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Abstract 

Introduction: The focus of this chapter is to introduce the perovskite structure, beginning from 

the ideal cubit perovskite with the ABX3 formula unit.  The concept of introducing long range 

ordering into the material are then presented along with the driving forces behind the extension 

of the structure.  Possible magnetic ordering and solid solutions of perovskites are then 

presented.  This is followed by the introduction of how theoretical chemistry can provide useful 

information to investigations and begin to predict how new materials can be made and is 

followed by a summary of the techniques commonly used. 

Methods: This chapter introduces the experimental methods used within this thesis, along with a 

description of the diffraction techniques used in the characterisation of oxide materials; including 

x-ray and neutron diffraction, iodometric titrations and the basic concepts behind Mössbauer 

spectroscopy.  The second part to the chapter provides details on density functional theory (DFT) 

and force field (FF) calculations that are used throughout the thesis for the prediction of new 

materials. 

Chapter 3: Details the use of a series of calculations with DFT on the chemical substitution in 

the YBa2Fe3-xMxO8 (where M = Co, Ni and Mn), where the calculations are first tested on doping 

with Co, where it has been previously been experimentally reported.  Calculations for un-

reported substitutions a new compound is predicted.  Synthetic investigations are then 

undertaken across the series, and a new material found where DFT calculations predict a new 

compound.  Characterisation of the new material reveals that it has a crystal structure in good 

agreement with the structure predicted by DFT. 

Chapter 4: Computationally investigates doping in the YBa2Ca2Fe5-xMxO13 (M = Co, Cu, Mn, 

Ni, Ti and Zn) solid oxide fuel cell cathode material using DFT.  The results from the 

calculations predict stable doping for Cu and Co, with small doping levels favoured for M = Ni 

and Zn, with M = Mn yielding results predicting marginal doping and doping not favoured at all 

for M = Ti. 

Chapter 5: When D. Hodgeman was experimentally investigating Cu doping of the 

YBa2Ca2Fe5O13 material an unknown perovskite superstructure was observed by x-ray 

diffraction.  This chapter then focuses on the development of the Extended Module Materials 

Assembly (EMMA) method.  The method is validated be correctly computing the correct crystal 

structure for the YBa2Ca2Fe5O13 perovskite and is used to predict the structure for the new 

Y2.24Ba2.28Ca3.48Fe7.44Cu0.56O21perovskite.  The crystal structure predicted by EMMA is then 

used as the basis for the experimental refinement of the structure and the structures found to be 

in good agreement. 
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Chapter 1. Introduction  

1.1 Concerning Perovskites 

1.1.1 Cubic Perovskites 

 

Figure 1 Structure of the cubic ABX3 perovskite, with this example being for SrTiO3
1
, the A-site occupied by Sr 

(green) is coordinated to 12 oxygen atoms, the B-site is occupied by Ti (blue) and is in a 6 coordinate octahedral site 

and the unit cell also contains 3 oxygen atoms (red).  In this thesis, to aid illustration of structures, polyhedra are 

drawn around each of the B-site cations with their coordination to oxygen anions. 

 

Perovskites have the general formula unit ABX3, where A and B represent different cation 

species that occupy different crystallographic sites and X is an anion species commonly oxygen, 

although other anion species are known
2
.  The ideal crystal structure for perovskites is cubic, 

with Pm 3 m space group symmetry.  In the ideal perovskite structure (Figure 1) there are three 

crystallographic sites in the asymmetric unit cell, the larger of the two cations, labelled A, is 

located at fractional (0, 0, 0) and is coordinated to 12 anion species.  The smaller B cation is 
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located at (0.5, 0.5, 0.5) and occupies a six coordinate octahedral site, the third is site occupied 

by the anion species at (0.5, 0.5, 0), with this site having a multiplicity of three.  With a typical 

lattice parameter for a cubic perovskite, referred to as ap in the example of SrTiO3, ap is equal to 

3.907 Å
1
. 

 

1.1.2 Extended Perovskites 

 

Figure 2 Orthorhombic crystal structure of CaTiO3
3
 where Ca (blue) occupies the 12 coordinate A-site, Ti (cyan) 

occupies the octahedral six coordinate site, with oxygens illustrated in red. 

 

In the ideal perovskite structure, there is a relationship between the radii of the A, B and O 

cations and anions, which can be defined as follows
4
: 
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  OBOA rrrr  2  (1.1) 

Where    indicates the atomic radius of the A cation,   indicates the B cation radius and 

  indicates the radius of an oxygen anion.  For a given composition, it is therefore possible to 

form a ratio between the two sides of equation (1.1), referred to as the tolerance factor
4
, t: 

  

 OB

OA

rr

rr
t






2
 

(1.2) 

Perovskite type materials are known to have tolerance factors between 0.8 and 1.1, with the ideal 

perovskite structure having a value of 1.  From a practical perspective, when deciding on a 

perovskite synthesis, the tolerance factor should be taken into account, as t moves further away 

from 1, the composition is less likely to crystallise into a perovskite related structure.  With 

intermediate shifts away from the ideal tolerance factors, perovskite structures may still form 

albeit with a distorted and or structure extended beyond the basic cubic perovskite cell. 

An example of extending the perovskite structure without altering the stoichiometry is by choice 

of the cations species, by selecting A and B site cations with a large difference in ionic radius, 

polyhedral tilting can be induced with examples reported for a number of different ABO3 

compositions
3, 5-7

, including CaTiO3 perovskite (Figure 2).  In the CaTiO3 structure, tilting of the 

B-site octahedra results in a unit cell expanded relative to the cubic unit cell of r45˚(√2ap × √2ap 

× 2ap) and results in a change to the observed space group to the orthorhombic Pbnm.  
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Figure 3 Crystal structure of Pb(Sc0.5Ta0.5)O3 perovskite
8
 where Sc (purple) and Ta (brown) occupy the 6 coordinate 

octahedral B-sites and Pb (dark grey) occupy the 12 coordinate A sites, with oxygen atoms shown in red. 

 

Extension of the perovskite structure can also be achieved by long range ordering between 

different cation species, as exemplified by the Pb(Sc0.5Ta0.5)O3 structure (Figure 3).  The 

structure of Pb(Sc0.5Ta0.5)O3 is doubled in each of the crystallographic directions and the 

symmetry changes to the face centred cubic Fm 3 m space group.  The doubling of the unit cell is 

caused by cation ordering between Ta and Sc cations, and results in an overall unit cell of (2ap × 

2ap × 2ap) relative to the cubic perovskite. 
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Figure 4 Crystal structure of Ca2Fe2O5 brownmillerite
9, 10

, derived from the perovskite structure, with the perovskite 

superstructure driven by ordering of oxygen vacancies. Ca (blue) occupies 10 coordinate A-sites and Fe (brown) 

occupies both four coordinate tetrahedral and six coordinate octahedral B-sites, with oxygen atoms illustrated in red. 

 

Long range ordering in perovskites can also be induced by the reduction of the oxygen content, 

with the resulting oxygen vacancies becoming ordered.  Experimentally this can be achieved by 

chemically controlling the cation composition, as is the case for Ca2Fe2O5, where the charge 

states of the cation species equate to the loss of  0.5 oxygen per ABO3 perovskite formula unit
10, 

11
.  Experimentally obtaining a crystal structure with oxygen vacancy ordering can also require 

the control of the oxygen content during synthesis (described in Chapter 3) in order to obtain a 

specific value required.  The structure of Ca2Fe2O5 (Figure 4), is related to brownmillerite, 

although with the space group Pnma rather than Ibm2 as reported for Ca2FeAlO5 

brownmillerite
11

.  Long range order is induced by the ordering of oxygen vacancies every second 
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perovskite layer resulting in the polyhedral stacking of octahedral (Oh) followed by a tetrahedral 

(Td) layer.  Due to the alternating direction of tetrahedra between Td layers the lattice parameter 

is quadrupled in the stacking direction, as with the CaTiO3 structure discussed above, there is a 

rotation in the ab plane, resulting in a unit cell expansion by r45˚ (√2ap × √2ap × 4ap) relative to 

the cubic perovskite cell. 

 

Figure 5  Crystal structure of YBa2Fe3O8
12

, with long range ordering induced by cation and vacancy ordering. Y 

(yellow) occupies an eight coordinate A-site, Ba (green) occupies a 12 coordinate A-site and Fe (brown) occupies 

both a 5 coordinate square pyramidal B-site and 6 coordinate octahedral B-site with oxygen atoms shown in red. 
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Long range ordering in perovskites can also be induced by a combination of effects, one example 

of this is in the YBa2Fe3O8 structure
13

, (Figure 5), related to the YBa2Cu3O6.5+δ superconductor
14

.  

Ordering inYBa2Fe3O8 results from the ordering of oxygen vacancies, with one oxygen missing 

for every three perovskite units (i.e. missing one oxygen from the A3B3O9 formula unit), with all 

of the vacancies ordered within one layer in the unit cell.  The ordered vacancies give rise to two 

distinct A-sites in the structure, being 8 and 12 coordinate, the smaller of the two A-sites, Y 

occupies the 8 coordinate sites and the large Ba occupies the 12 coordinate site, with Fe 

occupying both of the resulting B-sites, with one octahedral and two square pyramidal sites per 

unit cell, this ordering results in a perovskite supercell of (ap × ap × 3ap) and P4/mmm space 

group symmetry and referred to as a 3ap structure. 
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Figure 6  Idealised YBa2Ca2Fe5O13 crystal structure
15

 (right), thought of as composed of blocks of the YBa2Fe3O8 

and Ca2Fe2O5 structures
11, 13

, where the structural motif of each structure is represented by blue and green blocks 

respectivly.  Atoms colours are as follows: yttrium (yellow), barium (green), calcium (blue), iron (brown) oxygen 

(red). 

 

Larger structures are possible from combinations of structural ordering as observed in the 

Y1.1Ba1.5Ca2.3Fe5O13 material
15

 first reported with the composition; Ba0.81Ca0.78Nd0.91Fe2.5O6.43
16

, 

having a perovskite superstructure of r45° (√2ap × √2ap × 10ap), illustrated in Figure 6.  Long 

range ordering is induced by a combination of cation ordering and vacancy ordering.  This 

structure combines features from the Ca2Fe2O5 (Figure 4) and YBa2Fe3O8 (Figure 5) and 

structures, with oxygen vacancies causing in the formation of octahedral, square pyramidal and 

tetrahedral B-sites in the 10ap (all occupied by Fe).  Ordered oxygen vacancies also result in the 
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creation of three different cation sites, being 8, 10 and 12 coordinate and primarily occupied by 

Y, Ca and Ba respectively (Figure 6) 

 

1.1.3 Magnetic ordering 

Perovskites often containing transition metals on the B-site, can possess unpaired electrons 

which can lead to magnetic moments in the structure. Magnetic ordering between B-sites in 

perovskites has become an important consideration when performing ab-inito calculations in 

order to calculate accurate energies when unpaired electrons are present
17

.  Spin polarisation in 

computational methods can be required when unpaired electrons are present (and therefore 

possibly magnetic structures) due to interaction energies being computed differently depending 

on whether or not spin polarisation is included
18

.  Since all of the perovskites studied in this 

thesis contain transition metals on the B-sites magnetic ordering is relevant here to all of the 

systems here.  Below is an overview of the types of magnetic states for solid systems relevant to 

the systems covered in this thesis. 

All magnetic structures will be discussed in terms of a collinear model, i.e. spin moments are 

aligned along one crystallographic axis, being able to ‘point’ either way along the axis (denoted 

as + or – assigned to the magnetic moment).  It should be noted for completion that other, non-

collinear magnetic orderings are known to exist where off axis moments are reported and often 

result in large complex magnetic structures which are beyond the scope of the systems studied in 

this thesis
19

. 
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Figure 7 Reported magnetic structure of MnO, where the magnetic unit cell has a lattice parameter twice that of the 

nuclear structure
20

, Manganese atoms coloured in purple, oxygen in red, with red and black representing differing 

spins. 

 

Magnetic ordering in structure can result in an expansion of the nuclear unit cell when the spin 

structure is also considered.  Experimentally, magnetic structures can lead to two unit cells being 

reported for the same material (example for MnO given in Figure 7
20

); One unit cell containing 

only the nuclear structure and a second larger cell including the magnetic structure, with only the 

nuclear or both structures being observable depending on the method of structural analysis (see 

Chapter 2). 
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Magnetic ordering in a system applies across a temperature range from 0 K upwards.  At a 

certain temperature (material specific), magnetic coupling will break down, while the system still 

contains magnetic moments, there will be no overall magnetic ordering (known as a 

paramagnetic state), or in some cases different magnetic orderings can occur in different 

temperature regions.  The temperature at which magnetic ordering breaks down is known as the 

Néel temperature (TN).  In the paramagnetic state, each of the species with unpaired electrons 

possess a magnetic moment, but their spin states are not coupled and therefore are not ordered in 

the absence of an external magnetic field and so there is no overall magnetic moment in the 

system
21

.  

For the systems studied in this thesis, four different forms of collinear magnetic ordering were 

considered.  The first ordering, ferromagnetic (Figure 8a), all of the spin moments in the unit cell 

are aligned in the same direction, resulting in an overall magnetic moment in the unit cell
19

.  For 

antiferromagnetic ordering, the magnetic unit cell contains an equal number of up and down 

spins (Figure 8b-d)
19

 and therefore no overall magnetic moment in the unit cell.  There are three 

different forms of antiferromagnetic ordering that are applicable to the perovskite systems in this 

work, which are described below. 
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Figure 8 Magnetic orderings discussed within this thesis, on a face centred unit cell containing 8 magnetic atoms in 

the asymmetric cell
19

, for clarity the symmetry equivalent atoms at the edges of the unit cell have been removed.  a) 

Ferromagnetic, all of the spin moments are aligned in the same direction.  b) A-type antiferromagnetic, spins are 

arranged in ferromagnetic sheets in the [100] plane.  c) C-type antiferromagnetic, ferromagnetic sheets are aligned in 

the [110] direction.  d) G-type antiferromagnetic, every atom has nearest neighbours with spin moments anti-

aligned.  The brown spheres represent arbitrary magnetic atoms. 

 

The first type of antiferromagnetic ordering, A-type (Figure 8b), the magnetic atoms are 

arranged into sheets of ferromagnetism, with the spin direction changing between sheets.  The 

ferromagnetic sheets are arranged in one plane of the unit cell (e.g. [100]).  Resulting from A-

type antiferromagnetic ordering, each magnetic atom has four nearest neighbours with the same 

spin direction (in plane) and two of opposite spin (above and below the plane). 
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The second type of antiferromagnetic ordering, C-type (Figure 8c), sheets of ferromagnetic 

ordering are observed in a diagonal crystallographic plane (e.g. [110]), with spin direction 

alternating between sheets.  In systems with C-type antiferromagnetic ordering, each atom has 

four nearest neighbours with opposite spin directions (in plane with the atom) and two nearest 

neighbours with the same spin direction (above and below the plane). 

The third type of antiferromagnetic ordering, G-type (Figure 8d), results in sheets of 

ferromagnetism that intersect all of the crystallographic planes (e.g. the [111] direction).  G-type 

antiferromagnetic ordering results in magnetic atoms that have all nearest neighbours with 

opposite spin moments.  G-type antiferromagnetic ordering is widely known in Fe containing 

perovskites, including all of the systems studied in this thesis
12, 15, 22

. 

 

Figure 9  a) Nuclear structure of ferrimagnetic YFeMnO5
23

 and b) the magnetic structure of YFeMnO5, with the Fe 

atoms having a larger magnetic moment then the Mn atoms
23

, represented by the black and red arrows with the O 

and Y atoms omitted for clarity, colours as follows; Fe (brown), Mn (purple), O (red) and Y (yellow).  
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An intermediate state is known between ferro and anitferromagnetic ordering in oxide 

materials
23

, called ferrimagnetism, with an example being the YFeMnO5 (Figure 9).  For a 

ferrimagnetic structure, magnetic spin directions are arranged as for an antiferromagnetic system, 

with the exception that the magnitude of the spin in one direction exceeds that of the other.  The 

imbalance balance between the magnitudes of the magnetic moments leads to an overall 

magnetic moment in the unit cell, although the total magnetic moment is likely to be less than 

that observed for a pure ferromagnet. 
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1.1.4 Phase Diagrams and solid solutions 

When studying systems with multiple compositions, it is often convenient to map them out onto 

a phase diagram so as to be able to efficiently assess ranges of experimental conditions or 

stoichiometries and determine regions where single or multiple phases are observed to exist 

(Figure 10). 

 

Figure 10 Phase diagrams from range of Y content in the YxBa3-xFe2MnO8 adapted from chapter 3 a) Representation 

from only the composition marking out regions according to the number of phases observed.  b) Phase diagram 

representation with fractional quantities of each phase as a function of the Y content, with phase fractions obtained 

from powder diffraction data. 

 

The example phase diagram shown in Figure 10a is for a simple phase diagram, marking out the 

number of observed phases against the changing yttrium content.  Figure 10b shows an example 
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of where phase diagrams can be plotted in multiple dimensions, with the fraction of each phase 

as a function of yttrium content in the sample, where the system reaches an equilibrium between 

phases at each composition, with only a single point on the diagram favouring a single phase.  

Although in principle any number of additional dimensions can be included, accounting for a 

wide variety of parameters, including (but not limited to): plotting temperature against an oxygen 

partial pressure and mapping out the phase(s) observed in different regions
24

.  Alternatively 

complex phase diagrams can be built up purely relating to the composition, in order to solely 

focus on which compositions can result in a single phase.  For the example in Figure 10a, if one 

wanted to extend the investigation to include, YxBa3-xFe3-yMnyO8 a second axis would be added 

to the diagram indicating the Mn content and a similar plot produced with the number/type of 

phases observed in each region recorded.  An example of this was critical in D. Hodgemans’ 

synthetic work in obtaining a phase pure composition following on from computational 

predictions presented in chapter 5 and the subsequent publication
25

. 

Solid solutions of materials are the combination of two or more compounds synthesised into a 

single material, where a range of compositions can be formed into a single phase, typically given 

a form similar to C1-xDx, where C and D are two different compounds.  Simple examples of an 

oxide solid solution include the reported solution between Fe2O3 and Cr2O3, to form the solution 

Fe2-xCrxO3 where x is reported between 0 and 2, with x values of 0.67, 1.00 and 1.33 explicitly 

investigated
26

.  A common observation among solid solutions is the evolution of structural and 

physical properties across a series of x values, or in some cases changes to the structure, easily 

represented by plotting a phase diagram as a function of the solid solution composition as is 

represented in Figure 10b
26-29

. 
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It is possible to construct solid solutions of more complex materials such as the perovskites 

discussed in the previous section (and becomes part of the focus of chapters 3 and 4), in order to 

create solid solutions both end members do not have to be known to exist or have the same 

structure type.  An example of this is the doping of Co
3+

 into the aforementioned YBa2Fe3O8 

material
27

, in order to form a solid solution of the form YBa2Fe3-xCoxO8.  Where the first end 

member is the 3ap, YBa2Fe3O8 and the other end member, YBa2Co3O8 is reported as a cubic 

perovskite with disordered oxygen vacancies
30

 and the 3ap structure is retained up to a nominal x 

value of 1.5 (50% substitution).  This study also highlights the concept of a solid solution limit, 

i.e. an upper limit for the value of x, where a single phase material is formed, after which the 

compound at the solid solution limit crystallises out with remaining material crystallising as 

impurities.  This strategy of doping materials by the formation of solid solutions can be used to 

tune the properties of a material, such as the d.c. conductivity or thermal expansion properties 

and has become an important method for the development of functional materials. 

 

1.1.5 Doping perovskites and applications thereof 

The properties of transition metal oxides are controllable by substitution at the metal sites or via 

the creation of solid solutions.  Doped complex metal oxides have applications in areas 

including; solid oxide fuel cells (SOFCs)
31

, transparent conducting oxides
32

 and super 

conducting oxides
33

.  In transparent conducting oxides, doping can lead to band gap tuning and 

reductions in resistivity such as in doped ZnO 
34-36

.  With superconducting oxides it has been 

shown that Sn doping can result in higher Tc (where Tc indicates the temperature below which 

the material is superconducting) values for Ru1-xSnxSr2GdCu2O8 (whilst simultaneously 
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suppressing ferromagnetic ordering)
37

, the materials presented in chapters 4 and 5, are 

investigated within the research group as potential SOFC cathodes (with a schematic diagram of 

an SOFC cathode in Figure 11a). 

 

Figure 11 a) Schematic representation of an SOFC fuel cell, adapted from
38

 with the corresponding overall reaction 

at the cathode shown in b)
4
 

 

Therefore, for the overall reaction in (Figure 11b), a material should have a good electronic 

conductivity (experimentally demonstrated by d.c. conductivity/ area specific resistance (ASR)) 

and in order to promote the reaction only occurring at the surfaces of the material, to have the 

ability for oxygen ion conduction (typically demonstrated through ASR measurements), with 

materials containing both properties referred to as mixed-ionic-electronic-conductors (MIECs)
38

, 

with the parent material in chapter 4; Y1.1Ba1.5Ca2.3Fe5O13 shown to have good ASR values
15

 the 

d.c. conductivity is only modest. 

It has been shown that doping one of the metal species in oxides can be beneficial in order to 

tune desired properties, such as d.c. conductivity ASR values for SOFC cathode materials 
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including Ba1-xSrxFe1-yCoyO3-δ
39-42

.  Since metal doping has been shown to tune the properties of 

oxide materials, chapter 3 investigates the principle of using ab-inito calculations to predict 

where doping will be possible and it is then applied the 10ap material in chapter 4 in order to 

guide synthetic efforts to improve the conductivity of the material.  When several candidate sites 

are available, qualitative crystal chemical considerations may not always be capable of 

predicting the outcome of a substitution reaction, so in chapters 3 and 4 the concept of using ab-

initio calculations to predict the outcome of site substitution in a structurally complex oxide is 

explored. 

 

1.2 Theoretical calculations and solid state chemistry 

As oxide research moves toward the discovery of new materials with increasing structural and 

compositional complexity, it is equally becoming more difficult to isolate such compounds by 

purely synthetic methods.  Large and complex materials experimentally face two main problems, 

firstly, finding the composition at which a new structure can and will form for multiple element 

system can result in synthesis at a wide range of compositions and conditions with no guarantee 

that a new compound has not been missed.  Secondly, even when new materials are formed, with 

large and complex structures, identifying the structure is a difficult task.  Chapters 3 and 4 

investigate the use of theoretical methods to calculate compositions at which new compounds 

can be formed, whereas chapter 5 focuses on using theoretical techniques to aid in the 

identification of a new complex oxide material. 

Increasingly, theoretical methods have been developed in order to attempt to help with both of 

the problems presented above, in addition to the traditional contributions from theory such as the 
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calculations of band structures and corresponding density of states.  The aid provided by theory 

covers a wide range of challenges utilising varying amounts of experimental information.  At one 

end of the scale, where large amounts of experimental information is available are problems such 

as the most stable distribution of a set of cations for a given crystal structure and composition.  

At the opposite end, are problems where very little experimental information is known such as 

attempting to predict the contents of a compositional phase diagram in order to help guide future 

experimental synthesis.  Although it should be noted that the level of experimental information 

available to use in the computational problem does not necessarily define problems complexity 

as the difficulty of the task is also reliant on the system size and number of different calculations 

required. 

Given an infinite amount of computational power and infinite time, it would be possible to 

predict the structure of any compound by sheer brute force, i.e. to generate every possible 

permutation of a selection of atoms and to then calculate the corresponding free energy of every 

configuration.  However in reality, in order to be able to perform calculations within a reasonable 

time frame and with the available computer resources, a number of different methods have been 

developed in order to efficiently aid experimental investigations.  Although, each method either 

attempts to be as broad as possible or make a number of assumptions, resulting in limitations as 

to which systems a particular method can be applied to. 

Before analysis of computed structures can be performed, the ground state structure must first be 

computed and methods for achieving this have become common place.  Typically, the ground 

state structure is defined as the arrangement of a structure that has the lowest potential energy.  

Several different methods for finding a minimum energy structure can be reasonably performed 
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using modern computing resources, with the most suitable depending on the size of the system 

and what information is required. 

In order to find a minimum energy structure, two things are required; a method by which to 

calculate the energy of the system and a method by which to alter the structure in order to search 

the energy landscape of the system
43-46

. 

For calculating the energy of a system, there are three main levels of theory; ab-initio 

calculations, classical mechanics and semi-empirical methods.  With ab-initio calculations the 

energy of the system is computed with as few parameters as possible, with little information 

provided by the user apart from the atomic structure plus the number and type of atoms, with a 

common example of this being density functional theory (DFT, details given in the methods 

chapter).  At the heavily parameterised end of theory is classical mechanics, whereby the energy 

of the system is calculated from completely parameterised atomic interactions also referred to as 

force fields (FF), a number of different types of force field are commonly used in simulation 

packages, details for the methods used in this thesis given in the methods chapter.  In between 

these two types of theory are semi-empirical methods which combine elements from both of the 

above levels of theory.  The most computationally expensive level of theory is the ab-initio 

methods, with force fields being the cheapest and semi-emperical methods lying somewhere in-

between depending on the level of parameterisation used.  All of the calculations performed in 

this thesis fall into either classical mechanics or ab-initio, with a more detailed description 

presented in the experimental methods chapter. 

Once the energy of a system is calculated, methods can be applied in order to reduce the energy 

of the structure, most common methods focus on attempting to find the nearest energy minimum.  
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To find the nearest minimum structure (also referred to as structure relaxation), the program may 

attempt to find the combination of inter-atomic distances that yields the lowest energy for 

example (assuming that each bond length will have an energy minimum as a function of 

distance).  There exists a larger problem however; there is the possibility that the structure that is 

relaxed may not be the lowest possible energy structure for the system, i.e. it may be trapped into 

a local minima by large energy barriers preventing the energy minimisation finding it.  However, 

relaxing a selection of local minima may be sufficient for specific systems, such as those studied 

in chapters 3 and 4.  A number of levels of theory have been developed in order to find this 

lowest possible minimum structure, also known as the global minimum structure.  In addition to 

attempting to approximate a brute force method, three common routines have been developed 

addressing the issue of finding the global minimum without resorting to the generation of as 

many structures as possible; Monte-Carlo sampling, molecular dynamics and genetic algorithms 

(which are discussed in the next section). 

A substantial challenge in the field of materials chemistry is the ability to be able to predict the 

formation of new materials or the modification of existing compounds.  Computational 

predictions range from predicting how different cation types order within a system
47

 to 

predicting new structures
45

.  Each method will inevitably have its own advantages and 

drawbacks and so thus far no one method can be deemed universally applicable, each method 

will have systems for which it is best suited.  In the following section some previously reported 

methods for making predictions in solid state materials are presented and summarised. 
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1.3 Applications of theory to solid state chemistry 

1.3.1 Formation/Reaction energies and material doping 

When synthesising solid solutions, it is desirable to be able to calculate regions where stable 

compositions are likely to exist and hence reduce the amount of compositional space that is 

searched experimentally.  For some systems it has been possible to calculate formation energies 

in good agreement with experimentally determined values
17, 48

.  The computation of solid 

solutions can be performed in at least two different ways.  In the first method, formation energies 

are calculated from a library of relevant reference materials, so that balanced chemical equations 

can be found.  For the second method energies can be computed relative to an ideal solid solution 

(if both end members are known to exist and reliable energies can be calculated).  The energies 

of compositions are then calculated across the compositional range of interest and their energies 

compared to the required amounts of the end members to create balanced chemical equations. 

The first method has been previously reported for the formation of ternary perovskites in the 

LaMO3 system from binary oxides and O2 gas
17

, the computed reaction energies compared with 

those experimentally reported in order to test the ability of DFT to correctly calculate reaction 

pathways, with an example given below for LaFeO3: 

  

 
      

 

 
      

                
                

(1.3) 

In this example, the experimental and DFT calculated values for ΔE were found to be in good 

agreement after optimisation of the calculation.  The same process was used for a number of 

transition metals in the same study, resulting in refined DFT calculation settings, shown to be 

able to calculate the relative stabilities of perovskites in reasonably good agreement with 



Chapter 1. Introduction 

 

 

25 

experiment. This methodology has also been previously reported for the calculation of a number 

of solid solutions
48-51

.  

As the ability to be able to compute reaction energies has been established for some oxide 

systems the focus of the work presented in chapters 3 and 4 looks to utilise this capability.  

Firstly, formation energies are calculated for systems with larger unit cells than previously 

reported and containing a larger number of elements making for a complex challenge.  The 

calculation of formation energies is used predicatively to guide the synthesis of the compounds 

presented to in chapters 3 and 4. 

 

1.3.2 Convex hulls
52

 

Convex hulls build on the calculation of formation/reaction enthalpies by calculating the 

minimum free energy
43, 45

 of formation with finite temperatures (including zero Kelvin) across a 

compositional range, with all of the results being mapped out onto a phase diagram, (such as the 

ternary phase diagram in Figure 12). 

Convex hull calculations are thereby required to begin by the calculation of a library of energies 

for reference materials, where reference should at least consist of the materials used on each axis 

of the proposed phase diagram (for example the elemental components on each axis in Figure 

12).  The list of reference materials may also be expanded to include a library of known materials 

within the compositional diagram of interest, where their free energies of formation are 

calculated relative to the components on the axes of the phase diagram. 
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Once the library of known materials has been computed, hypothetical compositions are 

additionally inserted into the system and their corresponding free energy calculated.  The energy 

of the system can be computed from any reasonable energy minimisation method, such as DFT 

or force fields, although the accuracy of the resulting phase diagram will vary with the accuracy 

of the energy minimisation.  The free energy of the system can be calculated for any given finite 

temperature, including zero kelvin
43

 or a given range
45

. 

Initially, the stability of each composition on the phase diagram is measured by the calculated 

free energy of formation relative to the components on the diagrams axes, with the free energies 

at each point resulting in a contour plot across the phase diagram
52

, referred to as the convex 

hull.  Analysis of the convex hull will also allow for the identification of competing phases at 

each composition, based upon other compositions on the phase diagram that have similar or 

lower formation energies.  The calculation of stability relative to competing phases allows one to 

predict whether the target phase is likely to form at a composition, or if it will react to form a 

mixture of other phases. 

Using the example shown in Figure 12, adapted from
43

, the highlighted composition (data point 

number 5), with the composition CeIr4In
43

, was calculated to have a total energy of -46.651 

eV/FU with a resulting formation energy of -455 meV/atom from the component Ce, Ir and In 

metals and so is considered to be favourable.  Competing compositions were identified to be 

Ce2Ir7 and IrIn2 from the contours of the hull (shown as lines in Figure 12) and so a reaction 

between CeIr4In and Ce2Ir7 and IrIn2 was calculated and the CeIr4In phase calculated to be 

marginally favoured by 8 meV/atom.  
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Figure 12 Adapted from
43

, a convex hull constructed for the Ce-Ir-In alloy phase diagram.  Each point on the hull 

indicates a composition calculated, low energy structures are at the vertices of the intersecting lines.  Point number 

5, highlighted indicates the predicted and subsequently synthesised CeIr4In alloy material. 

 

Convex hull calculations have been employed with some success for the prediction and 

subsequent synthesis of new compounds
43, 52

.  This methodology has been shown to achieve 

some success previously, although this method has the inherent drawback of the computational 

expense, and the convex hull becomes difficult to construct once more than three elements are 

involved. 
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1.3.3 Data mining 

Data mining is an approach for crystal structure prediction ,typically focused on finding 

experimentally unknown compositions that crystallise into previously known crystal structure 

types
53, 54

.  Common methods by which data mining are implemented focus on calculating the 

ground state structure for a range of different compositions. 

An example of how a data mining run can be performed includes finding new compositions for a 

known structure type.  Taking this example methodology as reported
55

, the initial step is to 

determine a list of possible compositions for the structure type of interest and computing their 

minimum energy structure.  At each composition in the diagram, once the energy has been 

minimised, an analysis must be performed in order to computationally assess the stability of each 

compound.  The stability of each compound in the target structure can be assessed by the use of 

formation energies from combination of other known compounds, such as the components in 

their elemental form or from binary oxide starting materials or the same composition in a 

different structural type
55

.  New compounds are then predicted to be favourable when they are 

calculated to be stable both relative to elemental materials and other competing phases, as with 

data points on a convex hull, this approach is exemplified by Figure 13, adapted from
55

: where a 

library of compositions for chalcogenide materials with the A2BX4 formula unit were calculated 

and predicting approximately 100 un-reported compositions that are likely to be stable. 
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Figure 13 Adapted from
55

, results from the prediction of A2BX4 for X = Se, + signs indicate where unreported 

materials are predicted to be stable, - signs indicate compounds predicted to be unstable, ticks indicate known 

compounds and circles indicate compounds for which the computational methods remained undecided, grey boxes 

indicate compositions not trailled.  

 

Data mining methods have the drawback however, that predictions can only be made for 

materials that possess a previously reported structure type.  This type of approach has however 

been used to predict whole libraries of new materials that have yet to be discovered 

experimentally, exemplified by the prediction of a large number of unreported metal-

chalcogenide materials predicted to be stable in the same study
55

 (Figure 13). 

. 
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1.3.4 Molecular dynamics and simulated annealing 

Molecular dynamics is a method to calculate the equilibrium structure of a compound at finite 

temperatures, rather than the lowest energy structure at zero Kelvin, these methods will allow for 

the calculation of structures as a function of temperature.  Energy of the system is constantly 

updated in accordance with any of the energy calculation methods outlined above (i.e. ab-initio 

or classical mechanics). 

Atoms are moved using Newtonian physics, based upon the forces calculated between atoms to 

calculate momentum with time and at a finite temperature.  The calculation proceeds as a 

function of time, with a user defined time step, typically on the order of femto-seconds.  The 

forces and energy of the system are updated at each time step and the calculation is run for a user 

defined simulation length. 

The simulated annealing method
56

 for finding the lowest energy configuration of a structure, 

aims to emulate what happens to experimental systems; at high temperatures, the system is 

typically in a highly disordered state and as the system is cooled, the material slowly becomes 

ordered and forms into the most stable structure.  Computationally this is achieved by constant 

perturbation of a system with a time/temperature dependant method such as molecular dynamics.  

Starting from a high temperature state, the system is allowed to equilibrate and the system 

temperature is reduced decreasing the level of perturbation in the system until low temperatures 

are achieved, where the run can then be completed with a conventional energy minimisation.  It 

generally follows, from this theory that the rate at which the temperature is reduced is important; 

reducing the temperature too quickly may result in the trapping of a structure into a local 

minimum.  Reducing too slowly can result in calculations that are too slow to perform due to the 
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number of steps that are required to perform the calculation.  Simulated annealing has resulted in 

the successful calculation of the global minimum of a number of structures
46, 57, 58

 

 

1.3.5 Monte-Carlo 

 

Figure 14 Example of a working Monte-Carlo routine (based upon a figure provided by M.S.Dyer, “rand” in the 

bottom right segment referrers to the random number generation between 0 and 1 for the probability that a higher 

energy structure will be accepted, with the routine typically run for either a pre-defined number of cycles or until a 

set number of steps rejected consecutively. 

 

Monte-Carlo sampling (Figure 14) to find a minimum energy structure works by minimising an 

initial guess for the structure using one of the methods outlined above, after which a random 
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movement in the structure is performed, this can include moving one or more atomic positions or 

in a periodic system, varying the size/shape of the unit cell.  The altered structure is then re-

relaxed and a new energy calculated.  If the new alteration to the structure is lower in energy 

then it is accepted.  If the altered structure is found to be higher in energy the probability of it 

being accepted is calculated based upon a Boltzmann distribution dependent on the change in 

energy between steps and the probability is compared with a randomly generated number 

between 0 and 1, if it is less than the probability generated from the Boltzmann factor, it is 

accepted.  Once the alteration is completed and the acceptance is determined, the cycle is 

repeated typically for a pre-determined number of cycles or until a user defined number of steps 

have been consecutively rejected. 

 

1.3.6 Site disorder 

In real solid state systems, there is often an amount of disorder on crystallographic sites, such as 

the disorder observed in the 10ap example in the previous section.  It has been shown that cation 

disorder in oxides can result in lower overall energy configurations, even before considering 

entropy contributions
15

 and so for some systems it is important to be able to model this site 

disorder to obtain the lowest energy structure.  For comparison between predicted and 

experimentally observed structures, the ability to estimate site disorder can decrease the 

difference between experimentally observed and calculated structures.  Below, two separate 

methods for estimating site disorder for solid systems are discussed. 

Previous work has examined how a Monte-Carlo routine can be implemented to approximate 

ordering between types of site in solid structures
59

, since in most computational techniques there 
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is little or no allowance for fractional occupancies of sites.  A successful method to get around 

this problem has been reported and subsequently applied to investigate B-site cation disorder in 

the Ca2FeAlO5 brownmillerite
59

, where a large supercell of the material in question is generated 

in order to allow for statistical averaging across equivalent sites/atomic layers.  Combined with 

the chosen method of energy minimisation, a Monte-Carlo routine is then applied for a fixed 

temperature, it differs from that presented above, in that instead of moving atomic positions/unit 

cell dimensions, each step consists of swapping pairs of non-equivalent atoms.  This routine is 

then executed from the starting structure for a number of cycles until the lowest energy 

configuration is found, note that in order to eliminate very unlikely configurations it is possible 

to specify which atoms are allowed to swap places (e.g for a perovskite only allowing A-site 

species to swap with other A-site species).  Once the minimum energy configuration is found 

from the starting structure, it is possible to then analyse each equivalent layer and estimate the 

fractional occupancies. 

Another reported method for assessing site occupancy is the site occupancy disorder (SOD) 

method
47

.  Starting from a given structure and its space group symmetry, a supercell can be 

generated, and all of the possible arrangements are generated using the symmetry operations of 

the parent unit cell, with the possibility to impose restrictions on which atoms can be placed into 

which sites.  All of the generated configurations are then evaluated by a theoretical method of 

choice and the most stable configuration found.  Since the SOD method results in the calculation 

of a relative energy of all possible configurations, a statistical mechanics approach must be 

employed to estimate the probability of finding each configuration at a given temperature, with 

the method outlined below
47

: 
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                 (1.4) 

The starting point for the statistical mechanics approach is to compute the estimated free energy 

of each unique configuration, Em.  Where Hm indicates the zero Kelvin energy calculated by a 

chosen energy minimisation method and Sm is the calculated configurational entropy for the 

configuration defined as: 

             (1.5) 

Where kB is the Boltzmann constant and T is the finite temperature in Kelvin, which is then 

multiplied by the natural log of the number of equivalent configurations that can are generated 

by the symmetry of the parent structure, Ωm.  The expected population of a configuration m, Pm 

can then be estimated for the system at thermal equilibrium: 
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Where Z indicates the partition function for the system, defined as: 
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A modification to the method is used when considering materials containing magnetic atoms at 

high temperatures where is expected the system to be paramagnetic.  In order to calculate the 

populations of materials expected to be paramagnetic at high temperatures, reports estimate a 

energy associated with the paramagnetic state as follows at zero K: 

 
     

 

 
          

     (1.8) 
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Where Hpm indicates the paramagnetic energy, HAF is the energy of the configuration in the 

lowest energy antiferromagnetic ordering and HF indicates the energy of the configuration with 

ferromagnetic ordering; the populations for each configuration are then calculated as described 

as above. The statistical mechanics approach is used as part of the calculations presented in 

chapter 3 and becomes an important measure of how well calculations can estimate site ordering 

for predicted crystal structures.  The SOD method has also been used in the prediction of doping 

within oxide systems
60, 61

 as well as other systems
49, 62-64

, where in the methodology outline 

above, after the supercell has been generated a specified number of dopant atoms are then 

introduced before non-equivalent configurations are generated in order to calculate the most 

stable configuration across a solid solution.  When dopant atoms are introduced, a pre-defined 

number of dopant atoms are introduced into the cell and then all of the possible configurations 

are generated using the symmetry of the parent undoped material. 

Both of the above methods have systems to which they are best suited.  Since the SOD method 

calculates all of the possible site disorder configurations it will be the most comprehensive, 

although it has the drawback that as the number of atoms/elements increases the number of 

permutations required becomes correspondingly larger and will lead to calculations that are 

currently unfeasible and so is best suited to smaller systems.  The Monte-Carlo sampling method 

is more suited to larger systems since the number of relaxations performed is entirely user 

defined, however, it has the drawback that there the possibility that the lowest energy structure 

configuration has not been found and therefore the average site occupancy calculated may not be 

the most favourable.  In summary the SOD method has the advantage over the MC approach in 

that it can calculate disorder at various temperatures.  However, the size of systems that SOD can 

be applied to is its major drawback.  The MC method is more suited to larger systems but does 
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not calculate occupancies at different temperatures, since the temperature factor used only affects 

the probability of higher energy structures being accepted. 

 

1.3.7 Genetic Algorithms 

 

Figure 15 Typical block scheme for an evolutionary algorithm, based upon the algorithm presented in
65

. 

 

Genetic or, evolutionary algorithms have been developed as a method to calculate the global 

minimum structure for a given system
65

, with an example algorithm presented in Figure 15.  
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These methods begin with a population of starting configurations, often generated by random 

arrangements of atoms.  During the run a maximum or fixed number of structures can be 

specified, whereby the first and subsequent generations of structures are constrained to these 

limits.  The number of structures can vary in the system due to generated structures being 

outright rejected; for example in a periodic system a criterion could be for each lattice parameter 

to be larger than the diameter of the largest atom in the system in order to avoid unphysical 

structures.  Each structure is usually then relaxed and then assessed for ‘fitness’ for a given set of 

criteria, for example by the calculated energy of the structure. 

Once this process is completed a second generation of structures is created, known as the 

procreation step, by the combination of elements from a proportion of the structures that were 

considered to be the ‘fittest’ from the first cycle, with the allowance for random mutations of the 

structure (random displacement of a number of atoms for example).  Again the new generation of 

structures is relaxed and then evaluated for their fitness and the procreation cycle is repeated 

again.  The above cycles are repeated either for a pre-determined number of cycles or until the 

global minimum structure is obtained (defined by a set of convergence criteria). 

This method of structure prediction has been shown in the literature to be able to successfully 

generate structures for oxide and mineral systems
66-68

 and computational packages designed 

specifically for the use of genetic and evolutionary algorithms with known energy minimisation 

techniques such as the USPEX
44

 code and has also been implemented in GULP
66, 69, 

70
_ENREF_66.  However, the drawback comes from the vast quantity of configurations that 

would be required to get to the global minimum structure and the problem becomes increasingly 

complex as the number of elements increases and consequently results in limitations being 

placed on the size/number of atoms that it is feasible to compute.  Such algorithms do have the 
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advantage that it should eventually find the correct structure, and it is not limited to previously 

known structure types.  Due to the number of generations and thus computational time that is 

often required the use of genetic algorithms tends to be restricted to smaller systems, although 

where it has been employed it has been proven to be an effective method by which to locate a 

global minimum structure. 

 

1.3.8 Secondary building units 

Moving away from the concept of building/generating structures in terms of a collection of 

atoms is the concept of constructing structures from fixed arrangements of atoms, referred to as 

secondary building units (SBUs); this has been developed in order to avoid the problems 

originating from a true brute force method for structure prediction
71-73

.  SBUs can take the form 

of any chemically sensible way in which a structure can be broken down, by taking the basic 

cubic perovskite as an example, it can be thought of as assembled from two SBUs; one AO and 

one BO2 layer (Figure 16).  This technique can be used to construct framework materials from 

building units
72

 or to assemble layered solid state structures from 2-D sheets
72

.  In the case of the 

ZEBEDEE code, fragments of molecules (which fit into the description of SBUs), are used in an 

evolutionary method to design template molecules for the growth of frameworks and has 

successfully been implemented to guide the synthesis of new template frameworks
74, 75

. 
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Figure 16 View of previously mentioned SrTiO3 broken down into two secondary building units (SBUs), this 

concept of breaking structures down into SBUs can be used to simplify the problem of generating complex 

structures, with this example, the SrTiO3 perovskite is broken down into AO layers (red) and BO2 layers (blue). 

 

In this second example, large layered structures can be assembled from the stacking of these 2-D 

sheets and so it is possible to envisage utilising this concept in the assembly of large perovskite-

like structures.  For perovskites this would primarily originate from the alternation of AO and 

BO2 layers (from an ideal perovskite), and in order to be able to generate large perovskites such 

as those outlined previously oxygen vacancies would need to be included.  This concept outlines 

the work undertaken in the discovery of a new layered perovskite presented in chapter 5. 

The concept of assembling extended structures from SBUs leads to the possibility of generating 

and calculating previously unreported structures without the problem of having to overcome 

energy barriers to obtain them or rely on the chance of finding them as with other methods.  

Depending on the size of the SBU used, there are potentially the same drawbacks as with the 

SOD method for site disorder, namely the number of permutations that could be generated for 

large systems could become prohibitive. 
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When generating structures from SBUs, the resulting structures still require some form of energy 

minimisation, with the chosen method largely dependent on the number and size of the 

permutations that are generated.  Once energy minimisation has been completed each of the 

permutations can then be ranked by their energy and the lowest energy structure determined. 

 

1.4 Summary 

In summary, there are wide choices of computational methods that can greatly assist 

experimental investigations, however, as outlined above, each technique has its own inherent 

drawbacks and therefore there is no one method that is universally applicable to every situation.  

Therefore when approaching a computational problem one should consider the following points 

before beginning: 

 What is the desired outcome of the investigation? 

 What level of experimental/computational information is available from which to build a 

starting point? 

 How many atoms/electrons and how many configurations are involved in the system? 

For example, if accurate energies or the electronic structure are the desired outcome, one would 

have to lean towards ab-initio level calculations, or at least combine them with classical 

mechanical methods.  In the second point, as each computational method has its own pre-

requisites before a calculation can be performed (the starting structure for example), this can 

govern which methods can be used, or at least require additional calculations in order to get to 

the starting point of the desired methodology.  The last point, this will govern the practicality of 

the investigation, the points listed above were considered for all of the chapters within this thesis, 
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the desired outcomes for the computational investigations were decided upon; in chapters 3 and 

4, accurate enthalpies were required to predict stable compositions and the most likely structural 

configurations across a solid solution.  In chapter 5, accurate energies were required in order to 

be able to predict the crystal structure of a unknown material.  These aims meant that ab-initio 

methods would have to be used in all three chapters. 

Secondly, in chapters 3 and 4, it was decided that normal energy minimisation could be 

combined with the calculation of formation enthalpies since compositions and reasonable crystal 

structures were known, due to the chapters revolving around computational doping of known 

materials.  For Chapter 5, however, only the approximate composition and unit cell size (and that 

the material was a perovskite) was known and so a method for finding the global minimum 

structure was required instead of normal energy minimisation.  Due to the possible number of 

permutations for the atomic arrangements of the cell combined with prior knowledge about the 

crystal structure type, a method based on SBUs was developed, although if the crystal structure 

type was not known, it is likely that a combination of GA and simulated annealing methods may 

have been more appropriate. 

Lastly, considering the size and number of the required configurations and available computing 

resources, it was decided that the relatively small number of configurations required for chapters 

3 and 4 (on the order of tens to low hundreds) could all be completed using purely ab-initio 

methods.  For chapter 5, where it soon becomes apparent that very large numbers of 

configurations require assessing (on the order of hundreds of thousands), pure ab-initio methods 

were impractical, and so initially all of the structures were assessed using classical mechanics 

methods followed by a smaller number of structures (in the order of tens) then carried forward to 

have accurate energies computed via ab-initio methods. 
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1.5 Aims of this thesis 

In this chapter the perovskite structure has been discussed along with examples of materials with 

long range ordering beyond the cubic perovskite cell and the causes of ordering.  Methods by 

which such structures can be modelled by computational chemistry have also been presented 

along with outlining their corresponding advantages and drawbacks, with their contribution to 

experimental studies detailed.  This thesis moves to present work furthering the complete 

integration between theoretical and synthetic methods in the discovery of new functional oxide 

materials.  The following chapter, provides an example of how theoretical techniques can be 

integrated with experimental investigations, leading to the discovery of manganese substitution 

into the YBa2Fe3O8 3ap perovskite.  The concept of predicting substitutions in oxide materials is 

then applied to the 10ap functional SOFC cathode family in chapter 4.  Finally in chapter 5 

concept of SBUs is further developed a method used to successfully predict the crystal structure 

of a new 16ap perovskite, with nothing more than an approximate composition and unit cell size 

as input information. 

  



Chapter 1. Introduction 

 

 

43 

 

  



Chapter 2 Synthetic and theoretical methods 

 

 

44 

Chapter 2. Synthetic and theoretical methods 

2.1 Solid state synthesis 

All of the samples in this thesis were prepared via the standard ceramic methods
76, 77

.  Prior to 

synthesis, the precursor materials were calcined to remove any moisture absorbed in the powder 

when stored at room temperature, in order to ensure that the correct stoichiometries are weighed 

out.  Within this thesis and most starting materials were calcined at ~ 200 ˚C prior to weighing to 

evaporate any water contained in the powder, with the exception that Y2O3 was calcined at ~ 900 

˚C, due to Y2O3 being more hydroscopic than the other starting materials. 

Once the starting oxides have been prepared, they were weighed out according to the 

stoichiometry required.  Starting materials require mixing in order to ensure that the desired 

chemical reaction occurs efficiently and results in a homogenous product.  The first step in 

mixing is to mill the starting powders; depending on the number of components and or the total 

amount of powder used, the starting materials can be milled by hand using a pestle and mortar or 

via a milling machine.  Hand milling is typically suitable for smaller samples (a few grams) and 

larger samples milled mechanically.  Mechanical milling has the advantage that it typically 

results in powders with smaller average particle sizes compared to hand milling.  Consequently 

the finished samples can have higher densities, as is usually required for physical property 

measurements (e.g. d.c. conductivity measurements). 

Once milled, some samples may require a calcination step in order to begin the chemical reaction 

and improve the homogeneity of the sample.  If a calcination step is used, the temperature and 

time of calcination is selected in order to prevent the chemical reaction from fully occurring as 
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only improved mixing is required, after calcination, the sample is ground and re-mixed as 

described above. 

Once the mixing and/or calcination step(s) have been completed, the chemical reaction is 

facilitated by a sintering step
77

.  Sintering involves heating the sample to high temperatures 

(typically over 1000 ˚C for tens of hours), in order to allow the elements involved enough kinetic 

energy to diffuse through the sample and react.  High temperature sintering is usually combined 

with pressing the sample into a pellet to increase contact between particles and therefore improve 

the solid state reaction rate.  The sintering process often results in the sample density increasing 

significantly as particles fuse together in order to reduce the overall free energy of the system.  

For solid state reactions to form oxides, it is possible to adjust the atmosphere around the sample 

in order to manipulate the oxygen content and therefore the resulting product
24

; by either 

extracting oxygen from surrounding the sample with low oxygen partial pressures (e.g. by 

sintering the sample in a nitrogen flow), or at high partial pressures to attempt to increase the 

oxygen content with high oxygen partial pressures.  In this thesis the concept of controlling the 

oxygen content in a sample becomes crucial to the successful synthesis of the target phase in 

chapter 3.  It is common during the synthesis of oxide materials that a single sintering cycle does 

not provide enough energy, or inter-mixing to produce a single phase sample, and so several 

cycles of sintering and re-milling (also referred to as re-grinding) can be required. 

For the systems studied synthetically in this work, once cycles of sintering were completed and 

no further reaction was observed between steps, samples were then re-ground until a fine powder 

was obtained.  The obtained fine powders were then characterised using the methods described 

in the following sections. 
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2.2 Diffraction from crystalline solids
78

 

The discovery that crystalline solids diffract x-rays was a critical in the field of material science 

as it now provides the basis for the identification of the atomic structure of crystalline materials.  

The idea that X-rays, having wavelengths similar to that of inter atomic spacings leads to the 

concept of solid lattices acting as a diffraction grating (with X-ray wavelengths having a 

magnitude of approximately 1 × 10
-10

 m or 1 Å) and was initially suggested by von Laue and 

confirmed by Friedrich and Knipping
79

.  The original idea of X-ray diffraction was based from 

the concept that crystalline solids being 3-D arrays of atoms could act as a diffraction grating and 

from the way in which x-rays are diffracted information obtained about the atomic structure. 

 

Figure 17 Schematic representation of Laue diffraction from a lattice in the x direction, where a is the lattice 

spacing, α0 and αn are the incident and diffracted x-ray beams, the path difference between adjacent beams is AB – 

CD. 

 

The basic model of x-ray diffraction was based on a single crystal containing only a single type 

of atom, with each atom acting as a scattering centre at the corresponding lattice points.  The 

crystal is constructed of rows of atoms arranged with spacings of a, b and c in each of the x y and 
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z axis of the crystal respectively.  Diffraction is observed when constructive interference occurs 

between diffracted X-ray beams from adjacent atoms (Figure 17) and the path length of 

neighbouring x-rays is integer multiples of the wavelengths which results in the following 

equation: 

      ini nXCDAB  0coscos       (2.1) 

Where AB and CD are path lengths in (Figure 17), Xi denotes the atomic spacing along axis i (a, 

b or c), αn and αi indicate the angles between the diffracted and incident beam, relative to the 

crystallographic axis i, ni indicates an integer multiple of wavelength, λ.  Since diffraction can 

occur with a component in each of the three axis; x, y and z, with the corresponding atomic 

spacing a, b or c equation (2.1) can be written for the diffraction component in each axis: 

    xn na  0coscos       (2.2) 

    yn nb  0coscos       (2.3) 

    zn nc  0coscos       (2.4) 

Where angles βn, β0, and integer ny correspond to the angles and wave length multiples relative to 

the y axis, likewise for γn, γ0 and nz for the z axis.  The scheme in Figure 17, only illustrates 

diffraction in the plane of the page, in reality, so long as the diffracted angle to the atomic row 

remains αn, then the diffraction conditions can still be met, this results in diffracted beams 

actually forming a cone centred on the atomic row, with the apex of the cone having angle αn.  

Since the same result can occur in the other two axes, diffracted beams are only observed where 

the diffraction cones from each axis intersect with each other resulting in well defined beams.  

For this analysis, in order to compute the direction of the diffracted beams, all of the angle, 
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spacing and integers from equations (2.2 – 2.4) need to be determined.  A simpler model was 

proposed by W. L. Bragg
80

, where diffraction was considered to be a reflection of the incident 

beam from planes of atoms (Figure 18), reducing the problem to two dimensions; although this is 

not physically correct, it makes geometrical sense, and substantially simplifies the problem. 

 

Figure 18 Schematic representation of Bragg diffraction from planes of atoms, with the path difference between 

adjacent beams being (AB+BC), θ indicates the incident and diffracted beam angles and dhkl indicates the inter layer 

spacing within the crystal with miller indices hkl. 

 

From Braggs’ image of X-ray diffraction, the path difference between the beams scattered from 

adjacent planes of atoms, separated by the inter plane spacing dhkl is given by (2.5), where hkl 

indicates the miller indices of the plane of atoms from which the x-ray beam is diffracting: 

    sin2)sinsin( hklhklhkl dddBCAB   (2.5) 

 For constructive interference to occur, the path difference has to equate to an integer number of 

wavelengths, resulting in the following condition for constructive interference: 

  sin2 hkldn   (2.6) 



Chapter 2 Synthetic and theoretical methods 

 

 

49 

 

Where, n remains an integer number.  Typically, experimentally collected diffraction patterns are 

plotted with observed intensity against the diffraction angle, 2θ, another common representation, 

especially when considering multiple data sets is Q, which is the momentum transfer on 

scattering and is defined by
78

: 

 

hkld
Q





 2sin4
  

(2.7) 

For Braggs law, the separation of the atomic planes is the governing factor for constructive 

interference, rather than the specific atomic coordinates.  The equations described above 

additionally show that Braggs description of x-ray diffraction, unlike von Laue’s, is only in two 

dimensions, dramatically reducing the number of parameters that require determination. 

 

2.3 Powder Diffraction
81

 

In practice, one commonly wants to use X-ray diffraction for the analysis of polycrystalline 

solids due to the difficulty of growing single crystals.  Because of the nature of polycrystalline 

samples, each crystallite will exist in a random orientation, using the assumption that each 

possible crystallite orientation (relative to each other) will occur with equal probability results in 

each crystallographic plane diffracting a cone of X-rays according to Braggs’s law.  Diffraction 

planes are therefore observed as cones (or rings on a detector) instead of spots, which results in 

the obtained diffraction pattern changing from a 3-D data set into a 1-D profile as a function of 

the diffraction angle.  The reduction in dimensionality results in the overlap of multiple 
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diffraction planes, as it is possible to have multiple crystallographic planes with equivalent dhkl 

spacings, therefore regardless of the quality of the resolution of instrumentation, this overlap 

inevitably leads to an overall loss of information. 

In spite of the inherent drawbacks of diffraction from powders, with the development of the 

Rietveld method
78, 82-84

, it has become possible to refine the crystal structure for polycrystalline 

materials successfully from powder diffraction data.  As instrumentation has improved, 

combined with the introduction of powerful software packages for powder diffraction 

refinement, such as GSAS
85, 86

 or Topas
87, 88

, structure solution from powder diffraction data for 

even the most complex materials has become a reality, where previously structure solution could 

only originate from single crystal data. 

X-ray diffraction is primarily used to solve the structure of crystalline materials, since 

amorphous materials are lacking in the regular repeating structure which results in a diffraction 

pattern.  The interaction of the oscillating electric field of the incident x-ray beam interacting 

with electrons associated with the atoms in the material.  X-ray diffraction analyses the X-rays 

scattered from the material retaining the incident beams wavelength.  The observed dhkl values 

provide information regarding the size and shape of the unit cell, while the absolute intensities 

provide information regarding the location and type of atoms within the cell.  The width of the 

reflections in a powder diffraction pattern also contains information regarding crystallite size, 

strain and thermal motion in the system.  It follows that every material will have a diffraction 

pattern indicative of the structure and composition of the specific material.  Given a good quality 

diffraction pattern, comparison against known materials combined with refinement of structural 

parameters can lead to the identification of materials solely from their diffraction pattern. 
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To refine the structure from a powder diffraction pattern, a number of considerations are 

required, at least initially.  The first observed fact is that the electron density for an atom falls 

very rapidly with increasing distance from the atoms centre.  The assumed fall in electron density 

therefore leads to the conclusion that there is no overlap between neighbouring atoms.  Secondly, 

it is assumed that the electron density for a given atom is spherically symmetrical.  Lastly, each 

atom within a crystal structure of the same element type is assumed to have the same number of 

core electrons.  This coupled with the assumption that bonding electrons do not contribute to 

scattering, results in the conclusion that the intensity of scattered X-rays from a given element is 

independent of the environment of the atom. 

 

2.4 Laboratory based Powder X-ray Diffraction (PXRD)
78

 

Laboratory based x-rays are generated in a non uniform spectrum of wavelengths from an X-ray 

tube (Figure 19).  To generate an X-ray beam, electrons are accelerated through high voltages (in 

the order of kV) through a vacuum tube into a metal anode material.  Once electrons impact into 

the anode, a number of electronic transitions are initiated within the metal, resulting in a range of 

photons being emitted, with the spectrum comprising of two distinct components.  Firstly, at 

most voltages, a broad spectrum of x-rays are emitted with relatively low intensities, known as 

the white x-ray emissions.  Secondly at a high enough voltage (the exact voltage required 

depends on the metal the anode is made from), sharp emissions are observed at wavelengths 

characteristic for each metal.  The characteristic x-ray emissions result from the electron beam 

expelling core electrons from the anode target and another electron falling down from a higher 

energy state, to take its place, causing the emission of distinct photons with a specific wave 
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length.  It is common however, for a metal target to have multiple characteristic emissions, with 

each emission being labelled according to the electronic state from which the electron is ejected 

(for example the most intense emission from a Cu target being labelled Kα1 radiation, with an s 

to p shell transition, with a wavelength of 1.54 Å). 

 

Figure 19 Schematic representation of a Cu x-ray tube, adapted from
78

, when electrons pass from the filament (at 

high voltages), electronic excitations in the anode cause the release of x-ray photons, these x-rays pass through the 

Be window to the diffractometer optics and onto the sample. 

 

Once an x-ray emission is generated, the photons pass out of the tube through a Be window into 

the optics of the diffractometer, using a selection of monochromators and filters (before and after 

the beam is diffracted from the sample) discrete wavelengths can be selected for the diffraction 
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experiment.  A number of different geometries are commonly used in powder diffraction, with 

two being used within this thesis.  The first is, known as Bragg-Brentano reflection
78

, the x-ray 

beam is diffracted from a sample held on a rotating flat plate (Figure 20a).  The second geometry 

type is known as Debye-Scherrer transmission
78

, in which the sample is held in a rotating glass 

(typically borosilicate or silica) capillary of a known radius and is named geometry (Figure 20b).  

In both situations, the diffracted x-ray beam is typically detected by a moving detector (and/or 

sample) arm that will move through a 2θ range, on the circumference of the circle in Figure 20 

measuring the diffracted intensity, thus generating the X-ray diffraction pattern. 

 

Figure 20 Schematic representations of Bragg-Brentano (A) and Debye-Scherrer geometries for powder 

diffraction
78

.  A) For Bragg-Brentano geometry, the sample is a thin layer of powder attached to a flat plate sample 

holder, note that both the incident and diffracted beam can additionally be passed through a monochromator before 

entering the circle (incident beam) or reaching the detector (diffracted beam).  B)  For Debye-Scherrer geometry, the 

sample is either loaded into a transparent capillary or mounted on a thin transparent film. 
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2.5 Neutron Powder Diffraction (NPD)
78, 81

 

Neutrons, like x-rays can have wavelengths with a magnitude similar to that of the inter-atomic 

spacing in crystalline materials, so it is also possible to perform diffraction experiments similar 

to those performed using X-rays.  Unlike PXRD however, neutrons interact with the nucleus of 

an atom and therefore the technique is very sensitive to the atomic number, rather than electron 

number.  As neutrons interact with the nucleus of an atom it makes it easier to observe lighter 

elements in the presence of metal atoms, thus making it an ideal technique for the study of 

oxides.  Additionally diffracted neutrons do not have decreasing intensity with the scattering 

angle like x-rays do and so reflections with higher angles are easier to observe.  Being able to 

measure smaller dhkl (higher θ) values compared to PXRD results in better refinement of 

structural quantities that are dependent on the width of diffracted reflections (e.g. thermal 

parameters). 

Since neutrons have an inherent spin moment, a neutron beam will interact with spin moments 

within a sample.  It follows that if a sample has a magnetic ordering then, that a neutron 

diffraction pattern will have additional dhkl reflections and this allows for the identification of a 

materials magnetic structure.  A simultaneous refinement against PXRD and NPD data will 

contain an increased level of information compared to either of the data sets individually; since 

x-rays and neutrons interact with different components of the atom resulting in two independent 

sets of information about the same sample.  An example of this is the structural refinement for 

the Y1.1Ba1.5Ca2.3Fe5O13 ten layer perovskite
15

 wherein, the combination of x-ray and neutron 

powder diffraction allow for the accurate refinement of up to three elements on the same site. 
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2.6 NPD at the ISIS neutron source on the High Resolution Powder 

Diffractometer (HRPD)
89, 90

 

 

Figure 21 Schematic of the ISIS neutron source, with all of the associated neutron diffraction instrumentation, 

adapted from figure presented on the STFC-ISIS webpage. 

 

At the ISIS spallation source (Figure 21), neutron generation begins with the formation of 

hydride ions, which are then accelerated in a linear accelerator and stripped of their electrons in 

order to produce protons, using an aluminium oxide target.  The protons are then accelerated 

through a synchrotron ring, until they reach energies of 800 MeV.  The high energy protons then 
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collide with a tungsten target, forcing an intra-nuclear cascade, resulting in neutron production.  

The resulting neutrons have a wide range of energies, the spread of neutron energies generated 

results in a range of wavelengths which can then be reduced by hydrogen containing moderators, 

typically water or methane.  HRPD is a time of flight (TOF) diffractometer, utilising the entire 

range of wavelengths produced and therefore relying on solving Braggs law by utilising a 

continuum of wavelengths rather than diffraction angles, with the diffractometer using a bank of 

fixed detectors at known angles with respect to the sample.  During a TOF experiment, the 

neutron wavelengths are calculated from the time taken for the neutrons to reach the detector 

from the source, with the relationship formalised in the following equation: 

 

mL

ht
  

(2.8) 

where h is Planck’s constant, m is the mass of a neutron, L is the path length to the diffractometer 

and t is the time taken to reach the diffractometer.  For the HRPD diffractometer (Figure 22), the 

moderator is methane which is maintained at 100 K.  Any error caused by the neutron 

moderation is reduced substantially by the use of a long path length of 100 m, and therefore aids 

in achieving high resolution in the machine as the level of error in the path length is very low.  

The HRPD instrument has three fixed banks of detectors at 30, 90 and 168˚ (Figure 22), with the 

168˚ ‘backscattering’ bank offering the highest resolution.  Two choppers operate on the line at 

50 Hz and 50/n Hz (where n is typically 5 or 10), these choppers reduce the overlap between 

neutron pulses.  The instrument set up, allows for a wide range of wavelengths to be accessible, 

with diffracted d-spacings between 0.3 – 16.5 Å observable in diffraction patterns across the 

three detector banks. 
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Figure 22  Schematic for the HRPD instrument at the ISIS neutron source, adapted from
90

 

 

2.7 Structure refinement
78, 81

 

A refinement consists of computing the expected diffraction pattern from a model structure with 

the addition of functions to cover contributions to the pattern that are independent of the 

material, such as a pattern background from the sample holder.  Once a pattern for the material is 

calculated, the differences between the theoretical and observed patterns are calculated.  

Refinements then take place, adjusting the structural or machine parameters in order to minimise 

the difference between the two, typically this is performed via a least squares routine
78

: 

   
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Where Sy is the total residual, wi is the weighting factor in order to normalise the residual for the 

number of data points, yi indicates observed data points, yci indicates the calculated data points.  

During the course of the refinement, a number of R factors can be used as a measure of how 

good the current fit is.  The first R weighted pattern (referred to as Rwp), is often favoured as 

there is no bias toward the structural model
78

: 
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A second R factor, Rexp can also be calculated for a diffraction pattern, which can be deemed as 

the best expected fit for the pattern
78

: 
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Where N is the number of observations and P is the number of parameters being refined.  

Finally, at the end of a refinement, it is common to quote a ‘goodness of fit’ (GOF) or χ
2
 

parameter, both of which related to the combination of Rwp and Rexp
78

: 
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In order to perform a structure refinement, a pre-requisite is a starting model for the structure. A 

starting model can be provided from a number of sources, such as a known material, suspected to 

be analogous to the sample, or as is the case in the results chapters in this thesis, a structural 

model is provided from theoretical calculations.  A number of different refinement methods are 

available, depending upon what information is sought, with methods available to obtain anything 
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from just accurate dhkl values to the refinement of the crystal structure; although in all methods, 

(aside from simply assigning hkl values to reflections), refinement of parameters and functions 

that are machine dependant must be performed
78, 81

. 

 

2.7.1 Background, zero shift and peak shape 

In most refinement methods, there are three main factors to be accounted for.  First is the 

diffraction pattern background, contributions to the background can come from the sample 

environment, such as the sample holder or depending on the wavelength an increased 

background may be observed for samples that fluoresce in the beam.  Additionally, some 

samples will have a background component from structures which have local structures that 

deviate away from the long range average, or from amorphous phase fractions.  Diffraction 

refinement software contain a number of different functions to fit the background of a diffraction 

pattern, such as the commonly used Chebechev polynomial function
82

. 

Secondly, all diffractometers will have the some form of zero error, originating from such factors 

as the sample holders being misaligned, and is manifested in a uniform shift in all observed dhkl 

values.  If there is concern about the zero error of a diffractometer, when preparing the powder 

sample with a standard material with known cell dimensions can be mixed in, which can then be 

fixed during in a refinement.  Lastly, the observed peak shape requires refinement, the peak 

shape contains contributions both from the diffractometer setup and the sample.  The sample 

contribution can come from some structural features, such as the thermal motion of atoms or 

micro-structure strain in the sample.  Due to the complex nature of the contributions toward the 
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peak shape a wide range of complex peak shape functions have been derived to model them 

during refinements with several variations implemented within each refinement package
81, 82, 91

. 

 

2.7.2 Unit cell size and shape 

In some instances only the refinement of the unit cell size and shape is required, for example in 

initial samples during an experimental investigation or tracking a change in cell dimensions with 

an increasing temperature for example.  Two common methods for refining just the unit cell size 

and shape, called LeBail
92

 and Pawley
93

 refinements have been developed, both of these methods 

focus on accurately determining the unit cell shape and size while using structural models that 

contain no atomic information and fit an arbitrary intensity to the observed reflections whilst also 

refining the peak shape.  Using such phase refinements can also be useful during the course of 

investigating a new crystal structure, as it will allow the user to refine the unit cell parameters, 

zero error and provides a good starting point for the peak shape before taking the atomic 

structure into account. 

 

2.7.3 Atomic structure – peak intensity and the structure factor 

As discussed above, the observed intensity in a diffraction pattern originates from atoms within 

the unit cell, with the intensity observed at a given hkl reflection defined by
81

: 

 2

hklhkl FkI        (2.13) 
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Where the Fhkl term includes variables that include information about the contents of the unit cell 

(the form of which is described below) and k includes a number of system dependent terms that 

are constant for a given structure.  The components of the constant k are as follows
81

: 

 
hklhklhkl ETAPLpKk    (2.14) 

Where parameters with a subscript hkl have a dependency on the dhkl for the reflection in 

question and a subscript θ indicates a parameter with a dependence on the angle of reflection, 

each of the parameters is defined as follows: 

 K indicates the scale factor, a multiplier used to normalise the calculated intensity against 

the observed intensities. 

 phkl is the multiplicity factor and takes into account multiple, equivalent hkl reflections at 

a given hkl value, for example for a cubic unit cell reflections for the miller indicies 

[0,0,1], [0,1,0] and [1,0,0] will be equivalent. 

 Lθ is the Lorentz multiplier, which is defined for the diffraction geometry. 

 Aθ is the absorption multiplier accounting for possible absorption of the beam by the 

sample in question, this value can be calculated from tablulated values for the 

composition and sample thickness. 

 Thkl is the preferred orientation factor and is a multiplier that accounts for the possibility 

of the crystallites in the sample having a distribution of orientations which deviates from 

an ideal distribution. 

 Ehkl is the extinction multiplier that accounts for deviations away from ideal diffraction, 

typically this value is very small and usually neglected for powder samples. 
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The second component of the calculated intensity, the structure factor, containing information on 

the atomic scattering contribution at each reflection from all the atoms in the unit cell is defined 

as follows
81

: 
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Where: 

 n indicates the number of atoms in the unit cell. 

 g
j
 indicates the fractional occupancy of atoms j, where atom j fully occupies the site g

j
 

equals 1. 

 (s) indicates the angular dependence, 
       

 
 (where λ indicates the wavelength), although 

as mentioned previously, this angular dependence does not occur for neutron diffraction. 

 f
 j
 indicates the atomic scattering factor and is dependent on the type of diffraction being 

performed (x-ray or neutron), with the values for isolated atoms tablulated. 

 The components of the exponential term include the scalar products of the fractional 

coordinates (x, y, z) for atom j by the corresponding h, k or l value. 

This summation for all atoms in the unit cell at each of the observed reflections combined with 

the constant k is refined along with all of the other components to a calculated pattern described 

previously.  The Rietveld method
83, 84

, was developed in order to efficiently refine all of the 

parameters simultaneously using a least squares method and has become the primary choice for 

the refinement of powder diffraction patterns.  The development of the Reitveld methodology 



Chapter 2 Synthetic and theoretical methods 

 

 

63 

and the subsequent implementation in a number of software packages has lead to the refinement 

of complex crystal structures now becoming a reality
78

. 

 

2.8 Iodometric titrations
94

 

Titrations are an analytical method by which quantitative information may be obtained about a 

chemical substance.  The technique is reliant on the addition of a precisely known quantity of 

standardised compound.  A colour change or change in the conductivity of the sample, indicates 

a the endpoint to the reaction.  The addition of the standard compound induces some physical 

change in the sample to indicate the end point of the reaction, since the standard is well 

characterised, information can then be calculated for the sample.  Examples of information 

gained from titrations include the relative molecular mass of a sample or oxygen content of an 

oxide. 

In this thesis, iodometric titrations (titrations dependent on the generation and subsequent 

reduction of iodine) have been used in order to obtain accurate oxygen contents for oxide 

materials.  Iodometric titrations are dependent on the following reaction with a standardised 

thiosulphate solution occurring in an acidic solution: 

    

2

64OH,H

2

322 OS2IO2SI
2

      (2.16) 

Where I2 is generated by the reduction of the sample by an excess quantity of I
-
 that has been 

formed from a salt (typically KI), prior to the reaction: 
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     IKKI
OH,H 2

      (2.17) 

In an iodometric titration, the end point of the reaction is indicated by a colour change (in the 

presence of a starch indicator) with the solution changing from indigo to colourless.  For the 

titration of oxide materials and for oxygen content determination, the first step is to standardise 

the thiosulphate solution concentration by titrating against potassium iodate, with the following 

iodine generation reactions: 

     3OH,H3 IOKKIO
2

      (2.18) 

 O3H3I6H5IIO 22OH,H3
2

  

        (2.19) 

Where the generated I2 is titrated against thiosulphate (equation 2.19), resulting in the overall 

reaction of 1 mole of KIO3 with 6 moles of S2O3.  The concentration is determined since the 

KIO3 is accurately weighed prior to the reaction.  A pre-requisite for oxygen content 

determination is knowing what the reduced product is, including the resulting oxidation states, 

the titrations in this thesis are based upon the reduction of Fe and Mn from unknown oxidation 

states to 2+.  Using the knowledge of the reduced state of the oxide, the following reaction 

equations can be constructed in order to determine the oxygen content for an oxide: 

 
-

2
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2
2

OHIOMI2OM
2

xxx
OHHx

x

  













  (2.20) 

    

2

64,

2

322 OSI2OS2I
2

xxxx
OHH

      (2.21) 

Where M indicates the transition metals of interest in the metal oxide, where the total quantity of 

transition metals in the oxide is normalised to be 1 (e.g. Fe2O3 becomes FeO1.5).  Note that the 
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hydroxide species generated on the right hand side of equation (2.20) are assumed to combine 

with H
+
 to form H2O.  For the perovskite material titrated in chapter 3, the A-site species do not 

react under the titration conditions and so the above reaction equation is still valid.  In order to 

determine the oxygen content, the desired quantity is the moles of oxygen generated (ηex) per 

mole of starting oxide (ηmo): 

 
1 moex

mo

exx 



      (2.22) 

From equation (2.20) we know that the number of moles of reduced oxide (ηred) is equal to the 

number of moles of the starting oxide, so (2.21) can be written as: 

 1 redexx        (2.23) 

From (2.20) it follows that ηex is equal to the number of moles of I2 that are titrated (ηI) and so ηex 

is experimentally determined from the quantity of thiosulphate used; 

 

2
I

ss

ex

VC 
       (2.24) 

Where Cs and Vs indicate the concentration and volume of thiosulphate solution used in the 

titration. In order to determine x, ηred requires definition relative to the known experimental 

quantities, which can be achieved as follows: 

 

red

red

red
M

m
       (2.25) 
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Where mred indicates the mass of the reduced oxide and Mred is the molar mass of the reduced 

species (given in gmol
-1

), the mass of the reduced oxide can be expressed relative to the sample 

mass and the mass of the evolved oxygen (mo) during the titration reaction: 

 

)( oexored

omoredoredmo

Mmm

mmmmmm







      (2.26) 

Where Mo is the molar mass of an oxygen atom, this is the substituted into (2.25) to give: 
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Then equation (2.27) is substituted into equation (2.23), allows for the determination of x: 
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Which can then be rearranged to give: 
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With (2.29) used to calculate the oxygen content of samples produced in Chapter 3. 
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2.9 Mössbauer Spectroscopy
95

 

The Mössbauer spectra presented in this thesis were collected by Dr. M. Thomas (University of 

Liverpool; Department of Physics) who also fitted the data to nuclei environments, working with 

myself on their interpretation.  Mössbauer developed the technique
95, 96

 and is based upon a 

Gamma Ray (GR) beam of varying wavelengths being passed through a solid sample and the 

absorbance of the sample measured, where absorption is observed information about the target 

nuclei in the sample can be obtained. 

The GR beam is generated from a radioactive source held within a solid state matrix.  The decay 

of the source then emits GRs, with a known wavelength and energy for a stationary source.  The 

wavelength of the emission can be controlled by exploiting the Doppler effect; motion of the 

source will alter the wavelength of the emitted GRs, from this the absorbance of the GR beam is 

typically quoted across a range of velocities of the source motion (mm/s), and the shift from zero 

referred to as the isomer shift. 

Mössbauer spectroscopy is reliant on the Mössbauer effect
95, 96

 recoilless emission and 

absorption of GRs; if either the source or the sample were to recoil the energy of the GR would 

be affected due to a quanta of energy lost to recoil motion.  Therefore a requirement for the 

technique is for both the source and the sample to be locked in the solid state, since in a solid 

lattice there is little possibility for the nuclei to recoil.  The Mössbauer effect is most prevalent at 

low temperatures where there is little thermal motion in the sample.  As temperature and thermal 

motion increases the Mössbauer effect drops and the level of recoilless absorption in the sample 

decreases, until ultimately the effect is not observable, although the temperature at which this 

occurs is sample dependant. 
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The absorption of a GR by the sample is reliant on the incoming GR having the correct energy to 

excite the target nuclei.  Mössbauer spectra are typically calibrated against a standard sample, 

recorded at 0 mm/s; the 
57

Fe nuclei spectra included in this thesis, were calibrated using bcc iron 

metal, with 
57

Co used as the GR source. 

 

Figure 23  Schematic of 
57

Fe  Mössbauer spectra
95

; a) for a single transition with an isomer shift from zero caused 

by the chemical environment of the 
57

Fe atoms.  b)  For a quadrupole splitting centred around an isomer shift, with 

the splitting caused by two accessible excited states for the 
57

Fe atoms. 

 

The signal from each target atom is dependent on the number of allowed transitions of the target 

nuclei, giving rise to one peak in the spectrum for each transition (Figure 23a).  Where multiple 

transitions are allowed the signal will split into multiple peaks centred on a velocity in the 

spectrum.  The velocity at which an atom absorbs a GR is dependent on the local environment, 

such that different geometries will give rise to a different signal in Mössbauer spectra, with the 

quantities of each environment being refine-able (as used in chapter 3).  The absorption of a GR 

in a system containing a nuclear quadrupole moment has two allowed transitions (Figure 23b).  

Systems with magnetic ordering such as those described in the introduction chapter, give rise to 

six possible transitions
95, 97

 (Figure 24a).  As with signal intensity, there is also a temperature 

effect on the velocity by which signals are split, this can be caused by thermal motion.  In the 
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case of magnetic splitting, the extent of magnetic ordering  varies with temperature; stronger 

magnetic moments and coupling results in larger splitting, hence typically splitting will decrease 

with increasing temperature, until they combine into a single peak when magnetic ordering 

breaks down (Figure 24b)
97

. 

 

Figure 24  a) Representation of splitting for 
57

Fe Mössbauer for a magnetically ordered system
95

.  b)  Typical 

splitting of 
57

Fe Mössbauer spectra with varying temperature as the level of magnetic ordering changes
97

. 
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2.10 Density Functional Theory
18, 98

 (DFT) 

In this thesis force field methods (detailed in the next section) are combined with ab-initio 

methods; in chapters 3 & 4, DFT is used exclusively and in chapter 5, DFT is used to calculate 

relative energies for a small number of structures after initial screening of large libraries of 

structures using force fields. 

In order to calculate the ground state for a many electron system from first principles, one would 

seek to solve the time-independent many-body Schrödinger equation for the system of N 

interacting electrons
18

: 
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      (2.30) 

Where vext is the external potential experienced by the electrons from interactions with the nuclei 

given the form: 

 

zrr R

ZZ
vext





  (2.30a) 

Where Z equals the nuclear charge and z equals a unit vector along an inter-nuclear bond at 

separation R, and ψ indicates the many-body wavefunction.  The ground state results in a ground 

state potential energy given by the term E in (2.30), however, since the dimension of the 

wavefunction grows with 3N electrons the computational cost grows very quickly and even 

simple systems become difficult to compute.  This rapid increase in computational cost means 

that compromises must be made between how accurately the problem is solved and how much 

computational effort is required. 
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The most common approach to solving this problem, developed by Hohenberg, Kohn and 

Sham
99, 100

, is referred to as DFT.  The interacting particle equation (2.30) is replaced by a non-

interacting one, with the many electron wavefunction replaced by electron density and the 

electron-electron Coulombic component of the equation replaced by a effective background 

potential of the electron density
18

.  These modifications result in the problem being reduced from 

3N dimensions to N non-interacting one electron problems.  In this section the basics of DFT and 

modifications to the basic theory that are utilised for the systems studied in this thesis are 

detailed. 

 

2.10.1 The energy functional 

The development of DFT began with Hohenberg and Kohn showing that the ground state energy 

of a system can be expressed relative to its electron density (n(r)) with the system in an external 

potential (v(r)) at coordinates, r: 
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      (2.31) 

Where the first term is a function of the density and external potential, describing the interaction 

between electrons and nuclei, the second includes the Coulomb (or sometimes referred to as the 

Hartree) energy and G[n] is an (as yet) unknown universal functional of the electron density 

(n(r)) and it was shown by Hohenberg and Kohn that the energy, E[n] will have a minimum at 

the unique ground state electron density
99

. 
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Later, it was suggested by Kohn and Sham
100

 that the universal functional could be divided into 

two components; the kinetic energy of the system of non-interacting electrons (Ts[n]) and the 

exchange and correlation (XC) component of the energy in a separate term, EXC: 

 [n]E[n]TG[n] XCs        (2.32) 

This can then be substituted back into (2.31) to give the energy functional of the electron density 

in the form: 
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      (2.33) 

This results in the ground state energy now being split into four individual terms, from left to 

right on the right hand side of the equation;  

 Electron kinetic energy,  

 Electron – nuclear interactions 

 Electron – electron Coulomb interactions 

 Exchange correlation term 

It is possible to determine the first three terms and a number of commonly used approximations 

to account for the exchange correlation term (see the Exchange Correlation sub-section below).  

To obtain the ground state of a system, the objective then becomes to find the minimum energy 

for equation (2.33), with respect to the electron density (n), under the constraint that the number 

of electrons in the system remains constant.  In order to determine this minimum, the electron 

density that satisfies the following equation must be sought
99

: 
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Where μ is a lagrange multiplier, and is equal to the fermi energy: 
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And: 
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Resulting in equation (2.34) having the full form: 
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Where μxc indicates the exchange correlation contribution to the potential with respect to the 

electron density, it follows that for a given μxc and φ the electron density that fulfils equation 

(2.34) can be found by solving the one particle (or electron) Schrödinger equation: 
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Where the electron density is given by: 
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In order to find the ground state of the system the equations (2.35-2.38) are solved via using a 

self-consistency loop, as outlined in Figure 25, where the loop is repeated and updated until a 

break (or convergence) criteria is met, where the energy at each iteration is found by
100

: 
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The ground state energy for the current nuclei configuration of the system is then defined by the 

energy obtained from the last iteration. 

 

 

Figure 25  The basic self-consistent algorithm for finding the minimum energy with respect to electron density 

within the framework of the equations set out in this chapter, with the routine as outlined in
98

 formulated to 

converge on the systems energy with s indicating the iteration number for the calculation, it is possible to write out 

the same routine to converge on either the energy or the electron density. 
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2.10.2 Exchange Correlation (XC) Functionals
18, 101

 

Several different methods have been developed to approximate the XC component of DFT, with 

two approximations commonly used; the Local Density Approximation (LDA) and the 

Generalised Gradient Approximation (GGA).  For LDA, one assumes that the nature of the 

‘electron gas’ in the system varies slowly across space, such that the XC term can be 

approximated as follows
18

: 

  ))(()( hom3
rr nεnrd[n]E XC

LDA

XC   (2.40) 

Where    
    is the XC energy per electron in a homogeneous electron gas with the electron 

density n(r).  This formulation of the XC energy is exact in the case of a uniform electron gas, 

where the electrons move within a uniform positive background (in order to maintain charge 

neutrality).  For a GGA XC functional, the XC adds in a term for electron density variation in the 

system
18

; 
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XC       (2.41) 

This differs from the LDA functional by the inclusion of the FXC(s(r)) term which defines how 

much the exchange enhances with the term s(r), which indicates how the electron density 

gradient varies.  If the s(r) term is equal to zero, then one returns to the LDA XC functional.  

There exist a number of implementations of GGA, with the two most commonly used forms 

being the Perdew-Wang 91 (PW91)
102

 and Perdew-Burke-Ernzerhofer (PBE)
103

. 

Note that the above equations assume that there is no overall spin polarisation in the system, 

however, there are published forms including collinear spin polarisation for both GGA
103

 and 

LDA
101

 known as the local spin density approximation, LSD XC functionals.  In both cases the 
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inclusion of spin modifies the XC term to be related to the relative spin polarisation, ζ, defined 

as
103

: 

  
n

nn



       (2.42) 

Where    and    indicates the spin up and spin down density and n is the total spin density. 

 

2.10.3 Plane wave solutions to the Kohn Sham equations
18, 101, 104

 

As described in the previous section, the problem of many interacting electrons from the 

Schrödinger equation is simplified to a series of non-interacting electrons acting in an effective 

potential, V(r) by using DFT, we are searching for solutions to the one particle time-independent 

Schödinger equation: 
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For a periodic system, V(r) is also periodic: 

 )()( rRr VV   (2.44) 

Where R is a lattice vector: 

 
332211 aaaR nnn        (2.45) 

Where a1, a2 and a3 are the unit cell vectors of the system.  The first assumption is that the 

system is confined to the volume Ω, which contains N unit cells each with volume ΩN and 

therefore        .  According to Blochs theorem, a wavefunction for such a system can be 
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written as a product of plane waves and a periodic function,       retaining the same periodicity 

as the potential, such that: 

 )()( rr
rk

k

i

k μeψ   (2.46) 

Which, then placed in a periodic system becomes: 
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k indicates a wavevector in the first Brillouin zone, which is the primitive unit cell in reciprocal 

space containing all of the unique values of k and results in N discrete values due to the periodic 

system.  The result of this is that the wavefunction is the same at the positions r and R except for 

a phase shift caused by the exponential term and it also results in the electron density having the 

same periodicity as the potential.  The function μ(r) can be expanded in terms of plane waves to 

give: 
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Where G is a reciprocal lattice vector, defined by: 

 
i

iim bG  
(2.49) 

Where mi are integer values and bi are the parameters of the reciprocal lattice.  The reciprocal 

lattice is defined such that R∙G = 2πl, where l is an integer, so the full wavefunction can then be 

written by: 
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The periodic potential equation (2.44) can also be expanded in terms of plane waves in reciprocal 

space to give: 

  
G
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ieVV )()(  
     (2.51) 

By insertion of equations (2.50) and (2.51) into the one particle time independent Schrödinger 

equation (2.43), the problem is transformed into a number of independents equation, with one for 

each point sampled in k space.  Equation (2.43) is solved numerically by plane wave DFT 

packages such as the Vienna ab-inito Simulation Package (VASP)
105, 106

 used within this thesis.  

In order to compute these plane waves however, two parameters are required, firstly the set of 

plane waves need to be truncated with a kinetic energy cutoff (also referred to as the plane wave 

cutoff).  Secondly, the number of points in k space within the first Brillouin zone to be sampled 

needs to be specified.  The exact number of k-points required is determined in preliminary 

calculations or by starting from defaults suggested by the specific DFT package used.  The 

number of k-points used within each chapter is specified in the corresponding methods section. 

 

2.10.4 Pseudopotentials
98

 

As the number of atoms increases in a system, especially when atoms with large number of 

electrons are included (e.g transition metals, or the heavy A-site species found in perovskites) the 

computational cost increases.  A method commonly used in DFT calculations to lighten the 

computational load is to create a pseudopotential, typically containing two approximations: 

firstly the core electrons are treated as a frozen core.  The frozen core approximation assumes 

that the interactions of core electrons with the surrounding chemical environment are minimal 
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and are therefore ignored and therefore only the valence electrons interact with the chemical 

environment. 

In practice the core electron wavefunctions are generated from calculations on the isolated 

atoms, libraries of which are provided by most DFT packages.  The core electron wavefunctions 

are then fixed throughout the DFT calculation and only the valence electron wavefunctions are 

updated throughout the calculation.  Although it should be noted that for some systems, libraries 

exist where some of the sub-valent orbitals are treated as if they were valence in order to 

improve the accuracy of the calculation. 

Valence electron wavefunctions, when in the core region of the atom, have very rapid 

oscillations due to interactions with core electrons, however, outside the core region the 

wavefunction is much smoother since the core electron wavefunctions are essentially zero.  In 

order to reduce the complexity of a valence wavefunction is the exact wavefunction is replaced 

with a node less function in the core region retaining the electron density of the exact 

wavefunction
98

 (also referred to as the all electron wavefunction, Figure 26).  Once the pseudo 

wavefunction leaves the core region of the atom the pseudo function is designed such that it 

returns to match the exact electron wave function.  There are a number of different methods by 

which pseudo potentials have been implemented
106-109

, with the method utilised within this thesis 

being the Projector Augmented Wave method (PAW)
106

 as implemented in VASP. 
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Figure 26 Schematic representation of pseudo wavefunctions and potential energies, relative to those generated by 

an all electron method
110

 the all electron wavefunction and potential is denoted in cyan and blue respectively, and 

the pseudo wavefunction and potential in magenta and red respectively, with the pseudo potential and wavefunction 

also denoted by a subscript “ps”. 

 

2.10.5 DFT + U
98

  

An inherent problem of the DFT method arises from the Coulomb term in the Kohn-Sham 

equations, in which an electron interacts with the total electron density.  As the electron in 

question contributes to the total electron density, it follows that the electron is interacting with 

itself, known as the self interaction error (SIE), the error is introduced due to not knowing the 

exact form of the XC functional
98

.  The SIE causes localised electron orbitals to be destabilised 

and so DFT often results in orbitals being spread out spatially in order to minimise self-

interaction.  When modelling systems that should have localised orbitals, such as in 

semiconductors with partially filled d or f orbitals (including the perovskite systems studied in 

this thesis), no localised orbitals would be calculated, this results in incorrect computation of 

band structures and total energies
15, 111, 112

. 
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In order to help correct for this SIE in systems with localised electrons the DFT+U method was 

developed.  DFT+U introduces a correction to the DFT energy; for each atom we apply a 

numerical parameter Ueff to specified orbitals (d orbitals in the case of this thesis), with Ueff 

defined as
98

: 

 JUUeff   (2.52) 

 Where U and J are parameterised, in this thesis J is typically equal to 1.  Since Ueff is a 

numerical parameter, it requires fitting to some known property of a relevant material, typically 

this is done by varying the value of U, with J remaining fixed, parameters to which a Ueff 

parameter can be fitted include band gaps or calculated reaction energies.  The parameter sets 

used in this thesis in the calculation of oxide materials, were used as published (relevant 

references given in each chapter), where parameters had been fitted to reproduce experimentally 

determined reaction energies to form ternary oxides from binary oxides and oxygen gas where 

available. 

 

2.11 Force Field (FF) Calculations
69, 70

 

In some instances, when information from calculations is required (such as the lowest energy 

configuration of atoms/ions) and the system in question contains large numbers of atoms and/or a 

large number of optimisations are required (as is the case in chapter 5) it is not feasible to use 

purely ab-inito methods, due to the computational cost. 

FF calculations typically model atoms as a solid charged sphere with radius equal to tabulated 

values for the element(s) in question.  Energies are then calculated according to parameterised 
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interactions between atoms, where parameters are fitted to known structures and properties.  

Geometry relaxation can then be performed in order to minimise this energy as with any other 

computational method. 

The downside for force fields however, lies in the realisation that a parameterised force field will 

only successfully describe systems for which the potential and parameters were designed (e.g. a 

potential designed for covalent bonding will not be able to model an ionic system).  These 

drawbacks lead to the creation of numerous types of force field potential, such as the Lennard-

Jones and Buckingham potentials combined with large libraries of published interatomic 

potential parameters. 

 

2.11.1 Interatomic potentials 

The FF calculations used in chapter 5 were performed using the General Utility Lattice Program 

(GULP)
69, 70

 modelling only two-body interactions, where the energy resulting from interactions 

between ions are comprised of two components and defined by
113

: 

 long

ij

short

ijij UUU        (2.53) 

Where Uij is the total two body interaction between atoms i and j,    
      is for short range 

interactions typically covered by potentials such as the Buckingham potential (defined below), 

   
    

 is a much longer range component, covered by a long range Coulomb interaction of the 

form: 
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Where qi and qj are the formal charges on ions i and j to be specified by the user, ε0 is the 

permittivity of free space and rij is the inter-atomic distance between atoms i and j.  In GULP this 

is implemented via the Ewald method
113, 114

.  In this thesis the second energy component, is 

described by a short range Buckingham potential with the form that models the close range 

interactions of ions: 
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      (2.55) 

Where the terms A, ρ and Cij are fitted parameters, the exponential term provides a repulsive wall 

for the interaction and the Cij term models the short range attractive component of the potential, 

and the interaction will have a user defined maximum cut-off distance.  Some atoms in the 

structures studied in this thesis make use of a polarisability ‘shell’ model
115

.  This model allows 

for the polarisation of some atoms, conceptually the ion is split into two components; a core and 

shell.  The core has the mass of the atomic species, and a charge associated with it, to model the 

nucleus and core electrons.  The shell is mass-less with an associated charge to represent the 

effect of valence electrons, the concept should not be taken too seriously however, since it is 

common for shells to have an overall positive charge (as is the case in chapter 5).  The shell and 

core are screened from each other with a spring connecting them, with a fitted force constant (ks).  

The polarisability of an atom is then defined by: 

 

s

s

k

q2

  (2.56) 
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 When the shell model is used in a system, convention is for the long range Coulomb interaction 

to act on both the shell and core and thus the long range potential interacts with the full formal 

charge on an ion.  With shells present it is also convention for the short range potential to only 

interact with the shells of ions.  Note that when modelling a system it is possible to have a 

combination of atoms with and without shells present, and therefore potentials that act between 

the core of one atom and the shell of another. 

 

2.11.2 Generating FF potential parameters 

Due to the nature of FF calculations, choosing potential parameters governs the result and so the 

process by which they are chosen is of extreme importance; choosing a bad force field will only 

lead to bad results!   

In order to test prospective force field parameters for this thesis, potential sets were first gathered 

from literature.  Additionally, a known and well characterised related structure is required; it 

does not have to be the structure to be studied however.  An ideal structure to which a FF can be 

parameterised will have a well defined structure from experimental data or a very well converged 

structure from ab-initio calculations (such as DFT).  Force field parameters are then tested using 

the following routine: 

 If the potential set with the best fit does not satisfactorily reproduce the target structure 

(typically obtaining the correct connectivity and obtaining the lattice parameters/unit cell 

volume to within a few percent), then the pair potentials are varied in order to determine 

which potential has the largest effect on the calculated structure, this parameter is then 

refined using the internal fitting routines found within GULP. 
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 This last point is then repeated as necessary until the structural parameters are 

reproduced with the desired level of accuracy and typically should only result in a small 

number of newly fitted parameters. 

2.12  A note on computational hardware used. 

All of the FF calculations used in chapter 5 were performed using the University of Liverpool's 

high performance computing (HPC) cluster as serial jobs, queued in batch jobs by system.  Each 

batch job contained in the order of 10,000 structures, with upto 128 structures being allowed to 

run simultaneously. 

For the DFT calculations in chapter 3, all were performed using the University of Liverpool's 

HPC cluster, running on either 16 or 32 cores, divided across computing nodes each containing 2 

quad core cpus.  The DFT calculations performed in chapters 4 and 5 were performed using the 

HECToR super computer, with access provided through G.Darling's membership of the 

Materials Chemistry Consortium (MCC).  Structures were relaxed using upto 144 cpu cores 

divided across 24 core nodes. 
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Chapter 3. Prediction and synthesis of YBa2Fe2MnO8 

3.1 Abstract 

In this chapter energies for the reaction to form YBa2Fe3-xMxO8 (where M = Co, Ni or Mn and x 

= 1, 2 and 3) from binary oxides and oxygen gas were calculated using Density Functional 

Theory (DFT). Based upon these calculations predictions were made about favourable levels of 

doping and B-site ordering for YBa2Fe3-xMxO8.  Where dopings were calculated to be stable, 

these compositions were investigated experimentally.  It was found that with a small 

optimisation of the Y: Ba ratios a new triple perovskite is formed. In addition to this, where 

doping is predicted to be least favourable was also investigated in order to test whether the DFT 

calculations can estimate the solid solution limit.  The structure of the synthesised triple 

perovskite was then analysed using Powder X-ray Diffraction (PXRD), iodometric titrations, 

Mössbauer spectroscopy and Neutron Powder Diffraction (NPD). The observed structure and 

calculated structures were then compared and found to be in good agreement. 
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3.2 Introduction 

 

Figure 27 a) Reported structure for YBa2Fe3O8  b) r45
o
(√2x√2x2)  super cell used in DFT calculations.  Atom 

colours as follows: yttrium (yellow), barium (green), iron (brown) and oxygen (red)  

 

The focus of this chapter will be exploring how Density Functional Theory (DFT) can be used to 

guide the synthesis of B-site doped YBa2Fe3O8
13

.  This system was chosen as there are known 

experimental precedents for the system being doped
27

 providing a solid solution that the 

calculations can be tested against, while maintaining a number of unreported substitutions.  The 

structure of YBa2Fe3O8 is based upon three ABO3 perovskite units, extended in one direction to 

form a 3 fold super structure (Figure 27a, hereafter referred to as a 3ap structure).  Long range 

ordering in the c direction is driven by one oxygen vacancy per A3B3O9 formula unit (FU) 
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(where A = Y and Ba, B = Fe), with all of the vacancies ordered in one layer.  These ordered 

vacancies create two distinct A and B sites (coordination numbers quoted in number of co-

ordinated oxygen atoms), with the A sites being one 8 co-ordinate (yttrium) and two 12 co-

ordinate (barium) sites, the B-sites are either 5 co-ordinate square based pyramids and 6 

coordinate octahedral iron sites, with the Fe atoms processing G-type antiferromagnetic ordering 

at room temperature.  Note that the B-site polyhedra geometries are non-idealsed, the octahedral 

site has four short equatorial bonds (in the ab plane of the crystal structure 1.95 Å) and two long 

axial bonds (in the c axis, 2.13 Å). The square pyramidal site has one short axial bond (1.87 Å in 

the c direction) and four equatorial bonds (2.01 Å, in the ab plane, sitting below the iron atom in 

the c direction).  By performing calculations on this system, in addition to predicting doping 

levels, it will be possible to test how well DFT can predict site preferences for dopant metals.  

Shifts in other structural properties such as unit cell parameters and atomic co-ordinates will also 

be calculated while maintaining a system with a small enough structure, such that the 

calculations are not computationally expensive. 

Due to existing precedents for doping into each of the transition metal geometry types found in 

the 3ap structure 
22, 116, 117

 for the transition metals in this work, it is possible to make arguments 

as to why dopant metals could go into either of the B-sites of the 3ap structure or for the dopant 

species to go into both B-sites.  If the dopant occupies both B-sites an overall dis-ordered B-site 

structure is formed and hence predictions in this system using multiple different dopants on the 

B-sites are a non-trivial problem.  Given the widespread applicability of doped metal oxides it is 

very desirable to be able to use calculations to predict how systems can be doped and therefore 

greatly reduce the number of synthesises that are required experimentally.  It has also been 

shown, that all unique configurations of a given structure can be generated using its’ 
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corresponding symmetry.  In order to find the most stable configuration for the symmetry 

generated structures then have an energy calculated by methods such as DFT or Force Field 

Methods
47

.  The Site Occupancy Disorder (SOD) code
47

 has previously been applied in 

calculating the solid solutions of both binary and ternary oxides 
60, 61, 118

, carbonate systems 
49, 64

 

and other system types 
62, 63, 119

.  These studies typically require supercells containing large 

numbers of atoms.  However, due to the multiple dopant species and dopant levels that are 

studied in this work, this approach would result in a large number of possible structures.  As an 

example, in order to be able to predict the doping in the system, using SOD, taking the largest 

unit cell used in this chapter, at the composition of YBa2Fe2MnO8 results in 24,371 in-equivalent 

structures.  As accurate reaction energies are to be calculated with DFT, relaxations could be 

required on a large proportion of these structures, after first relaxing every generated structure 

with a computationally cheaper method (e.g. force field methods).  Performing this series of 

calculations on each of the studied compositions is a computationally expensive route and is 

therefore considered to be unfeasible for the system studied in this chapter.  

In this chapter, the goal was to find a simplified model by which doping can be predicted for 

complex oxides and have some measure of the likelihood that the material can be formed 

experimentally.  Previously it has been shown that DFT calculations can be configured to re-

produce experimental reaction enthalpies 
17

.  This methodology is adopted by predicting reaction 

enthalpies for a doping YBa2Fe3-xMxO8, in order to predict how the material can be 

experimentally doped and if any B-site ordering is favourable. 

The reaction energy required to form the parent YBa2Fe3O8 phase was calculated, followed by a 

series of doping levels and a selected number of B-site configurations, representative of the 

possible B-site orderings.  Experimentally the following hypothesis was tested:  When the 
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reaction energy of the doped material is lower than that of the parent material, doping will be 

experimentally favourable and conversely when the formation energy is greater, doping would 

be unfavourable. Initially the methodology is tested when M = Co which has previously been 

reported
27

 and then predictions on when M = Mn and Ni are made. 

 

3.3 Computational methods 

Calculations were performed using the plane wave DFT package, Vienna Ab-intio Simulation 

Package (VASP) version 4.6.26 
105, 106

 with the Perdew, Burke and Ernzerhof (PBE) 
103

 exchange 

correlation functional. For the B-site species (Fe, Mn and Ni) the first sub-valence p-orbitals 

were treated as valence and for the A-site species (Y and Ba) the first sub-valence s-orbital was 

treated as valence. The gamma centred k-point grid that was used for each calculation was 

determined by the first k-point grid that fulfilled the condition: 

                  (3.1) 

Where ki is the number of k-points on a lattice vector and ri is the length of the corresponding 

real lattice vector, given in Å.  The unit cell size, shape and atomic co-ordinates were relaxed 

until forces on atoms were less than 0.01 eV/Å. Wavefunctions were converged until ΔE 

between consecutive steps was less that 10
−5

 eV.  The plane wave cut-off energy in these 

calculations was set to 450 eV.  This computational setup was chosen as when trialled with 

reaction energies for the reaction of binary oxides to form of LaMO3 (M = Co, Cr, Fe and Ni) it 

was found to give the best balance between accuracy with experimental values and the time 

required to perform the calculations (see appendix to this chapter for more details).  
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The initial atomic co-ordinates and unit cell for the calculations were used from the reported 

crystal structure of YBa2Fe3O8 in the Ib′am magnetic supercell, r45°(√2 x √2 x 2) of the nuclear 

cell (Figure 27 b)
13

 to allow for G-type antiferromagnetic and ferromagnetic ordering and 

multiple B sites (4 octahedral and 8 square pyramidal sites per unit cell), allowing for the varying 

levels of doping and B-site ordering.  

The calculations are started by constructing a doping reaction for YBa2Fe3O8 for each of the 

dopant metal species, note that these equations do make the assumption that the average 

oxidation state on the transition metal species in the doped material remains at 3+: 
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      (3.4) 

Each of the dopant species in equations (3.2 – 3.4) can be combined from the equations above to 

give a generic doping reaction equation: 

             
               
                     

 

 
      (3.5) 

Where: 

      
 

 
   

       
 

 
   

        
 

  
        

     
 

 
         (3.6) 

YBa2Fe3O8 in equation (3.5) can also be substituted for the component binary oxides to give a 

reaction enthalpy from the binary oxides in order to provide a reaction pathway which is 

accessible from experimental solid state methods, resulting in equation (3.7): 
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      (3.7) 

and then in order to form a reaction pathway where only a stoichiometric amount of the desired 

3ap product remains on the right hand side of the equation, the total number of transition metal 

ions on the left hand side is fixed at, 3 resulting in ΔEIII: 

  

 
          

   

 
        

                 
                       (3.8) 

Equation (3.8) was used to calculate energies for the doping levels, with units being given as 

electron Volts per Formula Unit, eV/FU.  The most favourable configuration at each doping level 

is defined as the structure that yields the lowest reaction energy.  This measure then gives a 

numerical value that can be compared across compositions. 

It should be noted here that given the type of calculation performed, energies could be calculated 

relative to energy values for an ideal solid solution if both of the end members are known to be 

stable.  Particularly stable compositions could be identified by energies that lay below the energy 

of the ideal solid solution, for a binary system energies could be calculated according to equation 

(3.9): 

          
                
               (3.9) 

 Where C and D are the end members of the solid solution (YBa2Fe3O8 and the un-reported 

YBa2Mn3O8 for example) and C1-xDx is the desired compound (e.g YBa2Fe3-xMnxO8).  In the 

system examined in this chapter, the end members of the solid solutions are not reported in 

ordered 3ap structures (although YBa2Co3O8+δ is reported as a disordered cubic perovskite
30

), as 
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such we will use ΔEIII (equation (3.8)) for predictions.  For clarity in identifying the differences 

between conformations at each value of x we have used ΔEIV from equation (3.9). 

The initial atomic-coordinates and unit cells of the binary oxides were used as reported in the 

literature 
29, 120-124

. Where multiple possible binary oxides are reported for the transition metals 

(M = Co and Mn) the oxide which gave an overall charge state as close to 3+ as possible was 

selected in order to minimise the amount of O2 gas that had to be considered. 

 

Figure 28 Structures used for DFT calculations with 3 different site preferences at doping levels x = 1, 2 and 3.  

Atoms coloured as follows: yttrium (yellow), barium (green), iron (brown), dopant (blue) and oxygen (red). 
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For a doping level of x = 3 (Figure 28) only one B-site configuration is possible as this 

constitutes full substitution. For doping levels of x = 1 and 2, three different B-site configurations 

were considered in order to approximate possible site preferences of the dopant species.   

In the first site preference (named Octahedral, Figure 28) all of the dopant atoms were 

preferentially placed in the octahedral site.  For x =1, this results in the dopant species fully 

occupying the available octahedral sites.  When x = 2, there are too many dopant atoms to dope 

purely onto the octahedral sites, the remaining dopant atoms were distributed evenly amongst the 

square pyramidal sites, maximising the distance between the dopant atoms.  

In the second site preference (named Square Pyramidal, Figure 28) the dopant atoms were 

distributed amongst alternating square pyramidal site when x =1, when the doping level is 

increased to x = 2, the square pyramidal sites are fully occupied. 

The final configuration (named Mixed, Figure 28) the calculations were performed on a (2 × 1 × 

1) supercell  of the original calculation cell to allow for closer to statistical averaging of B-site 

positions, for both x = 1 and x = 2 all of the dopant atoms were evenly distributed amongst both 

of the B-sites. 

Colinear spin-polarization was applied to the B sites for YBa2Fe3−xMxO8 as follows: when x = 0 

or M = Co, the spin moments were arranged as a G-type anti-ferromagnet, as reported for 

YBa2Fe3O8; when M = Ni and Mn both G-type anti-ferromagnetic and ferromagnetic 

arrangements were tested.  Colinear magnetic structures were also applied to the binary oxide 

calculations in arrangements that have been experimentally reported
29, 120, 121, 124

.  

 It has been shown in the literature that in order to be able to calculate more accurate formation 

energies for perovskites containing d electrons, an onsite coulomb interaction term, U must be 
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applied to the d-orbitals of the transition metals
17

.  We have used the rotationally invariant form 

Ueff where Ueff = U - J. In this chapter Ueff values of 4.0, 4.0, 6.4 and 3.3 eV for Fe, Mn, Ni and 

Co respectively were used.  In addition to requiring a Ueff it has also been shown that when using 

PBE functionals a corrected binding energy for O2 gas is required
17

 due to VASP over-estimating 

the binding energy in O2. The energy of O2 gas was set to -8.5 eV per FU, in line with previously 

reported work. 

 

3.4 Experimental methods 

Samples were synthesised from binary oxides and carbonates (Y2O3 (99.999%), BaCO3 

(99.997%), Fe2O3 (99.998%), MnO2 (99.97%), NiO (99.998%) purchased from Alfa Aesar and 

pre-dried) weighed out in stoichiometric quantities.  Samples were hand-ground using a pestle 

and mortar with the samples under acetone to aid grinding.  Hand-grinding of samples was 

deemed sufficient due to the relatively small size of the samples and no requirement for dense 

pellets.  Prior to firing the samples were pelletized using a uni-axial press at a pressure of 

approximately 5 tons, with the diameter of the pellet chosen to create pellets less than 5 mm 

thick.  Samples were then heated at a temperature of 1200 °C in a tube furnace under flowing N2 

(in order to test synthesis under reducing atmospheres in addition to ambient) static air was also 

trialled for YBa2FeNi2O8±δ and YBaFe2MnO8±δ materials for 72 hours in alumina crucibles, with 

intermediate re-grinding and re-pelletisation at 24 and 48 hours.  At the end of each heating cycle 

the samples were allowed to cool completely to room temperature before the gas flow was 

removed in order to prevent sample oxidation.  Initial samples were synthesised with a target 
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mass of 1 g. Samples used in neutron powder diffraction were synthesised using the same 

methodology with a target mass of 7 g under flowing N2. 

Iodometric titrations were carried out in order to determine the oxygen content and therefore the 

average transition metal charge state.  Samples were titrated against sodium thiosulfate solution 

(0.1 M), standardised against potassium iodate (99.995% purchased from Sigma Aldrich), 

samples of Fe2O3 and MnO2 (purity and supplier as used in the synthesis) were also titrated and 

analysed to test the titration conditions for the transition metals in question, resulting in oxygen 

contents of O3.00(3)  and O2.01(2)  respectively. 

For the titrations, an approximate ratio of 1 g of potassium iodide (99.99%, purchased from Alfa 

Aesar) was added for every 50 mg of sample.  The potassium iodate standard was dissolved in 

water (ca. 20 cm
3
), once dissolved sulphuric acid was added (ca. 5 cm

3
, 1 M).  Metal oxides were 

dissolved in hydrochloric acid (20 cm
3
, 3M), flushed with argon gas for at least 1 minute, sealed 

with laboratory film and stirred just above room temperature (~30 °C) until samples were 

dissolved.  The metal oxide samples were then diluted to an acid concentration of 0.5 M and 

titrated immediately.  Samples were titrated until a pale straw colour was obtained, and then 2 

cm
3
 of starch indicator solution was added, turning the solution dark indigo and the titration 

continued to a clear end point.  All titrations were repeated a minimum of three times and the 

average result used, the errors were calculated from the spread of results. 

Mössbauer spectra were taken in absorption mode with samples mounted between the Mössbauer 

source and the gamma ray detector by Dr. M. Thomas.  The source motion was controlled by a 

waveform that gave constant acceleration motion. A double ramp waveform was used so that the 

folded spectra have a flat background.  The source was of 
57

Co
 
in a Rh matrix and the 14.4 keV 
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gamma radiation was detected in a proportional counter filled with an argon/methane gas 

mixture to a pressure of about one atmosphere. The detector efficiency is about 67% for 14.4 

keV radiation but is essentially zero for the 122 keV radiation that feeds the 14.4 keV state in 

57
Fe.  The spectrometer was calibrated against the known spectrum of α–iron (BCC). Values of 

isomer shift are quoted relative to α-iron at room temperature.  The spectra are fitted with a 

superposition of components each of which represents a particular Fe ion in a defined 

environment. For each environment values of the isomer shift, electric quadrupole interaction 

and magnetic hyperfine field were determined. 

All powder diffraction data were collected at room temperature data was collected on the initial 

samples using a Bruker D8 Advance diffractometer using Cu Kα1 radiation in Bragg-Brentano or 

transmission foil geometry or a Phillips X'pert Panalytical diffractormeter using Co Kα1 

radiation in Bragg-Brentano geometry.  For the structure refinement PXRD data was collected 

using a Bruker D8 Advance in Debye-Scherrer geometry using a 0.3 mm capillary with Mo Kα1 

radiation (d-space range: 0.62 – 16.37 Å).  Time Of Flight (TOF) - NPD patterns were collected 

at STFC-ISIS on the HRPD instrument in a 8 mm vanadium can, (with thanks to J. B. Claridge 

for collecting the pattern) with data collected at 168° and 90°
 
detector banks (with d-space ranges 

0.67 – 2.36 and 0.96 – 3.67 Å respectively).  For phase identification X’Pert highscore plus 

software
125

 was used to perform peak assignments using the pdf-2 database
126

.  Phase fractions 

quoted in Figure 35 were calculated using the Topas academic program
87, 88

 by Dr. P. Chater.  

Rietveld refinements were performed using the GSAS
85, 86

 package, following a refinement 

method based upon a previously reported procedure on refining the nuclear and magnetic 

structure of YBa2Fe3O8
127

.  
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3.5 Computational results 

 

Figure 29 Reaction energies calculated for YBa2Fe3-xMxO8 from binary oxides according to equation (3.8), with the 

ΔEIII value taken for the lowest energy configuration at each value of x. 

 

Balanced equations for the calculation of reaction energies were created taking into account the 

possibility for an overall change in oxygen content, depending on the dopant metal equation (3.6)   

The reaction energy for the Fe pure, x = 0 compound was calculated to be −1.57 eV/FU.  This 

formation energy was used as a benchmark when attempting to predict if a calculated 

composition would be stable and thus likely to form experimentally.  Results for the calculated 

formation energies suggest that favourable doping can be achieved when M = Co and Mn, 

although no favoured doping configuration was found when M = Ni (Figure 29). 
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3.5.1 Results for M = Co 

 

Figure 30 a) Solid solution energies calculated according to equation (3.9) when M = Co for each of the different 

orderings trialled in the DFT calculations.  b) The DFT calculated unit cell volumes as a function of Co content.  c) 

Average bond lengths for each of the B-site environments in the lowest energy DFT calculation at each value of x as 

a function of Co content. 
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When M = Co (Figure 29) the favoured doping level was when x = 1 and with the dopants in the 

mixed configuration (Figure 30a), the reaction energy relative to binary oxides was calculated to 

be 0.03 eV/FU more stable compared to the undoped material.  The DFT calculations for M = Co 

show that the lowest energy configuration at each value of x is also the configuration that has the 

smallest unit cell volume (Figure 30b).  The calculation that Co doping into this system results in 

a decrease in the unit cell volume correlates with reported experimental observations
27

, where 

doping with Co causes a unit cell volume decrease of 0.80(1) %.  

Looking at the bonding environments for M = Co (Figure 30c), over the doping series, on the 

square pyramidal site, there is little change in the average bond axial length between x = 0 and x 

= 1 however between x = 1 and 2 there is a decrease of 0.05 Å.  There is very little shift in the 

square pyramidal equatorial bond lengths across all of the compositions.  Comparison between 

the calculated results at x = 1 and the closest reported value of x = 0.9, show that the calculations 

produce similar results to those reported
27

 (Table 1).  The DFT results in the correct direction of 

shift for all but the octahedral equatorial bonds, decreasing by 0.0032 Å compared with the 

reported increase of 0.0032 Å. 

 Considering dopants on the octahedral environments, when x = 1, the axial and equatorial 

octahedral bond lengths decrease and increase respectively, to give a difference of only 0.064 Å, 

compared to the difference in the DFT calculation of the undoped material of 0.231 Å.  As cobalt 

content increases to become un-favourable, the difference in the axial and equatorial bond 

lengths on the octahedral also increase, to return to be close to the bond lengths calculated for the 

undoped material. The distortion on the octahedral site reduction in the square pyramidal size 

may be a driving force behind doping becoming un-favourable when Co becomes the major B-

site metal. 
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Co doping within theYBa2Fe3O8 phase has been reported for a values of x = 0.6, 0.9, 1.2 and 1.5 

27
 and that when these doping levels are achieved, the Co has no significant site preference

27
. 

These results confirm that the method can correctly calculate transition metal doping within this 

system, as our calculations suggest that doping becomes unfavourable between x = 1 and 2 as is 

observed experimentally.  
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3.5.2 Results for M = Mn 

 

Figure 31 a) Solid solution energies calculated according to equation (3.9) when M = Mn for each of the different 

orderings trialled in the DFT calculations.  b) The DFT calculated unit cell volumes as a function of Mn content.  c) 

Average bond lengths for each of the B-site environments in the DFT calculations as a function of Mn content. 
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When M = Mn (Figure 29) the computationally favoured doping occurs at x = 1 with the Mn 

atoms in the octahedral configuration with G-type anti-ferromagnetic ordering (Figure 31a).  The 

formation energy for the favoured configuration was calculated to be 0.09 eV/FU more stable 

versus the undoped material.  The ferromagnetic ordering at x = 1 with Mn in the octahedral site 

was found to have a formation energy 0.36 eV/FU less stable versus the undoped material.  

When the doping level was increased to x = 2, doping becomes unfavourable, although the 

preference for Mn to occupy the octahedral site and have G-type anti-ferromagnetic ordering 

remained.  At x = 2, this configuration was calculated to be 0.33 eV/FU less stable when 

compared to the undoped material.  When M = Mn, that none of the configurations with 

ferromagnetic ordering were calculated to be.  For x = 1 and 2 each of the lowest energy 

configurations was also the configuration that was calculated to have the smallest unit cell 

volume (Figure 31b). 

When looking at the geometries (Figure 31c) of the Mn sites after doping, when x = 1, where 

doping is most favourable, at the preferred octahedral site, there is a sharp distortion of the site 

versus the undoped material.  The axial bond lengths increase by 0.11 Å and a shortening of the 

equatorial bond by 0.02 Å is observed, in line with a Jahn-Teller distortion expected for Mn
3+

 

(Figure 31c).  When the doping level is increased, the length of the of the equatorial bonds 

change little on the octahedral site.  Due to having to put Mn atoms into the square pyramidal 

sites the axial bond of the octahedron shortens on one side creating a irregular octahedron, with 

two long bonds (2.00 and 2.28 Å) and four short bonds averaging 1.91 Å each.  At the doping 

level x = 2 having to insert Mn into square pyramidal sites results in distorted sites relative to the 

undoped material, with four different square pyramids each with differing bond lengths, with a 

similar result observed on the octahedral sites.  It is suggested that when x = 2, the distortion 
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imposed on the Mn
3+

 octahedral sites, forcing them away from a Jahn-Teller geometry preferred 

is a possible driving force for the increased levels of Mn doping becoming unfavourable. 
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3.5.3 Results for M = Ni 

 

Figure 32 a) Solid solution energies calculated according to equation (3.9) when M = Ni for each of the different 

orderings trialled in the DFT calculations.  b) The DFT calculated unit cell volumes as a function of Ni content.  c) 

Average bond lengths for each of the B-stie environments in the DFT calculations as a function of Ni content. 
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When M = Ni (Figure 29), no structure was found to be favoured versus the undoped material, 

the highest energy doping level still containing Fe was x = 2, in which the Ni atoms were in the 

square pyramidal sites, with a reaction enthalpy of 0.26 eV/FU higher than the undoped (Figure 

32a).  At x = 2, where Ni becomes the dominant B-site metal the favoured magnetic ordering 

switches from G-type antiferromagnetic to ferromagnetic. 

When x = 1 for M = Ni, the unit cell volume (Figure 32b) was almost identical between both of 

the magnetic arrangements when the Ni atoms were preferentially placed in the square pyramidal 

sites (a difference of only 0.06 Å
3
) and have the smallest unit cell volumes, however, unlike for 

the other dopant species, the smallest unit cell volume does not indicate the most stable structure.  

The lowest energy configuration at x = 1 was found to be the mixed configuration, by a small 

energy difference of 0.014 eV/FU.  The discrepancy with the unit cell volumes of the Ni doped 

structures with the other dopant species is possibly explained by looking at the bonding 

geometries in the configuration with the lowest volume for M = Ni.  The smallest configuration, 

while minimising the volume of the unit cell, forces the Fe atoms (still the major B-site atom) to 

distort largely away from the bonding geometry of the undoped material.  The bonds in the 

lowest energy configuration however (but not the smallest volume), do allow for the B-site 

environments to remain close to the undoped material (Figure 32b). 

When looking at the bonding environments for the lowest energy configurations when M = Ni 

(Figure 32c) it was calculated that over the doping series there is little change in any of the 

equatorial bonding environments on either B-site.  Looking at the axial bonds, there is marginal 

change between  x = 0 and x = 1.  When Ni becomes the major B-site metal (x = 2) and 

ferromagnetic ordering becomes favoured, the octahedral and square pyramidal axial bonds 

decrease and increase respectively to become close in length to the other bond lengths.  The 
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change in bond lengths results in all of the bonds in the system being very similar, with only a 

gap of 0.094 Å between the biggest and smallest of the average bond lengths.   

From the DFT calculations a suggested explanation as to why forming a 3ap perovskite when M 

= Ni is not predicted to be favourable, in addition to the difficulty in forming Ni
3+

 compounds:  

 When x = 1 the lowest energy configuration is not the configuration with the smallest unit 

cell volume due to how the Fe bonding environments are distorted, with the configuration 

with the lowest energy having the Fe environments closer to that of the undoped material. 

 When x ≥ 2 all of the bonding environments for the B-site metals become very similar 

and to some approximation become closer to those observed for disordered perovskites. 

This effective disorder may make long range ordering un-favourable, coupled with 

forcing the Fe atoms into a ferromagnetic state. 

Therefore the DFT calculations predict that experimentally doping at x = 1 with Mn should be 

the only doping favoured in the YBa2Fe3-xMxO8 (M = Co, Ni or Mn) in addition to the previously 

reported Co doping
27

.  

 

3.6 Experimental results 

Based upon the computational predictions outlined in the previous section, samples were 

synthesised for M = Mn, x = 1, 2 (YBa2Fe2MnO8±δ and YBa2FeMn2O8±δ) and M = Ni, x = 2 

(YBa2FeNi2O8±δ) to test the composition predicted to be favourable and to confirm that the 

calculations correctly predict where doping would be unfavourable.  
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Figure 33 PXRD patterns from stiochometric samples of YBa2Fe3-xMxO8 for a) M = Ni & x = 2 (YBa2FeNi2O8±δ), b) 

M = Mn & x = 2 (YBa2FeMn2O8±δ) and c) M = Mn and x = 1 (YBa2Fe2MnO8±δ) d) YBa2Fe2MnO8-δ with an 

optimised Y:Ba ratio (Y1.175Ba1.825Fe2MnO8.04(5)) when synthesised under a N2 atmosphere.  The XRD patterns show 

that no 3ap perovskite is formed in YBa2FeNi2O8±δ, with a mix of oxide phases identified(α = Y2O3, β = NiO, γ = 

BaY2NiO5
128

 and δ = YBa3Fe2O7.5
129

).  YBa2FeMn2O8±δ contains a mix of hexagonal (‡) and two tetragonal (*) 

perovskite phases (where one of the phases is similar to the main phase in YBa2Fe2MnO8±δ).  YBa2Fe2MnO8±δ 

contains a 3ap perovskite (†)as the major phase with a minor hexagonal perovskite (‡) impurity identified as a 

BaMnO3 type hexagonal perovskite. Y1.175Ba1.825Fe2MnO8.04(5) contains single phase 3ap perovskite (†). 

 

Samples with and the composition YBa2FeNi2O8±δ fired under flowing N2, (Figure 33a), it was 

observed that the sample contains a mixture of known binary and ternary oxides.  In samples of 

composition YBa2FeMn2O8±δ (Figure 33b), the major phase was indexed to be a hexagonal 

perovskite similar to reported 4-H BaMnO3-δ
118

, along with two tetragonal/pseudo tetragonal 

phases with the first having lattice parameters of a = 3.9270(2) Å and c = 3.8380(4) Å and the 

second with a = 3.9004(9) Å and c = 3.926(1) Å (obtained from Pawley refinements using 
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topas), noting that there were no reflections observed to indicate any long range ordering for 

these tetragonal perovskite phases
130

.  The phases observed in YBa2FeNi2O8±δ and 

YBa2FeMn2O8±δ are in agreement with the predictions from DFT in that no 3ap perovskite was 

formed as the major phase in either sample. 

 

Figure 34 a) Co Kα1 XRD pattern for YBa2Fe2MnO8±δ sample synthesised in static air, where η indicates BaFe2O4 

type phase 
13
, ε indicates YFeO3 perovskite type phase 

131
 and ζ indicates BaMn0.4Fe0.6O2.73 type phase 

132
.  b) Co 

Kα1 XRD pattern for YBaFeNi2O8±δ sample synthesised in static air, where α indicates Y2O3, β indicates NiO, γ 

indicates a phase similar to the reported YBa3Fe2O7.5 phase
129

 and δ indicates reflections consistent with BaFeO3 

perovskite phase. 

 

In the YBaFeNi2O8±δ and YBa2Fe2MnO8±δ samples that were fired under static air (Figure 34), no 

3ap phases were observed to form.  With YBaFeNi2O8±δ (Figure 34b) the same impurity phases 

were observed as for flowing N2, although with different relative intensities in the diffraction 
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pattern, with the main shift being a reduction in the observed reflections for YBa3Fe2O7.5.  For 

the YBa2Fe2MnO8±δ (Figure 34a) sample fired in static air, two main phases were observed by 

XRD, corresponding to YFeO3 orthorhombic perovskite 
131

 and BaMnO3 hexagonal perovskite 

(similar to that observed in the YBaFeMn2O8±δ sample fired under flowing N2). 

Diffraction data for YBa2Fe2MnO8±δ (Figure 33c) show that the major phase is indexed to be a 

3ap perovskite and a hexagonal impurity identified as similar to 10H BaMn0.4Fe0.6O3−δ 
132

. The 

composition for YBa2Fe2MnO8±δ was optimised to achieve a high purity sample by altering the 

Y: Ba ratio.  This was achieved by searching a 1-D phase diagram covering YyBa3-y with y 

values ranging between 0.8 and 1.275 while maintaining the same synthetic procedure during 

this search, with a reduced target mass of 0.3 g under flowing N2. The 3ap was only obtained 

phase pure only at the composition Y1.175Ba1.825Fe2MnO8±δ (Figure 33d), with decreases or 

increases in Y content resulting in impurities of 10-H hexagonal perovskite or YFeO3, 

respectively (Figure 35a and c). 

The oxygen content in the optimised composition, Y1.175Ba1.825Fe2MnO8±δ, was analysed by 

iodometric titration.  The oxygen content was determind using the following equation to find x in 

a perovskite with the formula unit ABOy+x, where y is the oxygen content of the  reduced 

compound post titration, in order to find the total sample oxygen content: 
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     (3.10)  

Where x indicates the excess oxygen per formula unit, m is the sample mass, n is the number of 

moles of oxygen calculated from the titration according to the reaction in equation (3.11).  Mred 
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indicates the molar mass of the fully reduced compound, normalised such that the total number 

of A and B species is equal to 1 of A and B-sites and Mo is the molar mass of oxygen. 

  

 
        

  
                     
       

 

 
    

         (3.11) 

Where the number of mols of I2 observed from the titration (when titrated against S2O3
2-

 from the 

standardised sodium thiosuphate solution) can be equated to an equal number of moles of oxygen 

from the dissolved oxide sample.  The determined oxygen content was found to be O8.04(5), 

giving an average transition metal charge state of 2.97+, assuming a charge state of 3+ and 2+ on 

Y and Ba respectively. 

Mössbauer spectroscopy (Figure 36c) of this sample showed the material to be magnetically 

ordered at room temperature (295 K). The spectrum showed the presence of two Fe
3+

 sites, 

which were refined as consistent with octahedral and square pyramidal geometries. From this, 

the occupancies of each site were refined as 80.5(9)% in square pyramidal geometry and 

19.5(9)% in octahedral geometry.  Assuming that the only other species on the same sites is Mn 

and that the ratio of octahedral to square pyramidal sites is constant at 1: 2, the percentage of Mn 

atoms in each environment was calculated to be 39% square pyramidal and 61% octahedral. 

Successful synthesis of pure 3ap Y1.175Ba1.825Fe2MnO8.04(5) required careful control of the 

transition metal charge state; alteration of the A site charge and control of oxygen partial 

pressure during synthesis using N2 gas were both required. Synthesis in air and synthesis with 

lower average A site charge state both resulted in the formation of Mn
4+

 containing species in 

preference to 3ap. The absence of oxygen deficient sites or interstitials in the 3ap structure, as 

confirmed by iodometric titration and Rietveld refinement, indicate that the structure has a low 

tolerance for oxygen non-stoichiometry.  The oxygen content of the DFT configurations and 
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therefore the B-site charge state was fixed, since only the stoichiometric composition was 

calculated; experimentally however, the tuning of the sample composition and atmosphere used 

during synthesis was required to control the average B-site charge state to near 3+ to stabilise 

3ap phase relative to other competing phases containing Mn in a 4+ state.  In this case 

performing a calculation at the exact composition was not necessary to predict the initial doping 

success, however experimental refinement of the composition was still required to isolate the 

compound. 
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3.7 Discussion 

 

Figure 35 a) Refined phase fractions in Y3-zBaxFe2MnO8±δ samples as a function of the Y content, 3ap indicates the 

phase fraction of the desired phase, YFeO3 indicates the phase fraction of a perovskite similar to the reported YFeO3 

material
131

 and Hexagonal perovskite similar to the reported 10-H BaMn0.4Fe0.6O3-δ material
132

  b) Refined unit cell 

volumes for Y3-zBaxFe2MnO8±δ samples as a function of the Y content.  c) CuKα1 XRD patterns of Y3-

zBaxFe2MnO8±δ samples as a function of the Y content, blue boxes labelled with † indicate regions where hexagonal 

perovskite reflections are observed and the red box marked with ‡ indicates the region where the main reflection for 

YFeO3 perovskite is observed. 

 

Refinement of the Y1.175Ba1.825Fe2MnO8.04(5) unit cell as a function of the Y content shows that 

there is a small variation in  the unit cell volume (Figure 35).  The variation in the cell volume 

implies that the structure should be accessible over a range of compositions, however in our 

studies we only access the structure phase pure at one specific composition, suggesting that 
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variation of the Fe: Mn ratio is also required at each Y: Ba ratio in order to synthesise the phase 

pure structure over a range of compositions.  This was not attempted within this chapter as 

retention of Fe: Mn ratio was the focus of the DFT calculations. 
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Figure 36 a) Rietveld plot for MoKα P-XRD data for phase pure Y1.175Ba1.825Fe2MnO8.04(5).b) Rietveld plot for 

HRPD back-scattering bank (168˚ bank) containing both nuclear and magnetic phases for phase pure YBFM.  c) 

Room temperature Mössbauer spectrum for phase pure Y1.175Ba1.825Fe2MnO8.04(5), showing a fit to two Fe
3+

 

environments for the refined as octahedral and square pyramidal geometries, and a signal near 0 mm/s attributed to 

an Fe metal impurity introduced during Mössbauer sample preparation. 
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Symmetry of the lowest energy DFT structure (YBa2Fe2MnO8, Octahedral arrangement as 

outlined in computational setup) was determined using the FINDSYM code
133

 (version 3.2.3, 

tolerance factor set to 0.1 Å).  The highest symmetry space group was determined to be 

tetragonal P4/mmm (Figure 37a) in a unit cell a = b = 3.91603 and c = 12.19815 Å.  This 

symmetry reduced unit cell was used as the basis for the structural refinement of 

Y1.175Ba1.825Fe2MnO8.04(5).  In order to be consistent with reported structures for the undoped 

material the origin of the unit cell was set to be on the octahedral B-site.  The observed B-site 

occupancies from Mössbauer spectroscopy were used as the starting model for B site ordering 

within the structure. For the Rietveld refinement of Y1.175Ba1.825Fe2MnO8.04(5), the structure was 

entered into GSAS as separate nuclear (P-XRD and NPD) and magnetic (NPD only) phases, 

refined diffraction patterns can be found in Figure 36a and b. The magnetic cell was refined as a 

2 × 2 × 2 super cell of the nuclear cell, in the Fmm′m′ space group configured in an G-type anti-

ferromagnetic structure.  The magnitude of the magnetic moment on the square pyramidal and 

octahedral sites allowed to refine independently with the direction of the magnetic moment 

refined along the a axis.  Constraints were setup between the two phases in order to keep the B-

site atoms consistent (positions, occupancies and thermal parameters were restrained) and the 

unit cells and phase fractions of the two phases were fixed, so that the ratio of the lattice 

parameters and total number of B-site atoms was maintained between the nuclear and magnetic 

phases. 

As the starting model for the structure refinement of Y1.175Ba1.825Fe2MnO8.04(5) was the most 

stable DFT model, the composition was initially set to close to the nominal value at 

Y1.16Ba1.84Fe2MnO8, with the additional Y inserted onto the Ba A-site.  As the Rietveld 

refinement progressed, the composition was allowed to refine with the only restraint being that 
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full occupancy was enforced at each metal site.  During the Rietveld refinement the space group 

was changed to Pmmm to allow an orthorhombic distortion in the lattice parameters to improve 

the fit of reflections with hkl values where h ≠ k.  The refined orthorhombic distortion is small 

(the difference between the a and b lattice parameters is less than 3×10-3 Å).  The space group of 

the magnetic cell did not need to be changed as the Fmm’m’ space group is already an 

orthorhombic space group.  The final Rietveld plots are shown in Figure 36a) and b), with the 

resulting structure in Figure 37b and the results of the refinement in Table 2 and Table 3, the 

reduced χ
2
 was 4.46 for 72 variables. 

Upon refinement of the structure it is shown that the DFT model calculated the unit cell volume 

to within 3.5% of experimental observation for Y1.175Ba1.825Fe2MnO8.04(5), with a similar 

agreement between the reported and calculated cell volumes for the un-doped material.  The 

refined structure shows that the unit cell distorts upon doping compared to the un-doped structure 

by a shortening of the a and b axis and a lengthening of the c axes.  The shift is clearly seen by 

looking at the average c/a ratio before and after doping, changing from 3.018 to 3.087 (+2.29 %), 

this is close to the expected shift from the DFT model of +3.15 %.  The unit cell distortion leads 

to an overall volume reduction on doping of 0.5% (DFT model calculated a reduction of 0.25%).  
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Figure 37 a) The lowest energy DFT cell for Y1.175Ba1.825Fe2MnO8.04(5) and the symmetry reduced cell after using 

FINDSYM.  b) The refined nuclear structure (left) of Y1.175Ba1.825Fe2MnO8.04(5) and the refined magnetic structure 

(right), note that for clarity the atoms from the nuclear unit cell are overlaid in blue.  c) The observed 

Y1.175Ba1.825Fe2MnO8.04(5) structure (blue) overlaid with the DFT predicted cell (yellow). The unit cell sizes have 

been normalised to the observed cell to highlight the similarity between the observed and predicted atomic co-

ordinates. 

 

During Rietveld refinement, the A-site and B-site ratios in Y1.175Ba1.825Fe2MnO8.04(5) changed 

from the starting values, to give a refined composition of Y1.14(1)Ba1.86(1)Fe1.961(4)Mn1.039(4)O8, a 

result close to the nominal composition of Y1.175Ba1.825Fe2MnO8.04(5).  As the composition of 

Y1.175Ba1.825Fe2MnO8.04(5) contains an excess of yttrium that occupies the A2 site with barium, 

although there was no observed disorder on the A1 site, remaining fully occupied by yttrium. 

The atomic co-ordinates of the refined structure show little deviation away from that of the DFT 
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structure (Figure 37c and Table 2), with exception of the z position of O2 (Table 2), leaving the 

two oxygen atoms in the equatorial position of the square pyramidal site slightly buckled. 

Refinement of the oxygen content was trialled during the structural analysis.  No vacancies were 

observed on the five oxygen positions and no extra oxygen within the structure could be found.  

Refinement of additional oxygen was trialled by placing an extra oxygen site in plane with the Y 

site (A1 in Table 2), previously reported as the O4 site in the un-doped material
13

, in-plane with 

the A1 site.  As no additional oxygen or any oxygen vacancies were found, the oxygen content 

was fixed to the nominal value of O8, which is in good agreement with the oxygen content 

observed from iodometry of O8.04(5). 

Ordering between the two B-site geometries in the refined structure was observed to change little 

from the starting values of Fe0.805(9)Mn0.195(9) (B1) and Fe0.39(2)Mn0.61(2) (B2) for the square 

pyramidal and octahedral sites respectively refined values being Fe0.762(1)Mn0.238(1) and 

Fe0.437(2)Mn0.563(2), a difference of ≈ 4% showing the refined model to be in good agreement with 

room temperature Mössbauer Figure 36c) spectroscopy values. Note that due to the large contrast 

in neutron scattering between Fe
 
and Mn (coherent scattering lengths of 9.45 fm and −3.73 fm, 

respectively 
134

), therefore the refinement of the occupation on this site is reliable.  

In order to test how well the 0 K DFT calculations presented in this chapter represent the 

possible B-site ordering in the 3ap structure, a statistical mechanics approach as detailed in the 

literature
47

 was applied to calculate B-site orderings at elevated temperatures.  This statistical 

mecahnics approach estimates the occupation of different configurations at increased 

temperatures based upon the energy differences between configurations while taking into 
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account configurational entropy and estimating energies for paramagnetic states at high 

temperatures (as outlined in the introduction chapter). 

This approach was applied to the six configurations used in the DFT calculations of 

YBa2Fe2MnO8 detailed in the computational methods when Temperature (T) was equal to 300 K.  

When calculating populations at high temperatures, energies for paramagnetic states were 

estimated, using the average energy of the ferromagnetic and anti-ferromagnetic states.  

Populations at two temperature values were calculated, with T equal to 300 and 1475 K in order 

to approximate room temperature and the synthesis temperature.  From the statistical mechanics 

results, for each of the structures it is possible to calculate the expected population of each of the 

B-site environments, knowing the average population of each environment in each configuration. 

When the occupations of each configuration is estimated at 1475 K the percentage of the Mn 

occupying octahedral and square pyramidal sites was calculated to be 71.4 % and 28.6 % 

respectively; compared to a completely disordered model where 33.3 and 66.7 % of the Mn 

atoms would be expected in the octahedral and square pyramidal sites respectively.  The result at 

1475 K suggests that B-site ordering, with the majority of Mn occupying the octahedral site is 

calculated to be favourable.  At 300 K the statistical mechanics would expect the structure to be 

very close to fully ordered with occupancies of 99.7 % and 0.3 % for the octahedral and square 

pyramidal sites respectively.  The higher temperature calculation was decided to be the most 

applicable calculation for comparison to our experimental results as experimentally cation 

ordering will be effectively frozen while still at relatively high temperatures.  The calculated B-

site ordering from the statistical mechanics show that the DFT model had calculated the correct 

trend when compared to the experimental Mn occupancies. 
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The magnetic moments for the B-sites were refined to be 3.41(3) and 2.81(4) μB for the square 

pyramidal and octahedral sites. The absence of polyhedral tilting in the experimentally observed 

structure leads to the conclusion that the orthorhombic distortion occurs due to the magnetic 

moments aligning along the a axis. The conclusion that the orthorhombic distortion is caused by 

the magnetic ordering accounts for why the DFT model did not calculate a distortion, as with a 

colinear spin model this directional magnetically induced distortion would not be possible. 

Comparing the M-O bonding environments in Y1.175Ba1.825Fe2MnO8.04(5) with YBa2Fe3O8 (Table 

4) it was observed that there is little change in the square pyramidal site.  However, it is observed 

that on doping the Moct – Oaxial bond lengthens by 0.094(3) Å, suggesting a Jahn-Teller distortion 

of the site as would be expected for a Mn
3+

 octahedral site; increasing the distortion of the 

already distorted site in the undoped material.  Examining bond distances in the structure, the 

octahedral site distortion is the main cause of the lattice parameter distortion in the material.  It 

was observed that DFT calculations over estimate the length of the axial bond length in the 

octahedral site consistently by ~ 0.1 Å in both the doped and undoped material.  However the 

change in the axial bond length upon doping in the DFT calculation is similar to that found 

experimentally with an increase of 0.113 Å.  The discrepancy can be attributed to the fact that 

the experimental structure also contains Fe on the octahedral site, causing the shift in bond length 

to be smaller than predicted by DFT. 

The methodology reported by Baur 
135

 implemented in VESTA 
136

 was used to quantify the 

distortions of the polyhedra in the 3ap structure by calculation of a distortion parameter 

according to the following equation: 
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Where D is the distortion parameter, n is the number of bonds in the polyhedron, Li is the length 

of bond i, and Lavg is the average bond length in the polyhedron.  An undistorted polyhedron 

would yield a value of zero and the heavily distorted octahedra in the reported Bi4Ti3O12 phase 

have values of 0.078 and 0.119
137

.  All calculated values can be found in Table 5, experimentally 

the octahedral site is observed to distort significantly upon doping, with the distortion parameter 

changing from 0.039 to 0.060 (an increase of 56.6%), driven by the aforementioned elongation 

of the axial bond.  The square pyramidal site, however, sees a much smaller shift in its distortion 

parameter, changing from 0.023 to 0.025 (an increase of 12.4%).  In the DFT structures, a similar 

shift in the distortion is observed on the octahedral site, with a shift from 0.049 to 0.078 (an 

increase of 57.8%).  However, when looking at the change in distortion on the square pyramidal 

site with DFT, there is actually a reduction of the value of D from 0.029 to 0.026 (a decrease of 

11.4%).  When looking at the distortion parameters of all of the DFT configurations, none of the 

configurations trialled in this chapter resulted in an increase in the distortion parameter of the 

square pyramidal site. 

This result of distortion of the polyhedra is similar to that observed when comparing the reported 

Ca2Fe2O5 and Ca2Fe1.039(8)Mn0.962(8)O5 compounds found in the brownmillerite structure 
10, 22

, in 

that the distortion parameter on the Mn site increases and decreases on the Fe site when 

compared to the Fe pure compound.  In the brownmillerite compound, the distortion parameter 

on the octahedral site (dominantly occupied by Mn) increases from 0.045 to 0.066 (increase of 

47.6%) and the tetrahedral site (dominantly occupied by Fe) decreases from 0.026 to 0.020 

(decrease of 21.0 %) relative to the Fe pure Ca2Fe2O5 compound. 
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The material synthesised in this chapter can be compared to other Fe and Mn containing layered 

oxides, one example of a compound with B-site ordering between Fe and Mn is 

Ca2Fe2−yMnyO5+z brownmillerites 
22, 116

.  In these materials, the same level of Mn doping is also 

reported as the material studied in this chapter (y =⅔). At this doping level a similar site 

preference is observed to to that reported in this chapter, with the Mn exclusively being doped 

into the octahedral site.  Once the value of y is increased to 1, as with the 

Y1.175Ba1.825Fe2MnO8.04(5) compound, where the octahedral sites could potentially be fully 

occupied by Mn, some disorder between the Fe and Mn sites is observed.  In previous work with 

the Ca2Fe2−yMnyO5+z system that when the Mn doped compound is compared to the Fe pure 

compound that the same distortions of the unit cell that we observe with 

Y1.175Ba1.825Fe2MnO8.04(5), with the distortion of the unit cell largely driven by a distortion of the 

Mn octahedra.  By the use of DFT it has been possible to predict strong B-site ordering within a 

system, when precedents have been shown to exist with the dopant metal (Mn
3+

) with each of the 

possible site preferences possible within the 3ap structure; octahedral geometry 
22, 23

, square 

pyramidal geometry 
117

 and B-site disordered 
138, 139

. 

Although the calculations are based upon the stoichiometric compositions, this restriction was 

imposed as a far larger quantity of computing resources would have been required if a number of 

non-stoichiometric compositions were to be considered.  For each composition there would be 

the requirement to trial larger super cells and more configurations in order to determine the most 

stable arrangement for each composition.  For example, in the system studied in this chapter, 

with M = Mn, in order to calculate the Y:Ba non-stoichiometry in the steps of 0.025 that were 

used experimentally (calculating Y values of 0.8 – 1.2) would require an additional 48 

calculations for each value of x, assuming that 3 B-site orderings would be trialled for each Y 
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content value.  Under this assumption the number of calculations would increase for M = Mn 

from 7 (plus the undoped material) to 104 (48 for x = 1 and 2, plus 8 for x = 3).  In addition, a 

number of A site configurations for each B-site ordering would need to be modelled, and larger 

super cells would be needed to model the non-stoichiometry.  Hence the suggestion that a 

computational investigation of small changes in stoichiometry is unfeasible at present. 

 

3.8 Conclusions 

In summary, it has been shown that it is possible to use DFT to calculate reaction enthalpies of 

complex oxides from binary oxides; this method has also then been applied to predict a stable 

doping level in the YBa2Fe3-xMxO8 system and rationalise why doping becomes unfavourable 

when x = 2 and M = Mn.  Due to the increasing amount of Mn atoms forcing the 3ap octahedra 

away from a distorted state, favoured by Jahn-Teller distorted Mn
3+

.  These calculations have 

been able to predict the approximate composition, accurate atomic co-ordinates and B-site 

ordering of the doped structure and B-site distortions, (Figure 37c of an oxide where ordering 

between two similar transition metals is novel.  The predicted material was then synthesised with 

only small deviations in the structure and composition from those calculated. 

Using this methodology, compositions for which 3ap structure is predicted to be unfavourable, it 

was not observed to form when synthesis was attempted.  Therefore, it can be concluded that the 

methodology presented here is a powerful tool when attempting to synthesise new materials 

starting from a known structure or material and can be used for large and/or complex oxides 

where the systems are too large or complex for existing methods. 
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3.9 Tables 

Table 1: Shifts in bond lengths between the undoped and Co doped material.   

Bond DFT shift in bond length 

from undoped (Å) 

Reported shift in bond length from 

undoped(Å) 
27

 

Difference (Å) 

Moct - Oaxial 0.0092 -0.0124 0.0032 

Moct - Oequatorial -0.0045 -0.0032 0.0013 

Msq.py - Oaxial -0.0163 -0.0063 0.01 

Msq.py - Oequatorial -0.0051 -0.0336 (average) 0.0285 
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Table 2: Refined crystallographic data and DFT structure parameters for Y1.175Ba1.825Fe2MnO8.04(5) refined in Pmmm 

space group, note that all sites were constrained to be fully occupied, refined parameters shown in bold. 

 Parameter Rietveld DFT 

 a (Å) 3.88407(5) 3.91603 

 b (Å) 3.88125(5) 3.91603 

 c (Å) 11.98425(9) 12.19815 

Site 
Parameter Rietveld (sg. Pmmm) DFT (sg. P4/mmm) 

A1 Position 

Composition 

Uiso (Å
2
) 

Multiplicity 

0.5, 0.5, 0.5 

Y 

0.0127(2) 

1 

0.5, 0.5, 0.5 

Y 

- 

1 

A2 Position 

Composition 

Uiso (Å
2
) 

Multiplicity 

0.5, 0.5, 0.83558(7) 

Ba0.929(5)Y0.071(5) 

0.0127(2) 

2 

0.5, 0.5, 0.833890 

Ba 

- 

2 

B1 Position 

Composition 

Uiso (Å
2
) 

Multiplicity 

0, 0, 0.66045(6) 

Fe0.762(1)Mn0.238(1) 

0.013(1) 

2 

1, 1, 0.656840 

Fe 

- 

2 

B2 Position 

Composition 

Uiso (Å
2
) 

Multiplicity 

0, 0, 0 

Fe0.437(2)Mn0.563(2) 

0.0091(2) 
1 

0, 0, 0 

Mn 

- 

1 

O1 Position 

Composition 

Uiso (Å
2
) 

Multiplicity 

0, 0.5, 0.3757(1) 

O 

0.0133(5) 

2 

0, 0.5, 0.385130 

O 

- 

4 

O2 Position 

Composition 

Uiso (Å
2
) 

Multiplicity 

0, 0.5, 0.3880(1) 

O 

0.0175(6) 

2 

Equivalent to O1 

- 

- 

- 

O3 Position 

Composition 

U11, U22, U33 (Å
2
) 

Multiplicity 

0, 0, 0.81499(8) 

O 

0.035(2), 0.024(1), 0.0224(6) 

2 

1, 1, 0.809780 

O 

- 

2 

O4 Position 

Composition 

Uiso (Å
2
) 

Multiplicity 

0.5, 0, 0 

O 

0.0067(6) 

1 

0.5, 1, 1 

O 

- 

2 

O5 Position 

Composition 

Uiso (Å
2
) 

Multiplicity 

0, 0.5, 0 

O 

0.0135(7) 

1 

Equivalent to O4 

- 

- 

- 

Total refined composition: Y1.14(1)Ba1.86(1)Fe1.961(4)Mn1.039(1)O8 
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Table 3: Refined crystallographic data for the magnetic structure of Y1.175Ba1.825Fe2MnO8.04(5) and relationships to 

structure parameters in Table 1, note all parameters apart from the magnetic moments are linked with equivalent 

parameters in the nuclear structure 

 

Parameter Rietveld Relationship to nuclear 

 a (Å) 7.76814(9) x 2 anuclear 

 b (Å) 7.76248(9) x 2 bnuclear 

 c (Å) 23.9684(2) x 2 cnuclear 

Site 
Parameter Rietveld Equivalent nuclear site (Table2) 

1a Position 

Composition 

Uiso (Å
2
) 

μB 

Multiplicity 

0, 0, 0 

Fe0.437(2)Mn0.563(2) 

0.0091(2) 

-2.81(4) 

4 

B2 

1b Position 

Composition 

Uiso (Å
2
) 

μB 

Multiplicity 

0, 0, 0.5 

Fe0.437(2)Mn0.563(2) 

0.0091(2) 

+2.81(4) 

4 

B2 

2a Position 

Composition 

Uiso (Å
2
) 

μB 

Multiplicity 

0, 0, 0.33025(3) 

Fe0.762(1)Mn0.238(1) 

0.013(1) 

-3.41(3) 

8 

B1 

z = znuclear /2 

2b Position 

Composition 

Uiso (Å
2
) 

μB 

Multiplicity 

0, 0, 0.33025(3) 

Fe0.762(1)Mn0.238(1) 

0.013(1) 

+3.41(3) 

8 

B1 

z = ½ - znuclear/2 
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Table 4: Observed and calculated bond lengths for YBa2Fe3O8 (X= 0) and Y1.175Ba1.825Fe2MnO8.04(5)  

x= 1) 

Bond 
YBa2Fe3O8 

observed(Å)
13

 

Y1.175Ba1.825Fe2MnO8.04(5) 

observed (Å) 

YBa2Fe3O8 

DFT (Å) 

YBa2Fe2MnO8 

DFT (Å) 

Moct – 

Oequatorial 

1.9590(0)* 1.94204(3) – O4 

1.94062(3) – O5 

1.94133(3) average 

1.9767 1.9580 

MOct – 

Oaxial 

2.1807(17) 2.2173(10) – O3 2.2074 2.3203 

Msq.py – 

Oequatorial 

2.0198(4) 1.9894(4) – O 1 

2.0259(5) – O2 

2.0077(5) average 

2.0407 2.0240 

Msq.py – 

Oaxial 

1.8405(24) 1.8513(12) – O3 1.8597 1.8649 

 * SD reported as zero, error likely to be very small on this distance as both atoms have fixed co-ordinates. 

Table 5 Distortion parameters calculated in VESTA according to equation (3.12)
135

, note that the values quoted for 

the distortion parameters for the YBa2Fe2MnO8 – DFT are the averaged values when the DFT configuration contains 

both Fe and Mn polyhedral of the same type, configurations highlighted in bold for DFT configurations indicate the 

lowest energy configuration. 

Geometry YBa2Fe3O8 

Observed 

(literature)
13

 

Y1.175Ba1.825Fe2MnO8.04(5) 

Observed (this chapter) 

YBa2Fe3O8 

DFT 

YBa2Fe2MnO8 

DFT 

Square 

Pyramidal 

0.023 0.025 0.029 0.026 (octahedral) 

0.020 (square pyramidal) 

0.027 (mixed) 

Octahedral 0.039 0.060 0.049 0.078 (octahedral) 

0.060 (square) 

0.074 (mixed) 
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3.10 Appendix 

In preliminary work for this chapter, three different computational setups were tested.  For the 

lowest accuracy settings (labelled Low), the plane wave cutoff energy was set to 450 eV, and 

electron steps converged until ΔE was less than 1.0 x10
-5

 eV and forces on atoms to less than 

0.05 eVÅ
-1

. The k-point density was set according to the condition in equation (3.13), where y = 

20 on a gamma-centred mesh: 

          (3.13) 

Where ri is the real lattice vector (given in Å) and ki indicates the number of k-points along the 

lattice direction i.  For the next the configuration  (labelled Medium), forces on atoms were 

relaxed to less than 0.01 eVÅ
-1

, the plane wave cut-off was set to 520 eV and  y equal to 40, 

wave functions were converged as for the Low setting.  For the last accuracy settings (labelled 

High), the initial k-point density was set such that y was increased to be equal to 55, where the 

computational setups are summarised in Table 6. 
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Figure 38 Structure of LaMO3 used within this work for testing VASP settings, where atoms are coloured as 

follows: lanthanum (green), transition metal, M (brown) and oxygen (red). 

 

In order to determine which accuracy settings should be used in VASP when performing reaction 

calculations for YBa2Fe3-xMxO8, reaction energies were calculated from binary oxides for the 

system LaMO3 where M = Fe, Ni, Co and Cr.  As with the YBa2Fe3-xMxO8 system, the energy 

for O2 was considered and set to a value of -8.5 eV/FU in accordance with the literature
17

.  The 

addition of the binary oxide Cr2O3 (when M = Cr) with the input structure used as previously 

reported 
140

.  When using a +Ueff term for Cr, Ueff was set equal to 3.5 eV.  Atomic co-ordinates 

were used as experimentally reported for LaFeO3
28

 (Figure 38).  The atomic coordinates for the 

binary oxides were used as outlined in the computational setup section of this chapter.  For each 

of the values of M, four different magnetic orderings, A, C and G type anti-ferromagnetic and 

ferromagnetic orderings, were trialled in a collinear spin model.  
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Figure 39 Calculated reaction energies for LaMO3 for four different magnetic orderings and computational setups 

(as noted in main text) as follows: AFA equals A-type anti-ferromagnetic, AFC equals C-type anti-ferromagnetic, 

AFG equals G-type anti-ferromagnetic and F equals ferromagnetic. 

 

  Initially computational settings were trialled based upon the relative reaction energies 

calculated for each of the different magnetic orderings.  Results for these calculations (Figure 39) 

show that for M = Fe, Co and Cr obtain very similar trends in results for all three computational 

setups, although when the Low settings are used the absolute reaction energy calculated is 

always significantly lower than the other DFT settings.  When M = Ni however, the Low settings 

obtain a different order of stability, when compared to the Medium and High settings, calculating 

the A-type anti-ferromagnetic ordering as the most stable, compared to the Meduim and High 
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settings, which calculate the ferromagnetic ordering to be the most stable.  In summary it was 

concluded from these computational setups, that the medium settings provided the best balance 

between accuracy and speed of calculation. 

In order to calculate accurate, absolute values for the reaction energies, it has been shown 

previously that a +U term is required 
17

, this was applied as outlined in the computational section 

of this chapter.  Calculations with a +U term included were calculated using the Medium settings 

defined previously, with the LaMO3 structures setup using the G-type anti-ferromagnetic and 

ferromagnetic orderings.  The resulting reaction energies were then calculated and compared 

with experimentally reported values 
112

. 
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Figure 40 a) Reaction energies for the formation of LaMO3 from binary oxides in G-type anti-ferromagnetic 

ordering (AFG) and ferromagnetic ordering (F), calculated without the +U term. b) Reaction energies calculated for 

the formation of LaMO3 from binary oxides with the same magnetic ordering as in panel a), with the +U term 

included.  All of these calculations were performed using the Medium calculation settings outlined in the main text.  

c & d) Experimentally reported reaction energies 
112

 plotted versus the calculated formation energies, without the +U 

term (panel c) and with (panel d).  The imposed x = y line is plotted as a guide to the eye to help observe the 

difference between calculated and experimental formation energies. 

 

The DFT calculations of LaMO3 with the +U term, when compared to the calculations without, 

show that the introduction of the +U term results in absolute reaction energies that are much 

closer to those reported experimentally (Figure 40 c and d).  The addition of the +U term term 
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also results in larger energy differences between the G-type antiferromagnetic and ferromagnetic 

orderings (Figure 40) 

Following on from these calculations, further preliminary calculations on YBa2Fe3O8 in the 3ap 

structure found that a compromise in calculation settings between the medium and high settings, 

by reducing the plane-wave cut-off energy and the value of y in equation (3.13), named Low-

Medium in Table 6. 

Table 6 Input parameters for DFT calculations in VASP tested to find optimal values between fast and accurate 

calculations 

Setting Parameter Value 

Low Plane wave cutoff 450 eV 

 wavefunction convergence 1.0  10
-5

 eV 

 forces convergence 0.05 eVÅ
-1

  

 y 20 

Medium Plane wave cutoff 520 eV 

 wavefunction convergence 1.0  10
-5

 eV 

 forces convergence 0.01 eVÅ
-1

 

 y 40 

High Plane wave cutoff 520 eV 

 wavefunction convergence 1.0  10
-5

 eV 

 forces convergence 0.01 eVÅ
-1

 

 y 55 

Medium - Low Plane wave cutoff 450 eV 

 wavefunction convergence 1.0 x 10
-5

 eV 

 forces convergence 0.01 eV Å
-1 

 y 20 
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Chapter 4. Doping predictions for YBa2Ca2Fe5-xMxO13 

4.1 Abstract 

In this chapter, doping calculations are performed on a large, functional layered oxide. The 

reaction energies to form YBa2Ca2Fe5-xMxO13 from binary oxides and oxygen gas are calculated 

using density functional theory (DFT).  A range of transition metals were trialled, with M = Co, 

Cu, Mn, Ni and Zn for x = 0.25, 0.50, 0.75, 1.00 and 1.25 and with M = Ti and x = 0.25, 0.50, 

0.75 and 1.00.  These calculations then allow for the prediction of stable doping levels in the 

system along with some estimate of the site preferences for the dopant species.  The predictions 

made have subsequently been tested experimentally by other group members and found to be in 

good agreement with the predictions. 
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4.2 Introduction 

Building upon calculations presented in the previous chapter, this work uses a similar approach 

on a more complex and functional material.  The previously reported cathode 

Y1.1Ba1.5Ca2.3Fe5O13
15

 is shown to be stable, with good compatibility with existing electrolyte 

materials.  While the Y1.1Ba1.5Ca2.3Fe5O13 is found to have good area specific resistance (ASR) 

values (maximum value of 0.87 Ωcm
-2

 at 700 °C), the low reported d.c. conductivity of remains a 

problem for use as an SOFC cathode. Thus Y1.1Ba1.5Ca2.3Fe5O13 is a good candidate for doping 

in order to improve the observed d.c conductivity to enhance its properties as a cathode. 

The reported Y1.1Ba1.5Ca2.3Fe5O13 compound forms into a perovskite superstructure, an analogue 

of the previously reported Ba0.81Ca0.78Nd0.91 Fe2.5O6.43
16

 with a unit cell expanded by r45°(√2ap × 

√2ap × 10ap) relative to the cubic ABO3 perovskite cell, with the resulting structure in the Imma 

symmetry space group (hereafter referred to as the 10ap structure, Figure 41a) and contains three 

distinct A and B cation sites. 
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Figure 41 a) Experimental structure of Y1.1Ba1.5Ca2.3Fe5O13, the pie chart representation of atoms corresponds to 

their refined fractional occupancies. b) Choice of tetrahedral chains, viewed along the [101] direction generated by 

the space group of the structure, with the chain highlighted in blue removed in one half of the cell and the non 

highlighted chain removed in the other. c) The idealised structure for stoichiometric YCa2Ba2Fe5O13 used for the 

DFT calculations within this chapter.  Colours of atoms as follows (with the exception of the blue tetrahedral chain 

in panel b); yttrium (yellow), calcium (cyan), barium (green), iron (brown) and oxygen (red). 

 

The A-sites are split into two 8 co-ordinate yttrium, four 9 co-ordinate calcium and four 12 co-

ordinate barium sites, a significant amount of A-site disorder is observed experimentally between 

these sites (Figure 41a).  The B-sites are separated into two 4 co-ordinate tetrahedra, four 5 co-

ordinate square pyramidal and four 6 co-ordinate octahedral sites, where each of these 

geometries are distorted away from ideal.  The octahedral site is distorted such that it has four 
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short equatorial bonds and two long axial bonds, the square pyramidal has one short axial bond 

and four long equatorial, with the plane sitting below the iron site, the tetrahedral site has two 

bonds of equal length in the c direction, and the two bonds in the ab plane are of differing lengths 

to both the bonds in the stacking direction and each other.  The level of these polyhedral 

distortions can be quantified by calculation of each geometries distortion index, as reported by 

Baur
135

 and implemented in VESTA
136

: 
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D       (4.1) 

Where D is the calculated distortion index, n is the number of bonds in the polyhedron, Li 

indicates the bond length i in the polyhedron and Lavg is the average bond length in the geometry.  

A calculated D value of zero indicates an ideal undistorted polyhedron and a heavily distorted 

polyhedron, such as the octahedra in the reported Bi4Ti3O12 structure, have values of 0.078 and 

0.119
137

.  The polyhedra in the 10ap structure as reported, have values of 0.037, 0.022 and 0.034 

for the octahedral, square pyramidal and tetrahedral geometries respectively. 

In this chapter a series of calculations are performed for the YBa2Ca2Fe5-xMxO13 system, where 

M = Co, Cu, Mn, Ni, Zn and Ti.  When M = Co, Cu, Mn, Ni and Zn, x values were trialled for x 

= 0.25, 0.5, 0.75, 1.00 and 1.25, when M = Ti doping levels were calculated for x = 0.25, 0.5, 

0.75 and 1.00.  Since accurate reaction energies are sought in this study, DFT energies are 

required at each level of doping.   

A choice of preference for B-site doping is not a trivial choice, as each of the dopant species 

have been reported in more than one of the geometries found in the 10ap structure.  Examples 

have been reported for tetrahedral geometry for Co, Ni, Zn and Ti
141-145

, square pyramidal ions 
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reported for Co, Cu, Ni and Mn
117, 141, 146-148

 and all of the dopant species in this chapter have 

been reported in the octahedral geometry
3, 22, 149-152

.  Although not all of the dopant species 

considered in this chapter have been reported as doped into the 3+ oxidation state required by the 

10ap structure; so for calculations with a high dopant content where Fe cannot increase its 

oxidation state to compensate may inhibit doping.  The first challenge addressed in this chapter is 

generating input structures for the calculations, since a variety of configurations are required as 

the choice of B-site is not obvious, if indeed any B-site ordering is favoured. 

An existing precedent for the generation of structures is the Site Occupancy Disorder code
47

 

(SOD) that has been previously used for doping and solid solution calculations on smaller 

systems in combination with methods for relaxing and ranking structures
60-62

.  However, due to 

the size of the 10ap structure, using SOD would result in a large number of structures that would 

require relaxation at each doping level for each B-site metal.  For the doping range covered in 

this chapter, 4,216 independent configurations were found that would require relaxation for each 

metal (when doping goes up to x = 1.25), when all of the metals of interest are considered, this 

would result in a total of 22,175 configurations (plus the undoped material).  Initially each 

structure generated would require some level of relaxation and energy ranking, with many 

requiring DFT energies, in order to calculate accurate site orderings and reaction energies.  As a 

result of this it was decided to take a small number of configurations at each doping level that are 

representative of possible B-site orderings, to reduce the number of calculations at each doping 

level to a maximum of 5, leading to a total of 124 calculations performed in this chapter. 

DFT calculations cannot be easily performed on this structure and composition as reported due to 

the A-site non-stoichiometry and tetrahedral chain disorder.  If A-site disorder and disordered 

tetrahedral layers (Figure 41b) were to be considered, a large supercell of the experimental cell 
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would be required, considering the experimental cell already contains 92 atoms, the calculations 

would be very large and rapidly become unfeasible on such a cell.  In order to be able to perform 

DFT calculations, some approximation of the reported structure and composition have to be 

made.  First, the A-site disorder was removed from the calculations by making each A-site layer 

fully occupied by the A-site species which is reported to be the major A-site species.  The 

removal of A-site disorder leads to the stoichiometric composition, YBa2Ca2Fe5O13.   Secondly, 

disorder in the tetrahedral layers was removed as follows, when looking at the tetrahedral layer 

there are two choices of tetrahedral chain (with one highlighted in blue in Figure 41b), and the 

approximated structure was built with alternating the choice of tetrahedral chain between each 

tetrahedral layer as reported for this structure
16

.  In the resulting approximate structure shown in 

Figure 41c, the unit cell axis labels for the calculations were altered from the experimental 

structure, so that the long stacking axis was labelled as c rather than b. 

 

4.3 Computational Setup 

The method used for calculating reaction energies in this chapter is based upon the method used 

in the previous chapter, which has been shown as a good method for reproducing experimental 

reaction energies for perovskites
17

.  Calculations in this chapter were performing using plane-

wave DFT implemented using the Vienna ab-initio Simulation Package (VASP) version 5.2.2 
105, 

106
, with the Perdew, Burke and Ernzerhof (PBE) exchange correlation functional

103
.  For the A-

site atoms (yttrium, barium and calcium) the first sub-valent s orbital was treated as valence, 

where the pseudo potential was available for the B-site species (Fe, Cu, Mn, Ni and Ti) the first 

sub-valent p orbitals were treated as valence.  In all calculations within this chapter both atomic 
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positions and unit cell vectors were relaxed.  A gamma-centred k-point grid was used in each 

calculation, with the smallest k-point grid that fulfils the following condition: 

                  (4.2) 

Where nki is the number of k-points on the lattice vector i and ri is the length of the corrisponding 

real space lattice vector, given in Å.  The plane wave cut off energy was set to 450 eV.  

Wavefunctions were converged until the energy difference between electronic steps was less 

than 1×10
-5

 eV and forces on atoms were relaxed to less than 0.01 eV/Å. 

Rotationally invariant effective U parameters were used (Ueff), with values of 4.0, 3.3, 4.0, 4.0, 

6.4, 7.1 and 5.82 eV for Fe, Co, Cu, Mn, Ni, Zn and Ti respectively, as reported for previous 

calculations of oxides for each of the transition metal species
153-155

.  Where Ueff = U – J, values 

for Ti were U = 6.6 and J = 0.78 to give the Ueff = 5.82 eV, note that J = 1.00 for all other 

transition metal species.  Each of the 10ap structures within this chapter were setup with G-type 

antiferromagnetic ordering, using a collinear model without including spin orbit coupling.  Note 

that in all of the 10ap structures were calculated with only G-type anti-ferromagnetic ordering as 

this is the magnetic ordering reported for Y1.1Ba1.5Ca2.3Fe5O13
15

.  As each dopant species would 

remain the minority B-site metal (with the highest level being 25 mol% on the B-site), it was 

assumed that the magnetic ordering favoured in the reported experimental structure would 

remain favoured.  Magnetic ordering was used in the calculations of the binary oxides where 

magnetic ordering has been experimentally observed and reported in the literature
29, 120, 121, 124, 

156
. 

Atomic co-ordinates for binary oxides were used as reported
29, 120-124, 153, 155-157

.  The initial 

atomic co-ordinates for the 10ap structure were created based upon generation of the full unit cell 
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from the asymmetric co-ordinates using the space group symmetry, with the approximations 

outlined previously.  Four different B-site preferences were considered for each value of x.  The 

number of dopant atoms placed into the unit cell is equal to the value of x divided by 0.25, 

therefore the maximum number of dopant atoms placed into the unit cell at x = 1.25 is five. 

 

Figure 42 DFT configurations for the tetrahedral site preference at each value of x.  Colours of atoms as follows: 

yttrium (yellow), barium (green), calcium (light blue), iron (brown) and oxygen (red),dark blue indicates dopant 

sites for all dopant species, purple indicates a dopant site when M = Mn and Zn, grey indicates a dopant site when M 

= Co, Cu or Ni. 

 

For the first B-site preference, (named tetrahedral, Figure 42), all of the dopant species were 

placed onto the tetrahedral sites within the structure, although when x was equal to 1.25, all of 

the tetrahedral sites were occupied by the dopant species with one dopant atom remaining; when 

M = Mn or Zn, the additonal atom was placed on an octahedral site, when M = Co, Cu or Ni, the 
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extra atom was placed on a square pyramidal site.  The split between dopant species at x = 1.25 

was initiated based upon the literature reports for site preferences of the dopant species.  

Although Mn has been reported in both square pyramidal and octahedral geometries, doping 

calculations in the previous chapter suggest that Mn
3+

 and experimental reports for Mn
3+

 

containing oxides
22

 should show a stronger preference for the octahedral site, hence the 

additional Mn atom being placed in an octahedron.  In configurations where the tetrahedral 

layers were not fully occupied by dopant atoms (x < 1.00), dopant atoms were placed in such a 

way as to maximise separation. 

 

Figure 43 DFT configurations for the octahedral site preference at each value of x, colours of atoms as follows: 

yttrium (yellow), barium (green), calcium (light blue), iron (brown) and oxygen (red), with dark blue indicating the 

dopant sites. 
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The second site preference (named octahedral, Figure 43) has each of the dopant atom species 

placed onto the octahedral site at all values of x, with all of the dopant atoms accommodated into 

octahedral sites.  In all of the octahedral configurations the dopant atoms were placed in order to 

maximise the separation between dopant species.   

 

Figure 44 DFT configurations for the square pyramidal site preference at each value of x, colours of atoms as 

follows: yttrium (yellow), barium (green), calcium (light blue), iron (brown) and oxygen (red), with dark blue 

indicating dopant sites. 

 

The third preference (named square pyramid, Figure 44) has all of the dopant species placed into 

square pyramidal sites, dopant atoms were all accommodated into square pyramidal sites at all 

doping levels.  For the square pyramidal configurations the dopant atoms were arranged in such a 

way as to place them at maximum separation. 
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Figure 45 DFT configurations used for each doping level for the mixed site preference.  Atoms colours as follows: 

yttrium (yellow), barium (green), calcium (light blue), iron (brown), oxygen (red) and dopant species (dark blue). 

 

The fourth preference (named mixed, Figure 45) attempts to approximate a model for the B-site 

doping having little or no B-site preference.  When x = 0.25 no configuration was trialled as this 

dopant value constituted one dopant atom per unit cell and so there is no possibility of creating a 

doping arrangement with no site preference in the unit cell used in these calculations.  In order to 

be able to approximate a B-site disordered configuration a (2 × 2 × 1) cell would have been 

required, containing 368 atoms (to give 4 dopant atoms per unit cell) and due to its size, this 

calculation was not performed.  When x = 0.50, two configurations were trialled, with two 

dopant atoms per unit cell, each configuration contains one dopant atom in an octahedral site and 

the second either in a square pyramidal or tetrahedral site.  When x = 0.75, with three dopant 
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atoms, one dopant atom was placed in each of the available geometries.  When x = 1.0, two 

configurations were trialled, with one dopant atom placed into each of the geometry types, and 

then two arrangements were trialled for each dopant where the last atom was placed into the 

octahedral or square pyramidal sites.  When x = 1.25, with five dopant atoms, two dopant atoms 

are placed into octahedral and square pyramidal sites and one into a tetrahedral site, only this 

configuration was trialled as it results in the dopant atoms distributed evenly across the available 

B-sites in the ratios that each of the geometries appear in the structure (i.e. 2 octahedra : 2 square 

pyramids : 1 tetrahedron), all of the dopant configurations are summarised in Table 7. 

In order to calculate reaction energies across a compositional range, energies were calculated 

from binary oxides and oxygen gas as required in order to maintain the average 3+ oxidation 

state on the B-site in the 10ap product.  The reaction energies were therefore calculated according 

to: 
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 (4.3.f) 

Note that where multiple binary oxides exist for a dopant metal, the binary oxide with oxidation 

closest to 3+ was used and energies from equations 4.3 a-f were calculated in electron Volts per 

Formula Unit (eV/FU).  It was assumed that on doping that the average oxidation state on the 

transition metal sites would remain at 3+, either by the dopant metal changing oxidation state to 

3+ or the Fe oxidation state changing to compensate (or a mixture of both effects).  Doping is 

predicted by comparing the calculated reaction energy of the reported undoped material, doping 

is favourable when there is a decrease in reaction energy relative to that calculated for the 

undoped parent. 
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4.4 Results 

4.4.1  Overall results 

 

Figure 46 a) Reaction energies to form YBa2Ca2Fe5-xMxO13 as a function of the dopant level, where the lowest 

energy configuration at each dopant level is plotted. b) Reaction energies from panel a) expanded for clarity when 

looking at reaction energies for M = Co, Cu, Mn, Ni and Zn, all of the reaction energies were calculated according to 

equations (4.3 a-f). 

 

In order to predict whether doping should be favoured or not, calculated reaction energies are 

compared with the value obtained for the undoped parent structure, where a reaction energy of -

1.84 eV/FU was calculated.  Results are summarised in Figure 46, where for each dopant species 

the reaction energy of the most stable configuration is plotted as a function of the dopant content.   

When M = Zn and Ni, doping at x = 0.25 is calculated to have the lowest reaction energy and 

stable relative to the undoped material, with the reaction energy rising after this to become 

unfavourable.  When M = Co, doping is calculated to be favourable at all doping levels, the 

reaction energy steadily decreases to a minimum at x = 1, with a slight increase in energy when 

increasing the doping level to 1.25.  When M = Cu, doping is calculated to be favourable, there is 

an initial decrease in the reaction energy up to x = 0.75 after which the calculated reaction energy 
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shows little variation as a function of composition.  When M = Mn, the likelihood of doping 

being favourable is marginal as the calculated reaction energy as a function of doping level does 

not change significantly.  When M = Ti, no doping is calculated to be favourable as the 

calculated reaction energy shows a sharp increase immediately upon doping, with no minima 

calculated across the doping series containing Ti. 
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Figure 47 Changes to the calculated lattice parameters for YBa2Ca2Fe5-xMxO8. a) Changes to the calculated a lattice 

parameter as a function of the dopant content. b) Changes to the calculated b lattice parameter as a function of 

dopant content. c) Changes to the c lattice parameter as a function of dopant content.  For all panels the value 

reported is for the most stable configuration at each doping level. 
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The overall change in lattice parameters as a function of doping was calculated for each dopant 

species (shown in Figure 47).  Shifts of all three lattice parameters for M = Co show a reduction 

as a function of doping, while doping is preferred on the tetrahedral site.  When x = 1.25, and the 

square pyramidal site is favoured, the a and b lattice parameters expand and the c axis contracts 

(Figure 47).  When M = Cu the lattice a and b lattice parameters show a decrease at x = 0.25 

where doping is most favourable.  For Cu doping, when doping is preferred on the square 

pyramidal site (x = 0.25, 1.00 and 1.25), there is a contraction in the c direction (Figure 47c), 

although when doping is preferred on the octahedral site the c axis expands.  When M = Mn, 

there is a constant trend across the doping series for contraction of the a and b parameters 

coupled with an expansion of the c parameter.  When M = Ni, at the minimum reaction energy (x 

= 0.25), there is little variation in the a and b lattice parameters, with a difference of less than 

0.01 Å in each parameter, the a direction contracts slightly and the b direction expands slightly.  

For M = Ni and x = 0.25 the c parameter is calculated to contract by 0.082 Å.  When M = Zn, the 

a and b lengths contract relative to the undoped material, when there is a Zn atom on a 

tetrahedral site there is an expansion in the c direction (x = 0.25 and 0.50),  otherwise the c 

direction contracts. 
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4.4.2 Results for M = Co 

 

Figure 48 a) Calculated reaction energies for the formation of the 10ap perovskite as a function of Co content, 

calculated according to equation (4.3.a), where each line indicates the calculated energy for each site doping 

preference.  b)  Calculated unit cell volumes as a function of Co doping, each line indicates the volume of the unit 

cell for each site preference for the Co dopant.  c) Calculated average bond lengths for each geometry type in the 

10ap structure, calculated at each doping level for the configuration with the lowest energy.  d) The average 

distortion index parameters calculated for each geometry type in the 10ap structure, plotted as a function of the Co 

doping, each value is calculated for the configuration with the lowest calculated reaction energy, according to 

equation (4.1). 

 

When M = Co (Figure 48a), doping is predicted to be favourable across the compositional range, 

there is a general decrease in reaction energy upon doping Co until x = 1.00, at this doping level 

Co is calculated to prefer the tetrahedral site.  The reaction energy at x = 1.00 is calculated to be 

0.12 eV/FU lower in energy when compared to the undoped material.  On increasing the doping 
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level to 1.25, there is a small rise in the reaction energy of 0.05 eV/Fu compared to x = 1.00 and 

the site preference switches to the square pyramidal site, although the doping is still calculated to 

be favourable.  Note that the calculated reaction energies are very close between configurations 

across the compositional series and therefore it would only be expected to see only a slight 

preference for Co to occupy the tetrahedral site.  When x = 1.00 and the dopant Co can fully 

occupy the tetrahedral sites, at which point B-site ordering is calculated to be favourable as the 

next nearest configuration is calculated to be 0.15 eV/FU less stable. 

As doping increases in the system it is calculated that there should be an overall reduction in the 

unit cell volume of the structure (Figure 48b, Table 8), with a decrease of 1.98% when doping 

reaches x = 1.25.  There is a reduction in the unit cell volume as a function of doping, although it 

does not necessarily mean that the configuration with the lowest energy also has the smallest unit 

cell volume. The trend calculated here for unit cell volumes is in contrast to the Co doping 

calculations presented in the previous chapter, for YBa2Fe3-xCoxO8, where the lowest energy 

configuration is always calculated to have the smallest unit cell volume.  This suggests that site 

preference for Co is not driven by minimising the unit cell volume, as could have been suggested 

for the system investigated in the previous chapter. 

Investigating the bond lengths upon doping Co in to the 10ap structure, with the lowest energy 

configuration at each doping, the average bonding distances in the material (Figure 48c) do not 

alter significantly as a function of dopant content.  The values calculated and referred to above 

are for the average of Co and Fe atoms in each environment within the structure.  When looking 

at the tetrahedral site, there is a small decrease in the average bond length up to x = 1.00, with a 

decrease of 0.020 Å.  When x increases to 1.25, and Co switches to preferring the square 

pyramidal site the decrease in the tetrahedral bond length is reversed, with the bond returning to 
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a similar length to the undoped material.  The change in the tetrahedral site between x = 1.00 and 

x = 1.25 is concurrent with a decrease in the length of the square pyramidal axial bond of 0.044 

Å as the Co atoms change to favour the square pyramidal site, although it is calculated that there 

is no substantial change in the equatorial bond length on this shift. 

The distortion parameters calculated when doping with Co (Figure 48d) show little deviation 

away from the updoped material on the octahedral site, the square pyramidal site only observes 

an increase of 0.007 (+ 26.2%) when Co is doped onto the site.  As the Co content is increased 

on the tetrahedral site there is a steady increase in the distortion of the site, with an increase of 

0.017 (+ 81.2%), which reverses as soon as the doping preference switches away to the square 

pyramidal geometry.  The observation on the Co doped sites combined with the distortion 

parameters not shifting significantly on the Fe sites indicates that the introduction of Co into the 

structure is easily accommodated; as the doping is shown to have little effect on the surrounding 

Fe environments whist concurrently allowing for the Co sites to distort to favour the dopant 

atom.  Therefore, when M = Co the dopant species in the 10ap only significantly effects the 

bonding environment of the preferred Co site. 

In summary for M = Co, it is predicted that the most favoured level of doping (within the range 

studied in this chapter), is when x = 1.00, although doping is calculated to be favourable across 

the whole compositional range.  The results for Co suggest that doping is favourable because Co 

can be doped into the structure whilst having minimal effect on Fe sites.  Experimentally Co 

doping would be expected to manifest via a contraction in the observed unit cell volume.  With x 

values less than or equal to 1.00, an increase in the distortion index of the tetrahedral site would 

be expected, when x is greater than 1.00 an increase in the distortion index of the square 

pyramidal site is expected. 
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4.4.3 Results for M = Cu 

 

Figure 49 a) Calculated reaction energies for the formation of the 10ap perovskite as a function of Cu content, 

calculated according to equation (4.3.b), where each line indicates the calculated energy for each site doping 

preference.  b)  Calculated unit cell volumes as a function of Cu doping.  c) Calculated average bond lengths for 

each geometry type in the 10ap structure, calculated at each doping level for the configuration with the lowest 

energy.  d) The average distortion index parameters calculated for each geometry type in the 10ap structure as a 

function of the Cu doping, each value is calculated for the configuration with the lowest calculated reaction energy, 

according to equation (4.1). 

 

When M = Cu (Figure 49a), as the doping level increases there is an overall reduction in the 

reaction energy calculated, suggesting that doping should be favourable.  At x =0.25, there is a 

slight energetic preference for the square pyramidal configuration, although this is only 0.04 

eV/FU more stable than the octahedral configuration.  When x = 0.50 and 0.75, there is a 
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preference for octahedral doping.  Although the energy gap calculated between the octahedral, 

and square pyramidal preferences, was found to be small, calculated to be just ~ 0.03 eV/FU for 

both  x = 0.50 and 0.75.   When x = 1.00 and 1.25, the square pyramidal site preference becomes 

increasingly stable relative to the octahedral and mixed configurations, suggesting that when 

doping is less than or equal to 0.75, only small levels of B-site ordering would be expected, 

however, above this value, increased preference for the square pyramidal site would be expected.  

For all values of x the tetrahedral site preference was calculated to be unfavourable both relative 

to the undoped material and all other configurations. 

From the calculations presented within this section the effect of Cu doping on the unit cell 

volume of the structure is dependent on the site preference of the Cu (Figure 49b, Table 9).  

When Cu doping is preferred on the square pyramidal site, (energetically favoured when x = 

0.25, 1.00 and 1.25) there is a sharp reduction in the calculated unit cell volume, with the biggest 

drop at x = 1.25, calculated to be 23.882 Å
3
, a decrease of 2.0%. When doping is preferred on the 

octahedral site (x = 0.50 and 0.75), there is only a small change in the unit cell volume, with 

decreases of 0.02 and 0.17 % for x = 0.50 and 0.75 respectively. 
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Figure 50 a) Calculated bond lengths as a function of Cu doping with the octahedral site preference.  b) Calculated 

distortion index parameters for Cu doping with octahedral site preference.  c) Calculated bond lengths for Cu doping 

with square pyramidal site preference.  d) Calculated distortion index parameters for the square pyramidal site 

preference.  Green boxes indicate the points that are the most energetically favourable. 

 

Looking at the bonding environments (Figure 49c) when x = 0.25 with the energetically favoured 

square pyramidal ordering, there is a decrease in the unit cell volume.  The cause of the reduction 

in unit the unit cell volume is a shortening of the average octahedral axial bond, combined with a 

small shortening of the square pyramidal equatorial bonds.  The shortening of bond lengths in the 

system leads to a decrease in all three of the lattice parameters (Figure 47), there is also an 

increase in the length of the square pyramidal axial bond.  The lengthening of the square 

pyramidal axial bond is partly caused by the Cu position at the centre of the polyhedron moving 

away from the axial oxygen; overall the lengthening of the square pyramidal bonds is not 
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sufficient to outweigh the contraction of the octahedron, resulting in the calculated contraction of 

the c lattice parameter.  The results seen for x = 0.25 persist at other values of x when square 

pyramidal doping is favoured (x = 1.00 and 1.25), with the effect increasing with Cu content.  At 

the higher doping levels for Cu, the distortion of the square pyramidal site changes such that the 

polyhedron has one long bond and four short, rather than the one short and four long of the 

undoped material (Figure 50c).  The Cu doping onto the square pyramidal site has an effect on 

the calculated distortion index values (Figure 49d and Figure 50d) for both the square pyramidal 

and octahedral sites, with the D value for the square pyramidal site passing through a minima at  

x = 0.50.  The octahedral distortion parameter decreases as a function of Cu content, until the 

octahedral sites are less distorted than the square pyramidal sites at x = 1.25. 

When the site preference is for the octahedral site, energetically favoured at x = 0.50 and 0.75, a 

different trend in the unit cell volume is observed, with little shift in unit cell volume compared 

with the undoped material.  At the highest doping level, where the octahedral site preference is 

calculated to be favourable, only a decrease of 2.04 Å
3

 is observed, equating to a decrease of 

only 0.2%.  The small changes to the unit cell volume when M = Cu and with the octahedral site 

preference are driven by small changes to the octahedral environments containing Cu, with these 

effects resulting in the increase of the average octahedral distortion index (Figure 50b). 

Deciding which geometry is favoured for M = Cu appears to be related to the difference in the 

average axial bonds of the square pyramidal and octahedral sites for the square pyramidal 

doping, as there is less change in geometries when the Cu is doped into the octahedral sites.  At x 

= 0.25, where square pyramidal doping is favoured, there is a modest change in the Square 

pyramidal axial bonds (Figure 50c) with a difference of 0.0443 Å.  Doping onto the square 

pyramidal site is not favoured again until higher levels of doping (x = 1.00 and 1.25), where the 
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octahedral and square pyramidal sites are much more distorted away from the undoped material 

and the axial bond lengths much closer together, with a difference of 0.0495 Å at x = 1.00.  It 

would therefore appear that at the intermediate doping levels (x = 0.50 and 0.75), where the 

difference in the average axial bond lengths is in between these two values, creates square 

pyramidal geometries where Cu doping is less favoured than in the octahedral sites in the Cu 

doping configurations. 

In summary, it was calculated that Cu doping should be favourable across the range of 

compositions, although due to the small energy differences between doping configurations at x = 

0.25 – 0.75, it is expected that little B-site ordering would be observed and above this value of x, 

a site preference for the square pyramidal site would become increasingly dominant.  Doping 

with Cu is found to significantly affect the polyhedra only when it is preferred at the square 

pyramidal sites, when copper is in the octeahedral site, only small changes in the geometry are 

calculated, providing a possible method by which the site could observed. 

Experimentally therefore, when doping with Cu, an overall reduction in the unit cell volume 

would be expected, considering there would be a mixture of doping onto the square pyramidal 

and octahedral sites (due to both configurations being close in energy), where the exact level of 

unit volume reduction would be dependent on the level of B-site ordering.  As the predicted B-

site ordering changes across the doping series, but remains favourable compared to x = 0, the 

results calculated in this work, suggest that a uniform lattice parameter and cell volume as a 

function of doping may not occur.  When 1.00 < x > 0.25, smaller distortions to the structure of 

the material would be expected due to  differing predictions on the favoured B-site ordering.  

Due to the small energy difference between configurations, at small levels of doping (x < 1.00) 

no significant B-site ordering would be expected.  When x is equal to or greater than 1.00, a large 
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decrease in the distortion of the octahedral site would be expected, coupled with larger 

reductions in the unit cell volume as preference for the square pyramidal site becomes more 

dominant. 
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4.4.4 Results for M = Mn 

 

Figure 51 a) Calculated reaction energies for the formation of the 10ap perovskite as a function of Mn content, 

calculated according to equation (4.3.c), where each line indicates the calculated energy for each site doping 

preference.  b)  Calculated unit cell volumes as a function of Mn doping, each line indicates the volume of the unit 

cell for each site preference for the Mn dopant.  c) Calculated average bond lengths for each geometry type in the 

10ap structure calculated at each doping level for the configuration with the lowest energy.  d) The average 

distortion index parameters calculated for each geometry type in the 10ap structure as a function of the Mn doping, 

each value is calculated for the configuration with the lowest calculated reaction energy, according to equation (4.1). 

 

When M = Mn (Figure 51a), there is very little change in the reaction energy compared to the 

undoped as the doping level is increased to x = 1.25, when considering the most stable 

configuration at each doping level.  The largest change in reaction energy compared to the parent 

material is at x = 0.50, with the most stable configuration for the doping level calculated to be 
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0.01 eV/FU less stable than the parent material.  It is therefore suggested that doping the system 

with Mn might be possible across the compositional series calculated, as no strong minimum is 

found at any value of x. 

Unlike the other transition metal dopant species calculated in this chapter, if doping can be 

achieved, a strong site preference is calculated for M = Mn, where the Mn atoms were calculated 

to prefer the octahedral site (Figure 51a), with the gap in energy between the octahedral 

configuration and all of the other configurations growing as the Mn content increases. 

Examining the calculated unit cell volumes for Mn (Figure 51b) and for the configurations with 

the lowest reaction energy (with the Mn preferentially placed on the octahedral site), there is 

little deviation from the undoped material with increasing Mn content, with the largest deviation 

calculated when x = 1.00, as a decrease of 0.29 Å
3
 (- 0.02 %). 

When considering the lowest energy configurations and the corresponding average bond lengths 

for each environment (Figure 51c), a steady increase in the octahedral axial bond was calculated, 

while simultaneously a contraction of the octahedral and square pyramidal equatorial bonds.  The 

magnitude of the changes in bond lengths upon Mn doping results in a contraction of the a and b 

lattice vectors and an expansion of the c axis (Figure 47).  The expansion and concurrent 

contraction of the lattice parameters results in the marginal overall change in the unit cell volume 

(Table 12). 

When examining the average distortion index for each B-site environment, as a function of the 

Mn content (Figure 51d), it was observed that there is a slight reduction and increase of the 

square pyramidal and tetrahedral sites respectively.  On the octahedral site there is a steady 

increase in the distortion index as a function of the Mn content, with a calculated increase from 
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0.045 to 0.063 between x = 0 and x  = 1.25 (a difference of 0.018, or 40%).  The calculation of an 

increasing distortion on doping with Mn is consistent with the inclusion of a Mn
3+

 ion into a 

octahedral site.  Mn
3+

 would be expected to have a Jahn-Teller distortion, with two long bonds 

and four short, the inclusion of Mn onto the site extends the distortion already observed in the 

undoped material.  The distortion of the octahedral site drives the shortening of the a and b lattice 

parameters and an expansion of the c parameter, although overall it leaves the volume relatively 

unchanged.   

Despite having similar results on the B-site geometries as Co (i.e. the dopant only significantly 

effecting the site upon which it was placed), the changes in the calculated formation energy are 

marginal, a possible reason for this observation is that the distortion of the octahedral site and 

unit cell parameters described above.  While being energetically favourable for Mn, the 

octahedral distortion may have an unfavourable effect on the rest of the cation environments. 

The effect of Mn on the rest of the unit cell may therefore be effectively cancelling out the 

energetic benefits of including Mn in the system, giving rise to only small deviations in the 

calculated reaction energies as a function of doping. 

In summary, the calculated reaction energies being relatively flat suggest that some Mn doping 

into the system may be possible in the compositional range studied here, although the DFT 

calculations give no indication as to the maximum doping level that may be possible.  When 

doping with Mn, only small changes in the unit cell volume would be expected, however, the 

unit cell axis lengths would be expected to distort with an elongation of the stacking axis and a 

reduction of the a and b axis, caused primarily by distortions of the octahedral site (Table 12).  

The doped Mn atoms are expected to be observed predominantly on the octahedral site of the 

structure, due to the large gap in energy between the different configurations. 
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4.4.5 Results for M = Ni 

 

Figure 52 a) Calculated reaction energies for the formation of the 10ap perovskite as a function of Ni content, 

calculated according to equation (4.3.d), where each line indicates the calculated energy for each site doping 

preference.  b)  Calculated unit cell volumes as a function of Ni doping, each line indicates the volume of the unit 

cell for each site preference for the Ni dopant.  c) Calculated average bond lengths for each geometry type in the 

10ap structure calculated at each doping level for the configuration with the lowest energy.  d) The average 

distortion index parameters calculated for each geometry type in the 10ap structure as a function of the Ni doping, 

each value is calculated for the configuration with the lowest calculated reaction energy, according to equation (4.1). 

 

When M = Ni (Figure 52a), there is an initial decrease in the reaction energy when x = 0.25 with 

doping Ni onto the square pyramidal site, favoured by 0.11 eV/FU compared to x = 0.  When 

doping is increased beyond the x = 0.25 level there is an increase in the reaction energy, 

although this remains slightly below the reaction energy of the undoped material until x = 0.75.  
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After x = 0.75, the reaction energy is calculated to be higher than the undoped material and 

therefore unfavourable.  Due to having a relatively deep minimum at x = 0.25, only small levels 

of doping are expected experimentally. 

For the initial doping that is energetically favoured (x = 0.25), doping with Ni results in a 

decrease in unit cell volume of 2.2 Å
3
 (a decrease of 0.2%, Figure 52b) compared to that 

calculated for the undoped material.  As doping becomes increasingly unfavourable, the unit cell 

volume continues the same general trend toward a smaller volume. 

Ni doping was found to have a significant effect on the axial bond lengths for the octahedral and 

square pyramidal axial bond lengths (Figure 52c).  Ni atoms preferentially placed into the square 

pyramidal site resulted in a lengthening of the square pyramidal axial bond and a shortening of 

the octahedral axial bond, however, when x = 0.75 and 1.25, the octahedral site is preferred.  

When the site preference switches to the octahedral site, the bond lengths on the square 

pyramidal site revert back to close to that of the undoped material.  When Ni is doped in the 

octahedral site, a small expansion of the octahedral axial bond coupled with a slight shortening 

of the equatorial bonds was observed, resulting in distinctly different distortion index parameters 

for the octahedral site depending on the Ni site preference. 

When looking at the average distortion index for each of the B-site environments as a function of 

Ni doping (Figure 52d), the trends for the octahedral and square pyramidal sites follow both the 

Ni content and its site preference.  When the square pyramidal site is preferred (x = 0.25, 0.50, 

1.00), the doping results in a general trend for the calculated distortion index values to decrease 

from the parent material.  However, when the octahedral site is favoured (x = 0.75 and 1.25), the 

calculated distortion index values for the octahedral site increase over the undoped material and 
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the square pyramidal site reverts to distortion index values very similar to that calculated for the 

parent material.  The volumes of the polyhedra for M = Ni were calculated using VESTA
136

 and 

implemented as previously reported
158, 159

 (Table 15).  Calculated polyhedral volumes indicate 

that the inclusion of Ni into the structure, results in Ni containing polyhedra that are significantly 

larger than the sites found in the undoped material.  These large Ni polyhedra results in a volume 

reduction in the Fe containing sites.  As the calculated reaction energies show an overall increase 

in energy as more Ni is included in the system, regardless of site preference, changes in unit cell 

volume etc.  A possible reason for Ni doping becoming unfavourable is that it is energetically 

unfavourable to compress the Fe polyhedra; hence the inclusion of the larger Ni polyhedra is 

unfavourable. 

In summary, when doping with Ni, small levels of Ni doping should be favoured, with x = 0.25 

being particularly favoured.  Aside from  x = 0.25, where the Ni is expected to prefer the square 

pyramidal site, no significant level of B-site ordering would be expected.  At all other values of x 

the energy difference between the configurations is small and so B-site ordering would not be 

expected.  Note however, that no doping into the tetrahedral site is calculated to be favourable.  

Therefore experimentally, Ni doping is suggested to be most likely at x = 0.25 and would be 

expected to be manifested by a distortion of the square pyramidal axial bonds and a modest 

decrease in the unit cell volume, with the dopant Ni predominantly found on the square 

pyramidal site. 
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4.4.6 Results for M = Ti 

 

Figure 53 a) Calculated reaction energies for the formation of the 10ap perovskite as a function of Ti content, 

calculated according to equation (4.3.d), where each line indicates the calculated energy for each site doping 

preference.  b)  Calculated unit cell volumes as a function of Ti doping, each line indicates the volume of the unit 

cell for each site preference for the Ti dopant.  c) Calculated average bond lengths for each geometry type in the 

10ap structure calculated at each doping level for the configuration with the lowest energy.  d) The average 

distortion index parameters calculated for each geometry type in the 10ap structure as a function of the Ti doping, 

each value is calculated for the configuration with the lowest calculated reaction energy, calculated according to 

equation (4.1).  Note that in panels c) and d), two points are presented at x = 0.5 as two configurations are calculated 

to have the same reaction energy to 3 significant figures (calculated at -0.964 eV/FU). 

 

When M = Ti (Figure 53a), no doping level was calculated to be favourable when compared to 

the parent material.  The calculated reaction energies increase sharply as the Ti is doped into the 

10ap structure.  As the doping increases, all site preferences (except for octahedral), result in a 
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large increase in the calculated unit cell volume (Figure 53b, Table 16), with the increases driven 

by the expansion in the a and b parameters (Figure 47). 

Doping Ti into the structure results in only small changes to the average bond distances in the 

structure as a function of doping (Figure 53c),.  With the first two doping of Ti into the 10ap 

there is a reduction in the calculated distortion parameters for the octahedral and square 

pyramidal sites (Figure 53d), after which there are only minor changes in the calculated 

distortion parameters.  Examining the calculated polyhedral volumes (Table 17), reveals a 

similar trend to that of M = Ni, although the Ti atoms forcing the Fe sites to expand rapidly 

(possibly due to the lowering of the average Fe oxidation state) and this may be a reason for Ti 

doping to be unfavourable.  Another possible contribution to the increase in the calculated 

reaction energy is the introduction of  Ti
4+

 cations into the system, with the oxygen content fixed, 

this would result in the reduction of the oxidation state of the Fe ions to below 3+.  This 

reduction of the Fe charge state is in contrast to the dopant that are favoured, as all of the dopant 

species that are favourable either maintain or increase the Fe charge state. 

  



Chapter 4 Doping predictions for                   

 

 

170 

4.4.7 Results for M = Zn 

 

Figure 54 a) Calculated reaction energies for the formation of the 10ap perovskite as a function of Zn content, 

calculated according to equation (4.3.f), where each line indicates the calculated energy for each site doping 

preference.  b)  Calculated unit cell volumes as a function of Zn doping, each line indicates the volume of the unit 

cell for each site preference for the Zn dopant.  c) Calculated average bond lengths for each geometry type in the 

10ap structure calculated at each doping level for the configuration with the lowest energy.  d) The average 

distortion index parameters calculated for each geometry type in the 10ap structure as a function of the Zn doping, 

each value is calculated for the configuration with the lowest calculated reaction energy, calculated according to 

equation (4.1). 

 

When M = Zn (Figure 54a), the most stable configuration is calculated at x = 0.25, with the 

dopant Zn atoms preferentially placed onto the tetrahedral site, with the configuration having a 

calculated reaction energy 0.08 eV/FU more stable than the undoped material.  When doping is 

increased above this point, the calculated reaction energy is calculated to steadily increase for all 
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of the configurations.  Note that the preference for the tetrahedral site is only favoured at x = 

0.25, after this level, tetrahedral B-site ordering becomes the least favoured site ordering.  At x = 

0.50 (where the reaction energy is still calculated to be more stable than the undoped material), a 

mixed B-site ordering is calculated to be most stable.  The most stable configuration for x = 0.50 

contains one Zn in a tetrahedral site and the second in an octahedral site, the reaction energy was 

calculated to be 0.03 eV/FU more stable than the parent material, suggesting that having only 

one Zn atom on a tetrahedral site is favoured per unit cell. At x = 0.50, the square pyramidal site 

preference is very close in energy to the stable, mixed configuration with a reaction energy only 

0.01 eV/FU higher than the undoped material.  Beyond x 0.50, doping becomes unfavourable 

compared to the parent and the square pyramidal site becomes the preferred dopant site.  With 

the exception of x = 0.25, each of the configurations is close in energy, suggesting that if doping 

could be achieved, then little B-site ordering would be expected. 

It was calculated for M = Zn, that at each of the doping levels, the square pyramidal 

configurations have the smallest calculated unit cell volume (Figure 54b, Table 18).  Doping of 

Zn into the structure, up to x = 0.50 results in a slight lengthening of the octahedral axial bonds 

(Figure 54c), combined with a minor increase in the tetrahedral bond lengths, note that in both of 

the lowest energy configurations at x = 0.25 and 0.50 contain a Zn atom on a tetrahedral site.  

After x = 0.50 there is a small decline in the axial bond length for the octahedral site, an increase 

in the square pyramidal site and the average tetrahedral bond length returns to the same as when 

x = 0. 

The calculated distortion parameters for the 10ap structure (Figure 54d), show that doping into 

the tetrahedral site results in a reduction of the tetrahedral distortion index, coupled with an 

increase on the octahedral site.  However, when doping is preferred on the square pyramidal site 
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the calculated distortion parameters for both the octahedral and square pyramidal sites decline as 

a function of doping and the tetrahedral distortion index returns to near the value for x = 0. 

As with M = Ni and Ti, examining the volumes of the polyhedra within the doped system (Table 

19), doping with Zn forces significant changes to the volumes of the Fe sites.  Doping with Zn, 

as with Ni results in a compression of the Fe octahedral and square pyramidal sites, it is 

suggested that the response of the Fe sites to Zn doping is a reason for Zn doping to be 

unfavourable. 

To summarise, when doping with Zn, calculations suggest that a small level of doping should be 

favoured.  When x = 0.25, doping would be expected to manifest in the form of a small reduction 

of the unit cell volume and an increase of the distortion of the octahedral site, away from that 

observed for the undoped material, with a slight decrease in the distortion of the tetrahedral site.  

If the doped material were to express B-site ordering the doped Zn, is primarily expected to be 

found on the tetrahedral site. 

  



Chapter 4 Doping predictions for                   

 

 

173 

4.5 General Discussion 

In summary, the calculations that are presented in this chapter suggest that some dopings should 

be favourable in YBa2Ca2Fe5-xMxO13.  The transition metals calculated to be the most favourable 

for doping are Cu and Co, where calculations suggest that doping should be favourable across 

the entire series of x values calculated.  When M = Ni and Zn, small levels of doping were 

calculated to be favourable (in both cases, when x = 0.25). 

When M = Mn, there is little change in the calculated reaction energy as a function of the dopant 

content, without the presence of any particular minima, it is suggested that doping with Mn 

should be possible.  When M = Ti, doping was calculated to be strongly unfavourable across the 

whole dopant series.  B-site ordering for the dopant metal was only calculated to be favoured 

when M = Co and Mn, where the dopants were found to prefer the tetrahedral sites (when x ≤ 

1.00) or the square pyramidal site (when x = 1.25) for M = Co.  When M = Mn strong B-site 

ordering was calculated to be favourable, with Mn occupying the octahedral site.  Notably, the 

assessment that B-site ordering is not strongly favoured for and of the other dopant metals not 

because mixed configurations were calculated to be especially stable, but rather because the 

energy gap between B-site configurations were small.  The results calculated in this chapter for 

the dopants that are predicted to have favourable doping (M = Co and Cu) and marginal doping 

(M = Mn) show structural properties that are in good agreement with precedents for solid 

solutions involving Fe and the corresponding dopant atoms (examples discussed below). 

The effect of Co doping calculated on the 10ap structure is similar to that previously reported for 

Co doping for the YBa2Fe3-xCoxO8 triple perovskite system
27

.  As with the calculations presented 

above, Co doping is shown to steadily decrease the overall volume of the structure, with a 
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reported decrease in cell volume at the highest doping level of 1.23(1)% (With a nominal metal 

content of Fe1.5Co1.5).  Observed Co doping results in no B-site ordering (therefore having Co 

present at all B-sites) and culminates in a decrease in all of the observed bond lengths.  

Therefore, the results from the above calculations seem to give reasonable results that are 

consistent with existing precedents for Co doping into perovskite systems. 

Solid solution systems between copper and iron have been previously reported in the LaBa2Cu3-

xFexOy system
160, 161

, where values of x are reported between 0 and 3 (with reported values of x 

equal to 0.1, 0.2, 0.3, 0.5, 1, 2 and 3, note that in the reported samples, when x > 0.2 a slight 

excess of La was required
161

).  The Cu pure form of the system is reported to be similar to the 

YBCO super conductor structure
161

 and the Fe pure system reported as a disordered cubic 

perovskite
160

.  It is has been observed that when x is greater than 1, the solid solution favours the 

disordered phase.  There are some reports that suggest the 3ap phase may be synthesised at 

higher values of x although the samples were not synthesised phase pure
162

.  When x is equal to 

or less than 1, the resulting material adopts the YBCO type 3ap phase. 

Looking at the trends reported across the solid solutions discussed above, they yield similar 

results to those calculated in this chapter for the 10ap material.  Irrespective of the perovskite 

ordering observed samples are shown to have decreasing bond lengths and unit cell volumes with 

increased Cu content (although this is also coupled with slight decrease in oxygen content).  

However the calculated shifts in bond lengths for M = Cu in the 10ap structure are not as 

substantial as for the reported systems.  When the samples are reported as an ordered phase, the 

resulting structure contains the same trends in site distortion that are calculated here for the 10ap.  

Although assessing the literature for samples with differing charge states (i.e. a solid solution 

between Fe
3+

 and Cu
2+

 compounds) highlighting that any possible changes in oxygen content as 
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a function of B-site doping are not taken into account for the calculations in this chapter.  Thus 

attempting to calculate varying oxygen content as a function of dopant is a possible future 

development of these calculations in order to improve their accuracy and applicability to real 

systems. 

While doping calculations when M = Mn, follow the same trend highlighted above that doping 

only has a major effect on one of the sites in the material, .  It has been shown in previous 

sections that Mn doping has little effect on the overall reaction energy to form the 10ap structure 

from binary oxides.  A possible reason for this result in contrast to M = Co and Cu, is that 

although the Mn doping significantly effects the geometry of the octahedral site (Figure 51), it 

also has a significant effect on the ratio of the ab : c lattice parameters caused by the Jahn-Teller 

distortion of the octahedral site.  It is possible that the Jahn-Teller distortion changes distortions 

for other cations in the material which are energetically unfavourable, resulting in a combination 

of favourable and unfavourable distortions caused by Mn doping and hence resulting in only the 

small overall changes in the reaction energies calculated. 

The results and conclusions drawn from Mn doping can be compared to observed results for Mn 

doping into the Ca2Fe2O5 brownmillerite
10, 22

 and the YBa2Fe3-xMnxO8±δ reported in the previous 

chapter.  In both of these systems it is shown that the introduction of Mn
3+

 into the structure 

results in B-site ordering, with the Mn atoms preferentially occupying the octahedral sites.  From 

the resulting B-site ordering, it is observed that the octahedral site distorts toward a Jahn-Teller 

distortion resulting in a decrease of the a and b lattice parameters and a lengthening of the c axis.   

From the conclusions drawn for the dopant species calculated to be largely unfavourable (M = 

Ni, Ti and Zn) and comparing them with the rest, leads to the overall conclusion that to be able 
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to successfully dope the 10ap  the dopant atoms must only cause a modest change in polyhedral 

volumes in the structure.  The conclusions drawn here are exemplified by examining at the 

polyhedral volumes for the favoured dopants, M = Co, Mn and Cu, reported in Table 9, Table 11 

and Table 13 respectively.  Unlike the unfavoured dopants, Co, Mn and Cu cause much smaller 

changes to the Fe site volumes, note however, that the overall volume is allowed to expand or 

contract and still yield a favourable result . 

The calculations also suggest it is possible for the system to accommodate dopant atoms of a 

reduced charge state when compared to undoped, where in this system with fixed oxygen content 

the introduction of a dopant with a reduced charge state is assumed to be coupled with an 

increase in the Fe charge state in order to maintain charge neutrality.  This could therefore result 

in the desired effect of improving the performance of the 10ap material as a SOFC cathode. 

  

4.6 A Note on Subsequent Experimental Work Within The Research 

Group 

Synthetic work on YBa2Ca2Fe5-xMxO13 was undertaken by Mr. D. Hodgeman, also a member of 

the Rosseinsky research group.  Samples of the doped 10ap were prepared for M = Co, Cu and 

Mn, as other doping are predicted to either be unfavourable or favourable for only low doping 

levels.  At the time of writing, a maximum doping level for M = Co had been found at x = 1.85, 

when M = Cu a maximum doping value of 0.35 had been obtained and for M = Mn, a maximum 

value of 0.75 attained, with all samples, as with the undoped material the A-site ratios were 

altered away from the stoichiometric values in order to remove impurity phases.  Although not 

enough experimental data has been collected in order to determine if any B-site ordering is 
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present in the doped materials.  Physical property measurements have been performed by other 

research group members and suggest that doping the 10ap material improved upon the previously 

reported d.c. and area specific resistance values. 

 

4.7 Conclusions 

In summary, the work presented within this chapter has shown that the computational approach 

for using DFT to predict B-site doping in layered perovskites have successfully predicted doping 

in a large complex perovskite.  The calculations within this chapter have also resulted in 

predictions regarding favoured B-site ordering for a variety of dopant species and doping levels.  

Calculations have also predicted where high levels of doping are unfavoured and for M = Ti, that 

doping is completely unfavoured.  Conducting such a large range of calculations has also 

enabled conclusions to be drawn regarding the chemical reasoning as to why certain dopants are 

favoured, which may in turn be able to provide insights to predict the likelihood of doping the 

10ap with other dopants not covered in this work.  Resulting from these calculations, other 

members of the research group have been able to dope the 10ap material, although with some 

changes to the A-site composition.  
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4.9 Tables 

Table 7 Summary of dopant configurations for calculated doping into the 10ap structure, Td = tetrahedral, Sq = 

Square pyramidal and Oh = Octahedral.  When M = ‘all’ indicates that the configuration was trialled for all of the 

dopant species studied.  

Doping level Dopant atoms / unit 

cell 
Site preference M dopant polyhedra 

x = 0.25 1 Td 

Sq 

Oh 

all 

all 

all 

1 × Td 

1 × Sq 

1 × Oh 

x = 0.50 2 Td 

Sq 

Oh 

Mix-1 

Mix-2 

all 

all 

all 

all 

all 

2× Td 

2 × Sq 

2 × Oh 

1 × Oh + 1 × Td 

1 × Oh + 1 × Sq 

x = 0.75 3 Td 

Sq 

Oh 

Mix 

all 

all 

all 

all 

3 × Td 

3 × Sq 

3 × Oh 

1 × Td + 1 × Sq + 1 × Oh 

x = 1.00 4 Td 

Sq 

Oh 

Mix-1 

Mix-2 

all 

all 

all 

all 

all 

4 × Td 

4 × Sq 

4 × Oh 

1 × Td + 1 × Sq + 2 × Oh 

1 × Td + 2 × Sq + 1 × Oh 

x = 1.25 5 Td-1 

Td-2 

Sq 

Oh 

Mix 

Co, Cu, Ni 

Mn, Zn 

all 

all 

all 

4 × Td + 1 × Sq 

4 × Td + 1 × Oh 

5 × Sq 

5 × Oh 

1 × Td + 2 × Sq + 2 × Oh 

 

Table 8 DFT calculated lattice parameters for YBa2Ca2Fe5-xCoxO13 highlighting the observation that only small 

changes to the overall unit cell volume across the doping series are expected. 

x Co a (Å) b (Å) c (Å) Volume (Å
3
) Difference from x = 0 (Å

3
) Percentage change 

0.00 5.552 5.599 38.804 1206.397 0.000 0.000% 

0.25 5.552 5.597 38.793 1205.488 -0.909 -0.075% 

0.50 5.552 5.594 38.782 1204.519 -1.878 -0.156% 

0.75 5.551 5.591 38.770 1203.314 -3.083 -0.256% 

1.00 5.550 5.588 38.763 1202.266 -4.131 -0.342% 

1.25 5.553 5.600 38.497 1197.178 -9.219 -0.764% 
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Table 9 Average polyhedral volumes for the lowest energy configurations for YBa2Ca2Fe5-xCoxO13, calculated 

using VESTA. 

x Co Fe square 

pyramidal 

volume (Å
3
) 

Fe octahedral 

volume (Å
3
) 

Fe tetrahedral 

volume (Å
3
) 

Co square 

pyramidal 

volume (Å
3
) 

Co tetrahedral 

volume (Å
3
) 

0.00 6.1337 11.2980 3.4456 -- -- 

0.25 6.1348 11.2787 3.4460 -- 3.2978 

0.50 6.1391 11.2590 3.4471 -- 3.2964 

0.75 6.1312 11.2377 3.4457 -- 3.2972 

1.00 6.1262 11.2177 -- -- 3.2961 

1.25 6.0720 11.2325 3.4472 5.9680 -- 

 
 

Table 10 DFT calculated lattice parameters for YBa2Ca2Fe5-xCuxO13 and unit cell volume changes across the 

doping series 

 

x Cu a (Å) b (Å) c (Å) Volume (Å
3
) Difference from x = 0 (Å

3
) Percentage change 

0.00 5.552 5.599 38.804 1206.397 0.000 0.000% 

0.25 5.546 5.598 38.688 1201.220 -5.177 -0.429% 

0.50 5.534 5.584 39.031 1206.076 -0.321 -0.027% 

0.75 5.527 5.576 39.073 1204.356 -2.041 -0.169% 

1.00 5.545 5.597 38.242 1186.850 -19.547 -1.620% 

1.25 5.542 5.596 38.129 1182.515 -23.882 -1.980% 

 

Table 11 Average polyhedral volumes for the lowest energy configurations for YBa2Ca2Fe5-xCuxO13, calculated 

using VESTA. 

x Cu Fe square 

pyramidal volume 

(Å
3
) 

Fe octahedral 

volume (Å
3
) 

Fe tetrahedral 

volume (Å
3
) 

Cu square 

pyramidal volume 

(Å
3
) 

Cu octahedral 

volume (Å
3
) 

0.00 6.1337 11.2980 3.4456 -- -- 

0.25 6.0940 11.1524 3.4473 6.6688 -- 

0.50 6.1126 11.1860 3.4350 -- 11.8634 

0.75 6.1023 11.1012 3.4264 -- 11.7574 

1.00 5.9431 10.7231 3.4447 6.5975 -- 

1.25 5.9337 10.6094 3.4416 6.5129 -- 
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Table 12 DFT calculated lattice parameters for YBa2Ca2Fe5-xMniO13 highlighting the observation that only very 

small changes to the overall unit cell volume across the doping series. 

 

x Mn a (Å) b (Å) c (Å) Volume (Å
3
) Difference from x = 0 (Å

3
) Percentage change 

0.00 5.552 5.599 38.804 1206.397 0.000 0.000% 

0.25 5.546 5.593 38.903 1206.616 0.219 0.018% 

0.50 5.538 5.585 39.004 1206.303 -0.094 -0.008% 

0.75 5.530 5.577 39.105 1206.141 -0.256 -0.021% 

1.00 5.523 5.570 39.205 1206.108 -0.289 -0.024% 

1.25 5.514 5.562 39.335 1206.413 0.016 0.001% 
 

 

Table 13 Average polyhedral volumes for the lowest energy configurations for YBa2Ca2Fe5-xMnxO13, calculated 

using VESTA. 

x Mn Fe square pyramidal 

volume (Å
3
) 

Fe octahedral volume 

(Å
3
) 

Fe tetrahedral volume 

(Å
3
) 

Mn octahedral volume 

(Å
3
) 

0.00 6.1337 11.2980 3.4456 -- 

0.25 6.1232 11.3270 3.4467 11.3434 

0.50 6.1103 11.3616 3.4471 11.3353 

0.75 6.0982 11.4119 3.4475 11.3449 

1.00 6.0856 11.4962 3.4483 11.3405 

1.25 6.0699 11.4940 3.4515 11.4305 

 

Table 14 DFT calculated lattice parameters and unit cell volumes for YBa2Ca2Fe5-xNixO13.. 

x Ni a (Å) b (Å) c (Å) Volume (Å
3
) Difference from x = 0 (Å

3
) Percentage change 

0.00 5.552 5.599 38.804 1206.397 0.000 0.000% 

0.25 5.550 5.604 38.722 1204.186 -2.211 -0.183% 

0.50 5.544 5.597 38.557 1196.390 -10.007 -0.829% 

0.75 5.520 5.573 39.021 1200.429 -5.968 -0.495% 

1.00 5.535 5.591 38.471 1190.387 -16.009 -1.327% 

1.25 5.502 5.557 39.256 1200.108 -6.289 -0.521% 
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Table 15 Average polyhedral volumes for the lowest energy configurations for YBa2Ca2Fe5-xNixO13, calculated 

using VESTA, the value at x = 1.00 appears to by significantly smaller than the other values as in this structure, all 

of the Fe square pyramidal sites are adjacent to a Ni containing square pyramidal site (see configuration for x = 1.00 

in Figure 44). 

x Ni Fe square 

pyramidal volume 

(Å
3
) 

Fe octahedral 

volume (Å
3
) 

Fe tetrahedral 

volume (Å
3
) 

Ni square pyramidal 

volume (Å
3
) 

Ni octahedral 

volume (Å
3
) 

0.00 6.1337 11.2980 3.4456 -- -- 

0.25 6.0985 11.2028 3.4527 6.6102 -- 

0.50 6.0241 11.0509 3.4485 6.5722 -- 

0.75 6.0886 10.7224 3.4421 -- 11.8972 

1.00 5.8056 10.9203 3.4427 6.5802 -- 

1.25 6.0785 10.3595 3.4220 -- 11.9140 

 

Table 16 DFT calculated lattice parameters and cell volumes for YBa2Ca2Fe5-xTixO13.  Two values for x are given as 

they are configurations calculated to have very similar reaction energies, the first configuration with square 

pyramidal site preference and the second in a mixed configuration. 

x Ti a (Å) b (Å) c (Å) Volume (Å
3
) Difference from x = 0 (Å

3
) Percentage change 

0.00 5.552 5.599 38.804 1206.397 0.000 0.000% 

0.25 5.565 5.615 38.623 1206.808 0.411 0.034% 

0.50 5.565 5.614 39.016 1218.857 12.460 1.033% 

0.50 5.577 5.627 38.520 1208.709 2.312 0.192% 

0.75 5.579 5.629 39.210 1231.205 24.808 2.056% 

1.00 5.597 5.654 38.685 1224.273 17.876 1.482% 

 

Table 17 Average polyhedral volumes for the lowest energy configurations for YBa2Ca2Fe5-xTixO13, calculated 

using VESTA. 

xTi Fe square 

pyramidal 

volume (Å
3
) 

Fe 

octahedral 

volume (Å
3
) 

Fe 

tetrahedral 

volume (Å
3
) 

Ti square 

pyramidal 

volume (Å
3
) 

Ti 

octahedral 

volume (Å
3
) 

Ti 

tetrahedral 

volume (Å
3
) 

0.00 6.1337 11.2980 3.4456 -- -- -- 

0.25 6.2331 11.2906 3.4553 -- 10.6222 -- 

0.50 

square 

pyramidal 

6.5091 11.4421 3.4504 5.7400 -- -- 

0.50 

mixed 
6.3089 11.3089 3.4922 -- 10.6198 3.3713 

0.75 6.8371 11.5160 3.4619 5.7488 -- -- 

1.00 6.5323 11.6189 3.5041 5.7827 10.7131 3.3851 
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Table 18 DFT calculated lattice parameters and cell volumes for YBa2Ca2Fe5-xZnxO13. 

x Zn a (Å) b (Å) c (Å) Volume (Å
3
) Difference from x = 0 (Å

3
) Percentage change 

0.00 5.552 5.599 38.804 1206.397 0.000 0.000% 

0.25 5.537 5.589 39.109 1210.299 3.902 0.323% 

0.50 5.525 5.577 39.171 1207.032 0.635 0.053% 

0.75 5.535 5.588 38.586 1193.412 -12.985 -1.076% 

1.00 5.529 5.585 38.552 1190.354 -16.043 -1.330% 

1.25 5.530 5.588 38.463 1188.684 -17.713 -1.468% 

 

Table 19 Average polyhedral volumes for the lowest energy configurations for YBa2Ca2Fe5-xZnxO13, calculated 

using VESTA. 

xZn Fe square 

pyramidal 

volume (Å
3
) 

Fe octahedral 

volume (Å
3
) 

Fe 

tetrahedral 

volume (Å
3
) 

Zn square 

pyramidal 

volume (Å
3
) 

Zn 

octahedral 

volume (Å
3
) 

Zn 

tetrahedral 

volume (Å
3
) 

0.00 6.1337 11.2980 3.4456 -- -- -- 

0.25 6.1282 11.3511 3.4481 -- 3.6813 -- 

0.50 6.1093 11.2086 3.4432 -- 3.6745 12.1664 

0.75 5.9320 10.9986 3.4434 6.5588 -- -- 

1.00 5.8084 10.9355 3.4424 6.5503 -- -- 

1.25 5.7632 10.8477 3.4433 6.4810 -- -- 
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Chapter 5. Extended Module Materials Assembly (EMMA) 

5.1 Abstract 

Following on from the doping predictions and synthesis presented in the previous chapter, an 

unreported perovskite superstructure was discovered by members of the research group with the 

approximate composition of Y2.1(2)Ba1.8(2)Ca4.1(2)Fe7.4(2)Cu0.6(2)O21-δ.  This chapter describes the 

development of a new semi-brute force method created to assemble possible perovskite 

structures of this phase, known as the Extended Module Materials Assembly (EMMA).  EMMA 

is then combined with force field and density functional theory calculations in order to predict 

the most stable structure.  The lowest energy structure is then used as the basis for experimental 

identification of the phase by powder diffraction by group members.  The predicted and observed 

structures were found to be in good agreement. 
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5.2 Introduction 

 

Figure 55 a) Powder X-ray diffraction collected by D. Hodgeman highlighting the unknown long range ordering hkl 

reflections.  b) Electron diffraction provided by A. Demont showing the unit cell indexing to an 8ap cell. 

 

Following on from the computational predictions made in the previous chapter 4 regarding the 

doping of YBa2Ca2Fe5O13 ten layer perovskite (with the structure referred to as the 10ap) D. 

Hodegeman  carried out synthetic work doping the material with Co, Cu and Mn.  With initial 

samples containing Cu at a doping level of ~ 7 % for Fe, in addition to the 10ap phase with the 

10ap structure a minor impurity phase was observed by powder X-ray powder diffraction 

(PXRD) with two d-spacing reflections for an unreported superstructure (Figure 55) measured at 

10.2 and 15.3 Å.  

The doped sample was also analysed by electron microscopy (Figure 55b) by A.Demont and 

found that these observed d-spacings corresponded to an eight-fold perovskite super structure, 

with a stacking length of approximately 32 Å (referred to as the 8ap structure).  Energy 

dispersive X-ray (EDX) analysis calculated the approximate metal composition of 

Y2.1(2)Ba1.8(2)Ca4.1(2)Fe7.4(2)Cu0.6(2).  Due to the size and composition of the new structure it was 
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decided to attempt to use theory to attempt to calculate the most likely structure, utilising the 

experimental information available. 

Existing methods for structure prediction include generating structures by data mining a target 

composition into known structural motifs
53, 163

 from a database of known solid state structures, or 

structure types
55

.  These techniques, being based on known structures would be unlikely to be 

able to find a new perovskite structural motif and is therefore unlikely to find the 8ap structure.  

For some systems simulated annealing has been used to find global minimum structures
164

.  The 

application of genetic algorithms has also been reported for structure prediction
66

.  Some 

methods have also been presented for the generation of structures using known rigid bodies and 

the correct crystal structures successfully calculated
165

.  Due to the size of the computational 

challange in this chapter, it was decided that the methods referred to above were not feasible for 

solving the 8ap structure and a new method was sought based upon a layered description of oxide 

structures. 
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Figure 56 a) SrTiO3 single perovskite
1
, broken down into two different atomic layers, one for the A-site and one for 

the B-site.  b)YBa2Fe3O8 triple perovskite
27

, broken down into one B-site layer type (formally FeO2) and two types 

of A-site layer (BaO and Y).  c) Ca2Fe1.039Mn0.962O5 brownmillerite
22

 containing two types of B-site layer 

((FeMn)O2 and (FeMn)O) and one type of A-site layer (CaO).  d)  8-H BaMnO3 hexagonal perovskite
166

, broken 

down into three different A-site layers (three different BaO layers, based on the Ba position) and two different B-site 

layers (containing only a Mn atom, in a different position in each layer type.  e)  The structure of stoichiometric 

YBa2Ca2Fe5O13 ten layer perovskite
15

, broken into 2 types of B-site layer (FeO2 and FeO) and three different types 

of A-site layer (BaO , CaO and Y). 

 

When considering extended solid state structures such as the previously reported 10ap 

perovskite
15

 and hexagonal perovskites
166

 (Figure 56), they are often considered to be a 

combination of structural motifs or layers.  Types of layers range from only a few atoms thick or 

even single atomic layers, such as BaO rocksalt layers or FeO2 layers commonly found in 

perovskite structures (Figure 56).  Layers however can be much larger, up to many atoms thick, 

such as perovskite blocks, or considering large extended structures containing perovskite super 

structures
16

.   
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Figure 57 EMMA methodology, the structures defined as ‘forbidden’ are user defined and could be coded to 

include any chemically sensible rules.  In this chapter, forbidden structures were defined as structures containing 

translational symmetry of other structures generated; this was used so as to only include the symmetrically unique 

perovskite superstructures.  Note that forbidding structures that do no have perovskite stacking was not required due 

to structures being assembled alternating between ‘A-site’ and ‘B-site’ layers.  

 

The concept of considering extended oxides structures as a series of layers became the basis used 

to identify the atomic structure of the 8ap perovskite, entitled the Extended Module Materials 

Assembly (EMMA, Figure 57).  This method begins with the selection of a module set, where 

each module contains chemically sensible layers, theoretically of any size, as suggested above.  

In the initial implementation of EMMA, the sum of all of the selected modules (including 

multiples of the same module) are required to achieve the composition and unit cell stacking 

length required.  The EMMA method then takes the selected modules and assembles all possible 

structures from the chosen module set.  The number of structures is then restricted by a given set 

of rules in order to ensure that the majority of structures are chemically sensible and repeat 

structures are not generated.  An example of such a rule would be to ensure that all structures 

generated have a perovskite type structure by enforcing alternate stacking between A-site and B-

site layers and this is enforced for all of the EMMA structures generated in this chapter.  Note 

that since all of the modules are stacked together, all of the component modules are required to 
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have the same a and b axis lengths, although the length of the stacking axis will be equal to the 

sum of the stacking axes of all of the component modules. 

Once all possible permutations are calculated it is then possible to remove structures related by 

translational symmetry in the stacking direction, leaving a set of unique structures.  Once built, 

all of the structures are relaxed using some form of simulation.  All of the structures can then be 

ranked by some calculated property (e.g. energy or calculated band gaps), in order to select the 

‘best’ structure.  In this chapter a combination of classical force field methods (FF) and density 

functional theory are used (DFT) with the best structure defined as the structure that has the 

lowest overall energy and is therefore the most stable.  The EMMA method is first applied to the 

known 10ap perovskite structure at the idealised composition used in chapter 4 in order to test the 

methodology; EMMA is then used to calculate the lowest energy structure and hence predict the 

crystal structure of the 8ap material. 

 

5.3 Computational setup 

FF calculations used in this chapter were implemented using the General Utility Lattice Program 

(GULP)
70

.  Ionic interactions are implemented with two components, firstly, long columbic 

interactions and a mostly repulsive short range Buckingham potential with the form: 

 
                  

   

   
   

   

   
  (5.1) 

 Where φij(rij) is the potential energy for the ion pair ij, rij is the inter-atomic distance for the ion 

pair, Aij, ρij and Cij are parameters set by the user for the force field, typically fitted so that the 
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potential set will reproduce a known structure.  In this chapter polarizability of some atoms is 

taken into account by the inclusion of the shell model incorporated in GULP
115

. 

The force field used in this chapter was initially constructed with the help of Prof. M. S. Islam 

(The University of Bath).  The force field was constructed in order to to replicate the 10ap 

structure at the composition YBa2Ca2Fe5O13 when relaxed using DFT as previously reported
15

 

(the final potential parameters used are presented in Table 20).  Initially a number of different 

potentials were tested from the literature covering the interactions required in the 10ap structure, 

with different combinations also considered. The set of reported potentials that yielded the 10ap 

structure closest to the DFT structure were selected as the basis for the potential set used in this 

chapter.  Since Cu is not present in the 10ap structure a Cu-O potential was used as previously 

reported to describe the YBa2Cu3O6+δ perovskite
167

 for models containing Cu atoms and was 

used without modification.  FF calculations in this chapter were performed allowing the 

relaxation of the unit cell size and shape and atomic co-ordinates were relaxed.  Due to the large 

number of structures requiring relaxation with force fields in this chapter, FF calculations were 

restricted to a total of 1000 ionic steps or 60 minutes CPU time. 

The final force field utilised in this chapter was created by altering a small number of the 

parameters, initially manually in order to discover the potential parameters that had the largest 

impact on the structure calculated by GULP.  It should be noted that with this initial parameter 

set the main error in the calculated structure was the overestimation of bonds in the stacking 

direction, which in turn resulted in a substantial overestimation of the stacking axis length.  The 

parameters found to have the largest impact were then fitted using the fitting routines 

implemented in GULP, with the final parameters shown in Table 20. 
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In order to test the applicability of the potential set further, the DFT calculations examining A-

site disorder in the 10ap were repeated using GULP (configurations shown in Figure 58).  The 

results from the FF calculations indicate that the order in which the structures are ranked matches 

those reported.  Although the absolute values calculated by force fields differ from literature 

values, for example the reported difference in energy between the ideal structure and the Y/Ca 

mixing was only 0.22 eV/FU more stable compared to ideal
15

, versus the 0.75 eV/FU calculated 

by the FF calculations in this chapter.  Therefore it was concluded that the force field derived for 

this system was adequate for a ‘first pass’ over all of the structures to be generated by EMMA.  

However, due to the inaccurate energies in FF calculations, DFT calculations would be required 

on a proportion of the lowest energy structures from GULP, in order to be certain of the lowest 

energy structure, especially in cases where FF calculations only result in small energy 

differences. 
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Figure 58 A-site disorder configurations trialled using FF for comparison to previously reported DFT results
15

, the 

number indicates the fractional proportion of the first species that has been swapped for the second in each 

configuration.  The energies indicate that the most stable configuration has Ca and Y mixing, in agreement with the 

results previously published
15

.  

 

DFT calculations presented in this chapter were performed using the Vienna ab-inito simulation 

package (VASP) plane wave DFT package
168, 169

, using the Perdew, Burke and Ernzerhof 

(PBE)
103

 exchange correlation functional.  In all calculations the unit cell shape and size were 

allowed to relax along with atomic co-ordinates.  Wavefunctions were relaxed until the 

difference in energy between steps was less than 1 × 10
-5

 eV and forces on atoms were relaxed to 

less than 0.01 eVÅ
-1

.  Calculations were setup using a Gamma centred k-point grid.  The number 

of k-points in the a and b axis were set according to the following condition: 

                 (5.2) 
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Where nki is the number of k-points on lattice vector i, and ri is the real space length of lattice 

vector i.  Colinear spin polarisation was implemented in all DFT calculations in this chapter 

without any spin-orbit coupling with all structures setup with G-type anti-ferromagnetic 

ordering.  For the transition metal species a rotationally invariant Ueff was applied where Ueff = U 

– J.  Values of Ueff were taken to be 4.0 eV for both Fe and Cu atoms, where this value has been 

reported in previous calculations in oxide systems
154

.  For the A-site species (Y, Ba and Ca) the 

first sub-valent s orbital was treated as valence, for the B-site species (Fe and Cu) the first sub-

valent p orbital was treated as valence. 

The EMMA method was implemented in python in collaboration with M. S. Dyer, utilising the 

atomic simulation environment (ase) and numpy python packages
170

.The input for EMMA is 

specified as a series of n modules, containing n A and B terminated modules.  Once input 

modules are defined, the EMMA implementation builds all possible permutations of the input, 

with all of the permutations being held in the memory as 2-D numerical arrays.  The 

permutations in this chapter were subject to the perovskite stacking, with alternating A and B-

site terminated layers to be able to construct perovskite units.  There is the requirement for an 

equal number of A and B terminated modules in the EMMA input in order to build perovskite 

structures. 

Once all of the possible permutations were constructed, the EMMA script then searches through 

all of the possible permutations, finding all of the structures that are related by translational 

symmetry and then retaining only the first permutation found.  This use of symmetry leaves just 

the unique stacking sequences possible from the input modules and thus greatly reduces the 

number of structures generated.  To an approximation the use of translational symmetry reduces 

the resulting number of structures by a factor of n, where n is the number of perovskite layers. 
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Once the final set of permutations is computed, EMMA uses scripts from ase to convert each 

permutation into a crystal structure and writes the structure into formats suitable for use with 

either the VASP DFT package and the GULP FF code.  Note that EMMA allows for the use of 

atomic ‘rattling’ before structures are written to file, this is a process by which all of the atoms in 

the unit cell are moved in a random direction around a standard deviation specified by the user.  

In this chapter, a standard deviation of 0.05 Å was used.  Atomic rattling was found to be 

required, as with some module sets a large number of structures were found to be in a highly 

symmetrical but high energy structure and so few structures relaxed from their high energy 

starting point. 

 

5.4 Validating the EMMA method by finding the 10ap structure. 

In order to be able to construct YBa2Ca2Fe5O13 in the 10ap structure using EMMA, layers were 

based upon a 2 × 2 expansion of the perovskite unit cell, in the plane parallel to the stacking 

direction, with an a and b lattice parameter equal to 7.6 Å and each atomic layer given a height 

of 1.9 Å (equal to half the approximate perovskite lattice parameter of 3.8 Å). 10 single atom 

thick layers were used for both the A and B-sites (Figure 59a, with an example of an assembled 

structure shown in b) The A layers were 2 × Y4, 4 × Ba4O4 and 4 × Ca4O4 and the B layers were 

8 × Fe4O8 and 2 × Fe4O4 layers.  The input layers result in structures that are a 2 × 2 ×10 

supercell of the perovskite structure containing 184 atoms. 
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Figure 59 a) The ten A-site (BaO, CaO and Y) and ten B-site (FeO2 and FeO) layers used for the generation of 

YBa2Ca2Fe5O13 10ap structures. b) Example of an assembled 10ap structure from EMMA prior to relaxation, with 

coloured boxes corresponding to layers in panel a).  c) The energy distribution of converged structures using FF 

calculations, divided into 0.15 eV bars. d) The three lowest energy structures from FF calculations and the energies 

relative to the lowest energy structure from the FF calculations, highlighting the need to use DFT calculations to 

correctly identify the lowest energy structure. 

 

The module set listed above resulted in a total of 14,190 unique structures.  All structures were 

then relaxed using the FF, with 7,628 failing to converge and therefore rejected.  The remaining 

structures were then ranked by their total energy in order to find the most stable structure (Figure 

59c).  Three structures were found to be significantly more stable that the others (Figure 59d), 

with energies all within 0.02 eV/FU of each other, with the next nearest structure being 0.15 

eV/FU less stable.  Since these three structures were found to be significantly more stable than 
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the rest, only these three structures were re-relaxed using VASP in order to calculate accurate 

relative energies and therefore determine the EMMA structure for the given module set. 

Once the structures were relaxed the order of stability for the lowest energy structures changed, 

with the structure found to be second most stable, becoming the most stable by 0.09 eV/FU, with 

the previously most stable GULP structure becoming the least stable of the three structures 

(Figure 59d).  On inspection it can be seen that the lowest energy structure contains the 

experimentally observed 10ap structure and thus validates the EMMA method (Figure 60).  

Calculations on the structure also highlight the requirement to utilise both DFT and FF 

calculations, as DFT was required to accurately separate the lowest energy structures.  In this 

section the EMMA method has been validated by the successful calculation of the 

experimentally observed structure for YBa2Ca2Fe5O13, in the following section the EMMA 

method is applied to calculate the most likely structure for the unknown 8ap material. 
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Figure 60 The YBa2Ca2Fe5O13 EMMA structure viewed down the [110] direction reveals that the experimental 

perovskite stacking is contained within the structure, the symmetry of the structure can then be symmetry reduced to 

obtain the experimental structure. 

 

5.5 Using EMMA predict a structure for the 8ap. 

In order to be able to test whether the presence of Cu atoms has an influence on the resulting 

structure, two compositions were considered;  Firstly a stoichiometric form of the experimental 

structure, containing no Cu atoms with an approximated oxygen content of 21 per formula unit, 

Y2Ba2Ca4Fe8O21.  The second is a copper containing analogue, with the formula unit of 

Y2Ba2Ca4Fe7.5Cu0.5O21. 
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Figure 61 a) The three module sets used for the 8ap EMMA calculations, giving variation in the location of oxygen 

vacancies. b) The energy distribution of the 8ap structures for Y2Ba2Ca4Fe8O21. c) The lowest energy structure from 

the EMMA calculations viewed along the [110] direction. 

 

When using EMMA on the copper free composition, Y2Ba2Ca4Fe8O21, the calculations were 

performed in collaboration with M. S. Dyer, due to the number of calculations required.  The a 

and b lattice parameters for all layers used in this section were set to be equal to 7.6 Å equivalent 

to 2ap, since the a and b lattice parameters had not been experimentally determined and this 

allowed for expansions in the a and b axes relative to the cubic perovskite. 

Three different module sets were chosen, based primarily on the modules found in the 10ap 

structure with the addition of a YO layer.  All module sets contained 2 × Ba4O4 and 4 × Ca4O4 

A-site modules and 5 × Fe4O8 B-site modules.  To make the three module sets, 2 × Y4 +Fe4O4 + 
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2 × Fe4O8, Y4 + Y4O4 + 2 × Fe4O4 + Fe4O8 or 2 × Y4O4 + 3 × Fe4O4 modules (Figure 61a) were 

added in order to make up the desired composition.  Note that Y containing modules were added 

to the A-sites and Fe containing modules were added to the B-sites (Figure 61a).  A number of 

different module sets were chosen for this structure in order to allow for variation in the location 

of the oxygen vacancies.  The module sets resulted in the generation of 6,300 unique structures 

(FF energy distribution shown in Figure 61b), with the DFT and FF calculations yielding the 

same lowest energy structure (Figure 61c). 

 

Figure 62 a) The module set used in the Y2Ba2Ca4Fe7.5Cu0.5O21 8ap EMMA calculations. b) FF energy distribution 

of structures. c) The final EMMA structure after DFT relaxation. 

 

For the Cu containing structures, one module set was used, containing 2 × Y4, 2 × Ba4O4 and 4 × 

Ca4O4 for the A-sites and 1 × Fe4O4, 5 × Fe4O8 and 2 × Fe3CuO8 for the B-sites (Figure 62a).  

Note that for the modules containing Cu, different positions were used for the Cu atom in each 
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module in order to maximise separation between the Cu atoms in the resulting structures.  The 

module set generated 17,640 unique structures, with all of structures relaxed using FFs, a total of 

~4,000 failed to converge (energy distribution shown in Figure 62b).  One structure in this set 

was calculated to be especially stable, with a relative energy 0.42 eV/FU more stable than the 

next nearest structure (Figure 62b).  DFT calculations were then performed for the lowest 20 

structures from the FF calculations, this number of structures was chosen, as after the lowest 

energy structure, the rest of the structures only had small energy differences between them.  

After relaxation using DFT, the lowest energy structure from the FF calculations was confirmed 

as the most stable structure, with a relative energy calculated to be 0.23 eV/FU more stable than 

the next nearest structure.  The EMMA structures calculated with compositions with and without 

Cu presented above are very similar and contain the same polyhedral stacking sequence with 

only small deviations in the atomic structure, suggesting that the inclusion of Cu in the system is 

not the driving force toward this particular structure. 

The lowest energy 8ap structure (Figure 61c and Figure 62c) has a stacking of A-site layers as 

follows: Y, BaO, CaO, CaO, YO, CaO, CaO, BaO.  The B-site polyhedral stacking is a 

combination of tetrahedral (Td), octahedral (Oh) and square pyramidal (Sq), with the calculated 

sequence being Sq, Oh, Td, Oh, Oh, Td, Oh and Sq.  The tetrahedral chains in the structure, unlike 

the 10ap structure do not alternate their orientation between tetrahedral layers.  The resulting 

polyhedral stacking in this structure is not attainable by building structures from the layers as 

entered into EMMA in the case of the Cu containing composition, since initially only one Td 

layer is created and all Y layers contain no oxygen atoms.  Upon reviewing the relaxation of the 

unit cell for this structure, it is observed that the oxygen sub-lattice re-arranges upon relaxation 

with FF methods (Figure 63).  During relaxation, initially oxygen atoms from the Sq layer below 
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the middle Y layer move to fill this Td layer (to make the YO layer).  Once the YO layer has 

been created, oxygen atoms from an Oh layer (two layers below the YO layer in Figure 63) move 

up one layer to make the formally Sq layer into an Oh layer, leaving the formally Oh layer as a Td 

layer and creating the 8ap structure created by EMMA. 

 

Figure 63 The lowest energy structure for Y2Ba2Ca4Fe7.5Cu0.5O21 before and after relaxation, showing that the 

oxygen positions are able to relax far away from their starting positions, indicating that the initial choice of layers 

does not necessarily fix the polyhedral stacking sequence in the final structures. 

 

While the EMMA calculations were being performed, synthetic work was carried out with in the 

same research group by D. Hodgeman, P. Chater and A. Demont.  The focus of this experimental 

work was aimed toward synthesising the 8ap material with higher phase purity toward the 

unknown phase, based upon searching phase space around the EDX composition.  The material 

was investigated using PXRD and electron microscopy.  A phase pure sample was synthesised 

with the nominal composition of Y2.24Ba2.28Ca3.48Fe7.44Cu0.56O21 with an EDX cation 
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composition of Y2.07(15)Ba2.49(20)Ca3.44(5)Fe7.63(18)Cu0.37(7).  It was also possible to form a Cu free 

version of the material in a polyphasic sample with the nominal composition 

Y1.95Ba2.1Ca3.95Fe8O21.  Other group members also performed selected area electron diffraction 

(SAED) on the sample and found that the sample had a 16ap repeat.  The 16ap unit cell is caused 

by the body centring superposition of 8ap blocks (here after referred to as 16ap, Figure 64). 

 

Figure 64 Electron diffraction provided and indexed by other group members on higher purity samples of the 8ap 

material indicates that the unit cell actually has a 16ap stacking length, containing body centering. 

 

This investigation has also been able to show that the material contains an inversion centre and a 

r45°(√2 × ap) expansion of the perovskite cell parallel to the stacking axis.  In summary the new 

experimental information obtained by other members of the research group is as follows; 

compositions were found to be nominally Y2.24Ba2.28Ca3.48Fe7.44Cu0.56O21 and 

Y1.95Ba2.1Ca3.95Fe8O21 for phase pure and high purity samples respectively with a unit cell size of 

approximately 5.4 × 5.4 × 62 Å with the unit cell containing an inversion centre. 
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5.6 Using EMMA to identify the 16ap structure 

In order to help with the identification of the 16ap structure, a modified version of the EMMA 

script was written in collaboration with M. S. Dyer to generate possible 16ap structures.  A 

modified version was required due to the vast number of possible permutations that could result 

from simply using a doubled set of modules from the 8ap section (estimated by M. S. Dyer to be 

equal to ~ 10
8

 before removing repeat structures) and so would be computationally un-feasible.  

The EMMA method was modified to include the new information made available from 

experimental work, namely the use of an inversion centre.  As synthetic work had shown it to be 

possible to form the 16ap structure without Cu, the EMMA runs for the 16ap structure were 

performed without Cu in the unit cell in order to reduce the number of possible permutations.  

Models in this section were built such that the first 8 layers would be constructed as described 

previously, then the rest of the unit cell was filled by use of inversion symmetry through the 

centre of the unit cell. 
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Figure 65 a) The module set used to generate the first half of the 16ap unit cell before the rest is generated through 

inversion symmetry.  b) The FF energy distributions of structure. c) The final EMMA structure for Y2Ba2Ca4Fe8O21 

in 16ap cell, after DFT relaxation, with the change in tetrahedral chain directions highlighted. 

 

In order to generate the 16ap structures the following set of modules was chosen to fill the first 

half of the unit cell; for the A-sites, 2 × BaO, 4 × CaO, 1 × Y and 1 × YO.  The B-sites were 

constructed from; 6 × FeO2 and 2 × FeO, where the FeO layers result in tetrahedral chains and 

are orientated differently after the application of inversion symmetry (Figure 65a).  The layers 

used for generating the 16ap structure have a smaller a and b (a = b = 5.4 Å) lattice parameter 

than used for the 8ap structures, to utilise the new experimental information.  Using inversion 

symmetry to generate the 16ap structures reduced the number of structures from the estimated 

10
8

 possible permutations down to 47,040.  All of these structures were then relaxed using the 

same force field used for the 8ap structures.  Of the possible 16ap structures only 9,864 
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converged (energies ranked in Figure 65b) and 16,771 failed to find an energy minima before the 

maximum 1000 ionic steps were completed, with the rest of the structures failing to form into a 

structure that GULP could report an energy for. 

Of the FF structures, the lowest 5 energy structures were re-relaxed utilising DFT in order to 

generate accurate energy rankings.  The lowest energy DFT structure was found to have the same 

polyhedral and A-site stacking as two of the blocks, with the direction of the tetrahedral chains 

alternating between each block (Figure 65c). 

The final EMMA structure for the 16ap with a relaxed stacking length of 61.4902 Å and contains 

a total of nine different cation sites.  The A-site cations are divided into a 12 coordinate Ba site, 

Ca atoms are found in two similar 8 coordinate sites; the Y atoms occupy two different 8 

coordinate sites, with the first between square pyramidal layers and the second between 

octahedral layers.  The B-sites (all containing Fe) are divided into one 5 coordinate square 

pyramidal, two 6 coordinate octahedral and one 4 coordinate tetrahedral environments. 

 

5.7 Discussion of results and comparison with experiment 

The final structure from EMMA was used by P. Chater as the basis for refinement of the 

experimental structure, with the overall composition changed during the course of the refinement 

from the DFT value of YBa2Ca4Fe8O21 to Y2.24Ba2.28Ca3.48Fe7.44Cu0.56O21 to comply with that of 

the synthetic sample.  The DFT model, with no symmetry was transformed into the Imma space 

group identified from the electron microscopy and was used as the basis for his Rietveld 
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refinement of the 16ap structure using combined PXRD and neutron powder diffraction (Figure 

66a). 

 

 

Figure 66 Rietveld refined synchrotron diffraction pattern of the 16ap material provided by P. Chater as part of a 

combined XRD and NPD refinement
25

.  b)  Side by side comparison of the refined 16ap structure with the EMMA 

predicted structure, with the A-sites shown as pie-charts in the refined structure indicating the partial refined 

occupancies and indicating that each A-site is occupied in majority by the atom predicted from the EMMA 

calculations.  The overlaid structures show the close resemblance between the EMMA and refined structures, note 

that the unit cell parameters were normalised in order to show the comparison of fractional atomic coordinates.  

Colours for elements in panel b as follows; yttrium (yellow), barium (green), calcium (light blue), iron (brown), 

copper (dark blue) and oxygen (red) 

 

The refined 16ap structure bears a very close resemblance to the EMMA predicted structure, the 

Fe coordination sites and stacking sequence are preserved from those predicted, although some 
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of the oxygen positions move relative to the predicted structure (Figure 66b, refined and DFT co-

ordinates shown in Table 21).  The A-site stacking was retained from the predicted structure, 

however significant levels of A-site disorder are observed, although the majority species on each 

site matches that predicted by EMMA, although this disorder was expected due to the non-

stoichiometry of the sample and due to entropic effects at high temperatures.    Mössbauer 

spectra collected by M. F. Thomas agree with the refined B-site structure of the 16ap material, 

confirming the 2: 1: 1 ratio of octahedral square pyramidal and tetrahedral Fe
3+

 respectively.  

The confirmation of the Fe geometry ratios by Mössbauer spectroscopy also confirm that the Cu 

atoms present in the system are disordered across the B-sites, as if the Cu atoms were ordered 

toward any particular geometry a significant reduction in that sites 
57

Fe Mössbauer signal would 

be observed.  
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Figure 67 a) Experimental HAADF image provided by S. Romani.  b) segment of the experimental image 

corresponding to one unit cell in the stacking direction in comparison with the refined and EMMA predicted 

structures, with images simulated by P. Chater, with the crystal structures provided for comparison.  The red boxes 

highlight the layers where the largest difference is found, with the disagreement between experimental and EMMA 

caused by the high levels of Ba found on the Y site, resulting in increased spot intensity.  

 

High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) 

images were simulated by P. Chater for the EMMA predicted and refined structure for 

comparison against experimentally observed images (Figure 67), in order to provide a structural 

comparison on a shorter length scale than the long range average structure provided from powder 

diffraction refinements.  The STEM images confirm that the refined structure and EMMA 

predicted structure are in good agreement, with the only notable difference being in the intensity 

of the spots for the formally YO layer in the EMMA predicted structure (Figure 67).  The YO 

layer is observed to have a greater spot intensity in the simulation of the refined structure and the 
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experimental image due to the increase in electron density from the site disorder and the large 

amount of Ba included on the site. 

 

5.7.1 Disorder matters 

 

Figure 68 Finite temperature monte-carlo routine implemented in python by M. S. Dyer to allow for site mixing in 

16ap structures (see text), based upon previously implemented methods
59

, the random number generated (denoted as 

“rand”) is between 0 and 1, to allow for the probability that an atomic swap with an increase in energy can be 

accepted. 

 

In order to test if A-site disorder is energetically favoured in the 16ap structure, disorder was 

simulated from the 16ap EMMA structure using finite temperature monte-carlo sampling (MC, 

routine outlined in Figure 68).  A script for implementing this MC methodology was written in 

python by M. S. Dyer and relaxations performed with GULP with the aforementioned FF 
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parameters (Table 20).  This method was based upon previously reported work for calculating 

expected fractional occupancies at high temperatures in a supercell
59

. 

 

Figure 69 Results from finite temperature MC run on the 16ap at the EMMA composition Y2Ba2Ca4Fe8O21, from 

left to right; the EMMA structure, 3 × 3 × 1 super cell used for MC runs and the lowest energy configuration, with 

the layer compositions, being the average occupancy of each of the equivalent layers. 
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Figure 70 Results from finite temperature MC run on the 16ap at the approximated composition 

Y2.25Ba2.25Ca3.5Fe7.5Cu0.5O21, from left to right; the EMMA structure, 2 × 2 × 1 super cell used for MC runs with the 

initial cation distribution based upon the refined structure (shown in Table 21) and the lowest energy configuration, 

with the layer compositions, being the average occupancy of each of the equivalent layers. 

 

The MC script was run on two compositions, the stoichiometric Y2Ba2Ca4Fe8O21 (referred to as 

the EMMA composition) and an approximation of the experimental nominal composition, 

Y2.25Ba2.25Ca3.5Fe7.5Cu0.5O21 (referred to as the approximated composition).  For both 

compositions the atomic co-ordinates for the EMMA structure were used for the initial 

structures.  For the EMMA composition, a 3 × 3 × 1 supercell used to allow for better statistical 

averaging of the sites.  A-site occupancies for the approximated composition were set in order to 

give a cation distribution as close to the experimentally refined structure as possible (shown in 
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Figure 70) and required the use of a 2 × 2 × 1 supercell relative to the EMMA structure.  For 

both MC runs were continued until ~ 100 configurations had been rejected consecutively, for the 

EMMA composition this amounted to a total of 800 swaps, for the approximated composition a 

total of 500 swaps were calculated, with an additional 75 steps allowed for Cu swapping with Fe, 

in order to determine if any significant B-site ordering would be expected.  

For both compositions the temperature parameter was set equal to 1160 K, for the EMMA 

composition, all of the A-site species (Y, Ba and Ca) were allowed to swap sites with each other.  

For the approximated composition, all of the A-sites (Y, Ba and Ca) were allowed to swap and 

separately all of the B-sites (Fe and Cu), as to ensure that no A-site species could end up on a B-

site or vice-versa.  Each swap step consisted of one atom swapping for one other of a different 

species, but of the same type (e.g. A-site species were only permitted to swap with other A-site 

species). 

For the EMMA composition the MC run shows that the most likely A-site disorder is between Y 

and one of the two types of CaO layer (Figure 69), note that the A-sites only swap between one 

of the two 8-coordinate Ca sites, no swapping was observed to occur in the YO layer and Ba 

atoms did not swap with any of the other A-sites, this disordered model was calculated to be 0.29 

eV/FU lower in energy than the EMMA structure. 

For the approximated composition it was observed that swapping occurred to move the site 

occupancies away from the starting configuration (which was an approximation of the 

experimentally refined structure).  The main source of swapping in the approximated 

composition is Y for Ca in the 12 coordinate YO layer in the centre of the structure (Figure 70), 

although the layer retains the Ba from the starting configuration.  The Cu atoms within the 
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material remain largely disordered throughout the structure.  The site disorder calculated was 

found to be 1.22 eV/FU lower in energy than the approximated composition presented in Figure 

70.  

The MC results from the approximated composition are in good agreement with experimental 

results, this is despite the Ca swapping into the YO layer in the middle of the structure, as during 

the refinement no Ca was allowed to refine on the A-site corresponding to this layer, as due to 

the complexity of the structure it would be difficult to refine the difference between the site when 

occupied by Y + Ba and with the site being occupied by Y + Ba + Ca (a comparison between site 

occupancies is shown in Table 22).  In order to check the validity at this point, an additional 

refinement of the experimental data was performed by P. Chater using the site occupancies 

resulting from the MC run and was found to have little effect on the resulting fit, confirming that 

with the refinement process differentiation between the 12 coordinate site in question being 

occupied by Y + Ba and Y + Ca + Ba is unlikely. 

These results indicate that cation dis-order in the 16ap structure is in part at least driven by a 

reduction in enthalpy, rather than just by entropy as previously assumed.  The additional Ba in 

the experimental composition, above that of the EMMA composition, causes the Y and Ba 

disorder in the YO layer, as no swapping between Y and Ba is observed at the stoichiometric 

composition.  The observation that no Ba swaps with Y in the EMMA composition were 

calculated to be favourable but were favoured in the approximated composition suggest that 

while disorder between Y and Ca is generally favourable, Ba disorder is only favourable when 

Ba non-stoichiometry is present in the system; this agrees with previous calculations on the 10ap 

YBa2Ca2Fe5O13 where differing calculations were performed for different A-site dis-order 
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conformations at the stoichiometric composition and only Y and Ca disorder was favoured, 

despite some Ba non-stoichiometry being observed in the experimental structure
15

. 

 

5.8 Discussion 

The previously unreported 16ap structure shown in this chapter can be compared with other 

layered perovskite materials such as the YBa2Ca2Fe5O13 and YCa4Fe5O13 materials
15, 171

.  Each 

of the previously reported materials adopt a perovskite structure with a large stacking length 

(both consisting of 10 perovskite layers) and can be thought of in terms of smaller building 

blocks of other smaller, known materials.  In the case of the YBa2Ca2Fe5O13 structure, each of 

the two 5 perovskite layer blocks that make up the full unit cell can be thought of as made up of 

a brownmillerite Ca2Fe2O5 block and one block of the triple perovskite YBa2Fe3O8 (Figure 71c).  

The YCa4Fe5O13 structure can be thought as made up of two blocks of LaCa2Fe3O8 type blocks 

and two blocks of Ca2Fe2O5 Brownmillerite blocks (Figure 71b). 

As with each of the 10 layer structures, the 16ap structure can be constructed from smaller 

perovskite superstructures, being constructed from two each of YBa2Fe3O8, LaCa2Fe3O8 type 

(although with La swapped for Y) and Ca2Fe2O5 (Figure 71d).  The 16ap stacking sequence can 

be reproduced from the YCa4Fe5O13 structure by the addition of one unit of the YBa2Fe3O8 triple 

perovskite per formula unit.  The 16ap stacking sequence can also be reproduced from the 

YCa2Ba2Fe5O13 10 layer perovskite by addition of YCa2Fe3O8 in the same triple perovskite 

structure as reported for LaCa2Fe3O8
172

 per formula unit, although this YCa2Fe3O8 perovskite in 

the LaSr2Fe3O8 structure is currently un-reported experimentally.   
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The analysis of the 16ap structure being comprised of component modules further underlines the 

applicability of the EMMA philosophy to layered oxide systems and therefore many other 

system types that can be thought of in such a manner.  Building upon this, opens up the validity 

of utilising the method using larger starting modules, possibly beginning from perovskite 

superstructures as previously mentioned in the on-going search for large layered oxides.  The 

possibility of utilising much larger starting modules than used when identifying the 16ap 

structure leads to a computationally feasible  way to apply the EMMA method to larger and more 

complex structures than those dealt within this chapter. 

 

Figure 71 a) Perovskite superstructures that could be used to generate the larger superstructures in panels b, c and d, 

top to bottom is the LaCa2Fe3O8, YBa2Fe3O8 and Ca2Fe2O5 type perovskite units, with the building block type unit 

highlights. b) YCa4Fe5O13 perovskite structure, with the coloured boxes indicating that the structure could be 

generated from 2 × LaCa2Fe3O8 and 2 × Ca2Fe2O5 type blocks. c) YBa2Ca2Fe5O13 perovskite, showing how it could 

be generated from 2 × YBa2Fe3O8 and 2 × Ca2Fe2O5 type blocks. d) The 16ap structure discussed in this chapter 

showing that the structure could be assembled from 2 × LaCa2Fe3O8, 2 × YBa2Fe3O8 and 2 × Ca2Fe2O5 type units. 
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5.9 Conclusions 

In summary, the work presented in this chapter has resulted in a new method for the construction 

of layered structures from chemically sensible starting modules and then combined with other 

theoretical techniques in order to correctly predict the crystal structure of a new inorganic 

compound.  The EMMA method has been validated through utilising it to calculate the reported 

structure for the YBa2Ca2Fe5O13 10ap perovskite.  The developed method was then used in the 

isolation and structural characterisation of the previously un-reported 

Y2.24Ba2.28Ca3.48Fe7.44Cu0.56O21 16ap structure and additionally it has been possible to use FF 

calculations to rationalise the observed cation disorder within the system, i.e. that mixing 

between Y and Ca is generally favourable, whereas the mixing between Ba and other species 

occurs as a result of the excess Ba when compared to the stoichiometric composition.  The 

method presented in this chapter has been shown to be a powerful tool in the search for new 

functional materials.  Resulting from this work, the research group is continuing to work towards 

expanding the types of system that the published EMMA code
25

 is applicable to and aim to use 

EMMA as part of on-going research into structural prediction for complex functional materials.  
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5.10 Tables  

Table 20 Buckingham potential parameters used for all FF calculations within this chapter. 

Interaction A (eV)     (Å) Cij (eVÅ
-6

) Reference 

O
2-

Shell – O
2-

Shell 22764.300 0.14900 42.000 Adapted from
173

 

Y
3+

core – O
2-

shell 20717.500 0.24203 0.000 As published
167

 

Ba
2+

Shell – O
2-

Shell 4818.000 0.30670 0.000 As published
174

 

Fe
3+*

core – O
2-

Shell 1244.500 0.32990 0.000 Adapted from
175

 

Ca
2+

Shell – O
2-

Shell 2272.741 0.29860 0.000 As published
174

 

Cu
2+

core – O
2-

Shell 6276.000 0.22074 0.000 As published
167

 

* For calculations containing Cu, the Fe charge state was increased slightly in order to maintain charge neutrality.  

Shells were attached to Ba, Ca and O atoms with assigned spring constants equal to 34.05, 34.05 and 42 eVÅ
-2

 

respectively and the shells charges set to 1.831, 1.281 and -2.24, with core charge states set in order to give the 

overall desired charge, these parameters are in line with those used in the relevant literature outlined above. 
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Table 21 Refined and EMMA predicted structure pameters for the 16ap structure, refinement performed and results 

provided by P.Chater and EMMA structural parameters provided by M. Dyer. 

 
Parameter Rietveld EMMA 

 
a (Å) 5.484964(25) 5.56182 

 
b (Å) 61.25901(32) 61.5524 

 
c (Å) 5.550477(25) 5.57481 

Site Parameter Rietveld EMMA 

A1 Position, 4a 0,0,0 0,0,0 

 

Occupancy Y0.627(4)Ca0.373(4) Y 

A2 Position, 8h 0,0.062392(28),0.9977(7) 0,0.06555,0.99690 

 

Occupancy Ba0.787(2)Ca0.213(2) Ba 

A3 Position, 8h 0,0.12077(5),0.9756(8) 0,0.12337,0.97632 

 

Occupancy Ca0.768(9)Y0.132(7)Ba0.100(5) Ca 

A4 Position, 8h 0,0.19120(5),0.9770(7) 0,0.19270,0.97272 

 

Occupancy Ca0.566(1)Y0.434(1) Ca 

A5 Position, 4e 0,0.25,0.9868(9) 0,0.25,0.97795 

 

Occupancy Y0.488(2)Ba0.512(2) Y 

B1 Position, 8h 0,0.030041(31),0.5008(6) 0,0.03128,0.49803 

 

Occupancy Fe0.86Cu0.14 Fe 

B2 Position, 8h 0,0.09470(4),0.4891(8) 0,0.09962,0.49929 

 

Occupancy Fe Fe 

B3 Position, 16j 0.9450(4),0.15521(5),0.43229(32) 0.94244,0.15895,0.43195 

 

Occupancy Fe Fe 

B4 Position, 8h 0,0.217745(29),0.4867(6) 0,0.21917,0.48128 

 

Occupancy Fe0.86Cu0.14 Fe 

O1 Position, 8g 0.25,0.02180(8),0.25 0.25,0.02234,0.25 

O2 Position, 8g 0.75,0.02445(7),0.75 0.75,0.02324,0.75 

O3 Position, 8h 0.5,0.06107(8),0.034(4) 0.5,0.06157,0.01199 

O4 Position, 8g 0.75,0.09480(7),0.75 0.75,0.09665,0.75 

O5 Position, 8h/16j 0.5,0.12861(7),0.9347(9) 0.52821,0.13255,0.93059 

O6 Position, 4e/8i 0.5,0.25,0.0500(14) 0.53640,0.25,0.11429 

O7 Position, 8g/16j 0.25,0.28288(8),0.75 0.29486,0.22583,0.70720 

O8 Position, 8g/16j 0.25,0.28929(9),0.25 0.20219,0.21332,0.19796 

O9 Position, 8h/16j 0.5,0.31872(5),0.9354(8) 0.53161,0.31444,0.92061 

O10 Position, 16j 0.9024(7),0.34338(11),0.1161(7) 0.90360,0.34174,0.12207 

O11 Position, 8g 0.75,0.40037(8),0.25 0.75,0.39896,0.25 

Space group Imma. Refined composition Y2.25(1)Ba2.29(1)Ca3.47(2)Fe7.44Cu0.56O21. 
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Table 22 Metal site occupancies, from refined and calculated data. 

Site Refined occupancy 
EMMA 

Y2Ba2Ca4Fe8O21 
MC  

Y2Ba2Ca4Fe8O21 
MC 

Y2.25Ba2.25Ca3.5Fe7.5Cu0.5O21 

A1 Y0.627(4)Ca0.373(4) Y Y0.5Ca0.5 Y0.562Ca0.488 

A2 Ba0.787(2)Ca0.213(2) Ba Ba Ba0.75Ca0.25 

A3 Ca0.768(9)Y0.132(7)Ba0.100(5) Ca Ca0.75Y0.25 Ca0.688Y0.281Ba0.063 

A4 Ca0.566(1)Y0.434(1) Ca Ca0.75 Ca0.593Y0.407 

A5 Y0.488(2)Ba0.512(2) Y Y Y0.312Ca0.168Ba0.5 

B1 Fe0.86Cu0.14 Fe Fe Fe0.937Cu0.063 

B2 Fe Fe Fe Fe 

B3 Fe Fe Fe Fe0.875Cu0.125 

B4 Fe0.86Cu0.14 Fe Fe Fe0.937Cu0.063 
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Chapter 6. Conclusions 

During the course of this thesis there has been a large amount of work invested in continuing the 

development of the integration of theoretical and synthetic investigations as a powerful 

philosophy, culminating in the successful discovery and isolation of the functional 

Y2.24Ba2.28Ca3.48Fe7.44Cu0.56O21 material; all of which are summarised in this final chapter. 

In the first results chapter (Chapter 3); the computational and synthetic investigation of chemical 

substitution YBa2Fe3O8 has successfully utilised the ability of well tuned DFT calculations to 

calculate reasonably accurate reaction enthalpies to predict a new compound in the YBa2Fe3-

xMxO8 (M = Co, Mn and Ni) system.  By examining the computed structures in this chapter, it 

has additionally been possible to provide some insight as to why doping may be favoured with 

Co and Mn, but not Ni.  Experimental investigations subsequently were performed confirming 

that the new composition predicted was able to form into a 3ap perovskite, albeit with some 

minor alteration to the A-site stoichiometry.  Additionally synthetic investigations have shown 

that where the calculations predict doping to be unfavourable a 3ap perovskite is not shown to 

form in any of the samples tested.  Characterisation of the material by x-ray and neutron powder 

diffraction complimented by Mössbauer spectroscopy and iodometric titrations confirm that the 

crystal structure of the new material is in good agreement with that predicted. 

The success with the 3ap system in Chapter 3 lead to the more ambitious investigation of the 

functional YBa2Ca2Fe5O13 10ap material, studied in chapter 4.  Chapter 4 continued to use the 

same methodology used in Chapter 3 in order predict substitution across the YBa2Ca2Fe5-xMxO13 

with x = 0.25 – 1.25 and M = Co, Cu, Mn, Ni, Zn and x = 0.25 – 1.00 with M = Ti.  As well as 

providing insight as to which metals could be substituted into the system, the DFT calculations 
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were able to provide chemical reasoning as to why doping is favoured within the constraints of a 

system with a fixed oxygen content and therefore average cation charge states imposed by the 

DFT calculations.  Doping was predicted to be favourable for M = Co and Cu, with Mn yielding 

a more mixed result, since the predicted reaction energy did not change significantly across the 

compositional range.  When M = Ni and Zn, small levels of doping were predicted to be 

favoured and with Ti no doping was predicted to be favourable.   

Examining the results across the whole of the series calculated, a trend became apparent; dopant 

species were favourable in line with the size of the polyhedra into which they were doped (after 

the structure was relaxed), the dopants that were found to have the polyhedral volumes similar to 

the undoped Fe sites were found to be the most favoured and in the case of Ti, where there was a 

large volume mismatch, doping was not at all favourable.  Doping with Mn was the slight 

exception to the rule; as with Co and Cu, little overall change to the polyhedral volume were 

observed, however the shape of the favoured octahedral sites changed significantly, altering all 

of the other surrounding environments, with the suggestion that the two effects effectively out, 

resulting in substation having little impact on the reaction enthalpies. 

The predictions from Chapter 4, lead into synthetic work performed by D. Hodgeman, with (at 

the time of writing), promising results for doping with Co and Cu, combined with some level of 

success with Mn.  These investigations with M = Cu gave rise to the start of the investigation 

into the material at the centre of Chapter 5. 

Initial experimental investigations showed that the new material had an approximate composition 

of Y2Ba2Ca4Fe7.5Cu0.5O21 (8ap) with unit cell dimensions of 5.4 × 5.4 × 31 Å.  The calculations 

presented in Chapter 5, outlined the development of a new method of computing the most likely 
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structure of a material given only unit cell dimensions and gave rise to the EMMA method.  The 

method was initially validated by correctly calculating the minimum energy structure of 

YBa2Ca2Fe5O13 (10ap), then following on to predict a structure for the 8ap.  Subsequent 

experimental investigations showed the composition to have a 16ap repeat, (~61 Å), with the 

EMMA process repeated for the new stacking length and found the same 8ap structure repeated 

through an inversion centre.  This predicted structure was then used as the basement for 

diffraction refinements and found to be in good agreement proving the EMMA method for an 

unknown material. 

In summary the investigations presented in this thesis have shown that the integration of theory 

and synthetic investigations has proven to be a powerful philosophy for the discovery of new and 

functional materials.  In chapter 3, the concept of integrated investigations was proven in the 

prediction and subsequent synthesis of YBa2Fe2MnO8 in the YBa2Fe3-xMxO8 system and 

importantly been able to predict where synthesis would not be successful.  Once proved, the 

same approach was applied successfully to the larger and more complex SOFC cathode 

YBa2Ca2Fe5-xMxO13 system leading to the prediction of three successful dopants and outlining 

three others where doping would be unsuccessful.  Finally in chapter 5 the approaches lead to the 

successful structural prediction of a large layered oxide using a new computational approach. 
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The work presented within this thesis has contributed to the following publications and 

conference presentations: 

Papers: 

 “Computationally-assisted Identification of Functional Inorganic Materials”, published in 

Science May 2013: doi:10.1126/science.1226558 

 “Computational prediction and experimental confirmation of B-site doping in 

YBa2Fe3O8”, submitted to chemical science. 

Conference oral presentations: 

 CCP5 (2012) – talk: “Extended Module Materials Assembly (EMMA)” 

 MCC (2012) – talk: “Utilizing theory in the search for new layered oxides” 

Conference poster presentations: 

 RSC solid state Christmas meeting (2011) - poster: “DFT predicted synthesis of a new 

triple perovskite in the YBa2Fe3-xMnxO8 system” 

 CCP5 (2011) – poster: “DFT predicted doping of YBa2Ca2Fe5O13 20 layer perovskite” 

 ISACS12(2013) - poster: “Computationally-assisted Identification of Functional 

Inorganic Materials” 
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