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ABSTRACT 
Genetic predictors for epilepsy development, treatment response and dosing  

Antiepileptic drug (AED) treatment is the first line strategy for seizure control in the 
majority of individuals with epilepsy but remains challenging, not least because of 
interindividual variability in efficacy, tolerability and dosing. The studies presented in this 
thesis set out to explore that variability from a genomic perspective in patients with newly 
diagnosed epilepsy from across the UK. Single nucleotide polymorphisms (SNPs) in genes 
encoding drug metabolising enzymes (DMEs) may be associated with the dose of 
carbamazepine (CBZ) required for seizure control. A cohort of 159 individuals who were 
seizure-free for 12 months on a stable dose of CBZ monotherapy was genotyped for 51 SNPs 
across six DMEs. Haplotype analysis identified 8 haplotype blocks across the genes. No single 
SNPs or haplotype blocks were associated with CBZ dose. Thus, it is unlikely that genetic 
variability in DMEs accounts for the individual differences in CBZ dose requirement.  
 A splice site SNP (rs3812718) in the SCN1A gene was previously shown to influence 
maximum doses of AEDs. This SNP was genotyped in 817 patients and tested for association 
with maximum and maintenance doses of several AEDs. An association was identified 
between rs3812718 and maximum AED dose, with an interaction analysis suggestive of a 
drug specific effect. These findings suggest that this SCN1A variant contributes to variability 
in the limit of tolerability to AEDs.       
 Response to AED treatment is multifactorial and likely to be influenced by multiple 
genes. Five SNPs previously reported to predict treatment outcome in epilepsy were 
genotyped in 772 patients and the resulting data, together with data from an Australian 
cohort, incorporated into a predictive algorithm. The algorithm failed to predict treatment 
outcome in general but was partially successful in identifying responders to CBZ and 
valproate. These five SNPs may be relevant to the prognosis of epilepsy, particularly when 
treated with specific AEDs.        
 Primary generalised epilepsies (PGEs) are highly heritable and believed to be 
polygenic in origin. Predictive algorithms were employed to explore genetic influences on 
seizure (absence vs. myoclonus) and epilepsy (PGE vs. focal) type using 1,840 SNP genotypes 
available from 436 patients with PGE. Although the algorithms failed to distinguish PGE 
patients on the basis of genetic variants, they showed improved association over univariate 
methods of analysis. Such an approach may be suitable for future investigations using large 
genomic datasets.          
 A recent genome-wide association study identified multiple genetic variants that 
approached genome-wide significance for association with 12 month remission from 
seizures. Five of these SNPs were genotyped in an independent cohort of 424 patients and 
tested for association with remission and time to remission. No significant associations were 
found, questioning the validity of the original observation or the method of replication. 
Further work is required to understand this outcome.      
 In conclusion, the genetic bases of epilepsy, AED response and AED dose 
requirement are multigenic and thus far undetectable using traditional association studies in 
modestly-sized patient cohorts. Further advances in genomic, bioinformatics and statistical 
methodologies are required before the genetic contribution to heterogeneity in epilepsy-
related phenotypes can be translated into improved clinical care.  
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1.1 Epilepsy 

Epilepsy is a common serious neurological disorder experienced by millions and a cause 

of substantial morbidity and mortality. The disorder is found in all ages from neonates to the 

elderly and affects approximately 0.75% of the population with an estimated prevalence of 8.5 

per 1,000 individuals (www.who.int/mediacenre/factsheets/fs999). In the UK the prevalence 

rate is 6.2 per 1,000 population and it is diagnosed in about 80 individuals each day (Shorvon, 

2009)(www.who.int/mediacenre/factsheets/fs999). Costing around two billion pounds a year, 

and known for its potentially devastating social consequences and poor health outcomes, 

untreated epilepsy is also a critical public health issue. The long standing stigma associated 

with epilepsy has resulted in many persons having lower employment and education levels 

and lower socioeconomic status (Duncan et al., 2006).s Additional issues include higher 

psychological distress, more physical injuries such as fractures and burns, and increased 

mortality than the general population (Shneker and Fountain, 2003, Fisher et al., 2005). 

The history and treatment of epilepsy dates back some 4000 years (Chaudhary et al., 

2011), with the term epilepsy originating from the Ancient Greek word ‘epilambanein’, which 

means “to seize” or “to attack”. In these ancient times however, epilepsy was considered to 

have a religious origin; among existing theories were demonic possession and divine 

experience. Hippocrates became the first physician to define epilepsy as a “disease” and 

originally attributed the disorder to brain dysfunction (Fatovic-Ferencic and Durrigl, 2001). 

He was also the first to accurately describe epilepsy symptoms in both adults and children 

(Magiorkinis et al., 2010, Chaudhary et al., 2011). 

The early remedies used to treat epilepsy were mainly empirical and reflective of this 

early notion of a spiritual basis (Magiorkinis et al., 2010). A more rational scientific view of 

epilepsy didn’t appear until the 17th century when advancements in anatomy, physiology, and 

chemistry of the modern era were established and wherein nerve action was first associated 

with seizure causation (Magiorkinis et al., 2010, Chaudhary et al., 2011). 

 Today epilepsy is considered to be one of the most common serious neurological 

conditions and is defined as “a disorder of the brain characterised by an enduring 

predisposition to generate epileptic seizures”: and requiring the occurrence of at least one 

epileptic seizure (Fisher et al., 2005). Epilepsy is currently not considered a uniform disorder 

but a manifestation of underlying brain dysfunction that comprises of a collection of several 

seizure-related syndromes, varying in their aetiologies, clinical features, treatment, and 

prognosis (Shneker and Fountain, 2003, Engel, 2006b).  

 

http://www.who.int/mediacenre/factsheets/fs999
http://www.who.int/mediacenre/factsheets/fs999
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1.1.1 Aetiology of epilepsy 

The key manifestation of all epilepsies is recurrent seizures, though the aetiologies 

that give rise to these seizures are notoriously diverse, varying both worldwide and with age 

(Beck and Elger, 2008). Epilepsy is commonly associated with overt causes, these are often 

referred to as symptomatic or structural aetiologies and include central nervous system (CNS) 

tumors, neurodevelopmental abnormalities, CNS trauma and inflammation (Shneker and 

Fountain, 2003, Beck and Elger, 2008). In the UK the most common causes of epilepsy were 

cerebrovascular disease (15%), cerebral tumour (6%), alcohol-related (6%) and post-traumatic 

(2%) basis (Sisodiya and Duncan, 2004, Steinlein, 2008).  

 In a small number of patients a mutation in a single gene suffices to cause chronic 

seizures and this group of rare monogenic or Mendelian epilepsies thus are genetic in origin. 

More than 200 Mendelian epilepsies exist, however, in total they only account for around 1% 

of all epilepsy cases (Steinlein, 2008, Bhalla et al., 2011). In addition to the symptomatic and 

rare monogenic epilepsies there is a large group of common epilepsies that have a yet unknown 

aetiology (approximately two-thirds of all epilepsy cases). These epilepsies are thought to have 

some genetic contribution though are assumed polygenic and have an overall multifactorial 

basis (Sisodiya and Duncan 2004; Steinlein 2008). 

 

1.1.2 Classification system 

The classification of epilepsy is important for understanding its natural history, 

prognosis, diagnostic testing and treatment (Shneker and Fountain, 2003). Several 

classification systems have been proposed over the years and these continue to evolve over 

time to modify those definitions that predate modern neuroimaging, genomic technologies, 

and current concepts in molecular biology (Engel, 2006a, Berg et al., 2010). The most recent 

universally employed classifications of epilepsy seizures and syndromes were published by 

the International League Against Epilepsy (ILAE) in 1981 and 1989 respectively  and although 

a new ILAE Classification system has since been proposed in 2001 and more recently in 2010; 

these latest versions remain complex and thus controversial as to their superiority for clinical 

usage (Commission on Classification and Terminology of the International League against 

Epilepsy, 1981, Commission on Classification and Terminology of the International League 

against Epilepsy, 1989, Berg et al., 2010). See Table 1.1 for the ILAE classification of seizures 

(Berg et al., 2010). 
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Table 1.1 Classification of seizures (based on 1989 ILAE 

classification). Adapted from Engel et al 2001) 

  

1 Generalised seizures 
1.1 Tonic-clonic seizures  

 
1.2 Clonic seizures 
      1.2.1 Without tonic features 
      1.2.2 With tonic features 
 
1.3 Typical absence seizures 
1.4 Atypical absence seizures 
1.5 Myoclonic absence seizures 
1.6 Tonic seizures 
1.7 Spasms 
1.8 Myoclonic seizures 
 
1.9 Eyelid myoclonia 
       1.9.1 Without absences        

 1.9.2 With absences 
 

1.10 Myoclonic atonic seizures 
1.11 Negative myoclonus 
1.12 Atonic seizures 
 
2 Focal seizures 
2.1 Focal sensory seizures 

With elementary sensory symptoms  
With experiential sensory symptoms  
 

2.2 Focal motor seizures 
With elementary clonic motor signs 
With asymmetrical tonic motor seizures  
With typical (temporal lobe) automatisms  
With hyperkinetic automatisms 
With focal negative myoclonus 
With inhibitory motor seizures 
 

2.3 Gelastic seizures 
2.4 Hemiclonic seizures 
2.5 Secondarily generalised seizures 
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1.1.3 Seizures in epilepsy 

Epileptic seizures have been defined as the transient occurrence of signs and/or 

symptoms due to involuntary, abnormal excessive or synchronous neuronal activity in the 

brain as defined by the ILAE (Shneker and Fountain, 2003, Fisher et al., 2005). Epileptic 

seizures are first broadly classified into partial seizures or generalised seizures, and this 

division is based entirely on the site of the abnormal neuronal activity or seizure initiation, and 

then separated further by their individual clinical presentations (Shneker and Fountain, 2003). 

Partial seizures originate in a small area of the brain (one or more localised foci) and can 

individually be characterised according to degree of impairment or loss of consciousness 

during seizure onset. Generalised seizures on the other hand occur simultaneously in both 

cerebral hemispheres, with no localised foci, they produce loss of consciousness, either briefly 

or for a longer period of time and are individually characterised by presence of motor activity 

(Browne and Holmes, 2001, Shorvon, 2009). Both seizure types are classified using their 

specific clinical and encephalogram (EEG) manifestations (Browne and Holmes, 2001).  

 There are three broad categories of partial seizures: i) simple partial seizures, where 

individuals remain fully conscious, ii) complex partial seizures, where consciousness is 

impaired or lost and iii) partial seizures with secondary generalisation (partial seizures that 

spread across the entire brain and evolve into a generalised seizure (Browne and Holmes, 2001, 

Shneker and Fountain, 2003). Generalised seizures are divided into two overall categories: 

either as i) presenting major motor symptoms, as for generalised tonic-clonic seizures (GTCS), 

atonic seizures, tonic seizures, clonic seizures and myoclonic seizures or ii) having a lack of 

motor activity, as for typical and atypical absence seizures (Browne and Holmes, 2001, 

Shneker and Fountain, 2003).  

 

1.1.4 Pathogenesis  

 Normal cerebro-cortical function in humans has been well characterised, but the 

neurochemical basis of the processes underlying seizure generation is not well defined 

(Duncan et al., 2006). Seizures in epilepsy are thought to result from multiple mechanisms 

that appear diverse in nature, making their pathogenesis difficult to clarify (March, 1998). A 

common consideration however is that seizures are possibly the end-result of many different 

pathological processes that disrupt the normal function of the brain (McCormick and 

Contreras, 2001).  

 At a basic level, it is increasingly becoming evident that epileptogenic activity is most 

likely to be the consequence of a disruption of mechanisms that control the balance between 

excitation and inhibition in selected brain regions (Dichter and Ayala, 1987, Scharfman, 

2007). The transition from normal brain neural networks to hyper-excitable networks, a 
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process known as epileptogenesis is also not yet completely understood. Theories suggest a 

greater spread in the activation and recruitment of neurones in addition to enhanced 

connectivity, enhanced excitatory transmission, a failure of inhibitory mechanisms and 

changes in intrinsic neuronal properties (March, 1998, Duncan et al., 2006). 

 

1.1.5 Epilepsy and its syndromes 

The 1989 ILAE classification system defines epileptic syndromes as “an epileptic 

disorder characterised by a cluster of signs and symptoms customarily occurring together; 

these include type of seizure, aetiology, anatomy, precipitating factors, age of onset, severity, 

chronicity, diurnal and circadian cycling and sometimes prognosis” . In the widely used 1989 

ILAE classification (Commission on Classification and Terminology of the International 

League against Epilepsy, 1989), epilepsies are principally divided according to overall seizure 

type i.e. whether they are i) Generalised epilepsies, ii) Localisation-related epilepsies, iii) those 

that on the basis of clinical features cannot be assigned to either focal or generalised categories 

(unclassified) and iv) special syndromes, then sub-divided according to causation. There are 

three main causes used for classification; symptomatic epilepsies are those presumed to have 

an acquired cause, genetic epilepsies are those with a presumed genetic basis and crypotogenic 

epilepsies are presumed symptomatic but have an overall unknown cause (Commission on 

Classification and Terminology of the International League against Epilepsy, 1989).  Refer to 

Tables 1.1 and 1.2 for 1989 Classifications.  
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Table 1.2 Classification of Epilepsies and Epileptic Syndromes and Related Seizure 

Disorders (based on 1989 ILAE classification)  

 

1 Localisation-related (local, focal, partial) epilepsies and syndromes 

           1.1 Idiopathic (with age related onset) 

Benign childhood epilepsy with centrotemporal spikes 

Childhood epilepsy with occipital paroxysms 

Primary reading epilepsy 

            1.2 Symptomatic 

Chronic progressive epilepsia partialis continua 

Syndromes characterized by seizures with specific modes of 

precipitation 

Temporal lobe epilepsies 

Frontal lobe epilepsies 

Parietal lobe epilepsies 

Occipital lobe epilepsies 

1.3 Cryptogenic 

2 Generalised epilepsies and syndromes 

2.1 Idiopathic (with age-related onset) 

Benign neonatal familial convulsions 

Benign neonatal convulsions 

Benign myoclonic epilepsy in infancy 

Childhood absence epilepsy 

Juvenile myoclonic epilepsy 

Epilepsy with generalized tonic-clonic seizures on awakening 

Other generalized idiopathic epilepsies 

Epilepsies with seizures precipitated by specific modes of activation 

2.2 Cryptogenic or symptomatic 

West syndrome 

Lennox-Gastaut syndrome 

Epilepsy with myoclonic-astatic seizures 

Epilepsy with myoclonic seizures 

2.3 Symptomatic 

Nonspecific etiology 

Early myoclonic encephalopathy 

Early infantile epileptic encephalopathy with suppression burst 
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Other symptomatic generalised epilepsies 

Specific syndromes 

Epileptic seizures complicating other disease states 

3 Epilepsies and syndromes undetermined whether focal or generalised 

3.1 With both generalised and focal seizures 

Neonatal seizures 

Severe myoclonic epilepsy of infancy 

Epilepsy with continuous spike waves during slow-wave sleep 

Acquired epileptic epilepsies 

Other undetermined epilepsies 

3.2 Without unequivocal generalised or focal features 

 

4 Special syndromes 

4.1 Situation-related seizures 

Febrile convulsions 

Isolated seizures or isolated status epilepticus 

Seizures occurring only with acute metabolic or toxic events 

 

(Commission on Classification and Terminology of the International League Against 

Epilepsy, 1989) The 1989 classification of syndromes was adopted in this thesis, due to the 

primary use of these definitions for patient classification for the various UK epilepsy cohorts 

 

 

 

1.1.6 Epidemiology 

Epilepsy affects approximately 50 million people globally. The prevalence of active 

epilepsy is approximately 5-10 per 1000 population in most locations (Sander, 2003a). In the 

UK, epilepsy is diagnosed in about 80 individuals each day; 350,000 have active epilepsy 

(defined as the occurrence of a seizure during the previous 2 years and/or the taking of 

antiepileptic drugs) and 100,000 have refractory epilepsy (Sander, 2003a). However studies 

have shown that the disorder is not evenly distributed, with the age-adjusted incidence of 

epilepsy in developed countries ranging from 24 to 54 new cases per 100,000 population  and 

a higher rate presumed for developing countries (recent reports of 49.3 to 190 per 100,000 

population)(Sander, 2003a)(www.who.int/mediacentre/factsheets/fs999 ). In the UK, around 

450,000 individuals have epilepsy and the age-standardised prevalence is estimated as 7.5 per 

1000 population (Sisodiya and Duncan, 2004). 50% of individuals who develop epilepsy do 

http://www.who.int/mediacentre/factsheets/fs999
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so before the age of 15 years though prevalence increases with age (around 3 per 1,000 in 

under 16s and 12 per 1,000 in over 65s) (www.who.int/medicentre/factsheets/fs                

999/en/index.html).       

 

1.1.7  Co-morbidities and risk factors 

There are numerous comorbidities that complicate both the assessment and treatment 

of epilepsy. These include psychological and/or psychiatric problems, having a learning 

disability and/or a concomitant medical condition(s) (Shneker and Fountain, 2003, Duncan et 

al., 2006). The disorder is additionally often associated with serious physical implications from 

a heightened accumulation of brain damage and/or neurological deficits. Individuals with 

epilepsy thus generally carry a greater risk of injury and/or sudden unexpected death in 

epilepsy (known as SUDEP) than that of the general population (Duncan et al., 2006). 

Although most people with epilepsy are able to lead a normal emotional and cognitive life, 

neurobehavioral problems can be found in a large number of patients (Torta and Keller, 1999).  

 

1.2 Prognosis of epilepsy 

The risk of recurrence is greatest in the first few months after a first seizure years 

(Hauser et al., 1998). About 50% of those who have suffered a single unprovoked seizure have 

a further seizure within 5 years (Hauser et al., 1998) and about 75% of those with two initial 

unprovoked seizures suffer further seizures within the first four years (Hauser et al., 1998, 

Sisodiya and Duncan, 2004). In general however, the prognosis for complete seizure control 

is good as approximately 70% of patients do eventually achieve long-term remission within 

the first 5 years of diagnosis (Sander, 1993, Cockerell et al., 1997). Prognostic factors include 

age of onset, number of seizures in the early stages of the condition, early response to 

antiepileptic drugs (AEDs) and certain epilepsy specific EEG findings (Sander, 1993, Kwan 

and Brodie, 2000a, MacDonald et al., 2000, Kwan and Brodie, 2001a). In accordance with the 

association between early seizure control and long-term remission the prospect of seizure 

cessation has also been indicated to decrease as time elapses (Brodie and French, 2000, 

MacDonald et al., 2000, Kwan and Brodie, 2001a, Sander, 2003a).   

 AEDs are highly successful in suppressing seizures in most but little is known about 

the role of AED treatment on the outcome of epilepsy (Duncan et al., 2006). The recent 

assumption is that an inherent element to both treatment response and outcome may exist and 

so for some chronic epilepsy patients, remission could be impossible from onset (MacDonald 

et al., 2000, Sander, 2003a).  

 

http://www.who.int/medicentre
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1.3 Treatment of epilepsy 

 Pharmacotherapy is the mainstay of treatment for people with epilepsy 

(Panayiotopoulos and International League against Epilepsy., 2005). Non-pharmacological 

options include ketogenic diet, vagal nerve stimulation and brain surgery, although these are 

only feasible in selected individuals and are usually considered once drug treatment has failed; 

with the latter used as a last resort in severe or chronic epilepsy cases (Sander, 2004, Duncan 

et al., 2006).  

 

1.3.1 Pharmacological management  

AEDs are primarily intended to prevent epileptic seizures and generally function to increase 

inhibition, decrease excitation, and/or prevent aberrant burst firing of neurones that is often 

associated with seizure generation. The ultimate goal of pharmacological management in 

epilepsy is to achieve complete seizure freedom as quickly as possible (Vajda, 2007), without 

any drug-related adverse effects (AEs) (i.e. nausea, dizziness, weight gain), adverse drug 

reactions (ADRs) (i.e. hepatotoxicity, haemotoxicity, dermatotoxicity and teratogenicity) 

(Sander, 2004, Mann and Pons, 2007) and using only a single AED (Beghi and Perucca, 1995). 

As previously mentioned AEDs are greatly effective in abolishing seizures in up to 

70% of patients (Kwan and Brodie, 2000a, 2001a). Significant seizure control reduces the 

morbidity and premature mortality (Sander and Bell, 2004); (Mohanraj et al., 2006) often 

associated with unpredictable and continuous seizures, and so greatly enhances overall quality 

of life (Birbeck et al., 2002). 

 

1.3.2 Antiepileptic drug treatment 

There are currently over 20 AEDs available, differing in their chemical structure 

and/or mode of action (Table 1.3). The majority of the available AEDs were developed in the 

1980-1990’s (Schachter, 2007) and several new AEDs are in clinical trials or have been 

recently approved (Bialer and White, 2010). These drugs have been developed either through 

serendipity, such as the early discovery of the anticonvulsive properties of bromide and 

barbiturates (Porter and Rogawski, 1992), or through the screening of new compounds in 

experimental animal models of epilepsy. The progress in these animal studies and drug trials 

have, over the past 20 years, allowed the introduction of numerous AEDs to the clinic (Duncan 

et al., 2006, Smith et al., 2007). 
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1.3.3 History and effectiveness of anticonvulsants 

 Drugs introduced up to the early 1970s included the benzodiazepines (BZDs) (such as 

diazepam), carbamazepine (CBZ), ethosuximide (ESM), phenytoin (PHT) and valproic acid 

(VPA) (Schachter, 2007). These early AEDs are known as older generation drugs and were 

considered an advancement over the initially available barbiturates, due to their markedly 

improved tolerability and a broader spectrum of efficacy against different seizure types 

(Schachter, 2007).  A more rational approach was taken to subsequent AED development 

(Kupferberg, 2001, Smith et al., 2007). This produced the following ‘new generation of 

AEDs': felbamate (FBM), gabapentin (GBP), lamotrigine (LTG), levetiracetam (LEV), 

oxcarbazepine (OXC), pregabalin (PGB), topiramate (TPM), tiagabine (TGB), vigabatrin 

(VGB) and zonisamide (ZNS) (Schachter, 2007) and more recently lacosamide (LCM), 

eslicarbazepine (ESL), rufinamide (RUF) and retigabine (RTG) (Bialer et al., 2007, Bialer and 

White, 2010). Of these TGB and VGB were designed with specific mechanisms of action 

(Bialer et al., 2007, Bialer and White, 2010).  

 Despite this ever-growing list of anti-seizure agents, issues with efficacy and tolerability 

largely remain (Kwan and Brodie, 2001a). The available evidence indicates that efficacy and 

tolerability to drug treatment in epilepsy has not substantially improved (Loscher and Schmidt, 

2011). There is no compelling evidence that third-generation AEDs, have made clinically 

relevant advances in the day to- day tolerability of current epilepsy treatment. Some AEDs of 

these newer drugs do however have advantages; namely linear pharmacokinetics (PK), an 

improved tolerability profile, lessened drug interaction potential, a lower risk of 

hypersensitivity reactions and fewer AED-associated AEs (Perucca, 2001a, Loscher and 

Schmidt, 2011).  Data in this regard thus remains to be accumulated over the coming years 

before any definite conclusions on the success of modern AEDs can be drawn. 

 

1.3.4 Pathways of drug action  

Several distinct molecular and cellular events occur during a seizure that involve 

sodium (Na+), calcium (Ca2+) and potassium (K+) ions (McNamara, 1994). These are not only 

critical for normal neuronal function and signaling pathways, but are also important in the 

initiation of seizures, spread of seizure activity and arrest of the seizure (McNamara, 1994). 

Na+ conductance is important for the initiation and maintenance of seizure activity as is Ca2+ 

conductance, which also contributes to neuronal injury, and K+ conductance is essential in the 

arrest of seizure discharge (McNamara, 1994, Scharfman, 2007). Synaptic transmission also 

plays a critical role in maintaining the balance between excitation and inhibition, and so 

perturbation in this process can likewise lead to seizure generation (Scharfman, 2007). The 

principal neurotransmitters involved in synaptic transmission are gamma-aminobutyric acid 
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(GABA) and the excitatory amino acid glutamate (Scharfman, 2007). 

 To exhibit antiepileptic activity, a drug must act on one or more target molecules in 

the brain, such as ion channels, neurotransmitter transporters and neurotransmitter metabolic 

enzymes (Kwan et al., 2001). These interactions modulate the bursting properties of neurones 

and reduce synchronisation in localised neuronal ensembles (Kwan et al., 2001). Although the 

mechanisms of action of many AEDs are not fully understood, they are broadly categorised 

according to the following three general modes of action (Kwan et al., 2001) (based on their 

basic cellular mechanisms) i) modulation of voltage-dependent ion channels (including Na+, 

Ca2+, K+ channels), ii) enhancement of GABA-mediated inhibitory neurotransmission and iv) 

attenuation of excitatory, glutamate-mediated transmission (Meldrum, 1996, Kwan et al., 

2001, Schachter, 2007). For many of the newer AEDs multiple molecular mechanisms of 

action have been identified (White, 1999). 

 

1.3.5 The gamma-aminobutyric acid inhibitory system  

 The potentiation of inhibitory neurotransmission is one of the main mechanisms of AED 

action and several AEDs exert their effects, at least in part, by actions on the GABAergic 

system (Kwan et al., 2001, Benarroch, 2007). In the CNS, inhibition is principally mediated 

by the neurotransmitter GABA, which functions through binding to chloride-permeable 

ionotropic GABAA receptors (mediators of fast inhibition) and metabotropic GABAB 

receptors (mediators of slow inhibition) (Benarroch 2007). Dysfunction of GABAA receptor-

mediated fast inhibition is an important pathophysiological mechanism of increased neuronal 

excitability and has been identified in the process of epileptogenesis (Benarroch 2007; Olsen 

and Avoli 1997). Loss-of-function of the receptor, through mutations in GABAA subunit genes 

have additionally been linked to various epilepsy syndromes (Olsen and Avoli, 1997, Baulac 

et al., 2001, Wallace et al., 2001a, Bianchi et al., 2002, Macdonald et al., 2004).  

 Benzodiazepines, barbiturates, FBM and TPM, all modulate this pathway by facilitating 

GABA-ergic neurotransmission through increasing GABAA receptor function (Kwan et al., 

2001). AEDs may alternatively enhance synthesis of the GABA neurotransmitter (as with 

VPA and GBP), decrease GABA degradation (as with VPA and VGB), or prevent GABA re-

uptake into neurones and glia (as with TGB) (Kwan et al., 2001).  

 

1.3.6 Glutamate neurotransmission 

 Excitatory neurotransmission in the brain is mediated by excitatory amino acids. 

Glutamate is the principal excitatory neurotransmitter in the mammalian brain and exerts it 

effect through one of four glutamate receptors (the ionotropic, NMDA, kainate and AMPA 

receptors and the metabotropic mGluR receptor) found in the CNS (Meldrum, 2000). 
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Abnormal glutamate receptor function has been observed in several experimental seizure 

models and has been implicated in both the initiation and spread of epileptic seizures 

(Meldrum, 1995, Chapman, 1998, 2000). Because of the role of glutamate in the 

pathophysiology of seizures and the substantial evidence that glutamate receptor antagonists 

are protective in various animal models, great effort has been devoted toward the development 

of novel AEDs targeting the glutamate system (Meldrum, 2000, Meldrum and Rogawski, 

2007). Of the drugs mentioned above only FBM and TPM appeared to reduce the glutamate 

action via the blockade of ionotropic glutamate receptors in addition to their primary action 

on GABA neurotransmission (Upton, 1994, Macdonald and Kelly, 1995, Meldrum, 1996). 

Recently however perampanel has been developed and approved as a selective AMPA 

receptor (major ionotropic glutamate receptor subtype) antagonist for the treatment of partial 

onset seizures (Rogawski, 2011, Krauss et al., 2012). 

 

1.3.7 Neuronal ion channels 

 The K+, Na+ and Ca2+ neuronal voltage-gated ion channels maintain neuronal function 

through shaping the sub-threshold electrical behaviour of the neurones, allowing action 

potential firing, and regulating neuronal responsiveness to synaptic signals and pre-synaptic 

neuronal neurotransmitter release (Scharfman, 2007). These channels are subsequently central 

to deregulation in neuronal signaling as evident in the generation of seizure discharges. The 

vast majority of the newer and established AEDs can thus exert their anticonvulsant effects 

through ion channel modulation (Bialer and White, 2010). Na+ channel targeting AEDs 

include CBZ, ESL, FBM, PHT, LCM, LTG, OXC, RUF, TPM, VPA and ZNS; K+ channel 

AEDs include RTG and TPM and Ca2+ channel AEDs include ESM, FBM, GBP, LEV, PGB, 

LTG, TPM, VPA (Shorvon, 2010).  
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Table 1.3 Proposed mechanisms of action of antiepileptic drugs 

Drug  Main mode of action 

Benzodiazepines BZD Potentiate GABA-mediated inhibition  

Carbamazepine CBZ Blocks voltage-gated Na+ channels 

Clobazam CLB Increases inhibition by GABAA 

Ethosuximide ESM Blocks T-type Ca 2+ channels 

Felbamate FBM Potentiates GABA-mediated inhibition and blocks 

voltage-dependent Na+ channels 

Gabapentin GBP Binds to the α2δ subunit of neuronal 

voltage-gated Ca 2+ channels inhibiting calcium flow 

Lamotrigine LTG Blocks voltage-gated Na+ channels 

Levitiracetam LEV Binds to synaptic vesicle protein SV2A 

Lacosamide LCM Blocks voltage-gated Na+ channels 

Oxcarbazepine OXC Blocks voltage-gated Na+ channels 

Perampanel PRM Blocks AMPA glutamate receptor 

Phenobarbital PB Augments the inhibitory effect of GABA by prolonging 

the Cl- channel opening at the GABAA receptor 

Phenytoin PHT Blocks voltage-gated Na+ channels 

Pregabalin PGB Calcium channel blocker, binds to channel to inhibit 

calcium flow 

Retigabine RTG Modulation of K+ channel, prolonging channel opening 

Rufinimide RFM Blocks voltage-dependent Na+ channels 

Sodium 

Valproate 

VPA Blocks voltage-dependent Na+ channels, facilitates the 

effects of GABA and reduces T-type Ca 2+ currents 

Tiagabine TGB Blocks GAT1,GABA transporter thus inhibits neuronal 

and glial reuptake of GABA to increase the availability 

of GABA and inhibit postsynaptic neurons 

Topiramate TPM Blocks voltage-gated Na+ channels and Ca 2+ channels, 

enhances GABAergic neurotransmission and inhibits 

carbonic anhydrase 

Vigabatrin VGB Enhancing biosynthesis and preventing degradation of 

GABA by inhibiting GABA transaminase, resulting in 

elevated brain levels of GABA  

Zonisamide ZNS Blocks voltage-gated Na+ channels 

Data taken from Loscher and Schmidt 1999, Schachter et al 2007 and Kwan et al 2001 
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1.3.8 Principles of treatment 

The licensing of many new AEDs in the last 20 years has presented a greater choice 

of AEDs for physicians and accordingly patients with epilepsy now have a better chance of 

achieving optimum treatment than in the past (Perucca, 2002a). Due to differences in 

individual efficacy, drug PK, side-effects and drug interactions between the different AEDs 

(Brodie and Kwan, 2001, Schachter, 2007), it is often difficult to predict which drug will be 

the best tolerated and most likely to provide the best seizure control in a given individual 

(Perucca, 2001a, 2002a).  

Several patient characteristics are currently used to divide patients into subpopulations 

to aid drug selection. The effectiveness of the newer AEDs was determined with regulatory 

trials and post marketing studies in patients with defined seizure types (Schachter, 2007). 

Based on clinical trial data, mechanisms of action, and clinical experience, certain AEDs are 

generally preferred for focal epilepsy and other AEDs are preferred for generalised epilepsy 

(Perucca, 1999, Vajda, 2007). Therefore, the first step in selecting among the currently 

available AEDs for a particular patient is to determine his or her seizure type(s) and/or epilepsy 

syndrome (Schachter, 2007) (http://guidance.nice.org.uk /CG20/Guidance). Additional 

subpopulations are based on age, gender, medical comorbidities, concomitant medications, 

individual lifestyle, individual preference, childbearing potential, likelihood of AEs, and the 

licensed indication of the drug (http://gui dance.nice.org.uk/CG20/Guidance).  

 

1.3.9 Clinical use  

First-line AEDs are generally started at a low dosage and drug dose is titrated up 

gradually to a target dose. If seizures continue, titration is continued until seizures are 

controlled or up to the maximum tolerated dose (dose at which AEs appear in a given 

individual)(Brodie and French, 2000). If the drug is ineffective at this maximum tolerated 

dose, it is discontinued, but slowly (tapered off through dose reduction) and replaced by an 

alternatively appropriate AED; again selected based on seizure type, epilepsy type, specific 

syndrome etc. (Perucca, 2001a, Brodie and Kwan, 2002, Schachter, 2007).  

 Existing National Institute for Health and Clinical Excellence (NICE) guidelines on the 

management of epilepsy indicate that individuals should preferably be treated with a single 

AED, where possible. Clinicians are also recommended to maintain treatment with a single 

AED to avoid the complications that arise with the use of multiple drug combinations 

(http://guidance.nice.org.uk/CG20/Guidance). With AED monotherapy compliance is often 

enhanced, overall medication costs are usually less and there are generally fewer idiosyncratic 

reactions, teratogenic effects, and other dosage and/or drug interaction related side effects 

(Brodie and Kwan, 2001). AED monotherapy successfully controls seizures in the majority of 

http://gui/
http://guidance.nice.org.uk/CG20/Guidance
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patients (Leppik, 2000). A significant number of patients with more severe forms of epilepsy 

do however require multiple drug treatment or polytherapy (Brodie and French, 2000, Leppik, 

2000, Sander, 2004). Many patients however still require seizure management with a 

combination of drugs (Brodie and Kwan, 2001). Such ‘combination therapy’ (also known as 

adjunctive or ‘add-on’ therapy) is usually considered when all attempts at monotherapy have 

not resulted in seizure freedom (http://guidance.nice.org.uk /CG20/Guidance)(Duncan et al., 

2006).  

 Typically if monotherapy is poorly tolerated or ineffective at the maximum tolerated 

dose, the strategy is to switch to another first-line drug. Second-line options are used when all 

first-line drugs fail (http://guidance.nice.org.uk/CG20/Guidance) (Mattson et al., 1985, Kwan 

and Brodie, 2000a, 2001a, Sander, 2004). With combination therapy, an additional drug is 

usually titrated to a tolerable and effective dosage before the first AED is tapered (Duncan et 

al., 2006). There is a lack of clarity with the dose at which a drug should be deemed ineffective 

and when alternative AEDs or combination therapy should be considered (Kwan and Brodie, 

2000b, Brodie and Kwan, 2002, Kwan and Brodie, 2004). For combination therapy however 

there is now suggestion that the mechanism of action of each AED should be taken into 

consideration (Brodie and Kwan, 2001, Sander, 2004).  

 

1.3.10 Effectiveness of pharmacotherapy in clinical practice 

Differences in treatment response with particular AEDs, in terms of variation in 

clinical efficacy, dosing and tolerability, between individuals with seemingly similar disorders 

is a very common phenomenon among all pharmacotherapeutics (Dlugos et al., 2006). 

Prognosis with AED treatment thus varies considerably among the different types of epilepsy 

(Semah et al., 1998) and may also differ even between patients with the same epilepsy 

syndrome (Schmidt and Loscher, 2005). Better remission is generally evident for secondary 

generalised attacks when compared to partial seizures (Mattson et al., 1985). In addition most 

studies have reported prognosis to be poor in patients with multiple seizure types, associated 

neurological deficit and behavioral or psychiatric disturbance (Sander, 1993). The longer 

patients continue to have seizures after their initial diagnosis, the lower the probability of 

achieving remission (Annegers et al., 1979, French, 2002). Of the 70% of individuals 

responsive to AED therapy, nearly 50% are seizure free with initial treatment, and a further 

16% of patients who find the first drug to be ineffective in suppressing seizure activity can 

expect freedom from seizures with additional AED treatment (Kwan and Brodie, 2000a). 

Those who fail treatment with a second AED are however thought to have a small chance of 

ever obtaining seizure freedom (Kwan and Brodie, 2000b, McCorry et al., 2004).  

 The use of AEDs in clinical treatment is often complicated and in some cases 

http://guidance.nice.org.uk/CG20/Guidance
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problematic, even for responsive individuals (Perucca, 2001a) and this can sometimes be 

attributed to AED pharmacology. Some older and newer generation AEDs present different 

activity spectra and a narrow therapeutic index (Sander, 2004), some with highly variable and 

nonlinear PK, sub-optimal response rates and a propensity of many AEDs (particularly the 

older generation) to cause drug interactions. Consequently even though there are over 20 

AEDs (old and new generation) available, which continues to grow steadily, the 60-70% 

response rate in epilepsy remains. The failure to achieve seizure freedom in a substantial 

minority of individuals is perhaps the most important issue with current AED therapy (Kwan 

and Brodie, 2000a). Additional serious issues in AED utilisation include the occurrence of 

AEs, as virtually all AEDs show common side effects and/or idiosyncratic reactions (Sander, 

2004, Perucca and Meador, 2005, Schachter, 2007, Zaccara et al., 2007). There is also the 

challenge of identifying the most effective and best tolerated dose of a specific drug(s) for 

individual patients, which can vary greatly among individuals and is currently impossible to 

predict (Kwan and Brodie, 2001a, Perucca, 2002b).  

 

1.4 Treatment failure in epilepsy 

 Individuals that fail to achieve remission with long term AED treatment are referred to 

as having drug-resistant or refractory epilepsy (also referred to as a pharmaco-resistant 

phenotype) (Kwan and Brodie, 2000a). Drug resistant individuals are usually treated with 

multiple AEDs that in combination can often have adverse sedative, behavioral and/or 

psychiatric effects (Kwan and Brodie, 2002, Elger, 2003). There is also a greater risk of 

cognitive impairment with prolonged drug use, the likelihood of which increases with seizure 

frequency, duration and severity (Cramer, 1994, Vermeulen and Aldenkamp, 1995, Kwan and 

Brodie, 2001b).  

 What causes epilepsy to become ‘refractory’ has so far remained elusive. Several 

clinical/environmental prognostic factors have been implicated however as previously 

discussed for AED treatment response the biological basis of ‘refractoriness’ is a multifactorial 

and variable phenotype with a genetic and clinical basis. As AEDs are principally required to 

traverse the blood–brain barrier (BBB) and then secondly bind to one or more target molecules 

to exert their particular therapeutic effect two theories have emerged from these 

pharmacological pathways in an attempt to explain treatment failure in epilepsy (Remy and 

Beck, 2006). These are the drug transporter and drug target hypotheses. The transporter theory 

proposes an overexpression of efflux transporters at the BBB (i.e. Pgp efflux protein), that 

leads to a surge in active efflux of AEDs, thus decreasing their concentration in the CNS, 

despite adequate AED exposure and/or measured serum levels (Loscher and Potschka, 2002). 

The target theory on the other hand proposes a reduction in AED target sensitivity (i.e. 
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molecular targets of AEDs such as the neuronal channels) in epileptogenic brain (Remy et al., 

2003). This altered channel sensitivity would then cause reduced efficacy of a given AED at 

its molecular target (Remy et al., 2003). 

 

1.4.1 Indications of resistance to antiepileptic drugs 

 The identification of refractory epilepsy is not only important for clinical decision 

making i.e. for doctors to consider alternative non-pharmacological treatment options for 

patients, but is a vital step towards understanding disease pathophysiology, determinants of 

natural history, predictors of prognosis and it can also benefit the development of novel 

treatment strategies (Kwan and Brodie, 2010). Despite many research studies investigating 

this clinical phenomenon, a precise definition to identify people with treatment resistance has 

remained elusive for many years and this has resulted in use of diverse criteria by different 

clinicians and researchers (Annegers et al., 1979, Kwan and Brodie, 2000a, Berg and Kelly, 

2006).  

 The most recent description proposed by the ILAE defines refractory epilepsy as 

“failure of adequate trials of two tolerated and appropriately chosen and used AED schedules 

(whether as monotherapies or in combination) to achieve sustained seizure freedom” (Kwan 

et al., 2010). Complete failure with two or more AED monotherapies characterises individuals 

with intractable epilepsy. Combining a wide range of two or perhaps three different AEDs was 

effective in some of these difficult to treat individuals (Stephen et al., 2001, Stephen and 

Brodie, 2002), although robust data evaluating the effectiveness of AED combination therapy 

is currently scarce (Pearce et al., 2008).  

 

1.4.2 Management of drug-resistance in epilepsy 

New AEDs are being developed to address the issue of treatment-resistance in the 

epilepsy population (French et al., 2004, Bialer and White, 2010). However there is emerging 

evidence that better results can be obtained by more appropriately combining modern AEDs 

(that offer novel mechanisms of action and fewer drug interactions) with complementary 

modes of action (Moeller et al., 2009). This suggestion however remains to be proven with 

robust drug efficacy data (Pearce et al., 2008, Poolos et al., 2012). Efficacy of new AEDs used 

as adjunctive therapy in patients unresponsive to established AEDs has been investigated in 

several controlled trials. However, none of the new AEDs have produced a high percentage of 

seizure freedom in these studies (Cramer et al., 1999, Barcs et al., 2000, Cramer et al., 2001, 

French et al., 2003, Callaghan et al., 2011) thus treatment outcome in refractory epilepsy 

remains poor, with responder rates (50% seizure reduction) found to range from 15-50% in 

these studies. More recent evidence has also shown the probability of remission in people with 
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intractable epilepsy as around 5% per year (Callaghan et al., 2007, Choi et al., 2008).  

 

1.4.3 Predicting drug response: clinical markers for drug resistance 

Phenotypic markers for distinguishing those patients who appear unresponsive to 

AEDs from those able to successfully achieve seizure control (Loscher, 2005a, Tate and 

Sisodiya, 2007) would allow early consideration of non-drug therapies (Cockerell et al., 1995, 

MacDonald et al., 2000, Dlugos et al., 2001, Mohanraj et al., 2006). This, for the most severe 

cases at least (where individuals are inevitably likely to require surgery due to severity of 

seizures) would potentially prevent some of the devastating consequences associated with 

intractable epilepsy (Brodie, 2005a).  

 Pretreatment seizures have long been identified as a predictor of outcome, with a 

larger number of pre-treatment seizures universally associated with a poorer response to early 

AED treatment (Camfield et al., 1996, Kwan and Brodie, 2000a). High seizure frequency 

evident during the early stages of AED treatment is also considered to indicate poor seizure 

control and is similarly used to envisage the likelihood of developing pharmacoresistance 

(Brodie, 2005a). In addition there is good evidence that seizure type or syndromic diagnosis 

is associated with likelihood of seizure control (Semah et al., 1998). Individuals presenting 

with idiopathic generalised seizures more likely to become seizure free than those with 

symptomatic or cryptogenic epilepsies (Koster et al., 2009). Further potential risk factors for 

refractory epilepsy include seizure clusters, family history, febrile convulsions, environmental 

factors such as traumatic brain injury, and psychiatric comorbidity (Petsche et al., 1972, Hitiris 

and Brodie, 2006, Mohanraj et al., 2006). 

 

1.4.4 Inherent role in drug resistance 

Despite identification of several clinical and environmental factors that appear to 

contribute to the biological basis of drug-resistance in epilepsy, the prognostic value of most 

of these factors is rather limited, and none can explain multidrug resistance alone (Brodie, 

2005a, Loscher, 2005a). Other influential features beyond those contributing to the aetiology 

of epilepsy have therefore been implicated in the multifaceted basis of AED response (Petsche 

et al., 1972, Depondt, 2006b, Koster et al., 2009, Johnson et al., 2011b). The interindividual 

variation often seen in response to AEDs between individuals who appear to have the same 

epilepsy phenotype suggests that genetic factors could also contribute to the AED responsive 

and resistance phenotypes (Sisodiya, 2003, 2005). The influence of genes on outcome of drug 

treatment is a rapidly evolving field (Weinshilboum, 2003) and may help to explain this 

variability in clinical outcome as well as enlighten the general unpredictability of epilepsy 

treatment (Spear, 2001, Sisodiya, 2005). 
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1.5 Pharmacogenetics 

Even with the medical advances of the 20th Century, optimal drug treatment remains 

elusive for many of the world’s common and high impact diseases including hypertension, 

cancer and diabetes (McLeod and Evans, 2001, Spear et al., 2001). The efficacy and toxicity 

of many major therapeutic agents is substantially heterogeneous when viewed across the 

globe, thus treatment response and failure in patient groups is hugely unpredictable 

(Mancinelli et al., 2000, McLeod and Evans, 2001, Shastry, 2006). Any given drug can be 

effective in some patient groups but ineffective in others, and some individuals experience 

AEs and/or ADRs whereas others are unaffected. This interindividual variability in response 

to most, if not all, drugs is well known and poses a serious problem in current medical 

treatment (Wolf et al., 2000, McLeod and Evans, 2001). 

 Potential causes for differences in drug response include the nature and severity of the 

disease being treated, the individual’s age and race, organ function, concomitant therapy, drug 

interactions, and concomitant illnesses (Evans and Johnson, 2001). However, even when these 

factors are taken into account, considerable variation remains unexplained (Vinken et al., 

1999). Over the past decades, much evidence has emerged indicating that a significant portion 

of this variability is genetically determined (Vinken et al., 1999, Mancinelli et al., 2000).  

 

1.5.1 The history of pharmacogenetics 

Although genetic differences among people have long been recognised to influence 

drug response phenotypes of individuals, research efforts have only begun to focus on the 

genetics of drug response in the last few decades, with previous focus being largely orientated 

towards disease predisposition (Goldstein, 2005). Leveraging the knowledge of an individual's 

genetic makeup initially gave the possibility to predict susceptibility to monogenic diseases 

and later proved particularly valuable for common diseases with a complex multifactorial 

nature (McLeod and Evans, 2001). A similar approach has since been taken for predicting the 

complexity of response to particular treatments, in order to match patients with the right 

medications given at the right doses (Goldstein, 2005). The relatively new field of studying a 

patient’s response to a specific drug alongside their genetics is known as pharmacogenetics 

(PGx) (Weinshilboum, 2003).  

 PGx is characterised by the profiling of differences between individuals’ DNA to 

identify definitive relationships between the structure and function of pharmacologically 

relevant genes and the drug response phenotypes observed in patients (McLeod and Evans, 

2001). The overall goal of PGx is to better understand the genetic variation that determines 

heterogeneity in drug effects, to predict how individuals may respond to drugs, and to 

ultimately translate this to clinical practice (Evans and Relling, 2004). In the last ten years the 
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remarkable progress in human genomics and molecular genetics has initiated a surge in PGx 

research (Ferraro and Buono, 2005) and the discovery of genetic markers of phenotypes for 

response to medications has become one of the fastest growing fields in clinical and 

translational biomedical research (Wang et al., 2011).  

 PGx originated in the 1950’s where early clinical observations identified patients with 

large differences in their response to “standard” drug doses, often with individual variations 

in plasma or urinary drug concentrations. This was followed by the discovery of drug-

metabolizing enzymes (DMEs) and the realisation that such variation was largely due to 

inherited differences in metabolism (Weber, 2001, Weinshilboum and Wang, 2006). The 

genes of DMEs formed the first candidate genes for variable drug response. DME genes 

encode enzymes that metabolise drugs and their products and have evolved to neutralise toxins 

and/or to control concentrations of signaling molecules in endogenous pathways (Nebert and 

Dieter, 2000, Goldstein et al., 2003).  

 Researchers first described the role of genetic differences in determining biochemical 

traits through the disposition of succinylcholine, isoniazid, and antimalarial drugs such as 

primaquine (Weinshilboum, 2003). They were able to distinguish that prolonged paralysis 

following the use of succinylcholine was the result of a variant of the butyryl-cholinesterase 

enzyme, that hemolytic anemia due to the antimalarial drug primaquine resulted from a variant 

form of the enzyme glucose-6-phosphate dehydrogenase, and that peripheral neuropathies 

caused by the anti-tuberculosis drug isoniazid were a consequence of genetic differences in 

the enzyme N-acetyltransferase (Weber, 2001, Johnson, 2003, Weinshilboum, 2003).  

 The field of PGx has since developed and expanded to cover more complex drug 

response phenotypes (Goldstein, Need et al. 2007). Today PGx is considered a rational and 

systematic genetic approach to identifying specific genetic sources of drug response variability 

(Evans and McLeod, 2003, Weinshilboum, 2003). Understanding the molecular basis and 

functional consequences of these genetic variants on drug response phenotypes has the 

potential to enlighten the use of many medications, optimising their efficacy and preventing 

toxic effects during routine drug therapy (Evans and Relling, 1999). 

 

1.5.2 The potential for tailored drug therapy 

Decisions about the choice of drug and appropriate dosage are at present largely based 

on information derived from population averages (Mancinelli et al., 2000). As polymorphisms 

with functional consequences are identified, the potential for clinicians to utilise 

interindividual variation in a patient’s genetics in the clinical setting for a more personalised 

approach to treatment becomes markedly greater (Vinken et al., 1999, Feero et al., 2010, Wang 

et al., 2011). This involves classifying patients with the same phenotypic disease profile into 
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smaller sub-populations, defined by genetic variations associated with disease, drug response, 

or both, with the assumption that drug therapy in these genetically defined sub-populations 

may be more efficacious than treating a broad population (Mancinelli et al., 2000).  

Advances in genetic testing, and their transference to the clinic, generates the 

possibility of more effective dosing of medications across various therapeutic areas (Meisel et 

al., 2000, Johnson, 2003, Bhathena and Spear, 2008). An individualised approach to treatment 

decisions may also lead to improved tolerability to medications thus can enhance regimen 

adherence, improve drug safety and ensure optimum drug therapy across patient groups (Spear 

et al., 2001). The identification of genomic predictors for treatment response may additionally 

help with the discovery and development of new medications (Evans and Relling, 1999). 

Overall there is increasing evidence that PGx will continue to be extremely important in health 

care in the near future (Wolf et al., 2000) (Roses, 2000).  

 

1.5.3 Principles of pharmacogenetics 

Pathways controlling drug disposition or drug PK describe the course of a drug and/or 

metabolite through the body (Rang, 2003), whilst pathways controlling the efficacy of a drug, 

or drug pharmacodynamics (PD), refers to the relationship between the drug and its effect at 

target sites (Evans and McLeod, 2003, Rang, 2003). Drug PK pathways encompass the 

combined processes of drug uptake or absorption, drug distribution, protein binding, drug 

metabolism, and drug excretion (Evans and McLeod, 2003, Rang, 2003, Weinshilboum, 

2003). PD pathways involve processes of drug interaction with therapeutic targets at the 

cellular level and the effect of drugs on the body, i.e. any resulting biological or therapeutic 

outcomes (Evans and McLeod 2003). 

 Genetic variation can affect the genes encoding proteins influencing both drug PK and 

PD processes (Goldstein et al., 2003, Goldstein, 2005, Nebert, 2008). This mainly consists of 

i) genes that encode DMEs and transporters which function in drug elimination and 

distribution/excretion respectively and ii) genes encoding channels, receptors and/or enzymes 

on which drugs act or modulate to elicit their effects (Roden and George, 2002, Goldstein et 

al., 2003, Bhathena and Spear, 2008). Some genetic variation within these genes can 

potentially affect protein function or expression thus can influence a drugs normal disposition 

or action.  Many of the PK and PD proteins for a particular drug thus form key components to 

PGx research (Goldstein et al., 2003, Johnson, 2003). 

 

1.5.4 Genetic variation  

Any two individuals are greater than 99% identical in their DNA sequence 

(www.hapmap.org), however much variation exists between individuals (Nebert, 2008). 

http://www.hapmap.org/
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Genetic variation refers to the differences in DNA sequences between individuals, of which 

there are many types (Jazwinska, 2001), with single nucleotide polymorphisms (SNPs) being 

among the most common sources of naturally occurring variation in the human genome 

(McLeod, 2005, Orr and Chanock, 2008). Alternative classes of DNA variation include 

microsatellites, copy number variants (CNVs), insertion/deletion polymorphisms and 

mutations (Roses, 2000, Jazwinska, 2001, McLeod, 2005, Orr and Chanock, 2008). For 

common diseases, genome-wide linkage studies have had limited success, due to their 

complex genetic architecture (Sachidanandam et al., 2001). In the human population most 

variant sites are rare, but common polymorphisms can explain most of the heterozygosity 

(Inaba et al., 1995, Beckmann et al., 2007). There is clear evidence that common gene variation 

contributes to complex traits including drug response phenotypes and with the ease of studying 

these, common variants have dominated PGx thus far (Jazwinska, 2001, Johnson, 2003, 

Goldstein, 2005, Ferraro et al., 2012). 

 

1.5.5 Single Nucleotide Polymorphisms  

A significant effort towards large-scale characterisation of human SNPs has been 

initiated in the last decade (Brookes, 1999). The Human Genome Project (HGP) launched in 

the USA in the 1990s, was a multi-country effort to sequence the entire human genome in 

order to identify and catalog genetic similarities and differences in human beings (www. 

http://hapmap.ncbi.nlm.nih.gov)(Sachidanandam et al., 2001).  Advances in technologies have 

since allowed genetic association studies in complex diseases/traits to take advantage of results 

of the HGP (McPherson et al., 2001). 

 SNPs comprise a large set of bi-allelic genomic variants (single base pair changes) of 

which there are an estimated 10 million in the human genome and they appear approximately 

every 300 base pairs (bp) on average and most commonly, these variations are found in the 

DNA between genes (http://ghr.nlm.nih.gov/handbook/genomic research/ snp). SNPs account 

for at least 90% of human sequence variation in the human genome (http://ghr.nlm.nih.gov/ 

handbook/genomicresearch/snp)(Pang et al., 2009) with the rest attributable to insertions or 

deletions of one or more bases, repeat length polymorphisms and rearrangements 

(Sachidanandam et al., 2001). As SNPs are extraordinarily abundant they offer a powerful 

means of assessing genetic association, allowing essentially any gene to be explored for 

variants that may associate with a disease or traits (Ferraro et al., 2012). 

 

 

 

http://hapmap.ncbi.nlm.nih.gov/
http://ghr.nlm.nih.gov/handbook/genomic%20research/%20snp
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1.5.6 Genetic markers   

 The majority of genetic variation in the human genome is not pathogenic or of any 

biological significance (McCarthy and Hilfiker, 2000). The challenge for association studies 

is to identify the most influential polymorphic alleles. To sequence variants across whole 

genomes or all SNPs in a pathway of candidate genes is impractical. Most association studies 

genotype only a small proportion of marker SNPs in a target region (be that the whole genome, 

or within a set of candidate genes). Because alleles at different loci are sometimes found 

together more (or less) often than expected by chance based on their frequencies, non-random 

association can exist between allelic variants or SNPs in proximity to each other (Wall and 

Pritchard, 2003). These SNPs also tend to travel together in blocks through evolutionary time, 

a phenomenon known as linkage disequilibrium (LD)(Hirschhorn and Daly, 2005). Genomic 

patterns of LD are used to select a set of marker SNPs, known as tagging SNPs (tSNPs) that 

are statistically associated with other SNPs in the genome. Tagging SNPs alone are then typed 

to economically represent genomic variation across the entire region of interest (Goldstein et 

al., 2003, Wall and Pritchard, 2003, Hirschhorn and Daly, 2005).  

 Association studies are greatly facilitated by LD-based methods (Hirschhorn and Daly, 

2005) that systematically represent variation in candidate genes (or the whole genome) 

(Goldstein et al., 2003). The more recent possibility of determining LD patterns on a genome-

wide scale through the HapMap project has allowed the economical representation of genomic 

variation as a whole and enabled more efficient genome-wide research (Goldstein et al., 2003, 

Hirschhorn and Daly, 2005).  If a risk polymorphism exists it will either be genotyped directly 

(as a selected marker or tSNP) or be in strong LD with a genotyped tSNP (Collins et al., 1997, 

Kruglyak, 1999, Servin and Stephens, 2007). Genetic variants found to be associated with a 

disease or trait using LD based studies may thus not be directly causal or influential, but may 

be statistically correlated (in LD) with an another important variant (McCarthy and Hilfiker, 

2000, Goldstein and Weale, 2001, Mullen et al., 2009). 

 

1.5.7 Genomic location of polymorphisms and functional affect  

 Not all polymorphisms are functional i.e. have the potential to cause a biological change 

(Harley and Narod, 2009). The position and type of SNP usually defines most of their 

biological effect: SNPs may occur in the coding portion of the genes (exons), intervening 

sequences (introns) or between two genes (intergenic regions)(Shastry, 2002). Most SNPs 

(around 75%) occur in non-coding regions and are of unclear consequence (Sachidanandam 

et al., 2001, Harley and Narod, 2009). These include introns found within genes as well as 

intergenic regions between genes, and form the majority of the human genome (Tabor et al., 

2002). Although like intronic variants intergenic region SNPs also have no known function 
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(Tabor et al., 2002), some are also thought to impact gene expression or splicing (McLeod, 

2005). Most recent research by the Encode Project (www. concerning non-coding regions has 

confirmed that much non-coding DNA has a regulatory role (Birney et al., 2007). The 

remaining 25% of variants occur in gene coding regions (exons) (Harley and Narod, 2009).  

 Only 50% of exonic SNPs result in an amino acid change (non-synonymous SNPs) that 

can potentially alter protein function (Shastry, 2002). The remaining 50% are synonymous 

SNPs and also result in a nucleotide change, but because of redundancy in codon usage, these 

have a neutral substitution that may not affect protein function (Shastry, 2002, Shastry, 2004, 

Harley and Narod, 2009). Non-coding SNPs can also alter protein function by altering the 

regulation of gene expression (Shastry, 2003, Harley and Narod, 2009, Pang et al., 2009). 

SNPs in the promoter region may alter promoter activity thus affecting gene transcription and 

SNPs close to binding sites for splicing machinery may alter RNA splicing, and subsequently 

affect amino-acid transcription (Sauna et al., 2007, Hunt et al., 2008, Harley and Narod, 

2009)(Gray et al., 2000, Harley and Narod, 2009). 

 SNPs provide a powerful tool for association of loci at specific sites in the genome with 

complex traits (Bentley, 2000, Risch, 2000b) however most SNPs are not directly associated 

with causing disease instead they represent useful biological markers for analysing a particular 

disease or trait (Judson et al., 2000). It has been estimated that there are 50,000–250,000 SNPs 

that have a biological effect on one or more of the estimated 30,000 genes (Risch, 2000a) and 

in some cases, the biological effect may increase susceptibility to one or more diseases (Gray 

et al., 2000).  

 Due to their prevalence SNPs have been the variant type of choice for association 

studies in common diseases and complex traits (Beckmann et al., 2007). In addition to SNPs 

as a common source of genetic variation, the rare variant hypothesis has emerged. It is thought 

that multiple rare SNPs or additional variants of low genomic frequency may be the drivers of 

disease, and this has recently emerged in genomic studies for several complex traits (Tabor et 

al., 2002, Ferraro et al., 2012), with the theory that variants with very severe functional 

consequences are usually more infrequent. In addition to SNPs the human genome also 

contains another abundant source of polymorphism resulting in larger insertions, deletions or 

duplications known as copy number variations (CNVs). At least 10% of the genome is subject 

to copy number variation. CNVs are far less numerous to SNPs but can affect from one kb to 

several mega bases of DNA per event, adding up to a significant fraction of the genome, and 

so more likely to have a functional role in the aetiology of a trait (Beckmann et al., 2007). 

Several complex disorders have already been associated with CNVs including susceptibility 

to HIV-1, lupus and Crohn disease and are expected to potentially impact other complex traits 

including the inter-individual drug response (Ouahchi et al., 2006) as well as susceptibility to 

infection or cancer (Beckmann et al., 2007).  
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1.5.8 Candidate gene approach 

The majority of research studies for complex disease traits have focused on the use of 

a priori hypotheses generated from knowledge of the pathways underlying disease traits for 

the selection of genomic variants for investigation (Tabor et al., 2002). This approach provides 

a narrow spectrum of candidate genes that are selected due to their potential role in the 

aetiology of the disease and are used for investigating the genetic influence on a complex trait 

(Tabor et al., 2002). 

 Rather than rely on markers that are evenly spaced throughout the genome without 

regard to their function or context in a specific gene the candidate approach focuses on the 

biological understanding of the phenotype, tissues, genes and proteins that are likely to be 

involved in the disease/trait (Tabor et al., 2002). Thus far the candidate gene approach has 

been widely and frequently used as a design strategy in PGx studies, using knowledge of 

pharmacological action, drug disposition and/or disease pathogenesis for gene selection and 

so adopting a priori hypotheses about the origin of the inherited variability in drug response 

(Evans and Johnson, 2001, Roden and George, 2002, Goldstein et al., 2003, Daly, 2010b).  

 Gene-association studies usually determine whether there are differences between 

case and control groups (i.e. phenotype groups; drug responders versus non-responders) with 

regards to the prevalence of a potentially functional and phenotypically influential gene variant 

(Tabor et al., 2002). SNP genotyping is a tool for genetic analysis that is used for uncovering 

the association of an allele(s) at specific locus in the genome with the potential to cause a 

change in protein expression or function, with diseases or phenotypic traits such as drug 

response (Shi et al., 1999, Bentley, 2000). This typically involves genotyping candidate gene 

variants in clinically relevant populations and comparing the frequencies of the alleles or 

genotypes at the site of interest in both patient groups (Shi et al., 1999, Tabor et al., 2002). 

Due to the complexity of drug response, PGx studies can involve multiple candidate gene-

association studies and these can involve the use of hundreds of genes and 1000’s of SNPs 

(Wang, 2010).  

 

1.5.9 Polygenetics in drug response and the emergence of pharmacogenomics 

The genetic basis of many monogenic (single gene mutation) rare inherited disorders 

is known (over 6000 rare monogenic disorders and their genes successfully identified thus 

far), (http://www.ncbi.nlm.nih.gov/omim). The attention of human genetics has now shifted 

towards the basis of more common complex diseases or traits with multiple genetic 

(polygenic) and environmental components contributing to susceptibility (Hirschhorn et al., 

2002). Causal alleles for monogenic disorders are highly penetrant and often lead to severe 

phenotypes (Hirschhorn and Daly, 2005). By contrast, the alleles that underlie complex traits 

http://www.ncbi.nlm.nih.gov/omim
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usually have more subtle effects on disease risk and may involve non-coding regulatory variant 

alleles that are likely to have a modest impact on protein expression (Hirschhorn and Daly, 

2005). The phenotype for complex traits is determined by the sum total of, and/or interactions 

between, multiple genetic and environmental factors. Each of the many genetic determinants 

are expected to make only a small contribution to overall heritability (Hirschhorn and Daly, 

2005) owing to their multifactorial nature (McCarthy and Hilfiker, 2000) and subsequently 

have a relatively small individual effect on disease risk (Jazwinska, 2001, Reich and Lander, 

2001, Weinshilboum, 2003). This is referred to as the common disease/common variant 

(CDCV) hypothesis (Carlson et al., 2004). The inherited basis of drug response has similarly 

been difficult to elucidate especially for drugs whose PD and/or PK pathways are poorly 

defined (Nebert, 2008, Nebert et al., 2008a, Goldstein, 2009).  

 Because most drug effects are determined by several gene products that influence the 

metabolism, disposition and efficacy of medications, inherited differences in these PK and PD 

genes have increasingly been shown to alter drug response and there is a growing perspective 

that the inherited basis of drug action is polygenic in nature (Johnson and Evans, 2002, Evans 

and McLeod, 2003). As drug response is equally as complex as disease genetics (McCarthy 

and Hilfiker, 2000), relative risk estimates for genetic influences on drug action are also 

expected to be low, owing to its multifactorial nature (McCarthy and Hilfiker, 2000). In 

support of this, several pharmacogenomic markers have been identified to date, each of which 

confers only about a two-fold increased likelihood of response due to common allelic variants 

(Poirier et al., 1995, Drazen et al., 1999, McCarthy and Hilfiker, 2000). 

 Polygenic determinants of drug effects have accordingly become increasingly 

important for PGx (Evans and Relling, 1999) and PGx research has recently transformed into 

a genomics-based field, (Evans and Johnson, 2001) leading to a new term, pharmacogenomics. 

The field of “pharmacogenomics” aims to utilise a genome-wide approach to identify the 

network of genes that govern an individual’s response to drug therapy (Goldstein et al., 2003, 

Daly, 2010b). With current advances in genomic technology providing more sophisticated 

molecular tools for the detection of genetic polymorphisms and the wealth of new data 

emerging from the HGP, scanning the whole genome to identify and directly examine 

numerous common gene variants for any association with clinical response phenotypes (drug 

efficacy and toxicity) has rapidly become viable, and forms the basis of pharmacogenomics 

research (Nebert, 1999, Evans and Johnson, 2001).  

 

1.5.10 Whole genome association approach  

In spite of their success in the identification of genes with important contributions to 

drug response (Grant and Hakonarson, 2007, Daly, 2010a), candidate-gene studies have been 
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subject to several criticisms, the most important being that i) many significant findings of 

association in candidate-gene studies have not been replicated when followed up in subsequent 

association studies and ii) though candidate-gene studies are based on the ability to predict 

plausible candidate genes and variants through assumed functional potential, current 

knowledge is not always sufficient to make these predictions. This is evident in AED PGx, 

where several AEDs have broad mechanism of action and for several AEDs pharmacological 

pathways are not completely characterised (Mann and Pons, 2007, White et al., 2007). As only 

a small number of genes can be studied at a time it is difficult to isolate the numerous genetic 

variants that are suspected to influence complex traits (Goldstein et al., 2003) and these may 

therefore only represent a fraction of the possible genetic risk factors that are actually involved 

in drug effects (Hirschhorn and Daly, 2005).   

 Because of this progression in genomic research, a whole genome approach has 

rapidly become an alternative methodology to identify novel associations with common 

diseases (Hirschhorn and Daly, 2005) and genome-wide association studies (GWAS) have 

increasingly been applied to pharmacogenomics (Grant and Hakonarson, 2007, Gurwitz and 

McLeod, 2009, Daly, 2010a). The conventional genome-wide association (GWA) approach is 

a hypothesis-free, systematic search of SNPs (to function as genetic markers) across the 

genome (Guessous et al., 2009)(www.genome.gov/GWAStudies). 

 As no assumptions are made in GWAS with regards to the genomic location of 

potentially causal or influential variants, this approach represents an unbiased yet 

comprehensive option that can be attempted even in the absence of convincing evidence 

regarding the function or location of the causal genes (Hirschhorn and Daly, 2005). GWA 

approaches enable the detection of novel and less obvious genes, and this may be particularly 

useful for pharmacogenomics research into drug-target genetics, which is less well understood 

than that of drug metabolism (Daly, 2010a). Figure 1.1 summarises the main advantages and 

disadvantages of both the candidate gene and GWA approach to genetic association studies.  

 

Since 2007, a range of pharmacogenomics GWA studies have been published (di Iulio 

and Rotger, 2012). These have either identified novel associations between drug responses and 

clinically relevant loci, or have confirmed previous associations (Daly, 2010a) (Table 1.4). 
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1.5.11 Clinical application  

In spite of the significant association in drug response and disease that have been 

described over the years (Wang et al., 2011) the translation of these pharmacogenomics/PGx 

discoveries to the clinic has not been as rapid as was hoped. Only a few commercial tests are 

currently available (Evans and Relling, 2004, Weinshilboum and Wang, 2006, Swen et al., 

2007). Recent instances of PGx information for individualised treatment (Table 1.5) include, 

trastuzumab treatment for HER2 overexpressing breast cancer, (Zanger, 2010) and more 

recently HLA-B*5701 testing to avoid abacavir hypersensitivity (di Iulio and Rotger, 2012).  

 One of the main challenges faced by PGx research is that the influence of genetic 

markers on therapeutic outcome is often lacking and/or non-reproducible (Colhoun et al., 

2003, Swen et al., 2007). Past research indicates that of the 166 putative associations that have 

been studied three or more times, only 6 have been consistently replicated (Hirschhorn et al., 

2002). Several reasons can be attributed to this irreproducibility that characterises genetic 

association studies whether they have employed a candidate gene or whole genome approach 

(Hirschhorn et al., 2002, McCarthy and Hirschhorn, 2008) and these include; i) the 

heterogeneity of disease phenotype, ii) the underestimation of the complexity of common 

complex traits iii) the small effect sizes of alleles  of common risk variants, and iv) relatively 

small numbers of patients in PGx studies (Johnson, 2003, Evans and Relling, 2004). 

 

1.6 Epilepsy pharmacogenetics 

Inadequate seizure control (Kwan and Brodie, 2000a), AEs, ADRs (Depondt, 2006b, 

Zaccara et al., 2007) and variability in individual responses to the same AED doses (Loscher, 

2002) encapsulate pharmacotherapy for a number of people with epilepsy (Depondt, 2006b) 

and represent global barriers to optimal AED treatment (Sisodiya 2005). Furthermore, the 

optimal doses of AEDs may differ four-fold among individuals (Loscher et al., 2009). The 

recent expansion of the field of PGx has allowed the study of drug response in a number of 

common complex traits across several disease domains including epilepsy (Depondt, 2006a). 

Epilepsy represents an ideal disease for PGx study due to its high prevalence, wide variety of 

phenotypes, variable treatment outcomes and at least some knowledge of the main pathways 

of drug action and drug distribution (Depondt, 2006b).  

 In current clinical practice AEDs are primarily used according to existing guidelines 

for the management of epilepsy in the general population and they are selected on the basis of 

known drug response profiles as well as patient and disease characteristics (Brodie and French, 

2000, Perucca et al., 2001, Sander, 2004, Schachter, 2007). In the UK the NICE guidelines 

(http://guidance.nice.org.uk/CG20/Guidance) are referred to for general AED prescribing. 

Basing AED choice on anticipated efficacy is somewhat empirical and initial AED selection 

http://guidance.nice.org.uk/CG20/Guidance
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using this approach is currently effective in around 50% of patients (Kwan and Brodie, 2000a, 

Depondt, 2006b).  

 In parallel to the difficulties inherent with basing AED choice on anticipated efficacy, 

dosing decisions are also largely reliant upon trial and error (Dlugos, Buono et al. 2006). For 

most AEDs a broad range of doses is used in clinical therapy and final maintenance doses are 

reliant on individual response. PGx thus additionally offers the potential to influence AED 

dosing regimens by perhaps using patient genotype to predict a patient’s optimal dose for 

seizure control without causing ADRs and also how quickly drugs can be titrated up (Depondt, 

2006b, Dlugos et al., 2006, Duncan et al., 2006). Furthermore, as a significant number of 

individuals continue to experience seizures despite multiple drug treatment, an increase in the 

understanding of epilepsy and drug-action mechanisms, may shed light on the genetic factors 

contributing to refractory epilepsy (Kasperaviciute and Sisodiya, 2009). PGx research might 

similarly predict which patients are likely to become refractory to drug treatment early on 

during the course of disease and this will encourage early surgical consideration to improve 

the overall outcome for these difficult to treat individuals (Depondt and Shorvon, 2006). PGx 

research could likewise provide a more rational basis for selecting AEDs at the outset of 

therapy (Dlugos et al., 2006). 

 

1.6.1 Candidate genes for epilepsy pharmacogenetics  

 In line with PGx research in other disorders, most association studies in epilepsy to date 

have concerned candidate genes and focused on genetic variation across PK and PD pathways 

(Depondt, 2006a). Much of the PGx data in the field of epilepsy deals particularly with the PK 

of AEDs and PGx knowledge beyond PK genes (i.e. DMEs and transporters) remains limited 

(Depondt, 2006a, c, Kasperaviciute and Sisodiya, 2009). Since drug response to most AEDs 

is multifactorial, whole genome screening is expected to be more fruitful in epilepsy PGx than 

selecting potential candidate genes for AED response (Depondt, 2006b). The present direction 

of epilepsy PGx is therefore moving rapidly towards whole genome strategies to investigate 

common genetic polymorphisms (Kasperaviciute and Sisodiya, 2009).  

 There are three important categories of candidate genes with a potential influence on 

AED response that have been studied in epilepsy PGx to date; i) genes encoding drug 

transporters of which AEDs proposed substrates; ii) genes encoding DMEs involved in the 

breakdown of AEDs; and iii) genes encoding AED targets and their related pathways 

(Depondt, 2006b, Klotz, 2007).   
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Table 1.5 Pharmacogenetic tests integrated into drug labels 

Success stories for pharmacogenetics; examples of drugs for which biomarkers of clinical 

relevance have been identified. Table taken and adapted from (Tauser, 2012). 

Drug indication Pharmacogenetic 

biomarker 

Comments 

 

 

Mandatory, required predictive pharmacogenetic tests in drug label  

Trastuzumab 

HERCEPTIN® 

Metastatic BC 

HER2/neu 

over-expression 
Improve drug efficacy: clinical 

benefit is limited to the 

responsive patients, whose tumors 

overexpress the drug-target 
HER2/neu 

 

Lapatinib 

TYKERB® 

Metastatic BC 

HER2/neu 

over-expression 
Improve drug efficacy: clinical 

benefit limited to tumors 
overexpressing HER2/neu  

 

Cetuximab 

ERBITUX® 

Metastatic CRC 

EGFR expression Improve drug efficacy: clinical 

benefit limited to patients with 
EGFR-positive tumors  

 

Dasatinib 

SPRYCEL®; 

Imatinib 

GLEEVEC® 

ALL (adults) 

Philadelphia 

chromosome 

positive 

Disease confirmation and patients’ 

selection: BCR-ABL 

translocation  

 

Maraviroc 

SELZENTRY® 

HIV (adults) 

CCR-5 

C-Cmotif receptor 
Disease confirmation: infection 

with CCR-5-tropic HIV-1 and 
resistance to other antiretrovirals 

 

Recommended predictive pharmacogenetic tests in drug label  

Warfarin 

COUMADIN® 

Thrombo-embolism 

CYP2C9 and 

VKORC1 

(-1639G>A) 

Improve drug efficacy and safety: 

avoid increased risk of 

bleeding to patients homozygous 

or heterozygous for CYP2C9*2 

or CYP2C9*3 alleles by 

prescribing differentiated doses 

Pharmacogenetic test: 

“Nanosphere Verigene Warfarin 
Metabolism Nucleic Acid Test; 

therapeutic algorithm based on 

genotype and clinical factors 

(http://www.WarfarinDosing.org.) 

 

Carbamazepine 

TEGRETOL® 

Epilepsy 

HLA-B*1502 

allele 

Improve drug safety: avoid serious 

dermatologic reactions 

(Stevens–Johnson syndrome and/or 

toxic epidermal necrolysis). 

 

Available from: http://www.intechopen.com/books/clinical-applications-of pharmacogenetics/ 

pharmacogenomics-matching-the-right-foundation-at-personalized-medicine-in-the-right-genomic-

era- 

 

 

http://www.intechopen.com/books/clinical-applications-of%20pharmacogenetics/
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1.6.2 Novel computational methods; an approach to solving issues in complex 

data analysis 

Linkage analysis has been successfully used by statisticians to locate genes 

responsible for simple monogenic diseases (Rodin et al., 2011). Unlike rare Mendelian 

diseases however, multiple genes are likely to influence or confer susceptibility to common 

complex diseases and traits. Interactions between these genes and between genes and the 

environment also exist (Ritchie and Motsinger, 2005, Rodin et al., 2011), the cumulative effect 

of which is thought to contribute to complex disease phenotypes. This multifactorial basis of 

complex disease has led to several difficulties in data analysis, mostly because of statistical 

and computational issues (Ritchie and Motsinger, 2005). In complex disease analysis a 

relatively large number of genetic variants are investigated for disease association in a bigger 

sample size of individuals, leading to significant statistical concerns (Zhang and Rajapakse, 

2009, Motsinger-Reif et al., 2010). Such analytical issues have thus far made the identification 

of definitive influential factors for many disease traits difficult (Moore et al., 2004, McCarthy 

et al., 2008). With complex diseases and traits having potential genetic contributions from 

thousands of variants and with current genotyping technology reporting millions of 

polymorphisms, the statistical challenge of detecting small polygenic effects using large 

volumes of genetic data whilst also controlling for false positive signals has become apparent 

(Baksh and Kelly, 2007).  

Traditional parametric statistical approaches for gene discovery and genetic analysis, 

such as logistic regression, typically evaluate the effects of individual SNPs in isolation, thus 

assuming independence between variants (Risch and Merikangas, 1996, Hoppe, 2005).  Such 

marker-by-marker approaches ignore the multigenic nature of complex disease and also fail 

to account for the interplay of many genes that is likely to contribute to the genetic composition 

of complex traits (Hirschhorn et al., 2002, Pander et al., 2010, Rodin et al., 2011, Vanneschi 

et al., 2011). (Ritchie and Motsinger, 2005). This illustrates the challenge of analysing data 

for complex traits and the need for accurate classification and prediction algorithms.  

 

1.6.3 Pharmacokinetic variation and metabolising enzymes 

More than 30 families of DMEs can be found in humans (Evans and Relling, 1999, 

Ingelman-Sundberg et al., 1999) and nearly all of these have genetic variants, many of which 

translate into functional changes in the proteins they encode (Weinshilboum, 2003). Hepatic 

metabolism consists of two established phases; phase I reactions (oxidation, reduction and 

hydrolysis) and phase II reactions (conjugation reactions between an endogenous molecule 

such as glucuronic acid and a drug metabolite) and both pathways function to produce 
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metabolites that are usually more water soluble than the parent compound, thus enhancing 

their excretion from the body (Nagasawa and Nakahara, 1992).  

 Metabolism in the liver by the cytochrome P450 (CYP) metabolising enzymes 

represents the most common route of drug turnover, and it has long been known that fast- and 

slow-metabolising variants in the genes encoding these enzymes can lead to under- and over-

dosing of drugs (Evans and Johnson, 2001, Wilkinson, 2005).  The CYP super-family is thus 

considered the most important class of DMEs and up to 80% of all prescribed drugs undergo 

initial metabolism (Phase I reactions) through oxidation reactions catalysed by these enzymes 

(Eichelbaum et al., 2006).  

 Inherited differences in individual DMEs are typically monogenic traits, and the 

clinical importance of enzyme variants, i.e. their influence on the therapeutic effects of 

medicinal drugs, depends on allele-frequency, the effects of the polymorphisms on protein 

function (i.e. whether the biological activity of the enzymes are altered), and the importance 

of the enzyme for the activation or inactivation of drug metabolites (Evans and Johnson, 2001, 

Kirchheiner and Seeringer, 2007). Polymorphic CYP450 enzymes can either; reduce 

enzymatic activity to slow down metabolism and cause an over-accumulation of a drug or its 

metabolites resulting in drug toxicity (Park et al., 1995, Kitteringham et al., 1998) or reduce 

efficacy of medications that require a polymorphic enzyme for activation as this can reduce 

it’s function (Kitteringham et al., 1998, Evans and Johnson, 2001).  

 The metabolic pathways involved in the elimination of most AEDs have largely been 

defined (Ramachandran and Shorvon, 2003, Saruwatari et al., 2010). Functional 

polymorphisms in the genes of AED metabolising enzymes are expected to give rise to 

interindividual differences in metabolic profile and to influence drug levels in the plasma. This 

can also lead to differences in AED efficacy and/or toxicity (Ramachandran and Shorvon, 

2003). Detoxification of AEDs occurs via hepatic (metabolism) and/or renal (excretion) routes 

(Klotz, 2007, Anderson, 2008). Most AEDs are eliminated from the body initially through 

biotransformation in the liver by several different DMEs before their elimination via the 

kidneys (Klotz, 2007, Anderson, 2008), Due to the major role of CYP450 genes as Phase I 

metabolising enzymes for many AEDs, these may influence interindividual variability in the 

PK of AEDs and have been the focus of several candidate gene studies in AED PGx to date 

(Loscher et al., 2009, Saruwatari et al., 2010). 

 Functional polymorphisms underlying alleles with variable metabolism rates are 

known for several CYP450 genes and these variants have the potential to result in 

interindividual differences in AED concentration, and in their effectiveness and/or the 

occurrence of ADRs (Daly, 2003). Of the various polymorphic CYP species however, only 

CYP2D6, CYP2C9 and CYP2C19 have shown any clinical significance to date (Ingelman-
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Sundberg, 2004b, Klotz, 2007) and only CYP2C9 and CYP2C19 variants are relevant to AED 

metabolism (Kirchheiner and Seeringer, 2007, Klotz, 2007).  

 Polymorphisms are also known to exist in all the major phase II enzyme systems 

including N-acetyltransferases (NAT1 and NAT2), uridine glucoronyltransferases (UGTs), 

sulfatases and glutathione-s-transferases (GSTs) (Ferraro and Buono, 2005), however the 

contribution of phase II enzymes to AED metabolism is currently less-well characterised than 

that of phase I (Ferraro and Buono, 2005, Depondt, 2006b). The UGT superfamily of 

conjugating enzymes are one of only a few phase II DMEs that are known to contribute to 

AED metabolism (Ferraro and Buono, 2005, Depondt, 2006b). Members of the UGT1 

superfamily act upon approximately 35% of all drugs metabolised by phase II DMEs, 

including several AEDs such as CBZ, VPA, LTG, OXC, TPM and ZNS (Ferraro and Buono, 

2005, Szoeke et al., 2006, Saruwatari et al., 2010). UGTs conjugate their substrates with a 

glycosyl group (glucuronidation), a major conjugation pathway responsible for increasing the 

water solubility and enhancing the elimination of a variety of drugs (Nagar and Blanchard, 

2006, Saruwatari et al., 2010). Genetic polymorphisms in UGT enzymes may modify their 

glucuronidation capacity, a phenomenon seen in an increasing number of studies of a variety 

of substrates (Inaba et al., 1995, Miners et al., 2002, Guillemette, 2003). Most of the 

metabolism of VPA and LTG occurs via this glucuronidation pathway, rather than via the 

CYP450 enzymes (Nagasawa and Nakahara, 1992). Knowledge of the genetic mechanisms 

underlying variability in glucuronidation capacity is however currently limited and only a few 

clinically relevant genetic polymorphisms in UGTs have been described thus far (Guillemette, 

2003). 

 Additional phase II enzymes with a major role in AED metabolism include GSTs 

(Guillemette, 2003, Hayes et al., 2005) and microsomal epoxide hydrolase (mEH) (Depondt, 

2006a, Klotz, 2007, Saruwatari et al., 2010). GST is an essential enzyme of defense and 

detoxification and another hepatic conjugating phase II enzyme. GSTs catalyse the 

conjugation of glutathione (GSH) for detoxifying and aiding the elimination of a wide range 

of therapeutic agents (Whalen and Boyer, 1998, Hayes et al., 2005, Saruwatari et al., 2010) 

and play an important role in metabolising AEDs (Tang et al., 1996, Bu et al., 2007, Shang et 

al., 2008). The mEH enzyme encoded by the EPHX1 gene is a biotransformation enzyme that 

also metabolises reactive epoxide intermediates (often formed during phase I metabolism) to 

more water-soluble derivatives and is a candidate for variation in response to CBZ, PB and 

PHT (Nagasawa and Nakahara, 1992, Depondt, 2006b). 
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1.6.4 Pharmacokinetic variation and transporter proteins 

Drug transporters function to regulate the absorption, distribution, and excretion of 

many medications (Evans and McLeod, 2003) through regulating both inward and outward 

transport of drugs and their metabolites (Daly 2010). These proteins also show considerable 

genetic variation, including many potentially functional polymorphisms (Goldstein et al., 

2003, Leabman et al., 2003). The membrane bound efflux transporter super-families form a 

category of major transport proteins and include ATP-binding cassette (ABC) proteins, and 

the solute carrier proteins (SLC), with the ABC proteins being among the most extensively 

studied transporters involved in drug disposition and effects (Borst et al., 2000, Evans and 

McLeod, 2003). Genetic variation in the genes encoding these proteins are expected to alter 

the rate of drug uptake, distribution or efflux and can result in variable drug concentrations, 

effectiveness and/or occurrence of side effects (Goldstein et al., 2003, Cox, 2010).  

 Functional polymorphisms in genes encoding drug transporters, of which AEDs are 

proposed substrates, may alter the cerebral uptake, distribution or efflux of AEDs, and thus 

can result in interindividual differences in the concentration of AEDs in the brain, thereby 

impacting on effectiveness and/or AEs (Depondt and Shorvon, 2006). The blood brain barrier 

(BBB) is a physical and metabolic barrier between the CNS and the systemic circulation, 

which serves to regulate and protect the microenvironment of the brain (Gillham et al., 1990, 

Scherrmann, 2002). Any therapeutic agents required to target neurological pathways are 

required to penetrate the BBB to achieve efficacy (Gillham et al., 1990, Scherrmann, 2002). 

 The ATP-binding cassette or ABC transporter super-family function as active pumps 

facilitating the efflux of foreign substances from cells across luminal membrane borders 

(Abbott et al., 2002). Within the ABC superfamily are the multidrug transporter proteins 

(MDRs), encoded by the ABCB genes, multidrug resistance-associated proteins (MRPs) 

encoded by the ABCC genes and breast cancer-resistance protein (BCRP) encoded by the 

ABCG2 gene (Robey et al., 2008). These are expressed in endothelial cells of the BBB and in 

choroid plexus epithelial cells of the blood-cerebrospinal fluid (CSF) barrier, where they limit 

brain accumulation of many lipophilic drugs and so appear to provide a defense mechanism 

to the brain (Fromm, 2000, Loscher and Potschka, 2002).  

 ABC transporters were initially found to influence clinical refractoriness to the effects 

of several drugs, including chemotherapeutics for the treatment of cancer (Schinkel, 1997). 

Although most AEDs are quite lipophilic, allowing penetration into the brain, such multidrug 

efflux transporters may similarly limit the brain uptake of AEDs by mediating their extrusion 

(Kwan and Brodie, 2005) and could prevent AEDs from reaching sufficient concentration 

(Elger, 2003, Kwan and Brodie, 2005, Loscher and Potschka, 2005a, c). Reports of Pgp 

overexpression in epileptogenic brain tissue promoted it as a candidate gene for refractory 

epilepsy. Genetic variations in ABC multidrug transporters are thought to play a role in drug-
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resistant epilepsy by determining the expression of efflux transporters regulating the levels of 

AEDs in predisposed individuals (Ramachandran and Shorvon, 2003).  

 

1.6.5 Pharmacodynamic variation and drug target genes 

Progress on the PGx of drug target proteins has been slower than studies on drug 

metabolism and transport. However, the revolution in human genomics has provided new 

insights into this area (Daly, 2010b). There has been a recent increasing focus on genetic 

polymorphisms in drug targets, with an interest in defining their impact on drug efficacy and/or 

toxicity. The main candidate protein categories comprise of receptors, transporters, channel 

proteins and enzymes and include genes encoding i) direct targets of a drug such as a receptor 

or enzyme, ii) signal transduction proteins, downstream proteins and other proteins involved 

in the pharmacological response of a drug and iii) proteins associated with disease risk or 

pathogenesis that is altered by the drug (Evans and Johnson, 2001).  

 PD gene variants are often considered as likely causes of variability when drug 

response appears independent of dose i.e. when PK influences can be ruled out (Vinken et al., 

1999). Studies have revealed that the genetic polymorphisms in many PD genes can alter their 

sensitivity to specific medications (Evans and Relling, 1999). Functional polymorphisms in 

these genes thus may have a profound effect on drug efficacy and/or toxicity (Johnson, 2001, 

Roden and George, 2002, Evans and McLeod, 2003). 

 Review of literature concerning drug target PGx studies reveal that although numerous 

single gene/single variant associations have been identified, providing 'proof of concept' that 

genetic variability in PD factors contributes to the variability in drug response, has so far 

proved unsuccessful. Inconsistencies are evident across studies and the data are not as yet 

clinically useful in most cases (Evans and Johnson, 2001, Johnson, 2001). Such apparent 

discordance among studies also suggests the inability of a single polymorphism is highly 

predictive of response, and thus it seems unlikely that a single polymorphism in a single gene 

would explain a high degree of drug response variability across drug therapy (Evans and 

Johnson, 2001, Johnson, 2001). Given that most drug responses involve a large number of 

proteins, a polygenic, or genomic approach to PGx study may provide more reproducible 

results (Evans and Johnson, 2001, Johnson, 2001, Goldstein et al., 2003). 

 Genetic variation in AED target proteins affects the PD of specific AEDs and could 

potentially contribute to interindividual variation in AED response (Depondt and Shorvon, 

2006, Ferraro et al., 2006). AED targets or PD candidate genes, as sources of genetic variation, 

have only recently been the focus of AED PGx (Depondt and Shorvon, 2006). The main 

candidates in this category are the genes encoding the targets of currently utilised AEDs, 

namely neuronal ion channel subunits and elements of neurotransmitter pathways (Kwan et 
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al., 2001, Depondt, 2006b). Several first-line AEDs including CBZ, LTG and PHT are thought 

to primarily act through binding to and modulation of voltage-gated Na+ (NaV) channel 

subunits (Ragsdale and Avoli, 1998), therefore the genes encoding neuronal NaV channels 

have been prime candidates for PGx study (Depondt and Shorvon, 2006, Loscher et al., 2009).  

 Mutations in the α-subunit of the NaV channel were first associated with familial and 

sporadic epilepsies (Wallace et al., 2001b) and early observations indicated that these NaV 

channel mutations could also affect the clinical response to AEDs in genetic epilepsies 

(Guerrini et al., 1998). Dravet syndrome, caused by de novo mutations in the SCN1A gene, is 

characterised by a marked aggravation of seizures upon treatment with LTG (Guerrini et al., 

1998). Other major targets for PGx study include subunits for potassium channels, calcium 

channels, GABA and glutamate receptors, GABA transporters, GABA transaminase and 

synaptic vesicle protein 2A (SV2A) (Lynch et al., 2004). Additional PD molecules of potential 

significance to clinical response include genes for effector components of the downstream 

pathways associated with AED target binding and action (Gillham et al., 1990, Ferraro et al., 

2006). 

 

1.6.6 Epilepsy or disease related candidate genes 

Prognosis studies of epilepsy suggest that the underlying molecular disease 

pathogenesis is an important determinant of outcome or response to AED treatment (Depondt 

and Shorvon, 2006). Differences in AED response can be seen between types of epilepsy, 

seizure types and particular seizure syndromes (Semah et al., 1998).  Any genes causing 

epilepsy are thus potential candidates for genetic variation that may also influence differences 

in AED response (Spear, 2001, Depondt, 2006a). In recent years at least a dozen genes have 

been identified in rare forms of monogenic epilepsies (Graves, 2006). Whether by design or 

coincidence, drugs often act upon gene products that play a role in the molecular pathology of 

a particular disease, and so this class of epilepsy-causing genes (Na+, Ca2+ and GABA receptor 

subunit genes) not surprisingly overlaps with common AED targets (Ferraro and Buono, 2005, 

Depondt, 2006a). Animal models with mutations in these epilepsy associated genes, have 

accordingly demonstrated changes in sensitivity to several AEDs (Picard et al., 1999, Lucas 

et al., 2005). Disease susceptibility genes that do not encode actual AED targets are can also 

predispose to drug response (Depondt, 2006a, Depondt and Shorvon, 2006).  

 

1.6.7 Current epilepsy pharmacogenetic research effort  

Over the last two decades, a considerable effort has been made to unravel the genetic 

basis of variable response to AEDs (Nakajima et al., 2005, Loscher et al., 2009). Clinical 

efficacy for AEDs involves preventing seizure occurrence through identifying optimum drug 
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dosing regimens during AED administration, whilst also avoiding issues of tolerability. 

Substantial evidence from studies of the PK pathways (metabolism and transport) of AEDs 

also indicate that genetic variation may additionally affect clinically effective drug dose 

(Klotz, 2007). 

 The majority of PGx studies have until recently aimed at identifying PK variation in 

the multidrug resistance phenotype of epilepsy (Loscher and Delanty, 2009, Johnson et al., 

2011b) and this has largely focused on drug transporter candidate genes (Depondt and 

Shorvon, 2006). The biological basis of ‘refractoriness’ is however thought to most likely be 

multifactorial and variable (Tate and Sisodiya, 2007). As AEDs are required to traverse the 

BBB and bind to one or more target molecules to exert their particular therapeutic effect, two 

PGx theories have emerged in an attempt to explain treatment failure in epilepsy (Remy et al., 

2003, Remy and Beck, 2006). Firstly the drug transporter PK hypothesis, which is almost 

entirely focused around the Pgp efflux protein that was overexpressed in epileptic brain tissue 

from patients with drug resistant epilepsy and secondly the more recent drug target PD 

hypothesis that proposes ion channel and/or neurotransmitter dysfunction in AED resistance 

(Sills et al., 2002, Sills, 2004, Tate and Sisodiya, 2007). Experimental evidence from animal 

studies of drug resistance originally associated altered NaV channel pharmacological 

sensitivity and electrophysiological properties between responsive and pharmacoresistant 

models of refractory epilepsy (Remy et al., 2003, Loscher, 2005c, Remy and Beck, 2006).  

The genes studied in regard to this phenotype of response include those encoding the 

efflux proteins; ABCB1, ABCC2, ABCG2 and BCRP, encoding MDR, MRP and BCRP 

respectively and the RLIP transporter gene; RLIP76 (these form the prominent transporter 

hypothesis for drug resistance). The drug target proteins studied include the NaV channel 

encoding genes SCN1A, 2A, 3A and a number of GABAA receptor genes (drug target 

hypothesis)(Tate and Sisodiya, 2007). Recent research has additionally implicated the 

astrocytic GABA transporter GAT-3 (encoded by GAT3) with drug responsiveness (Meldrum 

and Rogawski, 2007, Kim et al., 2011a). GAT3 variation was associated with the 

pharmacoresistance phenotype in a recent candidate gene association study (Kim et al., 2011a) 

and the GAT-3 protein has also been proposed as a potential drug target for new AED 

development (Meldrum and Rogawski, 2007, Kim et al., 2011a). 

 The drug transporter hypothesis of multidrug resistance (Loscher and Delanty, 2009) 

proposed that increased brain expression of efflux transporters could either be a result of 

prolonged or frequent seizures, as demonstrated in rodent models of epilepsy (Loscher and 

Potschka, 2005b, Loscher and Brandt, 2009), and/or be due to a genetic contribution, such as 

polymorphisms in the encoding genes (Loscher and Potschka, 2005a, Loscher and Brandt, 

2009). Numerous PGx studies have implicated ABCB1 polymorphisms in multidrug resistant 

epilepsy, with several indicating that ABCB1 polymorphisms that affect the expression or 
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functionality of Pgp such as the well-known 3435C>T polymorphism (Siddiqui et al., 2003), 

are more frequent in AED non-responders than responders (Loscher et al., 2009, Schmidt and 

Loscher, 2009). This finding could not be reproduced in many other studies for AED 

responsiveness (Loscher et al., 2009) including a meta-analysis effort using over 3000 refrac-

tory epilepsy patients and controls across multiple populations (Bournissen et al., 2009, 

Haerian et al., 2011). There is also a matter of debate on which AEDs are transported by the 

human Pgp transporter (Luna-Tortos et al., 2008, Loscher et al., 2011). The association 

between ABCB1 3435C>T and pharmacoresistance in epilepsy is thus unclear with only three 

of the published studies showing positive associations (Tate and Sisodiya, 2007, Robey et al., 

2008, Loscher et al., 2009).  

A number of associations have additionally been reported for DME genes, the most 

prominent being; PHT dose-related toxicity and CYP2C9 polymorphisms. This was one of the 

first positive associations of genetic variation altering the metabolism of AEDs (Mamiya et 

al., 2000). Several in vitro studies have illustrated that CYP2C9*2 and *3 genotypes have a 

decreased capacity for PHT metabolism (Saruwatari et al., 2010, Depondt et al., 2011). 

Numerous different reports of PHT toxicity have demonstrated low activity with the 

homozygote CYP2C9*3 genotype and heterozygote genotype for both CYP2C9 and CYP2C19 

enzymes (Kasperaviciute and Sisodiya, 2009). CYP2C9/19 genotyping may in theory 

influence AED dosing (Gardiner and Begg, 2006), however is not routinely used as a clinical 

guide, in part because it only explains a limited proportion of dosing variation (Anderson, 

2008, Kasperaviciute and Sisodiya, 2009, Loscher et al., 2009, Depondt et al., 2011). 

Genotype associations were also demonstrated for EPHX1 and more recently UGT1A4 and 

UGT2B7, however these were again of limited proven strength for clinical application 

(Saruwatari et al., 2010). 

 The PD hypothesis for drug-resistance in epilepsy (Remy et al., 2003, Remy and Beck, 

2006) proposes altered pharmacological sensitivity of the NaV channel (Remy, Gabriel et al. 

2003) leading to reduction in AED sensitivity (Remy, Gabriel et al. 2003; Remy and Beck 

2006). The hypothesis suggests NaV channel polymorphisms can alter the subunit composition 

or structure (Remy and Beck, 2006) through modifications in the transcription of channel sub-

units as a result of persistent seizures, (Remy and Beck, 2006). Most experimental studies 

investigating the molecular basis of altered drug target sensitivity have focused on 

transcriptional changes of ion channel subunits in response to seizures (Remy and Beck, 2006, 

Volk et al., 2006, Bethmann et al., 2008, Loup et al., 2009). Whether these structural changes 

are indeed influenced by polymorphisms in drug target genes has not been as widely described 

in literature (Nakajima et al., 2005).  

 Since the 2003 implication by Remy et al, NaV gene variants, particularly the NaV α1 

subunit gene (SCN1A) have received further attention (Gillham et al., 1990, Tate et al., 2005, 
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Tate et al., 2006, Abe et al., 2008, Kwan et al., 2008). A functionally validated polymorphism 

located in SCN1A in a retrospective dosing study provided the first evidence that drug target 

(PD pathway) polymorphisms may additionally be influential in the responsiveness to AED 

treatment (Tate et al., 2005). This proof of concept study prompted a handful of additional 

investigations concerning the relevance of NaV gene variation to both AED efficacy and AED 

resistance (Abe et al., 2008, Kwan et al., 2008). As of yet no definite evidence confirming a 

major role of SCN1A in AED responsiveness can be found (Loscher et al., 2009, Manna et al., 

2011). Table 1.6 summarises some of the main research studies carried in epilepsy PGx to 

date. This includes recent data from studies on SCN1A (2013). 

 

1.6.8 Pharmacogenomics and AEDs 

Despite numerous studies conducted in epilepsy PGx, there is an absence of 

conclusive data to explain drug responsiveness and to inform treatment decisions (Nakajima 

et al., 2005, Johnston et al., 2009, Kasperaviciute and Sisodiya, 2009). As discussed in sections 

1.4.9, 1.4.10, overall, advancements in understanding of human genetics and improvements in 

genomic technology have shed some light on the response to pharmacological treatment, to 

aid the clinical management of several common complex traits and disorders (Ritchie, 2012). 

Pharmacogenomics studies have observed a number of successes in recent years, most of 

which concern pharmacotherapy for cancer i.e. EGFR tyrosine kinase inhibitors (TKIs) in the 

treatment of lung cancer (Yi et al., 2009) and HER2-directed therapies in the treatment of 

HER2-positive early-stage breast cancer (Grant and Hakonarson, 2007, Arteaga et al., 2012, 

Ritchie, 2012). Additional PGx successes include the use of the analgesic codeine (Crews et 

al., 2012), anticoagulant therapy with warfarin (Johnson et al., 2011a) and abacavir therapy 

for HIV. 

 The first impact of pharmacogenomics in clinical epilepsy was the discovery of the 

HLA-B*1502 polymorphism as a strong predictor of CBZ induced Stevens–Johnson 

syndrome (SJS), in people of Chinese and south Asian ancestry (Ferrell and McLeod, 2008). 

Testing for HLA-B*1502 in at-risk ethnic populations is now recommended by regulators 

globally, including in the United States, United Kingdom, and Canada (Ferrell and McLeod, 

2008, Kasperaviciute and Sisodiya, 2009, Johnson et al., 2011b).  Moreover since this 

clinically proven association in Chinese and south-Asian patients, the HLA-A*3101 variant 

(Alfirevic et al., 2006) was identified in European patients and demonstrated to significantly 

associate with CBZ hypersensitivity (McCormack et al., 2011, Yip et al., 2012). The HLA-

A*3101 variant has thus also been proposed as a clinically relevant marker to predict 

hypersensitivity reactions (McCormack et al., 2011, Yip et al., 2012). Screening for the HLA-

B*1502 allele in patients of Asian descent in order to prevent CBZ and PHT-induced SJS 
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(Ferrell and McLeod, 2008) has now been incorporated into standard medical practice (Chen 

et al., 2011). Though impressive, this remains the only epilepsy PGx finding that has resulted 

in clinical application so far (Kasperaviciute and Sisodiya, 2009).  

To summarise, advances have been made in identifying genetic markers of AEs in 

terms of severe cutaneous reactions but there has been little progress in predicting AED 

efficacy (Kasperaviciute and Sisodiya, 2009, Johnson et al., 2011b). Progress for epilepsy PGx 

is thus lagging behind when compared to many polygenic neurological conditions and PGx 

data generated to date has had little impact on current AED treatment guidelines (Ferraro and 

Buono, 2005, Loscher et al., 2009). No definite predictors of drug efficacy are known and 

current treatment for unresponsive individuals remains largely based on trial and error of 

existing medications (Kasperaviciute and Sisodiya, 2009). 

 

1.6.9 Epilepsy pharmacogenetic studies: research limitations and design issues 

Several possible reasons have been proposed for the limited success in discovering 

susceptibility loci for AED response as well as the numerous failed attempts to replicate the 

few potential risk alleles identified (Nakajima et al., 2005, Baksh and Kelly, 2007). Among 

the reasons for the lack of success in general, are the overall lack of clarity in study findings 

due to the retrospective design and analysis and small cohort size and/or short duration of 

follow-up (Johnson et al., 2011b). Additional problems include general methodological 

limitations associated with complex outcomes (Cardon and Bell, 2001, Hirschhorn et al., 2002, 

Colhoun et al., 2003, Depondt, 2006b, McCarthy et al., 2008). Of particular concern with 

epilepsy PGx studies are i) the diversity in the definition of AED resistance, ii) the 

heterogeneity of the study populations and ii) the lack of a multigenic approach associated 

with candidate gene based research (Ferraro et al., 2006, Kasperaviciute and Sisodiya, 2009, 

Johnson et al., 2011b). The latter of these has produced disappointing results in many genetic 

studies (Colhoun et al., 2003, Goldstein et al., 2003, Grant and Hakonarson, 2007, di Iulio and 

Rotger, 2012).  

In terms of the issue of heterogeneity of study cohorts, this is often due to i) differences 

in clinical phenotype definitions used for selecting participants between study sites (i.e. 

definitions used to classify epilepsy syndromes and epilepsy severity: chronic long-term 

epilepsy versus newly treated epilepsy patient populations, with the former predominantly 

used in the majority of PGx reports), and ii) differences in the clinical treatment regimens used 

between studies (i.e. dosing strategies and drug selection decisions used by neurologists), 

(Johnson et al., 2011b). 

 Another likely reason for the lack of progress in identifying genetic contributions to 

drug efficacy in epilepsy is the small effect size of variants detected to date (Cavalleri et al., 
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2011). Even when a study has been successfully replicated, the effect of any given 

polymorphism on drug response is often lower than initially described (Ioannidis, 2003). Such 

studies have commonly tested for associations between single candidate genes or single SNPs, 

and therefore only explain a fraction of the variability in drug response, with accordingly 

limited plausibility and clinical utility (Goldstein, 2009, Cavalleri et al., 2011). This approach 

and its inherent limitations explains why only a handful of PGx markers are actually useful 

for individualising treatment in clinical practice (Ikediobi et al., 2009). The fact that the classic 

candidate gene approach does not take into account the full complexity underlying drug 

response is another possible explanation for the lack of positive findings to date (Ritchie and 

Motsinger, 2005). Drug response is now widely considered to be the joint effect of multiple 

polymorphisms, gene-gene interactions (epistasis)(Hardy and Singleton, 2009), and the 

interplay with environmental factors (gene-environment interactions) (Hirschhorn et al., 

2002).  

SNPs with small effect sizes in combination are more likely to underpin the 

multifactorial basis of drug efficacy and tolerability (CDCV hypothesis) (Gillham et al., 1990, 

Evans and McLeod, 2003, Iyengar and Elston, 2007) and a genomic approach for the 

identification of these genetic variants is more appropriate (Depondt and Shorvon, 2006, 

Baksh and Kelly, 2007). Study design and data analysis, employing wide-scale mapping of 

biologically relevant loci in much larger cohorts (through large collaborations and consortia 

meta-analysis) (Cavalleri et al., 2011), and/or employing GWAS may help nullify some of the 

previous failures of candidate gene studies in AED response and enable replication studies to 

validate any previously reported true effects (Baksh and Kelly, 2007). Wide-scale mapping of 

large sections of the genome in PGx (www.genome.gov/GWAStudies) (Nagasawa and 

Nakahara, 1992, Hardy and Singleton, 2009, Daly, 2010a, Wang, 2010, Wang et al., 2011), is 

growing, and genome-wide efforts for epilepsy PGx, are likewise expanding. The first 

examples of the application of GWAS have however only just emerged and both of these 

concern cutaneous drug reactions and were prompted by the discovery of the clinically 

important HLA-B*1502 variant (McCormack et al., 2011, Ozeki et al., 2011b).   

Despite limited clinical significance and difficulties in replication across epilepsy PGx 

findings, many of the SNPs and gene associations found to date appear relevant and warrant 

further consideration. For future PGx studies in epilepsy to have sufficient power to detect 

genetic variants with small effect sizes, much larger sample sizes are required (Crowley et al., 

2009, Johnson et al., 2011b). Recent developments in genetic technology do however hold 

great promise for the field of epilepsy. With an increasing number of robust associations found 

in different diseases to date and the rise in GWAS being applied to neurological conditions, 

the status of pharmacogenomics/PGx for epilepsy is likely to change rapidly (Kasperaviciute 

and Sisodiya, 2009, Mullen et al., 2009, Rees, 2010). 

http://www.genome.gov/GWAStudies
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1.6.10 Machine learning 

To deal with these issues many researchers have begun to explore more powerful 

statistical methodologies capable of dealing with both the problem of detecting small, multiple 

associations and the analysis of high-dimensional data (Moore et al., 2004, Hoppe, 2005, 

Rodin et al., 2011) and this includes the machine learning (ML) data mining method (Hastie 

et al., 2001, Koster et al., 2009). The ML approach to data analysis of pharmacogenomics data 

typically involves three-steps, i) selection of variables (SNPs), ranked in order of effect on 

drug response phenotype, ii) modelling step involving generation of a predictive model using 

SNPs and any other relevant factors, iii) evaluation of generated models using conventional 

statistical analysis methods (Koster et al., 2009). Typical ML approaches applied to genomic 

studies model data using Bayesian networks, which allow the inferential exploration of 

previously undetermined relationships among genetic and clinical variables, and describe 

these relationships, once identified, using a hypothesis or model-free approach (Hoppe, 2005, 

Zhang and Rajapakse, 2009, Rodin et al., 2011). Data mining methods generally involve the 

development of disease association models that allow integration of the interactions between 

multiple SNPs in addition to clinical variables and disease phenotype, and so overcome the 

main limitation of traditional statistical approaches through their ability to model high-

dimensional data (Hoppe, 2005, Wilke et al., 2005). Additional advantages of ML algorithms 

include robustness of parametric assumptions, high power and accuracy, ability to model non-

linear effects, and the availability of numerous well-developed algorithms (Moore and Ritchie, 

2004, McKinney et al., 2006).   
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Table 1.6          Summary of genes and SNPs associated with antiepileptic drugs so far 

DRUG DOSING STUDIES 

Gene Genetic 

polymorphisms 

AED Associated drug 

parameter 

Reference  

PHASE I DRUG METABOLISING ENZYMES 

CYP2C9 

 

 

 

CYP2C9/

C19 

CYP2C9*1/*2 

 

CYP2C9*2 

 

CYP2C9/C19 

PHT 

 

PHT 

 

PHT                           

PB 

VPA 

PHT 

Maintenance dose 

 

Altered metabolism 

 

PHT clearance 

PB clearance 

VPA clearance 

PHT dosage 

(van der Weide et 

al., 2001) 

(Odani et al., 1997) 

 

(Lee et al., 2007) 

(Goto et al., 2007) 

(Wu et al., 2010) 

(Hung et al., 2004) 

CYP2C19 CYP2C19*2/*3  PHT 

ZNS 

CLB 

PHT/PB 

PHT clearance 

ZNS clearance 

Efficacy to CLB  

Pharmacokinetics 

(Seo et al., 2008b) 

(Okada et al., 2008) 

(Yukawa and 

Mamiya, 2006)  

 

CYP3A5 

 

CYP3A5*3 

genotype 

CBZ Concentration 

Pharmacokinetics 

(Park et al., 2009) 

(Seo et al., 2006) 

GSTM1/ 

GSTT1 

GSTM1 

null genotype 

null genotype 

VPA 

CBZ 

Hepatotoxicity (Fukushima et al., 

2008a) 

(Ueda et al., 2007) 

PHASE II DRUG METABOLISING ENZYMES 

UGT2B7 UGT2B7 -

161C>T 

 

LTG 

 

Concentration to daily 

dose ratio 

(Blanca Sanchez et 

al., 2010)  

EPHX1 

 

Try113His and 

His139Arg 

 

CBZ 

 

Maintenance dose 

 

Metabolism; increased 

and decreased CBZ 

diol:CBZ epoxide 

ratios  

(Makmor-Bakry et 

al., 2009) 

(Nakajima et al., 

2005) 

 

DRUG TARGET PROTEINS 

SCN1A IVS5-91G>A 

 

 

CBZ/PHT 

 

PHT 

Maximum dose  

 

Maintenance dose 

(Tate et al., 2005) 

 

(Tate et al., 2006) 

  CBZ No association with 

CBZ dosage 

(Zimprich et al., 

2008) 

DRUG EFFICACY STUDIES 

DRUG TRANSPORTER PROTEINS 

ABCB1 

 

 

ABCB1 

 

 

 

ABCB1, 

ABCC2,  

C3435T 

 

 

C3435T 

 

 

 

Multiple 

variants 

Multiple 

 

 

Multiple 

 

 

 

Multiple 

Association with 

refractory epilepsy 

 

No association with 

resistance to AEDs in 

a meta-analysis 

 

No association with 

drug resistance 

(Siddiqui et al., 

2003) 

 

(Bournissen et al., 

2009) 

 

 

(Kim et al., 2009) 
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ABCG2 Including 

C3435T 

  

RLIP76 Multiple Multiple No association with 

AED treatment 

response 

(Soranzo et al., 

2007) 

DRUG TARGET PROTEINS 

GAT-3 Multiple Multiple AED resistance  (Kim et al., 2011a) 
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SCN2A 
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CBZ resistance 

 

Association with 
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multidrug resistance 

 

No association with 
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No association with 

responsiveness: Multi-

centre meta-analysis 

 

 

 

Association with AED 
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(Petrovski et al., 
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AED= antiepileptic drug, PHT= phenytoin, PB= phenobarbital, VPA= valproate, ZNS= 

zonisamide, CLB= clobazam, CBZ= carbamazepine, LTG= lamotrigine, SNP= single 

nucleotide polymorphism 
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1.7 Research justification and aims of the thesis 

Elucidating the basis of AED response would both aid the understanding of 

pathogenic mechanisms underlying drug resistance in epilepsy and additionally allow the 

development of innovative rational treatments for people with refractory epilepsy (Sisodiya, 

2005). The optimum drug therapy in epilepsy however continues to trail behind that of many 

other common, complex disorders (Kasperaviciute and Sisodiya, 2009).    

 The majority of candidate association studies are characterised by irreproducibility 

often attributed to a lack of statistical power and are most likely due to weak genetic effects 

and/or population specific gene-gene and/or gene-environment interactions (Hirschhorn et al., 

2002). The confirmed signals emerging from GWA scans and subsequent replication efforts 

similarly remain only signals (McCarthy, Abecasis et al. 2008). A substantial body of 

experimental evidence now supports a multifactorial, polygenic basis for common traits 

(Ferraro et al., 2012).  Research indicates the significance of capturing the interactions between 

genetic factors and other variables including phenotypes, environment and drugs (Baksh and 

Kelly, 2007, Kim et al., 2011a, Rodin et al., 2011). A number of studies have already applied 

powerful statistical methods that use data mining approaches such as ML classification 

methods and ML based methods for detecting epistatic and additional genetic interactions to 

PGx and pharmacogenomics data (Ritchie and Motsinger, 2005, Wilke et al., 2005, Rodin et 

al., 2011) and studies are now emerging for the characterisation of the genetic variables 

underlying refractory epilepsy (Petrovski et al., 2009, Johnson et al., 2011b). The promising 

results indicated by initial studies for refractory epilepsy moreover advocate further 

consideration of ML approaches and interaction data analysis methodologies for investigating 

AED efficacy (Cavalleri et al., 2011, Johnson et al., 2011b).  

 

1.7.1 Research goals 

The intention of this PhD thesis was to explore genetic contribution to drug response 

phenotypes in epilepsy, with the purpose of identifying and/or validating genetic markers 

influencing drug efficacy and optimal dosing. To achieve these research goals several lines of 

previous PGx and pharmacogenomic evidence for the genetic contribution to individual 

responsiveness in epilepsy treatment were followed. ML methodologies have recently been 

applied to PGx data from patients with epilepsy and such approaches were additionally 

explored and assessed for utility using epilepsy phenotype data from UK patients.  

 Data currently available for epilepsy PGx is limited by the use of heterogeneous 

populations consisting of different epilepsy phenotypes, varying definitions of drug 

responsiveness, retrospective data and mainly individuals with long standing epilepsy (often 

exposed to multiple drugs and thus a greater chance of the existence of uncontrollable genetic 
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and environmental influences from continuous drug exposure and or seizure related 

neurological damage). The majority of AEDs differ in their pathways of drug action and 

distribution and also dosage and titration. Including patients with multiple AED treatment can 

also confound the effective detection of a genetic influence on response to a single drug. The 

studies presented in this thesis thus also aimed to provide a set of genetic investigations using 

a more homogenous epilepsy population.  

 

1.7.2 Specific aims and thesis outline 

 

The specific research aims are listed below and each one is tackled in the individual 

research chapters that follow. 

 

Aim 1: To characterise genetic variation across DMEs responsible for the metabolism of CBZ 

to identify markers for optimal AED dosing in newly treated epilepsy (Chapter 3) 

 

Aim 2: To establish the contribution of a single functional SNP in the SCN1A gene to 

optimal dosing of AEDs in individuals with newly treated epilepsy (Chapter 4) 

 

Aim 3: To assess the validity and predictive value of a ML-based multi-genetic model 

for classifying treatment outcome with AEDs, using an independent cohort of patients 

with newly treated epilepsy (Chapter 5) 

 

Aim 4: To explore the utility of ML approaches for the identification of influential 

markers for classifying primary generalised epilepsy (Chapter 6) 

 

Aim 5: To validate the findings of a recent GWAS (Speed et al., 2013) that reported 

significant genetic influences on the likelihood of achieving 12 months seizure 

freedom, using an independent cohort of newly treated epilepsy (Chapter 7) 

 

The following chapter (Chapter two) presents experimental methods common to two or more 

research chapters. Methodologies specific to each research aim are described in the respective 

results chapter. 
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2.1 Materials 

2.1.1 Consumables 

 100% ethanol was used for sterilisation and cleaning of the nanodispenser for both PCR 

and extension reactions. PCR reagents included Hot Star Taq® enzyme, deoxyribonucleotide 

triphosphate (dNTP) mix, magnesium chloride (MgCl2) and polymerase chain reaction (PCR) 

buffer (PCR reagent set purchased directly from Sequenom (Hamburg, Germany). The 

following consumables for MassARRAY genotyping (extension reaction) were also 

purchased from Sequenom: the iPLEX® Gold Reagent Kit (iPLEX® Gold SNP genotyping 

assay for single base primer extend) containing; shrimp alkaline phosphatase (SAP) buffer, 

SAP enzyme, iPLEX Termination mix, iPLEX buffer, iPLEX enzyme, Clean Resin kit (for 

removing PCR impurities) consisting of resin (28g) and a 384-well dimple plate for resin 

application, and 10 x 384 SpectroCHIP® Arrays (for allele detection).   

 All primers were supplied by Metabion (Martinsried, Germany). 96-channel tips with 

a volume of 30µL were required for the liquid handler Matrix as were Matrix reagent 

reservoirs; these were also purchased from Qiagen. The Quant-iT PicoGreen® dsDNA reagent 

kit v 1.0 was purchased from Invitrogen Ltd, (Paisley, UK). Ultrapure agrose powder and 20x 

Tris-HCl-EDTA was obtained from Invitrogen Ltd (Paisley, UK). Ethidium bromide and 0.5x 

Tris-EDTA (TE) buffer were purchased from Sigma-Aldrich Ltd (Gillingham, UK). The 100 

base pair (bp) DNA molecular weight marker XIV used for all electrophoresis was purchased 

from Roche Applied Science (Burgess Hill, UK). 384-well micro-plate adhesive polymerase 

chain reaction (PCR) films and films for general plate sealing were purchased from ABgene 

(Loughborough, UK). 96-well polystyrene plates were purchased from Sarstedt (Leicester, 

UK). Costar 96-well solid, flat bottom plates for Picogreen® DNA quantification were 

purchased from VWR International Ltd (Lutterworth, UK). All other generic reagents and 

consumables were available as standard and were obtained from University stores; and these 

were purchased from standard supply companies such as Sigma.  

 

2.1.2 Equipment 

 Pipettes: Small volumes were dispensed using single channel pipettes (with 2.5µl, 20µl, 

200µl and 1000µl volumes) and multichannel pipettes (with 10µl and 50µl volumes) from 

Eppendorf (Cambridge, UK). Ultra-purified laboratory water: Molecular biology grade 

purified water for all experimental procedures was obtained using the ELGA PURELAB water 

system (minimum 18.2 MΩ/cm resistivity) (ELGA, Marlow, UK).  

 DNA quantification: Genomic DNA samples were quantified either using the 

NanoDrop 1000 Spectrophotometer (Thermo Scientific Inc., Hemel Hempstead, UK) and/or 

the Beckman Coulter DTX880 multimode detector (Beckman Coulter Ltd., High Wycombe, 
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UK). DNA amplification and primer extension: For all MassARRAY genotyping projects G-

Storm Thermal Cycler GS-4 Kappa from G-storm (Ringmer, UK) was used for both genomic 

amplification and primer extend cycles.  

 Genotyping: Equipment required for MassARRAY® genotyping was mainly 

specialised Sequenom® technology and purchased directly from Sequenom®. Dispensing 

post-PCR samples was carried out using a Sequenom® Matrix Liquid handler (a 96-channel 

pipetting robot that provides pre-programmed optimised pipetting schemas for all 

MassARRAY applications), and a Sequenom® MassARRAY nanodispenser was used to 

transfer iPLEX® Gold reaction products on to a Sequenom® SpectroCHIP. A Sequenom® 

MassARRAY READER real-time (RT) Matrix-assisted laser desorption/ionisation-time of 

flight mass spectrometry (MALDI-TOF) instrument (specifically designed for genomic 

applications) was used to read SpectroCHIPs containing experimental samples and 

Sequenom® SpectroAcquire computer software was used to visualise all genotype data.  

 

2.2 Patient cohorts 

Patients used in the various studies were principally from two distinct UK cohorts; the 

SANAD cohort and the Glasgow cohort. An Australian cohort was also used in some analyses, 

comprising patients from both the Department of Medicine, University of Melbourne Hospital, 

Melbourne and the Department of Medicine and Epilepsy Research Centre, Austin Health, 

Heidelberg, Victoria. All patients were identified as having a diagnosis of epilepsy (as defined 

by the ILAE) and were treated with AEDs for seizure control. Patients of non-European 

ancestry were excluded. Clinical information for each cohort was contained in electronic 

databases generated from clinical trial data or hospital notes.  

 

2.2.1 Glasgow cohort 

 The Glasgow cohort consisted of 893 patients attending the epilepsy outpatient clinic at 

the Western Infirmary in Glasgow. Individuals had newly treated epilepsy (n=462) or long 

term/chronic epilepsy (n=427), and had been treated with a wide range of AEDs, as 

monotherapy or polytherapy. DNA was extracted from venous blood samples using a standard 

phenol-chlorophorm method (Szoeke et al., 2009) and all individuals provided informed 

consent for the collection and pharmacogenetic analysis of DNA (approved by the West Ethics 

Committee; North Glasgow University Hospitals NHS Trust in September 2002 (ref: 

02/119(2)). All samples were aliquots of original DNA stored at the Western Infirmary in 

Glasgow. Aliquots were stored in 1mL cryovials at the Wolfson Centre for Personalised 

Medicine, Liverpool.  
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2.2.2 Glasgow cohort clinical data 

 Although a cross-sectional outpatient clinic cohort, a large proportion of these 

individuals had participated in randomised monotherapy trials (Stephen et al., 2007). Drug 

response phenotypes in the Glasgow cohort were identified by retrospectively reviewing the 

prospectively collected clinical data from a database generated from trial and/or hospital notes. 

Patient phenotype data that was available in the clinical database included general 

demographic details (i.e. date of birth (DOB), gender) and the following clinical information 

and phenotype data; previous drug treatment, epilepsy type, date of first ever seizure, pre-

treatment seizures, EEG and imaging results, and AED treatment history including initial AED 

and subsequent AEDs until last follow up, with dates of withdrawal and dosage for each AED. 

Of these patients, individuals were not considered for genetic analysis in this thesis if they had 

long-standing epilepsy (i.e. not newly treated with AEDs), were not monotherapy patients, and 

their ethnic origin was non-European.  

 

2.2.3 SANAD cohort 

 The SANAD cohort was drawn from patients who had participated in the Standard and 

New Antiepileptic Drug study, an un-blinded, multicentre, randomised trial comparing the 

efficacy, tolerability and cost-effectiveness of established and newer AEDs in patients with 

newly-diagnosed epilepsy from epilepsy centres across the UK (Marson et al., 2007a, 2007b). 

More than 2,400 patients were recruited in the trial and followed-up prospectively for a 

minimum period of two years from initiation of the first ever AED.  

 985 SANAD participants gave informed consent to the collection and analysis of DNA, 

approved by the North-West Multicentre Research Ethics Committee in August 2002 (ref: 

MREC 02/8/45). DNA was extracted from blood and or saliva samples using a standard 

phenol-chloroform extraction method and purity and concentration confirmed by 

spectrophotometry. SANAD DNA samples were stored at the Welcome Trust Sanger Centre, 

Cambridge and subsamples of these were stored and available for experimental use in 

Liverpool. All 985 samples were considered for genetic analysis except those of non-European 

ancestry and those without epilepsy.  

 

2.2.4 SANAD cohort clinical data 

 Neurological history and seizure history was recorded at recruitment. Seizures and 

epilepsy syndromes were classified by ILAE classifications. Patients were seen for follow up 

at 3 months, 6 months, 1 year, and at successive yearly intervals from the date of randomisation 

and details of drug treatment and effectiveness were recorded. Where patients ceased attending 

hospital clinics, follow-up information was obtained from general practitioners, or directly 
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from the patient via a telephone interview.  

 Due to the nature of the SANAD trial, a large amount of clinical and phenotype data 

was collected. The following clinical data was available for patient selection and subsequent 

data analysis: 

 

i) Neurological disease history i.e. the presence of a learning disability, neurological 

deficit, neurological disorder, head Injury, meningitis/encephalitis, intracranial 

surgery, acute symptomatic seizures or family history of epilepsy 

ii) Epilepsy type i.e. LRE, IGE, UNC,  

iii) Seizure type and syndromic diagnosis (where available)  

iv) EEG and CT/MRI results  

v) Treatment history (untreated or monotherapy) 

vi) Seizure history i.e. recent seizure occurrence  

vii) AED history; initial or randomised drug, dosage history and withdrawal details if 

applicable (including dates of treatment and each study visit).  

 

Data collected for the SANAD trial included dates for each follow up visit and drug 

treatment history during follow up period. Due to the outcomes of interest of the trial, (time to 

first seizure, time to 12-month remission or treatment failure, time to withdrawal due to 

inadequate seizure control, and time to withdrawal for unacceptable AEs or ADRs), seizure 

history i.e. dates of occurrence, number, type was also recorded as were reasons for drug 

withdrawal, and 12 month remission status. 

 

2.2.5 Additional Australian cohort  

 Clinical data was provided from a population of Australian individuals for the purposes 

of research studies 6 and 7 of this thesis. The Australian cohort consisted of patients 

prospectively recruited from clinics in Victoria, Australia; Royal Melbourne Hospital and the 

Austin Hospital on the basis of being newly treated with AEDs (Petrovski et al., 2009), as part 

of a multicentre collaboration study of epilepsy aeiteolgy and seizure types (the Epilepsy 

Genetics Consortium; EPIGEN) (Cavalleri et al., 2007). All patients were of self-identified 

European Australian ethnicity and were recruited after obtaining written informed consent. 

Individuals were all diagnosed with epilepsy (ILAE) and were followed up prospectively. 

Patient treatment response was phenotyped once individuals reached their 1-year follow-up 

with their initial AED treatment. In total clinical and genetic data was provided for n=427 

patients on the basis of having primary generalised epilepsy (PGE) or LRE. All DNA 

genotyping was done using the Illumina GoldenGate platform at Duke University, Durham, 



  CHAPTER TWO 

 

59 
 

NC, USA (Cavalleri et al., 2007). 

 

2.2.6 Australian cohort clinical data 

 Patient phenotype data that was provided included age of onset, initial drug treatment, 

epilepsy syndrome type and seizure type. Patients with PGE were classified with the following 

syndromes, subsyndromes and seizure types; juvenile myoclonic epilepsy (JME), juvenile 

absence epilepsy (JAE), childhood absence epilepsy (CAE), CAE generalising to JME (CAE 

-> JME), CAE -> JAE, CAE/JAE, idiopathic generalised epilepsy (IGE) excluding JME (non-

JME IGE), mesial temporal lobe epilepsy associated with hippocampal sclerosis and all other 

focal neocortical epilepsies. The seizure classifications used were; GTCS; occurring only in 

the context of a syndromic diagnosis of an IGE, myoclonic seizures, absence seizures, 

secondarily GTCS and partial seizures (either simple or complex). Patients with any epilepsy 

type who also had a history of febrile convulsions (FS) were also included (Cavalleri et al., 

2007). 

 

2.3 DNA preparation and storage 

 All available DNA samples (985 SANAD and 893 Glasgow) were quantified and 

aliquots of between 50-200µL were prepared for later experimental use.  

 

2.3.1 DNA quantification using spectrophotometry  

 All Glasgow samples were quantified using the NanoDrop 1000 spectrophotometer. The 

NanoDrop 1000 Spectrophotometer accurately measures double-stranded DNA (dsDNA) up 

to 3700 ng/µL without dilution. To do this, the instrument automatically detects the high 

concentration and utilises the 0.2 mm path length to calculate the absorbance. The machine 

was blanked using a 1.5µL volume of 0.1 x TE buffer and the recommended volume of 1.5µL 

of each stock DNA sample was placed on the spectrophotometer for a measurement of DNA 

concentration. The Nanodrop spectrophotometer additionally provides two DNA purity 

readings based on sample absorbance. The 260/280 ratio of a sample is the ratio of absorbance 

at 260 and 280 nm and is used to assess the purity of DNA. A ratio of ~1.8 is generally accepted 

as “pure” for DNA, and if the ratio is substantially lower, it may indicate the presence of 

protein, phenol or other contaminants that also absorb strongly at or near 280nm. The 260/230 

ratio of a sample is the ratio of absorbance at 260 and 230nm. This is a secondary measure of 

nucleic acid purity with values for “pure” nucleic acid often being higher than 260/280 values. 

These ratios are commonly in the range of 1.8-2.2 and if appreciably lower, this may indicate 

the presence of co-purified contaminants. 
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Table 2.1  Quantification method using Nanodrop Spectrophotometer.  

Table taken manufacturer’s instructions (http://nanodrop.com) (© 2008 Thermo Fisher 

Scientific) 

Detection 

limit (ng/µL) 

Approximate 

upper limit (ng/µL) 

Typical reproducibility (minimum 5 

replicates) 

(SD=ng/µL; CV= %) 

2 3700 ng/µL 

(dsDNA) 

sample range 2-100 ng/µL:  2 ng/µL 

sample range >100 ng/µL:  2% 

 

 

 

2.3.2 DNA quantification using Picogreen 

 All SANAD samples were quantified using Picogreen®. PicoGreen® is an 

ultrasensitive fluorescent nucleic acid stain for quantifying double-stranded DNA (dsDNA) in 

solution. Free dye does not fluoresce, but upon binding to dsDNA it exhibits a >1000-fold 

fluorescence enhancement. This allows the quantification of as little as 25 pg/mL of dsDNA. 

The PicoGreen® DNA quantification method was better suited to the SANAD samples, which 

were of low concentration in comparison to the Glasgow samples and additionally assumed to 

be of less purity. The major disadvantages of using the 260 nm absorbance method is the large 

relative contribution of nucleotides and single-stranded nucleic acids to the absorbance signal, 

the interference caused by contaminants commonly found in nucleic acid preparations, the 

inability to distinguish between DNA and RNA, and the relative insensitivity of the assay.  

 

2.3.3 Picogreen methodology 

 The Quant-iTTM Picogreen® manufacturer’s instructions were followed for quantifying 

all available SANAD DNA samples. For this a standard curve was first generated using diluted 

Picogreen® and standardised DNA (lambda stock DNA at 100 ug/mL provided in the kit), 

from which the unknown concentration of all SANAD DNA samples was calculated. The 

Picogreen® reagent stock provided was first diluted to a working solution using 1 x TE (100uL 

Picogreen® reagent added to 19.9 mL TE solution). A standard curve was then generated 

using lambda standard DNA diluted 50 fold (1.47µL of 1 x TE solution added to 30µL of 

DNA); see Table 2.2 for dilutions used to generate a high-range standard curve.  

 

 

 

http://nanodrop.com/
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Table 2.2  Dilution factors used for Picogreen® quantification.  

Volume of Standard 

DNA (µL) 

Volume of 1xTE (µL) Volume of 

picogreen working 

solution (µL) 

Final 

concentration 

100 0 100 1 ug/mL 

10 90 100 100 ng/mL 

1 99 100 10 ng/mL 

0.1 99.9 100 1 ng/mL 

0 100 100 Blank 

 

 

 

These were added to the first row of a 96-well plate. The remaining wells were filled 

with 99µL of diluted Picogreen® solution and 1µL of DNA of unknown concentration. After 

mixing and incubation (as detailed in the protocol), the fluorescence of each well was 

measured using the Beckman Coulter DTX880 multimode detector and the concentration of 

each DNA sample calculated from the standard curve. 

 

2.3.4 DNA sample dilution and storage 

 All DNA stock (Glasgow and SANAD) was stored at 80 °C. All working stock solutions 

were diluted to a concentration of 20 ng/µL for experimental use and stored at -20°C.  

 

2.4 Single nucleotide polymorphism selection 

2.4.1 Resources for selection of genes and single nucleotide 

polymorphisms 

 Several freely accessible online genomic databases are available as a resource for the 

investigation of common genetic variation in human genes including the HapMap website 

(www.HapMap.org), database SNP (dbSNP) function of the National Centre for 

Biotechnology Information (NCBI) website (www.ncbi.nlm.nih.gov/projects/SNP/), the 

UCSC Genome Browser Human Genome Browser Gateway website (genome.ucsc.edu/cgi-

bin/hgGateway) and the Ensemble Human Genome Browser  

(www.ensembl.org/Homo_sapiens/Info/Index).  

 These resources were used to locate information concerning human genes and or single 

SNPs to be investigated and allowed visualisation of gene regions and genetic variation within 

loci. Information that was extracted was mainly dependent on the requirements of the research 

http://www.hapmap.org/
http://www.ensembl.org/Homo_sapiens/Info/Index
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project, but included i) all known polymorphic sites for a particular gene, ii) their population 

minor allele frequency (MAF), iii) chromosome location, and iv) type or location in the 

corresponding gene (synonymous, non-synonymous, 5’UTR, 3’UTR). Information on those 

in LD and on clinical relevance, i.e. previous association with a particular condition, or 

previously demonstrated to associate with a therapeutic drug was also recorded 

(ww.pharmgkb.org; (www.ncbi.nlm.nih.gov/pubmed)).  

 Any potential transcriptional or regulation changes due to a SNP (i.e. location in a 

transcription factor binding site (TFBS), DNA methylation region, histone and polymerase 

binding region) was also investigated through functions available on the UCSC Genome 

Browser and the Ensemble Human Genome Browser.  

 

2.5 Genotyping using Sequenom MassARRAY 

2.5.1 Sequenom MassARRAY platform and reaction overview  

 The main method used for high-throughput SNP genotyping was the Sequenom® 

MassARRAY matrix-assisted laser desorption/ionisation-time of flight mass spectrometer 

(MALTI-TOF) platform. Although several high-throughput SNP genotyping technologies are 

available, Sequenom Mass ARRAY provides affordable and accurate custom genotyping 

assays, with a modest multiplexing methodology (Gabriel et al., 2009). The MassARRAY® 

MALTI-TOF platform uses a single base homogenous reaction format that can throughput 

>100,000 genotypes per day. This utilises multi-plex PCR reactions, a single termination mix, 

provides universal reaction conditions for all SNPs, requires small reagent volumes, and 

generates allele-specific products with distinct masses for subsequent mass spectroscopy 

detection. The iPLEX® reaction allows the design of assays at a multiplexing level of 36-plex.  

 

There are several key tasks involved in genotyping using the Sequenom® MassARRAY 

system: 

 Primer and multiplex design 

 DNA amplification 

 Preparation of iPLEX® Gold reaction products 

 Transfer of processed iPLEX® Gold reaction products to SpectroChip® arrays 

 Assay design, plate design, and setup using Sequenom® design software 

 Use of Sequenom® mass spectrometer for the acquisition of reaction spectra  

 Use of TyperAnalyzer software for the analysis of spectral data 

 The Sequenom® SNP assay is based on a locus-specific PCR reaction followed by a 

locus-specific primer extend reaction (Tang et al., 1999). During the primer extension or 

http://www.ncbi.nlm.nih.gov/pubmed
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iPLEX® reaction, an oligonucleotide primer anneals immediately upstream of the 

polymorphic site being genotyped. The primers and amplified target DNA are then incubated 

with mass-modified dideoxynucleotide terminators. The primer is extended dependent upon 

the template sequence and results in allele specific differences in mass between extension 

products, the mass of which is determined by the use of MALDI-TOF mass spectrometry. The 

molecular mass of extension products is used to indicate which alleles are present at the 

polymorphic site of interest. The primer mass for each reaction is translated into a genotype 

using Sequenom® software (SpectroTYPER) (Gabriel et al., 2009). Genotyping using 

Sequenom® MassARRAY genotyping was performed as stated in the manufacturer’s 

instructions, an overview of which is provided below. 

 

2.5.2 MassARRAY required components and consumables  

 The MassARRAY reaction can be performed in both 96- and 384-well plate format and 

with automated liquid handling process (for 384-well format). All experimental work 

performed required single wells (per sample and SNP assay) ranging from 150 up to 2000 

reactions, thus a 384-well format using the automated liquid handler matrix was undertaken 

for all genotyping studies. All reagents and equipment for MassARRAY are listed in sections 

2.1.1 and 2.1.2, respectively. 

 

2.5.3 Primer and assay design   

 The online Sequenom MassARRAY Designer software was used to electronically 

design PCR and extension primers for a SNP of interest (https://mysequenom.com/Tools). The 

software also provided a plex design function to manually balance multiplex levels of SNP 

groups to minimise the number of reactions (Gabriel et al., 2009). The primer design process 

involved the automatic checking and avoidance of primer combinations and non-template 

extension products that could result in non-specific extension and has a proven design 

efficiency of >95% for all confirmed SNPs (Gabriel et al., 2009).  

 The reference sequence (rs) number for all SNPs of interest was typed into the rs 

sequence retriever function, which then retrieved genomic sequences for each specified SNP 

from the NCBI dbSNP database in FASTA format. The input FASTA file typically includes 

500 base pairs of specific genomic sequences, 250 upstream and downstream from the SNP 

of interest. The SNP sequences were then passed through four additional functions involved 

in the SNP design and checking process, with SNPs resulting in non-specific extension 

excluded at each stage of the process (Gabriel et al., 2009): 
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i) The ProxSNP sequence-mapping step compared input sequences against the NCBI database 

and looked for registered SNPs that were proximal to the SNP of interest. The genome 

assembly version selected for all MassARRAY genotyping experiments was always Genome 

build 36 and the formatted sequences selected were SNP/MNP sequences.  

 

ii) The PreXTEND SNP validation / amplicon design step then aligned the input sequences 

from the ProxSNP mapping step against the genome build to determine the best location for 

PCR primers that would result in a unique amplification product containing the target for the 

extension primer. Genome build 36 was again employed and the designable sequences chosen 

were uniquely mapped.  

 

iii) The Multiplexed iPLEX Assay Design step then designed multiplexed genotyping assays 

and the multiplexed design was used for ordering PCR & extension primers as well as 

importing into the SEQUENOM assay editor of the Typer software. For this function, the stop 

mix selected was iPLEX. The multiplex level allowed a maximum of 36 SNPs and a minimum 

of one SNP per plex. The maximum plex level used was never more than 25 and the minimum 

plex level used was never less than five. Although using a plex level of 36 would maximise 

productivity, a lower plex level was chosen as this was the most reliable in routine laboratory 

genotyping. 

 

iv) The PleXTEND Multiplexed Assay Validation step was the final step that validated all 

designed primers in the entire multiplex by comparing sequences using the Basic Local 

Alignment Search Tool (BLAST; a set of algorithms designed to perform similarity searches 

on all available biological sequence data) to check for potential cross-hybridisation.  

 

2.5.4 Primer pooling 

 All primers for PCR and iPLEX reactions were ordered unmodified and unmixed, with 

standard purification. All primer plexes thus required pooling before use. Prior to any 

pipetting, primers were centrifuged (1200 rpm for 3 minutes) and pipetted up and down to 

ensure sufficient mixing. All pipetting during primer pooling was performed using extended 

sterilised tips. Because the Sequenom MassARRAY platform requires a multistep process, 

checks were put in place for each 384-well plate used. A 384-well assay plate was designed to 

contain approximately 10% negative control wells and duplicate DNA samples. These were 

also placed in unique positions on the plate to be checked for expected results at the end of the 

experiment (i.e., no extension in the negative controls and genotype concordance among 

duplicates). 



  CHAPTER TWO 

 

65 
 

2.5.5 PCR  

 The PCR assay pool of plexes included the multiplexed forward and reverse PCR 

primers for each reaction in one multiplexed assay pool. PCR primers for each plex were 

pooled and diluted to a working concentration of 0.5 μM for each primer in eppendorf tubes. 

For one 384-well reaction plate and a 24-plex reaction, 5uL of each forward primer was mixed 

with 5uL of each reverse primer and 260uL of Nanopure water to give a total volume of 500uL, 

with adjustment in the volume of water for lower or higher plex levels. All diluted working 

stocks and concentrated stocks of primers were stored at −20°C.  

 

2.5.6 DNA preparation and experimental design for PCR 

 For Sequenom genotyping assays, 10-20 ng/µL of genomic DNA per reaction is 

recommended. All working stock was previously prepared at 20ng/µL and this concentration 

was used for all genotyping reactions. A 1uL volume of DNA was transferred from the 

working DNA stock into 384-well PCR reaction plates using a four-channel 10uL pipette. 

Plated DNA was then evaporated, sealed, and stored at −20°C prior to experimental use.  

 

2.5.7 Mix preparation for PCR 

 PCR mix was prepared for each plex in 1mL eppendorf tubes using the reagents 

described in Table 2.3 below (separate tubes for each plex). To account for possible pipetting 

loss 25% extra volume was added (Table 2.3). Volumes were adjusted for a maximum plex 

level of 24 and for half of one 384-well reaction plate, assuming dry DNA is used. All reagents 

were thawed at room temperature then mixed gently before centrifuging (1500 rpm for 1 

minute) prior to use. Due to its unstable nature, the Hot Star Taq enzyme was kept at a low 

temperature and so all reagents were placed on ice throughout preparation. 
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Table 2.3  PCR reaction cocktail solution preparation  

(25% excess volume prepared to allow for pipetting loss) 

Reagent Volume for single reaction Volume for one 24-plex  

(1/2 384 well) 

Nanopure water 2.85µl 684.00µL 

PCR Buffer (10x) 0.625µl 150.00µL 

MgCl2   (25mM) 0.325µl 78.00µL 

dNTP mix (25mM) 0.10µl 24.00µL 

Primer mix (0.5µM) 1.00µl 240.00µL 

Hot Star Taq (5 U/µl) 0.10µl 24.00µL 

Total volume 5.00µl 1200µl 

 

 

 

2.5.8 Transfer of PCR mix and PCR reaction per plex  

 A 5uL aliquot of PCR mix was added to each well of the 384-well reaction plate 

containing dry DNA.  Separate DNA plates were prepared for each plex. One 384-well plate 

generally consisted of two plexes, with half a plate dedicated to each plex. For one plex 

1200uL PCR mix was first transferred into one row of a 96 well plate (total volume of mix 

divided into 8 columns), and 5uL was then transferred to the 384-well reaction plate using a 

multichannel 10uL pipette. The reaction plate was sealed with adhesive PCR film (AB-0558) 

to prevent evaporation and to allow plate to be spun down in a centrifuge (2000rpm for 2 

minute). This ensured the solutions were at the bottom of the wells and any air bubbles were 

removed. 

 The pre-programmed PCR reaction on the G-Storm thermal cycler was then executed. 

The reaction volume was set to 7uL (additional 2uL accounted for air bubbles) and had a 

running time of approximately two hours and thirty minutes. The details of the cycling 

program are summarised below: 
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Cycle program  

1 cycle:  5 min  94°C  (initial denaturation) 

45 cycles:   20 sec  94°C  (denaturation)  

   30 sec  56°C  (annealing)  

   1 min  72°C  (extension)  

1 cycle:  3 min  72°C  (final extension)   

Final step:   indefinite  5°C  (hold) 

 

Once completed, the 384-well plate was removed, sealed with the AB-0558 film, centrifuged 

(2000 rpm for 2 minutes) and stored at 4°C until required. 

 

2.5.9 Post PCR cleanup 

 Treatment with SAP is performed after a PCR reaction in order to remove any 

remaining, non-incorporated dNTPs from the amplification products. SAP dephosphorylates 

unincorporated dNTPs by cleaving the phosphate groups from the 5′ termini, thereby rendering 

them inactive for future reactions. The SAP enzyme solution was prepared for each 384-well 

plate, according to Table 2.4. All reagents were defrosted at room temperature then mixed 

gently before centrifuging (1500 rpm for 1 minute). The reagents were placed on ice 

throughout the solution preparation. 

 

 

Table 2.4  SAP solution preparation (38% excess volume for any pipetting loss) 

Reagent Volume for 

single reaction 

Volume for 384-well plate 

Nanopure Water 2.85µl 1368.00µL 

hME Buffer (10x) 0.625µl 300.00µL 

Shrimp alkaline phosphatase  (SAP) 0.325µl 156.00µL 

  

 

 

 This procedure was performed on a post-PCR automated Matrix Liquid Handler robot 

using the SAP addition program. Prior to running any program on the Matrix Liquid Handler 

robot, a weekly maintenance protocol was performed as stated in the manufacturer’s 

guidelines. A new tip magazine was inserted into the robot for each new program that was 

performed. A liquid handler tip wash program was also initiated prior to running any post-
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PCR program. To transfer the SAP enzyme solution into the 384-well PCR plate, firstly a 96 

well plate was prepared with 10uL of SAP in each well. The Liquid Handler robot SAP 

program was then used to dispense 2μl of the SAP cocktail from the 96-well microplate into 

each individual well of the 384-well post-PCR reaction plate. After SAP cocktail addition, the 

plate was removed from the robot, sealed using the AB-0558 PCR film and centrifuged (2000 

rpm for 2 minutes). SAP treated plates were then placed on the G-Storm thermal cycler for a 

50 min incubation as detailed below. The final reaction volume used was 9µL (additional 2µL 

added to account for air bubbles).  

 

 

1 cycle:  40 min  37°C 

1 cycle:  10 min  85°C 

Final step:  indefinite  4°C      

   

 

 Once the SAP enzyme reaction was completed, the 384-well PCR reaction plate was 

sealed using AB-0558 film, centrifuged (2000 rpm for 2 minutes), then stored at 4°C until 

ready to process for the iPLEX Gold primer extend procedure. 

 

2.5.10 iPLEX Gold primer extend reaction 

 The iPLEX primer extend reaction is a method for detecting single base polymorphisms 

in amplified DNA. Extension primers, buffer, enzyme, and mass-modified dNTPs are added 

to the amplification products. Each extension primer anneals directly 5’ to the SNP locus and 

is extended by one mass-modified nucleotide (present in the iPLEX termination mix) based 

on the alleles present. This results in single base elongation with a corresponding mass increase 

that is measured using the MALDI-TOF MassARRAY platform and SNP genotype assigned 

accordingly. 

 

2.5.11 Primer pooling and dilution 

 A four-step adjustment method based on primer concentration was used for pooling the 

extension primers into multiplexed pools (Table 2.5). Due to the inverse relationship between 

peak intensity and analyte mass, the iPLEX extension primers required adjustment by 

concentration in order to ensure that they were as equal in intensity as possible. For this, the 

primers were adjusted by dividing each plex into four concentration groups based on primer 

mass. The highest mass group was diluted to 7μM, the next groups to 9.3 μM and 11.66 μM, 

and the lowest mass group to 14 μM, as shown in the Table 2.5 below. All diluted working 
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stocks and concentrated stocks of primers were stored at −20°C.  

 

Table 2.5. Preparation of iPLEX Gold Extend primers (total volume 500μL) 

Extension 

primer group 

Final 

concentration/ 

primer 

Volume / primer 

 

24-plex (6 primers) 

(μl) 

1 7μM 8.75μL 52.50 

2 9.3μM 11.63μL 69.78 

3 11.66μM 14.58μL 87.48 

4 14μM 17.5μL 105.00 

Total volume of nanopure water to add (final volume500μL) 185.24μL 

 

 

2.5.12 Cocktail preparation 

 The iPLEX reaction cocktail was prepared for each plex as described in Table 2.6 below. 

Volumes shown are for half of one 384-well plate. All reagents were defrosted at room 

temperature, mixed, centrifuged gently (1500 rpm for 1 minute) and kept on ice throughout 

the cocktail preparation procedure. 

 

 

Table 2.6. iPLEX Gold extend reaction cocktail solution preparation  

   (38% excess volume for any pipetting loss) 

Reagent 

Volume for single 

reaction 

 

Volume for one plex 

Nanopure Water 0.755µl 200.05µl 

iPLEX Buffer (10x) 0.2µl 52.99µl 

Primer mix (0.5µM) 0.2µl 52.99µl 

iPLEX Termination mix 0.804µl 213.03µl 

iPLEX Enzyme 0.04µl 10.6µl 

Total volume 2.0µl 529.67µl 
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2.5.13 Cocktail transfer 

 10uL of the iPLEX cocktail was first added to each well of a 96-well plate and 2 μl of 

the cocktail was subsequently added to each well of the 384-well post-SAP reaction plate using 

the liquid handling robot. After cocktail addition, the plate was sealed using AB-0558 PCR 

film and centrifuged (2000 rpm for 2 minutes) to bring the solution to the bottom of the wells 

and remove any air bubbles before running the extend reaction.  

  

2.5.14 Primer extend 

 The 384-well reaction plate containing the iPLEX cocktail was then placed in the G-

Storm Thermocycler and the iPLEX extend reaction was executed. The reaction volume was 

set to 11uL (additional 2µL added to account for air bubbles). The details of the iPLEX Gold 

extend reaction cycle are summarised below. 

    

  

 

 

Thermal cycling primer extend reaction 

 

Number of cycles  Time  Temperature process   

1 cycle:   30 sec   94°C  (initial denaturation)  

 

40 cycles:   5 sec     94°C (denaturation)  

  5 cycles: 5 sec    52°C (annealing)     

    5 sec     80◦ C (extension)   

1 cycle:   3 min    72°C (final extension) 

Final step:   indefinitely    4°C (hold) 

 

(Note that the 5 cycles sit within the 40 cycles) 

 

Upon completion of the extend reaction cycle, the plate was centrifuged for 2 minutes at 2000 

rpm and stored at 4°C. 
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2.5.15 Post iPLEX reaction conditioning 

 The conditioning or clean-up of iPLEX Gold reaction products is a crucial step for 

optimising the mass spectrometry analysis. SpectroCLEAN is a cationic resin pretreated with 

acid reagents that is added to primer-extend reaction products to remove salts such as Na+, K+, 

and Mg2+ from unincorporated products from the reaction. If not removed, these ions can result 

in high background noise in the mass spectra, thus increasing the likelihood of false data.  

 The SpectroCLEAN resin was transferred from its container to a 384-well dimple plate 

using an elongated spoon and then spread across the whole plate using a plastic scraper. Excess 

resin was then scraped away from the plate and placed back into the original container. The 

resin was then allowed to dry for 15 minutes. Whilst the resin was left to stand, the Matrix 

liquid handler robot was used to add 16µl of Nanopure water to each well of the 384-well post-

iPLEX reaction plate. Once the water addition was complete, the 384-well PCR plate was 

sealed and again centrifuged (2000 rpm for 2 minutes).  

 After removing the plate seal, the 384-well reaction plate was turned upside-down and 

gently placed on top of the resin dimple plate. Holding the sample plate and the dimple plate 

together, they were then both gently flipped over to allow the resin to fall out of the dimple 

plate into the wells of the 384-well reaction plate. The dimple plate was then tapped gently 

until all the resin fell out into the wells of the 384-well reaction plate. Each well was manually 

checked for resin addition. The plate was sealed using AB-0558 PCR film and secured 

between two polystyrene blocks of the Heidolph®-Reax 2 rotator, and rotated for 10 minutes 

on the lowest setting (level 1), to allow the resin to mix thoroughly with the reaction plate 

products. Once completed, the 384-well PCR plate was centrifuged for five minutes at 3000 

rpm to allow the SpectroCLEAN resin to settle down into the wells.  

 

2.5.16 Mass spectrometry 

 The manufacturer’s protocol was followed for arraying the extended products from the 

384-well reaction plate on to a 384-sample SpectroCHIP using the MassARRAY 

Nanodispenser instrument. A small volume (∼25nl) was arrayed by the dispenser onto the 

existing matrix spots on the SpectroCHIP for MALDI-TOF analysis. This process involved 

the capillary action of slotted pins and contact dispensing for nano-volumes (Gabriel et al., 

2009). 

 

2.5.17 MassARRAY spectroscopy methodology 

 The Sequenom MassARRAY MALDI-TOF platform and Sequenom real-time software 

was used in order to detect the extended products. The spotted SpectroCHIP was placed in the 

scout plate (chip holder) of the mass spectrometer, introduced to the MassARRAY reader, and 
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then placed on vacuum and the analyser software started (FlexControl, ServerControl, 

MassARRAY Spectro Caller 3.4, SpectroAcquire 3.4, Typer ChipLinker).  

 A virtual experimental plate was created using Plate and Assay editor on the 

MassARRAY® Spectra Typer software. Typer produces spectral data acquired from 

SpectroCHIPs and analyses each spectrum based on the assay or assays applied to it. An assay 

establishes where mass peaks are expected in a spectrum and how to interpret each peak. Typer 

automatically identifies the genotype in genotyping experiments based on the peaks present in 

a spectrum. Individual samples and assays appropriate for a particular experiment were 

assigned to each well on the virtual plate.  

 The Chiplinker software was used to connect the virtual chip layout created to the chip 

being analysed. Once files were created on ChipLinker software, this was linked to the 

SpectroAcquire software that controls the mass spectrometer and acquires spectral data. The 

total time for detection of one SpectroCHIP is 30 to 60 minutes. Spectral data is automatically 

sent to the MassARRAY Typer Server. These are then analysed by Typer, which combines 

the base caller with a clustering algorithm. 

 

2.5.18 MassARRAY reaction  

 The general principal of the MassARRAY platform is to use MALDI-TOF mass 

spectrometry to determine differences in primer masses due to changes in sequence, i.e. the 

incorporation of different terminator nucleotides at the 3’ end of a primer bound adjacent to a 

variant site (Gabriel and Ziaugra, 2004, Gabriel et al., 2009). The mass spectrometry system 

involves the laser treatment of the spotted sample under vacuum by the MALDI-TOF method. 

This method is a modified version of a standard mass spectrometry technique that involves the 

absorption of most of the incident laser energy, allowing the de-absorption and the ionisation 

of large biomolecules such nucleic acids with minimal damage and ion fragmentation. High 

transmission and sensitivity, along with theoretically unlimited mass range, are some of the 

main advantages of TOF instruments. The theory behind the stages of the MALDI-TOF 

process is described briefly below: 

 

Sample irradiation and ionisation: The spotted samples (embedded in crystalline structure or 

matrix of small organic compounds) are irradiated with a nanosecond of ultraviolet laser 

(wavelength 337 nm). The laser energy causes structural decomposition of the irradiated 

crystal (ionisation) and generates a rapidly expanding matrix cloud.  

 

Electrostatic acceleration: Once the sample molecules are vaporised and ionised, they are 

transferred into a time-of-flight mass spectrometer, where they are separated from the matrix 
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ions by an electric field that results in the disintegration of the crystal molecules. Following 

acceleration through an electric field, the ions drift through a field-free path and finally reach 

the detector in the form of a secondary electron multiplier.  

 

Detection of ions using TOF: The ions are individually detected based on their mass-to-charge 

(m/z) ratios and analysed. Ion masses (m/z ratios) are calculated by measuring their flight time, 

which is longer for larger molecules and shorter for smaller molecules.    

 

2.5.19 Genotyping quality control  

 In addition to the quality control (QC) procedures applied to the sample processing it 

was also necessary to apply separate quality checks on the outputted genotype data, as 

described below. Any samples that failed these QC measures were re-genotyped on a single 

384-well plate, where practicable.   

 

Negative control wells: The control wells (no DNA added) that were included in each 384-

well reaction plate were first inspected to check for contamination. This would indicate false 

positive results and unreliability in the calls assigned to the surrounding samples.  

 

Positive control wells: The duplicate samples that were included in each reaction plate were 

checked for consistency of genotype calls. Any duplicate samples for which there were 

inconsistencies in the assigned genotypes were marked for exclusion from the data analysis. 

The spectra for these samples were also checked to assess the quality of the peaks from which 

bases are called, prior to exclusion.  

 

Spectra check: The Typer software provides a genotype call and spectrum for each sample. 

Each sample spectrum is annotated with the expected location of allele peaks and the un-

extended primer peak. In some cases, contaminant peaks are also indicated. The spectra of 

samples that i) failed genotyping, ii) were either negative or positive controls, and iii) required 

repeating were all checked to assess sample genotyping quality.  

 

Cluster graph check: The cluster graphs that are produced for each assay were examined 

carefully to assess the quality of genotyping of a particular assay. Cluster graphs are useful as 

they provide a visual description of genotype calls for an assay on a SpectroCHIP, thus they 

can help to determine if an assay is reliable. If there were chemistry problems with an assay, 

they usually appear in these cluster graphs. The cluster graphs were also checked before any 

manual calling decisions. 
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Histogram check: the Typer software produces a single histogram summarising the success of 

all included assays. For each experimental run this summary histogram was checked for a 

quick overview of all problematic assays (assays with a large failure percentage).  

 

Manual calling for all failed samples and inconsistencies: For any samples that i) failed 

genotyping (i.e. those for which the software was unable to assign a genotype) or ii) samples 

for which the assigned genotype was questionable, (i.e. negative and positive control samples) 

the spectra were reviewed and genotypes manually assigned where possible. 

 

2.5.20 Pre-analysis quality control 

 Before the genotype data for an experiment was analysed, all data that survived the 

above genotype quality control checks was subject to the following data quality checks: 

 

Patient success: Typically, patients with less than 90% call rate for all genotyped SNPs (i.e. 

with genotype data at fewer than 90% of typed loci) were excluded. 

 

SNP success: Typically, individual SNP assays with a call rate of less than 90% (i.e. 

successfully typed in fewer than 90% of patients) were excluded. 

 

Hardy-Weinburg equilibrium and minor allele frequency: Each of the remaining SNPs were 

tested for deviation from Hardy-Weinberg equilibrium (HWE) using Haploview software 

version 4.1 (Barrett et al., 2005). In general a p-value of less than 0.001 was assumed to 

indicate deviation (a significant difference between observed and expected genotype 

frequencies), and such SNPs were excluded from data analysis. SNPs with a MAF of less than 

0.001 as calculated by the Haploview software, were too low for the reliable detection of any 

genetic association and were also excluded from the analysis. 

 

Comparison of minor allele frequencies to the general population: The frequency of the 

polymorphic allele for each assay was compared to that of the general population (manual 

comparison using frequencies from HapMap), in order to confirm the reliability of the 

genotyping and that the sample population was representative of the general population in 

terms of their genetic structure. 
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2.6 Data analysis 

2.6.1 Statistical analysis 

  The majority of statistical analyses were performed using SPSS software (version 

18.0; SPSS Inc., Chicago, IL, USA). Specific tests performed for each study varied and details 

of these, including the use of additional statistical software can be found within each results 

chapter.  Correction for multiple testing was undertaken by calculation of the false discovery 

rate (FDR) for each test (Benjamini et al., 2001) using the ‘p.adjust’ function in the statistical 

package R, with an FDR <0.05 deemed statistically significant (R Development Core Team 

(2010).)  

 

2.6.2 Bioinformatics analysis 

 Several freely available online tools were used for the purpose of predicting the potential 

biological significance of any associations with genetic variants identified from the statistical 

analysis for each of the studies. This included the use of online genomic databases described 

previously (section 2.4.1) and additional databases specifically allowing the search for TFBSs 

and regulatory regions and/or predicting functional changes in protein coding regions (Pang 

et al., 2009).  

 

2.6.2.1 Fast SNP and PupaSuite  

 Several tools exist to predict regulatory regions and then cross check them with 

databases of known SNPs to highlight which SNPs fall in these regions. These include the 

freely available and widely used Function Analysis and Selection Tool for Single Nucleotide 

Polymorphisms (Fast SNP) (Yuan et al., 2006) and Pupa Suite (Conde et al., 2006), which 

were the main two tools used in the present studies. Each tool uses different means to predict 

the regulatory regions. These tools run programs such as splicing site enhancers (ESE)-Finder 

and Transfac (for locating TFBS) for both the wild type and the variant sequences and check 

whether they differ in their results, i.e. whether one has a predicted ESE within it and the other 

not.  

 PupaSuite (http://pupasuite.bioinfo.cipf.es/) retrieval of the location of SNPs in TFBS, 

ESE, splicing site silencers (ESS), and splice sites (SS) using both Transfac and JASPAR, 

ESE-Finder3.0, ExonScan and GeneID respectively. Fast SNP is a web server that allows users 

to efficiently identify SNPs of potential biological significance according to twelve phenotypic 

risks and putative functional effects, such as changes to the transcriptional level, pre-mRNA 

splicing, protein structure, etc. Fast SNP can be used to find SNPs in genomic and mRNA 

sequences using the following tools; ESS (FAS-ESS), ESE (both Rescue-ESE and ESEfinder), 

http://pupasuite.bioinfo.cipf.es/
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TFBS (TFSearch), and Polymorphisms Phenotyping (PolyPhen) to look at non-synonymous 

SNPs in protein sequences. 

 

2.6.2.2 Predicting presence and functional consequences of 

variants; coding, promoter region, intronic and 

synonymous 

 TFBSs can be found within both promoter and intronic regions of DNA. All non-coding 

variants of potential interest were evaluated for the presence of putative binding sites of known 

transcription factors (TFs) using the following search databases: Transcription Element Search 

System (TESS, http://www.cbil.upenn.edu/tess) and Fast SNP (http://fastsnp.ibms.sinica.edu 

.tw/pages/input_CandidateGeneSearch.jsp). Fast SNP identifies and predicts changes in TFBS 

regions using the TF search tool. 

 The effect of non-synonymous or coding variants on protein function were predicted 

using Sorting Intolerant From Tolerant (SIFT) and Fast SNP. SIFT (http://sift.jcvi.org/) uses 

a sequence alignment method to measure conservation of each amino acid, predicting whether 

a coding SNP will affect protein function (by calculating a scaled probability for the amino 

acid substitution using sequence homology and the physical properties of amino acids). Fast 

SNP utilises the PolyPhen tool for predicting protein structural changes and these predictions 

are based on physical and comparative considerations that estimate the impact of the amino 

acid change on the 3D structure and function of the protein. Fast SNP was also the main tool 

used for analysis of all intronic and synonymous variants in order to assess their potential 

effect on regulatory regions.  

 

2.6.2.3 Machine learning and SAS Enterprise Miner  

 For two of the research studies presented in this thesis (those consisting of a large 

number of SNPs; over 1000), in addition to standard parametric statistical analysis methods 

for detecting genetic association, a ML data-mining approach was adopted in order to i) build 

predictive models through extracting patterns from the large genomic data available, ii) as a 

more appropriate method for analysing high-dimensional and complex genomic data-sets. 

Several well-known ML models were utilised for this, each of which are described in the 

corresponding chapters for these studies (Chapter 5 and 6). In house-software was utilised for 

the ML approach used in Chapter 5 (Petrovski et al., 2009). The additional ML models used 

in Chapter 6 were generated and assessed using SAS® Enterprise Miner data-mining software. 

 

 

 

http://www.cbil.upenn.edu/tess
http://sift.jcvi.org/
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3.1.  Introduction 

CBZ is a widely used AED that has been employed as first-line treatment for partial and 

generalised tonic-clonic seizures for over 40 years (Brodie and Dichter, 1997). Like many 

older AEDs, CBZ undergoes predominantly hepatic metabolism and has a recognised 

therapeutic concentration range (Kwan and Brodie, 2001a). It also demonstrates considerable 

inter-individual variability in terms of PK and dosing requirement for effective seizure control, 

with maintenance doses in clinical practice often ranging from 200 to 2000 mg/day (Kwan and 

Brodie, 2001a).    

  

3.1.1 Antiepileptic drug dosing  

Therapeutic doses of AEDs are less well defined than those of drugs prescribed in many 

other disease areas and are typically influenced by titration regimen (Shorvon, 2004). Current 

monotherapy treatment with CBZ involves slow titration of the drug over a six-week period 

to a modest target dose (usually 600mg/day), with subsequent dosage adjustment according to 

clinical response (Shneker and Fountain, 2003). This approach is, however, sub-optimal for 

many patients. Those with a low CBZ dose requirement may develop early adverse effects 

including possible hypersensitivity reactions, whereas those with a high dose requirement are 

likely to be under-dosed for a significant period and subject to ongoing seizure activity. Sub-

optimal dosing may also lead to patients switching to alternative AEDs to achieve an adequate 

response without the complete dosage range being fully explored (Perucca, 2001a).  Thus, 

determining the dose of CBZ that provides maximal seizure control with minimal adverse 

effects for individual patients can be challenging and quality of life is often compromised until 

this is achieved (Depondt, 2006b, Depondt and Shorvon, 2006).    

 There is increasing awareness that dose requirements of AEDs vary greatly from one 

patient to another. This variability has led to the rejection of a standard dose approach to 

treatment and requires consideration of tailored drug therapy (Shorvon, 2004). Development 

of individualised dosing strategies for AEDs such as CBZ has the potential to improve the 

treatment of epilepsy by providing more prompt seizure control and safer drug initiation.  

 

3.1.2 Variability in carbamazepine pharmacokinetics  

For most AEDs, the serum concentration at any given dose can vary up to 50-fold 

between individuals (Perucca et al., 2001). Inter-individual variability in dose requirement 

results, at least in part, from variability in PK factors (Perucca, 2001a) that can be monitored 

through measurements of serum drug concentration (Perucca et al., 2001). Therapeutic drug 
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monitoring (TDM) has been used widely in epilepsy for improving drug efficacy and 

tolerability and promoting individualization of therapy (Nagasawa and Nakahara, 1992). 

However, not all current AEDs are candidates for TDM; the newer-generation of AEDs are 

thought to possess more linear PK and are less likely to cause drug-drug interactions (Clarke 

and McMillin, 2006, Anderson, 2008). Moreover, there remains disagreement regarding the 

value of TDM in routine AED treatment (Perucca et al., 2001, Johannessen et al., 2003).

 Numerous factors are known to influence the serum concentrations and dose 

requirements of therapeutic agents, including age, gender, body weight and co-medications 

(Levy, 2002, Battino et al., 2003, Engel and Pedley, 2008). These patient-specific influences 

on drug PK are reasonably well characterised for AEDs, although their clinical utility is 

generally limited (Perucca et al., 2001, Perucca, 2002b). Variability in PGx genes, i.e. those 

encoding drug transport proteins, metabolic enzymes, and drug targets, are also increasingly 

recognised as contributors to PK heterogeneity (Kirchheiner and Seeringer, 2007).  

 

3.1.3 Variation in metabolising enzymes as determinants of dosing 

Genetic polymorphisms are known to affect the metabolism of many drugs 

(Weinshilboum, 2003, Kirchheiner and Seeringer, 2007, Bhathena and Spear, 2008). This 

contribution to variability in drug metabolism may be reflected in differences in clearance, 

half-life and maximal plasma concentrations and can be corrected by genotype-based dose 

adjustments (Ma et al., 2002, Kirchheiner and Brockmoller, 2005, Crowley et al., 2009). The 

effect of polymorphic metabolism is particularly evident for substrates of CYP isoform 2D6, 

an enzyme that displays a variety of genetically determined phenotypes, including poor, 

intermediate, extensive, and ultra-rapid metabolism (PM, IM, EM and UM, respectively) 

(Wilkinson, 2005, Kirchheiner and Seeringer, 2007). Although none of the current AEDs is a 

substrate for CYP2D6, many undergo extensive Phase I hepatic metabolism mediated by at 

least eight other members of the CYP superfamily (Klotz, 2007). Figure 3.1 below presents 

the main pathways of metabolism known for CBZ (Pearce et al., 2008).   

 CBZ mainly undergoes hepatic metabolism (Eichelbaum et al., 1985), predominantly 

mediated by CYP3A4 and CYP3A5 enzymes (Tomson et al., 1983, Saruwatari et al., 2010). 

Other CYP contributors include CYP1A2 and CYP2C8, with an additional role of the Phase 

II UGT2B7 enzyme, while its principal active metabolite, CBZ-10,11-epoxide (CBZ-E), 

undergoes biotransformation mediated by mEH (Tomson et al., 1983, Saruwatari et al., 2010). 

All of these enzymes have known polymorphisms that potentially influence their metabolic 

activity and could theoretically impact on the PK of CBZ (Kirchheiner and Seeringer, 2007, 

Saruwatari et al., 2010).  
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Figure 3.1 Metabolic pathways and proposed metabolites of carbamazepine 

The main metabolic pathways of carbamazepine and the major metabolites formed during its 

metabolism are shown (separated by boxes). Some of the enzymes proposed to be involved in 

these biotransformation pathways are also highlighted. Figure adapted from Pearce, Lu et al 

2008. 
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3.1.4 Effect of CYP450 variants on carbamazepine pharmacokinetics          

A good example of the functional consequence of AED metabolism by polymorphic 

CYP enzymes is that of PHT and the CYP2C9 and CYP2C19 isoforms (Saruwatari et al., 

2010, Cavalleri et al., 2011). The genes encoding CYP2C9 and CYP2C19 have well-

characterised functional variants that exhibit different drug metabolism phenotypes, similar to 

that of CYP2D6 (Klotz, 2007). Several studies have demonstrated that individuals with 

defective alleles for CYP2C9 or CYP2C19 have reduced PHT metabolism, leading to both a 

lack of efficacy with PHT treatment and in many cases drug toxicity (Klotz, 2007, Anderson, 

2008, Loscher et al., 2009). Other AEDs, including PB, diazepam, VPA and ZNS that are 

substrates for CYP2C9 and/or CYP2C19 have likewise shown reduced metabolism rates in 

individuals with *2/*3 alleles, when compared to those with the wild-type CYP allele (Klotz, 

2007, Anderson, 2008, Seo et al., 2008a, Loscher et al., 2009, Saruwatari et al., 2010).  

 In addition to the CYP2C enzymes, recent PGx evidence has implicated a known 

functional polymorphism in CYP3A5 with altered serum concentrations of CBZ (Park et al., 

2009, Meng et al., 2011) and a lower dose requirement during CBZ treatment (Meng et al., 

2011). CYP3A5*3 SNP (rs776746) encodes a truncated non-functional protein causing a loss 

of CYP3A5 enzymatic activity (Kuehl et al., 2001, Lin et al., 2002, Yamaori et al., 2004) and 

has been associated with altered PK parameters of several CYP3A substrates (Huang et al., 

2004).  

 

3.1.5 Phase II metabolism of carbamazepine 

Further evidence for potential genetic influences on the hepatic metabolism of AEDs has 

recently emerged for UGT2B7 (Chung et al., 2008, Blanca Sanchez et al., 2010). The UGT2B 

enzyme family is highly polymorphic, containing several well characterised functional 

polymorphisms (Burchell, 2003), and may be responsible for inter-individual variation in the 

detoxification of metabolites, including several carcinogens (Desai et al., 2003). In addition to 

CBZ, UGT2B7 also contributes to the glucuronidation of LTG, VPA, OXC and ZNS (Staines 

et al., 2004, Rowland et al., 2006, Chung et al., 2008). The functional UGT2B7*2 variant is 

associated with enhanced metabolism of some opioids and has also been suggested to increase 

the area under the curve (AUC) of VPA (Chung et al., 2008, Blanca Sanchez et al., 2010). A 

UGT2B7 promoter region variant (UGT2B7 -161C>T), believed to be in LD with the 

UGT2B7*2 SNP, has also been reported to alter serum AED concentrations (Blanca Sanchez 

et al., 2010). In this report by Blanca Sanchez and colleagues, the UGT2B7*2 variant was 

associated with LTG concentration/dose ratio in a multivariate model adjusted for potentially 

confounding factors such as age and co-medication with VPA and was found to explain 12% 

of the dose variation (Blanca Sanchez et al., 2010). Although this association was modest in 
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terms of effect size, it is the first study to implicate genetic variations in UGT enzymes with 

variability in AED PK (Chung et al., 2008, Blanca Sanchez et al., 2010).   

 In contrast to UGT2B7, the phase II enzyme mEH has been the focus of several AED 

gene-association studies (Cavalleri et al., 2011). Increasingly, research has shown that 

haplotypes in LD blocks are more precise for detecting un-observed phenotype–genotype links 

than individual SNPs (Zhang et al., 2002, Nakajima et al., 2005). Haplotypic variation within 

the EPHX1 gene encoding mEH has been reported to correlate with plasma concentrations of 

the CBZ metabolites CBZ-diol and CBZ-E in a Japanese study. The CBZ-diol to CBZ-E ratio 

differed greatly depending on the number of variant alleles of two known EPHX1 non-

synonymous polymorphisms: EPHX1-Try113His (337T>G; rs1051740) and EPHX1-

His139Arg (416A>G; rs2234922) (Nakajima et al., 2005). Ratios increased significantly with 

337T>G-bearing haplotypes and decreased significantly with 416A>G-bearing haplotypes 

(Nakajima et al., 2005). These known functional polymorphisms have since been associated 

with maintenance dose in a CBZ monotherapy study when considered in a multivariate model 

with age (Makmor-Bakry et al., 2009).       

 The handful of association studies that have correlated AED PK with genetic variation 

in DMEs suggest that this is an important area that merits further investigation with regard to 

individualization of AED dosing. Relatively few drugs and their corresponding metabolic 

pathways have been explored to date. Those studies that have reported genetic associations 

with dose or PK require replication to verify those associations and provide more definitive 

evidence that the observed effect is real and of sufficient magnitude to be considered clinically 

useful and implementable in a genotype-based dosing strategy.  

 

3.2 Aims 

The principal aim of the study presented in this chapter was to assess the degree to which 

genetic variation in drug metabolism contributes to CBZ dose requirement when used as 

monotherapy in newly treated epilepsy. An association analysis of common variation across 

genes encoding CBZ metabolising enzymes was performed, capturing variation by applying a 

gene-wide tagging methodology and undertaking a haplotype analysis to determine whether 

multiple variants in combination can be used to more successfully identify associations. A 

secondary aim was to use this analysis to validate a previous study that reported a significant 

influence of two functional variants (rs1051740 and rs2234922) in the EPHX1 gene on CBZ 

dosing (Makmor-Bakry et al, 2009). 



  CHAPTER THREE 

 

84 
 

3.3 Methods 

3.3.1 Selection criteria for patient inclusion and study population 

Individuals were selected for the study from both SANAD and Glasgow cohorts on the 

basis of strict inclusion criteria. Patients were required to have a new or recent (within 3 years 

at the time of CBZ initiation) diagnosis of epilepsy and to have achieved optimal seizure 

control (defined as no seizures for a period of at least 12 months) on a fixed dose of CBZ 

monotherapy. This was subsequently referred to as the CBZ maintenance dose. Maintenance 

dose was defined as the uppermost stable dose or unchanged dose over the 12-month seizure-

free period. The study population comprised 77 patients from the SANAD cohort and 90 

patients from the Glasgow cohort (Table 3.1).  

 

3.3.2 Clinical data collection 

Non-genetic information for each patient was extracted from clinical databases, hospital 

notes or clinical trial folders, as appropriate. This included age (at the start of the 12 month 

seizure-free period), sex, epilepsy type and CBZ maintenance dose. Epilepsy type was defined 

as IGE, LRE, or UNC.  

 

3.3.3 Candidate SNP selection 

The aim of candidate SNP selection was to find common genetic variation within DMEs 

relevant to CBZ metabolism that might potentially affect dose requirement. A total of six genes 

were targeted; CYP1A2, CYP2C8, CYP3A4, CYP3A5 (encoding the corresponding CYP 

enzymes), EPHX1 (encoding mEH) and UGT2B7 (encoding the corresponding UGT enzyme).  

 

3.3.4 The International HapMap project 

The objective of the International HapMap Project (www.hapmap.org) was to identify 

and record all genetic differences and similarities within human subjects. This involved 

genotyping at least one common SNP every 5 kilobases (kb) across the genome in 270 

individuals from geographically diverse populations, including the Yoruba people from 

Ibadan, Nigeria, Caucasians of north and west European descent from the Centre d'Etude du 

Polymorphisme Humain (CEPH) research in the USA, 45 unrelated individuals from Beijing, 

China, and 45 unrelated individuals from Tokyo, Japan. The results of the project are freely 

available to researchers for use in genetic association studies. 

http://www.hapmap.org/
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Table 3.1 Characteristics of the carbamazepine patient population       

Clinical characteristics of patients forming the study population included in the analysis* 

(n=159) reported by source cohort and in combination. 

              COHORT 

  SANAD 

 (n=71)  

Glasgow  

(n=88) 

Combined  

(n=159) 

Age (years) Minimum 6 13 6 

 Median 36 32 35 

 Maximum 78 68 78 

Gender (n) Male 38 42 80 

 Female 33 46 79 

Epilepsy type (n) IGE 1** 15 16 

 LRE 65 66 131 

 UNC 5 7 12 

CBZ maintenance  

dose (mg/day) 

Minimum 

 

400 

 

200 

 

200 

 

 Mean  

(± SEM) 

663 

(± 23) 

798  

(± 35) 

738 

 (± 23) 

 Maximum 1400 2000 2000 

IGE = idiopathic generalised epilepsy, LRE = localisation-related epilepsy, UNC = 

unclassified epilepsy, CBZ = carbamazepine, SEM = standard error on the mean,*8 patients 

from the study population failed minimum genotyping criteria and were excluded     

** Difference in number of IGE patients between the two cohorts can be attributed to the 

design and purpose of the SANAD trial: (individuals with partial epilepsy forming larger 

Arm A; n=1721 and those with generalised and unclassified epilepsies forming smaller Arm 

B; n=716) 

  

 

 

3.3.5 SNP selection methodology 

The CEPH population data were interrogated for variation in all six DME genes using 

HapMap release # 24 (phase II Nov 08; NCBI build 36 assembly) and dbSNP on the NCBI 

website (www.ncbi.nlm.nih.gov). The reference genotyping data from HapMap was used to 

identify all known SNPs across each of the six genes that were present in individuals of 

Caucasian/European ancestry and with a MAF of at least 1%. Chromosomal positions of each 

gene were identified and coordinates extended by 10 kilobases upstream and downstream to 

include the 5’ and 3’ flanking regions. A list of tSNPs and putatively functional variants for 

each DME gene was then prepared, as described below.  

http://www.ncbi.nlm.nih.gov/
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3.3.6 SNP Tagging SNP approach for representing gene-wide variation 

 Candidate gene SNP association studies for complex traits need to screen a large number 

of SNPs to capture the potentially influential variation across the whole gene (Zhang and Sun, 

2005). However, this is an expensive and time-consuming option for what are often small-

scale studies (Johnson et al., 2001). In contrast, using a haplotype-tagging strategy in which a 

subset of SNPs, each of which acts as a marker for a genomic region (haplotype block) in 

which all variants are thought to be inherited together, reduces the number of SNPs required 

for genotyping (Hirschhorn et al., 2002, Zhang et al., 2002, Chapman et al., 2003). This 

reduces time and cost by avoiding typing redundant SNPs whilst maintaining sufficient 

coverage of genetic variation (Sabbagh et al., 2008).      

 The human genome can be divided into regions with low haplotype diversity and high 

LD, interspersed with regions of high haplotype diversity and low LD (Zhao et al., 2003). In 

regions of low haplotype diversity, typing a smaller number of markers or tSNPs would 

capture most of the haplotypic diversity due to LD between variants, and therefore, could 

potentially capture an association between a human trait and causal loci in each haplotype 

block (Chapman et al., 2003, Zhao et al., 2003). A tSNP is often in strong LD with several 

other SNPs. The assumption is thus that the tSNP selected for genotyping will capture all the 

other SNPs it tags (Zhao et al., 2003). The pairwise tSNP approach thus represents an indirect 

approach to identifying genetic association SNPs by utilising the LD between SNPs in close 

proximity and so it is usually not necessary to genotype all SNPs of interest (Shastry, 2004). 

The pairwise correlation coefficient (r2 statistic) is a commonly used measure to quantify the 

degree of association between two polymorphisms (Chapman et al., 2003, Zhao et al., 2003).   

 

3.3.7 Using Haploview and Tagger to generate a list of tagging SNPs 

Haploview (version 4.1) and Tagger (de Bakker, 2009) were used to select tSNPs that 

capture common variation and putative regulatory regions up and down stream (within 10kb) 

of the DME genes. Haploview is a program designed primarily for haplotype analysis and has 

several functions, including LD and haplotype block analyses, haplotype population frequency 

estimation, single SNP and haplotype association tests, and permutation testing for association 

significance (Barrett et al., 2005). The tagger function in Haploview contains an algorithm that 

performs tSNP selection using the pair-wise method (de Bakker, 2009).  

 

3.3.8 tSNPs and supplementary SNPs selected for genotyping 

For tSNP generation, Caucasian/European genotype data previously downloaded from 

HapMap release # 24 (www.hapmap.org; phase II Nov 2008) for each DME gene (±10kb) was 

http://www.hapmap.org/
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imported into Haploview (as to match the ethnicity of SANAD/GLASGOW study cohort). 

SNPs meeting the following criteria were used; i) MAF ≥ 5%, ii) HWE cut-off p-value > 0.001 

(Barrett et al., 2005), iii) SNP coverage of 80% (using r2=0.8 ensures at least 80% correlation 

between the tSNP and all of the SNPs it tags), iv) ≥80% HapMap genotyping data for each 

common polymorphism, and v) Mendelian inheritance errors in the HapMap CEPH population 

of no greater than 1. An additional set of SNPs with a particularly low MAF (≥ 0.1%) were 

chosen to allow the capture of more SNPs from coding regions and/or those reported in 

previous association studies. The pair-wise Tagger function was then executed.   

 A total of 52 tSNPs were identified across the six genes as follows: 1 from CYP1A2, 

13 from CYP2C8, 8 from CYP3A4, 4 from CYP3A5, 18 from EPHX1, and 8 from UGT2B7 

(Table 3.2). These were then supplemented with a further 42 SNPs (12 CYP1A2, 6 CYP2C8, 

3 CYP3A4, 5 CYP3A5, 12 EPHX1, 4 UGT2B7) reported as either being putatively functional 

in existing literature or located in gene regions with potential functional significance (i.e. exon, 

3’-UTR, 5’-UTR, promoter region, splice site and enhancer site region SNPs) and possessing 

a MAF ≥1% according to the NCBI SNP database (build 126) (Table 3.2). This resulted in a 

list of 94 candidate SNPs across each of the six DME genes being chosen for genotyping. A 

full list of all 52 tSNPs for these SNPs is provided in Appendix 1.3. 

 

 

 

Table 3.2 SNPs and tagging SNPs selected and genotyped for each candidate gene    

DME Gene No of tSNPs 

identified 

No of supplementary 

SNPs 

No of SNPs genotyped 

CYP1A2 1 12 13 

CYP2C8 13 6 19 

CYP3A4 8 3 11 

CYP3A5 4 5 9 

EPHX1 18 12 30 

UGT2B7 8 4 12 

DME = drug metabolising enzyme, No = number, SNPs = single nucleotide             

polymorphisms, tSNPs = tagging single nucleotide polymorphisms  
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3.3.9 Genotyping methods 

The online Sequenom MassARRAY iPLEX assay design software (https://mysequeno 

m.com/Tools/genotyping/default.aspx)(Gabriel et al., 2009) was used for primer and assay 

design for all 94 SNPs, as detailed in Section 2.5.3. Three SNPs (rs7438284, rs11773597 and 

rs45540739 from UGT2B7, CYP3A4 and EPHX1, respectively) were excluded during the 

assay design phase as a result of their predicted potential for cross binding and introduction of 

genotyping errors. These could not be accommodated in any of the five plexes or replaced 

with alternative tSNPs and were thus excluded from the analysis. In total, 91 SNPs within five 

multiplex assays (plexes 1-5), comprising panels of 23, 21, 21, 20 and 6 SNPs respectively 

were produced by the software (Table 3.3). DNA for all 167 patients was genotyped for the 

91 SNPs. PCR conditions and extension primer sequences are listed in Appendix 1.1. 

Genotyping was performed on the Sequenom MassARRAY iPLEX platform (Sequenom, 

Hamburg, Germany) as described in Chapter 2 and in accordance with the manufacturer’s 

instructions (Gabriel et al., 2009).  

 

 

 

Table 3.3 Assay design output of Candidate SNPs  

The 91 candidate SNPs selected for genotyping were placed into 5 SNP plexes by the 

Sequenom MassARRAY iPLEX assay design software 

DME gene SNPs 

 
PLEX 1 

(23) 

PLEX 2 

(21) 

PLEX 3 

(21) 

PLEX 4 

(20) 

PLEX 5 

(6) 
Total 

CYP1A2 2 3 3 4 1 13 

CYP2C8 9 3 3 4 1 20 

CYP3A4 2 3 5 - - 10 

CYP3A5 1 5 - 2 1 9 

EPHX1 7 4 7 8 2 28 

UGT2B7 2 3 3 2 1 11 

DME = drug metabolising enzyme, SNPs = single nucleotide polymorphisms  
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3.3.10 Processing of genotype data for quality control purposes  

A total of 10 positive control samples (duplicates) and two negative control samples 

(water blanks) were included per 384-well reaction plate for each experiment to improve 

reliability of genotype calls. Patient and sample QC measures, as described in section 2.5.20, 

were applied. There was also a purposeful reduction in data dimension prior to analysis in 

order to decrease the number of variables and limit the impact of correction for multiple 

testing. This was achieved by exploring LD structure across the SNP panel in the study 

population. For each pair of highly correlated SNPs (r2 ≥ 0.9), the variant with the fewest 

missing data was retained, whilst the other was excluded. A pair-wise correlation of r2 ≥ 0.9 

allowed accurate model fit with retention of the majority of genetic variation.  

 

3.3.11 Bioinformatics analysis 

In addition to exonic SNPs that may directly influence amino-acid sequence, many SNPs 

are also found in splice sites, enhancer or silencer sites, and TFBS (Pagani and Baralle, 2004, 

Schug, 2008, Kasowski et al., 2010) and may still affect protein expression and the 

transcriptional efficiency of protein coding genes (Prokunina and Alarcon-Riquelme, 2004, 

Pang et al., 2009). Since functional studies are usually time-consuming, they tend to be 

initiated only when a statistically significant association with a phenotype is already 

established and has been replicated (Prokunina and Alarcon-Riquelme, 2004, Pang et al., 

2009). Several online bioinformatics databases were used to predict potential functional and/or 

expression effects of SNPs (Pang et al., 2009). These included FASTSNP (Yuan et al., 2006), 

TESS (Schug, 2008), and SIFT (Ng and Henikoff, 2001, 2003, Ng et al., 2009). Ensemble 

Human Genome Browser and UCSC Genome Browser were also used to visualise and explore 

genetic variation within each of the six genes (see sections 2.4 and 2.7). 

 

3.3.12 Statistical analysis 

  Statistical analysis was performed as described in section 2.6. Haploview (version 4.1) 

was used for haplotype analysis and PHASE software (version 2.1) to infer likely haplotype 

pairs (Stephens et al., 2001, Stephens and Donnelly, 2003, Scheet and Stephens, 2006). 

 CBZ maintenance dose (expressed as mg/day) was the phenotype of interest in this 

analysis. It showed a skewed distribution (Figure 3.2) and was log-transformed to achieve 

normality and to allow parametric statistical testing. Source cohort (SANAD or Glasgow) was 

included as a covariate in the analysis to account for any fundamental differences in patient 

characteristics.  
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3.3.13 Non-genetic univariate association with carbamazepine dosage 

Testing for confounding non-genetic factors that may associate with dose was required 

to exclude their potential influence on inter-individual variability in dose. Initial analysis tested 

for association between CBZ maintenance dose and the following non-genetic variables; age 

at the start of the seizure-free period, sex, epilepsy type, and source cohort (SANAD and 

Glasgow). Univariate linear regression was used for testing age as a continuous variable, and 

analysis of variance (ANOVA) was used for analysing the categorical variables (sex, epilepsy 

type, source cohort and genotype). 

 

3.3.14 Single variant analysis 

All SNPs were analysed individually for association using regression statistics. A 

multiple linear regression model was built for non-genetic factors that proved significant 

(p<0.05) in the initial analysis. Thereafter, the regression model was re-fitted by the inclusion, 

as a covariate, of each of the individual candidate SNP genotypes included in the analysis in 

turn, assuming an additive mode of inheritance. The likelihood ratio test (LRT) was then used 

to compare the initial baseline model (containing non-genetic factors alone) with the genotype 

model (containing non-genetic factors and single SNP genotype), with adjustment for the 

potentially confounding non-genetic factors, to test for association between individual 

candidate SNPs and CBZ maintenance dose. A chi-square distribution test p-value was 

generated to assess the significance of any association. 

 

3.3.15 Haplotype analysis 

In addition to single SNP analysis, a gene-based haplotype analysis was also undertaken 

as an alternative means of detecting genetic associations with dose. As haplotype blocks define 

a region of a chromosome that is unlikely to undergo recombination, they provide greater 

power to detect likely causative alleles within large genetic data sets. In any DNA sample, 

there are two copies of each gene (one maternal and one paternal), which are typically 

different. Genotyping technologies, when applied to DNA from a diploid individual, are able 

to determine which two alleles are present at each locus but not which combinations of alleles 

are present on each of the two chromosomes. Such haplotype information or haplotype phase 

requires determination.         

 All genotype data was entered into Haploview, together with the chromosomal 

location for all SNPs (Barrett et al., 2005). The pattern of LD between each of the included 

SNPs and the haplotype blocks existing across all six genes was visualised using the solid 

spine of LD method for defining blocks of LD. Maximum likelihood estimates of haplotype 
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frequencies from unrelated individuals (the most likely haplotype pair at each block and its 

associated probability), were inferred for each individual using fastPHASE software (Stephens 

et al., 2001, Stephens and Donnelly, 2003, Scheet and Stephens, 2006). Quality control was 

subsequently performed on the generated data. Individuals in whom the fastPHASE assigned 

haplotype-pair had a probability of <90% were first excluded. A common haplotype occurs in 

a population with a frequency of at least 5%. All common haplotypes were included in the 

analysis and rare haplotypes (occurring at a frequency of less than 5%), were grouped together 

for analysis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Carbamazepine dose distribution  

Distribution of carbamazepine maintenance dose (mg/day) across the study population of 

n=159 individuals. Maintenance dose was defined as the uppermost stable or unchanged dose 

over a 12-month seizure-free period.  
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To test for association between CBZ maintenance dose and variation at each haplotype 

block, a regression-based approach was again employed, where the baseline model was 

compared to the haplotype model using the LRT and again assuming an additive mode of 

inheritance. The haplotype model was the same as the baseline model but in addition to non-

genetic factors this included covariates to represent the haplotype pair assigned to the SNPs 

within the haplotype block for each individual. Further study of each of the phase-generated 

haplotypes across the gene-based haplotype block was only considered if a statistically 

significant association (p<0.05 after FDR) was identified in the initial regression analysis of 

the haplotype blocks.  

 

3.4 Results 

Of the 91 SNPs selected and genotyped, 15 failed genotyping due to an unsuccessful 

PCR and/or iPLEX reaction, 14 had a MAF <0.001, 3 deviated from HWE (HWP=<0.001), 

and 1 was monomorphic (Appendix 1.2). These were excluded from further analysis. With the 

remaining 58 SNPs, an additional effort was made to reduce data dimensionality, with 7 SNPs 

found to be in strong LD (r2≥ 0.9) with other genotyped variants and though not excluded, 

these were not included in the final data analysis. Of the 167 patients who underwent SNP 

genotyping, 8 had a genotype call-rate < 90% and were excluded from the analysis. This left 

51 SNPs and 159 patients (71 SANAD, 88 Glasgow) for the association analysis. Basic 

demographic and clinical characteristics of the study population included in the analysis are 

reported in Table 3.1.         

 Of the remaining 51 candidate SNPs, 16 had previously been typed by the 

International HapMap project (NCBI build 36, dbSNP build 126) and had published MAFs 

that did not deviate from those observed in this study (Appendix 1.2). Several SNPs were 

selected on the basis of a previous report of association in literature. Of these n=3 were 

associated with AED serum concentration and/or dosing in epilepsy (rs776746, rs2234922, 

rs1051740)(Nakajima et al., 2005, Makmor-Bakry et al., 2009, Park et al., 2009, Meng et al., 

2011). The putatively significant CYP3A5*3 variant rs776746 C>T  proposed to affect the 

metabolism of several drugs (Huang et al., 2004) and more recently reported to influence both 

CBZ serum concentrations and dosing (Park et al., 2009, Meng et al., 2011) however failed 

QC (HWP<0.1%), thus was not included in the final analysis.  
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3.4.1 Associations between genetic variants and maintenance dose 

Of the four non-genetic factors considered in this study, only age (P= 0.014) and source 

cohort (P= 0.023) were significantly associated with CBZ maintenance dose, as shown in 

Table 3.4. Older ages and patients from the SANAD cohort appeared to have lower CBZ 

maintenance doses when analysed using a univariate regression model. When age and source 

cohort were included in individual regression models with each SNP genotype, eleven of 51 

SNPs showed association with CBZ maintenance dose (Figure 3.3, Table 3.5a and Table 3.5b). 

Two of the SNPs were non-synonymous coding variants (rs4149229 in EPHX1 and rs7439366 

in UGT2B7), one was a synonymous coding variant (rs2234922 in EPHX1), and the remaining 

SNPs were located in non-coding or intronic regions. None of these associations survived FDR 

correction for multiple testing (Table 3.5). 

 

 

Table 3.4 Univariate analysis of non-genetic factors  

Regression analysis results for association between non-genetic factors associated with 

carbamazepine maintenance dose. A p<0.05 was considered significant.  

Variable Analysis F-statistic P-value 

Age Continuous 1.647 0.014 

Gender Categorical (male / female) 0.589 0.444 

Epilepsy type Categorical (IGE, LRE, UNC) 0.031 0.969 

Source cohort Categorical (SANAD, Glasgow) 5.248 0.023 

IGE = idiopathic generalised epilepsy, LRE = localisation-related epilepsy,                    

UNC = unclassified Epilepsy 

 

 

3.4.2 Validation of previous EPHX1 association with CBZ dose 

 In an effort to confirm the previously reported association between CBZ maintenance 

dose and two putatively functional SNPs in EPHX1 (Makmor-Bakry et al, 2009), a further 

regression analysis incorporating age, source cohort, and the genotype of both SNPs was 

performed. Neither SNP in EPHX1 was significantly associated with CBZ dose in isolation 

(uncorrected P= 0.494 for rs1051740, uncorrected P= 0.046 for rs2234922) and the regression 

analysis incorporating both loci was similarly unremarkable. 
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Table 3.5a Genotype associations with carbamazepine dose         

Genotype associations identified by regression analysis; a null and alternative regression 

model was generated for each of the 51 single nucleotide polymorphisms and a chi-square test 

for statistical difference between the two models was performed.  

SNP ID (rs) Gene Uncorrected P-value 

rs4356975 UGT2B7 0.003 

rs3924194 UGT2B7 0.003 

rs4646450 CYP3A5 0.007 

rs2292558 TMEM63A 0.007 

rs4149229 EPHX1 0.010 

rs7439366 UGT2B7 0.012 

rs7375178 UGT2B7 0.014 

rs1934956 CYP2C8 0.019 

rs2246709 CYP3A4 0.026 

rs12721617 CYP3A4 0.029 

rs2234922 EPHX1 0.046 

rs3738040 EPHX1 0.056 

rs11572080 CYP2C8 0.061 

rs11572126 CYP2C8 0.064 

rs28365062 UGT2B7 0.065 

rs2671272 EPHX1 0.088 

rs2071426 CYP2C8 0.091 

rs2275622 CYP2C8 0.120 

rs2854461 EPHX1 0.124 

rs1934980 CYP2C8 0.125 

rs1536430 CYP2C8 0.125 

rs3753660 EPHX1 0.128 

rs762551 CYP1A2 0.160 

rs2275620 CYP2C8 0.175 

rs12333983 CYP3A4 0.185 

rs4646437 CYP3A4 0.192 

SNP = single nucleotide polymorphism, MAF = minor allele 

frequency 
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 SNP = single nucleotide polymorphism, MAF = minor allele frequency 

 

 

 

 

Table 3.5a Genotype associations with carbamazepine dose continued. 

SNP ID (rs) Gene Uncorrected P-value 

rs15524 CYP3A5 0.209 

rs2470890 CYP1A2 0.236 

rs1934952 CYP2C8 0.241 

rs2069525 CYP1A2 0.270 

rs10050146 UGT2B7 0.289 

rs1419745 CYP3A5 0.317 

rs2740574 CYP3A4 0.321 

rs2740168 EPHX1 0.346 

rs11572172 CYP2C8 0.366 

rs2260863 EPHX1 0.390 

rs6976017 CYP3A5 0.419 

rs28365095 CYP3A5 0.429 

rs28365083 CYP3A5 0.434 

rs6600894 UGT2B7 0.448 

rs1051740 EPHX1 0.495 

rs2292566 EPHX1 0.495 

rs1877724 EPHX1 0.515 

rs2234698 EPHX1 0.543 

rs11572079 CYP2C8 0.623 

rs28371764 CYP3A5 0.642 

rs34143170 EPHX1 0.665 

rs1058930 CYP2C8 0.834 

rs2740170 EPHX1 0.841 

rs17861157 CYP1A2 0.938 

rs4149230 EPHX1 0.964 
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Table 3.5b SNP genotypes associated with carbamazepine dose prior to correction 

Of the 51 SNP analysed only variants with P <0.05 (before correction for multiple testing) are 

shown. The reference sequence (rs) numbers for each variant, their location in the respective 

gene and individual allele information is also provided. 

Gene SNP ID 

(rs) 

Location Amino 

acid 

change 

MAF Un-corrected   

P-value 

FDR 

P-

value 

CYP2C8 rs1934956 Intron - 0.116 0.019 0.124 

CYP3A4 rs2246709 Intron - 0.269 0.026 0.145 

CYP3A4 rs12721617 Intron - 0.006 0.029 0.145 

CYP3A5 rs4646450 Intron - 0.182 0.006 0.088 

Flanking 

EPHX1 

rs2292558 Intron - 0.095 0.007 0.088 

EPHX1 rs4149229 Exon P.K416K 0.006 0.007 0.104 

EPHX1 rs2234922 Exon P.H139R 0.163 0.046 0.214 

UGT2B7 rs4356975 Intron - 0.229 0.003 0.069 

UGT2B7 rs3924194 Intron - 0.167 0.012 0.069 

UGT2B7 rs7439366 Exon P.H268Y 0.399 0.010 0.104 

UGT2B7 rs7375178 Intron - 0.396 0.014 0.104 

FDR = false discovery rate, MAF = minor allele frequency, SNP = single nucleotide 

polymorphism 
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Figure 3.3a 
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Figure 3.3b  
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Figure 3.4c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 a, 3.3b, 3.3c Variant genotype and carbamazepine dose 

 

Box and whisker plots of single nucleotide polymorphisms associated with 

carbamazepine maintenance dose (P<0.05, prior to correction for multiple 

testing). Dose is distributed according to individual genotype. Solid lines 

represent the median carbamazepine dose in each group, boxes represent the 

25th and 75th percentile, whiskers represent 5th–95th percentiles, and dots 

represent outliers. 
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3.4.3 Gene haplotype identification and variability in dosing  

Haplotypes within each of the six genes were next investigated to determine whether 

they explained a greater percentage of dose variability than single SNPs. In total eight distinct 

haplotype blocks were identified across the six DME genes. A single block spanned each of 

UGT2B7, CYP1A2 and CYP2C8, two blocks overlapped CYP3A4 and CYP3A5, and the 

remaining three blocks spanned EPHX1 (Figure 3.4). Patients with a haplotype pair allocation 

probability <90% for each block were excluded from the analysis prior to performing a 

regression analysis (2 patients were excluded from Block 1, 2 from Block 2, 1 from Block 3, 

1 from Block 4, 13 from Block 5, 2 from Block 6, 19 from Block 7 and 19 from Block 8). 

Results of the regression analysis for the PHASE generated haplotypes are presented in Table 

3.6. Out of the eight identified haplotype blocks, two showed association with CBZ 

maintenance dose; Block 1 spanning UGT2B7 (P= 0.023) and Block 5 overlapping both 

CYP3A4 and CYP3A5 (P= 0.011).  Both blocks were only modestly associated with CBZ 

maintenance dose and failed to remain statistically significant following FDR analysis (Table 

3.6). Individual haplotypes within each gene were therefore not examined. 

 

3.4.4 Bioinformatics work 

Bioinformatics analysis for the exploration of likely function of each of these 11 SNPs 

was performed despite their failure to remain significantly associated with CBZ dose after 

correction for multiple testing. Such investigations have the potential to identify subtle effects 

that may be lost in a candidate gene association analysis where statistical power is low and 

associations weakened by the need to correct for multiple comparisons. None of the 11 SNPs 

was predicted to have a significant influence on protein function and/or expression. Results 

for bioinformatics analyses can be found in Table 3.7. The SIFT and FastSNP webservers were 

used to evaluate the functional potential of the two non-synonymous variants, and predicted 

no effect of either polymorphism on protein function. FastSNP did, however, predict the 

presence of two 2 ESEs with the variant allele for both the EPHX1 exonic SNPs rs2234922 

and rs4149229 (non-synonymous and synonymous SNPs respectively). In addition to this, 

FastSNP predicted the loss of a TFBS for both the UGT2B7 rs4356975 and CYP3A4 

rs12721617 intronic variants and the exonic UGT2B7 rs7439366 variant (Table 3.7). These 

SNPs were also predicted to be located within a TFBS by TESS. 
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Figure 3.4a 
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Figure 3.4b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 a and 3.4 b                         

Blocks of linkage disequilibrium and haplotypes identified across the six candidate drug 

metabolising enzyme genes. Linkage disequilibrium between each of the 51 SNPs across the 

six candidate genes that were included in the study, as visualised by Haploview v.4.2 (Barrett 

et al., 2005). Haplotype maps were generated using solid spine linkage disequilibrium method 

of block definition (Haploview v.4.2). A total of eight haplotype blocks were identified; 

(blocks 1-8 left to right) spanning the genes UGT2B7, CYP1A2, CYP2C8 (Figure 3.4b), 

CYP3A4 and CYP3A5 and EPHX1 (Figure 3.4a) respectively (3 across EPHX1 and one each 

across the remaining 5 genes). 
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Table 3.6 Regression analysis of haplotype associations with carbamazepine dose 

A chi-square test was used for testing for a statistical difference between a null and alternative 

regression model generated for each of the 8 blocks. A chi-square p-value of <0.05 after 

correction for multiple testing was considered statistically significant. 

Haplotype 

block 

Gene Number 

of SNPs 

Chi-

squared 

value 

Uncorrected   

P-value 

FDR               

P-value 

Block 1 UGT2B7  9 14.658 0.023 0.091 

Block 2 CYP1A2 4 3.282 0.350 0.092 

Block 3 CYP2C8 12 14.118 0.079 0.170 

Block 4 CYP3A4/

CYP3A5 

9 8.192 0.146 0.170 

Block 5 CYP3A4/

CYP3A5 

3 12.982 0.011 0.233 

Block 6 EPHX1 4 8.192 0.085 0.416 

Block 7 EPHX1 2 0.91 0.923 0.416 

Block 8 EPHX1 7 7.652 0.364 0.923 

FDR = false discovery rate, SNPs = single nucleotide polymorphisms 

 

3.5 Discussion and summary 

Despite the introduction of more than 12 new AEDs in the past two decades, drug therapy for 

epilepsy remains sub-optimal, with an estimated 50% of all treated patients experiencing 

ongoing seizure activity, significant AEs, or both. Newer AEDs have a more benign side effect 

profile than their established counterparts but none represents a significant advance in efficacy 

terms. As a result, there is a growing consensus in the epilepsy field that greater efforts should 

be directed at learning to use existing compounds in a more effective manner, rather than 

continually developing new agents of questionable additional benefit. Suggestions for the 

better use of existing AEDs include the investigation of rational polypharmacy and the 

individualisation of drug choice and dosing strategies through the identification and 

implementation of validated biomarkers. This study investigated the potential influence of 

polymorphic variants in DME genes on CBZ maintenance dose. Understanding an individual’s 

dose requirement could help tailor titration schedules and target doses in order to minimise 

early withdrawals due to intolerable AEs and reduce the time to achievement of seizure 

control.  

Hepatic metabolism represents the major elimination pathway for the majority of older 

AEDs and is the primary determinant of inter-individual variability in their PK. Many of these 
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compounds, including CBZ, have a relatively narrow therapeutic concentration range that 

renders them susceptible to clinically meaningful consequences of fluctuations in their serum 

levels. Multiple DMEs are involved in the biotransformation of CBZ (Kerr et al., 1994, Levy, 

1995, Browne, 1998, Ketter et al., 1999, Huang et al., 2004, Staines et al., 2004, Ferraro and 

Buono, 2005, Klotz, 2007). CYP3A4 and CYP3A5 are the principle enzymes involved in the 

phase I metabolism of CBZ to its major and pharmacologically active metabolite CBZ-E, with 

CYP1A2 and CYP2C8 playing a more minor role. Phase II metabolism is predominantly 

mediated by mEH, which converts CBZ-E to CBZ-10,11-diol, while UGT2B7 is the major 

enzyme involved in glucuronide conjugation of the parent compound and its multiple 

metabolites. The genes encoding each of these enzymes harbour polymorphisms that are 

known to influence their catalytic function (Saruwatari, Ishitsu et al. 2010)(Ferraro and Buono, 

2005).           

 This study employed a candidate gene approach using tSNPs plus putatively 

functional variants in an effort to identify genetic influences on CBZ maintenance dose across 

these six DMEs, with adjustment for known non-genetic influences on dose. Modest 

associations with dose were observed with eleven SNPs in five genes, four in UGT2B7, three 

in EPHX1 region (one of which is located within the TMEM63A; a gene flanking EPHX1), 

two in CYP3A4, and one each in CYP2C8 and CYP3A5, but none that survived correction for 

multiple testing. Reducing the dimension of the genetic data by haplotype analysis was 

similarly unsuccessful, with again only modest associations between CBZ maintenance dose 

and haplotype blocks spanning UGT2B7 and CYP3A4/CYP3A5 that failed to survive 

adjustment for multiple comparisons.        

 It is not possible to confidently implicate the predictive influence of genetic markers 

with drug dose without strong statistical evidence. This is however difficult when statistical 

power is limited by analysing a large number of variables in a limited number of patients. 

Although no SNP presented a strong correlation with maintenance dose in the independent 

SNP analysis, of significance is the potential influence of several of these SNPs on gene 

regulation as implicated by the bioinformatics analysis. Three SNPs were located in coding 

regions (1 EPHX1 synonymous, 1 EPHX1 non-synonymous and 1 UGT2B7 non-synonymous 

SNP), but were not predicted to have a direct effect on the function of their respective enzymes. 

The predicted effect on splicing, TFB, and/or protein expression could however signify some 

importance of these coding SNPs. Alternatively the weak dose association with each of the 11 

SNPs could be an indication that the variants are in LD with as yet unidentified genetic variants 

of stronger biological function. Alternatively, the single SNP results may point toward a 

potential role of the respective genes in CBZ response and/or dosing. The EPHX1 non-

synonymous rs2234922 variant that was originally associated with CBZ dose (Makmor-Bakry 

et al 2009) was additionally predicted to alter a TFBS in the bioinformatics analysis, thus again 
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implicating EPHX1 with CBZ dosing. The other intronic SNP is located in the TMEM63A 

gene encoding a transmembrane protein close to EPHX1. Although no significant association 

has been reported for this gene with regards to epilepsy, or any other condition/ disease state, 

the rs2292558 variant has previously been associated with pulmonary arterial pressure in 

patients with chronic obstructive pulmonary disease (Castaldi et al., 2010). As such this SNP 

or gene could have some yet unidentified role in influencing EPHX1 or epilepsy.  

 In single SNP analyses, true associations may be missed because of the incomplete 

information provided by individual variants (Hirschhorn et al., 2002). Multiple markers across 

chromosomal regions are thus increasingly being studied in combination, for the identification 

of relationships between genetic regions and traits of interest, with analysis based on 

haplotypes potentially more efficient than separate analyses of the individual SNPs (Judson et 

al., 2000). Of the eight haplotype blocks identified for the six genes included in this study, 

only one block spanning the gene UGT2B7 and another spanning the gene CYP3A4/CYP3A5 

were modestly associated with CBZ dose. This finding partly supports the results of the single 

SNP analysis, where several UGT2B7 SNPs appeared to associate with CBZ dose. 

Individually, however, these two haplotype blocks only explain a small amount of the 

variability present in CBZ dosing (r2 values of 6.2% and 5.5% for the UGT2B7 and CYP3A 

blocks respectively). This is similar to the variability accounted for by individual SNPs (r2 

values ranging from 3.0% to 7.1% for the 11 SNPs). The benefit of carrying out additional 

haplotype analysis was therefore questionable.      

 These findings were not entirely surprising, given that none of the genes in the panel 

are known to possess alleles of significant functional effect such as those observed in CYP2D6 

or CYP2C9 (Ingelman-Sundberg, 2004b, Wilkinson, 2005). The CYP3A5 gene does possess a 

null allele (CYP3A5*3)(Huang et al., 2004) that has been extensively studied with regard to 

altered drug metabolism (Hustert et al., 2001, Ingelman-Sundberg, 2004a). Although studies 

indicate association of this allele with CBZ serum concentrations, the role of CYP3A5 in CBZ 

metabolism remains controversial (Park et al., 2009, Saruwatari et al., 2010, Meng et al., 

2011). It has also been speculated that the loss of CYP3A5 function is potentially compensated 

by enhanced metabolism mediated by CYP3A4 (Lee Sj Fau - Goldstein and Goldstein, Lamba 

et al., 2002, Huang et al., 2004).       

 Rather than seeking functional variants of large effect size, it was anticipated that this 

study might allow detection of multiple SNPs of small effect size that could be incorporated 

with non-genetic influences on CBZ dose into a predictive multivariate model. Those non-

genetic factors that proved significant in this analysis included age, which would be expected 

to inversely correlate with dose requirement in an adult population (Bourdet et al., 2001), and 

source cohort, which was an interesting observation and one that perhaps reflects the differing 

methods of case ascertainment and drug use in randomised trials and routine clinical care. The 
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present investigation was however unable to detect a genetic influence on CBZ dosing when 

several individual SNPs were investigated, even after accounting for the contribution of non-

genetic factors. This study therefore failed to support the hypothesis that common variants in 

the CBZ PK pathway may influence CBZ dosage in.    

 Two EPHX1 SNPs, rs1051740 and rs2234922, were previously reported as influential 

in CBZ maintenance dosing (Makmor-Bakry et al., 2009). These variants were also typed as 

part of the present study and investigated in the overall genetic analysis and also in isolation 

in an effort to validate the original finding. The failure to validate the results of the study by 

Makmor-Bakry et al 2009 may be explained by the small number of patients (n=167) in the 

current analysis, combined with a large number of variables necessitating extensive correction 

for multiple testing. Power to detect modest associations was therefore limited. The original 

study was also disadvantaged by a small patient cohort (n=70) and only a weak association 

was found by the authors (P= 0.002 uncorrected). In addition to EPHX1 variants, Makmor-

Bakry et al 2009 also investigated single SNPs in each of CYP1A2, CYP2C8, CYP3A4, 

CYP3A5, and UGT2B7, selected on the basis of reported associations and potential 

functionality. They failed to consider wider variations across each gene region. This arguably 

limited their ability to detect associations, given that single SNPs are unlikely to explain 

complex traits. The more sensitive measure of using candidate gene tSNPs in the current study 

was however similarly unsuccessful, perhaps confirming that genetic variability in DMEs 

involved in CBZ metabolism does not play an important role in determining dose requirement.

 It is possible that this study would have possessed greater sensitivity to detect genetic 

associations with CBZ PK had serum drug concentration data been available rather than dose 

data alone. TDM has proven useful for improving the effectiveness and safety of established 

AEDs, particularly for those with non-linear PK, such as PHT, or with considerable PK 

variability, as is the case with CBZ (Eadie, 1998, Anderson, 2008). Serum concentrations are 

more reflective of PK in general and less susceptible to non-genetic influences such as age, 

sex and body weight, all of which are compensated by dose differences. However, serum levels 

were not available for the cohorts in question.  The use of a mixed-effect population PK 

approach has been shown to facilitate the delineation of relevant genetic factors, to estimate 

the magnitude of their effects on the PK variation, and to aid individualised dosing 

(Saruwatari, Ishitsu et al. 2010).       

 Using a candidate gene tSNP approach has advantages over the traditional single gene, 

single variant association method commonly found in PGx studies (Grant and Hakonarson, 

2007, McCarthy et al., 2008) as it increases the likelihood of capturing putatively causative 

SNPs. The trade-off, however, is statistical power to detect associations in studies where a 

large number of genetic variants are typed in a relatively small cohort of patients. As studies 

move toward genome-wide analysis of complex traits, such as drug response, problems arise 
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in how to handle large genetic datasets (in terms of correction for multiple testing) whilst 

retaining sufficient statistical power. Larger and larger cohorts of patients are required but this 

may be unrealistic for some phenotypes. It was evident in this study that the lack of power 

limited the significance of the associations identified, for both single SNP and haplotype 

analyses. Unfortunately, the study was constrained by the availability of patients who met the 

inclusion criteria. Even in two of the largest epilepsy pharmacogenetic cohorts worldwide, 

insufficient numbers of patients were available to allow an association with CBZ dose to 

withstand correction for the multiple testing.     

 The haplotype approach to identifying causative genetic factors for both disease 

association and drug response is relatively new, but the benefits of using gene-based 

haplotypes as genetic markers is becoming clear (Judson et al., 2000). Determination of 

haplotypes or combinations of SNPs that are in LD might offer more power to detect 

associations than simply measuring individual SNPs (Tabor et al., 2002). When the initial test 

of association with genotypes does not reach statistical significance, further exploration of 

haplotype-specific effects is thought to increase the chance that at least one significant 

association will be detected (Colhoun et al., 2003). The ability to preselect SNPs that tag 

common haplotypes might also increase the prior probability of association with a candidate 

gene (Johnson et al., 2001).       

 Unfortunately, in this study, while there were associations between CBZ dose and 

both single SNPs and individual haplotypes prior to correction for multiple testing, these were 

lost thereafter. Thus, using a haplotype-based approach did not improve the sensitivity to 

detect true associations. This may have been because there were no true associations or that 

statistical power to detect such associations was not sufficiently high. There are also major 

issues around the use of simple regression for haplotype analysis. These include haplotype 

uncertainty, when these are derived with computational methods of phase inference, and 

haplotype complexity, in which the power of haplotype analysis is reduced by the large 

number of haplotypes that need to be studied (Zhao et al., 2003). With FastPHASE software, 

an individual is assigned to different haplotype pairs with different probabilities (Scheet and 

Stephens, 2006) and although this study employed a high threshold probability of 90% for 

haplotype uncertainty, the problem still exists.      

 Methods have been developed to reduce the number of haplotypes considered in 

association studies. One such method divides the whole chromosomal region into smaller 

regions for analysis and this generally involves a sliding window which is placed on the 

candidate region, with evidence for association within each window assessed (Zhao et al., 

2003). Using the sliding window, the number of haplotype patterns in each window may be 

significantly less than that in the whole region, so the regression analysis involves fewer 

parameters and thus should have better power if there is an association between haplotype and 
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a disease trait. In addition it is assumed that association near the true disease variants is 

stronger than that in other regions (Zhao et al., 2003). Another common approach is based on 

the assumption that an unknown mutation occurred at some point in the evolutionary history 

and became embedded within the historical structure represented by a tree (cladogram) 

relating different haplotypes, assuming that certain portions of the tree would display the 

phenotypic effect of the mutation while other portions would not (Zhao et al., 2003). This 

second approach groups haplotypes into a smaller number before association analysis.  Thus, 

the cladogram defines a nested analysis of variance that simultaneously detects phenotypic 

effects and localises the effects within the cladogram (Zhao et al., 2003). These other ways 

of analysis were not considered here instead, a simplistic approach of using haplotype block 

structures was employed. This simplistic method is helpful in association analysis using block-

specific haplotypes (Daly and Day, 2001, Zhao et al., 2003) but there is an argument that the 

results depend on the definition of haplotype blocks. This method may also not be efficient if 

there is substantial LD among alleles in different blocks (Gabriel et al., 2002). 

 

Table 3.7 Predicted function for 11 SNPs from FastSNP and SIFT 

TF= transcription factor, SE= splicing enhancer site, SS=splicing silencer site.                        

Risk = Upper and lower risk of functional effect; 0= no effect 1=very low risk, 2=low risk, 

3=medium risk, 4=high risk, 5=very high risk (http://fastsnp.ibms.sinica.edu.tw/pages/input_ 

CandidateGeneSearch.jsp)(http://sift.bii.a-star.edu.sg/)

SNP ID 

(rs) 

Gene Predicted 

functional 

effect FastSNP 

Risk Predicted 

functional 

effect SIFT 

TF site 

change 

SE/SS 

change 

 

rs1934956 CYP2C8 no known 

function 

0-0 - - - 

rs2246709 CYP3A4 no known 

function 

0-0 - - - 

rs12721617 CYP3A4 enhancer 1-2 - yes - 

rs4646450 CYP3A5 no known 

function 

 - - - 

rs2292558 TMEM63A   

/EPHX1 

no known 

function 

0-0 - - - 

rs4149229 EPHX1 Benign 2-3 Tolerated - yes 

rs2234922 EPHX1 splicing 

regulation 

2-3 Tolerated - yes 

rs4356975 UGT2B7 enhancer 1-2 - yes - 

rs3924194 UGT2B7 no known 

function 

0-0 - - - 

rs7439366 UGT2B7 Benign and 

missense; 

splicing 

regulation 

2-3 Tolerated 

 

yes - 

rs7375178 UGT2B7 no known 

function 

0-0 - - - 

http://fastsnp.ibms.sinica.edu.tw/pages/input_%20CandidateGeneSearch.jsp
http://fastsnp.ibms.sinica.edu.tw/pages/input_%20CandidateGeneSearch.jsp
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Drug response is a recognised complex, multifactorial phenotype, likely to involve 

several classes of genes of potential influence. This study investigated the importance of 

DMEs in determining the maintenance dose requirement of CBZ by examining numerous 

SNPs across several candidate genes. While there was evidence of a relationship between 

common genetic variation and dose, the associations identified were modest and did not 

survive correction for multiple testing. There are an increasing number of reports showing the 

importance of UGT enzymes, including UGT2B7 and UGT1A4, in AED PK and PD (Blanca 

Sanchez et al., 2010, Saruwatari et al., 2010), which would suggest that the results of this 

analysis have some merit. The lack of statistically significant associations thus does not rule 

out the possibility that associations may exist with other SNPs in the same genes, not least 

because the study design was informed by known genetic variation at the time of conception. 

Variation in DME genes is known to influence the PK and PD of drugs metabolised by 

CYP2D6, CYP2C9, and CYP2C19. In the case of CBZ, however, the principal DMEs are less 

polymorphic and likely to have a more subtle influence on inter-individual variability in drug 

dose, necessitating far larger studies to detect genetic associations. Given their modest 

contribution in this regard, it is debatable whether such studies are worthwhile or clinically 

informative.  
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4.1. Introduction 

Ion channels are pore-forming proteins that regulate the movement of ions across cellular 

membranes and are therefore integral to a wide range of physiological pathways (Catterall, 

1992). NaV channels are responsible for the generation of action potentials in excitable cells 

and those expressed in the brain play a central role in the initiation and propagation of action 

potentials in neurones (Catterall, 1992, Yu and Catterall, 2003). Mutations in this fundamental 

channel unsurprisingly cause a number of disorders of membrane excitability, including 

several genetic epilepsies (Rogawski and Loscher, 2004, Meisler and Kearney, 2005). 

 

4.1.1. Structure and function of the voltage-gated sodium channel 

The NaV channel protein consists of two distinct subunits, denoted α and β (Marban et 

al., 1998) (Figure 4.1). The α-subunit is a large, transmembrane protein composed of 4 

homologous domains that are fundamental to channel function (Marban et al., 1998). These 

domains contain the voltage sensor and pore regions essential to channel gating (i.e. opening 

and closing of the channel) and ion selectivity, respectively (Clare et al., 2000, Meisler and 

Kearney, 2005). The four domains associate within the membrane to form a Na+ permeable 

pore, through which Na+ ions flow during propagation of an action potential (Meisler and 

Kearney, 2005) (Figure 4.2). Each α subunit is also associated with one or more accessory β 

subunits that are important for the modulation of the NaV channel as a whole, regulating cell 

surface expression, voltage dependence and kinetics of the α subunit (Marban et al., 1998, Yu 

and Catterall, 2003). 

Duplication of α-subunit genes during mammalian evolution has generated a number 

of genes encoding active NaV channels that differ in tissue specificity and biophysical 

properties (Yu and Catterall, 2003, Meisler and Kearney, 2005). Ten NaV α subunit genes 

(SCN1A-SCN5A, SCN7A-SCN11A) have been identified in mammals so far, nine of which are 

expressed in the nervous system (Table 4.1.) (Catterall et al., 2005, Leterrier et al., 2010). The 

four genes predominantly expressed in mammalian brain are SCN1A, SCN2A, SCN3A and 

SCN8A, which encode the channels NaV1.1, NaV1.2, NaV1.3 and NaV1.6, respectively. NaV1.3 

expression is mainly restricted to the early stages of development, while NaV1.1 is the major 

NaV channel in inhibitory interneurons and NaV1.2 and NaV1.6 are expressed in the axon initial 

segment of principal excitatory neurons.  
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Figure 4.1   Structure of 

voltage-gated sodium channels 

Representation of the α-subunit 

and β1 and β2 subunits of the 

Nav1.2 channel. The four 

domains of the α-subunit (I-IV) 

are indicated including its 6 

helices or segments (S1-6).  The 

S5 and S6 helices in each 

domain (shown in blue) are the 

pore-lining segments and the S4 

helices (dark purple segments) 

make up the voltage sensors. 

Pink circles in the intracellular 

loops of domains III and IV 

indicate the sites implicated in 

forming the receptor for the 

inactivation gate and the blue 

circle indicates the inactivation 

gate loop. The pre-entrant loops 

in each domain (I-IV) form both 

the ion selectivity filter and outer 

pore mouth. S6 helices of 

domains III and IV (pink 

segments) are regions of 

modulatory drug binding, 

including sodium channel-

blocking AEDs. Figure has been 

adapted from Rogawski and 

Loscher et al 2004. 
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Figure 4.2 Voltage-gated sodium channel gating 

Schematic representation of the different conformational states of a voltage-gated 

sodium channel. The voltage-gated sodium channel exists in four conformations, resting, 

activated (or open), inactivated and closed. The figure shows channel activation and sodium 

ion gating during the propagation of action potentials. The conformational change of the 

channel pore required for channel gating is also represented. Figure redrawn from Joseph et al 

2011. 
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Table 4.1 Mammalian voltage-gated sodium channel subunits 

Tissue distribution and genetic information for mammalian voltage-gated sodium channel 

alpha and beta subunits. Table adapted from Catterall et al 2005. Additional information 

extracted from the Online Mendelian Inheritance in Man (OMIM) website (www.omim.org). 

Channel 

protein 

Subunit name 

 

Gene 

 

Tissue 

distribution 

Alpha     

NaV1.1 Brain type I SCN1A CNS + PNS + heart 

NaV1.2 Brain type II SCN2A CNS 

NaV1.3 Brain type III SCN3A CNS + heart 

NaV1.4 Skeletal muscle SCN4A skeletal muscle  

NaV1.5 Cardiac SCN5A Heart + minor CNS 

expression 

NaV1.6 Brain type IV SCN8A CNS + PNS + heart 

NaV1.7 PN1 SCN9A PNS 

NaV1.8 SNS SCN10A PNS 

NaV1.9 SNS2 SCN11A PNS 

NaX 

 

Atypical heart/glial 

 

SCN6A/7A 

 

Heart + uterus +  

smooth muscle + minor 

CNS expression 

Beta     

NaVβ1 

 

Beta-1 

 

SCN1B 

 

CNS + PNS +  

skeletal muscle + heart 

    

NaVβ2 Beta-2 SCN2B CNS+  PNS+  adrenal 

gland+  kidney 

NaVβ3 Beta-3 SCN3B CNS +  PNS+  heart,  

NaVβ4 Beta-4 SCN4B CNS + PNS+ heart,  

skeletal muscle 

NaV = voltage-gated sodium channel, CNS = central nervous system, PNS = peripheral 

nervous system  

 

 

 

 

 

http://www.omim.org/
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The essential nature of the NaV channel is further emphasised by the existence of 

inherited disorders (sodium “channelopathies”) caused by mutations in genes that encode these 

vital proteins (Table 4.2) (George, 2005, Kass, 2005). Many mutations of the neuronal NaV 

genes have been described in patients with epilepsy (George, 2005, Kass, 2005). The first of 

these was identified in the SCN1B gene (Escayg et al., 2000, George, 2005, Kass, 2005). 

Genetic defects in SCN1A, SCN2A, SCN3A, SCN9A genes have since been discovered that are 

responsible for several clinically overlapping epilepsy syndromes, namely generalised 

epilepsy with febrile seizure plus (GEFS+), severe myoclonic epilepsy of infancy (SMEI), and 

benign familial neonatal-infantile seizures (BFNIS) (Meisler et al., 2001, Steinlein, 2004, 

Meisler and Kearney, 2005). The majority of the NaV channel mutations related to epilepsy 

can be found in SCN1A (Lossin et al., 2003, Mulley et al., 2003, Lossin, 2009, Meisler et al., 

2010). Over 700 mutations of the SCN1A gene have been identified that cause a range of 

infantile epileptic encephalopathies with varying phenotypic severities, making this the most 

commonly mutated gene in human epilepsy (Lossin, 2009, Meisler et al., 2010). A small 

number of mutations have been identified in the other three principal, brain-expressed α 

subunit genes and only a handful are known for SCN1B (Lossin, 2009, Meisler et al., 2010).  

 

4.1.2. Function of the α–subunit  as a antiepileptic drug target 

The SCN1A encoded NaV1.1 protein functions as a major molecular target for numerous 

clinically important AEDs (Rogawski and Porter, 1990, Ragsdale and Avoli, 1998). Most 

AEDs have multiple cellular targets, however the majority of widely used AEDs have shown 

at least some NaV blocking activity (Kwan et al., 2001). AEDs with NaV channel blocking 

properties include PHT, LTG, CBZ, OXC, ZNS, FBM, TPM and VPA (Rogawski and Porter, 

1990, Kwan et al., 2001). These bind to the NaV channel and facilitate the selective inhibition 

of Na+ currents (Macdonald and Kelly, 1995, Kwan et al., 2001). These currents are involved 

in the repetitive high-frequency spike firing of neurons, which is believed to occur during the 

spread of seizure activity in epilepsy (Rogawski and Loscher, 2004). AEDs have highest 

affinity for the NaV channel protein in the inactivated state and their binding slows the 

otherwise rapid recycling process (Ragsdale and Avoli, 1998, Brodie and Sills, 2011). As a 

result, these drugs produce a voltage-and frequency-dependent reduction in channel 

conductance that limits repetitive neuronal firing with little effect on the generation of single 

action potentials (Ragsdale and Avoli, 1998, Brodie and Sills, 2011). 
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Table 4.2 Inherited disorders of voltage gated sodium channels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Table adapted from George 2005) 

 

 

4.1.3. Binding sites of antiepileptic drugs 

Site-directed mutagenesis experiments show that AEDs and local anesthetics bind to a 

common receptor site in the pore of the NaV channel that is formed in part by three critical 

amino acid residues in transmembrane segment S6 in domains I, III and IV, with the IVS6 

segment playing the dominant role (Catterall, 1999, Rogawski and Loscher, 2004, Catterall et 

al., 2005). Studies using PHT, CBZ and LTG have shown that these drugs contain a common 

motif (two phenyl groups separated by one or two C–C or C–N single bonds), which is thought 

to be crucial to this common binding (Figure 4.3) (Kuo, 1998, Rogawski and Loscher, 2004). 

Muscle sodium channelopathies (SCN4A) 

Hyperkalemic periodic paralysis 

Paramyotoniacongenita 

Potassium-aggravated myotonia 

Painful congenital myotonia 

Myasthenic syndrome 

Hypokalemic periodic paralysis type 2 

Malignant hyperthermia susceptibility 

Cardiac sodium channelopathies (SCN5A) 

Congenital long QT syndrome (Romano-Ward) 

Idiopathic ventricular fibrillation (Brugada syndrome) 

Isolated cardiac conduction system disease 

Atrial standstill 

Congenital sick sinus syndrome 

Sudden infant death syndrome 

Dilated cardiomyopathy, conduction disorder, arrhythmia 

Brain sodium channelopathies (SCN1A, SCN2A, SCN1B) 

Generalized epilepsy with febrile seizures plus 

Severe myoclonic epilepsy of infancy (Dravet syndrome) 

Intractable childhood epilepsy with frequent generalized tonic-clonic seizures 

Benign familial neonatal-infantile seizures 

Peripheral nerve sodium channelopathies (SCN9A) 

Familial primary erythermalgia 
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Evidence from mutational analysis has identified phenylalanine (F1764) and tyrosine (Y1771) 

residues in the S6 domain IV region as crucial for use-dependent block by both PHT and LTG 

(Ragsdale et al., 1996). These residues are brought into the pore during channel gating, thereby 

facilitating drug binding. Mutational analysis has also revealed that the pore-lining residues 

leucine 1465 and isoleucine 1469 in S6 of domain III of S6 may also form a portion of the 

high-affinity binding site for NaV blocking AEDs (Figure 4.1)(Catterall, 2000, Rogawski and 

Loscher, 2004, Yarov-Yarovoy et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Molecular view of sodium channel and proposed site for drug binding 

Experimental evidence has shown that antiepileptic drugs and local anesthetics with sodium 

channel blocking properties bind to receptor sites in the pore that is formed in part by amino 

acid residues in transmembrane segment S6 of domain III and IV of the channel (Catterall 

1999; Ragsdale et al 1998). 
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4.1.4. Variable response to antiepileptic drug treatment 

AED therapy typically comprises of a low starting dose, which is titrated upwards until 

an individual therapeutic dose whereby seizures discontinue or AEs become intolerable (Lo 

Monte et al., 2011). AEDs are known to have a relatively narrow therapeutic index and to be 

responsible for a wide variety of clinically important AEs (Perucca et al., 2001, Kwan and 

Brodie, 2004, Depondt and Shorvon, 2006, Ferraro et al., 2006, Schachter, 2007). Side effects 

are thus a major cause of medication intolerance and noncompliance, particularly within the 

first six months of therapy, and major AEs are reported to contribute to initial treatment failure 

in around 40% of patients taking established AEDs (Sander, 2004, Cavalleri et al., 2011).  

 

4.1.5. Pharmacodynamic variation and antiepileptic drug response 

Variability in AED dose requirement at an individual patient level can be broadly 

attributed to a combination of genetic and non-genetic factors (Cavalleri et al., 2011). Non-

genetic influences include body mass index, gender and diet and are reasonably well 

characterised, although their clinical utility in terms of dose estimation is limited (Cavalleri et 

al., 2011). Some genetic polymorphisms that affect the PK of AEDs have also been identified 

and shown to influence the AED dose requirement (Tate et al., 2005, Klotz, 2007, Loscher et 

al., 2009, Park et al., 2009), particularly those in the CYP enzyme family (section 3.1).  

Neuronal drug binding involving the NaV channel is the first PD pathway to be directly 

associated with AED dosing (Tate et al., 2005, Kasperaviciute and Sisodiya, 2009). The 

SCN1A gene was originally implicated in AED response through early studies in Mendelian 

epilepsies. These demonstrated that SCN1A mutations can cause Dravet’s syndrome or SMEI. 

SMEI patients are not only resistant to several AEDs but their seizures are typically aggravated 

following NaV channel blocking AED treatment (Guerrini et al., 1998, Mulley et al., 2003, Yu 

et al., 2006, Abe et al., 2008).  

 

4.1.6. SCN1A gene Isoforms 

The SCN1A gene is 81-kb in size and is located on the long arm of chromosome two, 

situated at position 2q24.3. SCN1A is found as part of a cluster of voltage-gated sodium 

channel genes; namely SCN2A, SCN3A, SCN7A and SCN9A (encoding Nav1.2, Nav1.3, Nax, 

and Nav1.7, respectively) (Malo et al., 1994). The Nav1.1 protein (encoded by SCN1A) open-

reading frame is organised into 26 exons and blueprints the instructions for a protein version 

incorporating between 1976 and 2009 amino acids. The variance in possible length is due to 

alternative splice junctions at the end of exon 11 that produce a full-length isoform or two 

shortened versions (Lossin et al., 2002). These differ by 33 bases and result in an 11 amino 

acid difference between the translated proteins. This splicing variability is the cause for the 
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inconsistencies in mutation reports across different research groups, as some are referring to 

full-length Nav1.1, while others reference Nav1.1[-33]; proposed to be more abundant in the 

brain (http://www.scn1a.info/Isoforms). A second alternative SCN1A splicing site or site of 

RNA processing variability can be found in exon 5. Here two mutually exclusive exons, 5N 

and 5A can be found and give rise to a postnatal and an adulthood isoform of the Nav1.1 

channel protein (Copley, 2004). The amino-residue coding DNA sequence of these two 

alternative exons is nearly identical, differing only in three positions (Copley, 2004) (http: 

//www.scn1a. info/Isoforms). 

 

4.1.7. Implication of the SCN1A α-subunit gene in  AED response 

 A direct correlation between SCN1A and AED treatment was first reported in 2005 (Tate 

et al., 2005). The study, using 425 individuals with epilepsy demonstrated that the exon 5 

SCN1A rs3812718 G>A SNP resulted in a significant shift in the maximal dosage of PHT and 

CBZ (Tate et al., 2005). Exon 5 of SCN1A encodes one of several voltage sensor regions of 

the NaV channel (Ragsdale and Avoli, 1998, Tate et al., 2005).  The voltage sensor region 

determines channel gating and so alteration in exon 5 expression can influence sensitivity of 

channels to blockade by AEDs (Tate et al., 2005, Heinzen et al., 2007). Two alternatively 

spliced versions of exon 5 are present in human genomic DNA, exon 5A (adult version) and 

alternative exon 5N (neonatal version), differing by three amino acids in their protein products 

(Tate et al., 2005).  

 This variant, located in the consensus sequence of the 5’ splice donor site downstream 

of exon 5N (exon 5N+5G>A) (Figure 4.4) was suggested to alter the regular splicing of SCN1A 

in humans (Tate et al., 2005). The A allele was proposed to disrupt the consensus sequence of 

the 5N exon, reducing its expression and altering the normal 5N/5A ratio (Tate et al., 2005) 

(Figure 4.4). This was also demonstrated empirically by the study, which presented altered 

5N/5A transcript levels in adult brain tissue from patients with epilepsy (Tate et al., 2005). 

The ancestral G allele is conserved across vertebrates (Zhang 1998) and is present in 

homologous CNS NaV genes that are alternatively spliced within S3-S4 segments in domains 

I-IV. Maximum AED dosage was reported to consecutively decrease in epilepsy patients with 

AA, AG and GG genotypes (Tate et al., 2005) and this was suggested to be due to the level of 

5N expression; with individuals expressing a greater percentage of 5N (those with two copies 

of the ancestral G allele) requiring lower drug doses. 

 

4.1.8. Confirmation of the importance of the SCN1A polymorphism 

Of the few PGx studies that have since investigated the rs3812718 polymorphism, three 

have managed to confirm the original association with AED dosing (Tate et al., 2006). As 

http://www.scn1a.info/Isoforms
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maximum dose is not an accurate determinant of drug efficacy the original study was repeated 

with maintenance dose data, in a cohort of 71 Chinese patients by the original authors (Tate et 

al., 2006). The subsequent report confirmed that rs3812718 was also associated with PHT 

serum concentration at maintenance dose (Tate et al., 2006). However, a more recent study of 

the SCN1A polymorphism and CBZ dosing by Austrian researchers, who similarly used 

maintenance dose rather than maximum dose in their investigation, found no significant 

difference in mean CBZ dosing between the rs3812718 genotype groups (Zimprich et al., 

2008).  

 

4.1.9. Growing evidence for an influential role of the SCN1A gene 

Since the first SCN1A findings there have been a number of interesting functional studies 

concerning this polymorphism, primarily exploring its consequences on NaV channel activity 

and on response to AEDs (Heinzen et al., 2007, Thompson et al., 2011). Most recently an 

investigation comparing the biophysical properties of NaV channels expressing 5A and 5N was 

performed. The study reported enhanced tonic block and use-dependent block of the 5N 

version of the NaV channel by PHT and LTG, indicating increased sensitivity of channels 

expressing the 5N exon (Thompson et al., 2011). No differences were shown with CBZ 

(Thompson et al., 2011).  

This recent study suggests that the dosing requirement of some AEDs may be altered by 

the SCN1A polymorphism, due to altered channel function, and suggests different 

pharmacological effects of the SCN1A rs3812718 variant dependent on AED. This finding 

may not only help to determine the true drug dose effect of this polymorphism but may explain 

the inconsistent findings surrounding this polymorphism to date. The results additionally 

appear to challenge the original conclusions made by Tate et al (Tate et al., 2005), suggesting 

that there is no effect of rs3812718 genotype on CBZ action (Thompson et al., 2011). This is 

the first direct evidence that variation in PHT dose requirement originally observed by Tate 

and colleagues (Tate et al., 2005) arises in part due to differences in how AEDs interact with 

the alternatively spliced NaV1.1 channel, providing a mechanistic explanation for the 

association between this polymorphism and AED dosage. However, this data questions 

previous experimental evidence that suggests a common binding site of AEDs on the S6 helix 

of domain IV of the NaV channel (Thompson et al., 2011), as implicates exon 5 (encoding the 

S3/S4 helices of domain 1) as the site of drug interaction. 
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Figure 4.4 Alternative splicing of exon 5 and disruption of 5’ splice donor site 

Altered splicing of the SCN1A gene caused by the rs3812718 variant and how this can produce 

NaV1.1 channels with different biophysical properties. This proposed mechanism may explain 

why patients might require different AED doses depending on their genotype. This figure has 

been redrawn from Loscher et al 2009. 
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The differences in drug block observed in this study were accordingly proposed to result 

from NaV1.1 5N/5A isoform-specific activation and/or inactivation gating (Thompson et al., 

2011). 5N isoforms exhibited greater tonic and use-dependent inhibition by PHT and LTG, 

suggesting that binding sites for these drugs may be altered, and that the pharmacologic 

differences may arise from slower inactivation processes (Thompson et al., 2011).  

  

4.1.10. Summary and research aims 

The possibility of adjusting titration schedule based on genotype could lead to more rapid 

achievement of AED efficacy with adequate tolerability. Although the SCN1A genotype does 

not appear to have a striking influence on maximum PHT, LTG or CBZ doses, initial research 

results for this SNP suggest the potential for identifying patients who can tolerate higher 

therapeutic doses of these drugs. PGx data remains both limited and inconsistent for this drug 

target polymorphism. The growing interest in this gene, in conjunction with the functional 

evidence that has recently emerged, is however encouraging.   

The primary aim of the following study was to examine the pharmacological 

consequence of the rs3812718 SNP by further investigating the association between 

rs3812718 SNP genotype and AED dose. A candidate SNP association study was performed 

to determine the effect of the rs3812718 polymorphism on both maximum and maintenance 

dose data of numerous AEDs, with a sub-group interaction analysis for individual drugs done 

in an attempt to validate the original genetic association with maximal dose of CBZ as reported 

by Tate et al 2005. In addition to the original investigation this present study involved 

maintenance dose data and several AEDs regardless of mechanism. 

 

4.2. Methods 

4.2.1. Patient cohort  

The study included patients from the SANAD cohort (section 2.2.2), assuming they; 

i) were treated with AED monotherapy, ii) had information available for AED treatment 

history (i.e. AED exposure and corresponding dosage data), and iii) had an adequate amount 

of DNA sample available for SNP genotyping. Individuals who had received treatment with 

more than one drug during the study period (i.e. those for whom drugs were substituted 

because of inadequate seizure control and/or AEs) contributed more than once to the analysis. 

 

4.2.2. Outcome and phenotype definitions for patient selection 

The SCN1A rs3812718 G>A SNP was investigated for association with two outcomes, 

maximum dose and, where available, maintenance dose. This data was collected for each of 
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the drugs that individuals had been exposed to. Definitions used in this analysis were; i) seizure 

freedom, defined as at least 12 months of seizure freedom on an unchanged AED, ii) maximum 

dose, defined as the highest dose to which a patient had been exposed during treatment, and 

iii) maintenance dose, defined as the final AED dose that led to at least 12 months seizure 

freedom during monotherapy treatment. Additional data included in the analysis were patient 

age at recruitment, gender, and epilepsy type. Epilepsy type was broadly classified into three 

groups, IGE, LRE and UNC according to the clinical databases from which data was derived. 

 

4.2.3. Data inclusion and extraction 

Maximum dose data reflects the upper limit of drug tolerability and could be used to 

inform individual titration rate. In contrast, maintenance dose data is directly associated with 

treatment response and so is a better indication of treatment success at a particular dose (Tate 

et al., 2006). Data on maximum dose (mg/day) and, where available maintenance dose 

(mg/day), was extracted for each AED to which an individual had been exposed during follow-

up. Maintenance doses were unavailable or disregarded for patients in whom there was no 

remission from seizures or who underwent dosage adjustment; without a single 12 month 

period without seizure freedom, or had other AEDs added, during the remission period. These 

patients were included in the maximum dose analysis only.  

Many of the commonly used AEDs have multiple, overlapping mechanisms of actions 

and most possess at least some NaV channel blocking activity. All AEDs were therefore 

included in the analysis, regardless of drug class or proposed mechanism of action. The 

majority of patients had been exposed to two or more AEDs during the course of follow up, 

usually due to AED switching because of AEs and/or lack of efficacy. Most patients therefore 

contributed more than one maximum dose to the analysis. In total, the patient population was 

exposed to nine different AEDs, those with known NaV channel blocking activity being CBZ, 

LTG, OXC, PHT, VPA and those with another proposed primary mechanism of action being 

GBP, TPM, CLB and LEV (See Tables 4.4 and 4.6 for summary of the drugs included in the 

study). Data for CLB and PHT were excluded from the analysis of maximum dose, due to low 

numbers of patients taking these drugs (n<20). 

 

4.2.4. Genotyping 

The rs3812718 genotype for all 817 patients who met the initial inclusion criteria was 

determined using the Sequenom MassARRAY IPLEX platform in accordance with the 

manufacturer’s instructions and as detailed in chapter 2. The Sequenom platform is designed 

for the analysis of multiple SNPs using a multiplex approach and would not ordinarily be 

employed in a single candidate SNP study. Single SNP studies would typically use TaqMan 
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allelic discrimination assays (Chapter 7) or other such systems. However, in this analysis the 

rs3812718 SNP was genotyped alongside a panel of five other SNPs (reported in Chapter 5) 

that were also being typed in the SANAD cohort and, as such, a multiplex approach was 

deemed most efficient. Thus, a 6 SNP plex was generated using the online Sequenom 

MassARRAY assay designer software (Chapter 2). Table 4.3 shows the Sequenom assay 

design output (https://mysequenom.com/Tools/genotyping/default.aspx) for rs38132718 

alone (Gabriel et al., 2009). 

 

 

 

Table 4.3 Primer sequence for Sequenom genotyping 

Primer sequence for the rs3812718 SNP as designed by the Sequenom Assay design software 

SNP ID (rs)  PCR primer 

sequence-forward 

PCR primer 

sequence-reverse 

Extension primer 

sequence 

rs3812718 

ACGTTGGATGACA

AAGAGCCTATCCTT

TAC 

ACGTTGGATGACA

AAGAGCCTATCCT

TTAC 

CCTATCCTTTACT

CTAATCACTT 

SNP = single nucleotide polymorphism, PCR = polymerase chain reaction 

 

 

 

4.2.5. Statistical analysis 

All analyses of association were carried out using SPSS statistical software version 16.0 

(SPSS Inc., Chicago, IL, USA). In total, three statistical analyses were performed; a univariate 

analysis to identify any non-genetic confounders that may influence the genetic association 

analysis, a regression analysis for the identification of genetic sub-groups that differ in 

maximum or maintenance dosage requirement, and a validation analysis to attempt to replicate 

the findings of the original study (Tate, Depondt et al. 2005). An additive mode of inheritance 

was assumed for all genetic analyses, in line with previous reports of this polymorphism (Tate 

et al., 2005, Tate et al., 2006). 

 

4.2.6. Data preparation 

Since individual doses for different AEDs are not equivalent, it was necessary to 

normalise the dose data prior to analysis. For this purpose, the defined daily dose (DDD) was 

referred to, which is the average maintenance daily dose in adults as defined by the World 

Health Organisation (WHO) (http://www.whocc.no/atcddd/, accessed September 22, 2010) 

https://mysequenom.com/Tools/genotyping/default.aspx
http://www.whocc.no/
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(Table 4.4). Normalised doses were expressed as prescribed daily dose (PDD)/defined daily 

dose (DDD) ratios. All dose ratios were then transformed using the natural log function to 

achieve a normal distribution and this final log-transformed ratio was used for all statistical 

analysis. Prior to the genetic association analyses, the rs3812718 SNP was tested for deviation 

from Hardy Weinberg equilibrium (HWE) using Haploview software version 4.1 (Barrett et 

al., 2005), with a p-value of <0.001 indicating deviation.  

 

 

 

Table 4.4 Defined and prescribed daily doses  

The World Health Organisation (WHO) defined daily dose (DDD) and the range of maximum 

and maintenance doses (prescribed daily doses; PDD) for each drug.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AED = antiepileptic drug, WHO = World Health Organisation,  DDD = defined daily dose, 

PDD= prescribed daily dose  

 

 

 

4.2.7. Univariate analysis of association with non-genetic factors 

To evaluate the individual effect of the SNP, univariate tests of association were 

conducted with the non-genetic factors alone. Age, gender and epilepsy type were tested for 

association with the two dose variables (maximum and maintenance) in turn. Univariate linear 

regression, the independent samples t-test and ANOVA were used for each of the factors 

respectively. Non-genetic factors found to be significant (P<0.05) were adjusted for in the 

association analysis with SCN1A SNP genotype. 

AED WHO 

DDD 

(mg) 

Cohort Maximum 

PDD range (mg/day) 

Cohort Maintenance PDD 

range (mg/day) 

Carbamazepine 1000 200-2800 100-1400 

Gabapentin 1800 600-4800 300-3600 

Lamotrigine 300 25-675 50-675 

Oxcarbazepine 1000 150-3000 450-1500 

Topiramate 300 25-800 37.5-400 

Valproate 1500 100-3000 200-1500 

Levetiracetam 1500 100-3000 - 
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4.2.8. Regression analyses for association with rs3812718 

 The aim of the regression analysis was to investigate whether rs3812718 genotype 

associated with AED dose requirement. For each dose variable (maximum and maintenance), 

two regression models were built and compared using the LRT. The first model, the ‘baseline 

(or non-genetic) model’ included demographic and clinical factors found to be significant in 

the univariate analysis. Dose data for all drugs were included in the regression model as 

covariates. The second model, the ‘genetic model’, was the same as the first but also included 

a covariate representing the SNP.  

 The nature of the SANAD cohort data used in this study meant that some patients 

contributed more than one observation to the analysis of maximum dose. Mixed-effect models 

include additional random-effect terms and are often appropriate for representing clustered, 

dependent data that are either; collected hierarchically, when observations are taken on related 

individuals (such as siblings), or when data are gathered over time on the same individuals. 

For the maximum dose variable, linear mixed models (SPSS-Generalised Linear Model 

function) were thus fitted to capture the hierarchical structure of the data (Everitt and Howell, 

2005) (http://www.wiley.com/legacy/wileychi/eosbs/pdfs/bsa251.pdf).  

 An additional regression analysis was performed to test for possible drug specific genetic 

influence or drug-gene-interaction. If the rs3812718 genotype was found to be significantly 

associated with maintenance and/or maximum dose from the linear regression analysis 

described above, another regression model was fitted that, in addition to SNP genotype and 

non-genetic factors, included interaction terms for each drug as additional covariates. This 

third model was termed the interaction model and was compared to the genetic model, with 

the LRT again employed for testing association and a chi-square distribution p-value of <0.05 

again used to indicate a statistically significant difference. 

 

4.3. Results 

The rs3812718 polymorphism did not deviate from HWE (P>0.001). Of the 817 

individuals for whom DNA was available, 637 had sufficient clinical data to be considered for 

genotyping (28 individuals had no follow up data whatsoever, 138 took two or more drugs in 

combination throughout treatment, 5 had missing dose data, and 9 had some ambiguity in 

either drug administration or dosing). A further 51 patients failed genotyping for the 

rs3812718 polymorphism. The remaining 586 individuals were treated with AED 

monotherapy and had dose and genotype data for inclusion in the data analysis. Patient 

characteristics are summarised in Table 4.5. Frequencies for the SCN1A rs3812718 G>A 

polymorphism in these 586 individuals were 28%, 54% and 18% for the GG, GA and AA 

http://www.wiley.com/legacy/wileychi/eosbs/pdfs/bsa251.pdf
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genotypes, respectively. Figures 4.5A and 4.5B show the distribution of standardised 

maintenance and maximum dose ratios.  

 

 

 

Table 4.5 Characteristics of the patient population  

  Cohort n=586 

Age (years) Minimum 5 

 Mean (± SEM) 39.26 (± 0.76) 

 Maximum 84 

Gender (n) Male 322 

 Female 264 

Epilepsy type (n) IGE 95 

 LRE 399 

 UNC 92 

Maximum dose  

(PDD/DDD ratio)  

Minimum 0.1 

Mean 0.87 

Maximum 3 

Maintenance dose 

(PDD/DDD ratio)  

Minimum 0.1 

Mean 0.64 

Maximum 2.25 

IGE = idiopathic generalised epilepsy, LRE = localisation-related epilepsy, UNC = 

unclassified epilepsy, PDD = prescribed daily dose, DDD= defined daily dose, SEM = 

standard error of the mean 
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4.3.1. Results of the maintenance dose analysis 

Maintenance dose data was available for 301 of the 586 patients (Table 4.6 and Figure 

4.5A). Tables 4.7 and 4.8 show results of the univariate analysis for non-genetic investigation 

and regression analyses. Maintenance dose ratio showed no statistically significant association 

with any of the non-genetic variables (P>0.05). Similarly no significant association was 

identified with rs3812718 genotype in the regression analysis (P=0.324, Figure 4.6). 

Distribution of dose ratios for all six AEDs included in the analysis are displayed in Figure 

4.7. 

 

 

 

 

Table 4.6 Dose data for each drug included in the study 

The median and range of maximum and maintenance doses for each drug included in the 

analysis, plus the total number of maximum and maintenance doses for each drug. 

 

 

 

 

 

 

 

Maximum 

Dose data 

(mg) 

Maintenance 

dose data (mg) 

Total 

maintenance 

doses (n) 

Total 

maximum 

doses (n) 

Carbamazepine 

Median 

Range 

800 

2600 

 

600 

1300 

53 168 

Gabapentin 

Median 

range 

 

1800 

4200 

 

1200 

3300 

30 96 

Lamotrigine 

Median 

Range 

 

200 

650 

150 

625 87 211 

Oxcarbazepine 

Median 

Range 

 

1200 

150 

 

900 

1050 21 57 

Topiramate 

Median 

Range 

 

150 

775 

 

150 

363 

66 143 

Valproate 

Median 

Range 

 

1000 

2900 

 

1000 

1300 44 97 

Levetiracetam 

Median 

Range 

1500 

2900 

- 

- - 23 
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Table 4.7 Univariate analysis of non-genetic factors and maintenance dose ratio 

 Analysis F-statistic P-value 

Age Continuous 0.77 0.73 

Gender Categorical (male / female) 1.02 0.31 

Epilepsy 

type 
Categorical (IGE, LRE, UNC) 1.02 0.36 

 

IGE = idiopathic generalised epilepsy, LRE = localisation-related epilepsy, UNC = 

unclassified epilepsy 

 

 

 

 

 

 

 

Table 4.8. Contribution of clinical and genetic variables to maintenance dose  

Covariate Parameter t-statistic Parameter  

P-value 

Non-genetic model 

Individual drugs only 

CBZ 

OXC 

TPM 

VPA 

GBP 

LTG 

0.03 

0.40 

-0.11 

0.02 

0.25 

0a 

0.73 

0.00 

0.12 

0.76 

0.01 

. 

Genetic model 

Individual drugs plus SNP 

CBZ 

OXC 

TPM 

VPA 

GBP 

LTG 

rs3823728 

-0.25 

-0.22 

 0.17 

-0.35 

-0.21 

 0.00 

-0.04 

0.03 

0.41 

-0.10 

0.03 

0.25 

0a 

-0.04 

LRT P-value   0.32 

LRT = Likelihood Ratio Test, 0a = parameter set to 0 by SPSS as redundant in model 
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4.3.2. Results of the maximum dose analyses 

Multiple maximum dose data was available from some individuals and so in total 795 

different maximum doses for n=586 individuals were included for analysis (168 CBZ, 96 GBP, 

211 LTG, 23 LEV, 57 OXC, 143 TPM, 97 VPA) (Table 4.6). Univariate analysis for testing 

association of maximum dose ratio with non-genetic factors is shown in Table 4.9. Epilepsy 

type was found to be associated with maximum dose ratio (P=0.044) (Table 4.9). A higher 

average maximum dose PDD/DDD ratio was evident in individuals with LRE when compared 

to those with UNC. No associations were found with either age or gender. 

The results of the regression analysis for standardised maximum dose for each drug are 

presented in Table 4.10. When the non-genetic model and model including epilepsy type and 

SNP were compared using the LRT, a significant association was found with maximum dose 

ratio (P= 0.022; Table 4.10, Figure 4.8). Figure 4.9 shows the distribution of maximum dose 

ratios for all six AEDs included in the analysis. 

 

 

 

Table 4.9 Non-genetic association with maximum dose ratio 

 Analysis F-Statistic P-value 

Age Continuous 0.990 0.54 

Gender Categorical (male / female) 1.802 0.11 

Epilepsy type Categorical (IGE, LRE, UNC) 3.141 0.04 

IGE = idiopathic generalised epilepsy, LRE = localisation-related epilepsy, UNC = 

unclassified epilepsy 
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Table 4.10 Contribution of clinical and genetic variables to maximum dose ratio 

Covariate Parameter Regression  

coefficient 

Parameter  

P-value 

Individual drugs and clinical 

variables 

IGE 

LRE 

UNC 

CBZ 

OXC 

TPM 

VPA 

GBP 

LEV 

LTG 

0.06 

0.03 

0a 

-0.01 

0.14 

-0.09 

-0.03 

0.12 

0.12 

0a 

0.06 

0.25 

. 

0.61 

0.00 

0.00 

0.23 

0.00 

0.02 

. 

Genetic model 

Individual drugs plus clinical 

covariates plus SNP 

IGE 

LRE 

UNC 

CBZ 

OXC 

TPM 

VPA 

GBP 

LEV 

LTG 

rs3823728 

0.06 

0.03 

0a 

-0.01 

0.14 

-0.09 

-0.04 

0.12 

0.12 

0a 

0.02 

0.06 

0.25 

. 

0.63 

0.00 

0.00 

0.21 

0.00 

0.02 

. 

0.17 

LRT P-value   0.02 

IGE = idiopathic generalised epilepsy, LRE = localisation-related epilepsy, UNC = 

unclassified epilepsy, LRT = Likelihood Ratio Test, 0a = parameter set to 0 by SPSS as 

redundant in model 

 

 

  

 

4.3.3. Results of drug interaction analysis for maximum dose ratio 

Since a statistically significant association was identified with maximum dose ratio in 

the initial genetic analysis, this suggested a potential contribution of the SCN1A SNP to AED 

maximum dose requirement and an interaction analysis was subsequently performed to 

investigate whether AED influenced the effect of SNP genotype. Table 4.11 presents the 

results of LRT for the genetic model comparisons. This regression analysis compared the 

genetic regression model described above with a model additionally containing interaction 

terms for each drug. This also showed a statistically significant association with maximum 

AED dose ratio (P= 6.46 x10-4; Table 4.11). Box plots for each AED dose ratio association 

with rs3812718 genotype are presented in Figure 4.11a and b.  Table 4.12 presents the mean 

maximum dose ratio for each genotype group also stratified by individual AED. 
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Table 4.11 Regression analysis of interaction effects with maximum dose ratio  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IGE = idiopathic generalised epilepsy, LRE = localisation-related epilepsy, UNC = 

unclassified epilepsy, LRT = Likelihood Ratio Test, 0a = parameter set to 0 by SPSS as 

redundant in model 

 

 

 

 

 

  

 

 

 

Covariate Parameter Regression  

coefficient 

Parameter  

P-value 

Individual drugs and 

clinical variables 

IGE 

LRE 

UNC 

CBZ 

OXC 

TPM 

VPA 

GBP 

LEV 

LTG 

rs3823728 

0.06 

0.03 

0a 

-0.01 

0.14 

-0.09 

-0.04 

0.12 

0.12 

0a 

0.02 

0.06 

0.25 

. 

0.63 

0.00 

0.00 

0.21 

0.00 

0.02 

. 

0.17 

Genetic model 

Individual drugs plus 

clinical covariates 

plus SNP 

IGE 

LRE 

UNC 

CBZ 

OXC 

TPM 

VPA 

GBP 

LEV 

LTG 

rs3823728 

CBZ * rs3823728 

OXC * rs3823728 

TPM * rs3823728 

VPA * rs3823728 

GBP * rs3823728 

LEV * rs3823728 

LTG * rs3823728 

0.06 

0.03 

0a 

-0.02 

0.14 

-0.08 

-0.06 

0.15 

0.13 

0a 

0.02 

0.01 

0.00 

-0.01 

0.02 

-0.04 

-0.01 

0a 

0.06 

0.23 

. 

0.53 

0.02 

0.05 

0.24 

0.00 

0.12 

. 

0.47 

0.69 

0.94 

0.69 

0.61 

0.37 

0.86 

. 

LRT P-value   0.0006 
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Figure 4.11a  Box plots for distribution of maximum dose ratios with genotype 

Distribution of maximum dose ratios of AEDs lamotrigine, carbamazepine, oxcarbazaepine 

and topiramate, based on SCN1A rs3812718 genotype groups. Boxes represent 25th and 75th 

percentile, solid lines represent the median dose ratio and whiskers represent minimum and 

maximum dose ratio in each genotype group. 
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Figure 4.11b Box plots for distribution of maximum dose ratios with genotype 

Distribution of maximum dose ratios of AEDs gabapentin, valproate, and levetiracetam, based 

on SCN1A rs3812718 genotype groups. Boxes represent 25th and 75th percentile, solid lines 

represent the median dose ratio and whiskers represent minimum and maximum dose ratio in 

each genotype group. 
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Table 4.12 Mean maximum dose ratio for each genotype group stratified by 

individual antiepileptic drug 

 

 

 

 

4.4. Discussion 

A previous report has implicated the SCN1A rs3812718 G>A variant in influencing 

the maximal dose of two established Na+ channel blocking AEDs (PHT, CBZ) administered 

to individuals with epilepsy. Although not all attempts to validate the potential significance of 

this SNP in several independent PGx investigations were successful in identifying a similar 

association with AED dosing, the evidence produced by a number of recent functional studies 

is promising.  

Despite failure to replicate the original association with CBZ, the present investigation 

provides support for the role of rs3812718 in maximum AED dosing. The effect of this 

polymorphism on maximum and maintenance doses of AEDs was examined, irrespective of 

their primary drug target, using a normalised drug dose (PDD/DDD ratios). A significant 

association between AED maximum dose ratio and the rs3812718 polymorphism was 

identified in this investigation, suggesting the variant genotype of this SNP may influence 

AED maximum dose in newly-diagnosed epilepsy. Individuals with the rs3812718 variant AA 

genotype showed a significantly higher PDD/DDD ratio than those with the rs3812718 GG 

genotype (Table 4.10, Figure 4.8). In contrast no significant genotype effect on dosing was 

observed for maintenance dose (Table 4.7, figure 4.6). 

 rs3812718 Genotype 

 

Antiepileptic drug 

GG GA AA 

Lamotrigine 0.88 0.81 1.02 

Carbamazepine 0.78 0.81 0.93 

Oxcarbazepine 1.11 1.13 1.19 

Topiramate 0.70 0.73 0.67 

Gabapentin 1.11 1.12 0.94 

Valproate 0.80 0.75 0.93 

Levetiracetam 0.95 1.30 1.03 
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4.4.1. SCN1A genotype affects maximal antiepileptic drug dosage 

The association between SNP genotype and maximum AED dose identified in this study 

appears to confirm the initial hypothesis that polymorphisms in NaV channel genes can 

influence the dosing of AEDs.  The original study by Tate et al 2005 reported that for both 

PHT and CBZ, average maximum dose differed by genotype in the order AA>AG>GG (Tate 

et al., 2005). The rs3812718 polymorphism was also shown to affect the proportion of 

alternative transcripts in brain tissue from individuals with a history of refractory epilepsy, 

which could in turn affect channel sensitivity to sodium blocking activity of AEDs (Tate et al., 

2005, Tate et al., 2006). The authors thus proposed that common polymorphisms in SCN1A 

alter the sensitivity of the NaV channel to Na+ channel blocking drugs (Tate et al., 2005, Tate 

et al., 2006). The present investigation included dose data from several different classes of 

AEDs including the previously associated AED CBZ, and so was not confined to those known 

to exhibit Na+ channel blocking activity, though association was still evident.  

 

4.4.2. Non-specific effect of the SCN1A variant on maximum dose 

The mechanism of action of most AEDs is not completely understood (Kwan et al., 

2001). The majority of commonly utilised AEDs are generally classed into three main types 

based on their individual molecular site of action, mainly; i) those modulating voltage-

dependent ion channels (Na+, Ca2+, K+), ii) those enhancing GABA mediated inhibitory 

neurotransmission, and iii) those involved in the attenuation of excitatory (particularly 

glutamate-mediated) transmission (Meldrum, 1996, Kwan et al., 2001). Out of the seven AEDs 

analysed CBZ, LTG and OXC are known to principally modulate NaV channels (Kwan et al., 

2001, Schachter, 2007). On the other hand VPA and TPM have been proposed to display a 

number of mechanistic pathways. In addition to NaV blocking properties they are also 

associated with Ca2+ blockade and facilitation of the effects of the inhibitory neurotransmitter 

GABA (Kwan et al., 2001, Schachter, 2007). GBP appears to bind to the α2δ subunit of 

neuronal voltage-gated calcium channels, but has been suggested to have some NaV blocking 

activity. LEV is associated multiple mechanisms. In addition to the novel mechanism of SV2A 

protein binding, LEV has actions on neuronal GABA- and glycine-gated currents and K+ 

currents, though it’s exact mechanism of action is unknown. The hypothesis of the present 

investigation was that the functional SCN1A variant which has previously been demonstrated 

to affect the pharmacological and/or structural properties of the NaV channel (Thompson et 

al., 2011), and alter maximum dose for PHT and CBZ could also alter therapeutic dosage 

requirements of some and/or all these additional AEDs (Tate et al., 2005, Tate et al., 2006).  
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4.4.3. Evidence for drug-gene interaction and differential drug effect 

 A recent study concerning the NaV channel and SCN1A rs3812718 variant demonstrated 

an alteration in NaV channel sensitivity to LTG and PHT but not CBZ, suggesting a differential 

effect of the rs3812718 splicing variant on the binding properties of the NaV channel 

(Thompson et al., 2011). The variant NaV1.1-5N channel was shown to exhibit greater tonic 

and use-dependent inhibition by PHT and LTG than the NaV1.1-5A channel, suggesting that 

binding sites for these AEDs could slow down inactivation processes, which result in 

pharmacologic differences between AEDs (Thompson et al., 2011). At therapeutically relevant 

concentrations, the NaV1.1-5N channel was more sensitive to PHT and LTG. The authors 

proposed an alteration in LTG and PHT dose requirement due to this increase in channel 

sensitivity (Thompson et al., 2011).   

The interaction analysis performed for maximum dose in the present investigation 

identified a stronger genetic effect when drug type was taken into account. This appears to 

confirm the original SNP association reported by Tate et al 2005 and also implies that this 

association may additionally be influenced by the AED administered (Thompson et al., 2011). 

Due to the low numbers of individuals that were prescribed each of the individual AEDs in 

the present study, however, this finding could not be fully stratified by drug type. And so, 

although the present findings present a strong statistical association (P<0.01) between 

genotype and dose when drug interaction was considered, one cannot accurately distinguish 

which AEDs were most influenced by rs3812718 genotype. The present results can however 

be taken to signify that a drug specific genotype effect may exist. Further investigation is 

necessary for more conclusive evidence for drug-SNP interaction in AED maximum dosing.   

Finally, the original association reported with CBZ maximum dose and rs3812718 was 

not validated. No association between CBZ maximum dose and genotype was evident from 

the interaction regression analysis or when CBZ was tested alone (Interaction regression P = 

0.598; ANOVA P = 0.207; Figure 4.11a and b; Table 4.12). This implies lack of influence of 

rs3812718 on CBZ maximum dose. 

 

4.4.4. rs3812718 variant genotype does not influence maintenance dose  

Maintenance dose can be used as a measure of the dose at which optimum response is 

observed (Patsalos and Bourgeois, 2010, Talati et al., 2011), and presumed to reflect dose at 

which seizures were controlled in this study. Maximum dose is, in contrast, most likely a 

measure of an individual’s tolerability to an AED (Dlugos et al., 2006). Maintenance dose may 

therefore be a more informative measure of seizure control than maximum dose and a more 

accurate depicter of clinical effect (Tate et al., 2006). This was acknowledged by the authors 

of the original report (Tate et al., 2006), who in a subsequent study attempted to correlate 
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maintenance dose of PHT with rs3812718 genotype and presented a modest SNP-dose 

association. The present analysis similarly examined maintenance dose for several AEDs, 

though failed to find an association between AED maintenance dose and the rs3812718 SNP.   

Reasons for the lack of association with maintenance dose in the present analysis 

includes; the limited availability of maintenance dose data. In addition, there were 

considerably fewer individuals with maintenance dose data than maximum dose data in the 

present study (n=301 vs. n=795, respectively). This was not surprising given the stringent 

definition of maintenance dose, the fact that only 60-70% of all newly-diagnosed patients can 

expect to achieve a 12 month remission, and that multiple maximum doses were available for 

some patients.           

 This methodology for dose analysis was for the most part beneficial, as it allowed the 

combination of data from different AEDs. Dose standardisation however can dilute drug 

specific genotype associations, i.e. AEDs that primarily block the NaV channel as presumed in 

the original hypotheses (Tate et al., 2005, Tate et al., 2006). Although stratification by drug 

adjusts for a drug specific dose-SNP effect, an interaction analysis was only performed if an 

association was identified in the initial linear regression analysis of SNP vs. dose and this was 

not the case with maintenance dose.  

 The original PGx study concerning rs3812718 in AED dosing was the first publication 

presenting the potential effect of a primary AED target polymorphism on the clinical use of 

anticonvulsant drugs (Tate et al., 2005) and was strengthened by functional evidence from 

brain tissue expression data (Tate et al., 2005, Heinzen et al., 2007, Thompson et al., 2011). 

Other studies have investigated the rs3812718 SNP, with one showing association with LTG 

dosing in Caucasians, and also a significantly higher frequency in epilepsy patients compared 

to controls, implying that this polymorphism may additionally contribute to the pathogenesis 

of epilepsy (Krikova et al., 2009). The AA genotype has also been shown to be significantly 

more frequent in Japanese patients resistant to CBZ treatment (Waldegger et al., 1999). 

  In another study, no relationship was found in 377 Chinese patients between NaV 

blocking AEDs and rs3812718 genotype (Kwan et al., 2008). More recently a study by Mann 

et al 2011 investigating CBZ and OXC in drug-resistant and drug-responsive subjects from 

Italy similarly concluded no major role of the SCN1A rs3812718 polymorphism as a 

determinant of AED response (Manna et al., 2011). The failure to identify an association with 

CBZ in the present analysis could be attributed to the possibility that the effect size of the 

original association may have been overestimated. If the original relationship identified 

between CBZ and PHT and the variant allele of rs3812718 was only modest in size, it may 

not have been detected in the present patient population, which was smaller than that used in 

the original study (CBZ treated patients n=168 and n=425 respectively).  
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Despite the lack of consistency in PGx data surrounding the SCN1A rs3812718 

variant, and failure to replicate the original association with CBZ, the present investigation 

provides support for the role of rs3812718 in maximum AED dosing. However, it is likely that 

only a small proportion of the variation in AED dose can be explained by the variant. Because 

of the complexity of drug response phenotypes it is expected that additional genetic factors 

are also involved in the variability of AED dosing, and this could additionally explain the lack 

of consistency in previous studies. Most previous investigations solely involved NaV channel 

blocking drugs and patients with unknown (or at least unstated) causes of epilepsy. Different 

cohorts are also likely contain different ratios of genetic or non-genetic epilepsy syndromes, 

and so the influence of rs3812718 on AED dosage may be obscured or outweighed in some 

patient populations. Discrepancies between these studies may thus mainly result from varying; 

i) cohort size, ii) heterogeneity of epilepsy syndromes in population samples, or iii) differences 

in ethnic backgrounds (so far Caucasian, Chinese and Japanese patient cohorts have been 

investigated). Finally some studies have shown that in experimental epilepsy models there is 

a significant change in expression of NaV channels in response to seizures, and so seizure 

frequency, and/or epilepsy severity may also be a contributing factor to changes in response 

to AEDs (Gastaldi et al., 1997, Aronica et al., 2001). 

 The report by Tate et al 2006 identified an association between rs3812718 with serum 

concentrations of PHT at maintenance dose, with no associations observed for maximum dose 

(Tate et al., 2005, Tate et al., 2006). This additional drug concentration data eliminated PK 

factors as a source of variation, revealing a relationship with maintenance dose. This could 

explain our findings, in that the lack of concentration data may be masking any genotype effect 

on maintenance dose. Serum AED levels, if available, may be more successful for identifying 

associations between the SCN1A variant and drug doses or treatment outcomes in future 

analyses.  

 Limitations have also been recognised in the original investigation that potentially 

confound the dependability of the observations reported. The main issue being the sole use of 

maximum dose data by the authors. Maximum tolerated dose could be a useful indicator of 

individual dose ceiling, however, in the treatment of epilepsy moderate doses of AEDs are 

usually sufficient for seizure control and patients may never reach their individual limit of 

tolerability. Maintenance dose data can serve as a more accurate and informative measure of 

clinical response. Another potential confounding factor in the original report was the inclusion 

of both monotherapy and polytherapy patients which could affect the reliability of any 

associations observed. AEDs are highly susceptible to drug-drug interactions (Patsalos and 

Perucca, 2003, a, Perucca, 2006), therefore are associated with altered serum drug 

concentrations, often necessitating dosage adjustment, and can also influence AED tolerability 

(Johannessen et al., 2003, Anderson, 2008). Age and concomitant medication are additional 
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factors that can greatly impact drug PK thereby altering the amount of AEDs required by 

individual patients. The original authors likewise did not provide basic data such as age at 

onset of treatment, disease aetiology and syndrome type (discussed above).  Considering 

these limitations, one can argue that, the rs3812718-AED dose association is unproven. The 

results presented in this study in combination with the recent positive associations and latest 

functional evidence may however still provide a link between patient genotype for drug target 

variants and AED response.  

In summary, our data suggests that the SCN1A rs3812718 G>A polymorphism may 

influence maximum dose of AEDs. However, the modest effect size would question its clinical 

utility. Further analysis of the effect of this polymorphism on individual NaV blocking AEDs 

may be useful. The validation of the original hypothesis of Tate et al 2005, 2006, by identifying 

a genotype-dose association is promising, and indicates the relevance of drug target 

polymorphisms in individual AED treatment. Nevertheless, the necessity for consistent results 

to confirm the true effect of rs3812718 on AED dosing remains. Replication of the current 

results of SCN1A genotype-drug and dose associations using a broad selection of AEDs is 

required. Likewise future investigations utilising dosage, and serum concentration data, ideally 

in a larger cohort of patients, with homogeneous epilepsy phenotypes could prove beneficial 

to the SCN1A rs3812718 polymorphism story. 
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5.1. Introduction 

The majority of PGx research concerning AED response has, until recently, focused 

on a relatively small number of SNPs in a few selected candidate PK and PD genes (Depondt, 

2006b, Loscher et al., 2009), an overview of which has been given in an earlier chapter 

(Chapter 1). However, many PGx investigations, including those in the epilepsy field, now 

routinely include multiple genes implicated in both disease pathogenesis and the PK and PD 

pathways of drugs (Grant and Hakonarson, 2007, Petrovski et al., 2009, Motsinger-Reif et al., 

2010, Cavalleri et al., 2011). This has led to an interest in relevant analytical methods for 

modeling large volumes of data that take into account the complex, multifaceted network of 

genes involved in such drug response phenotypes. Accurate classification and prediction 

algorithms from systems biology methodologies are thought to help meet this data analysis 

challenge (Baksh and Kelly, 2007). These are not only designed to allow for the multigenic-

multifaceted nature of drug response data and gene-network interactions, but are also 

considered better for the statistical challenge of detecting multiple, small associations in high-

dimensional data and thus may ensure more efficient data analysis (Hirschhorn et al., 2002, 

Ritchie and Motsinger, 2005, Baksh and Kelly, 2007, Pander et al., 2010, Rodin et al., 2011, 

Vanneschi et al., 2011).  

 

5.1.1. Systems biology approach to genomic analysis 

A systems biology approach to analysis of pharmacogenomics data typically involves three-

steps; i) selection of variables (SNPs), ranked in order of effect on drug response phenotype, 

ii) a modelling step involving the generation of a predictive model using SNPs and other 

relevant factors, and iii) evaluation of generated models using conventional statistical analysis 

methods (Koster et al., 2009).  

 

5.1.2. Machine learning methods in genomic prediction 

  ML is a computer-based data mining method derived from the field of artificial 

intelligence and concerned with the design and development of algorithms to allow machines 

to learn, make predictions, or extract knowledge from data. It represents a powerful approach 

to identifying non-linear/complex patterns in high-dimensional datasets (Hastie et al., 2001, 

McKinney et al., 2006, Zhang and Rajapakse, 2009) and makes intelligent decisions based on 

knowledge from data or to make predictions on new data (Hastie, Tibshirani et al. 2001) 

(Figure 5.1).  
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Figure 5.1 The machine learning approach to data inference 

A schematic representation of the computer based machine-learning approach to data analysis. 

This entails learning or data inference from existing data of known values (training data). 

Algorithms are then generated and used to make predictions for new data of unknown values. 

 

 

 

 

Typical ML methods applied to genomic studies model data using Bayesian networks, 

which allow the inferential exploration of previously undetermined relationships among 

genetic and clinical variables, and describe these relationships once identified (an hypothesis- 

or model-free approach) (Hoppe, 2005, Zhang and Rajapakse, 2009, Rodin et al., 2011). In 

recent decades ML approaches have been successfully applied to computational biology and 

bioinformatics (Hastie et al., 2001, Larranaga et al., 2006, Zhang and Rajapakse, 2009) and 

are now becoming routine in the biological domains of genomics, proteomics, microarrays and 

systems biology (Bhaskar et al., 2006a, Larranaga et al., 2006).  

 ML approaches can be used for the development of prediction models that allow 

integration of the interactions between multiple genetic variables i.e. SNPs in addition to 

clinical variables and disease phenotype and so overcome the main limitation of traditional 

statistical approaches through their ability to model high-dimensional data (Hoppe, 2005, 

Wilke et al., 2005). Additional advantages of ML methods include robustness of parametric 

assumptions, high power and accuracy (useful for extracting information from underpowered 

association studies), ability to model non-linear effects, and the availability of numerous well-

developed algorithms (Moore and Ritchie, 2004, McKinney et al., 2006). ML models for data 
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classification may better identify patterns of genetic variants that associate with phenotypes of 

interest in high-dimensional data (Lee et al., 2008).  

 

5.1.3. Supervised and unsupervised learning methods 

Learning scenarios for ML application can be categorised as either supervised or 

unsupervised (Hastie et al., 2001). In unsupervised learning, there is no outcome measure, and 

the goal is to describe how the data are organised or clustered (objects are often classified by 

a similarity measure that defines how closely related those objects are). The goal of supervised 

learning is to predict the value of an outcome measure based on a number of input measures 

or features (i.e. using prior knowledge from existing data for training). The classifier is then 

used to generalise from new instances (Hastie et al., 2001, Kotsiantis, 2007, Emmert-Streib 

and Dehmer, 2010). Supervised learning algorithms usually produce classifiers in the form of 

a function (Emmert-Streib and Dehmer, 2010) and are more relevant and applicable to the 

mining of genetic data for disease association analysis (McKinney et al., 2006). 

 

5.1.4. Machine learning prediction models or classifiers 

In a typical supervised ML scenario, an outcome measurement (i.e. cardiac arrest/no 

cardiac arrest) is predicted based on a set of features such as diet and clinical measurements. 

There is also a training set of data in which the outcome and feature measurements can be 

observed for a set of seen or known objects (i.e. patients) (Hastie et al., 2001). Using this 

training data, a prediction model (or classifier) is built using a function that enables prediction 

of outcome to be made for new unseen objects (Hastie et al., 2001). Several methods exist for 

assessing ML classification models. Model performance is usually assessed by how well the 

classifier can predict outcomes for independent test datasets based on the rules it has learned 

from the training data (Hastie et al., 2001, Larranaga et al., 2006). Other common methods of 

assessment include cross-validation and bootstrapping. Figure 5.2 shows a schematic 

representation of ML classification models and the main stages involved in model building. A 

more detailed description of the development and assessment of ML models for disease 

classification, including details of several ML approaches commonly applied to genomic data, 

can be found in Chapter 6.  
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Figure 5.2 Building machine learning classification models 
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5.1.5. Machine learning algorithms for genomic classification 

The use of systems biology data analysis methods derived from ML have steadily 

grown in genomics over the last two decades (Hastie et al., 2001, Emmert-Streib and Dehmer, 

2010). ML approaches, known as classification algorithms, are well suited to genomic data 

and are widely employed (McKinney et al., 2006, Kotsiantis, 2007, Rodin et al., 2011). 

Classification algorithms are able to predict (or assign) a class (e.g. case or control) to each 

data point, based on the values of potentially predictive variables (e.g. SNPs) and additionally 

build a model capturing the relationships between the variables (Kotsiantis, 2007, Rodin et al., 

2011). Classification algorithms were first applied to SNP data within bioinformatics for the 

prioritisation of candidate polymorphisms by predicting their likely impact on disease 

susceptibility (Shah and Kusiak, 2004, Rodin et al., 2011, Zhao et al., 2011).  

 There are numerous ML approaches available for both selecting informative features 

and/or combining them into a classifier, ranging from simple linear classifiers to complex 

nonlinear functions (Hastie et al., 2001, Kotsiantis, 2007). Examples of those commonly found 

in multi-locus traits (i.e. diabetes, heart disease, alcoholism and breast cancer) include multi-

factor dimensionality reduction (MDR)(Ritchie and Motsinger, 2005, Vanneschi et al., 2011), 

neural networks (Lucek and Ott, 1997, Motsinger et al., 2006), random forest (RF) (Yoon et 

al., 2003, Bureau et al., 2005), support vector machine (SVM) (Yoon et al., 2003, Yu and 

Shete, 2005) and k-nearest neighbor (kNN), for which complex disease data is only just 

emerging (Szymczak et al., 2009). Examples of the application of these ML approaches can 

also be found for gene discovery in GWAS data from multiple sclerosis and type II diabetes 

(Szymczak et al., 2009, Ban et al., 2010, Goldstein et al., 2010).  

 

5.1.6. Machine learning approaches in pharmacogenetics 

ML approaches have also recently been proposed for modeling SNP data to produce 

PGx SNP classifiers, which may be more effective for predicting treatment outcome in drug 

response data than the standard linear regression data modeling approach (Pander et al, 2010). 

Whilst there is a large amount of literature on the development of ML approaches for the 

analysis of high dimensional data, much of this research is in the context of disease status, 

susceptibility and activity, whereas the application of ML approaches to PGx data is a 

relatively new phenomenon (Simon, 2005, Simon and Wang, 2006, Pander et al., 2010). The 

development of predictive models incorporating the interplay of numerous genetic factors 

(amongst other features) potentially contributing to this multi-genic phenotype presents an 

ideal strategy for confirming which genes and/or gene-gene or gene-environment interactions 

are of most significance, and is thus potentially a critical step on the road to individualised 

prescribing and new drug discovery (Simon and Wang, 2006). 
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 PGx studies utilising ML methods are still emerging (Lee et al., 2008, Pander et al., 

2010). A number of recent examples of the application of ML algorithms to 

pharmacogenomics data from several important disease domains can be found. These include 

predicting treatment response to chemotherapeutics in oncology (Ad et al., 2002, Ritchie and 

Motsinger, 2005, Simon, 2005, McKinney et al., 2006, Simon and Wang, 2006, Wang, 2007, 

Lee et al., 2008), anti-retroviral therapy (Altmann et al., 2007), toxicity to statin therapy 

(Ritchie and Motsinger, 2005) and, more recently, predicting warfarin dose (Cosgun et al., 

2011). 

 

5.1.7. Machine learning methods for detecting epistatic interactions   

As discussed previously, gene-gene interactions or epistasis is a well-known challenge 

in data analysis for complex traits and has been recognised as a problem that needs to be 

addressed in PGx (Ritchie and Motsinger, 2005, Pander et al., 2010). A growing number of 

researchers are now considering the use of data-reduction ML techniques previously used for 

advanced genetic interaction or environmental factor analysis, including the MDR method 

mentioned above (Moore et al., 2004, Moore and Ritchie, 2004, Ritchie and Motsinger, 2005, 

McKinney et al., 2006, Moore et al., 2006). MDR is a ML method specifically designed to 

identify interacting combinations of genetic variants associated with increased risk of 

common, complex, multifactorial human disease (Ritchie et al., 2003, Moore, 2004). 

 

5.1.8. Application of machine learning to epilepsy pharmacogenetics 

The application of ML approaches is one of the latest developments in epilepsy PGx. 

So far there are only three published examples of the development of predictive models for 

treatment response in epilepsy research. These include two investigations utilising the MDR 

data reduction method (Kwan et al., 2008, Jang et al., 2009, Kim et al., 2011b) and a single 

study applying a ML data-mining approach (Petrovski et al., 2009).  

 

5.1.9. kNN machine learning method in epilepsy pharmacogenetics 

 A ML data-mining approach was applied in a recent, proof of principle study 

examining PGx data from patients with epilepsy (Petrovski et al., 2009). The study utilised a 

kNN algorithm to develop a multi-SNP classification model that was proposed to predict 

response to initial AED treatment in Australian patients with newly treated epilepsy, with a 

predictive accuracy of 83.5%. A total of 4041 SNPs from 279 candidate genes were genotyped 

in 115 patients, five of which were ranked as having the most influence on treatment outcome 

(Petrovski et al., 2009). The ML supervised learning kNN algorithm was then used to develop 
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a classification model based on the genotype of these five SNPs (Petrovski et al., 2009). The 

kNN classifier algorithm was designed and implemented using in-house software by the 

original authors (Petrovski et al., 2009). The predictive value of the model was subsequently 

confirmed in two small, independent Australian cohorts. It was reported to have a sensitivity 

of >80% and in each of these replication cohorts, the multigenic model proved to be more 

accurate in predicting drug responsiveness than any of the single SNPs alone (Petrovski et al., 

2009).  

 

5.1.10. Summary and research aims 

 As discussed previously, a substantial proportion of people with epilepsy continue to 

have seizures despite treatment with appropriate AEDs (Kwan and Brodie, 2000a, Duncan et 

al., 2006, Szoeke et al., 2006). It is not currently possible to accurately predict the likelihood 

of seizure control with any given AED treatment. Success or failure in terms of efficacy 

consequently cannot be adjudged until a therapeutic dose is reached, often many weeks or 

months after treatment initiation (Kwan et al., 2010). As such, the identification of biological 

markers that may provide improved prediction of treatment response in an individual patient 

is likely to be of significant clinical value. The Australian multigenic kNN classifier not only 

represents a successful application of a ML approach to epilepsy PGx data but also identified 

biological markers that might prove clinically significant to AED response. However, this 

classifier requires validation in larger cohorts and application across different populations and 

health care systems to adequately assess its reliability prior to consideration for use in clinical 

care.  

 There were two main aims of this study; (i) to assess the broader clinical utility of the 

Australian multigenic kNN model, and (ii) to assess relevance of the five SNPs comprising the 

classifier to treatment response in non-Australian populations. On that basis, the Australian 

classifier was applied to genetic data from two independently collected UK cohorts to assess 

whether it could successfully classify treatment outcome. The relative influence of the five 

SNPs on treatment outcome was also tested both individually and collectively in these patients. 
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5.2. Methods 

5.2.1. Source populations 

Patients from three independent cohorts of newly treated epilepsy were included in 

this analysis, the Australian cohort in which the multigenic kNN model was originally derived 

(Petrovski et al., 2009) and two UK cohorts (Glasgow and SANAD cohorts). The UK cohorts 

are described in detail in the general methods section (section 2.2). Patients were initially 

selected from UK cohorts if they: (i) were newly treated for epilepsy, (ii) were treated with 

AED monotherapy during their first year of treatment, (iii) had sufficient clinical information 

available, defined as at least one year of follow-up with detailed drug, dose, and outcome 

information, (iv) were of self-reported European ancestry, and (v) had provided a DNA sample 

for genotyping. 

 

5.2.2. Data extraction 

Clinical information was extracted from patient databases and or clinical notes for 

each of the UK cohorts and included age at recruitment, gender, epilepsy type, seizure type(s) 

and also drug treatment history for first 12 months of treatment (including AEs and reasons 

for switching AED). Epilepsy type was classified into three categories, IGE, LRE and UNC.  

 

5.2.3. Phenotype definitions for patient selection 

Response to AED treatment in the UK cohorts was determined in accordance with the 

definitions used to phenotype the Australian cohort in the original study (Petrovski et al., 

2009). Patients were considered to be “responders” if they remained free from seizures 

throughout the first 12 months of AED treatment. Seizures arising in the first month of 

treatment (i.e. during drug titration) and those associated with short-term non-compliance with 

medication or significant provocation (e.g. sleep deprivation) were discounted. In contrast, 

patients who continued to experience unprovoked seizures during the first year of therapy 

despite adequate AED exposure were considered to be “non-responders”. Where the first ever 

AED was discontinued within the initial 3 months of treatment as a result of intolerable AEs, 

the second AED was considered the ‘initial drug’ for the purposes of this analysis. Patients in 

whom clinical information was insufficiently detailed to allow a confident classification of 

response or who were suspected to be non-adherent with medication were excluded from the 

analysis, as in the original study (Petrovski et al., 2009). 
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5.2.4. Study populations 

 Treatment outcome phenotypes for the Glasgow and SANAD cohorts were identified 

by interrogation of the trial or clinical databases and/or clinical notes. A total of 285 and 520 

individuals were included for analysis from Glasgow and SANAD cohorts, respectively. 

 

5.2.5. Genotyping 

  The five SNPs that comprised the Australian multigenic classifier were rs658624 and 

rs678262 from the SCN4B gene and rs2808526, rs4869682, rs2283170 from the GABBR2, 

SLC1A3 and KCNQ1 genes respectively. All 285 samples from the Glasgow cohort were 

genotyped for these five SNPs at the Australian Genome Research Facility using an iPLEX 

Gold assay on the Sequenom MassARRAY compact analyser (Sequenom Inc., San Diego, 

California, USA) (Petrovski et al., 2009). SANAD samples (n=520) were genotyped in the 

Department of Molecular and Clinical Pharmacology, University of Liverpool on a Sequenom 

MassARRAY iPLEX platform in accordance with the manufacturer’s instructions (Gabriel et 

al., 2009) and as described in detail in section 2.5.  

 

5.2.6. The development of the Australian kNN multigenic model  

 The methods involved in the development and validation of the Australian multigenic 

kNN classifier model (Petrovski et al., 2009) were used for model development for this 

investigation and are described in detail in the original report (Petrovski et al., 2009). For model 

generation in the present study, the SANAD cohort was randomly stratified into training (70% 

of patients, n=343) and test (30% of patients, n=148) datasets in a manner similar to that 

originally described for the Australian cohort (Petrovski et al., 2009). The 70% training dataset 

was used for model development (training set patients are used to identify optimum parameters 

for accurate patient classification and testing association of five SNPs with patient outcome) 

and a 30% test dataset for assessing the predictive potential of the model. Each patient in the 

test dataset (30% of patients) was positioned in an N-dimensional space (in this case N=5, 

representing the SNP genotypes in the five SNP model) defined by the training dataset (70% 

of patients), with response predicted by simple majority of known treatment responses amongst 

its k-nearest neighbours (i.e. the individuals with the most similar genetic profiles at this 

combination of five SNPs). The number of nearest neighbours found to give optimal prediction 

of drug response in the Australian cohort was k = 9. A 20% cross-validation methodology was 

adopted for building the kNN model on the training dataset, where the training dataset is 

divided into five equally sized groups, each of which is excluded in turn and the remaining four 

groups used to test the model. This cross-validation step in the initial model development also 

allowed the determination of the optimal number of k- nearest neighbours to use (Petrovski et 
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al., 2009). An overview of the kNN procedure, as used to develop the five-SNP classifier is 

illustrated in Figure 5.3. 

 

5.2.7. Statistical analysis for assessment of cohort differences  

The initial statistical analysis examined patient demographics and drug treatment 

outcomes across the UK and Australian cohorts to identify differences that might confound 

subsequent analyses. Age at enrolment was assessed using ANOVA, while gender, initial 

AED, epilepsy type and drug treatment response were all assessed using Chi-square tests. Each 

of the five SNPs was also assessed for independent association with AED response in each of 

the two UK cohorts using the Cochran-Armitage test for trend. Any systematic differences 

identified in the demographic or genetic variables (SNPs) were adjusted for prior to any 

subsequent model assessment. 

 

5.2.8. Approaches for classifier assessment 

Several methods exist for assessing ML classification models. The Australian 

multigenic kNN classifier model was evaluated in the UK cohorts in three ways: (i) treating 

UK patients as independent test sets and using Australian patients to predict response in UK 

patients, (ii) re-deriving the kNN classifier using the SANAD cohort as both training and test 

datasets, and (iii) testing the performance of the kNN model in UK training datasets using a 

cross-validation n-1 approach. 

Given that the kNN model is not based on a fixed algorithm, but rather a five-

dimensional training dataset, its reliability is dependent on similar frequencies of drug 

response in the training and test datasets. When comparing the original Australian cohort with 

the two UK cohorts, there was a difference in treatment response frequencies between the 

groups. In the Australian cohort, 28% of patients were unresponsive to their initial AED, 

compared with 47% and 52% in the Glasgow and SANAD cohorts, respectively (Table 5.1). 

As a result, using the Australian cohort as the kNN training dataset to predict treatment 

response in either of the UK cohorts was expected to result in an over-estimation of the number 

of responders (i.e. false positives). Therefore, in addition to a direct test of the Australian five-

SNP model, a secondary analysis using predictions derived from the UK cohorts themselves 

was required to obtain a realistic understanding of the influence of this combination of five 

SNPs on treatment outcome in newly treated epilepsy patients from the UK. 
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5.2.9. Data stratification to account for UK cohort differences 

Due to differences between the Australian and UK cohorts, the Glasgow and SANAD 

cohorts do not represent direct validation cohorts for the Australian cohort (Table 5.1). Thus, 

to allow evaluation of whether the five SNPs from this kNN model are relevant for treatment 

response in Glasgow and SANAD patients, the UK datasets were first stratified by age, gender, 

epilepsy type, response to AED treatment, and initial AED (Table 5.1). Initial AED was 

arranged into two groups, patients whose initial treatment was with either CBZ or VPA (n=118 

and n=123 for the Glasgow and SANAD cohorts respectively), and those who were initially 

treated with one of the newer generation drugs such as GBP, LTG, or TPM (n=51 and n=123 

for Glasgow and SANAD cohorts, respectively) (Tables 5.2-5.8). The latter group was known 

as the ‘other AED treatment’ group.  

CBZ and VPA were the two most commonly prescribed initial AEDs in the Australian 

cohort (96% of the patients), whereas Glasgow patients were largely treated with either LTG 

or VPA (approximately 40% and 30% of total, respectively) and SANAD patients mostly 

received LTG or CBZ (approximately 30% and 25% of total, respectively) (Table 5.1). 

Stratification on the basis of initial AED thus controlled for this difference between the 

Australian cohort, when used as the training dataset, and the UK cohorts as test datasets. It 

also allowed determination of whether, the five kNN SNPs are universal markers of treatment 

response or selective for specific drugs (i.e. CBZ/VPA). For the purposes of the leave-one-out 

(n-1) cross-validation analysis, the Glasgow and the SANAD cohorts were additionally sub-

divided into those initially treated with LTG (n=112 and n=97, respectively). The SANAD 

training and test datasets also included some patients treated with OXC (n=29 and n=12, 

respectively) and these were included in the CBZ group. 

 

5.2.10. Australian kNN model validation in UK cohorts 

  In this analysis the original Australian cohort (n=115) was treated as the training 

dataset and each of the UK cohorts (Glasgow n=285, SANAD n=491) was used as independent 

test datasets for which predictions were made. This is a direct approach for model testing and 

was used in validation of the original Australian classifier using two independent Australian 

populations (Petrovski et al., 2009) (Figure 5.3, Figure 5.4). 

 

5.2.11. Re-deriving the five-SNP kNN model in the SANAD cohort 

This secondary analysis comprised a UK only prediction, with the aim of developing 

and testing a kNN model using UK training and test cohorts (70% and 30% respectively), in a 

similar manner to the original Australian model development (Petrovski et al., 2009). The 

SANAD training dataset was first investigated for association between the five SNPs and AED 
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response and subsequently used to predict response of the patients in the test dataset. This 

ensured that patients in training and test datasets are well-matched, particularly with regard to 

frequency of AED response. The kNN parameters used for this replication were identical to 

those employed in the original Australian study (i.e. five SNPs [N] and nine nearest neighbours 

[k]). Investigators running the model were blinded to the treatment responses of the test 

dataset. 

 

5.2.12. kNN model validation in a UK population 

To investigate whether the five SNPs were predictive of treatment response in the UK 

cohorts a leave-one-out approach (n-1) was adopted. Individual patients within each of the UK 

cohorts were classified using a kNN model built on a “leave-one-out” training dataset 

comprising the remaining samples (n-1) in that cohort to determine the overall performance 

of the five-SNP model. With this cross validation method, the kNN model used the genetic 

profiles of the remaining patients to predict the individual test patient that was left out, and 

this was then repeated for all of the Glasgow and SANAD patients. In addition to accounting 

for differences in response frequencies between the Australian and UK cohorts, this approach 

also eliminated any population genetic differences between the Australian and UK patients at 

these five SNPs. In the leave-one-out cross validation approach, the individual being predicted 

did not contribute to the training dataset prediction, thus ensuring model optimisation for the 

modestly sized UK cohorts whilst avoiding over-fitting.  

 

5.2.13. Statistical analysis for assessing model performance 

  All model development and application processes were performed in Melbourne 

(Department of Medicine, University of Melbourne) and data analyses were performed in both 

Liverpool and Melbourne. Model assessment was performed with the kNN model using SAS 

Enterprise Miner software (SAS Institute Inc., Cary, NC) and SPSS version 18. Logistic 

regression was also performed for confirmation of the leave-one-out analysis results (SAS 

Enterprise Miner, SPSS version 18). For each model, the likelihood of predicting successful 

treatment outcome was determined by calculation of the odds ratio (with 95% confidence 

interval), positive and negative predictive values (with 95% confidence intervals), and 

Pearson’s chi-squared p-value.  
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5.2.14. Biological significance of the Australian five-SNPs 

  In addition to the genetic analyses, each of the five SNPs was investigated to identify 

potential biological significance using several freely accessible online genomic databases. The 

HapMap website (www.HapMap.org, data source Rel#24/phase II Nov 08), dbSNP 

(www.ncbi.nlm.nih.gov/projects/SNP/), Haploview version 4.1, and the UCSC Human 

Genome Browser (www.genome.ucsc.edu/cgi-bin/hgGateway) were used for extracting 

information on genomic structure (section 2.4.2), including LD structure (section 3.2.4). 

Regulatory changes were investigated through utilities available on these browsers and using 

online bioinformatics analysis tools, Fast SNP and TESS, for further functional and 

transcriptional analysis (Yuan et al., 2006) (section 3.2.7). 

 

5.3. Results 

5.3.1. Comparison of Australian and UK cohorts  

Comparing the clinical characteristics of the Australian cohort (Petrovski et al., 2009) 

and the Glasgow and SANAD cohorts showed that both initial AED and drug response 

frequency were different between the Australian and UK patients (P <0.0001; Table 5.1). In 

addition, the SANAD cohort had a significantly higher frequency of unclassified epilepsy 

compared to both Australian and Glasgow cohorts (P <0.001), whereas there were no 

significant differences in epilepsy type between the Australian and Glasgow cohort.  

 

5.3.2. Single SNP associations with treatment outcome 

  Of the 285 Glasgow patients, four failed genotyping at one or more of the five SNPs, 

leaving 281 available for subsequent analysis. Of the 520 SANAD patients, 491 were 

successfully genotyped for each of the five SNPs. Since the genotypes at the five SNPs 

employed in the multigenic model were proposed to predict or influence AED response, these 

were also independently tested for association in both UK cohorts to account for any single 

SNP influence on AED response. No association was identified with this independent SNP 

analysis (Table 5.2). A similar lack of association was noted in the original Australian cohort 

(Petrovski et al., 2009). 

 

 

 

 

 

 

http://www.hapmap.org/
http://www.ncbi.nlm.nih.gov/projects/SNP/
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5.3.3. Results of the UK replication of the Australian five-SNP kNN model  

The results of approach one, where both UK populations were treated as independent 

test datasets (and Australian patients used as the training dataset) for model validation showed 

that the Australian kNN classifier did not predict treatment response when applied directly to 

either UK cohort. A kNN model built on five SNP genotypes and drug response phenotypes 

from the original Australian cohort (n=115) failed to usefully predict treatment response, on 

the basis of genotype alone, in either the Glasgow (n=281) or SANAD (n=491) cohorts (both 

P >0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4  Summary of the general approach employed for the development of 

classification or predictive models using machine learning methods 

Several basic steps encompass the development of predictive models. These often involve the 

pre-processing of large and/or complex data for the selection of the most influential variables 

and thereon model testing and parameter optimisation. 
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 Table 5.1.  Characteristics and comparison of the Australian cohort with the Glasgow and SANAD cohort

   Australian 

(n=115) 

Glasgow (n=285) SANAD  

(n=491) 

P-value 

Age  Mean (±SD)  43 (±19.7) 41 (±14.7) 39 (±18.3) ns 

Sex N (%) Male 61 (53.0%) 157 (55.1%) 269 (54.8%) ns 

  Female 54 (47.0%) 128 (44.9%) 222 (45.2%)  

Initial AED N (%) CBZ 66 (57.4%) 26 (9.1%) 123 (25.0%)* <0.0001 

  VPA 44 (38.3%) 92 (32.3%) 50 (10.2%)  

  LTG 2 (1.7%) 115 (40.4%) 139 (28.3%)  

  Other 3 (2.6%) 52 (18.2%) 179 (36.5%)  

Epilepsy type N (%) IGE 27 (23.5%) 92 (32.3%) 80 (16.3%) <0.001† 

  Focal 84 (73.0%) 185 (64.9%) 332 (67.6%)  

  UNC 4 (3.5%) 8 (2.8%) 79 (16.1%)  

Outcome at 12 months  N (%) Responder 128 (71.9%) 152 (53.3%) 234 (47.7%) <0.001 

  Non-responder 50 (28.1%) 133 (46.7%) 257 (52.3%)  

AED = antiepileptic drug, CBZ= carbamazepine, IGE= idiopathic generalised epilepsy, LTG= lamotrigine, N= number, ns= non-significant, 

SD= standard deviation, UNC= unclassified epilepsy, VPA= valproate. *Includes 35 patients initially treated with oxcarbazepine, †Statistical 

difference between SANAD cohort and both Australian and Glasgow cohorts 
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5.3.4. Results of the UK cohort developed kNN classifier 

  This analysis used SNP genotypes and drug responses in the SANAD training dataset 

(n=343) to re-derive the kNN classifier, albeit using the original parameters, and to use it to 

predict treatment response, in a blinded manner, in a test dataset (n=148) of patients, also from 

the SANAD cohort. When using the SANAD training dataset (Table 5.3) to predict response 

in the SANAD test dataset, the kNN five-SNP classifier (using nine nearest neighbors) 

correctly identified 26 responders and 52 non-responders but incorrectly identified 26 non-

responders as responders (false positives) and 44 responders as non-responders (false 

negatives) (P = 0.4; Table 5.3). Using only those patients that were initially prescribed either 

CBZ or VPA (n=50), the re-derived kNN classifier was internally predictive in the SANAD 

training dataset (Table 5.3), but again failed when applied to the SANAD test dataset, correctly 

classifying 10 responders and 14 non-responders but incorrectly identifying 10 non-responders 

as responders (false positives) and 16 responders as non-responders (false negatives) (P = 0.7; 

Table 5.3).  

 

5.3.5. Results of the cross validation analyses 

A “leave-one-out” cross validation analysis was performed in each of the two UK 

cohorts by predicting treatment response for each individual patient using five SNP genotypes 

in the remainder (n-1) of the respective cohort. The Glasgow cohort consisted of all 

successfully genotyped patients (n=281). Thus, for the Glasgow cohort, prediction was based 

on treatment response and SNP genotypes in a dataset comprising 280 patients. In the SANAD 

cohort, prediction was based on the training dataset of 342 patients (n=343 minus one). The 

148 patients forming the SANAD test dataset were excluded from this analysis on the basis 

that investigators were blinded to treatment outcome in this sub-group. 
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Table 5.2. Uncorrected SNP genotype association with treatment outcome  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Glasgow cohort SANAD cohort* 

SNP AED P -value for trend Odds ratio (95% CI) P-value for trend Odds ratio (95% CI) 

rs2283170 CBZ/VPA 0.8 1.0 (0.6 – 1.9) 0.6 1.2 (0.7 – 1.8) 

 LTG 0.6 1.1 (0.7 – 2.0) 0.2 0.7 (0.4 – 1.2) 

 Other AED 0.004 0.3 (0.1 – 0.7) 0.8 1.1 (0.7 – 1.7) 

rs2808526 CBZ/VPA 0.3 0.8 (0.4 – 1.3) 0.8 1.0 (0.7 – 1.6) 

 LTG 0.4 1.3 (0.7 – 2.2) 0.7 0.8 (0.6 – 1.5) 

 Other AED 0.9 1.1 (0.4 – 2.2) 0.3 0.8 (0.5 – 1.3) 

rs4869682 CBZ/VPA 1.0 1.0 (0.6 – 1.7) 0.1 1.4 (0.9 – 2.1) 

 LTG 0.3 0.8 (0.5 – 1.3) 0.3 0.8 (0.5 – 1.3) 

 Other AED 0.8 0.9 (0.4 – 2.0) 0.5 1.2 (0.8 – 1.8) 

rs658624 CBZ/VPA 0.2 1.4 (0.8 – 2.4) 0.5 1.1 (0.7 – 1.8) 

 LTG 0.3 1.4 (0.8 – 2.3) 0.6 0.9 (0.6 – 1.4) 

 Other AED 0.5 1.1 (0.6 – 2.8) 0.8 0.8 (0.5 – 1.3) 

rs678262 CBZ/VPA 0.4 0.8 (0.5 – 1.4) 0.1 0.7 (0.5 – 1.1) 

 LTG 0.07 0.6 (0.4 – 1.0) 0.5 1.2 (0.7 – 1.9) 

 Other AED 0.2 0.6 (0.3 – 1.4) 0.3 1.3 (0.8 – 1.9) 

AED= antiepileptic drug, CBZ= carbamazepine, CI= confidence interval, LTG = lamotrigine, SNP= single nucleotide 

polymorphism, VPA = valproate, p-value for trend calculated by Cochran-Armitage test. Glasgow cohort numbers: 

CBZ/VPA=118, LTG=112, Other AED=51. SANAD cohort numbers: CBZ/VPA=173, LTG=139, Other AED=179, *Thirty five 

patients initially treated with oxcarbazepine were included in the carbamazepine group 
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Table 5.3. Predictive performance of the 5-SNP kNN model on the SANAD test dataset (n=148) on the basis of initial AED 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 AED = antiepileptic drug, CBZ = carbamazepine, CI = confidence interval, kNN = k-nearest neighbour, NPV = negative predictive value, PPV = 

positive predictive value, SNP = single nucleotide polymorphism, VPA = valproate, TP = true positive (responders correctly classified as responders); 

FP = false positive (non-responders incorrectly classified as responders), TN = true negative (non-responders correctly classified as non-responders); 

FN = false negative (responders incorrectly classified as non-responder), *Twelve patients initially treated with oxcarbazepine were included in the 

carbamazepine group

AED n TP FP TN FN PPV (95% CI) NPV (95% 

CI) 

Odds 

ratio 

(95% CI) 

P -value 

CBZ/VPA* 50 10 10 14 16 50% (23.7-

76.3) 

47% (25.2-

69.4) 

0.9 (0.28-

2.72) 

0.7 

Other AED 98 16 16 38 28 50% (28.5-

71.5) 

58% (41.6-

72.1) 

1.4 (0.58-

3.17) 

0.3 

Combined 148 26 26 52 44 50% (32.8-

67.2) 

54% (41.1-

66.7) 

1.2 (0.60-

2.32) 

0.4 
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 In the Glasgow cohort, the five SNP combination was found to be significantly 

predictive of treatment response in those patients initially prescribed either CBZ or VPA 

(positive and negative predictive values of 67% and 60% respectively, P = 0.003) but not those 

prescribed any other AED (LTG, P = 0.3; all other AEDs, P = 0.8; Table 5.4). In the SANAD 

cohort, the leave-one-out analysis showed a similar drug specific association. The five-SNP 

combination showed positive and negative predictive values of 69.1% and 55.6% in SANAD 

patients initially prescribed either CBZ or VPA (P = 0.008) and positive and negative 

predictive values of 57.4 and 60.5%, respectively, in those initially prescribed other AEDs 

(namely GBP, LTG or TPM; P = 0.02). The results indicate that these five SNPs are associated 

with treatment response in UK patients (Table 5.4), particularly when CBZ or VPA is used as 

the first AED, even though the independent kNN model (described in section 5.3.3) failed to 

have predictive value. 

 

5.3.6. Logistic regression and permutation analysis for drug specific prediction  

  A logistic regression analysis was also performed to confirm the association identified 

in the leave-one-out cross-validation. A fully-fitted logistic regression model incorporating all 

five SNPs was built using the SANAD training dataset (n=343) which supported observations 

from the leave-one-out analysis that the five classifier SNPs are predictive of treatment 

response in patients initially prescribed CBZ or VPA. A regression model that was developed 

for patients from the SANAD training dataset who initially received CBZ or VPA (n=123) 

appeared to show a successful prediction of treatment response with positive and negative 

predictive values of 69% each (P = 2.5x10-5) and model specificity and sensitivity values of 

58% and 38.5%, respectively (Table 5.5). The regression model was less powerful when 

developed on patients prescribed other AEDs and when applied to the training dataset as a 

whole (n=343), with positive and negative predictive values of 63% and 59% (P = 0.007) and 

61% and 58% (P = 0.0006), respectively (Table 5.5).   

A permutation test for the fully fitted logistic model was subsequently performed to 

identify the likelihood of over-estimation caused by this analysis due to the limited numbers 

of patients (n=123) in the SANAD training dataset treated with either CBZ or VPA. The 

permutation results showed that randomised logistic regression models, using the same 

number of CBZ/VPA responders and non-responders would have been unlikely to achieve a 

p-value < 2.5x10-5 based on five SNP profiles by chance (P < 0.05). 
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Table 5.4. Predictive performance of the ‘leave-one-out’ kNN approach in SANAD and Glasgow cohorts on the basis of initial AED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AED= antiepileptic drug, CBZ= carbamazepine, CI= confidence interval, kNN= k-nearest neighbour, LTG = lamotrigine,  

NPV = negative predictive value, PPV = positive predictive value, VPA= valproate, TP= true positive (responders correctly classified as 

responders), FP= false positive (non-responders incorrectly classified as responders), TN= true negative (non-responders correctly 

classified as non-responders), FN = false negative (responders incorrectly classified as non-responders), *Twenty nine patients initially 

treated with oxcarbazepine were included in the carbamazepine group

Cohort AED n TP FP TN FN PPV (95% CI) NPV (95% CI) Odds ratio (95% CI) P -value 

Glasgow CBZ/VPA 118 49 24 27 18 67% (51.8-79.6) 60% (40.6-76.8) 3.1 (1.4-6.6) 0.003 

 LTG 112 35 30 25 22 54% (38.0-69.0) 53% (34.8-70.8) 1.3 (0.6-2.8) 0.3 

 Other AED 51 15 17 8 11 47% (25.9-68.9) 42% (17.6-70.8) 0.6 (0.2-2.0) 0.8 

SANAD CBZ/VPA* 123 29 13 45 36 69% (48.6-84.3) 56% (41.3-69.0) 2.8 (1.3-6.1) 0.008 

 LTG 97 18 12 40 27 60% (36.4-80.0) 60% (43.8-73.9) 2.2 (0.9-5.3) 0.06 

 Other AED 123 21 17 52 33 55% (34.6-74.3) 61% (47.1-73.7) 1.9 (0.9-4.2) 0.06 
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Table 5.5. Predictive performance of the fully-fitted logistic regression model in the SANAD training dataset 

  

 

 

 

 

 

 

 

 

AED= antiepileptic drug, CBZ= carbamazepine, CI = confidence interval, NPV= negative predictive value, PPV= positive predictive value,  

VPA= valproate, TP = true positive (responders correctly classified as responders), FP = false positive (non-responders incorrectly classified as 

responders) TN= true negative (non-responders correctly classified as non-responders), FN = false negative (responders incorrectly classified as 

non-responders), *Twenty nine patients initially treated with oxcarbazepine were included in the carbamazepine group

AED n TP FP TN FN PPV (95% CI) NPV (95% CI) Odds ratio (95% CI) P -value 

CBZ/VPA* 123 49 22 36 16 69% (53.5-81.3) 69% (50.9-83.2) 5.0 (2.3-10.9) 2.5 x 10-5 

Other AED 220 26 15 106 73 63% (42.9-80.2) 59% (49.6-68.2) 2.5 (1.2-5.1) 0.007 

Combined 343 66 42 137 98 61% (48.6-72.3) 58% (49.9-66.2) 2.2 (1.4-3.5) 0.0006 
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5.4. Discussion 

  The exploration of high-level relationships between numerous genetic variants with 

minimal relative risks is characteristic of the current status of common complex trait 

investigations. The analysis of genomic data from such investigations has presented 

researchers with several unprecedented challenges (Kwan and Brodie, 2000a, Lee et al., 2008, 

McCarthy et al., 2008), including that of detecting multiple, small associations in high-

dimensional data. Investigating numerous gene variants simultaneously is often not successful 

using existing mathematical and computational approaches. Making inferences based on the 

combination of several lower dimensional methods may not provide a correct understanding 

of real data occurrences. Moreover, important variants and/or other biological information 

may be obscured. Predictive models with the capacity to incorporate a collection of weak 

effects, along with their ability to model potentially complex interactions, offer an attractive 

alternative to multiple single SNP analyses (Lee et al., 2008).    

 The supervised classification learning method of data analysis is one form of statistical 

modeling applied to genomic data to obtain genomic prediction models for different groups of 

biological subjects. A previous “proof-of-concept” study developed a multigenic 

pharmacogenomics kNN model that successfully predicted response to initial AED treatment 

in an Australian cohort of patients with newly-diagnosed epilepsy. This was subsequently 

validated in two additional cohorts of patients, also from Australia (Petrovski et al., 2009). 

The kNN supervised classification learning approach was originally described by Fix and 

Hodges (Fix, 1951, Silverman and Jones, 1989) and has since become an important 

classification and clustering tool with diagnostic applications in a number of medical research 

fields. These include diagnostic and sub-class classification in cancer (Furey et al., 2000, Su 

et al., 2001, West et al., 2001, Crimins et al., 2005), immunoassay based anti-nuclear antibody 

tests (Binder et al., 2005), microarray experiments (Kim et al., 2004), drug toxicity (Martin et 

al., 2006), and rheumatoid arthritis (Liu et al., 2009). 

The aim of the analysis described in this chapter was to assess the broader utility of 

the Australian multi-SNP model by applying it to two independently collected cohorts of 

patients with newly treated epilepsy from the UK. Definitions of response were adopted from 

those used in the development of the original model and patient cohorts were accordingly 

stratified by clinical characteristics. For each of the UK cohorts, the multigenic classifier failed 

to significantly predict response to the first well-tolerated AED when; i) the original Australian 

cohort was used as the training dataset, and ii) when the classifier was re-driven in UK patients 

alone. The failure of direct replication was not entirely surprising. Possible explanations 

include differences in drug response frequencies, differences in phenotypic definitions and 



 
CHAPTER FIVE 

173 
 

methods of ascertainment, genomic population differences, differing drug policies, failure to 

re-calibrate the kNN parameters, or a false positive signal in the original study. These are 

discussed briefly below. 

 

5.4.1. Importance of drug response frequencies 

  As discussed previously, classification algorithms involve a training dataset of known 

outcomes on which a predictive model is built and, from this, new predictions or classifications 

can be inferred. The kNN approach positions the training dataset in an nth dimensional space 

within which new cases/data can be placed and subsequently assigned a value or classification. 

Thus, the frequency of outcomes, in this case response or non-response to AED treatment, 

within the training dataset can affect the classification of any new cases that are presented. 

The kNN model using the Australian training dataset (identified as having fewer cases of 

treatment failure than UK cohorts) was thus expected to result in an over-estimation of the 

number of responders (false positives) in the Glasgow and SANAD cohorts, thereby affecting 

model classification reliability. This discordance in treatment response was arguably the most 

significant confounder in the attempt to directly validate the original multi-genic classifier. 

 

5.4.2. Differences in data collection and treatment response classification 

  The Australian cohort constituted a series of newly diagnosed patients enrolled into a 

prospective PGx study at first clinical presentation. In contrast, the SANAD cohort comprised 

a sub-set of randomised clinical trial patients (believed to be representative of the trial 

population as a whole) who were belatedly consented for the donation of DNA and whose 

clinical information, albeit prospectively collected, was extracted from a trial database that 

was not designed with a PGx study in mind. The Glasgow cohort comprised a variety of 

individuals attending outpatient clinics and participating in randomised clinical trials, who 

were retrospectively consented for donation of DNA and whose clinical information was not 

collected in a systematic manner. These differences in recruitment and data collection 

procedures may have introduced inconsistencies in the classification of responder and non-

responder status, particularly in the UK cohorts where the clinical information was not 

specifically collected for PGx purposes. The principal concern in this regard is a lack of 

sensitivity to exclude seizures occurring in the drug titration period or arising from non-

compliance or acute provocation (i.e. sleep deprivation or alcohol misuse) during the first 12 

months of follow-up. This might explain, at least in part, the significantly greater frequency 

of non-response in the Glasgow and SANAD cohorts.  
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5.4.3. Genomic population differences between UK and Australian cohorts  

Another important consideration with regard to study design was the assumption that 

the five kNN SNP markers originally identified in an Australian population would extrapolate 

directly to UK patients. Although most Australian patients were considered to be of European 

descent, and patients who self-identified as being of non-European ancestry were excluded, it 

is possible that subtle ethnic differences existed between the cohorts. Under such 

circumstances, a discrete set of genetic variants might be more weakly associated with the trait 

of interest (or with unidentified causal variants) in one population than in another.  

 

5.4.4. Differences in initial AED treatment between cohorts 

A clear difference between the Australian and UK cohorts was observed in the relative 

frequencies of individual AEDs used as initial treatment. The Glasgow cohort was largely 

recruited via a drug trial comparing VPA and LTG (Stephen et al, 2007), with almost 50% of 

Glasgow patients initially exposed to LTG. The SANAD cohort also showed a high proportion 

of patients receiving LTG as the first well-tolerated AED, which was unsurprising given that 

this drug was included in both arms of the SANAD trial (Marson et al., 2007a, b). In contrast, 

96% of the Australian cohort was initially prescribed either CBZ or VPA. These simple 

differences in drug treatment policy may be sufficient to explain the failure to directly validate 

the kNN model in UK patients.  

 

5.4.5. Adapting model parameters of the Australian kNN five-SNP 

classifier for UK replication 

  An additional confounder may have been the use of kNN model parameters that were 

employed in the original Australian study. These were accordingly derived from a cohort that 

was significantly smaller (n=115) than either of the two UK cohorts employed in the current 

analysis. Failure to re-calibrate the kNN parameters in order to accommodate larger training 

datasets with differing response frequencies may have impacted on the accuracy of treatment 

response prediction. In the kNN classifier, the number of nearest neighbours (k) by which 

classification occurs, is unsurprisingly dependent on the size and phenotype frequency of the 

training dataset and prediction is based on a simple majority phenotype amongst those nearest 

neighbours. In a larger training dataset, it is possible that fewer nearest neighbours would be 

required for accurate prediction in test datasets. For example, where the nearest four 

neighbours are responders and next nearest five neighbours are non-responders, using k=9 

would result in the prediction of non-response, whereas using k≤7 would result in the 
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prediction of response. Failure to re-calibrate kNN parameters despite differences in treatment 

response between the Australian and UK cohorts was a potentially significant limitation. 

 

5.4.6. Unreliability of the original Australian association 

Finally, there is also a possibility that the original findings in the Australian cohort 

constituted a false positive signal. This seems somewhat unlikely, given the clear association 

in this analysis between 5-SNP genotype and response to treatment with either CBZ or VPA 

in UK cohorts when analysed using both a “leave-one-out” method and a fully-fitted logistic 

regression. This finding, together with the validation in two independent Australian epilepsy 

cohorts reported in the original study, lends weight to the significance of these SNP genotypes 

as biomarkers of response to initial drug therapy in newly treated epilepsy. Whether the 

classifier is truly specific for CBZ and VPA alone or is indicative of treatment responsiveness 

in general remains to be determined. Making the distinction will require significantly larger 

cohorts of patients and a more consistent approach to recruitment and data collection.  

 

5.4.7. Cross-validation validated the predictive capacity of the five SNPs 

comprising the Australian kNN classifier 

Despite failure of direct validation of the kNN classifier, a further attempt was made 

to explore the significance of these five SNPs in UK patients. This was performed using a 

cross-validation “leave-one-out” approach where each of the UK cohorts acted as their own 

training dataset. This negated many of the confounders described above that could have 

potentially impacted on findings of the direct validation method. The analysis was again 

stratified by initial AED in an effort to determine whether the five SNPs originally identified 

in the Australian cohort were selectively predictive for CBZ or VPA as initial treatment (96% 

of Australian patients received these drugs as first ever AED). This approach proved 

successful, with the “leave-one-out” analysis indicating that the five SNPs had a collective 

predictive capacity for both Glasgow and SANAD patients treated with either CBZ or VPA 

but not other AEDs. A subsequent permutation test confirmed that the randomized, fully fitted 

logistic regression model developed on the SANAD training dataset, and using the same 

number of CBZ/VPA responders and non-responders, would have been unlikely to achieve a 

p-value < 2.5x10-5. This suggested that the association with CBZ/VPA treatment response in 

a logistic regression model was unlikely to have occurred by chance.  
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5.4.8. Biological significance of the five-SNPs  

  The relative success, when using the “leave-one-out” approach, of these five SNPs in 

predicting response to CBZ or VPA as the initial AED in UK patients suggests that they 

possess biological significance. The SNPs were originally identified from an initial panel of 

4,041 SNPs across 279 candidate genes, selected on the basis of a known or putative 

involvement in epilepsy susceptibility, a high expression level in the brain, or an involvement 

in AED pharmacology (Petrovski et al., 2009). The biological investigation that followed our 

genetic analyses showed that the variants were comprised of two SNPs in the SCN4B gene 

(encoding the 4 subunit of the voltage-gated sodium channel) and one each in the GABBR2 

gene (encoding GABAB receptor subunit 2), KCNQ1 gene (encoding the Kv7.1 subunit of the 

delayed rectifier potassium channel), and SLC1A3 gene (encoding excitatory amino acid 

transporter 1) (Table 5.6). Two of the genes (SCN4B and KCNQ1) are reported to have limited 

expression in brain tissue (Waldegger et al., 1999, Yu et al., 2003), all five SNPs are located 

in intronic regions of their respective genes (Kent et al., 2002), and investigation of the 

genomic structure using www.hapmap.org (release # 24) failed to identify any biologically 

functional variants with a minor allele frequency ≥ 1% in European populations that were in 

strong linkage disequilibrium (r2≥0.8) with any of these specific SNPs. Further bioinformatics 

analysis using online tools for functional analysis (Yuan et al., 2006) and assessment of TFBSs 

(Kent et al., 2002) were similarly unremarkable, although all SNPs except rs678262 (in 

SCN4B) were shown to be located in TF binding domains. The rs2283170 SNP in KCNQ1 

was additionally predicted to effect an alteration in TF binding characteristics. As such, the 

functional significance of these SNPs and the explanation for their association with treatment 

response in newly treated epilepsy remains unclear. The fact that these SNPs were selectively 

predictive for response to CBZ and VPA but no other AEDs with similar mechanisms of action 

also remains unexplained. 
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Table 5.6. Genomic information for the five-SNPs comprising the kNN classifier 

Gene SNP Location Alleles  Amino acid 

change 

HapMap  

MAF 

KCNQ1 rs2283170 Intron A>G - 0.339 

GABBR2 rs2808526 Intron A>G - 0.450 

SLC1A3 rs4869682 Intron G>T - 0.460 

SCN4B rs658624 Intron T>C - 0.458 

SCN4B rs678262 Intron G>C - 0.346 

 

 

 

 

5.4.9. Summary 

  In summary, this analysis suggests that the “proof of concept” kNN model, developed 

in an Australian cohort of newly-diagnosed epilepsy, is not directly applicable to other 

epilepsy populations, even those that might be considered ethnically comparable. The model 

has multiple limitations when applied to populations that differ from the one used in its 

construction, particularly where response frequencies, drug policies, phenotype determination 

and methods of ascertainment differ. Nevertheless, the combination of the five SNPs reported 

in the original Australian study does appear to have a collective influence in predicting 

response to treatment with either CBZ or VPA in UK patients. This observation, although drug 

specific, should encourage additional replication attempts with larger cohort sizes to better 

understand the potential of this multi-SNP model as a biomarker of early seizure control in 

new-onset epilepsy patients treated with these two drugs. 

 

 

MAF = minor allele frequency, SNP = single nucleotide polymorphism 
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6.1. Introduction 

 As discussed in Chapter 1, epilepsy is a complex and heterogeneous disorder, for 

which rare and common genetic forms exist. Common genetic epilepsies are, clinically and 

genetically, a heterogeneous group of complex seizure disorders. Thus, defining the genetic 

contribution to common epilepsy syndromes has proven to be a formidable task (Dibbens et 

al., 2007, Rees, 2010). In Chapter 5, a ML approach was used to build PGx classifiers to 

predict responsiveness to AED treatment. The study described in this results chapter applied 

this previously used statistical methodology to analyse available genomic and clinical 

phenotype data for individuals with common genetic forms of epilepsy in order to investigate 

the genetic contribution to these complex syndromes. 

 

6.1.1. Complex genetic forms of epilepsy 

 It is estimated that there is an underlying genetic predisposition for epilepsy in 

approximately half of individuals (idiopathic epilepsies), with monogenic epilepsies 

accounting for less than 1 percent (Kearney, 2012). The remaining majority are idiopathic or 

primary generalised epilepsies (PGEs) and non-acquired focal epilepsies (NAFE) that have a 

strong genetic basis with a complex inheritance pattern in which multiple and environmental 

factors contribute to epilepsy risk, though these complex genetic epilepsies are poorly 

understood (Tan et al., 2004).  

 

6.1.2. Primary generalised epilepsy syndromes 

 The PGEs classically fall into several common and rare recognisable sub-syndromes. 

Rare IGE syndromes include Benign Myoclonic Epilepsy of Infancy (BMEI), Early Onset 

Absence Epilepsy, Myoclonic Astatic Epilepsy (MAE), Epilepsy with Myoclonic Absences, 

Eyelid Myoclonia with Absences and Absence Status Epilepsy (Gardiner, 2005). The common 

PGEs sub-syndromes are characterised by some or all of the three following seizure types; 

typical absence seizures, myoclonic jerks and generalised tonic-clonic seizures (GTCS), which 

can occur in different combinations but typically with one seizure type predominating (Engel, 

2006a). Childhood Absence Epilepsy (CAE), Juvenile Absence Epilepsy (JAE), Juvenile 

Myoclonic Epilepsy (JME) and Epilepsy with Generalised Tonic-Clonic Seizures (GTCS) 

represent the four more common PGE sub-syndromes. (Shneker and Fountain, 2003, Engel, 

2006a).  

 

6.1.3. Classifying complex inheritance or common PGE sub-syndromes 

 Common PGE has a typical electroencephalographic (EEG) pattern with paroxysms 
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of generalised spike and wave and polyspike discharges, which is the hallmark of the 

syndrome and the onset of these common PGEs is usually before the age of 16 (Sander, 

2003b). Several features confound the genetic analysis of the more common PGE sub-

syndromes (Gardiner, 2005). In particular, each sub-syndrome are themselves heterogeneous 

in their phenotypic presentation and are often found to overlap (Sander et al., 2000). Different 

PGE sub-syndromes can be found within a single pedigree (Gardiner, 2005) and different 

generalised seizure types may emerge in the same patient over time, adding further 

complication (Sander et al., 2000). CAE typically begins between 4 and 10 years of age 

(Crunelli and Leresche, 2002, Gardiner, 2005). The main seizure type in CAE is typical 

absence seizures but, in about 50% of patients, GTCS can also occur although very few 

individuals additionally experience myoclonic jerks (Sander, 2003b). JME represents 5–10% 

of epilepsy as a whole and individuals most commonly present between the ages of 8 and 26 

with myoclonic jerks predominantly of the upper limbs (Greenberg et al., 1992). Over 90% 

also have GTCS and 30% have typical absences (Crunelli and Leresche, 2002). This overlap 

in seizure types suggests commonality in genetic predisposition between the PGE sub-

syndromes (Janz et al., 1992, Sander et al., 2000). Age at onset and main seizure type are thus 

used to classify the more common PGEs into the four main sub-syndromes (Panayiotopoulos 

and International League against Epilepsy., 2005). Despite these distinct features however, 

accurate diagnosis of the sub-syndromes is not always possible from the first presentation and 

so a number of patients with PGE are often difficult to classify (Gardiner, 2005).  

 

6.1.4. Genetic studies for primary generalised epilepsy; the picture so far 

 Since most of the individual genes involved in complex disorders and/or traits are 

thought to only have a small impact on the clinical phenotype, their identification has 

presented a major challenge for disease genetics (Hirschhorn et al., 2002). PGEs are similarly 

thought to arise from additive or interactive effects of more than one susceptibility gene 

(Dibbens et al., 2007) and so progress in identifying the underlying genetic causes, like most 

common, complex traits, has been slow (Dibbens et al., 2007, Frankel, 2009). Currently ~20 

genes are known to cause Mendelian forms of human epilepsy (Robinson and Gardiner, 2004) 

and, as might be expected for a disorder of neuronal hyper-excitability, at least two thirds of 

these encode ion channels (Frankel, 2009). This research suggested ion channel defects as a 

common pathogenic pathway in a multitude of epilepsies and led to the hypothesis of 

epilepsies being channelopathies (Berkovic et al., 2006). Although no directly causative ion 

channel genes have been identified for complex PGEs, this channelopathy concept has 

provided important positional clues for the pathogenesis of several common PGE sub-

syndromes (Gardiner, 2005, Dibbens et al., 2007).        
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Table 6.1 provides a summary of several of these key genetic studies.  

 Ion channel targets of current genomic studies have included voltage-gated channels 

Na+, K+, Ca2+, and Cl- and the ligand-gated channels; nicotinic acetylcholine and GABAA 

receptors (Gardiner, 2005). The most important epilepsy gene to be discovered to date is 

thought to be the previously discussed SCN1A sodium channel gene (Chapter 4). SCN1A is 

the most prevalent gene causing Mendelian forms of epilepsy and is the most studied in 

epilepsy. SCN1A mutations have been identified in the familial syndrome of Generalised 

Epilepsy with Febrile Seizures Plus (GEFS+) as well as severe myoclonic epilepsy (SMEI) or 

Dravet Syndrome (Gardiner, 2005, Mulley et al., 2005). GEFS+ is a heterogeneous autosomal 

dominant disorder (also recognised as a complex epilepsy phenotype) in which family 

members exhibit multiple epilepsy phenotypes including absence, myoclonic, generalised 

tonic-clonic or partial seizures, as well as febrile seizures (FS), with the FS being 

phenotypically simple or complex (Mulley et al., 2005). SMEI is also a FS disorder but with 

a more severe phenotype. Mutations for GEFS+ were first identified in SCN1A, and these were 

shown to alter amino acids within the voltage-sensing S4 segments of the channel, the 

functional effects of these were altered channel inactivation and a persistent inward sodium 

current (Gardiner, 2005). 

 Most of the mutations associated with SMEI are however more critical as they 

introduce a stop codon with truncation of the protein and predicted to have a loss of function. 

The SCN1A gene has not only lead the way in channelopathy research for the genetic 

epilepsies, currently presenting the only definitive marker for a phenotype of epilepsy (SMEI), 

but has also provided insight into the overlap and multigenetic complexity that can underlie 

these common forms of genetic epilepsies. Another important candidate in PGE is the genes 

of the GABAA receptor subunit gene(s), namely GABRG2 and GABRA1 (Baulac et al., 2001, 

Gardiner, 2005, Rees, 2010). The subunits encoded by GABRG2 and GABRA1 are associated 

with monogenic forms of IGE and also the GEFS+ phenotype. Mutations in the GABA 

receptor genes have also been implicated with JME (Gardiner, 2005, Rees, 2010). 
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Table 6.1. Genes implicated in complex idiopathic generalized epilepsies  

Summary of genes associated with complex idiopathic generalised epilepsies so far. Genes are 

presented for the sub-syndromes of juvenile myoclonic epilepsy, childhood absence epilepsies 

and generalised epilepsies with febrile seizures plus. Data extracted from Huber et al 2009 and 

Rees et al 2010  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCN1A = sodium channel α1 subunit, SCN1B= sodium channel β1 subunit, CACNB4 = 

voltage-dependent calcium channel β4, CACNA1H = voltage-dependent T-type calcium 

channel α1H, BRD2 = bromodomain containing protein 2, CLCN2 = chloride channel gene 

2, GABRA1 = GABAA receptor α1 subunit, GABRG2 = GABA(A) receptor ϒ2 subunit, 

GABRD = GABAA receptor δ subunit, GABRB3 = GABAA  receptor β3 subunit, EFCH1 = 

protein with an EF-hand, ME2 = malic enzyme 2, GEFS+ = generalised epilepsy with febrile 

seizures plus, JME = juvenile myoclonic epilepsy, CAE = childhood absence epilepsy 

 

 

  

 

 

 

 

 

Gene Chromosomal 

localisation 

Complex Epilepsy 

phenotype 

SCN1A 2q24  GEFS+ 

SCN1B 19q13.1  GEFS+ 

CACNB4 2q22–23  JME 

CACNA1H 16p13.3 CAE 

BRD2 6p21.3 JME  

CLCN2 3q26 CAE 

EFHC1 6p12-p11 JME  

GABRA1 5q34 JME, CAE 

GABRG2 5q34 CAE, GEFS+                                

GABRD 1p36.3 GEFS+ 

GABRB3 15q11.2 CAE                               

EFCH1/myoclonin 1 6p12 JME 

ME2 18 JME 
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 CACNA1H encodes the T-type calcium channel that is critically involved in the 

thalamo-cortical network (Mulley et al., 2003, Mulley et al., 2005). CACNA1H has 

additionally been studied extensively in regards to complex PGE genomics and rare variants 

altering ion channel properties of the encoded T-type calcium channel protein have been 

observed in patients with PGE in several studies (Chen et al., 2003, Heron et al., 2004, Heron 

et al., 2007). Variants in CACNA1H, were initially associated with CAE (Chen et al., 2003) 

but the relationship has since been extended to other epilepsy phenotypes (Heron et al., 2004). 

Variation in CACNA1H has consistently been shown to contribute to the pathogenesis of 

epilepsies with complex genetics, but no variants in CACNA1H have been described that are 

sufficiently pathogenic to cause epilepsy on their own (Dibbens et al., 2007).   

 As in genetic investigations of drug response in epilepsy (section 1.5), several loci and 

variants have been studied as possible candidates for complex PGE syndromes but the majority 

have yielded negative results, with few being pursued any further (Steinlein, 2004, Tan et al., 

2004, Kearney, 2012). In those reporting an initial positive association, replication studies 

have invariably failed to confirm the relationship (Steinlein, 2004, Tan et al., 2004). Failures, 

particularly in replication studies, are deemed to be due to the inherent effects of phenotypic 

variability, complex inheritance and genetic heterogeneity (Tan et al., 2004, Dibbens et al., 

2007). One recognised assumption is that because of the polygenic nature of PGE, an 

individual most likely develops PGE only if sufficient variation is present (Dibbens et al., 

2007). Under this hypothesised model, only a subset of a large population of susceptibility 

variants needs to be present. However, to explore this hypothesis requires association studies 

with much larger sample sizes than currently employed (Dibbens et al., 2007), perhaps in the 

order of thousands or tens of thousands of subjects (Mulley et al., 2005, Mullen et al., 2009, 

Ferraro et al., 2012). This lack of power is considered a major issue for complex disease 

genetic association studies in general (Weller et al., 2006, Mullen et al., 2009).  

 

6.1.5. Recent advancements in disease genomics 

 Greater success in the identification of genes for PGE may be achieved with unbiased 

genome-wide surveys in large study populations (Kearney, 2012). Human genomics has 

moved towards a whole genome approach in the investigation of the genetic architecture of 

complex traits in an effort to resolve the lack of power or resolution in traditional genetic 

linkage studies (sections 1.4.9 and 1.4.10) (Ferraro et al., 2012, Kearney, 2012). GWA studies 

for complex generalised epilepsies have revealed significant linkage at the loci 2q34 and 

13q31.3 for myoclonic and absence seizures, respectively (Ferraro et al., 2012, Kearney, 2012, 

Leu et al., 2012).  
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 The role of CNVs as rare forms of variation has been extensively investigated and has 

shown a collective contribution to the etiology of a variety of common neurological diseases 

with complex genetics and has also been implicated in several types of epilepsy. More 

recently, CNV hotspots have been investigated in the non-Mendelian genetic epilepsies 

(Mefford and Eichler, 2009, Mefford et al., 2010, Sisodiya and Mefford, 2011, Kearney, 

2012). Microdeletions in the chromosomal region 15q13.3 encompassing the CHRNA7 gene 

(coding for the alpha-7 subunit of the nicotinic acetylcholine receptor) were identified in 

approximately 1% of 1,223 PGE patients (Helbig et al., 2009). As such, 15q13.3 

microdeletions appear to constitute the most prevalent risk factor for PGEs identified to date 

(Helbig et al., 2009, Mulley and Dibbens, 2009). In line with current genomic research (section 

1.5), recent results from epilepsy genetics have stimulated interest in assessing the contribution 

of both rare and common variants to the aetiology of epilepsy through the utility of whole-

exome and whole-genome sequencing in individual patients and this is the next step in 

examining the basis of epilepsy genomics (Ferraro et al., 2012, Kearney, 2012). 

 

6.1.6. A machine learning approach to disease or phenotype classification 

 The univariate nature of linkage mapping, candidate gene analysis and SNP-based 

disease association studies does not adequately account for the genetics of PGE syndromes, 

which have so far proven to be too heterogeneous for the detection of strong associations. ML, 

as described in Chapter 5, is an alternative and efficient way for extracting hidden information 

in a given dataset (Lee et al., 2008). The main advantages being, i) its ability to extract 

relationships from high-dimensional data, and ii) efficiency in simultaneously analysing, 

numerous, often highly interactive variables, of small effect. This may, in turn, allow greater 

analytical power in cohorts of limited sample size (Lee et al., 2008). 

 Several steps are involved in the appropriate application of ML approaches (Figure 

6.1, 6.2). The processes prior to model development are feature selection for identifying and 

removing as many redundant variables as possible (Yu & Liu, 2004) and instance selection 

for filtering noisy data (Kotsiantis, 2007, Derrac et al., 2012). These processes enable models 

to operate faster and more effectively (Larranaga et al., 2006, Kotsiantis, 2007, Joaqu et al., 

2010).  

 

 

 

 

 

 



  CHAPTER SIX 
 

187 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1  An overview of the supervised machine learning process 

The supervised approach to machine learning entails the input of data with known values for 

model development or training. Figure reproduced from Kotsiantis et al 2007. 
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6.1.7. Development and assessment of machine learning models 

 Once a ML model has been built, it requires evaluation and interpretation and this 

forms the next stage in model development (Larranaga et al., 2006). The final overall 

performance of a learning method relates to its prediction capability on independent test data 

(Hastie et al., 2001). Assessment of this performance is extremely important in practice, since 

it guides the choice of model and gives a measure of the quality of the chosen model (Hastie 

et al., 2001). This requires estimating the expected test error and/or prediction accuracy (the 

percentage of correct predictions divided by the total number of predictions) for a model. From 

this, the performance of different models can be estimated in order to choose the best one, 

with prediction error usually estimated on new unseen datasets (Hastie et al., 2001).  

 The best approach for model development and evaluation is to separate the dataset 

into three randomly divided individual patient datasets; (i) a training dataset, (ii) a validation 

dataset, and (iii) a test dataset (Hastie et al., 2001, Mansmann and Winkelmann, 2002, 

Kotsiantis, 2007, Lee et al., 2008). The training dataset is used to fit the models, the validation 

dataset is used to estimate prediction error for model selection and optimization, and the test 

dataset is used for assessment of the generalisation error of the chosen model (Mansmann and 

Winkelmann, 2002, Kotsiantis, 2007, Petrovski et al., 2009). The test dataset is usually kept 

hidden and used only at the end of the data analysis for a true, unbiased test of prediction 

accuracy (Hastie et al., 2001). The number of observations in each of the three parts can 

depend on the signal-to-noise ratio in the data and the size of the training dataset (Hastie et al., 

2001). 

 Additional techniques that can be used to partition data for initial model development 

include cross-validation (CV) and leave-one-out CV (e.g. the kNN ML method described in 

Chapter 5). CV is the simplest method for estimating prediction error and involves dividing 

the training dataset into mutually exclusive and equally-sized subsets, with each individual 

subset subsequently trained on the composite of all other subsets (the average error rate of 

each subset is therefore an estimate of the error rate of the model) (Hastie et al., 2001, 

Mansmann and Winkelmann, 2002, Kotsiantis, 2007). In the latter CV method, all test subsets 

consist of a single instance (Kotsiantis, 2007).  

 

6.1.8. Application of machine learning to complex disease genetics  

 A number of classification-based ML methods are available (Kotsiantis, 2007). These 

include logical or symbolic techniques, such as classification trees, decision learning trees 

(DLTs), perception-based techniques such as NNs, and statistical techniques such as kNN and 

SVM (Kotsiantis, 2007)(Table 6.2). Several of these MLAs, particularly MDR (Ritchie and 

Motsinger, 2005, McKinney et al., 2006), NN (Lucek and Ott, 1997, Motsinger et al., 2006), 
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RF (Yoon et al., 2003, Bureau et al., 2005) and SVM (Yoon et al., 2003, Yu and Shete, 2005), 

have previously been used for the study of multi-locus association traits (Dinu et al., 2007), 

including diabetes, coronary heart disease, alcoholism and breast cancer (Yu and Shete, 2005, 

Bhaskar et al., 2006b, Silva et al., 2011). 

 

6.1.9. The kNN machine learning approach can successfully identify high-

order patterns in complex disease traits 

 The Australian multigenic pharmacogenomic classifier study, described in Chapter 5, 

exemplifies a recent and successful attempt at applying ML approaches to a large amount of 

genetic data (Cavalleri et al., 2007, Petrovski et al., 2009) namely common variation in the 

form of SNPs, to predict AED response in epilepsy patients. The kNN classifier is one of the 

most well-known classifiers that is based on the instances contained in the training dataset 

(Cover and Hart, 1967, Joaqu et al., 2010). Thus, the effectiveness of the classification process 

relies on the quality of the training data (Joaqu et al., 2010). Its main drawback is its relative 

inefficiency when the size of the dataset to be used in the modeling process increases 

(Kotsiantis, 2007). Instance and feature selection, which aid data-reduction, are thus also 

commonly used alongside the kNN ML algorithm. Thus, while supervised learning approaches 

have previously been reported to obtain reliable results in pharmacogenetics (Petrovski et al., 

2009), they have not as yet been used to identify genetic predictors of epilepsy or epilepsy 

syndromes, such as PGE. 

 

6.2. Purpose of investigation  

 A number of patients with PGE are often difficult to classify (Reutens and Berkovic, 

1995). There are sub-syndromes of JME in which patients present not just with myoclonic 

jerks but also with or without typical absence seizures and GTCS (Gardiner, 2005). CAE is 

mainly characterised by typical absence seizures that persist into adolescence (Crunelli and 

Leresche, 2002, Gardiner, 2005), but GTCS can emerge in a significant percentage (up to 

90%) of CAE cases when the absence seizures persist into adulthood (Crunelli and Leresche, 

2002). CAE can also evolve into JME, with an estimated 18% of all JME patients having an 

initial diagnosis of CAE (Delgado-Escueta, 2007). With this overlap in seizure types, 

distinguishing between PGE sub-syndromes can be problematic and making a precise clinical 

diagnosis may not be possible at the first presentation. Accuracy in classification is however 

important for the correct prognosis of individual PGE patients and for initiation of the correct 

treatment, particularly as several AEDs have been shown to exacerbate specific seizure types 

(Bergey, 2005, Beydoun and D'Souza, 2012).  
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 A recent attempt has been made to reduce the inherent heterogeneity in non-Mendelian 

PGEs using neurobiologically defined traits, such as seizure types rather than syndrome 

categories, for the purposes of genetic study (Greenberg and Subaran, 2011, Ferraro et al., 

2012). This approach may help cut across phenotypically complex PGE syndromes and 

facilitate identification of the underlying susceptibility genes (Greenberg and Subaran, 2011). 

Patients can be segregated into groups according to strict demographic and/or clinical 

categories (i.e. age at onset, gender, and seizure type) for studying genetic variants (Ferraro et 

al., 2012). Each of these factors may have unique genetic signatures. Separating patients into 

clinical categories that allow such factors to be analysed independently may be a better 

approach than lumping people into often arbitrarily assigned syndromic sub-groups (Ferraro 

et al., 2012). 

 

6.2.1. Aims  

 The aim of the study described in this chapter was to apply ML approaches to a large 

cohort of patients with newly-diagnosed, complex, non-Mendelian PGEs in an effort to 

identify the underlying genetic signature of these common epilepsy syndromes, and thereby 

aid in sub-syndromic diagnosis. The potential biological significance of any identified variants 

was also explored. The specific research objectives were: 

 

Objective 1: to use ML algorithms to build predictive models for the identification of genes 

and/or gene variants as potential markers for the differentiation of individuals presenting with 

CAE, JAE and JME on the basis of seizure types. 

 

Objective 2: to use ML algorithms to build predictive models for the identification of genes 

and/or gene variants as potential markers for the differentiation of individuals with PGE and 

focal epilepsies (or LREs). 

 

In each case, the kNN ML algorithm (Petrovski et al., 2009) (Chapter 5) was employed. An 

additional aim was to explore a number of other ML approaches and identify the ML approach 

with the best overall performance when applied to this particular genomic dataset.  
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6.3. Methods 

6.3.1. Study populations  

 Clinical and genetic data from two independent cohorts of newly treated PGE patients 

were employed in the analysis; SANAD study patients (Marson et al., 2007a, b) and a cohort 

recruited at two epilepsy centres in Australia (The Royal Melbourne Hospital in Melbourne 

and Austin Health in Heidelberg) (Cavalleri et al., 2007, Petrovski et al., 2009). Genotype and 

clinical data was available for a total of 436 patients with newly treated PGE, 296 from 

Australia and 140 from the UK (Table 6.3). For Objective 2, LRE patients acted as non-PGE 

controls, with a total of 760 LRE patients (628 SANAD and 132 Australian) possessing 

sufficient clinical and genetic data for initial inclusion (Table 6.4). Clinical information on 

PGE patients was extracted from hospital notes and existing databases in order to identify 

syndromes, sub-syndromes and seizure types.  

 

 

 

Table 6.3 Characteristics of UK and Australian patient cohorts for PGE (seizure 

classification cohort) 

   Australian 

 (n=136) 

UK  

(n=68) 

Total 

(n=204) 

Age at 

randomisation  

Mean 

(±SD) 

 12 (±8.27) 19 (±11.6) 14 (±10.0) 

Sex n (%) Male 59 (43.4%) 35 (51.5%) 94 (46.1%) 

  Female 77 (56.6%) 33 (48.5%) 110 (53.9%) 

Epilepsy 

syndrome  

n (%) CAE/JAE 94(69.1%) 32 (47.1%) 126 (61.8%) 

  JME 42(30.9%) 36 (52.9%)  78 (38.2%) 

SD = standard deviation, CAE = childhood absence epilepsy, JAE = juvenile absence 

epilepsy, JME = juvenile myoclonic epilepsy 
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Table 6.4 Characteristics of UK and Australian newly treated epilepsy patient 

cohorts for classification of epilepsy type 

   Australian 

(n=428) 

UK 

 (n=189) 

Total 

(n=617) 

Age at 

randomisation 

Mean 

(±SD) 

 13 (±8.4) 28 (±17.4) 23 (±18.1) 

Sex n (%) Male 192 (64.8%) 104 (35.1%) 296 (48.0%) 

  Female 236 (73.5%) 85 (26.5%) 321 (52.0%) 

Epilepsy type  n (%) PGE 296 (69.3%) 131 (30.7%) 427 (69.2%) 

  LRE 132 (71.7%) 58* (31.5%) 184 (29.8%) 

* Removal of 570 patients from total LRE available to maintain consistent ratio of Australian 

to UK patients with LRE 

  

 

 

6.3.2. Phenotyping and patient inclusion for objective one 

 For objective 1, all patients were classified into the following 2 groups, based on 

seizure type: Group 1 - patients with typical absence seizures (with or without GTCS) but not 

myoclonic jerks, and Group 2 - patients with myoclonic jerks (with or without GTCS) but not 

typical absence seizures. Patients with GTCS alone were excluded (n=88) (Table 6.3). Of the 

total PGE cohort (n=436), individuals were also excluded from the analysis if they exhibited 

both myoclonic jerks and typical absence seizures (n=71), if they exhibited both focal and 

generalised seizure types (n=7), or if there was evidence of CAE later evolving into JME 

(n=60). Finally, six additional patients were removed at the QC stage due to inadequate 

phenotype data and/or missing genotypes. In Group 1, no distinction was made between 

patients diagnosed with either CAE or JAE. The remaining 204 individuals (136 Australian, 

68 SANAD) thus had PGE characterised by either myoclonic jerks (n=78) or typical absence 

seizures (n=126), with or without GTCS (Table 6.3). 

 

6.3.3. Phenotyping and patient inclusion for objective two 

 For objective 2, all patients considered for inclusion in the study had PGE or LRE, 

with unclassified epilepsies excluded. Of the 436 available PGE patients, 427 (296 Australian, 

131 SANAD) were included in the analysis, with 9 patients again removed after QC due to 
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inadequate phenotype data and/or missing genotypes. Of the 760 available LRE patients, only 

190 (132 Australian, 58 SANAD) were included in the analysis. This was a significant but 

deliberate exclusion considered necessary to achieve consistency in the ratio of Australian to 

SANAD patients in both PGE and LRE groups (Table 6.4). 

 

6.3.4. Patient stratification 

 For each of the research objectives, the respective patient groups were randomly 

allocated into a developmental dataset and a test dataset. Datasets were matched where 

possible for age, gender and cohort of origin (Australian or SANAD) to eliminate the influence 

of demographic variables. The developmental datasets were used to build predictive classifiers 

and the test datasets used to assess the predictive capacity of those classifiers.  

 

6.3.5. Developmental and test datasets for objective one and two 

 For the distinction of seizure types, i.e. typical absence seizures and myoclonic jerks, 

162 patients (80%) were allocated to the developmental dataset and 42 patients (20%) were 

allocated to the test dataset. The developmental dataset was further split into training (65%; 

n=105) and validation (35%; n=57) datasets. For the distinction of PGE patients from non-

PGE controls, a larger initial cohort was available, which allowed a more optimal sub-division 

into the required datasets. Thus, 447 patients (72%) were allocated to the developmental 

dataset and 170 patients (28%) were allocated to the test dataset. The developmental dataset 

was further split into a training (62%; n=277) and validation (38%; n=170) datasets. 

 

6.3.6. Genotyping and genetic variants 

 Australian patients had been genotyped on the Illumina GoldenGate™ platform for 

4,041 candidate SNPs from 279 candidate genes in a previous multiple candidate gene study 

(Cavalleri et al., 2007) that also formed the basis for the Australian five-SNP 

pharmacogenomic classifier described in Chapter 5 (Petrovski et al., 2009). The 279 candidate 

genes were selected on the basis of suspected involvement in epilepsy, as part of an 

international collaboration to detect variants that may influence the development and treatment 

of common forms of epilepsy (Cavalleri et al., 2007). The gene panel included all known 

members of the voltage-gated sodium and calcium channel families, selected chloride and 

potassium channels, and key receptors, metabolic enzymes, and transporters of the major 

neurotransmitters (GABA, glutamate and acetylcholine) (Cavalleri et al., 2007). In contrast, 

SANAD patients were genotyped on the HumanHap660 Illumina bead chip (Illumina 660™) 

at the Wellcome Trust Sanger Institute (Cambridge, UK), yielding 550,000 genome-wide 
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tSNPs and 120,000 additional SNPs targeting CNVs.  

 

6.3.7. Quality control methods and SNP inclusion  

 Available genetic data, as described above, was interrogated to identify a total of 2,087 

SNPs that were common to both SANAD and Australian patients. Genetic data for all 2,087 

SNPs were subjected to QC procedures before inclusion in the analysis. SNP QC included; i) 

comparison of genotyping consistency, ii) deviation from HWE, and iii) consistency in MAF. 

A total of 1,840 SNPs survived QC and were used in the subsequent model building and data 

analyses.  

 

6.3.8. Statistical analysis and machine learning modeling software 

 HWE and MAF for the initial QC checks were performed using SAS® Enterprise 

Miner version 5.3 software (SAS®). Statistical analysis was performed using the online 

Cochran-Armitage test for trend (http://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl) and 

the Chi-square test in SPSS. ML methods were explored and employed in the development of 

predictive models using SAS®, with the kNN ML approach executed using the kNN algorithm 

as described in Chapter 5 (Petrovski et al., 2009). 

 

6.3.9. Model development using SAS® Enterprise Miner  

 Many different data-mining algorithms and tools are currently available. A variety of 

supervised learning classification-based methods are available on SAS® Enterprise Miner for 

the development of predictive models for pattern recognition. These differ not only in the type 

of data they prefer (i.e. continuous, categorical, heterogeneous) but also in complexity of the 

data (i.e. interactions and relationships that may exist within data), use of functions, 

approaches used for algorithm generation, and overall data classification. No single supervised 

learning method is best suited for a particular dataset, so several algorithms were applied in 

this analysis. The different ML approaches used are briefly described in Table 6.2. Each SAS® 

data-mining approach was applied to the training dataset and this was used for the initial model 

fitting. Next, the validation dataset was used to monitor and tune the model weighting and for 

initial model assessment. Finally, the test dataset was used to determine the predictive capacity 

of the model.  

 

 

 

 

http://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
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6.3.10. k-Nearest Neighbour approach for model development  

 The kNN ML approach for classifying objects (described in Chapter 5) is based on 

closest training examples in the feature space (Hastie et al., 2001). An observation is classified 

by the average of the observations that are its k nearest neighbours, (k is a positive integer, 

typically small) and the nearest neighbour is the one with the smallest Euclidean distance in 

the nth-dimensional feature space (Hastie et al., 2001, Kotsiantis, 2007, Petrovski et al., 2009). 

The contributions of the neighbours are weighted, so that the nearer neighbours contribute 

more to the average observation than the more distant ones (Kotsiantis 2007; Petrovski, 

Szoeke et al. 2009). The neighbours are identified from observations made in nth-dimensional 

space for the training dataset, in which the correct classification is known (Kotsiantis 2007; 

Petrovski, Szoeke et al. 2009). The best choice of k is dependent upon the data; generally, 

larger values of k reduce the effect of noise on the classification but make boundaries between 

classes less distinct (Kotsiantis 2007; Petrovski, Szoeke et al. 2009). The optimum k for any 

given classification model is determined by various techniques, including cross validation. In 

the analyses described below, k was optimised in the validation dataset, which represented 

35% of the total developmental dataset (or 38% in the PGE vs. LRE analysis) (Kotsiantis 2007; 

Petrovski, Szoeke et al. 2009). 

 

6.3.11. Model building process  

 Initially for objective 1, all genomic data (n=1,840 SNPs) was used to build 

classification models. This was undertaken as part of a preliminary explanatory analysis. 

However, only a subset of SNPs (selected by a specific data filtering method) were later 

employed in formal classification models for both objectives. This was for an effort to reduce 

data complexity as to allow more efficient data analysis, and for the application of the kNN 

approach which preferentially functions on a smaller set of variables (Petrovski et al., 2009). 

The stages of data analyses for each classification task were; (i) cohort stratification, (ii) 

independent univariate analysis for all SNPs, (iii) application of SAS® ML approaches to the 

(a) training, (b) validation, and (c) test datasets (objective one), (iv) a performance test for 

each model using the Chi-square test (objective one), (v) feature selection using the Golub test 

to reduce SNP number, (vi) re-application of ML methods to each dataset using the SNP 

subset, (vii) application of the kNN approach, and finally, (viii) a performance test for each 

subset SNP model using the Chi-square test.  
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 In total, 6 different ML algorithms were run to predict PGE seizure type. These were 

DLT, NN, Logistic Regression (LOGREG), Ensemble, Partial Least Squares and SVM. Where 

an ML approach failed to generate a result because it was unsuited to the data, an alternative 

ML method was applied. Individual models were developed using only the developmental 

dataset (training and validation datasets). 

 

6.3.12. Dimension reduction and SNP selection using the developmental 

dataset 

 Data reduction procedures are of vital importance to ML and data mining (Czarnowski 

and Jȩdrzejowicz, 2008). Most ML algorithms employ a data reduction step whereby any 

irrelevant attributes are removed and a subset of variables are selected according to their 

influence on the outcome variable. These are often found to be embedded in ML programs 

(Moore et al., 2010). Identification of a suitable subset of SNPs was achieved by randomly 

assigning each patient in the developmental dataset into one of five independent groups, with 

equal numbers of cases with absence and myoclonic seizures or LRE and PGE in each group 

(Table 6.5). For each of these five groups, the SNPs were ranked according to their influence 

on seizure type/epilepsy type using the Golub score (Golub et al., 1999). The Golub score 

methodology has been described previously (Petrovski et al., 2009) (Figures 6.2 and 6.3, Table 

6.5). Only the SNPs that ranked among the top 30 in two or more of the five independent 

groups was selected for further analysis.  

 

6.3.13. Application of kNN approach 

 The kNN approach used previously for the investigation of drug response phenotypes 

(Chapter 5) involved an n-1 leave-one-out cross validation for model optimisation and initial 

assessment. In the current analysis, however, this step was performed in specific validation 

datasets, representing 35% and 38% of the development datasets for objectives 1 and 2, 

respectively. This was performed by randomly dividing data into five equally sized groups, 

stratified by seizure (objective 1) or epilepsy (objective 2) type. The prediction model was 

then fitted to four of the subgroups and validated by calculation of prediction error in the fifth 

subgroup. This process was repeated each of the five subgroups in turn and final estimates of 

the prediction error combined (Tables 6.11. and 6.14).  
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6.3.14. Optimisation and assessment 

 The performance of each of the ML models was first internally assessed using the 

validation dataset. This allowed optimisation of the models and was additionally critical to the 

selection of the best model parameters. For the kNN classifier approach, a cross-validation 

method was used at this stage (Chapter 5). Independent validation of the ML models was 

performed on the test datasets for each objective (20% of total population for objective 1, 28% 

for objective 2) to confirm the predictive accuracy of the models. This involved re-running 

each of the ML approaches, including kNN, using only test dataset patients. This step was 

performed on both the full SNP set (n=1,840) and the filtered SNPs. 

 Sensitivity indicates a test’s ability to correctly classify those with the phenotype of 

interest and is analogous to the true positive rate. Specificity measures the ability of a test to 

correctly classify those without the phenotype of interest and is akin to the true negative rate 

(Kotsiantis, 2007). Classification accuracy of each model on the validation and test datasets 

was measured to determine the chance likelihood of the predictions; a 2x2 contingency table 

was generated and the difference between actual (TP, TN) and predicted values (FP, FN) 

assessed using Fisher’s exact test (www.langsrud.com/fisher.htm). Sensitivity and specificity 

values of ≥80% and PPV of ≥80% were used to indicate good model performance (Petrovski 

et al., 2009). Sensitivity, specificity and positive (PPV) and negative (NPV) predictive values 

were calculated for each of the models using the true positive (TP), false positive (FP), true 

negative (TN) and false negative (FN) rates automatically generated by each of the SAS® ML 

models. For the kNN model, the TN, TP, FN, FP values were calculated manually using the 

actual and predicted outcome generated by the algorithm (Larranaga et al., 2006).  

 

6.3.15. Investigation of the biological significance of SNPs  

 In addition to the genetic analyses, each subset of SNPs identified after the data 

reduction stage (i.e. those found to be most predictive of seizure type for objective 1 and 

epilepsy type for objective 2) were subject to bioinformatics analysis to identify their potential 

biological significance (see section 2.4.2 and 3.2.7) (fastsnp.ibms.sinica.edu.tw) 

(www.ensembl.org)(www.cbrc.jp/research/db/TFSEARCH.html)(Yuan et al., 2006) (section 

3.2.7). Information was also extracted on genomic structure; including gene/SNP LD structure 

(section 3.2.4).  

 

6.3.16. Application of the Golub score method in each classification task 

 For objective 1 of the top 30 SNPs in each of the Golub subgroups, 10 SNPs were 

found in three of the five subgroups and one in four of the five subgroups (Figure 6.2). This 

subset of SNPs (N=11) was subjected to ML modeling for seizure type. For objective 2 one 

http://www.langsrud.com/fisher.htm
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SNP was found across all five subgroups, seven were found in four of the five subgroups, five 

in three subgroups, and three SNPs in two of the five subgroups (Figure 6.3) and this subset 

of 16 SNPs (N) was subjected to ML modeling for epilepsy type. 

 

6.3.17. Statistical analysis 

Chi-square statistics (SPSS) and Cochran-Armitage test for trend (http://ihg.helmholtz-

muenchen.de/cgi-bin/hw/hwa1.pl) were used for all univariate analyses, with P≤0.05 

indicative of statistical significance for both single SNP association and model assessment 

 

 

 

 

Table 6.5 Random stratification of PGE patients  

Patients were stratified into five independent groups with equal number of individuals with 

each seizure or epilepsy phenotype for the application of the Golub filtering approach 

 

 

 

 

 

 

 

 

 

PGE = primary generalised epilepsy JME = myoclonic seizures, ABS = absence seizures, 

PGE= primary generalised epilepsy; LRE= localised related epilepsy 

 

 

 

 

 

 

 

 

 

 

Seizure 

classification 

Group1  

n=32 

Group2 

n=32 

Group3 

n=32 

Group4 

n=33 

Group5 

n=33 

JME 12 12 12 13 13 

ABS 20 20 20 20 20 

Syndrome 

classification 

Group1 

n=90 

Group2 

n=90 

Group3 

n=90 

Group4 

n=89 

Group5 

n=88 

PGE 62 62 62 62 61 

LRE 28 28 28 27 27 

http://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
http://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
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Figure 6.2 Random stratification of the developmental cohort into five independent 

groups for the application of the Golub filtering approach for seizure type 

The top 30 ranked single nucleotide polymorphisms within each of the five independent cross-

validation subgroups were partitioned from the training set. Arrows and colours indicate 

common SNPs across three or more of the five groups that were selected for the additional 

model development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group1 Group2 Group3 Group4 Group5

rs6962852 rs1672997 rs2475377 rs1982673 rs1672997

rs13210420 rs38540 rs488192 rs17184707 rs678957

rs7099034 rs17124538 rs6489330 rs6777084 rs1592669

rs6495228 rs741160 rs10927888 rs1457784 rs1457784

rs6478676 rs8042482 rs4660468 rs4987852 rs6489330

rs1108877 rs1641021 rs1051640 rs3769931 rs1688015

rs3776587 rs2363838 rs3766553 rs6962852 rs10736084

rs2241103 rs1982673 rs6599229 rs550270 rs3737964

rs4987852 rs12622156 rs7340612 rs3738028 rs9292637

rs2469510 rs12053903 rs626785 rs3744353 rs3738028

rs2436134 rs1571930 rs7556152 rs2241103 rs4340440

rs1982673 rs6962852 rs12679786 rs1801133 rs488192

rs4813156 rs17465037 rs10494834 rs1426223 rs2241103

rs577935 rs525797 rs1435260 rs7108848 rs7252014

rs1457784 rs2252525 rs3864884 rs6489330 rs9607658

rs3738028 rs1426223 rs2237866 rs7167588 rs1317433

rs9485526 rs807515 rs797733 rs12319670 rs3744353

rs17033829 rs2436134 rs17465037 rs1405948 rs577935

rs757200 rs1020740 rs525797 rs6478676 rs10153455

rs488192 rs2190524 rs2014141 rs488192 rs1426223

rs1941637 rs6954291 rs951241 rs2045388 rs11061995

rs535532 rs2039290 rs13210420 rs1415482 rs936642

rs12622156 rs3766553 rs4646437 rs3971872 rs3787870

rs11061995 rs797733 rs11061995 rs9390754 rs2579931

rs741160 rs7260329 rs2469510 rs4660468 rs6902106

rs7125 rs4987852 rs5950884 rs2237866 rs751994

rs2239941 rs1363345 rs2045388 rs2014141 rs701492

rs17345592 rs17033829 rs2337980 rs951241 rs1288386

rs10494834 rs751994 rs10425651 rs1592669 rs3923156

rs626785 rs3864884 rs6478676 rs3025643 rs1415482
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Figure 6.3 Random stratification of the developmental cohort into five independent 

groups for the application of the Golub filtering approach for epilepsy type 

The top 30 ranked single nucleotide polymorphisms within each of the five independent cross-

validation subgroups were partitioned from the training set. Arrows and colours indicate 

common SNPs across two or more of the five groups that were selected for additional model 

development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group1 Group2 Group3 Group4 Group5

rs740805 rs2184226 rs2184226 rs2184226 rs4456611

rs1126617 rs4740788 rs10815018 rs1126617 rs2184226

rs2184226 rs10873637 rs740805 rs2076317 rs2278751

rs2817239 rs17646890 rs324649 rs4566829 rs4316580

rs2076317 rs2165208 rs4896857 rs10280428 rs2165208

rs2472299 rs10280428 rs10280428 rs2469510 rs10043074

rs10280428 rs2832499 rs10510403 rs3851100 rs4740788

rs6680280 rs13550 rs15524 rs4660468 rs9292637

rs7433956 rs6017731 rs4646450 rs4926386 rs10510403

rs10815018 rs4316580 rs4667792 rs7775073 rs4566829

rs4740788 rs10491734 rs1859690 rs7780181 rs10841795

rs324649 rs10520162 rs2181274 rs1859690 rs10280428

rs362848 rs3821767 rs1439806 rs324649 rs816547

rs2278751 rs10815018 rs4926386 rs911562 rs7844150

rs7775073 rs7179733 rs2303716 rs12985786 rs1432128

rs9451192 rs3798256 rs17784350 rs10510403 rs1481031

rs4896857 rs1363345 rs2076317 rs4740788 rs10815018

rs2181274 rs1859690 rs7017612 rs3923156 rs3851100

rs7844150 rs209337 rs4926286 rs6467694 rs17646890

rs420817 rs10502243 rs2789539 rs258704 rs1057908

rs1432128 rs5065 rs1126617 rs15524 rs2623998

rs15524 rs3851100 rs7844150 rs2606357 rs956572

rs17109405 rs15524 rs3804506 rs3743075 rs2565065

rs10207194 rs464028 rs10867084 rs2156634 rs1891395

rs10873637 rs740805 rs898417 rs3739722 rs12490937

rs3821197 rs2156634 rs1481031 rs2283970 rs2254764

rs4687770 rs2181274 rs4412433 rs9380409 rs10873637

rs10491734 rs10510403 rs209337 rs17317854 rs2076317

rs816547 rs4236482 rs3851100 rs2469517 rs4303728

rs6445704 rs4935752 rs12985786 rs12420938 rs1042389

rs4926386 rs3773364 rs6458841 rs11694911 rs3856094

rs956572 rs9380409 rs17646890 rs5065 rs2299637

rs2268582 rs3827199 rs2109422 rs4652707 rs2156634

rs9294430 rs16985442 rs363472 rs4236482 rs11178226

rs11759284 rs16027 rs12145027 rs4456611 rs1126617

rs1859690 rs1481031 rs7544118 rs1485175 rs12996382

rs159914 rs3805455 rs2283970 rs210131 rs911562

rs954785 rs4426954 rs4646437 rs7844150 rs7124411

rs6441061 rs2296063 rs2597909 rs2832439 rs1439806

rs525797 rs6073991 rs16929470 rs12198870 rs12420938

rs802333 rs2832442 rs2278751 rs11759284 rs209337

rs3743075 rs1865806 rs420817 rs1439806 rs7433956

rs797733 rs210139 rs2817239 rs7357341 rs1731017

rs857958 rs7017612 rs13210420 rs6879020 rs3804504

rs2789539 rs1126617 rs6863386 rs4936536 rs2665691

rs4660468 rs2303716 rs12420938 rs2565065 rs740805

rs872013 rs16030 rs10841795 rs209337 rs3743075

rs4316580 rs816547 rs4468579 rs1917810 rs6777084

rs10510403 rs3809208 rs6431631 rs928765 rs2281845

rs2303716 rs324649 rs3766781 rs10043074 rs10488602
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6.4. Results 

6.4.1. Development of a classifier for seizure type using all 1,840 SNPs 

 Since the original 1,840 SNPs were selected from epilepsy related genes (Cavalleri et 

al., 2007), the first stage of the model building process was a univariate test to identify any 

individual SNPs associated with seizure type. From these SNPs five SNPs were found to have 

a p-value of 0.01 or below, before correction for multiple testing. All 1840 SNPs were 

subsequently used in ML model development. When all 1,840 SNPs were investigated, good 

performance was found with the training dataset across all ML models, with SVM being the 

most accurate and showing the lowest error (no incorrect classifications in the training dataset) 

(Table 6.6). However, none of the models were able to accurately classify seizure type in either 

the validation or test datasets, as shown in (P>0.05). This poor overall model performance was 

expected, given the large number of SNPs employed. This task was mainly performed for the 

purpose of model exploration and to assess the benefit of the subsequent data reduction stage 

to predictive modeling.  

 

6.4.2. Univariate results seizure type and training data 

 The results of the independent analysis of association between each of the 11 SNPs 

with seizure type in the training dataset is illustrated in Table 6.7.  All SNPs showed 

association with seizure type (uncorrected for multiple testing) in the training data, with three 

SNPs showing a Chi-square of P of <0.01. The performance of each of the ML models 

developed on combining all 11 SNPs is presented in Table 6.8. With this multi-SNP analysis, 

a lower prediction error was observed across all four models, (P=<0.05 in the training and 

validation datasets) in most cases. The NN approach appeared to be the most accurate model, 

correctly identifying 29 typical absence and 17 myoclonic jerk cases but incorrectly 

identifying 6 myoclonic jerks as typical absence (false positives) and 7 typical absence cases 

as myoclonic jerks (false negatives); P=4.2x10-27 in the training dataset). Although predictive 

in the training and validation sets, none of the ML models were able to accurately classify 

individuals in the test dataset (all p-values >0.05; Table 6.8).  
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Table 6.6 Classification of seizure type using 1840 SNPs and SAS ML models 

  Predictive performance of each SAS machine learning model on training n=103, validation n=59 and test (n=42) data subsets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ML= machine learning, DLT= decision learning tree, NN= neural network, LOGREG= logistic regression SVM= support vector machine, NPV= negative 

predictive value, PPV = positive predictive value, TP = true positive (CAE/JAE correctly classified as CAE/JAE), FP= false positive (JME incorrectly classified 

as CAE/JAE), TN= true negative (JME correctly classified as JME), FN= false negative (CAE/JAE incorrectly classified as JME), CAE= childhood absence 

epilepsy, JAE= juvenile absence epilepsy, JME= juvenile myoclonic epilepsy  

ML model n Data subset TP FP FN TN PPV(%) NPV(%) Sensitivity(%) Specificity(%) P-value 

DLT 103 Training  64 24 0 15 100.0 38.5   6.2 X10-8 

 59 Validation 31 18 5 5 86.1 21.7   0.49 

 42 Test 22 14 4 2 61.1 33.3 84.6 12.5 0.76 

NN 103 Training  64 39 0 0 100.0 0.0   1 

 59 Validation 36 23 0 0 100.0 0.0   1 

 42 Test 42 26 0 16 100.0 0.0 61.9 - 1 

LOGREG 103 Training  46 14 18 25 71.9 64.1   4.5x10-4 

 59 Validation 20 12 16 11 55.6 47.8   0.50 

 42 Test 9 7 17 9 56.3 34.6 34.6 56.3 0.82 

SVM 103 Training  64 0 0 39 100.0 100.0   2.6x10-29 

 59 Validation 30 16 6 7 83.3 30.4   0.34 

 42 Test 21 15 5 1 58.3 16.7 34.6 56.3 0.96 
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Table 6.7 Independent analysis of 11 SNPs and seizure type n=162 

Chi-square test for association between genotype and seizure type in the training data set 

SNP ID (rs)  
P-value 

Training set 
SNP ID (rs) 

P-value 

Test set  

rs65652852  0.20 rs6962852 1x10-4 

rs488192  0.53 rs488192 2.2x10-3 

rs6489330  0.26 rs6489330 0.01 

rs2241103  0.98 rs2241103 0.01 

rs4987852  0.11 rs4987852 0.01 

rs1457784  0.69 rs1457784 0.01 

rs3738028  0.43 rs3738028 0.01 

rs11061995  0.43 rs11061995 0.02 

rs6478676  0.95 rs6478676 0.02 

rs1982673  0.78 rs1982673 0.02 

rs1426223  0.68 rs1426223 0.04 
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Table 6.8 Classification of seizure type using 11 SNPs and SAS machine learning models 

Predictive performance of each SAS machine learning model on training n=103, validation n=59 and test n=42 data subsets 

 

ML = machine learning, DLT = decision learning tree, NN = neural network, LOGREG = logistic regression SVM= support vector machine, NPV = negative 

predictive value, PPV = positive predictive value, TP = true positive (CAE/JAE correctly classified as CAE/JAE), FP = false positive (JME incorrectly classified 

as CAE/JAE), TN = true negative (JME correctly classified as JME), FN = false negative (CAE/JAE incorrectly classified as JME), CAE = childhood absence 

epilepsy, JAE = juvenile absence epilepsy, JME = juvenile myoclonic epilepsy

ML model n Data subset TP FP FN TN PPV (%) NPV (%) Sensitivity (%) Specificity (%) P-value 

DLT 103 Training  49 11 15 13 81.7 46.4 76.6 54.2 1.7 x10-6 

 59 Validation 26 10 10 13 72.2 72.2 72.2 56.5 0.03 

 42 Test 19 9 17 7 67.9 29.2 52.8 43.8 0.70 

NN 103 Training  64 1 0 38 98.5 100.0 100.0 97.4 1.7 x27 

 59 Validation 29 6 7 17 82.9 80.6 80.6 73.9 4.2x 10-5 

 42 Test 20 9 6 7 69.0 53.8 76.9 43.8 0.14 

LOGREG 103 Training  59 9 5 30 86.8 85.7 92.2 76.9 4.3 x10-13 

 59 Validation 31 8 5 15 79.5 86.1 86.1 65.2 7.2 x 10-5 

 42 Test 20 10 6 6 66.7 50.0 76.9 37.5 0.26 

SVM 103 Training  61 10 32 9 65.6 47.4 85.9 22.0 6.1 x10-14 

 59 Validation 2 11 12 34 15.4 14.3 14.3 75.6 2.2 x 10-4 

 42 Test 24 13 2 3 64.9 60.0 92.3 18.8 0.27 
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6.4.3. kNN analysis of seizure type  

 Prior to application of the kNN algorithm, the 11 SNPs were independently tested for 

association with seizure type in the patients (n=42) forming the test dataset (Table 6.9) and no 

association was identified. For the kNN approach, the developmental dataset (n=162) was 

randomly allocated into five validation groups (V1-V5; n=32) with equal numbers of typical 

absence and myoclonic jerks cases in each group (Table 6.10). A single group (e.g. V1) was 

then used as a validation group and the remaining groups (V2-V5) as the training dataset to 

make a prediction. This process was repeated with each of the five validation groups in turn, 

with V1-V5 each used as the validation dataset on one occasion only. An average predictive 

performance estimate across the five runs was then generated. The training dataset was 

therefore built on an average of 130 patients, with 32 individuals used as a validation dataset 

for independent cross-validations. This allowed the determination of the best k (i.e. number of 

nearest neighbours) and avoided model over-fitting. A k=13 was found to be optimal, with the 

best predictive performance value and lowest p-value. The model parameters were therefore 

N=11 (11 SNPs) and k =13 (13 nearest neighbours).  

 The classifier was predictive of seizure type in the test dataset but not at a statistically 

significant level (model P=0.06). Table 6.10 shows the development and performance data for 

the kNN model using the training (n=162) and the test dataset (n=42). In summary, five 

individuals were correctly classified as having myoclonic jerks and 24 individuals were 

correctly classified as typical absence, two typical absence cases were incorrectly classified as 

myoclonic jerks (false positive) and 11 myoclonic jerk cases were incorrectly classified as 

typical absence (false negative). Test cohort PPV and NPV were 71% and 69% respectively. 
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Table 6.9 Independent analysis of 11 SNPs and seizure type in the test data set 

 

SNP = single nucleotide polymorphism, P-values uncorrected 

 

 

Table 6.10 Results of the kNN machine learning approach for seizure type  

Performance of the kNN 20% and n-1 cross validation in the training (n=162) and test dataset 

(n=42) respectively 

 

TP= true positive (CAE/JAE correctly classified as CAE/JAE), FP= false positive (JME 

incorrectly classified as CAE/JAE), TN = true negative (JME correctly classified as JME), FN 

= false negative (CAE/JAE incorrectly classified as JME, kNN= k-Nearest Neighbour,  

V= 20% cross validation subset of validation cohort, TP = true positive, FP = false positive, 

TN= true negative, FN= false negative, Sens= sensitivity, Spec= specificity PPV= positive 

predictive value, NPV= negative predictive value, CAE= childhood absence epilepsy,  

JAE= juvenile absence epilepsy, JME = juvenile myoclonic epilepsy 

SNP ID (rs)  Odds ratio  P-value 

rs65652852  0.592 0.20 

rs488192  1.649 0.53 

rs6489330  0.718 0.26 

rs2241103  1.39 0.98 

rs4987852  1.518 0.11 

rs1457784  0.768 0.69 

rs3738028  1.18 0.43 

rs11061995  1.839 0.43 

rs6478676  0.914 0.95 

rs1982673  1.528 0.78 

rs1426223  0.913 0.68 

kNN 

model 

TP FP FN TN Sens  

(%) 

Spec  

(%) 

PPV 

(%) 

NPV 

(%) 

Two tail    

P-value 

V1 5 4 7 16 41.7 80.0 55.6 69.6 0.20 

V2 9 0 3 20 75.0 100.0 100.0 87.0 8x10-6 

V3 7 2 5 18 58.3 90.0 77.8 78.3 6x10-3 

V4 4 1 9 19 30.8 95.0 80.0 67.9 0.07 

V5 7 0 6 20 53.8 100.0 100.0 76.9 4x10-4 

V1-5; 

n=162 

32 7 30 93 51.6 93.0 82.1 75.6 2x10-10 

n=42 5 2 11 24 31 92 71 69 0.06 
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6.4.4. Univariate association of SNP genotype with epilepsy type  

All 16 SNPs were assessed for independent association with epilepsy type. The results of the 

Chi-square test of association performed on the developmental dataset (n=447) is shown in 

Table 6.11. Univariate analysis showed that all SNPs had some association with epilepsy type 

with five SNPs showing a Chi-square p-value of <0.01.  

 

6.4.5. Development of a classifier for epilepsy type 

 For objective 2, the same approach was taken for model development and SNP 

analyses as described for objective 1. The performance of each of the ML models in the 

developmental dataset is presented in Tables 6.12a and 6.12b. The accuracy and sensitivity of 

each ML model in predicting epilepsy type in the test dataset is also presented in Table 6.12. 

When all 16 SNPs were investigated, each of the ML models was able to predict PGE with 

good predictive accuracy in the training dataset (P =<0.05) but as in objective 1, the majority 

of models failed to accurately classify epilepsy type in either the validation or test datasets. 

Modest associations were observed with NN and Ensemble models in the test datasets (P 

=0.017 and P =0.034, respectively) but overall predictive performance was poor (sensitivity 

=70.3% and 65.3%, PPV =75.5% and 71.3 %, respectively). 

 

 

 

TABLE 6.11 Independent analysis of 16 SNPs and epilepsy type n=447 

Chi-square test for testing association between genotype and epilepsy type in training set 

SNP ID (rs)  Odds ratio  P-value 

rs10280428  2.32 3.9 x10-4 

rs740805  0.59 2.9 x10-3 

rs324649  0.61 1.2 x10-3 

rs420817  2.50 2.6 x10-3 

rs15524  1.61 1.8 x10-3 

rs4236482  2.14 1.7 x10-2 

rs209337  0.30 4.4 x10-4 

rs1126617  1.49 3.4 x10-3 

rs2076317  0.54 7.7x10-3 

rs7844150  0.71 0.02 

rs2184226  1.59 0.02 

SNP = single nucleotide polymorphism, P-values uncorrected 
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Table 6.12a Classification of epilepsy type using 16 SNPs and SAS machine learning models 

Predictive performance of each SAS machine learning model on training n=279, validation n=168 and test n=170 data subsets 

 

ML = machine learning, DLT = decision learning tree, NN = neural network, LOGREG = logistic regression SVM= support vector machine, NPV = negative 

predictive value, PPV = positive predictive value, TP = true positive (PGE correctly classified as PGE, FP = false positive (LRE incorrectly classified as PGE), 

TN = true negative (LRE correctly classified as LRE), FN = false negative (PGE incorrectly classified as LRE), PGE= primary generalised epilepsy, LRE= 

localised related epilepsy 

 

 

 

 

ML model n Data subset TP FP FN TN PPV (%) NPV (%) Sensitivity (%) Specificity (%) P-value 

DLT 279 Training  - - - - - -    - 

 168 Validation nd Nd nd nd nd nd   nd 

 170 Test nd Nd nd nd nd nd nd nd nd 

NN 279 Training  192 1 1 85 99.5 98.8   4.6x10-70 

 168 Validation 91 34 25 18 78.4 34.6   0.06 

 170 Test 83 27 35 25 70.3 48.1 75.5 41.7 0.02 

LOGREG 279 Training  174 0 19 86 90.2 100.0   1x10-53 

 168 Validation 61 22 55 30 52.6 57.7   0.14 

 170 Test 57 23 61 29 48.3 55.8 71.3 32.2 0.37 
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Table 6.12b  Classification of epilepsy type using 16 SNPs and SAS machine learning models  

Predictive performance of each SAS machine learning model on training n=279, validation n=168 and test n=170 data subsets 

ML = machine learning, DLT = decision learning tree, NN = neural network, LOGREG = logistic regression SVM= support vector machine, NPV = negative 

predictive value, PPV = positive predictive value, TP = true positive (PGE correctly classified as PGE, FP = false positive (LRE incorrectly classified as PGE), 

TN = true negative (LRE correctly classified as LRE), FN = false negative (PGE incorrectly classified as LRE), PGE= primary generalised epilepsy, LRE= 

localised related epilepsy 

ML model n Data subset TP FP FN TN PPV (%) NPV (%) Sensitivity (%) Specificity (%) P-value 

SVM 279 Training  193 0 0 86 100.0 100.0   2.8x10-74 

 168 Validation 93 35 23 17 80.2 32.7   0.06 

 170 Test 92 35 26 17 78.0 32.7 72.4 39.5 0.10 

ENSEMBLE 279 Training  193 0 0 86 100.0 100.0   2.8x10-74 

 168 Validation 91 34 25 18 78.4 34.6   0.06 

 170 Test 77 31 41 21 65.3 40.4 71.3 33.9 0.03 

PARTIAL 

LEAST 

SQUARES 

279 Training  193       0 0 86 100.0 100.0    2.8x10-74 

168 Validation 91        33 25 19 78.4 36.5    0.03 

170 Test 93        38 25 14 78.8 26.98 71.0 35.9  0.26 



 CHAPTER SIX  

210 
 

 

6.4.6. kNN analysis of epilepsy type 

 The 16 SNPs were also independently tested for association with epilepsy type in the 

test dataset (n=170) (Table 6.13), before application of the kNN algorithm. A weak association 

with epilepsy type was seen with one SNP only in this smaller dataset (rs4740788, P= 0.04). 

 The kNN approach was applied to the PGE vs. LRE analysis as described for objective 

1. The performance of the kNN model within the developmental dataset was again assessed 

using a 20% CV and different k-parameters to identify the optimum k. The k-parameter 

that performed best within the developmental dataset based on the average prediction accuracy 

across the 5-fold CV was a k of 13. The model parameters were therefore N=16 (16 SNPs) 

and k=13 (13 nearest neighbours). Table 6.14 presents the results of the kNN model using the 

developmental dataset (n=447) and the test dataset (n=170). Using the test dataset patients, 

110 individuals were correctly classified as having PGE and 8 individuals were correctly 

classified as having LRE, 44 LREs were incorrectly classified as PGE (false positive) and 8 

PGEs were incorrectly classified as LRE (false negative), with overall PPV and NPV of 71% 

and 50%, respectively. Although the classification performance was markedly improved with 

kNN in comparison to other ML approaches, the model failed to adequately classify PGE and 

LRE patients (test dataset P =0.07). 
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TABLE 6.13 Independent analysis of 16 SNPs and epilepsy type n=170 

Chi-square test for testing association between genotype and epilepsy type in test dataset 

SNP ID (rs)  Odds ratio P-value 

rs10280428  0.41 0.11 

rs740805  0.96 0.78 

rs324649  1.03 0.41 

rs420817  1.21 0.45 

rs15524  1.34 0.57 

rs4236482  1.51 0.37 

rs209337  0.85 0.50 

rs1126617  1.20 0.72 

rs2076317  0.42 0.08 

rs7844150  1.57 0.12 

rs2184226  0.63 0.12 

rs3851100  0.89 0.61 

rs10815018  1.01 0.84 

rs4740788  3.65 0.04 

rs10510403  1.10 0.93 

rs1859690  0.44 0.13 

SNP = single nucleotide polymorphism, P-values uncorrected 
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Table 6.14 Results of the kNN machine learning approach for epilepsy type 

Performance of the kNN 20% and n-1 cross validation in the training (n=447) and test dataset 

(n=170) respectively 

 

TP= true positive (PGE correctly classified as PGE), FP= false positive (LRE incorrectly 

classified as PGE), TN= true negative (LRE correctly classified as LRE), FN= false negative 

(PGE incorrectly classified as LRE), kNN= k-Nearest Neighbour, V= 20% cross validation 

subset of validation cohort, TP= true positive, FP = false positive, TN= true negative, FN = 

false negative, Sens= sensitivity, Spec= specificity, PPV= positive predictive value, NPV= 

negative predictive value, PGE= primary generalised epilepsy, LRE= localised related 

epilepsy 

 

 

 

6.4.7. Biological significance of genetic variants used in ML models 

 The biological investigation of two groups of SNPs associated with seizure type and 

epilepsy type are found in Tables 6.15 and 6.16 respectively. For seizure type ten SNPs were 

intronic region variants and one was a synonymous coding region SNP (Table 6.15). 

Investigation of the genomic structure using www.hapmap.org (release # 24) failed to identify 

any biologically functional variants with a MAF ≥ 1% in European populations that were in 

strong LD (r2 ≥0.8) with any of these SNPs. Further functional analysis (Yuan et al., 2006) and 

assessment of potential TF binding sites (Kent et al., 2002) highlighted the synonymous 

rs6962852 variant (in the CLCN1 gene) to be located in both TF binding domains and in an 

enhancer splice site. Although this synonymous SNP was not expected to alter TF binding 

characteristics (TFSEARCH), it was predicted to alter the number of exonic splicing enhancer 

(ESE) motifs (ESE finder, Fast SNP). Functional mutations in the corresponding CLCN1 gene 

kNN 

model 

TP FP FN TN Sens  

(%) 

Spec  

(%) 

PPV 

(%) 

NPV 

(%) 

Two tail    

P-value 

V1 59 20 3 8 95.1 29.0 75.0 73.0 0.10 

V2 57 19 5 9 92.0 32.1 75.0 64.2 0.08 

V3 55 19 7 9 89.0 32.1 74.3 56.2 0.06 

V4 59 17 3 10 95.1 37.0 77.6 76.9 0.09 

V5 59 23 2 4 97.0 15.0 72.0 67.0 0.22 

V1-5; 

n=447 

289 98 20 40 93.5 29.0 75.0 67.0 2x10-4 

n=170 110 44 8 8 92 15 71 50 0.07 
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have previously been identified in rare familial forms of PGE (Dibbens et al., 2007) but not in 

large cohorts of sporadic PGE, indicating that CLCN2 is probably not a gene that is commonly 

mutated in PGEs (Gardiner, 2005, Dibbens et al., 2007). Limited biological significance and 

a lack of predictive performance in the test dataset would question the relevance of all 11 SNPs 

in susceptibility to a PGE seizure type. 

 Of the 16 variant subset used for epilepsy type classification, only two SNPs were 

located in protein coding regions (one non-synonymous and one synonymous variant) (Table 

6.16) and these were also not in strong LD with (HapMap release # 24, r2≥0.8) any other 

biologically functional variants with a MAF ≥ 1% in European populations that Four of these 

16 SNPs were however in strong LD with each other (Table 6.16). Further functional and 

regulatory region analysis for these is presented in Table 6.17.  Of the 16 SNPs The rs1126617 

(a non-synonymous SNP in the glycosylphosphatidyl-inositol specific phospholipase D1 

(GPLD1) gene was predicted to be a low risk splicing regulation polymorphism that resulted 

in an alteration in a splice site (Fast SNP; ESE/ESS finder). Amongst the remaining 15 SNPs, 

the rs1020848, rs740805, rs420817, rs3851100 and rs10510403 variants were also predicted 

to possess low risk in terms of a potential functional effect. These were promoter or regulatory 

region SNPs that may result in altered TF binding (TFSEARCH).  Further investigation of the 

SNPs and their corresponding genes in the literature also indicated no additional biological 

implication or disease/epilepsy association.  

 

 

Table 6.15 Genetic information for 11 SNPs for epilepsy seizure type classifiers 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNP= single nucleotide polymorphism, MAF= minor allele frequency, a.a= amino acid 

change, T= threonine 

SNP ID (rs) Gene Alleles MAF Description a.a change 

rs6962852        CLCN1 C>T  0.28 synonymous P.T87T 

rs488192         SLC6A13 A>G 0.17 intronic  

rs6489330        CACNA2D4 G>A 0.19 intronic  

rs2241103        ABAT A>G 0.09 intronic  

rs4987852       BCL2 A>G 0.08 3'UTR  

rs1457784        KCNQ3 C>A 0.13 Intronic  

rs3738028        KCNN3 T>G 0.35 Intronic  

rs11061995     CACNA2D4 G>A 0.16 Intronic  

rs6478676          GABBR2 G>A 0.43 Intronic  

rs1982673        BCL2 T>G 0.12 Intronic  

rs1426223         GABRB3 C>T  0.28 intronic  
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Table 6.16 Genetic information for 16 SNPs for epilepsy type kNN classifiers 

SNP ID  

(rs) 

Gene Alleles MAF Location Amino 

acids 

LD  

rs10280428 CACNA2D1 A>C 0.08 Upstream   

rs740805 CACNG5 T>C 0.12 Upstream   

rs324649*** CHRM2 C>T 0.39 intronic  **** 

rs420817**** CHRM2 T>C 0.49 intronic  *** 

rs15524 CYP3A5 T>C 0.04 3' UTR   

rs4236482 FAM131B G>A 0.19 intronic   

rs209337 GABRG2 C>A 0.05 intergenic   

rs1126617** GPLD1 G>A 0.36 Exonic P.V30I * 

rs2076317* GPLD1 A>G 0.39 upstream  ** 

rs7844150 KCNQ3 G>T 0.07 intronic   

rs2184226 MTHFR G>A 0.09 downstream   

rs3851100 SCN3B T>C 0.16 intronic   

rs10815018 SLC1A1 A>G 0.39 intronic   

rs4740788 SLC1A1 T>C 0.11 intergenic   

rs10510403 SLC6A1 A>G 0.17 intronic   

rs1859690 ZNF498 A>G 0.04 Exonic P.E388E  

SNP= single nucleotide polymorphism, MAF= minor allele frequency, a.a= amino acid 

change, LD= linkage disequilibrium, V= valine, I=iisoleucine, E= glutamine, LD= linkage 

disequilibrium; (r2≥0.8), * see corresponding SNP 
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Table 6.17 Predicted function and functional effect of 16 SNPs used for predicting 

epilepsy type (http://fastsnp.ibms.sinica.edu.tw/pages/inputCandidateGeneSearch.jsp) 

SNP ID (rs) Gene Possible functional  

effects 

Risk TF binding 

site change 

SE/ 

SS 

rs10280428  CACNA2D1 promoter/regulatory 

region 

1-3 yes - 

rs740805  CACNG5 promoter/regulatory 

region 

1-3 yes - 

rs1126617  GPLD1 splicing regulation 2-3 - yes 

rs4740788  CACNA2D1 intronic enhancer 1-2 - - 

rs420817  CHRM2 intronic enhancer 1-2 yes  

rs3851100  SCN3B intronic enhancer 1-2 yes  

rs10510403  SLC6A1 intronic enhancer 1-2 yes  

rs1859690  ZNF498 sense/synonymous 1-1 - - 

rs324649  CHRM2 intronic with no known 

function 

0 - - 

rs15524  CYP3A5 downstream with no 

known function 

0 - - 

rs4236482  FAM131B intronic with no known 

function 

0 - - 

rs2076317  GPLD1 Upstream with no 

known function 

0 - - 

rs7844150  KCNQ3 Intronic with no known 

function 

0 - - 

rs2184226  C1orf167 Intronic with no known 

function 

0 - - 

rs10815018  SLC1A1 Intronic with no known 

function 

0 - - 

rs10510403  SLC6A1 Downstream with no 

known function 

0 - - 

TF= transcription factor, SE= splicing enhancer site change, SS=splicing silencer site 

change. Risk = Upper and lower risk of functional effect, 0=no effect, 1=very low risk, 

2=low risk, 3=medium risk, 4=high risk, 5=very high risk (http://fastsnp.ibms.sinica.edu.tw/ 

pages/ input_CandidateGeneSearch.jsp). 

 

http://fastsnp.ibms.sinica.edu.tw/
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6.5. Discussion 

 Common forms of genetic epilepsies are among numerous common, complex 

disorders for which networks of gene regulation and interactions are thought to confer disease 

risk (Ferraro and Buono, 2006, Ferraro et al., 2012). These genetic factors are likely to be 

inter-related, probably in a highly complex fashion. Recent assumptions regarding the genetic 

architecture of complex epilepsies include the popular CDCV hypothesis (Lohmueller et al., 

2003, Cavalleri et al., 2007). However, the vast majority of the common variants identified so 

far confer only small risks (Dibbens et al., 2007). This has led to the proposal of developing 

novel approaches for simultaneously testing multiple genetic loci of small effect as an attempt 

to increase the capacity of correctly predicting the likelihood of disease occurrence (McKinney 

et al., 2006). ML is one such proposed method for efficient data analysis (Hastie et al., 2001). 

The kNN supervised ML approach was able to predict seizure control in newly treated 

Australian patients with epilepsy but the method has yet to be validated in independent and 

international cohorts (Petrovski et al., 2009, Johnson et al., 2011b). The advantages of using 

ML techniques for gene association data include robustness, higher power and greater 

accuracy than that of parametric statistical approaches, as well as the additional ability to 

model non-linear effects and high-dimensional data (Lee et al., 2008).  

 The studies reported in this chapter applied several ML approaches to test their 

proficiency in the analysis of complex disease association data. Large genomic datasets from 

two independent epilepsy cohorts were explored. ML was used for both identifying 

susceptibility variants associated with PGE and the seizure types defining the main PGE sub-

syndromes. Two SNP subsets, comprising 11 and 16 SNPs were identified as most 

significantly associated with seizure type and epilepsy type respectively, and used in the 

development of two phenotype classifiers.  

 All individual SNP subsets in each identified subset were found to associate with 

seizure or epilepsy type at the p=<0.05 level when univariately tested in the respective 

developmental cohorts, thus indicating some initial significance of each of these SNPs to PGE. 

Most of these however failed when applied to the blinded test cohorts. ML models using the 

SNP subsets in combination were similarly found to associate with phenotype for both 

objectives but again only in the training cohorts in both cases. Some predictive value was 

evident in the epilepsy type classification task when NN and Ensemble approaches were 

applied; Test cohort PPV= 70.3%, 65.3% and Sensitivity= 75.5%, 70.3%, respectively. These 

models were however only applied to the analysis concerning all 1,840 SNPs, thus no 

corresponding data is available for the 16 SNP subset analysis. The NN ML method has 

previously been used in both linkage and association analyses for the identification of disease 

susceptibility genes as well as complex traits (Motsinger-Reif et al., 2008). The second 
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approach, Ensemble is a novel ML method available on SAS that combines the results of 

multiple classifiers and has been shown to achieve a substantially improved prediction when 

compared to single classifiers in several reviews (Ahn et al., 2007, Moon et al., 2007).  

 The main hypothesis was that the kNN ML approach in particular, due to previously 

being able to make successful predictions for complex genomic data (Petrovski et al., 2009), 

may be a more suitable method for developing classifiers of PGE than traditional ML methods 

(Petrovski et al., 2009). Indeed, the Australian patients and genomic data used in the current 

analysis were the same as those used in the original Australian pharmacogenomic kNN 

classifier study (Cavalleri et al., 2007, Petrovski et al., 2009). The kNN ML approach is 

considered to be more user friendly, more easily used for incremental learning, more easily 

tuned, and better for avoiding over-fitting when compared to other ML approaches (Kotsiantis, 

2007). Improved performance was seen with the kNN approach for each classification task 

(p=0.06 and p=0.07 for seizure and epilepsy type analyses, respectively) but the kNN ML 

models similarly failed to predict phenotype when applied to the respective test datasets.  

 

6.5.1. General design considerations 

 There are several explanations for the lack of success with ML approaches to 

predicting PGE and PGE seizure types. These include; i) issues with study design, ii) inherent 

problems with predictive modeling, iii) genomic differences between populations, and iv) 

complexity of the task itself. Some of the general issues with population genomic differences 

and ML modeling, particularly in the kNN method, have been discussed previously (section 

5.4).  

 

Population genomic differences from using international populations 

 The potential influence of ethnicity on genetic transmission (Delgado-Escueta, 2007) 

is likely to be far too diverse for analyses that combine populations.  

 

 Variants common to multiple populations are each likely to be of a small effect size 

and so undetectable in modestly sized cohorts as available for this study 

 

 Despite the adoption of cross validation method the cohorts may also remain 

insufficient in size to allow the partitioning required for model building and 

independent assessment  
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Methodological issues 

 A data reduction step may have excluded potentially causative alleles or loci 

(Larranaga et al., 2006, Kotsiantis, 2007, Joaqu et al., 2010, Derrac et al., 2012); 

 

 The Golub score filter method for SNP ranking is an easy method to implement, 

however it does not consider correlation between features or SNPs (Golub et al., 

1999).  

 

 Principal limitations of classification algorithms exist including limited scalability, 

potential for over-fitting (this can result in false-positive results) (Hastie et al., 2001), 

challenging feature/SNP selection, and difficulty in accounting for gene-gene 

interactions (Moore and Ritchie, 2004).  

 

 Most existing studies using ML approaches have dealt only with candidate SNP data 

in which hundreds rather than thousands of SNPs are modeled (Szymczak et al., 2009, 

Goldstein et al., 2010). 

 

 

Heterogeneous and multigenic nature of the PGE phenotype  

 Likelihood that insufficient numbers of SNPs were employed to detect the multiple 

common variants thought to contribute to the complex PGEs (Kasperaviciute et al., 

2010); The 1,840 variants used in this study constituted fewer than 50% of the 4,041 

SNPs in the original SNP panel; GWAS scans that typically provide in excess 500,000 

SNP genotypes may be more efficient for the identification of susceptibility loci in 

oligogenic traits, (Ferraro et al., 2012, Kearney, 2012).  

 

 Complex PGEs have been investigated primarily on the study of SNPs (Ferraro et al., 

2012) (Schork et al., 2009). Rare variants including CNVs are typically excluded, 

despite these less common genetic defects might equally explain inter-individual 

susceptibility to disease (Mefford et al., 2010, Ferraro et al., 2012).  
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6.5.2. Summary and future perspectives 

 The investigation described in this chapter set out to assess the potential value of ML 

models in epilepsy classification by applying this essentially novel approach to a large subset 

of genomic data in an effort to identify variants of potential significance to complex PGE 

phenotypes. Although the current study was unable to model the available genomic data 

successfully and did not produce classifiers with good predictive performance, overall the 

classifiers that were developed on a subset of SNPs did appear to show improved association 

with seizure and epilepsy type than when the same SNPs were tested individually. These 

present findings further emphasise several points and considerations for future work 

concerning complex epilepsy genomics, namely that; 

 

 There may be tens of thousands of alleles that constitute the broader epilepsy genome; 

 

 Multiple combinations of these could, increase susceptibility or resistance to epilepsy 

in any given individual. 

 

 Identification of all or at least sufficient numbers of these genomic markers to 

differentiate between seizure and epilepsy types remains an elusive task; requiring 

greater study power, in terms of both numbers of cases and genotyping methodology. 

 

 Positive susceptibility loci require independent confirmation and validation in 

independent cohorts; 

 

  In ethnically different populations, such susceptibility loci may be entirely different, 

thus requiring independent validation in multiple ethnic populations before a true 

phenotype association can be proposed. 

 

 

 To conclude, as so little is known about the genetics of epilepsy, the number of 

different possible subsets of susceptibility alleles is almost limitless and thus unravelling the 

phenotypic diversity of complex PGE is and will continue to be an arduous task. The strategy 

used in the present investigation to detect genetic predisposition in PGEs may be an 

improvement over methods used in traditional association studies but still fails to capture the 

genomic heterogeneity that potentially exists.  
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7.1. Introduction 

As discussed previously, several clinical and genomic factors have been investigated to 

help identify factors that predict treatment response in epilepsy (Cockerell et al., 1995, 

MacDonald et al., 2000, Sillanpaa and Schmidt, 2006, Kaneko et al., 2008, Loscher et al., 

2009). Despite identifying a number of clinical factors associated with poor treatment 

outcomes in newly treated and chronic epilepsy (Hitiris et al., 2007, Kwan et al., 2011) and 

more recently those associated with seizure remission (Callaghan et al., 2011, Bonnett et al., 

2012, Brodie et al., 2012), their predictive power and subsequent clinical utility remains 

limited (Brodie, 2005b, Mohanraj and Brodie, 2005, 2007). No single clinical factor has been 

found to accurately predict seizure control (Brodie et al., 2012), though a combination of one 

or several of these factors may help to define those individuals who are most unlikely to 

respond to drug treatment (Bonnett et al., 2012). PGx efforts have similarly made little clinical 

impact on the search for definite genomic predictors of AED drug efficacy (Loscher et al., 

2009, Johnson et al., 2011b).  Ultimately constructing multivariable, multifactorial models that 

combine both influential clinical and genetic factors, maybe most useful (Johnson et al., 

2011b). PGx research has long recognised that the inherent basis of patient response 

essentially results from multiple variants of small effect (Evans and Johnson, 2001, Grant and 

Hakonarson, 2007). However, most current studies investigate polymorphisms univariately, 

typically in small or modest sized cohorts (Colhoun et al., 2003, McCarthy et al., 2008, 

Loscher et al., 2009).   

 

7.1.1. Genome wide approach to complex disease genetics 

  Genome wide association studies of epilepsy disease genetics have recently been 

published (Kasperaviciute et al., 2010) as have GWAS assessing drug response in epilepsy 

(Kasperaviciute and Sisodiya, 2009, Cavalleri et al., 2011, McCormack et al., 2011, Ozeki et 

al., 2011a). GWAS studies can consider the relevance of variation across the entire genome 

and so are not restricted to exclusively investigating biologically driven or previously reported 

candidate genes (Crowley et al., 2009, Motsinger-Reif et al., 2010). With the growing number 

of GWAS across disease genetics, several limitations of GWAS have similarly become 

apparent (Crowley et al., 2009, Motsinger-Reif et al., 2010, Johnson et al., 2011b). One of the 

main issues for GWAS concerning complex traits is that the “common variant” hypothesis 

predicts weak genetic effects, (inherently due to the large number of low penetrance variants 

being tested). Very large sample sizes are thus required to successfully boost the genetic 

“signal” over the additional “noise” produced by environmental variables and other genetic 

factors.           
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GWA studies additionally only consider common genetic variation which is now 

thought to at best only have a modest role in the predisposition to complex syndromes and/or 

traits (Ferraro et al., Barrett et al., 2009, Kasperaviciute and Sisodiya, 2009, Daly, 2010a, 

Kasperaviciute et al., 2010). The alternative to the common disease common variant 

hypothesis is that multiple rare variants cause disease at high prevalence in the population 

(Motsinger-Reif et al., 2010). Common variants are thought to result in subtle effects on gene 

function, often through changes to gene regulation, whilst rare variants such as non-

synonymous variants can have larger effects on gene function, which could lead to large 

changes in disease risk or trait values (Motsinger-Reif et al., 2010). And so, both these 

hypotheses can have important implications to common phenotypes (McCarthy et al., 2008, 

Motsinger-Reif et al., 2010).  

 

7.1.2. Genome wide approach to epilepsy genetics 

 To date, GWA studies evaluating drug response in epilepsy are scarce (Kasperaviciute 

and Sisodiya, 2009, Cavalleri et al., 2011) and this is likely to be due to the low number of 

well phenotyped epilepsy patient cohorts with DNA currently available. Epilepsy comprises 

of a group of phenotypically and genetically heterogeneous disorders, with an underlying 

genetic predisposition likely in over half of individuals with epilepsy (Kearney, 2012). The 

genetic architecture of the epilepsies is consequently likely to be very complex, reflecting this 

genotypic and phenotypic heterogeneity and high degree of heritability (Kearney, 2012).  

  DNA samples from hundreds if not thousands of phenotyped epilepsy patients is 

expected to be required for epilepsy GWAS to be successful and informative (Kasperaviciute 

et al., 2010, Cavalleri et al., 2011). As published GWAS are underpowered to detect all but 

the biggest effects, the susceptibility variants identified to date, are probably only a subset of 

the influential loci yet to be detected and/or may indicate false positive associations (Guessous 

et al., 2009). Moreover, because the effect sizes of these variants are usually small and the 

number of false positive findings are expected to be large (McCarthy et al., 2008, Guessous et 

al., 2009), additional patient cohorts from independent populations will be necessary as 

replication cohorts (Kasperaviciute et al., 2010). 

 

7.1.3. Genome wide studies in epilepsy 

Currently, only two cases of GWAS analysis of disease susceptibility can be found in 

literature and both of these concern focal or localisation related epilepsy (Kasperaviciute et 

al., 2010, Guo et al., 2012, Kearney, 2012). The first, reported by Kasperaviciute and 

colleagues in 2010, used broad phenotype criteria and included individuals with focal epilepsy, 

regardless of etiology (Kasperaviciute et al., 2010). No genome-wide significance associations 
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were found, thus little was gained in terms of genes for disease susceptibility (Kasperaviciute 

et al., 2010). This is however not entirely unexpected, considering the high degree of 

heterogeneity across specific epilepsy types and the expectation that both rare and common 

variants contribute only small effects to complex traits (Cavalleri et al., 2007, Kwan et al., 

2009, Cavalleri et al., 2011). The second focal epilepsy GWAS, using a two-stage approach 

and a meta-analysis of both stages proved more successful (Guo et al., 2012, Kearney, 2012).  

 

7.1.4. Meta-analysis of GWAS for an increase in study power 

Meta-analysis is a statistical technique for combining the findings from independent 

studies and in medicine is most often used to assess the clinical effectiveness of healthcare 

interventions (Egger and Smith, 1997, McCarthy et al., 2008)(www.cochrane-

handbook.org)(Davey et al., 2011). The joint effort of independent research centers in 

combining and analysing genomic data from similar studies is one approach to improve the 

power of whole genome scans (Nebert et al., 2008a, Cavalleri et al., 2011, Kearney, 2012).  

Aggregate data from several scans has previously facilitated detection of variants with 

small effects (Manolio et al., 2007, Weedon et al., 2008, Zeggini et al., 2008, Lettre, 2012) 

and such data-sharing efforts could also help achieve success in the anticipated wave of cohort-

based GWAS for epilepsy (McCarthy et al., 2008). Meta-analyses of data from multiple 

epilepsy cohort may have sufficient power to detect any main as well as underlying (gene–

gene and gene–environment) genetic effects, explore potential sources of heterogeneity and 

also inform the selection of the most relevant SNPs for replication efforts (McCarthy et al., 

2008). Joint analysis of GWA scans moreover may be used to confirm any reports that have 

previously implicated susceptibility variants with modest effect sizes (McCarthy et al., 2008). 

 Meta-analysis of several GWA studies has already demonstrated considerable value 

in complex disease genetics, with reports of being able to implicate novel disease loci with 

greater confidence (Zeggini et al., 2008, Barrett et al., 2009). Several new disease risk variants 

of smaller effect sizes were identified for type 2 (Zeggini et al., 2008) and type 1, diabetes 

(Barrett et al., 2009) and such meta-analysis of GWAS are likely to similarly prove more 

effective and more powerful for detecting associations in epilepsy disease genetics (Kearney, 

2012).  

 The EPICURE Consortium have recently published a linkage study in which they 

attempted to improve power by undertaking the first genome-wide linkage meta-analysis for 

PGE (Leu et al., 2012). In this meta-analysis significant linkage for myoclonic and absence 

seizures was reported and these were also in several previously implicated gene loci (Leu et 

al., 2012). Authors have since reinforced the need to collaborate and pool cohorts to increase 

http://www.cochrane-handbook.org/
http://www.cochrane-handbook.org/


  CHAPTER SEVEN 

  

225 
 

sample sizes to improve strength of evidence in the context of epilepsy genetics (McCarthy et 

al., 2008, Kasperaviciute et al., 2010, Tan and Berkovic, 2010, Leu et al., 2012).  

 

7.1.5. Phenotypic heterogeneity in epilepsy 

Thousands of epilepsy patients have participated in pharmacogenomic studies and have 

also been GWAS scanned (Marson et al., 2006, Cavalleri et al., 2007, Kasperaviciute et al., 

2010) yet GWAS evaluating drug response in epilepsy patients remain limited in number 

(Kasperaviciute and Sisodiya, 2009, Daly, 2010a, Kasperaviciute et al., 2010, Johnson et al., 

2011b). Genomic research towards other complex diseases as a standard now use cohorts of 

over 90,000 individuals, recruited through multi-centre collaborative efforts. The challenge 

for epilepsy PGx research is to similarly develop such multi-centre collaborations (Cavalleri 

et al., 2011).  

 

7.1.6. Defining drug response 

 Treatment response is characterised by the remission of seizures and responders to 

drug treatment are currently defined by the ILAE as ‘individuals being seizure free for at least 

12-months after starting AED therapy’ (Kwan and Brodie, 2010). Classifying response in 

patients with anything less than perfect seizure control however remains challenging 

(Cavalleri et al., 2011).         

 Several difficulties exist with this definition of treatment success. As previously 

discussed in a recent review of PGx studies in newly treated epilepsy (Johnson et al., 2011b), 

clinical outcome is affected by both therapeutic response and the natural history of a specific 

epilepsy (Johnson et al., 2011b). The natural tendency for some types of adult and childhood 

epilepsies is to remit spontaneously over time and so these may appear drug resistant at first, 

only to remit in later life. Consequently when defining treatment outcome one may be 

classifying as drug responders those who are i) seizure free because of a pharmacological 

response to AEDs and ii) those who are seizure-free because their epilepsy has spontaneously 

remitted.   

In addition to this within medicine, there is a tendency for clinicians to dichotomise 

continuous traits. Individuals with epilepsy thus are usually labeled as AED responders (their 

seizures stop) or AED non-responders (their seizures continue), though in reality, across a 

population of patients with epilepsy, there is probably a continuum of therapeutic response 

(Johnson et al., 2011b). So far several response classification schemes have been proposed but 

none capture the underlying complexity and dynamic nature of response in epilepsy (Berg and 

Kelly, 2006, Cavalleri et al., 2011). Further research on defining drug response that both 

incorporates information relating to aetiology, inherent severity of the epilepsy i.e. seizure 
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frequency prior to starting treatment and also considers therapeutic response to AEDs as a 

quantitative trait has been suggested to help resolve these issues (Johnson et al., 2011b).    

Larger cohort studies that also incorporate clinical covariates and additionally classify 

patients according to response to a specific AED may aid the identification of potentially larger 

and more clinically relevant genetic effects. The incorporation of a wide range of clinical 

variables to association studies is becoming an increasing approach to PGx study design 

(Sanchez et al., 2010, Cavalleri et al., 2011, Johnson et al., 2011b). The recent EPICURE 

GWAS meta-analysis attempt mentioned previously (section 7.1.4) presents a good example 

of this concept (Leu et al., 2012). Using a broad trait definition, authors did not detect any 

significant linkage however when stratification by epilepsy subtype was applied, significant 

linkage was found (Leu et al., 2012).   

 

7.1.7. Genome wide association study meta-analysis for predicting treatment 

outcome in newly treated epilepsy  

Clinical covariates are known to have an important influence on outcomes in epilepsy 

and hence in PGx studies (Petrovski et al., 2010, Sanchez et al., 2010, Cavalleri et al., 2011, 

Grover et al., 2011). A recent review by Johnson et al 2011 moreover proposed a novel concept 

of intermediate clinical phenotype where such influential clinical variables were proposed to 

potentially impact the genetic influence on drug treatment response at numerous levels 

(Johnson et al., 2011b) (see Figure 7.1 adopted from Johnson et al 2011). The assumption was, 

that if a genetic factor acts via a measured clinical covariate then adjustment for that covariate 

will confound its detection (Johnson et al., 2011b). Conversely, adjustment for clinical 

covariates will lead to improved detection of genetic factors influencing outcome via an 

independent route to a measured clinical covariate (Johnson et al., 2011b).  

 Authors of the above mentioned review also recently performed a multi-centre meta-

analysis of GWAS carried out for treatment response in newly treated epilepsy (unreported). 

The meta-analysis attempt combined data from two GWA scans (Australian and UK) This 

work is one of the first PGX projects in newly-diagnosed epilepsy. The initial analysis of this 

GWAS meta-analysis identified a single variant associated with treatment outcome, with a 

GWAS significance p-value of <5x10‐ 7 (rs622902) within the GSTA4 gene, and an additional 

nine top ranking SNPs (see Table 7.1 for a list of these top 10 GWAS SNPs). Most of the 

identified SNPs can be found on Chromosome 6 and within the GSTA4 gene. Although the 

MS Genetics Consortium GWAS (Nature, 2011) applied a GWAS meta-analysis cut off p-

value of <5x10-8 other GWAS studies have used <1x10-7 (Davila et al., 2010) and this is 

assumed “suggestive” of a causal association (Meyer et al., 2010). The analysis was performed 

both with the inclusion and exclusion of clinical covariates. The Manhattan plot from the 
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single SNP logistic regressions with the inclusion of clinical covariates for this GWAS meta-

analysis effort, are presented in Figure 7.2. A subsequent re-analysis of the data by the authors; 

with updated clinical cohort information and additional patients identified a narrower set of 3 

associated loci, only one of which was identified in the original analysis (original top GSTA4 

SNP).  

 

 

 

Table 7.1 Top 10 ranking SNPs from the initial GWAS meta-analysis  

SNP ID (rs) Chromosome Position (bp) Gene Allele 

change 

rs622902  6 52954433 GST-A4 C/T 

rs316132  6 52955925 GST-A4 C/G 

rs316133  6 52955510 GST-A4 A/G 

rs367836  6 52951090 GST-A4 A/C 

rs316131  6 52956108 GST-A4 C/T 

rs316130  6 52956159 GST-A4 C/T 

rs316141  6 52954117 GST-A4 C/T 

rs384505  6 52943531 GST-A4 C/T 

rs405729 6 52950740 GST-A4 A/G 

rs316128  6 52957105 GST-A4 C/A 

rs= reference sequence, SNP = single nucleotide polymorphism, bp = base pair 
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7.1.8. Biological significance and role of GSTA4 in epilepsy 

  GSTs could be considered good candidates for epilepsy PGx due to their general role 

in detoxification of xenobiotics (Depondt and Shorvon, 2006). There are eight isoforms of 

soluble GST (α, μ, π, θ, ω, ζ, σ, and κ) and at least three membrane-bound GST isoforms 

(MGST1, MGST2 and MGST3) (Salinas and Wong, 1999, Board et al., 2000). GSTs are 

widely expressed in almost every tissue, though some of the isoforms are tissue specific 

(Carder et al., 1990, Desmots et al., 2001, Listowsky, 2005).  

 GSTs have recently been implicated in the hepatic metabolism and clearing of AEDs 

(Kasperaviciute and Sisodiya, 2009, Tan and Berkovic, 2010, Depondt et al., 2011). Current 

PGx data concerning the role of GSTs in epilepsy particularly that of GSTA4 is however 

sparse (Saruwatari et al., 2010). GSTs are known to be involved in the detoxification of 

reactive CBZ metabolites (Madden et al., 1996, Bu et al., 2005) and the deletion of a GSTM1 

allele has furthermore been implicated in CBZ and VPA-related hepatotoxicity in Japanese 

patients (Ueda et al., 2007, Fukushima et al., 2008b, Depondt et al., 2011). It has also been 

hypothesised that higher levels of GSTs in the brain-blood barrier may result in low 

concentration of AEDs potentially leading to medical intractability (Shang et al., 2008). 

Human GST expression in such patients was recently examined and an association between 

expression of the GST-π isoform and intractability was reported (Shang et al., 2008). In several 

animal studies GST isoforms in liver, testis, and brain tissues were additionally reported to be 

induced by some AEDs (Selim et al., 2000, Thyagaraju et al., 2005), though this proposition 

of a mechanism of intractability development however remains to be studied (Shang et al., 

2008). 

 

7.1.9. Aims and hypothesis 

 

Newly treated epilepsy GWAS and meta-analysis study details: 

  The initial results from the meta-analysis suggested that GSTA4 may play a role in 

treatment response (Speed, D et al. [Unpublished]). The initial findings identified that the 10 

top ranking GWAS SNPs (lowest GWAS p-values) were mostly within chromosome 6 and 

located in the GSTA4 gene (all 10 when no clinical covariates considered, and 8 out of 10 

when associated clinical covariates were included in the GWAS analysis). Due to the potential 

biological significance of the GSTA4 gene, our intention was to attempt to replicate this initial 

GWAS meta-analysis finding, in an independent cohort of well-defined individuals with 

newly treated epilepsy, thus adopting a candidate SNP association study approach (McCarthy 

et al., 2008).  
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The epilepsy PGx GWAS meta-analysis was based on two, independent genome-wide 

scans for treatment responsiveness. The two GWAS cohorts of newly treated epilepsy were i) 

a subset of the UK SANAD cohort and ii) the Australian, Melbourne prospective epilepsy 

cohort (both genotyped at the WTSI on Illumina 660Q) (both study populations previously 

described see Chapters 5 and 6 for cohort details)(Marson et al., 2006, Cavalleri et al., 2007). 

Definitions of seizure outcomes and clinical covariates were harmonised across the cohorts to 

allow meta‐ analysis of primary outcome and the clinical covariates included in the analysis. 

The authors of the GWAS meta-analysis designated the larger SANAD cohort as the 

Discovery Cohort and the Australian cohort as the replication study group and a total 552144 

SNPs from both data sets were meta-analysed. The meta-analysis was performed using a 

prospectively agreed definition of 1-year remission of seizures (this was presumed to indicate 

adequate seizure control or treatment response).  

 

Hypotheses of present study: 

 The primary aim of this results chapter was to perform a validation of the findings 

from the initial analysis effort of this first newly treated epilepsy, using individuals from the 

Glasgow data set as an independent cohort of UK patients with epilepsy (see section 2.2.1 for 

Glasgow source population details). A subset of the 10 GWAS identified SNPs were selected 

for genotyping and were to be assessed for association with both treatment outcome and time 

to 12-month remission in our current investigation.  

 

7.2. Study cohort, materials and methods 

7.2.1. Phenotype definitions for patient selection 

The primary outcome of this present study was treatment success with pharmacotherapy. 

Individuals were classified as either responders or non-responders to AEDs. Response was 

defined as achieving a minimum period of 1-year at any stage after starting treatment (Speed, 

D et al. [unpublished]). Thus patients required a minimum follow‐ up period of 1-year after 

starting AED therapy. This definition was chosen as it matches the definition proposed by the 

ILAE (Kwan et al., 2010) and is presently seen as the only relevant seizure outcome 

consistently associated with meaningful improvement in quality of life (Callaghan et al., 2011, 

Cavalleri et al., 2011, Johnson et al., 2011b). 
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7.2.2. Immediate vs. delayed seizure remission and definitions for time to 

event analysis 

In addition to investigating seizure freedom, an additional analysis was performed in 

order to investigate or account for the probability of delayed or late seizure remission in some 

patients that would not necessarily be captured by the definition above (see section 7.3 below). 

This delayed remission was investigated by associating time to 12-month seizure remission 

where time to outcome has been censored. Remission status was defined as above.        

 

7.2.3. Glasgow validation cohort  

Patients from the UK Glasgow cohort (on-going collection of DNA) (see Chapter 2) that 

were identified to have newly treated epilepsy at time of recruitment were utilised for the 

analysis on this Chapter. In total 518 patients were identified as having newly treated epilepsy 

and thus were available for genotyping.  

 All clinical notes for each of these 518 individuals were reviewed in order to confirm 

individual phenotype data and their eligibility. From these patients 13 were automatically 

excluded for either not having epilepsy or newly treated epilepsy on reviewing case notes, a 

further 2 had only one seizure prior to treatment, thus did not qualify as having epilepsy, 5 

were of non‐ European ancestry and, 66 individuals had less than twelve months follow‐ up 

data (required for classification of treatment outcome). The remaining 434 patients were of 

European ancestry, had sufficient DNA for genotyping and clinical information for 

phenotyping and thus were eligible for study inclusion and subsequent genotyping. 

 

7.2.4. Clinical data selection and inclusion  

Clinical information was extracted from clinical databases. This included the general 

patient characteristics and disease phenotype; age at recruitment gender and epilepsy type, 

which are all known to potentially influence treatment outcome (Kwan and Brodie, 2001a, 

Hitiris et al., 2007). Additionally those clinical factors that were explored and/or included in 

the GWAS meta-analyses effort were considered for inclusion in this present study. These 

were i) initial treatment AED (the first AED administered at recruitment or first follow-

up), ii) AED at final follow-up iii) EEG status, categorised as; non-done, normal, not-specific, 

epileptiform (abnormal) and iv) medical imaging status, categorised as; not-done, normal, 

non-specific, focal (abnormal). For the survival (time to treatment) analysis, AED recorded at 

remission was recorded and included as a covariate as opposed to final follow-up AED. For 

the treatment covariates i.e. Initial AED treatment, final AED treatment and AED at remission 

(survival analysis covariate) drug treatment was categorised as either CBZ, GBP, LTG, OXC, 
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VPA (the most commonly used AEDs), Multiple AEDs if more than one AED indicated and 

‘other’ for any other drug or for missing treatment information. 

 

7.2.5. Genetic data selection and inclusion 

Rather than simply select the most significant SNPs from the GWAS analysis (i.e. 

those with the lowest meta p-values), validation SNPs were additionally selected on the basis 

of biological plausibility, functional significance, and expression array data derived from 

analysis of surgically resected, human epileptic brain (temporal lobe). Selection was 

undertaken by a collaborator (Dr Michael Johnson, Imperial College London). Five SNPs were 

ultimately selected for the validation study, the top 2 GSTA4 SNPs identified by the initial 

GWAS meta-analysis (rs316132 and rs622902) (Table 7.1 and 7.2) and an additional 3 SNPs 

(rs17252760, rs12919774 and rs16994558) located in intergenic regions (Table 7.6). 

 

 

 

Table 7.2 Top 10 ranking SNPs of the initial GWAS meta-analysis single-SNP 

logistic regression including clinical covariates 

SNP ID (rs) Chromosome Position (bp) Gene Allele change 

rs316132  6 52955925 GST-A4 C/G 

rs622902  6 52954433 GST-A4 C/T 

rs316131  6 52956108 GST-A4 C/T 

rs316130  6 52956159 GST-A4 C/T 

rs316141  6 52954117 GST-A4 C/T 

rs316133  6 52955510 GST-A4 A/G 

rs367836  6 52951090 GST-A4 A/C 

rs6464296 7 152343151 UNKNOWN G/A 

rs4779485 15 28721754 ARHGAP11B C/T 

rs405729 6 52950740 GST-A4 A/G 

SNP= single nucleotide polymorphism, bp= base pair 
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7.2.6. Genotyping of candidate SNPs 

Genomic DNA samples from the n=434 Glasgow cohort were genotyped for the five 

candidate SNPs at the Department of Molecular and Clinical Pharmacology, University of 

Liverpool, using custom TaqMan® SNP genotyping assays (Applied Biosystems, Warrington, 

Cheshire, UK) in accordance with the manufacturer’s instructions. This assay is based on the 

5’-3’ exonuclease activity of Taq DNA polymerase, using allele-specific TaqMan® 

fluorescent minor groove binding (MGB) probes VIC® and FAM™ (as specified by the 

manufacturer’s instruction).(http://www3.appliedbiosystems.com/cms/groups/mcbsupport/do 

cuments/general documents/cms_042998.pdf). 

 

7.2.7. Experimental details 

Briefly approximately 20ng of genomic DNA (pre-dried sample) was amplified in 

5uL reaction mixtures containing 1x TaqMan universal genotyping master mix and 1x 

TaqMan assay mix (containing a premix of the customised SNP primers and the fluorescent 

probes), in 384-well plates. Reactions were performed on an ABI 7900HT fast Real-Time PCR 

System (Applied Biosystems). A standard protocol for DNA amplification was followed 

where after the Taq enzyme was activated at 95°C for 10 min, 40 PCR cycles of denaturation 

at 92°C for 15 s and 1 min of combined annealing and extension at 60°C were completed on 

the reaction mixes. In total five runs were performed for each of the 424 DNA samples (1 for 

each of the five SNP assays).  As part of quality control, negative controls (DNA replaced 

with water) and 10% duplicates were included in every 384-well plate run. After PCR 

amplification, an endpoint plate read of fluorescence and allelic discrimination was performed 

using the Applied Biosystems Real-Time PCR System and the Sequence Detection System 

(SDS) Software (Applied Biosystems). Fluorescence measurements made during the plate 

read are used to plot fluorescence (Rn) values based on the signals from each well. The plotted 

fluorescence signals indicate which alleles are in each sample. 

 

7.2.8. Taqman chemistry 

  Each TaqMan MGB probe anneals specifically to its complementary sequence 

between the forward and reverse primer sites. When the oligonucleotide probe is intact, the 

proximity of the reporter dye to the quencher dye results in quenching of the reporter 

fluorescence primarily by Förster-type energy transfer. AmpliTaq Gold® DNA polymerase 

extends the primers bound to the template DNA. AmpliTaq Gold DNA polymerase cleaves 

only probes that are hybridized to the target complimentary sequence. Cleavage separates the 

reporter dye from the quencher dye, which results in increased fluorescence by the reporter. 

The increase in fluorescence signal occurs when the hybridized probes are cleaved. 

http://www3.appliedbiosystems.com/cms/groups/mcbsupport/do%20cuments/general%20documents/cms_042998.pdf
http://www3.appliedbiosystems.com/cms/groups/mcbsupport/do%20cuments/general%20documents/cms_042998.pdf
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7.3. Statistical analysis 

All statistical analyses were performed in SPSS version 18. Deviation from HWE was 

tested for each of the five SNPs using a Chi-Square test (http://ihg.helmholtz-

muenchen.de/cgi-bin/hw/hwa1.pl), with a p-value of <0.001 assumed to indicate deviation 

from HWE.  The MAF of each SNP was also checked and any SNPs with a study cohort MAF 

of <0.05 were excluded from the analysis (Haploview version 4.1). The SNP MAF was also 

compared to that of the general population (www.hapMap.org). P-values for all genetic and 

non-genetic association tests undertaken in the study were adjusted for multiple testing using 

the FDR and a statistical p-value of ≤ 0.05 after correction was deemed to indicate a 

statistically significant association (Benjamini et al., 2001). 

 Due to the growing acknowledgement of the importance of clinical factors in 

epidemiological association studies (Cavalleri et al., 2011, Johnson et al., 2011b), two 

assumptions were made for this present study 1) genetic factors could act or influence 

treatment response via a measured clinical covariate 2) genetic factors could influence 

treatment response via a pathway un-related to the clinical covariates. We therefore undertook 

the following analyses i) for genetic factors alone; without the adjustment of any associated 

clinical covariates and ii) using both genetic factors and any associated clinical covariates.   

 

7.3.1. Univariate tests with treatment outcome for association analysis 

To evaluate the individual effect of SNP genotype on outcome, two univariate tests of 

association were conducted for each of the five SNPs, one making no assumption of 

underlying mode of inheritance and one assuming an additive mode of inheritance, and the 

minimum p-value referred to in each case. For univariate analysis of each SNP genotype the 

Armitage trend test was used (http://ihg.helmholtz -muenchen.de/cgi-bin/hw/hwa1.pl). For the 

binary clinical covariates (gender, epilepsy type, EEG, imaging initial AED and AED at final 

follow-up, a Chi-square test (SPSS) or Fisher’s exact t-test were used (SPSS and 

www.langrud.com/fisher.htm) and a t-test (SPSS) was used for the single continuous variable 

of patient age at recruitment or study admission.  

 

7.3.2. Multiple regression analysis with treatment outcome 

  The purpose of this analysis was to test for association between each of the five SNPs 

and 1-year remission in the presence of any clinical covariates found to independently 

influence treatment outcome, in order to potentially adjust for non-genetic clinical association, 

with the assumption that these may allow improved detection of any genetic influencers.  For 

http://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
http://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
http://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
http://www.langrud.com/fisher.htm
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this a multivariate binary logistic regression analysis was performed (SPSS) where two logistic 

regression models were fitted for each of the five SNPs (a baseline and genetic model) and 

compared using the LRT test (described in Chapter 3 and 4). The ‘baseline’ model included 

clinical factors found significant in the univariate analysis (P = 0.05) as covariates. The genetic 

‘model’ was the same but also included a genetic covariate representing an individual SNP. 

For each SNP the ‘genetic model’ was again fitted twice, first making no assumption of the 

underlying mode of inheritance and second assuming an additive mode of inheritance. The 

minimum p-value was referred to in each analysis. 

 

7.3.3. Survival analysis for time to remission data 

Survival or time to event analysis may be a more appropriate analysis as remission could 

have occurred at any time after starting treatment. Survival analyses can account for censored 

observations which include i) patients dropping out of the study, ii) death due to a cause that 

is not the event of interest, iii) termination of the study (the study ends before some individuals 

have the outcome of interest). Survival analysis may therefore help determine or provide 

information on which fraction of the population will remit past the final follow-up, and the 

rate at which seizure remission is achieved. Moreover how particular factors benefit or affect 

the probability of remission can be investigated.  

 In order to perform a time to event survival analyses using the genetic data available 

for this study, time to period of 1-year seizure remission was required to be extracted from the 

available clinical data and treated as an additional covariate. Time to seizure remission (days) 

was calculated using dates available for both treatment initiation (study recruitment or 

admission) and time to achieving remission. A Kaplan-Meier survival analysis and a log-rank 

test were performed to test for a univariate association of remission status for each of the 

binary clinical covariates (gender, epilepsy type, EEG, imaging initial AED, AED at 

remission) and the Cox regression test was used for continuous clinical covariates (age at 

recruitment/admission).  

 For the multivariate survival analysis, for each of the five SNPs two Cox regression 

models were built, a ‘baseline’ model, again containing statistically significant clinical 

covariates only (P = 0.05) and ‘genetic model’ containing both clinical covariates and genetic 

covariates for each SNP. A Chi-square p-value was again generated using log likelihood ratio 

and LRT. For each SNP models were fitted when making no assumption of the underlying 

mode of inheritance and when assuming an additive mode of inheritance and the minimum p-

value referred to in each case. 
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 Finally a bioinformatics analysis was also performed for each of the five-SNPs using 

several freely available as described previously (section 5.2.14), in order to investigate 

potential biological significance.  

 

7.4. Results 

From the 434 individuals genotyped for the five candidate SNPS, 10 individuals failed to 

be successfully genotyped for all five SNPs and so were removed from data analysis. 

Demographics of the remaining 424 patients are summarised in Table 7.3. The majority of 

patients were Caucasians with newly treated epilepsy and treated with one or more AEDs. Of 

the 424 patients included in the data analyses, 304 remained seizure free for a period of 12 

months or more at some point through their treatment, while 120 continued to experience 

seizures, without any period of seizure freedom of at least a year, during their period of follow 

up. Hence of the 424 patients 28.3 % achieved remission and were treated as cases while 71.7 

% failed to achieve remission and were labeled as controls. 

 

 

Table 7.3  Characteristics of UK Glasgow cohort of newly treated epilepsy 

Clinical characteristic   (n=424) 

Age  Mean (±SD)  37 (±16.96) 

Sex N (%) Male 234 (54.7%) 

  Female 190 (44.4%) 

Epilepsy type N (%) IGE 79 (18.5%) 

  LRE 318 (75%) 

  UNC 27 (6.4%) 

Remission  N (%) Yes 

No 

304 (71.7%) 

120 (28.3%) 

SD= Standard deviation, IGE = idiopathic generalised epilepsy, LRE = localisation related 

epilepsy, UNC = unclassified epilepsy  
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7.4.1. Univariate analysis of association between SNPs or clinical covariates 

and treatment outcome 

For the final cohort of n=424 patients, population MAF of each SNP was at least 5%, 

and each SNP achieved HWE. All five SNPs were previously typed by the International 

HapMap project (NCBI build 36, dbSNP build 126) and HapMap population MAFs (HapMap-

CEU European ancestry) did not deviate from those observed in this study. When each of the 

five SNPs were analysed univariately as to test for an independent effect of each of the five 

variants, none of the five SNPs were found to individually influence treatment outcome  (Chi-

square P > 0.05). Results of the univariate tests of association for the five genetic covariates 

are presented in Table 7.4. 

 Non-genetic influence on outcome was also tested univariately. Of the binary clinical 

covariates included in the analysis both epilepsy type and EEG result influenced treatment 

outcome, with a statistically significant p-value of below 0.05 before FDR. Final treatment 

drug (AED at final follow-up) additionally showed a strong association with treatment 

outcome (P < 0.001 after FDR correction). These clinical covariates were thus included in the 

regression models for the subsequent genetic analyses (Table 7.5). Figures 7.3, 7.4 and 7.5, 

present plots for the influence of epilepsy type, EEG and AED at final follow-up on response 

to drug treatment.  
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Table 7.4 Univariate analysis of genetic and clinical factors with drug response   

Univariate regression analysis for the independent association of genetic variables and clinical 

covariates with treatment response in newly treated epilepsy. 

Factor Uncorrected P-value  

Final follow-up AED 0.000  

Initial follow-up AED  0.432  

Epilepsy type 0.018  

EEG 0.002  

Age 0.52  

Gender 0.867  

Imaging 0.21  

rs17252760 0.91  

rs12919774 0.62  

rs16994558 0.22  

rs316132 0.78  

rs622902 0.5  

AED = antiepileptic drug, EEG = electroencephalography 
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Figure 7.3 Bar chart for association between epilepsy type and response (n=424) 

In total 79, 318 and 27 individuals presented with idiopathic generalised epilepsy (IGE), 

localisation related epilepsy (LRE), and unclassified epilepsy (UNC), of which 65, 224 and 15 

individuals achieved 1-year remission respectively.  
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Figure 7.4 Bar chart for association between EEG recording and response (n=424) 

In total 106, 120 and 148 individuals presented with epileptiform, non-specific and a normal 

EEG result respectively. In 50 individuals an EEG (Electroencephalography) was not done. 

Of these 86, 89, 103 and 26 individuals achieved 1-year remission respectively.  
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Figure 7.5 Bar chart for association between AED at final follow-up and response 

In total 29, 106, 78, 13, 3, 94 and 98 individuals were treated with the antiepileptic drugs 

(AED) carbamazepine (CBZ), lamotrigine (LTG), valproate (VPA), oxcarbazepine (OXC), 

gabapentin (GBP), another drug (other), or multiple drugs (multi). Of these 26, 96, 66, 9, 3, 

70 and 32 individuals achieved 1-year remission respectively.  
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7.4.2. Multiple regression models 

Results of the LRT from the multivariate binary regression analysis are summarised 

in Table 7.5. Of the five candidate SNPs, none of the SNPs were significantly associated with 

treatment outcome (P = < 0.05, before FDR) when the associated clinical covariates of EGG, 

epilepsy and final follow-up AED were included in the genetic model. Thus none of the genetic 

variants were predictive of treatment response in our investigation. The genomic information 

for all five candidate SNPs are summarised in Table 7.6.  

 

 

 

Table 7.5 Multivariate logistic regression results for treatment response 

Association of each SNP with treatment response in newly treated epilepsy in the presence of 

associated non-genetic factors 

Clinical covariates SNP ID (rs) Uncorrected  

Chi-square P-value 

Epilepsy type, EEG, 

Final follow-up AED 

rs17252760 0.356 

rs12919774 0.127 

rs16994558 0.493 

rs316132 0.346 

rs622902 0.093 

SNP= single nucleotide polymorphism, rs= reference sequence, EEG= 

electroencephalography, AED= antiepileptic drug 
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Table 7.6  Genomic information for the five candidate SNPs investigated 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNP= single nucleotide polymorphism, Chr= Chromosome, bp= base pair,  

MAF= minor allele frequency 

 

 

 

 

Table 7.7 Survival analysis univariate Kaplen-Meir and Cox regression analysis of 

association between clinical covariates and time to 1-year remission  

Factor or variable Uncorrected  

P-value 

Age 0.430 

Gender 0.047 

Epilepsy type 0.448 

EEG 0.069 

Imaging 0.556 

Initial AED treatment 0.058 

AED at Remission 1.4x10-5 

EEG = electroencephalography, AED = antiepileptic drug 

 

SNP ID 

(rs) 

Chr. Position 

(bp) 

Closest gene Allele 

change 

SNP 

location 

rs16994558 23 147259820 RPL7L1P11, 

AFF2 

G/A intergenic 

rs622902 6 52954433 GSTA4 C/T intronic 

rs316132 6 52955925 GSTA4 A/G intronic 

rs12919774 

 

16 8455709 TMEM114,  

LOC100131080 

A/G 

 

Intergenic 

rs17252760 15 89784049 MAGEA9B, 

CXORF6840A 

C/A intergenic 
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7.4.3. Multivariable survival analysis 

The results of the Cox regression analyses are presented in Table 7.8. The multivariable 

Cox regression models including patient gender and AED at remission as covariates, again 

none of the five SNPs were associated with time to 1-year remission (LRT; P= > 0.05, for 

each SNP before FDR correction, Table 7.8). Therefore although there was some predictive 

potential of the clinical covariates for time to seizure control there was no influence of any 

genetic factors on time to remission in our analysis.  

 

 

 

 

 

 

 

 

 

 

              

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6  Time to 1-year remission analysis for patient gender 

Kaplen-Meir curves as generated by SPSS for univariate analysis of time to 1-year remission 

and patient gender.  
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Figure 7.7  Time to 1-year remission analysis for AED at remission 

Kaplen-Meir curves as generated by SPSS for univariate analysis of time to 1-year remission 

and antiepileptic drug (AED) recorded at 1-year remission. Data stratified by AED 

(antiepileptic drug) recorded at 1-year remission. CBZ = carbamazepine, LTG = lamotrigine, 

VPA= valproate, OXC= oxcarbazepine, GBP= gabapentin, Other= any of AED administered 

and Multi= multiple drug treatment. 
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7.4.4. Multivariable survival analysis 

The results of the Cox regression analyses are presented in Table 7.8. The multivariable 

Cox regression models including patient gender and AED at remission as covariates, again 

none of the five SNPs were associated with time to 1-year remission (LRT; P= > 0.05, for 

each SNP before FDR correction, Table 7.8). Therefore although there was some predictive 

potential of the clinical covariates for time to seizure control there was no influence of any 

genetic factors on time to remission in our analysis.  

 

 

 

Table 7.8 Multivariate Cox regression analysis for SNP association with remission 

Association between each SNP and time to 1-year remission with adjustment for the associated 

clinical covariates identified previously. 

SNP ID (rs) Clinical covariates Chi-square value Uncorrected Chi-square 

 P-value 

rs17252760 

Gender 

AED at final follow-up  

0.851 0.356 

rs12919774 2.328 0.127 

rs16994558 0.469 0.493 

rs316132 0.888 0.346 

rs622902 2.829 0.093 

SNP = single nucleotide polymorphism, AED = antiepileptic drug 

 

 

 

7.5. Discussion 

With a significant amount of individuals (30-40%) presenting non-response and long-

term resistance to adequate management with AEDs, the search for markers of drug efficacy 

in epilepsy has received considerable attention in the challenge to optimise therapeutic drug 

treatment. Outcomes AED therapy can range from immediate remission to frequent 

unremitting seizures with multiple treatment failures and so delineating both seizure 

susceptibility and a predisposition to achieving good seizure control early on remains to be 

attained Duncan et al., 2006. There is a significant lack of study replication across epilepsy 

PGx that can be attributed to many limitations presented to the study of complex disease 
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genetics in general (Tabor et al., 2002, Loscher et al., 2009) and/or that specific to epilepsy 

PGx research (see section 1.5.6). The candidate gene approach to association study design has 

furthermore been disappointing in terms of locating influential susceptibility loci and 

incorporating a multifactorial basis of drug response phenotypes. With this slow progress in 

predicting AED efficacy including treatment responsiveness, large-scale GWAS with bigger 

numbers of cases and controls creating more power for genetic detection are being utilised.  

 Recent GWAS methodologies include two-stage approaches, with a discovery cohort 

and independent replication cohorts and combined meta-analysis of the two stages. Recent 

guidelines have been published to standardise the reporting of association studies to facilitate 

meta-analyses (Little et al., 2009). Moreover inclusion and/or stratification by clinical 

phenotypes could reveal otherwise undetected linkage (Sanchez et al., 2010, Johnson et al., 

2011b, Leu et al., 2012). GWAS meta-analysis powered by international collaboration can 

create sufficiently sized samples for specific drug response phenotypes in epilepsy populations 

(Johnson et al., 2011b). Further independent validation is also vital to confirm the initial 

research findings and for establishing the true genetic causality of any GWAS presented 

association (McCarthy et al., 2008).  

 In order to provide an independent population investigation or partial validation of the 

UK-Australian GWAS for treatment response in newly treated epilepsy, we performed a 

modest candidate SNP validation study using the Glasgow cohort as an independent UK 

population of newly treated epilepsy. Five SNPs were selected from a number of new 

potentially influential loci from the GWAS meta-analysis for response to drug treatment in 

epilepsy. This included two chromosome 6, GSTA4 SNPs that were identified to be potentially 

significant at a genome wide level (p value of at least 5x10-6 -7, with and without inclusion of 

outcome associated clinical covariates) and an additional 3 GWAS associated intergenic 

SNPs, rs16994558, rs12919774 and rs17252760 (a 5' to AFF2 variant, a SNP near 3' of 

TMEM114 and also the ribosomal protein S14 pseudogene gene and a final SNP near the 

CXorf40A locus, the iduronate 2-sulfatase pseudogene (IDSP1) and the MAGEA9B gene 

respectively) (Table 7.8). None of the five SNPs were found to individually predict treatment 

outcome (remission status) or time to 1-year remission in our analysis using an independent 

UK cohort. Our findings therefore suggest little potential significance of the five SNPs to 

seizure control in newly treated epilepsy, when considered in isolation.  

 Given the independent influence of patient clinical characteristics on drug response 

phenotypes in epilepsy (Callaghan et al., 2011) there is a growing appreciation of the 

incorporation of these factors in current epilepsy PGx research (Cavalleri et al., 2011, Grover 

et al., 2011). The concept of potential interaction of both genetic and clinical variables may 

help detect the remaining gene-phenotype association that could exist and/or confirm some of 

the minor genetic effects already reported (Kasperaviciute and Sisodiya, 2009, Loscher et al., 
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2009). With this additional multivariate testing however, we again didn’t find associations 

with the five SNPs in both the time to 1-year remission analysis and treatment response 

outcome (success of seizure control) in the regression analysis. Our findings demonstrated 

some predictive potential of several clinical factors in AED drug response which was similarly 

suggested by the Australian/Australian GWAS analyses and also by previous clinical 

epidemiological studies (Mohanraj and Brodie, 2006, Callaghan et al., 2007, So, 2011, Brodie 

et al., 2012) whilst the influential potential of the five candidate SNPs filtered out from the 

GWAS analysis was nonexistent. Similarly no biological significance of these five SNPs was 

apparent from the bioinformatics analysis (literature searches and online bioinformatics 

prediction tools). Our investigation therefore did not confirm the significance of the genetic 

variants or a role of GSTA4 on seizure control or treatment success in newly treated epilepsy. 

Time-to remission, which was not studied in the original Australian-UK GWAS study, though 

provides a better outcome measure. To some degree time- to event data may better represent 

ease of seizure control and could more accurately indicate whether a patient is likely to remit.  

No associations were nonetheless evident in the genetic analysis using time to 1-year remission 

data. Because of a lack of genotype-phenotype associations and insignificance of any potential 

biological function of either GSTA4 SNPs or any of the intergenic variants, the role of GSTA4 

in drug treatment in newly treated epilepsy cannot be confirmed by our study. 

 A number of clinical predictors for seizure remission have previously been 

investigated for their association with long-term epilepsy outcome (Hitiris et al., 2007, 

Callaghan et al., 2011, Brodie et al., 2012). Although the genetic subset of analysis performed 

for this chapter was largely unremarkable, some clinical covariates also appeared to influence 

treatment outcome or response in our investigation. A diverse range of clinical predictors have 

previously been proposed as poor prognostic indicators, including abnormal neurological 

examination, EEG and brain imaging (Sillanpaa, 1993, Berg et al., 1996, Mattson et al., 1996, 

Berg et al., 2001), a large number of pre-treatment seizures (Sillanpaa, 1993, Kwan and 

Brodie, 2000a, Leschziner et al., 2006, Hitiris et al., 2007) (including their number and 

frequency), presence or absence of a neurological deficit and can also explain some of the 

variability in remission among patients (Callaghan et al., 2011).  

The most consistent determinant associated with long-term epilepsy outcome is however the 

ease of controlling seizures, which includes i) how soon seizures are controlled by AED, ii) 

how frequent seizures recur despite treatment initiation and iv) how many AEDs had to be 

used to control seizures (Mohanraj and Brodie, 2006, So, 2011, Brodie et al., 2012). Although 

information on pre-treatment seizures and seizure frequency was not available for all patients 

in our cohort, we found associations with epilepsy type, EEG findings and AED at final 

follow-up with treatment outcome in the regression analysis.    

 AED at remission was also associated with time to time to 1-year remission in the 
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survival analyses, as was patient gender. Better response to treatment appeared evident with 

the IGE epilepsy type (82%) and slightly better when EEG showed epileptiform abnormality 

in comparison to non-specific abnormality or no abnormality (81%, 74%, and 70% 

respectively). Highest response was moreover evident with the use of VPA as the final AED 

(85%), and VPA also presented with the shortest time to remission in the time-to event analysis 

(474 days). Moreover poor response was suggested with multiple AED treatment (33%) and 

poly-therapy also showed the longest time to remission (913 days). Finally a marginally 

significant difference in time to 1-year remission appeared between the genders. These factors 

have previously been investigated and in several cases were demonstrated to be of some 

clinical utility (Mohanraj and Brodie, 2006, Johnson et al., 2011b, So, 2011).  

 Failure to provide evidence for the significance of the five candidate SNPs and 

validation for predictive potential of the two GSTA4 GWAS filtered out SNPs can be attributed 

first and foremost to the methodological issues that are evident with the methodology of our 

study and also that of which can be associated with the original GWAS analyses. There are 

several universally recognised issues associated with whole genome based association studies 

for PGx (discussed previously in Chapter 1) (Motsinger-Reif et al., 2010). The main 

recognised disadvantage relates to the large sample size requirement (Nebert et al., 2008a, 

Motsinger-Reif et al., 2010). Sample size limitations are a challenge in any GWAS study of 

complex traits that attempt to detect modest effect sizes, but are amplified in many 

pharmacogenomic studies (McCarthy et al., 2008, Crowley et al., 2009, Khoury et al., 2009) 

and even more so when performing independent validation studies (Ioannidis et al., 2001). 

Consortia efforts such as that used for the newly treated epilepsy GWAS meta-analysis are 

suggested to overcome the limitation of sample size and power (Motsinger-Reif et al., 2010, 

Johnson et al., 2011b). Although modest sample sizes were provided by the meta-analyses 

performed for the Australian-UK GWAS study, (discovery cohort, n=831 replication cohort 

n=260) and that of our validation study cohort (n=424), there remains the possibility of limited 

study power, for detecting potential effects across all 3 cohorts. In addition to this, the potential 

effect of population substructure across at least the Australia and the UK cohorts may pose 

further errors in true effect identification, as there may be variation in patterns of LD and 

frequency of alleles of interest between the discovery and validation population (Johnson et 

al., 2011b). 

  As discussed throughout this thesis, defining phenotypes for drug response remains 

one of the main challenges in epilepsy PGx and the importance of a universally accepted 

definition and the collection of phenotype data has become increasingly appreciated in the 

context of GWAS (Nebert et al., 2008a). The widely accepted 1-year period of seizure freedom 

definition used for our research dichotomises drug response or treatment outcome into 

“responder” and “non-responder” categories. Although, this has served extremely useful for 
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the retrospective approach to epilepsy PGx (does not require lengthy follow-up) and is also 

appropriate, given that absolute seizure freedom for at least 12 months is the only relevant 

outcome associated with meaningful improvement of quality of life (Kwan et al., 2010). This 

dichotomisation however may obscure important information for drug response (Johnson et 

al., 2011b), thus a potentially quantitative trait may be being transformed into a binary trait 

and so result in the power of a case-control association study being less than that of a 

quantitative trait analysis (Yang et al., 2010, Johnson et al., 2011b). In this present study a 

time to event analysis was additionally undertaken as an attempt to resolve this issue of 

defining seizure remission. 

 In addition to these general issues with study design there are other potential 

confounders more specific to this validation attempt, namely the approach taken for selecting 

the five candidate SNPs to validate the GWAS findings. These SNPs may not be the most 

influential to treatment outcome in newly treated epilepsy. The five SNPs were selected from 

the unreported GWAS meta-analysis findings, though these were not necessarily the top five 

‘GWAS hits’ (GWAS significance level of P = 5x10-7 for suggestive phenotype association) 

(Meyer et al., 2010). Our five candidate SNPs were selected based on results of gene 

expression data in accordance to strong association with outcome (not all at the suggested level 

of GWAS significance) and with the additional consideration of clinical covariates for 

detecting an improved signal. This approach to SNP selection was for the purpose of adding 

further biological or functional value to the GWAS analysis findings on which this study was 

based. The initial GWAS meta-analysis report identified 10 GSTA4 SNPs that associated with 

treatment outcome at the GWAS significance level, however only the top two in terms of 

lowest Chi-square p-value for association were studied in this investigation. With the potential 

role of GSTA4 gene signified from earlier research and the GWAS analysis, more value may 

have been achieved from investigating all 10 GSTA4 SNPs in addition to those with additional 

potential importance due to gene expression data.  

 GSTA4 appears to be a good candidate gene for influencing drug response in epilepsy 

due to its role as a defense enzyme against pharmacologically active electrophilic compounds. 

Further investigation into GSTA4 may thus be warranted to confirm the potential of this gene 

to AED treatment response. Rather than limiting to a handful of SNPs, genotyping a greater 

number of GWAS associated SNPs with slightly less predictive potential (higher Chi-square 

association values) would provide a richer dataset and so may yield additional new causal loci 

associated with treatment outcome. Moreover carrying out a candidate gene validation study 

for GSTA4 combining all three independent cohorts would add greater power for detecting 

influential markers across phenotypically heterogeneous populations.  

 It is unlikely that a small selection of common variants can successfully predict AED 

responsiveness alone. Several clinical factors are known to determine drug resistance in 



  CHAPTER SEVEN 

  

252 
 

epilepsy, including aetiology, early age at seizure onset, type of epileptic syndrome and 

seizure, structural brain abnormalities or lesions, high pre-treatment seizure frequency, or 

abnormal EEG findings (Kwan and Brodie, 2002, Loscher, 2005b, French, 2007). Not all of 

the above mentioned clinical variables were however included in our study, due to unavailable 

data. This included pre-treatment seizure frequency (most associated with drug-resistant 

epilepsy (Callaghan et al., 2011) and also identified from the GWAS meta-analysis) and 

neurological deficit (Callaghan et al., 2011), which, if significantly associated with outcome 

or time to remission could have influenced our results. 

 A more comprehensive analysis with complete clinical data sets of all variables of 

particular significance may be required in future analyses. The stratification of patient cohorts 

into subgroups by such demographic and clinical factors has also been suggested as a means 

of acknowledging both the heterogeneity within patient populations and the concept of 

revealing any masked genetic influence. Most studies are performed in multiple types of 

epilepsy and with multiple AEDs, but like many association studies no attempt was made in 

our analyses to separate children from adults or the different epilepsy types, despite there being 

important differences in drug-response and type of AEDs used in each subgroup. 

 Treatment differences between the GWAS meta-analysis and validation cohorts are 

another obvious confounder. Potential differences in methodology and recruitment of 

individuals from one study to another may have additionally influenced our results. Significant 

differences in drug treatment are to be expected with international collaboration studies in PGx 

in general. The Australian clinical drug treatment regimens are largely based on CBZ, VPA 

and LTG. Both UK cohorts also differed slightly in AED treatment due to the source 

populations from which both UK cohorts were derived. As previously described the UK 

Glasgow newly treated population (from which patients from this validation study were 

selected) was largely recruited via a drug trial comparing VPA to LTG, whilst the Australian 

GWAS source population was not recruited as part of a drug-trial, rather a PGx study and were 

mainly prescribed CBZ or VPA, and the SANAD GWAS source cohort was the two arm 

randomised SANAD drug trial of established and newer antiepileptic medications (Marson, et 

al. 2007a, b), where LTG  again dominated initial treatment. This would explain the highly 

significant association identified with AED treatment in both our survival analysis for time to 

1-year remission and the general regression analyses for predicting response to treatment (see 

chapter 5 for a discussion on differences in AED treatment between populations and the 

potential genetic effects). We performed univariate and regression analyses on the Glasgow 

UK population using data on initial AED treatment, final AED treatment and/ or AED at 

remission, but this was not stratified by drug type, rather each treatment variable was treated 

as a single covariate.   
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 GWASs can not only identify novel associations for further study, but can help 

counter the selective reporting and pursuit of false positive findings that may occur when PGx 

studies are limited to candidate genes (Guessous et al., 2009). PGx has however focused 

mainly on SNPs as a source of common variation. Single and common variants within genes 

alone have poor predictive value, it is thus unlikely only common polymorphisms and only 

five variants at that are solely responsible for the different drug response phenotypes. GWAS 

are generally underpowered, to detect effects of other sources of variation such as rare and 

novel SNPs that are now becoming appreciated to also contribute to the genetic heterogeneity 

of drug response.   

To summarise future research efforts for predicting seizure remission are likely to 

benefit from the use of broader definitions of response in larger patient cohorts. This may 

power detection of modest effects for a common biological pathway for all 3 populations, but 

a strategy that i) considers underlying epilepsy etiology, ii) incorporates clinical covariates 

(e.g., seizure/syndrome type, age at onset) or at the very least considering all strongly 

implicated clinical factors (i.e. pre-treatment seizure frequency and neurological 

deficit)(Blanca Sanchez et al., 2010, Cavalleri et al., 2011, Johnson et al., 2011b) and iii) 

classifies patients according to response to a specific AED should help in the identification of 

potentially larger and more clinically relevant AED-specific genetic effects (Cavalleri et al., 

2011).  

In addition to large collaborations and consortia meta-analysis, in recent times studies 

are now taking advantage of large-scale deep genome-sequencing to develop a better 

understanding of the human genome and these are better powered to detect mutations and rare 

variants, and it is very likely that such approaches will also be used in the future for 

pharmacogenomic studies in epilepsy.  
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8.1 Recent progress in antiepileptic drug pharmacogenetics 

The first AED was PB, discovered to have antiepileptic properties in 1850s and PHT, 

was then later developed in 1912. Epilepsy is now typically managed with AEDs, of which 

there are currently over 20 with around a dozen in common use (Rogawski and Porter, 1990, 

Cavalleri et al., 2011).  Although the recognition that genetic factors play a role in individual 

response to AED therapy came about in the 1960s with the discovery of congenital enzyme 

deficiency, (Kutt H, 1968) it was not until the late 90s that the first association with genetic 

polymorphisms in the phase I enzymes CYP2C9 and CYP2C19 with PHT metabolism was 

reported (Mamiya et al., 1998, Aynacioglu et al., 1999, Nakajima et al., 2005). This was 

confirmed by several other experimental studies (Aynacioglu et al., 1999, Mamiya et al., 2000, 

Kerb et al., 2001, Allabi et al., 2005) and initiated numerous searches for additional DME 

candidate genes for AED response (Saruwatari et al., 2010). 

  In terms of AED efficacy or response phenotypes, CYP2C9*2 and *3 polymorphisms 

were the first variants implicated in altered AED dosing in early research concerning PHT PK 

(Odani et al., 1996, Odani et al., 1997, Mamiya et al., 1998) and also more recently confirmed 

by several lines of evidence not only for PHT, but also for the AEDs, PB, VPA and ZNS 

(Mamiya et al., 2000, Hung et al., 2004, Tate et al., 2005, Chaudhry et al., 2009, Loscher et 

al., 2009, Saruwatari et al., 2010). Additional PK candidate genes were later investigated and 

associations with AED dose have over the years have been found for CBZ PKs with 

CYP3A5*3 and EPHX1 and also variants within UGT1A4 and UGT2B7 for LTG (Loscher et 

al., 2009, Saruwatari et al., 2010). The ABCB1 transporter PK gene was initially implicated in 

AED dosing in 2001 (Kerb et al., 2001, Ebid et al., 2007, Simon et al., 2007). The original 

ABCB1 C3435T variant association with AED responsiveness in individuals with epilepsy 

(Tishler et al., 1995) was subsequently proposed and demonstrated experimentally in 2003 

(Siddiqui et al., 2003).  Additional transporters associated with AED response include 

RALBP1, P1 and P2 proteins with drug resistant epilepsy (Awasthi et al., 2005, Leschziner et 

al., 2007b, Soranzo et al., 2007, Kasperaviciute and Sisodiya, 2009, Loscher et al., 2009)  

 The search for novel candidate genes and functional variants in these and previously 

associated genes continues, but it quickly became clear that PK polymorphisms alone do not 

explain most of the variation in AED dosage or efficacy (Depondt and Shorvon, 2006, 

Kasperaviciute and Sisodiya, 2009). The potential of mutations in drug targets to AED 

treatment, namely the SCN1A gene was initially discovered through early studies of Mendelian 

epilepsies (Guerrini et al., 1998), and in 2005 the first drug target association with AED dosage 

was reported (Tate et al., 2005, Tate et al., 2006).  

 Most recent candidate genes implicated in influencing AED efficacy include that for 

the GST gene (although so far only concerning adverse effects) (Ueda et al., 2007, Zaccara et 
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al., 2007, Kasperaviciute and Sisodiya, 2009), OCTN1 (Szoeke et al., 2006, Loscher et al., 

2009) ABCC2 (Kim et al., 2010, Qu et al., 2012) and GABARA1 all of which are associated 

with AED responsiveness (Kumari et al., 2010). Despite these gene implications the first and 

only clinical impact of genetic variation in epilepsy is the HLA-B*1502 variant as a strong 

predictor of CBZ-induced SJS/TEN in patients from Asia and of Asian descent (Loscher et 

al., 2009, Yip et al., 2012). No such progress has been made in AED efficacy. The limited 

success in AED PGx studies to date has been associated with the lack of concordance in 

research findings, the foremost reason being the variation in treatment regime among 

clinicians, inconsistent phenotype definitions (i.e., definition of resistance versus response to 

AEDs) and heterogeneity in epilepsy phenotypes among studies.  

Drug response phenotype is perhaps the fundamental factor in PGx genetic studies of 

responsiveness and a lack of consensus in its definition has inevitably resulted in difficulties 

in making comparisons across studies (Kasperaviciute and Sisodiya, 2009, Cavalleri et al., 

2011). Two meta-analyses have been reported assessing the role of the Pgp ABCB1 3435C>T 

variant in drug response (Siddiqui et al., 2003, Leschziner et al., 2007a) and these clearly 

demonstrate the importance phenotype definitions when investigating potential genetic 

effects. Neither of these meta-analyses provided evidence for ABCB1 3435C>T association 

with multidrug resistance, though this can be attributed to the huge variation in drug-resistance 

phenotype definitions of the original studies that makes meaningful meta-analysis hardly 

possible (Kasperaviciute and Sisodiya, 2009).   

 There are various other potential explanations for the discordant results, including, 

retrospective design and relatively small sample size and/or short duration of most studies. 

Additional factors include heterogeneity of the epilepsy syndromes with their variable causes 

and prognoses and a reduction in power to high-dimensionality of multigenic data sets under 

investigation (Hirschhorn et al., 2002, McCarthy et al., 2008, Kasperaviciute and Sisodiya, 

2009). 

The multifactorial nature of AED response necessitates the search for multiple genes 

or variants (Loscher et al., 2009, Kumari et al., 2011). Indeed several investigations including 

some of the studies mentioned above have utilised a multigenic approach (Anderson, 2008, 

Petrovski et al., 2009, Johnson et al., 2011b). Moreover the application of ML methods has 

now moved to PGx (Hahn et al., 2003, Ferraro and Buono, 2006, Petrovski et al., 2009, Pander 

et al., 2010, Silva et al., 2011). A growing number observational studies have also recently 

shown that when genotype is considered alongside other genomic factors and clinical 

predictors the proportion of variation in response can increase significantly (Franciotta et al., 

2009, Makmor-Bakry et al., 2009, Petrovski et al., 2010, Sanchez et al., 2010, Johnson et al., 

2011b).  
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With the completion of the human genome project in 2001 and the advent of genomic 

technologies, epilepsy PGx research has now begun utilising a more genome-wide approach 

to research i.e. one that captures greater amount and type of genetic variation (Evans and 

McLeod, 2003, Goldstein et al., 2003, Grant and Hakonarson, 2007, Crowley et al., 2009). 

This genome wide approach has previously proven to speed up the discovery of drug response 

markers in other disease areas and aided the integration of PGx to the clinical practice 

(Takeuchi et al., 2009, Daly, 2010a, Wu and Reynolds, 2012). In 2010, the first GWAS for 

focal epilepsy was published (Kasperaviciute et al., 2010) and this was quickly followed by a 

GWAS meta-analyses concerning PGEs (Leu et al., 2012). The next step for epilepsy PGx 

thus remains GWAS studies for AED efficacy as to finally utilise whole genome data in the 

search for novel prognostic gene and/or SNPs for treatment responsiveness in epilepsy 

(Johnson et al., 2011b).  

 Prospective epidemiological study of newly-diagnosed epilepsy across all age ranges, 

countries, and continents is considered the ideal for studies into drug efficacy (Kasperaviciute 

and Sisodiya, 2009, Cavalleri et al., 2011, Johnson et al., 2011b). As the analysis of already 

available retrospective data is likely to continue, for the time-being carefully designed long-

term follow-up studies would identify the patterns of outcome and delineate the different 

phenotypes for successfully identifying drug response markers for valid pharmacogenomic 

investigations. Multicentre GWAS meta-analyses are the way forward for this, and are 

presently being constructed (Johnson et al 2012 unpublished)(Leu et al., 2012).  

 A recent Australian-UK GWAS meta-analysis effort for newly treated epilepsy 

presents the first GWAS study for drug response and seizure remission in newly treated 

epilepsy (Speed et al., 2013). Through the careful consideration and standardisation of patient 

phenotypes as well as using prospective drug response data, incorporating influential clinical 

covariates and utilising multi-centre collaborations, this GWAS study is an advancement in 

AED PGx. Researchers however conclude a lack of limited study power to detect common 

genetic determinants of weak to modest effects (Johnson et al 2012 unpublished).  

 The growing consensus in the field of pharmacogenomics and disease genomics that 

all genomic mutations i.e. common, rare, SNP, CNV, insertions or deletions, microsatellites 

are possible sources of variability with a combination of small and/or large effects on complex 

disease/traits. There is also an increasing trend towards there complete ascertainment. This 

concept of whole genome sequencing is moreover on the rise due to advances in whole genome 

sequencing technology. A GWAS utilising CNV with encouraging findings has already been 

reported for complex forms of epilepsy (Mefford et al., 2010). Arguments thus exist for the 

benefits of the candidate gene approach, genome-wide and now whole genome approach to 

genetic analysis. The former nevertheless provides an increasingly economical method of 

locating all common variation, and the latter at present, continues to provide information of 
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markers of interest (Daly and Day, 2001, McCarthy et al., 2008, Guessous et al., 2009). 

Besides candidate gene studies are clearly a low-cost method of validating larger scale studies 

quickly and efficiently. And so in combination, high-quality phenotyping across multiple 

research centres, dense genomic patient profiles from GWAS and whole-genome sequencing 

and effective PGx validation of the most influential markers could provide a more 

comprehensive investigation to finally locate genetic factors that can guide epilepsy treatment 

(Cavalleri et al., 2011). 

 

8.2 Thesis findings and potential future direction  

PGx studies in epilepsy and in particular newly treated patients are currently small in 

number. The available studies however clearly demonstrate the relatively modest and 

multigenic influence on AED response that is also largely dependent on individual patient’s 

demographical and clinical characteristics. Our findings similarly indicate a complex interplay 

of multiple genetic factors from well-known pharmacological pathways of AEDs in 

combination with clinical prognostic factors underlie the treatment path and responsiveness to 

AED therapy. We also show the potential benefits of new statistical methods for more 

efficiently capturing these relatively small effects with better efficiency. 

 

8.2.1 Genetic markers for predicting antiepileptic drug dose requirement 

PGx studies concerning AED dosing have largely concentrated on PK DME genes 

and primarily the genes for the CYP2C9 and CYP2C19 enzymes (Loscher et al., 2009). The 

first PD gene studied was SCN1A in a report that found a splicing variant rs3812718 to be 

related to variable CBZ and PHT doses (Tate et al., 2005). In Chapter 3 and 4 dosing of AEDs 

was studied using maintenance dose and/or maximum dose data in two independent 

investigations that either searched for potential markers associated with AED dose in PK 

candidate genes (CBZ DMEs) or PD genes (AED target; NaV channel).  We failed to find 

predictive genetic markers for AED maintenance dose in either drug pathway investigation.  

 In Chapter 3 a comprehensive search for markers within several genes was performed 

as to capture enough variation across whole genes, yet our search was not successful. A major 

caveat of the study in Chapter 3 is that we only investigated selected candidate genes that were 

limited to the PK of CBZ. Previous reports however managed to identify single DME SNP 

variants that appeared to influence AED dose using a limited candidate SNP search within 

CYP450 genes namely CYP2C9, 2C19 and 3A5 (Hung et al., 2004, Makmor-Bakry et al., 

2009, Park et al., 2009, Saruwatari et al., 2010). Small-scale genetic investigations (i.e. those 

that assesses only a handful or small selection of candidate variants) is a problem with many 
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PGx candidate gene efforts as they run the risk of not capturing all potentially influential 

variants and thus pose a greater chance of reporting false positive or false negative findings 

(Daly and Day, 2001, Ferraro et al., 2006). Moreover contradictory research findings exist for 

most if not all studies for AED response (Loscher et al., 2009). Though the predictive power 

of the CYP2C9 and CYP2C19 variants are proven, these are mainly concerned with PHT 

metabolism and are yet to demonstrate general clinical utility (Anderson, 2008). The 

previously reported CYP2C9 and CYP3A5 polymorphisms were not included in our study or 

the final data analysis after quality control checks, thus we were unable to assess their potential 

function to CBZ dosing.  

 Our attempt to replicate the association between maximum dose and the SCN1A 

rs3161362 SNP in Chapter four using retrospective recruited patients with newly treated 

epilepsy receiving CBZ only was unsuccessful (n=168) (Tate et al., 2005). Similar to our 

finding two independent research groups using Japanese and Italian patients also failed to 

associate maximum dose requirements of CBZ and rs3161362 genotype, when investigating 

drug responsiveness in drug-resistant and responsive patients (Abe et al., 2008, Manna et al., 

2011). The primary analysis in Chapter 4 was however for maximum and/or maintenance dose 

regardless of AED administered. This was performed using all patients thus a larger cohort of 

individuals (n=586) and proved more successful. Our follow up investigation of the original 

drug target variant using data for several AEDs in addition to CBZ was thus positive. 

Regardless of whether drug target or DME gene variation is more influential of AED dose, the 

most important question is the predictive value of our genetic findings. In Chapter 3 one PK 

gene, UGT2B7 was the main gene implicated in influencing CBZ dose, though not statistically 

proven in the data analysis. The SCN1A SNP accounted for 6.5% and 2.5% of the variation in 

PHT and CBZ dose requirement respectively (Tate et al., 2005), which may not be adequate 

for it to be considered clinically significant. Moreover our study, which considered a wider 

selection of drugs similarly only appeared to explain limited dose variation. 

 The work presented in Chapter 4 also demonstrates the complexity of gene-

environment interactions where the type of AED used for treatment was shown to effect 

maximum dose. When maximum drug dose was stratified by AED type we observed 

significant association between the SCN1A SNP and maximum dose requirement, with some 

indication of potential specificity to LTG and no effect evident with CBZ (Thompson et al., 

2011). This finding was not in line with Tate and colleagues (Tate et al., 2005, Tate et al., 

2006) who demonstrated association with CBZ and also with PHT, at a greater extent. Our 

sample population was considerably bigger than that of Tate et al and in addition to this we 

carried out a non-specific study of AED usage. Using a non-specific drug data analysis 

provided us with a larger number of patients and thus better power to detect effect size. A non-

specific drug analysis moreover removes bias towards a particular AED, which may no longer 
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be widely prescribed in clinical practice (Glauser et al., 2006, Hakami et al., 2012). Given this 

drug specific effect that appeared to cause modest dose changes and equally moderate level of 

dose variability attributable to the rs3812718 SNP, genetic variation in the SCN1A gene may 

have a significant effect on dosing in newly treated epilepsy patients and so necessitates further 

enquiry (Kasperaviciute and Sisodiya, 2009).     

PK is known to be responsible for variable serum concentration of drugs and their 

doses for therapeutic effect. The SCN1A variant genotype can be implicated with higher doses 

of AED in our analysis. Our data indicates drug-gene interactions may influence drug dose 

and we also show association between rs3812718 genotype and standardised maximum dose 

requirement regardless of AED. We did not however take opportunity to explore a multigenic 

effect of functional DME polymorphisms and the SCN1A variant in combination or even 

multiple variants across SCN1A and/or additional drug target genes, which may have provided 

more definitive results for the studies in Chapter 3 and 4. With the patient DNA available for 

the Glasgow samples we will be able to confirm our findings with maximum dose and 

rs3812718 genotype (investigated in the SANAD cohort) in this independent epilepsy cohort. 

With the wealth of clinical data available for both cohorts, we could also perform a more 

comprehensive investigation of the non-genetic contribution to the variability in AED dosage 

requirement and the multigenic contribution to clinical AED usage. 

 

8.2.2 Utilisation of multigenic machine learning models for AED response  

  The work presented in both Chapters 5 and 6 demonstrate some advantage in the use 

of the kNN supervised ML approach for analysing complex genomic data. In Chapter 5 we 

could not independently replicate the predictive potential of Australian multigenic classifier 

developed by Petrovski et al 2007 using UK newly treated epilepsy patients. Through an 

international collaboration with the study authors, Professor O’Brien and Dr Petrovski in 

Melbourne, Australia, we did however observe some predictive success of the five-SNP 

classifier when data was stratified by CBZ and VPA. Similar to Chapter 4 these findings 

signify a potential drug specific effect in the genetic contribution to AED response and so lend 

support to the inclusion of non-genetic or clinical covariates in the search for predictive 

markers in PGx analysis (Sanchez et al., 2010).  

 The 2007 report by Petrovski et al presents the first PGx study utilising the novel 

statistical method of ML for treatment response (Kasperaviciute and Sisodiya, 2009, Johnson 

et al., 2011b) thus demonstrating greater power of ML methods for studying the complex 

phenotype of drug response. In a later study the authors indicated the prognostic value of 

neuropsychiatric factors for initial 12-month seizure control and additionally reported that the 

five-SNP classifier presented greater prognostic value when considered alongside this 
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neuropsychiatric data (ABNAS score) (Petrovski et al., 2010). The consideration of the 

complexity of epilepsy related phenotypes in genomic research is finally being recognised as 

fundamental to accurately predicting treatment response. Researchers have now proposed 

future efforts should also consider etiology as a covariate in analysis of responsiveness to 

specific AEDs (Kasperaviciute and Sisodiya, 2009, Cavalleri et al., 2011). Great consideration 

of clinical covariates that associate with treatment response was similarly given in our studies 

thus we performed extensive data stratification before the development of any prognostic 

models (Sanchez et al., 2010). Drug responsiveness in epilepsy has previously been studied 

greatly in the context of drug-resistance or the unresponsive phenotype in individuals with 

chronic epilepsy. This research moreover lends most focus to Pgp, however not all AEDs are 

thought to be substrates of Pgp and similar discord is present for the influence of Pgp variants. 

However the notion is presently that if Pgp does have an effect on AED responsiveness this is 

likely to only be minute in nature (Kasperaviciute and Sisodiya, 2009). 

 In Chapter 6 the kNN ML was also used for investigating genetic factors influencing 

complex epilepsy syndromes. The clinical utility of prognostic markers or models can only be 

considered after independent verification. The 11-SNP and 16-SNP kNN classifiers that were 

developed for PGE sub-syndrome type (i.e. JME vs. CAE) and PGE respectively in our studies 

were however unable to classify individuals with any great deal of confidence. Similarly 

utilisation of other ML approaches we could not confidently identify predictive markers for 

PGE sub-syndrome. Two widely used ML developed classifiers (NN and Ensemble) were 

however able to predict PGE patients from non-PGE controls with greater confidence.  This 

was not the primary study aim but demonstrates that ML methods are likely to be more suitable 

for epilepsy phenotype data.  

 One cannot over emphasise the significance of sample size for complex phenotypes 

(Cavalleri et al., 2011, Ferraro et al., 2012). This is moreover exaggerated when considering 

independent validation, which requires additional patient groups. An advantage of ML 

approaches in this context is thus the ability to test any results internally in separated data 

before developing an overall prognostic model, and then independently testing in other cohorts 

before suggestion of any genomic association. The number of cases in a test cohort was thus 

crucial for both studies and can be considered a major contributor to kNN model failure. To 

improve on the investigation in Chapter 5, for future investigations the UK cohorts can be 

combined to form a large cohort of newly treated epilepsy in which new variants with 

potentially more significance to a UK epilepsy population can be identified. Several ML 

approaches are available including those that model gene-gene interactions that are likely to 

occur in complex data sets and these may be more suited to developing models for predicting 

disease occurrence.  
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8.2.3 Genome wide association study for newly treated epilepsy and drug 

responsiveness  

Although we could not establish any predictive potential of the five-SNPs proposed 

to be of particular significance to treatment response in newly treated epilepsy (Speed et al., 

2013) in Chapter 7, our findings did confirm the non-genetic influence in epilepsy treatment 

prognosis. The prognostic potential of several clinical covariates in the ease and early success 

of AED treatment was demonstrated. With our case control analysis of 12-month remission 

status, the predictive potential of EEG, epilepsy type and treatment AED was identified. This 

is in line with what is indicated in literature (So, 2011), where as of yet only clinical predictors 

of modest effect have been located (Loscher et al., 2009, Callaghan et al., 2011, So, 2011).  

 In a recent study several factors were associated with a decreased cumulative 

probability for a 12-month or greater seizure remission including presence of developmental 

delay, symptomatic generalised epilepsy syndrome, longer duration of intractability, and most 

notable number of AEDs failed which was also an independent negative predictor of seizure 

remission (Callaghan et al., 2011).  We did not perform such a detailed non-genetic analysis; 

however there were a greater number of responders in both LRE and IGE patients and the least 

number of responders with multiple AED treatment (usually an indication of failure of at least 

2 AEDs) in our study cohort (Kwan and Brodie, 2001a, Kwan and Sperling, 2009).  

 Chapter 7 specifies that to develop the most accurate predictive models for treatment 

outcomes, multiple sources of information should be integrated including clinical 

characteristics genomic data, historical data and neuropsychiatric data (Johnson et al., 2011b). 

This is consistent with the concept that the determinants of seizure recurrence are 

multifactorial; therefore, many different non-genetic covariates as well as genetic variants are 

likely to provide optimal prediction for numerous individual patients with epilepsy (Bhathena 

and Spear, 2008).  

 Because both our results and that of the GWAS findings have validated the value of 

previously recognised predictors in newly treated epilepsy, the GWAS and the results for this 

current Chapter appear to be valid with little chance of false positive findings. Chapter 7 also 

shows that with time to 12-month remission data a more accurate representation of seizure 

control can be provided than that provided by the binary classification of response (Johnson 

et al., 2011b). Whilst no genomic advances were made in this chapter, GSTA4 can be 

implicated as a candidate gene for seizure control from the original GWAS study report and 

so would benefit from further analysis. Moreover the study presented in Chapter 7 is the first 

to analyse data from a GWAS analysis for newly treated epilepsy. Although no genomic 

significance was identified from the initial GWAS investigation, there appears some 

speculation of the GSTA4 gene and the rs622902 variant in treatment responsiveness in 
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epilepsy, not necessarily from our data but that of the original GWAS international meta-

analysis effort. Further work can include a comprehensive analysis of variation across the 

GSTA4 gene in both UK cohorts of newly treated epilepsy available to us, using a tSNP 

approach to search for novel susceptibility markers for AED responsiveness.  

 

8.2.4 Research conclusions 

Several approaches were employed for each study. Genomic variation was considered 

in drug pharmacokinetic proteins, in drug target proteins and finally across multiple candidate 

genes, thus providing three broad hypothesis as sources housing potential influential genomic 

variation. In addition to this several methods were considered for SNP selection and genomic 

data assessment. 

 

Summary of research findings 

 Genetic variation in DME genes alone is unlikely to have a significant effect on the 

dose required for effective drug treatment.  

 

 Genetic variation in neuronal ion channel proteins as AED targets may be more 

influential in treatment response than pharmacokinetic pathway variation; the 

previously implicated NaV channel gene rs3812718 gene polymorphism may alter 

maximal drug dose requirement of some AEDs but not others. 

 

 

 Machine learning demonstrates greater power as a novel approach to complex 

genomic data analysis; Treatment differences across populations and limited cohort 

size may dampen the predictive power of an Australian treatment response classifier 

 Machine learning may also be a better method for modelling genomic data for the 

common genetic epilepsies, however the PGE sub-syndromes remain far too complex 

to characterise using candidate genes and modest mixed population cohorts, requiring 

larger homogenous patient cohorts and whole genome analysis for future research. 

 

 Initial findings of a multicentre GWA study was not validated in an independent UK 

cohort of treatment response, however GSTA4 variation could be influential in 

treatment outcome in epilepsy and the gene warrants further in depth analysis.  
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8.2.5 Overall thesis conclusions 

AEDs provide the main treatment method for seizures in epilepsy yet 

characteristically present variable levels of success in terms of their effectiveness for treating 

the many types of epilepsy syndromes that exist. Changes in AED therapy including 

successive treatment regimen and drug switching have been reported to influence seizure 

outcome (Mohanraj and Brodie, 2006, Luciano and Shorvon, 2007, Brodie et al., 2012, Wang 

et al., 2013). The prescribing practice in the context of epilepsy may therefore be a major 

indicator for the considerable number of individuals who continue to experience seizures 

(Lhatoo et al., 2001, Sander, 2004, Luciano and Shorvon, 2007, Brodie et al., 2012). AEDs 

could therefore benefit from the application of the concept of personalised medicine through 

PGx study as to maximise pharmacotherapy for epilepsy treatment with minimal complication. 

Better understanding of the common genetic variation contributing to the individual patient 

differences in response to AEDs has so far provided greater insight of the genomic basis of 

AED dosing to progress from a trial and error methodology and improve overall drug efficacy 

in terms of achieving long-term seizure remission. Clinical prognostic indicators are few in 

number and genomic influencers are more or less non-existent.  

 This thesis demonstrates that both the control or treatment of seizures in epilepsy and 

the effective use of AEDs for this intention is complex, and reliant on many factors including 

common and rare genetic polymorphisms, clinical covariates and environmental interaction, 

all of which need to be elucidated before any unknown heritability can be detected. Whether 

such complexity can ever be incorporated into clinical practice is unclear. The characterisation 

of this heritability is heavily reliant on robust phenotypes of variability for both AED response 

and the disease itself, as well as cohort collaboration for greater statistical power for detection. 

A timely effort to effectively achieve these initial steps alone is expected.  Progress in AED 

PGx has not expanded as rapidly as initially anticipated. PGx for improving seizure control 

however remains a worthwhile ground of epilepsy research as in the long run can ultimately 

help provide rapid treatment, reduce mortality and morbidity and decrease medical costs which 

currently burden this common neurological disorder greatly.  

 

8.2.6 Patient Impact of pharmacogenomics 
 

Pharmacogenomics holds the promise of selecting the right drug at the right dose for 

the right person for better outcomes in terms of successful seizure control, adverse effects and 

time to remission (Johnson et al., 2011b). From a clinical perspective, identification of genetic 

variants either by GWA or sequencing is merely the first step in understanding genetic factors 

influencing individual response to pharmacotherapy. Any identified factors can only be 

considered for clinical application after robust assessment of each association to determine its 



  CHAPTER EIGHT 

 

266 
 

true clinical utility (Kasperaviciute and Sisodiya, 2009). From previous candidate and whole 

genome complex disease association studies it is clearly evident that despite successful 

replication of markers even if of high risk or odds ratios, their performance in terms of 

predictive accuracy and specificity for a clinical phenotype such as treatment outcome remains 

poor (Ferraro et al., 2012).  

One of the growing trends in complex disease genomics is the establishment of the 

function of any identified genetic variants (Ferraro et al., 2012). Knowledge of biological 

function provides a good foundation for subsequently interpreting the potential influence of 

genetic associations on a disease phenotype and so can greatly support any identified genetic 

association. Functional studies can include those investigating changes in gene expression, 

splicing and protein function and should be performed in conjunction with genetic studies to 

improve data interpretation and strengthen data analysis. Another essential endpoint is clinical 

phenotype in this case pharmacological phenotypes. Pharmacological phenotypes require 

careful selection before study design and this can be directed through their potential clinical 

utility i.e. locating genetic variants that can predict ADRs or drug efficacy. Correlation 

between pharmacological phenotypes and functional genetic variants remains the biggest 

challenge for future large-scale genomic studies and is critical for clinical translation.  

Eventually pharmacogenomics will lead to the development of rapid high-throughput 

assays to optimise patient diagnosis, the use of which will additionally create medical, ethical, 

legal, and regulatory pressures and these should be considered now, before they emerge 

(Cavalleri et al., 2011).  

 

8.2.7 Impact of pharmacogenomics on drug development 

 
With the advancements in disease genomics, a rational approach to new and better 

therapies has become a realistic prospect. In terms of new or emerging drugs, PGx can be 

applied to drug design in several ways. Firstly PGx research can be used to ‘rescue’ any 

existing drugs that have been withdrawn from the market, most likely due to serious or 

common AEs in a number of people. Retrospective genotyping of such clinical trial 

participants could identify the genetic make-up of the often small proportion of patients who 

suffered these, as to prevent their use in these genetic groups in the future. Subjects’ eligibility 

to participate in additional clinical trials will be decided by the results of such PGx tests. A 

subgroup of individuals may also for genetic reasons, in contrast respond well to a drug 

without side effects. Individuals from both response phenotype groups, will thus benefit from 

a drug being placed on the market with the provision that specific genetic tests will be 

administered prior to drug prescription.        

 In terms of drug research and development, the only way forward would be to couple 
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new drug trials with PGx studies. Pharmacogenomics approaches would focus on the 

identification of genetically determined drug targets involved in disease and/ or genetic 

polymorphisms associated with treatment response. Such research could assist pharmaceutical 

companies to develop more effective drugs with fewer side effects. In pharmacotherapy for a 

particular disease, numerous polymorphisms may influence drug metabolism or disease 

development. These polymorphisms must be identified before PGx and pharmacogenomic 

products can be developed. The complexity of both the human genome, and human diseases, 

however will make it difficult and time-consuming to produce this information.  

 

8.2.8 Next generation sequencing and platforms for data analysis 

NGS is the next stage in the genetics of complex traits and also likely to impact drug 

response (di Iulio and Rotger, 2012). This will help unravel the complexity of the human 

genome in terms of genetic variations that are yet to be discovered and the biological 

mechanisms that surrounds these variants. The impact of NGS technologies on genomics is 

expected to be far reaching and will change the field of disease genetics including that which 

influences disease treatment for years to come (Zhang et al., 2011). Future PGx studies are 

consequently likely to focus on exome genotyping in search of novel genetic markers 

associated with AED sensitivity. Whole genome sequencing in patients will allow the 

detection of underlying rare mutations that in combination with the data for common genomic 

variation is more appropriate for studying the multigenic nature of treatment responsiveness 

in epilepsy. This could hopefully identify unresponsive individuals from responsive 

individuals and also improve the clinical management of patients who require unusually high 

or low drug doses to control their seizures. NGS technologies will have a striking impact on 

genomic research and the entire biological field. One problem with next generation sequencing 

projects is the handling of massive amounts of sequencing data that must be organized, cleaned 

up, assembled, and analyzed. Sequencing of an entire genome can generate millions of pieces 

of sequence that must be assembled. Easy to use computing programs are thus desperately 

needed to make data interpretation manageable and fast. A variety of software tools are under 

development and many are available online for NGS data analysis. Their functions fit into 

several general categories each of which poses a challenge to be met for efficient analysis of 

NGS data: 

 

i) Software packages or applications for the alignment of NGS reads to a reference 

sequence; The most important step in NGS data analysis is the successful alignment 

or assembly of short reads to a reference genome and this critical step is further 

challenged by the emergence of new NGS short-read technology. 
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ii) Packages for genome annotation and functional prediction of mutations; After the 

successful alignment and assembly of NGS data, the next challenge in NGS data 

analysis is the interpretation of data- A large number of presumed ‘novel’ genetic 

variants are present by chance in any single human genome and this makes it difficult 

to identify which of the numerous characterised variants are actually causal 

 

iii)  End-user software packages and cloud computing; The former provides a user-

friendly interface, easy to use data input and output formats, and integrates multiple 

computing programs into one software package. It is difficult for many research 

laboratories to successfully conduct NGS projects due to the high level of information 

technology support required. A possible solution is cloud computing. In cloud 

computing, a user can use a virtual operating system (or “cloud”) to process data on 

a computer cluster for high parallel tasks (allows scientists to rent both storage and 

processing power virtually by accessing servers as they are needed). 

 

8.2.9 Future work in epilepsy pharmacogenetics  

 Many of the research studies for epilepsy PGx have focused on patients resistant to 

antiepileptic drug therapy. Classification of this response phenotype requires treatment failure 

with multiple agents thus is often concerned with long-term or chronic epilepsy. In this thesis 

we investigated responsiveness to drug therapy in newly treated epilepsy patients. The benefit 

of scanning the entire genome for new susceptibility loci for AED efficacy has become evident 

and subsequently more robust genetic influences on drug response in epilepsy are anticipated 

(Crowley et al., 2009, Loscher et al., 2009, Daly, 2010a). The GWA approach does offer an 

opportunity to locate associations not previously considered in epilepsy candidate gene 

studies, whilst also providing the required statistical power to detect multiple modest genetic 

effects that are assumed to determine AED response (Ferraro et al., 2012). An independent 

GWAS study for studying the influence of common genetic variation.
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Appendix 1.1 Carbamazepine Drug Metabolising enzyme MALDI-TOF MS PCR and Extension Primers  

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SNP Assay Chromosomal 

position 

Forward Amplification Primer 

Sequence (5'>3') 

Reverse Amplification Primer 

Sequence (5'>3') 

Extension Primer Sequence  

(5'>3') 

 

rs35073925 1 226027630 ACG TTG GAT GAC AGC GTT 

TCG GGA GGT TTC 

ACG TTG GAT GCT CTC CCT 

CAT CAG GCT GTA 

CTC CAC ATC CCT CTC AG  

rs11572081 1 96826966 ACG TTG GAT GGT GTT CAA 

GAG GAA GCT CAC 

ACG TTG GAT GGT CAA TGA 

CGC AGA GTA GAG 

GAG TAG AGT CAC CCA CC  

rs35796837 1 75043593 ACG TTG GAT GGT TCA AGC 

ACA GCA AGA AGG 

ACG TTG GAT GTG ACA ATC 

TTC TCC TGT GGG 

CTG TGG GAT GAG GTT GC  

rs11572126 1 96814915 ACG TTG GAT GTG TGC AAA 

AAT GGA AAA GCC 

ACG TTG GAT GTG GAA ATT 

GAG TCC TCT CCC 

GGT CCT CTC CCT GTA 

GTT 

 

rs10799326 1 226009918 ACG TTG GAT GCC TCT GAG CTC 

AGT ATC TTG 

ACG TTG GAT GGT TGC AAA 

CCA GCA TGA TTT 

TAA ACG TGA CTG GAA GAT  

rs1058930 1 96818119 ACG TTG GAT GGC TAA TAT CTT 

ACC TGC TCC 

ACG TTG GAT GAA GAA CAC 

CAA GCA TCA CTG 

ACA ATC CTC GGG ACT TTA 

T 

 

rs10915884 1 226023875 ACG TTG GAT GTT CTG TTC CAG 

GAT CCC ATC 

ACG TTG GAT GAA CTG TCA 

CAG CCA AGA AGG 

AGG GTC TAA AGA GAC ATG 

A 

 

rs4292394 1 69972949 ACG TTG GAT GAG AGT CTT 

ACC TAG AAG GTC 

ACG TTG GAT GTT CTG TGG 

AGA TTT GAT GGG 

TTA GGT CTC AAT ACT CGG 

CT 

 

rs2292566 1 226019653 ACG TTG GAT GTG ACA TAC 

ATC CCT CTC TGG 

ACG TTG GAT GCA GGT GGA 

GAT TCT CAA CAG 

CCA CCC TCA CTT CAA GAC 

TAA 

 

rs1536430 1 96817776 ACG TTG GAT GGG CAT ACA 

GGA AGC CCA TTT 

ACG TTG GAT GAA TAT CCT 

ACC ACA AAC TG 

CAC TAC CAC AAA CTG AAG 

ATG 

 

rs10264272 1 99262835 ACG TTG GAT GGC CCA CAT 

ACT TAT TGA GAG 

ACG TTG GAT GTC AAC AAT 

CCA CAA GAC CCC 

TCT CAC CCT TTG TGG AGA 

GCA CTA A 

 

rs11572079 1 96827118 ACG TTG GAT GAA GGT TGT 

GAG GGA GAA ACG 

ACG TTG GAT GAA TTC TCC 

CAG TTT CTG CCC 

CCC CCA GTT TCT GCC CCT 

TTT TTT TA 
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SNP Assay Chromosomal 

position 

Forward Amplification Primer 

Sequence (5'>3') 

Reverse Amplification Primer 

Sequence (5'>3') 

Extension Primer Sequence  

(5'>3') 

 

rs17861157 3 75043592 ACG TTG GAT GTG ACA ATC TTC 

TCC TGT GGG 

ACG TTG GAT GGT TCA AGC 

ACA GCA AGA AGG 

GGG GCG AAG GGG CCT 

AGA GCC AG 

 

rs11572082 3 96826922 ACG TTG GAT GGA CTC TAC TCT 

GCG TCA TTG 

ACG TTG GAT GGC CAC CCC 

TGA AAT GTT TCC 

CCC CCA GGA CGT CAC TAG 

TGA AGA 

 

rs4987161 3 99366081 ACG TTG GAT GGG GTC TTG TGG 

ATT GTT GAG 

ACG TTG GAT GGC ATG GAT 

GTG ATC ACT AGC 

CCC CCT GTG ATC ACT AGC 

ACA TCA T 

 

rs2671272 3 226015116 ACG TTG GAT GGC CCA GCA TTG 

TTA TCT AGC 

ACG TTG GAT GTG CAG GTT 

ACT CTG AAC AAG 

CGG TTA CTC TGA ACA AGA 

ACA GTC T 

 

rs2234922 3 226026406 ACG TTG GAT GAC TTC ATC CAC 

GTG AAG CCC 

ACG TTG GAT GAA AAC TCG 

TAG AAA GAG CCG 

GAA AGT CAG CAA GGG CTT 

CGG GGT A 

 

rs11572127 3 96814689 ACG TTG GAT GTA GGG TAC ATG 

TGC ACA ATG 

ACG TTG GAT GAT AAA TGG 

CAA ACC ATG TC 

AAA TGG CAA ACC ATG TCA 

TTT TAA AG 

 

rs35407132 3 75042301 ACG TTG GAT GAC CTG GCA CTG 

TCA AGG ATG 

ACG TTG GAT GTG GAG CCA 

ATG CGG ATC TG 

AGG GAG CCA ATG CGG ATC 

TGC AGG AC 

 

rs28365062 3 69964271 ACG TTG GAT GCC AGG AGT TTC 

GAA TAA GCC 

ACG TTG GAT GCT ATT CCT 

GTC AGG AAG ACC 

TCT ACT CCT GTC AGG AAG 

ACC CAC TAC 

 

rs2234700 4 226032896 ACG TTG GAT GGA ACC TCA CCC 

ACT TTT CAG 

ACG TTG GAT GCA GGA TGA 

AGG TCT ATG TGC 

CCT TCC CTT TTG AGC TA  

rs3738042 4 226013388 ACG TTG GAT GAC TGC CTT GAC 

CCA CAG TGC 

ACG TTG GAT GGT GCA TAA 

AAT ATT GGT GGA G 

TAT TGG TGG AGC TCT TC  

rs1051740 4 226019633 ACG TTG GAT GCT GGC GTT TTG 

CAA ACA TAC 

ACG TTG GAT GAC TGG AAG 

AAG CAG GTG GAG 

GTG GAG ATT CTC AAC AGA  

rs11572103 4 96818106 ACG TTG GAT GAA GAA CAC CAA 

GCA TCA CTG 

ACG TTG GAT GGC TAA TAT 

CTT ACC TGC TCC 

CTT ACC TGC TCC ATT TTG A  

rs4653695 4 226033083 ACG TTG GAT GAC ATC CGC AAG 

TTC CTG TC 

ACG TTG GAT GCC AAG AAA 

AGC CTG GAG GG 

GGA GCC TGG AGG GCA CTT 

G 

 

rs28365095 

 

4 99277605 ACG TTG GAT GTT TCA GCA GCT 

TGG CTG AAG 

ACG TTG GAT GTA GCT GAG 

TGC TGC TGT TTG 

GGC TGT TTG CCT GGA GCT 

TC 
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SNP Assay Chromosoma

l position 

Forward Amplification Primer 

Sequence (5'>3') 

Reverse Amplification Primer 

Sequence (5'>3') 

Extension Primer Sequence  

(5'>3') 

 

rs2234698 4 226019500 ACG TTG GAT GTT TGC TCC AGG 

ACT TAC ACC 

ACG TTG GAT GTG AAG CCA 

TAG TGG AAG CAG 

GGT GGG GTG AAA CGG 

AAC TT 

 

rs762551 4 75041917 ACG TTG GAT GTC TGT GAT GCT 

CAA AGG GTG 

ACG TTG GAT GCA GCT GGA 

TAC CAG AAA GAC 

CTC AAT CTA CCA TGC GTC 

CTG 

 

rs1934980 4 96808973 ACG TTG GAT GAA CTG ATG TCT 

TTG CTT GGG 

ACG TTG GAT GTA CAA ATG 

GGA GAG TGG AGC 

CCT CGA GTG GAG CAA GAT 

GAC 

 

rs6600894 4 69983092 ACG TTG GAT GCA TCC ATT TTC 

ACA ATA GCT G 

ACG TTG GAT GGT ATT TTT 

CTT TGT AGA GAC C 

CTT TGT AGA GAC CTT TCA 

CAT T 

 

rs7439366 4 69964338 ACG TTG GAT GGC TGA CGT ATG 

GCT TAT TCG 

ACG TTG GAT GTG GAG TCC 

TCC AAC AAA ATC 

TCA ACA TTT GGT AAG AGT 

GGA T 

 

rs776746 4 99270539 ACG TTG GAT GGT AAT GTG GTC 

CAA ACA GGG 

ACG TTG GAT GAC CCA GCT 

TAA CGA ATG CTC 

TTC CAG AGC TCT TTT GTC 

TTT CA 

 

rs2069522 4 75039233 ACG TTG GAT GTT CTC CCA TTC 

ATG GCC TTC 

ACG TTG GAT GTC AGC AGA 

GCT TAG CCT ATC 

GGT GTC CTA TCT GCA TGG 

CTG CC 

 

rs1934952 4 96797500 ACG TTG GAT GCC AAG CCT GAT 

ATT CCA TGA 

ACG TTG GAT GGA TGA AGA 

GAG TGT ATG ACC 

GGA GCG TGT ATG ACC AGA 

GCT GA 

 

rs3753663 4 226035289 ACG TTG GAT GTT AGA ACG CTG 

CCC TGG GAC 

ACG TTG GAT GAG CCT GGG 

ATT GGG AGG AAA 

AGA CGC AAA ATG AGA CTC 

ACA CAG 

 

rs45468096 4 75043539 ACG TTG GAT GTC TTG CTG TGC 

TTG AAC AGG 

ACG TTG GAT GTT TGA CCT 

TGG AAG TGC CAG 

CCT TGT GCC CCC TCA GAA 

CAG TGT C 

 

rs2292568 4 226027659 ACG TTG GAT GAT GTG CAT GTA 

GCC GCT CTC 

ACG TTG GAT GTG AGA GGG 

ATG TGG AGC TG 

CGA GGG ATG TGG AGC TGC 

TGT ACC C 

 

rs11572172 4 96797752 ACG TTG GAT GGC ACA GAT TAC 

CAG GAA TCG 

ACG TTG GAT GGA CAG AGA 

CCT TCC TTC AAG 

GCA CAT TTT ACC ACA ATA 

GAT AAA TA 

 

rs34143170 4 226027548 ACG TTG GAT GTG CCT TCA GCC 

ACG TGA AAG 

ACG TTG GAT GGG GTC AGG 

GTA GAG AAG TTG 

GGG TGT AAA ACC AAA GCC 

ATG TTC AA 
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SNP = single nucleotide polymorphism, PCR = polymerase change reaction, MALDI-TOF MS = matrix-assisted laser desorption/ ionisation-time of 

flight mass spectrometer, Chromosomal positions are provided from HapMap Data release 23, March 2008, NCBI B36, dbSNP b126.  

Sequenom MALTI-TOF was performed with 5 different multi-plex assays consisting of 23, 21, 21, 20, 6 SNPs respectively. 

SNP Assay Chromosomal 

position 

Forward Amplification Primer 

Sequence (5'>3') 

Reverse Amplification Primer 

Sequence (5'>3') 

Extension Primer Sequence  

(5'>3') 

rs2069524 4 75040276 ACG TTG GAT GTA GAG ACG 

GAG TTT CAC CAG 

ACG TTG GAT GAA TCC CAG 

CAC TTT GAG AGG 

GGG AGC AGC ACT TTG 

AGA GGC CGA GA 

rs4646450 5 99266318 ACG TTG GAT GTA ACA AAG 

AGC GAG AGG ACG 

ACG TTG GAT GGC CTT GTC 

CAG AAT ACA CAC 

ATT CAC TTC ACG TGG CA 

rs3738040 5 226013041 ACG TTG GAT GCT GTG CAA 

TTG TCA GAA GGC 

ACG TTG GAT GTC TAA GGG 

CCT GTG AGA GAG 

CTG TGA GAG AGG CAG GG 

rs35694136 5 75039613 ACG TTG GAT GGA TTG TTT 

GAG CTC AGG AGG 

ACG TTG GAT GAC AGA GTC 

TTG CTC TGT CAC 

TCA CCC AGG TTG GGG TTC 

rs1058932 5 96796861 ACG TTG GAT GCT GAA GAA 

TGC TAG CCC ATC 

ACG TTG GAT GTA ATA GTG 

GGA ATG TCC TTG 

TTG CAG GTG ATA GCA GAT 

C 

rs45550332 5 226032979 ACG TTG GAT GTA TTC CTA 

CAT GGT TCG TGG 

ACG TTG GAT GAG GAA CTT 

GCG GAT GTC CTG 

AGC TCC GGC TCC TCA AAG 

GC 

rs7435335 5 69971335 ACG TTG GAT GCA GTT AAC 

CAA ATT CAG CAA G 

ACG TTG GAT GAT GAA GAA 

TCT GTT GGT GTC 

TTG GTG TCA TGA ATA AAA 

ACA 
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Appendix 1.2 Details and allele frequencies of 91 tagging SNPs from carbamazepine Drug Metabolising 

Enzymes genotyped in 159 epilepsy patients 

Gene SNP 

Chromosomal 

position 

SNP 

Alleles 

SNP location 

and function 

HWE P-

Value 

% Call 

rate  

MAF 

(this study) 

MAF (public 

database) Ref. 

EPHX1 rs35073925 226027630 A>G Exon 5 1.00 99 0.00 0.01 NCBI B36 

CYP2C8 rs11572081 96826966 G>A Exon 7 0.00 96 0.02 0.06 NCBI B36 

CYP1A2 rs35796837 75043593 G>A Exon 2 1.00 91 0.00 0.01 NCBI B36 

CYP2C8 rs11572126 96814915 G>A Intron 4 1.00 99 0.10 0.11 NCBI B36 

EPHX1 rs10799326 226009918 T>C Intron  1.00 84 0.12 0.12 NCBI B36 

CYP2C8 rs1058930 96818119 C>G Exon 5 1.00 98 0.04 0.03 NCBI B36 

EPHX1 rs10915884 226023875 C>T Intron 3 0.37 80 0.18 0.19 NCBI B36 

UGT2B7 rs4292394 69972949 G>C Exon 4 0.75 99 0.40 0.35 NCBI B36 

EPHX1 rs2292566 226019653 G>A Exon 2 1.00 99 0.15 0.13 NCBI B36 

CYP2C8 rs1536430 96817776 C>T Intron 4 1.00 98 0.02 0.02 NCBI B36 

CYP3A4 rs12721617 99359911 A>C Intron 3 1.00 97 0.01 0.01 NCBI B36 

CYP2C8 rs2275622 96827178 C>T Intron 7 0.79 97 0.38 0.32 NCBI B36 

CYP2C8 rs2275620 96802598 A>T Intron 2 0.55 100 0.40 0.39 NCBI B36 

EPHX1 rs2740168 226020988 G>A Intron 3 0.08 96 0.39 0.37 NCBI B36 

CYP2C8 rs2071426 96828323 A>G Intron 8 0.89 96 0.32 0.29 NCBI B36 

UGT2B7 rs10028494 69970937 A>C Intron 4 0.40 83 0.23 0.11 NCBI B36 

CYP1A2 rs34067076 75042389 G>A Exon 2 1.00 97 0.00 0.02 NCBI B36 

CYP3A4 rs2246709 99365719 A>G Intron 6 0.43 99 0.27 0.35 NCBI B36 

CYP3A5 rs10264272 99262835 C>T Exon 7 1.00 100 0.00 0.04 NCBI B36 

CYP2C8 rs11572079 96827118 T>C Intron 7 1.00 99 0.00 0.03 NCBI B36 

TMEM63A rs2292558 226037318 G>C Intron 3 0.96 98 0.10 0.14 NCBI B36 

EPHX1 rs2260863 226019774 C>G Intron 3 0.45 98 0.26 0.28 NCBI B36 
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Gene SNP 
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Alleles 

SNP location 

and function 
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 P-Value % Call rate  

MAF 

(this 

study) 

MAF 

(public 

database) Ref. 

CYP2C8 rs1341159 96815619 C>G Intron 4 1.00 98 0.00 0.27 NCBI B36 

CYP3A4 rs4646440 99360870 C>T Intron 3 1.00 98 0.00 0.01 NCBI B36 

CYP3A5 rs28371764 99277593 C>T 5' UTR 1.00 99 0.03 0.07 NCBI B36 

UGT2B7 rs4348159 69972952 C>T Intron 3 0.01 86 0.06 0.06 NCBI B36 

CYP3A5 rs6976017 99249999 G>A Intron 2 1.00 99 0.04 0.04 NCBI B36 

EPHX1 rs6965 226033476 T>C 3' near gene 0.00 91 0.49 0.36 NCBI B36 

CYP1A2 rs11636419 75047600 A>G 3' UTR 1.00 86 0.00 0.03 NCBI B36 

EPHX1 rs3753660 226012776 T>C Intron 1 0.91 98 0.13 0.13 NCBI B36 

CYP3A5 rs1419745 99260092 A>G Intron 4 1.00 99 0.04 0.02 NCBI B36 

CYP1A2 rs2069525 75040372 T>A/C/G 5' near gene 1.00 99 0.03 0.08 NCBI B36 

EPHX1 rs3753658 226012686 G>T Intron 1 0.51 86 0.18 0.20 NCBI B36 

UGT2B7 rs3924194 69971092 C>G Intron 3 0.26 99 0.17 0.17 NCBI B36 

CYP2C8 rs1934956 96828160 C>T Intron 7 1.00 98 0.12 0.16 NCBI B36 

CYP3A5 rs28365083 99250236 C>A Exon 3 1.00 98 0.01 0.02 NCBI B36 

UGT2B7 rs10050146 69971576 C>T 5'near gene 0.17 99 0.03 0.03 NCBI B36 

TMEM63A rs360063 226036309 G>A Intron 4 - 7 - 0.40 NCBI B36 

CYP1A2 rs2470890 75047426 T>C Exon 6 0.54 96 0.35 0.36 NCBI B36 

CYP3A5 rs15524 99245914 T>C 3' UTR 1.00 92 0.09 0.07 NCBI B36 

CYP3A4 rs2242480 99361466 C>T Intron 3 0.56 92 0.09 0.17 NCBI B36 

CYP2C8 rs11188150 96802737 C>T Exon 3 1.00 96 0.00 0.01 NCBI B36 

EPHX1 rs1877724 226013355 C>T Intron 1 0.25 97 0.28 0.19 NCBI B36 

CYP3A4 rs12333983 99354114 T>A 3' near gene 1.00 99 0.11 0.12 NCBI B36 
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CYP3A4 rs1851426 99382936 C>T 5' near gene 1.00 96 0.04 0.03 NCBI B36 

EPHX1 rs4149229 226032928 G>A Exon 7 1.00 98 0.01 0.04 NCBI B36 

CYP3A4 rs4646437 99365083 C>T Intron 5 0.84 98 0.11 0.13 NCBI B36 

CYP2C8 rs11572080 96827030 G>A Exon 7 0.61 98 0.15 0.05 NCBI B36 

CYP3A4 rs4986910 99358524 C>T Exon 2 1.00 97 0.00 0.01 NCBI B36 

CYP1A2 rs17861162 75048753 C>G 3' UTR 1.00 98 0.00 0.18 NCBI B36 

EPHX1 rs4149230 226033030 G>C Exon 7 1.00 97 0.03 0.02 NCBI B36 

EPHX1 rs2740170 226024797 C>T Intron 3 0.82 96 0.20 0.23 NCBI B36 

UGT2B7 rs7375178 69969679 C>A Exon 2 0.42 98 0.39 0.48 NCBI B36 

EPHX1 rs2854461 226011644 C>A Intron 1 0.90 96 0.35 0.38 NCBI B36 

EPHX1 rs35561387 226027569 A>G Exon 5 1.00 96 0.00 0.03 NCBI B36 

CYP3A4 rs2740574 99382096 A>G 5' near gene 1.00 98 0.04 0.03 NCBI B36 

UGT2B7 rs4356975 69972463 C>T Intron 3 0.81 95 0.30 0.31 NCBI B36 

CYP1A2 rs17861157 75043592 C>A Exon 2 1.00 95 0.01 0.04 NCBI B36 

CYP2C8 rs11572082 96826922 G>C Intron 6 0.66 98 0.14 0.12 NCBI B36 

CYP3A4 rs4987161 99366081 T>C Exon 7 1.00 97 0.00 0.02 NCBI B36 

EPHX1 rs2671272 226015116 C>T Intron 1 0.91 98 0.21 0.23 NCBI B36 

EPHX1 rs2234922 226026406 A>G Exon 3 0.82 90 0.16 0.18 NCBI B36 

CYP2C8 rs11572127 96814689 G>C Intron 4 - 0 - 0.07 NCBI B36 

CYP1A2 rs35407132 75042301 C>T Exon 1 1.00 98 0.00 0.03 NCBI B36 

UGT2B7 rs28365062 69964271 A>G Exon 3 0.90 96 0.11 0.18 NCBI B36 

EPHX1 rs2234700 226032896 T>C Intron 7 1.00 98 0.00 0.03 NCBI B36 
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SNP = single nucleotide polymorphism, PCR = polymerase change reaction, SNP frequency data was compiled from HapMap and NCBI dbSNP databases. 

Chromosomal positions are given in base pairs as per NCBI B36 assembly, dbSNP b126. 

Gene SNP Chromosomal 

position 

SNP 

Alleles 

SNP location 

and function 

HWE 

P-Value 

% Call 

rate 

MAF (this 

study) 

MAF (public 

database) 

Ref. 

EPHX1 rs3738042 226013388 G>A Intron 1 - 7 - 0.28 NCBI B36 

EPHX1 rs1051740 226019633 T>C Exon 2 0.59 97 0.30 0.33 NCBI B36 

CYP2C8 rs11572103 96818106 A>T Intron 4 0.01 98 0.01 0.03 NCBI B36 

EPHX1 rs4653695 226033083 A>C 3'UTR 0.68 82 0.16 0.15 NCBI B36 

CYP3A5 rs28365095 99277605 G>A 5' UTR 1.00 98 0.01 0.02 NCBI B36 

EPHX1 rs2234698 226019500 T>C Exon 2 1.00 98 0.04 0.03 NCBI B36 

CYP1A2 rs762551 75041917 A>C Intron 1 0.70 97 0.28 0.31 NCBI B36 

CYP2C8 rs1934980 96808973 T>C Intron 4 0.95 98 0.13 0.19 NCBI B36 

UGT2B7 rs6600894 69983092 G>A 3' near gene 0.38 97 0.16 0.22 NCBI B36 

UGT2B7 rs7439366 69964338 C:T Intron 3 0.55 98 0.40 0.50 NCBI B36 

CYP3A5 rs776746 99270539 G>A Intron 10 0.00 97 0.50 0.06 NCBI B36 

CYP1A2 rs2069522 75039233 T>C 5' near gene - 49 - 0.08 NCBI B36 

CYP2C8 rs1934952 96797500 G>A Intron 1 0.78 98 0.35 0.37 NCBI B36 

TMEM63A rs3753663 226035289 T>A Intron 3 - 19 - 0.03 NCBI B36 

CYP1A2 rs45468096 75043539 C>T Intron 2 - 2 - 0.02 NCBI B36 

EPHX1 rs2292568 226027659 G>C Exon 5 1.00 97 0.03 0.03 NCBI B36 

CYP2C8 rs11572172 96797752 A>C Intron 1 1.00 95 0.03 0.06 NCBI B36 

EPHX1 rs34143170 226027548 C>T Exon 5 1.00 98 0.06 0.08 NCBI B36 

CYP1A2 rs2069524 75040276 A>G 5' near gene - 0 - 0.08 NCBI B36 

CYP3A5 rs4646450 99266318 G>A Intron 9 0.47 99 0.18 0.18 NCBI B36 

EPHX1 rs3738040 226013041 G>A Intron 1 0.91 98 0.07 0.12 NCBI B36 

CYP1A2 rs35694136 75039613 T>N 5' near gene - 0 - 0.24 NCBI B36 

CYP2C8 rs1058932 96796861 C>T 3' UTR 0.95 99 0.13 0.19 NCBI B36 

EPHX1 rs45550332 226032979 G>A Exon 7 1.00 100 0.00 0.01 NCBI B36 

UGT2B7 rs7435335 69971335 G>A Exon 7 0.98 100 0.10 0.18 NCBI B36 
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Appendix  1.3    SNPs captured by the 91 tagging SNPs across carbamazepine Drug Metabolising Enzymes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tagging SNP Tagged SNPs Gene Chromosome location 

rs2071426 rs2071426 CYP2C8 96828323 

 rs1934982 CYP2C8 96802124 

 rs6583967 CYP2C8 96814475 

 rs1934957 CYP2C8 96815114 

 rs11572139 CYP2C8 96808886 

 rs1341164 CYP2C8 96800873 

 rs2185571 CYP2C8 96824975 

 rs1934983 CYP2C8 96801929 

 rs11572093 CYP2C8 96824406 

rs1341159 rs1341159 CYP2C8 96815619 

 rs11572082 CYP2C8 11572082 

 rs1934951 CYP2C8 1934951 

 rs2275622 CYP2C8 2275622 

 rs2275620 CYP2C8 2275620 

 rs1934952 CYP2C8 96797500 

 rs1536430 CYP2C8 96817776 

 rs11572126 CYP2C8 96814915 

 rs11572127 CYP2C8 96814689 

 rs11572079 CYP2C8 96827118 

 rs11572172 CYP2C8 96797752 

  rs1934956 CYP2C8 96828160 
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Tagging SNP Tagged SNPs Gene Chromosome location 

rs11572082 rs11572082 CYP2C8 96826922 

 rs11572150 CYP2C8 96807128 

 rs11572174 CYP2C8 96797571 

 rs10509681 CYP2C8 96798749 

 rs11188153 CYP2C8 96805090 

 rs11572169 CYP2C8 96799774 

 rs11572107 CYP2C8 96817233 

rs1934980 rs1934980 CYP2C8 96808973 

 rs1934951 CYP2C8 96798548 

 rs1058932 CYP2C8 96796861 

 rs1934980 CYP2C8 96808973 

 rs1341162 CYP2C8 96810612 

 rs1113129 CYP2C8 96811045 

 rs10882520 CYP2C8 96799688 

 rs11572101 CYP2C8 96818362 

rs2275622 rs2275622 CYP2C8 96827178 

 rs7095531 CYP2C8 96811841 

 rs1891073 CYP2C8 96804911 

 rs6583968 CYP2C8 96816357 

 rs1934953 CYP2C8 96797470 

 rs1934984 CYP2C8 96801805 
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Tagging SNP Tagged SNPs Gene Chromosome location 

rs2275620 rs2275620 CYP2C8 96802598 

 rs1934985 CYP2C8 96801753 

 rs1891071 CYP2C8 96805371 

 rs7910936 CYP2C8 96804451 

  rs1341163 CYP2C8 96810552 

rs1934952 rs1934952 CYP2C8 96797500 

  rs11572177 CYP2C8 96797270 

rs1536430 rs1536430 CYP2C8 96817776 

rs11572126 rs11572126 CYP2C8 96814915 

rs11572127 rs11572127 CYP2C8 96814689 

rs11572079 rs11572079 CYP2C8 96827118 

rs11572172 rs11572172 CYP2C8 96797752 

rs12333983 rs12333983 CYP3A4 99354114 

  rs2404955 CYP3A4 99353279 

rs1851426 rs1851426 CYP3A4 99382936 

  rs2687105 CYP3A4 99376946 

rs4646440 rs4646440 CYP3A4 99360870 

rs4646437 rs4646437 CYP3A4 99365083 

rs2242480 rs2242480 CYP3A4 99361466 

rs12721617 rs12721617 CYP3A4 99359911 

rs2246709 rs2246709 CYP3A4 99365719 
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Tagging SNP Tagged SNPs Gene Chromosome location 

rs11773597 rs11773597 CYP3A4 99382451 

rs1419745 rs1419745 CYP3A5 99260092 

 rs776741  CYP3A5 99279136 

 rs4646447 CYP3A5 99268390 

 rs4646453  CYP3A5 99260362 

 rs4646449 CYP3A5 99266443 

 rs4646456 CYP3A5 99245275 

 rs4646458 CYP3A5 99245013 

  rs4646446 CYP3A5 99275083 

rs6976017 rs6977165 CYP3A5 99269397 

 rs6976017 CYP3A5 99249999 

  rs6956305 CYP3A5 99241310 

rs15524 rs4646457 CYP3A5 99245080 

 rs15524 CYP3A5 99245914 

 rs776746 CYP3A5 99270539 

rs4646450 rs4646450 CYP3A5 99266318 

 rs3924192 UGT2B7 69970964 

 rs6858558 UGT2B7 69969543 

 rs7698645 UGT2B7 69971910 

 rs4541594 UGT2B7 69972272 

 rs6600884 UGT2B7 69968066 
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Tagging SNP Tagged SNPs Gene Chromosome location 

 rs7439152 UGT2B7 69969006 

 rs6600891 UGT2B7 69971596 

 rs12642938 UGT2B7 69976217 

 rs12513195 UGT2B7 69972086 

 rs7375178 UGT2B7 69969679 

 rs4351080 UGT2B7 69972319 

 rs7442453 UGT2B7 69969180 

 rs6600893 UGT2B7 69978901 

 rs4521414 UGT2B7 69973525 

rs7375178 rs9995928 UGT2B7 69976663 

 rs10050146 UGT2B7 69971576 

rs10050146 rs10050146 UGT2B7 69971576 

rs7435335 rs7435335 UGT2B7 69971335 

rs3924194 rs3924194 UGT2B7 69971092 

rs6600894 rs6600894 UGT2B7 69983092 

rs4356975 rs4356975 UGT2B7 69972463 

rs4348159 rs4348159 UGT2B7 69972952 

rs10028494 rs10028494 UGT2B7 69970937 

rs2470890 rs11854147 CYP1A2 75052771 

  rs2470890 CYP1A2 75047426 
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Tagging SNP Tagged SNPs Gene Chromosome location 

rs10799326 rs10799326 EPHX1 226009918 

 rs3738043 EPHX1 226015299 

 rs10753410 EPHX1 226008101 

 rs3766934 EPHX1 226015017 

  rs3753661 EPHX1 226014342 

rs2292558 rs2740174 EPHX1 226033969 

 rs2671267 EPHX1 226025690 

 rs2292558 EPHX1 226037318 

 rs1051741 EPHX1 226032229 

rs2671272 rs2854450 EPHX1 226012577 

 rs2671272 EPHX1 226015116 

rs2740170 rs2740171 EPHX1 226025528 

  rs2740170 EPHX1 226024797 

rs2292568 rs2292568 EPHX1 226027659 

rs6965 rs6965 EPHX1 226033476 

rs3753663 rs3753663 EPHX1 226035289 

rs2234698 rs2234698 EPHX1 226019500 

rs2260863 rs2260863 EPHX1 226019774 

rs2292566 rs2292566 EPHX1 226019653 
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SNP = single nucleotide polymorphism 
 
 
 
 

Appendix 1.4 Australian five-SNP classifier PCR and extension primers for MALTI-TOF MS 

 

 

 

 

 

 

 

 

 

 

 

Chromosomal positions are provided from HapMap Data release 23, March 2008, NCBI B36, dbSNP b126, Sequenom MALTI-TOF was performed with 1 multi-plex assay. 

 

 

Tagging SNP Tagged SNPs Gene Chromosome location 

rs1051740 rs1051740 EPHX1 226019633 

rs10915884 rs10915884 EPHX1 226023875 

rs2234922 rs2234922 EPHX1 226026406 

rs360063 rs360063 EPHX1 226036309 

rs2740168 rs2740168 EPHX1 226020988 

rs1877724 rs1877724 EPHX1 226013355 

rs3753658 rs3753658 EPHX1 226012686 

rs3738042 rs3738042 EPHX1 226013388 

SNP Assay Chromosomal 

position 

Forward Amplification 

Primer Sequence (5'>3') 

Reverse Amplification 

Primer Sequence (5'>3') 

Extension Primer Sequence  

(5'>3') 

rs658624 1 118018767 ACGTTGGATGTAAGGT

CTGGCTCATGACAC 

ACGTTGGATGTAAGTCA

TCCACATAGGTGC 

CACAAACCAGGCAGAAA 

rs2808526 1 101326687 ACGTTGGATGACTGCC

TGTCACACAGTATC 

ACGTTGGATGACAGGC

CTAACTGGGACAAC 

CTGCTCTTCAACCCCAAG 

rs678262 1 118021740 ACGTTGGATGCCCAA

AGGGTAGCTCAGAAA 

ACGTTGGATGGACTGTT

CAGCTGTATAGAC 

AGCTGTATAGACCAGGTA 

rs4869682 1 36656718 ACGTTGGATGACCAG

GGCTGCAATGCAAAT 

ACGTTGGATGGAGAAT

CTGACTTGTCTAGC 

ACTCCTTGAGAAGAGGA

GC 

rs2283170 1 2583141 ACGTTGGATGCCTCAG

GAGGGACACAGAG 

ACGTTGGATGATCCTTC

TGCTCGGCTGCTT 

CCCATGGAACGTGCAGCCCG 
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Appendix 1.5  Custom and predesigned primer assays from TaqMan for five GWAS candidate SNP genotyping 

   

SNP TaqMan SNP 

Genotyping 

Assay 

Chromosomal 

position 

SNP Forward Amplification 

Primer Sequence (5'>3') 

Reverse Amplification 

Primer  

Sequence (5'>3') 

Reporter 1 (VIC 

Sequence 

Reporter 2 

(FAM) Sequence 

rs17252760 Custom 148653916 rs17252760 TGCCATCAGTTACCTT

TAAAACTACATGT 

GGATTCATTTGTCC

TGTGAGAG 

AGAA 

TCCCACAAAC

CCC 

CTCCCATAA

ACCCC 

SNP TaqMan SNP 

Genotyping 

Assay 

Chromosomal 

position 

SNP                                       Context sequence   

rs12919774 Pre-designed 8515708 rs12919774 AGGAGAAAATTTCCTCTACTCTGAG[A/G]TCAAGCCATTCTACCAAAAAATAAG 

AGGAGAAAATTTCCTCTACTCTGAG[A/G]TCAAGCCATTCTACCAAAAAATAAG 

GGCCCACTCTTATTTCCCAGTTCTG[C/T]TGCTAGAACATCAAGAGGTGTAGTC 

AGGTGGCAGGCCAGGTTTGGCCCAG[A/G]AGTTACAGTCTGCACATTAGACTTG 
 

rs16994558 Pre-designed 147452128 rs16994558 

rs316132 Pre-designed 52847966 rs316132 

rs622902 Pre-designed 52846474 rs622902 

Chromosomal positions are provided from NCBI B36, dbSNP b126.  

The context sequence refers to the nucleotide sequence surrounding the SNP site, where SNP alleles are in brackets and the order of the alleles corresponds to the 

association with reporter dyes, where Allele 1 = VIC and Allele 2 = FAM  
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