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Abstract 

Over the last few decades, porous metals have received a growing interest in industry 

due to their unique physical and structural properties and many potential applications 

ranging from light weight structure, filtration, energy and sound absorption to thermal 

management and electromagnetic shielding. In thermal applications, high energy 

consumption units demand higher and higher heat transfer performance. Porous copper 

is an ideal option for these applications due to its high specific strength, excellent 

thermal conductivity and high surface area. The Lost Carbonate Sintering (LCS) 

method is an efficient and simple manufacturing process to produce porous copper with 

a large range of porosity, various pore sizes and pore shapes.  

 

The main objective of this study is to investigate the heat transfer, fluid transport and 

mechanical properties of porous copper fabricated by the LCS method. The 

permeability, thermal conductivity, heat transfer coefficient and mechanical properties 

were studied on a number of porous metal specimens with different porosities/relative 

densities, copper particle sizes, pore sizes, pore shapes and combinatorial structures. 

 

A purpose-built apparatus was used to study the effects of pore structure on 

permeability. The results showed that pressure drop of LCS porous copper fits well with 

the Forchheimer-extended Darcy equation. The permeability increased with porosity 

and copper particle size, but decreased with pore size. The permeability can be 

predicted well using the modified Carman-Konezy relationship by introducing the 

tortuosity of LCS porous metal for both single and double layer structures. 

 

The thermal conductivity of LCS porous copper increased with relative density and 

pore size, but decreased with copper particle size. The thermal conductivity decreased 

with the size ratio between copper particle and pore at any given porosity. An empirical 

equation was established to describe for this relationship. 
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Heat transfer coefficients were measured for a large number of samples. Compared with 

an empty channel, introducing a porous copper sample enhanced the heat transfer 

coefficient by a factor of 2–10. The samples with low porosities and large pore sizes 

showed high heat transfer coefficients. There was an optimal porosity range for good 

heat transfer performance at a given pore size. The heat transfer coefficient of LCS 

porous copper with double-layers was sensitive to the placement-order of the layer. A 

segment model was developed to predict the heat transfer coefficient of multilayer 

structures and the predictions agreed well with the experimental results.  

 

The mechanical properties of LCS porous copper fabricated with fine copper particles 

were studied by compression, bending and tensile tests. The mechanical strength and 

apparent modulus, decreased with porosity. The porous copper samples with large pore 

sizes had better mechanical performance. The extended Mori-Tanaka model was used 

to predict the modulus and the predictions agreed well with the experimental data.  
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Chapter 1  

 

Introduction 

 

Porous metals are cellular structural materials with a large volume fraction of pores. 

Compared to bulk metals, porous metals offer some interesting physical properties 

such as low density, high specific strength, good impact energy and sound absorption 

and excellent thermal management abilities. There are a large number of porous 

metals that can be produced with various metals and alloys. This new class of 

materials offers a combination of properties and has attracted the attention of many 

scientists and engineers. 

 

1.1 Background and Motivation of Research 

Over the last decade, porous metals have been widely used in medical equipment, 

home appliances, electric components, transformers, motors, aircraft and navigation 

systems, etc., and have become an important and indispensable class of materials in 

industry and everyday life. Porous metals, however, have only several decades of 

history and are still in the relatively early stages of development. 

 

The first patent for producing porous metal was developed by Sosnick (1948) who 

proposed an idea to produce aluminium foam through gasification of mercury in molten 
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aluminium. Elliott & Madison (1956) further developed Sosnick’s idea and successfully 

produced aluminium foam for industrial applications. A tremendous amount of work on 

production methods, properties and applications of porous metals has been done by 

researchers in the next several decades. In recent years, the interest in the 

multi-functionality of porous metal has increased. New advanced methods of 

manufacture decreased the cost of production and improved the properties of porous 

metals. Novel research methods and materials design methodology have been 

developed for porous metals and the knowledge in this field is expanded rapidly.  

 

Porous metals can show different and special characteristics in physical, mechanical, 

thermal, acoustical and electrical properties by having different pore parameters and 

different internal structures. There are several common features for porous metals: low 

density, relatively high specific strength, high specific surface area, good permeability 

and energy absorption ability. The greatest strength of porous metals is their ability to 

combine two or more functions to give multi-functions from a single method. 

 

High energy consumption units, such as the large-scale integrated circuit systems, have 

a very high heat transfer demand. The heat removal devices need to bear both high 

mechanical load and high heat flux. Open-cell porous metals with large specific surface 

area and good permeability for coolant are the best candidates for application in 

multifunctional heat exchangers and heat sinks. Vibration sensing units, such as gauge 
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boards in aircraft, require certain strength and high damping capacity to maintain high 

accuracy and stability during service. Porous metals with high specific strength and 

energy absorption capability could be a good choice for these applications. 

 

The Lost Carbonate Sintering (LCS) process is a space-holder based fabrication method 

developed by Zhao et al. (2005). This technique has attracted much attention in recent 

years as an efficient and simple manufacturing process to produce open-cell porous 

metal with a large range of porosity, various pore sizes and pore shapes. The thermal 

properties and heat transfer performance of porous copper manufactured by the LCS 

method are of particular interest. The prominent thermal properties of copper in its solid 

form, combined with the unusual pore morphology and topography resulting from the 

LCS process, give rise to some fascinating and unconventional thermal characteristics. 

It is timely to study the heat transfer performance and mechanical behaviour of 

open-cell porous copper, which could provide a guidance for the design of compact heat 

exchangers and heat sinks with good heat transfer performance and mechanical 

properties. 

 

1.2 Objectives of Research 

The main objective of this study is to investigate the heat transfer, fluid transport and 

mechanical behavior of porous copper fabricated by the LCS method.  

 



 

 

4 

 

Several basic physical parameters, including permeability, thermal conductivity and 

heat transfer coefficient, are necessary to evaluate the heat transfer characteristics of 

porous metals. It is essential to investigate these properties for porous copper used in 

advanced, compact and lightweight thermal management systems. The porous copper 

studied in this thesis is not intended for structural applications, however, their 

mechanical properties are important for the target applications, like electrodes, catalyst 

supports, sound absorbers, electromagnetic shields and filters. The mechanical 

properties are also important for handling, shipping and assembling, in addition to the 

in-service requirements.  

 

The permeability, thermal conductivity and heat transfer coefficient will be studied on a 

number of porous metal specimens with different porosities, pore sizes, pore shapes and 

combinatorial structures. The mechanical behaviour of LCS porous copper will be 

investigated by means of bending, tensile and compression tests. 

 

1.3 Structure of Thesis 

There are six chapters in this thesis. Chapter 2 reviews the literature on the relevant 

work in the field. The methods and techniques to produce closed-cell and open-cell 

porous metals and their advantages and disadvantages will be introduced. The 

techniques used to characterise the microstructure and physical properties, including 

pore parameters, fluid permeability, thermal conductivity, heat transfer coefficient and 
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mechanical properties, will be reviewed. Different types of porous metals and their 

properties will be reviewed. Some engineering applications of porous metals, especially 

the thermal applications of porous metals as heat exchangers and heat sinks, will also be 

discussed.    

 

Chapter 3 gives a detailed description of the manufacturing method and experimental 

procedures used in this work. The fabrication procedures and conditions of the LCS 

method to produce porous copper test samples are explained. The structural 

characterization and analysis techniques are presented. The experimental equipment, 

measurement method and test procedure for fluid permeability, thermal conductivity, 

heat transfer coefficient and mechanical properties are described. 

 

Chapter 4 presents the results obtained from the experiments in graphical and tabulated 

forms. The microstructure and pore structure parameters of porous copper are described.  

The effects of pore parameters on fluid permeability, thermal conductivity, heat transfer 

coefficient and mechanical properties are described in detail. The heat transfer 

coefficient of the porous copper with a double-layer structure is presented in detail. 

 

Chapter 5 discusses and gives a detailed analysis of the experimental results presented in 

Chapter 4. Particular attention is paid to theoretical correlation of permeability, thermal 

conductivity, heat transfer coefficient and elastic modulus with pore parameters. 
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Chapter 6 summarizes the conclusions obtained from this study and makes some 

suggestions of possible areas for future research. 
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Chapter 2  

 

Literature Review 

 

Porous metals are a new class of materials with low densities and novel physical, 

thermal, acoustic and mechanical properties. So far, they are still imperfectly 

characterized and research on this new materials accelerates rapidly. It is anticipated 

that the new knowledge on porous metals will expand quickly over the next decades.  

 

2.1 Introduction to Porous Metals 

Porous metal can be defined as a cellular structure of a solid metal containing a 

dispersion of gas-filled pores or voids. Its density is lower than that of the bulk metal 

because of the existence of pores. The pores can be either sealed or interconnected, 

depending on the production method chosen for potential applications. Compared with 

bulk materials, porous metals possess a number of unique and fascinating properties 

due to its relatively low density combined with some physical properties. Porous metal 

can be used as either a structural material or a functional material, or a combination of 

both structural and functional material. In recent years, a large number of porous metals 

based on different metallic materials, such as aluminium, copper, steel, magnesium, 

zinc and their alloys, have been exploited. So far, several commercially available 
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porous metals, such as porous aluminium, porous nickel and porous copper, have been 

used in engineering applications.  

 

Porous metals attracted scientists’ attention in last century and are still receiving a 

growing interest in recent years due to their unique physical and structural properties 

(Ashby et al. 2000). Considerable attention in both academia and industry is focused on 

their low density, relatively high specific strength, air and water permeability, and 

thermal and acoustic properties. Although a lot of research on the potential applications 

of porous metals has been carried out, the applications are still confined in a limited 

number of engineering fields due to technological and economic issues. Theoretical and 

practical studies on the fabrication and properties of porous metals are still in progress.  

 

Porous metals can be fabricated by either the traditional casting-foaming process or a 

solid forming process. Early production methods for porous metals or “metal foams” 

are mainly based on casting and foaming techniques (metals with pores deliberately 

integrated into their structure through a foaming processing). The most successful 

example of foaming being the commercial aluminium foam, which can be obtained by 

injecting air into and mechanically agitating a mixture of molten aluminium and SiC 

particles. The solid forming process usually refers to the powder metallurgy technique, 

where the metal powder can be sintered independently or mixed with a foaming agent 

(e.g. TiH2) or a space holder (e.g. NaCl). A large number of new production methods 
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have recently been developed, such as high temperature self-propagation synthesis, 

electrodeposition and laser foaming. 

 

Closed-cell porous metals are often used as structural materials, such as impact energy 

absorbers, electromagnetic shields and decoration materials for the construction 

industry. Open-cell porous metals are used as noise absorption materials, filters and 

biomaterials, etc. Open-cell porous metals are particularly suited to heat exchange 

applications because they have a high specific surface area, a good thermally 

conducting solid matrix and a tortuous internal network of pores promoting turbulence 

and mixing of the coolant (Boomsma 2003). Good thermally conducting metals, such as 

aluminium and copper, can be used for the matrix of porous metal. 

 

2.2 Production Methods and Techniques 

There are a number of methods and techniques available to produce porous metals. 

Some of the production methods have been applied in industrial manufacture and new 

novel techniques are developed to achieve better properties and lower production cost. 

 

2.2.1 Closed-cell porous metals 

Closed-cell metallic foams can be manufactured in many different ways. In most cases, 

they are formed by injecting gas or decomposing a chemical blowing agent in the 

metallic melt. Recent research is mainly centred on the investigation of foaming and 
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stabilisation mechanisms, the development of new blowing agents, the optimisation of 

the fabrication processes and the reduction of the fabrication costs (Degischer & Kriszt 

2002). Different production methods are described as follows. 

 

2.2.1.1 Foaming 

The first reported method to produce closed-cell metal foams was developed in the 

USA (Sosnick 1948).  The process involved melting bulk metals and mercury in a 

closed chamber preventing escape of the mercury vapour. The boiling point of mercury 

is about 357ºC, and its vapor pressure may be increased to the point where the mercury 

in the mixture is stabilized. The molten mass was then released from the high pressure 

chamber to a low pressure space. The volatilization of mercury in the mass caused it to 

become foamy or sponge-like. Upon cooling a sponge metal resulted.   

 

The process was used to produce solidified metals containing the enclosed voids. 

Examples of mixtures suitable for forming sponge metals are: magnesium/mercury, 

aluminium/mercury, chromium/cadmium and gold/mercury. The porosity is greatly 

dependent upon the capacity of the enclosure to produce a desired vapour pressure. 

Therefore, it is not easy to control the pore parameters using this method. Furthermore, 

mercury is an extremely toxic substance and harmful to the environment. 
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2.2.1.2 Gas injection in melt 

Metal foam can be produced by directly injecting gas into a metallic melt. Pores can be 

formed from the gas bubbles in the melt during the solidification of the melt. This 

process, however, is not easy to control. The gas bubbles can separate and exhaust from 

the liquid very fast, so that there is insufficient time to keep bubbles in the metallic melt 

before the solidification, however, it is possible to foam metallic melt using this method 

by adding an amount of indissolvable ceramic particles, like Al2O3 or SiC, which are 

used to increase the viscosity of the metallic melt (Niebyski et al. 1974, Jin et al. 1992). 

The gas is blown into the melt using a tube assisted by specially designed, rotating 

impellers. When the gas is injected, the bubbles form and rise to the surface of the melt 

slowly because of the high liquid melt viscosity. The melt begins to solidify after a 

relatively uniform distribution of bubbles is formed in the melt. The foaming gas can be 

air, nitrogen, carbon dioxide or inert gases (Niebyski et al. 1974). 

 

It is relatively simple to implement this method to produce porous aluminium, because 

aluminium has a low density and oxidation of molten aluminium is not serious when 

exposed in air or other gases because of the dense Al2O3 protective film forming on the 

surface of molten aluminium. Several techniques based on this method to commercially 

manufacture aluminium foam have been developed and several companies, such as 

CYMAT Technologies Ltd. (Canada) and NORSK HYDRO ASA (Norway), produce 

commercial output from the process. Although the cost of this production method is 
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quite low, it is only suitable to manufacture aluminium foam with relative density 

between 0.03-0.1 (Ashby et al. 2000). 

 

2.2.1.3 Decomposition of gas-releasing particles in melt 

This method is similar to gas injection as it uses gas to form the pores, however, in this 

case a foaming agent, which releases gas after heating to produce pores in the metallic 

melt is used. The most common foaming agent is titanium hydride (TiH2). 

 

Elliott (1956) successfully produced foamed aluminium using this method. Currently, 

several typical metal foams, for example, Alporas aluminium foam (Alporas, USA), 

have been made by this method, shown in figure 2.1 (Ashby et al. 2000). The 

aluminium is firstly melted and the temperature of the melt is maintained between 

670-690ºC. 1-2% calcium is added to the melt, which quickly oxidizes to form 

uniformly distributed CaO and CaAl2O4, increasing the viscosity of the liquid melt. 

TiH2 particles (1-2%) in the size range 5-20 μm are added whilst the molten metal is 

stirred. Once these particles are dispersed throughout the melt, stirring is stopped and a 

froth begins to appear in the melt. The whole process is controlled by adjusting the 

pressure, system temperature and operation time. It usually takes about 10 minutes for 

the decomposition of TiH2. After frothing, the melt is cooled to a solid and the 

hydrogen escapes from the material. Finally, a solid cellular structure is obtained, which 

is removed from the furnace for further processing.  
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Figure 2.1 Production process of Alporas aluminium foam (Ashby et al. 2000). 

 

Figure 2.2 shows the pore structure of a typical foam fabricated using this method. The 

relative density of the foam is determined by the amount of additives, including calcium 

and TiH2. The pore size is determined not only by the amount of additives, but also by 

the cooling conditions of the system during production. Alporas foam has closed-cells, 
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with relative density between 0.07-0.2 and pore size between 0.5-5mm. This 

manufacturing method, however, has some disadvantages: the pore size and pore size 

distribution cannot be accurately controlled, and this lack of control results in a larger 

pore density at the centre of the sample. Furthermore, TiH2 cannot be used to produce 

foams from some metals or alloys, typically like zirconium, high carbon steel and 

ferro-alloys, because of hydrogen embattlement sensitivity. 

 

 

Figure 2.2 Pore structure of close-cell Alporas aluminium foam (Banhart 2000). 

 

Improvements have been made to overcome these problems. It is recommended to use 

high speed mixing to disperse the blowing agent throughout the molten metal in a very 

short space of time to avoid a non-uniform pore size and pore size distribution. 

Increasing the viscosity of the molten metal by using specific agents or using specific 

alloys as the bulk material is also a method to aid in preventing the escape of gas 
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bubbles. Some other foam agents, like nitrate or carbonate, can be used to replace the 

TiH2, making it possible to produce porous steel, nickel and their alloys.  

 

2.1.2.4 Gas-metal eutectic solidification 

This method uses the metal-hydrogen eutectic reaction characteristics and the 

directional solidification technique to produce porous metal. Numerous alloys, 

including Al-, Be-, Cr-, Cu-, Fe-, Mg-, Mn- and Ni-based alloys, have eutectic reactions 

with hydrogen (Schwartz & Shih, 1998). The alloy is melted, saturated with hydrogen 

under pressure, and then directionally solidified, progressively reducing the pressure. 

During solidification, solid metal and hydrogen simultaneously form by a gas eutectic 

reaction, resulting in a porous material containing hydrogen-filled pores. Generally, 

largely elongated pores oriented in the direction of solidification are formed (see Figure 

2.3). These materials are referred to as GASARs with “lotus” structure (Shapovalov 

1993). 

 

In order to use the process to make copper foam, a furnace placed within a pressure 

vessel is used to melt the copper under an appropriate pressure of hydrogen (typically 

5-10 atmospheres). The melt is then poured into a mould where directional eutectic 

solidification is allowed to occur. This results in an object containing a reasonably large 

(up to 30%) volume fraction of pores. The process variables include melt over-pressure, 

melt superheat (which affects the hydrogen solubility of the liquid metal), the 
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temperature field in the liquid during solidification, and the rate of solidification. With so 

many process variables, control and optimisation of the pore structure are difficult. The 

method poses certain safety issues and, in its present form, is a batch process; as a result, 

although the materials were among the first highly porous materials to attract significant 

interest, they remain confined to academic research and are not yet commercially 

available.  

 

 
Figure 2.3 Pore structure of Gasar (Shapovalov & Withers 2011) 

 

2.2.1.5 Metal expansion by trapped gases 

This method is based on porous materials, where the pores are filled with high pressure 

inert gases. When the material is heated, the pressure in the pore increases, which 

makes the metal material expand through creep. 
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In this process, the porous particles are sealed in a metal container with the same 

material as the particles. The container is vacuumed and filled with 0.3-0.5MPa inert 

gas. It is then compacted by HIP to a densification of 0.9-0.98. The pressure in the pore 

is now increased by up to 8 times, but it is still too low to expand the metal. Hot-rolling 

is then introduced to improve the pore structure. The pores are deformed and elongated 

along the rolling direction. The wall of pores may contact and bond together, which 

leads to smaller gas voids. Tandem rolling can improve the uniformity of the pore 

distribution. The last procedure is to swell the metal at high temperature for 20-30 hours. 

Normally, the pressure in the pore increases to 10-16MPa, and the metal sample 

expands by creep. Schwartz & Shih (1998) produced Ti-6Al-4V porous metal by this 

method. 

 

Sandwich structure parts with titanium foam interlayer can be made by this method. 

The porosity of the core plate can be up to 50%, while the pore size is 10-300 μm. This 

technique, however, is complex and costly, which makes it unsuitable for industrial 

manufacture. 

 

2.2.2 Open-cell porous metals 

Open-cell metal foams with high porosity and permeability are well known and have 

been widely used for decades. They show a wide range of physical and mechanical 
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properties and may be adapted to multiple requirements. Several methods have been 

used to produce open-cell porous metals as described here. 

 

2.2.2.1 Mould casting 

Mould casting is a unique method of producing metallic foams. This process is used to 

produce metallic foams with the same shape as a foam template. It involves filling the 

pores of a plastic foam with a refractory material, which is then hardened and heated 

until the plastic foam is vaporized, leaving the refractory material as a porous mould. A 

molten metal is then poured into the porous frame and allowed to cool.  Once 

solidified, the refractory material is removed by hammering the casting body and a 

metal foam of the same configuration of the plastic foam remains. 

 

Open-cell polymer foams with low relative densities and a wide range of cell sizes of 

great uniformity are available from numerous sources. They can be used as templates to 

create investment-casting moulds into which a variety of metals and alloys can be made 

in this way including copper (Davies & Zhen 1983). Mould casting slurry is often used 

as the refractory material, which can be baked to harden into a mould. The method can 

be used to produce open-cell foams with pore sizes of 1-5 mm and relative densities as 

low as 0.05 (Banhart & Baumeister 1998). 
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Only metals with a low melting point can be used as the base material for these materials. 

These metals include copper, aluminium, lead, zinc, tin and a number of different alloys 

(Davies & Zhen 1983).  A commercially available metallic foam under the trade name 

DUOCEL made by mould casting method is shown in Figure 2.4. 

 

  
Figure 2.4 Photograph of DUOCEL aluminium foam manufactured using mould 

casting (Jang & Kyriakides 2009). 
 

 

2.2.2.2 Fibre or wire metallurgy 

As well as metal powders, metal fibres and wires can also be sintered resulting in 

porous metals with some unique properties (Lee et al. 2006, Zou et al. 2008). Various 

methods can be used to produce porous metal with the metal fibres and metal wires, and 

sintering is also a conventional technique. After sintering, the metal fibres and wires 

retain their strength, resulting in a porous metal which offers good mechanical 
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properties. Additionally, the porosity is highly controllable and the pore structure is 

such that high permeability can be achieved.  

 

An example using metal wire to fabricate metal foam is a multi-layered Kagome truss 

periodic structure named “Wire-Woven Bulk Kagome (WBK)” truss (Lee et al. 2006). 

The fabrication is based on the assembly of helical wires in six directions. The 

structures are periodic and very uniform, have good specific properties and are highly 

permeable (Figure 2.5). This high permeability makes porous metals manufactured 

using this technique ideal candidates for use as filters. Metals used in this process 

include copper, stainless steel, nickel and Ni-Cr alloy. 

 

 
Figure 2.5 Wire-woven Bulk Kagome (WBK) structure (a) and unit cell (b) (Lee et al. 

2006). 
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2.2.2.3 High temperature self-propagation synthesis (SHS) 

SHS is a combustion synthesis process used to produce special porous metals (Chu et al. 

1997, Li et al. 2000). There are two modes of SHS: one is thermal explosion, and the 

other is self-propagation combustion. The former works by heating the metal powders 

to a high temperature in a short time, and is mostly used to fabricate dense metal. The 

latter works by igniting the metal powders at one side and allowing the metal powders  

to self-propagate to the other side of the material. Using this technique porous metal 

with a porosity of 30-70% can be produced (Li et al. 2000). This technique is simple, 

low cost and energy efficient, however, the pore size is not easy to control and the final 

products are often brittle. 

 

2.2.2.4 Electrodeposition 

Metallic foams with high porosities and uniform pore distribution can also be 

manufactured using electrodeposition. A subtle way of making an open-cell foam is to 

start with an open-cell plastic foam as the mould, deposit an electrical conduction layer 

of carbon on it by vapor deposition, and subsequently electroplate metal onto the 

surface. Finally the construct is heated to remove polymer, resulting in an open-cell 

foam with hollow struts. Metals that can be deposited by electroless plating include 

copper, zinc, nickel and silver (Davies & Zhen 1983). The most common method of 

“plating” the carbon onto the plastic foam is by CVD/PVD, and the high production 

cost restricts its industrial application. 
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2.2.2.5 Powder sintering 

Traditional powder sintering involves mixing, forming and sintering processes. The 

metal powder can be either cold or hot pressed prior to sintering to promote 

metallurgical bonding of the metal particles. Sometimes, liquid-state sintering is 

necessary to increase the densification of the materials.  

 

Sintering is a process that the particles of a powdered aggregate coalesce by atomic 

diffusion at an elevated temperature. Metal powder particles are in contact with each 

other and could mechanically bond after pressing. Theoretically, atomic diffusion could 

occur in any materials at a temperature above absolute zero, but it is extremely slow at 

low temperature. Therefore, the sintering process often operates at high temperature to 

accelerate diffusion. Sintering necks often form along the contact surfaces of adjacent 

particles at high temperature, and the particle boundary becomes metallurgical bond 

with increasing the sintering time. After sintering, the voids between the particles 

develop into pores. 

 

It is easy to produce porous metals with any shape as long as there is a mould to contain 

the powders. This makes the process an ideal candidate for the production of complex 

porous metal structures. The porosities of porous metals produced using this method are 

relatively low (usually between 20% and 50%). To achieve higher porosities using this 

method, a spacing agent can be added to the powder before sintering.  This agent can 
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be an inorganic salt (Li et al. 2009, Wang et al. 2010) or a metal (Aydoğmuş & Bor 

2009), which can be removed by dissolution after sintering or decomposed or 

evaporated during sintering. Sodium chloride is the common agent as space holder to 

produce open-cell porous metals (Zhao et al. 2009, Wang et al. 2010). There are some 

other agents available, such as magnesium, ammonium acid carbonate and urea. 

Recently, Zhao et al. (2005) has developed a “Lost Carbonate Sintering’” method using 

potassium carbonate as the pore-creating agent. This technique can be used to produce 

porous materials with various metals, for example, aluminium, steel, titanium, copper 

and their alloys. All the porous samples in the present study were produced using this 

method. 

 

The Lost Carbonate Sintering (LCS) process has been proved to be an efficient powder 

metallurgical manufacturing method to produce porous metals with controlled pore 

parameters, such as porosity, pore size, pore shape and pore distribution, which are 

important in determining the properties of porous metals (Zhao et al 2005, Mahmoud 

2012, Paravanian & Panjepour 2013). It involves mixing copper particles and potassium 

carbonate powders, compacting the powder mixture, sintering, and decomposition or 

dissolution process. In LCS, pores are created by removing the carbonate. Carbonate 

removal can be achieved by two different routes. One is to dissolve the potassium 

carbonate with water after sintering, and the other is to decompose the potassium 

carbonate by sintering the compact at a temperature higher than the melting point of 
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potassium carbonate (891˚C) (Zhao et al. 2005). The former route takes longer and 

placing the sample in hot water for a long time can result in the oxidation of copper. 

The porous metals produced by the latter route generally have better properties than 

those produce by the former. LCS method is an efficient process to produced porous 

metals with porosity in the range 50-85% and cell sizes in the range 53-1500 μm. In 

principle LCS can be used for manufacturing foams of any metals that can be sintered, 

including copper, iron, nickel and their alloys. The LCS porous metals shows a strong 

bonding between the metal particles, leading to their good thermal and mechanical 

properties (Zhao et al 2005, Thewsey & Zhao 2008, Parvanian & Panjepour 2013).  

 

Of all the manufacturing methods available for producing porous metals, sintering 

methods are considered to be the most promising, capable of economically producing 

millions of components annually (Haack et al. 2001).  

 

2.3 Fluid Transport of Porous Metals 

The important of transport phenomena in porous media has been emphasized by 

scientists and engineers, as they relate to the many materials in everyday life which are 

familiar to us (Dullien 1979). The permeability of open-cell porous metals is of 

particular importance as it often determines the application of porous metals.  
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2.3.1 Darcy’s law and permeability 

Permeability is one of the most important characteristics of open-cell porous media that 

allow fluid flow through them. It describes the conductivity of a porous medium with 

respect to fluid flow and how easily a fluid is able to move through the porous material. 

Permeability is related to the connectivity of the void spaces and the pore size. It is 

essential to characterise this property for permeable porous metals when they are used 

for thermal management, filtration, electrochemistry, acoustic absorption and medical 

implants.  

 

Fluid transport in porous media can generally be analyzed by Darcy’s law (Darcy 1856), 

which gives a simple expression to describe the relationship between fluid pressure 

gradient and Darcy velocity. Specifically, Darcy velocity, vd, is directly proportional to 

the fluid pressure gradient, ▽P, and the permeability K. 

d
Kv P
µ

= − ∇                            (2.1) 

where μ is the viscosity of the fluid.  

 

Rearranged Eq.(2.1), the pressure gradient can be expressed as: 

dP v
K
µ∇ = −                           (2.2) 

Darcy law was the basic equation governing permeability, which states that the rate of 

flow is directly proportional to the pressure gradient causing flow. The permeability, K, 
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is usually experimentally determined with units of square of length. The values of 

permeability vary widely, normally ranging from 10-20 to 10-7 m2 (Bear, 1979). 

 

Darcy velocity, vd, is not a physical velocity but a superficial velocity defined as the 

volume flow rate divided by the entire cross section of the porous medium, not just the 

fluid flow cross-section. The pore velocity, vp, which is based on the real fluid flow 

cross-section, is related to Darcy velocity and the porosity of the porous medium, ε, by: 

d
p

vv
ε

=                              (2.3) 

 

A number of researchers have verified that Darcy’s law applies for slow, viscous flows, 

where the pressure drop is linearly proportional to the flow rate. Mokadam (1961) 

derived a general equation for flow through porous media using irreversible 

thermodynamics and showed that Darcy’s equation is a special case, when the system 

of fluid flow was assumed to be isothermal conditions and the inertial and viscous 

effects were neglected. Ridgway et al. (2003) used Darcy’s equation to compare the 

liquid permeability coefficient with the air permeability coefficient and found a close 

agreement between the two values. The gas permeability is close to the liquid 

permeability of a perfectly wetting liquid (Ridgway et al. 2003).  

 

Darcy’s law does not describe the fluid flow through the porous media accurately when 

the Darcy velocity is high. It was found that the effects of inertia friction and turbulence 
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become greater at higher flow velocities, resulting in larger pressure gradient through 

the porous media (Antohe & Lage 1997). The mechanism responsible for this 

turbulence is the drag force imposed on a fluid by the pore walls which impede the flow 

(Carman, 1956). In steady viscous or streamline flow, the resistance arises solely from 

viscosity. As the velocity increases, the regular pattern of streamline flow becomes 

unstable, and gives way to a regime where large number of small, randomly distributed 

local eddies form spontaneously. This results in the dissipation of the kinetic energy of 

fluid motion as heat and hence increases the resistance to flow. This resistance can be 

described as inertial resistance and depends on the kinetic energy per unit volume of the 

fluid, i.e. on 2
f vρ . Therefore, in general engineering applications, the law governing 

this fluid flow is a modified version of Darcy’s equation, with inertial resistance 

superimposed on the viscous resistance (Dupuit 1863; Forchheimer 1901): 

2
d f dP v Cv

K
µ ρ∇ = − −

                          
(2.4) 

where K is the Darcian permeability of the medium, vd is the Darcian velocity of the 

fluid, fρ  is the density of the fluid and C is the drag form coefficient of the medium.  

The term 2
f dCvρ  accounts for the inertia effects or non-linear flow resistance in the 

flow. 

 

Recently, Joseph et al. (1982) modified the Forchheimer equation based on the work of 

Ward (1964) by introducing an inertial coefficient, cF, to Eq. (2.4):  

F Cc K=                           (2.5) 
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The inertial coefficient, cF, has been discussed extensively in the previous literature. The 

experimental work by Ward (1964) indicated that cF is a universal constant for all 

permeable materials and equals to 0.55. Later work indicates that different values of cF 

were obtained for materials with different characteristics, such as fibrous metal foams 

and polyethylene particles of random shape (Beavers & Sparrow 1969, Schwartz & 

Probstein 1969). Recently, Antohe & Lage (1997) reported that cF varies from 0.3 to 0.9 

for aluminium foams. Nield and Bejan (1999) summarised several sets of experimental 

data and found that cF is a function of the porous medium and can be as low as 0.1 for 

fibrous metal foams.  

 

2.3.2 Pore parameters of permeable material 

Permeability of open-cell porous media is of particular significance when they are used 

as a functional material. A number of factors, such as porosity, pore size, and pore 

morphology can affect the permeability. 

 

2.3.2.1 Porosity 

The most important characteristic parameter is relative density, / sρ ρ (where ρ  and 

sρ  are the density of the porous material and the density of the bulk material, 

respectively), or porosity of the porous media, ε  ( 1 / sε ρ ρ= − ). The larger the 

porosity, the more voids or pores in the porous media. This means that the fluid can 
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flow much more freely in the porous media because of more space and less barrier for 

the fluid. Therefore, permeability will always increase with porosity.  

 

2.3.2.2 Pore size and characteristic length 

Pore size is another parameter of porous media. Unlike porosity, it is impossible to give 

an accurate value of pore size in most porous media, as it is difficult to make porous 

media with constant pore size. Normally, average pore size is used when the pores in 

porous media are relatively regular and distributed uniformly. Bhattacharya et al. (2002) 

found experimentally that the permeability increases with average pore diameter, while 

the inertial coefficient changes very slightly with pore diameter, with the values of 

0.085 for sample with pore diameter of 400 μm and 0.084 for sample with pore 

diameter of 180 μm at a given porosity of 91%.  

 

Pore size is just one apparent parameter describing the porous media. Pore size in 

porous media firstly refers to the diameter of cylindrical tubes in porous media. 

Theoretically, only if the pores were cylindrical tubes of uniform diameter or perfect 

spheres, the pore size would be unique (Dullien 1991). Porous media, however, often 

have different pore morphologies. For many properties of porous media, such as 

permeability and heat transfer parameters, the characteristic length should be used to 

define the characteristics of the pores. Some examples of characteristic length are: the 

diameter of a cylindrical channel (Ming et al. 2010, Odabaee et al. 2011), the diameter 
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of a sphere (Childs & Collis-George 1950, Masuoka & Takasu 1996) or pore (Kim & 

Jang 2002), the diameter of a fibre (Vallabh et al. 2010) or wire (Dyga & Placzek 2010), 

or hydraulic diameter (Chiba et al. 2010, Qu et al. 2000, Richardson et al 2000, Shen et 

al. 2006). For complex shapes, the characteristic length may be defined as the volume 

of the fluid body divided by the surface area of matrix.  

 

2.3.2.3 Specific surface area 

The specific surface area of a porous media can be defined as the interstitial surface 

area of the voids and pores either per unit mass or per unit bulk volume of the porous 

media. There are three methods to determine specific surface areas, according to Collins 

(1961) and Scheidegger (1974): 

1) Adsorption. This method uses the principle of lack of thermodynamic equilibrium 

between the gas or vapor and the solid surface in contact with it, as all gases below 

their critical temperatures tend to adsorb as a result of van der Waal’s forces 

between the gas molecules and the solid surface. Equilibrium is achieved by 

accumulation of the molecules of the gas or vapor. The surface area is usually 

obtained based on unit mass of the sample. 

2) Quantitative stereology. This method uses photomicrographs of one section of the 

sample with sufficient contrast to clearly distinguish the pores from the solid matrix. 

The detailed information will be described in Section 3.2.2.2. Quantitative 
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stereology is an easy and effective method to estimate the value of specific surface 

area of porous media. 

3) Fluid flow. Permeability has been related to the specific surface area of the samples 

and can be used to calculate the specific surface area. The simplest example is 

modeling the fluid flow through a packed bed with spherical particles. 

 

Recent research has been conducted to characterise the specific surface area of porous 

media with uniform pore using a cylinder to represent the pore, both of which have the 

same diameter, pored , and the same internal surface area, the specific surface area per 

unit volume of solid, S0, is given by (Kaviany 1995, Richardson et al. 2000, Liu et al. 

2006) : 

0
4
(1 )pore

S
d

ε
ε

=
−

                        (2.6) 

 

2.3.2.4 Tortuosity 

As the pores are the flow channel, the pore structure is vital to the flow of fluid in 

porous media. The path of the fluid that flows through the porous medium is 

determined by the pore distribution and can be characterised by tortuosity (Epstein 

1989). A smaller tortuosity represents a more straight flow channel for fluid, which 

corresponds to a larger permeability. Numerical study also reveals that tortuosity of 

granular soils decreases almost linearly with increasing porosity, resulting in high 
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permeability (Koponen et al. 1996, Ghassemi & Pak 2011). Tortuosity in porous media, 

τ, is defined as the ratio of the average pore length, Le, to the length of the porous 

medium, L0, along the major flow or diffusion axis; i.e., τ=Le/L0 (Epstein 1989). 

Generally, Le > L0 and τ>1. 

 

Tortuosity is an important parameter of a porous medium which affects the flow 

through it. Carman (1956) proposed that tortuosity could be expressed as secθ , where 

θ was the average deflection angle between the real flow direction and the horizontal 

direction of the porous medium. For a packed bed, they suggested (Le/L0)2=2 with

45θ =  , which was experimentally confirmed by some work in literatures (Carman 

1956). Recent research showed that tortuosity varies according to the factors related to 

motion of fluid coupled with the structural characteristics of the porous media (Delgado 

2006). 

 

There have been several empirical correlations between tortuosity and porosity: 

1 (1 )aτ ε= + −                          (2.7)  

1 ( )aInτ ε= −                           (2.8) 

nτ ε −=                               (2.9)  

where a and n are constants. (The reference for expressions 2.6, 2.7 and 2.8 are 

Weissberg 1963, Comiti & Renaud 1989, and Iversen & Jørgensen 1993; Weissberg 
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1963, and Koponen et al 1996; and Archie 1942, Bear 1972, Dullien 1979, Mota et al. 

2001, and Dias et al. 2006, respectively.) 

 

Several other important parameters influence the permeability of porous media, these 

including pore surface morphology, roughness of pore wall and pore shape. 

 

2.3.3 Geometric permeability models 

The permeability of porous media is often determined experimentally, because it is 

difficult to model the permeability of porous metals using intrinsic structural parameters. 

A number of investigations have been carried out and many models have been set up. 

Some investigations qualitatively described the permeability as a function of porosity 

and pore size (Khayargoli et al. 2004, Medraj et al. 2007). Some obtained empirical 

correlations in the power-law form K=αεβ, or in the exponential form K=aebε, where α, 

β, a and b are fitted constants that depend on the type of the foam (Dukhan 2006, 

Innocentini et al. 1999a).  

 

Geometric permeability models based on the structure of porous media were reported in 

the literature. Some models were based on statistics (Andersson et al 2011, Katz & 

Thompson 1986), and the others based on well-defined geometry. These models require 

the knowledge of pore structure (Antohe & Lage 1997, Despois & Mortensen 2005). 

The simplest geometrical model consists of a bundle of straight cylindrical capillaries of 
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uniform cross section. Other, more sophisticated, geometrical models have been 

suggested by several authors.  

 

Most of the geometrical models are based on Carman-Kozeny model, which is widely 

accepted and is based on Hagen-Poiseuille equation (Carman 1956, Kozeny 1927). The 

permeability of porous media is expressed in Carman-Kozeny model as: 

2 3

2 2 2
0 016 (1 )

hDK
k k S

ε ε
τ ε

= =
−

                   (2.10) 

where k0 is a “shape factor” (k0=2.0-2.5 for most rectangular, elliptical and annular 

shape pores), S0 is the specific surface area based on the solid’s volume, and τ= Le/L is 

tortuosity (L is the length of the porous medium along the direction of fluid flow and Le 

is the average path length of flow), Dh=4ε/[S0(1-ε)] is the hydraulic diameter, and 

k=k0τ2 is the “Kozeny constant”,. 

 

The Carman-Kozeny model forms the basis of most geometric models (Wong et al. 

1984, Bhattacharya et al. 2002, Vidal et al. 2009), which differ only in the method of 

calculating the mean hydraulic diameter and in the value used for Kozeny constant, k0τ2. 

According to Carman (1956), the best value of Kozeny constant to fit most 

experimental data on packed beds is 5. Defining the mean particle diameter Dp as the 

diameter of the hypothetical sphere with the same S0 as the pore, i.e. Dp=6/S0, 

Carman-Kozeny equation changes to: 
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2 3

2180(1 )
pD

K
ε

ε
=

−
                      (2.11) 

Similar expressions were also derived by Ergun (1952), Bear (1979) and Kovács 

(1981). 

 

There are some limitations of the Carman-Kozeny equation. It assumes that the range of 

pore shapes is such that k0 is unlikely to change, and the tortuosity is also not very 

susceptible to variations in pore geometry. In practice, the tortuosity is often found to be 

much larger than the assumed values. Another important limitation is the assumption 

that pore size can be represented by the hydraulic radius, which is not always accurate, 

e.g. for capillary pore space. This model is suitable for granular media, but not 

necessarily suitable for porous metals with different structures. 

 

Du Plessis & Roos (1994) devised a pore-scale granular model. They adopted a 

volumetric averaging approach to calculate the flow resistance of a fluid through a 

periodic unit cell shaped of a cube containing three perpendicular solid rods of 

rectangular cross-sections located along three of its edges. The hydrodynamic 

permeability, K, can be expressed as a function of the porosity, ε, and the grain diameter, 

Dp: 

2 1/3 2/3

1/3

[1 (1 ) ][1 (1 ) ]
63 (1 )

pD
K ε ε ε

ε µ
− − − −

=
−

                  (2.12) 
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The model agreed well with experimental data obtained on ERG aluminium foams with 

high porosity between 92% and 96%, however, a modification to the model was 

required to fix the ratio between the edge length of the cell and the average pore 

diameter.  This issue was resolved when Fourie & Du Plessis (2002) calculated the 

ratio between the cubic pore size and a more realistic tetrakaidecahedral pore shape.  

This model showed very good agreement with experimental data obtained. 

 

Recently, Despois and Mortensen (2005) studied the permeability of aluminium 

open-pore foams produced by the replication process and developed a model by 

considering the effect of the obvious ‘bottlenecks’ on pressure drop. The model was 

finally compared with Darcy’s law and gave the expression of permeability as follows: 

3/22
0

03(1 )
r

K
π

∆ − ∆∆
=

− ∆

 
 
 

                   (2.13) 

where r is the initial particle radius (close to the average pore radius in a foam), Δ is the 

pore density in a particle compact (the pore volume fraction in a foam), and Δ0 is the 

initial packing density of the spherical particles (Δ0 = 0.64 for random dense packing of 

monosized spheres). 

 

The ‘bottleneck’ model seems to agree well with the experimental data for the 

permeability in their study, and shows the same results with the predictions of Du 

Plessis et al. (1994) for low-density foams. 
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2.4 Thermal Properties of Porous Metals 

Thermal transport in porous metals, including conduction and convection, are often of 

particular significance when they are used in the thermal management devices. It is 

important to evaluate the thermal properties of porous metals as they play important 

roles in applications. 

 

2.4.1 Thermal conduction in porous materials 

When the temperature distribution is non-uniform, i.e., the temperature of the substance 

on one side is higher than that on the other side, heat will be conducted from a region of 

higher temperature to a region of lower temperature within a substance. This 

phenomenon is called thermal conduction. The ability of a particular substance to 

conduct heat is characterised by its thermal conductivity. 

 

2.4.1.1 Mechanisms of thermal conduction 

In fluids, thermal conduction depends on the collisions of molecules during their 

random motion (Long 2009). Molecules with high temperature move very quickly and 

are in a state of high energy, while molecules with low temperature move slowly and 

are in a state of low energy. Thermal energy is transported from high energy 

molecules to low energy molecules via the collision of molecules. 

 

In solids, the atoms vibrate about their equilibrium locations and cannot transport 
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thermal energy in the form of collision between atoms. Thermal energy in solids is 

conducted by two mechanisms: lattice vibration and migration of free electrons. The 

sum of these two contributions represents the total thermal conductivity of the solid 

medium (Kreith et al. 2001). Normally, thermal energy transport due to lattice 

vibration occurs when adjacent atoms vibrate against one another, with the transport 

direction being the motion of the lattice waves, or phonons. Free electrons can also 

transport thermal energy, and the transport due to free electrons is more effective than 

that due to vibrational energy in the lattice structure because of the light weight of 

electrons. In metals, there are a lot of free electrons which can conduct heat efficiently. 

The contribution of lattice waves to heat conduction in metals can be ignored, and the 

conduction of heat mainly results from the migration of free electrons. Thus, metals 

have a higher thermal conductivity than fluids and non-metallic solids. 

 

2.4.1.2 Thermal conductivity 

Thermal conductivity can be considered using a bar with one end of the bar at a higher 

temperature T1 and the other end at a lower constant temperature T2. Heat is conducted 

from the hot end to the cold end at a steady rate as both sides are completely insulated. 

In steady-state conditions, providing the heat energy passing through any positions is 

the same within the bar, the heat flow is proportional to the temperature gradient and 

the area of the cross section: 

dTQ A
dx

λ=                         (2.14) 
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where Q is the heat flow, λ is the thermal conductivity, A is the cross-sectional area 

perpendicular to the direction of heat flow, and dT/dx is the temperature gradient 

through the medium conducting heat.  

 

Thermal conductivity depends strongly on the chemical composition and crystal 

structure of the material, both of which influence the lattice vibration and electron 

migration in the material. Table 2.1 lists the thermal conductivity of some common 

materials at room temperature (Long 2009, White 2011). Temperature is also an 

important factor which influences the thermal conductivity of a material. Normally, 

the thermal conductivity of pure metals decreases with temperature, while the thermal 

conductivity of alloys increases with temperature (Long 2009). There often is a linear 

relationship between thermal conductivity and temperature (Aksoz et al. 2010). 

 
Table 2.1 Thermal conductivity of some common materials at room temperature (Long 

2009, White 2011). 
Materials Thermal Conductivity (W/mK) 

Natural Diamond 2200 

Pure Copper 390 

Pure Aluminium 235 

Brass Cu63% 125 

Pure Nickel 91 

Pure Iron 55.4 

Carbon Steel 54 

Water 0.6 

Air 0.025 
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Generally, the experimentally measured values of thermal conductivity are used for 

engineering calculations. A kinetic theory has been developed to predict the 

experimental values accurately for gases at moderate temperatures (McLaughlin 

1969). This theory, however, is not adequate to predict thermal conductivity of fluids 

or solids to a satisfactory level of accuracy (Klemens 1969, McLaughlin 1969). For 

the thermal conductivity of two phase materials, i.e., binary mixtures, three basic 

models have been established to predict the effective conductivity of mixtures: one for 

parallel arrangements, one for series arrangements and one for random continuous 

arrangements (Laudauer 1952). The equations of the models are as follows: 

      Parallel model: 1 1 2 2V Vλ λ λ= +                                 (2.15) 

Series model: 
1 1 2 2

1
/ /V V

λ
λ λ

=
+

                              (2.16)  

Continuous model (EMT model):  1 2
1 2

1 2

0
2 2

V Vλ λ λ λ
λ λ λ λ

− −
+ =

+ +
       (2.17) 

where λ is the effective conductivity of the mixture, λ1 and λ2 are conductivities of the 

two phases, and V1 and V2 are volume fractions of the two phases, respectively. 

 

2.4.1.3 Heat conduction in porous metals 

Heat conduction through a matrix fully saturated with fluid (e.g., porous metals) 

depends on the structure of the matrix and the thermal conductivity of each phase. 

According to Gibson & Ashby (1988), the effective thermal conductivity of a porous 

metal can have four contributions: conduction through the solid phase, conduction via 
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the gas phase within the pores, convection conduction within the pores and radiation 

conduction through the pore walls and across the pore voids. This can be summed up 

by: 

s f conv radiλ λ λ λ λ= + + +                    (2.18) 

where λ is the total thermal conduction, and λs, λf, λconv and λradi represent the thermal 

conductivity contributions through solid conduction, gaseous conduction, convection 

and radiation, respectively. 

1) Conduction through the solid phase: 

The effective thermal conductivity of a porous metal will be less than that of the bulk 

material. The contribution, λs, is produced by the conductivity of the fully dense solid 

and its volume fraction multiplied by an efficiency factor which allows for the tortuous 

shape of the cell walls (Schuetz & Glicksman 1984). Thus the heat transported by 

conduction in the solid may be reduced by decreasing the volume fraction of the solid 

present. Impurities and metal oxides contained within porous metals may also 

contribute to a reduction of the total thermal conductivity (Degischer & Kriszt 2002). 

2) Conduction via the gas phase: 

In most cases, the gas contained within the pores is air. According to Table 2.1, the 

thermal conductivity of air at room temperature and atmospheric pressure is as low as 

0.025 W/mK. This means that heat transfer in stagnant gas will be very slow. Compared 

with the thermal conductivity of solid phase (λs), λf is negligible.  
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3) Convection conduction: 

Convection occurs because of hot fluid rising to displace cold fluid caused by local 

density difference of the fluid. Two types of convection currents can occur: free and 

forced convection. In free convection, fluid motion is due to buoyancy forces within the 

fluid. Forced convection is possible where an external agent induces the motion of the 

gas; this occurs in metallic foams used as heat exchangers. Convection conduction 

within the pores is only important when the Grashoff number (which describes the ratio 

of the buoyant force driving convection to the viscous force opposing it) is greater than 

approximately 1000 (Gibson & Ashby 1988). Using data appropriate to air at 1 

atmosphere, this value is achieved when the pore size exceeds 10mm in diameter. For 

pore sizes smaller than this, thermal conduction through convection, λconv, can be 

ignored.  

4) Radiation conduction: 

Radiation often contributes to heat transfer through foams with transparent structure. In 

the case of optical nontransparent metals, however, radiation through the pore walls is 

less significant. Lu & Chen (1999) reported that the transport of heat is dominated by 

solid conduction when the thermal conduction in the solid phase of the porous metal is 

greater than 20W/mK. Therefore, the contribution of radiation, λradi, can be ignored. 

 



 

 

43 

 

According to what mentioned above, the overall effective thermal conductivity of 

porous metal (λeff) is mainly related to the porosity of the metal matrix (ε) and the 

individual thermal conductivities of the solid (λs) and fluid (λf) phases.  

 

Based on the parallel thermal conductivity model of two phase materials in Eq. (2.15), 

Kaviany (1995) gives the following expression to describe the effective thermal 

conductivity of porous metal: 

(1 )eff f sλ ελ ε λ= + −                       (2.19) 

The pores or voids within the porous metal, however, are often distributed randomly 

and do not obey parallel model. A resistor model to estimate the effective thermal 

conductivity of a random two-phase medium was proposed by Singh & Kasana (2004), 

based on numerical simulations. Their study introduced a correlative term, F, to take 

account of high conducting phase, non-linear flow of heat flux lines and random 

distribution of the phases. They found that in addition to the physical parameters such 

as porosity and the ratio of the thermal conductivity of the constituent phases, F was 

also dependent on the pore shape factor and formation resistivity factor. 

 

Calmidi & Mahajan (1999) investigated the effective thermal conductivity of high 

porosity aluminium foams experimentally and derived an empirical correlation between 

effective thermal conductivity and porosity: 

(1 )n
eff f saλ ελ ε λ= + −                          (2.20) 
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where a and n are fitting constants. The best fit was obtained when n=0.793 with the 

value of a being 0.181 for air and 0.195 for water.  

 

A model was also produced based on assumption of a two-dimensional foam consisting 

of an array of hexagons and was validated with the experimental data. An improvement 

to this model, based on an idealized three-dimensional basic cell of a foam with 

open-cell structure in the form of tetrakaidecahedron cells, was made by Boomsma & 

Poulikakos (2001). Most recently, Bhattacharya et al. (2002) extended the analysis of 

Calmidi & Mahajan (1999) to develop a model with a circular intersection and showed 

that the effective thermal conductivity of the foam depended strongly on the porosity 

and the ratio of the cross-sections of the intersection. 

 

Wang et al. (2008b) proposed a symmetric and interconnected skeleton structure (SISS, 

structure shown in Figure 2.6) model to predict the thermal conductivity of porous 

metals with hollow and solid struts. The SISS divides a unit cube into six unique 

composite rectangular prisms parallel to each other. The effective thermal conductivity 

for each prism and the overall thermal conductivity of porous metal are calculated by 

the parallel model or series model. They found that the effective thermal conductivity of 

solid-strut foam was larger than that of hollow-strut foam, and the effective 

conductivity of porous metal with solid-strut can be expressed as: 
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2
arccos(2 1)0.5 cos

3eff s
π ελ λ  + −  = −    

                 (2.21) 

The prediction values of this model were consistent with the experimental data for both 

open-cell and closed-cell metal foams.  

 
 

 

Figure 2.6 Symmetric and interconnected skeleton structure (SISS) model with hollow 
struts: (a) hollow-strut SISS; (b) unit cell of the hollow-strut SISS; (c) unit cell of the 
solid-strut SISS; (d) plan view of cross-section of the hollow-strut SISS unit cell at the 
mid-point in the z direction showing the location of the six composite parallel prisms; 

(e) structures of the six composite parallel prisms in (d). (Wang et al. 2008b) 
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Ogushi et al. (2004) fabricated lotus-type porous copper with many straight pores and 

carried out an experimental and analytical investigation on the effective thermal 

conductivity of porous copper parallel and perpendicular to the pores. They found that 

the effective thermal conductivity parallel to the pores (λeff//) was higher than that 

perpendicular to the pores (λeff⊥), and λeff// is proportional to (1-ε). More recently, the 

thermal conductivity of porous copper with different porosities and pore sizes fabricated 

by lost carbonate sintering method was studied by Thewsey and Zhao (2008). They 

found that the effect thermal conductivity of porous copper had a power law 

relationship with porosity. The pore size, however, had no significant effect on the 

thermal conductivity.  

 

2.4.2 Heat convection 

Heat convection (convection heat transfer) is the transfer of heat from the surface of a 

solid to a fluid. The process of transfer of heat from a solid to a fluid requires not only 

transfer of heat by motion of the fluid, but also conduction of heat through the boundary 

layer between the solid and fluid, i.e., contacting area. There are two forms of heat 

convection. One is the natural convection, which can be caused by movement of a fluid 

by means of buoyancy caused by the density difference of fluid. The other one is forced 

convection, which means that the fluid is forced to flow by an external source such as 

fans.  
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Heat convection between a solid and a fluid can be described by Newton’s law of 

cooling, with the introduced physical parameter of heat transfer coefficient (Lienhard 

IV & Lienhard V, 2005): 

[ ]( )
dQ

hA T t T
dt ∞

= − −                      (2.22) 

where Q is the thermal energy, A is the contacting area between solid and fluid, T(t) is 

the time-dependent temperature of the solid’s surface, T∞ is the temperature of the 

oncoming fluid, and h is the heat transfer coefficient, which is independent or relatively 

independent of the temperature difference. 

 

In many engineering applications, heat convection occurs within the porous media 

that are combinations of a stationary solid and a fluid. Normally, the porous medium 

is saturated with fluid when working. A large number of experimental and analytical 

investigations on heat convection in porous media have been carried out. The basic 

principles and comprehensive reviews of heat transfer in porous media in general have 

been summarized by Kaviany (1995). Lee & Cunnington (2000) investigated 

conduction and radiation heat transfer in high porosity fiber insulation. An experimental 

investigation of natural convection heat transfer of polymer pin fin heat sinks was 

reported by Bahadur & Bar-Cohen (2005), while Calmidi & Mahajan (2000) and Zhao 

et al. (2005) gave a combined experimental and numerical study on natural convection 

and forced convection in open-celled metal foams. 
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2.4.3 Heat transfer performance of porous metals 

Porous metals have been considered for the design of heat exchangers to enhance 

convective thermal transport and to maximize heat transfer, as the thermal conductivity 

of metals is relatively high (copper or aluminium is usually used due to their high 

conductivity values) (Ashby et al. 2000). Generally, heat transfer performance of the 

heat exchangers can be substantially enhanced by porous metals. Jiang et al. (2004) 

reported that particle-sintered bronze samples with porosities from 40% to 46% 

enhanced the heat transfer performance up to 15 times for water and up to 30 times for 

air in comparison with an empty channel. Porous copper samples with high porosities 

from 88% to 94% enhanced the heat transfer performance by about 17 times in 

comparison with an empty channel (Zhang et al. 2005b, Zhao et al. 2004). Boomsma et 

al. (2003) conducted an experimental study on aluminum foams and found that the 

thermal resistance of the foams was up to three times lower than that of commercially 

available heat exchangers under the same pumping power. Zhang et al. (2009) 

investigated the heat transfer performance of LCS porous copper with different 

porosities and pore sizes and found that porous copper could increase the heat transfer 

coefficient by 2 to 3 times compared to the empty channel and up to 100% compared 

with particle-sintered copper. The size of the sample is 10 mm in diameter and 4 mm in 

thickness, and it can remove a heat flux of 1.3 MW/m2 at the coolant flow rates from 

0.3-2.0 l/min. The measurement setup used in their work, however, had an axial-radial, 
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or impingement flow configuration, which makes it difficult to compare their results 

with theoretical models and the results obtained by other researchers. 

 

The heat transfer performance of porous metals is affected by several factors. Kim et al. 

(2000) investigated the heat transfer performance of high porosity aluminium foams 

with three different pore densities (10 PPI 20 PPI and 40PPI (pores per inch),) under the 

condition of forced air convection. They found that use of aluminium foam dramatically 

enhanced overall heat transfer rates from the thermal systems compared with the 

channel without foam materials, and the heat transfer performance of aluminium foam 

was improved by increasing the pore density. Tamayol & Hooman (2011) assessed 

theoretically the heat transfer through metal foam heat exchangers under forced 

convection condition. They modeled the microstructure of metal foams as 

interconnected solid ligaments with simple cubic array structures and proposed a 

thermal resistance model of heat transfer process by considering the conduction inside 

the solid ligaments, the interfacial convection heat transfer, and convection heat transfer 

to the solid bounding walls. Heat transfer rate of foams was shown to increase with the 

pore density but decreases with the porosity.  

 

Recently, an investigation of the heat transfer in forced convection of air across 

aluminium foams was carried out by Mancin et al. (2010). The authors tested the heat 

transfer performance of aluminium foams with different sample thicknesses (20mm and 
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40mm samples) under different air mass flow and heat fluxes (25.5 kW/m2, 32.5 kW/m2, 

and 40 kW/m2). They found that heat transfer coefficients increased with the air mass 

flow rate but were not influenced by the imposed heat flux. The sample with 40 mm 

thickness, however, had larger heat transfer coefficient than that with 20 mm height. 

Tamayol & Hooman (2011) conducted a theoretical study on the forced convection 

flow through a metal foam and found that the heat transfer rate increased with the 

thickness of metal. The augmentation, however, did not have a linear relationship. Shih 

et al. (2006) investigated the thickness effect on heat transfer characteristics of 

cylindrical alumimum foam with diameter of D and thicknesst of t. They introduced a 

dimensionless height, t/D to characterise the effect of height on heat transfer 

performance and found that the alumimum foam with dimensionless height between 

0.23 and 0.31 had the best heat transfer performance.  

 

The studies mentioned above all used air as coolant. In cooling electronics which 

generate an excessive amount of heat, water is preferred to air due to its greater thermal 

conductivity and specific heat capacity. The convection heat transfer coefficient using 

water as a coolant could be 10-1000 times higher than that using air as a coolant 

(Lienhard IV & Lienhard V 2005). Boomsma et al. (2003) conducted an experimental 

study of the performance of open-cell 6101-T6 aluminium foam as compact, high 

performance heat exchangers with water as coolant. The foams had porosities between 

60.8% and 88.2% and were tested in a forced convection condition. The experimental 



 

 

51 

 

results showed that the Nusselt number (the ratio of convective to conductive heat 

transfer across normal to the boundary) was zero for a zero coolant flow velocity and 

increased monotonically with the coolant velocity. The aluminum foam with porosity of 

67% had the best heat transfer performance under the lower coolant flow velocity range, 

up to 0.729 m/s. The heat transfer of liquid cooled, open–cell porous copper heat sinks 

was investigated experimentally by Zhang et al. (2005a). The tested samples made by 

electrodeposition method had four porosities ranging from 60% to 90% and two 

different pore densities, 60 PPI and 100 PPI. They found that the samples with the 

lowest porosity of 60% gave the lowest thermal resistances. Higher pore densities led to 

lower thermal resistances for porous copper sinks in their experiment. 

 

A number of investigations have been carried out on the use of porous metals as a 

highly compact replacement for convectional heat exchangers. A comparison between 

metal foam heat exchangers and several commercially available heat exchangers was 

made by Mahjoob & Vafai (2008). Metal foam provide substantially more heat transfer 

surface area and more boundary layer disruption, both of which led to considerably 

higher heat transfer rates. The introduction of porous metal, however, increases the 

pressure drop. A compromise between the heat transfer rate and pressure drop has to be 

made, for metal foams to be considered for a specific application. More recently, Dai et 

al. (2013) compared an open-cell metal-foam heat exchanger to a conventional, 

flat-tube louver-fin heat exchanger. They found that under the same input power and 

http://en.wikipedia.org/wiki/Convection
http://en.wikipedia.org/wiki/Heat_conduction
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heat transfer rate, the metal-foam heat exchanger can be significantly smaller in volume 

and lighter in weight over a wide range of design space, for the same cost under the 

baseline conditions in their study. 

 

2.4.4 Thermal applications of porous metals 

The thermal properties of porous materials are of considerable practical interest in a 

number of fields. There are two types of applications: thermal insulator and heat 

exchanger. Metallic foams with closed cells are suitable for thermal insulator due to 

their relatively low thermal conductivity compared with the bulk metals (Lu & Chen 

1999). Open-celled metallic foams are more suited to compact heat exchangers due to 

a high specific solid-fluid interface area, a good thermally conducting solid matrix and a 

tortuous internal network of pores which promotes turbulence and mixing of the coolant 

(Boomsma et al. 2003). 

 

Porous metals have relatively low thermal conductivity and are fireproof, which make 

them ideal materials for flame arresters to prevent flame propagation along pipe-work 

and enclosures. A low thermal conductivity is beneficial to fire resistance as it prolongs 

the time required for the temperature of the unexposed surface to reach its critical 

temperature, while the high melting point is an advantage for them to be used in high 

temperature (Lu & Chen 1999). Work carried out by the Electrical Research Association 

has proved that the RECEMAT metal foam (RECEMAT International, Netherlands) 
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was capable of arresting hydrogen-oxygen flames where the initial gas pressure was 2.75 

bar-g, and a 6mm sample had ability to stop hydrocarbon flames travelling at 210 m/s 

(Davies and Zhen 1983). 

 

The advantage to use porous metals for thermal insulators is not obvious compared 

with some heat insulation materials when the temperature during work is not very 

high, as the thermal conductivity of metal is much higher than traditional heat 

insulation materials.  

 

There has been increased demand for heat transfer for high performance and 

multifunctional devices in recent years. In some high performance electronic chips such 

as computer processors, the nominal heat flux is up to 500-1000KW/m2 and there is no 

doubt that much higher demand will be made in the future (Bastawros & Evans 1997). 

Metals with good thermal conduction ability, such as aluminium or copper, can be used 

to produce the porous matrix as heat exchangers. The mere presence of these metals in a 

static fluid can increase the overall effective thermal conductivity of the fluid system 

significantly (Calmidi & Mahajan, 1999). Open-cell porous copper and porous 

aluminium are the common porous metals used as heat exchangers, because of their 

permeability to fluids and the good thermal conductivity of the base metal. A large 

number of pores give rise to a high surface area, plus a good thermal conduction in the 

matrix, allowing heat to be transferred efficiently in the system (Boomsma et al. 2003, 
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Mancin et al. 2010, Zhang et al. 2005a).  

 

One example of using porous metal as heat exchanger is for integrated gate bipolar 

transistors (IGBTs) for motor drives. The heat flux with high power density in the 

motor drives when operating can be dispersed to the coolant by a heat sink comprising a 

fin-pin array subject to flowing air generated by a fan (Ashby et al. 2000). This 

single-phase, liquid-cooled micro-channel heat sink, featuring channel hydraulic 

diameters smaller than 1 mm and a large surface to volume ratio, is considered the most 

promising technology for high heat flux applications. Porous metals could be used as 

the heat sinks, mostly, made by etching in silicon or precision machining in metals such 

as copper or aluminium.  

 

Another example of the application is the use of ERG DUOCEL open-celled aluminium 

foam (mentioned in session 2.2.2.1) in the space-shuttle atmospheric control system 

(Ashby et al. 2000). Figure 2.7 shows the structure of this fluid-fluid heat exchanger. 

The DUOCEL range of metal foams, which include both aluminium and copper, have 

open porosity, low relative density and high matrix thermal conductivity. This would 

clearly be advantageous for space flight, where weight consideration is of major 

importance. 
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Figure 2.7 DUOCEL foamed aluminum used as the heat-exchange medium for the 

space shuttle atmospheric control system. (Ashby et al. 2000). 
 

 

2.5 Mechanical Response of Porous Metals 

As mentioned above, porous media have been candidates for many applications. In 

some cases, the parts need to possess a moderate strength. Compared with other 

porous media, porous metals have relatively high specific strength and can bear 

higher load before they fail. This offers porous metals an opportunity to be used in 

some parts that require high strengths. 

 

The mechanical behaviour of metals has been studied for a long time and is well 

documented. Unlike bulk metals, porous metals with a cellular structure are 
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complicated because of the different pore parameters in porous metals. There have 

been a large amount of experimental work on mechanical properties of porous metals 

and the consensus is that they depend significantly on the porosity and this 

dependence can be characterised by empirical power-law functions. Beside porosity, 

fabrication technology also plays an important role in affecting mechanical properties 

of porous metals. Koo & Jung (2006) produced porous copper from hollow spheres by 

sintering and found that the hardness and compression strength of the hollow spheres 

increased with sintering temperature as the size and amount of pores decreased with 

temperature. The appropriate temperature for copper sphere sintering was found to be 

over 850ºC in order to obtain good strength. 

 

The percolation theory is suitable to model the mechanical properties of porous media 

produced by powder consolidation, as this model in general describes connectivity 

problems well. Kovácik (1998) investigated the tensile behaviour of porous copper 

and porous nickel fabricated by the solid-gas eutectic solidification. It was found that 

a non-linear dependence of the tensile properties of porous metals can be described by 

the percolation power-law. Kovácik (1999) also found that the Young’s 

modulus-porosity relationship of porous materials can be described fairly well by the 

percolation model. In both cases, however, the model failed for the samples with high 

porosity. The suggestion was that it is necessary to investigate the material fabricated 

by the same method from the same raw materials in a porosity range as wide as 
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possible, in order to incorporate the properties of the solid material into the fitting 

process to estimate the percolation threshold. 

 

Qiao et al. (2008) investigated the compressive property and energy absorption of 

porous sintered fiber metals produced by vacuum sintering. The typical compressive 

stress-strain curves of porous fiber metals exhibited three distinct deformation regions: 

elastic region, stress plateau region and densification region. The energy absorption 

capacity of the samples increased more than three times when relative density was 

increased from 0.177 to 0.355. This relationship accorded with Gibson-Ashby theory. 

 

Another method to predict the mechanical properties of porous metals is the 

Mori-Tanaka model, which considers the stress field in the bulk material with dispersed 

inclusions. Sevostianov et al. (2006) produced aluminium foam with relative density in 

the range of 0.45 to 0.85 by a powder metallurgy method, having a Young’s modulus 

between 3-12 GPa. The Mori-Tanaka model was found to give the best predictions for 

the Young’s modulus. This result was also consistent with that reported by EI-Hadek & 

Kaytbay (2008), who found porous copper with relative density between 0.5-0.85% 

having a Young’s modulus of 10-30 GPa, and the Young’s modulus could be predicted 

by Mori-Tanaka model.  
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Porous metals possess excellent damping properties and can absorb a large amount of 

impact energy in a short time. In structural sandwich panels, they offer lower weight but 

higher stiffness than conventional honeycomb and therefore have much better energy 

absorbing property (Gibson 2000). Sandwich panels with aluminium foam as the core 

have been widely used in high precision machines.  

 

Sandwich structures also found applications in passive safety, which is one of the most 

important targets in vehicle design. Fuganti et al. (2000) designed a crashbox using 

aluminium foam as the filler of a generic crashbox structure to improve the energy 

absorbing efficiency. They found that using aluminium foams would improve vehicle 

crashworthiness, due to their properties derived from cellular structure to absorb energy. 

In particular, the lightness of porous aluminium was also an advantage for application. 

This application guaranteed weight saving of approximately 10%, crashbox length 

reduction of about 30% and volume reduction of about 60%.   
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Chapter 3  

 

Experimental 

 

The Lost Carbonate Sintering (LCS) process developed by Zhao et al. (2005), described 

in Section 2.2.2.5, was used in this study for the fabrication of all the porous metal test 

samples. In order to simplify the fabrication procedure and improve the mechanical 

properties of the as-fabricated porous metals, the decomposition route was used. The 

fluid permeability, thermal conductivity, heat transfer and mechanical properties of 

these samples were investigated. The experimental procedures are described in detail in 

the following sections. 

 

3.1 Preparation of Test Samples by LCS 

The LCS process involves four basic stages: mixing, compaction, sintering and 

dissolution or decomposition (Zhao et al. 2005). The decomposition route was used 

because increasing sintering temperature to above the decomposition temperature of 

potassium carbonate not only improves the mechanical properties but also speeds up the 

removal of potassium carbonate. Figure 3.1 is a graphical presentation of the LCS 

process. The detailed procedure of each fabrication stage is described separately below. 
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3.1.1 Raw materials 

Copper powder with a high purity of 99.5% supplied by Ecka Granules UK Ltd was 

used. Three types of copper powder with different particle sizes (50-100 μm, 

100-300μm and 600-1000 μm) were chosen. The typical copper powder particles are 

shown in Figure 3.2. The shape of the particles is spherical. The copper particle size 

should normally be smaller than the size of the required pores, i.e. the size of the 

potassium carbonate granules. The mean diameter of the copper powder particles used 

for most of the test samples was approximately 75 μm, with the particle size ranging 

between 50 and 100 μm. However, the other two types of copper powder with large 

particle sizes, 100-300 μm and 600-1000 μm, were also used for comparison 

experiments.  

 

 

K2CO3 
Powder 

Cu Powder 

Mixing Compacting 
Sintering+ 

evaporation 
Porous 
Copper 

Figure 3.1 Graphical presentation showing each stage involved in the LCS process. 
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The potassium carbonate granules were supplied by E.E. Muri & Sons Pty. Ltd., 

Melbourne, Australia, and had a purity of 99% as quoted by the manufacturer. Figure 

3.3 shows the SEM micrograph of the potassium carbonate granules, which have a 

spherical shape. The required pore size and pore shape of porous copper samples can be 

obtained by selecting the particle size and shape of the carbonate granules. The 

carbonate powder was sieved and categorized into four different size ranges: 250-425 

μm, 425-710 μm, 710-1000 μm and 1000-1500 μm. 

 

 

 

(a) (b) 

(c) 

Figure 3.2 SEM micrographs of copper powder particles with different sizes: (a) 
50-100 μm; (b) 100-300 μm; (c) 600-1000 μm 
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The final porosity of porous copper was largely determined by the pre-specified ratio of 

the amounts of copper powder and carbonate granules used for the powder mixture. If 

the spaces between the particles in the copper powder/potassium carbonate powder 

mixtures are negligible, the volume of the resultant sample should be equal to the total 

volume of the copper and carbonate powders, and the volume ratio between the 

carbonate powder and the resultant sample should be equal to the porosity of the 

resultant sample. The masses of the copper powder, MCu, and the carbonate powder, 

2 3K COM , required for fabricating a porous copper sample with volume V and porosity εn 

(expressed as a nominal porosity) were therefore determined by: 

(1 )Cu n CuM Vε ρ= −                     (3.1a) 

2 3 2 3K CO n K COM Vε ρ=                     (3.1b) 

Figure 3.3 SEM micrograph of the potassium carbonate granules with the particle 

size of 425-710μm. 
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where Cuρ =8.9 g/cm3 is the density of copper and 
2 3K COρ =2.3 g/cm3 is the density of 

potassium carbonate, both of which are supplied by the manufacturers. It should be 

mentioned that the actual porosity of the resultant sample (ε) is a slightly 

(approximately 2%) higher than the nominal porosity (εn) because of the gaps between 

the copper and potassium carbonate particles. 

 

3.1.2 Mixing and compaction 

The copper powder and potassium carbonate powder were weighed in the pre-specified 

ratio according to the final porosity required and mixed in a plastic beaker. A small 

amount of ethanol (approximately 1-2 vol.% of the mixture) was added to the mixture 

to act as a binding agent between the copper and carbonate particles. The beaker was 

sealed and manually shaken for 30-60 seconds until no clear separation between the 

copper and carbonate particles was observed, i.e., nearly every potassium carbonate 

particle was covered by a layer of copper particles.  

 

Two mild steel dies with different cavity sizes were used to compact the mixed powders. 

The one used for fabricating permeability and heat transfer test samples has a cavity 

size of 40 mm in length × 30 mm in width × 12 mm in height and the one for thermal 

conduction and mechanical test samples has a cavity size of 55 mm in length × 30 mm 

in width × 40 mm in height. Figure 3.4 is a schematic diagram of the mild steel die used 

in the experiment. The copper/carbonate mixture was added to the die and then 
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compacted using two punches in a hydraulic press at a pressure of 200 MPa for 

approximately ten seconds. This compaction pressure was selected according to the 

principle laid down in the previous research (Zhao et al. 2005). Two punches, upper and 

lower, were used to ensure a relatively uniform pressure in the sample during the 

compacting process. The green compact was then pressed out and placed in a silica-gel 

desiccator to prevent the carbonate from hydration before sintering. 

 

The fabrication procedure for the double-layer samples was slightly modified. In the 

compaction stage, the powder mixture for the first layer was first compacted in the 

mould at a pressure of 50 MPa for approximately five seconds. Subsequently, the 

powder mixture for the second layer was added in the mould and compacted at a 

pressure of 200 MPa for approximately ten seconds. 

 

Mild steel die 

Single or double  
-layer sample 

 

Upper punch 

Lower punch 

Figure 3.4 Schematic diagram of a mild steel die used for compaction. 
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3.1.3 Sintering 

A VTS vacuum furnace was used for the sintering process. The green compacts were 

put on a steel plate and then placed at the centre of the cold furnace to allow for even 

heat distribution. A piece of aluminium silicate fiber mat was placed between the 

samples and the steel plate to avoid bonding between them during the sintering process. 

A schematic diagram of the sintering process is shown in Figure 3.5. After a vacuum of 

10-1 Pa was achieved, the furnace was heated first up to 200ºC and kept at this 

temperature for 20 minutes to remove water and ethanol. It was then heated up to 500ºC 

and kept at this temperature for 20 minutes to remove vacuum grease. Sintering process 

was conducted at first sintering temperature of 850ºC and held at this temperature for 2 

hours. This sintering temperature was selected such that the particles of potassium 

carbonate, which has a melting point of 891ºC, remained in the solid state. In order to 

remove the carbonate, the temperature was then increased to 950ºC and maintained for 

2 hours for carbonate decomposition and further sintering. The heating rate during all 

heating stages is 10 ºC/min. The samples were subsequently furnace cooled. Typical 

porous copper samples after sintering are shown in Figure 3.6. 

 

3.1.4 Shaping 

The porous copper samples were cut to the required sizes and shapes using a small 

handsaw, and were ground using carborundum papers ranging between 320 and 1000 

grits to achieve accurate dimensions and smooth surfaces. 
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3.2 Structure 

In this section, the experimental results of the microstructure, porosity, specific surface 

area and tortuosity of porous copper samples will be given. 

Figure 3.6 Typical porous copper samples assembly after sintering. 

 

4 mm 

Figure 3.5 Schematic diagram of sintering procedure. 
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3.2.1 Optical microscopy and SEM analysis 

The microstructure and macrostructure of the porous copper samples were observed by 

Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) (S-2460N,  

Hitachi, Japan). To analyze the internal structure of a porous copper sample by OM and 

SEM, the cross section of the sample was first ground carefully using 1000 grit papers 

carefully, and then cleaned in an ultrasonic bath for 20 minutes to remove any loose 

particles from the surface. The sample was subsequently immersed in 90% ethanol for 5 

minutes and then dried by hot air.  

 

The cross-sectional surface was observed using a Nikon optical microscope at low 

magnifications to check the homogeneity of pore distribution between batches of 

samples and to take micrographs of various samples for quantitative metallography. 

SEM was used to observe the morphology of porous copper samples. 

 

3.2.2 Measurements of porosity and specific surface area 

Quantitative stereology metallography was used to as one of the method to determine 

the porosity and specific surface area (Underwood 1970). A counting grid was 

superimposed onto a micrograph of the measurement area of the sample. Figure 3.7 

shows an example of the counting grid superimposed on the micrograph of a test 

sample. The micrographs were processed by the software ‘Image-Pro Plus 6.0’ (Media 

Cybernetics Inc., USA) to identify the intercepts between grid lines and pore perimeters. 
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The number of points located in the pores, Ppore, the total number of testing points 

within the selected area, Ptot, and the number of intercepts between the testing lines and 

the pore boundary, Pinter, were counted. For Ppore and Ptot counting, those points fell on 

the boundary were counted as 1/2 (Shen et al. 2006). The porosity, ε, is defined as the 

volume fraction of the pores and can be calculated by: 

pore

tot

P
P

ε =                             (3.2) 

The specific surface area, SV, is defined as the ratio of the total internal surface area to 

the total volume of the sample and can be obtained by: 

2
2 inter

V L
test

P
S P

L
= =                        (3.3) 

where PL is the number of intercepts generated per unit length, and Ltest is the whole 

length of the testing lines. 

 
Figure 3.7 Micrograph of a test sample superimposed with a counting grid  

 

 

10 mm 
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Two further methods were used to obtain porosity by measuring the density of the 

porous copper. Both methods measured the mass of the sample using an electronic 

balance. The first method determined the volume of the sample by measuring the 

dimensions of the sample using a vernier caliper. The length, width and height of each 

sample were measured five times at the different positions on the sample, and the 

average values were taken. The second method used the Archimedes principle and 

determined the volume of the sample by measuring the buoyancy force the sample 

experienced in water. To prevent infiltration of water into the sample during the 

measurement, the surface of the sample was sealed with Vaseline. The sample was then 

sunk into the water in a container on an electronic balance and held by a thin thread to 

minimise the error caused by the volume of the thread in the water. The weight increase 

of the water container is equal to the buoyancy force, which is the product of the 

volume of the sample and the density of water. Given the density of water, the volume 

of the sample can be easily obtained. The second method is far more accurate than the 

first method, especially when the physical measurements of the dimensions of a sample 

are difficult, e.g. when the sample is damaged or has an irregular shape. In this study, 

the Archimedes method was employed as the main method to measure the volume of 

the porous copper samples, from which the relative density and porosity were 

calculated.  
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3.2.3 Tortuosity measurements by acoustic test 

The tortuosity of the porous copper samples was calculated by the analytical solution 

and extrapolation approach from the acoustic absorption curve of the porous copper 

sample, as described by Zhu et al. (2012). The porous copper samples for the acoustic 

test have a diameter of 30 mm and a height of 10 mm. The acoustic tests were 

conducted by Prof. B. Zhang from Ningxia University, China. The samples were 

either located directly against the back-plate of the test sample holder within the 

impedance tube (B&K 4206, Denmark), or with a gap of 20 mm or 50 mm between 

the sample and back-plate. Measurements were taken in the range of 500-6500 Hz. 

During the test, vaseline was applied around the perimeter of the test sample to ensure 

that any pores or cavities were filled between the tube and the sample and that there 

was a total incident surface. Before the tests began, the sound absorption coefficient 

of the back plate of the impedance tube was measured. It had an average of just 0.05 

over all frequencies tested, so its effect on the measurements was deemed to be 

negligible. The typical acoustic curves were shown in Figure 3.8. Johnson-Champoux- 

Allard model (Allard et al. 2009) was used to theoretically calculate the acoustic 

absorption coefficient at different frequency by a set of postulated pore parameters. 

Analytical solution and extrapolation approach by comparing the theoretically 

calculated and measured acoustic absorption curves, was used to determine the 

tortuosity of the porous copper. Detailed information of this approach is given in 

Appendix A. 
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3.3 Permeability 

Permeability is a property of porous medium with respect to how well the fluid can 

flow through the porous medium. It is often used to evaluate the ability of porous 

medium to transmit fluid, and an increase in permeability usually indicates a more open 

structure in the porous medium. 

 

3.3.1 Principle for permeability measurements 

As described in Section 2.3.1, pressure drop across a homogeneous porous medium for 

steady fluid flow can be described by the Darcy model (Darcy 1856), which was the 

Figure 3.8 Typical acoustic curves. 
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first mathematical model to describe the linear relationship between the permeability 

and pressure gradient of a porous medium based on experimental observations. Later 

research found that Darcy’s model is only good for approximate calculations at the low 

fluid velocities and is not appropriate to describe the pressure drop in porous solid at 

medium or high fluid velocities. A more accurate description is the Forchheimer- 

extended Darcy equation including a quadratic term (Forchheimer 1901, Venkataraman 

& Rao 2000, Dukhan 2006): 

2

d f d
in outPP

v Cv
L L K

P µ
ρ

∆
= +

−
=

                   
 (3.4) 

where ΔP is the pressure drop, L is the length of the sample, μ is the viscosity of fluid, 

Pin and Pout are inlet and outlet pressure, ρf is the density of fluid, vd is the Darcian 

velocity of the fluid, which is the flow rate of the fluid divided by the cross-Sectional 

area. K is the permeability of porous medium, and C is the form drag coefficient related 

to the structure of the permeable medium. In Eq. (3.4), Pin, Pout and vd can be measured 

in the experiment.  

 

Eq. (3.4) is the general equation for incompressible fluid, such as water, and was used 

to calculate the water permeability through the porous metal. In the case of gas flow, 

owing to the compressibility of the gas, both the volume flow rate and the velocity vary 

with pressure from one end of the sample to the other. This poses a dilemma because 

the original integral form of Darcy’s law assumes that these quantities are constant. The 
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way out of this apparent dilemma is to integrate the differential form of Darcy’s law, 

using the condition that is appropriate to gas flow, i.e., that at constant temperature and 

in the steady state the product of pressure and velocity is constant throughout the 

sample. The Forchheimer-extended Darcy equation can be revised for air as 

(Innocentini et al. 1999b): 

2 2
2

2
in out

out f out
out

P P v Cv
P L K

µ ρ−
= +                  (3.5) 

where vout is outlet velocity of air and has a relationship with Darcian velocity of 

( ) / 2out in out d outv P P v P= + .
                      

 

 

3.3.2 Experimental apparatus 

Two types of fluid, air and water, were used in the tests. A schematic diagram and a 

photograph of the experimental apparatus used for air permeability tests are shown in 

Figure 3.9. In the air permeability test system, air flowed through a ball valve, a filter 

and regulator, a T-type thermocouple and a flowmeter, the input pressure transducer, 

the porous copper sample contained in the sample holder, the output pressure transducer 

and a flowmeter. Both the input and output transducers were rugged pressure 

transmitters (PXM219-001G, OMEGA, USA, pressure range of 0-1 bar with a ±0.25% 

full scale accuracy), located 1cm before and after the sample. Flow rate was measured 

by a panel mount flowmeter (FL50252A, OMEGA, USA, flow velocity range of 

0.5-4.5 SCFM with ±5% full scale accuracy). 
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A schematic diagram of the water permeability test apparatus is shown in Figure 3.10. 

The same apparatus was also used for heat transfer tests, which will be described in 

Section 3.5.1. The apparatus was connected to the mains water supply through a 19mm 

copper pipe. The water flowed through a filter, a ball valve, the input pressure 

transducer, the porous copper sample contained in the sample holder, the output 

pressure transducer and a flowmeter. The input pressure was measured by a rugged 

pressure transmitter (PXL 219-004GI, OMEGA, USA, pressure range of 0-4 bar with a 

±0.25% full scale accuracy), and the output pressure was measured using the other 

rugged pressure transmitter (PXM219-001, OMEGA, USA, pressure range of 0-1 bar 

with a ±0.25% full scale accuracy). The flow rate was measure by panel mount 

(a) 

(b) 

Figure 3.9 Schematic diagram (a) and photograph (b) of the experimental apparatus 
used for the air permeability tests. 
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flowmeter (FL50001A, OMEGA,USA, flow velocity range of 0.1-1 SCFM with ±5% 

full scale accuracy; or FL50002A, OMEGA, USA, flow velocity range of 0.4-4 SCFM 

with a ±5% full scale accuracy). The sample holder was made of polytetrafluroethylene 

(PTFE), and the flow channel through the sample holder was 20 mm wide and 5 mm 

high. All the test instruments were properly mounted on the sample holder. The signals 

of pressure and temperature were collected by a computer. 
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Figure 3.10 Schematic diagram (a) and photograph (b) of the experimental 
apparatus for water permeability and heat transfer tests. 
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3.3.3 Test procedure 

The permeability of samples with different pore sizes and porosities was measured at 

different air or water flow rates under atmospheric conditions at a temperature of 

20±1ºC. All samples had norminal dimensions of 30 mm × 20 mm × 5 mm. The 

standard deviation of dimensions was less than 0.25% of the average. The test sample 

was placed within the channel of the sample holder and then the channel was sealed 

with the PTFE lid using eight hexagonal bolts. The flow rate was varied gradually by 

the valve. At each flow rate, the inlet and outlet pressures were recorded. With known 

cross sectional area and length of the sample, viscosity and flow rate of fluid, and input 

and output pressures, the permeability was calculated from Eq. (3.4) and Eq. (3.5) for 

water and air, respectively. 

 

3.4 Thermal Conductivity 

In this section, the basic principle, experimental apparatus and calculation equations for 

thermal conductivity measurements will be introduced. 

 

3.4.1 Principle for thermal conductivity measurements 

The measurement of the thermal conductivity of moderate to good conductors is 

normally carried out under steady-state conditions using a longitudinal heat-flow 

technique or a centre radial heat-flow method. It offers greater flexibility in that the 

materials having a wide range of conductivity values can be investigated by selecting 
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the correct specimen size. The basis for this method lies in Fourier’s law that the heat 

flux of a one-dimensional steady state problem can be expressed as (Kaviany 1995): 

TQ A
x

λ ∆=
∆                        

    (3.6) 

where Q is the heat flow, λ is the thermal conductivity of the material, A is the 

cross-sectional area of the conductor and ∆T/∆x is the temperature gradient. A method 

reported by Corsan (1984) can be used to determine the heat flow by measuring 

temperature difference in a pure copper comparator with known thermal conductivity. 

Assuming that the porous copper specimen and the comparator are perfectly insulated 

and ignoring the heat loss at the interface between the comparator and the specimen, 

the heat flow is a constant throughout the porous specimen and the solid comparator. 

As the cross sectional area, A, is also the same in both the comparator and the porous 

specimen, the thermal conductivity of the porous copper, λp, is given by: 

( / )
( / )

c
p c

p

T x
T x

λ λ ∆ ∆
=

∆ ∆
                    (3.7) 

where λc is the thermal conductivity of the solid copper comparator, given by the 

manufacturer as 391 W/m·K, (∆T/∆x)c is the temperature gradient in the solid copper 

comparator and (∆T/∆x)p is the temperature gradient in the porous metal test specimen. 

 

3.4.2 Experimental apparatus 

Figure 3.11 shows a schematic diagram of the test apparatus designed and built for heat 

conductivity test. The porous copper specimen has a square bar geometry with nominal 

dimensions of 12 mm × 12 mm × 55 mm. The width and height of the specimen were 
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measured at five positions along the length, and showed a standard deviation less than 

0.25% of the average. A solid copper bar imbedded with a 100 W cartridge heater 

(FIREROD, Watlow, USA) was used as the heat source, and the input power was 

controlled by a variac. The porous copper sample was clamped onto the bottom of the 

copper bar. Another solid copper bar with dimensions of 12mm×12mm×150mm was 

used as the comparator and was clamped onto the other end of the test specimen. The 

solid copper bars were made from a commercially pure copper (C103, supplied by 

Merseyside Metal Services Ltd., UK), and had a thermal conductivity of 391 W/mK as 

given by the manufacturer.  

 

In order to remove the heat conducted through the specimen and comparator and to 

obtain steady state temperature gradients in them, the bottom end of the comparator was 

immersed in circulating cold water. A hole was drilled out of the comparator at the 

bottom and inserted with a piece of porous copper to accelerate heat removal. 

Thermally conductive grease with a thermal conductivity of 3.6 W/m·K (supplied by 

CHEMTRONICS, USA) was applied to the heat source/specimen and 

specimen/comparator interfaces to enhance heat conduction through the interfaces. A 

load of approximately 10 N was applied to the heater/sample/comparator assembly to 

further enhance the interfacial contacts. The comparator and the test specimen were 

housed in grooved PTFE blocks clamped by an aluminium jig to minimise heat losses 

through the side surfaces. 
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Holes with a diameter of 1.7 mm and a depth of 6 mm were drilled at specific, 

measured locations along the length of the comparator and the porous copper test 

specimen using a pillar drill. There were four holes in the specimen with the interval of 

1.5cm, and four holes in the comparator with the interval of 3 cm. T-type 

thermocouples were inserted into each hole to measure the temperature during heat 
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Figure 3.11 Schematic diagram of the apparatus for thermal conductivity test. 
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conduction. The end of each thermocouple had a heat-shrunk plastic shroud around it to 

provide a tight fit in the drilled hole and to ensure that the temperature reading was 

from the precise axial centre of the specimen. All the thermocouples were linked up 

directly to a USB thermocouple data logger with a resolution of 0.01°C (TC-08, Pico 

Technology, UK), which can output signals and show the temperature values on the 

computer using the PLW recorder software. 

 

Different heat flux through the sample/comparator was obtained by changing the 

voltage of the variac. The test specimen and comparator were insulated 

circumferentially with PTFE blocks 10 mm thickness to minimise radial heat losses. 

Calcium-magnesium-silicate wool and polyethylene were added around any naked pure 

copper bar exposed out of the PTFE blocks.  

 

3.4.3 Test procedure 

All of the porous copper specimens used for the permeability tests were also used for 

heat transfer tests. The test sample was first placed in the PTFE channel and the 

heater/sample/comparator assembly was secured as described in Section 3.4.2. The heat 

cartridge was then switched on. The temperatures at the different locations were 

measured after the steady state was reached (approximately half hour and depending on 

the relative density of the sample). The temperature gradients in the test specimen and 

comparator were obtained from the temperature plots along the lengths of the 



 

 

81 

 

comparator and the porous copper sample. The thermal conductivity of the porous 

copper sample was finally determined from the temperature gradients obtained from the 

test specimen and comparator, following the procedure reported by Thewsey & Zhao 

(2008). Each specimen was tested at least three times and the average values of heat 

transfer coefficients were taken. 

 

The apparatus was calibrated with five standard metal bars supplied by Merseyside 

Metal Services Ltd., UK, made of oxygen-free copper, pure aluminium, AlCu alloy, 

7071 alloy and mild steel with thermal conductivities of 391, 238, 143, 138 and 46 

W/mK, respectively. Figure 3.12 shows the temperature gradients in the metal bar 

samples and the pure copper comparator in steady-state conditions with the output heat 

flux of about 13kW/m2. The first four data points represent the temperature readings of 

the four thermocouples in the metal bar sample being tested, and the remaining four 

data points represent the thermocouple temperature readings in the pure copper 

comparator. The change in temperature gradient is clearly visible between 

thermocouples 4 and 5, which span the interface between the comparator and the metal 

bar. The plots in Figure 3.12 show linear temperature gradients in both the pure copper 

comparator and the metal bars being tested. Under the condition of 13 kW/m2 heat flux, 

the temperature gradients in Oxygen-free copper, pure Al, AlCu alloy, 7071 alloy and 

mild steel bars and their corresponding comparator are: -0.0339 -0.0332.; -0.0552., 

-0.0326.; -0.0993., -0.0359.; -0.0934, -0.0326; and -0.3166, -0.0369 K/m; respectively 
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(shown in Figure 3.12). Using Eq. (3.7), the thermal conductivity for these samples 

were calculated to be 382.0, 230.9, 141.5, 136.4 and 45.5 W/mK, respectively. The 

measurement differences, compared with the theoretical values supplied by the 

manufacturer, were only 2.3%, 3.0%, 1.1%, 1.2% and 2.2%, respectively.  
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Figure 3.12 Temperature gradients in the standard calibration samples and the solid 
copper comparators (Heat flux: ～13 kW/m2). 
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In order to investigate the accuracy of the measurements, various heat fluxes were 

applied to the test samples. Table 3.1 gives the thermal conductivity calibration results 

of the apparatus. It was found that the measured values are close to the theoretical 

values when the heat flux was below or at 13 kW/m2 but that they deviated from the 

theoretical values when the heat flux was above 13 kW/m2. This may be caused by the 

low thermal conductivity of the conductive grease, which increased radial heat loss. 

Therefore, the experiments were conducted at heat flux below 13 kW/m2. 

 

Table 3.1 Thermal conductivity calibration results of the apparatus (W/mK). 

Reference Metal Theoretical 
Value 

Heat Flux 
～8 kW/m2 

Heat Flux 
～13 kW/m2 

Heat Flux 
～18 kW/m2 

Heat Flux 
～25 kW/m2 

R1 Oxygen-free Copper 391 380.4 382.0 372.9 360.1 

R2 Pure Aluminium 238 232.8 230.9 225.9 217.4 

R3 AlCu 143 146.2 141.5 136.4 125.5 

R4 7071 138 140.4 136.4 130.3 122.4 

R5 Mild steel 46.5 44.5 45.4 45.6 40.6 

 

3.5 Heat Transfer 

The aim of the experiment is to investigate the heat transfer performance of the porous 

copper samples for use as heat exchangers under forced convection cooling. The 

concept of the experiment is to force the coolant (water) through the sample attached to 

a heating source and to measure the heat transfer coefficient as an indicator of the heat 

transfer efficiency of the test sample.  
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3.5.1 Experimental apparatus 

A schematic diagram of the experimental apparatus for heat transfer test has been 

shown in Figure 3.10. The experimental set-up was basically the same as that used for 

the permeability tests, with some modifications made to various parts of the apparatus. 

Specifically, a heating block and a series of cartridge heaters were added as a heat 

source, and a series of thermocouples were inserted at different locations for heat 

supply and temperature measurements. 

 
 

The heating block was made of C103 oxygen-fee copper, with a thermal conductivity of 

391 W/mK (value supplied by the manufacturer). The top part of the block (60 mm × 

40 mm × 50 mm) was used to hold the cartridge heaters and the bottom part (30 mm × 

20 mm × 25 mm) was designed to achieve steady heat conduction so that the input 

power can be calculated through the temperature gradient. To minimise heat loss, the 

top part was insulated using calcium-magnesium-silicate wool and polyethylene, while 

the bottom part was insulated using PTFE. The block was heated externally using eight 

Watlow FIREROD cartridge heaters, which can deliver a maximum total input power 

of 0.8 kW. Each cartridge heater was located in 4mm holes drilled at uniformly 

distributed locations within the copper blocks. The heaters were controlled using a 

variac so that a variable heating power was generated for different experimental 

requirements. 
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The heat delivered through the heat block was conducted into the test sample and 

eventually transferred into the coolant flowing through it, causing the coolant to heat up. 

Two T-type thermocouples were inserted into two 1.7 mm holes located in the bottom 

part of the heat block to measure the temperature difference in the heat block. The 

distance between these two thermocouples is 24 mm. The temperatures of the coolant 

flowing in and out of the sample were measured using platinum resistance PT 100 

thermometers, which offer a high accuracy of ±0.1 K over a wide temperature range. 

Two pressure transducers were fixed on the chamber to measure the inlet and outlet 

pressures of the fluid (as described in Section 3.2.2). The data from the thermocouples 

and thermometers was acquired using a data logger and processed using the InstrNet 

software (supplied by Instrument Industry, UK). 

 

3.5.2 Test procedure 

The porous copper sample was located into the channel of the sample holder and was 

then covered by the heating block. The sample holder and the heating block were 

subsequently clamped together using eight bolts. The eight cartridge heaters were 

located in the pre-drilled holes within the copper block and were pushed in fully. 

Fiberglass insulation was placed around the block to minimise the heat loss to the 

environment into the ambience. Measurements were made at different power inputs to 

the heating chamber, namely 150 W/m2, 250 W/m2 and 500 W/m2. The heating power 

was set by controlling the input voltage of the transformer. A series of fluid flow rates 
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were used in the test for each sample. The flow rate was adjusted to the required level 

using a valve. It normally took approximately 10-20 minutes to achieve a steady state, 

i.e., when the heating power supply, fluid flow, inlet temperature and the temperature of 

the bottom of the heating block no longer change. All the signals were collected by the 

data logger and recorded by the computer. 

 

For double-layer samples, the layer order is an important factor in the measurements of 

heat transfer coefficient, due to the heat input mode of the facility used for the heat 

transfer test (see Figure 3.10). Figure 3.13 shows a schematic diagram of the 

arrangement of samples with double-layer structures, i.e., two layers with different 

porosities and/or pore sizes. The layer in direct contact with the heat source is termed 

the Upper Layer and the other layer is termed Lower Layer. There are two ways to 

conduct the heat transfer test of a sample, depending on which side is in contact with 

the heat source. The layer order is represented by (nominal porosity of Upper Layer) / 

(nominal porosity of Lower Layer). If the layer with high permeability in contact with 

the heat source, it is termed normal order. If the layer with low permeability in contact 

with the heat source, we called it as reverse order. For example, sample S51 has two 

layers with different nominal porosities of 60% and 80%. When the 80% layer was set 

to in contact with the heat source, this condition is expressed as 80%/60% (Normal 

order). On contrary, if the 60% layer is in contact with the heat source, the condition is 

expressed as 60%/80% (Reverse order).  
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3.5.3 Calculation of heat transfer coefficient 

The heat transfer between a solid and a fluid can be characterised by an overall heat 

transfer coefficient of the cooling system. This heat transfer coefficient, h, can be 

determined by Newton’s law of cooling in a convection-cooling situation: 

1 2( )Q hA T T= −                        (3.8) 

where Q is the heat flow to the coolant, A is the interfacial area between the solid and 

the coolant, T1 is the temperature of the solid’s surface and T2 is the temperature of the 

cooling fluid.  

 

This study is concerned with the performance of the porous copper sample as a heat 

transfer medium from a heat source to a coolant, so the porous copper sample and the 
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Figure 3.13 Schematic diagram of heat transfer test for samples with double-layer 
structures 
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coolant inside it can be considered as whole. Taking the surface area of the sample in 

contact with the heat block as A, the temperature of the block at the interface with the 

sample (Tpl) as T1, and the temperature of the coolant before entering into the sample 

(Tin) as T2, Eq. (3.8) becomes: 

( )pl inQ hA T T= −                          (3.9) 

Assuming that all heat is transferred from the heating block to the coolant through the 

porous copper sample without any heat losses, the heat flow to the coolant, Q, is equal 

to the conductive heat flow in the heating block, which can be calculated through the 

temperature gradient along the heat conduction direction according to Fourier’s law: 

bl plT T
Q A

L
λ

−
=                           (3.10) 

where λ is the heat conductivity of the heating block (λ =391 W/mK for the oxygen free 

copper used in the test), A is the cross sectional area of the heating block and is equal to 

contact area between the sample and the heating block (5.985×10-4 m2), Tbl is the 

temperature of the block at the top and L is the distance between Tbl and Tpl. 

 

Combining Eq. (3.9) and Eq. (3.10), the heat transfer coefficient can be expressed as: 

( )
( )

bl pl

pl in

T T
h

L T T
λ −

=
−

                      (3.11) 
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3.6 Mechanical Behaviour 

The static compression response, bending response and tensile response of porous 

copper samples were investigated to characterise the mechanical properties of porous 

copper samples in this thesis. For each set of samples produced under the same 

condition, three specimens were prepared and tested. The surfaces of the specimens 

were ground with 800 grit paper to remove any surface defects. The length, width and 

height of the specimen were measured at five positions, with variations less than 5% of 

the average.  

  

3.6.1 Static compression tests 

The porous copper samples were first cut into cuboid specimens with nominal 

dimensions of 12 mm × 12 mm × 20 mm. The static compression tests were conducted 

on a universal testing machine (Instron 4505, UK) with a cross-head speed of 0.5 

mm/min. In order to investigate the influence of anisotropy on mechanical behaviour, 

specimens were cut from the sintered samples from two directions: parallel (//) and 

normal (⊥). In parallel direction the compression direction is parallel to the compaction 

direction and in normal direction the compression direction is perpendicular to the 

compaction direction. 
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The yield strength of porous copper sample (σy) was evaluated from the stress-strain 

curve, which was the point of intersection between two linear stages of stress-strain 

curve (shown in Figure 3.14).   

 

 

During the compression test, a series of unloading and reloading routines were carried 

out at about 3%, 4% and 5% strains to determine the elastic modulus values. The load 

and the displacement of the cross-head were measured by a load cell and recorded by 

the machine computer. After the test, the recorded load and displacement values were 

converted into stress and strain values. 

 

The gradients of the unloading curves were taken as the elastic modulus values at the 

respective strains. This is because during the unloading, the deformation of the 
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Figure 3.14 Determination of yield strength of porous copper during compression 
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specimen is purely elastic. A set of loading-unloading routes were taken at different 

strains to examine the amount of plastic deformation occurring during the compression. 

 

A typical loading-uploading compression stress-strain curve is shown in Figure 3.15. 

The elastic modulus of the porous copper sample (Ec) was obtained in accordance with 

ASTM Standard E9-89a and ASTM standard E111 and were calculated by the 

following equation: 

stress
c

strain

E ∆
=

∆
                         (3.12) 

where Δstress and Δstrain are the stress and strain decrement during unloading when the 

sample is in the linear deformation region.  

 

 

Figure 3.15 Typical loading-uploading stress-strain curve during compression (for 
porous copper with porosity of 63.5% and pore size of 425-710 μm) 

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9

10

St
re

ss
(M

Pa
)

Strain(%)

Δstress 

Δstrain 



 

 

92 

 

3.6.2 Three-point bending tests 

The porous copper samples for three-point bending test were first cut into cuboid 

specimens with a nominal square cross section of 10 mm×10 mm. The nominal length 

of the specimens was 55 mm, which was greater than the span length between the two 

supports (35 mm). All samples showed homogenous pore distribution and structure, 

with no contamination observed on any surfaces when examined under an optical 

microscope. The opposite sides of the specimen were ensured to be parallel using a 

square ruler. 

 

The tests were carried out on a universal testing machine (Instron 4505, UK) at a 

crosshead speed of 1mm/min. The span length between the two supporting points was 

set at 35 mm. The apparent modulus of linear deformation (Eb) and flexural strength of 

the porous copper samples (σb) were obtained in accordance with ASTM Standard 

E855-08 and were calculated using the following equations: 

3

34b

PL
E

bh δ
=                           (3.13) 

2

3
2b

FL
bd

σ =                            (3.14) 

where P is a load increment when the sample is in the linear deformation region, δ is the 

deflection increment at middle span corresponding to the load increment P, and F is the 

maximum load applied to the specimen during the test, L is the span length between the 

two supports, b is the width of the specimen and d is the depth of the specimen.  
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3.6.3 Tensile tests 

Cuboid specimens with nominal dimensions of 40 mm × 12 mm × 6 mm cut from the 

porous copper samples were tested. The gauge length of the specimen was about 20 mm. 

The porous copper specimens were relatively weak and deformed easily with large 

pressure, so they could not be clamped directly to the test machine. Two steel sheets 

with a thickness of 1mm were glued (Pattex power epoxy glue, Germany, with the 

bonding strength higher than 15 MPa) to the specimen and a PTFE bar with the same 

thickness as the specimen was inserted between the steel sheets so that the specimen 

can be firmly clamped to the test machine. For each set of specimens produced under 

the same condition, three specimens were prepared and tested. The tensile tests were 

conducted on a universal testing machine (Instron 4505, UK) with a cross-head speed of 

0.5 mm/min. 

 

Loading of the specimens occurred in two phases. The first phase consisted of 

loading/unloading for two times within the linear load-displacement region to determine 

the elastic modulus (the same method as the determination of elastic modulus in 

compression test, but with the unloading strain at 0.5% and 0.8% here). In the second 

phase, the specimens were loaded in tension into the plastic regime until failure to 

investigate the plastic deformation and fracture behavior. The load and the displacement 

of the cross-head were measured by a load cell and recorded by a computer connected 
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to the machine. After the test, the recorded load and displacement values were 

converted into stress and strain values. Figure 3.16 shows a specimen after test. 

 

 
Figure 3.16 Photograph of a specimen after tensile test. 

 

3.7 Error and Uncertainty 

In this thesis, the error and uncertainty in the measurement are characterised by 

standard deviation based on the mean values, differences between measured and 

calculated or theoretical data and experimental uncertainty. 

 

3.7.1 Mean value and standard deviation 

For any of the physical parameters measured in this thesis, a finite set of values was 

obtained by repeating measurement under the same condition. The mean value for n 

measurements was
1

1 n

i
i

X x
n =

= ∑  and the standard deviation was calculated by: 

4 mm 
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                 (3.15) 

 

The length, width, height, thickness and weight of the porous copper samples were 

measured at least five times and the standard deviations were less than 0.25%. The 

permeability, thermal conductivity, and heat transfer coefficient were measured under 

the same condition at least three times, and the standard deviations were less than 3.5%, 

2.8% and 2.4%, respectively.  

 

3.7.2 Differences between measured and calculated or theoretical data 

The difference between the measured data ( ix ) and the calculated or theoretical data 

( iy ) was determined by: 

100%i i

i

x y
y

ζ
−

= ×                           (3.16) 

The coefficient of determination (R2 value) was used to describe the goodness of curve 

fitting (Colin et al. 1997). 

 

3.7.3 Experimental uncertainty 

When several independent variables ( ix ) are used in a function Φ, i.e., 

1 2
a b n

Nx x xφ = ⋅⋅⋅⋅⋅⋅                             (3.17) 

The uncertainty can be expressed by (Moffat 1988): 
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= + +⋅⋅⋅⋅⋅⋅+    

     
             (3.18) 

In this thesis, systematic and mechanical errors of facilities and the standard errors of 

measured length, width, thickness and weight were considered for uncertainties. These 

uncertainties are summarized in Table 3.2. 

 
Table 3.2 Uncertainty of physical parameters in this thesis. 

Parameter Uncertainty 

Porosity < 0.25% 

Darcian velocity < 5.1% 

Heat flux in section 3.4 < 2.6% 

Thermal conductivity < 4.1% 

Heat flux in section 3.5 < 2.2% 

Heat transfer coefficient < 3.1% 

Reynolds number < 5.2% 

Nusselt number < 3.2% 

Yield strength < 0.4% 

Elastic modulus (compression) < 0.5% 

Flexural strength < 1.1% 

Apparent modulus (bending) < 0.7% 

Maximum tensile strength < 0.4% 

Elastic modulus (tensile) < 0.5% 
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Chapter 4  

 

Results 

 

This chapter will present the results obtained from the experiments, including 

microstructure and pore parameters, permeability, thermal conductivity, heat transfer 

coefficient and mechanical properties of LCS porous copper with single or double layer 

structure.  

 

4.1 Structure and Pore Parameters of Porous Copper 

4.1.1 Structure 

The microstructure and topography of the LCS porous copper specimens were 

examined using SEM. Figure 4.1 shows the representative features of a typical 

specimen. The macro topography of the porous samples is shown in Figures 4.1(a) and 

(b). Figure 4.1(a) is the transverse section of the sample (normal to the compacting 

direction), while Figure 4.1(b) is the longitudinal section of the sample (parallel to the 

compacting direction). The large pores inside the samples represent the spaces 

previously occupied by potassium carbonate particles. The compacting process has 

improved the contacts between the metal particles, which benefited the subsequent 

sintering process. As can be seen from Figure 3.3, the potassium carbonate granules 

have spherical shape, which leads to the round morphology of pores in Figure 4.1(a). 
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Most pores in the longitudinal direction, however, show an elliptical morphology 

(marked in Figure4.1 (b)). The ratio between the major and minor axes was about 3:2 

from the images. This was caused by the compaction pressure applied on the sample. 

Figure 4.1(c) shows a typical pore in the porous copper sample. The pore walls are 

composed of the individual sintered copper powder particles, resulting in a high surface 

area of the matrix. The copper particles assemble tightly around the pore, forming solid 

walls. Small holes or interstices between the copper particles are also found. This 

morphology often appears in the samples with low porosity where the potassium 

carbonate particles have less chance to touch each other. If the adjacent potassium 

carbonate particles are in contact with each other, a channel or hole would be formed in 

the wall (Figure 4.1(d)). The walls, formed by clusters of copper particles, provide the 

strength of the porous metal, while the channels allow fluids flowing through the porous 

metal. The pores are interconnected by vast numbers of channels. For samples with a 

higher porosity, connectivity between pores is extremely high.   

 

Figures 4.1(e) and (f) are higher-magnification micrographs of the sintered walls. The 

spherical shape and smooth surface of the copper powder particles are clearly visible. A 

very thin oxide film can be seen on the surface of the particles. All the copper particles 

have bonded well during sintering by forming necks between the particles through 

atomic diffusion. Some small holes and interstices, in the order of several micrometers, 

are found between the particles.  
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The sample shown in Figure 4.1 had a porosity of 67% and pore size of 425-710 μm. In 

the samples with a higher porosity and smaller pore size, the pores formed by the 

removal of potassium carbonate particles were connected by more and larger internal 

channels, which are beneficial to the fluid flow through the porous medium. 

 

 

Figure 4.1 SEM micrographs of an LCS copper sample showing representative 
features (Porosity: 67%; Copper particle size: 50-100 μm; Pore size: 425-710 μm). 

 

(c) (d) 

(e) (f) 

(b) (a) 
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4.1.2 Porosity and specific surface area 

The porosity of twenty-nine porous copper samples (S1 to S29) was measured 

separately using point counting, direct volume measurement and Archimedes methods. 

All test samples had nominal dimensions of 40 mm×30 mm×5 mm. Four pore size 

ranges of 250-425 μm, 425-710 μm, 710-1000 μm and 1000-1500 μm, with porosities 

ranging between 53.8 and 80.7%, were studied. The porosity of each sample 

determined by the point-counting method was calculated by Eq. (3.2). The total number 

of testing points within the selected area for each sample, Ppore, was 532 in the 

experiment. The principles of the direct volume measurement and the Archimedes 

methods to calculate porosity were described in Section 3.2.2. 

 

Table 4.1 summarizes the data collected from the samples and compares the porosity 

values obtained using these methods against the nominal porosity values. The porosity 

values measured by different methods for the samples were plotted against the nominal 

values in Figure 4.2. In the 250-425 μm pore size range, only samples with a maximum 

porosity of 77% were tested. At higher porosities, the structural integrity became poor; 

a high pressure applied to the sample to generate fluid flow can cause structural 

collapse. As a consequence, samples with higher porosities were not studied.  
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Table 4.1 Summary of porosity values measured by different methods 
for Samples S1 to S29 (Ptot=532). 

Sample 
Reference 

Nominal 
Porosity 

(%) 

Pore Size 
(µm) Ppore 

Porosity- 
Point 

Counting 
(%) 

Porosity- 
Direct Volume 
Measurement 

(%) 

Porosity- 
Archimedes 

Method 
(%) 

S1 50 250-425 273 51.3 53.4 53.8 

S2 60 250-425 329 61.8 62.1 61.7 

S3 62.5 250-425 323.5 60.7 63.0 63.6 

S4 65 250-425 357 67.1 68.8 68.4 

S5 70 250-425 378 71.1 71.0 70.6 

S6 72.5 250-425 388 72.9 72.4 72.3 

S7 75 250-425 396.5 74.4 77.6 77.1 

S8 50 425-710 284.5 53.4 55.6 54.8 

S9 55 425-710 323 60.7 60.8 59.7 

S10 60 425-710 321 60.3 60.8 61.2 

S11 62.5 425-710 338.5 63.5 63.7 64.3 

S12 65 425-710 343 64.5 67.2 67.0 

S13 67.5 425-710 353 66.4 68.8 69.4 

S14 70 425-710 386 72.6 72.7 73.3 

S15 75 425-710 397.5 74.6 77.0 76.2 

S16 80 425-710 410 77.1 80.6 80.3 

S17 55 710-1000 300.5 56.4 57.8 58.5 

S18 60 710-1000 337 63.3 64.1 63.7 

S19 65 710-1000 355 66.7 68.5 68.4 

S20 70 710-1000 381 71.6 71.4 71.8 

S21 75 710-1000 396 74.4 76.6 76.1 

S22 80 710-1000 418.5 78.6 80.9 80.4 

S23 55 1000-1500 303.5 57.0 58.2 57.8 

S24 60 1000-1500 334 62.8 63.4 63.4 

S25 65 1000-1500 348 65.4 65.3 65.0 

S26 67.5 1000-1500 364.5 68.4 69.7 69.8 

S27 70 1000-1500 387 72.7 73.5 72.7 

S28 75 1000-1500 395.5 74.2 74.9 75.7 

S29 80 1000-1500 414 77.8 80.6 80.7 
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Figure 4.2 shows that the measured porosities are generally higher than their nominal 

porosities. This is because nominal porosity is calculated from the volume ratio of 

potassium carbonate and copper particles without taking into account the space between 

copper particles, which makes the actual porosity greater than the volume of potassium 

carbonate. The porosity values measured by the different methods are very close to each 

other for the same samples. The porosity measured using the point counting method, 

however, is generally lower than those measured by the direct volume measurement and 

Archimedes methods, especially for the samples with high porosities. The porosity 

values obtained by the Archimedes method, which is the most accurate method, will be 

used in this thesis.  

 

The specific surface area values (Sv) of samples S1 to S29 were obtained from the 

micrographs using the point counting method as shown in Figure 3.7 (Section 3.2.2), 

where the total length of the test lines (Ltest) was fixed at 130 mm. The data collected 

from the micrographs and the values of Sv calculated by Eq. (3.3) are summarized in 

Table 4.2. Column 5 shows the number of intercepts between the grid lines and the pore 

perimeters. The values of Sv are in the range from 1.79 to 9.14 mm2/mm3. Sample S23, 

with a low porosity of 57.8% and the largest pore size of 1000-1500 µm has the lowest 

value of Sv, while Sample S7, with a high porosity of 77.1% and the smallest pore size 

of 250-425µm has the highest value of Sv, followed by Sample S16, with a higher 
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porosity of 80.3% and a medium pore size of 425-710µm. Figure 4.3 shows the 

variations of specific surface area with porosity and pore size. It can be seen clearly that 

Sv increases with porosity, but decreases with pore size.  

 

 

 

 

Figure 4.2 Measured porosity values by different methods versus nominal values 
for samples with different pore sizes.  
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Table 4.2 Summary of collected data and calculated specific surface areas  
for samples S1 to S29 (Ltest=130 mm) 

Sample 

Reference 

Nominal 

Porosity (%) 
Pore Size (µm) 

Porosity 

(%) 
Pinter 

SV 

(mm2/mm3) 

S1 50 250-425 53.8 384  5.92 

S2 60 250-425 61.7 449  6.94 

S3 62.5 250-425 63.6 459  7.09 

S4 65 250-425 68.4 487  7.51 

S5 70 250-425 70.6 533 8.23 

S6 72.5 250-425 72.3 549 8.47 

S7 75 250-425 77.1 592 9.14 

S8 50 425-710 54.8 249 3.84  

S9 55 425-710 59.7 260 4.01  

S10 60 425-710 61.2 295 4.55  

S11 62.5 425-710 64.3 300 4.63  

S12 65 425-710 67.0 311 4.80  

S13 67.5 425-710 69.4 329 5.08  

S14 70 425-710 73.3 345 5.32  

S15 75 425-710 76.2 366 5.65  

S16 80 425-710 80.3 379 5.84  

S17 55 710-1000 58.5 181 2.80  

S18 60 710-1000 63.7 196 3.02  

S19 65 710-1000 68.4 208 3.20  

S20 70 710-1000 71.8 213 3.28  

S21 75 710-1000 76.1 234 3.61  

S22 80 710-1000 80.4 251 3.87  

S23 55 1000-1500 57.8 116 1.79  

S24 60 1000-1500 63.4 129 1.99  

S25 65 1000-1500 65.0 132 2.03  

S26 67.5 1000-1500 69.8 141 2.17  

S27 70 1000-1500 72.7 150 2.31  

S28 75 1000-1500 75.7 153 2.36  

S29 80 1000-1500 80.7 161 2.48  
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Figure 4.3 Variations of specific surface area with porosity and pore size 

 

4.1.3 Tortuosity 

The tortuosity of twenty-five porous copper samples (A1 to A25) was obtained by the 

analytical solution and extrapolation approach from the acoustic absorption curves as 

described in Section 3.2.3. All test samples had a nominal diameter of 30 mm and a a 

nominal height of 10 mm. Three copper particle size ranges of 50-100 μm, 100-300 μm 

and 600-1000 μm, and four pore size ranges of 250-425 μm, 425-710 μm, 710-1000 μm 

and 1000-1500 μm, with porosities ranging between 53.8 and 80.7%, were studied. The 

porosity of each sample was measured by the Archimedes method. The pore parameters 

and the values of tortuosity are summarized in Table 4.3, which shows that all the 

tortuosity values of the tested porous copper samples are between 1 and 2.5.  
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Table 4.3 Tortuosity of samples with different porosity and pore size. 

Group 
Sample 

Reference 
Particle Size 

(μm) 
Pore Size 
(μm) 

Porosity 
 (%) 

Tortuosity 

GA1 

A1 50-100 250-425 61.9 1.63 

A2 50-100 250-425 67.0 1.52 

A3 50-100 250-425 71.4 1.41 

GA2 

A4 50-100 425-710 61.7 1.85 

A5 50-100 425-710 66.7 1.71 

A6 50-100 425-710 70.7 1.59 

A7 50-100 425-710 75.9 1.49 

A8 50-100 425-710 80.8 1.36 

GA3 

A9 50-100 710-1000 62.6 2.10 

A10 50-100 710-1000 71.4 1.81 

A11 50-100 710-1000 80.6 1.42 

GA4 

A12 50-100 1000-1500 62.5 2.42 

A13 50-100 1000-1500 66.5 2.17 

A14 50-100 1000-1500 72.2 1.91 

A15 50-100 1000-1500 76.1 1.77 

A16 50-100 1000-1500 81.2 1.56 

GA5 

A17 100-300 425-710 62.4 1.52 

A18 100-300 425-710 67.7 1.45 

A19 100-300 425-710 71.5 1.36 

GA6 

A20 100-300 1000-1500 62.5 1.74 

A21 100-300 1000-1500 67.0 1.65 

A22 100-300 1000-1500 72.8 1.53 

GA7 

A23 600-1000 1000-1500 31.1 2.18 

A24 600-1000 1000-1500 41.6 1.83 

A25 600-1000 1000-1500 52.5 1.62 
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Figure 4.4 shows the variations of tortuosity with porosity for porous copper samples 

with different copper particle sizes and pore sizes. With increasing porosity, the 

tortuosity of the porous copper sample decreases. At a given particle size and porosity, 

the tortuosity of porous copper sample with fine pore size is smaller than that with a 

large pore size. The sample made by small copper particles has larger tortuosity value 

comparing with that made by large copper particles.  
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Figure 4.4 Tortuosity values of the LCS porous copper samples for different groups 
in Table 4.3: □ GA1, ○ GA2, △ GA3, ◇ GA4, ■ GA5, ● GA6 and ◆ GA7. 

 

4.2 Permeability 

The permeability tests were carried out on a purpose-built apparatus described in 

Section 3.3.2. Both air and water were used as the fluid. Without specific mention, 

permeability will mean the air permeability (Sections 4.3.1–4.3.5). The water 
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permeability results will be presented in Section 4.3.6. The standard deviation of 

measured permeability values calculated by Eq. (3.15) was less than 3.5%. 

 

4.2.1 Effect of porosity and pore size on air permeability of porous copper 

Twenty-nine samples (S1-S29) in Table 4.1 were used for permeability testing. The 

permeability was determined for each specimen in the velocity range of 0-14 m/s by 

the quadratic function curve fitting according to in Eq. (3.5), and taking the average 

value. The structural parameters and the permeability values of these samples are 

summarised in Table 4.4. Each sample was categorised according to its pore size and 

porosity. 

 

The variations of pressure drop with outlet air velocity for selected specimens with 

different porosities and different pore sizes are shown in Figure 4.5. The graphs are 

plotted separately for four pore size ranges: 250-425 μm, 425-710 μm, 710-1000 μm 

and 1000-1500 μm. The pressure drop increases with the velocity of fluid and all curves 

fit well with Eq. (3.5), with coefficient of determination, R2, greater than 99.8%. The 

values of permeability, K, were obtained by curve-fitting using Eq. (3.5).  
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Table 4.4 Permeability values of samples with different porosity and pore size. 

Sample 
Reference 

Pore 
Size(μm) 

Relative  
Density 

Porosity 
(%) 

Permeability 
(10-10m2) 

S1 250-425 0.462 53.8 0.14 

S2 250-425 0.383 61.7 0.41 

S3 250-425 0.364 63.6 0.58 

S4 250-425 0.316 68.4 0.95 

S5 250-425 0.294 70.6 1.45 

S6 250-425 0.277 72.3 1.85 

S7 250-425 0.229 77.1 3.12 

S8 425-710 0.452 54.8 0.11 

S9 425-710 0.403 59.7 0.23 

S10 425-710 0.388 61.2 0.28 

S11 425-710 0.357 64.3 0.46 

S12 425-710 0.330 67.0 0.63 

S13 425-710 0.306 69.4 0.90 

S14 425-710 0.267 73.3 1.57 

S15 425-710 0.238 76.2 2.22 

S16 425-710 0.197 80.3 3.79 

S17 710-1000 0.415 58.5 0.14 

S18 710-1000 0.363 63.7 0.30 

S19 710-1000 0.316 68.4 0.59 

S20 710-1000 0.282 71.8 0.89 

S21 710-1000 0.239 76.1 1.83 

S22 710-1000 0.186 80.4 3.58 

S23 1000-1500 0.422 57.8 0.06 

S24 1000-1500 0.366 63.4 0.15 

S25 1000-1500 0.350 65.0 0.25 

S26 1000-1500 0.302 69.8 0.47 

S27 1000-1500 0.273 72.7 0.88 

S28 1000-1500 0.243 75.7 1.31 

S29 1000-1500 0.183 80.7 3.12 
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Figure 4.5 Variations of pressure drop with outlet velocity for specimens with 
different porosities and a fixed pore size of: (a)250-425µm; (b) 410-710µm;(c) 

710-1000µm; and (d) 1000-1500µm.  
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used in the tests, it is impossible to measure the pressure drop for the specimens with 

low porosities at high velocities. 

 

Comparing the four specimens (S3, S10, S18 and S24) with the same nominal porosity 

of 60% but different pore sizes shows an interesting phenomenon. The gradient of the 

curve for S3, with very fine pore size (250-425 μm), is very small, while the other three 

specimens show a similar large gradient. 

 

Figure 4.6 shows the variation of permeability with porosity at different pore sizes. It 

can be seen that the permeability is mainly affected by porosity, although pore size 

also has some influence on it. An exponential relation can be seen between 

permeability and porosity. Sample S23, with a low porosity of 57.8%, has the lowest 

permeability (0.06×10-10 m2) while Sample S16, with a high porosity of 80.3%, has 

the largest permeability (3.79×10-10 m2). At a given pore size (710-1000 μm), the 

permeability coefficient of the sample S22 with porosity of 80.4% is more than 24 

times than that of the sample S17 with a porosity of 58.5% (see Table 4.4).  

 

Figure 4.6 also shows that samples with small pore sizes have larger permeability 

values, while the permeability of samples with larger pore sizes are relatively low at a 

given porosity in all tested samples. Comparing the permeability coefficient of the 

sample S4 and sample S19 with the same porosity of 68.4%, the former sample has a 
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smaller pore size, but has a larger permeability (see Table 4.4). The porosity of S6 

(72.3%) is 4% lower than that of S21 (76.1%); however, they have similar 

permeability values (1.85×10-10 m2 for S6 and 1.83×10-10 m2 for S21), just because of 

the smaller pore size of S6 (see Table 4.4). 
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Figure 4.6 Variation of permeability with porosity for samples with different pore 
sizes. 

Three samples (S18, S20 and S22) were selected to investigate the effect of sintering 

time on permeability. Table 4.5 shows the permeability values for the samples 

sintered with different times. The samples were sintered at 950 °C for 2h with 

standard route described in Section 3.1.3, re-sintered for another 2h, and then 

re-sintered for a further 2h. After each sintering period, the permeability was 

measured. It is observed that sintering time has little effect on the permeability. 
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Table 4.5 Permeability of samples sintered for different times. 
Sample 

Reference 
Pore 

Size(μm) 
2h 4h 6h 

ε (%) K(10-10m2) ε (%) K(10-10m2) ε (%) K(10-10m2) 
S18 710-1000 63.7 0.30 63.5 0.30 63.5 0.31 
S20 710-1000 71.8 0.89 71.7 0.87 71.4 0.87 
S22 710-1000 80.4 3.58 81.2 3.49 80.8 3.52 

 

4.2.2 Effect of anisotropy on air permeability of porous copper 

Compaction is a very important step in LCS and a compacting pressure of at least 

200MPa is needed to obtain porous copper samples of high quality. At this pressure, 

deformation of the potassium carbonate particles is often unavoidable, resulting in 

anisotropy. 

 

Seven porous copper samples (S30-S36) with different porosities and pore sizes were 

produced by the LCS method. Each sample had nominal dimensions of 

55mm×30mm×30mm. Three specimens (marked A, B and C) with the same nominal 

size of 30mm×20mm×5mm were cut from different parts of each sample, as 

illustrated in Figure 4.7. Because of deformation of the potassium carbonate particles 

during compaction, the pores on different sections of the sample have different shapes. 

As shown in Figure 4.1, the pores on the transverse cross section of the sample 

(normal to the compacting direction, shown as xy plane in Figure 4.7 have circular 

morphology, while the pores on the longitudinal cross section of the sample (parallel 

to the compacting direction, shown as yz and xz planes in Figure 4.7 have elliptical 
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morphology. In the tests, the air flow direction was parallel to the x axis for 

specimens A and B and parallel to the z axis for specimen C. The specimens had 

different pore morphologies in the direction of air flow, so their air flow paths were 

expected to be different. 

 

 

Figure 4.7 Schematic diagrams showing the pore structures on different cross sections 
relative to the compaction direction 
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Table 4.6 summaries the permeability values at different flow directions for the 

selected specimens. For specimens cut from the same sample, the permeability of 

specimen C is slightly lower than those of specimens A and B, which means that the 

flow resistance for air is higher along the z direction. The variations in permeability 

are less than 8%. The anisotropy of porous copper fabricated by the LCS method is 

not significant enough to have a large effect on the permeability. 

 

Table 4.6 Permeability at different flow directions. 
Sample 

Reference 
Pore 

Size(μm) 
Flow 

Direction 
Relative 
Density 

Porosity 
(%) 

Permeability 
(10-10m2) 

S30A 425-710 x 0.389 61.4 0.29 

S30B 425-710 x 0.396 61.1 0.30 

S30C 425-710 z 0.390 61.0 0.29 

S31A 425-710 x 0.328 67.4 0.61 

S31B 425-710 x 0.336 67.2 0.62 

S31C 425-710 z 0.331 66.9 0.61 

S32A 425-710 x 0.307 69.1 0.91 

S32B 425-710 x 0.319 69.0 0.91 

S32C 425-710 z 0.312 68.8 0.88 

S33A 425-710 x 0.267 73.5 1.58 

S33B 425-710 x 0.269 73.1 1.46 

S33C 425-710 z 0.270 73.0 1.52 

S34A 710-1000 x 0.282 72.4 1.00 

S34B 710-1000 x 0.28 72.0 0.95 

S34C 710-1000 z 0.278 72.1 0.95 

S35A 1000-1500 x 0.350 65.9 0.28 

S35B 1000-1500 x 0.345 65.5 0.26 

S35C 1000-1500 z 0.343 65.7 0.26 

S36A 1000-1500 x 0.302 68.8 0.43 

S36B 1000-1500 x 0.312 68.8 0.41 

S36C 1000-1500 z 0.313 68.9 0.41 
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4.2.3 Effect of copper particle size on air permeability of porous copper 

All the samples described above were made from the copper powder with the copper 

particle size of 50-100 μm. Thirty further samples (S37-S49), with copper particle 

size of either 100-300 μm or 600-1000 μm, were used to investigate the effect of 

particle size on permeability, the results of which are shown in Table 4.7. For the 

copper powder with particle size greater than 600 μm, only large potassium carbonate 

particles (1000-1500 μm) were used in fabricating the samples, because the copper 

particles need to be smaller than the potassium carbonate particles in LCS (Zhao et al. 

2005). It was found difficult to achieve high porosity using big copper particles. It 

was hard to make samples with the porosity higher than 50% using the copper powder 

with the particle size of 600-1000 μm. 

Table 4.7 Permeability of samples fabricated with different copper particle sizes 

Sample 
Reference 

Particle 
Size(μm) 

Pore 
Size(μm) 

Relative 
Density 

Porosity 
(%) 

Permeability 
(10-10m2) 

S37 100-300 250-425 0.434 56.6 2.18 

S38 100-300 250-425 0.265 73.5 13.52 

S39 100-300 425-710 0.458 54.2 1.28 

S40 100-300 425-710 0.373 62.7 3.36 

S41 100-300 425-710 0.335 66.5 5.12 

S42 100-300 425-710 0.294 70.1 8.58 

S43 100-300 1000-1500 0.462 53.8 0.60 

S44 100-300 1000-1500 0.382 61.8 1.91 

S45 100-300 1000-1500 0.336 66.4 4.19 

S46 100-300 1000-1500 0.303 69.7 6.68 

S47 600-1000 1000-1500 0.683 31.7 0.94 

S48 600-1000 1000-1500 0.587 41.3 2.82 

S49 600-1000 1000-1500 0.517 48.3 8.74 



 

 

117 

 

The effects of the porosity and pore size on permeability for sample S37 to S46, made 

by 100-300 μm copper particles, are similar to the previous results for samples 

fabricated using 50-100 μm copper particles. Permeability increases with porosity but 

decreases with pore size. At any given porosity and pore size, however, their 

permeabilities are greater than those made by 50-100 μm copper particles. For 

example, comparing the permeability values of sample S42 (Porosity: 70.1%, 

Permeability: 8.58×10-10 m2) and sample S13 ((Porosity: 69.4%, Permeability: 

0.903×10-10 m2) with the same pore size but different particle size, the former is nearly 

10 times than the latter. At the same pore size (425-710 μm) and a similar porosity 

(54.8% for S8 and 54.2% for S39), the permeability value of S39, made by 100-300 

μm copper particles, is more than 10 times of that of S8, made by 50-100 μm copper 

particles.   

 

Figure 4.8 compares permeability for samples made by copper powders with different 

particle sizes. Copper particle size was found to play an important role. Increasing 

copper particle size significantly increased the permeability of the porous copper, at 

given porosity and pore size. The permeability values of samples made with 100-300 

μm copper particles are 4-11 times of those of samples made with 50-100 μm copper 

particles. With a copper particle size of 100-300 μm, the sample with a porosity of 

only 34.7% (S47) has a permeability about the same as sample S13, which has a 

porosity of 69.4% (both have the same pore size). 
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4.2.4 Air permeability of porous copper with double-layer structure 

Twelve porous samples with the double-layer structure (S51-S54 and S56-S63) and 

two samples with single layer (S50 and S55) were manufactured to investigate the 

effect of a double-layer structure on permeability. The particle size of the copper 

powder used was 50-100 μm. Each sample had two layers with different porosity or 

pore size or thickness. Table 4.8 summaries the permeability values of the porous 

copper samples with different double-layer structures. Column 2 is the pore size or 

pore size combination. Sample S50 and S55 have a single layer and are included for 

comparison. Column 3 is the porosity or porosity combination. Column 4 is the 
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Figure 4.8 Comparison of permeability for samples made by different copper 
particle size 
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thickness combination. For samples S51-54 and S56-61, the first and second values 

show the thicknesses of the high-porosity and low-porosity layers, respectively. 

Sample S62 has a layer of 425-710 μm pore size and a layer of 1000-1500 μm pore 

size, the nominal porosities being both 60%. Sample S63 has a layer of 425-710 μm 

pore size and a layer of 1000-1500 μm pore size, the nominal porosities being 60% 

and 65%, respectively. The total porosity of the whole sample (shown in Column 5) 

was measured by the Archimedes method. The amount of powder mixture for each 

layer was controlled as accurately as possible in order to control the thickness of each 

layer and therefore the total thickness of the sample (5±0.1mm).  

Table 4.8 Permeability coefficients of samples with double-layer structure 

Sample 
Reference 

Pore Size 
(μm) 

Nominal 
Porosity(%) 

Thickness 
(mm) 

Relative 
Density 

Porosity 
(%) 

Permeability 
(10-10m2) 

S50 425-710 60 5 0.375 62.5 0.33 

S51 425-710 80/60 1+4 0.345 65.9 0.56 

S52 425-710 80/60 2+3 0.303 69.7 1.19 

S53 425-710 80/60 3+2 0.264 73.6 1.86 

S54 425-710 80/60 1+4 0.225 77.1 2.92 

S55 425-710 80 5 0.195 80.5 3.85 

S56 425-710 65/60 2.5+2.5 0.354 64.6 0.49 

S57 425-710 70/60 2.5+2.5 0.309 67.1 0.68 

S58 425-710 70/65 2.5+2.5 0.276 68.9 1.03 

S59 1000-1500 65/60 2.5+2.5 0.351 64.9 0.27 

S60 1000-1500 70/60 2.5+2.5 0.312 67.4 0.41 

S61 1000-1500 70/65 2.5+2.5 0.282 69.2 0.59 

S62 
425-710/ 

1000-1500 
60/60 2.5+2.5 0.362 62.8 0.29 

S63 
425-710/ 

1000-1500 
65/60 2.5+2.5 0.346 64.4 0.43 
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Figure 4.9 shows the variables of permeability with porosity for samples with single 

and double-layer structures. The permeability of samples with single and double-layer 

structures are close to each other at a given porosity and pore size, but with slight 

difference for samples with porosity between 67% and 77%.  
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Figure 4.9 Comparison of permeability values for samples with single- and 
double-layer structures. 

 

 

4.2.5 Air permeability of other porous metals  

In order to investigate the effect of different matrix metals on permeability, three 

metal or alloy powders were selected to produce porous samples by LCS. They were 

iron, nickel and nickel-copper powders with particle sizes of 75-125 μm, 50-100 μm 

and 25-75 μm, respectively. The particle size of the potassium carbonate powder used 
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was 425-710 μm for all these samples. Table 4.9 shows the structural information and 

the permeability values for the samples.  

Table 4.9 Permeability of porous samples made from different metals 

Sample 
Reference 

Metal 
Particle 

Size (μm) 
Pore Size 
(μm) 

Relative 
Density 

Porosity 
(%) 

Permeability 
(10-10m2) 

S64 Fe 75-125 425-710 0.285 71.5 2.04 

S65 Fe 75-125 425-710 0.245 75.5 3.27 

S66 Ni 50-100 425-710 0.407 59.3 0.21 

S67 Ni 50-100 425-710 0.335 66.5 0.52 

S68 Ni 50-100 425-710 0.294 70.6 0.97 

S69 Ni 50-100 425-710 0.263 73.7 1.51 

S70 Ni 50-100 425-710 0.220 78.0 2.71 

S71 Ni 50-100 425-710 0.192 80.8 4.72 

S72 NiCu 25-75 425-710 0.415 58.5 0.05 

S73 NiCu 25-75 425-710 0.329 67.1 0.21 

S74 NiCu 25-75 425-710 0.267 73.3 0.53 

 

Figure 4.10 compares the permeability values for different porous metal samples with 

the same pore size of 425-710 μm. It can be seen that there was no significant 

difference in permeability between porous iron and porous nickel. The porous 

nickel-copper samples, however, showed lower permeability values, only 0.526×

10-10m2 for the sample with a porosity of 73.7% (S74), which is less than half of the 

nickel sample with the same porosity (S69). In addition, the permeability of the 

porous iron sample was larger than that of the porous copper and porous 

nickel-copper sample at any given porosity. These may be due to the effect of the 

particle size of the nickel-copper powder instead of the difference of the material used. 
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It further confirms that metal particle size plays an important role in affecting 

permeability. 
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Figure 4.10 Comparison of permeability of different porous metals (pore size: 425-710 
μm). 

 

 

4.2.6 Water permeability of porous copper 

The water permeability tests were also carried out on the purpose-built apparatus 

described in Section 3.3.2, and the permeability values were listed in Table 4.10. The 

permeability values measured with water are slightly greater than those measured 

with air, with the difference less than 8% (except for sample S23). 



 

 

123 

 

 

Table 4.10 Water permeability of samples with different pore size and porosity. 

Sample 

Reference 

Pore 

Size(μm) 

Relative 

Density 

Porosity 

(%) 

Air Permeability 

(10-10m2) 

Water Permeability 

(10-10m2) 

S1 250-425 0.462 53.8 0.14 0.14 

S2 250-425 0.383 61.7 0.41 0.40 

S3 250-425 0.364 63.6 0.58 0.59 

S4 250-425 0.316 68.4 0.95 1.01 

S5 250-425 0.294 70.6 1.45 1.54 

S6 250-425 0.277 72.3 1.85 1.87 

S7 250-425 0.229 77.1 3.12 3.27 

S8 425-710 0.452 54.8 0.11 0.12 

S9 425-710 0.403 59.7 0.17 0.18 

S10 425-710 0.388 61.2 0.28 0.31 

S11 425-710 0.357 64.3 0.46 0.51 

S12 425-710 0.330 67.0 0.63 0.64 

S13 425-710 0.306 69.4 0.90 0.95 

S14 425-710 0.267 73.3 1.57 1.54 

S15 425-710 0.238 76.2 2.22 2.34 

S16 425-710 0.197 80.3 3.79 3.87 

S17 710-1000 0.415 58.5 0.14 0.14 

S18 710-1000 0.363 63.7 0.30 0.33 

S19 710-1000 0.316 68.4 0.59 0.60 

S20 710-1000 0.282 71.8 0.89 0.89 

S21 710-1000 0.239 76.1 1.83 1.92 

S22 710-1000 0.196 80.4 3.58 3.70 

S23 1000-1500 0.422 57.8 0.06 0.08 

S24 1000-1500 0.366 63.4 0.15 0.16 

S25 1000-1500 0.350 65.0 0.25 0.27 

S26 1000-1500 0.302 69.8 0.47 0.48 

S27 1000-1500 0.273 72.7 0.88 0.89 

S28 1000-1500 0.243 75.7 1.31 1.26 

S29 1000-1500 0.193 80.7 3.12 3.37 
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4.3 Thermal Conductivity 

The thermal conductivity was measured using Corsan’s method as described in Section 

3.4.2. The effect of porosity, pore size and copper particle size on the thermal 

conductivity of LCS porous copper was investigated in this section.  

 

4.3.1 Effect of porosity and pore size on thermal conductivity of porous copper 

Twenty-five samples (T1-T25) with a nominal porosity from 45% to 80% and pore 

size of 250-425 μm, 425-710 μm, 710-1000 μm and 1000-1500 μm were made by 

LCS for thermal conductivity tests. Two specimens were cut from each sample. Each 

specimen was tested at least three times and the average values of thermal 

conductivity were taken. The standard deviation of the thermal conductivity 

calculated by Eq. (3.15) was less than 2.8%. The porosity was measured using the 

Archimedes method. 

 

The structural properties and the thermal conductivity values of the twenty-five 

samples are summarised in Table 4.11. Because the thermal conductivity of porous 

media is related to the volume fraction of the solid matrix, relative density is more 

convenient than porosity in analyzing thermal conductivity. Therefore, the relative 

density values, which were equal to (1-ε), are also listed in Table 4.11. Table 4.11 

shows that the thermal conductivity increases with relative density of porous copper. 

All the test samples have values of conductivity less than 140 W/mK. The highest 
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value is 138.3 W/mK for Sample T6 with a relative density of 0.6 and pore size of 

425-710 μm, followed by 126 W/mK for Sample T19 with a relative density of 0.582 

and pore size of 1000-1500 μm. The thermal conductivity decreases very rapidly with 

decreasing relative density and becomes very low when the relative density is lower 

than 0.3. Sample T13 with a relative density of 0.165 and pore size of 425-710 μm 

has a thermal conductivity of only 8.8 W/mK, which is only 2.25% of oxygen-free 

copper (391 W/mK). Samples T9, T15 and T21 with relative densities between 0.43 

and 0.46 and pore sizes of 425- 710µm, 710-1000µm and 1000-1500µm, respectively, 

have measured thermal conductivity values varying between 77.9 W/mK and 81.6 

W/mK. The results show that for a given relative density, the pore size has only a very 

small effect on the thermal conductivity. Sample T2 with relative density of 0.45 and 

pore size of 250-425 µm, however, has a thermal conductivity value of only 68.9 

W/mK, which is much lower than the other samples with similar relative density but 

different pore size.  

 

The measured thermal conductivities for samples T1 to T25 are plotted as a function 

of relative density in Figure 4.11. It can be clearly seen that for a given relative 

density, the thermal conductivities for the samples with pore size of 425–710 µm, 

710–1000 µm and 1000–1500 µm are very similar but those for the samples with pore 

size of 250 –425 µm are slightly lower. 
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Table 4.11 Structural characteristics and thermal conductivity values of porous 
copper samples with different porosity and pore size 

 
Sample 

reference 
Pore Size 

(μm) 
Relative Density 

Porosity 
(%) 

Thermal Conductivity 
(W/mK) 

T1 250-425 0.524 47.6 95.5 

T2 250-425 0.450 55.0 68.9 

T3 250-425 0.356 64.4 37.3 

T4 250-425 0.318 68.2 29.7 

T5 250-425 0.283 71.7 18.2 

T6 425-710 0.600 40.0 138.3 

T7 425-710 0.521 47.9 108.9 

T8 425-710 0.484 51.6 88.2 

T9 425-710 0.431 56.9 77.9 

T10 425-710 0.375 63.5 56.5 

T11 425-710 0.314 68.6 39.6 

T12 425-710 0.269 73.1 25.7 

T13 425-710 0.165 83.5 8.8 

T14 710-1000 0.514 48.6 95.3 

T15 710-1000 0.451 54.9 81.6 

T16 710-1000 0.401 59.9 68.7 

T17 710-1000 0.357 64.3 58.4 

T18 710-1000 0.272 72.8 28.3 

T19 1000-1500 0.582 41.8 126.0 

T20 1000-1500 0.531 46.9 114.1 

T21 1000-1500 0.436 56.4 80.0 

T22 1000-1500 0.367 63.3 60.5 

T23 1000-1500 0.335 67.5 43.1 

T24 1000-1500 0.269 73.1 31.1 

T25 1000-1500 0.184 81.6 17.9 
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Figure 4.11 Variation of thermal conductivity with relative density for porous copper 
samples with different pore sizes. 

 

4.3.2 Effect of copper particle size on thermal conductivity of porous copper 

The structural characteristics and thermal conductivities of seven samples with 

different copper particle sizes and pore sizes are listed in Table 4.12. With the 

exception of samples T26 and T34, the thermal conductivity is not significantly 

affected by the copper particle size, as long as the pore size is larger than the copper 

particle size. When the copper particle size and the potassium carbonate particle size 

are comparable (T26 and T34), the fabrication of the samples becomes difficult and 

the quality of these samples is not very good due to poor bonding between the copper 

particles. This may explain the low thermal conductivity values of these two samples 

compared with the other samples with the same relative density. 
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Table 4.12 Structural characteristics and thermal conductivities of porous copper 
samples with different copper particle sizes 

 

Reference 
Particle 

Size (μm) 
Pore Size 
(μm) 

Relative 
Density 

Porosity 
(%) 

Thermal Conductivity 
(W/mK) 

T26 100-300 250-425 0.363 63.7 20.6 

T27 100-300 425-710 0.448 55.2 65.4 

T28 100-300 425-710 0.383 61.7 40.5 

T29 100-300 425-710 0.259 74.1 18.2 

T30 100-300 1000-1500 0.35 65.0 35.7 

T31 100-300 1000-1500 0.253 74.7 21.7 

T32 600-1000 1000-1500 0.618 38.2 87.5 

T34 600-1000 1000-1500 0.463 53.7 39.3 

 

 

4.4 Heat Transfer Coefficient 

The heat transfer coefficient was measured using the apparatus as described in Section 

3.5.1. The coolant used in the experiment was water, with the flow rate ranging from 

0.2 l/min to 1.6 l/min. The effects of porosity, pore size, copper particle size, coolant 

flow rate, input heat power, anisotropy and double-layer structure on the heat transfer 

coefficient were studied. 

 

4.4.1 Effect of porosity on heat transfer coefficient of porous copper 

Figure 4.12 shows the effect of porosity on the heat transfer coefficient of porous 

copper samples made using 50-100 μm copper particles (Sample S1-S29) at various 

coolant flow rates from 0.2 l/min to 1 l/min, presented in four separate graphs for 
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different pore sizes of 250-425 μm, 425-710 μm, 710-1000 μm and 1000-1500 μm, 

respectively. The empty chamber with no porous sample is represented as 100% 

porosity. The heat transfer coefficient of several samples with low porosity could not 

be measured at large coolant flow rate due to the limited input pressure of the water.  

 

Porosity has a large effect on the heat transfer coefficient. For all samples, generally, 

the heat transfer coefficient first increases and then decreases with porosity at any 

given coolant flow rate. The peaks in the heat transfer coefficient for the samples with 

pore size ranges of 250-425 μm (S2), 425-710 μm (S10), 710-1000 μm (S18) and 

1000-1500 μm (S25) are 61.7%, 61.2%, 63.7% and 65%, respectively.  

 

The empty chamber without a porous sample has the lowest heat transfer coefficient. 

Adding a porous sample to the chamber can increase the heat transfer coefficient by 2 

to 10 times. It is evident that the porous sample plays a very important role in 

improving the heat transfer performance of the system. 
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Figure 4.12 Variation of heat transfer coefficient with porosity at different flow rates 
and different pore sizes (S1-S29): (a) 250-425 μm (S1-S7); (b) 425-710 μm (S8-S16); 
(c) 710-1000 μm (S17-22); and (d) 1000-1500 μm (S23-S29). (Copper particle size: 

50-100 μm, Input heat power: 250 kW/m2) 

 

For samples with medium and large pore sizes, the heat transfer coefficient decreases 

steadily with porosity at all flow rates after reaching the peak values. It is worth 

noting that there is a sharp fall in heat transfer coefficient for the samples with the fine 

pore size (250-425 μm) when the porosity increases from 68.4% to 70.6% (Figure 

4.12(a)). The heat transfer performance of samples with porosity higher than 70% is 

quite poor. 
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Figure 4.13 shows the effect of porosity on the heat transfer coefficient at various 

coolant flow rates for samples with large copper particle sizes. Samples S37-S42 

(Figure 4.13 (a)) and S43-S46 (Figure 4.13 (b)) have copper particle sizes of 100-300 

μm but different pore sizes of 425-710 μm and 1000-1500 μm, respectively, while 

samples S47-S49 (Figure 4.13 (c)) have the largest particle sizes of 300-600 μm and 

the largest pore sizes of 1000-1500 μm. At any given coolant flow rate, the heat 

transfer coefficient generally decreases with porosity and no peaks are found in all the 

samples tested. The values of the heat transfer coefficient observed in these samples 

are between 10 kW/m2K and 50 kW/m2K. 
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Figure 4.13 Variation of heat transfer coefficient with porosity at different flow rates for 
samples with different copper particle sizes and pore sizes(Input heat power: 250 kW/m2) 
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4.4.2 Effect of pore size on heat transfer coefficient of porous copper 

Figures 4.14 shows the effect of pore size on heat transfer coefficient for samples 

S1-S29 with a copper particle size of 50-100 μm at the flow rate of 0.6 L/min. The 

samples with the medium pore size ranges of 425-710 μm and 710-1000 μm have the 

best heat transfer performance among the four pore sizes, with their heat transfer 

coefficients being 1.5-2 times of those of the samples with the fine pore size range 

(250-425 μm). The heat transfer performance of the samples with the pore size of 

1000-1500 μm is moderate and that of the fine pore size samples (250-425 μm) is the 

poorest.  
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Figure 4.14 Variation of heat transfer coefficient with porosity for samples S1-S29 
with different pore sizes. (Copper particle size: 50-100 μm, Input heat power: 250 

kW/m2, Flow rate: 0.6 L/min) 
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Figure 4.15 shows the effect of pore size on heat transfer coefficient for samples 

S37-S46 with a copper particle size of 100-300 μm at the flow rate of 0.6 L/min. 

Different from the experimental results of samples S1-S29 which used finer copper 

particles, the heat transfer performance of the samples with the largest pore size is the 

best, while that of the samples with the smallest pore size is the poorest. The samples 

with a large pore size of 1000-1500 μm have a heat transfer coefficient 1.5-1.8 times 

that of the samples with a small pore size of 250-425 μm. 
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Figure 4.15 Variation of heat transfer coefficient with porosity for samples S37-S46 
with different pore sizes. (Copper particle size: 100-300 μm, Input heat power: 

250kW/m2, Flow rate: 0.6L/min). 
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4.4.3 Effect of copper particle size on heat transfer coefficient of porous copper 

Figure 4.16 shows the variation of heat transfer coefficient with porosity at a flow rate 

of 0.6 L/min for samples with a pore size of 425-710 μm and different copper particle 

sizes: 50-100 μm (samples S8-S16) and 100-300 μm (samples S39-S42). It is found 

that, when the porosity is higher than 55%, the heat transfer coefficient of the samples 

with large copper particles is lower than that of the samples with small copper 

particles at any given coolant flow rate. 

 

 

Figure 4.17 shows the variation of heat transfer coefficient with porosity at different 

coolant flow rates for samples with a pore size of 1000-1500 μm and different copper 
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Figure 4.16 Variation of heat transfer coefficient with porosity for samples with 
different copper particle sizes. (Pore size: 425-710 μm, Input heat power: 250kW/m2, 

Flow rate: 0.6L/min) 
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particle sizes: 50-100 μm (samples S23-S29), 100-300 μm (samples S43-S46) and 

600-1000 μm (samples S47-49). It can be seen that the samples with the largest 

copper particle size but lowest porosity have the best heat transfer performance. 

 

 

 

4.4.4 Effect of flow rate on heat transfer coefficient of porous copper 

Figure 4.18 shows the effect of coolant flow rate on the heat transfer coefficient for 

samples with different porosities, copper particle sizes and pore sizes. It is clearly 

seen that coolant flow rate has a large effect on heat transfer across all porosities, 

copper particle sizes and pore sizes. Heat transfer coefficient was shown to increase 
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Figure 4.17 Variation of heat transfer coefficient with porosity for samples with 
different copper particle sizes. (Pore size: 1000-1500 μm, Input heat power: 

250kW/m2, Flow rate: 0.6L/min) 
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with coolant flow rate and increasing flow rate from 0.2 L/min to 1.6 L/min can 

increase the heat transfer coefficient about three times.  

 

 

4.4.5 Effect of input heat flux on heat transfer coefficient of porous copper 

Figures 4.19 (a) to (h) show the variation of the heat transfer coefficient with coolant 

flow rate under different input heat flux for samples S2, S7, S10, S16, S18, S22, S25 

and S29 (see Table 4.5 for the pore parameters of samples in detail), respectively. 

These samples have four different pore sizes and a porosity ranging from 61.2% to 

80.7%. It can be clearly seen that the input heat flux has little effect on the heat 

transfer coefficient for all the specimens tested. 
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Figure 4.18 Variation of heat transfer coefficient with coolant flow rate for 
specimens with different porosities, copper particle sizes and pore sizes 
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Figure 4.19 Variation of heat transfer coefficient with coolant flow rates measured 
with different input heat powers for specimens: (a) S2; (b) S7; (c) S10; (d) S16; (e) 

S18; (f) S22; (g) S25; and (h) S29. 
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4.4.6 Effect of anisotropy on heat transfer coefficient of porous copper 

Sixteen specimens (see Table 4.6), each cut at three different directions, A, B and C 

(see Figure 4.7) from sample S31, S33, S34 and S36, were used to study the effect of 

anisotropy of porous copper on heat transfer coefficient. These specimens have 

different pore sizes and different porosities. Figure 4.20 shows the variation of the 

heat transfer coefficient of these samples. It is shown that the change in heat transfer 

performance of the porous copper samples is negligible when measured at different 

directions.  

 
Figure 4.20 Variation of heat transfer coefficient with coolant flow rate for samples 

cut from different directions. The pore size and porosity of the samples are (a) 
425-710 μm, 66.8±0.4%; (b) 425-710 μm, 72.9±0.2%; (c) 710-1000 μm, 72.3±0.3%; 

(d) 1000-1500 μm, 68.8±0.1%. 
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4.4.7 Heat transfer coefficient of porous copper with double-layer structure  

Specimens cut from samples S50-S63 with double-layer structure (Table 4.8) were 

tested and the heat transfer coefficient for each specimen was measured at different 

flow rates. As mentioned in Section 3.5.2, there are two ways to conduct the heat 

transfer tests for double-layer samples, depending on which layer is in contact with 

the heat source. For the same specimen, it was found that the heat transfer 

performance would be better if the layer with higher permeability is in contact with 

the heat source (normal order). If not mentioned specifically, the experiments 

described in this section (except Section 4.4.7.4) were conducted under the normal 

order arrangement condition (H/L order). 

 

4.4.7.1 Normal order double-layer porous copper samples with different thickness 

ratios 

The heat transfer coefficients of sample S50-S55 with double-layer structure 

(80%/60%) in Table 4.7 were measured at different flow rates. The variation of heat 

transfer coefficient with combined porosity at different coolant flow rates is shown in 

Figure 4.21. The heat transfer coefficient decreases with the combined porosity. The 

maximum heat transfer coefficient is 37.33 kW/m2K) and occurs for sample S51 with 

combined porosity of 65.9% at the flow rate of 1 L/min. 
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Figure 4.21 Variation of heat transfer coefficient with total sample porosity at 
different flow rates for double-layer samples S50-S55 (Porosity combination: 

80%/60%, Thickness ratio: 0:5 to 5:0, Pore size: 425-710 μm, Input heat power: 
250kW/m2). 

 

4.4.7.2 Normal order double-layer porous copper samples with different porosity 

combinations 

Figure 4.22 shows the variation of heat transfer coefficient with coolant flow rate for 

samples S56-S58 (pore size: 425-710 μm) with double-layer structure (Table 4.8). It 

is obvious that the heat transfer coefficient of sample S56 with the 65%/60% layer 

structure is higher than the other two samples.  
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Figure 4.22 Variation of heat transfer coefficient with coolant flow rate for double- 
layer samples S56-S58 (Copper particle size: 50-100 μm, Pore size: 425-710 μm, 

Heat flux: 250kW/m2) 
 
 

Figure 4.23 shows the variation of heat transfer coefficient with coolant flow rate for 

samples S59-S61 (pore size: 1000-1500 μm) with double-layer structure (Table 4.8). 

Sample S59 with a combined porosity of 64.9% and S60 with a combined porosity of 

68.8% have similar heat transfer coefficient values. Sample S61 with a combined 

porosity of 70%/65% has a lower heat transfer coefficient.  
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Figure 4.23 Variation of heat transfer coefficient with coolant flow rate for 
double-layer samples S59-S61 (Copper particle size: 50-100 μm, Pore size: 

1000-1500 μm, Heat flux: 250kW/m2) 

 

A comparison of the heat transfer coefficients for three samples with a similar 

combined porosity (69.3±0.4%) and the same pore size (pore size: 425-710 μm) but 

different layer combinations, at different coolant flow rates, is shown in Figure 4.24. 

Sample S13 has a single layer, sample S52 has a 80%/60% double-layer structure 

with a thickness ratio of 2:3, and sample S58 has a 70%/65% double-layer structure 

with a thickness ratio of 1:1. Sample S58 has the similar heat transfer performance 

with sample S13, while the heat transfer performance of sample S52 is relatively 

poor. 
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Figure 4.24 Comparison of heat transfer coefficients for samples with different 

porosity combinations but a similar combined porosity of 69.3±0.45% at different 
coolant flow rates (Copper particle size: 50-100 μm, Pore size: 425-710 μm, Input 

heat flux: 250kW/m2). 
 

4.4.7.3 Normal order double-layer porous copper samples with different pore size 

combinations 

Specimens cut from two samples (S62 and S63) with special double-layer structures 

of different pore sizes and/or porosities were tested. The heat transfer coefficient at 

different flow rates was measured, and the results were compared with those of the 

samples with the constituent single layers, as shown in Figures 4.25 and 4.26. Sample 

S62 was compared with samples S10 and S24 (Figure 4.25) and sample S63 with 

samples S10 and S25 (Figure 4.26). It is shown that the samples with the double-layer 

structures have better heat transfer performance than the samples with the single 

layers alone. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0
5

10
15
20
25
30
35
40
45
50

 69.4% (S13, single layer)
 69.7% (80%:60%=2:3) (S52, double layer)
 68.9% (70%:65%=1:1) (S58, double layer)

He
at

 tr
an

sf
er

 c
oe

ffi
ci

en
t (

kW
/m

2 K)

Flow rate (L/min)

 

 



 

 

144 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30

35

40
 63.8%(half 425mm+half 1000mm) (S62, Double layer)
 61.9%(425-710mm) (S10, Single layer)
 63.4%(1000-1500mm) (S24, Single layer)

He
at

 tr
an

sf
er

 c
oe

ffi
ci

en
t (

kW
/m

2 K)

Flow rate (L/min)

 

 
 

Figure 4.25 Comparison of heat transfer coefficient between the sample with double 
layers (S62) and the samples with the constituent single layers (Copper particle size: 

50-100 μm, Input heat flux: 250kW/m2). 
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Figure 4.26 Comparison of heat transfer coefficient between the sample with double 
layers (S63) and the samples with the single layers (Copper particle size: 50-100 μm, 

Input heat flux: 250kW/m2). 
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4.4.7.4 Effect of layer order  

As mentioned above, there are two ways to conduct heat transfer coefficient 

measurements for porous samples with double-layer structures. Again, the 

arrangement with the high porosity layer in contact with the heat source is called 

normal order (e.g. 80%/60%), and that with the low porosity layer in contact with the 

heat source is reverse order (e.g. 60%/80%). 

 

Figure 4.27 shows the effect of layer order on heat transfer coefficient for samples 

S50-S55 at different flow rates. For samples with reverse order (60%/80%), the heat 

transfer coefficient decreased rapidly with porosity. When the porosity is lower than 

65%, the values of heat transfer coefficient are even lower than that of sample S55 

with a single layer of a porosity of 80.5%. For the same sample, the heat transfer 

performance was better when the high porosity side was in contact with the heat 

source. At all flow rates, the heat transfer coefficients for samples with normal order 

(80%/60%) are about 1.5 times of those with reverse order (60%/80%).  
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Figures 4.28 shows the variations of heat transfer coefficient with coolant flow rate 

for samples S56-S63, measured with different layer orders. The normal order had 

better heat transfer performance than the reverse order for all the tested samples at any 

given coolant flow rate. 
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Figure 4.27 Comparison of heat transfer coefficient of double layer samples 
(S50-S55) with different layer orders measured at four coolant flow rates (Porosity 
combination 60%&80%, Copper particle size: 50-100 μm, Pore size: 425-710 μm, 

Input heat flux: 250kW/m2). 
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Figure 4.28 Comparison of heat transfer coefficient of double-layer samples 
measured with different layer orders for Sample: (a) S56; (b) S57; (c) S58; 
(d) S59; (e) S60; (f) S61; (g) S62; and (h) S63. (Input heat flux: 250 kW/m2). 
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4.4.8 Effect of thickness on heat transfer coefficient of porous copper 

In this section, LCS porous copper samples with different thicknesses were studied to 

investigate the effect of thickness on heat transfer performance. Seventeen specimens 

with different porosity, pore size and copper particle size were selected from samples 

S1-S49 and their pore parameters were summarized in Table 4.13. These samples 

were divided into four group: 1) G1 with copper particle size of 50-100 μm and pore 

size of 250-425 μm; 2) G2 with copper particle size of 50-100 μm and pore size of 

425-710 μm; 3) G3 with copper particle size of 50-100 μm and pore size of 

1000-1500μm; 4) G4 with copper particle size of 100-300 μm and different porosity 

and pore size. The original specimen with a nominal thickness of 5mm was first tested. 

A 1 mm thick layer was carefully removed by a handsaw each time before a further 

test. The precision of thickness for the samples was controlled carefully to within ±0.1 

mm. It was hard to cut samples S25, S27, S28 S29 and S43 into 1 mm thickness 

because of their large pore sizes (1000-1500 μm). Sample S41 was weak, and 1mm 

thick sheet was crushed during the cutting process. In the specimen of sample S10 

with a thickness of 1 mm, no water flow could be detected by the flowmeter even 

under the maximum pressure supply of the experimental apparatus.  

 

The samples used in the previous section for comparisons of heat transfer coefficient 

have a similar cross section, so volume flow rate was used to describe the flow 

conditions. For the same volume flow rate, however, varying sample thickness will 
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change the cross section area of the porous medium and thus change the Darcian 

velocity of fluid flowing through the porous medium. In this section, Darcian velocity, 

instead of volume flow rate, will be used when comparing heat transfer coefficients 

for samples with different thicknesses. 

Table 4.13 Pore parameters of selected samples for thickness effect study 

Group 
Sample 

Reference 
Particle     

Size (μm) 
Pore Size 
(μm) 

Porosity at Different Thickness (%) 

5 mm 4 mm 3 mm 2 mm 1 mm 

G1 

S2 50-100 250-425 61.7 61.3 61.4 61.8 62.1 

S4 50-100 250-425 68.4 68.3 68.7 68.9 68.8 

S7 50-100 250-425 77.1 76.9 76.5 77.0 77.4 

G2 

S10 50-100 425-710 61.2 61.4 60.9 61.5 -- 

S12 50-100 425-710 67.0 67.2 66.7 66.9 67.2 

S14 50-100 425-710 73.3 73.5 73.6 73.3 73.1 

S15 50-100 425-710 76.2 75.8 75.8 75.6 76.0 

S16 50-100 425-710 80.3 80.6 80.4 80.7 81.1 

G3 

S24 50-100 1000-1500 63.4 63.6 63.3 63.8 -- 

S25 50-100 1000-1500 65.0 65.4 65.2 65.6 -- 

S27 50-100 1000-1500 72.7 72.6 73.1 73.0 -- 

S28 50-100 1000-1500 75.7 76.0 76.0 76.2 -- 

S29 50-100 1000-1500 80.7 81.3 81.1 81.5 -- 

G4 

S37 100-300 250-425 56.6 56.3 56.7 57.0 56.4 

S39 100-300 425-710 54.2 54.5 54.8 55.3 55.7 

S41 100-300 425-710 66.5 67.2 67.0 67.4 -- 

S43 100-300 1000-1500 53.8 54.2 54.5 54.7 -- 

 

Figure 4.29 shows the typical variation of heat transfer coefficient with Darcian 

velocity for Sample S2 with different thicknesses. The variation of heat transfer 

coefficient of other samples in Table 4.13 with different thicknesses are shown in 

Appendix B. All samples showed similar characteristics of the thickness effect. 
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Specimens with thicknesses of 3mm or more had similar heat transfer coefficients 

(except samples S10, S24 and S43). The heat transfer coefficients were decreased by 

25% to 35% when the thickness was reduced to 2mm，accompanied by a decrease in 

the slope of the h-vd curve. The heat transfer coefficients of the1mm-thick specimens 

were very low at any Darcian velocity. 

 

 

Figure 4.30 shows the thickness effect on heat transfer coefficient of seventeen porous 

copper samples. The heat transfer coefficient remains constant with thickness greater 

than 3mm, and then rapidly decreases with decreasing thickness. The heat transfer 

coefficient of the samples with very low porosity (S2, S10, S24 and S25) increases 

gently with increasing thickness. Slight decrease of heat transfer coefficient is 
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Figure 4.29 Variation of heat transfer coefficient with Darcian velocity for porous 
copper samples (Input heat power: 250 kW/m2).  

 



 

 

151 

 

observed in some samples with high porosity with thickness increasing from 3 mm to 

5 mm, such as samples S7, S14, S15, S16, S27, S28 and S29, even if not very clear. 

 

Figure 4.30 Variation of heat transfer coefficient for porous copper samples with 
different thicknesses at Darcian velocity of 0.165±0.005m/s. (except sample S10 and 
S24, where vd=0.13±0.007 m/s) (Input heat power: 250 kW/m2), (a) Group G1; (b) 

Group G2; (c) Group G3; (d) Group G4.  

 

4.4.9 Heat transfer coefficient of other porous metals 

Figure 4.31 shows the variation of heat transfer coefficient with porosity at different 

flow rates for porous nickel. The results are similar to the results for porous copper. 

The heat transfer coefficient gradually decreases with porosity. Sample S66 with a 
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heat transfer performance. For example, both have a heat transfer coefficient value of 

about 25 kW/m2K) at the flow rate of 1L/min. 
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Figure 4.31 Variation of heat transfer coefficient with porosity at different flow rates 
for porous Ni (Sample S66-71, Pore size 425-710μm, Input heat power: 250kW/m2). 

 

Figure 4.32 shows the variation of heat transfer coefficient with coolant flow rate for 

different porous metals, namely copper, iron, nickel and a nickel-copper alloy, with a 

similar porosity. It can be clearly seen that the porous copper has the best heat transfer 

performance among these four porous metals, while the other three porous metals 

have similar heat transfer performance. 
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Figure 4.32 Variation of heat transfer coefficient with coolant flow rate for different 
porous metals (Pore size 425-710 μm, Input heat power: 250 kW/m2). 

 

4.5 Mechanical Properties 

The static compression test, three point bending test and tensile test were carried out on 

a large number of porous copper samples and the mechanical properties were 

summarized in this section. 

 

4.5.1 Compressive behaviour of porous copper 

Eleven samples (P1-P11) with different porosity and pore size were made by LCS 

method. The compression tests were conducted on Instron 4505. The elastic modulus 

and yield strength were calculated with the methods described in Section 3.6.1. The 

relative density or porosity of each sample was measured using the Archimedes method. 
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Eleven porous copper samples with porosity ranging from 42% to 81% and two 

different pore sizes of 425-710 μm and 1000-1500 μm were fabricated. The detailed 

structural information and their compression properties are summarized in Table 4.14.  

 
 

Table 4.14 Structural characteristics and properties of samples with different 
porosities for compression test. 

 

Reference 
Pore Size 
(μm) 

Relative 
Density 

Porosity 
(%) 

Direction 
Relation 

Elastic Modulus 
(GPa) 

Yield Strength 
(MPa) 

P1 425-710 0.574 42.6 // 1.52 39.12 

P2 425-710 0.488 51.2 
// 1.09 25.41 
⊥ 1.25 33.36 

P3 425-710 0.439 56.1 // 0.88 22.83 

P4 425-710 0.365 63.5 
// 0.66 12.63 
⊥ 0.82 18.78 

P5 425-710 0.324 67.6 // 0.51 7.82 

P6 425-710 0.279 72.1 
// 0.35 5.01 
⊥ 0.49 7.52 

P7 425-710 0.253 74.7 // 0.28 2.55 

P8 425-710 0.191 80.9 
// 
⊥ 

0.16 1.54 
0.28 1.77 

P9 250-425 0.357 64.3 
// 
⊥ 

0.54 3.62 
0.67 5.71 

P10 710-1000 0.367 63.3 
// 
⊥ 

0.62 13.37 
0.75 19.35 

P11 1000-1500 0.366 63.4 
// 0.62 13.72 
⊥ 0.80 20.16 

 

4.5.1.1 Effect of porosity 

Specimens cut from samples P1-P8 with pore size of 425-710 μm and porosity ranging 

from 42% to 81% were tested in the ‘//’ direction. Specimens cut from samples P2, P4, 

P6 and P8 were also tested in the ‘⊥’ direction.  
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Figure 4.33 shows the representative quasi-static compressive stress-strain curves of 

specimens compressed at the‘//’ direction. The compressive stress-strain curves of the 

samples exhibit the classic regimes for cellular solids, which are firstly linear, then 

plateau, and finally densification regimes. All the curves are very smooth, with no 

fluctuation of stress during the whole deformation process. Specimens with low 

porosity (such as specimen P1 with a porosity of 42.6%) have much higher stress than 

those with high porosity (such as specimen P8 with a porosity of 80.9%) at any given 

strain. 

 

All the curves have an initial region with a linear stress-strain relationship when the 

strain is below 3%. The stress then increases slowly with strain after yielding of the 

specimen, which is characterised by the change in the gradient of the curve. Obvious 

plateau regions are found in the samples with high porosities, especially in samples P7 

and P8 (Figure 4.33b). Although no apparent plateau regions appear in the low porosity 

samples, stress increases more slowly with strain (Figure 4.33a), indicating pore 

deformation.  
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Figure 4.33 Compressive curves of samples compressed at the // direction. The 
samples have a pore size of 425-710 μm and porosity of (a) 42%-64% and (b) 

67%-81%. 
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Densification occurs when pore deformation is nearly completed. The stress then 

increases rapidly. The specimens are densified during the compression process without 

fracture. For specimens with low porosities, like samples P1 and P2, the densification 

occurs at a relatively low strain. This is because low porosity samples have limited 

capability of pore deformation. The high porosity samples (P6, P7 and P8) have large 

densification strains over 60%, indicating that LCS porous copper can have good 

energy absorption properties. 

 

Specimens for tests at the ‘//’ direction were cut from four samples (P2 with a porosity 

of 51.2%, P4 with a porosity of 63.5%, P6 with a porosity of 72.1% and P8 with a 

porosity of 80.9%). Figure 4.34 shows the compressive stress-strain curves of 

specimens at the ‘//’ direction, with the porosity ranging from 51% to 81%. The results 

of the compression test of these four specimens are consistent with the previous results 

for specimens tested at the ‘⊥’ direction. The yield stress of specimens with low 

porosities (samples P2 and P4) is greater than that with high porosities (samples P6 and 

P8), while high porosity specimens (sample P6 and P8) are characterised by a stress 

plateau and a large densification strain. 
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Figure 4.34 Compressive curves of samples with different porosities compressed at the 

⊥ direction (pore size 425-710 μm ). 

 

Figure 4.35 shows the variations of the elastic modulus and yield strength with porosity 

at different compression directions. It shows that the elastic modulus decreased with 

increasing porosity. The elastic modulus of the specimen with a porosity of 42.6% is 

more than 9 times that of the specimen with a porosity of 80.9%. The yield stress 

decreases with increasing porosity, i.e., specimens with a high porosity can only support 

a small stress (specimens P7 and P8 in Figure 4.33). The yield strength decreased with 

increasing porosity. The maximum yield stress is 39.12 MPa for sample P1 with a 

porosity of 42.6% or a relative density of 0.574.  
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Figure 4.35 Effect of porosity on elastic modulus and yield strength of LCS porous 
copper samples compressed at different directions (Sample P1-P8, Pore size: 425-710 

μm ). 

4.5.1.2 Effect of pore size 

Additional samples P9 to P11 were fabricated to investigate the effect of pore size on 

compressive behaviour of LCS porous copper. The structural properties of these 

specimens are shown in Table 4.14. The specimens have a porosity of around 63% and 

three different pore size ranges of 250-425 μm (sample P9), 710-425 μm (sample P10), 

1000-1500 μm (sample P11). Specimens were cut from different directions from these 

samples. The compression results of these specimens were compared with samples P4 

with a pore size of 425-710 μm.  
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Figure 4.36 shows the compressive stress-strain curves of typical specimens with four 

different pore size ranges and two different compression directions. The stress 

decreases with pore size at a given strain, i.e., specimens with a large pore size can only 

support a small stress. This difference, however, is small when the pore size is larger 

than 425 μm (specimens P4, P10 and P11 in Figure 4.36). 

 

The specimens with the fine pore size of 250-425 μm (sample P9) have very different 

behavior from the others. The stress-strain curves have a plateau region, where the 

stress fluctuates slightly with the strain. The specimen cut from P9, with the pore size of 

250-425 μm and compressed at the ‘//’ direction, has the worst compression 

performance. The stress drops significantly in the strain range from 40% to 65%, 

followed by the densification process. This is caused by the non-uniform deformation 

or fracture of the matrix and pores during the compression process (Gong et al 2010, 

2011). 

 

Figure 4.37 shows the variations of the elastic modulus and yield strength with pore 

size at different compression directions. Both the elastic modulus and yield strength 

increases with pore size at any compression directions. The values of both properties, 

however, change slightly when the pore size is larger than 425 μm.  
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Figure 4.36 Compressive curves of samples with different pore sizes and a porosity of 
around 63.8%, compressed at different directions: (a) // and (b) ⊥. 
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Figure 4.37 Effect of pore size on elastic modulus and yield strength of LCS porous 

copper samples compressed at different directions (Porosity: 63.8±0.5%). 
 

4.5.1.3 Effect of anisotropy 

Figure 4.38 shows compressive stress-strain curves of typical specimens with different 

porosities compressed at different directions. The stress of the specimens compressed at 

the ‘⊥ ’ direction increases more rapidly with strain than that compressed at 

the‘//’direction at the earlier stage of compression. It means that the specimens are hard 

to deform at the ‘⊥’ direction at the earlier stage. It is also found that the densification 

strain of the specimens compressed at the ‘⊥’ direction is much larger than that at 

the‘//’direction, indicating that the specimens are much easier to be densified at 

the‘//’direction.  
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There is a cross-over of stress-strain curves of the two compression directions for each 

specimen. Comparing the four Figures 4.38(a), (b), (c) and (d) shows that the inflection 

moves to a higher strain with increasing porosity. 

 

All specimens show smooth compressive stress-strain curves. Even when the yield 

stress is low (approximately 16MPa for sample P2), there is no sudden fracture during 

the compression process. The results are consistent with the morphological observations 

in Section 4.1.1, indicating that the LCS porous copper has good metallurgical bonding 

between powder particles and has good ductility. 

 

Comparing the elastic modulus and yield strength of samples compressed at different 

directions shows that both properties in the normal direction is higher than that in the 

parallel direction (see Figures 4.35 and 4.37). The yield strength in the normal direction 

is about 1.5 times of that at the parallel direction (see Table 4.14). 
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4.5.2 Bending behaviour of porous copper 

Sixteen samples (B1-B16) with different porosity and pore size were fabricated for 

bending test. Table 4.15 shows the detailed information of the sixteen tested samples 

and their properties. Each sample can be tested in two directions: the bending direction 

being either parallel or perpendicular to the compaction direction, designated as parallel 

(//) and normal (⊥), respectively. All the bending test specimens were tested in the 

parallel direction, except that the some extra specimens cut from samples B3, B5, B11 
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Figure 4.38 Compressive curves of samples compressed at different directions.  
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effect of anisotropy in Section 4.5.2.3. The apparent modulus and flexural strength of 

the porous copper samples were calculated from Eq. (3.13) and Eq. (3.14) and averaged 

over the values of the specimens. 

Table 4.15 Pore parameters and properties of samples in three-point bending test. 

Reference 
Pore Size 
(μm) 

Relative 
Density 

Porosity 
(%) 

Apparent 
Modulus (GPa) 

Flexural Strength 
(MPa) 

B1 250-425 0.387 66.1 0.63 15.91 

B2 250-425 0.228 77.2 0.20 3.45 

B3 425-710 0.378 62.2 0.95 27.70 

B4 425-710 0.345 65.5 0.75 20.42 

B5 425-710 0.320 68.0 0.65 16.32 

B6 425-710 0.273 72.7 0.50 12.08 

B7 425-710 0.233 76.7 0.36 7.74 

B8 425-710 0.183 81.7 0.22 3.82 

B9 710-1000 0.350 65.0 0.79 21.33 

B10 710-1000 0.235 76.5 0.37 7.89 

B11 1000-1500 0.387 61.3 1.02 28.81 

B12 1000-1500 0.352 64.8 0.83 22.77 

B13 1000-1500 0.316 68.4 0.66 16.05 

B14 1000-1500 0.288 71.2 0.55 13.81 

B15 1000-1500 0.230 77.0 0.37 7.75 

B16 1000-1500 0.191 80.9 0.25 4.69 

 

4.5.2.1 Effect of porosity and pore size 

Figure 4.39 shows the three point bending load-displacement curves of the typical 

specimens with different porosities. The load increases linearly at the earlier stage of 

bending. At the maximum value, the specimen starts to fracture. The load decreases 

with further deformation. The maximum load that the specimen can support before 
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breaking decreases with increasing porosity. Figure 4.39 also shows that the amount 

of displacement at the maximum load increases slightly with porosity. The change is 

small, with values from about 1.5 mm for the specimen with the largest porosity of 

81.7% to 1.8 mm for the specimen with the lowest porosity of 61.3%. 
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Figure 4.39 Three point bending load-displacement curves of samples with 

different porosities and pore sizes: (a) 425-710μm; (b) 1000-1500μm. 
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The load-displacement curves of specimens cut from two groups of samples B1, B4, B9 

and B12 with porosity around 65.5%, and B2, B7, B10 and B15 with porosity around 

77%, were compared to investigate the effect of pore size on the three-point bending 

behaviour. Figure 4.40 shows the three point bending load-displacement curves of 

specimens with different pore sizes. Comparing the four specimens with the porosity 

around 65.5% (B1, B4, B9 and B12 in Figure 4.40a) shows that the maximum load 

increases with pore size. The maximum loads of specimens B4, B9 and B12 are very 

similar, while the maximum load of specimen B1 with a porosity of 66.1% and a pore 

size of 250-425 μm is much lower. The effect of pore size on three point bending 

behaviour for specimens with a porosity about 77% (Figure 4.40b) is similar. There is 

very little difference among the specimens with pore size larger than 425μm (B7, B8 

and B15).  

 

There is little difference in the displacement of specimens at maximum load when the 

pore size is greater than 425 μm. Specimens B1 and B2, both of which have a pore 

size of 250-425 μm, have smaller displacements. These results show that the pore size 

does not affect the mechanical property very much, as long as the pore size is large 

enough. 
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Figure 4.40 Three point bending load-displacement curves of specimens with 
different pore sizes and different porosities: (a) 65.5±0.8%; (b) 77±0.5%. 
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Figure 4.41 plots the values of the apparent modulus and flexural strength of porous 

copper samples with different porosity and pore size. It shows that the apparent 

modulus and flexural strength decrease with porosity. For porous copper samples with 

the pore size of 425-710 μm, the flexural strength changes from 3.82 MPa for sample 

B3 with a porosity of 62.2% to 27.7 MPa for B8 with a porosity of 81.7%. For the 

porous copper samples with the pore size of 1000-1500 μm, the flexural strength is 

about 28.81 MPa for sample B11 with a porosity of 61.3%, which is about 6 times of 

that for sample B16 with a porosity of 80.9% (see Table 4.15). 

 

The apparent modulus and flexural strength are not sensitive to pore size if it is 

greater than 425µm, but decreased considerably when the pore size was reduced to 

250-425 µm (Figure 4.41). For porous copper samples with a similar porosity of 65.5% 

(sample B1, B4, B9 and B12), sample B12 with pore size of 1000-1500 µm has the 

largest flexural strength of 22.77 MPa and apparent modulus of 0.83 GPa. The 

samples with the finest pore size (250-425 µm) have very small flexural strength and 

apparent modulus, which are only about 2/3 of the samples with the largest pore size 

(1000-1500 µm) at the porosity of about 65.5% and about 1/2 at the porosity of about 

77% (see Table 4.15). 
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4.5.2.2 Effect of anisotropy 

Specimens cut from samples B3, B5, B11 and B13 were tested in three-point bending in 

different direction: parallel (//) and normal (⊥). Figure 4.42 shows the three point 

bending load-displacement curves of typical specimens tested in different direction. It is 

apparent that the maximum load and the displacement at the maximum load in the 

normal direction is greater than that in the parallel direction.  

  

Figure 4.41 Variations of apparent modulus and flexural strength with porosity for 
porous copper samples with different pore sizes 
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Table 4.16 compares the apparent modulus and flexural strength of these four samples. 

Both the apparent modulus and flexural strength in the parallel direction are about 10% 

less than in the normal direction. 

Table 4.16 Comparison of bending properties of samples tested in different direction. 

Reference 
Pore Size 
(μm) 

Relative 
Density 

Porosity 
(%) 

Bending 
Direction 

Apparent 
Modulus (GPa) 

Flexural  
Strength (MPa) 

B3 425-710 0.378 62.2 
// 0.95 27.70 
┴ 1.14 30.20 

B5 425-710 0.320 68.0 
// 0.65 16.32 
┴ 0.77 18.11 

B11 1000-1500 0.387 61.3 
// 1.02 28.81 
┴ 1.04 30.65 

B13 1000-1500 0.316 68.4 
// 0.66 16.05 
┴ 0.69 17.58 
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Figure 4.42 Load-displacement curves for samples under three-point bending in 
different bending directions. 
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4.5.3 Tensile behaviour of porous copper 

Eight samples (T1 - T8) with different combinations of porosity and pore size were 

fabricated. The structural properties and tensile strength of the samples are summarized 

in Table 4.17. Samples T1 to T5 have a pore size of 425-710 μm and a porosity ranging 

from 61% to 82%. Samples T6, T7 and T8 have a porosity around 62% but different 

pore sizes of 250-425 μm, 710-1000 μm and 1000-1500μm, respectively. Specimens 

were cut from each sample for tensile tests as described in Section 3.6.3. All the 

specimens were tested with the tensile direction normal to the compacting direction 

when the samples were fabricated. 

 

Table 4.17 Tensile strength of samples with different structural characteristics 

Reference 
Pore Size 
(μm) 

Relative 
Density 

Porosity 
(%) 

Elastic 
Modulus (GPa) 

Tensile Strength 
(MPa) 

T1 425-710 0.381 61.9 0.80 9.32 
T2 425-710 0.336 66.4 0.66 6.23 
T3 425-710 0.283 71.7 0.43 4.72 
T4 425-710 0.235 76.5 0.32 2.70 
T5 425-710 0.181 81.9 0.19 1.59 
T6 250-425 0.381 61.9 0.66 6.79 
T7 710-1000 0.378 62.2 0.78 10.66 
T8 1000-1500 0.383 61.7 0.84 11.03 

 

Figure 4.43 shows the stress-strain curves of specimens with different porosities 

(samples T1 to T5). These specimens, except specimen T1, show a uniform plastic 

deformation regime where the strain increases extensively under a relatively narrow 

range of stress. The slope of the plateau decreases with porosity and becomes negative 
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for specimens T3 and T4. The maximum strain of specimen T1 is about 11.7%, 

showing that the porous copper has a relative high ductility. The maximum strain 

decreases with porosity, especially when the porosity is higher than 76%. It is clearly 

seen that the tensile strength decreases with porosity. The value of the tensile strength 

of specimen T1 with a porosity of 61.9% is about 9.32 MPa, which is nearly 6 times of 

that of specimen T5 with a porosity of 81.9% (see Table 4.17). 
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Figure 4.43 Stress-strain curves of specimens with different porosities (Pore size 

425-710 μm). 
 

Figure 4.44 shows the stress-strain curves of specimens with different pore sizes 

(samples T6, T1, T7 and T8). It is found that a specimen with a large pore size has a 

higher tensile strength than that with a small pore size. Specimen T6 with the fine pore 

size (250-425 μm) shows poor tensile property compared with the other three 
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specimens. It has a tensile strength of 6.69 MPa, which is similar to the value of 

specimen T2 with a porosity of 66.4% (see Table 4.17). It can also be seen from Figure 

4.44 that the maximum strains of specimens T1, T7 and T8 are similar, but that of 

specimen T6 with the fine pore size is about half this value. 
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Figure 4.44 Stress-strain curves of specimens with different pore sizes (Porosity: 62±
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Chapter 5  

 

Discussion 

 

In this section, the effect of pore parameters of LCS porous copper on permeability, 

thermal conductivity, heat transfer coefficient and mechanical properties will be 

discussed and several models will be used to characterise these properties. 

 

5.1 Methods to Control the Pore Parameters of Porous Metals 

The Lost Carbonate Sintering (LCS) process is an efficient manufacturing method to 

produce porous metals with controlled pore parameters (Zhao et al 2005, Thewsey & 

Zhao 2008, Mahmoud 2012, Paravanian & Panjepour 2013). In the experiments 

described, copper powders with three different particle sizes, 50-100 μm, 100-300 μm 

and 600-1000 μm, and potassium carbonate powders with four different particle sizes, 

250-425 μm, 425-710 μm, 710-1000 μm and 1000-1500 μm, were used to produce 

porous copper samples with different porosities and pore sizes. The SEM micrographs 

of the copper powder and potassium carbonate granules are shown in Figures 3.2 and 

3.3. Both the copper powder particles and potassium carbonate granules are spherical in 

shape, with slight deviations on the sphericity. It is important to mix the powders 

uniformly in order to obtain porous copper samples with uniform porosity and pore 

distribution. Ethanol is a good binder and it was found that 1-2% ethanol (by weight) is 
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enough in the experiment to stick the fine copper particles on large potassium carbonate 

particles. The mixing time should be controlled as ethanol is easy to evaporate during 

the powder mixing process.  

 

The objective of compacting is to obtain a green part with a certain density to make sure 

the particles mechanically bind together. In the experiment, compacting was performed 

at a pressure of 200 MPa, which is sufficient to make the green compact dense 

according to Zhao et al. (2005). Density distribution has to be taken into account as it 

affects the properties of porous metal samples. Inhomogeneous distribution of density is 

the main characteristic for uniaxial compacting process. Improvement of compaction is 

important to obtain compacts with a uniform density distribution. There are mainly two 

ways of pressing in engineering applications: single-action pressing and duplex-action 

pressing. The distribution of compact density along the compacting direction for the 

two ways of pressing is shown in Figure 5.1. In single-action pressing, the average 

cross-sectional density of the compact decreases linearly along the compacting direction. 

In the present study, duplex-action pressing was adopted to obtain porous copper 

samples with uniform porosity distribution, as shown in Figure 3.4. During the 

compacting process described in Section 3.1.2, the carbonate granules are visibly 

deformed under the compacting pressure of 200 MPa, which can be seen in Figure 4.1b. 

The deformation is unavoidable as the potassium carbonate particles are much softer 

than the copper particles. As pore shape is controlled by the potassium carbonate, the 
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porous copper samples show anisotropy with elliptical pores. The anisotropy has little 

influence on permeability and heat transfer coefficient, however, it affects the 

mechanical properties of porous copper.  

 
Figure 5.1 Density distribution along the compaction direction in the compacts pressed 

in different ways 
 

 

Sintering is a core process of powder metallurgy. It proceeds in three stages (Lenel 

1980): 1) necks form along the contact surfaces of adjacent particles, but powder 

particles remain discrete; 2) particles diffuse into each other, grain boundaries develop 

on the neck and the voids between the particles develop into pores; and 3) necks grow 

and isolated pores tend to shrink and become spheroidal. Densification progresses 

rapidly during the second stage. Two main parameters play an important role during the 
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sintering process: sintering temperature and sintering time. Figure 5.2 illustrates the 

progress of densification of compacted copper powder as a function of time and 

temperature (Cable & Gupta 1967). Sintering temperature affects the densification 

significantly; and the higher the sintering temperature is, the larger the relative density 

is.  

 

As seen from Figure 5.2, the relative density of copper powder compact shows a 

logarithmic relationship with sintering time. The density of the compact increases 

rapidly at the earlier stage of sintering and then slowly with time. It is not practical in 

industry, however, to extend sintering time excessively. Sintering atmosphere is also 

important in the sintering process. Vacuum sintering was used in the LCS method, as it 

will: (1) reduce the oxidizing species in the atmosphere, such as H2O and O2; and (2) 

shorten the sintering time at the same temperature due to the vacuum in the pores. 

Wang et al. (2010) investigated the effect of sintering temperature on the microscopic 

morphologies of porous copper samples and produced some unusual results. They 

found that at relatively low sintering temperature (below 920°C), the copper particles 

could not be bonded effectively, but when the sintering temperature was above 960°C, 

some Cu precipitated from the surface of the compacts in the form of globules, and the 

cell wall and pores distributed inhomogeneously. 
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Figure 5.2 Effect of sintering temperature and time on densification of copper powder 

compacts (Cable & Gupta 1967)  

 

In the present study, the compacts were first sintered at a temperature below the melting 

point of potassium carbonate, 850°C for 2 h, so that the potassium carbonate particles 

stayed in the samples to support the porous copper frame and prevent it from collapsing 

or excessive shrinking. The final sintering temperature was 950°C and the sintering 

time was 2 h to ensure the complete decomposition of potassium carbonate and the 

achievement of enough strength for the porous copper samples. 
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5.2 Pore Parameters of Porous Copper 

The characteristics of the LCS porous copper, including porosity, pore size, pore shape, 

specific surface area and tortuosity will be discussed in this section. 

 

5.2.1 Porosity 

Porosity is one of the most important parameters of any porous metals. Table 4.1 and 

Figure 4.2 gave the measured porosity values by different methods, including the 

Archimedes, point counting and direct volume measurement methods, against the 

nominal values. Nearly all the measured porosities of a sample are higher than the 

nominal porosity, due to some interstices between the copper and potassium carbonate 

powders.  

 

The network of metal particles would normally experience shrinkage during the 

high-temperature sintering process, which could lead to deformation of pores and 

decrease in pore size. No evidence for these phenomena, however, was found from the 

observations of the microstructure of the porous copper samples (shown in Figure 4.1). 

The values of porosity calculated from the direct volume measurement and Archimedes 

methods are very similar, but the ones calculated from the point counting method are 

slightly lower. It should be noted that the point counting method could only obtain an 

estimated value from one surface, and the uniformity of pore size and pore distribution 
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would significantly affect the accuracy of the calculated porosity. This may explain that 

the error of the point counting method is a little larger than the other two methods.  

 

5.2.2 Pore size and characteristic length   

Pore size is controlled by the potassium carbonate powder selected. In this study, the 

potassium carbonate powder was sieved into four different particle size ranges: fine size 

range of 250-425 μm, two medium size ranges of 425-710 μm and 710-1000 μm, and 

large size range of 1000-1500 μm. It was found from Figure 4.1 that the pore size range 

was nearly the same as that of the potassium carbonate used for the porous copper 

sample. There are two types of inter-connecting pore linking one big pore to another in 

the LCS porous copper samples. One is the channel at the conjunction edge of the big 

pores (shown in Figures 4.1b and d). This is formed when two potassium carbonate 

particles are in contact with each other during the fabrication process. The channel 

between the pores form after the removal of the carbonate particles. The other one is the 

interstices between the copper particles (shown in Figures 4.1e and f). Most of the 

interstices are very small, only several micrometers in size. Both the conjunction 

channels and the interstices play very important roles in fluid flow in the porous copper 

samples. It should be kept in mind that the pore size used in this thesis represents the 

size of the pores created by the potassium carbonate particles. The interstices between 

copper particles are also a kind of pore (micropores). In LCS porous copper samples, 
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the volume fraction of these interstices is very small, according to the comparison of 

nominal and actual porosity in Section 4.1.2.  

 

As described in Section 2.3.2, pore size is just one apparent parameter describing the 

LCS porous copper sample. When handling flow through porous media, the 

characteristic length should be used. The hydraulic diameter, Dh, which is used in this 

thesis, is a commonly used term as the characteristic length (Carman 1956, Bear 1979, 

Dullien 1991, Kaviany 1995, Incropera & DeWitt 2007, Kreith et al. 2011), and is 

defined as: 

4 4
h

cross sectional area void volume
D

wetted perimeter surface area
×   ×  

= =
  

                (5.1) 

 

5.2.3 Pore shape 

Similar to pore size, pore shape is also controlled by the potassium carbonate particles. 

As mentioned above, the spherical potassium carbonate granules are deformed under 

the high compacting pressure and form elliptical pores. The ratio between the major and 

minor axes was about 3:2 as seen from the SEM images. This representative pore shape 

would lead to anisotropy of LCS porous copper samples. 
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5.2.4 Specific surface area 

The specific surface area measured by the quantitative stereology method (Section 3.2.2) 

is specific surface area per unit volume of porous media (Sv), and it has the following 

relationship with specific surface area per unit volume of solid (S0):  

0(1 )vS Sε= −                          (5.2) 

For the porous medium with a uniform pore diameter , the specific surface area per unit 

volume of solid can be expressed by Eq. (2.6). Substituting Eq. (2.6) to Eq. (5.2), the 

specific surface area based on the whole volume of the porous medium is therefore: 

0
4(1 )v
pore

S S
d

εε= − =                      (5.3) 

The experimental results showed that the specific surface area , Sv, increases with 

porosity and decreases with pore size, which is good agreement with Eq. (5.3).  

 

Figure 5.3 compares the theoretical value and the measured values of the specific 

surface area. The theoretical specific surface area per unit volume of the porous metal 

was calculated by Eq. (5.3), taking ε and dpore as the actual porosity (measured by the 

Archimedes method) and the average pore size (average diameter of the potassium 

carbonate particles, i.e., arithmetical mean value between the largest size and the 

smallest size),  respectively. The actual values are close to the theoretical values. The 

differences may come from the following factors: 

1) Micro-porosity. The theoretical calculations considered only the large pores, but 

ignored the contribution of the interstices between particles to the porosity. 
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2) The pore connection effect. The theoretical values of the specific surface area used a 

cylinder to represent the surface of an idealized pore. In practice, there are many 

windows or micropores that connect the big pores (as shown in Figure 4.1d), instead 

of a continuous cylinder channel. 

3) Error of quantitative stereology. Under the metallographic observation conditions, 

the micro-pores were difficult to observe, so a large number of points that should be 

counted are ignored, leading to a low surface value by the quantitative stereology 

method. 
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Figure 5.3 Comparison of the theoretical and measured values of specific surface area. 

The theoretical values (Calculated by Eq.(5.3)) are represented by lines: Solid: 
250-425 μm; dash: 425-710 μm; dot: 710-1000 μm; and dash-dot: 1000-1500 μm. 

 

The values of specific surface area calculated by Eq. (3.3) and Eq. (5.3) are very close, 

as they both only consider the surface area around the large pores. The actual specific 
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surface area would much higher than the calculated values due to the existence of 

micro-pores inside the LCS porous copper samples. 

 

5.2.5 Tortuosity 

Several empirical correlations between tortuosity and porosity have been developed, 

some of which were summarized in Section 2.3.2.4. For porous media with packed 

granular particles, the power law relationship, i.e., nτ ε −= (Eq. (2.9)), was used most 

frequently (Archie 1942, Bear 1972, Dullien 1979, Mota et al. 2001, and Dias et al. 

2006). This power law relationship is also in good agreement with the experimental 

results shown in Section 4.1.3. The fitting parameters are given in Table 5.1.  

 

Table 5.1 Fitting parameter for tortuosity using Eq. (2.9) 

Group Particle Size(μm) Pore Size(μm) n R2 

GA1 50-100 250-425 1.027 0.999 

GA2 50-100 425-710 1.319 0.987 

GA3 50-100 710-1000 1.629 0.990 

GA4 50-100 1000-1500 1.985 0.988 

GA5 100-300 425-710 0.852 0.995 

GA6 100-300 1000-1500 1.228 0.994 

GA7 600-1000 1000-1500 0.645 0.992 

 

Archie (1942) measured the tortuosity of water-saturated sands by electrical 

measurement method and found that n=0.5, and the same value was also found by 

Zhang & Bishop (1994). Delgado (2006) investigated the packed beds of sand and 
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found n=0.4, and this value was also obtained by Mota et al. (2001) in testing the 

packed beads. Dias et al. (2006) proposed that the exponent index for granular beds 

describing the dependence of tortuosity on porosity ranges from 0.4 (loose packing) to 

0.5 (dense packing).  

 

It is obvious that n in Table 5.1 is much larger than that for packed beds in the literature 

reported above. Actually, the distribution of pores and voids in LCS porous copper is 

different from the packed bed. The large pores created by the potassium carbonate 

particles can lead to much tortuosity for LCS porous copper samples compared with 

packed particle beds.   

 

LCS porous copper has a uniform structure, with nearly spherical pores of a certain 

pore size homogeneously distributed in the metallic matrix composed of sintered copper 

particles. The ratio between the average diameter of copper particles (particle size, partd ) 

and the average diameter of potassium carbonates particles (pore size, pored ), which has 

an effect on tortuosity, is introduced: 

part

pore

d
s

d
=                          (5.4) 

Figure 5.4 shows the relationship between n and s, and an approximate expression can 

be obtained: 

20.5 (0.06 0.64, 0.988)n s R
s

= ≤ ≤ =
      

          (5.5) 



 

 

187 

 

 

An empirical equation to describe the tortuosity as a function of porosity and 

particle/pore size ratio can be obtained for LCS porous metal as: 

0.5

(0.06 0.64)s sτ ε
−

= ≤ ≤
                

    (5.6) 

The experimental data and the empirical equation predictions with different values of s 

are plotted in Figure 5.5.
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Figure 5.4 Relationship between copper particle/pore size ratio and exponent of Eq. 
(2.9). 
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Figure 5.5 Tortuosity of LCS porous copper with different particle/pore size ratio s 
(Symbols: experimental data; and lines: prediction of empirical Eq. (5.6)). 

 

5.3 Permeability 

5.3.1 Pressure drop of porous copper 

The pressure drop of the porous copper samples was measured by the test apparatus 

using an open flow arrangement. The experimental results presented in Section 4.2.1 

clearly show that lower pressure drops are generated for the tested samples with higher 

porosities or smaller pore sizes. This effect was consistent over all samples. As shown 

in Figure 4.1, the pores within the porous copper samples are connected by small 

cavities and interstices. An increase in porosity means smaller solid fraction within the 

porous copper and more channels for the fluid to flow through, significantly reducing 

the flow resistance of fluid. Similarly, smaller pores within a sample result in increased 
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pore density (or number of pores per unit volume), which means that more pores are 

interlinked, i.e., a higher connectivity. This gives the fluid more channels per unit 

volume to flow through, giving rise to lower flow resistance and thus a lower pressure 

drop at any given flow rate.   

 

A large amount of research has shown that Darcy’s law is valid at low Darcian velocity 

and the quadratic Forcheimer relationship is needed at high Darcian velocity 

(Hakamada et al. 2006, Khayargoli et al. 2004, Montillet 2004, Despois & Mortensen 

2005). Figure 5.6 shows the pressure drop curves of RECEMET metal foams 

(RECEMAT International, Netherlands) from a study carried out by Khayargoli et al. 

(2004).  A quadratic relationship is evident in this case. The pressure drop curves for 

the LCS porous copper in the present study also follows the quadratic relationship. 

 

For the RECEMET metal foams (RECEMAT International, Netherlands), pressure 

drops decreases with the pore diameter, as also shown by others (Antohe et al. 1996, 

Khayargoli et al. 2004, Hakamada et al. 2006). The LCS metals showed a different pore 

size effect. The reason for this difference may be attributed to micropores, which do not 

exist in other metal foams. The pores created by the potassium carbonate particles often 

have different morphologies from the cells of the other porous metals, so the effect of 

pore size for LCS porous copper is not directly comparable with the other metals. 
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Figure 5.6 Effect of pore diameter on the pressure drop for RECEMAT metal foams 
(RECEMAT International, Netherlands) (Khayargoli et al. 2004). 

5.3.2 Effects of porous structure on permeability 

The permeability of LCS porous metals with different pore parameters, including 

porosity, pore size, copper particle size, anisotropy and double-layer structure, have 

been summarized in Section 4.2. The samples can be divided into eight groups 

according to pore size and copper particle size (Table 5.2).  

Table 5.2 Fitting parameters of power law permeability 

Group Particle Size(μm) Pore Size(μm) s a (×10-9) n R2 Data Points 

GS1 50-100 250-425 0.22 2.89 8.66 0.995 7 

GS2 50-100 425-710 0.13 2.92 9.48 0.992 9 

GS3 50-100 710-1000 0.09 2.61 9.90 0.990 6 

GS4 50-100 1000-1500 0.06 3.46 11.71 0.994 7 

GS5 100-300 250-425 0.59 11.58 6.98 1 2 

GS6 100-300 425-710 0.35 10.42 7.23 0.993 4 

GS7 100-300 1000-1500 0.16 18.61 9.31 0.996 4 

GS8 600-1000 1000-1500 0.64 33.55 5.18 0.976 3 
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Figure 5.7 shows the relationship between permeability and porosity for these 8 groups. 

The permeability increases exponentially with porosity for LCS porous copper samples 

with different porosity, pore size and copper particle size:  

nK aε=  or log log logK n aε= +                   (5.7) 

where a and n are fitting constants. The fitting parameters of the power law relationship 

between permeability and porosity are listed in Table 5.2. 
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Figure 5.7 Relationship between permeability and porosity for LCS porous copper 
samples in different groups in Table 5.2: □ GA1, ○ GA2, △ GA3, ◇ GA4, ■ GA5, 

● GA6, ◆ GA7 and ▲ GS8. 

 

An interesting finding is that the exponent n is inversely proportional to particle/pore 

size ratio s. At a given particle size, the exponent n increases with the pore size, which 

means that the permeability of the porous copper sample with a large pore size is more 
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sensitive to porosity than that with a small pore size. At a given pore size, the exponent 

n decreases with copper particle size, which means that the permeability of the porous 

copper sample made with large copper particles is less sensitive to porosity than that 

made with fine copper particles.  

 

The permeability of LCS porous copper samples with different pore parameters can be 

explained qualitatively by the connectivity of the pores. Low porosity means that the 

pores produced by the potassium carbonate particles are interlinked by few large 

windows and more small interstices between the copper particles, leading to a less 

permeable porous sample. As the porosity increases, the chances of one pore being 

connected to another will increase exponentially (Thewsey 2008), resulting in an 

exponential increase in permeability.  

 

With small pore size, the path for fluid flow in porous samples would be less tortuous. 

The pore size effect on permeability is more obvious at low porosity than at high 

porosity (shown in Figure 5.7). As discussed previously, there are two kinds of channels 

to connect pores created by the potassium carbonate particles in LCS porous metals: 

micropores between copper particles and pore windows created between potassium 

carbonate particles in contact. At low porosity, there are fewer pore windows. Changing 

the size of potassium carbonate particles (pore size) can have a more significant 

influence on the permeability.  
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As shown in Figure 5.7, the copper particle size has a huge influence on the 

permeability of LCS porous copper samples. Samples produced with larger copper 

particles are more permeable. This is especially true for samples made with 

600-1000μm copper particles. This is attributed to its effect on tortuosity. As tortuosity 

decreases with increasing size ratio, samples made with large particles will be less 

tortuous, and therefore have high permeability. 

  

The effect of anisotropy on permeability is insignificant. Thewsey (2008) compared the 

LCS porous copper samples with spherical and irregular shaped pores at a similar 

porosity and found that pore shape had no significant effect on the permeability. In the 

present study, only spherical potassium carbonate particles were used and they were 

deformed slightly during the compacting process (ellipse shaped with the axial ratio of 

approximately 3:2). This slight change in pore shape does not have a significant effect 

on the path of fluid flow, resulting in a constant permeability at any given porosity and 

pore size.  

 

The gas and water permeability are close to each other in the present study. Sometimes 

the gas permeability can be somewhat different from the water permeability in the same 

sample, as the permeability is affected by a molecular phenomenon known as gas 

slippage (Klinkenberg 1941, Carman 1956). The slippage of gas at the interface with 

the solid, however, will only affect the permeability value when the gas mean free path 
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is comparable to the pore size at a range of 0.01-0.1 μm (Klinkenberg 1941). 

Bloomfield and Williams (1995) investigated the air permeability and water 

permeability experimentally and obtained a logarithmic relationship between them. 

They observed that there was little difference between air and water permeability when 

the material’s permeability was larger than 2.4 × 10-12 m2. In the present study, the pore 

sizes are larger than 250 μm, and all the porous sample have permeability values larger 

than 4 × 10-12 m2. In these conditions, the permeability of porous copper would not 

change much regardless of the fluid (air or water) used.  

 

5.3.3 Theoretical prediction of permeability  

There is no universal relationship between effective porosity and permeability. The few 

existing empirical, semi-empirical, and special geometric-model-based correlations 

listed in Section 2.3.3 have to be used within the restrictions for which they have been 

developed. These models may not suitable for the prediction of permeability of LCS 

porous copper. 

 

Assuming a fully developed flow in a porous medium with a porosity of ε and a number 

of straight tubes of diameter d, the pressure gradient ( p∇ ) can be found from the 

integration of the one-dimensional Navier-Stokes equation, which results in the 

Hagen-Poiseuille equation (Carman 1956, Dullien 1979, Kaviany 1995), 
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2 2
32 32

p dp v v
d d

µ µ
ε

∇ = − = −
                    

(5.8) 

where pv  is the average pore velocity and dv  is Darcian velocity.  

 

For porous media with pores of random shapes and sizes, the pressure gradient should 

be modified by introducing the shape factor (k0), tortuosity (τ) and characteristic length 

(Dc) according to (Kozeny 1927, Carman 1956): 

2
0
2

16
d

c

kp v
D

µ τ
ε

∇ = −
                        

(5.9) 

 

Comparing Eq. (5.9) with Darcian equation (Eq. (2.2)), the permeability, K, can be 

expressed as: 

2

2
016
cDK

k
ε

τ
=

                            
(5.10) 

 

Eq. (5.10) is a form of the Carman-Kozeny equation. For random porous media, the 

pore parameters become very complex. Various attempts have been made to derive the 

characteristic diameter, Dc, as discussed in Section 2.3.2.2. The most widely used and 

accepted is the hydraulic diameter expressed in Eq. (5.1).  

 

For porous media composed of spherical particles, it was widely accepted that the 

hydraulic diameter (Dh) is linked to the porosity and diameter of spheres (dpart) by: 



 

 

196 

 

2
3(1 )h partD d

ε
ε

=
−

                       (5.11) 

Eq. (5.11) was proved to be suitable to represent the characteristic length of a wide 

range of porous media (Ergun & Oming, 1949, Childs & Collis-George 1950, Ergun 

1952, Carman 1956, Epstein 1989, Kaviany 1995, Khayargoli et al. 2004, Glover & 

Walker 2010). 

 

For LCS porous metal, a modified Carman-Kozeny equation for permeability can be 

obtained by inserting Eq. (5.6) and Eq. (5.11) to Eq. (5.10):  

13 2

2
036 (1 )

s
partd

K
k

ε
ε

+

=
−

                       (5.12) 

where s is the size ratio between metal particle size and pore size. 

 

Figure 5.8 compares the measured permeability of LCS porous metals and the 

calculated results from Eq. (5.12), with k0=2.5, a common and universal value for 

porous media composed by granular spheres. The experimental data are in reasonably 

good agreement with the theoretical values. The slight mismatch may be attributed to 

the limitations of Eq. (5.12) when applied to LCS porous metals. Firstly, k0 is assumed 

constant for the range of pore shapes. The effect of pore parameters on the shape factor, 

however, is still unknown. Secondly, the size ratio s is set as the ratio of the average 

particle size and pore size, regardless of the size distribution. In fact, particle size and 

pore size vary in wide ranges in LCS porous copper. Finally, the characteristic length is 
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assumed to be equivalent to the hydraulic diameter based on the simple model of 

packed bed in Eq. (5.11). The microstructure of LCS porous metal is different from a 

packed bed because of the introduction of large space holder particles. If the copper 

particles are heavily metallurgically bonded, the hydraulic diameter in Eq. (5.11) is not 

a correct characteristic length for permeability calculations, and hence Eq. (5.12) should 

be modified. 
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Figure 5.8 Comparison of the experimental data and theoretic permeability 
(Symbols: experimental data; and lines: prediction of Eq. (5.12)). 
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5.3.4 Theoretical prediction of permeability for samples with double-layer 

structures 

According to Darcy’s law, the pressure drop across a homogeneous porous medium for 

steady fluid flow can be described by Eq. (2.1). In porous medium with double layer 

structures, the fluid velocities in the high porosity layer (with porosity of εh) and low 

porosity layer (with porosity of εl) are different. According to Eq. (2.2), Darcian 

velocity is proportional to permeability. Assuming the permeabilities in the high and 

low layers are Kh and Kl and their thickness fractions are fh and fl (fh+fl=1), the Darcian 

velocities in the high (vh) and low layers (vl) are related by: 

h h

l l

v K
v K

=                            (5.13) 

The overall Darcian velocity follows the rule of mixture, i.e., 

h h l lv f v f v= +                         (5.14) 

Combining Eqs. (5.12), (5.13) and (5.14), results in: 

3 1/ 3 1/ 3 1/

2 2 2(1 ) (1 ) (1 )

s s s

eff h l

h l

eff h l

f f
ε ε ε

ε ε ε

+ + +

= +
− − −               (5.15) 

where εeff is the equivalent porosity of the double-layer porous metal.  

 

The permeability of double-layer samples can be calculated by inserting Eq. (5.15) 

into Eq. (5.12): 

2 3 1/ 3 1/

2 2

0
36 (1 ) (1 )

s s

part h l

h l

h l

d
K f f

k

ε ε

ε ε

+ +

= +
− −

 
 
                 

(5.16) 
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Figure 5.9 shows the theoretical of relationship between εeff, εh and εl for LCS 

double-layer porous metals with a pore size of 425-710 µm under the condition of 

fh=fl=0.5. It can be seen that the equivalent porosity is close to the average porosity 

of the sample (
2

h lε ε+ ) when the high layer and lower layer have a similar 

porosity. For double-layer samples with a large porosity difference, the equivalent 

porosity is larger than the average porosity of the sample, indicating that the 

permeability would be higher than the single layer sample with a porosity of 

2
h lε ε+ . 
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Figure 5.9 Theoretical relationship between εeff, εh and εl for LCS double-layer porous 

metal ( Pore size: 425-710 µm, fh=fl=0.5). 
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Table 5.3 shows the calculated values of permeability of samples S50-S63 with a 

double-layer structure. The theoretical values are a litter higher comparing with the 

measured permeability, but the deviations calculated by Eq. (3.16) are lower than 

10%.  

 

Table 5.3 Permeability of samples with double-layer structure 

Sample 
Reference 

Pore Size 
(μm) 

Nominal 
Porosity 

(%) 
hf  

Porosity 
(%) 

Measured 
Permeability 

(10-10m2) 

Calculated 
Permeability 

(10-10m2) 

Deviation 
(%) 

S50 425-710 60 0 62.5 0.33 0.33 0 

S51 425-710 80/60 0.2 65.9 0.56 0.54 1.3 

S52 425-710 80/60 0.4 69.7 1.20 1.31 9.1 

S53 425-710 80/60 0.6 73.6 1.86 2.02 7.9 

S54 425-710 80/60 0.8 77.1 2.92 3.23 9.3 

S55 425-710 80 1 80.5 3.85 3.85 0 

S56 425-710 65/60 0.5 64.6 0.49 0.49 1.8 

S57 425-710 70/60 0.5 67.1 0.68 0.73 6.5 

S58 425-710 70/65 0.5 68.9 1.03 1.14 9.7 

S59 1000-1500 65/60 0.5 64.9 0.27 0.27 2.2 

S60 1000-1500 70/60 0.5 67.4 0.41 0.45 8.2 

S61 1000-1500 70/65 0.5 69.2 0.59 0.64 6.9 

S62 
425-710/ 

1000-1500 
60/60 0.5 62.8 0.29 0.31 5.2 

S63 
425-710/ 

1000-1500 
65/60 0.5 64.4 0.43 0.45 4.9 
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5.4 Thermal Conductivity 

The experimental apparatus shown in Section 3.4.2 was used to test the thermal 

conductivity of porous copper samples. The apparatus was calibrated with the standard 

solid metal samples and the experimental results in Table 3.1 showed that the apparatus 

had enough accuracy when the heat flux was less than 13kW/m2. The increased errors 

above 13kW/m2 were due to the limitations of the experimental apparatus used in the 

experiment. Firstly, the cross sectional area of the samples is relatively small, so it 

cannot bear large heat flux through it. Secondly, the thermal conductivity of the 

conductive grease used between the tested sample and the pure copper comparator is 

low, further limiting the heat conducted from the tested sample to the pure copper 

comparator.  

 

As described in Section 2.4.1, there have been a few models to predict the thermal 

conductivity of porous media. Some are simple algebraic models, e.g., Calmidi and 

Mahajan Model (Calmidi & Mahajan 1999), Tetrakaidecahedron model (Boomsma & 

Poulikakos 2001) and symmetric and interconnected skeleton structure (SISS) model 

(Wang et al. 2008b). These models are based on a specific structure of porous media 

and cannot be applied widely. Many fundamental structural models, including the 

parallel, series, Maxwell-Eucken (ME) (Maxwell, 1954), effective media theory (EMT) 

(Laudauer, 1952) and co-continuous (CC) model (Wang et al. 2008a), have been 

established to predict the thermal conductivity of porous media. None of these, however, 
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can accurately predict the effective thermal conductivity across the full range of volume 

fraction. There are also some empirical models which modify these fundamental 

structural models in order to fit the experimental data. 

 

A percolation theory based (PB) empirical correlation has shown that the relationship 

between the thermal conductivity and the relative density of the porous metal can be 

expressed by the power low (Phani et al. 1988, Ashby et al. 2000): 

(1 ) ( )n n
s s

s

ρλ λ ε λ
ρ

= − =                     (5.17) 

where λ is the thermal conductivity of the porous metal, λs is the thermal conductivity 

of the bulk material (for pure copper, λs =391 W/mK), ρ is the density of the porous 

metal, ρs is the density of the bulk metal (for pure copper, ρs=8.9 g/cm3) and n is the 

exponent for thermal conductivity.  

 

As shown in Figure 4.11, for a given relative density, the thermal conductivities of the 

samples with pore sizes of 425-710µm, 710-1000µm and 1000-1500µm were very 

close. The predictions by the different models mentioned in Section 2.4 (including 

Parallel, Series, ME, EMT, SISS and percolation models with n=2) for a range of 

relative density are compared with the experimental data for samples T6-T25 with 

different porosity and pore size larger than 425 µm in Figure 5.10. It is obvious that 

the PB power law with an exponent n = 2 describes the experimental data well.  
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Some observations can be made from Section 4.3. For samples produced by fine 

copper particles (50-100 µm), the conductivity of porous copper with small pore size 

(250-425µm) is lower than that with large pore sizes. For samples made by different 

particle sizes, the conductivity of samples produced by large copper particles is much 

smaller than that of samples produced by fine copper particles.  
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Figure 5.10 Comparison between experimental data and predictions by different 
models (measured data for sample T6-T25). 

 

According to the experimental results of thermal conductivities shown in Table 4.11, 

the relative thermal conductivities for porous copper are plotted as a function of relative 
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density in Figure 5.11. Nearly all the measured data fall within the range bounded by 

the lines calculated using Eq. (5.17) with exponent (n) of 1.9 and 3. 
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Figure 5.11 Relative thermal conductivity of the LCS porous copper samples as a 
function of relative density, with different copper particle size /pore size combinations: 

(□50-100μm/250-425μm, ○50-100μm/425-710μm, △50-100μm/ 710-1000μm,  
◇50-100μm/1000-1500μm, ■100-300μm/250-425μm, ●100-300μm/ 425-710μm,  

◆ 100-300μm/1000-1500μm, ★ 600-1000μm/1000-1500μm; solid line: Eq. (5.17) with 
exponent of 1.9, dot line: Eq. (5.17) with exponent of 3). 

 

The thermal conductivity of LCS porous copper is not only influenced by relative 

density but also by copper particle size and pore size, especially when the copper 

particle size is close to the pore size. The effects of copper particle size and pore size on 

thermal conductivity stem from the specific structure of the LCS porous copper. 

According to the percolation theory, all copper particles should ideally cluster together 

to form one dense network, so that the heat could flow smoothly through the network. 
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This is not the case for LCS porous copper with randomly packed particles. Dead ends 

exist in the porous samples, i.e., some particle clusters or cell walls are discontinuous. 

These dead ends contribute to the mass of the network but do not carry heat flux. When 

the sizes of the copper particles and potassium carbonate particles are close to each 

other, the cell wall may be more discontinuous because copper particles cannot fit into 

the interstices of the potassium carbonate particle network, leading to the decrease of 

the probability for copper particles contacting each other. Small pores and large copper 

particles result in the increase of dead ends in LCS porous samples, and thus decrease 

their thermal conductivity and consequently increase the exponent in Eq. (5.17). In 

other words, the copper particle size/pore size ratio, s, also affects the thermal 

conductivity.  

 

The fitting exponent and standard deviation values derived from the experimental data, 

as well as the particle/pore size ratio, for each group of samples are listed in Table 5.4. 

All the coefficients of determination (R2) are larger than 0.98, which indicates that the 

PB power law is suitable to predict the thermal conductivity of LCS porous copper.  

 

The relation between exponent (n) and size ratio (s) is shown in Figure 5.12. It can be 

seen that the exponent increases with the size ratio, and a nearly linear relationship 

between s and n is obtained from the data: n=1.82s+1.81. Combined with Eq. (5.17), an 
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approximate expression can be obtained for thermal conductivity of LCS porous 

copper: 

1.82 1.81(1 ) s
sλ λ ε += −                       (5.18) 

Table 5.4 Fitting parameters of thermal conductivity 

Group Particle Size(μm) Pore Size(μm) s n R2 

GT1 50-100 250-425 0.22 2.26 0.994 

GT2 50-100 425-710 0.13 2.01 0.996 

GT3 50-100 710-1000 0.09 1.97 0.987 

GT4 50-100 1000-1500 0.06 1.94 0.991 

GT5 100-300 250-425 0.60 2.91 1 

GT6 100-300 710-1000 0.35 2.37 0.999 

GT7 100-300 1000-1500 0.16 2.20 1 

GT8 600-1000 1000-1500 0.64 3.04 1 
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Figure 5.12 Relationship between exponent and particle/pore size ratio of Eq. (5.18) 
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5.5 Heat Transfer Coefficient  

5.5.1 Measurement of heat transfer coefficient 

The heat transfer coefficient of the porous copper samples was measured using the 

experimental apparatus and test procedure described in Section 3.5. The thermal 

equilibrium of the system was calculated by the method described as follows. 

 

The heat flux in the copper block was calculated by Eq. (3.10), with the expression of: 

bl pl
in Cu

T T
Q A

L
λ

−
=                          (5.19) 

where λcu is the heat conductivity of the copper block (λCu =391 W/m·K for the oxygen 

free copper used in the test); A is the cross-sectional area of the heat block 

(A=5.985×10-4 m2); Tbl and Tpl are the upper and lower block temperatures, respectively, 

and L is the distance between Tbl and Tpl (L=24.5 mm). 

 

The heat removed by the coolant per unit time was calculated by the following 

equation: 

( )out p f out inQ c u T Tρ= −                     (5.20) 

where cp is the specific heat of water (cp=0.6 kJ/kgK), ρf is the density of water 

(ρf=1.0×103 Kg/m3), and u is the volume flow rate of water. 
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Figure 5.13 shows a comparison between these two heat flux values for specimen cut 

from sample S11. Theoretically, ignoring the heat loss of the whole system, Qin should 

be equal to Qout. In practice, there is a difference between them because of heat losses 

and measurement errors, especially in Tin and Tout. 
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Figure 5.13 Comparison of Qin and Qout at different flow rates for specimen S11 

 

In all measurements, Qout was very close to but a little smaller than Qin. One reason is 

the heat loss which was dissipated from the heat block, porous copper or coolant to the 

insulating PTFE block. This was not significant as the flowing water could remove the 

heat efficiently in the present study. Another reason is the inaccuracy of temperature 

measurements. According to Eq. (5.20), accurate readings of inlet and outlet coolant 

temperatures are crucial to the experimental determination of Qout. The channel of the 
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testing apparatus is 5 mm high. During the heat transfer process, the heat flux in the 

region of the porous copper close to the heating plate is high, leading to high coolant 

temperature in this region. The region far away from the heating plate plays a less 

important role in removing heat, resulting in low coolant temperature in this region. In 

other words, the outlet temperature distribution across the flow channel is not uniform. 

The PT100 thermometer probe was located at the middle of the channel and the 

temperature was considered as representative to the average outlet temperatures of the 

coolant, which may bring about some errors. In all cases, however, the temperature 

difference (Tbu-Tbl) was found to be steady at any given input heat power (i.e. a given 

voltage of transformer), and was a constant for all porous samples at the same 

experimental condition. In addition, Tin was easy to control when the ambient 

temperature did not change. Eq. (5.19), which was used to calculate the heat flux, is 

therefore reliable for the calculations of the heat transfer coefficients of different porous 

samples. 

 

5.5.2 Effect of pore parameter on heat transfer coefficient 

Heat transfer from the heat source (heating block or heating plate in this case) to the 

coolant consists of three stages: heat transfer from the heating block to the porous 

copper, thermal conduction in the copper matrix of the porous copper sample and 

convection between the copper matrix and the coolant. The first stage can be well 

controlled if the surface of the sample is smooth and has a good contact with the heat 
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plate. Thermal conduction in the copper matrix is determined by the thermal 

conductivity of the porous sample. The pore parameters affecting the last stage are 

mainly permeability of the porous sample and the interfacial surface area between the 

porous sample and the coolant.  

 

5.5.2.1 Effect of porosity 

Figures 4.12 and 4.13 showed how the heat transfer coefficient changed with the 

porosity, at a fixed pore size. In each group of samples made with small copper particles, 

the heat transfer coefficient first increased until reaching the highest value at a certain 

porosity and then gradually decreased (as shown in Figure 4.12). This trend was 

consistent over all coolant flow rates. For a limited number of samples made with large 

copper particles, the heat transfer coefficient just decreased with porosity. The heat 

transfer performance of the empty chamber (100% porosity) was very poor even under 

high flow rates, due to the small contact area between the heating plate and the coolant.  

 

The surface area, permeability and thermal conduction of porous copper samples are 

three key parameters which affect the heat transfer performance. The results in Chapter 

4 showed that the surface area and permeability increase with porosity, while the 

thermal conductivity decreases with porosity. The effect of porosity on heat transfer 

coefficient can be analyzed by the combined effect of the internal surface area and the 

permeability of the porous sample. 
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The overall heat transfer performance depends not only on the thermal conduction in 

the copper matrix but also on the heat removal to the fluid. The optimum porosity can 

be achieved by balancing these two processes. 

 

At very low porosity, even if the thermal conductivity of porous copper samples is 

superior, the internal surface area and the fluid permeability of the sample are low, both 

of which lead to poor heat removal of fluid. Low porosity is conducive to better thermal 

conduction from the heat source to the porous copper, but bad for convectional heat 

transfer from the porous copper to the coolant. In this situation, thermal convection by 

the coolant is the limiting factor, so that the permeability is critical at low porosity. 

 

High porosity has the opposite effect. The samples with high porosity are more 

permeable, with permeability increasing exponentially with porosity. The specific 

surface area also increases with porosity. The samples with high porosity, however, 

have lower thermal conductivity than those with low porosity. The limiting factor for 

samples with high porosity is thermal conduction in the copper matrix. 

 

It should be pointed out that even though the samples with low porosity are less 

permeable and have lower surface area than those with high porosity, the heat transfer 

performance is still at a relatively high level. Therefore, it can be speculated that the 
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influence of thermal conductivity plays a very important role in heat transfer process of 

LCS porous copper. The optimum porosity of LCS porous copper (Figure 4.12) or 

porous nickel (Figure 4.31) made by small particles was found to be between 60% and 

66%.  

 

5.5.2.2 Effect of pore size 

Figures 4.14 and 4.15 showed the effect of pore size on heat transfer coefficients of 

porous copper samples at a given flow rate. For porous copper made with small copper 

particles, the samples with the medium pore size ranges of 425-710 μm and 710-1000 

μm had heat transfer coefficients 1.5 times of those with the small pore size range. The 

heat transfer performance of the samples with large pore sizes was moderate. For 

porous copper made with large copper particles, the heat transfer performance of 

samples with larger pore size was better. 

 

The effect of pore size on the heat transfer coefficient is due to its effects on the thermal 

conductivity, surface area and fluid permeability. For the same porosity, samples with 

smaller pores have higher specific surface areas and permeability, but their thermal 

conductivities are poor. Therefore, the thermal conductivity plays a much more 

important role in heat transfer for the LCS porous samples with the fine pore size of 

250-425 µm. 
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For sample with the largest pores, its thermal conductivity is similar to those with 

medium pores, but it is less permeable, leading to a slightly worse heat transfer 

performance. For the test samples with copper particle sizes of 100-300 μm and 

600-1000 μm, the heat transfer coefficient was also found to increase with the pore size 

(as shown in Figure 4.15). 

 

5.5.2.3 Effect of copper particle size 

The copper particle size has a significant influence on heat transfer coefficient. Figures 

4.16 and 4.17 compared the heat transfer coefficients of porous copper made by copper 

powders with different particle sizes. At a given pore size, increasing the copper particle 

size decreased the heat transfer coefficient, when the porosity was higher than 65%. 

This may be attributed to the decrease of thermal conductivity of porous copper sample 

with increasing particle size (see Section 4.3). At low porosity, however, the samples 

made with large copper particles had higher heat transfer coefficients, as shown in 

Figures 4.16 and 4.17. According to the permeability test, samples made with large 

copper particles are more permeable. Furthermore, the thermal conductivity of porous 

copper increases with decreasing porosity. Both would enhance the heat transfer ability. 

Although the samples made with fine copper particles at low porosity have better 

thermal conductivity than those made with large copper particles, their permeability is 

extremely low, which may be the key reason for the decrease of heat transfer 

coefficient.  
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5.5.2.4 Effect of flow rate 

The experimental results in Sections 4.4.4, 4.4.5, 4.4.6 and 4.4.8 showed that the heat 

transfer coefficient increases linearly with flow rate. For a sample with a given porosity 

and pore size, convection is enhanced as the flow rate increases, because heat is 

removed by the coolant more rapidly. Besides, increasing the flow rate may cause 

turbulence within the porous medium. This extra turbulence will cause the coolant to 

mix and access more of the small interstices within the structure, giving rise to more 

heat exchange between the solid copper surfaces and the coolant. 

 

Based on the experimental data in Section 4.4, the heat transfer coefficient (h) as a 

function of Darcian velocity ( dv ) can be expressed by: 

n
dh av=                          (5.21) 

where a and n are constants. The values of a, n and the coefficients of determination, R2, 

corresponding to the samples are given in Tables 5.5 and 5.6. The exponent, n, has a 

value between 0.45 and 0.65, while the constant, a, has a value between 3000 and 

11000. 
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Table 5.5 Fitting parameters of Eq. (5.21) of samples for heat transfer coefficient 
(single layer samples) 

Sample 
Reference 

a (×100) n R2 Sample 
Reference 

a (×100) n R2 

S1 61.3 0.529 0.998 S28 50.5 0.529 0.992 

S2 67.1 0.498 0.993 S29 36.6 0.525 0.992 

S3 65.2 0.542 0.997 S37 66.8 0.547 0.995 

S4 54.9 0.550 0.996 S38 29.8 0.512 0.992 

S5 32.9 0.501 0.992 S39 75.6 0.537 0.999 

S6 33.8 0.525 0.991 S40 70.2 0.600 0.999 

S7 32.1 0.547 0.993 S41 52.2 0.567 0.995 

S8 70.6 0.539 0.987 S42 43.7 0.588 0.984 

S9 85.6 0.578 0.99 S43 103.0 0.568 0.996 

S10 88.5 0.527 0.992 S44 82.5 0.538 0.999 

S11 89.6 0.542 0.993 S45 62.1 0.515 0.993 

S12 80.6 0.538 0.993 S46 43.8 0.513 0.992 

S13 69.0 0.500 0.987 S47 107.0 0.532 0.998 

S14 64.9 0.522 0.983 S48 50.9 0.536 0.992 

S15 52.6 0.506 0.986 S49 46.6 0.565 0.995 

S16 50.3 0.53 0.983 S50 87.9 0.512 0.991 

S17 71.1 0.526 0.994 S64 65.9 0.607 0.996 

S18 88.7 0.554 0.988 S65 53.4 0.562 0.992 

S19 80.2 0.542 0.99 S66 87.1 0.644 0.999 

S20 66.9 0.538 0.987 S67 84.4 0.639 0.999 

S21 52.1 0.519 0.996 S68 80.0 0.643 0.996 

S22 47.1 0.543 0.996 S69 57.9 0.601 0.988 

S23 63.0 0.538 0.995 S70 51.8 0.600 0.997 

S24 70.5 0.527 0.98 S71 44.1 0.556 0.997 

S25 76.1 0.528 0.984 S72 54.1 0.564 0.981 

S26 64.2 0.488 0.993 S73 56.2 0.588 0.996 

S27 57.6 0.499 0.983 S74 63.5 0.617 0.995 
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Table 5.6 Fitting parameters of Eq. (5.21) of samples for heat transfer coefficient 
(double-layer samples) 

Sample Reference Order a (×100) n R2 

S51 Normal 108.0 0.608 0.996 

 
Reverse 50.2 0.500 0.997 

S52 Normal 67.0 0.545 0.982 

 
Reverse 37.9 0.487 0.993 

S53 Normal 43.3 0.469 0.981 

 
Reverse 36.6 0.481 0.985 

S54 Normal 42.9 0.482 0.982 

 Reverse 37.8 0.494 0.996 

S56 Normal 94.7 0.546 0.995 

 
Reverse 68.2 0.475 0.98 

S57 Normal 77.9 0.520 0.991 

 
Reverse 57.0 0.565 0.995 

S58 Normal 77.5 0.545 0.996 

 
Reverse 67.8 0.609 0.996 

S59 Normal 79.1 0.524 0.988 

 Reverse 59.9 0.513 0.997 

S60 Normal 67.5 0.482 0.996 

 Reverse 50.6 0.483 0.993 

S61 Normal 75.2 0.551 0.993 

 Reverse 64.7 0.607 0.996 

S62 Normal 94.9 0.556 0.997 

 Reverse 86.9 0.555 0.998 

S63 Normal 101.0 0.574 0.995 

 Reverse 94.9 0.556 0.997 
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5.5.2.5 Effect of heat flux  

Figure 4.19 showed the effect of input heat flux on the heat transfer coefficient. Three 

different input heat flux values (150 kW/m2, 250 kW/m2 and 500 kW/m2) were applied 

by adjusting the voltage of the transformer. The input heat flux has little effect on heat 

transfer coefficient. An increase in input heat power (Q) resulted in increased block 

temperature (Tbl). With both Q and Tbl being directly related by Eq. (3.11), the 

convective heat transfer coefficient is expected to remain the same at any given input 

heat power.  

 

The porous copper-water system can remove heat efficiently under the input heat flux 

conditions in the test. In the present study, the maximum heat flux, which is fixed at 500 

kW/m2 due to the limitation of the apparatus, can be removed efficiently by the porous 

copper-water system. Zhang et al. (2009) reported that the LCS porous copper with a 

diameter of 10 mm and a thickness of 4 mm can remove the heat at a rate of 1.3MW/m2. 

It shows that the LCS porous copper can be an ideal candidate material for heat 

exchanger application. 

 

5.5.2.6 Effect of anisotropy 

The results in Section 4.4.6 showed that the anisotropy in LCS porous copper resulted 

from the fabrication process did not affect the heat transfer performance. Firstly, the 

porous copper samples with anisotropy have similar permeability values according to 
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the experimental results in Section 4.2.2. Secondly, the anisotropy is not significant, so 

the thermal conductivity should not change very much. Thirdly, the specific surface 

area would not be affected by anisotropy. All these factors lead to similar heat transfer 

coefficient measured at different directions. 

 

5.5.3 Effect of double-layer structure 

Figures 4.21 to 4.23 showed the variations of heat transfer coefficient with porosity for 

double-layer porous copper samples with different placement orders. As seen from 

Figure 4.21, the variation of heat transfer coefficient of double-layer LCS porous 

copper was similar to that of single-layer LCS porous copper. A peak value was found 

at the combined porosity of 62.5% or 65.5% (when the thickness of the 80% porosity 

layer was 1 mm or 2 mm). The heat transfer coefficient was much lower and very little 

when the combined porosity was 73.6% or higher, where the thickness of 80% layer 

was 3 mm or more. Sample S51 with 80%/60% placement showed the best heat transfer 

performance among all the tested samples. The other samples with double-layer 

structure had worse heat transfer performance than that of their single-layer 

counterparts with a similar overall porosity.  

 

When the heat plate is in direct contact with the high porosity layer, such as the samples 

with 80%/60% placement, increasing the thickness of the high porosity layer is not an 
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efficient way to improve the thermal conduction from the heat source to the porous 

copper. The experiment results showed that a rapid decrease of heat transfer coefficient 

occurred when the thickness of 80%-layer exceeded 2 mm in the test.  

 

The effect of double-layer on the heat transfer performance can be understood by 

analyzing the thermal conductivity, the internal surface area and the permeability of the 

porous sample. Porous copper with a high porosity (such as porosity of 80%) has a low 

thermal conductivity, which will reduce the conductive heat transfer from the heat plate 

(Thewsey & Zhao 2008, Zhang et al. 2009), however, high porosity provides a high 

internal surface area and a high fluid permeability, which enhance the heat removal 

from the porous copper to the fluid flow. The samples with 1mm 80%-layer achieved 

the balance of these two factors according to the experiment.  

 

It should be noted that the heat transfer coefficient of the double-layer LCS porous 

copper with 60% layer in contact with the heat plate (60%/80% placement) has a very 

low heat transfer coefficient, even lower than that of the single-layer porous copper 

with a nominal porosity of 80% (see in Figure 4.27). 

 

Heat coming from the heat block flows through the water-saturated porous copper and 

is removed by the water. Therefore, the layer close to the heat plate plays a dominant 

role in the heat transfer of the double-layer LCS porous copper. According to Ho & 
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Webb (2006), the fluid often preferentially chooses the strata with higher permeabilities. 

As a result, a large amount of the displaced fluid can be left behind in the strata with 

low permeability. This may be the main reason that the 80%/60% placement is much 

efficient to remove heat than the 60%/80% placement.  

 

For the fluid flow through the double-layer porous copper samples at a given overall 

flow rate, the flow rate in the high porosity layer is much greater than that in the low 

porosity layer. As the flow rate has significant effect on heat transfer coefficient (Zhang 

et al. 2009), increasing flow rate would enhance the heat transfer performance 

significantly. Although the 80% porosity layer has a dominant effect on heat transfer for 

both 80%/60% and 60%/80% placements, there are still some differences. In the former 

situation, most water flows through the region close to the heat plate, which will 

enhance the heat transfer performance. In the latter situation, little water flows through 

the region close to the heat plate; the 60% porosity layer here may enhance heat 

conduction but does not favour convection. Although the flow rate in the 80% layer is 

high, its contribution to heat transfer is low, because it is farther away from the heat 

plate and the local temperature of the copper matrix is low. Nevertheless, it is worth to 

be mentioned that when the high porosity layer is thin (sample S51 with 1 mm in the 

test), the overall heat transfer coefficient was optimal compared with the single-layer 

porous samples with a similar porosity, because it allows high flow rate near the heat 

plate while maintaining a moderate overall thermal conductivity.  
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5.5.4 Effect of thickness on heat transfer coefficient 

The effect of sample thickness on heat transfer coefficient of LCS porous copper was 

studied by testing seventeen samples. The samples, with different porosity, pore size 

and copper particle size, were the same as those used in permeability and heat transfer 

coefficient tests. The original thickness of each sample was 5 mm, and 1 mm was cut 

from the sample each time for next test.  

 

The experimental results (Figures 4.29 and 4.30) showed that at a constant Darcian 

velocity, the heat transfer coefficient increased with thickness and then remained 

constant with the thickness increasing from 3 mm to 5 mm. At a given Darcian 

velocity, a thick porous metal sample means more capability as the cross section area 

increases. Further increasing thickness may not improve the heat transfer, as the solid 

of the porous metal far away from the heat surface does not contribute to the heat 

removal but decreases the Darcian velocity at a given flow rate. Therefore, when the 

thickness exceeds a critical value, the heat transfer coefficient may decrease with 

thickness of sample. In the present study, it was found that this critical value of 

thickness was between 3 mm to 5 mm for LCS porous copper with a contacting 

surface of 600 mm2. 
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Shih et al. (2008) investigated the effect of sample size on heat transfer characteristics 

of aluminium foam. Cylinder samples (with a diameter of D and a thickness of t) were 

used in the test. A dimensionless height, t /D was introduced to characterise the effect of 

height on heat transfer performance. It was found that the aluminium foam with 

dimensionless height between 0.23 and 0.31 had the best heat transfer performance. In 

the present study, all the tested samples had dimensions of 30 mm×20 mm×5 mm. 

The surface area in contact with the heat plate is about 600 mm2. It is difficult to 

compare the size effect between the data in the present study and data from Shih et al 

(2006) because of the different shapes of contact surfaces.  

 

A dimensionless area can be defined as the ratio of heat dissipating surface and heating 

surface, which is similar to t/D in Shih’s experiment. In the present study, the 

dimensionless areas for samples with different thicknesses of 5 mm, 4 mm, 3 mm, 2 

mm and 1 mm are 0.33, 0.28, 0.20, 0.13 and 0.07, respectively. The LCS porous copper 

with dimensionless area between 0.20 and 0.33 had the best heat transfer performance. 

The results are consistent with those reported by Shih et al. (2006). 

 

5.5.5 Heat transfer coefficient of different porous metals 

The variation of heat transfer coefficient with porosity at different flow rates for porous 

nickel was shown in Figure 4.31. The trend is similar to that found in porous copper, i.e., 

heat transfer coefficient decreased with the porosity and there was a maximum value at 
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porosity between 60% and 65%. The reasons behind the trend have been discussed in 

the previous sections. 

 

The heat transfer coefficient of LCS porous copper, porous nickel, porous nickel-copper 

and porous iron with similar porosity and pore size were compared in Figure 4.32. 

Porous copper has the best heat transfer performance among these four porous metals, 

while the other three porous metals have similar heat transfer performance. It is easy to 

understand the results as copper has much better conductivity than the others. The 

thermal conductivity of pure iron (80 W/mK) is a slightly lower than that of pure nickel 

(90.5 W/mK), however, a relatively low porosity of porous iron caused it to have a 

similar heat transfer coefficient with porous nickel (see Figure 4.32). The porous 

nickel-copper alloy has a much lower thermal conductivity (44 W/mK), but it had the 

same heat transfer performance as the porous nickel and porous iron samples. This may 

be attributed to the much finer particle size of nickel-copper alloy, which results in 

much larger effective surface area.   

 

5.5.6 Correlation of dimensionless parameters 

In solving the heat transfer problem in porous media, three important dimensionless 

parameters, Prandtl number (Pr), Reynolds number (Re) and Nusselt number (Nu), are 

used: 
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=                            (5.22) 
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µ

=                          (5.23) 
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f

hDNu
λ

=                            (5.24) 

where cp, μ, ρ and λf are the specific heat, viscosity, density and thermal conductivity of 

the fluid, and Dh is the hydraulic diameter. Pr is approximately equal to 7 for water at 

20°C. 

 

Nusselt number is generally a function of the Reynolds number and the Prandtl number, 

i.e., Nu=f(Re, Pr), in the form of (Incropera et al 2013): 

 1/3Re PrnNu a=                        (5.25) 

where a and n are constants which are often independent of the nature of fluid. 

 

For LCS porous samples, the following expression can be obtained by combining Eqs. 

(5.21), (5.23) and (5.24): 

Re
f

n n
nh

n
f

D
Nu

µ
λ ρ

=                          (5.26) 

This expression is similar to Eq. (5.25). The value of the exponent n varies with the 

nature of the surface geometry and the pore parameters of porous metal. 
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Figure 5.14 shows the correlation between Nusselt number and Reynolds number for 

experimental data for the LCS porous copper samples. The results indicate a power law 

dependence of the Nusselt number on the Reynolds number with the following 

correlation: 

0.537 20.963Re ( 0.881)Nu R= =                 (5.27) 

This empirical expression may be used to characterise the heat transfer performance of 

LCS porous copper. 
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Figure 5.14 Correlation between Nusselt number and Reynolds number 
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5.6 Theoretical Analysis of Heat Transfer of LCS Porous Copper 

5.6.1 Heat transfer effectiveness along the thickness for homogeneous structure 

Consider a energy generating plane wall and a medium with a constant cross section 

and constant thermal conductivity, λ, in Figure 5.15, and a uniform heat flux (q). 

According to one-dimensional Fourier’s law, the heat equation in this situation is:
  

dTq
dx

λ=                          (5.28)   

 

Figure 5.15 System with conduction 

The heat flux, q, is the heat transfer rate in the x direction per unit area perpendicular to 

the direction of heat transfer. The above equation shows that the temperature and heat 

distribution depend on the thermal conductivity of the strut at a given heat flux. For an 

open channel without porous medium, λ is the thermal conductivity of water. Adding 

porous metal with a higher thermal conductivity than water in the channel would 

significantly decrease the temperature gradient (dT/dx). The added porous metal can 

also be seen as an extended surface. The heat transfer in the experiment involves 

conduction in a fluid-saturated porous metal and convection from the internal surfaces 
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of the porous metal. Consider a system composed of a plane wall generating a constant 

heat flux (q) and a medium (porous metal), a cross section which there is a fluid flow 

(water with input temperature of Tin), as shown in Figure 5.16. In steady state, 

temperature gradients in the x-direction sustains heat conduction in the strut. With T1> 

T2> Tin, however, there is concurrent heat transfer by convection to the fluid, causing qx, 

and hence the magnitude of the temperature gradient, dT/dx, to decrease with increasing 

x.  

 

Figure 5.16 System with convection 

 

Considering the convection to remove heat from the plate at a given temperature of T1, 

there are two ways to increase the heat transfer rate. One is to increase the convection 

coefficient by increasing the fluid velocity, and the other is to increase the surface area 

across which the convection occurs. The thermal conductivity of the porous medium 
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has a strong effect on the temperature distribution along the porous medium and 

therefore influences the degree to which the heat transfer rate is enhanced. Ideally, the 

porous medium should have a large thermal conductivity to minimise temperature 

variation from the upper surface to the bottom surface. In the extreme case of infinite 

thermal conductivity, the entire porous medium would be at the temperature of the plate, 

T1, thereby providing the maximum possible heat transfer enhancement. 

 

As a first order approximation, the porous copper attached to a hot plate with forced 

fluid flow can be regarded as a one-dimensional conduction-convection problem. 

Assuming that the increase in the temperature of the cooling fluid within the porous 

media is negligible, the porous media can be simulated as an infinite fin of uniform 

cross-sectional area. Adapting the approach detailed in ref. Incropera et al (2013), the 

governing equation for temperature distribution in the porous media can be expressed 

as: 

2
2

2
( ) 0f

d T
m T T

dx
− − =                  (5.29) 

where T is the temperature of the porous medium at distance x from the heating 

plate-medium interface, Tf is the temperature of the cooling fluid, and m is a constant 

depending on the local convective heat transfer coefficient, the effective thermal 

conductivity of the porous medium and the specific surface area of the porous medium.   
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The solution of the above equation is: 

f mxT T
e

T
−−

=
∆

                        (5.30) 

J mA Tλ= ∆                          (5.31) 

where ∆T is the temperature difference between the hot plate at the plate-medium 

interface and the cooling fluid (i.e. Tpl – Tf), A is the cross-sectional area of the porous 

medium, and λ is the effective thermal conductivity of the porous medium, and J is the 

total heat transfer rate of the porous medium, which is equal to the heat input rate from 

the hot plate to the porous medium.  

 

From Fourier’s law, the conductive heat flow rate in the porous medium at x can be 

obtained by, 

mx
cond

dTJ A Je
dx

λ −= − =                     (5.32) 

The above equation shows that the conductive heat flow rate decreases exponentially 

with distance x, with the steepness of the decline being affected by the parameter m. 

Therefore, the accumulative convective heat transfer rate up to x within the porous 

media with a thickness t is therefore: 

(1 )mx
conv condJ J J J e−= − = −                   (5.33) 

 

For this model to be valid as an approximation for a porous medium with a finite 

thickness t, the conductive heat transfer flow rate at x = t should be sufficiently small. 
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As a first order approximation, we can assume that the conductive heat flow rate is 

reduced to 2% of the total heat flow rate at t, i.e. 98% of the heat has been removed by 

the convective heat transfer into the coolant. This assumption leads to m ≈ 4/t. The 

accumulative convective heat transfer rate up to x within the porous medium with a 

thickness t is therefore: 

4

(1 )
x

t
conv condJ J J J e

−

= − = −                  (5.34) 

 

5.6.2 Segment model for heat transfer coefficient of double layer LCS porous 

copper  

Again, to simplify the description of the place order of double layer porous copper 

samples, the layer with high porosity or high permeability is termed as the high layer, 

with the symbol of H, and the other layer with low porosity or low permeability is 

termed as the low layer, with symbol of L. H/L means that the H layer is in contact with 

the heat plate, while L/H means that the L layer is in contact with the heat plate. 

 

5.6.2.1 Flow partition 

As we discussed in Section 5.3.4, the Darcian velocity in double layer porous copper 

can be expressed by Eqs. (5.13) and (5.14). A scale factor, j, can be introduced to solve 

Eqs. (5.13) and (5.14):  

h h
h

h h l l

v Kj
v f K f K

= =
+

                       (5.35a) 
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l l
l

h h l l

v Kj
v f K f K

= =
+

                       (5.35b) 

where jh and jl are the scale factors for high and low layers, Kh and Kl are their 

permeability (defined in Eq. (5.13)), and fh and fl are their thickness fractions (defined in 

Eq. (5.14)), respectively. 

Finally, the flow flux distributed in each layer can be defined by partition factor (p): 

h h h
h h h

q f vp f j
q v

= = =                      (5.36a) 

l l l
l l l

q f vp f j
q v

= = =                       (5.36b) 

where ph and pl are partition factor of high layer and low layer, qh and ql are fluid flux 

through the high layer and low layer, respectively, and q is the total fluid flux.  

 

Table 5.7 shows the thickness fractions, scale factors and partition factors of the high 

layer of LCS porous copper samples. It can be seen that even if the thickness of the 80% 

porosity layer (sample S51) is only 1 mm, over 70% of water chooses this layer to flow 

through. Increasing the thickness of 80% porosity layer, less water will flow through 

the low layer with low porosity, which is the main reason that the heat transfer 

coefficient decreases sharply for samples S51-S54. Only 2% water could flow through 

the low porosity layer for sample S54.  
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Table 5.7 Scale factor and partition factors for samples with double layer structure 
Sample 

Reference 
Pore 

Size(μm) 
Porosity 

Combination 
Thickness 

Ratio 
fh jh jl ph 

S51 425-710 60%:80% 4:1 0.2 3.61 0.34 0.72 

S52 425-710 60%:80% 3:2 0.4 2.19 0.21 0.88 

S53 425-710 60%:80% 2:3 0.6 1.57 0.15 0.94 

S54 425-710 60%:80% 1:4 0.8 1.22 0.11 0.98 

S56 425-710 60%:65% 1:1 0.5 1.30 0.70 0.65 

S57 425-710 60%:70% 1:1 0.5 1.71 0.29 0.86 

S58 425-710 65%:70% 1:1 0.5 1.52 0.48 0.76 

S59 1000-1500 60%:65% 1:1 0.5 1.36 0.65 0.68 

S60 1000-1500 60%:70% 1:1 0.5 1.66 0.34 0.83 

S61 1000-1500 65%:70% 1:1 0.5 1.40 0.60 0.70 

S62 425&1000 60%:60% 1:1 0.5 1.25 0.75 0.63 

S63 425&1000 60%:65% 1:1 0.5 1.06 0.94 0.53 

 

5.6.2.2 Segment model 

For simplicity, a porous copper sample with a double layer structure in the experiment 

can be divided into 10 layers, each of which has a thickness of 0.5 mm and a heat 

transfer coefficient of hi (i represents the layer number and i=1,2,3,4,5,6,7,8,9,10). The 

convective contribution of a particular layer of the sample, from x=x1 to x=x2, to the 

overall heat transfer can be expressed by a weighting factor from Eq. (5.34): 

1 22 1 4 4x xx x x x
conv conv t tJ Jw e e

J

= = − −−
= = −                      (5.37) 

The overall heat transfer coefficient, h, is the weighted average of the heat tranfer 

coefficients of the ten layers: 
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10

1
i i

i
h w h

=

= ∑                           (5.38) 

where hi is the heat transfer coefficient for the ith layer, and wi is the weighting factor. 

Assuming that the thermal boundary layer is 5 mm and the efficiency of heat transfer 

decreases to zero at 5 mm, the weighting factors are determined by Eq. (5.37) as: 0.33, 

0.22, 0.15, 0.10, 0.07, 0.04, 0.028, 0.02, 0.014 and 0.01, corresponding to layer 1 to 10. 

The weighting factor decreases with the distance away from the heating plate, 

representing that the layers far away from the heating plate have less contribution to 

remove heat. It can be seen that the first two layers play a dominant role in heat transfer 

performance of porous media, while the last four layers are only about 10% of the total 

weighting factor. 

 

The heat transfer coefficients correlated with Darcian velocity by Eq. (5.21) were used 

for the values for the individual layers for porous copper samples with double layers. 

Typically, the heat transfer coefficients of sample S10, S12, S14, S24, S25 and S27 

were used for calculation. The prediction curve of overall heat transfer coefficients 

using weighting factors are shown in Figure 5.17. It can be seen that the simple segment 

model can predict the most of the experimental results well, especially for porous 

copper samples with L/H placement. 
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Figure 5.17 Comparison between the measured values of heat transfer coefficients 
and the predictions by the segment model for porous copper samples with double 
layers. (a) S51, (b) S52, (c) S53, (d) S54, (e) S56, (f) S57, (g) S58, (h) S59, (i) S60, 

(j) S61, (k) S62, (l) S63. (Continued) 
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Figure 5.17 Comparison between the measured values of heat transfer coefficients 
and the predictions by the segment model for porous copper samples with double 
layers. (a) S51, (b) S52, (c) S53, (d) S54, (e) S56, (f) S57, (g) S58, (h) S59, (i) S60, 

(j) S61, (k) S62, (l) S63.  
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5.7 Mechanical Properties  

As shown in Section 4.5, the mechanical behaviour of LCS porous copper, including 

bending, tensile and compression response, was affected by the porosity, pore size and 

anisotropy.  

 

5.7.1 Compression response 

The compressive curves of the LCS porous copper samples have similar shapes to those 

of Al foams reported by Zhao & Sun (2001) (Figure 5.18). Normally, the compression 

process of porous materials can be divided into three stages: linear-elasticity, plateau 

and densification. The experimental results in Section 4.5.1 showed that there was no 

obvious plateau for the porous samples with low porosity. For LCS porous samples 

with porosity higher than 65%, however, all the three stages were clearly observed. This 

may be attributed to the different degrees of effect of porosity on the deformation. For 

porous copper samples with low porosity, the quantity of pores was small so they had 

limited effect on the compression curve. The curve is more determined by the solid 

matrix. For porous copper samples with high porosity, a large number of pores existed 

in porous samples, so the deformation of pores plays a more important role, leading to a 

visible plateau. 
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Figure 5.18 Compressive stress-strain curves of Al foams with different Al mass 

fractions (Zhao & Sun 2001) 

 

The effect of pore size on compression behavior was given in Section 4.5.1.2. 

Increasing the pore size may increase the compression properties. For samples with 

pore size larger than 425 µm, however, the pore size effect on the compression 

properties is very small. The change in the compression properties of the porous copper 

samples was not considered owing to the change in pore size itself but the change in the 

amount of sintering defects characteristic of the LCS process (Tao et al. 2007). The 

mechanical properties of the porous metal depend on the integrity of its cell walls, 

which in turn depends on the particle size ratio between the metal and potassium 

carbonate powders. In LCS, the potassium carbonate particles should be larger than the 

metal particles. The metal particles firstly need to fill the interstices between the 

potassium carbonate particles. For smaller potassium particles, the interstices between 

them are small and it is difficult for the metal particles to fill in completely. In the 
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narrow parts of the network of interstices, the metal particles may be disconnected with 

each other and the cell walls of the resultant porous metal are weak. Increasing the size 

of potassium carbonate particles can lead to stronger cell walls of the resultant porous 

metal. When the size of potassium carbonate particles is big enough compared with the 

metal particles, this effect may be less important and the strength of porous metal 

depends strongly on the porosity but not pore size. The results are in accordance with 

those reported by Zhang & Wang (2005), who produced porous copper using copper 

powders with different particle sizes (5 µm and 45 µm) and space holder particles of 

600 µm, and found that there was no difference in their mechanical properties at a given 

porosity. 

 

It was found from Section 4.5.1.3 that anisotropy in LCS porous copper samples 

affected the compression behaviour. Two types of compression curves were found by 

compressing the porous copper samples from different directions (Figure 4.38). 

Comparing the compression curves of samples compressed at different directions 

showed that the yield stress in the normal direction was higher than that in the parallel 

direction, and the densification in the normal direction started at a greater strain than 

that in parallel direction. This may be attributed to two different deformation forms 

during compression.  
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As seen from Figure 4.1, most of the pores in the LCS porous copper are elliptical. 

Figure 5.19 illustrates the ellipse pore arrangement related to the compression direction 

and the deformation of pores during compression process. 

 

 
Figure 5.19 Illustration of the ellipse shape of pores and their deformation during 

compression 

 

Assuming that the spherical potassium carbonate particles distribute uniformly in the 

mixture during mixing with copper particles, the cell walls between the potassium 

carbonate particles are the same everywhere. During compacting, the potassium 

carbonate particles start to deform and the cell walls on the cross section of 

compression become thinner. The traces of these thin cell walls can be found in Figure 

4.1b. During the compression test, the effective cross section area (solid area on the 

“⊥” relation 

Compression direction 

Compression direction 

“//” relation 
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cross Section in porous copper) of the samples with “//” relation will be less than those 

with “⊥” relation. This difference may result in higher stress for samples compressed 

at the “⊥” direction at the earlier stage of the compression process. 

 

When applying a pressure from different directions, the deformation of the pores would 

be different. For samples with “//” relation, the pores are firstly compressed to round 

shape and then flattened to ellipse shape. For samples with “⊥” relation, this first step 

does not exist. This difference causes the densification of samples compressed at the “//” 

direction starting earlier than those compressed at the “⊥” direction. 

 

Gong et al. (2010) studied the compression deformation behaviour of a cellular 

CuAlMn alloy at two directions. The results are shown in Figure 5.20. A typical plastic 

collapse regime with a long, flat or wave-like horizontal plateau in the stress-strain 

curve was found, which indicated that plastic yielding of cell wall occurred. The 

abruption did not occur in LCS porous copper samples, with the compression curves 

being smooth in the whole compression process. This may be because: 1) copper was 

much more ductile than the CuAlMn alloy, which is a little brittle at room temperature; 

2) the sphericity of the pores in the LCS porous copper samples is higher than that in 

the CuAlMn porous metal samples.  
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Figure 5.20 Compressive stress-strain curves of cellular CuAlMn alloy with compress- 

ion directions parallel and perpendicular to the cross-section. (Gong et al. 2010) 

 

5.7.2 Bending response 

The variations of apparent modulus and flexural strength with porosity for porous 

copper samples with different pore sizes are shown in Figure 4.41. The apparent 

modulus was calculated by Eq. (3.14) based on the linear region of the 

load-displacement curve. It should be pointed out that this region of the curve was 

neither exactly linear nor elastic. As mentioned above, pores were easy to deform and 

some plastic deformation already took place in this region. The apparent modulus, 

flexural strength and bending energy absorption all decreased exponentially with (1-ε). 

These were consistent with the behaviour of the conventional metal foam, where the 

relationship between the relative elastic modulus and relative density followed the 

power law (Gibson & Ashby 1988).  
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Elastic deformation of LCS porous copper specimen was not very discernable, 

especially for the samples with large porosity, as a large number of pores inside the 

porous medium can deform at the earlier stage of bending. The point at which the 

sample was broken is distinct. It was found that the amount of deformation of the 

porous copper sample before fracture was not very large. For most of the tested samples 

with the thickness of 10 mm, the fracture displacement during bending was no more 

than 2 mm. This may be attributed to the weaker cell walls of porous copper and 

sintering necks than the matrix. 

 

The experimental data in Figures 4.39 and 4.41 showed the effect of porosity on the 

bending behaviour of LCS porous copper samples. The flexural strength decreased with 

the porosity, because the amount of metal in the component was reduced. A small load 

could result in deformation of the porous copper sample with a large porosity. In 

addition, the cell walls in the porous copper samples with large porosity were thinner 

and thus much easier to be fractured. 

 

Figures 4.40 and 4.41 showed the effect of pore size on the bending properties of LCS 

porous copper samples. The porous samples with small pore sizes were found to be 

much weaker than those with large pore sizes. In LCS, the metal particles should be 

significantly smaller than the potassium carbonate particles in order to fill in the 
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interstices between the potassium carbonate particles. For larger potassium carbonate 

particles, the interstices between them were larger and therefore easier to be filled. The 

sintering of these particles would lead to stronger cell walls of the resultant porous 

metal. For fine potassium carbonate particles, however, the interstices between them 

were smaller and it was more difficult for them to be filled completely. In the narrow 

parts of the network of interstices, the metal particles may be disconnected from each 

other. As a consequence, the cell walls of the resultant porous metal had more defects 

and became weaker, leading to low flexural strength. It was found that the flexural 

strength of porous copper with pore size greater than 425 μm had little difference. A 

pore size of 425-710 μm is large enough for the copper particles with size of 50-100 μm 

to fill the interstices completely. As a general rule, when the size ratio (s) defined in 

Section 5.3 is smaller than 0.13, the pore size effect on bending behaviour is small.  

 

5.7.3 Tensile response 

Figures 4.43 to 4.44 show the tensile stress-strain behavior of porous copper specimens. 

The curves are similar to these of the other metallic foams, e.g., the tensile stress-strain 

curves of Alulight foams in Figure 5.21. The slope of the stress-strain curve before 

general yielding is less than the elastic modulus, implying considerable micro-plasticity 

even at very small strains. Beyond yielding, the porous copper hardens up to the 

ultimate tensile strength, subsequently followed by failure of specimen.  
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Figure 5.21 Tensile stress-strain curves of Alulight foams (Ashby 2000) 

 

Figure 5.22 shows the effects of relative density on the elastic modulus or ultimate 

tensile strength of LCS porous samples. The ultimate tensile strength and elastic 

modulus increased exponentially with the relative density. The reasons for these results 

are the same as for the bending results. 

 

Kovácik (1998) investigated the tensile behaviour of porous metals made by the 

GASAR process and found that the percolation power-law dependence of the tensile 

properties on porosity was observed. A power law relationship between ultimate tensile 

strength and relative density, in accordance with the percolation theory, was also found 

in the present study. 
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Figure 5.22 Effects of relative density on tensile response of LCS porous copper 

samples (Testing direction:’//’). 

 

5.7.4 Correlation between mechanical properties 

The most common tests used to determine a material’s mechanical properties are the 

compression and tension tests, both of which are simple to carry out. The sample being 

tested usually gets longer during tension, and shorten during compression. Bulk 

materials during compressing can withstand much larger stresses than those under 

tension, as it is more difficult for atoms to be forced together on an atomic level 

(Roylance 2008). The difference between compression strength and tensile strength, 

however, is often smaller (Joshus 2013). In porous media, the tensile strength is often 

smaller than the compressive strength and bending flexural strength. Chen et al (2013) 
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reported that the ultimate tensile strength of cement mortar with porosity of 25% was 

only 3/5 of its bending flexural strength, and 1/10 of its compressive strength.  

 

Porous copper is a ductile metals, where ultimate compression strength cannot be 

measured as ductile metals can bear large plastic deformation. The compressive yield 

strength was measured for comparison. The LCS porous copper with a porosity range 

between 60-85% has a yield strength (compression) between 1.5-20 MPa, a flexural 

strength (bending) between 3-30 MPa, and a ultimate tensile strength between 1-10 

MPa. This shows that the LCS porous copper also has a lower tensile strength 

compared to the bending flexural strength and compressive yield strength.  

 

Odler and Robler (1985) suggested that the ratio of compressive strength and split 

tensile strength is porosity dependent for porous media. They found a linear relation 

between compressive/tensile strength ratio and porosity when the porosity was lower 

than 50%. The compression yield strength (σc), bending flexural strength (σb) and 

ultimate tensile strength (σt) of LCS porous copper tested at the // direction, according 

to experimental data in Tables 4.14, 4.15 and 4.17, can be expressed by power law 

relationship with porosity (ε): 

3.85 2606.2(1 ) ( 0.991, 0.6 0.85)c Rσ ε ε= − = ≤ ≤            (5.39a) 

2.65 2352.6(1 ) ( 0.995, 0.6 0.85)b Rσ ε ε= − = ≤ ≤            (5.39b) 

2.45 297.4(1 ) ( 0.993, 0.6 0.85)t Rσ ε ε= − = ≤ ≤            (5.39c) 
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From Eq. (5.39), new expressions for the ratio between compression yield strength, 

bending flexural strength and ultimate tensile strength can be written as a function of 

porosity as: 

1.21.72(1 ) (0.6 0.85)c

b

σ ε ε
σ

= − ≤ ≤                  (5.40c) 

 1.46.22(1 ) (0.6 0.85)c

t

σ ε ε
σ

= − ≤ ≤                  (5.40c) 

Both ratio decreases with increasing porosity, indicating that the mechanical properties 

become more uniform at high porosity. The mechanical properties of porous metals 

determine the range of usefulness of porous material in service. The compression yield 

strength and bending flexural strength of LCS porous copper are 1.5-3 times of its 

ultimate tensile strength, giving a conclusion that the LCS porous copper is much 

suitable for a compression or bending strut.   

 

5.7.5 Elastic modulus prediction 

5.7.5.1 Elastic modulus of solid materials 

During the last decades, progress in predicting the elastic properties of porous materials 

over an entire porosity range has been closely related to the power-law empirical 

relationship of Kovácik & Simancík (1999): 

(1 )n
s

crit

E E ε
ε

= −                           (5.41) 
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where Es and E are the elastic modulus of the solid material and the porous material 

with porosity ε, respectively, εcrit is the porosity at which the effective elastic modulus 

of the porous material becomes zero, and n is a parameter dependent on the grain 

morphology and pore geometry of the porous material. There has been a large amount 

of literature where the experimental data were fitted to Eq. (5.41) and giving εcrit=1.   

 

It was found that Eq. (5.41) could not predict the elastic modulus of LCS porous copper. 

Given ECu=115 GPa for bulk copper, the best fitting parameter, n, is as large as 9.275 

with a large deviation of 54.2%. In addition, Eq. (5.41) does not consider the anisotropy 

of LCS porous copper generated by pore shape change during the compressive test. 

Similar results were also found in porous copper produced by another space holder 

method, where there existed a large difference between the calculated and the measured 

moduli (Wen et al. 2002, Zhang & Wang 2005). The main difference may come from 

the discrepancy of microstructure of the samples produced by power metallurgy method 

and conventional casting method, owing to the large difference of elastic modulus of 

the solid materials.  

 

In order to obtain a realistic modulus for the solid matrix, a standard copper sample was 

produced by powder metallurgy without potassium carbonate to obtain the density and 

elastic modulus of the near-solid bulk copper. The production procedures were the same 

with those to make porous copper samples. Although expecting to produce a “solid” 
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sample with as low a porosity as possible, the sintered solid sample was still had a 

density of 8.56 g/cm2 (porosity: 96.2%). It was obvious that complete densification is 

hard to achieve using the powder metallurgy method. There was still 3.8% 

micro-porosity inside the copper matrix under the fabrication condition in the 

experiment. This result is in accordance with the fact that the actual porosity of the LCS 

porous copper samples is often a little higher than its nominal porosity.  

 

The elastic modulus (compression), apparent modulus (bending), and elastic modulus 

(tensile) and of the standard sample were measured as 4.35GPa, 5.96 GPa , and 5.07 

GPa, respectively. The three moduli were much smaller than that of bulk copper (115 

GPa). In LCS porous copper, the mechanical properties depends significantly on the 

bonding strength between copper particles, which is weaker than that of the grain 

boundaries in cast copper. Therefore, the elastic and plastic deformation behaviour of 

materials produced by powder metallurgy is different from those made by conventional 

casting method (Ren 1998). 

 

5.7.5.2 Numerical model 

The Mori-Tanaka (MT) model is one of the best known analytical approaches to 

determine the effective material constants of composite materials (Mori & Tanaka 

1973). So far, it has been widely used to predict the physical and mechanical properties 

of materials, by using Eshelby’s equivalent inclusion theory to calculate the Eshelby 
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tensors and applying the homogenization technique to determine the properties of the 

composite materials. This model, however, is only suitable for composites with low 

volume fractions of inclusions, and the microstructure is assumed to be homogeneous, 

ignoring the effects of size and number of inclusions. EI-Hadek & Kaytbay (2008) 

compared the experimental results of elastic modulus of LCS porous copper with 

Mori-Tanaka predictions and it showed that the MT model overestimated the values of 

elastic modulus of LCS porous copper.  

 

Several improved models were developed to address these limitations. Recently, Gong 

et al. (2011) proposed a stepped equivalent substitution approach to extend MT model 

and developed a semi-infinite domain mechanics model to determine the Eshelby’s 

tensors of the surface regions. Their model can predict the properties of the porous 

metal with anisotropy made by space holder method well. The model is described as 

follows: 

 

By considering a composite material containing pores as an Eshelby’s inhomogeneous 

inclusion, the stiffness matrix of which is zero, according to the Mori-Tanaka model, 

the constitutive equation can be solved and the equivalent stiff matrix, Le, can be 

obtained as follows: 

1( )e mL L I CN −= +                     (5.42) 

where Le is the equivalent stiff matrix for porous metal,  Lm is the stiff matrix of the 



 

 

251 

 

solid, I is a fourth rank identity tensor, C is the volume fraction of the pores, and N is a 

variable related to the Esheby tensor, S, with [ ]{ } 1
(1 ) )m m mA L L CI C S L

−
= − + − .  

 

The effect of pore number was considered in the extended MT model. Pores are divided 

into n groups according to the shape, volume, orientation and position. The solid matrix 

with the first group of pores is converted into an equivalent medium by the MT model, 

which has the stiffness matrix of L1. The equivalent medium is then taken as a new 

matrix and combined with the second group of pores to form a new porous medium 

with the stiffness matrix L2. By repeating this process until all groups of pores are taken 

into account for calculation, the final stiffness matrix, Ln could be taken as the effective 

stiffness matrix of the porous medium. The pore shape effect was considered by using 

the Eshelby’s tensor for spheroid inclusion (shown in Appendix C).  

 

The volume fraction of pores of the ith group of pores can be obtained by: 

/
1 ( / )i

C nC
C i C n

=
− + ×

                    (5.43) 

where n is the group number and C is the volume fraction of all pores in the initial 

matrix.  

 

Numerical calculations for the stiffness matrix of a porous material containing pores 

using the SES approach were carried out using the MATLAB software. The stiffness 

matrix of the first equivalent medium was obtained using the stiffness matrix of the 
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initial matrix, Lm=λmδijδkl+μmδikδjl+μmδilδjk and substituting Eqs. (5.43) and (C1) (in 

Appendix C) into Eq. (5.42). λm and μm are Lamé constants of the initial matrix, and δij 

is the Kronecker delta. The equivalent flexibility matrix is therefore:  

1( )e eM L −=                        
(5.44) 

For transversely isotropic materials Me can be written as: 
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The effective modulus of the porous material on parallel orientation and normal 

orientation can be obtained by: 

1
11( )eE M −

⊥ =                          
(5.45a) 

1
33// ( )eE M −=                          

(5.45b) 

During the calculation process, the Eshelby’s tensors for spheroid inclusion in 

Appendix C was calculated with a1/a3=3/2 for LCS porous copper with ellipse pores. 

The equivalent matrix elastic modulus was fixed as the apparent modulus of the 

standard porous copper (see in Section 5.5.4.1) in the compression test. Gong (2011) 

reported that the micropores effect on the elastic modulus of porous metals produced by 

the space holder method can be ignored in the extended MT model when the fraction of 

micropores is lower than 5%. The micropores fraction in LCS porous copper is lower 

than 3%; therefore, its effect was not taken into account during the calculation. As the 
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standard sample with a relative density of 0.962 was used as the matrix in the 

calculations, the pore volume fraction C (in Eq. (5.43)) for each sample should be taken 

as the equivalent pore volume fraction: C=Ceff=(ε-0.038)/0.962, where ε is the actual 

porosity of the porous copper.  

 

The relationship between the relative elastic modulus and relative density of porous 

copper sample is shown in Figure 5.23. The relative density and relative elastic 

modulus were calculated with respect to the measured density and elastic modulus of 

the standard sample. The calculated values from the Ex-MT model are in good 

agreement with the experimental values of elastic modulus, no matter which direction 

the porous copper samples were tested. This model, however, could not predict the 

elastic modulus of the samples with fine pore sizes. As mentioned in the previous 

section, the samples with the fine pore size had low thermal conductivity and poor 

mechanical properties, which were all caused by the poor bonding between the copper 

particles and the dead ends with little contribution to the physical and mechanical 

properties of the porous samples. The Ex-MT model did not consider these effects. 

Therefore, in the case of pore sizes being close to the copper particle sizes, the Ex-MT 

model is not applicable.  

 

In some cases, the Ex-MT model can be approximated by exponent expressions for 

simplicity. The approximate expressions for the normalized elastic modulus of LCS 
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porous copper are: 

1.610.91 for relationeffE ρ⊥
′ = ⊥（ ）             (5.46a)  

1.94
/ / 1.01 for / /  relationeffE ρ′ = （ ）             (5.46b) 

where E
⊥
′  and / /E′  is the relative elastic modulus, and ρeff is the relative density of LCS 

porous copper samples. The approximate expressions are similar to the Gibson-Ashby 

formula 2( / )foam solid foam solidE E ρ ρ≈ , indicating that the elastic modulus of LCS porous 

copper still follows the power law. 
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Figure 5.23 Comparison of the measured elastic modulus values and the calculated 
ones by Ex-MT model. (■ elastic modulus(compression) at the ‘//’ direction; □ elastic  
modulus (compression) at the ‘⊥’ direction; ● apparent modulus (bending) at the ‘//’ 
direction; ○ apparent modulus at the ‘⊥’ direction; ▲ elastic modulus (tensile) for 

samples at the ‘//’ direction; + elastic modulus for samples with fine pore size of 
250-425 μm). 
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Chapter 6  

 

Conclusions and Future Work 

 

6.1 Conclusions 

Porous copper samples with different pore structures have been manufactured using 

LCS method. Copper powders with different particle size ranges, 50-100 µm, 100-300 

µm and 600-1000 µm, were used as the raw material. Potassium carbonate powders 

with different particle size ranges, 250-425 µm, 425-710 µm, 710-1000 µm and 

100-1500 µm were used as the space holders. The as-manufactured samples have 

porosities between 30% and 85%, and pore sizes between 250 and 1500 µm in diameter. 

The fluid transport, heat transfer and mechanical properties were investigated. It shows 

that LCS porous copper displays a wide range of good functional properties, making it a 

promising and attractive material for practical applications. 

 

6.1.1 LCS porous metals and pore structures 

The morphology and microstructure of porous copper were observed by means of 

optical microscopy and SEM. The pore morphology of the LCS porous copper closely 

matches that of the potassium carbonate particles. There are slight deviations from 

sphericity due to the large pressure applied during compacting. The cell walls are 

formed by clusters of copper particles, which are metallurgically bonded to each other. 
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The specific surface areas of the LCS porous copper samples were measured by the 

quantitative stereology method. The experimental results agree with the theoretical 

calculation based on the average pore size. The tortuosity values of the LCS porous 

copper samples were obtained from the acoustic test. It can be expressed by an 

empirical equation related to the porosity and the size ratio between the copper particles 

and the pores. 

 

6.1.2 Fluid permeability 

A purpose-built apparatus was used to measure the permeability of a range of samples. 

The pressure drop of LCS porous copper fits well with the Forchheimer-extended 

Darcy equation. The relationships between the permeability with porosity and pore size 

were evaluated. The permeability increases with porosity and copper particle size, but 

decreases with pore size. By introducing the tortuosity, a modified Carman-Konezy 

relationship as a function of porosity and particle/pore size ratio is established. The 

relationship can predict the permeability of LCS porous metals with single and double 

layer structures. 

 

6.1.3 Thermal conductivity 

Thermal conductivity tests were carried out on a number of porous metal samples with 

different pore structures. Correlations between the thermal conductivity and pore 

structures, such as relative density, pore size and copper particle size, have been 
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investigated. The thermal conductivity increases with relative density, following the 

power law. The exponent of the power law depends strongly on the size ratio between 

the copper particle and the pore. An empirical equation is established to describe this 

relation. 

 

6.1.4 Heat transfer coefficient 

Heat transfer performance was characterised by heat transfer coefficient in this study. 

The values of heat transfer coefficient vary amongst the test samples, with large pore 

sizes and low porosities showing excellent heat exchange capabilities. The heat transfer 

coefficient generally decreases with porosity, but increases with pore size. Samples with 

very low permeability have low heat transfer coefficients. Copper particle size strongly 

affects the heat transfer coefficient of LCS porous copper. The samples made with fine 

copper particles possess high heat transfer coefficient, at a given porosity and pore size. 

Heat transfer coefficients of porous copper samples with double-layer are sensitive to 

the placement-order. A segment model is developed for this phenomenon and the 

theoretical results show a good agreement with the experimental data. 

 

6.1.5 Mechanical response 

Three different mechanical tests, compression, bending and tensile test, were conducted 

to investigate the mechanical behavior of LCS porous copper. Increasing the relative 
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density and pore size can improve the mechanical properties of LCS porous copper. 

The apparent modulus of LCS porous copper can be predicted by the Ex-MT model. 

 

6.2 Future Work 

The LCS method is an effective way to produce porous metals with different pore 

structures. This thesis used spherical copper particles and potassium carbonate particles. 

The particle shape of the raw materials may be changed to see whether it will make a 

difference. The narrow particle or pore size distribution can be adopted to compare with 

the results already obtained to investigate the effect of particle/pore size ratio on 

properties in detail. Furthermore, the effects of the compacting pressure and sintering 

temperature or sintering time can be investigated in more detail. 

 

The permeability test can be carried out with different gases or liquids to investigate the 

viscosity effect. Samples with three layers or more can be done to improve the 

theoretical model developed in the thesis. The entrance effect on the pressure drop in 

LCS porous metal can be investigated by stacking the LCS porous copper samples 

along the direction of the fluid flow. The thickness effect on permeability can also be 

studied. For the turbulent flow in porous media, the drag coefficient is the other 

parameter to characterise the permeable materials, and clarification of this parameter is 

worth investigating.  
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The temperature distribution in the porous copper during the heat transfer process need 

to be studied. Further work on the theoretical modeling of the heat transfer performance 

of single LCS porous copper can be carried out, especially on the investigation of the 

balance between permeability and thermal conductivity and the thickness effect on the 

heat transfer coefficient. Comparison between the heat transfer performance of LCS 

porous metal and other commercial heat sink can be done under the same experimental 

conditions. Besides, to study the balance of pressure drop and heat transport would help 

to place the performance of LCS porous copper in better context.  

 

All the theoretical calculations in this thesis ignored the effects of sample size and the 

distribution of copper particle size and pore size. Further investigation should address 

these aspects. The mechanisms of the effects of the size ratio between the copper 

particle and the pores on the fluid transport, heat transfer and mechanical properties 

should also be studied in more detail. 
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Appendies  

 

Appendix A Determination of tortuosity of porous copper samples based on 

Johnson- Champoux-Allard Model 

Assuming that the porous medium is isotropic and the skeleton of material is stiff (i.e.: 

ignoring the vibration of its solid frame and only taking acoustic waves propagating in 

the fluid inside the pores into account), its sound absorption properties can be described 

by means of the equivalent fluid models and calculated by an equivalent dynamic 

density and a dynamic bulk modulus. While propagating through the porous materials, 

the sound waves are attenuated due to the viscous and thermal dissipation mechanisms 

existing in porous materials. The dynamic density accounts for the viscous losses, and 

the dynamic bulk compression modulus for the thermal losses. The model 

(Johnson-Champoux-Allard model) can be expressed by the following equation: 
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where ε is the porosity, σ the static flow resistivity, 2τ the tortuosity factor, Λ is the 

viscous characteristic length, Λ' is the characteristic thermal length,  c is the viscous 

shape factor, c’ is the thermal shape factor, ρeff is the effective density of air in pore in 

porous materials, ρ0 is the static density of air, Keff is the effective bulk modulus, keff is 

the complex wave number, l is the thickness of samples, Zb is the acoustic impedance at 

the rear face of samples, Zf  is the surface normal acoustic impedance of materials, Z0 is 

the characteristic impedance of free air, ω  the angular frequency, γ is the specific heat 

ratio of air, P is the static pressure, µ the dynamic viscosity of air, j = 1− ,Prandtel 

number 2B = 0.71,and R and A0 are the sound reflection and absorption coefficient of 

materials at normal incidence, respectively.  

 

The process of the determination of the acoustic parameters of porous metals is given as 

follows: 
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i. Determine the varying ranges of the acoustic parameters in acoustic model.  

ii. Start global search in feasible domain of optimization variables using hybrid genetic 

algorithm together with simulated annealing penalty function to obtain a set of acoustic 

parameters. 

iii. Make the substitution of the acoustic parameters obtained in step (ii) into Eq. 

(A1)-(A10) and further calculate the theoretical acoustic impedance and sound 

absorption coefficients of porous materials as a theoretical observing data. 

iv. Compare the measured data with those observing data. 

v. Repeat the steps (i)- (iv) and choose the acoustic parameters, from which the best fits 

with measured data are achieved, as the final inverse results. 

 

There are seven acoustic parameters that involved in Johnson-Champoux-Allard model 

( from Eq. (A1) to (A10)): ε, σ, τ2, Λ, Λ',  c and c'. Commonly, to enhance the 

computational accuracy of determining the acoustic parameters, the less unknown 

independent acoustic parameters of materials are encouraged to be included in models. 

The porosity and the static flow resistivity of materials have been got in advance by 

means of Archimedes method and permeability test, respectively. Λ and Λ' can be 

obtained with given parameters of σ, τ2, c and c’. The array vector of 2[ ']Ta c cτ=  is 

chosen as variants for computation. It has been pointed that 1< τ2<10 and 0.3< c, c’<3.3 

for many porous materials (Allard & Atalla 2009). Therefore, the same varying 

quantitative ranges are used in the work also. Because the normalized surface acoustic 
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impedance of sintered porous metals can be measured conveniently, in inverse 

computations we choose real and imaginary part of above impedance among the 

frequency ranges of 500 - 6400Hz as the computational objective so that the least errors 

between the theoretically calculated  ( ( )c
fZ )and measured acoustic impedance ( ( )m

fZ ) 

mentioned above may be easily achieved simultaneously. The final objective function 

( , )objf aω   is defined as : 

2
( ) ( )
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( , ) ( , ) ( , )

N
m c

obj f i f i
i

f a Z a Z aω ω ω
=

= −∑                    (A11) 

 

where 2[ ']a c cτ= . 

 

In the genetic computations, the maximum number of individuals is equal to 100; the 

individuals are coded using binary system. The coding lengths of individuals are all set 

to be nine bits such that the computational results can be expressed by two bits behind 

decimal point. As for the genetic operators, we select random ergodic sampling manner, 

the generation gap is 0.9, the probability of crossover (one-point crossover) Pc is 0.9, 

and the probability of mutation Pm is 0.04.The termination of evolutional algorithm are 

controlled by the maximum numbers of generations which are made to be 500 and 50, 

respectively. 
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Figure 4.29 Variation of heat transfer coefficient with Darcian velocity for porous 
copper samples with different thicknesses (Input heat power: 250 kW/m2).  
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Appendix B Heat transfer coefficient of samples in Table 4.13 with different 

thicknesses 
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Figure 4.29 Variation of heat transfer coefficient with Darcian velocity for porous 
copper samples with different thicknesses (Input heat power: 250 kW/m2).  
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Appendix C Eshelby’s tensor for spheroid inclusions in a transversely isotropic 

matrix 

For a transversely isotropic matrix, the elastic moduli are denoted by: 

11
mL d= , 11 12

1 ( )
2

m mL L e− = , 
44
mL f= , 

13 44
m mL L g+ = , 

33
mL h= ; 

where m
ijL  is the Voigt constants. 

 

For ellipse pores with an axis ratio of κ=a1/a3 (where a1 is the major axis, and a3 is the 

minor axis), the Eshelby’s tensor S is calculated by: 

1 ( )
8

m
ijmn pqmn ipjq jpiqS L G G

π
= +                    (C1) 

ijklG  is the non-zero components and given below: 

{ }1 2 2 2 2 2 2 2 2 2 2 2
1111 2222 0

1 (1 ) (1 ) (3 )(1 ) 4 (1 )
2

G G x f x h x e d x f x g x x dxπ κ κ κ   = = ∆ − − + × + − + − −   ∫
1 2 2 2 2 2 2 2 2

3333 0
4 (1 ) (1 )G x d x f x e x f x dxπ κ κ κ  = ∆ − + − +  ∫

{ }1 2 2 2 2 2 2 2 2 2 2 2
1122 2211 0

1 (1 ) (1 ) ( 3 )(1 ) 4 3 (1 )
2

G G x f x h x e d x f x g x x dxπ κ κ κ   = = ∆ − − + × + − + − −   ∫

{ }1 2 2 2 2 2 2 2 2 2 2 2 2
1133 2233 0

2 (1 ) ( )(1 ) 2 (1 ) (1 )G G x d e x f x f x h x g x x dxπ κ κ κ κ   = = ∆ − + − + × − + − −   ∫

{ }1 2 2 2 2 2 2 2 2 2 2 2
3311 3322 0

2 (1 ) (1 ) (1 ) (1 )G G x d x f x e x h x g x x dxπ κ κ κ   = = ∆ − − + × − + − −   ∫  

{ }1 2 2 2 2 2 2
1212 0

1 (1 ) ( ) (1 )
2

G x g x d e f x h x dxπ κ κ = ∆ − − − − + ∫  

1 2 2 2 2 2 2
1313 2323 0

( 2 ) (1 ) (1 )G G g x x e x f x dxπ κ κ = = − ∆ − − + ∫  

where { }1 2 2 2 2 2 2 2 2 2 2 2 2 2(1 ) (1 ) (1 ) (1 )e x f x d x f x f x h x g x xκ κ κ κ−      ∆ = − + − + × − + − −       
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