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Summary

The interaction of a time-harmonic plane wave with a semi-infinite lattice of identical
circular cylinders is considered, using a formulation that allows for cylinders of finite
size that do not scatter isotropically. Multipole expansions and Graf’s addition theorem
are used to reduce the boundary value problem to an infinite linear system of equations.
Applying the z transform and disregarding interaction effects due to certain strongly
damped modes then leads to a matrix Wiener–Hopf equation with rational elements.
This is solved by a straightforward method that does not require matrix factorisation.
Implementation of the method requires that the zeros of the matrix determinant be
located numerically, and once this is achieved, all far field quantities can be calculated.
Numerical results that show the proportion of energy reflected back from the edge are
presented for several different lattice geometries.

1. Introduction

Bloch waves can propagate through periodic media without loss of energy, and have
been found to exist in a range of different physical contexts, including elastodynamics
of composite materials and thin plates, acoustics and electromagnetism (1, 2, 3, 4). Bloch
wave propagation continues to be an active research field; recent papers that have introduced
new ideas include (5, 6) and (7). Associated with each periodic medium that supports
Bloch waves is a band structure that dictates the parameter regimes where propagation is
permitted. A given frequency may lie in a total stop band where no propagation is possible,
a partial stop band where propagation can occur in a limited set of directions, or a pass
band where propagation in any direction is possible. This complex, frequency and direction
dependent behaviour leads to important applications in the fabrication of waveguides, filters,
optical fibres and photonic crystals (8, 9, 10). The band structure can be used to make
some deductions about the scattered field that arises when an incident wave strikes the
edge of a periodic medium. If the parameters lie in a stop band then no transmission
is possible, and all of the incident wave energy must be reflected back from the edge. If
transmission is possible, some or all of the incident energy may be converted into Bloch
waves, but it is not possible to make a quantitative statement about the amplitudes of the
transmitted and reflected fields based on the band structure alone (10, pp. 223–224). This
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excitation problem has received far less attention than the propagation problems discussed
above, but some papers on the subject have appeared in the last few years. In (11), the
present authors considered scattering of a plane acoustic wave by a semi-infinite periodic
medium. This work was carried out under the assumption that the scattering from each
lattice element is isotropic, which is only valid if the surfaces of the scatterers are sound-
soft, and the wavelength is large in comparison to the other length scales in the problem.
Electromagnetic scattering by a three-dimensional lattice has been considered in (12) using
a single point dipole approximation to represent nanospheres making up the lattice. Some
general characteristics of problems involving larger lattice elements are considered in (13),
but explicit solutions are only given for point dipoles.

In this paper, we develop a method that can be applied to problems where finite size
effects are important, so that the scatterers cannot be modelled as points. Our analysis
allows for lattice elements that do not scatter isotropically, and remains applicable when
the wavelength is comparable to the scatterer size. The key improvement is the use of
multipole expansions to represent the scattered field. We will consider the canonical problem
of an acoustic plane wave incident on a semi-infinite lattice (a semi-infinite stack of infinite
rows) of identical circular cylinders. We assume there is no variation along the axis of the
cylinders, so that the problem is governed by the two-dimensional Helmholtz equation. The
low frequency limit considered in (11) is a special case of this analysis, and can be retrieved
by discarding all but one of the terms (the monopole) from each multipole expansion. Since
the focus of this article is on the development of our method, we choose to avoid the
introduction of additional parameters where possible. Consequently, in what follows, we
will consider only sound-soft and sound-hard boundary conditions, so that there is no field
inside the cylinders. These boundary conditions can occur in other physical contexts. In
electromagnetism, transverse magnetic and transverse electric waves incident on a semi-
infinite lattice of perfectly conducting cylinders lead to problems equivalent to the sound-soft
and sound-hard cases, respectively (14, pp. 13, 19). In linear water wave theory, a plane
wave incident on a semi-infinite lattice of bottom-mounted, surface penetrating cylinders
is equivalent to the sound-hard case (15, ch. 2). For completeness, we note that other
boundary conditions can be applied by changing the scattering coefficients (denoted by Zn

in our subsequent analysis) used to relate the fields incoming toward and outgoing from each
lattice element. The scattering coefficients that we use are special cases of a more general
coefficient that accounts for penetrable cylinders; see (16, Section IV A) for details.

The plan of the paper is as follows. In Section 2 we formulate the boundary value problem,
and in Sections 3–4 we derive representations of the field in terms of grating modes and
multipole expansions. Applying Graf’s addition theorem (14, Theorem 2.12) to the multipole
representation leads to an infinite linear system of equations. When Bloch waves are excited,
this system has poor convergence properties, and cannot be solved directly by truncation,
but it is amenable to the discrete Wiener–Hopf technique (17, 18). Following the method
of (11), in Section 5 we apply the z transform (19) to obtain a Wiener–Hopf equation. A key
difference between the low frequency analysis in our earlier article and the current work then
becomes apparent. The Wiener–Hopf equation obtained in (11) is scalar, that is it consists
of a single functional equation containing two unknown functions, which have known (and
overlapping) domains of analyticity. Equations of this type can be solved using a standard
procedure (20, Section 1.7). For the current problem, we obtain an infinite-dimensional
matrix Wiener–Hopf equation (an infinite set of coupled scalar equations). This turns
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out to have some important symmetry properties, and these are the subject of Section 6.
In Section 7, we truncate the multipole expansions to obtain a finite-dimensional matrix
Wiener–Hopf equation. Then, by neglecting interaction effects due to strongly evanescent
grating modes, we further reduce this to an equation whose elements are rational functions.
This approximate system is solved by matching the poles and residues on opposing sides, and
in this way we avoid the necessity of performing a matrix Wiener–Hopf factorisation, which
is generally very difficult (21, 22). After solving the Wiener–Hopf equation, we proceed to
analyse the transmitted and reflected far field patterns in Section 8. Using these, we derive
a conservation of energy condition in Section 9, which is used as a check on our numerical
results, and to ensure that no Bloch waves that transport energy toward the interface are
included in our solutions. Some details of the implementation are given in Section 10, and
numerical results are presented with discussion in Section 11. Finally, some concluding
remarks are made in Section 12.

2. Formulation

Let a1 and a2 be linearly independent vectors in the .x;y/ plane. Suppose that infinitely
long (in z), cylindrical scatterers of radius ` are centred at the points with position vectors

Rjp D j a1 C pa2; j 2 Z; p D 0; 1; : : : (2.1)

forming a semi-infinite lattice (Fig. 1). Without loss of generality, we can assume that

a1 D a1 Ox; and a2 D �1 OxC �2 Oy; (2.2)

where �2 > 0. Here, Ox and Oy are unit vectors in the x and y directions, respectively, and we
have introduced the convention that jvj D v for any vector v, which will be used throughout.
In order that the cylinders do not overlap, we must have a > 2`, where a is the magnitude
of the shortest nonzero lattice vector, that is

a D min
j2Cp2¤0

Rjp: (2.3)

We also introduce position vectors relative to the centre of each cylinder; thus

rjp D r �Rjp; (2.4)

as shown in Fig. 1. We will consider time-harmonic motion with frequency !, in which case
the acoustic potential outside the cylinders is given by

U.r; t/ D Re
�
u.r/e�i!t

�
: (2.5)

The complex-valued function u must satisfy the Helmholtz equation�
r

2
C k2

�
u.r/ D 0; (2.6)

where k D !=c, with c representing the speed of sound. For sound-soft cylinders, the surfaces
are subject to the Dirichlet boundary condition

u.r/ D 0 on rjp D `; j 2 Z; p D 0; 1; : : : (2.7)
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Fig. 1 Schematic diagram showing a section of the lattice, and illustrating the notation in use.

whereas for sound-hard cylinders the Neumann condition

@u.r/

@rjp

D 0 on rjp D `; j 2 Z; p D 0; 1; : : : (2.8)

applies. Let the plane wave corresponding to

ui.r/ D eir�k (2.9)

be incident upon the lattice, where the wavenumber vector is given by

k D k cos 0 OxC k sin 0 Oy;  0 2 .0; �/: (2.10)

The total field is then given by
u D ui

C us; (2.11)

where us is the scattered field, which we seek to determine. In order to match the periodicity
of the geometry and of the incident field we must have

u.rC j a1/ D eijka1 cos 0u.r/; j 2 Z; (2.12)

and the same condition applies to the scattered field.

3. Grating mode representation

At points that do not lies on the axes of the rows, so that there is no nonnegative integer q

such that y D q�2, the scattered field can be represented as a sum of grating modes, each of
which is an exponential solution to the Helmholtz equation that satisfies the quasi-periodicity
condition (2.12). That is,

u.r/ D

1X
jD�1

eikx cos j
�
cCj eiky sin j C c�j e�iky sin j

�
; (3.1)
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for some unknown amplitude coefficients c˙j . Here, the scattering angles are defined via

k cos j D k cos 0 C 2j�=a1; and k sin j D i
 .k cos j /; (3.2)

where the function 
 is given by


 .t/ D

(p
t2 � k2 if jt j � k;

�i
p

k2 � t2 if jt j < k:
(3.3)

Note that cos j is always real, whereas sin j is positive real for a finite set of integers j

and positive imaginary otherwise. Since the distinction between these two cases is important,
we define the sets

M D fj 2 Z W j cos j j � 1g and N D fj 2 Z W j cos j j > 1g: (3.4)

For each j 2M, the grating modes with amplitude coefficients cCj and c�j propagate in
the direction of increasing and decreasing y, respectively, unless sin j D 0, in which case
they are independent of y. Similarly, for j 2 N , modes with amplitude coefficients cCj decay
exponentially as y is increased, and those with amplitude coefficients c�j decay exponentially
as y is decreased. For the problem under consideration here, we should expect the amplitude
coefficients to take different values between each pair of rows. An expansion of the form (3.1)
also holds in the half-space y < 0, but here the scattered field clearly cannot include any
modes that grow with decreasing y, or are incoming from infinity. Hence,

us.r/ D

1X
jD�1

eikx cos j
�
cCjqeiky sin j C c�jqe�iky sin j

�
; .q � 1/ <

y

�2

< q; q 2 N; (3.5)

and

us.r/ D

1X
jD�1

c�j0eik.x cos j�y sin j /; y < 0: (3.6)

Values for c�
j0

and for c˙jq in the far field limit q ! 1 will be determined in Sections 8
and 9, respectively.

4. Multipole representation

In view of the quasi-periodicity condition (2.12), the multipole expansion (14, Chapter 4)
for the scattered field has the form

us.r/ D

1X
nD�1

1X
pD0

1X
jD�1

Ap
n eijka1 cos 0Hn.rjp/: (4.1)

Here, the outgoing wavefunction in the summand is defined as

Hn.r/ D H .1/
n .kr/ein� ; (4.2)

where H
.1/
n is a Hankel function of the first kind and � is the anticlockwise angle between

the positive x axis and the vector r. Note the symmetry property

Hn.�r/ D .�1/nHn.r/: (4.3)
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The expansion (4.1) satisfies the Helmholtz equation (2.6), and the amplitude coefficients
A

p
n must be chosen so that the boundary condition on the cylinder surfaces is satisfied. The

first step in determining the appropriate values for A
p
n is to locally expand the total field

about one of the cylinder centres. We need only account for the boundary conditions on
cylinders centred at r D qa2 for q D 0; 1; : : : Conditions elsewhere follow automatically, in
view of the quasi-periodicity property (2.12). For the incident wave, we use the generating
function for Bessel functions (23, Equation 10.12.1) and the fact that ui.r/ D ui.Rjp/u

i.rjp/

to obtain the Jacobi expansion

ui.r/ D eiqa2�k
1X

nD�1
ine�in 0Jn.r0q/; (4.4)

where the regular wavefunction Jn.�/ is given by

Jn.r/ D Jn.kr/ein� ; (4.5)

with � defined as in equation (4.2). For the scattered field, we use Graf’s addition theorem
(14, Theorem 2.12), which in our notation shows that

Hn.rjp/ D

1X
mD�1

Hn�m.�Rj ;p�q/Jm.r0q/; n 2 Z; r0q < Rj ;p�q : (4.6)

Terms in the multipole expansion (4.1) with j D 0 and p D q represent the field radiating
from the cylinder centred at r D qa2, and do not need to be re-expanded. Using (4.6) for
the remainder of the series, we obtain

us.r/ D

1X
nD�1

�
Aq

nHn.r0q/C

1X
pD0

1X0

jD�1
Ap

n eijka1 cos 0

1X
mD�1

Hn�m.�Rj ;p�q/Jm.r0q/

�
; (4.7)

where the prime symbol indicates that the terms in which Rj ;p�q D 0 are to be omitted from
the summation. This expansion is valid provided that r0q < a, where a is given by (2.3).
Combining (4.7) with (4.4) yields the local expansion

u.r/ D

1X
nD�1

�
Aq

nHn.r0q/C Iq
nJn.r0q/

�
; r0q < a; q D 0; 1; : : : (4.8)

Here, the second term on the right-hand side represents the field incident on the cylinder
centred at r0q D 0, consisting of the incident plane wave, and the radiation from all the
other cylinders. An expression for I

q
n can be obtained by reading off the coefficient of the

regular wavefunction in (4.7) and combining this with the contribution from (4.4). In this
way, we find that

Iq
n D inei.qa2�k�n 0/ C

1X
mD�1

1X
pD0

1X0

jD�1
Ap

meijka1 cos 0Hm�n.�Rj ;p�q/: (4.9)
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After separating the term in which p D q, we rewrite this in the form

Iq
n D inei.qa2�k�n 0/ C

1X
mD�1

1X
pD0

Ap
mSq�p

m�n.k cos 0/; n 2 Z; q D 0; 1; : : : (4.10)

where

Sq
n .k cos 0/ D

(
��n.k cos 0/ if q D 0;

Gn.qa2; k cos 0/ if q ¤ 0:
(4.11)

Here, the quasi-periodic Green’s function Gn and the lattice sum �n are defined via

Gn.r; ˇx/ D

1X
jD�1

eija1ˇxHn.r �Rj0/ (4.12)

and

�n.ˇx/ D

1X
jD�1

j¤0

eija1ˇxHn.j a1/: (4.13)

Further details of these functions are given in appendices A and B, respectively. Applying
the boundary condition on r0q D ` and using the orthogonality of the cylindrical harmonics
in the wavefunctions Hn and Jn in (4.8), we find that

Aq
n CZnIq

n D 0; (4.14)

where the scattering coefficient Zn is given by

Zn D Jn.k`/
ı

H .1/
n .k`/ (4.15)

for Dirichlet conditions, whereas for Neumann conditions we have

Zn D J 0n.k`/
ı

H .1/0
n .k`/: (4.16)

Eliminating I
q
n from (4.14) using (4.10) leads to the system of equations

Aq
n CZn

1X
mD�1

1X
pD0

Ap
mSq�p

m�n.k cos 0/ D �Zninei.qa2�k�n 0/; n 2 Z; q D 0; 1; : : : (4.17)

The magnitude of Zn decays rapidly as jnj ! 1, due to the asymptotic behaviour of the
Bessel and Hankel functions in this limit (23, Section 10.19). On the other hand, when Bloch
waves are excited, A

p
m 6! 0 as p !1. Therefore (4.17) cannot be solved by truncation, and

we must treat the sum over p analytically. Before doing so, we note that for both types of
boundary condition under consideration (and also for penetrable cylinders, see (24) — this
paper contains the equivalent calculation for spherical wavefunctions, but the algebra for
the two-dimensional case is the same) the coefficients Zn have the important property that

Zn=.1 �Zn/ D �iWn; (4.18)
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where Wn is real. It turns out to be advantageous to work with a system containing Wn

rather than Zn, so we divide (4.17) by 1 �Zn to obtain

Aq
n.1 � iWn/ � iWn

1X
mD�1

1X
pD0

Ap
mSq�p

m�n.k cos 0/ D WninC1ei.qa2�k�n 0/;

n 2 Z; q D 0; 1; : : : (4.19)

This rescaling has no effect on the convergence properties of the system, because 1�Zn ! 1

as jnj ! 1. If there are integers n such that Zn D 1, then no corresponding coefficient Wn

exists for this index, but we can deal with this by introducing additional scaling factors into
a finite number of rows. The effect of this scaling on subsequent analysis is minimal.

5. Exact Wiener–Hopf equation

We now convert (4.17) into a matrix Wiener–Hopf equation, using a generalisation of the
method in (11), which was itself based on that in (17). We begin by setting

Aq
n D 0; q < 0; (5.1)

and

T q
n D WninC1ei.qa2�k�n 0/; q � 0; (5.2)

so that (4.17) can be written in the form

Aq
n.1 � iWn/ � iWn

1X
mD�1

1X
pD�1

Ap
mSq�p

m�n.k cos 0/ D T q
n ; n; q 2 Z: (5.3)

At this stage, T
q
n is unknown for q < 0, but its physical meaning can be deduced by observing

that an expansion of the total field in regular wavefunctions exists about every point except
the cylinder centres. If we extend the definition of the vectors Rjp by allowing p to take
any integer value, we can obtain such an expansion about r D R0q with q < 0 by setting
A

q
n D 0 in (4.8), so that there is no field radiating from r0q D 0. Consequently, (4.8), (4.9)

and (4.10) are extended to negative q by (5.1). By comparing (5.3) to (4.10), we see that

Iq
n D inei.qa2�k�n 0/ C iW �1

n T q
n ; q < 0: (5.4)

The first term on the right-hand side of this equation originates from the expansion of the
incident plane wave (4.4), meaning that the scattered field has the expansion

us.r/ D i

1X
nD�1

W �1
n T q

n Jn.r0q/; q < 0; (5.5)

which is valid in the vicinity of the point r D R0q. An important consequence of this is
that T

q
n cannot grow as q ! �1. We can also relate T

q
n to the coefficients in grating mode

expansion by deriving Jacobi expansions of the form (4.4) for each term in (3.6). The result
is that

us.r/ D

1X
jD�1

c
�
j0eiqk.�1 cos j��2 sin j /

1X
nD�1

inein j Jn.r0q/; (5.6)
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and on comparing this to (5.5), we find that

T q
n D Wnin�1

1X
jD�1

c
�
j0eiqk.�1 cos j��2 sin j /ein j ; q < 0: (5.7)

Returning to the task of converting the system (4.17) to a Wiener–Hopf equation, we
apply the z transform by introducing the integral representations

Aq
n D

1

2� i

Z
�

A
C
n .z/z

�q�1 dz; (5.8)

and

T q
n D

1

2� i

Z
�

Tn.z/z
�q�1 dz; (5.9)

where � is an anticlockwise oriented simple closed contour encircling the origin, whose
precise specification will be determined shortly. The superscript ‘C’ denotes a function that
is analytic inside �; its presence in (5.8) ensures that (5.1) is satisfied. In a similar way, we
ensure that (5.2) is satisfied by writing

Tn.z/ D T
C
n .z/C T

�
n .z/; (5.10)

where the superscript ‘�’ denotes a function that is analytic outside �. Next, we choose

T
C
n .z/ D �inC1e�in 0Wn

�0

z � �0

; (5.11)

where
�0 D e�ia2�k D e�ik.�1 cos 0C�2 sin 0/; (5.12)

and indent the contour � so that �0 lies outside. A straightforward application of the residue
theorem then shows that (5.2) is satisfied, provided that

T
�
n .z/! 0 as z !1: (5.13)

The next step is to insert the integral representations (5.8) and (5.9) into (5.3), and evaluate
the sum over p. Some care is needed here, to ensure correct positioning of the contour �
relative to the singularities in the z plane. We begin by using (4.11) and (A.12) to obtain

Sq
n .k cos 0/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

2.�i/n

ka1

1X
jD�1

ein j

�
q
j sin j

if q > 0;

2.�i/n

ka1

1X
jD�1

�
q
j e�in j

sin j

if q < 0;

(5.14)

where �j and �j are defined in terms of the scattering angles via

�j D e�ik.�1 cos jC�2 sin j / and �j D eik.�1 cos j��2 sin j /: (5.15)
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Note that the definition of �j is consistent with (5.12) in the case where j D 0, and that
j�j j D j�j j grows exponentially as jj j ! 1, in view of (3.2) and (3.3). For the terms in (5.3)
with p < q, we use (5.14) to obtain

q�1X
pD�1

Sq�p
m�n.k cos 0/A

p
m D

in�m�1

�ka1

1X
pD1

1X
jD�1

ei.m�n/ j

sin j

Z
�

A
C
m.z/.z=�j /

pz�q�1 dz: (5.16)

Since A
C
m.z/ is analytic inside �, we may temporarily contract the contour so that it includes

only points at which jzj < 1, without changing the value of the integral. Since j�j j � 1 for
all j , the sum over p then converges exponentially, and on commuting this with the integral,
we obtain

q�1X
pD�1

Sq�p
m�n.k cos 0/A

p
m D

in�m�1

�ka1

1X
jD�1

ei.m�n/ j

sin j

Z
�

A
C
m.z/z

�q dz

�j � z
: (5.17)

The poles that have been revealed at the points z D �j lie outside the contour �. Now the
amplitude coefficients A

q
n cannot grow as q !1, so the integral in (5.8) must not include

contributions from singularities inside the unit circle, meaning that ACn .z/ is analytic for
jzj < 1. However, this is not sufficient to deal with the terms in (5.3) with p > q. Therefore
we temporarily assume the existence of � > 0 such that ACn .z/ is analytic for jzj < 1C �.
This means that A

q
n ! 0 as q ! 1. Later we will see that a minor adjustment to the

integration contour � allows our solution to hold in cases where Bloch waves are excited,
and no such � exists. Using (5.14) and temporarily expanding the contour � so that it does
not include any points where jzj � 1, we find that

1X
pDqC1

Sq�p
m�n.k cos 0/A

p
m D

in�m�1

�ka1

1X
jD�1

ei.n�m/ j

sin j

Z
�

A
C
m.z/z

�q�1 dz

z�j � 1
: (5.18)

The poles at the points z D ��1
j lie inside the contour �. Using (5.17) and (5.18) in (5.3),

and using (5.8) and (5.9) for the remaining terms, we now find that a solution is obtained if

1X
mD�1

Knm.z/A
C
m.z/ D T

C
n .z/C T

�
n .z/; n 2 Z; (5.19)

where the element of the kernel matrix in row n and column m is given by

Knm.z/ D ınm� iWn

�
�n�mC ınm�

2in�m

ka1

1X
jD�1

1

sin j

�
zei.m�n/ j

z � �j

�
ei.n�m/ j

z�j � 1

��
: (5.20)

Here, we have omitted the argument k cos 0 from �n�m for brevity. The contour � is shown
in Fig. 2. It consists of the unit circle, with indentations chosen so that the points z D ��1

j

are encircled, but the points z D �j are not. The system (5.19) is an infinite-dimensional
matrix Wiener–Hopf equation, though as noted in the previous section the ranges for n

and m can be truncated. Each element of the matrix kernel has infinitely many simple
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ReŒz�

ImŒz�

�0

�1

��1
0

��1
1

z0 z1

w�1
0

w�1
1

1

�

Fig. 2 Schematic diagram showing the contour �, the poles �0, �1, ��1
0

and ��1
1

and the zeros of

the kernel z0, z1, w�1
0

and w�1
1

. When j 2 N , ��j D �j and similarly, zj D w
�
j if jzj j ¤ 1. Functions

with a superscript C (�) are analytic in the (un)shaded region.

poles. Since j�j j D j�j j ! 1 as j !1, there are also nonisolated essential singularities
caused by the clustering of poles about the origin and the point at infinity. A final point
concerns the Wood anomalies studied in (25). These are situations in which there exist one
or two integers j such that sin j D 0. Inserting the spectral form of �n�m from equation
(B.4) or (B.5) into (5.20), and using Euler’s formula shows that Knm.z/ remains bounded
in the limit sin j ! 0. Consequently, Wood anomalies have no significant effect on our
subsequent analysis, though some care is needed in order to obtain the correct values for
Knm.z/ in such cases.

6. Symmetries

In this section, we prove the crucial symmetry property

W �1
n Knm.z/ D W �1

m K�mn.1=z
�/; (6.1)

where the superscript ‘�’ denotes the complex conjugate. To achieve this, we will show that

Dnm D W �1
n Knm.z/ �W �1

m K�mn.1=z
�/ (6.2)

is identically zero. Now the first term on the right-hand of (5.20) clearly disappears from (6.2).
For the second term, we observe that when n D m the Kronecker delta eliminates the first
term in the spectral form of �0 (B.4). In this case, the second term from (B.4) also disappears
from (6.2), as does the contribution i=.�jj j/ in the summand, due to the addition of ��0 to
�0. Similarly, when m ¤ n, we use (B.2) to equate the orders of the two Schlömilch series
in (6.2), and then the term Bn from (B.5) disappears. Only the infinite sum over j remains,
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and in fact

Dnm D �
2in�mC1

ka1

1X
jD�1

Dj
nm; (6.3)

where

Dj
nm D

1

sin j

"
ei.n�m/ sgn.j/ j �

zei.m�n/ j

z � �j

C
ei.n�m/ j

z�j � 1

#

C
1

sin �j

"
ei.m�n/ sgn.j/ �

j �
zei.n�m/ �

j

z � ��j
C

ei.m�n/ �
j

z��j � 1

#
; (6.4)

and sgn.0/ D 1. When sin j is imaginary, ��j D �j and (3.2) shows that either  j D iv

or  j D � � iv, with v > 0. On the other hand, if  j is real, both �j and �j lie on the
unit circle, so that ��j D 1=�j and ��j D 1=�j . In either case, it immediately follows that

Dj
nm D 0, which establishes (6.1).
Another symmetry property,

.�1/nW �1
n Knm.z/ D .�1/mW �1

m Kmn.1=z/; (6.5)

holds only in the case of a rectangular lattice, where �1 D 0 so that �j D �j , and a third,

.�1/nW �1
n Knm.z/ D .�1/mW �1

m Kmn

�
1

zeika1 cos 0

�
; (6.6)

holds only if �1 D a1=2, so that �j D eika1 cos 0�j . These are easily verified by taking the
difference between the left- and right-hand sides and using (5.20). Both (6.5) and (6.6) have
previously been obtained in (26). On the other hand, the general symmetry property (6.1)
was observed numerically in (26) but not proven.

7. Approximate Wiener–Hopf equation

In order to proceed further, we introduce two approximations into the matrix Wiener–Hopf
equation (5.19). First, the system is truncated at jmj D jnj D N . This corresponds to using
a finite number of wavefunctions in the expansions of the field about the cylinders. As
noted in Section 2, accurate results can be obtained for relatively small values of N , due to
rapid convergence. We also truncate the sum over j in (5.20). The physical meaning of this
can be understood as follows. First of all, note that the sum in question originates from
the use of the spectral representations of the function S

q�p
m�n in obtaining (5.19) from (5.3).

The terms in which q D p describe the interactions between the scatterers within each row;
hence the appearance of the Schlömilch series �n�m, the exact form of which is retained in
our approximation. On the other hand, terms in which q ¤ p describe interactions between
distinct rows, and, in view of (A.12), these interactions are due to an infinite sum of grating
modes propagating between the rows. All but a finite number of these modes are evanescent,
and the rate of decay increases rapidly with the modulus of the summation index j . It
is this sum which we are now truncating, thereby discarding interaction effects caused by
strongly damped modes, and so in fact the approximation amounts to a standard method
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for treating scattering by multiple linear arrays (see (15, Section 6.4), (27) and references
therein). The .2N C 1/ � .2N C 1/ approximate Wiener–Hopf equation is therefore

K.z/A
C
.z/ D T.z/; (7.1)

where the entries in row n of the vectors AC.z/ and T.z/ are ACn .z/ and Tn.z/, respectively,
and the entry in row n and column m of the matrix K.z/ is

QKnm.z/ D ınm � iWn

�
�n�m C ınm �

2in�m

ka1

j1X
jDj0

1

sin j

�
zei.m�n/ j

z � �j

�
ei.n�m/ j

z�j � 1

��
: (7.2)

The truncation parameters j0 and j1 must be such that no propagating modes are discarded,
and so the summation must include all elements of the set M, but it may also be necessary
to include one or more evanescent modes, depending on the rate of decay and the degree of
accuracy required. This second approximation eliminates the essential singularities from the
origin and the point at infinity, so that QKnm.z/ is a rational function with 2.j1 � j0 C 1/

simple poles. The residues at these poles are exactly those of Knm.z/. The approximate
kernel matrix has the same symmetry properties as the exact matrix (see Section 6), because
in each case the symmetry applies to individual terms in the sum over j . In the case of (6.1),
it should be noted that the terms in (6.4) originating from �n�m cancel each other for j 2 N ,
meaning that the Schlömilch series need not (and indeed should not) be truncated in the
same way.

The usual method for solving equations such as (7.1) requires a factorisation of the form

K.z/ D KC.z/K�.z/; (7.3)

where detKC.z/ ¤ 0 for all z on and inside the contour �. Such factorisations are often
very difficult to find (21). Here, we can avoid this problem by exploiting the fact that the
Wiener–Hopf equation contains only rational functions. This allows us to construct the
functions T �n .z/ by matching the poles and residues on each side of (7.1) (or, equivalently,
the truncated form of (5.19)). The procedure we use is related to the method introduced
in (28), though in that case the equation is simpler in that the right-hand side is known and
the difficulty lies in determining the residues in the unknown vector on the left-hand side.
To begin the construction, we simply observe that ACm.z/ and T �n .z/ cannot have common
singularities, so the only possible singularities of T �n .z/ are the poles of the kernel that lie
outside the contour �. Consequently, T �n .z/ has at most simple poles at the points z D ��1

j ,
and no other singularities. Recalling that T �n .z/! 0 as z !1, we immediately obtain the
expansion

T
�
n .z/ D Wn

j1X
jDj0

X
j
n

z�j � 1
; (7.4)

where the coefficients X
j
n are as yet unknown, and the factor Wn has been included for

convenience, and consistency with (5.11). A remarkable simplification now occurs if we
multiply (7.2) by z�p � 1 with j0 � p � j1 and take the limit z ! ��1

p . We find that

lim
z!��1

p

�
.z�p � 1/ QKnm.z/

�
D �

2i1�me�im p

ka1 sin p

Wninein p ; (7.5)
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and since TCn .z/ is analytic at the points z D ��1
p , using this in the truncated form of (5.19)

shows that

X p
n D �

2inC1ein p

ka1 sin p

NX
mD�N

A
C
m.�
�1
p /.�i/me�im p ; (7.6)

which reveals the dependence of X
p
n on n. In fact

X p
n D inein p X

p
0
; (7.7)

so that (7.4) becomes

T
�
n .z/ D inWn

j1X
jDj0

X
j
0

ein j

z�j � 1
; (7.8)

and it only remains to determine the coefficients X
j
0

.
Next, we define the determinant function

d.z/ D detK.z/; (7.9)

which is a rational function that is analytic except possibly for poles located at z D �j and
z D ��1

j , for j D j0; : : : ; j1. Consider the point z D ��1
p . From (7.5), we have

Res
zD��1

p

�
QKnm.z/

�
D

Wn

W0

inein p Res
zD��1

p

�
QK0m.z/

�
; (7.10)

which shows that the residues in row n of the kernel matrix elements differ from those in
row 0 by a common, constant factor. The residues at z D �p are related in a similar way,
with ein p replaced by e�in p . Motivated by this, we define the regularised kernel matrix
L.z/, whose elements are given by

Lnm.z/ D

8<:
QK0m.z/ if n D 0;

QKnm.z/ �
Wn

W0

ine�in p QK0m.z/ otherwise;
(7.11)

for jmj � N and jnj � N . Evidently the determinant of L.z/ is the same as that of K.z/,
but by making the appropriate choice of the index p and the sign in the exponent, any one
of the poles can be removed identically from all but one of the rows. This shows that d.z/

can have (at most) simple poles at the points z D �j and z D ��1
j . Furthermore, it follows

from the symmetry property (6.1) that

d.z/ D d�.1=z�/: (7.12)

Any rational function with this property must be a ratio of polynomials of equal degree.
We will proceed on the basis that the zeros of d.z/ are simple, and do not coincide with
the poles at z D �j and z D ��1

j , which has been the case for every parameter set we have
considered. Since we have not discovered any mathematical arguments that preclude other
possibilities such as higher order zeros, some modifications to our analysis that can be used
in such situations are presented in appendix C. Now the zeros of d.z/ are subject to the
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symmetry relation (7.12), and initially we will assume that d.z/ has no zeros on the unit
circle. In this case, there are .j1 � j0 C 1/ zeros zp outside the unit circle, and for each of
these there is a corresponding zero located at z D w�1

p D 1=z�p, which lies inside the unit

circle. Zeros of d.z/ that lie outside the unit circle correspond to poles of ACn .z/. On the
other hand, ACn .z/ is analytic at the points z D w�1

p and here the Fredholm alternative (29,
Sections 5.7–5.9) imposes a condition on the right-hand side of (7.1). Specifically, there
exists a nonzero vector Ep such that

K�.w�1
p /Ep D 0; (7.13)

and it must be the case that

E�pT.w
�1
p / D 0: (7.14)

When the superscript ‘�’ is applied to a matrix or vector, it denotes a conjugate transpose.
Substituting TCn .z/ from (5.11) and the truncated form of T �n .z/ from (7.8), we can write
this in explicit form. If the row vector E�p has entries E�pn, for n D �N; : : : ;N , then

j1X
jDj0

X
j
0

w�1
p �j � 1

NX
nD�N

WnE�pninein j D
i�0

w�1
p � �0

NX
nD�N

WnE�pnine�in 0 ; p D j0; : : : ; j1:

(7.15)

This determines X
j
0

. If one or more of the points wp lies on the unit circle, then the
corresponding points zp must also lie on the unit circle, or else the symmetry property (7.12)
cannot be satisfied. Contributions to A

p
n from poles on the unit circle do not decay as

p !1; these correspond to Bloch waves in the far field. When a pair of zeros occurs on
the unit circle, we must determine the direction in which the corresponding Bloch waves
transport energy across lines where y is constant (see Section 10 for details). One zero in
each pair corresponds to a Bloch wave which carries energy into the lattice, and we denote
this zero by zp. The other zero in the pair corresponds to a wave that is incoming from
the far field, and cannot be excited by a wave incident from below the lattice. We denote
this zero by w�1

p ; it cannot be a pole of ACn .z/. Once the zeros are classified in this way, we

indent � so that w�1
p is encircled, but zp is not (Fig. 2). This done, (7.15) can be used to

determine X
j
0

as before.

8. The far field

Having constructed the functions T �n .z/, and thereby determined ACn .z/, we now turn our
attention to the behaviour of the scattered field. The method we use for the analysis in this
section was developed in (11). We begin by expressing the multipole representation (4.1) in
terms of the quasi-periodic Green’s function (A.1) and using the integral representation for
A

p
n (5.8); thus

us.r/ D
1

2� i

NX
nD�N

1X
pD0

Z
�

A
C
n .z/z

�p�1 dz Gn.r � pa2; k cos 0/: (8.1)

The next step is to expand � into a new contour �0 which does not include any points where
jzj � 1, thereby causing the sum over p to converge exponentially. Clearly, this process is
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impeded by poles of ACn .z/ that lie on the unit circle. We will assume that there is one such
pole at the point z D z0. Contributions from additional poles can be included in exactly the
same way, and for the case where ACn .z/ is analytic on the unit circle, we simply set b D 0

in our subsequent analysis. The functions ACn .z/ cannot include contributions from poles on
the unit circle that are not simple. This follows from (5.8), and the fact that if f .z0/ ¤ 0,
then

Res

�
f .z/zp

.z � z0/2

�
D f 0.z0/z

p
C f .z0/pz

p�1
0

; (8.2)

and similarly for higher order poles. Since the second term grows as p !1, such a residue
leads to unphysical results. Therefore we may write

A
C
.z/ D

bB

z � z0

C OA
C
.z/; (8.3)

where OAC.z/ is analytic at z D z0 and jBj D 1. The residue term corresponds to a Bloch wave
in the far-field. The vector B describes the form of this wave, and the scalar b determines its
amplitude. If we substitute (8.3) into the approximate Wiener–Hopf equation (7.1), multiply
by z � z0 and take the limit z ! z0, we find that

K.z0/B D 0; (8.4)

which determines B, up to a factor ˙1. Taking the residue term to the right-hand side
of (7.1) yields

K.z/ OA
C
.z/ D T.z/ �

bK.z/B

z � z0

(8.5)

and we can now apply the Fredholm alternative to obtain an expression for b. Thus, there
exists a vector F such that jFj D 1 and

K�.z0/F D 0; (8.6)

and after left-multiplying (8.5) by F�, taking the limit z ! z0 and applying L’Hôpital’s rule,
we find that

F�T.z0/ D bF�K0.z0/B; (8.7)

where the prime denotes differentiation of each individual matrix element with respect to
z. Since z0 lies on the unit circle, we may replace z0 with 1=z�0 in (8.6), and the symmetry
property (6.1) shows that the elements of F are related to those of B via WnFn D ˙Bn.

Deforming the contour of integration in (8.1) and collecting the residue at z D z0 yields

us.r/ D ub
1.r/C

1

2� i

NX
nD�N

1X
pD0

Z
�0

A
C
n .z/z

�p�1 dz Gn.r � pa2; k cos 0/; (8.8)

where

ub
1.r/ D �

b

z0

NX
nD�N

Bn

1X
pD0

z
�p
0 Gn.r � pa2; k cos 0/: (8.9)
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We can evaluate the sum over p by choosing �0 so that

z0 D e�ia2�ˇ0 with ˇ0 D k cos 0 OxC �0 Oy: (8.10)

We then have a sum of the form (A.5), and so

ub
1.r/ D �

b

z0

NX
nD�N

BnG.0;1/
n .r;ˇ0/: (8.11)

Next, we convert the Green’s function in (8.8) to spectral form using (A.12), and in this
way we obtain

us.r/ D ub
1.r/C

NX
nD�N

.�i/nC1

1X
pD0

Z
�0

A
C
n .z/z

�p�1 dz

1X
jD�1

ein sgn.y�p�2/ j

�ka1 sin j

� eik..x�p�1/ cos jCjy�p�2j sin j /: (8.12)

To proceed beyond this point we must evaluate the sum over p, and this in turn requires the
elimination of the modulus and signum functions. Clearly, this is immediate if y < 0, but
the case where y > 0 is more difficult. Setting y D .P C t/�2, with 0 < t < 1, we find that

us.r/ D ub
1.r/C

NX
nD�N

.�i/nC1

�ka1

1X
jD�1

eikx cos j

sin j

Z
�0

A
C
n .z/

z

�

�
eik.PCt/�2 sin j ein j

PX
pD0

��j

z

�p

C e�ik.PCt/�2 sin j e�in j

1X
pDPC1

.z�j /
�p

�
dz; (8.13)

where �j and �j are given by (5.15). Since jzj > 1 on �0 and j�j j � 1 for all j 2 Z, we may
now evaluate both geometric series, and this yields

us.r/ D ub
1.r/C

NX
nD�N

.�i/nC1

�ka1

1X
jD�1

eikx cos j

sin j

Z
�0

A
C
n .z/

"
eik.PCt/�2 sin j

ein j

z � �j

� z�P�1e�ikP�1 cos j

�
eikt�2 sin j

�j ein j

z � �j

� e�ikt�2 sin j
e�in j

�j z � 1

�#
dz: (8.14)

Taking the limit P ! 1 now eliminates the last two terms on the right-hand side and
reduces the range for j to elements of the set M only; hence

us.r/ � ub
1.r/C

NX
nD�N

.�i/nC1

�ka1

X
j2M

ein j

sin j

eik.x cos jCy sin j /

Z
�0

A
C
n .z/

dz

z � �j

: (8.15)

There are now two poles inside the contour of integration, at z D �j and z D z0, so after
applying the residue theorem we have

us.r/ � ub
1.r/C ub

2.r/C
X

j2M

2eik.x cos jCy sin j /

ka1 sin j

NX
nD�N

.�i/nein j A
C
n .�j /; (8.16)
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where

ub
2.r/ D

2b

ka1

NX
nD�N

.�i/nBn

X
j2M

ein j eik.x cos jCy sin j /

sin j .z0 � �j /
; (8.17)

having used (8.3) again to evaluate the contribution at z D z0. The sum over n in (8.16)
can be evaluated by multiplying the truncated form of (5.19) by z � �q and taking the limit
z ! �q. Since T�.z/ is analytic at z D �q, this term disappears, and we can use (5.11)
and (7.2) to obtain

us.r/ � ub
1.r/C ub

2.r/ � eik.x cos 0Cy sin 0/; (8.18)

so that the last term cancels the incident field. Finally, we observe that (8.17) is in fact
the far field pattern generated by a combination of quasi-periodic Green’s functions of the
form (A.20). Indeed,

�
b

z0

NX
nD�N

BnG.�1;�1/
n .r;ˇ0/ � ub

2.r/ (8.19)

as y !1, so that the total field has the asymptotic form

u.r/ � �
b

z0

NX
nD�N

BnG.�1;1/
n .r;ˇ0/; (8.20)

which is a Bloch wave.
Calculation of the reflected field is much more straightforward. Setting y < 0 in (8.12)

and evaluating the sum over p yields

us.r/ D ub
1.r/C

NX
nD�N

.�i/nC1

�ka1

1X
jD�1

e�in j

sin j

eik.x cos j�y sin j /

Z
�0

A
C
n .z/

�j dz

�j z � 1
: (8.21)

If we now write ub
1 explicitly using (8.11) and (A.19), and take the residue at z D z0

using (8.3), we find that these two terms cancel each other exactly, so that we are left with
the grating mode expansion (3.6), with

c�j0 D
2

ka1 sin j

NX
nD�N

.�i/ne�in j A
C
n .�
�1
j /: (8.22)

Finally, the sum over n can be evaluated by setting n D 0 in (7.6); the result is that

c�j0 D iX
j
0
: (8.23)

9. Conservation of energy

The energy flux carried across a contour S by the total field during one time period is given
by the line integral

hESi D �
P0!

2
Im

Z
S

u.r/
@

@n
u�.r/ ds; (9.1)
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a1

a2

S1

S2

S3

S4

Fig. 3 The contour S, composed of the four lines S1; : : : ;S4.

where P0 is the quiescent fluid pressure and the orientation of the derivative is normal to
S; see (11) for details. If hESi > 0, the net energy flux is in the direction of the normal,
whereas energy is transported in the opposite direction if hESi < 0. We choose S to be the
parallelogram with vertices located at

r D 1
2

�
�a2 ˙ a1

�
and r D

�
q � 1

2

�
a2 ˙

1
2
a1; (9.2)

and take the derivative in the direction of the outgoing normal from each side. Since S is a
closed contour, we then have hESi D 0, which amounts to conservation of energy. This result
can also be obtained by applying Green’s second identity (14, Section 6.5) to the total field
and its complex conjugate. Next, we divide S into four straight line sections S1; : : : ;S4, as
shown in Fig. 3. The quasi-periodicity relation (2.12) shows that the only difference between
the integrals along S1 and S3 is due to the direction of the outgoing normal, so if we define

Iv D �
P0!

2
Im

Z
Sv

u.r/
@

@n
u�.r/ ds; (9.3)

then we immediately see that
I1 C I3 D 0; (9.4)

meaning energy is conserved if and only if

I2 C I4 D 0: (9.5)

On S2 and S4, we use the grating mode representation (3.1), since evaluation of the two
remaining integrals is then very straightforward. Indeed, it follows from (3.2) thatZ x0Ca1=2

x0�a1=2

eikx.cos j�cos p/ dx D a1ıjp; (9.6)

where x0 may be chosen arbitrarily. Therefore, if u is given by (3.1), thenZ
Sv

u.r/
@

@n
u�.r/ ds D �ika1

1X
jD�1

sin �j
�
cCj eiky sin j C c�j e�iky sin j

�
�
�
.cCj /

�e�iky sin �
j � .c�j /

�eiky sin �
j
�
; (9.7)



20 N. Tymis I. Thompson

where v D 2 or v D 4, and the upper and lower signs correspond to an upwards or downwards
oriented normal, respectively. Considerable simplification now occurs on separating the
terms for which sin j is real from the remainder of the series, and taking the imaginary
part. We find that

Im

Z
Sv

u.r/
@

@n
u�.r/ ds D �ka1

X
j2M0

sin j

�
jcCj j

2
� jc�j j

2
�
˙ 2ka1

X
j2N
j sin j j ImŒc

C
j .c
�
j /
��;

(9.8)
where N is defined in (3.4), and M0 is the set of integers j such that j cos j j < 1, so that
terms with sin j D 0 (which do not depend on y) are omitted. On S4, the outgoing normal
is directed downwards, and the only upwards propagating mode is the incident field, so that
cCj D ıj0. The coefficients c�

j0
are given by (8.23), and with these we obtain

I4 D �
ka1

2
P0!

�
sin 0 �

X
j2M0

ˇ̌
X

j
0

ˇ̌2
sin j

�
: (9.9)

There are two possibilities for the integral along S2. If no Bloch wave is excited, then
the total field decays exponentially as y ! 1, so we may take the limit q ! 1 in the
parametrisation (9.2) to show that I2 D 0. If a Bloch wave is excited due to a pole at z D z0,
then the far field for y > 0 is given by (8.20). In view of the quasiperiodicity property (A.17),
this can be rewritten as

u.r/ � �
b

z0

eiR0q �ˇ0

NX
nD�N

BnG.�1;1/
n .r � qa2;ˇ0/: (9.10)

For r 2 S2, we can use (A.19) and (A.20) to express this as a grating mode expansion of the
form (3.5), with

c
C
jq D �

2b QCj �
q
j eiR0q �ˇ0

ka1 sin j .�j � z0/
and c

�
jq D

2b Q�j �
�q
j eiR0q �ˇ0

ka1 sin j .�
�1
j � z0/

: (9.11)

Here, ˇ0 is given by (8.10), and

Q˙j D
1X

nD�1
.�i/nBne˙in j : (9.12)

Hence, (9.8) now yields

I2 D
2jbj2

ka1

P0!
�
IM2 C IN2

�
; (9.13)

where

IM2 D
X

j2M0

1

sin j

 ˇ̌̌̌
QCj

�j � z0

ˇ̌̌̌2
�

ˇ̌̌̌
Q�j

��1
j � z0

ˇ̌̌̌2!
(9.14)
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and

IN2 D
X
j2N

�2

j sin j j
Im

�
�j z0

.�j � z0/2
QCj .Q

�
j /
�
�
: (9.15)

Equation (9.13) is valid only for single Bloch waves, and the relationship between I2 for
individual and multiple waves is not linear. In cases where multiple Bloch waves are excited,
the total amplitude of the grating modes should be calculated by summing the values given
by (9.11) for each Bloch wave, and I2 can then be evaluated using (9.8). The value for q

in (9.11) may be chosen arbitrarily.

10. Implementation

The most significant obstacle to implementing the method described above is the
determination of the points at which d.z/ D 0. The general symmetry relation (6.1)
means we need only locate those zeros that lie on or inside the unit circle, but the presence
of poles at z D �j and z D ��1

j in every element of the kernel matrix and the fact that the
determinant has only simple poles at these points means there is a danger of catastrophic
cancellation if d.z/ is computed directly from (7.2). Any numerical code that operates
on this basis is likely to be unstable. Indeed, even searching for zeros on the unit circle,
where the determinant is real, is problematic because computed values of d.z/ close to the
poles sometimes turn out to have the wrong sign. When very few terms are retained in the
approximate kernel, it is possible to use a computer algebra package to expand and simplify
the determinant, but this rapidly becomes unfeasible as the magnitudes of the truncation
parameters are increased. Instead, we overcome this problem by computing the determinant
using the regularised matrix L.z/ and, for a given z, we choose the index p and the sign
in (7.11) so as to reduce the order of the closest pole. Where advantageous, we multiply the
central row by the function

P .z/ D

j1Y
jDj0

.z � �j /.z�j � 1/

ze�ik�2 sin j je�ik�2 sin j j
(10.1)

to remove the poles. This has the three symmetries that d.z/ inherits from the properties of
the kernel matrix discussed in Section 6; thus

P .z/ D

8̂̂̂<̂
ˆ̂:

P�.1=z�/ in all cases,

P .1=z/ if �1 D 0,

P

�
1

zeika1 cos 0

�
if 2�1 D a1.

(10.2)

The factor je�ik�2 sin j j is included in the denominator to normalise the magnitude of P .z/.
Since P .z/d.z/ is real and analytic on the unit circle, zeros here can be located using
standard methods. In the case of a rectangular lattice, where �1 D 0, it is often but not
always the case that zeros not on the unit circle are located on the real line. In this case we
can combine the two available symmetry relations to show that P�.z�/d�.z�/ D p.z/d.z/,
so that zj1�j0C1P .z/d.z/ is real and analytic for z 2 R. Any roots that occur here can also
be located fairly easily, though the search algorithm must take account of the fact that pairs
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of roots sometimes appear very close to the origin. A similar situation occurs for lattices
with �1 D a1=2, when the roots with jzj ¤ 1 are often but not always located on the line
z D ue�ik�1 cos 0 , u 2 R, and here uj1�j0C1P .z/d.z/ is real and analytic. For other cases,
we observe that the residues of the determinant at its poles can be calculated using (7.11),
and these can be used to express d.z/ as a sum of partial fractions. This can easily be
differentiated, so that the Newton–Raphson method becomes available. Using the origin
as the initial guess often yields one root, w�1

0
, say, and then a second can sometimes be

obtained by applying the Newton–Raphson iteration to d.z/=.z � w�1
0
/, again using the

origin as the initial guess. Any roots not determined by these elementary methods can be
calculated using the technique in (30). This is computationally expensive, and we do not
claim that it is the optimal approach, but it is very reliable.

Once the zeros of the determinant have been calculated, the remaining computations are
straightforward, and can be performed using standard libraries. First we classify any zeros
that appear on the unit circle using (9.13). At each zero, we calculate the eigenvector of
L.z/ that corresponds to the zero eigenvalue. The elements of this eigenvector then play
the role of Bn in (9.12), and the zero plays the role of z0 in (9.14) and (9.15). We then
determine the sign of the integral I2 in (9.13). If I2 > 0, the zero corresponds to a Bloch
wave that transports energy into the lattice. We denote this zero by zp for an appropriate
choice of the index p, and indent the contour � so that the point z D zp lies outside (see
Fig. 2). On the other hand, if I2 < 0, the zero corresponds to Bloch wave that cannot be
excited by a wave incident from below the lattice. Such zeros must lie inside the contour �
and are denoted by w�1

p . The residue coefficient b, which cannot be calculated at this stage,
plays no part in this. Once the zeros are classified, we can calculate all of the eigenvectors
Ep defined in (7.13), and the linear system (7.15) can be solved to obtain X

j
0 . The functions

T �n .z/ are then given explicitly by (7.8), and the problem is solved.
Next, we check that energy is conserved using (9.5). Whilst this is a necessary condition

for the correctness of the results, it is by no means sufficient, and where methods involving
modal expansions are used, it is sometimes possible to discard important terms and construct
manifestly incorrect solutions that nonetheless conserve energy (31). A much more stringent
test can be performed by calculating the coefficients A

p
n directly from (4.17) in cases where

no Bloch waves are excited (so that A
p
n ! 0 as p ! 1). We can also calculate A

p
n by

collecting residues from outside the contour � in (5.8); equations (8.3)–(8.5) can be used at
each pole. To test the results in cases where Bloch waves are excited, we use the infinite
array subtraction technique introduced in (32). For a case with a single Bloch wave, (8.3)
and (5.8) yield

Ap
n D �bBnz

�p�1
0 C OAp

n ; (10.3)

where OAp
n ! 0 as p !1. We calculate b, Bn and z0 as described above, and then use (10.3)

in (4.17) to obtain

OAq
n CZn

1X
mD�1

1X
pD0

OAp
mSq�p

m�n.k cos 0/ D �Zninei.qa2�k�n 0/ C�q
n; n 2 Z; q D 0; 1; : : :

(10.4)
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Fig. 4 Proportion of energy reflected back from a lattice with basis vectors a1 D Œ1; 0� and a2 D Œ0; 1�.
Dirichlet boundary conditions are enforced on the cylinder surfaces. (a) ` D 0:1, (b) ` D 0:2 and (c)
` D 0:3.

where

�q
n D bz

�q�1
0

�
Bn CZn

1X
mD�1

Bm

1X
pD0

ei.p�q/a2�ˇ0Sq�p
m�n.k cos 0/

�
; (10.5)

with ˇ0 given by (8.10). Separating the terms with p � q from the remainder of the series,
and using (4.11) and (A.5), this becomes

�q
n D bz

�q�1
0

�
Bn CZn

1X
mD�1

Bm

n
G.�q;�1/

m�n .0;ˇ0/C �n�m.k cos 0/

C eia2�ˇ0G.0;1/
m�n .�a2;ˇ0/

o�
: (10.6)

The multirow Green’s functions that appear here can be calculated using (A.13) and (A.15);
the first disappears in the case where q D 0. When (10.4) is solved by truncation, we find

that OAp
n ! 0 as p !1, which means we can have confidence that the results are correct.

To apply the same method to cases where multiple Bloch waves are excited, we need only
include extra residue terms on the right-hand side of (10.3), evaluate (10.6) for each Bloch
wave and include the results on the right-hand side of (10.4).

All of the results in the following section were generated using an implementation of our
method written in Fortran 2003, using double precision arithmetic. The multipole truncation
parameter N is set according to the value of k`; our implementation uses values chosen so
that

jWN j < 10�12 max
n�N
jWnj: (10.7)
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Fig. 5 Proportion of energy reflected back from a lattice with basis vectors a1 D Œ1; 0� and a2 D Œ0; 1�.
Neumann boundary conditions are enforced on the cylinder surfaces. (a) ` D 0:1, (b) ` D 0:2 and
(c) ` D 0:45.

Typically, increasing k` increases the number of terms that must be retained in the multipole
expansion. For example, for Dirichlet conditions, N D 7 is sufficient to satisfy (10.7) if
k` D 1, whereas N D 13 is required if k` D 4:5. For the grating mode expansion, we discard
terms for which

jeik�2 sin j j < "˛; (10.8)

where " represents machine epsilon (approximately 10�16 for double precision). The positive
parameter ˛ is chosen experimentally. Too small a value leads to modes that generate
significant interactions between the rows being discarded, but too large a value leads to
situations where the determinant possesses roots with very small magnitudes, which can
cause numerical problems. We have found ˛ � 0:35 to be a good compromise choice.

11. Numerical results

The problem of Bloch wave propagation through lattices of sound-hard and sound-soft
cylinders was investigated in (33). Here, we focus our attention on the proportions of
incident wave energy that are reflected back from and transmitted into the lattice. To this
end, we rewrite (9.5) in the form

ET CER D 1; (11.1)

where

ET D
2I2

P0!ka1 sin 0

and ER D
1

sin 0

X
j2M0

ˇ̌
X

j
0

ˇ̌2
sin j : (11.2)

In a stop band, no energy can be transmitted into the lattice, so ET D 0 and ER D 1.
However, when Bloch waves are excited it is not possible to determine ER or ET from an
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understanding of the wave-bearing properties of the lattice alone. Consequently the results
shown here reveal information about the behaviour of the field in pass bands and partial
stop bands that cannot be obtained from a standard band diagram.

Figs. 4 and 5 show contour plots of ER for square lattices, with ` increasing from left to
right. Here, and in Figs. 6 and 7, light and dark regions indicate strong reflection and strong
transmission, respectively. Note that the total field always disappears in the grazing limits
 0 ! 0 and  0 ! � so that ET D 0. This was shown to be the case for a single array
in (25) and the same result clearly holds for a semi-infinite lattice. However, the transition is
often very rapid, so that the effect is not visible in contour plots, though it has been verified
by inspecting the actual data. As we should expect, larger scatterers tend to reflect more of
the energy back from the lattice, and the stop bands generally widen as ` is increased. It is
also evident that a lattice formed from sound-hard (Neumann) scatterers generally permits
a greater proportion of energy to be transmitted than the equivalent sound-soft (Dirichlet)
lattice. At low frequencies, the plots for sound-soft scatterers shown in Fig. 4 exhibit a total
stop band, the extent of which increases with `, as noted in (33). Above this, there is a
narrow band in which some transmission is possible, and for still higher values of k there
is a second stop band. This is partial for small scatterers, that is it prevents propagation
in certain directions, but there is no frequency at which no directions are permitted. As `
is increased, this region widens, becoming a total stop band. Above the second stop band,
the pattern of transmission and reflection is very complicated, with multiple partial stop
bands and some small regions where high transmission occurs. For ` D 0:35 or greater (not
shown), the corresponding plots are almost entirely occupied by the first and second stop
bands, so that very little transmission is possible within this frequency range. The plots
for sound-hard scatterers shown in Fig. 5 are quite different, with no low frequency stop
band and much more substantial regions of high transmission. Indeed, at low frequencies
there is a region in which ER < 0:01, so that more than 99% of the incident wave energy is
transmitted into the lattice. This region contracts as ` is increased, but it persists even in
Fig. 5(c), where ` D 0:45. A partial stop band can be seen for k � 3, even for very small
scatterers, and for larger radii this becomes a total stop band, as in Fig. 5(c). Above this
stop band, the pattern is again very complicated, but with more regions of high transmission
than the sound-soft case.

Fig. 6 shows contour plots of ER for rectangular lattices, with �2 > a1. In general,
stretching the lattice causes the pattern to fragment, so that the regions of high and
low transmission are smaller and more numerous. In particular, narrow regions where
transmission is possible gradually penetrate into the first stop band for sound-soft scatterers,
and similarly, the region of high transmission observed at low frequencies for sound-hard
bodies is interspersed with partial stop bands.

In contrast to �2, varying �1 has fairly limited effects on the transmission patterns. For
lattices with �2 D �1=2, which retain symmetry across  0 D �=2, the plots are qualitatively
similar to those in Figs. 4, 5 and 6, and are not shown here. Instead, Fig. 7 shows three
situations in which the lattice is skewed. The effect of breaking symmetry across  0 D �=2 is
more pronounced for small scatterers, and some distortion is evident in Fig. 7(a) and (b). For
larger scatterers such as those in 7(c), the plots are much more symmetric and qualitatively
similar to the corresponding versions for the square lattice. One quantitative difference
between Figs. 4(c) and 7(c) is that the second pass band is detached in the latter case, so
that a third total stop band has appeared.
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Fig. 6 Proportion of energy reflected back from lattices with a1 D Œ1; 0�, a2 D Œ0; �2� and �2 > a1.
(a) Dirichlet boundary conditions, ` D 0:1, �2 D 2. (b) As (a) but with �2 D 3. (c) Neumann
boundary conditions, ` D 0:45, �2 D 3.
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Fig. 7 Proportion of energy reflected back from a skewed lattice with a1 D Œ1; 0� and a2 D Œ0:25; 1:0�.
(a) Dirichlet boundary conditions, ` D 0:1, (b) Neumann boundary conditions, ` D 0:1, (c) Dirichlet
boundary conditions, ` D 0:3.

Finally, in Fig. 8, we present four plots of the field itself. The actual data shown are values
of ReŒu.r/�, so that the plots show a snapshot of U.r; t/ at time t D 0. At most points, the
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Fig. 8 Contours plot showing the real part of the field for a lattice with a1 D Œ1; 0�, a2 D Œ0; 1� and
` D 0:2. (a) Dirichlet boundary conditions, k D 3:0,  0 D 0:16� . (b) Dirichlet boundary conditions,
k D 4:0,  0 D 0:4�. (c) As (a), but with Neumann conditions. (d) As (b), but with Neumann
conditions.
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field is evaluated using the quasi-periodic Green’s functions in appendix A, but close to the
cylinder centred at r D j a1 C pa2, we use the fact that (25)

u.r/ D

1X
nD�1

eijka1 cos 0Ap
n

�
Hn.r/ �

1

Zn

Jn.r/

�
: (11.3)

In Fig. 8(a) and (b), Dirichlet boundary conditions are imposed on the surface of the
scatterers and it is evident that the field is close to zero in their immediate vicinity. Similarly,
in Fig. 8(c) and (d) the contours intersect the scatterers at right angles, showing that the
Neumann boundary conditions enforced on the surfaces are indeed satisfied. Bloch waves are
excited in (b), (c) and (d), and the different nature of the field inside and outside the lattice
is clearly visible. On the other hand, no Bloch waves are excited in (a); note that the decay
of the field as y is increased from zero is extremely rapid. In Fig. 8(b) we have ER � 0:65

whereas in (c) and (d) we have ER � 0:0071, and ER � 0:075, respectively (obviously
ER D 1 in (a)). Thus, (c) is an example of the near total transmission phenomenon predicted
by Fig. 5(b), and in this case there is very little interference due to reflection below the
lattice.

12. Concluding remarks

We have determined the field that arises when a time-harmonic plane wave impinges upon a
semi-infinite lattice of circular cylinders, using a full linear theory which allows for a wide
range of frequencies and scatterer sizes. A representation of the far field in terms of grating
modes has been obtained, and formulae for the coefficients in this expansion have been
calculated, both for the exterior region and for the far-field limit inside the lattice. For
a given set of parameters (angle of incidence, wavenumber and lattice geometry), these
formulae can be computed by a combination of complex root finding and straightforward
linear algebra. The proportion of incident energy reflected back from, and transmitted
through, the edge can also be calculated in this way.

We have then investigated the transmission and reflection properties of lattices composed
of sound-hard and sound-soft cylinders. These results contain substantial information that
cannot be deduced from the band structure of the corresponding infinite periodic lattice. In
particular, for sound-hard cylinders, there exist parameter regimes within which almost all
of the incident energy is converted into Bloch waves and transmitted into the lattice. We
have confirmed the correctness of our results using conservation of energy (a necessary but
not sufficient condition), and a more stringent test based on infinite array subtraction.

There are many possible avenues for further research using the method developed in
this paper. Lattice elements with noncircular cross sections can be accounted for using
T -matrices (14, Chapter 7). Another possibility is to consider penetrable cylinders, and
in the acoustic case, this extension is straightforward (see Section 1). Perhaps the most
important and challenging possibility is the extension to the electromagnetic case. Here,
certain configurations, such as oblique incidence on dielectric cylinders (34), lead to coupling
between the electric and magnetic fields and this in turn necessitates the use of more
complicated multipole expansions. The excitation of electromagnetic Bloch waves is intended
as the subject for a future paper.
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APPENDIX A

Green’s functions for one- and two-dimensional arrays

In this appendix, we obtain spectral forms for the one- and two-dimensional quasi-periodic Green’s
functions

Gn.r; ˇx/ D

1X
jD�1

eija1ˇxHn.r �Rj /; (A.1)
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and

G
.q0;q1/
n .r;ˇ/ D

q1X
qDq0

1X
jD�1

eiRj q �ˇHn.r �Rjq/; (A.2)

where the vectors Rj and Rjq are given by

Rj D j a1 D ja1 Ox; (A.3)

and

Rjq D j a1 C qa2 D .ja1 C q�1/OxC q�2 Oy; (A.4)

respectively. Note that (A.2) is related to (A.1) via

G
.q0;q1/
n .r;ˇ/ D

q1X
qDq0

eiqa2�ˇGn.r � qa2; ˇx/; (A.5)

where we have written ˇ D ˇx OxCˇy Oy. For the case where n D 0, (A.1) and (A.2) are quasi-periodic
Green’s functions in the ‘classical’ sense (phase shifted arrays of sources), and the results we require
are given in (11). To allow n to take any integer value, we use the method from (14, ch. 2), and
introduce the operator

D � �
1

k

�
@

@x
C i

@

@y

�
: (A.6)

By converting D into polar coordinates, (14, Theorem 2.7) shows that repeated application yields

DnH0.r/ D Hn.r/; n > 0: (A.7)

and

Œ�D���nH0.r/ D Hn.r/; n < 0: (A.8)

Therefore we may proceed by applying D and �D� to the results in (11). For (A.1), we use (11,
Equation (A7)) and we find that

Gn.r; ˇx/ D 2.�i/nC1
1X

jD�1

eixˇxj�
.ˇxj /jyj
a1
 .ˇxj /

�
k

ˇxj C 
 .ˇxj /

�n sgn.y/

; (A.9)

where the function 
 is given by (3.3),

ˇxj D ˇx C 2j�=a1; (A.10)

and we have made use of the identity

z � 
 .z/

k
D

k

z C 
 .z/
: (A.11)

If ˇx D k cos 0, then we introduce the scattering angles using (3.2), and (A.9) becomes

Gn.r; k cos 0/ D
2.�i/n

ka1

1X
jD�1

ein sgn.y/ j

sin j
eik.x cos jCjyj sin j /: (A.12)

For (A.2), we consider cases where y � q�2 is of fixed sign for q D q0; : : : ; q1 (i.e. the observer is
located above or below the entire array). We can use a linear combination of these to evaluate
a quasi-periodic Green’s function for an observer located between two rows, but note that these
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spectral representations are not valid if the observer is located on the axis of a row, unless n D 0.
Applying D and �D� to (11, Equation (B5)), we obtain

G
.q0;q1/
n .r;ˇ/ D 2.�i/nC1

1X
jD�1

eiˇxj x�
.ˇxj /y

a1
 .ˇxj /

�
k

ˇxj ˙ 
 .ˇxj /

�n e
q0w
˙
j � e

.1Cq1/w
˙
j

1 � e
w
˙
j

; (A.13)

where ˇxj is given by (A.10), and we have written

wj̇ D ˙�2
 .ˇxj /C i.�2ˇy � 2j��1=a1/: (A.14)

The upper and lower signs are to be taken when y > q1�2 and y < q0�2, respectively. For
semi-infinite arrays, (11, eqns. (B7) and (B8)) yield

G
.0;1/
n .r;ˇ/ D 2.�i/nC1

1X
jD�1

eiˇxj xC
.ˇxj /y

a1
 .ˇxj /.1 � e
w
�
j /

�
k

ˇxj � 
 .ˇxj /

�n

; y < 0 (A.15)

and

G
.�1;�1/
n .r;ˇ/ D 2.�i/nC1

1X
jD�1

eiˇxj x�
.ˇxj /y

a1
 .ˇxj /.e
w
C
j � 1/

�
k

ˇxj C 
 .ˇxj /

�n

; y > ��2: (A.16)

For 0 > y > ��2, the Green’s function for the infinite lattice is obtained by adding the last two
results. Equation (A.2) shows that this has the two-dimensional quasi-periodicity property

G
.�1;1/
n .rCRjq ;ˇ/ D eiRj q �ˇG

.�1;1/
n .r;ˇ/; (A.17)

which facilitates evaluation between any consecutive pair of rows. Finally, if ˇ D ˇ0 (8.10), then

exp
�
w
C
j

�
D

pj

z0
and exp

�
w
�
j

�
D

1

�j z0
; (A.18)

meaning that

G
.0;1/
n .r;ˇ0/ D �2z0.�i/n

1X
jD�1

e�in j eik.x cos j�y sin j /

ka1 sin j .�
�1
j � z0/

; y < 0; (A.19)

and

G
.�1;�1/
n .r;ˇ0/ D 2z0.�i/n

1X
jD�1

ein j eik.x cos jCy sin j /

ka1 sin j .�j � z0/
; y > ��2; (A.20)

where �j and �j are given by (5.15).

APPENDIX B

Lattice sums

The one-dimensional lattice sum �n, often called a Schlömilch series, is defined as

�n.ˇx/ D

1X
jD�1

j¤0

eija1ˇxHn.j a1/: (B.1)

Note that
�n.�ˇx/ D ��n.ˇx/ D .�1/n�n.ˇx/: (B.2)
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Schlömilch series are related to the quasi-periodic Green’s functions defined in (A.1) via the limit

�
.1/
n .ˇx/ D lim

r!0

�
Gn.r;�ˇx/ �Hn.r/

�
: (B.3)

A number of formulae suitable for computing lattice sums are given in (36). In particular, if
ˇx D k cos 0, then

�0.ˇx/ D �1 �
2i

�

�
C C ln

ka1

4�

�
C

2

ka1 sin 0
C

1X
jD�1

j¤0

� 2

ka1 sin j
C

i

�jj j

�
(B.4)

and

�n.ˇx/ D in

�
iBn.ˇx/C

2

ka1

1X
jD�1

ein sgn.j/ j

sin j

�
; n > 0; (B.5)

where the scattering angles are defined in (3.2), C � 0:5772 is Euler’s constant and we take
sgn.0/ D 1. The function Bn is defined as

Bn.ˇx/ D
2

n�
cos

n�

2
C

1

�

Œ.n�1/=2�X
mD0

.�1/m
.n �m � 1/!

m!.n � 2m/!

�
4�

ka1

�n�2m

Bn�2m

�
a1ˇx

2�

�
; (B.6)

where Bn.�/ represents a Bernoulli polynomial, and Œx� denotes the largest integer not greater than
x. Schlömilch series with negative orders may be computed using the above formulae with (B.2).

APPENDIX C

Pathological cases

In Section 7, it was shown that the determinant d.z/ defined by (7.9) has at most simple poles at
the points z D �j and z D ��1

j , and no other singularities. In general, it has the form

d.z/ D K

j1Y
jDj0

.z � zj /.wj z � 1/

.z � �j /.�j z � 1/
; (C.1)

where K is a constant. For every set of parameters we have considered, the zeros w�1
j are distinct

from each other, and do not coincide with the poles. In this case, applying the Fredholm alternative
to the approximate Wiener–Hopf equation (7.1) at each point z D w�1

j is sufficient to determine the

coefficients X
j
0

. Here we will show how our analysis can be modified to take other circumstances
into account.

C.1 d.z/ is the zero function

If the rows of the matrix K.z/ were to exhibit identical linear dependence (that is linear dependence
for arbitrary z as opposed to at isolated points) then d.z/ � 0. Were this case to arise, the Fredholm
alternative would also be satisfied at all points, and a sufficient number of equations to determine

X
j
0

could be obtained by choosing points arbitrarily.
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C.2 A zero coincides with a pole

If wp D �p , then the number of zeros of the determinant is reduced by one, and the so the number
of equations produced by the Fredholm alternative will be one lower than the number of unknowns.
However, from (7.8), we have

T�n .z/ �
Wn

W0
inein p T�0 .z/ D in

j1X
jDj0

X
j
o

 
ein j � ein p

z�j � 1

!
; n ¤ 0; (C.2)

meaning that the row operations which produced the regularised kernel matrix L.z/ in (7.11) also
remove a pole from all but one of the rows in the right-hand side of (7.1). Therefore we form the
matrix M by starting with the identity, and replacing the entries in the central column with

Mn0 D

(
.wpz � 1/ if n D 0;

�.Wn=W0/i
nein p otherwise:

(C.3)

Left-multiplying (7.1) by M removes the pole at z D ��1
p and restores the root of the determinant,

so that the Fredholm alternative can be applied at this point.

C.3 Higher order zeros

Suppose that w�1
p is a double root, and that all other roots of d.z/ are simple. Such a root may have

two associated linearly independent eigenvectors, and in this case our method can be applied in the
usual way. However, if only there is only one associated eigenvector, Ep , the number of equations
produced by the Fredholm alternative will again be one lower than the number of unknowns. We
can obtain an extra equation as follows. Let r be chosen so that the entry in row r of the vector Ep

is nonzero. Form the matrix P by starting with the identity, and replacing row r with E�p=.z�w�1
p /.

Since w�1
p is a double root of d.z/, it follows that

det
�
PK.w�1

p /
�
D 0: (C.4)

Therefore we may left-multiply (7.1) by P and apply the Fredholm alternative again, provided we
are able to take the limit z ! w�1

p in the central row. Here, we obtain

E�pK.z/
z � w�1

p

AC.z/ D
E�pT.z/
z � w�1

p

; (C.5)

and, in view of (7.13) and (7.14), both ratios remain bounded in the limit z ! w�1
p . Applying

L’Hôpital’s rule, we find that

E�pK0.w�1
p /AC.w�1

p / D E�pT0.w�1
p /; (C.6)

where the prime denotes differentiation of individual elements with respect to z. Other combinations
of multiplicities can be dealt with in the same way, though the process becomes increasingly
complicated for triple and higher order roots.


