 

>40 52 (19%)* 12 (9%) 11 (10%) 1 (3%) 

acyclic 21 (8%) 13 (9%) 5 (5%) 8 (25%)* 

     

Total cycles 271 138 106 32 

Number females 15 14 9 5 

* Denotes differences significant at P<0.05 level 

 

 

Table 5.4: Total number of days (and percentage) that females in each reproductive category 

exhibited each cycle type during the study period. 

 
Non-Proven Proven 

Proven and has 
bred during 

the last 7 years 

Proven but has 
not bred during 
the last 7 years 

<20 449 (5%) 333 (9%) 241 (8%) 92 (12%) 

20-40 4638 (49%) 2449 (63%) 2031 (65%) 418 (54%) 

>40 3583 (37%) 737 (19%) 695 (22%) 42 (5%) 

acyclic 892 (9%) 358 (9%) 143 (5%) 215 (28%) 

     

Total days 9562 3877 3110 767 

Number females 15 14 9 5 
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Figure 5.4: Percentage of oestrous cycles (a and c) and study period days (b and d) when 

females within different reproductive categories were characterised as exhibiting cycles of <20 

days, 20-40 days, >40 days, or acyclic periods; (a and b) proven breeders compared to non-

proven breeders, and (c and d) proven females that had produced a calf within the last 7 years 

compared to those that had not. 
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5.3.2. Oestrus behaviours 

The frequency with which keepers reported potential oestrus behaviours to be present 

or absent in the study females are presented in Figure 5.5. Of these, increased urine 

spraying was the most commonly reported oestrus behaviour seen by keepers (N=22 

females), and was observed even if a male was not present. Presenting hind-quarters to 

the male (N=21), standing for the male (N=21) and showing interest in the male 

(N=16) were also commonly reported when a male had been present.  

 

Figure 5.5: Behaviours that were observed from females when in oestrus and the number of 

females for which that particular behaviour was reported. 

 

However, among reproductive-age females (N=31), the relative regularity of 

expression of oestrus (rated as being monthly, irregular or not seen) varied between 

females according to reproductive category. Oestrus was observed monthly more often 

in proven females than non-proven females (Mann Whitney U=56.000, P=0.006). 

Furthermore, when comparing the three reproductive categories of proven and had 

bred during the last seven years, proven but had not bred during the last seven years, 

and non-proven, there was also an overall difference in regularity of observed oestrus 

(Kruskal Wallis =10.299, df=2, P=0.006; Figure 5.5). Between category tests confirmed 

that females that had bred during the last 7 years showed oestrus more regularly than 



 

 
201 

non-proven females (Mann Whitney U=9.812, P=0.007), however, there was no 

difference between proven females depending on whether they had reproduced during 

the last seven years (Mann Whitney U=-1.845, P=1.000), or between females that had 

not bred during the last seven years and those that had never bred (Mann Whitney 

U=7.967, P=0.168).  

Oestrus behaviours were reported as being observed monthly in 73% of females that 

had reproduced within the last 7 years, compared to 60% of females that have bred 

previously but not produced a calf in the last 7 years, and only 13% of non-proven 

females. Among non-proven females, a further 13% were recorded as never exhibiting 

clear behavioural signs of oestrus, and 73% only exhibit oestrous behaviours 

irregularly (Figure 5.6). 

 

 

 

 

 

 

 

 

 

Figure 5.6: Percentage of females that keepers reported as being in oestrus monthly (green), 

irregularly observed (blue) or not seen in oestrus (red) in proven females that have produced a 

calf during the last 7 years, proven females that have not produced a calf during the last 7 years, 

and non-proven females. 
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5.3.3. Testosterone and breeding status in male black rhinoceros 

Using all faecal samples collected across the study period, age was a significant 

predictor of faecal testosterone metabolite concentration with log10 Tt increasing with 

age (GLMM χ2=17.747, df=1, P<0.001) (Figure 5.7), and immature males in age class 1-

7 exhibiting significantly lower log10 Tt than males age 7-17 (GLMM χ2=8.715, df=1, 

P=0.003), 17-33 (GLMM χ2=24.478, df=1, P<0.001) and 33+ (GLMM χ2=4.270, df=1, 

P=0.04), and males age 7-17 lower log10 Tt than 17-33 (GLMM χ2=5.700, df=1, 

P=0.017).  

Controlling for age (age class as an additional random effect), males that had produced 

a calf in the last 7 years had higher log10 Tt than non-proven males (GLMM χ2=7.730, 

df=1, P=0.005). Proven males that had not bred during the last seven years tended to 

exhibit intermediate log10 Tt concentration relative to those that have never sired a calf 

and those that have bred more recently (proven and bred within seven years vs. 

proven but not bred within seven years GLMM χ2=0.197 P>0.05; proven but not bred 

within seven years vs. non-proven GLMM χ2=1.955 P>0.05) (Figure 5. 8). Overall, non-

proven males had significantly lower log10 Tt than proven males, regardless of whether 

they had bred during the last seven years or not (GLMM χ2=7.599, df=1, P=0.006). 
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Figure 5.7: Relationship between age and average faecal testosterone metabolite concentration 

in male black rhinoceros. Figure represents the prediction obtained from GLMM model which 

includes all samples collected over the study period (line) overlaid onto the average faecal 

testosterone metabolite concentration calculated for each male. 

 

 

 

 

 

 

 

 

 

Figure 5.8: Faecal testosterone metabolite concentration (±s.e.m) in males that have never 

bred, compared to those that have bred but not in the last 7 years, and those that have bred in 

the last 7 years.  
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5.3.4. Body condition and reproductive success 

Among all females (N=39), body condition scores (BCS) ranged from 3.0-4.5. There was 

no difference in BCS according to age (Mann Whitney U=92.500, P=0.157). However, 

non-proven females had higher BCS than proven females (Mann Whitney U=52.500, 

P=0.004), with 9 of 15 non-proven females scored as 4.5, compared to only 1 of 17 

proven females (Figure 5.9). When the reproductive-age females (5-32, N=31) were 

categorised according to whether they had bred during the last seven years, again non-

proven females scored higher than proven females that had bred during the last seven 

years (Kruskal Wallis =9.000, P=0.009), but there was no difference between those 

females that had not bred during the last seven years to either those that had (Kruskal 

Wallis =-0.900, P=1.000) or those that had never bred (Kruskal Wallis =8.100, 

P=0.117). 

However, in males, BCS was more consistent across individuals, in fact only a single 

male scored 3.5, with the remaining males all scored as 4.0. There was no difference in 

BCS according to age (Mann Whitney U=45.000, P=0.858), or according to reproductive 

categories (proven vs. non-proven (Mann Whitney U=31.500, P=0.740)). 

 

Figure 5.9: Mean body condition score (BCS) (±s.e.m) across females, according to reproductive 

category. A BCS of 1.0 is considered to be very poor/emaciated, 2.0 as poor/thin, 3.0 as 

average/fair, 4.0 as good/ideal, and 5.0 as excellent/heavy (Reuter and Adcock 1998).  
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5.4. Discussion 

5.4.1. Female black rhinos and reproductive success 

The average cycle length of females in the European captive population estimated from 

this current study of 27.1±5 days is comparable to that from endocrine data published 

from other studies, both in situ (26.8±1day; (Garnier et al. 2002)) and ex situ (21-22 

days (Hindle et al. 1992); 26±1.4 days (Radcliffe et al. 2001); 26 days (Berkeley et al. 

1997); 24 and 26.5 (Schwarzenberger et al. 1993); 26.8±0.5 days (Brown et al. 2001)). 

Similar to the survey of captive black rhinoceros in America by Brown et al. (2001), 

cyclicity in the EEP population was quite erratic, with cycles both longer and shorter 

than average also seen, and periods of acyclicity. Interestingly, although periods of 

regular and irregular of cyclicity were observed in both proven and non-proven 

females, the longer cycle type (>40 days in length) were exhibited more often in non-

proven females. Furthermore, among proven females, those that had not reproduced 

during the last seven years exhibited a higher proportion of acyclicity than those that 

had bred more recently.  

In white rhinoceros females, the phenomenon of two cycle types (long vs. short) was 

identified some time ago (Brown et al. 2001; Patton et al. 1999; Schwarzenberger et al. 

1998), and generally the shorter cycle length (30-35days) is considered to be fertile 

(Patton et al. 1999; Radcliffe et al. 1997; Schwarzenberger et al. 1998), whereas the 

longer cycle (65-70days) is considered to be abnormal since no conceptions have been 

known to occur during these cycles (Brown et al. 2001; Roth 2006; Schwarzenberger et 

al. 1998). Although we cannot yet state that these longer cycles observed in the black 

rhino are abnormal, we have not seen any conceptions occur during these periods of 

irregular cyclicity (Edwards et al., unpublished data), suggesting they may not be a 

fertile cycle type. At the very least, these longer cycles (and acyclic periods) may last 2-

3 times the length of an average cycle, which reduces the opportunities for mating and 

conception. If these cycles are considered to be abnormal, this has important 

consequences for breeding management, as non-proven females exhibited regular 

periods of cyclicity for only 49% of the study period. 

However, the etiology of these different cycle lengths in African rhinos is still not 

clearly understood, and the question remains as to whether they are indeed indicative 

of a problem. As yet, insufficient long-term monitoring of reproductive cyclicity has 

been conducted in either species in situ, to determine whether this is a normal 

occurrence in wild rhinos, or whether it is specific to captivity. However, in wild black 
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rhinos, Hitchins and Anderson (1983) reported inter-oestrus intervals ranging from 

26-46 days, and Garnier et al. (2002) reported three-quarters of cycles had a mean 

length (±s.e.m) of 26.8±1day, but the remainder of cycles were characterised by either 

an extended luteal phase or extended follicular phase, indicating that these irregular 

periods of cyclicity may not be confined to captive black rhinos. 

One possibility is that this phenomenon may be due to seasonality (Garnier et al. 2002), 

as is the case in mares, where luteolytic failure and extended luteal phases are seen 

during the transition between breeding and non-breeding seasons (King et al. 2010). 

This may be a possibility in wild populations where births are often more seasonal 

according to rainfall (Garnier et al. 2002), and has been proposed as an explanation for 

the presence of anovulatory follicles observed with ultrasound (Radcliffe et al. 2001). 

However, within this captive population, both longer cycles of >40 days and the more 

typical 20-40 day cycles were observed across all months of the year, similar to that 

reported in the American population of black rhinos (Brown et al. 2001), and for white 

rhinos (Brown et al. 2001; Patton et al. 1999; Schwarzenberger et al. 1998), suggesting 

that this may not be just a seasonal occurrence. 

Another possibility for the occurrence of these different cycle types is that they may be 

related to age; or more specifically to asymmetric reproductive aging (Hermes et al. 

2004). In both black and white rhinoceros females, long periods without reproduction 

can have detrimental effects on their reproductive system, leading to the development 

of pathologies, reduced fertility, and irreversible acyclicity leading to premature 

senescence. It is thought that prolonged exposure to endogenous sex steroids during 

continuous cyclicity without conception play a role in this decline, as females that fail 

to reproduce by the age of 16 may have already exhibited as many oestrus cycles as a 

regularly breeding female would in her entire lifetime. This phenomenon is also seen in 

captive elephants, where a non-breeding female’s active reproductive lifespan may be 

shortened by as much as 15 years compared to that of a breeding female (Hildebrandt 

et al. 2000). The constant exposure to ovarian sex steroids have been linked to the 

development of reproductive pathologies, which together with the exhaustion of finite 

numbers of follicles, reduced chances of conception due to oocyte viability and uterine 

function, and reduced capability of corpora lutea to support early pregnancy, the 

chances of reproduction also decline with age (Hermes et al. 2004). 

However, in the EEP population irregular cycles were observed in females between the 

ages of 5-30 years, indicating that age alone does not explain all of the reproductive 
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issues in this population. Nonetheless, with eight out of the 22 non-proven females 

already over the age of 15, and a further 10 between the ages of 10-15, the factors 

limiting reproduction in this population need to be investigated before these females 

are no longer able to reproduce. However, there is a further caveat with age that should 

be considered, as older individuals may be more likely to be proven breeders than 

younger individuals, due to the fact that they have had a longer time period where they 

could have reproduced. Although the analyses used here only considered males over 

the age of 7 years and females over the age of 5 years when comparing proven and 

non-proven breeders, the possibility remains that those younger non-proven 

individuals may not have had sufficient opportunity to reproduce to be directly 

comparable to the older non-breeding animals. More detailed analyses would be 

beneficial to investigate whether the intrinsic differences observed between proven 

and non-proven breeders could in part be due to endocrine correlates of age.  

There is as yet no clear pattern in when or why these cycle types are observed, but 

there do appear to be a higher proportion of longer cycles among non-proven females, 

which may in part explain some of the variation in reproductive success. However, 

further investigation is necessary to understand the physiology and potential 

pathology relating to these different cycle types that seem to occur in both black and 

white rhinoceros populations. In particular, investigating what may be occurring 

within individual females, at the time that these different cycles occur, would be 

beneficial in understanding their potential causes.  

One factor that may be related to reproductive success as indicated by this study is that 

of body condition score. Non-proven females were scored as having higher body 

condition than proven females, which could be one factor involved in lower 

reproductive success. Females that are classed as overweight or obese may have 

reduced oocyte quality and may be at increased risk of failed implantation and 

pregnancy loss (Brewer and Balen 2010). However, what may be of more relevance to 

this study is the potential disruption to ovarian cyclicity. In a study by Vick et al. 

(2006), obese mares exhibited longer cycles and had longer luteal phases than food 

restricted mares. The extended luteal phase may have indicated a persistent corpus 

luteum, or the luteinisation of an anovulatory follicle (McCue and Squires 2002). The 

persistence of anovulatory follicles, has been reported in a number of species (Lopez-

Gatius et al. 2001; Veiga-Lopez et al. 2006; Wiltbank et al. 2002), and their presence 

during extended cycles may suggest that the mechanism of ovulation may be 
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suppressed in obese females. As longer cycles were more common in non-proven 

females, who were also scored higher on body condition scores, this is one potential 

explanation for reduced reproductive success among females.  

As well as the incidence of irregular cyclicity in this population, a further issue that has 

been highlighted is the difference between breeding and non-breeding females in how 

regularly oestrous behaviours were observed. Non-proven females display overt signs 

of oestrus less often than proven females, with some females failing to demonstrate 

clear behavioural signs of receptivity despite faecal progesterone metabolite profiles 

indicating that they should have been in oestrus. This absence of overt oestrous 

behaviour has been reported in a wide range of other species including cattle (Allrich 

1994), tapir (Brown et al. 1994a), giant panda (Kersey et al. 2010), and Arabian 

leopards (van Dorsser et al. 2007), and is a commonly reported issue in this population 

(M. Pilgrim pers. comm.). This lack of oestrous behaviour could have potential 

management implications as if females do not express suitable behaviours, 

introduction to a potential mate may not be made. Alternatively, if introductions do 

occur but the female is not receptive to the male, aggression can ensue. This could 

potentially result in introductions being made less often, and may be less successful 

when they are made, leading to a lower chance of conception. It is therefore important 

to understand why non-proven females are not expressing behavioural signs of oestrus 

as regularly as proven females.  

The expression of oestrous behaviours is dependent on the correct balance of 

hormones prior to ovulation. Oestradiol is produced by the maturing follicle, which in 

the relative absence of progesterone prior to ovulation, eventually reaches a threshold 

after which oestrous behaviours are expressed and the female becomes receptive to 

the male (Allrich 1994). However, if oestradiol concentration is insufficient (Bennett et 

al. 1991), for example because progesterone is too high (Asa et al. 1984), or inhibited 

by glucocorticoid secretion (Asa and Ginther 1982; Stoebel and Moberg 1982), oestrus 

behaviours may not be expressed. This has so far received little attention in the black 

rhinoceros, but constitutes a significant management concern, due to the serious 

aggression that can ensue between black rhino pairs (Fouraker and Wagener 1996), 

particularly if the female is not fully receptive. As a difference in behavioural 

expression has been observed between proven and non-proven females, there is 

therefore a need to investigate whether there may also be differences in oestradiol 
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concentration either between females, or between periods of regular and irregular 

cyclicity, which may contribute to reduced reproductive success (see Chapter 7). 

 

5.4.2. Male black rhinos and reproductive success 

As expected, male testosterone concentration increased with age (Asa 1996; 

Christensen et al. 2009; Kretzschmar et al. 2004), with immature males exhibiting 

significantly lower faecal testosterone metabolite concentrations than mature males. 

Interestingly, there was also clear difference between proven and non-proven males, 

with the latter exhibiting significantly lower testosterone concentrations. This 

indicates that there may be a relationship between testosterone concentration and 

reproductive success in male black rhinoceros, which could be one possible 

explanation for the reproductive skew observed within this population. However, what 

we cannot yet determine is whether proven males have higher testosterone due to 

their breeding status, or whether underlying differences between males may result in 

both higher testosterone and higher reproductive success. 

Unlike the relationship observed in females in this study, there was no relationship 

between body condition score and reproductive success. In fact, all but one of the 

males included here were scored the same, indicating that body condition appears to 

be more consistent among males. Although body condition can be associated with 

differences in testosterone concentration and sperm quality (Michalakis et al. 2013), 

this does not seem to explain the differences in reproductive success observed within 

this population.  

In polygynous species such as the black rhinoceros (Garnier et al. 2001; Hutchins and 

Kreger 2006), males will compete for access to receptive females, often with the 

dominant male monopolising most of the matings (Garnier et al. 2001). Increased 

testosterone concentration is associated with dominance in a range of species 

(Beehner et al. 2006; Li et al. 2004; Mooring et al. 2004; Negro et al. 2010; Rachlow et 

al. 1998), and plays an important role in male:male competition and aggressive 

encounters (Gleason et al. 2009). However, in captive populations, mature male black 

rhinos are generally kept apart, and may often be the only mature male at an 

institution, meaning elevated testosterone may not be required for male:male 

competition. However, testosterone may also mediate breeding behaviour and libido in 
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male:female sexual encounters (Deen 2008; Gleason et al. 2009; Roser 2008), and as 

such, low concentration in non-breeding males may result in reduced motivation or 

expression of breeding behaviour needed for successful introductions and mating 

success. 

The role of testosterone in both male:male interactions and male:female interactions 

are supported by the finding by Christensen et al. (2009), that testosterone 

concentration in captive back rhino males in America was correlated with the presence 

of both other males, and females. This indicates that testosterone concentration could 

be related to extrinsic factors, such as the social environment, and it is therefore 

important to determine whether external factors may also correlate with testosterone 

and reproductive success in this population (Chapter 6).  

It is important to consider that the categorisation of proven and non-proven breeders 

used in this study does not necessarily take into account whether individuals have had 

equal opportunities to reproduce. In particular, if a non-proven male and non-proven 

female have been housed at the same institution, the two individuals’ failure to 

reproduce may not necessarily indicate an issue with both individuals. For example, if a 

female is not cycling regularly, and not exhibiting overt signs of oestrus, the male may 

not have had the opportunity to reproduce. Similarly, a female may be cycling 

normally, and becoming receptive, but the male may not be attempting to mate the 

female. This is an important factor that needs to be considered when investigating the 

underlying differences in reproductive success, and when managing populations such 

as this, where it is not always possible to house sufficient individuals to allow a choice 

of potential mates. 

The aim of this study was to investigate whether any intrinsic differences between 

breeding and non-breeding males and females were correlated with the observed 

differences in reproductive success in this population. In summary, non-proven 

females were more likely to be scored higher on body condition scores, and were more 

likely to exhibit longer oestrous cycles, potentially coming into oestrus less often. 

Furthermore, non-proven females were less likely to exhibit overt behavioural signs of 

oestrous, and as a consequence may be less likely to be introduced to a male for 

breeding. In males, testosterone concentration was higher in breeding males than non-

breeding males, but there were no observed differences in body condition between 

males of different reproductive status. As the ex situ population of black rhinoceros 

would benefit from both increased reproductive output and reduced reproductive 
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skew, a better understanding of the factors related to breeding status is essential. 

Intrinsic factors may play a role in the reduced reproductive success of non-proven 

male and female black rhinos, but the observed differences in testosterone 

concentration and occurrence of extended cycles and reduced oestrous behaviour 

requires further investigation, to understand the underlying physiology of irregular 

cyclicity in females (Chapter 7), and to determine whether extrinsic factors may help to 

understand the differences in reproductive success (Chapter 6). 

 

5.5. Conclusion 

 Average oestrous cycle lengths observed in this population were similar to 

those reported elsewhere, with the predominant cycle type between 20-40 

days in length, and an average cycle length of 27.1 days. 

 However, irregular cyclicity was also common, with shorter (<20 days) and 

longer (>40 days) cycles, as well as periods of acyclicity also observed. 

 Longer cycle types were exhibited more often in non-proven females than 

proven females, accounting for 19% of all cycles, and 37% of all sampling days. 

 Among proven females, periods of acyclicity were more commonly observed in 

proven females that had not reproduced for more than seven years. 

 Non-proven females were also less likely to exhibit oestrous behaviours on a 

monthly basis than proven females, potentially leading to fewer successful 

introductions 

 Non-proven females also had higher body condition scores, indicating heavier 

condition than proven females. 

 In male black rhinos, non-proven males had lower faecal testosterone 

metabolite concentration than proven males. 

 The potential role of extrinsic factors relating to these observed differences in 

reproductive success requires further investigation (Chapter 6). 

 Further investigation into hormone changes during the oestrous cycle is 

required, to understand what factors may be associated with irregular cyclicity 

in females (Chapter 7). 
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6. INVESTIGATING THE POTENTIAL INFLUENCE OF EXTRINSIC FACTORS ON ADRENAL 

ACTIVITY AND REPRODUCTIVE SUCCESS IN THE EEP POPULATION OF EASTERN BLACK 

RHINOCEROS 

 

Summary 

Intrinsic differences in reproductive hormones have been observed between proven 

and non-proven black rhinoceros in the European captive population (Chapter 5). 

However, the factors underlying these differences have yet to be determined. As sub-

optimal reproduction is currently limiting the growth of this population (Chapter 4), it 

is important to determine whether aspects of the captive environment may influence 

reproductive success. One potential area for investigation is the role of adrenal activity, 

which has previously been illustrated to impact reproduction in a wide range of 

species, and furthermore has been associated with certain environmental variables, 

and with mortality in this species. 

The aim of this study was to investigate whether social and environmental factors were 

related to adrenal activity or reproductive success in male and female black rhinoceros 

(Diceros bicornis michaeli) in Europe. Faecal samples from 23 male and 39 female black 

rhinos were analysed for glucocorticoid metabolites (fGCM), and used alongside 

questionnaire data collected at 13 institutions across Europe. Social variables included 

the presence of male and female conspecifics, and their proximity to the subject, either 

housed with the subject (physical contact) or nearby (visual, auditory and olfactory 

contact), as well as the total number of males and females at a given institution. 

Environmental variables included aspects of enclosure design such as the total area, 

the proportion of solid walls or fencing used for the enclosure boundaries and the 

percentage access of visitors to within 10m to the individual’s enclosure. Finally, 

keepers were also asked to rate the rhinos in their care on aspects of their behaviour or 

temperament, to determine how often behaviours such as pacing and charging were 

observed, how individuals responded to keepers or their environment, and how 

changeable their behaviour is over time. In both males and females, these variables 

were analysed with respect to fGCM concentration, and compared between breeding 

and non-breeding individuals to determine whether extrinsic factors were related to 

reproductive success. Furthermore, differences in testosterone metabolite (fTt) 
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concentration in males were also investigated with respect to social and environmental 

variables. 

In females, fGCM concentration was higher in larger exhibits with a higher proportion 

of fenced boundaries, and a lower proportion of visitor access. Females also exhibited 

higher concentrations at institutions with higher numbers of both males and females, 

and when housed in the same enclosure as other females only part of the time. 

However, fGCM was lower in female housed nearby to conspecific males, with the 

potential for auditory, visual and olfactory contact. Overall, males had lower fGCM 

when housed in walled enclosures, but in those where walls were present, a positive 

correlation was observed with increasing fGCM with a higher percentage of solid walls. 

Males kept on-show to the public exhibited higher fGCM concentration than those kept 

off-show. Male fGCM was also positively correlated with the number of females at an 

institution and higher in males housed with females only part of the time compared to 

those that were not housed with females at all. However, these differences in adrenal 

activity relating to social and environmental variables were not associated with 

differences in reproductive success, and furthermore, there were no differences in 

fGCM between proven and non-proven males or females, or between individuals that 

had reproduced during the last seven years. Although adrenal activity does correlate 

with certain aspects of the captive environment, it does not appear that chronic stress 

is having a detrimental effect on reproduction in this population. 

In males, faecal testosterone metabolite concentration was also correlated with certain 

aspects of the social and physical environment. Males kept on show and those with no 

opportunity to escape from view exhibited higher fTt concentration, as did those in 

smaller enclosures with a higher proportion of solid walls, and a lower proportion of 

fencing surrounding their enclosure. Males also had higher fTt when housed with 

females during oestrus compared to not at all, and when housed with visual, auditory 

and olfactory contact of females. 

In summary, although faecal glucocorticoid and testosterone metabolite concentration 

were correlated with certain aspects of the captive environment, individuals were no 

more likely to breed under particular social or environmental conditions. Furthermore, 

non-proven breeders did not have higher fGCM concentration than proven-breeders, 

indicating that chronic stress may not be a factor in reduced reproductive success in 

this population.  
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6.1. Introduction 

Ex situ populations of black rhinoceros fulfil an important conservation role for this 

critically endangered species, raising awareness of the species’ plight, whilst acting as a 

genetic reserve for remaining wild populations. However, the growth of captive 

populations in America have been limited by high rates of mortality and inconsistent 

reproduction (Carlstead and Brown 2005; Carlstead et al. 1999a; Carlstead et al. 

1999b; Foose and Wiese 2006; Roth 2006), while in Europe, sub-optimal rates of 

reproduction and high reproductive skew are limiting both growth and genetic 

potential (Chapter 4). In Chapter 5 of this thesis, intrinsic differences in reproductive 

hormones were observed between proven and non-proven breeders, both in terms of 

irregular oestrous cycles in females, and in testosterone concentration in males. It is 

therefore essential to investigate whether these differences observed between proven 

and non-proven breeders, could be related to extrinsic factors relating to the captive 

environment.  

One potential avenue to investigate to help understand differences in reproductive 

success is the role of adrenal activity. Activation of the hypothalamic-pituitary-adrenal 

(HPA) axis, and the resulting production of glucocorticoids from the adrenal gland is 

one way in which the body responds to challenges in the environment, facilitating the 

mobilisation of energy stores to allow the body to respond accordingly to potential 

stressors (Moberg and Mench 2000). Although this is primarily an adaptive process, 

prolonged exposure to potential stressors can lead to chronic stress and the disruption 

of other processes, including reproduction, as resources are diverted elsewhere 

(Moberg and Mench 2000). Furthermore, products of the HPA axis including 

corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH) and 

glucocorticoids can directly inhibit the hypothalamic-pituitary-gonadal (HPG) axis, 

resulting in disruption of reproduction (Kalantaridou et al. 2004). Due to the inhibitory 

nature of these products on reproductive function, even relatively mild stressors at 

certain crucial times in the reproductive cycle can be disruptive (Moberg and Mench 

2000).  

Animals in captivity are faced with a number of potential stressors, to which they must 

respond on a daily basis (reviewed in Morgan and Tromborg (2007)), related to the 

often unnatural social and physical conditions under which they are maintained. For 

example, due to the limited space in captivity, enclosures are often not reflective of 

natural home-range sizes, particularly in large species such as the black rhinoceros. 
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Individuals may be maintained at higher densities than would normally be found in 

situ, often housed together with little or no opportunity to retreat. These factors have 

been shown to lead to stress-related behaviours in other species, such as stereotypic 

pacing (Clubb and Mason 2003; Clubb and Mason 2007), increased aggression 

(Descovich et al. 2012), and undesirable behavioural traits such as timidity and self-

directed behaviours (Hansen and Berthelsen 2000). Another aspect of the captive 

environment that can potentially be perceived as a stressor is that of human presence, 

either in the form of keeping staff or visitors to zoological institutions. Although 

positive keeper-animal relationships can be beneficial (Waitt et al. 2002), forced 

interaction with humans can lead to the expression of negative behaviours (Mallapur 

and Chellam 2002) and the restriction of natural behaviours (Wood 1998), as well as a 

physiological stress response (Davis et al. 2005), and potentially lowered survivorship 

(Carlstead et al. 1999a). Furthermore, an un-naturalistic environment may contain or 

lack other elements important to well-being, such as a lack of natural enrichment 

(Waiblinger and Konig 2004), unnatural climatic conditions (Rees 2004), sounds 

(Carlstead et al. 1999a), odours of conspecifics or predatory species (Buchanan Smith 

et al. 1993); all of which could impact how well an individual copes with their 

environment. Individuals may also cope with these potential challenges differently 

(Sapolsky 1994), which can impact their vulnerability to disruption and adverse 

consequences on welfare, reproduction and behaviour. 

Indeed, previous studies have found certain elements of the captive environment to be 

related to welfare and reproductive success in the black rhinoceros. Carlstead et al. 

(1999a; 1999b) investigated the role of the social and physical environment, and of 

individual behaviour on reproductive success in captive black rhinos in America. 

Reproductive success was increased when male rhinos were behaviourally subordinate 

to their female mate, whereas females had greater reproductive success when they 

scored lower on potentially negative behaviours such as chasing and stereotypies. 

These behaviours were also correlated with certain aspects of the captive environment, 

such as enclosure size, which was positively correlated with female reproductive 

success and negatively correlated with male dominance scores. Additionally, the 

percentage of the rhino’s enclosure that was surrounded by high concrete walls and 

visitor viewing access were positively correlated with stereotypy in females and 

institutional mortality respectively. Together these results suggest that both social and 

physical elements of a black rhino’s environment can influence how well they cope 

with captivity.  
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Carlstead and Brown (2005) then went on to investigate the role of adrenal activity in 

these relationships, and found that faecal glucocorticoid metabolite (fGCM) 

concentration was also higher in individuals where a greater proportion of their 

enclosure perimeter was accessed by visitors. Social factors were also associated with 

fGCM concentration, with higher variance observed in breeding pairs kept together 

outside of oestrus, and in pairs that exhibited higher rates of fighting. Differences in 

adrenal activity were also reflected in potential fitness measures; although 

reproductive success was not found to correlate with fGCM in males or females (Brown 

et al. 2001; Carlstead and Brown 2005), institutional mortality was associated with a 

higher variance in fGCM concentration. However, higher variance in fGCM has been 

observed in female white rhinos that were categorised as non-cycling (Carlstead and 

Brown 2005). This highlights the need for the role of the social and physical 

environment on adrenal activity to be investigated further in this species, to determine 

whether differences in reproductive success could be related to adrenal activity and 

unequal reproduction in this population.  

Alternatively, the captive environment may have consequences on reproduction aside 

from adrenal activity. For instance, certain social or physical conditions may be more 

favourable for reproduction, either due to different environmental conditions making 

introductions more successful, or lead to more natural behaviour once rhinos have 

been introduced. The presence of conspecifics may also have a stimulatory effect on 

reproduction. As demonstrated by Christensen et al (2009), male testosterone 

concentration may be influenced by access to conspecifics, with higher testosterone 

concentration observed in males either housed with other males or with females, 

compared to those in isolation. As higher testosterone concentration has been 

observed in proven males in this population (Chapter 5), it is important to determine 

whether proven males also have more social stimulation, or whether other 

environmental conditions may be correlated with testosterone and reproductive 

success in males.  

It is therefore important to investigate whether differences in the social and physical 

environment could be related to differential reproductive success in captive black 

rhinoceros, either via adrenal activity, or whether some conditions may be more 

favourable to enhance breeding opportunities. The aim of this chapter was to perform 

an exploratory analysis to investigate whether any extrinsic factors relating to captivity 

may be associated with reproductive success. Firstly, to determine 1) whether any 
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elements of the physical or social environment, or 2) any differences in temperament 

that may affect an individual’s response to these factors, may be related to adrenal 

activity. If adrenal activity were related to some aspect of the captive environment, and 

if individuals differ in how they perceive or respond to such challenges in their 

environment, perhaps this could be related to the differential reproductive success 

observed within this population. Furthermore, in males, these same extrinsic factors 

were investigated in relation to testosterone concentration, to determine 3) whether 

extrinsic factors could explain why breeding males exhibit higher concentrations than 

non-breeding males. Finally, in both males and females extrinsic factors were 

compared between breeding and non-breeding individuals, and between those that 

had bred during the last seven years with those that had not, to determine 4) whether 

certain elements of the captive environment may be correlated with better 

reproductive success in captivity. 

 

6.2. Methods 

6.2.1. Study population 

This study included 63 eastern black rhinos situated at 13 zoological institutions across 

Europe (Table 6.1), and consisted of 24 males between the ages of 2y 10m and 32y 6m 

and 39 females between the ages of 1y 3m and 40y 9m. However, complete 

questionnaire data were not available for 3 males and 3 females where faecal samples 

were collected, and faecal samples were not available for 1 male where questionnaire 

data was collected. 

The reproductive history of each individual was determined from the EAZA studbook, 

and individuals were categorised as follows. Firstly, individuals were categorised by 

their age, with females between the ages of 5-32 and males between the ages of 7-32 

considered to be of breeding age; females aged under five and males under seven were 

classed as immature, and individuals aged 33 and over classes as being post-

reproductive. Those individuals in the reproductive age class (n=17 males; n=31 

females) were then further categorised as proven breeders if they had ever produced a 

live calf by the end of 2010 (premature births were not considered for this purpose, in 

case pregnancy loss could be a factor in poor reproductive success), whereas those that 

had never produced a live calf were considered non-proven. However, to distinguish 

between individuals that were currently breeding and those that may have bred 
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previously but have not reproduced for some time, a further category was established 

that included individuals that had not produced a calf for more than 7 years. The 

average inter-birth interval in this population is around 3 ½ years, so this timescale 

represents double the period in which a female would ideally have produced a 

subsequent calf. Therefore breeding age individuals were also categorised as either 1) 

proven breeders that had produced a calf within the last 7 years, proven breeders that 

had not produced a calf within the last 7 years, and non-proven individuals. 
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Table 6.1: Summary of females from which faecal samples and questionnaire data were 

collected as part of the study, including their age and reproductive category during the period of 

sample collection. 

SB # Name Location a Sex Age b 
Breeding 

status c 
Breeding status 
(last 7 years) d 

Faecal 
samples 

Questionnaire 

384 Rosie Chester F 21.1 NP NP   
680 Kitani Chester F 13.6 P P<7   
696 Manyara Chester F 12.4 NP NP   
883 Zuri Chester F 5.0 Y    
898 Ema Elsa Chester F 8.2 P P<7   
947 Malindi Chester F 6.1 NP NP   
956 Bashira Chester F 3.1 Y    
532 Tisa Doué la Fontaine F 16.0 NP NP   
910 Binti Doué la Fontaine F 7.2 NP NP   
387 Jessi Dvur Kralove F 25.4 P P<7   
619 Elba Dvur Kralove F 13.7 P P<7   
685 Jola Dvur Kralove F 12.6 P P<7   
689 Jane Lee Dvur Kralove F 12.3 NP NP   
876 Maischa Dvur Kralove F 4.4 Y    
878 Etosha Dvur Kralove F 3.7 Y    
417 Sany Hannover F 20.5 P P>7   
436 Sabah Hannover F 19.1 P P>7   
754 Rufiji Howletts F 10.9 NP NP   
762 Salome Howletts F 10.3 NP NP   
437 Nane Krefeld F 20.7 P P<7   
295 Mana Magdeburg F 28.5 P P<7   
559 Maleika Magdeburg F 14.2 NP NP   
428 Sita Paignton F 21.1 P P<7   
454 Siwa Pont Scorff F 18.8 NP NP   
195 Rukwa Port Lympne F 40.8 e P P>7   
342 Arusha Port Lympne F 27.8 P P>7   
408 N'akuru Port Lympne F 21.5 P P>7   
455 Etna Port Lympne F 19.0 P P<7   
456 Jaga Port Lympne F 18.1 P P>7   
558 Vuyu Port Lympne F 19.8 P P<7   
663 Ruaha Port Lympne F 14.3 P P<7   
879 Zawadi Port Lympne F 4.3 Y    
880 Grumeti Port Lympne F 4.3 Y    
888 Solio Port Lympne F 9.7 NP NP   
911 Nyasa Port Lympne F 8.4 NP NP   
950 Damara Port Lympne F 5.3 NP    
968 Nyota Port Lympne F 1.3 Y    
662 Wanda Zurich F 14.3 NP NP   
861 Samira Zurich F 9.6 NP NP   

a current location when samples were collected for study; b age at the end of the sample 

collection period; c P=Proven – has produced a live offspring, NP=Non-proven – has never 

produced a live offspring; d P<7=Proven and has bred during last 7 years, P>7=Proven but not 

bred during last 7 years, NP=Non-proven – has never produced a live offspring; e estimated date 

of birth. 
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Table 6.2: Summary of males from which faecal samples and questionnaire data were collected 

as part of the study, including their age and reproductive category during the period of sample 

collection. 

SB # Name Location a Sex Age b 
Breeding 
status c 

Breeding status 
(last 7 years) d 

Faecal 
samples 

Questionnaire 

714 Magadi Chester M 12.8 P P<7   
750 Sammy Chester M 12.0 P P<7   
453 Kata Kata Doué la Fontaine M  NP NP   
955 Asani Chester M 2.8 Y    
268 Isis Dvur Kralove M 32.5 P P<7   
283 Jimm Dvur Kralove M 31.2 P P<7   
483 Baringo II Dvur Kralove M 17.5 NP NP   
659 Mweru Dvur Kralove M 13.7 NP NP   
877 Davu Dvur Kralove M 4.2 Y    
926 Dzanti Dvur Kralove M 2.5 Y    
927 Thabo Ebeltoft M 4.3 Y    
928 Kito Ebeltoft M 4.4 Y    
349 Kifaru II Hannover M 27.9 P P>7   
890 Vungu Howletts M 8.4 NP NP   
533 Taco Koln M 15.5 NP NP   
528 Usoni Krefeld M 15.8 P P<7   
653 Madiba Magdeburg M 20.1 P P<7   
892 Manyara Paignton M 8.6 NP NP   
438 Jakob Pont Scorff M 19.5 NP NP   
341 Kingo Port Lympne M 27.5 P P<7   
430 Quinto Port Lympne M 20.4 P P>7   
903 Zambezi II Port Lympne M 8.3 NP NP   
951 Monduli Port Lympne M 5.3 Y    
857 Jeremy Zurich M 9.8 NP NP   

a current location when samples were collected for study; b age at the end of the sample 

collection period; c P=Proven – has produced a live offspring, NP=Non-proven – has never 

produced a live offspring; d P<7=Proven and has bred during last 7 years, P>7=Proven but not 

bred during last 7 years, NP=Non-proven – has never produced a live offspring; e estimated date 

of birth. 
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6.2.2. Faecal sample collection and preparation 

Faecal samples collected and analysed in Chapter 5 were also used for this study. This 

included a total of 4048 faecal samples (1075 male samples and 2973 female samples) 

collected at least weekly from males and non-pregnant females, over a period of 

between 4 and 12 months. In 27 individuals (9 males and 18 females), samples were 

collected for over 12 months, to rule-out any seasonal differences in fGCM 

concentration. Samples were collected by keepers as soon as possible after defecation, 

taking multiple sub-sections from different areas of the faecal bolus to allow for 

potential uneven distribution within the sample, and combined in a zip-lock plastic bag. 

Samples were then frozen at -20°C following collection, and stored before shipment to 

Chester Zoo, UK for analysis. 

Hormone metabolites were extracted from faecal samples according to an established 

wet-weight shaking extraction method (Edwards et al. 2013; Walker et al. 2002) (see 

Chapter 2 section 2.2.3 and Appendix 1 for detailed description of methods and 

protocols respectively). In brief, each sample was thawed, thoroughly mixed and 

weighed (0.5g±0.003g), before adding 5ml 90% methanol, vortexing and shaking 

overnight on an orbital shaker. Each sample was then vortexed and centrifuged for 20 

minutes at 598g. The supernatant was decanted, dried under air, re-suspended in 1ml 

100% methanol and the resulting faecal extract stored at -20°C until analysis. 

 

6.2.3. Enzyme immunoassay 

A previously described enzyme immunoassay was used to measure faecal 

glucocorticoid metabolites ((Watson et al. 2013), adapted from Munro and Stabenfeldt, 

(1984)) (see Chapter 2 section 2.2.4 and Appendix 1 for detailed description of 

methods and technique protocols respectively). The EIA utilised a polyclonal antiserum 

raised against corticosterone (CJM006; C.J. Munro, University of California, Davis); 

corresponding horseradish peroxidase (HRP) conjugated label (C.J. Munro, University 

of California, Davis); and standards (Sigma-Aldrich, UK) on a Nunc-Immuno Maxisorp 

(Thermo-Fisher Scientific, UK) microtitre plate. Black rhino faecal extracts were diluted 

as necessary in EIA buffer (female 1:20 and male 1:20), and run in duplicate (50μl) on 

the EIA.  
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6.2.4. Biochemical validation 

The CJM006 EIA was biochemically validated for measuring glucocorticoid metabolites 

in 1) male and 2) female black rhino faecal extract through parallelism 1) R2=0.987, 

F1,7=537.761, P<0.001 and 2) R2=0.982, F1,7=377.007, P<0.001, and matrix interference 

assessment 1) R2=0.995, F1,7=1471.256, P<0.001 and 2) R2=0.999, F1,7=7133.701, 

P<0.001 (see Chapter 2, section 2.4 for full details). Intra- and inter-assay CVs were 

12.9%, 7.2% and 8.5% for high and low binding synthetic and biological controls 

respectively. The cross reactivities for this antiserum have been described elsewhere 

(Watson et al. 2013)(See Appendix 2 for full details).  

 

6.2.5. Questionnaire 

Information about each individual was collected using questionnaires sent to each 

institution. These questionnaires were designed to collect information about each 

individual to coincide with sample collections for faecal hormone analysis, to 

investigate whether any factors were associated with reproductive success or 

differences in hormone metabolite concentrations. The use of multi-institutional 

surveys of behavioural indicators based on keeper assessment has been well validated 

in a number of species (Shepherdson and Carlstead 2001; Shepherdson et al. 2004; 

Whitham and Wielebnowski 2009), which allow the keepers that work with animals on 

a daily basis to score individuals on how they typically respond to a number of 

different scenarios. Carlstead et al. (1999b) used keeper ratings to assess behaviour 

profiles in captive black rhinoceros in US zoos, and deemed them a reliable and valid 

cross-institutional tool to investigate differences between black rhinoceros.  

Firstly, keepers that work with the rhinos on a daily basis were asked to complete a 

number of ratings regarding their behaviour (Table 6.3; based on (Carlstead et al. 

2000)), to determine whether underlying differences in temperament may affect their 

response to potential challenges, or influence reproductive success. Keepers at each 

institution were asked to score each rhino on a 5 point scale, reflecting how often or 

how likely the rhinos were to express certain behaviours. Behaviours of interest 

included how often an individual was seen pacing, how likely an individual was to 

approach keepers, how they react to their environment, such as their response to 
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unexpected events or new surroundings, and how changeable their temperament is 

over time.  

Secondly, information regarding each individual’s social and physical environment was 

recorded. This included the number of conspecifics in close proximity, whether these 

were males or females, and whether they were housed in the same enclosure, 

neighbouring enclosure so that they could see, hear, smell and/or touch one another 

(Table 6.4). Finally, information was also collected relating to the size and design of the 

rhino’s enclosure (Table 6.5), including aspects such as area, materials used to 

construct boundary walls, and visitor access to the rhino’s indoor and/or outdoor 

enclosure. 

 

 



 

 
 

Table 6.3: Descriptions of behaviours given to keepers at each institution, who were asked to score the animals in their care on a scale of 1-5 (or 1-3 for 

‘changeable’), and were asked to consider how often a particular behaviour was expressed, or how each individual rhino would behave most of the time. 

 1 2 3 4 5 

How often are the following behaviours 
expressed: 

     

Pacing Daily Weekly Monthly Few times in lifetime Never 
Charging Daily Weekly Monthly Few times in lifetime Never 
      
Behaviour towards keepers:      

Approach keepers 
Spontaneously 

approaches 
 

Needs 
encouragement 

 Keeps Distance 

Seek contact from keepers Seeks contact  Tolerates contact  Avoids contact 

Interested in keeper activity Curious/investigates  
Attentive but keeps 

distance 
 Uninterested 

Nervous around keepers Calm  Sometimes uneasy  Anxious 

Approach new people Readily approaches  Hesitant  Avoids 

Aggressive towards people Not at all  Snorts  Charges 
      
Behaviour towards environment:      

Watchful of surroundings Always vigilant  
Sometimes 
observant 

 Non-responsive 

Curious of new objects/surroundings 
Curious, readily 

explores 
 

Explores with 
caution 

 Uninterested 

Approach novel objects/surroundings Bold  Hesitant  Avoids 
Nervous within environment Relaxed  Sometimes uneasy  Anxious 
Response to unexpected events Calm  Slightly disturbed  Agitated 
Active/explore environment Very active  Quite active  Inactive 
Startled by sudden sounds/movements Very easily  Sometimes  Never 
      
How changeable is this individual’s 
behaviour: 

Almost always behaves 
the same 

Sometimes can be 
unpredictable 

Very unpredictable - - 

  

2
2

7
 



 

 
 

Table 6.4: Questions used to collect information on social aspects of a rhino’s environment, given to keepers at each institution, and answered separately for each 

individual included in the study. 

 1 2 3 4  

Has this individual been housed in the same enclosure as 
other individual(s) of the same sex? 

Not at all Some of the time All the time   

      
Has this individual been housed in the same enclosure as 
other individual(s) of the opposite sex? 

Not at all 
During oestrus 

only 
Some of the time, but 
not limited to oestrus 

All the time  

      
Are any other rhinos kept nearby?      
Number of males housed in adjacent enclosure -  
physical contact 

0 1 2 3 >3 

Number of males housed nearby, but not adjacent - 
visual/auditory/olfactory contact 

0 1 2 3 >3 

      
Number of females housed in adjacent enclosure -  
physical contact 

0 1 2 3 >3 

Number of females housed nearby, but not adjacent - 
visual/auditory/olfactory contact 

0 1 2 3 >3 

  

2
2

8
 



 

 
 

Table 6.5: Questions used to collect information on physical aspects of a rhino’s environment, given to keepers at each institution, and answered separately for 

each individual included in the study. 

 1 2 3 4 5 6 

What is the approximate area of this individual’s 
outdoor enclosure? 

<1000 m2 1000 – 2000 m2 2000 – 5000 m2 > 5000 m2   

       
Which of the following materials are used for the 
enclosure boundaries? 

      

Solid wall (visual barrier) None 0-20% 20-40% 40-60% 60-80% 80-100% 
Fence & vegetation (visual barrier) None 0-20% 20-40% 40-60% 60-80% 80-100% 
Fence only (not a visual barrier) None 0-20% 20-40% 40-60% 60-80% 80-100% 
       
When the zoo is open, is this rhino kept on show to 
the public? 

Yes No     

       
When the zoo is open, how much of the enclosure 
perimeter can visitors access to within 10m? 

None 0-20% 20-40% 40-60% 60-80% 80-100% 

       
When the zoo is open, do visitors have access to 
indoor enclosures? 

Yes No     

       
When the zoo is open, does this rhino have the 
opportunity to escape from view? 

      

By going inside Yes No     
Behind barriers and/or structures Yes No     
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6.2.6. Data analysis 

In order to limit the number of questionnaire variables used for analyses, any 

categories from the questionnaire were excluded where there was little or no variation 

between individuals, or where there were a limited number of responses within a 

particular category (i.e. behaviour rarely seen or conditions were non-applicable in the 

majority of responses). To investigate the effect of extrinsic factors on faecal hormone 

metabolite concentration, weekly samples were analysed for faecal glucocorticoid 

(fGCM; males or females, analysed separately) or testosterone (Tt; males only) 

metabolite concentration (n=1075, 3079 and 1455 respectively), and compared using 

generalised linear mixed models (GLMM’s) in MLwiN version 2.02 (Rasbash et al. 

2005). Environmental, social and behavioural factors were analysed across all 

individuals for their relationship with fGCM; for testosterone differences according to 

reproductive category, only social and environmental factors within mature males 

were investigated. Normality tests were first conducted in IBM® SPSS® statistics 

version 20, and hormone data were transformed where necessary, using log10 

transformations to improve the distribution of data (log10 GC and log10 Tt).  

As faecal samples were collected repeatedly within multiple individuals and across 

multiple institutions, date of sample collection, subject ID and institution were fitted as 

nested random effects in all models, to control for non-independence of data (Bolker et 

al. 2009). Questionnaire data were then used individually as fixed effects to explore the 

explanatory effect of each extrinsic factor on hormone metabolite concentration. Either 

categorical or continuous fixed effects were incorporated into the GLMM, with 

categorical variables assigned a reference category to which all other categories were 

compared, with post-hoc comparisons between each group when necessary. 

Additionally, to control for previously observed differences in testosterone 

concentration with reproductive category (Chapter 5), in addition to the main effects of 

each of the extrinsic factors, interactions with reproductive category were assessed in 

all models of log10 Tt, and are reported where relevant.  

Although a multivariate approach was also used to investigate the influence of social, 

environmental or behavioural factors on faecal hormone metabolite concentration 

(multiple variables from a single category combined into a GLMM), these models were 

not robust. Instead, individual relationships between each fixed effect and either log10 

GC or log10 Tt are reported, taking into account the repeated measures within 
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individuals. A normal error structure was used for all models of log10 hormone 

metabolite concentration, and the significance of each fixed effect was determined 

using the Wald statistic and chi-squared (χ2) distribution, with alpha set to 0.05. 

Additionally, questionnaire variables were used to investigate reproductive success, 

according to reproductive category (proven versus non-proven; and bred during the 

last 7 years, not bred during the last 7 years, or never bred). As many of the 

questionnaire variables were ratings, and therefore were generally not normally 

distributed (as determined using Kolmogorov Smirnov normality tests also conducted 

in SPSS® version 20), comparison of variables across reproductive categories were 

analysed using Mann Whitney U tests (for comparing two groups) or Kruskal Wallis 

(comparing three or more groups), both conducted in IBM® SPSS® statistics version 20. 

Additionally, the relative proportions of categorical extrinsic variables according to 

reproductive categories were investigated using cross-tabulation with Pearson’s chi-

square test, in IBM® SPSS® statistics version 20. 

 

6.3. Results 

6.3.1. Glucocorticoids and breeding status 

Using all faecal samples analysed for fGCM from non-pregnant reproductive-age 

females across the study period, there was no difference in log10 fGCM concentration 

between proven and non-proven breeders (GLMM χ2=1.266, df=1, P=0.26). Similarly, 

there was no difference between non-proven females and proven females that have 

bred during the last seven years (GLMM χ2=0.339, df=1, P=0.56); between non-proven 

females and proven females that have not bred during the last seven years (GLMM 

χ2=1.533, df=1, P=0.22), or between proven females that have bred during the last 

seven years or not (GLMM χ2=0.502, df=1, P=0.48).  

In males, log10 fGCM was predicted by age (GLMM χ2=6.007, df=1, P=0.014) with lower 

fGCM concentration in males within younger age classes (age 1-7 vs. 17-33 (GLMM 

χ2=8.660, df=1, P=0.003), and 7-17 vs. 17-33 (GLMM χ2=7.744, df=1, P=0.005)). Among 

reproductive-age males, there were no differences in log10 fGCM between proven and 

non-proven breeders (GLMM χ2=0.061, df=1, P=0.80). Furthermore, there were no 

differences according to whether males had sired offspring during the last seven years, 

with no difference between non-proven males and proven males that have bred during 
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the last seven years (GLMM χ2=0.003, df=1, P=0.96); between non-proven males and 

proven males that have not bred during the last seven years (GLMM χ2=0.444, df=1, 

P=0.51), or between proven males that have bred during the last seven years or not 

(GLMM χ2=0.573, df=1, P=0.45).  
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(a) 

 

 

 

 

 

 

 

(b)  

 

 

 

 

 

 

 

 

Figure 6.1: Boxplot of faecal glucocorticoid metabolite (fGCM) concentration in (a) male and (b) 

female black rhinos at different institutions across Europe. The shaded box represents the 

interquartile range (IQR, 25th and 75th percentile of the data); the line through the box 

represents the median value; lower and upper whiskers represent the minimum and either the 

maximum value or 1.5x IQR respectively; lines represent outliers (>1.5x IQR). 
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6.3.2. Glucocorticoids, environment and behaviour 

Faecal glucocorticoid metabolite concentration was highly variable both within and 

between individuals (Figure 6.1), and between institutions (males: χ2=113.508, df=10, 

P<0.001; females: χ2=84.925, df=10, P<0.001).  

In both males and females, certain aspects of enclosure design were related to log10 

fGCM concentration (details provided in Table 6.6). In both males and females, 

individuals that were housed in enclosures with at least part of the boundary 

composed of solid walls, had lower log10 fGCM than those individuals where solid walls 

were not present. Of those males that had solid walls as part of their enclosure 

boundary, there was a positive correlation between the percentage of the boundary 

that was composed of solid walls and log10 fGCM concentration, meaning that a greater 

proportion of solid walls around their enclosure was associated with higher log10 fGCM 

concentration. However, this was not the case for females, as there was no correlation 

between percentage walls and log10 fGCM; instead, there was a positive correlation 

between the percentage of a female’s enclosure surrounded by fencing and log10 fGCM 

concentration, so females with fencing around a higher proportion of their enclosure 

had higher log10 fGCM concentration. Additionally, in females but not in males, the area 

of an individual’s enclosure was positively correlated to log10 fGCM, with higher log10 

fGCM in females with larger enclosure area.  

Three aspects of visitor access were also related to log10 fGCM. In males, rhinos that 

were kept on show to the public had higher log10 fGCM concentration than males that 

were kept off show to the public. However, in females, the relationships observed 

between visitor access and log10 fGCM were in the opposite direction. The percentage 

of the enclosure perimeter to which visitors could access to within 10m was negatively 

correlated with log10 fGCM, so higher log10 fGCM was associated with visitor access 

around a smaller proportion of the outdoor enclosure. Similarly, females housed in 

exhibits where visitors had access to their indoor enclosures had lower log10 fGCM 

concentration than females where visitors did not have access indoors. 

The presence and proximity of other rhinos was also related to log10 fGCM 

concentration (details provided in Table 6.7). In females, log10 fGCM was positively 

correlated with the number of males, and the number of other females at an institution. 

In males, this correlation was also apparent for the number of females at an institution, 

but not with the number of other males. Furthermore, the number of rhinos housed 
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nearby was also related to log10 fGCM. Males that were housed with females some of 

the time, but not limited to oestrus also had higher log10 fGCM than males that were 

never housed in the same enclosure as females, but there were no differences between 

males that were housed with a female all of the time, or only during oestrus. Although 

only two males included in the study were housed with another male all the time, these 

two males had higher log10 fGCM than males that were never housed with another 

male. In females, there were no significant differences between females that were 

housed in the same enclosure with males all or part of the time, but female housed with 

other females some of the time had higher log10 fGCM than females that were never 

housed with other females. Additionally, log10 fGCM were lower in females that were 

housed nearby to males, so that they could potentially see, hear, and smell one another, 

but did not have physical contact. 

Individual differences in behaviour were also related to log10 fGCM (details provided in 

Table 6.8). Although there were no correlations apparent in either males or females 

between adrenal activity and stereotypic or negative behaviours such as pacing or 

charging, keeper ratings of how individuals respond to their environment did vary with 

log10 fGCM. In particular, both males and females exhibited differences in log10 fGCM 

according to how changeable keepers rated their behaviour to be over time. Rhinos 

that were scored as almost always behaving the same had lower log10 fGCM than rhinos 

that were scored as sometimes unpredictable (in females, and a tendency in males), or 

very unpredictable in their behaviour (both males and females). When scored on how 

likely individuals were to express certain behaviours towards keepers, females that 

were deemed to be more interested in keeper activity and more aggressive towards 

people all had higher log10 fGCM concentration than individuals that were scored lower 

on those aspects of their behaviour. In males, there were no correlations between log10 

fGCM and behaviour towards keepers. However, when keepers scored their rhinos on 

their behaviour towards environmental aspects, males that were scored as less 

agitated by unexpected events, but more easily startled by sudden sounds/movements 

also had higher log10 fGCM. Females that were scored as bolder around novel objects or 

surroundings, and more reactive to sudden sounds and movements, also tended to 

have higher log10 fGCM concentration than other females that did not score so highly. 



 

 
 

Table 6.6: Environmental factors related to log10 fGCM concentration in male and female black rhinoceros (see Table 6.5 for description of environmental 

variables). Each fixed effect was entered individually into a GLMM, to obtain the effect of that component of the captive environment on log10 fGCM concentration; 

the GLMM includes random effects to control for multiple faecal samples collected within multiple individuals at multiple institutions. Multivariate models were not 

robust, and are not reported. Table shows the magnitude and direction of the relationship between each fixed effect and the dependent variable of log10 fGCM 

(effect size and corresponding standard error) and significance of associated test statistic (Wald statistic) for each potential explanatory variable. 

 Males Females 

Fixed effect Relationship 
Effect 
size 

SE 
Wald 

statistic 
df P Relationship 

Effect 
size 

SE 
Wald 

statistic 
df P 

Enclosure boundary:              
Solid walls included in 
enclosure boundary (†Yes) 

Yes < No 0.067 0.030 5.048 1 0.025 Yes < No 0.112 0.022 26.378 1 <0.001 

             
% Solid walls in enclosure 
boundary 

Positive 0.027 0.013 4.244 1 0.039 - 0.008 0.014 0.292 1 0.59 

             
% Fence in enclosure 
boundary  

- 0.010 0.011 0.867 1 0.35 Positive 0.017 0.009 3.925 1 0.048 

             
Enclosure area (m2): - -0.002 0.015 0.016 1 0.90 Positive 0.032 0.012 6.871 1 0.009 
             
Visitor access:             
% Perimeter of outdoor 
enclosure has visitor access 

Negative -0.020 0.012 2.790 1 0.095 Negative -0.042 0.007 31.645 1 <0.001 

             

On-show vs. off-show† 
On-show > 
off-show 

0.123 0.032 15.167 1 <0.001 - 0.050 0.041 1.508 1 0.22 

             
Visitor access to indoor 
enclosures (†No) 

- 0.052 0.038 1.896 1 0.17 Access < No access -0.060 0.031 3.837 1 0.050 

             
Opportunity to escape from 
view (†Yes) 

- 0.029 0.038 0.563 1 0.45 - -0.055 0.037 2.145 1 0.14 

† Denotes reference category for categorical variables 
P values in bold represent those significant at the 0.05 level, tendencies (P<0.10) are denoted by bold italics.  
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Table 6.7: Social factors related to log10 fGCM concentration in male and female black rhinoceros (see Table 6.4 for description of social variables). Each fixed effect 

was entered individually into a GLMM, to obtain the effect of that component of the social environment on log10 fGCM concentration; the GLMM includes random 

effects to control for multiple faecal samples collected within multiple individuals at multiple institutions. Multivariate models were not robust, and are not 

reported. Table shows the magnitude and direction of the relationship between each fixed effect and the dependent variable of log10 fGCM (effect size and 

corresponding standard error) and significance of associated test statistic (Wald statistic) for each potential explanatory variable. 

 Males Females 

Fixed effect Relationship 
Effect 
size 

SE 
Wald 

statistic 
df P Relationship 

Effect 
size 

SE 
Wald 

statistic 
df P 

             
No. rhinos at institution:             
Males  0.011 0.008 2.051 1 0.15 Positive 0.026 0.006 15.980 1 <0.001 
Females Positive 0.007 0.003 4.749 1 0.029 Positive 0.011 0.003 16.619 1 <0.001 
             
Housed with other rhinos:             
Housed with same sex  
†Not at all 

         5.885 2 0.053 

Some of the time  - - - - - 
Some of the time 

> Not at all 
0.077 0.034 5.170 1 0.023 

All of the time 
All of the time  

> Not at all 
0.128 0.031 16.608 1 <0.001  0.049 0.032 2.324 1 0.13 

             
Housed with opposite sex 
†Not at all 

         1.701 3 0.64 

Some of the time, not limited to 
oestrus 

Some of the time 
> Not at all 

0.096 0.034 7.975 1 0.005  0.001 0.034 0.000 1 1.00 

During oestrus only - 0.053 0.048 1.229 1 0.27  -0.015 0.052 0.081 1 0.78 
All the time - 0.054 0.048 1.249 1 0.26  0.048 0.041 1.382 1 0.24 
             
Housed near other rhinos:             
Housed near same sex (†Yes) - 0.011 0.037 0.094 1 0.76  -0.004 0.056 0.004 1 0.95 
Housed near opposite sex (†Yes) - -0.034 0.038 0.811 1 0.37 Yes < No 0.120 0.034 12.505 1 <0.001 
† Denotes reference category for categorical variables, where 3 or more categories exist (Housed with other rhinos) the overall test statistic is also given in addition 

to pairwise comparisons. P values in bold represent those significant at the 0.05 level, tendencies (P<0.10) are denoted by bold italics.  

2
3

7
 



 

 
 

Table 6.8: Ratings of individual behaviour (see Table 6.3 for description of behavioural traits) related to log10 fGCM concentration in male and female black 

rhinoceros. Fixed effects were either entered individually into a GLMM (pacing, charging and changeable), or were used to create a minimal multivariate model 

(behaviour towards keepers or environment), to obtain the effect of behaviour on log10 fGCM concentration; the GLMM includes random effects to control for 

multiple faecal samples collected within multiple individuals at multiple institutions. Table shows the magnitude and direction of the relationship between each 

fixed effect and the dependent variable of log10 fGCM (effect size and corresponding standard error) and significance of associated test statistic (Wald statistic) for 

each potential explanatory variable. 

 Males Females 

Fixed effect Relationship 
Effect 
size 

SE 
Wald 

statistic 
df P Relationship 

Effect 
size 

SE 
Wald 

statistic 
df P 

             

Pacing - 0.000 0.012 0.000 1 1.000  0.000 0.009 0.002 1 0.96 

Charging - 0.009 0.014 0.433 1 0.51  -0.011 0.011 1.010 1 0.31 

             

Behaviour towards keepers:             

Approach keepers a - 0.017 0.054 0.103 1 0.75  -0.003 0.017 0.038 1 0.85 

Seek contact from keepers a - -0.009 0.020 0.187 1 0.67  0.000 0.023 0.000 1 1.00 

Interested in keeper activity a - -0.002 0.016 0.013 1 0.91 Negative -0.041 0.017 5.908 1 0.015 

Nervous around keepers a - 0.029 0.028 1.038 1 0.31  -0.001 0.022 0.002 1 0.96 

Approach new people a - -0.018 0.025 0.516 1 0.47  -0.020 0.015 1.786 1 0.18 

Aggressive towards people a - -0.028 0.022 1.665 1 0.20  0.020 0.010 4.049 1 0.044 

             

Behaviour towards environment:             

Watchful of surroundings b - 0.024 0.019 1.704 1 0.19  0.001 0.022 0.003 1 0.96 

Curious of new objects/surroundings b - -0.005 0.016 0.101 1 0.75  -0.003 0.023 0.012 1 0.91 

Approach novel objects/surroundings b - -0.004 0.020 0.045 1 0.83 Negative -0.053 0.016 10.745 1 0.001 

Nervous within environment b - -0.015 0.023 0.460 1 0.50  -0.008 0.017 0.238 1 0.63 

Response to unexpected events b Negative -0.035 0.016 4.832 1 0.028  0.012 0.17 0.476 1 0.49 

Active/explore environment b - -0.006 0.019 0.118 1 0.73  -0.004 0.015 0.071 1 0.79 

Startled by sudden sounds/movements b Negative -0.052 0.024 4.485 1 0.034 Negative -0.037 0.015 6.113 1 0.013 

Continued….  
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Changeable 
†Almost always behaves the same  

  6.434 2 0.040    26.499 2 <0.001 

Sometimes can be unpredictable 

> almost 
always 

behaves the 
same 

0.079 0.044 3.173 1 0.07 
> almost 

always behaves 
the same 

0.060 0.023 7.153 1 0.007 

Very unpredictable 

> almost 
always 

behaves the 
same 

0.101 0.051 4.022 1 0.045 
> almost 

always behaves 
the same 

0.111 0.025 20.252 1 <0.001 

a,b Variables with the same superscript letter were entered into the same GLMM, and non-significant terms subsequently removed until the minimal model was 

obtained. Non-significant terms were then re-entered individually, to determine their level of non-significance. All other variables were entered into GLMM alone. 
† Denotes reference category for categorical variables, where 3 or more categories exist (Changeable) the overall test statistic is also given in addition to pairwise 

comparisons. P values in bold represent those significant at the 0.05 level, tendencies (P<0.10) are denoted by bold italics. 
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6.3.3. Testosterone and environmental factors 

There were also relationships observed between male testosterone concentration and 

social and environmental factors (details provided in Tables 6.9 and 6.10). Log10 Tt was 

negatively correlated with both enclosure area and the percentage of fencing 

surrounding their enclosure, and positively correlated with the percentage of solid 

walls. Log10 Tt was also higher in males kept on show as opposed to off show, and was 

also higher in males that had no opportunity to escape from public view either by going 

inside or behind structures in their enclosure.  

Faecal testosterone concentration was not correlated with the number of other males 

present, either in the same enclosure, housed nearby with the potential to see, hear and 

smell one another, or the total number of other males housed at an institution. There 

was also no correlation with the total number of females housed at an institution. 

However, males that were housed with females during oestrus had higher testosterone 

than males that were not housed in the same enclosure as females at all during the 

study period. This effect was also observed with females that were housed nearby, but 

not in the same enclosure. Furthermore, there was also a significant interaction 

between whether males were housed near the opposite sex and reproductive category, 

with proven males exhibiting higher testosterone concentration than non-proven 

males, even when housed near to females.  

 

 



 

 
 

Table 6.9: Environmental factors related to faecal testosterone metabolite concentration (log10 Tt) in male black rhinoceros. Each fixed effect was entered 

individually into a GLMM, to obtain the effect of that component of the physical environment on log10 Tt concentration; the GLMM includes random effects to 

control for multiple faecal samples collected within multiple individuals at multiple institutions. Main effects and interactions were investigated, but for simplicity 

only significant or marginally significant interaction terms have been included. Multivariate models were not robust, and are not reported. Table shows the 

magnitude and direction of the relationship between each fixed effect and the dependent variable of log10 fTt (effect size and corresponding standard error) and 

significance of associated test statistic (Wald statistic) for each potential explanatory variable. 

Fixed effect Relationship Effect size SE 
Wald 

statistic 
df P 

       
Enclosure boundary:        
Solid walls included in enclosure boundary (†Yes) - -0.075 0.052 2.094 1 0.15 
% Solid walls in enclosure boundary Positive 0.065 0.024 7.349 1 0.007 
% fence in enclosure boundary Negative -0.035 0.017 4.150 1 0.042 
       
Enclosure area (m2): Negative -0.055 0.021 6.763 1 0.009 
       
Visitor access:       
% Perimeter of outdoor enclosure has visitor access - 0.017 0.021 0.663 1 0.42 
Interaction: % perimeter*reproductive category († proven) Non-proven < proven -0.032 0.017 3.658 1 0.056 
       
On-show vs. off-show † On show > Off-show 0.166 0.058 8.041 1 0.005 
Interaction: On-show* reproductive category († proven) Non-proven < proven -0.080 0.043 3.511 1 0.06 
       
Visitor access to indoor enclosures (†No) - 0.055 0.062 0.780 1 0.38 
       
Opportunity to escape from view (†Yes) Yes < No 0.125 0.057 4.754 1 0.029 
 

† Denotes reference category for categorical variables. P values in bold represent those significant at the 0.05 level, tendencies (P<0.10) are denoted by bold italics. 
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Table 6.10: Social factors related to faecal testosterone metabolite concentration (log10 Tt) in male black rhinoceros. Each fixed effect was entered individually into 

a GLMM, to obtain the effect of that component of the social environment on log10 Tt concentration; the GLMM includes random effects to control for multiple faecal 

samples collected within multiple individuals at multiple institutions. Main effects and interactions were investigated, but for simplicity only significant or 

marginally significant interaction terms have been included. Multivariate models were not robust, and are not reported. Table shows the magnitude and direction 

of the relationship between each fixed effect and the dependent variable of log10 fTt (effect size and corresponding standard error) and significance of associated 

test statistic (Wald statistic) for each potential explanatory variable. 

Fixed effect Relationship Effect size SE 
Wald 

statistic 
df P 

       
No. rhinos at institution:       
Males - 0.001 0.012 0.007 1 0.93 
Females - 0.001 0.005 0.059 1 0.81 
       
Housed with other rhinos:       
Housed with same sex  
†Not at all vs. All of the time 

- 0.026 0.090 0.086 1 0.77 

       
Housed with opposite sex 
†Not at all 

   6.371 3 0.095 

Some of the time, not limited to oestrus - 0.074 0.055 1.801 1 0.18 
During oestrus only During oestrus only > Not at all 0.187 0.076 6.065 1 0.014 
All the time - 0.048 0.076 0.396 1 0.53 
       
Housed near other rhinos:       
Housed near same sex (†Yes) - 0.015 0.064 0.053 1 0.18 
Housed near opposite sex (†Yes) Yes > No -0.164 0.051 10.529 1 0.001 
Interaction: Housed near opposite sex*reproductive category 
(† proven) 

Non-proven < proven -0.125 0.057 4.793 1 0.029 

 

† Denotes reference category for categorical variables, where 3 or more categories exist (Housed with other rhinos) the overall test statistic is also given in addition 

to pairwise comparisons. P values in bold represent those significant at the 0.05 level, tendencies (P<0.10) are denoted by bold italics. 
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6.3.4. Breeding status, environment and behaviour 

Comparing social, environmental or behavioural factors between males and females 

according to reproductive categories, there were no significant differences that may 

explain whether an individual has previously bred or not (Appendix 6). Proven and 

non-proven breeders did not tend to be scored differently on how likely they were to 

express certain behaviours, or how they respond to keepers or to changes within their 

environment. This was the case for both males and females, and whether comparing 

individuals based on their lifetime reproductive status (proven versus non-proven) or 

whether they have bred during the last seven years. Similarly, individuals kept under 

certain social or environmental conditions were no more likely to have bred, either in 

their lifetime or during the last seven years.  

However, there were a number of potential relationships observed, which did not quite 

reach significance, but may be worth investigating further (see Appendix 6 for details). 

Firstly, females that are proven, but have failed to reproduce during the past seven 

years tended to be scored as more vigilant (P=0.08) than either non-proven females or 

proven females that had bred more recently. These same females (P>7 category) also 

tended to be found in exhibits with a higher percentage of solid walls surrounding their 

enclosure (P=0.067). Both non-proven females and females that had not bred for at 

least seven years also tended to be housed in exhibits where visitors did not have 

access to the indoor enclosure (P=0.076). Finally, proven females tended to be housed 

at institutions with a greater number of conspecific males (P=0.081) and females 

(P=0.081). 

In males, there was a tendency for more proven males to be housed in enclosures with 

solid concrete walls, and non-proven males to be housed in enclosures without solid 

walls (P=0.062). However, of those non-proven males where solid walls did make up a 

portion of their enclosure boundary, a greater proportion of the boundary was solid 

walls (P=0.099). It seems that non-proven males either have no solid walls as part of 

their enclosure boundary (meaning the boundary was predominantly fence), or had a 

high proportion of solid walls. As previously mentioned, there were only two males 

that were housed together all of the time (both aged 8 years), and these males were as 

yet unproven. This small sample size meant that non-proven males tended to live with 

males all of the time (P=0.051), and these two males also had no females housed 
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nearby, leading to a tendency for males not housed near females to be non-proven 

(P=0.051).  

 

6.4. Discussion 

The results of the current study do not support the hypothesis that chronic adrenal 

activity of captive black rhinoceros is related to poor reproductive success in this 

population, with no differences in fGCM concentration between proven and non-

proven males or females. Although, differences in fGCM were observed between 

individuals, and were associated with a number of social and environmental factors 

investigated in this study, these were not consistent with differences in reproductive 

success. Furthermore, the relationships observed between fGCM and environmental 

factors in particular, were not always consistent with previous findings.  

Many aspects of the captive environment have the potential to be perceived as 

stressors, including unnatural aspects of exhibit design and unnatural social groupings 

(Morgan and Tromborg 2007). Previous research on the relationship between the 

captive environment and adrenal activity in the black rhinoceros highlighted a number 

of factors that may contribute towards elevated adrenal activity and elevated mortality 

in this species (Carlstead and Brown 2005; Carlstead et al. 1999a). In the American ex 

situ population of black rhinoceros, elevated glucocorticoid concentration was found to 

be related to the proportion of an individual’s exhibit with visitor access around the 

perimeter (Carlstead and Brown 2005). Furthermore, this aspect of enclosure design 

was also positively correlated with institutional mortality rates (Carlstead et al. 

1999a), indicating a potential fitness consequence to the increased fGCM associated 

with visitor access. However, in the current study, the opposite relationship was 

observed, with fGCM in females negatively correlated with the percentage of visitor 

access to within 10m of the enclosure. Although this result is not consistent with 

previous findings, it may be related to the other environmental factors indicated in this 

study. Within females in this population, fGCM was also positively correlated with 

enclosure area and the percentage of fencing around the exhibit, whilst negatively 

correlated with the percentage of solid walls included within the enclosure. These 

environmental variables themselves were correlated within females however, with 

larger enclosures tending to be mainly fenced, and smaller enclosures often having a 

higher proportion of solid walls.  
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It is important to distinguish between activation of the HPA axis that enables an 

individual to respond and cope with its environment, and abnormal adrenal activity 

that may have potential fitness consequences. Glucocorticoids are not only illustrative 

of potentially negative stress, but are primarily a response to any perceived challenge 

to which the body must respond. An increase in glucocorticoids has been demonstrated 

in response to both positive and negative stimuli (Buwalda et al. 2012), and 

glucocorticoids are typically elevated during exercise (Coleman et al. 1998; Koolhaas et 

al. 2011). Perhaps the increased fGCM concentration observed in females in larger 

enclosures may not necessarily be indicative of negative stress due to enclosure design, 

but may reflect increased activity in larger enclosures. This might also explain why 

fGCM were lower in walled enclosures compared to those with no walls, as they were 

generally smaller. 

This study has also indicated that social relationships may play a role in adrenal 

activity in this species, with increased fGCM concentration observed in both males and 

females with increased numbers of the opposite sex present at the same institution, 

with females also influenced by the number of same sex conspecifics. Furthermore, 

glucocorticoids were also elevated in both males and females that were housed with 

the opposite sex for part of the time compared to those that were not, and in females 

the same correlation was also observed when housed nearby to males, with the 

potential for auditory, visual and olfactory contact, but not with physical contact. 

However, again these aspects of the social environment were not correlated with 

reproductive success, indicating that although social interactions influence adrenal 

activity, they do not necessarily have detrimental consequences on reproduction. 

Additionally, faecal testosterone metabolite concentration was also investigated in 

relation to social and environmental variables, to determine whether the previously 

observed differences between proven and non-proven males (Chapter 5) may be 

related to extrinsic factors. However, although faecal testosterone metabolite 

concentration was correlated with certain aspects of the social and physical 

environment, the same relationships were not apparent between proven and non-

proven males. Instead, males that were kept on show or with opportunity to escape 

from view exhibited higher fTt concentration, as did those in smaller enclosures with a 

higher proportion of solid walls, and a lower proportion of fencing surrounding their 

enclosure. Males also had higher fTt when housed with females during oestrus 

compared to not at all, and when housed with visual, auditory and olfactory contact of 
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females. Although this suggests that perhaps social stimulation may indeed be 

important for testosterone concentration (Christensen et al. 2009), there remained a 

difference between proven and non-proven males, regardless of whether females were 

present or not. This suggests that perhaps testosterone may be influenced by other 

intrinsic factors that are yet to be identified in this population. 

Although a number of differences in fGCM have been observed related to the social and 

physical environment, none of these were consistent with differences in reproductive 

success. In both males and females included in this study, no differences in fGCM were 

apparent between individuals that have ever produced a live calf and those that have 

not (proven versus non-proven), or whether they have bred during the last seven 

years. It may be that the variation observed both within and between individuals is 

more representative of natural variation in adrenal activity in response to daily 

challenges, rather than chronic stress attributable to the captive environment. 

However, this does not completely rule out the possibility that adrenal activity has an 

influence on reproduction in this population. 

Individuals may vary in how they respond to potential challenges, and understanding 

how captive animals respond to their surroundings can be beneficial in optimising 

breeding management and captive welfare (Tetley and O'Hara 2012). Research 

conducted on a wide range of species has revealed that individuals may respond to 

potential challenges in a consistent manner based on differences in coping style 

(Koolhaas et al. 1999), temperament (Martin and Reale 2008), or personality (Carere et 

al. 2010). Although the terminology varies between studies, the behavioural and 

physiological responses remain consistent. Proactive or bold individuals tend to be 

more aggressive, but exhibit a relatively low glucocorticoid response to a potential 

stressor, while reactive, or shy individuals commonly have a heightened glucocorticoid 

response but behaviourally may withdraw. These differences in response to a stimulus 

may also have consequences for the physiological costs involved, for example the two 

subtypes can be prone to different types of stress-related disease (Koolhaas et al. 

1999), and may have differential reproductive success (Smith and Blumstein 2008).  

In both males and females in this population, fGCM varied according to temperament, 

with rhinos scored by their keepers as more unpredictable exhibiting higher fGCM than 

rhinos scored as almost always behaving the same. Although differences between 

proven and non-proven breeders did not reach significance, there was some indication 

that non-proven females also tended to be scored as more unpredictable than proven 
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females. If individuals scored as more unpredictable either perceive stressors 

differently, or exhibit an altered adrenal response to stimuli, it is possible that they 

may be more susceptible to disruption. It may therefore be useful to investigate 

changes in adrenal activity within females during periods of regular and irregular 

cyclicity, to determine if short-term changes in fGCM, as opposed to average 

concentrations, may be useful in determining whether adrenal activity may be related 

to reproductive success in this population. When looking at acute challenges, due to the 

short-term nature of the HPA response, averaging fGCM concentration across multiple 

faecal samples may remove the variation of interest. It may therefore be beneficial to 

investigate fGCM concentration on a finer scale, investigating short-term changes 

within individuals, on days when key events of interest occur (Edwards et al. 2013), 

Trotter et al. in prep; Hill et al. in prep). To investigate this further, it is important to 

determine whether any hormone changes occur within females exhibiting different 

cycle types (see Chapter 7). 

Although the aim of this study was to investigate the potential effect of a wide range of 

social, environmental and behavioural factors on faecal hormone metabolites and 

reproductive success, the number of variables investigated here could have had an 

influence on the outcome of these analyses. Perhaps reducing the number of variables 

of interest could be beneficial, both to minimise the risk of inflated type I errors from 

multiple testing, and to reduce the potential impact of correlated variables. This 

approach may improve the inferences that could be made regarding the influence of 

the social and physical environment on reproductive success and captive welfare. 

Additionally, the positive correlation between both fTt and fGCM and age in males 

should be taken into consideration when performing these analyses, to ensure that this 

is not confounding any potential relationships. 

Understanding the potential factors that influence well-being and reproductive success 

is complex issue, with a range of elements that could potentially affect individuals 

within a captive setting, and variation in how individuals may respond to potential 

challenges they face. Although we found no differences in fGCM between proven and 

non-proven males or females, indicating that chronic stress may not necessarily be 

contributing to reduced reproductive success, it may be that individuals vary in how 

they perceive and respond to potential challenges in their environment, which could 

have consequences on their overall reproductive success.  
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6.5. Conclusion 

 Although fGCM was variable between individuals, there were no consistent 

differences between breeding and non-breeding males or females, suggesting 

that chronic stress may not be contributing towards the reproductive skew 

observed in this population.  

 However, certain aspects of the social and physical environment were related 

to adrenal activity in male and female black rhinos, including enclosure 

characteristics, visitor access and access to conspecifics. 

 However, the results of this current study were inconsistent to those found 

previously in the American captive population of black rhinoceros, indicating 

that further investigation may be required to distinguish between normal 

variation in response to daily challenges and chronic adrenal activity that could 

have detrimental fitness consequences. 

 Additionally, although faecal testosterone metabolite concentration in males 

was also correlated with certain aspects of the social and physical environment, 

these relationships were also inconsistent with reproductive history. 

 Differences in reproductive success do not appear to be strongly correlated 

with extrinsic factors investigated here, which indicates that perhaps the 

differences observed in fecundity may be due to underlying differences 

between individuals, as opposed to elements of the captive environment 

strongly influencing whether or not an individual is likely to breed. 
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7. INVESTIGATING ABNORMAL REPRODUCTIVE CYCLICITY IN FEMALE EASTERN BLACK 

RHINOCEROS (DICEROS BICORNIS MICHAELI). 

 

Summary 

There is a high incidence of irregular cyclicity in captive female black rhinos, and non-

breeding females are less likely to express overt oestrous behaviours than proven 

breeders (Chapter 5). These two factors could play a role in the reduced reproductive 

output of the European captive population, and the high reproductive skew that exists 

between individuals (Chapter 4). However, the physiology underlying these anomalies 

is poorly understood. The aim of this chapter was therefore to investigate differences 

in reproductive (progesterone and oestradiol) and glucocorticoid metabolite 

concentration within females, to investigate whether any differences occur either 

between females, prior to, or during periods of regular and irregular cyclicity. Samples 

were collected every other day from both proven (N=6) and non-proven (N=12) 

females for between 9-15 months, so that differences in hormone concentrations 

within females could be investigated. 

Faecal glucocorticoid metabolite (fGCM) concentration was significantly higher during 

periods of irregular cyclicity compared to during normal cycles, and furthermore, were 

higher during cycles longer than 40 days. However, when the data from proven and 

non-proven females were investigated separately, this effect was seen only in non-

proven females. However, no differences in average fGCM were observed during the 

preceding luteal phase, follicular phase or luteal phase of the current cycle. This 

suggests that perhaps acute changes during the cycle rather than chronic changes in 

adrenal activity may be involved with extended oestrous cycle duration. 

In both proven and non-proven females faecal oestradiol metabolite (fE2) 

concentration was lower during periods of irregular cyclicity, and furthermore, fE2 was 

significantly lower during acyclic periods and short oestrous cycles than during 20-40 

day oestrous cycles. Although this could indicate potential differences in follicular 

development, overall fE2 was highly variable both within and between females, and 

could not explain potential differences in the expression of oestrous behaviours 

between proven and non-proven females. 
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Faecal progesterone metabolite (fPG) concentrations were significantly higher during 

long cycles, indicating that as well as an extended luteal phase duration as is 

characteristic of this cycle type, fPG concentrations were also higher than during a 

normal 20-40 day cycle. However, average fPG concentration did not vary between 

cycle phases, or during the luteal phase prior to regular or irregular periods of cyclicity, 

or according to cycle type, and furthermore could not explain potential differences in 

the expression of oestrous behaviours between proven and non-proven females. 

Although the average concentration of these three hormones did not tend to vary 

during the preceding luteal phases, the duration of this phase was significantly shorter 

than normal prior to both short oestrous cycles and acyclic periods. Furthermore, the 

preceding luteal phase was also significantly longer prior to longer cycles, indicating 

that the duration of prior hormone exposure may have some relevance on subsequent 

oestrous cycles exhibited. 

In summary, differences in faecal hormone concentration have been observed between 

periods of regular and irregular cyclicity in captive black rhinos. Specifically, faecal 

glucocorticoids were higher during long cycle types and oestradiol lower during 

periods of acyclicity. Although the average concentration of progesterone, oestradiol or 

glucocorticoids during the preceding luteal phase did not predict cycle type, changes in 

the duration of this preceding luteal phase may be related to the different oestrous 

cycle types observed, and warrants further investigation. 
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7.1. Introduction 

Among captive female black rhinoceros, both in Europe (Chapter 5) and in America 

(Brown et al. 2001), irregular oestrous cycles have been observed. In particular, four 

potential cycle types have been characterised during this study; short cycles lasting 

less than 20 days, normal cycles lasting between 20-40 days, long cycles lasting more 

than 40 days, and periods of acyclicity, where progesterone metabolites concentration 

remained at baseline for more than 10 days. Furthermore, results from the current 

study (Chapter 5) have also indicated that some of the irregular cyclicity observed in 

this population may be correlated with reproductive success. Specifically, longer cycles 

were seen more often in non-proven females, and among proven females, acyclic 

periods were seen more often in females that have not bred during the last seven years, 

compared to those that had bred more recently. Additionally, non-breeding females 

exhibit oestrus less often than breeding females, potentially limiting opportunities for 

successful introductions (Chapter 5).  

Reduced reproductive output has been suggested as a major contributing factor to the 

limited growth and viability of ex situ rhinoceros populations (Chapter 4; Carlstead et 

al. (Carlstead et al. 1999a; Carlstead et al. 1999b); Smith and Read (Smith and Read 

1992)), and reproductive skew could have profound consequences for maintenance of 

genetic diversity and the long-term viability of the captive breeding program. However, 

the hormonal basis of irregular cyclicity and inconsistent oestrous behaviours in the 

black rhinoceros are poorly understood, and a better understanding of the physiology 

underlying periods of regular and irregular cyclicity is required, to identify the 

potential causes and consequences of their occurrence. 

One way in which oestrous cycles can be disrupted is through activation of the 

hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is activated in response to 

potential stressors, to allow the body to respond accordingly and maintain homeostasis 

(Moberg and Mench 2000). However, the presence of stressors can subsequently lead 

to the disruption of reproductive cyclicity and reduced fertility (Dobson et al. 2003; 

Dobson and Smith 2000). Research in domestic species, for example in cattle, sheep 

and pigs (Dobson et al. 2003; Dobson and Smith 2000; Turner et al. 2002; von Borell et 

al. 2007) have revealed some of the mechanisms by which stress-related disruption of 

reproduction may occur. Although the exact mechanisms are still under investigation, 

it is clear that disruption can occur on several different levels (Rivier and Rivest 1991), 

through alteration or inhibition of hormones from the hypothalamus, pituitary, and the 
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ovaries. Potential stressors may be physical or psychological in nature, and may be 

chronic (long-lasting), or acute (short-term); even acute stressors could lead to 

disruption if the timing is right, particularly during the pre-oestrous period, when a 

number of key hormonal changes take place. It is therefore important to understand 

whether any changes in adrenal activity may occur during the oestrous cycle, which 

could explain different cyclicity patterns observed in this population. 

As well as exhibiting a higher proportion of extended cycles, non-proven female black 

rhinos in the EEP population were also less likely than proven females to exhibit 

regular oestrous behaviours (Chapter 5). Although this could in part be explained by 

the prevalence of irregular cyclicity within this population; in some female black 

rhinos, overt behavioural signs of oestrous may be absent when cyclicity patterns 

appear to be otherwise normal (Radcliffe et al. 2001). This issue has not been 

previously addressed in this species, and highlights the need to investigate hormone 

concentrations related to oestrous behaviour between females, and in relation to 

periods of regular and irregular cyclicity. Oestradiol from the developing follicle, in the 

relative absence of progesterone, is required for the expression of oestrous behaviours 

(Allrich 1994). Once a threshold concentration of oestradiol has been reached, oestrous 

behaviours will be expressed. However, this threshold may be different for different 

individuals, and could result in variation in the intensity of oestrous expressed.  

The role of progesterone is also important for the expression of oestrous behaviour. 

Prior exposure may be required to facilitate the expression of oestrus behaviour in 

ewes (Fabre-Nys and Martin 1991a, b; Karsch et al. 1980), and has also been 

demonstrated to enhance the level of oestrus expression. Similarly, dairy cows with 

lower progesterone concentration prior to oestrus expressed behaviours with lower 

intensity (Walker et al. 2008). Furthermore, the phenomenon of silent oestrus has also 

been described in a number of species, which occurs when ovulation is not 

accompanied by oestrous behaviours, and is often associated with the first ovulation 

post-partum (Allrich 1994). The lack of overt oestrous behaviours is thought to be 

associated with an imbalance in progesterone and oestradiol. However, the exact 

mechanism regarding the influence of progesterone is not fully understood, and 

perhaps the duration of prior exposure could also be important. In the case of post-

partum oestrous in cattle, high oestradiol in the final stages of pregnancy are thought 

to cause a refractory state in the brain, meaning it cannot respond to the normally 

oestrus-inducing concentration of oestradiol (Allrich 1994). Subsequent cycles are 
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generally accompanied by behaviours, as the progesterone produced by the corpus 

luteum re-sets the system and allows normal expression of oestrous behaviours. 

Additionally silent oestrus is also observed in seasonal breeders, often observed at the 

start and end of the breeding season, during the transition from ovulatory to 

anovulatory states (Asher et al. 2000; Herndon et al. 1987; Rivera et al. 2003).  

This absence of overt oestrus behaviour has also been reported in a number of other 

endangered species, including Baird’s tapir (Brown et al. 1994a), giant panda (Kersey 

et al. 2010), and Arabian leopards (van Dorsser et al. 2007); as well as in the black 

(Radcliffe et al. 2001), white (Hermes et al. 2006), and Sumatran (Roth 2006) 

rhinoceros. This has potentially serious implications for captive breeding programmes, 

where often animal managers must decide when to make introductions for breeding 

purposes. If behavioural signs of oestrous are not detected by human observers, 

introductions may not be made, or may be attempted at unsuitable times, reducing the 

chances of successful mating. It is therefore important to understand why differences 

in oestrous expression may occur in this population, and whether differences in 

oestradiol concentration may be related to irregular cyclicity, or whether prior 

exposure to either progesterone or oestradiol may be related to inconsistencies in 

behavioural expression both within and between females. Furthermore, as adrenal 

activity and the production of glucocorticoids can also inhibit the production of sex 

steroids, there is a possibility that glucocorticoids could also play a role in the 

inconsistent expression of oestrous behaviours. 

Irregular oestrous cycles, and inconsistent expression of oestrus are two issues that 

have been highlighted in the European captive population of eastern black rhinoceros 

(Chapter 5). The aim of this chapter was to investigate reproductive cyclicity within 

females, to determine whether any differences in hormone metabolite concentration 

were apparent between different cycle types. Specifically, 1) to investigate whether any 

differences in reproductive or adrenal hormone metabolites were apparent between 

different cycle types, and 2) to determine whether differences in hormone secretion 

either during or prior to an oestrous cycle could explain the inconsistent behavioural 

signs of oestrus. Firstly, progesterone, oestradiol and corticosterone metabolite 

concentration were compared between regular and irregular periods of cyclicity, and 

between different cycle types (long, short, normal or acyclic). Secondly, to investigate 

whether the hormone status of an individual during the preceding oestrous cycle 

influences the type of cycle they subsequently exhibit, these hormones were also 
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compared during the luteal phase of the preceding cycle, the follicular phase of the 

current cycle during which follicle development occurs, and the luteal phase of the 

current cycle when progesterone is produced from the corpus luteum following 

ovulation. Thirdly, the duration of the preceding luteal phase was compared between 

cycle types, to determine whether the duration of prior hormone exposure influences 

the type of cycle an individual subsequently exhibits. Finally, any potential differences 

between proven and non-proven females were also considered in each of these cases. 

 

7.2. Methods 

7.2.1. Study population 

This study included a subset of the females from Chapter 5, specifically 18 adult female 

black rhinoceros, between the ages of 5 and 28 years, housed at 8 institutions across 

Europe. The reproductive history of each individual was determined from the EAZA 

studbook, and of these females, 6 were categorised as proven, having previously 

produced at least one live calf, and 12 were categorised as non-proven, having never 

produced a live calf. As in Chapter 5, females recorded as only having had premature 

births were included in the ‘non-proven’ category. 

 

7.2.2. Faecal sample collection and preparation 

Faecal samples used for this study were collected from each female at least every other 

day for between 9 and 15 months. Samples were collected by keepers as soon as 

possible after defecation, taking multiple sub-sections from different areas of the faecal 

bolus to allow for potential uneven distribution within the sample, and combined in a 

zip-lock plastic bag. Samples were then frozen at -20°C following collection, and stored 

before shipment to Chester Zoo, UK for analysis. 

Hormone metabolites were extracted from faecal samples according to an established 

wet-weight shaking extraction method (Edwards et al. 2013; Walker et al. 2002) (see 

Chapter 2 section 2.2.3 and Appendix 1 for detailed description of methods and 

protocols respectively). In brief, each sample was thawed, thoroughly mixed and 

weighed (0.5g±0.003g), before adding 5ml 90% methanol, vortexing and shaking 

overnight on an orbital shaker. Each sample was then vortexed and centrifuged for 20 
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minutes at 598g. The supernatant was decanted, dried under air, re-suspended in 1ml 

100% methanol and the resulting faecal extract stored at -20°C until analysis. 

 

7.2.3. Enzyme immunoassay 

Previously described enzyme immunoassays adapted from Munro and Stabenfeldt, 

(1984), were used with some modifications to measure faecal progesterone (Walker et 

al. 2008), corticosterone (Watson et al. 2013) and oestradiol (Fanson et al. 2010) 

metabolites (see Chapter 2 section 2.2.4 and Appendix 1 for detailed description of 

methods and technique protocols respectively). Each EIA utilised an antiserum 

(monoclonal progesterone CL425, polyclonal corticosterone CJM006 or polyclonal 

oestradiol R4972; C.J. Munro, University of California, Davis); corresponding 

horseradish peroxidase (HRP) conjugated label (C.J. Munro, University of California, 

Davis); and standards (Sigma-Aldrich, UK) on a Nunc-Immuno Maxisorp (Thermo-

Fisher Scientific, UK) microtitre plate. Black rhino faecal extracts were diluted as 

necessary in EIA buffer (1:70 for progesterone, 1:20 for corticosterone, and 1:30 for 

oestradiol), and run in duplicate (50μl for progesterone and corticosterone, 20μl for 

oestradiol) on the respective EIA’s. Each faecal sample collected across the study 

period was analysed on between one and three EIAs. Samples collected at least every 

other day were analysed for progesterone metabolite concentration (N=2684), samples 

collected at least weekly were analysed for corticosterone metabolite concentration, 

plus additional samples were analysed around periods of regular and irregular cyclicity 

(N=2090), and samples collected at least every other day were also analysed for 

oestradiol metabolite concentration (N=2473). 

 

7.2.4. Biochemical validation 

EIAs were biochemically validated for measuring 1) progesterone, 2) glucocorticoid, 

and 3) oestradiol metabolites in female black rhino faecal extract through parallelism 

1) R2=0.969, F1,7=222.140; 2) R2=0.982, F1,7=377.007; 3) R2=0.986, F1,7=506.114; all 

P<0.001) and matrix interference assessment 1) R2=0.998, F1,7=4338.484; 2) R2=0.999, 

F1,7=7133.701; 3) R2=0.979 F1,7=323.165; all P<0.001) (see Chapter 2, section 2.4 for 

full details). Intra- and inter-assay CVs for progesterone, corticosterone and oestradiol 

EIAs were 17.3%, 14.6% and 12.9%; 12.9%, 7.2% and 8.5%; and 9.3%, 8.3% and 
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16.8% for high and low binding synthetic and biological controls respectively. The 

cross reactivities for progesterone, corticosterone and oestradiol antisera have been 

reported elsewhere ((Walker et al. 2008), (Watson et al. 2013) and (Fanson et al. 2010) 

respectively) (See Appendix 2 for full details).  

 

7.2.5. Data analysis 

Oestrous cycles were determined from faecal progesterone metabolite concentration, 

and characterised according to a previously established method, where samples with 

baseline hormone concentrations are distinguished from those with elevated hormone 

concentrations, using an iterative process (Brown et al. 2001; Brown et al. 1994b). All 

non-pregnant samples from an individual female were used to calculate the mean and 

standard deviation (SD). An iterative process was then used to remove all samples 

greater than 1.5SD above the mean, before the mean was re-calculated and the process 

repeated until no samples exceeding 1.5SD from the mean remained. These samples 

were considered to have baseline concentrations of PG, and represented the follicular 

phase of the cycle. The onset of the luteal phase was considered to be the first sample 

where PG concentration exceeded 1.5SD above the mean, and the end of the luteal 

phase was considered to be when at least two consecutive samples were below the 

threshold of 1.5SD of the mean. As we were interested in any potential disruption that 

may occur during the follicular phase (period of follicle development prior to 

ovulation) and/or the subsequent luteal phase, a complete cycle was characterised as 

the first follicular phase sample to the last luteal phase sample, a slightly modified start 

and end criteria to that used in Chapter 5. Additionally the preceding cycle prior to the 

complete cycle or prior to any acyclic periods were also characterised with the same 

criteria. 

Generalised linear mixed models (GLMM’s) were used to investigate differences in 

faecal progesterone, oestrogen and glucocorticoid metabolite concentration as outlined 

below, using MLwiN version 2.02 (Rasbash et al. 2005). Normality tests were first 

conducted in IBM® SPSS® statistics version 20, and hormone data were log10 

transformed to improve the distribution of data (log10 PG, log10 fGCM and log10 E2). 

Firstly, each sample collected and analysed on the respective EIAs was used to 

investigate differences in hormone concentration (log10 PG, log10 fGCM and log10 E2) 
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across the different cycle types. To account for repeated sampling within and between 

females, random effects (date of sample collection and subject ID) were incorporated 

into the GLMM. Fixed effects of either cycle type (<20 days, 20-40 days, >40 days or 

acyclic) or cycle regularity (regular (20-40 day cycles) or irregular (<20 day, >40 day 

cycles and acyclic periods combined)) were added individually. As these were 

categorical GLMM, a reference category was assigned to each, using either 20-40 day 

cycles or regular periods of cyclicity as the reference category respectively, to which all 

other categories were compared. Comparisons were first made including samples from 

all females (N=18); GLMM were then repeated separating proven females (N=8) and 

non-proven females (N=12), to investigate whether differences existed according to 

prior reproductive success. 

Secondly, average hormone concentrations (average log10 PG, average log10 fGCM and 

average log10 E2) were used to investigate whether the occurrence of irregular cyclicity, 

or particular cycle types, may be related to the prior hormonal state of an individual. 

To investigate this, average hormone concentrations were calculated from faecal 

samples from 1) the luteal phase of the preceding cycle, 2) the follicular phase of the 

current cycle, and 3) the luteal phase of the current cycle. As multiple oestrous cycles 

were used from each female, cycle number (1-17) and subject ID were incorporated 

into the model as random effects. Again, fixed effects of either cycle type or cycle 

regularity were added individually, and reference categories assigned as previously 

described. Comparisons were first made including samples from all females (N=18), 

and then repeated separating proven females (N=8) and non-proven females (N=12), 

to investigate whether differences existed according to prior reproductive success, and 

differences between reproductive categories are shown where relevant. 

Finally, the potential influence of duration of prior hormone exposure was investigated, 

using the length (days) of the preceding luteal phase as the dependent variable, and 

comparing by cycle regularity and cycle type as described above. All GLMMs utilised a 

normal error structure, and the significance of each fixed effect was determined using 

the Wald statistic and chi-squared (χ2) distribution, with alpha set to 0.05.  
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7.3. Results 

7.3.1. Oestrous cycles 

A total of 175 oestrous cycles were characterised across the study period; 124 cycles in 

non-proven females and 51 cycles in proven females. Of these cycles, 45 were less than 

20 days in length (<20d), 99 were between 20 and 40 days (20-40d), and 31 were 

longer than 40 days (>40d) (Figure 7.1). Additionally, 24 acyclic periods were 

observed, occurring in 12 (5 proven and 7 non-proven) out of 18 females, and lasting 

between 14 and 133 days. All 18 females exhibited periods of both regular (20-40d) 

and irregular (<20d, >40d or acyclic) cyclicity during the sampling period. For all 

further analyses, these 199 periods of potential oestrous cyclicity were used.  

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Individual progesterone profile of oestrous cycles in a female black rhino, 

representing follicular and luteal concentration samples as determined using the iteration 

method. Cycle lengths are represented by solid lines, and are categorised as short (*), normal 

(**), long (***) or acyclic periods (#). 
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7.3.2. Progesterone and irregular cyclicity 

When comparing log10 PG within females according to cycle regularity, log10PG were 

higher during periods of irregular cyclicity compared to periods of regular cyclicity 

(χ2=8.775, df=1, P=0.003). Although there were no differences in log10PG between 

short cycles and normal cycles of 20-40 days (χ2=0.026, df=1, P=0.87), differences were 

observed between other cycle types. Log10 PG was significantly higher during long 

cycles than during normal cycles (χ2=145.279, df=1, P<0.001), or during short cycles 

(χ2=84.313, df=1, P<0.001). Additionally, log10PG was significantly lower during acyclic 

periods than during normal cycles (χ2=73.337, df=1, P<0.001), short cycles (χ2=44.746, 

df=1, P<0.001), or long cycles (χ2=319.390, df=1, P<0.001). Although there is some 

circularity in these analyses, as acyclic periods are characterised by a sustained (more 

than 10 days; (Brown et al. 2001)) concentration at baseline, the difference observed 

between normal and long cycles may have some biological relevance beyond this. Long 

cycles are characterised as cycles longer than 40 days in length, but these results 

indicate that not only is progesterone concentration elevated above baseline for a 

longer period, but is also of a higher concentration than during a normal 20-40 day 

cycle.  

These differences in log10PG concentration between cycle types were consistent in both 

proven and non-proven females. In both proven (χ2=2.240, df=1, P=0.13) and non-

proven χ2=0.794, df=1, P=0.37 females, there was no difference in log10PG between 

normal and short cycles. However, log10PG concentration was significantly lower 

during acyclic periods in both proven (χ2=41.057, df=1, P<0.001) and non-proven 

(χ2=33.783, df=1, P<0.001) females, and was significantly higher during long cycles in 

both proven (χ2=24.893, df=1, P<0.001) and non-proven (χ2=125.342, df=1, P<0.001) 

females. However in proven females, there was no overall difference in log10PG 

between regular and irregular periods of cyclicity (χ2=1.674, df=1, P=0.20), although 

this difference was still apparent in non-proven females (χ2=220.610, df=1, P<0.001). 

The average log10PG concentration during the previous luteal phase was no different 

prior to regular and irregular periods of cyclicity (χ2=0.446, df=1, P=0.50), or prior to 

long (χ2=0.288, df=1, P=0.59), short (χ2=0.532, df=1, P=0.47) or acyclic periods 

(χ2=0.002, df=1, P=0.96) as compared to normal cycles. This indicates that the 

progesterone concentration during the preceding luteal phase does not appear to 

influence the type of cycle that will be exhibited next. Progesterone concentration 

should be at baseline during the follicular phase of the oestrous cycle (Figure 7.1), 
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however, the average log10PG concentration during the follicular phase of the cycle 

tended to be higher during irregular periods of cyclicity (χ2=3.798, df=1, P=0.051) than 

during regular periods. Comparisons between cycle types revealed that this was 

predominantly driven by higher concentrations during acyclic periods (χ2=6.241, df=1, 

P=0.012), as both short (χ2=0.357, df=1, P=0.55) and long (χ2=2.277, df=1, P=0.0.14) 

cycles were no different to normal cycles. This indicates that although acyclic periods 

are characterised by progesterone metabolite concentration that does not increase 

above baseline, there does appear to be a higher concentration than during a typical 

follicular phase, but not sufficient to be indicative of luteal activity. 

Although when all faecal samples were compared log10 PG was significantly higher 

during long cycles than during normal or short cycles (above), when comparing the 

average concentration during the luteal phase of the oestrous cycle, this observation 

was not quite as apparent. There was a tendency for average log10PG concentration to 

be higher during long cycles in non-proven females (χ2=2.764, df=1, P=0.096), but this 

was not consistent in proven females (χ2=0.006, df=1, P=0.94).  

There were no consistent differences in average log10 PG between proven and non-

proven breeders, either in the preceding luteal phase (χ2=0.197, df=1, P=0.66), 

follicular phase (χ2=0.056, df=1, P=0.81), or the current luteal phase (χ2=0.377, df=1, 

P=0.54). Therefore, using this approach, differences in prior exposure to progesterone 

does not explain why non-proven females are less likely to exhibit overt behavioural 

signs of oestrus. 

 

7.3.3. Oestrogens and irregular cyclicity 

Faecal oestrogen metabolites were highly variable both within and between females 

(Figure 7.2), ranging from around 20 to 400 ng/g faeces. Although there were some 

clear peaks observed during the follicular phase, there were other peaks observed 

during the luteal phase, making it difficult to decipher follicular activity (Figure 7.2). A 

number of females exhibited sustained low concentration that lasted from 6 to 23 

weeks. In 8 females, this low concentration occurred between October and December, 

indicating that this could indicate some seasonal differences in oestradiol 

concentration; however, cyclicity based on progesterone profiles was unaffected 

during this time (Figure 7.2). 
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Controlling for repeated sampling within multiple females, there was no overall 

difference in faecal oestradiol metabolite concentration (log10 E2) between proven and 

non-proven females (χ2=0.519, df=1, P=0.47). However, when comparing log10 E2 

within females according to cycle regularity, log10E2 was lower during periods of 

irregular cyclicity (<20d and >40d cycles and acyclic periods combined) compared to 

periods of regular cyclicity (20-40d cycles) (χ2=6.269, df=1, P=0.012). Furthermore, 

when comparing all four cycle types, log10 E2 was lower during periods of acyclicity 

than during 20-40d cycles (χ2=38.394, df=1, P<0.001), short cycles (<20d) (χ2=13.897, 

df=1, P<0.001) and long cycles (>40d) (χ2=42.466, df=1, P<0.001). Additionally, log10 E2 

was also lower during short cycles, as compared to long cycles (χ2=4.055, df=1, 

P=0.044). In both of these cases, lower oestradiol metabolite concentration could be 

related to a reduction in follicular activity, either associated with acyclic periods where 

perhaps pre-ovulatory follicles do not develop sufficiently to ovulate, and hence no 

progesterone-secreting corpus luteum is formed, or in the case of short cycles, perhaps 

the follicles that do develop may be smaller, producing a lower concentration of 

oestradiol. 

When data were separated by reproductive category, this difference in log10 E2 was 

apparent in both proven and non-proven females. In proven females, log10 E2 was 

significantly lower during periods of acyclicity compared to normal cycles (χ2=13.196, 

df=1, P<0.001), short cycles (χ2=5.209, df=1, P=0.022) and long cycles (χ2=13.683, df=1, 

P<0.001). Similarly, in non-proven females, log10 E2 was significantly lower during 

periods of acyclicity compared to normal cycles (χ2=25.654, df=1, P<0.001), short 

cycles (χ2=8.067, df=1, P=0.005) and long cycles (χ2=28.191, df=1, P<0.001). Overall, 

log10 E2 tended to be lower during periods of irregular cyclicity compared to regular 

cyclicity, as the relationship was close to significance in both proven (χ2=3.495, df=1, 

P=0.062) and non-proven females (χ2=3.805, df=1, P=0.051). 

There were no differences in average log10 E2 concentration between periods of regular 

and irregular cyclicity, either during the preceding luteal phase (χ2=0.199, df=1, 

P=0.66) or during the follicular phase of the current cycle (χ2=1.301, df=1, P=0.25). 

Similarly, there were no differences in average log10 E2 concentration during the 

preceding luteal phase between cycle types, with short (χ2=0.044, df=1, P=0.83), long 

(χ2=0.960, df=1, P=0.33) and acyclic periods (χ2=0.043, df=1, P=0.84) no different from 

normal cycles. The same was true for the follicular phase, with no differences between 

cycle types, with short (χ2=0.037, df=1, P=0.85), long (χ2=2.441, df=1, P=0.12) and 
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acyclic periods (χ2=0.669, df=1, P=0.41) no different from normal cycles. Again, the 

prior exposure to oestradiol does not appear to influence subsequent oestrous cycle 

type. 

However, during the current luteal phase, average log10 E2 concentration tended to be 

lower during irregular periods of cyclicity compared to regular periods (χ2=2.815, df=1, 

P=0.09), with average log10 E2 concentration significantly lower during short cycles as 

opposed to 20-40 day cycles (χ2=0.5.395, df=1, P=0.02).When separated by 

reproductive category, this was true for non-proven females (χ2=0.3.892, df=1, 

P=0.049), but there were no differences between short and normal cycles in proven 

females (χ2=1.354, df=1, P=0.24).  

There were no consistent differences in average log10E2 between proven and non-

proven breeders, either in the preceding luteal phase (χ2=0.325, df=1, P=0.57), 

follicular phase (χ2=0.413, df=1, P=0.52), or the current luteal phase (χ2=0.165, df=1, 

P=0.68). As there were no overall differences in prior exposure to oestradiol between 

proven and non-proven females, this also does not appear to explain why non-proven 

females are less likely to exhibit overt behavioural signs of oestrus. 
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Figure 7.2: Individual profiles of faecal oestradiol metabolite (E2; red) and faecal progesterone 

metabolite (PG; purple) concentration. Arrows on figure (c) represent when mating occurred. 
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7.3.4. Glucocorticoids and irregular cyclicity 

When comparing log10 fGCM within females according to cycle regularity, log10 fGCM 

were higher during periods of irregular cyclicity compared to periods of regular 

cyclicity (χ2=5.052, df=1, P=0.025). Furthermore, when comparing all four cycle types, 

log10 fGCM was higher in long cycles (>40d) than during 20-40d cycles (χ2=16.905, 

df=1, P<0.001), short cycles (<20d) (χ2=5.461, df=1, P=0.019) and periods of acyclicity 

(χ2=17.505, df=1, P<0.001) (Figure7.3). 

 

 

Figure 7.3: Faecal glucocorticoid metabolite (fGCM) concentration during normal, short and 

long cycles, and acyclic periods. Bars represent mean fGCM+/-1SE; letters (a, b) reflect 

significant differences. 

 

However, when data were separated by reproductive category, this difference in log10 

fGCM was only apparent in non-proven females, with higher log10 fGCM during periods 

of irregular cyclicity (χ2=4.750, df=1, P=0.029), and specifically higher log10 fGCM 

concentration during long cycles (>40d) than during 20-40d cycles (χ2=20.285, df=1, 

P<0.001), short cycles (<20d) (χ2=6.796, df=1, P=0.009) and periods of acyclicity 

(χ2=24.960, df=1, P<0.001). In proven females, no differences in log10 fGCM were 
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observed either between periods of regular and irregular cyclicity (χ2=0.235, df=1, 

P=0.63), or between cycle types (all P>0.05). 

There were no differences in average log10 fGCM during the preceding luteal phase 

(χ2=0.969, df=1, P=0.32) prior to either regular or irregular periods of cyclicity. 

Similarly, there were no differences according to cycle type, with average log10 fGCM no 

different during the luteal phase prior to long (χ2=1.044, df=1, P=0.31), short (χ2=0.282, 

df=1, P=0.60) or acyclic periods (χ2=0.227, df=1, P=0.63), compared to before normal 

cycles. This indicates that fGCM concentration in the preceding period does not predict 

whether a normal or irregular cycle type may occur. 

Although elevated log10 fGCM was observed during long cycles, when controlling for 

repeated sampling within individuals, using average log10 fGCM to compare between 

the follicular and luteal phase of different cycle types did not show this effect. There 

were no differences between regular and irregular periods of cyclicity, either during 

the follicular phase (χ2=0.561, df=1, P=0.45), or the luteal phase (χ2=0.442, df=1, 

P=0.51) of the current cycle. Furthermore, there were no differences in average log10 

fGCM during the follicular phase of the current cycle between long (χ2=0.001, df=1, 

P=0.97), short (χ2=0.484, df=1, P=0.49), or acyclic periods (χ2=1.028, df=1, P=0.31), 

compared to normal cycles, indicating that changes in average log10 fGCM during the 

follicular phase do not predict the subsequent occurrence of irregular cycle types. 

Similarly, there were no differences in average log10 fGCM during the luteal phase of 

long (χ2=0.001, df=1, P=0.97) or short (χ2=0.906, df=1, P=0.34) cycles, compared to 

normal cycles between 20-40 days in length. Although this is not consistent with the 

previous finding above, this may reflect the decreased sensitivity of using average 

concentrations, when changes in hormone concentration are relatively small. 

 

7.3.5. Duration of prior hormone exposure 

The length of the preceding luteal phase was compared between cycle types, to 

determine whether the duration, as opposed to the concentration of prior hormone 

exposure may influence the type of cycle that subsequently occurs. In all females, both 

proven and non-proven alike, the length of the preceding luteal phase varied between 

regular and irregular periods of cyclicity (χ2=4.781, df=1, P=0.029). when broken down 

by cycle type, the luteal phase prior to long cycles were significantly longer than the 
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luteal phase prior to 20-40 day cycles (χ2=294.836, df=1, P<0.001). Additionally, the 

length of the preceding luteal phase was significantly shorter prior to short cycles 

(χ2=12.163, df=1, P<0.001), and acyclic periods (χ2=26.901, df=1, P<0.001), compared 

to those cycles of 20-40 days in length, and the previous luteal phase was also shorter 

prior to acyclic periods compared to short cycles (χ2=4.911, df=1, P=0.027). This 

indicates that although there was no clear evidence that the average concentration of 

progesterone, oestradiol or glucocorticoids during the preceding cycle influenced the 

subsequent cycle type, perhaps the duration of hormone exposure during the 

preceding luteal phase may be related to the type of cycle that occurs subsequently.  

 

7.4. Discussion 

All of the females included in this study exhibited periods of both regular (cycles 20-40 

days in length), and irregular (cycles <20 day or >40 days in length, or periods of 

acyclicity) oestrous cyclicity over the course of a year. We have previously 

demonstrated (Chapter 5) that the longer cycle types are more often observed in non-

proven females, and among proven females, acyclic periods are more often seen in 

females that have not bred for at least seven years. Furthermore, results from Chapter 

5 have also indicated that non-breeding females are also less likely to exhibit 

behavioural signs of oestrus on a regular basis. As these two factors may have potential 

consequences for reproductive success, it is important to determine what may be 

causing these periods of irregular cyclicity, and why differences in oestrus expression 

may occur. In this chapter, we have investigated the influence of previous and current 

hormone exposure on cycle regularity and cycle type.  

The oestrous cycle is controlled by a delicate balance of hormones from the 

hypothalamic-pituitary-ovarian axis, which can be prone to disruption, particularly 

during the period preceding oestrus (Dobson and Smith 2000). One area of 

investigation for this study was the role of adrenal activity, which can interfere with 

normal reproductive function at a number of levels along the hypothalamic-pituitary-

ovarian axis (Wingfield and Sapolsky 2003). Indeed, a key finding of this study was that 

the occurrence of long oestrous cycles was accompanied by an increased concentration 

of faecal glucocorticoids, compared to any other cycle type, particularly in non-proven 

females. One potential mechanism by which adrenal activity can disrupt reproduction 

is through alteration of gonadotropin-releasing hormone (GnRH), and subsequently 
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luteinising hormone (LH) pulsatility (Dobson and Smith 2000), either at the level of the 

hypothalamus, pituitary, or both. Timing of these pulses is crucial for normal follicular 

development and ovulation, so if the correct sequence of events does not occur, there is 

the potential for disruption. One possible scenario is that GnRH/LH pulse frequency is 

sufficient for follicular growth, but insufficient to result in the LH surge required for 

ovulation; resulting in an anovulatory follicle (Dobson and Smith 2000). The presence 

of anovulatory follicles has been reported in a number of species (Lopez-Gatius et al. 

2001; McCue and Squires 2002; Veiga-Lopez et al. 2006; Wiltbank et al. 2002), 

including the black rhinoceros (Radcliffe et al. 2001). Ultrasound investigation of 

ovarian events in two black rhino females revealed three incidences of such structures 

which formed at the time of expected ovulation, but were not associated with signs of 

follicular collapse or formation of a corpus luteum. Corresponding hormone analysis in 

one such case revealed an erratic progesterone profile during this time, although 

glucocorticoids were not investigated. Although these events were all observed during 

October/November and were considered to be a seasonal occurrence, we have 

observed erratic patterns of cyclicity and long oestrous cycles across all months of the 

year (Chapter 5), indicating that irregular cyclicity is not restricted to seasonal 

differences. The data presented here indicate that increased adrenal activity could be 

related to extended oestrous cycles in females black rhinoceros.  

As indicated in Chapter 5, clear differences in the expression of overt oestrous 

behaviours occur between breeding and non-breeding females, and a better 

understanding of what may be limiting the expression of overt behaviours would 

benefit management of this captive breeding programme, and the species in general. 

However, similar to that reported by Brown et al. (2001) for captive black rhinoceros 

in America, faecal oestradiol metabolite concentration was highly variable both within 

and between females included in this study. Some clear peaks of oestradiol metabolite 

concentration occurred during the follicular phase, which might be associated with 

follicle development and ovulation, but other increases in concentration were also 

observed during the luteal phase, making it difficult to decipher follicular activity. 

However, average log10 E2 concentration was lower during periods of acyclicity, and 

during short cycles, when compared to normal cycles of 20-40 days. The lower 

concentration of oestradiol metabolites during acyclic periods indicates that there may 

be reduced follicular development. This could result in the lack of a pre-ovulatory 

follicle, and may be the reason that no corpus luteum appears to form during these 

periods to secrete the progesterone reflected by the cyclic pattern in a normal oestrous 
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cycle. Similarly, short cycles may be associated with lower oestradiol than normal 

cycles, as although follicles must develop and lead to ovulation in order to see the cyclic 

pattern in progesterone metabolites, they may perhaps be smaller, and therefore result 

in a lower concentration of oestradiol metabolites being secreted. However, there do 

not appear to be any clear differences in faecal oestradiol concentration between 

proven and non-proven females that could explain the differences in expression of 

oestrus.  

Oestradiol, in the relative absence of progesterone prior to ovulation acts upon the 

hypothalamus to induce oestrus (Allrich 1994). Although oestradiol is considered to be 

the primary hormone driving expression of oestrous behaviours, the relative 

concentration of both progesterone and glucocorticoids were also investigated here. 

The prior exposure of progesterone may also be important to ensure behaviours are 

expressed (Walker et al. 2008). Additionally increased adrenal activity, and the 

subsequent release of glucocorticoids could interfere with the production of both 

oestradiol and progesterone (Wingfield and Sapolsky 2003), potentially disrupting the 

normal expression of oestrous behaviours. However, in this study there were no clear 

differences observed between regular and irregular periods of cyclicity, or in overall 

hormone concentrations between breeding and non-breeding females that might help 

to explain the inconsistent expression of oestrous behaviours. 

However, it is possible that using faecal samples may not be the best sample medium to 

investigate oestrogens in the black rhinoceros. Although the route of excretion of 

different steroids has not been conducted in this species, in the Sumatran rhinoceros 

(Dicerorhinus sumatrensis) (Heistermann et al. 1998)and African elephant (Loxodonta 

africana)(Wasser et al. 1996), progesterone metabolites are mainly excreted into the 

faeces, whereas oestrogen metabolites are primarily excreted via the urine (Hodges et 

al. 2010). It may therefore be the case that oestradiol metabolites in faeces only 

represent a small portion of the biologically active hormone present in the circulation, 

perhaps supported by the low response in faecal oestradiol metabolites observed 

following GnRH vaccination (Chapter 2). An alternative approach, such as using urine, 

may be required to investigate biologically relevant changes in oestradiol 

concentration that may help to understand differences in expression of oestrus. 

Secondly, the use of average hormone concentrations to investigate differences during 

the preceding oestrous cycle phase may not allow sufficient detail into changes that 

may occur during this period. Differences in hormone concentration often appear to be 
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quite subtle, so the benefit of longitudinal sampling is that these differences can be 

detected over time. However, the use of average hormone concentration is commonly 

used in this field, particularly when faecal samples are collected opportunistically. This 

may not always be the right approach when investigating short-term changes in 

hormone concentration (Edwards et al. 2013); Hill et al. in prep; Trotter et al. in prep.), 

as average hormone concentration may dampen the variation in hormone 

concentration that is of interest. This therefore highlights the importance of looking at 

changes in hormone concentration within individuals over time. Perhaps a longitudinal 

investigation of oestrogens, using urine samples alongside faeces, and detailed records 

of when oestrus behaviours are exhibited may prove beneficial. 

The duration of the preceding luteal phase did appear to vary between the different 

cycle types, indicating that the prior hormone state of an individual may indeed be of 

relevance to their subsequent cyclicity. The preceding luteal phase was significantly 

shorter prior to short cycles and shorter still prior to acyclic periods. One potential 

similarity between short and acyclic periods, is that perhaps follicular development is 

sub-optimal, supported by the lower oestradiol concentration also observed during 

these two cycle types. Perhaps a shorter preceding luteal phase, and corresponding 

shorter duration of exposure to progesterone, may have a negative effect on follicular 

development. This has been observed in humans, where women that have menstrual 

cycles with a short luteal phase exhibit poor follicular development (Sherman and 

Korenman 1974; Smith et al. 1985; Strott et al. 1970). This could result in smaller 

follicles that either fail to ovulate, in the case of acyclic periods, or ovulate but may 

have a weaker corpus luteum, resulting in shorter oestrous cycle length. The preceding 

luteal phase was also significantly longer prior to long cycles, which could also alter 

follicular development, resulting in prolonged growth (Fortune et al. 1991). Although 

further investigation is required into this relationship between prior hormone 

exposure and subsequent oestrous cycle length, this finding does indicate that even 

subtle changes in the hormone milieu could impact subsequent cyclicity. 

In summary, differences in faecal hormone concentration have been observed between 

periods of regular and irregular cyclicity in captive black rhinos. Specifically, faecal 

glucocorticoids were higher during long cycle types and faecal oestradiol metabolites 

lower during periods of acyclicity. However, oestradiol, progesterone or glucocorticoid 

concentration during the oestrous cycle, or the preceding luteal phase could not 

explain potential differences in the expression of oestrous behaviours. However, the 
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duration of the preceding luteal phase, was related to oestrous cycle types, highlighting 

that perhaps the prior hormone exposure may indeed be of relevance to the occurrence 

of a normal oestrous cycle, perhaps via the effect on follicular development, and 

therefore warrants further investigation. 

 

7.5. Conclusion 

 As previously demonstrated in Chapter 5, oestrous cycles of varying length are 

apparent in female black rhinoceros, including cycles shorter (<20 days) and 

longer (>40 days) than the normal cycle length of 20-40 days; periods of 

acyclicity are also observed. 

 Furthermore, inconsistent expression of oestrus may be related to differential 

reproductive success (Chapter 5). 

 Changes in hormone concentration during the current and preceding oestrous 

cycle were investigated, to determine whether differences in the hormone milieu 

influence 1) the subsequent occurrence of these different cycle types, or 2) the 

differential expression of oestrous behaviour between proven and non-proven 

females. 

 Faecal glucocorticoid metabolite (fGCM) concentration was higher during 

periods of irregular cyclicity compared to during normal cycles, and furthermore, 

were higher during longer cycles. This relationship was observed in non-proven 

females, but not in proven females. 

 Faecal oestradiol metabolite (fE2) concentration was lower during periods of 

irregular cyclicity, and furthermore, in both proven and non-proven females, fE2 

was significantly lower during acyclic periods, and during shorter cycles (<20 

days) than during normal oestrous cycles (20-40d).  

 However, there were no consistent differences in average oestradiol 

concentration between proven and non-proven females that could explain the 

differences in behavioural oestrus. 

 Furthermore, there were no differences between the progesterone, oestradiol or 

glucocorticoid metabolite concentrations observed during the luteal phase prior 

to regular or irregular cycles. 

 Similarly, no differences were observed during the follicular or luteal phases of 

the different cycle types that explain their occurrence. 
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 However, the duration of the preceding luteal phase was significantly longer 

prior to a long cycle, and significantly shorter prior to both short cycles and 

acyclic periods. The duration of the preceding luteal phase may influence 

follicular development, and in this way could influence the type of oestrous cycle 

observed. 
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8. GENERAL DISCUSSION AND OVERALL CONCLUSIONS 

The global extinction crisis means that each day more species move closer to 

extinction, as habitat is lost and species are placed under increasing pressure due to 

anthropogenic causes (Magurran and Dornelas 2010). Ex situ conservation and captive 

breeding programmes have an important role to play, providing a reservoir to protect 

against further species decline, whilst also raising public awareness of global 

conservation issues, and financial support for in situ conservation. Furthermore, 

maintaining healthy ex situ populations allows a controlled environment in which to 

learn about the biology of species that may be difficult to observe in the wild, providing 

scientific knowledge to better coordinate global conservation efforts. 

For ex situ populations to fulfil these important roles, they must be self-sustaining, both 

demographically and genetically to ensure that they can act as a suitable reserve for 

their in situ counterparts. This means they must be self-replacing often without any 

further supplementation from the wild (Leus et al. 2011b), and maintain sufficient 

genetic diversity representative of their wild counterparts, so as not to lose the 

potential for natural behaviour and future adaptation (McPhee and Carlstead 2010). 

There is increasing pressure for captive breeding programs to adopt an evidence-based 

approach to ensure that populations are meeting increasingly strict criteria for 

population viability (Lacy 2013). However, more recently, it has been suggested that 

many cooperative breeding programs are failing to reach these targets (Conway 2011; 

Leus et al. 2011a; Long et al. 2011), and these initial criteria may not be sufficiently 

strict to preserve the viability of ex situ populations in the longer term (Lacy 2013). 

With fewer than 5000 black rhinoceros (Diceros bicornis) in the wild and the on-going 

threat of poaching jeopardising the survival of remaining populations, ex situ breeding 

programmes play an important role for the conservation of this critically endangered 

species. The eastern subspecies (D. b. michaeli) is currently the most threatened of the 

three remaining subspecies, with only around 800 individuals remaining in Kenya, 

Tanzania and an out of range population in South Africa. Coordinated captive breeding 

programs have the potential not only to act as an insurance policy against further 

decline, but also provide the potential for reintroduction should conditions allow. 

However, ex situ populations are currently under-performing, with inconsistent rates 

of reproduction one of the factors limiting population growth. The aim of this thesis 

was to gain a better understanding of factors that influence population performance 

and reproductive success in the European captive population of eastern black 
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rhinoceros, in an attempt to improve population performance and maximise the 

conservation potential of the breeding program for this species. 

 

 The first aim of this thesis was to gain a better understanding of factors that 

influence population performance in this species, to determine biological limits for key 

demographic parameters relating to fecundity, mortality and population structure, and 

identify where there may be potential to improve population performance.  

In Chapter 3, demographic information on eight populations of eastern black 

rhinoceros within managed reserves, provided by Kenya Wildlife Service (KWS), were 

used to calculate a number of key demographic parameters. Firstly, historical data and 

simulated population projection models were used to determine the current 

performance of in situ populations, and how population growth rates vary under 

natural conditions. Although projected population growth rates were quite variable 

between reserves, ranging from 2.26 to 7.04% per annum, six of the eight reserves 

were projected to exceed a target growth rate of at least 5% per annum. 

Secondly, demographic data from the last 25 years were used to estimate several 

indicators of population performance relating to mortality, reproduction and 

population structure, to establish both the normal range and variability between 

individuals and across reserves. These parameters were compared to previously 

established targets which were designated as the minimum necessary to attain 5% 

growth per annum. In general, measures of population structure and mortality were 

achieving optimal targets; however, even in reserves exceeding 5% growth per annum, 

average reproductive parameters were not always being achieved. A high degree of 

variation was observed between individuals, particularly in age at first reproduction 

and inter-birth interval, and at a population level, the percentage of females breeding 

each year. This highlights that even though most of these populations are growing at an 

acceptable rate, there are still improvements that could be made to maximise 

performance. In particular, individual monitoring to determine individuals that are not 

meeting the necessary targets would be beneficial, to identify individuals or sub-

populations that may require additional management to improve their success, and 

ensure that all individuals have the potential to contribute genetics to future 

generations.  
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Demographic monitoring of in situ populations of black rhinoceros not only provides 

useful information to guide biological management of these reserves, but can also be 

used as a reference for the ex situ population, to determine where there may be room 

for improvement. In Chapter 4 of this thesis, demographic information from the EEP 

studbook for the eastern black rhinoceros was used to perform population viability 

analysis to determine whether the European captive population is currently self-

sustaining. Furthermore, differences in demographic parameters were compared 

within this population over time, and between in situ and ex situ populations of eastern 

black rhinoceros, to identify factors that may be limiting population performance ex 

situ. 

Although the EEP population is demographically self-sustaining, it is currently only 

growing at around 1-2% per annum, well below the desired target of 5%. Data from the 

last 10 years has revealed a reduction in fecundity compared to the last 25 years, with 

a lower percentage of adult females breeding each year. Furthermore, only 37.1% of 

males and 36.1% females from the European studbook of D. b. michaeli have produced 

offspring in their lifetime. This historical reproductive skew is also reflected in the 

current population, with 42.1% of mature males and 48.6% of mature females yet to 

reproduce, with a further 16.7% and 39.1% of previously proven males and females 

that have not bred for over seven years. Compared to the in situ reference populations, 

females begin breeding later, have longer inter-birth intervals, and a lower proportion 

of females reproduce each year. Overall, the high proportion of non-breeding males 

and females within this population could be the main factor limiting the performance 

of this population.  

 

 As sub-optimal reproduction is the main factor limiting the performance of the 

EEP population, both in terms of total reproductive output, and unequal contribution 

between individuals, the next aim of this thesis was to investigate intrinsic differences 

between breeding and non-breeding males and females within the population.  

In Chapter 5, faecal hormone analysis was conducted on approximately 90% of the EEP 

population of eastern black rhinoceros, to establish the current reproductive status of 

both males and females within this population. The purpose of this was to characterise 

oestrous cyclicity based on faecal progesterone metabolite concentration, and 

determine how regularly females were cycling, and to establish testosterone 
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concentration and variability among males. Furthermore, comparisons were made 

between breeding and non-breeding individuals to determine whether intrinsic 

differences in reproductive hormones may be related to reproductive success.  

Although all females exhibited at least some evidence of cyclicity, a high incidence of 

irregular cyclicity was also observed. Similar to other studies, typical cycles were 

considered to be 20-40 days in length, but cycles both shorter (<20 days) and longer 

(>40 days) than normal were observed, as were periods of acyclicity, where faecal 

progesterone metabolite concentration remained at baseline for periods up to 17 

weeks. Although all cycle types were observed in both proven and non-proven females, 

long cycles were exhibited more often in non-proven females, while among proven 

females, periods of acyclicity were more common in females that had not bred for at 

least seven years. Furthermore, non-proven females also scored higher body condition 

scores than proven females, and were less likely to exhibit regular oestrous behaviours. 

In males, faecal testosterone concentration was positively correlated with age, but 

controlling for this, proven breeders had significantly higher testosterone 

concentration than non-proven males. This chapter indicates that there may be 

intrinsic differences in reproductive hormones between breeding and non-breeding 

individuals, with irregular cyclicity prevalent among females, and reduced testosterone 

concentration in non-breeding males. Furthermore, a failure to exhibit oestrous 

behaviours may further limit opportunities for breeding. However, the reasons for 

these differences require further investigation. 

 

 The next aim of this thesis was to perform an exploratory analysis to investigate 

whether extrinsic factors relating to the captive environment were related to the 

observed differences in reproductive success. 

In Chapter 6, social and environmental factors, and how individuals may differ in their 

behavioural response to their surroundings, were compared between breeding and 

non-breeding individuals. Furthermore, these extrinsic factors were investigated with 

respect to adrenal activity, to determine whether challenges in the captive 

environment, or differences in how individuals respond to such challenges, may be 

related to disruption of reproductive function. Although there were certain elements of 

the social and physical environment that were correlated with adrenal activity in both 

male and female black rhinos, these were not related to differences in reproductive 



 

 
283 

success. Instead certain aspects of the captive environment may have led to increased 

adrenal activity perhaps as a result of increased activity, as opposed to chronic 

stressors associated with the captive environment.  

Differences in how individuals respond to certain aspects of their environment, 

specifically towards humans and towards their physical environment, were not 

consistent with differences in reproductive success. However, in both males and 

females, individuals that were scored as being more unpredictable had higher faecal 

glucocorticoid concentration than those that were scored as almost always behaving 

the same. This suggests that there may be differences in how individuals respond to 

challenges in their environment, and this may be related to adrenal activity. 

Furthermore, non-proven females tended to be scored as more unpredictable than 

proven females, indicating a potential avenue for further investigation. 

Differences in faecal testosterone concentration were also correlated with certain 

aspects of both enclosure design and the social environment, but again, these were not 

consistent with differences in breeding status. This suggests that the social and 

physical environment may not fully explain the differences observed in reproductive 

success between males in this population, and other factors that could underlie both 

testosterone concentration and differential reproductive success could be important in 

understanding reproductive skew amongst males. 

 

 As irregular cyclicity was observed to be quite prevalent in this population, and 

may be an important factor in understanding differential reproductive success, the final 

aim of this study was to investigate reproductive cyclicity within females, to investigate 

whether any differences in progesterone, corticosterone or oestradiol metabolite 

concentration were apparent between different cycle types. 

The occurrence of irregular cyclicity was investigated within a sub-set of the study 

females where samples were collected continuously every other day for a period of 9-

15 months. In all of these females, whether proven (N=6) or non-proven breeders 

(N=12), a combination of regular and irregular cycles were observed during the study 

period. The key difference between cycle types was an increase in fGCM during 

irregular cycles (long, short and acyclic combined) compared to normal periods of 

cyclicity, and specifically increased fGCM during cycles more than 40 days in length, 

indicating potential disruption to normal physiology. However, what we cannot yet 
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determine is what may be the cause of this increase, or in fact whether the increase in 

fGCM is the cause, or result of this extended cycle type. Although it is feasible that 

adrenal activity could lead to the disruption of normal HPG activity, and could 

potentially result in the persistence of anovulatory follicles, this has not yet been 

confirmed as the cause of extended cycles in this species. However, what is apparent is 

that irregular cyclicity is perhaps more common than previously thought in the black 

rhinoceros, and could have implications for reproductive success. 

However, although oestrogens were lower during periods of acyclicity and during short 

cycle types, indicating that this could be a valid route to investigate differences in 

cyclicity between females, overall the results of this aspect of the study were not 

conclusive. Perhaps an alternative method of measuring oestrogen concentration may 

be required to investigate the observed differences in expression of oestrus, as faecal 

measures were highly variable both within and between females, but consistent 

patterns could not be identified. Furthermore, the concentration of both progesterone 

and oestradiol metabolites during the preceding luteal phase and current follicular 

phase of the oestrous cycle did not appear to vary between cycle types, or between 

proven and non-proven females. However, the duration of the preceding luteal phase 

was significantly higher prior to long cycles, and significantly lower prior to both short 

cycles and acyclic periods, when compared to cycles of 20-40 days in length. This 

suggests that there may some alteration to normal physiology prior to these irregular 

periods of cyclicity, but the approach used here, using the average hormone 

concentration during the follicular or luteal phases, could not elucidate what 

differences may occur. Instead, it may be necessary to look at the changes in hormone 

concentrations that occur at critical times during the preceding cycle, to determine if 

differences in hormone secretion may exist either between different cycle types, or 

between breeding and non-breeding females. 

 

CONCLUSIONS 

The European captive population of eastern black rhinoceros, although currently self-

sustaining, is performing sub-optimally both with respect to their in situ counterparts, 

and to the proposed target of 5% growth per annum. Population performance is 

primarily limited by sub-optimal reproduction, both in terms of individuals producing 

fewer calves per annum, but also due to the high degree of reproductive skew across 
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the population, leading to a large proportion of individuals not producing offspring and 

contributing genetics to future generations. 

There appear to be several issues limiting reproduction in this population. Firstly, a 

number of different oestrous cycle types have been observed, including periods of 

acyclicity and oestrous cycles ranging from less than 20 days in length, to more than 40 

days in length. However, similar to other studies where erratic cyclicity was observed, 

we have considered only those cycles between 20-40 days in length as normal oestrous 

cycles typical of this species (Brown et al. 2001; Garnier et al. 2002). We propose that 

periods of acyclicity and both the longer and shorter cycle types may be classed as 

irregular cyclicity, and their occurrence needs to be explained. At the very least, both 

acyclic periods lasting between 12-127 days, and long cycles lasting between 42-171 

days as observed during this study will reduce the number of times a female is in 

oestrus over a given time-frame when compared to an average cycle of 27.1 ± 5 days, 

and therefore provide reduced opportunities for mating.  

Furthermore, the results of this study also suggest that long cycles appear to be 

associated with increased adrenal activity, whereas periods of acyclicity are associated 

with reduced oestradiol concentration, when compared to the 20-40 day cycles. 

Although periods of irregular cyclicity have been observed in both breeding and non-

breeding females, long cycles were more apparent in non-proven than proven females, 

and periods of acyclicity more often seen in females that have not bred for at least 

seven years, indicating that irregular cyclicity could therefore be related to 

reproductive success. 

Non-proven females were also scored with higher body condition scores than proven 

females. Although we could not directly relate body condition to irregular cyclicity, 

obesity has been demonstrated by a number of other studies to be associated with 

reproductive failure, including extended oestrus cycle length in mares (Vick et al. 

2006). In order to understand the potential causes and consequences of these different 

cycle types, further investigation is required. For example, a combination of 

longitudinal endocrine monitoring and ultrasound investigation may be beneficial to 

understand whether long and short oestrous cycles, and acyclic periods are indeed 

abnormal and potentially pathological, or whether they merely represent one of a set of 

normal physiological occurrences to external stimuli. 
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A further issue indicated by the results of this study is the inconsistent expression of 

overt behavioural signs of oestrus. In particular, non-proven females were less likely 

than proven females to exhibit regular signs of oestrus as identified by their keepers. 

Although this could be related to the increased incidence of long cycles, there were also 

some cases reported during this study period, where faecal progesterone metabolite 

concentration indicated that the female should have been in oestrus, but behavioural 

signs were not observed. This problem has important management consequences, as in 

this species, breeding pairs are often kept separate outside of oestrus, so a lack of overt 

signs may result in rhinos not being introduced at an opportune time for mating. 

However, although variation in faecal oestradiol concentration was observed both 

within and between females, no relationships could be determined either with periods 

of regular and irregular cyclicity, or between proven and non-proven females. An 

alternative technique for measuring oestrogens may prove useful in understanding 

why some females fail to express overt signs of behavioural oestrus, and perhaps urine 

measures need to be explored as a non-invasive alternative to faeces. Furthermore, a 

more detailed investigation within individual females that are known to show poor 

behavioural signs of oestrus would be beneficial, incorporating more detailed 

behavioural observations alongside longitudinal hormone analyses. 

The intrinsic differences in reproductive hormones between breeding and non-

breeding individuals were not limited to females. Breeding males in this population 

also exhibited higher faecal testosterone metabolite concentration than non-breeding 

males. However, during this initial exploratory investigation, no clear relationships 

could be identified with any social or environmental factors that might explain these 

differences. It may therefore be beneficial to investigate whether other intrinsic factors 

relating to quality or dominance might underlie these differences. Furthermore, we 

cannot yet determine the causal relationship as to whether proven males are better 

able to breed because their testosterone concentration is higher, or whether 

testosterone is increased due to their prior breeding status. 

With around 40% of both males and females in the current population as yet failing to 

reproduce, it is sometimes unclear whether both individuals within a non-breeding 

pair are contributing to the failure to reproduce, or whether one individual may be 

reducing the reproductive potential of the other. During the course of this study, it has 

become apparent that some females are mated, but either fail to conceive or early 

pregnancy loss goes undetected (Berkeley et al. 1997; Roth 2006), whereas some 
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females fail to exhibit oestrus and so are not successfully introduced to a male. This 

latter scenario may be due to keepers not observing oestrus and so not being able to 

introduce individuals at the right time, or may be that when they do introduce a male 

and female, aggression is high and no mating occurs. There is still more we need to 

understand about reproduction in the black rhinoceros, not least the potential causes 

and long-term consequences of irregular oestrous cycles. However, hormone analysis 

has proven to be a very useful tool, providing an extra insight into reproductive 

physiology to help guide breeding management, especially useful when behavioural 

signs of oestrus are poor.  

Although this study has not been able to fully elucidate differences in reproductive 

success, it has potentially ruled out certain issues and highlighted areas for further 

research. Extrinsic factors do not appear to explain the differences between proven and 

non-proven males or females, and furthermore, do not appear to be related to chronic 

adrenal activity in this population. However one area that we have not been able to 

address is whether social factors may be important to facilitate reproductive function. 

Indeed, little work has yet been conducted on this subject in the black rhinoceros, but it 

may be an interesting area for further study. Black rhinos have been described as both 

polygynous and polyandrous (Hutchins and Kreger 2006), with males mating with 

multiple females and vice versa. However, under natural conditions, black rhinos tend 

to be relatively solitary outside of oestrus (Goddard 1967), and with relatively poor 

eyesight, much of their communication is thought to be olfactory (Estes 1991), with 

urine spraying, dung scraping and flehmen all common behaviours (Berkeley et al. 

1997; Garnier et al. 2002). It may therefore be interesting to determine whether 

olfactory communication could play a potential role in differential reproductive 

success. For instance, if a female is not cycling regularly, perhaps she may not be 

conveying the correct signals to the male, and this may provide one explanation for 

why successful introductions do not occur. Similarly, there may be signals of quality or 

compatibility that we do not yet understand that could help to explain why certain 

pairs of individuals do not breed successfully. 

In summary, this study has indicated that although this population of eastern black 

rhinoceros is demographically self-sustaining, sub-optimal reproduction is limiting 

both the genetic diversity and the future potential for growth. Nearly 40% of the 

current population have yet to produce offspring, and intrinsic differences in 

reproductive hormones in both males and females may be related to differential 
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reproductive success. Although we have not yet been able to identify the potential 

cause of these differences, it is clear that irregular cyclicity and reduced testosterone 

concentration may be limiting reproductive success, and further investigation is 

required into the potential causes of these differences in reproductive hormone 

profiles. 

This research also has implications for the population management of other taxa, as the 

methodology used here could be applied to other managed populations, both in situ 

and ex situ. Population viability analysis can be a useful tool to estimate the likely 

future status of a population, and can provide an indication of particular aspects of a 

species’ biology, such as mortality or fecundity that have the most influence on the 

performance of a particular population (Dunham et al. 2008; Faust et al. 2006; 

Fernandez-Olalla et al. 2012). This allows targeted management to focus resources on 

those particular parameters, or sub-sets of individuals that could most benefit overall 

population performance. The comparison of different programs to perform these 

analyses has also provided a useful insight into how robust these different programs 

can be, as long as the data that is used to construct them is suitable. However, a 

thorough understanding of the data in question is essential to produce accurate 

predictions, rather than assuming a particular program will suit the data available. 

Nonetheless, when used correctly, PVA can be a very useful tool for in situ and ex situ 

conservation. 

To provide the optimal conditions for ex situ or in situ breeding programmes, it is 

important to understand the physiology of a particular species, and understand what 

intrinsic and extrinsic factors can influence both individual and population 

performance. This may include ways to improve reproduction, reduce mortality, 

reduce behavioural abnormalities, or understand social influences such as mate choice 

or social suppression. All of these questions could potentially be addressed using 

hormone analysis (Brown 2006; Clark et al. 2011; Husak and Moore 2008; Mullner et 

al. 2004; Young et al. 2008), and the development of non-invasive techniques for 

monitoring both reproductive and adrenal hormones mean that these tools can be used 

on a wide variety of different taxa (Graham et al. 2001; Watson et al. 2013). 

Furthermore, the development of field techniques (Beehner and Whitten 2004; 

Freeman et al. 2010; MacDonald et al. 2008; Pappano et al. 2010; Santymire and 

Armstrong 2010), have made these techniques more easily applicable to free-ranging 

populations. The approach used here could therefore be beneficial to other species, 
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particularly where differences in reproductive success are observed, or where 

hormone analysis could prove beneficial in gaining a better understanding of species 

biology. 

Although this study has focused on the black rhino, this approach also forms a basis for 

other multi-institutional studies, illustrating that longitudinal hormone analyses can be 

conducted successfully within coordinated captive breeding programmes, and as such 

can provide useful data to guide population management. Captive breeding 

populations are important to reinforce in situ conservation, and when managed 

cooperatively valuable information can be obtained to help increase our knowledge of 

species biology, which can be beneficial for both in situ and ex situ conservation of 

endangered species. To ensure the persistence of endangered species in the future, 

evidence-based population management is essential to maximise the work of global 

conservation efforts. 

  



 

 
290 

REFERENCES 

Adcock, K., 2001. Black rhino carrying capacity and performance. In: Proceedings of a 

SADC Rhino Management Group (RMG) workshop on biological management to meet 

continental and national black rhino conservation goals. pp. 27-34. 

Akçakaya, H.R., 2002. RAMAS Metapop: Viability analysis for stage-structured 

metapopulations. Applied Biomathematics, Setauket, New York. 

Akçakaya, H.R., 2005. RAMAS Metapop: Viability analysis for stage-structured 

metapopulations. Applied Biomathematics, Setauket, New York. 

Allrich, R.D., 1994. Endocrine and neural control of estrus in dairy cows. Journal of Dairy 

Science 77, 2738-2744. 

Amaral, R.d.S., Rosas, F.C.W., Viau, P., d'Affonseca Neto, J.A., da Silva, V.M.F., de Oliveira, 

C.A., 2009. Noninvasive monitoring of androgens in male Amazonian manatee 

(Trichechus inunguis): biologic validation. Journal of Zoo and Wildlife Medicine 40, 458-

465. 

Amin, R., Thomas, K., Emslie, R.H., Foose, T.J., Strien, N.V., 2006. An overview of the 

conservation status of and threats to rhinoceros species in the wild. International Zoo 

Yearbook 40, 96-117. 

Anestis, S.F., 2010. Hormones and social behavior in primates. Evolutionary 

Anthropology 19, 66-78. 

Animals (Scientific Procedures) Act, 1986.  

http://www.legislation.gov.uk/ukpga/1986/14/contents. Last accessed: 11 June 2013 

Anon, 2009. Lewa Wildlife Conservancy annual report. p. 20. Lewa Wildlife Conservancy. 

Arlettaz, R., Patthey, P., Baltic, M., Leu, T., Schaub, M., Palme, R., Jenni-Eiermann, S., 2007. 

Spreading free-riding snow sports represent a novel serious threat for wildlife. 

Proceedings of the Royal Society of London. Series B: Biological Sciences 274, 1219-1224. 

Asa, C.S., 1996. Reproductive physiology, In Wild mammals in captivity. Principles and 

techniques. eds Kleiman, D.G., Allen, M.E., Thompson, K.V., Lumpkin, S., pp. 390– 417. The 

University of Chicago Press, Chicago. 

http://www.legislation.gov.uk/ukpga/1986/14/contents


 

 
291 

Asa, C.S., Ginther, O.J., 1982. Glucocorticoid suppression of oestrus, follicles, LH and 

ovulation in the mare. Journal of Reproduction and Fertility. Supplement 32, 247-251. 

Asa, C.S., Goldfoot, D.A., Garcia, M.C., Ginther, O.J., 1984. The effect of estradiol and 

progesterone on the sexual behavior of ovariectomized mares. Physiology and Behavior 

33, 681-686. 

Asdell, S.A., Dealba, J., Roberts, J.S., 1945. The levels of ovarian hormones required to 

induce heat and other reactions in the ovariectomized cow. Journal of Animal Science 4, 

277-284. 

Asher, G.W., O'Neill, K.T., Scott, I.C., Mockett, B.G., Fisher, M.W., 2000. Genetic influences 

on reproduction of female red deer (Cervus elaphus) (1) Seasonal luteal cyclicity. Animal 

Reproduction Science 59, 43-59. 

August, G.P., Grumbach, M.M., Kaplan, S.L., 1972. Hormonal changes in puberty: III. 

Correlation of plasma testosterone, LH, FSH, testicular size, and bone age with male 

pubertal development. Journal of Clinical Endocrinology and Metabolism 34, 319-326. 

Baker, A., 2007. Animal ambassadors: an analysis of the efectiveness and conservation 

impact of ex situ breeding efforts, In Zoos in the 21st century: catalysts for conservation? 

eds Zimmermann, A., Hatchwell, M., Dickie, L., West, C., pp. 139-154. Cambridge 

University Press, Cambridge. 

Ballou, J.D., Lees, C., Faust, L.J., Long, S., Lynch, C., Bingaman Lackey, L., Foose, T.J., 2010. 

Demographic and genetic management of captive populations, In Wild mammals in 

captivity: principles and techniques for zoo management. eds Kleiman, D.G., Thompson, 

K.V., Kirk Baer, C., pp. 219-252. University of Chicago Press, Chicago and London. 

Balmford, A., Kroshko, J., Leader-Williams, N., Mason, G., 2011. Zoos and captive breeding. 

Science 332, 1149-1150. 

Bateman, H.L., Bond, J.B., Campbell, M., Barrie, M., Riggs, G., Snyder, B., Swanson, W.F., 

2009. Characterization of basal seminal traits and reproductive endocrine profiles in 

north american river otters and asian small-clawed otters. Zoo Biology 28, 107-126. 

Beehner, J.C., Bergman, T.J., Cheney, D.L., Seyfarth, R.M., Whitten, P.L., 2006. Testosterone 

predicts future dominance rank and mating activity among male chacma baboons. 

Behavioral Ecology and Sociobiology 59, 469-479. 



 

 
292 

Beehner, J.C., Whitten, P.L., 2004. Modifications of a field method for fecal steroid analysis 

in baboons. Physiology & Behavior 82, 269-277. 

Ben Cash, W., Holberton, R.L., 2005. Endocrine and behavioral response to a decline in 

habitat quality: effects of pond drying on the slider turtle, Trachemys scripta. Journal of 

Experimental Zoology. Part A, Comparative Experimental Biology 303A, 872-879. 

Bennett, W.A., Gonzalez, L.V., Stuart, M.J., Fuquay, J.W., 1991. Effects of human chorionic-

gonadotropin (HCG) pretreatment on endocrine and behavioral responses of dairy-cattle 

to exogenous prostaglandin-F2-alpha. Animal Reproduction Science 25, 97-107. 

Berkeley, E.V., Kirkpatrick, J.F., Schaffer, N.E., Bryant, W.M., Threlfall, W.R., 1997. Serum 

and fecal steroid analysis of ovulation, pregnancy, and parturition in the black rhinoceros 

(Diceros bicornis). Zoo Biology 16, 121-132. 

Berkeley, E.V., Linklater, W.L., Dierenfeld, E.S., 2011. Dietary impact on circulating 

glucose profiles in the white rhinoceros. Journal of Animal Physiology and Animal 

Nutrition 95, 245-251. 

Biggs, D., Courchamp, F., Martin, R., Possingham, H.P., 2013. Legal trade of Africa’s rhino 

horns. Science 339, 1038-1039. 

Bishop, J., Hosey, G., Plowman, A. eds., 2013. Handbook of zoo research: guidelines for 

conducting research in zoos. BIAZA, London. 

Boinski, S., Swing, S.P., Gross, T.S., Davis, J.K., 1999. Environmental enrichment of brown 

capuchins (Cebus apella): behavioral and plasma and fecal cortisol measures of 

effectiveness. American Journal of Primatology 48, 49-68. 

Boivin, J., Sanders, K., Schmidt, L., 2006. Age and social position moderate the effect of 

stress on fertility. Evolution and Human Behavior 27, 345-356. 

Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., White, 

J.S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. 

Trends in Ecology and Evolution 24, 127-135. 

Boonstra, R., Hik, D., Singleton, G.R., Tinnikov, A., 1998. The impact of predator-induced 

stress on the snowshoe hare cycle. Ecological Monographs 68, 371-394. 



 

 
293 

Boonstra, R., McColl, C.J., Karels, T.J., 2001. Reproduction at all costs: The adaptive stress 

response of male Arctic ground squirrels. Ecology 82, 1930-1946. 

Bowkett, A.E., 2009. Recent captive-breeding proposals and the return of the ark concept 

to global species conservation. Conservation Biology 23, 773-776. 

Boyce, M.S., 1992. Population viability analysis. Annual Review of Ecology and 

Systematics 23, 481-497. 

Bradley Martin, E., Bradley Martin, C., 1982. Run rhino run. Chatto and Windus Ltd, 

London. 

Brann, D.W., Mahesh, V.B., 1991. Role of corticosteroids in female reproduction. FASEB 

Journal 5, 2691-2698. 

Brett, R.A., 1993. Conservation strategy and management plan for the black rhinoceros 

(Diceros bicornis) in Kenya. Kenya Wildlife Service, Nairobi. 

Brett, R.A., Hodges, J.K., Wanjohi, E., 1989. Assessment of reproductive status of the black 

rhinoceros (Diceros bicornis) in the wild. Symposium of the Zoological Society of London 

61, 147-161. 

Breuner, C.W., 2011. Stress and reproduction in birds, In Hormones and Reproduction of 

Vertebrates. eds David, O.N., Kristin, H.L., pp. 129-151. Academic Press, London. 

Brewer, C.J., Balen, A.H., 2010. The adverse effects of obesity on conception and 

implantation. Reproduction 140, 347-364. 

Brown, J.L., 2006. Comparative endocrinology of domestic and nondomestic felids. 

Theriogenology 66, 25-36. 

Brown, J.L., 2011. Female reproductive cycles of wild female felids. Animal Reproduction 

Science 124, 155-162. 

Brown, J.L., Bellem, A.C., Fouraker, M., Wildt, D.E., Roth, T.L., 2001. Comparative analysis 

of gonadal and adrenal activity in the black and white rhinoceros in north America by 

noninvasive endocrine monitoring. Zoo Biology 20, 463-486. 

Brown, J.L., Citino, S.B., Shaw, J., Miller, C., 1994a. Endocrine profiles during the estrous-

cycle and pregnancy in the Bairds tapir (Tapirus-bairdii). Zoo Biology 13, 107-117. 



 

 
294 

Brown, J.L., Wasser, S.K., Wildt, D.E., Graham, L.H., 1994b. Comparative aspects of steroid-

hormone metabolism and ovarian activity in felids, measured noninvasively in feces. 

Biology of Reproduction 51, 776-786. 

Buchanan Smith, H.M., Anderson, D.A., Ryan, C.W., 1993. Responses of cotton-top 

tamarins (Saguinus oedipus) to fecal scents of predators and non-predators. Animal 

Welfare 2, 17-32. 

Burt, S.M., Carter, T.J.N., Kricka, L.J., 1979. Thermal characteristics of microtitre plates 

used in immunological assays. Journal of Immunological Methods 31, 231-236. 

Buwalda, B., Scholte, J., de Boer, S.F., Coppens, C.M., Koolhaas, J.M., 2012. The acute 

glucocorticoid stress response does not differentiate between rewarding and aversive 

social stimuli in rats. Hormones and Behavior 61, 218-226. 

Candra, D., Agil, M., Handayani, S., Tiuria, R., Koesumawati, U., Radcliffe, R.W., 2008. 

Disease surveillance around Way Kambas National Park to support Sumatran rhino 

concentration and health. In: Proceedings of AZWMC. pp. 128-129, Bogor, Indonesia. 

Cannon, W.B., 1929. Bodily changes in pain, hunger, fear and rage: an account of recent 

researches into the function of emotional excitement. Appleton, New York. 

Cant, M.A., 1998. A model for the evolution of reproductive skew without reproductive 

suppression. Animal Behaviour 55, 163-169. 

Carere, C., Caramaschi, D., Fawcett, T.W., 2010. Covariation between personalities and 

individual differences in coping with stress: converging evidence and hypotheses. 

Current Zoology 56, 728-740. 

Carlstead, K., Brown, J.L., 2005. Relationships between patterns of fecal corticoid 

excretion and behavior, reproduction, and environmental factors in captive black 

(Diceros bicornis) and white (Ceratotherium simum) rhinoceros. Zoo Biology 24, 215-232. 

Carlstead, K., Fraser, J., Bennett, C., Kleiman, D.G., 1999a. Black rhinoceros (Diceros 

bicornis) in US zoos: II. Behavior, breeding success, and mortality in relation to housing 

facilities. Zoo Biology 18, 35-52. 

Carlstead, K., Mellen, J., Kleiman, D.G., 1999b. Black rhinoceros (Diceros bicornis) in US 

zoos: I. Individual behaviour profiles and their relationship to breeding success. Zoo 

Biology 18, 17-34. 



 

 
295 

Carlstead, K., Shepherdson, D., Sheppard, C., Mellen, J., Bennet, C., 2000. Constructing 

behavioural profiles for zoo animals: incorporating behavioural information into captive 

population management. American Zoo and Aquarium Association's Behaviour and 

Husbandry Advisory Group and Oregon Zoo. 

Carr, J.A., 2011. Stress and reproduction in amphibians, In Hormones and reproduction of 

vertebrates. eds David, O.N., Kristin, H.L., pp. 99-116. Academic Press, London. 

Carrete, M., Sanchez-Zapata, J.A., Benitez, J.R., Lobon, M., Donazar, J.A., 2009. Large scale 

risk-assessment of wind-farms on population viability of a globally endangered long-

lived raptor. Biological Conservation 142, 2954-2961. 

Carrick, M.J., Shelton, J.N., 1969. Oestrogen-progesterone relationships in induction of 

oestrus in spayed heifers. Journal of Endocrinology 45, 99-109. 

Carter, S., 1992. Neuroendocrinology of sexual behavior in the female, In Behavioral 

endocrinology. eds Becker, J., Breedlove, S., Crews, D., pp. 71-96. MIT Press, Cambridge. 

Caughley, G., Krebs, C.J., 1983. Are big mammals simply little mammals writ large. 

Oecologia 59, 7-17. 

Chelini, M.O.M., de Oliveira, C.A., Otta, E., 2011. Validation of a radioimmunoassay for the 

quantification of fecal testosterone metabolites in the Syrian hamster (Mesocricetus 

auratus). Pesquisa Veterinaria Brasileira 31, 459-463. 

Christensen, B.W., Troedsson, M.H.T., Young, L.J., Olivia, M., Penfold, L.M., 2009. Effects of 

sociosexual environment on serum testosterone in captive male African rhinoceros. 

Theriogenology 71, 1105-1111. 

Chrousos, G.P., Torpy, D.J., Gold, P.W., 1998. Interactions between the hypothalamic-

pituitary-adrenal axis and the female reproductive system: Clinical implications. Annals 

of Internal Medicine 129, 229-240. 

Clark, F.E., Fitzpatrick, M., Hartley, A., King, A.J., Lee, T., Routh, A., Walker, S.L., George, K., 

2011. Relationship between behavior, adrenal activity, and environment in zoo-housed 

western lowland gorillas (Gorilla gorilla gorilla). Zoo Biol. 

Clauss, M., Hatt, J.M., 2006. The feeding of rhinoceros in captivity. International Zoo 

Yearbook 40, 197-209. 



 

 
296 

Clubb, R., Mason, G., 2003. Captivity effects on wide-ranging carnivores. Nature 425, 473-

474. 

Clubb, R., Mason, G.J., 2007. Natural behavioural biology as a risk factor in carnivore 

welfare: How analysing species differences could help zoos improve enclosures. Applied 

Animal Behaviour Science 102, 303-328. 

Clutton-Brock, T.H., 1988. Reproductive success: studies of individual variation in 

contrasting breeding systems. University of Chicago Press, Chicago. 

Coleman, M.A., Garland, T., Marler, C.A., Newton, S.S., Swallow, J.G., Carter, P.A., 1998. 

Glucocorticoid response to forced exercise in laboratory house mice (Mus domesticus). 

Physiology and Behavior 63, 279-285. 

Conde, D.A., Flesness, N., Colchero, F., Jones, O.R., Scheuerlein, A., 2011a. An emerging role 

of zoos to conserve biodiversity. Science 331, 1390-1391. 

Conde, D.A., Flesness, N., Colchero, F., Jones, O.R., Scheuerlein, A., 2011b. Zoos and captive 

breeding response. Science 332, 1150-1151. 

Conway, W., 1995. Wild and zoo animal interactive management and habitat 

conservation. Biodiversity and Conservation 4, 573-594. 

Conway, W.G., 2011. Buying time for wild animals with zoos. Zoo Biology 30, 1-8. 

Creel, S., 2001. Social dominance and stress hormones. Trends In Ecology and Evolution 

16, 491-497. 

Creel, S., Fox, J.E., Hardy, A., Sands, J., Garrott, B., Peterson, R.O., 2002. Snowmobile 

activity and glucocorticoid stress responses in wolves and elk. Conservation Biology 16, 

809-814. 

Czekala, N.M., Callison, L., 1996. Pregnancy diagnosis in the black rhinoceros (Diceros 

bicornis) by salivary hormone analysis. Zoo Biology 15, 37-44. 

Daleszczyk, K., Bunevich, A.N., 2009. Population viability analysis of European bison 

populations in Polish and Belarusian parts of Bialowieza Forest with and without gene 

exchange. Biological Conservation 142, 3068-3075. 



 

 
297 

Davidge, S.T., Wiebold, J.L., Senger, P.L., Hillers, J.K., 1987. Influence of varying levels of 

blood progesterone upon estrous behavior in cattle. Journal of Animal Science 64, 126-

132. 

Davis, N., Schaffner, C.M., Smith, T.E., 2005. Evidence that zoo visitors influence HPA 

activity in spider monkeys (Ateles geoffroyii rufiventris). Applied Animal Behaviour 

Science 90, 131-141. 

de Catanzaro, D., Muir, C., Beaton, E., Jetha, M., Nadella, K., 2003. Enzymeimmunoassay of 

oestradiol, testosterone and progesterone in urine samples from female mice before and 

after insemination. Reproduction 126, 407-414. 

Deen, A., 2008. Testosterone profiles and their correlation with sexual libido in male 

camels. Research in Veterinary Science 85, 220-226. 

Dehnhard, M., Finkenwirth, C., Crosier, A., Penfold, L., Ringleb, J., Jewgenow, K., 2012. 

Using PGFM (13,14-dihydro-15-keto-prostaglandin F2 alpha) as a non-invasive 

pregnancy marker for felids. Theriogenology 77, 1088-1099. 

Dennis, P.M., Funk, J.A., Rajala-Schultz, P.J., Blumer, E.S., Miller, R.E., Wittum, T.E., Saville, 

W.J.A., 2007a. A review of some of the health issues of captive black rhinoceroses (Diceros 

bicornis). Journal of Zoo and Wildlife Medicine 38, 509-517. 

Dennis, P.M., Rajala-Schultz, P.J., Funk, J.A., Blumer, E.S., Miller, R.E., Wittum, T.E., Saville, 

W.J., 2007b. Risk factors associated with a skewed natal sex ratio in captive black 

rhinoceroses (Diceros bicornis) in the United States. Journal of Zoo and Wildlife Medicine 

38, 533-539. 

Denton, D., 1999. North American regional studbook for the king penguin (Aptenodytes 

patagonicus). Seas World San Diego, San Diego. 

Descovich, K.A., Lisle, A.T., Johnston, S., Phillips, C.J.C., 2012. Space allowance and the 

behaviour of captive southern hairy-nosed wombats (Lasiorhinus latifrons). Applied 

Animal Behaviour Science 140, 92-98. 

Dierenfeld, E.S., 1997. Captive wild animal nutrition: a historical perspective. Proceedings 

of the Nutrition Society 56, 989-999. 

Dittrich, L., 1967. Breeding the black rhinoceros Diceros bicornis at Hanover Zoo. 

International Zoo Yearbook 7, 161-162. 



 

 
298 

Dobson, H., Ghuman, S., Prabhakar, S., Smith, R., 2003. A conceptual model of the 

influence of stress on female reproduction. Reproduction 125, 151-163. 

Dobson, H., Smith, R.F., 2000. What is stress, and how does it affect reproduction? Animal 

Reproduction Science 60, 743-752. 

du Toit, R., Hearn, M., Knight, M., du Preez, P., Rushworth, I., Tindall, B., 2001. Report of 

Working Group 1: Monitoring population performance. In: SADC rhino management 

group (RMG) workshop on biological management to meet continental and national 

black rhino conservation goals. Ed. Emslie, R., pp. 95-101, Giants Castle. 

du Toit, R.F., 1989. Suggested procedure for priority ranking of black rhino populations. 

Pachyderm 11, 7-10. 

du Toit, R.F., 2001. Benchmarks for rhino population performance in the wild. In: SADC 

rhino management group (RMG) workshop on biological management to meet 

continental and national black rhino conservation goals. Ed. Emslie, R., pp. 25-26, Giants 

Castle. 

Dunham, A.E., Erhart, E.M., Overdorff, D.J., Wright, P.C., 2008. Evaluating effects of 

deforestation, hunting, and El Nino events on a threatened lemur. Biological Conservation 

141, 287-297. 

Earnhardt, J.M., Bergstrom, Y.M., Lin, A., Faust, L.J., Schloss, C.A., Thompson, S.D., 2008. 

ZooRisk: A risk assessment tool. Lincoln Park Zoo, Chicago. 

Earnhardt, J.M., Thompson, S.D., Marhevsky, E.A., 2001. Interactions of target population 

size, population parameters, and program management on viability of captive 

populations. Zoo Biology 20, 169-183. 

Earnhardt, J.M., Thompson, S.D., Schad, K., 2004. Strategic planning for captive 

populations: projecting changes in genetic diversity. Animal Conservation 7, 9-16. 

Edwards, K.L., Walker, S.L., Bodenham, R.F., Ritchie, H., Shultz, S., 2013. Associations 

between social behaviour and adrenal activity in female Barbary macaques: 

Consequences of study design. General and Comparative Endocrinology 186, 72-79. 

Einarsson, S., Madej, A., Tsuma, V., 1996. The influence of stress on early pregnancy in the 

pig. Animal Reproduction Science 42, 165-172. 



 

 
299 

Elsey, R.M., Joanen, T., McNease, L., Lance, V., 1990. Stress and plasma-corticosterone 

levels in the American alligator - relationships with stocking density and nesting success. 

Comparative Biochemistry and Physiology Part A: Physiology 95, 55-63. 

Emslie, R., 2001a. Proceedings of a SADC Rhino Management Group (RMG) Workshop on 

Biological Management to Meet Continental and National Black Rhino Conservation 

Goals. Ed. Emslie, R. 

Emslie, R., 2008. Rhino population sizes and trends. Pachyderm 44, 88-95. 

Emslie, R., 2011. Diceros bicornis ssp. longipes., In: IUCN 2012.  IUCN Red List of 

Threatened Species.  Version 2012.2. www.iucnredlist.org. Last accessed: 11 June 2013. 

Emslie, R., 2012a. Ceratotherium simum., In: IUCN 2012.  IUCN Red List of Threatened 

Species.  Version 2012.2. www.iucnredlist.org. Last accessed: 15 June 2013 

Emslie, R., 2012b. Diceros bicornis. In: IUCN 2012.  IUCN Red List of Threatened 

Species.  Version 2012.2. www.iucnredlist.org. Last accessed: 11 June 2013 

Emslie, R., Brooks, M., 1999. African rhino. Status survey and conservation action plan. 

IUCN/SSC African Rhino Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK. 

Emslie, R., Knight, M., 2011. African rhino status and trends from IUCN SSC African Rhino 

Specialist Group (AfRSG), In WAZA News: November 2011. ed. Dick, G., pp. 8-11. 

Emslie, R.H., 2001b. Strategic achievement of metapopulation goals - why rapid 

population growth is so important. In: SADC rhino management group (RMG) workshop 

on biological management to meet continental and national black rhino conservation 

goals. Giants Castle. 

Emslie, R.H., Milliken, T., Talukdar, B., 2012. African and Asian rhinoceroses – status, 

conservation and trade: A report from the IUCN Species Survival Commission 

(IUCN/SSC) African and Asian Rhino Specialist Groups and TRAFFIC to the CITES 

Secretariat pursuant to Resolution Conf. 9.14 (Rev. CoP15). 

Estes, R.D., 1991. The behaviour guide to African mammals including hoofed mammals, 

carnivores, primates. University of California Press, Berkeley. 

http://www.iucnredlist.org/
http://www.iucnredlist.org/
http://www.iucnredlist.org/


 

 
300 

Fabre-Nys, C., Martin, G.B., 1991a. Hormonal-control of proceptive and receptive sexual-

behavior and the preovulatory LH surge in the ewe - reassessment of the respective roles 

of estradiol, testosterone, and progesterone. Hormones and Behavior 25, 295-312. 

Fabre-Nys, C., Martin, G.B., 1991b. Roles of progesterone and estradiol in determining the 

temporal sequence and quantitative expression of sexual receptivity and the 

preovulatory LH surge in the ewe. Journal of Endocrinology 130, 367-379. 

Fabre-Nys, C., Martin, G.B., Venier, G., 1993. Analysis of the hormonal-control of female 

sexual-behavior and the preovulatory LH surge in the ewe - roles of quantity of estradiol 

and duration of its presence. Hormones and Behavior 27, 108-121. 

Fanson, K.V., Wielebnowski, N.C., Shenk, T.M., Vashon, J.H., Squires, J.R., Lucas, J.R., 2010. 

Patterns of ovarian and luteal activity in captive and wild Canada lynx (Lynx canadensis). 

General and Comparative Endocrinology 169, 217-224. 

Faust, L.J., Thompson, S.D., Earnhardt, J.M., 2006. Is reversing the decline of Asian 

elephants in North American zoos possible? An individual-based modeling approach. Zoo 

Biology 25, 201-218. 

Faust, L.J., Thompson, S.D., Earnhardt, J.M., Brown, E., Ryan, S., Sherman, M., Yurenka, M., 

2003. Using stage-based system dynamics modeling for demographic management of 

captive populations. Zoo Biology 22, 45-64. 

Feltrer, Y., 2010. EGZAC recommendations: Immunocontraceptive - GnRH vaccine 

(Improvac®). http://www.egzac.org/Documents/GnRH%20Vaccine.pdf. Last accessed: 

11 June 2013 

Fenster, L., Katz, D.F., Wyrobek, A.J., Pieper, C., Rempel, D.M., Oman, D., Swan, S.H., 1997. 

Effects of psychological stress on human semen quality. Journal of Andrology 18, 194-

202. 

Ferguson, J.D., 2005. Nutrition and reproduction in dairy herds. Veterinary Clinics of 

North America: Food Animal Practice 21, 325-347. 

Ferin, M., 1999. Stress and the reproductive cycle. Journal of Clinical Endocrinology and 

Metabolism 84, 1768-1774. 

Fernandez-Olalla, M., Martinez-Abrain, A., Canut, J., Garcia-Ferre, D., Afonso, I., Mariano 

Gonzalez, L., 2012. Assessing different management scenarios to reverse the declining 

http://www.egzac.org/Documents/GnRH%20Vaccine.pdf


 

 
301 

trend of a relict capercaillie population: A modelling approach within an adaptive 

management framework. Biological Conservation 148, 79-87. 

Fitch-Snyder, H., 1999. North American regional studbook for the slender loris (Loris 

tardigradus). The Center for Reproduction of Endangered Species (CRES), San Diego. 

Foose, T., 1993. Global management of rhinos. In: Rhinoceros biology and conservation: 

Proceedings of an international conference. Ed. Ryder, O.A., pp. 32-47. San Diego 

Zoological Society, San Diego. 

Foose, T.J., 1980. Demographic management of endangered species in captivity. 

International Zoo Yearbook 20, 154-166. 

Foose, T.J., De Boer, L., Seal, U.S., Lande, R., 1995. Conservation management strategies 

based on viable populations. Methods and Cases in Conservation Science; Population 

management for survival and recovery: Analytical methods and strategies in small 

population conservation, 273-294. 

Foose, T.J., Wiese, R.J., 2006. Population management of rhinoceros in captivity. 

International Zoo Yearbook 40, 174-196. 

Ford, J.J., 1985. Reevaluation of the role of progesterone in stimulating sexual receptivity 

in estrogen-treated gilts. Journal of Animal Science 61, 36-43. 

Fortune, J.E., Sirois, J., Turzillo, A.M., Lavoir, M., 1991. Follicle selection in domestic 

ruminants. Journal of Reproduction and Fertility. Supplement 43, 187-198. 

Fouraker, M., Wagener, T., 1996. AZA Rhinoceros husbandry resource manual. pp. 1-67. 

Fort Worth Zoological Park, Fort Worth. 

Frankham, R., 1995. Effective population-size adult-population size ratios in wildlife - a 

review. Genetical Research 66, 95-107. 

Frankham, R., 2008. Genetic adaptation to captivity in species conservation programs. 

Molecular Ecology 17, 325-333. 

Frankham, R., Ballou, J.D., Briscoe, D.A., 2010. Introduction to conservation genetics, 

Second edn. Cambridge University Press, Cambridge. 



 

 
302 

Freeman, E.W., Abbondanza, F.N., Meyer, J.M., Schulte, B.A., Brown, J.L., 2010. A simplified 

method for monitoring progestagens in African elephants under field conditions. 

Methods in Ecology and Evolution 1, 86-91. 

Frisch, R.E., McArthur, J.W., 1974. Menstrual cycles: fatness as a determinant of minimum 

weight for height necessary for their maintenance or onset. Science 185, 949-951. 

Fuzzen, M.L.M., Bernier, N.J., Glen Van Der, K., 2011. Stress and reproduction, In 

Hormones and Reproduction of Vertebrates. eds David, O.N., Kristin, H.L., pp. 103-117. 

Academic Press, London. 

Fyumagwa, R.D., Nyahongo, J.W., 2010. Black rhino conservation in Tanzania: 

translocation efforts and further challenges. Pachyderm 47, 59-65. 

Ganswindt, A., Palme, R., Heistermann, M., Borragan, S., Hodges, J.K., 2003. Non-invasive 

assessment of adrenocortical function in the male African elephant (Loxodonta africana) 

and its relation to musth. General and Comparative Endocrinology 134, 156-166. 

Garnier, J.N., Bruford, M.W., Goossens, B., 2001. Mating system and reproductive skew in 

the black rhinoceros. Molecular Ecology 10, 2031-2041. 

Garnier, J.N., Green, D.I., Pickard, A.R., Shaw, H.J., Holt, W.V., 1998. Non-invasive diagnosis 

of pregnancy in wild black rhinoceros (Diceros bicornis minor) by faecal steroid analysis. 

Reproduction Fertility and Development 10, 451-458. 

Garnier, J.N., Holt, W.V., Watson, P.F., 2002. Non-invasive assessment of oestrous cycles 

and evaluation of reproductive seasonality in the female wild black rhinoceros (Diceros 

bicornis minor). Reproduction 123, 877-889. 

Gasparotto, O.C., Lopes, D.M., Carobrez, S.G., 2005. Pair housing affects anxiety-like 

behaviors induced by a social but not by a physiological stressor in male Swiss mice. 

Physiology and Behavior 85, 603-612. 

Gibbs, J., 2001. Selecting the detection system - colorimetric, fluorescent, luminescent 

methods. In: ELISA Technical Bulletin - No. 5. Corning Life Sciences. 

Gleason, E.D., Fuxjager, M.J., Oyegbile, T.O., Marler, C.A., 2009. Testosterone release and 

social context: when it occurs and why. Frontiers in Neuroendocrinology 30, 460-469. 



 

 
303 

Goddard, J., 1967. Home range, behaviour, and recruitment rates of two black rhinoceros 

populations. East African Wildlife Journal 5, 133-150. 

Goddard, J., 1970. A note on age at sexual maturity in wild black rhinoceros. East African 

Wildlife Journal 8, 205. 

Goeltenboth, R., Ganslosser, U., Tomasova, K., 1995. Husbandry guidelines for rhinos. In: 

International studbook of African rhinoceroses (Diceros bicornis / Ceratotherium simum). 

pp. 1-17, Zoologischer Garten Berlin. 

Gompper, M.E., Stacey, P.B., Berger, J., 1997. Conservation implications of the natural loss 

of lineages in wild mammals and birds. Conservation Biology 11, 857-867. 

Gowda, C.D.K., 1967. Breeding the black rhinoceros Diceros bicornis at Mysore Zoo. 

International Zoo Yearbook 7, 163-164. 

Graham, L., Schwarzenberger, F., Mostl, E., Galama, W., Savage, A., 2001. A versatile 

enzyme immunoassay for the determination of progestogens in feces and serum. Zoo 

Biology 20, 227-236. 

Greed, G.R., 1967. Notes on the breeding of the black rhinoceros Diceros bicornis at 

Bristol Zoo. International Zoo Yearbook 7, 158-161. 

Gregory, M.E., Rowland, S.J., Thompson, S.Y., Kon, V.M., 1965. Changes during lactation in 

the composition of the milk of the African black rhinoceros (Diceros bicornis). 

Proceedings of the Zoological Society of London 145, 327-333. 

Gusset, M., Dick, G., 2011. The global reach of zoos and aquariums in visitor numbers and 

conservation expenditures. Zoo Biology 30, 566-569. 

Hall-Martin, A., 1986. Recruitment in a small black rhino population. Pachyderm 7, 6-8. 

Hallstrom, E., 1967. Notes on breeding the black rhinoceros at Sydney Zoo. International 

Zoo Yearbook 7, 165. 

Hansen, L.T., Berthelsen, H., 2000. The effect of environmental enrichment on the 

behaviour of caged rabbits (Oryctolagus cuniculus). Applied Animal Behaviour Science 

68, 163-178. 



 

 
304 

Hardy, M.P., Gao, H.B., Dong, Q., Ge, R.S., Wang, Q., Chai, W.R., Feng, X., Sottas, C., 2005. 

Stress hormone and male reproductive function. Cell and Tissue Research 322, 147-153. 

Heistermann, M., Agil, M., Büthe, A., Hodges, J., 1998. Metabolism and excretion of 

oestradiol-17β and progesterone in the Sumatran rhinoceros (Dicerorhinus sumatrensis). 

Animal reproduction science 53, 157-172. 

Hermes, R., Hildebrandt, T.B., Blottner, S., Walzer, C., Silinski, S., Patton, M.L., Wibbelt, G., 

Schwarzenberger, F., Goritz, F., 2005. Reproductive soundness of captive southern and 

northern white rhinoceroses (Ceratotherium simum simum, Cs. cottoni): evaluation of 

male genital tract morphology and semen quality before and after cryopreservation. 

Theriogenology 63, 219-238. 

Hermes, R., Hildebrandt, T.B., Goritz, F., 2004. Reproductive problems directly 

attributable to long-term captivity-asymmetric reproductive aging. Animal Reproduction 

Science 82-83, 49-60. 

Hermes, R., Hildebrandt, T.B., Walzer, C., Goritz, F., Patton, M.L., Silinski, S., Anderson, M.J., 

Reid, C.E., Wibbelt, G., Tomasova, K., Schwarzenberger, F., 2006. The effect of long non-

reproductive periods on the genital health in captive female white rhinoceroses 

(Ceratotherium simum simum, Ceratotherium simum cottoni). Theriogenology 65, 1492-

1515. 

Herndon, J.G., Turner, J.J., Deelvira, M.C.R., Collins, D.C., 1987. Silent ovulation in rhesus 

monkeys (M mulatta) - dissociation of hormonal and behavioral states. Physiology and 

Behavior 40, 665-672. 

Hildebrandt, T.B., Goritz, F., Pratt, N.C., Brown, J.L., Montali, R.J., Schmitt, D.L., Fritsch, G., 

Hermes, R., 2000. Ultrasonography of the urogenital tract in elephants (Loxodonta 

africana and Elephas maximus): an important tool for assessing female reproductive 

function. Zoo Biology 19, 321-332. 

Hindle, J.E., Mostl, E., Hodges, J.K., 1992. Measurement of urinary estrogens and 20-alpha-

dihydroprogesterone during ovarian cycles of black (Diceros bicornis) and white 

(Ceratotherium simum) rhinoceroses. Journal of Reproduction and Fertility 94, 237-249. 

Hitchins, P.M., Anderson, J.L., 1983. Reproduction, population characteristics and 

management of the black rhinoceros Diceros bicornis minor in the 



 

 
305 

Hluhluwe/Corridor/Umfolozi Game Reserve Complex. South African Journal of Wildlife 

Research 13, 78-85. 

Hodges, J.K., 1998. Endocrinology of the ovarian cycle and pregnancy in the Asian 

(Elephas maximus) and African (Loxodonta africana) elephant. Animal Reproduction 

Science 53, 3-18. 

Hodges, J.K., Green, D.I., 1989. The development of an enzyme-immunoassay for urinary 

pregnanediol-3-glucuronide and its application to reproductive assessment in exotic 

mammals. Journal of Zoology 219, 89-99. 

Hodges, K., Brown, J., Heistermann, M., 2010. Endocrine monitoring of reproduction and 

stress, In Wild Mammals in Captivity: Principles and Techniques for Zoo Management. ed. 

Kleiman, D.G., Thompson, K. V.,  Baer, C. K., pp. 447-468. University of Chicago Press, 

Chicago. 

Hoffmann, M., Hilton-Taylor, C., Angulo, A., Boehm, M., Brooks, T.M., Butchart, S.H.M., 

Carpenter, K.E., Chanson, J., Collen, B., Cox, N.A., Darwall, W.R.T., Dulvy, N.K., Harrison, 

L.R., Katariya, V., Pollock, C.M., Quader, S., Richman, N.I., Rodrigues, A.S.L., Tognelli, M.F., 

Vie, J.-C., Aguiar, J.M., Allen, D.J., Allen, G.R., Amori, G., Ananjeva, N.B., Andreone, F., 

Andrew, P., Aquino Ortiz, A.L., Baillie, J.E.M., Baldi, R., Bell, B.D., Biju, S.D., Bird, J.P., Black-

Decima, P., Blanc, J.J., Bolanos, F., Bolivar-G, W., Burfield, I.J., Burton, J.A., Capper, D.R., 

Castro, F., Catullo, G., Cavanagh, R.D., Channing, A., Chao, N.L., Chenery, A.M., Chiozza, F., 

Clausnitzer, V., Collar, N.J., Collett, L.C., Collette, B.B., Fernandez, C.F.C., Craig, M.T., Crosby, 

M.J., Cumberlidge, N., Cuttelod, A., Derocher, A.E., Diesmos, A.C., Donaldson, J.S., 

Duckworth, J.W., Dutson, G., Dutta, S.K., Emslie, R.H., Farjon, A., Fowler, S., Freyhof, J., 

Garshelis, D.L., Gerlach, J., Gower, D.J., Grant, T.D., Hammerson, G.A., Harris, R.B., Heaney, 

L.R., Hedges, S.B., Hero, J.-M., Hughes, B., Hussain, S.A., Icochea M, J., Inger, R.F., Ishii, N., 

Iskandar, D.T., Jenkins, R.K.B., Kaneko, Y., Kottelat, M., Kovacs, K.M., Kuzmin, S.L., La 

Marca, E., Lamoreux, J.F., Lau, M.W.N., Lavilla, E.O., Leus, K., Lewison, R.L., Lichtenstein, G., 

Livingstone, S.R., Lukoschek, V., Mallon, D.P., McGowan, P.J.K., McIvor, A., Moehlman, P.D., 

Molur, S., Munoz Alonso, A., Musick, J.A., Nowell, K., Nussbaum, R.A., Olech, W., Orlov, N.L., 

Papenfuss, T.J., Parra-Olea, G., Perrin, W.F., Polidoro, B.A., Pourkazemi, M., Racey, P.A., 

Ragle, J.S., Ram, M., Rathbun, G., Reynolds, R.P., Rhodin, A.G.J., Richards, S.J., Rodriguez, 

L.O., Ron, S.R., Rondinini, C., Rylands, A.B., de Mitcheson, Y.S., Sanciangco, J.C., Sanders, 

K.L., Santos-Barrera, G., Schipper, J., Self-Sullivan, C., Shi, Y., Shoemaker, A., Short, F.T., 

Sillero-Zubiri, C., Silvano, D.L., Smith, K.G., Smith, A.T., Snoeks, J., Stattersfield, A.J., Symes, 



 

 
306 

A.J., Taber, A.B., Talukdar, B.K., Temple, H.J., Timmins, R., Tobias, J.A., Tsytsulina, K., 

Tweddle, D., Ubeda, C., Valenti, S.V., van Dijk, P.P., Veiga, L.M., Veloso, A., Wege, D.C., 

Wilkinson, M., Williamson, E.A., Xie, F., Young, B.E., Akcakaya, H.R., Bennun, L., Blackburn, 

T.M., Boitani, L., Dublin, H.T., da Fonseca, G.A.B., Gascon, C., Lacher, T.E., Jr., Mace, G.M., 

Mainka, S.A., McNeely, J.A., Mittermeier, R.A., Reid, G.M., Paul Rodriguez, J., Rosenberg, 

A.A., Samways, M.J., Smart, J., Stein, B.A., Stuart, S.N., 2010. The impact of conservation on 

the status of the world's vertebrates. Science 330, 1503-1509. 

Holečková, D., 2010. Dvůr Králové Zoo and WAZA branded rhino conservation projects. 

In: WAZA Proceedings of the 65th Annual Conference. Ed. Dick, G., pp. 53-56, Kölner Zoo. 

Hrabar, H., du Toit, J.T., 2005. Dynamics of a protected black rhino (Diceros bicornis) 

population: Pilanesberg National Park, South Africa. Animal Conservation 8, 259-267. 

Husak, J.F., Moore, I.T., 2008. Stress hormones and mate choice. Trends in Ecology & 

Evolution 23, 532-534. 

Hutchins, M., Kreger, M.D., 2006. Rhinoceros behaviour: implications for captive 

management and conservation. International Zoo Yearbook 40, 150-173. 

ISIS, 2004. SPARKS: single population animal record keeping system. International 

Species Information System, Apple Valley/Eagan, Minnesota. 

IUCN, 2002. Technical guidelines on the management of ex situ populations for 

conservation. In: 14th Meeting of the Programme Committee of Council. Gland, 

Switzerland. 

IUCN, 2012. http://www.iucn.org/. Last accessed: 29/07/2012 

Jachowski, D.S., Lockhart, J.M., 2009. Reintroducing the black-footed ferret Mustela 

nigripes to the Great Plains of North America. Small Carnivore Conservation 41, 58-64. 

Jarvis, C., 1967. Tabulated data on the breeding biology of the black rhinoceros Diceros 

bicornis compiled from reports in the Yearbook. International Zoo Yearbook 7, 166. 

Johnson, M.H., Everitt, B.J., 2000. Essential Reproduction, Fifth edn. Blackwell Science, 

Oxford. 

Joubert, E., Eloff, F., 1971. Notes on the ecology and behaviour of the black rhinoceros 

Diceros bicornis Linn. 1758 in South West Africa. Madoqua 1, 5-53. 

http://www.iucn.org/


 

 
307 

Kalantaridou, S.N., Makrigiannakis, A., Zoumakis, E., Chrousos, G.P., 2004. Stress and the 

female reproductive system. Journal of Reproductive Immunology 62, 61-68. 

Kalantaridou, S.N., Zoumakis, E., Makrigiannakis, A., Lavasidis, L.G., Vrekoussis, T., 

Chrousos, G.P., 2010. Corticotropin-releasing hormone, stress and human reproduction: 

an update. Journal of Reproductive Immunology 85, 33-39. 

Karsch, F.J., Legan, S.J., Ryan, K.D., Foster, D.L., 1980. Importance of estradiol and 

progesterone in regulating LH-secretion and estrous behavior during the sheep estrous-

cycle. Biology of Reproduction 23, 404-413. 

Katz, L.S., Oltenacu, E.A.B., Foote, R.H., 1980. The behavioral-responses in ovariectomized 

cattle to either estradiol, testosterone, androstenedione, or dihydrotestosterone. 

Hormones and Behavior 14, 224-235. 

Kersey, D.C., Wildt, D.E., Brown, J.L., Snyder, R.J., Huang, Y., Monfort, S.L., 2010. Unique 

biphasic progestagen profile in parturient and non-parturient giant pandas (Ailuropoda 

melanoleuca) as determined by faecal hormone monitoring. Reproduction 140, 183-193. 

Khansari, D.N., Murgo, A.J., Faith, R.E., 1990. Effects of stress on the immune system. 

Immunology Today 11, 170-175. 

Kierulff, M.C.M., Ruiz-Miranda, C.R., Procopio de Oliveira, P., Beck, B.B., Martins, A., Dietz, 

J.M., Rambaldi, D.M., Baker, A.J., 2012. The golden lion tamarin Leontopithecus rosalia: a 

conservation success story. International Zoo Yearbook 46, 36-45. 

King, J., 1965. A field guide to the reproduction of the Grant's zebra and Grevy's zebra. 

African Journal of Ecology 3, 99-117. 

King, S.S., Douglas, B.L., Roser, J.F., Silvia, W.J., Jones, K.L., 2010. Differential luteolytic 

function between the physiological breeding season, autumn transition and persistent 

winter cyclicity in the mare. Animal Reproduction Science 117, 232-240. 

Kirkpatrick, J.F., Lyda, R.O., Frank, K.M., 2011. Contraceptive vaccines for wildlife: a 

review. American Journal of Reproductive Immunology 66, 40-50. 

Knight, M.H., Emslie, R., 2001. Current and possible population performance indicators 

for black rhinos. In: SADC rhino management group (RMG) workshop on biological 

management to meet continental and national black rhino conservation goals: 

proceedings. South African Development Community, Harare. 



 

 
308 

Köhler, G., Milstein, C., 1975. Continuous cultures of fused cells secreting antibody of 

predefined specificity. Nature 256, 495-497. 

Koolhaas, J.M., Bartolomucci, A., Buwalda, B., de Boer, S.F., Flugge, G., Korte, S.M., Meerlo, 

P., Murison, R., Olivier, B., Palanza, P., Richter-Levin, G., Sgoifo, A., Steimer, T., Stiedl, O., 

van Dijk, G., Wohr, M., Fuchs, E., 2011. Stress revisited: a critical evaluation of the stress 

concept. Neuroscience and Biobehavioral Reviews 35, 1291-1301. 

Koolhaas, J.M., Korte, S.M., De Boer, S.F., Van Der Vegt, B.J., Van Reenen, C.G., Hopster, H., 

De Jong, I.C., Ruis, M.A.W., Blokhuis, H.J., 1999. Coping styles in animals: current status in 

behavior and stress-physiology. Neuroscience and Biobehavioral Reviews 23, 925-935. 

Kretzschmar, P., Ganslosser, U., Dehnhard, M., 2004. Relationship between androgens, 

environmental factors and reproductive behavior in male white rhinoceros 

(Ceratotherium simum simum). Hormones and Behavior 45, 1-9. 

Kricka, L.J., Carter, T.J.N., Burt, S.M., Kennedy, J.H., Holder, R.L., Halliday, M.I., Telford, M.E., 

Wisdom, G.B., 1980. Variability in the adsorption properties of microtitre plates used as 

solid supports in enzyme-immunoassay. Clinical Chemistry 26, 741-744. 

Kurstak, E., 1985. Progress in enzyme immunoassays - production of reagents, 

experimental-design, and interpretation. Bulletin of the World Health Organization 63, 

793-811. 

KWS, 2012. Conservation and management strategy for the black rhino (D. b. michaeli) in 

Kenya, (2012-2016). p. 57. Kenya Wildlife Service, Nairobi, Kenya. 

Lacy, R.C., 1989. Analysis of founder representation in pedigrees - founder equivalents 

and founder genome equivalents. Zoo Biology 8, 111-123. 

Lacy, R.C., 2013. Achieving true sustainability of zoo populations. Zoo Biology 32, 19-26. 

Lacy, R.C., Ballou, J.D., 2002. Population management 2000 user's manual. Chicago 

Zoological Society, Brookfield. 

Lacy, R.C., Borbat, M., Pollak, J.P., 2005. VORTEX: A stochastic simulation of the extinction 

process. Chicago Zoological Society, Brookfield. 



 

 
309 

Lance, V.A., Patton, M.L., Hagey, L.R., 2001. Identification of a series of C21O2 pregnanes 

from fecal extracts of a pregnant black rhinoceros (Diceros bicornis minor). Steroids 66, 

875-881. 

Lee, A.M., Saether, B.-E., Engen, S., 2011. Demographic stochasticity, allee effects, and 

extinction: the influence of mating system and sex ratio. American Naturalist 177, 301-

313. 

Lees, C.M., Wilcken, J., 2009. Sustaining the Ark: the challenges faced by zoos in 

maintaining viable populations. International Zoo Yearbook 43, 6-18. 

Lees, C.M., Wilcken, J., 2011. Global programmes for sustainability. In: WAZA magazine. 

pp. 2-5. 

Leus, K., Bingaman Lackey, L., van Lint, W., de Man, D., Riewald, S., Veldkam, A., Wijmans, 

J., 2011a. Sustainability of European Association of Zoos and Aquaria bird and mammal 

populations. In: WAZA magazine. pp. 11-14. 

Leus, K., Traylor-Holzer, K., Lacy, R.C., 2011b. Genetic and demographic population 

management in zoos and aquariums: recent developments, future challenges and 

opportunities for scientific research. International Zoo Yearbook 45, 213-225. 

Li, C., Jiang, Z., Zeng, Y., Yan, C., 2004. Relationship between serum testosterone, 

dominance and mating success in Père David's deer stags. Ethology 110, 681-691. 

Link, W.A., Doherty, P.F., 2002. Scaling in sensitivity analysis. Ecology 83, 3299-3305. 

Linklater, W.L., MacDonald, E.A., Flamand, J.R.B., Czekala, N.M., 2010. Declining and low 

fecal corticoids are associated with distress, not acclimation to stress, during the 

translocation of African rhinoceros. Animal Conservation 13, 104-111. 

Lipman, N.S., Jackson, L.R., Trudel, L.J., Weis-Garcia, F., 2005. Monoclonal versus 

polyclonal antibodies: distinguishing characteristics, applications, and information 

resources. LLAR Journal 46, 258-268. 

Long, S., Dorsey, C., Boyle, P., 2011. Status of Association of Zoos and Aquariums 

cooperatively managed populations. In: WAZA magazine. pp. 15-18. 

Lopez-Gatius, F., Santolaria, P., Yaniz, J., Rutllant, J., Lopez-Bejar, M., 2001. Persistent 

ovarian follicles in dairy cows: a therapeutic approach. Theriogenology 56, 649-659. 



 

 
310 

MacDonald, E.A., Linklater, W.L., Steinman, K.J., Czekala, N.M., 2008. Rapid colour-change 

pregnancy test for rhinoceros using faeces. Endangered Species Research 4, 277-281. 

Magurran, A.E., Dornelas, M., 2010. Biological diversity in a changing world. Philosophical 

Transactions of the Royal Society B - Biological Sciences 365, 3593-3597. 

Mallapur, A., Chellam, R., 2002. Environmental influences on stereotypy and the activity 

budget of Indian Leopards (Panthera pardus) in four zoos in southern India. Zoo Biology 

21, 585-595. 

Martin, J.G.A., Reale, D., 2008. Animal temperament and human disturbance: Implications 

for the response of wildlife to tourism. Behavioural Processes 77, 66-72. 

Martinez-Mota, R., Valdespino-Quevedo, C., Sanchez-Ramos, M.A., 2004. Faecal cortisol 

levels as a measurement of stress due to habitat fragmentation in wild black howler 

monkeys (Alouatta pigra) in Mexico. Folia Primatologica 75, 299-299. 

Matteri, R.L., Carroll, J.A., Dyer, C.J., 2000. Neuroendocrine responses to stress, In Biology 

of animal stress. eds Moberg, G.P., Mench, J.A., pp. 43-76. CABI publishing, Wallingford, 

Oxfordshire. 

McCue, P.M., Squires, E.L., 2002. Persistent anovulatory follicles in the mare. 

Theriogenology 58, 541-543. 

McEwen, B.S., Wingfield, J.C., 2003. The concept of allostasis in biology and biomedicine. 

Hormones and Behavior 43, 2-15. 

McPhee, M.E., Carlstead, K., 2010. The importance of maintaining natural behaviours in 

captive mammals, In Wild mammals in captivity: principles and techniques for zoo 

management. eds Kleiman, D.G., Thompson, K.V., Baer, C.K., pp. 303-313. University of 

Chicago Press, Chicago. 

Melampy, R.M., Emmerson, M.A., Rakes, J.M., Hanka, L.J., Eness, P.G., 1957. The effect of 

progesterone on the estrous response of estrogen-conditioned ovariectomized cows. 

Journal of Animal Science 16, 967-975. 

Merz, A., 1991. Rhino. At the brink of extinction. Harper Collins, London. 



 

 
311 

Metrione, L.C., Harder, J.D., 2011. Fecal corticosterone concentrations and reproductive 

success in captive female southern white rhinoceros. General and Comparative 

Endocrinology 171, 283-292. 

Meyer, H.H.D., Guven, B., 1986. Improvement of microtitration plate enzyme 

immunoassays for steroid determination by a second antibody technique. Journal of 

Steroid Biochemistry 25 Supplement 1, 50. 

Meyer, H.H.D., Hoffmann, S., 1987. Development of a sensitive microtitration plate 

enzyme immunoassay for the anabolic steroid trenbolone. Food Additives and 

Contaminants 4, 149-160. 

Michalakis, K., Mintziori, G., Kaprara, A., Tarlatzis, B.C., Goulis, D.G., 2013. The complex 

interaction between obesity, metabolic syndrome and reproductive axis: a narrative 

review. Metabolism: Clinical and Experimental 62, 457-478. 

Miller, P.S., and R.C. Lacy, 2005. VORTEX: A stochastic simulation of the extinction 

process. Version 9.50 User’s Manual. Conservation Breeding Specialist Group 

(SSC/IUCN). Apple Valley, Minnesota. 

Moberg, G., 2000. Biological responses to stress: implications for animal welfare, In 

Biology of animal stress. eds Moberg, G.P., Mench, J.A., pp. 1-21. CABI publishing, 

Wallingford, Oxfordshire. 

Moberg, G.P., 1991. How behavioral stress disrupts the endocrine control of reproduction 

in domestic animals. Journal of Dairy Science 74, 304-311. 

Moberg, G.P., Mench, J.A. eds., 2000. The biology of animal stress. Basic principles and 

implications for animal welfare. CABI Publishing, Wallingford, Oxfordshire. 

Moore, I.T., Jessop, T.S., 2003. Stress, reproduction, and adrenocortical modulation in 

amphibians and reptiles. Hormones and Behavior 43, 39-47. 

Mooring, M.S., Patton, M.L., Lance, V.A., Hall, B.M., Schaad, E.W., Fortin, S.S., Jella, J.E., 

McPeak, K.M., 2004. Fecal androgens of bison bulls during the rut. Hormones and 

Behavior 46, 392-398. 

Moreira, N., Brown, J.L., Moraes, W., Swanson, W.F., Monteiro, E.L.A., 2007. Effect of 

housing and environmental enrichment on adrenocortical activity, Behavior and 



 

 
312 

reproductive Cyclicity in the female tigrina (Leopardus tigrinus) and margay (Leopardus 

wiedii). Zoo Biology 26, 441-460. 

Morgan-Davies, M., 1996. Status of the black rhinoceros in Masai Mara National Reserve, 

Kenya. Pachyderm 21, 38-45. 

Morgan, K.N., Tromborg, C.T., 2007. Sources of stress in captivity. Applied Animal 

Behaviour Science 102, 262-302. 

Morris, W.F., Doak, D.F., 2002. Quantitative conservation biology. Theory and practice of 

population viability analysis. Sinauer Associates, Inc, Sunderland, Massachusetts. 

Moss, A., Esson, M., 2013. The educational claims of zoos: where do we go from here? Zoo 

Biology 32, 13-18. 

Mostl, E., Palme, R., 2002. Hormones as indicators of stress. Domestic Animal 

Endocrinology 23, 67-74. 

Mullner, A., Linsenmair, K.E., Wikelski, M., 2004. Exposure to ecotourism reduces survival 

and affects stress response in hoatzin chicks (Opisthocomus hoazin). Biological 

Conservation 118, 549-558. 

Munro, C., Stabenfeldt, G., 1984. Development of a microtitre plate enzyme-immunoassay 

for the determination of progesterone. Journal of Endocrinology 101, 41-49. 

Muya, S.M., Bruford, M.W., Muigai, A.W.T., Osiemo, Z.B., Mwachiro, E., Okita-Ouma, B., 

Goossens, B., 2011. Substantial molecular variation and low genetic structure in Kenya's 

black rhinoceros: implications for conservation. Conservation Genetics 12, 1575-1588. 

Muya, S.M., Oguge, N.O., 2000. Effects of browse availability and quality on black rhino 

(Diceros bicornis michaeli Groves 1967) diet in Nairobi National Park, Kenya. African 

Journal of Ecology 38, 62-71. 

Mwangi, E.M., Western, D., 1998. Habitat selection by large herbivores in Lake Nakuru 

National Park, Kenya. Biodiversity and Conservation 7, 1-8. 

Ndeereh, D., Okita-Ouma, B., Gaymer, J., Mutinda, M., Gakuya, F., 2012. Unusual 

mortalities of the eastern black rhinoceros (Diceros bicornis michaeli) due to clostridial 

enterotoxaemia in Ol Jogi Pyramid Sanctuary, Kenya. Pachyderm 51, 45-51. 



 

 
313 

Negro, S.S., Caudron, A.K., Dubois, M., Delahaut, P., Gemmell, N.J., 2010. Correlation 

between male social status, testosterone levels, and parasitism in a dimorphic 

polygynous mammal. PloS one 5, 1-8. 

Neumann, I., Johnstone, H., Hatzinger, M., Liebsch, G., Shipston, M., Russell, J., Landgraf, R., 

Douglas, A., 1998. Attenuated neuroendocrine responses to emotional and physical 

stressors in pregnant rats involve adenohypophysial changes. The Journal of Physiology 

508, 289-300. 

Nicholson, A., Malcolm, R.D., Russ, P.L., Cough, K., Touma, C., Palme, R., Wiles, M.V., 2009. 

The response of C57BL/6J and BALB/cJ mice to increased housing density. Journal of the 

American Association for Laboratory Animal Science 48, 740-753. 

Nisenbaum, L.K., Zigmond, M.J., Sved, A.F., Abercrombie, E.D., 1991. Prior exposure to 

chronic stress results in enhanced synthesis and release of hippocampal norepinephrine 

in response to a novel stressor. The Journal of Neuroscience 11, 1478-1484. 

Norman, J.E., 2010. The adverse effects of obesity on reproduction. Reproduction 140, 

343-345. 

Okita-Ouma, B., 2004. Population performance of black rhinoceros (Diceros bicornis 

michaeli) in six Kenyan rhino sanctuaries.  Dissertation submitted in partial fulfilment of 

the requirements for the degree of Master of Science in Conservation Biology. Durrell 

Institute of Conservation and Ecology (DICE), University of Kent, UK. 

Okita-Ouma, B., Amin, R., Kock, R., 2007. Conservation and management strategy for the 

black rhino (Diceros bicornis michaeli) and management guidelines for the white rhino 

(Ceratotherium simum simum) in Kenya (2007-2011), Third edn. 

Okita-Ouma, B., Amin, R., van Langevelde, F., Leader-Williams, N., 2010. Density 

dependence and population dynamics of black rhinos (Diceros bicornis michaeli) in 

Kenya's rhino sanctuaries. African Journal of Ecology 48, 791-799. 

Okita-Ouma, B., Mijele, D., Amin, R., Gakuya, F., Ndeereh, D., Lekolool, I., Omondi, P., 

Woodley, D., Litoroh, M., Bakari, J., Kock, R., 2008. Minimizing competition by removing 

elephants from a degraded Ngulia rhino sanctuary, Kenya. Pachyderm 44, 80-87. 



 

 
314 

Olster, D.H., Ferin, M., 1987. Corticotropin-releasing hormone inhibits gonadotropin-

secretion in the ovariectomized rhesus monkey. Journal of Clinical Endocrinology and 

Metabolism 65, 262-267. 

Orr, T.E., Taylor, M.F., Bhattacharyya, A.K., Collins, D.C., Mann, D.R., 1994. Acute 

immobilization stress disrupts testicular steroidogenesis in adult male-rats by inhibiting 

the activities of 17-alpha-hydroxylase and 17,20-lyase without affecting the binding of 

LH/HCG receptors. Journal of Andrology 15, 302-308. 

Owen-Smith, R.N., 2001. Overview of the population dynamics of large mammals. In: 

Proceedings of a SADC rhino management group (RMG) workshop on biological 

management to meet continental and national black rhino conservation goals. Ed. Emslie, 

R.H., pp. 9-13, Giants Castle. 

Palme, R., Rettenbacher, S., Touma, C., El-Bahr, S.M., Mostl, E., 2005. Stress hormones in 

mammals and birds - comparative aspects regarding metabolism, excretion, and 

noninvasive measurement in fecal samples. Annals of the New York Academy of Sciences 

1040, 162-171. 

Papargiris, M.M., Rivalland, E.T.A., Hemsworth, P.H., Morrissey, A.D., Tilbrook, A.J., 2011. 

Acute and chronic stress-like levels of cortisol inhibit the oestradiol stimulus to induce 

sexual receptivity but have no effect on sexual attractivity or proceptivity in female 

sheep. Hormones and Behavior 60, 336-345. 

Pappano, D.J., Roberts, E.K., Beehner, J.C., 2010. Testing extraction and storage 

parameters for a fecal hormone method. American Journal of Primatology 72, 934-941. 

Parkening, T.A., Collins, T.J., Smith, E.R., 1982. Plasma and pituitary concentrations of LH, 

FSH, and prolactin in aging C57BL/6 mice at various times of the estrous cycle. 

Neurobiology of Aging 3, 31-35. 

Parker, V.J., Douglas, A.J., 2010. Stress in early pregnancy: maternal neuro-endocrine-

immune responses and effects. Journal of Reproductive Immunology 85, 86-92. 

Patisaul, H.B., 2012. Infertility in the southern white rhino: is diet the source of the 

problem? Endocrinology 153, 1568-1571. 

Patton, F., Campbell, P., Parfet, E., 2008. Biological management of the high density black 

rhino population in Solio Game Reserve, central Kenya. Pachyderm 44, 72-79. 



 

 
315 

Patton, F.J., Mulama, M.S., Mutisya, S., Campbell, P.E., 2010a. The colonization of a new 

area in the first six months following 'same-day' free release translocation of black rhinos 

in Kenya. Pachyderm 47, 66-79. 

Patton, F.J., Mulama, M.S., Mutisya, S., Campbell, P.E., 2010b. The effect of removing a 

dividing fence between two populations of black rhinos. Pachyderm 47, 55-58. 

Patton, M.L., Swaisgood, R.R., Czekala, N.M., White, A.M., Fetter, G.A., Montagne, J.P., 

Rieches, R.G., Lance, V.A., 1999. Reproductive cycle length and pregnancy in the southern 

white rhinoceros (Ceratotherium simum simum) as determined by fecal pregnane 

analysis and observations of mating behavior. Zoo Biology 18, 111-127. 

Phillips, D.M., Lakshmi, V., Monder, C., 1989. Corticosteroid 11-beta-dehydrogenase in rat 

testis. Endocrinology 125, 209-216. 

Phillips, M.K., Henry, V.G., Kelly, B.T., 2003. Restoration of the red wolf, In Wolves: 

behavior, ecology, and conservation. eds Mech, L.D., Boitani, L., pp. 272–288. University 

of Chicago Press, Chicago. 

Pollak, J.P., Lacy, R.C., Ballou, J.D., 2002. Population management 2000. Chicago Zoological 

Society, Brookfield, Illinois. 

Pritchard, D.J., Fa, J.E., Oldfield, S., Harrop, S.R., 2012. Bring the captive closer to the wild: 

redefining the role of ex situ conservation. Oryx 46, 18-23. 

Rabin, D.S., Johnson, E.O., Brandon, D.D., Liapi, C., Chrousos, G.P., 1990. Glucocorticoids 

inhibit estradiol-mediated uterine growth - possible role of the uterine estradiol-

receptor. Biology of Reproduction 42, 74-80. 

Rachlow, J.L., Berkeley, E.V., Berger, J., 1998. Correlates of male mating strategies in white 

rhinos (Ceratotherium simum). Journal of Mammalogy 79, 1317-1324. 

Radcliffe, R.W., Czekala, N.M., Osofsky, S.A., 1997. Combined serial ultrasonography and 

fecal progestin analysis for reproductive evaluation of the female white rhinoceros 

(Ceratotherium simum simum): preliminary results. Zoo Biology 16, 445-456. 

Radcliffe, R.W., Eyres, A.I., Patton, M.L., Czekala, N.M., Emslie, R.H., 2001. 

Ultrasonographic characterization of ovarian events and fetal gestational parameters in 

two southern black rhinoceros (Diceros bicomis minor) and correlation to fecal 

progesterone. Theriogenology 55, 1033-1049. 



 

 
316 

Ralls, K., Ballou, J.D., Templeton, A., 1988. Estimates of lethal equivalents and the cost of 

inbreeding in mammals. Conservation Biology 2, 185-193. 

Ramsay, E.C., Kasman, L.H., Lasley, B.L., 1987. Urinary steroid evaluations to monitor 

ovarian-function in exotic ungulates: V. Estrogen and pregnanediol-3-glucuronide 

excretion in the black rhinoceros (Diceros-bicornis). Zoo Biology 6, 275-282. 

Rasbash, J., Charlton, C., Browne, W.J., Healy, M., Cameron, B., 2005. MLwiN. Centre for 

Multilevel Modelling, University of Bristol, Bristol. 

RCVS, 2012. Recognised veterinary practice. http://www.rcvs.org.uk/advice-and-

guidance/code-of-professional-conduct-for-veterinary-nurses/supporting-

guidance/recognised-veterinary-practice/. Last accessed: 11 June 2013 

Rebeski, D.E., Winger, E.M., Shin, Y.K., Lelenta, M., Robinson, M.M., Varecka, R., Crowther, 

J.R., 1999. Identification of unacceptable background caused by non-specific protein 

adsorption to the plastic surface of 96-well immunoassay plates using a standardized 

enzyme-linked immunosorbent assay procedure. Journal of Immunological Methods 226, 

85-92. 

Redford, K.H., Jensen, D.B., Breheny, J.J., 2012. Integrating the captive and the wild. 

Science 338, 1157-1158. 

Rees, P.A., 2004. Low environmental temperature causes an increase in stereotypic 

behaviour in captive Asian elephants (Elephas maximus). Journal of Thermal Biology 29, 

37-43. 

Reuter, H.O., Adcock, K., 1998. Standardised body condition scoring system for black 

rhinoceros (Diceros bicornis). Pachyderm 26, 116-121. 

Ritchie, A.T.A., 1963. The black rhinoceros (Diceros bicornis L.). African Journal of Ecology 

1, 54-62. 

Rivera, G.M., Alanis, G.A., Chaves, M.A., Ferrero, S.B., Morello, H.H., 2003. Seasonality of 

estrus and ovulation in Creole goats of Argentina. Small Ruminant Research 48, 109-117. 

Rivier, C., Rivest, S., 1991. Effect of stress on the activity of the hypothalamic-pituitary-

gonadal axis - peripheral and central mechanisms. Biology of Reproduction 45, 523-532. 

Rookmaaker, L., 1998. The rhinoceros in captivity. SPB Academic Publishing, Rotterdam. 

http://www.rcvs.org.uk/advice-and-guidance/code-of-professional-conduct-for-veterinary-nurses/supporting-guidance/recognised-veterinary-practice/
http://www.rcvs.org.uk/advice-and-guidance/code-of-professional-conduct-for-veterinary-nurses/supporting-guidance/recognised-veterinary-practice/
http://www.rcvs.org.uk/advice-and-guidance/code-of-professional-conduct-for-veterinary-nurses/supporting-guidance/recognised-veterinary-practice/


 

 
317 

Roser, J.E., 2008. Regulation of testicular function in the stallion: an intricate network of 

endocrine, paracrine and autocrine systems. Animal Reproduction Science 107, 179-196. 

Roth, T.L., 2006. A review of the reproductive physiology of rhinoceros species in 

captivity. International Zoo Yearbook 40, 130-143. 

Rubenstein, D.I., Nunez, C.M., 2009. Sociality and reproductive skew in horses and zebras, 

In Reproductive skew in vertebrates: proximate and ultimate causes. eds Hager, R., Jones, 

C.B., pp. 196-226. Cambridge University Press, Cambridge. 

Ryder, O.A., 1993. Przewalski horse - prospects for reintroduction into the wild. 

Conservation Biology 7, 13-15. 

Santymire, R.M., Armstrong, D.M., 2010. Development of a field-friendly technique for 

fecal steroid extraction and storage using the African wild dog (Lycaon pictus). Zoo 

Biology 29, 289-302. 

Santymire, R.M., Freeman, E.W., Lonsdorf, E.V., Heintz, M.R., Armstrong, D.M., 2012. Using 

ACTH challenges to validate techniques for adrenocortical activity analysis in various 

African wildlife species. International Journal of Animal and Veterinary Advances 4, 99-

108. 

Sapolsky, R.M., 1985. Stress-induced suppression of testicular function in the wild 

baboon - role of glucocorticoids. Endocrinology 116, 2273-2278. 

Sapolsky, R.M., 1994. Individual differences and the stress response. Seminars in 

Neuroscience 6, 261-269. 

Schatten, H., Constantinescu, G.M. eds., 2007. Comparative reproductive biology. 

Blackwell Publishing, Oxford. 

Schenkel, R., Schenkel-Hulliger, L., 1969. Ecology and behaviour of the black rhinoceros 

(Diceros bicornis L.): a field study. Paul Parey Scientific Publishers, Hamburg. 

Schenker, J.G., Meirow, D., Schenker, E., 1992. Stress and human reproduction. European 

Journal of Obstetrics and Gynecology and Reproductive Biology 45, 1-8. 

Schreck, C.B., 2010. Stress and fish reproduction: the roles of allostasis and hormesis. 

General and Comparative Endocrinology 165, 549-556. 



 

 
318 

Schwarzenberger, F., Francke, R., Goltenboth, R., 1993. Concentrations of fecal 

immunoreactive progestagen metabolites during the estrous-cycle and pregnancy in the 

black rhinoceros (Diceros bicornis michaeli). Journal of Reproduction and Fertility 98, 

285-291. 

Schwarzenberger, F., Mostl, E., Palme, R., Bamberg, E., 1996a. Faecal steroid analysis for 

non-invasive monitoring of reproductive status in farm, wild and zoo animals. Animal 

Reproduction Science 42, 515-526. 

Schwarzenberger, F., Tomasova, K., Holeckova, D., Matern, B., Mostl, E., 1996b. 

Measurement of fecal steroids in the black rhinoceros (Diceros bicornis) using group-

specific enzyme immunoassays for 20-oxo-pregnanes. Zoo Biology 15, 159-171. 

Schwarzenberger, F., Walzer, C., Tomasova, K., Vahala, J., Meister, J., Goodrowe, K.L., Zima, 

J., Strauss, G., Lynch, M., 1998. Faecal progesterone metabolite analysis for non-invasive 

monitoring of reproductive function in the white rhinoceros (Ceratotherium simum). 

Animal Reproduction Science 53, 173-190. 

Scott, J.M., Goble, D.D., Haines, A.M., Wiens, J.A., Neel, M.C., 2010. Conservation-reliant 

species and the future of conservation. Conservation Letters 3, 91-97. 

Seddon, P.J., Armstrong, D.P., Maloney, R.F., 2007. Developing the science of 

reintroduction biology. Conservation Biology 21, 303-312. 

Shekarchi, I.C., Sever, J.L., Lee, Y.J., Castellano, G., Madden, D.L., 1984. Evaluation of 

various plastic microtiter plates with measles, toxoplasma, and gamma-globulin antigens 

in enzyme-linked immunosorbent assays. Journal of Clinical Microbiology 19, 89-96. 

Shepherdson, D., Carlstead, K., 2001. New approaches to the evaluation of zoo animal 

well-being using multiple institutions, assessment of behavior and temperament, and 

non-invasive physiological measures. In: AZA Annual Conference Proceedings 2001. pp. 

131-136. AZA, St. Louis. 

Shepherdson, D.J., Carlstead, K.C., Wielebnowski, N., 2004. Cross-institutional assessment 

of stress responses in zoo animals using longitudinal monitoring of faecal corticoids and 

behaviour. In: Animal Welfare. pp. S105-S113. 



 

 
319 

Sherman, B.M., Korenman, S.G., 1974. Measurement of plasma LH, FSH, estradiol and 

progesterone in disorders of human menstrual-cycle - short luteal phase. Journal of 

Clinical Endocrinology and Metabolism 38, 89-93. 

Smith, B.R., Blumstein, D.T., 2008. Fitness consequences of personality: a meta-analysis. 

Behavioral Ecology 19, 448-455. 

Smith, R.L., Read, B., 1992. Management parameters affecting the reproductive potential 

of captive, female black rhinoceros, Diceros bicornis. Zoo Biology 11, 375-383. 

Smith, S.K., Lenton, E.A., Cooke, I.D., 1985. Plasma gonadotrophin and ovarian steroid 

concentrations in women with menstrual cycles with a short luteal phase. Journal of 

Reproduction and Fertility 75, 363-368. 

Soule, M., Gilpin, M., Conway, W., Foose, T., 1986. The Millennium Ark - how long a 

voyage, how many staterooms, how many passengers. Zoo Biology 5, 101-113. 

Stanley-Price, M., Fa, J., 2007. Reintroduction from zoos: a conservation guiding light or a 

shooting star?, In Zoos in the 21st century: catalysts for conservation? eds Zimmermann, 

A., Hatchwell, M., Dickie, L., West, C., pp. 155-177. Cambridge University Press, 

Cambridge. 

Stanley-Price, M.R., 1989. Animal re-introductions: the Arabian oryx in Oman. Cambridge 

University Press, Cambridge. 

Stoebel, D.P., Moberg, G.P., 1982. Effect of adrenocorticotropin and cortisol on luteinizing-

hormone surge and estrous behavior of cows. Journal of Dairy Science 65, 1016-1024. 

Strott, C.A., Cargille, C.M., Ross, G.T., 1970. Short luteal phase. Journal of Clinical 

Endocrinology and Metabolism 30, 246-251. 

Sutherland, W.J., Pullin, A.S., Dolman, P.M., Knight, T.M., 2004. The need for evidence-

based conservation. Trends in Ecology and Evolution 19, 305-308. 

Swaisgood, R.R., Dickman, D.M., White, A.M., 2006. A captive population in crisis: testing 

hypotheses for reproductive failure in captive-born southern white rhinoceros females. 

Biological Conservation 129, 468-476. 

Tamashiro, K.L.K., Nguyen, M.M.N., Sakai, R.R., 2005. Social stress: from rodents to 

primates. Frontiers in Neuroendocrinology 26, 27-40. 



 

 
320 

Tetley, C.L., O'Hara, S.J., 2012. Ratings of animal personality as a tool for improving the 

breeding, management and welfare of zoo mammals. Animal Welfare 21, 463-476. 

The MathWorks Inc, 2008. MATLAB – The language of technical computing. The 

MathWorks Inc, , Natick, Massachusetts. 

Tilbrook, A.J., Canny, B.J., Serapiglia, M.D., Ambrose, T.J., Clarke, I.J., 1999. Suppression of 

the secretion of luteinizing hormone due to isolation/restraint stress in gonadectomised 

rams and ewes is influenced by sex steroids. Journal of Endocrinology 160, 469-481. 

Tilbrook, A.J., Turner, A.I., Clarke, I.J., 2000. Effects of stress on reproduction in non-

rodent mammals: the role of glucocorticoids and sex differences. Reviews of 

Reproduction 5, 105-113. 

Tilbrook, A.J., Turner, A.I., Clarke, I.J., 2002. Stress and reproduction: central mechanisms 

and sex differences in non-rodent species. Stress - the International Journal on the 

Biology of Stress 5, 83-100. 

Tokarz, R.R., Summers, C.H., 2011. Stress and reproduction in reptiles, In Hormones and 

Reproduction of Vertebrates. eds David, O.N., Kristin, H.L., pp. 169-213. Academic Press, 

London. 

Toon, S., Toon, A., 2002. Rhinos. Colin Baxter Photography Ltd, Grantown-on-Spey. 

Touma, C., Palme, R., 2005. Measuring fecal glucocorticoid metabolites in mammals and 

birds: the importance of validation. Annals of the New York Academy of Sciences 1046, 

54-74. 

Touma, C., Sachser, N., Mostl, E., Palme, R., 2003. Effects of sex and time of day on 

metabolism and excretion of corticosterone in urine and feces of mice. General and 

Comparative Endocrinology 130, 267-278. 

Tubbs, C., Hartig, P., Cardon, M., Varga, N., Milnes, M., 2012. Activation of southern white 

rhinoceros (Ceratotherium simum simum) estrogen receptors by phytoestrogens: 

potential role in the reproductive failure of captive-born females? Endocrinology 153, 

1444-1452. 

Turner, A.I., Hemsworth, P.H., Tilbrook, A.J., 2002. Susceptibility of reproduction in 

female pigs to impairment by stress and the role of the hypothalamo-pituitary-adrenal 

axis. Reproduction Fertility and Development 14, 377-391. 



 

 
321 

Uphouse, L., 2011. Stress and reproduction in mammals, In Hormones and Reproduction 

of Vertebrates. eds David, O.N., Kristin, H.L., pp. 117-138. Academic Press, London. 

Vailes, L.D., Washburn, S.P., Britt, J.H., 1992. Effects of various steroid milieus or 

physiological states on sexual-behavior of Holstein cows. Journal of Animal Science 70, 

2094-2103. 

Vaitukaitis, J., Robbins, J.B., Nieschlag, E., Ross, G.T., 1971. Method for producing specific 

antisera with small doses of immunogen. Journal of Clinical Endocrinology and 

Metabolism 33, 988-991. 

van Dorsser, F.J.d.H., Green, D.I., Holt, W.V., Pickard, A.R., 2007. Ovarian activity in 

Arabian leopards (Panthera pardus nimr): sexual behaviour and faecal steroid 

monitoring during the follicular cycle, mating and pregnancy. Reproduction Fertility and 

Development 19, 822-830. 

Vargas, A., Lockhart, M., Marinari, P., Gober, P., 1998. Preparing captive-raised black-

footed ferrets Mustela nigripes for survival after release. Dodo - Journal of the Wildlife 

Preservation Trusts 34, 76-83. 

Veiga-Lopez, A., Gonzalez-Bulnes, A., Tresguerres, J.A.F., Dominguez, V., Ariznavarreta, C., 

Cocero, M.J., 2006. Causes, characteristics and consequences of anovulatory follicles in 

superovulated sheep. Domestic Animal Endocrinology 30, 76-87. 

Vick, M.M., Sessions, D.R., Murphy, B.A., Kennedy, E.L., Reedy, S.E., Fitzgerald, B.P., 2006. 

Obesity is associated with altered metabolic and reproductive activity in the mare: effects 

of metformin on insulin sensitivity and reproductive cyclicity. Reproduction Fertility and 

Development 18, 609-617. 

Viijoen, J.J., Ganswindt, A., du Toit, J.T., Langbauer, W.R., 2008. Translocation stress and 

faecal glucocorticoid metabolite levels in free-ranging African savanna elephants. South 

African Journal of Wildlife Research 38, 146-152. 

von Borell, E., Dobson, H., Prunier, A., 2007. Stress, behaviour and reproductive 

performance in female cattle and pigs. Hormones and Behavior 52, 130-138. 

Wade, G.N., Schneider, J.E., 1992. Metabolic fuels and reproduction in female mammals. 

Neuroscience and Biobehavioral Reviews 16, 235-272. 



 

 
322 

Waiblinger, E., Konig, B., 2004. Refinement of gerbil housing and husbandry in the 

laboratory. Animal Welfare 13, S229-S235. 

Waitt, C., Buchanan-Smith, H.M., Morris, K., 2002. The effects of caretaker-primate 

relationships on primates in the laboratory. Journal of Applied Animal Welfare Science 5, 

309-319. 

Walker, S.L., Smith, R.F., Jones, D.N., Routly, J.E., Dobson, H., 2008. Chronic stress, 

hormone profiles and estrus intensity in dairy cattle. Hormones and Behavior 53, 493-

501. 

Walker, S.L., Waddell, W.T., Goodrowe, K.L., 2002. Reproductive endocrine patterns in 

captive female and male red wolves (Canis rufus) assessed by fecal and serum hormone 

analysis. Zoo Biol 21, 321-335. 

Walpole, M., Bett, P., 1998. An apparent decline in the Masai Mara black rhino population. 

Pachyderm 26, 123. 

Walpole, M.J., 2002. Factors affecting black rhino monitoring in Masai Mara National 

Reserve, Kenya. African Journal of Ecology 40, 18-25. 

Walpole, M.J., Morgan-Davies, M., Milledge, S., Bett, P., Leader-Williams, N., 2001. 

Population dynamics and future conservation of a free-ranging black rhinoceros (Diceros 

bicornis) population in Kenya. Biological Conservation 99, 237-243. 

Walters, J.R., Derrickson, S.R., Fry, D.M., Haig, S.M., Marzluff, J.M., Wunderle, J.M., 2010. 

Status of the California condor (Gymnogyps californianus) and efforts to achieve its 

recovery. Auk 127, 969-1001. 

Wasser, S., Papageorge, S., Foley, C., Brown, J., 1996. Excretory fate of estradiol and 

progesterone in the African elephant (Loxodonta africana) and patterns of fecal steroid 

concentrations throughout the estrous cycle. General and Comparative Endocrinology 

102, 255-262. 

Watson, R., Munro, C., Edwards, K.L., Norton, V., Brown, J.L., Walker, S.L., 2013. 

Development of a versatile enzyme immunoassay for non-invasive assessment of 

glucocorticoid metabolites in a diversity of taxonomic species. General and Comparative 

Endocrinology 186, 16-24. 



 

 
323 

Watts, P.C., Buley, K.R., Boardman, W., Ciofi, C., Gibson, R., 2006. Parthenogenesis in 

Komodo dragons. Nature 444, 1021-1022. 

WAZA, 2005. Building a future for wildlife. The world zoo and aquarium conservation 

strategy. Ed. Olney, P.J.S. 

Whitham, J.C., Wielebnowski, N., 2009. Animal-based welfare monitoring: using keeper 

ratings as an assessment tool. Zoo Biology 28, 545-560. 

Whitten, P.L., Brockman, D.K., Stavisky, R.C., 1998. Recent advances in noninvasive 

techniques to monitor hormone-behavior interactions. Yearbook of Physical 

Anthropology 41, 1-23. 

Wielebnowski, N., Watters, J., 2007. Applying fecal endocrine monitoring to conservation 

and behavior studies of wild mammals: Important considerations and preliminary tests. 

Israel Journal of Ecology and Evolution 53, 439-460. 

Williams, S.E., Hoffman, E.A., 2009. Minimizing genetic adaptation in captive breeding 

programs: a review. Biological Conservation 142, 2388-2400. 

Willis, K., Wiese, R.J., 1993. Effect of new founders on retention of gene diversity in 

captive populations - a formalization of the nucleus population concept. Zoo biology 12, 

535-548. 

Wiltbank, M.C., Gumen, A., Sartori, R., 2002. Physiological classification of anovulatory 

conditions in cattle. Theriogenology 57, 21-52. 

Wingfield, J.C., Sapolsky, R.M., 2003. Reproduction and resistance to stress: when and 

how. Journal of Neuroendocrinology 15, 711-724. 

Wittmer, H.U., Ahrens, R.N.M., McLellan, B.N., 2010. Viability of mountain caribou in 

British Columbia, Canada: effects of habitat change and population density. Biological 

Conservation 143, 86-93. 

Wood, W., 1998. Interactions among environmental enrichment, viewing crowds, and 

zoo chimpanzees (Pan troglodytes). Zoo Biology 17, 211-230. 

Wright, S., 1969. Evolution and the genetics of populations: The theory of gene 

frequencies. University of Chicago Press, Chicago. 



 

 
324 

Yamamoto, S., 1967. Notes on the breeding of black rhinoceroses Diceros bicornis at Kobe 

Zoo. International Zoo Yearbook 7, 163-163. 

Young, A.J., Monfort, S.L., Clutton-Brock, T.H., 2008. The causes of physiological 

suppression among female meerkats: A role for subordinate restraint due to the threat of 

infanticide? Hormones and Behavior 53, 131-139. 

Young, K.M., Walker, S.L., Lanthier, C., Waddell, W.T., Monfort, S.L., Brown, J.L., 2004. 

Noninvasive monitoring of adrenocortical activity in carnivores by fecal glucocorticold 

analyses. General and Comparative Endocrinology 137, 148-165. 

Zippel, K., Johnson, K., Gagliardo, R., Gibson, R., McFadden, M., Browne, R., Martinez, C., 

Townsend, E., 2011. The amphibian Ark: a global community for ex situ conservation of 

amphibians. Herpetological Conservation and Biology 6, 340-352. 

 

 



 

 
325 

 

 

 

 

 

APPENDIX 1 

  



 

 
326 

  



 

 
327 

 

A.1 Laboratory Protocols 

1. Wet-weight shaking extraction 

2. Progesterone CL425 EIA 

3. Plate map for CL425 

4. Testosterone R156/7 EIA 

5. Oestradiol R4972 EIA 

6. Corticosterone CJM006 EIA 
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Wet Weight Shaking Extraction 

Day 1  

 Defrost faecal samples – aim for approximately 70-100 samples per day  

 Create an extraction processing sheet with individual, unique sample number, date of 

sample and space for additional notes.  

 Assign each sample an extraction vial number and label a set of extraction vials with 

number on both sides. 

 Print labels and label two sets of plastic tubes with individual, sample number, date, 

institution and either faecal sample or faecal extract. 

 Once samples have defrosted, break up and mix each sample by crushing bag between 

fingers 

 When ready to extract each sample, open storage bag up fully and mix sample again 

with tweezers 

 Weigh 0.5 g of faecal sample into small weigh boats – take a minimum of three 

subsections from different areas of the bag to make up the 0.5g 

 Mark any unusual consistency, debris, or unusual smell (e.g. urine) on extraction sheet  

 Transfer faecal material into numbered extraction vials - try to avoid leaving faecal 

material around the rim of the vial  

 Fill a small plastic sample storage vial labelled with ‘faecal sample’ with remainder of 

mixed sample. Cap the vials and freeze 

 Clean tweezers in between each sample with 30% methanol to avoid transfer of 

hormones between samples 

 Once all samples have been weighed, use repeater to add 0.5 ml Milli-Q water and then 

4.5 ml 100% methanol to every extraction vial 

 Cap the vials. Vortex each tube until sample is well mixed (until all faecal material is 

freely mixing in the solution) ~10 seconds 

 Place extraction vials in order in boxes and place on rotator to shake overnight 

 Clean weigh balance and weighing area with methanol 
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Day 2  

 In the morning remove extraction vials from rotator 

 Vortex each sample 

 Remove buckets from the centrifuge place extraction vials into buckets in order. Make 

sure centrifuge is balanced 

 Centrifuge extraction vials for 20 minutes at 1800rpm (598g) 

 While tubes are spinning label a set of glass tubes (16mm x125mm) with sample 

numbers on both sides according to the extraction sheet 

 Pour off supernatant into corresponding # glass extraction tubes (16mm x125mm) and 

dry down supernatant in warm water bath (56°C) under air in fume cupboard 

 Reconstitute in 1 ml methanol – add 1ml 100% methanol using repeater, cover each 

tube individually with parafilm then vortex and sonicate for 15 minutes 

 Vortex then pour off each extract into plastic sample storage vials labelled ‘faecal 

extracts’. Cap the vials and store in freezer until ready to use 
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Protocol for Progesterone EIA (CL425) – per plate 
 

DAY 1:  
Plate coating  
 use NUNC Maxisorb plates 
 antibody working dilution is 1:10,000 

o add 25μL working antibody stock (1:50, -20°C) to 5mL coating buffer 
o add 50μL per well antibody solution  
o do not coat column 1 - start at A2 and go down each column  
o tap plates gently to ensure that coating solution covers well bottom 
o label, cover with acetate plate sealer and leave overnight at 4°C 

 plates can be prepared and used for up to one week  
 
DAY 2: 
Preparing reagents 
 Standards  

o standard values are 200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56 and 0.78pg/well 
o serially dilute working top standard (200pg/well, -20°C) 2-fold with 200μL EIA buffer  
o label one vial ‘0’ and add 400μl of EIA buffer only 

 Samples/controls  
o dilute faecal extracts in EIA buffer to the appropriate dilution  
o use pre-prepared synthetic C1 and C2 neat in assay 
o dilute C3 female black rhino faecal pool 1:70 in EIA buffer  

 HRP 
o Pg-HRP working dilution is 1:35,000  
o check working stock for contamination before use, and remake if necessary 
o add 28.6μL working stock (1:200, 4°C) to 5mL EIA buffer in a glass beaker 

 
Running the plate 
 Plate washing 

o purge the plate washer 
o wash the plates five times with wash solution  
o blot the plates on paper towel to remove excess wash solution  
o run plate immediately 

 Plate loading 
o add 50μL standard, sample, or control per well in duplicate as quickly and accurately as 

possible 
o immediately add 50μL per well of diluted Pg-HRP  
o cover the plates, label with the time and incubate at RT in light for 2 hours  

 Plate washing 
o wash the plates 5 times with wash solution and blot dry 
o plates are fairly stable at this point and can be left until all plates are washed 

 Substrate 
o prepare substrate immediately before use 
o combine 40μL H2O2, 125μL ABTS and 12.5mL substrate buffer = substrate 
o add 100μL substrate to all wells  
o cover and incubate at RT in light 

 Plate reading 
o read at 405nm 
o ready when 0 wells reach between 0.8 and 1 .0 optical density 



 

 
 

 

ASSAY Progesterone CL425 SPECIES

DATE COATED INSTITUTION

DATE RUN ANIMAL ID

DILUTION

1 2 3 4 5 6 7 8 9 10 11 12

A
NSB 0 6.25 100 T1 T5 T9 T13 T17 T21 C3* 6.25

B
NSB 12.5

C
0.78 12.5 200 T2 T6 T10 T14 T18 T22 T25 25

D
50

E
1.56 25 C1 T3 T7 T11 T15 T19 T23 0 100

F
0.78 200

G
3.12 50 C2 T4 T8 T12 T16 T20 T24 1.56 0

H
3.12 0

COMMENTS

3
3

1
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Stock Preparation for Progesterone EIA 
 
Antibody 
 antibody top stock (monoclonal CL425, C.J. Munro, UC Davis) is stored in the freezer 
 when required, dilute CL425 at a dilution of 1:50 by adding 100μL of stock to 4.9mL coating 

buffer 
 aliquot 100μL into 1ml eppendorf and freeze at -20°C = working antibody stock 
 refreeze remaining top stock 
 
HRP Conjugate 
 Pg-HRP top stock (progesterone-3CMO-horseradish peroxidase; C.J. Munro, UC Davis) is 

stored in the freezer 
 when required, dilute Pg-HRP 1:200 by adding 6.25μL stock to 1.244mL EIA assay buffer and 

store at 4°C = working HRP stock 
 working HRP stock is stored in the fridge, and must be remade once 

sediment/contamination appears 
 refreeze remaining top stock 
 
Standards 
 weigh 1mg progesterone (P0130, Sigma Aldrich) and add to 1mL EtOH for a 1mg/mL 

primary stock 
 take 1ml primary stock (1mg/mL) and add to 99mL EtOH assay buffer for a 1mg/100mL 

(10,000ng/ml) secondary stock in alcohol 
 standard secondary stock is stored in the fridge 
 when required, dilute further (1:2500) by adding 20μL secondary stock to 49.9mL EIA 

buffer to prepare 200pg/well or 4pg/μl standard stock 
 aliquot 4ml into 12x75 polypropylene tubes and freeze at -20°C = working top standard 
 
Controls 
 make C1 to bind at ~30% and C2 at ~70 % using secondary standard stock 
 aliquot 3ml into 12x75 polypropylene tubes, label and freeze at -20°C 
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Protocol for Testosterone EIA (R156/7) – per plate 
 
DAY 1:  
Plate coating with non-specific anti-rabbit IgG 
 use NUNC Maxisorb plates 
 coat plate with anti-rabbit IgG (1.0μg/well), including blank/NSBs 

o add 500μL working IgG (1mg/5ml, -20°C) to 25mL coating buffer 
o add 250μL IgG solution per well 
o coat NSBs (A1/B1), do not coat remainder of column 1 – re-start at A2 and go down each 

column  
o tap plates gently to ensure that coating solution covers well bottom 
o label, cover with acetate plate sealer and leave overnight at room temperature (RT) 

 
DAY 2: 
Plate blocking 

o empty excess IgG solution into sink with good shake and bang on paper towel, do not 
wash 

o add 300ul blocking buffer per well (including NSBs) 
o incubate at RT for a minimum of 2 hours (or can be stored like this for maximum 1 week) 

 
Preparing reagents 
 Standards  

o standard values are 600, 300, 150, 75, 37.5, 18.8, 9.4, 4.7, and 2.3 pg/well 
o serially dilute working top standard (600pg/well, -20°C) 2-fold with 200μL EIA buffer  
o label one vial ‘0’ and add 400μl of EIA buffer only 

 Samples/controls  
o dilute faecal extracts in EIA buffer to the appropriate dilution  
o use pre-prepared synthetic C1 and C2 neat in assay 
o dilute C4 male black rhino faecal pool 1:20 in EIA buffer  

 HRP 
o Tt-HRP working dilution is 1:45,000  
o check working stock for contamination before use, and remake if necessary 
o add 11.1μL working stock (1:100, 4°C) to 5mL EIA buffer in a glass beaker 

 Antibody (AB) 
o Tt-AB working dilution is 1:25,000  
o add 20μL working stock (1:100, -20°C) to 5mL EIA buffer in a glass beaker 

 
Running the plate 
 Plate washing 

o purge the plate washer 
o wash the plates five times with wash solution  
o blot the plates on paper towel to remove excess wash solution  
o run plate immediately 

 Plate loading – follow plate map 
o add 50μL EIA buffer per well 
o add 50μL standard, sample, or control per well in duplicate as quickly and accurately as 

possible 
o add 50μL per well of diluted Tt-HRP 
o add 50μL per well of diluted Tt-AB (Do not add to NSBs)  
o cover the plates, label with the time and incubate at RT in dark for 2 hours  

 Plate washing 
o wash the plates 5 times with wash solution and blot dry 
o plates are fairly stable at this point and can be left until all plates are washed 

 
Substrate 

o prepare substrate immediately before use 
o combine 40μL H2O2, 125μL ABTS and 12.5mL substrate buffer = substrate 
o add 100μL substrate to all wells  
o cover and incubate at RT in dark 
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Plate reading 

o read at 405nm 
o ready when 0 wells reach between 0.8 and 1 .0 optical density  

 
 
 

Stock Preparation for Testosterone EIA 
 
Non-specific goat anti-rabbit IgG   
 dissolve 1mg anti-rabbit IgG (R2004, Sigma Aldrich) in 5ml coating buffer 
 use a 5ml syringe and needle to piercing rubber stopper to avoid loss of powder 
 gently shake to dissolve powder until solution becomes hazy, not stringy 
 solution will appear clear at first, becoming stringy then hazy 
 can take several hours so place on orbital shaker on low speed 
 freeze at -20°C = working IgG 
 
Antibody   
 antibody top stock (polyclonal R156/7, C.J. Munro, UC Davis) is stored in the freezer 
 when required, dilute R156/7 at a dilution of 1:100 by adding 20μL of stock to 2.0mL 

coating buffer 
 aliquot 100μL into 1ml eppendorf and freeze at -20°C = working antibody stock 
 refreeze remaining top stock 
 
HRP Conjugate  
 Tt-HRP top stock (testosterone-horseradish peroxidase; C.J. Munro, UC Davis) is stored in 

the freezer 
 when required, dilute Tt-HRP 1:100 by adding 12.5μL stock to 1.238mL EIA assay buffer and 

store at 4°C = working HRP stock 
 working HRP stock is stored in the fridge, and must be remade once 

sediment/contamination appears  
 refreeze remaining top stock  
 
Standards  
 weigh 1mg testosterone (T1500, Sigma Aldrich) and add to 1mL EtOH for a 1mg/mL 

primary stock  
 take 1ml primary stock (1mg/mL) and add to 99mL EtOH assay buffer for a 1mg/100mL 

(10,000ng/ml) secondary stock in alcohol  
 standard secondary stock is stored in the fridge 
 when required, dilute further (1:833) by adding 60μL secondary stock to 50mL EIA buffer to 

prepare 600pg/well or 12pg/μl standard stock 
 aliquot 4ml into 12x75 polypropylene tubes and freeze at -20°C = working top standard 
 
Controls 
 make C1 to bind at ~30% and C2 at ~70 % using secondary standard stock 
 aliquot 3ml into 12x75 polypropylene tubes, label and freeze at -20°C 
 
  



 

 
335 

Protocol for Oestradiol EIA (R4972) – per plate 
 
DAY 1:  
Plate coating  
 use NUNC Maxisorb plates 
 antibody working dilution is 1:20,000 

o add 25μL working antibody stock (1:100, -20°C) to 5mL coating buffer 
o add 50μL per well antibody solution  
o do not coat column 1 - start at A2 and go down each column  
o tap plates gently to ensure that coating solution covers well bottom 
o label, cover with acetate plate sealer and leave overnight at 4°C 

 plates can be prepared and used for up to one week  
 
DAY 2: 
Plate washing 

o purge the plate washer 
o wash the plates five times with wash solution  
o blot the plates on paper towel to remove excess wash solution  
o run plate immediately 

 
Buffer plates 

o add 50μl of EIA assay buffer to each well (including blanks) – incubate at RT 1-5 hours 
 
Preparing reagents 
 Standards  

o standard values are 500, 250, 125, 62.5, 31.2, 15.6, 7.8, 3.9 and 1.95 pg/well 
o serially dilute working top standard (500pg/well, -20°C) 2-fold with 100μL EIA buffer  
o label one vial ‘0’ and add 200μl of EIA buffer only 

 Samples/controls  
o dilute faecal extracts in EIA buffer to the appropriate dilution  
o use pre-prepared synthetic C1 and C2 neat in assay 
o dilute C3 female black rhino faecal pool 1:50 in EIA buffer  

 HRP 
o E2-HRP working dilution is 1:65,000  
o check working stock for contamination before use, and remake if necessary 
o add 38.5μL working stock (1:500, 4°C) to 5mL EIA buffer in a glass beaker 

 
Running the plate 
 Plate loading 

o add 20μL standard, sample, or control per well in duplicate as quickly and accurately as 
possible 

o immediately add 50μL per well of diluted E2-HRP  
o cover the plates, label with the time and incubate at RT in light for 2 hours  

 Plate washing 
o wash the plates 5 times with wash solution and blot dry 
o plates are fairly stable at this point and can be left until all plates are washed 

 
Substrate 

o prepare substrate immediately before use 
o combine 40μL H2O2, 125μL ABTS and 12.5mL substrate buffer = substrate 
o add 100μL substrate to all wells  
o cover and incubate at RT in light 

 
Plate reading 

o read at 405nm 
o ready when 0 wells reach between 0.8 and 1 .0 optical density  
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Stock Preparation for Oestradiol EIA 

 
Antibody   
 antibody top stock (polyclonal R4972, C.J. Munro, UC Davis) is stored in the freezer 
 when required, dilute R4972 at a dilution of 1:100 by adding 50μL of stock to 4.95mL 

coating buffer 
 aliquot 200μL into 1ml eppendorf and freeze at -20°C = working antibody stock 
 refreeze remaining top stock 
 
HRP Conjugate  
 CC-HRP top stock (E2-17beta horseradish peroxidase; C.J. Munro, UC Davis) is stored in the 

freezer 
 when required, dilute E2-HRP 1:500 by adding 5μL stock to 2.475mL EIA assay buffer and 

store at 4°C = working HRP stock 
 working HRP stock is stored in the fridge, and must be remade once 

sediment/contamination appears  
 refreeze remaining top stock  
 
Standards  
 weigh 1mg estradiol-17β (E8875, Sigma Aldrich) and add to 1mL EtOH for a 1mg/mL 

primary stock  
 take 1ml primary stock (1mg/mL) and add to 99mL EtOH assay buffer for a 1mg/100mL 

(10,000ng/ml) secondary stock in alcohol  
 standard secondary stock is stored in the fridge 
 when required, dilute further (1: 400) by adding 100μL secondary stock to 39.9mL EIA 

buffer to prepare 500pg/well or 25ng/ml standard stock  
 aliquot 2ml into 12x75 polypropylene tubes and freeze at -20°C = working top standard 
 
Controls 
 make C1 to bind at ~30% and C2 at ~70 % using secondary standard stock 
 aliquot 2ml into 12x75 polypropylene tubes, label and freeze at -20°C 
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Protocol for Corticosterone EIA (CJM006) – per plate 
DAY 1:  
Plate coating  
 use NUNC Maxisorb plates 
 antibody working dilution is 1:15,000 

o add 33.3μL working antibody stock (1:100, -20°C) to 5mL coating buffer 
o add 50μL per well antibody solution  
o do not coat column 1 - start at A2 and go down each column  
o tap plates gently to ensure that coating solution covers well bottom 
o label, cover with acetate plate sealer and leave overnight at 4°C 

 Plates are not ready to use the following day (day 2), but can be used on day 3, 4 or 5 
 
DAY 3: 
Preparing reagents 
 Standards  

o standard values are 1000, 500, 250, 125, 62.5, 31.2, 15.6, 7.8 and 3.9 pg/well 
o serially dilute working top standard (1000pg/well, -20°C) 2-fold with 200μL EIA buffer  
o label one vial ‘0’ and add 400μl of EIA buffer only 

 Samples/controls  
o dilute faecal extracts in EIA buffer to the appropriate dilution  
o use pre-prepared synthetic C1 and C2 neat in assay 
o dilute C3 female black rhino faecal pool 1:20 in EIA buffer  

 HRP 
o CC-HRP working dilution is 1:70,000  
o Check working stock for contamination before use, and remake if necessary 
o add 7.14μL working stock (1:100, 4°C) to 5mL EIA buffer in a glass beaker 

 
Running the plate 
 Plate washing 

o purge the plate washer 
o wash the plates five times with wash solution  
o blot the plates on paper towel to remove excess wash solution  
o run plate immediately 

 Plate loading 
o add 50μL standard, sample, or control per well in duplicate as quickly and accurately as 

possible 
o immediately add 50μL per well of diluted CC-HRP  
o cover the plates, label with the time and incubate at RT in dark for 2 hours  

 Plate washing 
o wash the plates 5 times with wash solution and blot dry 
o plates are fairly stable at this point and can be left until all plates are washed 

 
Substrate 

o prepare substrate immediately before use 
o combine 40μL H2O2, 125μL ABTS and 12.5mL substrate buffer = substrate 
o add 100μL substrate to all wells  
o cover and incubate at RT in dark 

 
Plate reading 

o read at 405nm 
o ready when 0 wells reach between 0.8 and 1 .0 optical density  

 
 
 
  



 

 
338 

Stock Preparation for Corticosterone EIA 
 
Antibody   
 antibody top stock (polyclonal CJM006, C.J. Munro, UC Davis) is stored in the freezer 
 when required, dilute CJM006 at a dilution of 1:100 by adding 20μL of stock to 2000μL 

coating buffer 
 aliquot 100μL into 1ml eppendorf and freeze at -20°C = working antibody stock 
 refreeze remaining top stock 
 
HRP Conjugate  
 CC-HRP top stock (corticosterone-3CMO-horseradish peroxidase ; C.J. Munro, UC Davis) is 

stored in the freezer 
 when required, dilute CC-HRP 1:100 by adding 25μL stock to 2.475mL EIA assay buffer and 

store at 4°C = working HRP stock 
 working HRP stock is stored in the fridge, and must be remade once 

sediment/contamination appears  
 refreeze remaining top stock  
 
Standards  
 weigh 1mg corticosterone (C2505, Sigma Aldrich) and add to 1mL EtOH for a 1mg/mL 

primary stock  
 take 1ml primary stock (1mg/mL) and add to 99mL EtOH assay buffer for a 1mg/100mL 

(10,000ng/ml) secondary stock in alcohol  
 standard secondary stock is stored in the fridge 
 when required, dilute further (1: 500) by adding 100μL secondary stock to 49.9mL EIA 

buffer to prepare 1000pg/well or 20ng/ml standard stock  
 aliquot 4ml into 12x75 polypropylene tubes and freeze at -20°C = working top standard 
 
Controls 
 make C1 to bind at ~30% and C2 at ~70 % using secondary standard stock 
 aliquot 3ml into 12x75 polypropylene tubes, label and freeze at -20°C 
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A.2 Enzyme immunoassay antibody cross-reactivities 

Table A.2.1: Cross-reactivity of progesterone antibody (CL425) to various progesterone (P4) 

metabolites, relative to the binding of progesterone. 

Progesterone metabolite Common name Cross-reactivity (%) 

4-Pregnen-3,20-dione Progesterone 100.0 

4-Pregnen-3α-o1-20-one 
 

188.0 

4-Pregnen-3β-o1-20-one 
 

172.0 

4-Pregnen-11α-o1-3,20-dione 
 

147.0 

5α-Pregnan-3β-o1-20-one 
 

94.0 

5α-Pregnan-3α-o1-20-one 
 

64.0 

5α-Pregnan-3,20-dione 
 

55.0 

5β-Pregnan-3β-o1-20-one 
 

12.5 

5β-Pregnan-3,20-dione 
 

8.0 

4-Pregnen-11β-o1-3,20-dione 
 

2.7 

5β-Pregnan-3α-o1-20-one 
 

2.5 

5β-Pregnan-3α,20α-diol Pregnanediol <0.1 

5α-Pregnan-3α,20β-diol 
 

<0.1 

5β-Pregnan-3,17-dione Androstenedione <0.1 

5β-Pregnan-11β,21-diol-3,20-dione Corticosterone <0.1 
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Table A.2.2: Cross-reactivity of corticosterone antibody (CJM006) to various compounds, 

relative to the binding of corticosterone. 

Common name Cross-reactivity (%) 

Corticosterone 100.00 

Desoxycorticosterone 14.25 

Progesterone 2.65 

Tetrahydrocorticosterone 0.90 

Testosterone 0.64 

Cortisol 0.23 

Prednisolone 0.07 

11-Desoxycortisol 0.03 

Prednisone <0.01 

Cortisone <0.01 

Estradiol-17β <0.01 

 

Table A.2.3: Cross-reactivity of oestradiol antibody (R4972) to various compounds, relative to 

the binding of oestradiol-17β. 

Common name Cross-reactivity (%) 

Estradiol-17β 100.0 

Estrone 3.3 

Testosterone 1.0 

Progesterone 0.8 

Estrone sulfate <0.1 

Cortisol <0.1 

Corticosterone <0.1 

Androstenedione <0.1 
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Table A.2.4: Cross-reactivity of testosterone antibody (R156/7) to various compounds, relative 

to the binding of testosterone. 

Common name Cross-reactivity (%) 

Testosterone 100.00 

5α-Dihydrotestosterone 57.37 

Androstenedione 0.27 

Androsterone 0.04 

DHEA 0.04 

Cholesterol 0.03 

β-Oestradiol 0.02 

Progesterone <0.02 

Pregnenolone <0.02 

Hydrocortisone <0.02 

Cholic acid <0.02 

Chenodeoxycholic acid <0.02 

Cholic acid methyl ester <0.02 

Dehydrocholic acid <0.02 

Deoxycholic acid <0.02 

Lithocholic acid <0.02 

Glycholic acid <0.02 

Taurodeoxycholic acid <0.02 

Taurocholic acid <0.02 

Taurochenodeoxycholic acid <0.02 

Glycochenodeoxycholic acid <0.02 
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A.3 Population trends of eastern black rhino at eight Kenyan reserves during the 

recording period 

 

Figure A.3.1: Population trend of black rhinoceros in Lewa Downs Conservancy between 

establishment in 1984 and 2010 representing total population size, births, deaths, imports and 

exports. 

 

Figure A.3.2: Population trend of black rhinoceros in Masai Mara Nature Reserve between 

1984 and 2008 representing total population size, births, deaths, imports and exports. 
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Figure A.3.3: Population trend of black rhinoceros in Mugie Rhino Sanctuary between 

establishment in 2004 and 2010 representing total population size, births, deaths, imports and 

exports. 

 

Figure A.3.4: Population trend of black rhinoceros in Nairobi National Park between 1985 and 

2010 representing total population size, births, deaths, imports and exports. 
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Figure A.3.5: Population trend of black rhinoceros in Lake Nakuru National Park between 

establishment in 1987 and 2010; representing total population size, births, deaths, imports and 

exports. 

 

Figure A.3.6: Population trend of black rhinoceros in Ngulia Rhino Sanctuary between 

establishment in 1986 and 2008 representing total population size, births, deaths, imports and 

exports. 
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Figure A.3.7: Population trend of black rhinoceros in Ol Jogi Conservancy between 

establishment in 1979 and 2010 representing total population size, births, deaths, imports and 

exports. 

 

Figure A.3.8: Population trend of black rhinoceros in Ol Pejeta Conservancy between 

establishment in 1989 and 2010 representing total population size, births, deaths, imports and 

exports. 
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A.4 MATLAB code 

Stochastic simulation based on vital rates, adapted from Morris and Doak (2002) 

%VitalSim:  
% This is a program to do a stochastic PVA simulation 

 
clear all; 

 
%*****************Simulation Parameters*********************** 
% the data shown here are for the European captive population of 

Diceros bicornis michaeli, using data from 1986-2010: 
% the parameters are defined in a set of arrays 
% with elements corresponding to these vital rates: 
%1,   2,    3,    4,    5,    6     7     8     9     10    11    12         
%vrf1 vrf2  vrf3  vrf4  vrf5  vrf6  vrs1  vrs2  vrs3  vrs4  vrs5  

vrs6 
%13    14    15    16    17    18     
%vrg1  vrg2  vrg3  vrg4  vrg5  vrg6  

 
% vrtypes identifies the distribution for each rate:  
% 1 = beta, 2 = stretched beta, 3 = lognormal 
vrtypes= [ones(1,18)]; 
% now means and variances of these rates or elements 
vrmeans= [0.0000 0.0000 0.0664 0.1029 0.0768 0.0000 0.8718 0.9921 

0.9832 0.9879 0.9748 0.9465 1.0000 0.2486 0.2337 0.1142 0.0455 

0.0000]; 
vrvars= [0.0000 0.0000 0.0076 0.0141 0.0048 0.0000 0.0447 0.0009 

0.0053 0.0007 0.0019 0.0249 0.0000 0.0197 0.0231 0.0119 0.0047 

0.0000]; 
% minimum and maximum values for each vital rate:  
% put in zeros for rates that are not stretched betas  
vrmins=zeros(1,18); vrmaxs=zeros(1,18); 
np = length(vrmeans); % how many parameters are there?  

 
% you must also have a separate m-file that uses a vector of vital  
% rates (vrs) of the same form as vrmeans, above, to define the  
% elements of the populaton matrix (mx)  
makemx='KEmxdef'; % KEmxdef.m defines the elements of mx 

 
n0=[2; 8; 7; 16; 14; 4];% initial population vector 
Nx = 20;    % quasi-extinction threshold 
tmax = 10;  % number of years to simulate; 
np  = 0;    % number vital rates in correlation matrix; 
np2 = 18;   % number of uncorrelated rates.  
dims = 6;   % dimensions of the population matrix; 
runs = 1000; % how many trajectories to do 
%************************************************************* 

 
randn('state',sum(100*clock)); % seeds random numbers 
Nstart = sum(n0); % starting population number 
vrs=vrmeans;    % set vital rates to their mean values 
eval(makemx);   % use matrix definition file to make mean matrix 
lam0=max(eig(mx)); %find the deterministic population growth rate 

 
%------------------------------------------------------------ 
% this section makes sets of beta or str. beta values to choose 
% from during the simulations; it makes 99 values for 1%  
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% increments of Fx for each parameter -- if you already have made  
% a set of beta values for this life history, you can recall 
%  these, and save the time of recalculating them.  
yesno = ...  
input('type 0 to calculate betas, or 1 to get a stored set'); 
if yesno == 1 
betafile = ... 
input('type filename with stored betas; put in single quotes'); 
load(betafile)% this line is corrected from that in Morris and Doak 
else    % make a set of values for each beta or stretched beta 
parabetas=zeros(99,np+np2); 
for ii = 1:(np+np2) 

if vrtypes(ii) ~= 3 
for fx99 = 1:99 
if vrtypes(ii) ==1;  

parabetas(fx99,ii) = ...   
betaval(vrmeans(ii),sqrt(vrvars(ii)),fx99/100); end; 

if vrtypes(ii) ==2;  
parabetas(fx99,ii) = ... 
stretchbetaval(vrmeans(ii),sqrt(vrvars(ii)),... 
vrmins(ii), vrmaxs(ii), fx99/100); end; 

end; % fx99 
end; % if vrtypes(ii) 

end; % ii loop 
yesno = input('type 1 to store the betas, or 0 if not'); 
if yesno ==1  

betafile = ... 
input('type filename to store betas, put in single 

quotes'); 
save(betafile, 'parabetas'); % this line is corrected from 

that in Morris and Doak 
end; %if yesno  
end; %else 

 
% finally, do sets of runs to get growth rate and extinction risk 
results = []; normresults = []; 
PrExt = zeros(tmax,1);    % the extinction time tracker 
logLam = zeros(runs,1);   % the tracker of log-lambda values 
stochLam = zeros(runs,1); % tracker of stochastic lambda values 
for xx = 1:runs; 
if round(xx/10) == xx/10 disp(xx); end; % displays progress 
nt = n0; % start at initial population vector 
extinct = 0; 
for tt = 1:tmax 

 
yrxy=[randn(np2,1)];  
%adds in randoms for uncorrelated vital rates.  
for yy = 1:(np+np2)  % loop finds vital rate values 
if vrtypes(yy) ~= 3 % if not a lognormal rate 

index = round(100*stnormfx(yrxy(yy))); 
if index == 0 index = 1; end; % round at extremes 
if index ==100 index = 99; end; 
vrs(yy) = parabetas(index,yy); % find stored value 

% else, calculated a lognormal value: 
else vrs(yy) = lnorms(vrmeans(yy),vrvars(yy),yrxy(yy)); 
end;% if vrtypes(yy) ~= 3 
end; % yy loop 
eval(makemx);   % make a matrix with the new vrs values.  
nt = mx*nt;     % multiply by the population vector 

 
if extinct == 0 % check for extinction  
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Ntot (xx,tt)= sum(nt); 
if Ntot <= Nx  
PrExt(tt) = PrExt(tt) +1; 
extinct = 1; 
end; % if Ntot 
end; % if extinct 

 
end % time (tt) loop 
logLam(xx) = (1/tmax)*log(sum(nt)/Nstart); % calculate loglambda  
stochLam(xx) = (sum(nt)/Nstart)^(1/tmax);   % and stoch. lambda 
end; % runs (xx) loop 

 
CDFExt = cumsum(PrExt./runs); % make the extinction CDF function 
disp(' for the last 25 years studbook data'); 
disp('This is the deterministic lambda value'); disp(lam0); 
disp('And this is the mean stochastic lambda'); 

disp(exp(mean(logLam))); 
disp('Below are mean and standard deviation of log lambda'); 
disp(mean(logLam)); disp(std(logLam)); 
disp('Next is a histogram of logLams'); hist(logLam); 
disp('And now, the extintion time CDF'); figure; plot(CDFExt);  

 
MeanN=mean(Ntot); 
MedianN=median(Ntot); 
MeanPrExt=mean(PrExt); 

 
plot(mean(Ntot), 'DisplayName', 'Ntot', 'YDataSource', 'Ntot'); 

figure(gcf) 
axis ([0 tmax 0 60]); 
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Calls for ‘KEmxdef.m’ 

mx=[... 
vrs(1)*vrs(7)^(1/2)*vrs(7)^(1/2)    

vrs(2)*vrs(7)^(1/2)*vrs(8)^(1/2)    

vrs(3)*vrs(7)^(1/2)*vrs(9)^(1/2)...     
vrs(4)*vrs(7)^(1/2)*vrs(10)^(1/2)   

vrs(5)*vrs(7)^(1/2)*vrs(11)^(1/2)   

vrs(6)*vrs(7)^(1/2)*vrs(12)^(1/2); 
vrs(7)*vrs(13)  vrs(8)*(1-vrs(14))   0   0   0   0;  
0   vrs(8)*vrs(14)  vrs(9)*(1-vrs(15))    0   0   0; 
0   0   vrs(9)*vrs(15)  vrs(10)*(1-vrs(16)) 0   0; 
0   0   0   vrs(10)*vrs(16) vrs(11)*(1-vrs(17)) 0; 
0   0   0   0   vrs(11)*vrs(17) vrs(12)*(1-vrs(18))]; 
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Calls for ‘’eigenall.m’ from Morris and Doak (2002) 

function [lambdas,lambda1,W,w,V,v]=eigenall(A); 
%   [lambdas,lambda1,W,w,V,v]=eigenall(A) 
%   takes the projection matrix A as the argument of the function  
%   eigenall and returns:  
%      lambdas, a vector containing the eigenvalues of A; 
%      lambda1, the dominant eigenvalue of A; 
%      W, a matrix with the right eigenvectors of A as its columns; 
%      w, the dominant right eigenvector of A (rescaled to 

proportions); 
%      V, a matrix with the left eigenvectors of A as its rows; and  
%      v, the dominant left eigenvector of A (rescaled as multiples 

of  
%                                             its first element). 
%   Eigenvalues and eigenvectors are sorted from largest  
%   to smallest. 

 
[W,lambdas]=eig(A);         % W=matrix with right eigenvectors of A  
                            %       as columns 
V=conj(inv(W));             % V=matrix with left eigenvectors of A  
                            %       as rows 
lambdas=diag(lambdas);      % lambdas=vector of eigenvalues 
[lambdas,I]=sort(lambdas);  % sort eigenvalues from smallest to  
                            %       largest 
lambdas=flipud(lambdas);    % flip lambdas so that largest value  
                            %       comes first 
lambda1=lambdas(1);         % lambda1=dominant eigenvalue 
I=flipud(I);                % flip the index vector I 
W=W(:,I);                   % sort right eigenvectors 
V=V(I,:);                   % sort left eigenvectors 
w=W(:,1);                   % w=stable distribution 
w=w/sum(w);                 % rescale w to represent proportions 
v=real(V(1,:))';            % v=vector of reproductive values 
v=v/v(1);                   % rescale v relative to class 1 

 

 
disp('lambda1'); 
disp(lambda1) 
disp('lambdas'); 
disp(lambdas) 
disp('w'); 
disp(w) 
disp('v'); 
disp(v) 

 

  



 

 
358 

Variance stabilised sensitivity, adapted from Morris and Doak (2002) and Link and 

Doherty (2002). 

% Vitalsens.m  Takes vital rate means and a matrix       
% definition to calculate deterministic sensitivities and  
% elasticities of lambda to vital rates, using symbolic 
% functions to take derivatives.  
% The program calls the function eigenall.m (Box 7.1) 

 
%IMPORTANT NOTE: you can't run this program without having  
% the Symbolic toolbox for Matlab 
% this program was changed on 4/33/04 to conform to newer MATLAB 

conventions 
clear all; 
%**************** SIMULATION PARAMETERS ********************** 
vr = [0.0000 0.0000 0.0664 0.1029 0.0768 0.0000 0.8718 0.9921 0.9832 

0.9879 0.9748 0.9465 1.0000 0.2486 0.2337 0.1142 0.0455 0.0000];  % 

vital rates 
vrvar = [0.0000 0.0000 0.0076 0.0141 0.0048 0.0000 0.0447 0.0009 

0.0053 0.0007 0.0019 0.0249 0.0000 0.0197 0.0231 0.0119 0.0047 

0.0000];  
syms  vrf1 vrf2 vrf3  vrf4  vrf5  vrf6  vrs1  vrs2  vrs3  vrs4  vrs5  

vrs6  vrg1  vrg2  vrg3  vrg4  vrg5  vrg6  % vital rates as symbolic 

variables 
Svr = [vrf1 vrf2 vrf3 vrf4 vrf5 vrf6 vrs1 vrs2 vrs3 vrs4 vrs5 vrs6 

vrg1 vrg2 vrg3 vrg4 vrg5 vrg6]; % vector of symbolic vital rates  

 
% Next, a symbolic definition of the matrix 
mx =    [vrf1*vrs1^(1/2)*vrs1^(1/2)    vrf2*vrs1^(1/2)*vrs2^(1/2)    

vrf3*vrs1^(1/2)*vrs3^(1/2)...     
vrf4*vrs1^(1/2)*vrs4^(1/2)   vrf5*vrs1^(1/2)*vrs5^(1/2)   

vrf6*vrs1^(1/2)*vrs6^(1/2); 
vrs1*vrg1  vrs2*(1-vrg2)   0   0   0   0;  
0   vrs2*vrg2  vrs3*(1-vrg3)    0   0   0; 
0   0   vrs3*vrg3  vrs4*(1-vrg4) 0   0; 
0   0   0   vrs4*vrg4 vrs5*(1-vrg5) 0; 
0   0   0   0   vrs5*vrg5 vrs6*(1-vrg6)];        

%************************************************************* 

 
% make a matrix of the mean numerical values using subs  
realmx = subs(mx,Svr,vr);   
% use eigenall.m to get eigenvalues 
[lambdas,lambda1,W,w,V,v]= eigenall(realmx);  
sensmx = v*w'/(v'*w);   % sensitivities of matrix elements 
elastmx = (sensmx.*realmx)/lambda1; % element elasticities 
numvrs = length(vr); % how many vital rates? 
vrsens = zeros(1,numvrs); % initialize vital rate sens. 

 
% a loop to calculate sensitivity for each vital rate 
for xx=1:numvrs  

% derivatives of elements with respect to vital rates 
    diffofvr = double(subs(diff(mx,Svr(xx)),Svr,vr)); % 

this was changed: 4/22/04 
    % sum up to get vital rate sensitivities 

 
    vrsens(xx) = double(sum(sum(sensmx.*diffofvr))); % this 

was changed: 2/22/2003 
vrsd (xx) = vrvar(xx)^(1/2); 
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VSS (xx) = ((vrsens(xx)*vrsd(xx))/lambda1); 

 
end; % xx 

 
vrelast = ((vrsens.*vr)/lambda1); % calculate elasticities 
disp('based on 30 years data') 
disp('Matrix element sensitivities and elasticities:') 
disp(sensmx); disp(elastmx); 
disp('Below are the vital rate results'); 
disp('vital rates:'); 
disp(Svr) 
disp('sensitivities'); 
disp(vrsens) 
disp('elasticities'); 
disp(vrelast) 
disp('vrsd'); 
disp(vrsd) 
disp('VSS'); 
disp(VSS) 

 

 

  



 

 
360 

  



 

 
361 

 

 

 

 

 

APPENDIX 5 

  



 

 
362 

  



 

 
363 

A.5 Different computer programs used test the robustness of model predictions 

There are a variety of different programs available for performing PVA, which simulate 

the future projection of a population, based on a pre-defined set of parameters. These 

programs may make different assumptions, or may utilise slightly different parameters 

in performing the analyses. Therefore, for accurate predictions to be made about the 

future viability of a population, it is vital that the chosen model suits the data available, 

and that the correct parameters are used. To investigate the robustness of model 

predictions, four programs were utilised to perform PVA of the European captive 

population of black rhinoceros; individual-based models Vortex 9.93 (Lacy et al. 2005) 

and ZooRisk 3.8 (Earnhardt et al. 2008), and projection matrix models either using 

RAMAS Metapop (Akçakaya 2002), or constructed in MATLAB 2008a (The MathWorks 

Inc 2008) as previously described (section 3.2.2).  

 

A.5.1 Methods 

Model specific details are provided in the following sections. For each program, 

deterministic and stochastic models were run, and the population was projected for 

either 10 or 100 years, with single-year time steps in each case. Different projection 

time-scales were used in order to obtain approximations of future population size in 

the short and long term, the first being more useful from a current population 

management perspective, and the second to approximate risk of extinction or 

population trends over the longer-term for species persistence. Each run of the 

stochastic model in each program consisted of 1000 iterations, to allow for good 

representation of parameter combinations and produce a reliable estimate of future 

population size and growth rate. 

 

A.5.1.1 Vortex 

Vortex is an individual-based simulation model, which includes both males and females 

in the population. The program models population dynamics based on specified 

probabilities for births and deaths, and tracks the fate of hypothetical individuals into 

the future. This program is required to make certain assumptions about the data; for 

example, once individuals reach breeding age, reproduction is assumed to be equal 



 

 
364 

across all ages. Similarly, pre-reproductive age mortality is entered on a yearly basis, 

but once individuals enter into the reproductive category, mortality is assumed to be 

equal across all ages. For each year of the simulation, Vortex simulates environmental 

variation in the probabilities of reproduction and mortality, by selecting a random 

number from a binomial distribution, defined by the provided mean and standard 

deviation in vital rates. 

The European captive black rhino population was modelled as a single population and 

was deemed to be extinct when only one sex remains. Percentage risk of mortality was 

calculated for males and females, and the percentage of females breeding each year 

was calculated from females age 5-32. The percentage of males successfully siring 

offspring was calculated as the number of known sires in a given year divided by the 

number of males aged 7-32 that could have sired an offspring during that year. 

Parameters were calculated from the raw data for each year between 1986 and 2010, 

then averaged across years, and the standard deviation (SD) calculated for the two time 

periods. 

 

A.5.1.2 ZooRisk 

The ZooRisk program uses an individual-based approach, including both males and 

females in the population. This program provides a quantitative assessment based on a 

population’s history, whilst also taking into account the biology of small populations, 

and the ability to manage captive populations. The fates of individuals in the 

population and their hypothetical future offspring are calculated based on values for 

mortality (male and female), the probability of females breeding, and whether males 

are of breeding age or not. As opposed to incorporating the observed variance in vital 

rates, demographic stochasticity is automatically incorporated into the ZooRisk model 

using Monte Carlo simulations and the binomial distribution to determine the number 

of deaths in the population, the sex of an offspring, and whether or not a female is 

pulled into the breeding pool in a given year.  

This program has been designed so that the input values for reproduction and 

mortality can be extracted directly from the species studbook. Although these 

extracted values were generally similar to the vital rates calculated from raw data, due 

to the small population size and to make the model comparable to the others used, 
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these were also manually adjusted using calculations from the raw dataset. In this 

program, female reproduction is based on probability of breeding (total offspring) 

rather than fecundity (same sexed offspring only), so calculated values for fecundity 

were doubled. Additionally, model parameters such as breeding group composition 

and number of years between pairings were inputted based on different management 

scenarios; the number of females per breeding group was either one or two, based on 

the two management scenarios currently in use at European institutions. Additionally, 

the birth sex ratio (BSR) of the EEP population during the 25 year period between 1st 

January 1986 and 31st December 2010 was significantly different from parity 

(BSR=0.3853, χ2=5.7339, df=1, P=0.017 based on 42 male and 67 female births). This 

ratio reflects a greater number of females calves born into this population over this 

time-frame, and this ratio was taken into account in simulated projections. Although 

the BSR was not significantly different from parity during the latter 10 year period, 

(χ2=3.1026, df=1, P0.078 based on 14 male and 25 female births), a scenario of BRS 0.4 

was also used. 

 

A.5.1.3 RAMAS Metapop 

The matrix-based software package RAMAS Metapop was used to create a female-

based transition matrix containing age-specific survival and fecundity, similar to the 

model described in section 3.2.4.1, to model population growth. Using the calculated 

vital rates of fecundity and mortality, a transition matrix was constructed containing 

the contribution of each individual to each stage at the subsequent time step. This 

contribution can either be through surviving and remaining in the same age-class, 

surviving and progressing to the next age-class, or through reproduction. These matrix 

elements were calculated for each year of the two data extraction windows, and the 

standard deviation in matrix elements calculated between years. For each year of the 

simulation, environmental stochasticity in reproduction and survival was modelled 

using a lognormal distribution, defined by the specified mean and standard deviation.  
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A.5.2 Results 

Table A.5.1: Output from MATLAB model, based on two time periods for data collection 1) 1st 

January 1986 to 31st December 2010 and 2) 1st January 2001 to 31st December 2010. Table 

includes deterministic growth rate (det. λ), mean and standard deviation (SD) of stochastic 

growth rate (stoc. λ) and mean and SD in final number of females in the population after either 

10 or 100 years simulated projection. 

Time 

period 

Projection 

period 
Det. λ 

Mean  

Stoc. λ 

SD  

Stoc. λ 

Starting N 

(F only) 

Mean 

final N 

(F only) 

SD  

final N 

(F only) 

1 

10 years 

1.0211 

1.0270 0.0134 

51 

67.09 8.81 

100 years 1.0212 0.0048 463.21 237.14 

2 

10 years 

1.0012 

1.0156 0.0086 

51 

59.72 5.05 

100 years 1.0052 0.0033 89.87 29.89 

 

Table A.5.2: Output from Vortex model, based on two time periods for data collection 1) 1st 

January 1986 to 31st December 2010 and 2) 1st January 2001 to 31st December 2010. Table 

includes deterministic growth rate (det. λ), mean and standard deviation (SD) of stochastic 

growth rate (stoc. λ) and mean and SD in final population size after either 10 or 100 years 

simulated projection. 

Time 

period 

Projection 

period 
Det. λ 

Mean  

Stoc. λ 

SD  

Stoc. λ 

Starting N 

(M&F)  

Mean 

final N 

(M&F) 

SD  

final N 

(M&F) 

1 

10 years 

1.0220 

1.0356 0.0620 

73 

93.95 8.77 

100 years 1.0222 0.0550 802.10 486.74 

2 

10 years 

1.0050 

1.0222 0.0450 

73 

89.65 9.05 

100 years 1.0060 0.0440 144.87 73.97 
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

Figure A.5.1: Population size (males and females combined) projection from Vortex model 

showing results from simulations based on the last a) 25 and b) 10 year data. The average 

projected population size based on stochastic simulations is represented by the red line; error 

bars represent one standard deviation in population size across 1000 iterations; red markers 

represent the minimum and maximum population size estimates obtained from simulations for 

each year of projection. The black line represents the deterministic population projection, 

which is the projected growth of the population under a constant environment. Note the 

difference in scale on the y-axis between the two scenarios, representing the difference in final 

population size by 100 years.  
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Table A.5.3: Output from ZooRisk model, based on two time periods for data collection 1) 1st 

January 1986 to 31st December 2010 and 2) 1st January 2001 to 31st December 2010. Table 

includes deterministic growth rate (det. λ), mean and standard deviation (SD) of stochastic 

growth rate (stoc. λ) and mean and SD in final population size after either 10 or 100 years 

simulated projection. 

Time 

period 

Breeding 

group 

Birth 

Sex 

Ratio 

Projection 

period 
Det. λ 

Mean 

Stoc. λ 

SD 

Stoc. λ 

Starting 

N 

(M&F)  

Mean 

final N 

(M&F) 

SD  

final 

N 

(M&F) 

1 

1.1 0.5 10 years 1.0110 1.0109 0.0082 

78 

87.39 7.28 

1.1 0.5 100 years 1.0146 1.0138 0.0042 323.10 117.66 

2 

1.1 0.5 10 years 1.0038 1.0044 0.0079 

78 

81.42 6.50 

1.1 0.5 100 years 1.0053 1.0022 0.0043 110.00 42.66 

1 

1.2 0.5 10 years 1.0110 1.0114 0.0081 

78 

87.20 7.13 

1.2 0.5 100 years 1.0306 1.0302 0.0025 1550.35 367.42 

2 

1.2 0.5 10 years 1.0272 1.0262 0.0081 

78 

100.80 7.82 

1.2 0.5 100 years 1.0144 1.0136 0.0030 321.51 91.72 

1 

1.1 0.3853 10 years 1.0110 1.0110 0.0081 

78 

87.80 6.79 

1.1 0.3853 100 years 1.0021 1.0011 0.0066 107.61 56.28 

2 

1.1 0.4 10 years 1.0038 1.0040 0.0082 

78 

80.96 6.47 

1.1 0.4 100 years 0.9961 0.9946 0.0068 56.31 29.39 

1 

1.2 0.3853 10 years 1.0405 1.0380 0.0085 

78 

113.70 9.06 

1.2 0.3853 100 years 1.0424 1.0394 0.0023 3759.40 761.46 

2 

1.2 0.4 10 years 1.0272 1.0257 0.0083 

78 

101.08 8.10 

1.2 0.4 100 years 1.0223 1.0210 0.0026 636.73 150.50 

 

 



 

 
 

(a)          (b)  

 

 

 

 

(c)           (d) 

 

 

 

 

Figure A.5.2: Population size (males and females combined) projection from ZooRisk model showing results from simulations based on the last 25 year data, and 

based on (a)breeding group composition 1.1, and BSR 0.5, (b) breeding group composition 1.2, and BSR 0.5, (c) breeding group composition 1.1, and BSR 0.3853, or 

(d) breeding group composition 1.2, and BSR 0.3853. The average projected population size based on stochastic simulations is represented by the red line; error 

bars represent one standard deviation in population size across 1000 iterations; red markers represent the minimum and maximum population size estimates 

obtained from simulations for each year of projection. The black line represents the deterministic population projection, which is the projected growth of the 

population under a constant environment. Note the difference in scale on the y-axis between the two scenarios, representing the difference in final population size 

by 100 years. 
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(a)          (b)  

 

 

 

 

(c)          (d) 

 

 

 

 

Figure A.5.3: Population size (males and females combined) projection from ZooRisk model showing results from simulations based on the last 10 year data, and 

based on (a)breeding group composition 1.1, and BSR 0.5, (b) breeding group composition 1.2, and BSR 0.5, (c) breeding group composition 1.1, and BSR 0.4, or (d) 

breeding group composition 1.2, and BSR 0.4. The average projected population size based on stochastic simulations is represented by the red line; error bars 

represent one standard deviation in population size across 1000 iterations; red markers represent the minimum and maximum population size estimates obtained 

from simulations for each year of projection. The black line represents the deterministic population projection, which is the projected growth of the population 

under a constant environment. Note the difference in scale on the y-axis between the two scenarios, representing the difference in final population size by 100 

years. 
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Table A.5.4: Output from RAMAS Metapop model, based on two time periods for data collection 

1) 1st January 1986 to 31st December 2010 and 2) 1st January 2001 to 31st December 2010. 

Table includes deterministic growth rate (det. λ), mean and standard deviation (SD) of 

stochastic growth rate (stoc. λ) and mean and SD in final number of females in the population 

after either 10 or 100 years simulated projection. 

Time 

period 

Projection 

period 
Det. λ 

Mean  

Stoc. λ 

SD  

Stoc. λ 

Starting N 

(F only) 

Mean  

final N 

(F only) 

SD  

final N 

(F only) 

1 

10 years 

1.0205 

1.0314 0.0059 

51 

69.21 18.10 

100 years 1.0234 0.0045 514.17 524.50 

2 

10 years 

1.0015 

1.0156 0.0025 

51 

59.51 13.20 

100 years 1.0035 0.0054 72.56 77.00 
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Figure A.5.4: Population size (females only) projection from RAMAS Metapop model showing 

results from simulations based on the last a) 25 and b) 10 year data. The average projected 

population size based on stochastic simulations is represented by the red line; error bars 

represent one standard deviation in population size across 1000 iterations; red markers 

represent the minimum and maximum population size estimates obtained from simulations for 

each year of projection. The black line represents the deterministic population projection, 

which is the projected growth of the population under a constant environment. Note the 

difference in scale on the y-axis between the two scenarios, representing the difference in final 

population size by 100 years.  
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A.6 Analyses of behavioural, environmental and social variables and reproductive 

categories 

 



 

 
 

Table A.6.1: Analyses of individual rhino behaviour across reproductive categories. Variables were analysed either using Mann Whitney U (2 groups of breeding 

status) or Kruskal Wallis (3 groups of bred within 7 years). 

 Males Females 

 Breeding status a Bred within 7 years b Breeding status a Bred within 7 years b 

 Mann-Whitney U P Kruskal Wallis P Mann-Whitney U P Kruskal Wallis P 

Pacing 28.5 0.875 0.043 0.979 90.0 0.377 1.219 0.544 

Charging 28.5 0.875 1.030 0.598 123.0 0.667 2.270 0.321 

         

Behaviour towards keepers:         

Approach keepers 24.0 0.562 1.429 0.490 91.0 0.400 0.971 0.615 

Seek contact from keepers 30.5 1.000 0.087 0.957 108.0 0.886 0.097 0.953 

Interested in keeper activity 32.5 0.792 0.376 0.829 95.0 0.498 1.427 0.490 

Nervous around keepers 31.0 0.689 1.098 0.577 93.5 0.621 0.451 0.798 

Approach new people 22.0 0.428 0.859 0.651 103.5 0.728 1.426 0.490 

Aggressive towards people 21.5 0.368 1.047 0.592 91.5 0.400 0.787 0.675 

         

Behaviour towards environment:         

Watchful of surroundings 21.5 0.368 1.003 0.606 74.0 0.120 5.064 0.08 

Curious of new objects/surroundings 15.0 0.118 3.024 0.220 106.0 0.822 0.491 0.782 

Approach novel objects/surroundings 33.0 0.792 2.250 0.325 114.5 0.918 0.014 0.993 

Nervous within environment 26.5 0.713 0.199 0.905 72.0 0.101 3.997 0.137 

Response to unexpected events 25.5 0.864 3.020 0.221 103.5 0.728 1.808 0.405 

Active/explore environment 38.0 0.428 0.900 0.638 84.0 0.257 1.617 0.446 

Startled by sudden sounds/movements 26.0 1.000 2.088 0.352 86.0 0.664 0.905 0.636 

         

Changeable 26.0 0.713 1.008 0.604 71.0 0.093 4.827 0.090 
a Breeding status – proven breeder (has produced a live calf during lifetime) vs. non-proven breeder (has never produced a live calf). b Bred within the last 7 years – 

proven breeder that has bred during the last seven years vs. proven breeder but has not produced a calf during the last seven years vs. non-proven breeder. P 

values in bold represent those significant at the 0.05 level, tendencies (P<0.10) are denoted by bold italics.  
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Table A.6.2: Analyses of environmental factors across reproductive categories. Variables were analysed either using cross-tabulation & Pearson Χ2 (to compare the 

proportion of individuals P vs. NP or P<7, P>7 or NP in each category), or using either Mann Whitney U (2 groups of breeding status; grey cells) or Kruskal Wallis (3 

groups of bred within 7 years; grey cells). 

 Males Females 

 Breeding status a Bred within 7 years b Breeding status a Bred within 7 years b 

 Pearson Χ2 P Pearson Χ2 P Pearson Χ2 P Pearson Χ2 P 

Enclosure boundary:          

Solid walls included in enclosure boundary 
(yes vs. no) 

3.484 0.062 4.444 0.108 1.050 0.306 3.246 0.197 

% Solid walls in enclosure boundary 4.0 0.400 4.625 0.099 40.5 1.000 5.409 0.067 

% Fence in enclosure boundary  8.5 0.315 2.705 0.259 53.5 0.678 4.316 0.116 

         

Enclosure area (m2): 28.5 0.875 0.466 0.792 122.0 0.697 1.085 0.581 

         

Visitor access:         

% Perimeter of outdoor enclosure has visitor 
access 

38.0 0.428 0.875 0.646 93.0 0.448 1.625 0.444 

On-show vs. off-show 1.371 0.242 2.286 0.319 0.536 0.464 0.952 0.621 

Visitor access to indoor enclosures (yes vs. no) 0.027 0.869 1.504 0.471 0.368 0.544 5.162 0.076 

Opportunity to escape from view (yes vs. no) 0.356 0.551 0.889 0.641 0.536 0.464 0.952 0.621 

         
a Breeding status – proven breeder (has produced a live calf during lifetime) vs. non-proven breeder (has never produced a live calf). b Bred within the last 7 years – 

proven breeder that has bred during the last seven years vs. proven breeder but has not produced a calf during the last seven years vs. non-proven breeder. P 

values in bold represent those significant at the 0.05 level, tendencies (P<0.10) are denoted by bold italics. 
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Table A.6.3: Analyses of social factors and reproductive status. Variables were analysed either using cross-tabulation & Pearson Χ2 (to compare the proportion of 

individuals P vs. NP or P<7, P>7 or NP in each category), or using either Mann Whitney U (2 groups of breeding status; grey cells) or Kruskal Wallis (3 groups of 

bred within 7 years; grey cells). 

 Males Females 

 Breeding status a Bred within 7 years b Breeding status a Bred within 7 years b 

 Pearson Χ2 P Pearson Χ2 P Pearson Χ2 P Pearson Χ2 P 

No. rhinos at institution:         

Males 1.067 0.608 1.167 0.558 3.453 0.081 3.520 0.172 

Females 1.067 0.608 1.167 0.558 3.453 0.081 3.520 0.172 

         

Housed with other rhinos:         

Housed with same sex  
Not at all; Some of the time; All of the time 

3.810 0.051 3.810 0.149 3.151 0.207 3.987 0.408 

Housed with opposite sex 
Not at all; Some of the time, not limited to 
oestrus; During oestrus only; All the time 

1.920 0.589 6.200 0.401 2.946 0.400 4.571 0.600 

         
Housed near other rhinos:         
Housed near same sex (yes vs. no) 0.950 0.330 2.812 0.245 0.238 0.626 1.905 0.386 
Housed near opposite sex (yes vs. no) 3.810 0.051 3.810 0.149 0.536 0.464 1.693 0.429 
         
a Breeding status – proven breeder (has produced a live calf during lifetime) vs. non-proven breeder (has never produced a live calf). b Bred within the last 7 years – 

proven breeder that has bred during the last seven years vs. proven breeder but has not produced a calf during the last seven years vs. non-proven breeder. P 

values in bold represent those significant at the 0.05 level, tendencies (P<0.10) are denoted by bold italics. 
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