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Abstract 

Novel Markers for the Diagnosis of Pancreatic Ductal Adenocarcinoma: The 

Proteomic Approach. Joseph Man Fung Tang 

Background: Pancreatic ductal adenocarcinoma (PDAC) is a disease of late 

presentation where the majority of patients present with non-specific symptoms and 

advanced disease. Current guidelines recommend that patients presenting with 

symptoms of suggestive of PDAC should be investigated by Contrast-Enhanced 

Computed Tomography (CE-CT). However, the radiographic features are often 

similar to benign diseases such as chronic pancreatitis (CP). Evidently, there is a 

need for a novel diagnostic biomarker, which can accurately identify patients with 

PDAC thereby reducing the number of otherwise unnecessary invasive procedures.  

Aim: The current thesis aimed to determine the potential of a number of serum 

proteins as diagnostic markers of PDAC. 

Method: Two approaches for the discovery and validation of diagnostic markers of 

PDAC were employed. In Chapter 2, the serum expression of three iTRAQ- Mass 

Spectrometry identified proteins (vitamin d-binding protein [VDBP], retinol-binding 

protein 4 [RBP-4], and fibronectin [FINC]) were validated by western blotting in a 

three-phased study consisting of 20, 60, and 120 serum samples. Their diagnostic 

potentials as individual and combined markers were assessed statistically. In Chapter 

3, the serum concentrations of 27 cytokines, chemokines, and growth factors 

(CCGFs) in 90 PDAC and 90 controls were quantified using the multiplex cytokines 

assay and the potential of individual CCGFs for the diagnosis of PDACs were 

assessed. One-hundred and twenty serum samples were randomly allocated to 

discovery where stepwise regression was used to select independent CCGF markers 

of PDAC. These were then combined into a single marker and the diagnostic 

accuracy for PDAC assessed. Finally, validation utilised the remaining sixty samples 

to investigate the accuracy of the combined CCGF marker for the diagnosis of PDAC. 

Results: Results from Chapter 2 showed that the serum concentrations of VDBP, 

RBP-4, and FINC were significant decreased in PDAC with ROC-AUCs of >0.74 

against CP and healthy volunteers (HC). However, their diagnostic accuracies were 

decreased (ROC-AUC <0.63) in the presence of individuals with biliary obstruction 

(disease controls, DC). Combining all three markers increase the diagnostic accuracy 

for PDAC against HC and CP (ROC-AUC, 0.91) but not against DC (ROC-AUC, 

0.74). Further validation using pre-diagnostic serum samples showed that a small 

subset of patients exhibited a gradual decline in the serum concentration of VDBP 

and RBP-4 closer to diagnosis. 

Results from Chapter 3 showed that fourteen CCGFs were differentially expressed in 

PDAC compared to controls, of which, IFN-was the most significant individual 

marker of PDAC with comparable accuracy to CA19-9. Discovery analysis identified 

four independent markers of PDAC: IL-4, IL-17, G-CSF, and IP-10. When combined, 

an ROC-AUC of 0.99 was achieved. Validation of the combined CCGF marker in 

yielded encouraging results of ROC-AUC >0.95.  

Conclusion: Results indicate that combined VDBP, RBP-4, FINC, as well as IL-4, 

IL-17, G-CSF, and IP-10 are accurate markers of PDAC. It is possible that their use 

will improve the current diagnostic process.  
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Chapter 1 

General Introduction:  

Pancreas and Pancreatic Cancer 
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1.1 Anatomy of the pancreas 

The pancreas is a retroperitoneal organ, which can be anatomically divided into the 

head, neck, body, and tail (Figure 1.1
1
)
2-4

. The head of the pancreas lies within the 

curvature of the duodenum and overlies the body of the second lumbar vertebra and 

the aorta
3
. The neck represents a constriction, which connects the head to the body of 

the pancreas
3
. It can be identified by the superior mesenteric vessels, which pass over 

the uncinate process and then posteriorly behind the neck of the pancreas
4
. The tail of 

the pancreas extends towards the spleen and connects with the splenic flexure of the 

colon
4
. The pancreas receives its blood supply from the lineal and the 

pancreaticoduodenal branches of the hepatic and superior mesenteric arteries and it is 

drained by the lineal and superior mesenteric veins
2-4

.  

Figure 1.1-Anatomy of the pancreas
1
. By courtesy of Encyclopaedia Britannica, Inc., 

copyright 2003; used with permission. The pancreas is a retroperitoneal organ that is situated 

in front of the third lumbar vertebrae and is in close proximity to a number of important 

organs and vessels including the liver, stomach, small intestines, spleen, bile duct, aorta, vena 

cava, and superior mesenteric artery and vein. 

 

This text box is where the unabridged thesis included the following third party 

copyrighted material: 

 

Encyclopaedia Britannica. Anatomy of the Pancreas. [Image]  [2nd July, 2010]. 

Available at: http://www.britannica.com/EBchecked/topic/440971/pancreas. 

 

http://www.britannica.com/EBchecked/topic/440971/pancreas
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Structurally, the pancreas is composed of lobules connected by areola tissue
3-4

. Each 

lobule consists of multiple acini each receiving one of the ultimate ramifications of 

the main pancreatic duct (Figure 1.1
1
). Histologically, two broad types of cells can 

be found in the pancreas parenchyma: exocrine and endocrine cells. Pancreatic 

exocrine cells are responsible for secreting digestive enzymes into the lumen of the 

acini, which in turn drains into the main pancreatic duct and ultimately into the 

duodenum
2-4

. Endocrine cells of the pancreas form clusters (islets of langerhans), 

which are embedded within the exocrine tissue and are responsible for secreting 

hormones such as insulin and glucagon into the systemic circulation
2-4

. 

 

1.2 Introduction to Pancreatic Cancer  

1.2.1 Epidemiology of Pancreatic Cancer 

Pancreatic cancer is the eleventh most commonly diagnosed cancer in the United 

Kingdom and it has an incidence rate of over 7,500 new cases per annum
5
. 

Furthermore, it is the sixth leading cause of cancer mortality in 2007 with a reported 

5-year overall survival rate of less than 5%
6
. The lifetime risk of developing 

pancreatic cancer for both men and women is 1/86 with the majority of cases 

occurring in patients over 65 years of age. Interestingly, studies have observed that 

pancreatic cancer is more frequent in the black population compared to the 

Caucasian and Asian populations
7
. Whilst the reasons for this difference remain 

unclear, studies have identified a higher prevalence of risk factors such as smoking, 

diabetes, obesity, and vitamin D insufficiency in the black population, which may 

explain this observation
7-8

.  

In addition to demographical risk factors, a number of medical, genetic, and 

environmental factors have also been linked to an increased risk of pancreatic cancer 

(Box 1.1)
7
. Indeed several studies have associated benign medical conditions such as 

chronic pancreatitis, obesity, and diabetes with an increased risk of developing 

pancreatic cancer. Chronic pancreatitis is one of the most frequently reported risk 

factors for the development of pancreatic cancer
9-11

 with various studies reporting a 

10-fold increased risk of pancreatic cancer in individuals with chronic pancreatitis 

compared to healthy controls 
10, 12

.  
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Another frequently identified disease-related risk factor is obesity. Despite various 

studies reporting an increased risk of pancreatic cancer in obese individuals, the 

exact role of obesity in the development of pancreatic cancer remains unclear
13-15

. 

However, some studies have suggested that obesity may be indirectly linked to 

cancer via inflammatory responses
16

. 

The role of diabetes mellitus in pancreatic cancer is somewhat difficult to evaluate 

because although some studies demonstrated that patients with >10-year history of 

type 2 diabetes are 1.5 times more likely to develop pancreatic cancer
17-19

, other 

studies indicated that new onset diabetes is an early symptom in up to a third of all 

pancreatic cancer patients
20

.  

Genetic predisposition plays an important role in the development of pancreatic 

cancer. Studies have reported that the relative risk of pancreatic cancer is increased 

by as much as 57-fold in families with four or more affected members
21

. Furthermore, 

a number of studies have reported that various germline diseases such as familial 

Peutz-Jeghers syndrome and hereditary pancreatitis are associated with a very high 

risk of pancreatic cancer development
7, 22

. Indeed, Giardiello et al. reported that 

individuals with familial Peutz-Jeghers syndrome are 132 times more likely to 

develop pancreatic cancer
23

.  

There are several environmental factors, which may increase the risk pancreatic 

cancer development. In particular, the association between pancreatic cancer and 

cigarette smoking has been frequently reported
7-8, 19, 21, 24

. Results from a study by 

Iodice et al.
8
 indicated that the relative risk of pancreatic cancer in current smokers is 

approximately 1.7 times greater than non-smokers and this risk remains elevated for 

at least 10 years after cessation.  
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Box 1.1- Summary of Factors Associated with Pancreatic Cancer
7 

 Pancreatic cancer typically occur in patients >65 years of age. 

 The black population has an increased risk of pancreatic cancer compared to 

Caucasians and Asians. 

 20-25% of pancreatic cancers are attributable to cigarette smoking, which is the 

most frequent but also the most preventable risk factor for pancreatic cancer. 

 Benign pancreatic diseases such as chronic pancreatitis and type II diabetes mellitus 
are independent risk factors for developing pancreatic cancer 

 5-10% of pancreatic cancers are associated with a germline disease 

 Non-O blood type has been associated with an increased risk of pancreatic cancer
25

. 

 Several hallmark genetic mutations have been identified in pancreatic cancer 

including the KRAS2 oncogene, which is present in 90-95% of all pancreatic 
cancers

26
. 

 

1.2.2 Pathogenesis of Pancreatic Cancer 

The majority of pancreatic cancers are ductal adenocarcinomas (PDACs)
27

. 

Microscopically, this type of cancer is characterised by a glandular structure with a 

ductal appearance and varying degrees of cellular atypia and differentiation
27

. Whilst 

the development of PDAC is generally regarded as sporadic, some studies have 

proposed that PDAC may arise from precursor lesions, which are cells with an 

atypical but non-cancerous cellular morphology that are frequently observed in 

association with PDAC
27-28

. Three types of PDAC precursor lesions have been 

proposed: pancreatic intraepithelial neoplasm (PanIN), mucinous cystic neoplasm 

(MCN), and intra-ductal papillary mucinous neoplasm (IPMN) 
28-30

. 

PanINs are a relatively common finding in the elderly population
27

. This type of 

precursor lesion was initially associated with PDAC by post-mortem studies, which 

showed an increased incidence of PanINs in patients with PDAC
31

. The relationship 

between PanINs and PDAC was later reinforced by molecular profiling studies 

showing an increasing number of common genetic alterations between higher grade 

PanINs and invasive PDAC
29

. PanINs can be graded from stage I to III according to 

the degree of dysplastic growth (Box 1.2)
32-33

. The transformation of high-grade 

PanINs into PDAC is marked by the invasion of intra ductal carcinoma beyond the 

basement membrane
32-33

. 
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Box 1.2- Grading of Pancreatic Intraepithelial Neoplasms32-33
 

PanIN Grade  Description 

PanIN-1A Flat mucinous epithelium without cellular atypia 

PanIN-1B Papillary mucinous epithelium without cellular atypia 

PanIN-2 increasing signs of cellular atypia and a prevalence of papillary architecture 

PanIN-3 Carcinoma in situ/ intra-ductal carcinoma 

 

 

MCNs are large mucin-producing epithelial cystic lesions that have a distinctive 

ovarian-type stroma with a variable degree of epithelial dysplasia and focal regions 

of invasion
27, 30, 34-39

. The majority of MCNs arise from the body and tail of the 

pancreas and do not communicate with the pancreatic ductal system except in the 

presence of erosions or fistulous tracts
27, 30, 34

. The association between MCN and 

PDAC is based on observational studies demonstrating the presence of invasive 

tubular/ductal adenocarcinoma in approximately one-third of all resected MCNs and 

on studies showing several common genetic mutations between MCN and PDAC 

(including the KRAS-2 oncogene, TP53, and SMAD4)
28

. However, it should be noted 

that there are some controversies regarding the role of MCNs as precursors of 

pancreatic cancer due to the lack of direct evidence demonstrating the progression of 

MCNs to PDAC. This together with the fact that individuals with invasive ductal 

adenocarcinoma from resected MCNs have a much better prognosis (5-year survival, 

~60%) compared to the reported prognosis for sporadic PDACs (5-year survival, 

<25%), suggest that pancreatic cancer associated with MCNs should be regarded as a 

separate entity compared to sporadic PDAC
35

. 

IPMNs account for 3-5% of all pancreatic masses and are the most common type of 

pancreatic cystic lesions 
27, 40

 and they are defined by the presence of mucin-filled 

cystic lesions ≥1cm in the main pancreatic duct and/or its secondary branches
27

. 

Histologically, IPMNs are characterised by tall, columnar mucin-secreting epithelial 

cells that form papillae with fibro-vascular core
40

. In addition, IPMNs with intestinal 

or pancreaticobiliary type differentiation often involve the main pancreatic duct and 

show moderate or high-grade dysplasia
27, 40

. Studies have demonstrated that 

approximately 20-50% of IPMNs are associated with the presence of invasive 

adenocarcinomas, which may be of either mucinous type or ductal type 
40-44

. 

Interestingly, studies have shown that whilst adenocarcinoma associated with the 

ductal type of IPMN is morphologically identical and confers a similar prognosis to 
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non-IPMN associated PDACs, the adenocarcinomas associated with the mucinous 

type IPMN is characterised by neoplastic epithelial cells “suspended” in large pools 

of extracellular mucin and is associated with a better prognosis
42-44

. Similar to 

PanINs, the association between IPMNs and PDAC is only based on histological 

observational studies and studies indicating that IPMNs and PDACs share a number 

of genetic mutations (e.g. KRAS2, p16, TP53, and SMAD4)
28

. Therefore, in absence 

of evidence directly demonstrating the progression of IPMNs to PDAC, the role of 

IPMN in the development of PDAC will remain a controversial topic. 

 

1.2.3 Molecular Hallmarks of Pancreatic Cancer 

Pancreatic carcinogenesis is a complex process involving dynamic changes in the 

genome and molecular pathways, which together drive the progression from 

precursor lesions to invasive cancer
45

. Although the exact mechanism underlying 

pancreatic cancer formation is yet to be fully understood, research efforts in the past 

decade has significant improved our understanding of this disease. Recent studies 

have identified several key genetic mutations and signalling pathways, which have 

been found to be essential in pancreatic cancer tumourigenesis
26-27

.  

1.2.3.1 K-Ras signalling pathway 

A number of studies have demonstrated that the mutation of the K-Ras2 oncogene is 

present in 75-90% of all pancreatic cancers
26, 46-47

. The K-RAS gene is the cellular 

homologue of the RAS gene of Kristen murine sarcoma virus. It encodes for a 21-

kDa membrane-bound GTP-binding protein (KRAS protein), which is involved in 

growth factor-mediated signal transduction
48

. The K-RAS signalling pathway plays 

an important role in promoting cell cycle progression, cell proliferation, and 

resistance to apoptosis
26, 47

. Point mutations of the K-RAS gene often result in an 

impaired GTPase activity, which means that the KRAS protein is locked in the GTP-

bound (activated) state and therefore, the permanent activation of downstream 

signalling cascades
26, 47

. In addition, the K-RAS signalling pathway can be activated 

through the over expression or activation of its upstream receptor molecules, such as 

epidermal growth factor receptor (EGFR)
26

. Interestingly, K-RAS mutations are also 

found in patients with chronic pancreatitis and are therefore not exclusive to 

malignant cells of the pancreas
27

. Furthermore, activation of the K-RAS signalling 
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pathway alone is insufficient to cause malignant transformation of pancreatic cells
26-

27, 47
. It has been proposed, therefore, that co-existing aberrations such as epigenetic 

silencing of tumour-suppressors or activation of other oncogenic pathways must also 

be present
26-27, 47

.  

1.2.3.2 Tumour suppressor genes and pathways 

The deletion of the p16 INK4A gene locus in up to 95% of cases and the alteration or 

deletion of the p53 gene locus in 50-75% of cases are the most frequently reported 

mutations observed in pancreatic cancer
27

. Tumour suppression by both of these 

genes is made possible through the inactivation of CDK4/6 and CDK2 thereby 

inhibiting the phosphorylation of the retinoblastoma protein and subsequently 

preventing cell cycle progression through the G1-S checkpoint
26-27

. Furthermore, 

TP53 also contributes to tumour suppression by regulating cell cycle and promoting 

apoptosis in cells when DNA damage is sustained. 

Another common mutation is the deletion of the Smad4 gene, which is found in 55% 

of pancreatic cancers
26-27

. Smad4 is an important downstream mediator for the 

Transforming Growth Factor (TGF- signal pathway (an inhibitory pathway for 

PDAC) and is responsible for the transmission of TGF- signals into the nucleus 

thereby regulating the expression of cancer-associated genes
26-27

. In addition, studies 

have demonstrated that the disruption of TGF- signalling pathway facilitates cancer 

cell growth, differentiation, and migration
26-27

.  

1.2.3.3 Embryonic Signalling pathways 

A number of studies have reported that embryonic signalling pathways such as 

Hedgehog and Notch are reactivated in pancreatic cancer. In particular, over-

expression of the Indian and/or sonic Hedgehog ligands have been associated with 

enhanced tumour progression
26-27, 49

. Moreover, recent studies have demonstrated 

that the expression of the sonic Hedgehog ligand in transgenic mice results in the 

formation of PanIN-like lesions
50

.  

Notch is an embryonic signalling pathway, which controls cellular differentiation, 

proliferation, and apoptosis
51-53

. Although it is not usually active in the pancreas, up-

regulation of Notch target genes has been observed in pre-neoplastic lesions and 
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invasive pancreatic cancer
52

. In addition, Notch signalling has been shown to 

promote neo-vascularisation of tumours
51, 53

. 

 

1.2.4 Symptoms and Signs of Pancreatic Cancer 

For the majority of patients, pancreatic cancer remain undiagnosed until it is at an 

advanced stage and at initial presentation, symptoms are often non-specific (Box 

1.3)
21

. Unlike other cancers, for example prostate and breast cancer, the anatomical 

location of the pancreas means that pancreatic tumours cannot usually be felt on 

physical examination
3
. Therefore, the suspicion of pancreatic malignancy relies 

heavily on systemic symptoms and signs, which are often indications of disparate 

disease
54-55

. 

The majority of symptoms can be explained in terms of compression of anatomical 

structures within or adjacent to the pancreas. In particular, tumours arising from the 

head of the pancreas (approximately 70%) can cause obstruction of the duodenum, 

pancreatic duct, and common bile duct
54-55

. When the main pancreatic duct is 

obstructed, activation of digestive enzymes secreted by the pancreas may lead to 

auto-digestion of the pancreatic parenchyma and subsequently pancreatitis whereas 

bile duct obstruction is likely to result in cholestasis and jaundice
54-55

. Furthermore, 

pancreatic cancer may cause the dysfunction of pancreatic endocrine cells leading to 

dysglycaemia
20, 54-55

. It is therefore important for clinicians to consider pancreatic 

cancer as a differential diagnosis in patients presenting with acute pancreatitis or new 

onset diabetes
20

.  

Clearly, the biggest problem encountered in the diagnosis of pancreatic cancer is that 

all the symptoms associated with pancreatic cancer can also be associated with non-

malignant diseases (Box 1.3)
54

. In particular, jaundice, which is a commonly 

observed symptom in pancreatic cancer, is also frequently reported in benign 

pancreaticobiliary diseases such as biliary obstruction and chronic pancreatitis. 
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Box 1.3
21, 54

- Signs and symptoms of pancreatic cancer and confounding diseases 

Symptom in PDAC Examples of confounding diseases exhibiting the same symptom 

Anorexia 
Bacterial/ viral infections; most cancers, Chronic Pancreatitis; gallstone 

related biliary obstruction  

Weight Loss Most cancers; acute infections; diabetes; Chronic Pancreatitis 

Jaundice Biliary obstruction, acute and chronic pancreatitis; liver failure 

Hepatomegaly Hepatitis, heart failure; liver cirrhosis 

Peripheral lymphadenopathy Heart failure, renal failure; other cancers; medications; malnutrition 

Abdominal Pain 
Chronic Pancreatitis; gallstone related Biliary obstruction; peptic ulcers; 

inflammatory bowel disorders; GI cancers 

Anaemia 
Most cancers; autoimmune diseases; B12 deficiency; malabsorption; GI 
bleeding 

Fatigue Most cancers; diabetes; obesity heart failure; anaemia; depression  

Ascites 
Liver metastasis; most cancers; malnutrition; cirrhosis (liver or biliary); heat 
failure 

Acute pancreatitis 
Alcoholic pancreatitis; acute exacerbation of chronic pancreatitis; cancer of 
biliary tree or duodenum; gallstone-related biliary obstruction 

  

1.2.5 Diagnosis and Staging of Pancreatic Cancer 

In patients with suspected pancreatic cancer, subsequent investigations are designed 

to provide information regarding the presence, location, staging, and resectability of 

the disease
21, 26, 54, 56

. A number of modalities have been developed for the diagnosis 

and staging of pancreatic cancer. The initial investigation may be a simple trans-

abdominal ultrasound scan (USS), which may be able to identify signs of late 

pancreatic cancer such as biliary dilatation and liver metastasis
57-58

. However, USS is 

not useful in the diagnosis of early pancreatic cancer
57

 and therefore, the preferred 

diagnostic investigation is contrast enhanced multi-slice computed tomography (CE-

CT) scan, which is able to assess the location, size and sometimes the type of lesion 

in addition to providing evidence for the staging and resectability of the tumour
57, 59

. 

In general, contrast-enhanced CT scans are 80-90% accurate in predicting surgical 

resectability
59

. Other investigations such as endoscopic ultrasonography (EUS), fine 

needle biopsy (FNB), and Laparoscopy may be useful in confirming the presence of 

smaller or equivocal lesions seen on CT scan
60

. Nevertheless, the final diagnosis of 

PDAC can only be made histologically
21

.  

Pancreatic cancers are staged using the Tumour, Node, and Metastasis (TNM) 

classification system
61

. Each tumour is scored according to three criteria: Tumour 

size/extent (T), Lymph node involvement (N) and the presence of distant metastasis 

(M) (see Box 1.4). In practice, patients with TNM status equal to or less severe than 

T3, N1, and M0 are considered resectable
61

. However, studies have demonstrated 
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that patients with positive lymph node involvement (N1, staged 2B or above) have 

considerably poorer survival compared to patients with N0 status
62-66

.  

 

1.2.6 Management and prognosis of pancreatic cancer 

1.2.6.1 Advanced pancreatic cancer 

Over 75% of pancreatic cancers are inoperable due to localised advanced disease, 

metastases, or performance status
67-68

. The treatment for this group of patients is 

therefore directed at symptom control
57

. Pain is one of the most commonly reported 

symptoms of inoperable pancreatic cancer and it is usually controlled by oral opiate 

preparations
69

. Recent studies have suggested that celiac plexus block may improve 

pain control in selected patients but it has an insignificant effect on the quality of life 

and survival
70-72

. Furthermore, patients with advanced pancreatic cancer invariably 

develop weight loss due to pancreatic exocrine insufficiency, obstruction of the 

common bile duct, or cancer-associated cachexia
26

. Whilst there is no treatment for 

the latter condition, the former two can be effectively treated by pancreatic enzyme 

supplements and stenting of the bile duct
26, 73

.  

Chemotherapy plays an important role in improving the survival and quality of life of 

patients with advanced pancreatic cancer
74-75

. Unlike other cancers, PDACs are 

highly resistant to chemotherapy with a relatively low response rate of 10-25%
74

. 

However, studies have shown that treatment with chemotherapeutic agents such as 5-

Fluorouracil (5-FU) and Gemcitabine can significantly improve the median survival 

of patients with advanced pancreatic cancer
74

. Evidence from a randomised 

Box 1.4- TNM classification system and staging for pancreatic cancer
61

 

TNM Description 
Stage 

with N0 

Stage 

with N1 

Tx Primary tumour cannot be assessed -  

T0 No evidence of primary tumour -  

Tis Carcinoma in situ -  

T1 Tumour limited to pancreas, 2cm or less in greatest dimension 1A 2B 

T2 Tumour limited to pancreas, more than 2cm in greatest dimension 1B 2B 

T3 
Tumour extends beyond pancreas, but without involvement of celiac axis or 
superior mesenteric artery 

2A 2B 

T4 Tumour involves celiac axis or superior mesenteric artery 3 3 
 

Nx Regional lymph nodes cannot be assessed   

N0 No regional lymph node metastasis   

N1 Regional lymph node metastasis   
 

M0 No distant metastasis   

M1 Distant metastasis 4 4 
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controlled trial by Burris et al. 
74

 reported not only that treatment with Gemcitabine 

significantly improves the 1 year survival rate compared to 5-Fluorouracil (18% 

versus 2%, respectively), this trial also observed a milder toxicity and a better 

clinical response (24% versus 5%) with Gemcitabine. This subsequently saw the 

replacement of 5-FU with Gemcitabine as the preferred drug
26

. In addition, a number 

of randomised controlled trials have demonstrated that for patients with advanced 

pancreatic cancer, the combination of Gemcitabine with newer chemotherapeutic 

agents such as Capecitabine (a 5-Fluorouracil pro-drug) and Oxaliplatin is associated 

with a better prognosis
75-80

. In particular, a phase III randomised control trial by 

Cunnigham et al., reported a significant improvement in progression-free survival for 

patients with advanced PDAC treated with Gemcitabine -Capecitabine combined 

chemotherapy compared to Gemcitabine alone (hazard ratio 0.78, p=0.004)
80

.  

1.2.6.2 Resectable pancreatic cancer 

In the remaining 25% of pancreatic cancer patients, where surgical resection with 

intention-to-treat is deemed possible, the aim of surgery is to achieve complete 

clearance of the tumour both macroscopically and microscopically (R0 resection)
81-82

. 

However, in practice, a large proportion of patients have incomplete resection of the 

tumour (R1, microscopically; R2, macroscopically) 
82

. The most commonly 

employed surgical procedure for the removal of pancreatic tumours located in the 

head of the pancreas is pylorus-preserving partial pancreaticoduodenectomy (PP-

PPD) whereas tumours located in the body or tail undergo distal pancreatectomy 

with resection of the spleen and hilar lymph nodes
67

. 

Despite radical resection of the primary tumour, the reported 5-year survival rate 

remains low (approximately 10%), mainly due to cancer recurrence. Furthermore, 

pancreatic cancer patients (resected or otherwise) will invariably develop metastatic 

disease, typically of the liver or lung. Various prognostic markers have been 

identified, of which, lymph node status, tumour size and tumour grade are the most 

important predictors of post-operative survival. Evidence from randomised 

controlled trials by Neoptolemos et al. 
83-85

 and Oettle et al. 
86

 independently reported 

that the use of adjuvant chemotherapy improves the 5-year survival from 9-12% 

(resection alone) to 21-29% (resection with chemotherapy)
87-89

. Further evidence 

from the European Study Group for Pancreatic Cancer 3 (ESPAC-3) trial
90

 supported 
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this finding and, in addition, reported comparable survival rates in patients treated 

with adjuvant 5-FU compared to adjuvant Gemcitabine .  

 

1.3 Biomarkers for pancreatic cancer 

1.3.1 Introduction to biomarkers 

A biomarker is defined by the National Institute of Health
91

 as “a characteristic that 

is objectively measured and evaluated as an indicator of normal biologic process, 

pathogenic process, or pharmacologic responses to a therapeutic intervention”. The 

abundance or scarcity of cancer biomarkers in cancer relative to non-cancer 

conditions (e.g. inflammatory diseases and in health) may be an indication of 

changes to cellular biology in carcinogenesis. Therefore, it is the aim of cancer 

biomarker studies to identify these differentially expressed molecules and to assess 

their clinical usefulness as a screening, diagnostic, and/or prognostic modality for 

cancer. There are many samples, which can be used for the discovery of biomarkers 

including blood derivatives, pancreatic juice, tissue, saliva, and urine
92

. Of these, 

blood plasma or serum is most widely used in biomarker studies because they are 

readily accessible, minimally invasive to collect, generally acceptable to patients, and 

are potentially rich sources for most types of biomarkers
92

.  

 

1.3.1.1 The need for diagnostic biomarkers of pancreatic cancer 

As previously discussed, the differential diagnosis of pancreatic cancer is based 

entirely on non-specific symptoms, signs, and first-line investigation findings that are 

at best suggestive of a disease of pancreaticobiliary origin and/or the presence of 

metastatic disease
54-55

. Moreover, under the current recommendations, patients 

suspected of having pancreatic cancer will undergo a series of relatively invasive 

procedures including CE-CT, EUS, and/or FNB
57

. Clearly, there is a need for novel, 

accurate, and less invasive methods for the diagnosis of pancreatic cancer such as a 

blood-based protein biomarker. Aside from the fact that a blood-based biomarker 

would be less invasive compared to current diagnostic techniques, there are two other 

major advantages: the number of patients undergoing unnecessary invasive 

investigations and the time required to reach a diagnosis of PDAC would be greatly 
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reduced. There is also the possibility that biomarkers can be employed to detect the 

presence of early pancreatic cancer in otherwise asymptomatic individuals. 

Subsequently, this would mean that patients with PDAC are diagnosed earlier 

thereby increasing their chances of having operable disease and therefore improving 

the prognosis. 

 

1.3.2 Current biomarker of pancreatic cancer: CA19-9 

The tumour associated antigen, Carbohydrate Antigen 19-9 (CA19-9), was first 

described in pancreatic cancer by Koprowski et al. in 1981
93

. Approximately 95% of 

the general population are able to synthesise CA19-9 while the remaining 5-10% of 

the population, due to genetic differences, have a Lewis
a-b-

 phenotype meaning that 

they are unable to synthesise CA19-9
94

.  

 

1.3.2.1 CA19-9 in screening and diagnosis of pancreatic cancer 

CA19-9 was initially evaluated as a potential diagnostic marker exclusively for 

pancreatic cancer; however, studies in the past two decades have reported elevated 

levels of CA19-9 in other malignant tumours including gastric, ovarian, 

hepatocellular, and colorectal cancers as well as benign pancreaticobiliary diseases 

such as chronic pancreatitis, cholangitis, and choledocholithiasis
23, 95-99

. Furthermore, 

a recent study by Morris-Stiff et al. demonstrated a direct correlation between serum 

levels of CA 19-9 and bilirubin 
100

. This finding, together with evidence from clinical 

studies demonstrating that CA19-9 is not sufficiently sensitive for the detection of 

early or small-diameter pancreatic cancer, suggest that CA19-9 should not be used 

alone as a screening modality for pancreatic cancer
96, 101-102

.  

Evidence from systematic reviews have suggested that with a median sensitivity of 

79% (70-90%) and a median specificity of 82% (58-91%), CA19-9 is not sufficiently 

accurate as a standalone diagnostic marker of pancreatic cancer
97, 99

. Indeed various 

expert groups including the European Group on Tumour Markers, the National 

Academy of Clinical Biochemistry (NACB), and the National Cancer 

Comprehensive Network have stated that CA19-9 should only be used in conjunction 

with other diagnostic modalities such as CE-CT and EUS
96, 101-102

.  
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1.3.2.2 CA19-9 in prognosis, surveillance, and assessment of chemotherapy  

Mounting evidence shows that serum concentrations of CA19-9 correlate with the 

prognosis of resected pancreatic cancer patients
103-106

. In a retrospective study by 

Ferrone et al., it was reported that a CA19-9 level of <200 kU/l or a decrease in 

CA19-9 levels following surgical resection are independently associated with better 

prognosis
107

. Recently, the NACB guidelines recommend that whilst CA19-9 should 

be considered for risk stratification in patients with pancreatic cancer and that high 

concentrations are indicative of poor outcome, the guidelines emphasised that CA19-

9 is only one of many factors influencing the prognosis and treatment planning of 

pancreatic cancer
102

.  

CA19-9 is also used in postoperative surveillance of pancreatic cancer
96, 108

. Several 

studies have shown that sequential measurements of CA19-9 may be able to detect 

recurrent/metastatic pancreatic cancer before clinical or radiological evidence
95-96, 108

. 

In addition, there is a consensus that a declining CA19-9 level following initiation of 

chemotherapy is associated with a better outcome compared to no decline
96

. Based 

on this evidence, the NACB recommends that serial measurements of CA19-9, along 

with radiological imaging at regular intervals may be used for both post-operative 

surveillance and the monitoring of therapy
102

. 

 

1.3.3 Other markers of pancreatic cancer 

A number of potential diagnostic markers for pancreatic cancer have been proposed 

in the past decade
96, 109

. In 2007, Grote et al.
109

 highlighted 16 novel blood-based 

markers for pancreatic cancer in their review article including Mucin 1 (MUC-1), 

macrophage inhibitory cytokine 1 (MIC-1), inter-alpha-trypsin-inhibitor heavy chain 

4 fragments (ITIH4 fragments), and Apolipoprotein A-II, which have shown 

relatively high sensitivities (range, 0.71-0.90) and specificities (range, 0.92-0.96) for 

pancreatic cancer against chronic pancreatitis and healthy controls compared to 

CA19-9. Similarly, results from a review by Bussom et al.
110

 identified several novel 

biomarkers e.g. PAM4 and carcinoembryonic antigen-related cell adhesion 

molecule-1 (CEACAM-1), which have shown promising results for the detection of 

early-stage pancreatic cancer. Moreover, several studies have demonstrated the 

potential of combining novel markers with CA19-9 to improve the diagnostic 
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accuracy compared to CA19-9 alone
111-112

. However, considering the relatively small 

sample size in these studies and in view of recent evidence demonstrating the 

confounding effects of biliary obstruction on the diagnostic accuracies of some 

proteomic biomarkers, further validation must be performed before these novel 

markers can replace the role of CA19-9 in pancreatic cancer. 

 

1.3.4 Techniques for biomarker discovery 

There are two main approaches to biomarker discovery: The genomic approach, 

which focuses on identifying genetic mutations or changes in gene expression on 

micro RNA levels and the proteomics approach, which mainly examines the 

difference in protein levels between PDAC and benign conditions. The following 

sections will describe the various techniques used in the discovery of proteomic 

biomarkers including 2D polyacrylamide gel electrophoresis (2D PAGE) and 

isobaric Tag for Relative and Absolute Quantification (iTRAQ) in addition to 

common techniques used in the validation of biomarkers such as western blotting 

and enzyme-linked immunosorbent assay (ELISA). Furthermore, the current section 

will describe the use of a microsphere-based multiplex cytokines assay, for both the 

discovery and validation of biomarkers for pancreatic cancer. 

 

1.3.4.1 2D-PAGE 

The technique of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 

was first described by O‟Farrel et al. and Klose in 1975
113-116

. The original technique 

of 2D-PAGE described by these authors consisted of protein separation by carrier-

ampholyte-generated pH gradients in the first dimension (isoelectric focusing, IEF) 

followed by separation by protein molecular weight in the second dimension (SDS-

PAGE) 
113-116

.  

2D-PAGE has a number of desirable properties and potential applications including 

its ability to separate proteins into their individual polypeptide components, compare 

protein expression profiles of paired samples (e.g. cancer versus control), detect 

global protein behavioural in responses to a change in conditions, and more 

importantly, its potential capacity to simultaneously resolve hundreds to thousands of 

proteins
116-119

. This technique was widely applied throughout the 1980s
118

, however, 
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it was not long before researchers recognised that the original 2D-PAGE method 

suffered from a number of limitations including the lack of reproducibility, low 

resolution, inability to separate very acidic and/or very basic proteins, and limited 

sample loading capacity
116, 118

. In an effort to overcome these limitations, Görg et 

al.
120

 introduced a new gradient for first dimension separation in the 1980s- the 

immobilized pH gradients (IPGs) 
120-122

. The use of IPG enabled an extremely stable 

pH gradient to be generated, which subsequently improved isoelectric focusing and 

the reproducibility of the technique
118

. Later studies further enhanced this technique 

by introducing narrow-overlapping IPGs, which enabled a higher resolution as well 

as permitted the detection of lower abundance proteins and proteins with isoelectric 

points ranging from pH 2.5 to pH 12
123-125

.  

Research on 2D-PAGE and its related technologies in the past decade has been 

focused on improving the solubilisation and separation of hydrophobic proteins, the 

display of low abundance proteins, and achieving more reliable protein quantification 

by either fluorescent dyes or isobaric tags
118

. Indeed, the recent development of the 

difference gel electrophoresis (DIGE) technology has enabled mixed samples to be 

analysed on a single 2-DE gel via differential fluorescent dye labelling
126

.  

1.3.4.2 Mass Spectrometry and iTRAQ 

Isobaric Tag for Relative and Absolute Quantification (iTRAQ) is a chemical 

labelling multiplexing technique, which quantifies the concentration of proteins 

using mass spectrometry
127-129

. iTRAQ coupled with electro-spray ionisation tandem 

mass spectrometry (ESI-MS/MS) is becoming increasingly popular over the past 5 

years in the field of biomarker research due to its ability to identify and quantify 

hundreds of proteins in a single experiment
128

. Indeed, a previous study from the 

Division of Surgery and Oncology, University of Liverpool, have identified over 300 

differentially expressed proteins in the serum of pancreatic cancer patients compared 

to controls
129

. In Chapter 2, the accuracies of three iTRAQ/MS identified proteins as 

diagnostic markers for pancreatic cancer is provided. 

The technique of iTRAQ-MS relies on the fact that proteins can be digested to a 

unique set of different tryptic peptides. The iTRAQ part of the technique consists of 

the digestion of proteins in a sample into their constituent peptides followed by the 

labelling of these peptides by isobaric tags. Each sample group (i.e. HC, CP, and 
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PDAC) is labelled with a different tag with a unique reporter group of a specific 

mass, which is released during mass spectrometry through collision-induced 

dissociation thus allowing the association of a peptide with a specific sample group. 

The detection part of iTRAQ-MS involves the vaporisation and ionisation of the 

labelled peptides through an electromagnetic field. The resulting trajectory data and 

mass-to-charge ratio data from the MS analysis can then be used to identify the 

protein origins of these peptides. The different tags allow the relative quantification 

of peptides between samples, for example, a given peptide labelled with the disease-

specific tag could be four times more abundant than the same peptide labelled with 

the control specific tag, indicating that the peptide is more abundant in the disease 

than the controls. 

Mass spectrometry based methods such as iTRAQ offers the identification and 

quantification of numerous proteins in a single experiment. This is clearly 

advantageous for biomarker studies, where several potential biomarkers can be 

identified upon data comparison between the disease and control groups. However, 

there are two major drawbacks for this technique: iTRAQ requires a large amount of 

sample and the sample preparation stage may span require weeks to complete 

especially in the case of serum, where abundant protein depletion is necessary. An 

acceptable solution to this problem is the use of pooled samples but this is not 

without its own disadvantages. Although pooled samples present an „average‟ profile 

for the disease group in question, this “average” is very susceptible to skewing by an 

outlier with unusually high or low expression of a particular protein. Therefore, it is 

important to validate the results from pooled samples by other proteomic methods 

such as western blotting or ELISA. 

 

 

1.3.4.3 Western blotting 

Western blotting (also called Protein Immunoblotting) is a laboratory technique used 

to detect the presence of specific proteins in a given sample and it is frequently 

employed to validate the serum expression of proteins identified by iTRAQ. The 

method for western blotting was first described by Burnette in 1981
130

 and 

surprisingly little has changed in the original method over the past 20 years. The 

most prominent changes have been in the development of newer apparatus, specific 
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antibodies, and better labelling/detection methods. Indeed, novel detection methods 

for western blots such as infrared labelling have been of increasing interest to 

researchers. In a recent study comparing tradition chemiluminescence with infrared 

detection
131

, the authors described many potential advantages to infrared detection 

such as the ability to simultaneously detect two proteins and the loss-less 

preservation of signal long periods of time. Due to its higher detection sensitivity 

however, the resulting blot may in practice show more non-specific bands compared 

to traditional chemiluminescence and therefore may not be desirable. 

The technique of western blotting involves two phases: sodium dodecyl sulphate 

(SDS) polyacrylamide gel electrophoresis (PAGE) and immunofluorescence 

detection. The purpose behind SDS-PAGE is to separate uniformly charged, 

denatured proteins according to their molecular weight through the use of an electric 

current. Briefly, denatured proteins are reduced by SDS (i.e. given a uniform charge) 

and are subjected to an electric current. Proteins with a lower molecular weight will 

travel through the polyacrylamide gel at a faster rate compared to heavier proteins, 

therefore, with time, lighter proteins will travel a greater distance compared to 

heavier proteins. The proteins in the polyacrylamide gel are then transferred and 

immobilised on a nitrocellulose membrane in preparation for immuno-detection. In 

the detection phase, a primary antibody is used to bind to the protein of interest and a 

horseradish peroxidase (HRP) secondary antibody is used to bind to the primary 

antibody. This is necessary because the HRP on the secondary antibody allows 

chemiluminescence detection by catalyzing the reaction between two luminescence 

substrates. 

Western blotting remains one of the most favoured techniques in modern proteomic 

research for the validation of the findings in biomarker discovery projects. This is 

largely because of its high sensitivity for detecting the presence of specific proteins 

meaning that it is heavily relied upon in cell-related proteomic analyses. Furthermore, 

in biomarker research where samples are often very precious, western blotting has 

the advantage of being able to detect and quantify proteins using a considerably 

smaller amount of sample compared to other proteomic techniques such as ELISA or 

mass spectrometry. However, there are a number of potential pitfalls in using 

western blotting for the quantification of proteins. Firstly, there is often a variable 
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loss of proteins during the transfer step and therefore direct comparison between 

blots is not recommended unless internal standards are rigorously used. Secondly, the 

primary antibody, which is engineered to recognise a specific amino acid sequence 

unique to the protein of interest, may have a variable ability in recognising the same 

sequence after the protein has been denatured. Finally, the quantification of bands 

from scanned x-ray films must be interpreted with care because the intensities of x-

ray scanned bands follow a sigmoid-like correlation with the actual concentrations of 

the protein of interest in a sample
132

. This means that the difference in band intensity 

is likely to be less distinct when compared to the difference in actual protein 

concentration.   

1.3.4.4 Enzyme-Linked Immunosorbent Assay (ELISA) 

Enzyme-linked immunosorbent assay (ELISA), sometimes referred to as enzyme 

immunoassay (EIA), is another technique frequently employed in the quantification 

of blood-based proteins. Although it is widely used in the research setting, it is also 

frequently employed in clinical settings especially in diagnostic medicine. 

Interestingly, the technique of ELISA is the result of synthesized knowledge from 

studies published by a number of researchers from 1960 to 1971
133-135

. As with 

western blotting, very little has changed in the original method since 1971 other than 

the development of better antibodies and more sophisticated/automated apparatus, 

which play a pivotal role in minimised human error and improving data 

reproducibility. There are a number of variations to the ELISA technique including 

direct, indirect, sandwich, competitive, and multiplex assays however, the principle 

behind the variations remains the same.  

The technique of ELISA is somewhat similar to the chemiluminescence phase of 

western blotting. In a typical sandwich ELISA, the protein of interest (antigen) is 

first immobilised to the surface of the wells by a capture antibody. A primary 

antibody then binds to the antigen, which in turn is bound by an antibody-HRP 

conjugate. The HRP in the secondary antibody catalyses a chromogenic substrate to 

cause a shift in colour that is directly correlated with the concentration of the protein 

of interest. This colour shift is detected by an ELISA plate reader and the resulting 

data can be used to quantify the concentration of the protein of interest.  
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There are many advantages in using ELISA for protein quantification, for example, 

the assay itself is simple and relatively quick to perform, each analysis 

simultaneously quantifies over 40 samples, and the resulting data are readily 

reproducible. However, as with western blotting, one of its basic requirements is the 

availability of an antibody specific to the antigen of interests. In addition, the serum 

sample requirement for a typical ELISA (25 µL) is over 60 times greater than a 

typical western blot analysis (0.4µL) and it is usually more expensive (per sample) to 

perform.  

 

1.3.4.5 Multiplex Assays (LUMINEX) 

Researchers and biomedical companies in the past decade have sought to overcome 

the various disadvantages of conventional ELISAs
136-137

. One of the ways in which 

this is achieved is by combining the ELISA technology with existing biochemical 

techniques such as microspheres, flow cytometry, and laser detection
136-137

. In 

chapter 3 of the current MPhil thesis, I described the use of the LUMINEX multiplex 

assay to analyse 27 different cytokines, chemokines, and growth factors in serum 

samples. A brief description of this technique is given below (see section 3.3.3 for 

detailed protocol). 

The technique for the LUMINEX assay is similar to conventional sandwich ELISA 

in many ways. However, instead of using an antibody-based capture system, the 

LUMINEX assay employs a solid-phase microsphere-based capture system where 

each microsphere population are designed to bind to a specific analyte of interest. 

Furthermore, each microsphere population is internally dyed to emit a unique 

wavelength in the red to infrared spectrum upon laser excitation, which allows the 

identification of its corresponding analyte. As in the case of ELISA, samples are 

incubated with a mixture of microspheres to allow binding of the analyte to its 

corresponding microsphere population. Next, the microsphere-substrate complex is 

allowed to bind to a detection antibody, which facilitates the binding of streptavidin. 

Finally, the LUMINEX system employs a dual laser technology whereby a red laser 

is used to identify the microsphere population, and a green laser is used to detect the 

fluorescence intensity of each microsphere. Data from the assay standards can then 

be used to convert the fluorescence intensities into concentration (pg/ml). 
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The LUMINEX system is a relatively new technology with the obvious advantage of 

being able to quantify up to 100 analytes in up to 39 samples simultaneously and is 

therefore significantly more sample-efficient than a conventional ELISA. The 

substitution of enzyme-catalysed chromogenic substrate (ELISA) with 

immunofluorescence and laser detection (LUMINEX) meant that a wider range of 

concentrations could be determined. In addition, results from previous studies have 

shown that data obtained from multiplex assays are reproducible and have an 

acceptable accuracy. Furthermore, it is a simple and quick assay to perform with an 

experimental duration of approximately 4 hours. However, as with other 

immunoassays, the integrity of the assay is dependent upon the sensitivity and 

specificity of the primary antibody. Moreover, one major disadvantage is the cost 

incurred by each assay, which can be up to 5 times the cost of an ELISA plate. 

Nevertheless, considering its ability to quantify multiple analytes simultaneously, the 

LUMINEX assay can be considered as sufficiently cost-effective as an alternative 

method for the discovery of potential biomarkers. 
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1.4 Role of CCGFs in inflammation and cancer 

The role of cytokines, chemokines, and growth factors (CCGFs) in pancreatic 

inflammatory diseases (e.g. acute and chronic pancreatitis) has been reported by 

many studies
138-144

. More recently, evidence from experimental and epidemiological 

studies have shown that CCGFs play a pivotal role in mediating cancer-related 

inflammation
144-150

. Indeed, a recent review by Colotta et al. suggested that cancer-

related inflammation may be considered as the seventh hallmark of cancer
150

 and that 

an inflammatory tumour microenvironment contributes to the proliferation, 

angiogenesis, survival and metastasis of certain cancers
143, 151-154

.  

1.4.1 The relationship between inflammation and cancer 

The association between chronic inflammation and cancer was initially proposed by 

Rudolf Virchow over 100 years ago
145

. Later studies have given evidence in support 

of this hypothesis and it was estimated that 20% of all cancers are attributable to 

chronic infection and inflammation
145, 155

. Epidemiological studies have suggested 

that the used of anti-inflammatory agents may reduce the risk and mortality of certain 

cancers
156-159

. More importantly for pancreatic cancer, studies have demonstrated a 

correlation between the activation of certain oncogene signalling pathways (e.g. Ras, 

and TGF-β) and inflammation
26, 46, 160

. In 2008, Mantovani et al. described two 

pathways linking inflammation and cancer: the intrinsic and extrinsic pathways
155

. 

The intrinsic pathway is activated by the mutation of certain cancer-related genes 

(e.g. activation of oncogenes or inactivation of tumour suppressor genes) thereby 

resulting in the production of inflammatory mediators and ultimately the formation 

of an inflammatory tumour microenvironment. In contrast, the extrinsic pathway 

refers to the promotion of tumour formation in the presence of an underlying 

inflammatory condition (such as chronic pancreatitis)
155

. Both pathways lead to the 

activation of transcription factors such as Nuclear Factor Kappa light-chain-enhancer 

of activated B cells (NF-B), Hypoxia Inducible Factor 1-alpha (HIF-1, and Signal 

Transducer and Activator of Transcription-3 (STAT3), which in turn induce the 

secretion of inflammatory mediators (e.g. cytokines, chemokines, and growth factors) 

by immune cells
145, 161

. 
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1.4.2 Pathways linking inflammation and cancer 

1.4.2.1 NF- 

NF-B is a family of transcription factors consisting of five members including NF-

B1, NF-B2, RelA, RelB, and c-Rel
162-163

. Members of the NF-B family share a 

300 amino acid region, which gives NF-B the characteristic ability to form dimmers 

and to bind with other NF-B proteins, DNA, and NF-B inhibitors (IB)
164

. In 

normal eukaryotic cells, NF-B is usually in a quiescence state; however, NF-B can 

be activated by a number of stimuli including cellular stress, inflammatory mediators 

(e.g. TNF- and IL-1), and bacterial/viral antigens
162-163

. The activation of NF-B 

promotes the transcription of a number of inflammatory mediators including IL-1, 

IL-1, and TNF-, which may in turn stimulate the NF-B pathway in a positive 

feedback loop and may lead to a longer and more severe inflammatory response
162-163

.  

Aberrant activation of the NF-B pathway has been associated with a number of 

cancers
162-163, 165-168

. It has been proposed that the continuous activation of NF-B 

promotes oncogenesis by enhancing the transcription of genes encoding for 

cytokines (e.g. TNF-), chemokines (e.g. IL-8), and growth factors (e.g. Vascular 

Endothelial Growth Factor, VEGF) as well as anti-apoptosis genes
162-163, 166

. 

Furthermore, evidence from a number of in vitro and in vivo studies has 

demonstrated that NF-B can promote tumour metastasis by regulating the 

expression of cell adhesion molecules (e.g. ICAM-1), cell surface proteases (e.g. 

MMP-9), and plasminogen activators (e.g. urokinase-type plasminogen activator).  

 

1.4.2.2 STAT3 

STAT3 is a member of the signal transducer and activator of transcription (STAT) 

family of proteins, which are responsible for the transduction of cytoplasmic signals 

from extracellular stimuli, the regulation of genes involved in tumour proliferation, 

survival, angiogenesis, and metastasis, and the induction of tumour-promoting 

inflammatory mediators especially cytokines (e.g. IL-17) and growth factors (e.g. 

VEGF)
169

. Interestingly, whilst some members of the STAT family (e.g. STAT1) 

exhibit anti-tumour properties, others (e.g. STAT3) induce cancer-promoting 

inflammation
170-174

. Furthermore, studies have shown that STAT3 is commonly 



25 

 

activated in malignant cells and it plays a crucial role in regulating the expression of 

genes associated with cancer-related inflammation in the tumour 

microenvironment
169, 175

. STAT3 can be activated via a number of intrinsic and 

extrinsic mechanisms. In particular, STAT3 can be activated by a number of 

upstream receptors including cytokine receptors (e.g. IL-6R, IL-10R) and growth 

factor receptors (e.g. Platelet-derived growth factor (PDGF) receptor and EGFR)
169, 

174
. Indeed, recent studies have demonstrated that IL-6 can activate STAT3 through 

the activation of Janus Kinase (JAK), which ultimately leads to the up-regulation of 

anti-apoptotic genes and tumour cell survival
170, 173, 176-178

. Interestingly, IL-10 has 

been shown to exhibit anti-tumour activity by inhibiting the NF-B pathway
179

. 

However, recent evidence has also indicated that IL-10 may play a dual role in 

cancer by being an activator of STAT3 thereby indirectly promoting cancer 

proliferation, angiogenesis, survival, and metastasis through promoting the 

transcription of anti-apoptotic genes and growth factors
169, 180

. 

Furthermore, in view of the common role of STAT3 and other cancer-associated 

transcription factors in cancer-associated inflammation, it is somewhat unsurprising 

that the two transcription factor pathways should interact with each other on many 

levels. For example, recent studies have suggested that the activation of NF-B 

promotes the expression of IL-6 gene, which in turn is an activator of STAT3. In 

contrast, the activation of STAT3 prevents RELA of the NF-B family from leaving 

the nucleus thereby contributing to the persistent NF-B activation in cancer
181

. 

 

1.4.2.3 HIF 1-alpha 

One of the major factors dictating tumour growth, proliferation, and survival is the 

availability of oxygen
182

. Cancer associated hypoxia results when the demand for 

oxygen from the rapidly growing tumour exceeds its vascular supply. Prolong 

hypoxia leads to cellular necrosis, which is often observed in solid tumours. Indeed, 

evidence from computed tomography and intratumoural oxygen tension studies 

indicated that pancreatic cancers are characterised by an avascular appearance and 

that they are unusually hypoxic compared to other solid tumours
183

.  
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HIF are a family of transcription factors consisting of six members (HIF-1, HIF-1, 

HIF-2, HIF-2, HIF-3, and HIF-3), which are responsible for promoting neo-

angiogenesis and wound healing
182

. One of the best-characterized HIFs is the 

heterodimer protein, hypoxia-inducible factor-1. HIF-1 consists of two subunits, 

HIF-1 and HIF-1
183-184

. Whilst both subunits are expressed in all cells, HIF-1 is 

virtually undetectable in well-oxygenated cells due to its rapid degradation by 

ubiquitination
183-184

. In contrast, during cellular hypoxia, there is an accumulation of 

HIF-1, which undergoes dimerization with HIF-1 and ultimately promoting the 

transcription of various angiogenesis-related proteins including vascular endothelia 

growth factor (VEGF)
183-184

.  

Although the exact role of HIF-1 is not yet fully understood, a number of studies 

have demonstrated that HIF-1 expression is positively correlated to VEGF 

expression, tumour size, and tumour stage (particularly stage III and IV)
183

. 

Furthermore, there is increasing evidence suggesting that HIF-1 may enhance the 

expression of motility factors in pancreatic cancer cells and may therefore play a role 

in promoting metastasis
183

.  

 

1.4.3 Tumour microenvironment, cytokines and cancer 

There are three broad categories of cells within the tumour microenvironment: 

immune cells, cancer cells, and stromal cells
185-186

. The communication within and 

between these cells relies on direct contact or through signalling molecules such as 

cytokines, chemokines, and growth factors (CCGFs), which act in autocrine and 

paracrine manners to control tumour growth, proliferation, migration, and 

metastasis
186-187

. CCGFs and their modulators play a paradoxical role in cancer 

where their expression and abundance within the tumour microenvironment dictate 

the balance between tumour promoting inflammation and anti-tumour immunity
179

. 

When host-mediated anti-tumour immunity is stronger than tumour-induced 

immunosuppression, there is a net elimination of tumour cells
179

. By contrast, in 

established tumours, the balance is shifted towards tumour-associated inflammation 

and there is a net promotion of tumour growth and proliferation
179

. Furthermore, in 

advanced cancer, there is minimal anti-tumour activity and therefore tumour 

regression rarely occurs without therapeutic intervention 
179, 188

. 
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1.4.3.1 Immune cells, cytokines, and cancer 

Tumour-associated macrophages (TAMs) are a major source of inflammatory 

cytokines the tumour microenvironment
189-191

. In contrast to normal macrophages, 

these tumour-recruited phagocytes are unresponsive to their normal regulatory 

mechanisms have been associated with six tumour-promoting extrinsic traits: chronic 

inflammation, matrix remodelling, tumour cell invasion, intravasation (invasion of 

blood vessels), angiogenesis, and distant metastasis
192

. Indeed, studies on the 

transition of carcinoma in-situ to invasive cancer have demonstrated the presence of 

TAMs at points of basement-membrane breakdown
192-193

. This finding, together with 

evidence from multi-photon imagining studies, suggests that tumours can manipulate 

TAMs to facilitate invasion and migration through the surrounding stroma
192, 194

.  

TAMs are also an important producer of VEGF, a key component for 

neoangiogenesis in tumours
179, 193, 195

. It has been proposed that cytokines produced 

by hypoxic cancer cells are responsible for the recruitment of macrophages
193, 196

. 

The induction of hypoxic inducible factor 2 alpha (HIF-2a) in recruited macrophages 

promotes the expression of vascular endothelial growth factor (VEGF) and 

angiogenesis
193, 195

. Furthermore, VEGF also acts as a chemo-attractant for 

macrophages thus creating a positive feedback loop for rapid vascularization in 

tumours
193

.  

In contrast to TAMs, T cells may play a promoting or suppressing role in cancer 

depending on their effector functions
186

. Clinical and experimental evidence 

indicates that the anti-tumour function of T lymphocytes is mediated by both 

cytotoxic mechanisms and cytokines
186

. Correspondingly, studies have demonstrated 

that increased activated cytotoxic T lymphocytes (CTLs) and Type 1 T-helper cells 

(Th1) are associated with better prognosis in pancreatic cancer. However, evidence 

has also suggested that several subsets of T cells (e.g. CD8, IFN-producing Th1 

cells, and Th2 cells) are involved in tumour promotion, progression, or metastasis
186

.  

 

1.4.3.2 Pancreatic stellate cells, CCGFs, pancreatic fibrosis, and cancer 

An important stromal component of pancreatic tumour microenvironment is 

pancreatic stellate cells (PSCs)
185

. PSCs are vitamin A containing spindle-shaped 

cells found in the pancreas that is capable of producing extracellular matrix (ECM) 
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proteins such as collagen, fibronectin, and desmin
186

. In normal pancreas, quiescent 

PCSs produce little ECM proteins and have undetectable levels of cytoplasmic alpha-

smooth muscle actin (-SMA). However, in response to oxidative stress from 

pancreatic injury, PSCs are transformed in to myofibroblast-like cells that express -

SMA
154

. In chronic pancreatitis and pancreatic cancer-associated inflammation, 

cytokines and growth factors released by immune cells stimulate PSC growth (e.g. 

PDGF) and the production of ECM proteins (TGF-, IL-1)
140

. In addition, activated 

PSCs in turn produce their own inflammatory mediators including MCP-1, IL-8, and 

RANTES, which generate a positive feedback for inflammation
185

. Interestingly, 

PSCs produce both ECM degrading enzymes (e.g.MMPs) and their inhibitors (tissue 

inhibitors of metalloproteinases, TIMPs)
185-186

. Indeed, the suppression of MMP-3 

and MMP-9 by the TGF- pathway and the promotion of MMP-2 expression (causes 

fibre deposition) by IL-6 and TGF-1 have been observed in areas of pancreatic 

fibrosis
186

. Therefore, the regulation of pancreatic fibrosis is dependent on a delicate 

balance between ECM proteins production and degradation. Most importantly, recent 

studies have proposed that ECM remodelling is a key process, which facilitates the 

transition of dormant cancer cells to growth and in addition, angiogenic factors 

released by the remodelled ECM triggers the angiogenic switch thereby resulting in 

tumour growth and metastasis
197-198

. 
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1.5 Statistical Modelling Methods 

1.5.1 Background 

This section is written with the aid of an article titled “Classification of Breast 

Cancer Cells Using JMP” by Dr Marie Gaudard et al. in 2009
199

. This article was 

later published in Chapter 9 the book Visual Six Sigma: Making Data Analysis Lean. 

However, the original article can still be viewed online at 

http://www.northhavengroup.com/documents/BreastCancer_WhitePaper_Current.pdf.  

In Chapters 2 and 3 of the current thesis, a number of statistical modelling methods 

were employed to select and then combine candidate biomarkers into a single marker 

including stepwise regression model, multinomial logistic regression model, and 

artificial neural network model. 

1.5.2 The Stepwise Regression (SR) Model 

The SR model was used in Chapter 3 to select independent markers of PDAC 

amongst a large number of potential markers, which were statistically significant on 

univariate analysis. The SR model utilises the Wald/Score statistics to select 

independent predictors of outcome. The Wald/Score test in the SR model serves two 

purposes. Firstly, it compares the predictive capabilities of each variable with each 

other and secondly, the predictive capabilities are assessed in consideration of 

variables already entered into the SR mode. Therefore, whilst a variable may be a 

significant predictor of the outcome, it will not be entered into the SR model if 

previously selected variables can already identify the same samples and subsequently, 

this means that only variables with independent predictive abilities are selected by 

the SR model. 

There are three variations of the SR model including Forward, Backward, and 

Combined. In forwards stepwise regression, the variable with the highest 

significance is entered into the SR model at each step providing it has a Wald/Score 

significance within the pre-set parameters (typically <0.05) and this would be 

iterated until no more variables can enter the model. In backwards stepwise 

regression, all variables are entered into the SR model initially and the variable with 

the lowest significances is removed from the SR model at each step if it has a 

Wald/Score statistic outside the pre-set parameters (typically >0.05). In combined 

http://www.northhavengroup.com/documents/BreastCancer_WhitePaper_Current.pdf
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stepwise regression (used in Chapter 3), each step consists of a forwards component 

followed by a backwards component. This means that at each step, the variable with 

the highest significance will be entered into the SR model then a backwards step will 

be performed to remove any variables, which then became insignificant.  

1.5.3 The Multinomial Logistic Regression Model 

Logistic (or Binary) regression is a mathematical method used to predict a 

dichotomous outcome e.g. PDAC versus Controls. It is widely employed by 

researches to predict a dependent variable based on a number of continuous and/or 

categorical independent variables.  

In the current thesis, M-LR was used to estimate the probability of PDAC (dependent 

variable) using the serum concentrations of candidate CCGFs selected by the 

stepwise regression model (continuous independent variables). This is achieved 

through the use of the logistic formula: 

                         
 

    
 

Where 

                      

                   

And 

 β0 represents the intercept constant 

 β1, β2, β3, and β4 are regression coefficients for the corresponding CCGF 

 This algorithm will generate, using serum concentrations of candidate CCGFs 

in a given sample, a probability value of PDAC ranging from 0 to 1 

 A probability value of 0 represents a likely control sample where as a 

probability value of 1 represents a likely PDAC sample 
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Figure 1.2- A diagram of the Artificial Neural Network model 

1.5.4 Artificial Neural Network Model 

The neural network model is so named because of its ability to “learn” in a similar 

fashion to neurons in the human body. There are three layers of neurons arranged in 

nets within the NN model: input layer, hidden layer (where processing occurs), and 

output layer. Each layer of neurons can be excited to a range of degrees (i.e. not 

binary). The input layer can be considered as sensory neurons, which react to a 

stimulus (CCGF concentrations) and generates an output signal that reflects the 

intensity of the input stimulus. This signal then enters the hidden layer where a 

predefined number of hidden nodes will again generate a weighted pattern of 

stimulus (i.e. a linear function [the weighted part] of logistic functions generated at 

each node), which is carried to the output layer. Finally, the inputs are summed (i.e. 

the estimated probability of PDAC) and compared to a threshold value (optimal cut-

off) to determine their output (predicted PDAC or Control). Most importantly, 

perhaps the most important feature in NN model is its ability to learn from its 

mistakes. This is achieved by comparing the predicted out-put with the actual 

classification and by propagating the degree of error back through the whole network 

with the incorrectly classified connections down-weighted and correctly classified 

connections strengthened.  

Again, this model will estimate the probability of a sample being PDAC based on the 

serum concentrations of the four CCGFs where a probability of 0 suggests a likely 

control sample whereas a probability of 1 suggests a likely PDAC sample. 

 

  

Input Layer Hidden Layer Output Layer 

PDAC 

Control 



32 

 

1.6 Research Project Design  

This research project takes a two-fronted approach to the discovery of proteomic 

biomarkers for pancreatic cancer whereby two independent studies are described in 

Chapter 2 and Chapter 3 of this thesis (see Figure 1.3).  

Chapter 2 aim to determine the diagnostic potential of three serum-based candidate 

markers identified from a previous mass spectrometry experiment are determined by 

western blot analyses using pancreatic cancer and control samples from two database: 

Liverpool Pancreatic Cancer database (LPCD) and UK Collaborative Trial of 

Ovarian Cancer Screening (UKCTOCS) (See section 2.3.2.2). 

Chapter 3 describes the use of multiplex cytokine assays for the discovery of novel 

biomarkers for pancreatic cancer. In this Chapter, the diagnostic potential of 

cytokines is examined as individual and combined markers. The results are validated 

using an independent validation sample set. (See section 3.3.2) 

Figure 1.3- Design of the current MPhil Project. The current thesis consists of two separate 

experimental studies. Each study is described in an individual Chapter and each study consists of 

three phases. The aim of Chapter 2 is to validate the expression of three proteins identified by a 

previous iTRAQ experiment conducted in the department by western blotting: Vitamin D-Binding 
Protein (VDBP), Retinol-Binding Protein (RBP-4), and Fibronectin (FINC). In Chapter 3 the use 

of a multiplex cytokine assay for the quantification of 27 serum cytokines, chemokines, and growth 

factors (CCGFs) is described. In addition, a disease-predicting algorithm was generated in the 

Discovery Phase and then validated by an independent sample set in the validation phase.  
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Chapter 2 

The diagnostic potential of VDBP, RBP-4, 

and FINC for pancreatic cancer 
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2.1 Background and Introduction 

Blood serum is one of the most preferred sources for proteomic biomarker research 

because it offers a rich source of proteins and it is relatively non-invasive to acquire. 

However, despite much effort in the past few decades on the discovery of a novel 

serum diagnostic marker of pancreatic cancer, there has been little success in 

identifying a biomarker that is both sufficiently sensitive and specific to pancreatic 

cancer. Nonetheless, recent developments in proteomic technology such as iTRAQ 

and mass spectrometry have given new hopes to the ongoing search for a diagnostic 

marker or marker panel for use in the detection of pancreatic cancer.  

Previous data from an iTRAQ experiment performed in the Division of Surgery, 

University of Liverpool, by Seonaid Murray and colleagues have identified a number 

of serum-based proteins, which are differentially observed in PDACs compared to 

Controls (chronic pancreatitis [CP] and healthy controls [HC]). Results from this 

experiment identified 254 proteins and quantified 234 proteins with greater than 95% 

confidence. A detailed description of the iTRAQ experimental protocol can be found 

in a previously published article by Tonack et al. 
129

. Of the quantified proteins, 

forty-eight proteins showed a greater than three-fold difference in relative quantities 

between the early-stage pancreatic cancer group (EC) and control groups (CP and 

HC).  

This chapter focuses on the validation of three proteins including Vitamin-D Binding 

Protein (VDBP, >3-fold ↓ in EC), Retinol Binding Protein-4 (RBP-4, >4-fold ↓ in 

EC), and Fibronectin (FINC, >3-fold ↓ in EC), which were found to be down 

regulated in the iTRAQ analysis (Figure 2.1). the serum levels of these proteins in 

individual patient samples were ascertained by western blotting. Furthermore, the 

accuracy of the three proteins for the diagnosis of pancreatic cancer against benign 

pancreaticobiliary disease (chronic pancreatitis and benign biliary obstruction, 

disease control [DC]) and healthy controls is demonstrated. In addition, the 

expression of these proteins was examined in pre-diagnostic serum samples collected 

from patients with PDAC up to 6 years before the confirmed diagnosis of PDAC was 

made.  

 



35 

 

Figure 2.1-  Bar chart showing the relative 

intensities of [A] Fibronectin (FINC), [B] 

Vitamin D-Binding Protein (VDBP), and [C] 

Retinol-Binding Protein 4 (RBP-4)  in pooled 

serum samples from 4 disease groups: 

Chronic Pancreatitis (CP), node-positive 

later-staged pancreatic cancer (LC), node-
negative earlier staged pancreatic cancer 

(EC), and healthy volunteers (HC).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1 Vitamin D binding protein 

Vitamin D-binding protein is a member of the albumin superfamily and plays a 

number of physiological roles including the transportation of vitamin D and its 

metabolites, the binding of actin, neutrophil chemotaxis, and macrophage activation. 

VDBP was first identified as a group-specific component (Gc) protein by Hirschfeld 

in 1959
200

 but was later given the name DBP after the discovery of its role in the 

transportation of vitamin D analogues
201

. In 1996, Yamamoto et al. 
202

 demonstrated 

in an animal study that VDBP also has a stimulatory effect on macrophage activity 

through its metabolite, which was named DBP-Macrophage Activating Factor (DBP-

MAF). VDBP is a 58kDa glycosylated -globulin consisting of three domains: two 

repeated homologous domains and a shorter domain 
203-205

. It is the unique 
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orientations of these domains and the presence of oxygen-linked carbohydrate chains 

that give VDBP its unique physiological functions
203-205

. 

The plasma concentration of VDBP usually ranges from 0.2-0.5g/l and remains 

stable from birth
204

. Several physiological states have been shown to influence the 

serum level of VDBP including prolonged fasting, pregnancy, and high oestrogen 

states
206-207

. In addition, recent studies have demonstrated an inverse association 

between serum VDBP concentration and liver-related diseases such as liver cirrhosis, 

acute liver failure, and hepatocellular carcinoma
208-210

.  

2.1.2 Retinol-binding protein 

Vitamin A has a number of biological roles including vision, maintenance of 

differentiated epithelia, mucus secretion, and growth
211

. The majority of vitamin A is 

stored in the liver and is usually transported by RBP in the systemic circulation as 

retinol (lipid alcohol form of vitamin A)
211-212

. RBP is a 21KDa molecule that 

consists of 182 amino acids arranged in a single polypeptide chain with three 

disulphide bonds
213-214

. It is produced by the liver and excreted by the kidneys and 

the plasma level of RBP typically ranges between 40-50 µg/ml
213-214

. However, a 

number of studies have shown that the systemic levels of RBP can be influenced by 

various diseases including malnutrition, liver diseases, and chronic renal diseases
215-

220
.  

2.1.3 Fibronectin 

Fibronectin is a multi-domain glycoprotein with a molecular weight of 

approximately 440kDa, which usually exists as a dimer composed of two identical 

monomers 
221-223

. FINC has been shown to bind to a variety of biologically important 

molecules including a number of clotting-related molecules (such as heparin, 

collagen, and fibrin) and in addition, FINC is capable of binding to cell surfaces 

through integrins
223

. Fibronectin can be sub-classified into two broad categories: 

plasma fibronectin and cellular fibronectin. Hepatocytes are the main source of 

circulating plasma fibronectin, which has been reported to be in a closed and non-

active state. In contrast, the active form of FINC (cellular fibronectin) is produced by 

multiple cell types (e.g. fibroblasts, epithelial cells, and macrophages) and is 

typically found in its insoluble form as a part of the extracellular matrix
222-223

.  
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2.2 Study Aims 

The aims of the current chapter: 

1. To validate the difference in the serum levles of VDBP, RBP-4, and FINC 

between PDAC and Controls observed in the original iTRAQ experiment 

performed by Seonaid Murray (Division of Surgery and Oncology, UOL) 

2. To determine the diagnostic potential of VDBP, RBP-4, and FINC for pancreatic 

cancer 

3. To determine the expression of VDBP and RBP-4 in pre-diagnostic serum 

samples 

4. To determine the expression of VDBP, RBP-4, and FINC in pancreatic cancer 

cell-lines 

2.3 Materials and Methods 

2.3.1 Study design 

The expression of VDBP, RBP-4, and FINC in pancreatic cancer and control 

subjects was examined in three phases (Figure 2.2). Each phase involved western 

blotting followed by relative quantification of the blots through densitometry 

analysis. In Phase-I, the levels of VDBP, RBP-4, and FINC in the pooled iTRAQ 

samples (section 2.3.2.1) were validated using the individual samples. In Phase-II, 

the expressions of VDBP, RBP-4, and FINC were assessed using an independent 

sample set consisting of 60 samples from the LPCD (section 2.3.2.1). In addition, the 

diagnostic potential of these proteins as individual and combination markers for 

early-staged pancreatic cancer were determined. Protein markers, which were 

differentially expressed in Phase-II were further assessed for their potential as a 

screening marker using the UKCTOCS pre-diagnostic serum samples (Phase-III, 

2.3.2.2). Western blot analyses in the current study were performed in triplicate to 

maximise the accuracy of the results. 

Supplementary to this experiment, western blot analyses were performed to 

determine whether VDBP, RBP-4, and FINC are expressed in five pancreatic cancer 

cell lines, one hepatocellular carcinoma cell line and one human embryonic kidney 

cell line (section 2.3.3).  
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Figure 2.2- Study design for Chapter 3 of the current thesis. The current study consists of 

three phases and each phase involves western blot analysis of a unique sample set. In Phase-

I, the expression of VDBP, RBP-4, and FINC were validated using 5 samples from of the 

following disease groups: node-negative earlier-staged PDAC (EC), node-positive later-
staged PDAC (LC), chronic pancreatitis (CP), and healthy volunteers (HC). Phase-II of the 

study aimed to validate the results in the original iTRAQ experiment and Phase-I by using 60 

samples from individuals with PDAC, CP, HC, and disease controls (DC). Phase-III aimed 

to determine the value of significant markers (VDBP and RBP-4) in screening for pancreatic 

cancer using samples from the UKCTOCS database. 

 



39 

 

2.3.2 Patients and samples 

Approval for the current study was obtained from the relevant research ethics 

committee including the multicentre research ethics committee (MREC) for the use 

of the serum samples from the Liverpool Pancreatic Cancer Database and the Central 

Office of Research Ethics Committee (COREC) for the use of UKCTOCS samples. 

Informed consent was obtained from all individuals involved.  

2.3.2.1 Phase I and II Liverpool pancreatic cancer database (LPCD) 

Pre-operative serum samples were prospectively collected at the Royal Liverpool 

University Hospital from patients with resectable PDAC, chronic pancreatitis, benign 

biliary obstruction, and healthy volunteers between 1996 and 2010. Serum samples 

were collected in Sarstedt Monovette tubes (Sarstedt Ltd, Leicester, UK) and allowed 

to clot at 4°C for 15 minutes. The serum fraction was acquired by centrifugation at 

800-x g for 10 minutes and was then aliquoted into cryotubes (Nunc GmbH & co 

KG., Thermo Fisher Scientific, Langenselbold, Germany). All samples were stored at 

minus 80°C until further use.  

Phase-I patient demographical data (iTRAQ) 

Demographical data of the twenty individuals involved in Phase-I of the current 

study is presented in Table 2.1. There were sixteen males, 3 females, and one 

individual whose gender was not recorded. The median ages for patients with node 

negative earlier-stage PDAC (EC), node-positive later-stage PDAC (LC), and CP 

were 66, 71, and 63, respectively. There were four individuals with a confirmed 

history of diabetes in the cancer groups (EC and LC) and none in the control groups. 

However, some demographical data were not available due to privacy and 

confidentiality reasons. 
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Phase II patient demographical data (LPCD) 

Demographical data of the 60 individuals involved in Phase-II of the current study is 

presented in Table 2.2. Thirty-two male and twenty-eight female participants were 

involved in the current Phase, of which, 20 had PDAC and 10 had CP, 20 had biliary 

obstruction (DC), and 10 were HC. The median ages were 69, 51, 64, and 36 years 

for the PDAC, CP, DC, and HC groups, respectively. Again, some demographical 

data were not available due to privacy and confidentiality reasons. 

Table 2.2- Summary of patient Demographics in Phase-II (Liverpool database) 

Parameters 
Disease Groups 

PDAC (n=20) CP (n=10) DC (n=20) HC (n=10) 

Age (median/year) 69 51 64 36 

Gender 
  Male/Female (n) 

 
10/10 

 
2/8 

 
15/5 

 
5/5 

Median CA19-9 (range)  307 (10-10061) 12 (7-50) 21 (0-1402) 6 (2-12) 

History of Diabetes (n) 
  Yes/No (n) 

  Unknown 

 
4/15 

1 

 
0/9 

1 

 
2/16 

2 

 
-/- 

10 

Abbreviations: Chronic pancreatitis (CP); Node positive later-staged pancreatic cancer (LC); Node negative 

earlier-staged pancreatic cancer (EC); Healthy volunteers (HC). 

 

  

Table 2.1- Summary of patient Demographics in Phase-I (iTRAQ) 

Parameters 
Disease Groups 

CP (n=5) LC (n=5) EC (n=5) HC (n=5) 

Age (median/year) 63 71 66 >50 

Gender 
  Male/Female (n) 

  Not recorded 

 
4/0 

1 

 
2/3 

0 

 
5/0 

0 

 
5/0 

0 

History of Diabetes (n) 
  Yes/No (n) 

  Unknown 

 
0/4 

1 

 
1/3 

1 

 
3/0 

2 

 
-/- 

5 

Abbreviations: Chronic pancreatitis (CP); Node positive later-staged pancreatic cancer (LC); Node negative 

earlier-staged pancreatic cancer (EC); Healthy volunteers (HC). 
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2.3.2.2 Pre-diagnostic serum samples- UKCTOCS 

The UK collaborative trial of ovarian cancer screening (UKCTOCS) is a multicentre 

trial involving 13 regional centres aimed to establish the impact of ovarian cancer 

screening on ovarian cancer mortality by comparing disease mortality in the screened 

and control groups
224

. Serum samples were prospectively collected from 50,000 

postmenopausal women aged 50-74 with no past medical history of malignant 

disease or familial predisposition to ovarian cancer in the screened group
224

. 

Participants in this group were sub-classified into low, intermediate and high risk for 

the development of ovarian cancer according to their serum CA-125 levels and were 

followed up prospectively at regular intervals: annually for low risk, 3-monthly for 

intermediate risk, and referral for further investigations for participants with elevated 

CA-125
224

. During each follow-up session, a serum sample was collected and the 

development of malignancies was recorded. Serum samples were collected in 

Greiner gel tubes (Greiner Bio-One 455071, Stonehouse, UK) and transported 

overnight at ambient temperature to the central laboratory where samples were 

processed within 56 hours of venepuncture (otherwise discarded)
224

. Separation of 

the serum layer was achieved by centrifugation at 4,000 rpm for 10 minutes. Excess 

serum was aliquoted into 500µl straws, which were then heat-sealed and stored in 

liquid nitrogen until transfer to a cryonic biorepository
224

.  

At the University of Liverpool, we collaborated with the biomarker group at the 

University College London to obtain over 300 pre-diagnostic (up to 6 years pre-

diagnosis) serum samples from UKCTOCS participants who developed pancreatic 

cancer within the trial period accompanied by an equal number of healthy control 

samples matched for time before sample processing and storage time.  
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Phase III patient demographics (UKCTOCS) 

One-hundred and twenty serum samples from the UK Collaborative Trial of Ovarian 

Cancer Screening (UKCTOCS) were analysed in Phase III (Table 2.3). Sixty pre-

diagnostic serum samples from post-menopausal women who developed pancreatic 

cancer during the course of the UKCTOCS trial (pre-pancreatic cancer, PPC) and 

sixty-paired healthy control samples (HC) matched for gender, storage, and 

processing time were used in this Phase. Samples were stratified into six time-

categories according to the duration between sample collection and diagnosis: 0-0.5, 

0.5-1, 1-2, 2-3, 3-4, and over 4 years. Each time group therefore, consists of 10 PPC 

samples and 10 matched HC samples. 

 

2.3.3 Cancer cell lines, cell culture and lysate preparation 

2.3.3.1 Cell lines and cell culture 

Five human pancreatic ductal adenocarcinoma cell lines (PANC-1, ASPC-1, BXPC-

3, CFPAC-1, and FAMPAC), one hepatocellular carcinoma cell line (HEPG-2), and 

one human embryonic kidney cell line (HEK) were were screened for mycoplasma 

contamination before cell culturing commenced. All cell lines except HEPG-2 were 

cultured in T-75 flasks at 37°C and 5% CO2 in 20 ml of RPMI 1640 media 

supplemented with 10% foetal calf serum, 2mM glutamine, 100U/ml penicillin, and 

100U/ml streptomycin (Sigma, Poole, UK). For culture of HEPG-2 cell lines 

Dulbecco‟s Modified Eagle Medium supplemented with 10% foetal calf serum, 2mM 

glutamine, 100U/ml penicillin, and 100U/ml streptomycin (Sigma, Poole, UK) was 

used instead of RPMI. When confluent, cancer cells were detached from the flask 

using 2ml trypsin (sigma, Poole, UK). Once fully detached, 8ml of culture media was 

added to the flask and the culture was split in the following ratio: 1ml for further 

culture, 9ml for cell lysate preparation. 

Table 2.3- Summary of demographics for UKCTOCS samples stratified by time-category 

Parameters 

Time Category/ year 

0-0.5 0.5-1 1-2 2-3 3-4 4+ 
HC PPC HC PPC HC PPC HC PPC HC PPC HC PPC 

Number (n) 10 10 10 10 10 10 10 10 10 10 10 10 
Age/ years             
    Median 61 65 62 70 60 61 61 61 58 61 61 65 
    Range 52-75 57-78 53-72 57-73 53-72 53-72 51-73 52-71 52-71 57-75 51-72 52-73 
Delay in sample processing/ hr              
    Median 22 22 20 21 23 23 24 24 23 23 20 20 
    Range 19-25 20-26 19-24 19-24 19-46 20-46 18-25 18-25 21-43 21-44 4-26 2-22 

Abbreviations: Healthy control (HC); pre-pancreatic cancer (PPC) 
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2.3.3.2 Lysate preparation 

Cells collected from culture splitting were centrifuged for 5 minutes at 1,200 rpm. 

The resulting pellet was washed three times in PBS solution and lysed using 100µl of 

lysis buffer (0.15 M NaCl, 5mM EDTA, 10mM Tris-Cl pH 7.4, 1% Triton X-100, 

and protease inhibitor cocktail; all from Sigma-Aldrich) at 4°C for 10 minutes then 

sonicated. The protein concentration of the lysate was then determined using the 

Bradford Assay. The lysate was then stored at minus 80°C until required. 

 

2.3.3.3 Measuring lysate protein concentration- Bradford Assay 

The Bradford reagent assay (Bio-Rad, Hemel Hempstead, UK) was employed to 

determine the protein concentration of cancer cell lysates. The Bradford reagent 

contains a dye (brilliant blue G), which forms a complex with the proteins in the 

reconstituted samples resulting in a shift in the absorption wavelength of the dye 

from 465 to 595 nm. Therefore, the amount of absorption is directly proportional to 

the protein concentration in the solution. 

Briefly, six reference standards ranging from 1 µg/µl to 10 µg/µl were constituted 

using bovine serum albumin (Sigma Aldrich, Gillingham, UK). Then 2 µl of 

standard or sample were added to 798µl of MilliQ water in a 1.5ml Eppendorf 

microfuge tube followed by 200µl of Bradford Reagent (Bio-Rad, Hemel Hempstead, 

UK). The mixture was incubated at room temperature for 10 minutes then analysed 

by spectrophotometry at a wavelength of 595nm. The protein concentration of each 

sample was calculated using a linear equation constructed from the reference 

standards, which converts Bradford assay values to protein concentration (µg/µl). 

Finally, the volume of lysate required for 15µg of protein was calculated for each 

lysate.  

2.3.4 Western Blot Analysis 

2.3.4.1 SDS-polyacrylamide gel preparation 

The composition of SDS-polyacrylamide gel required for the analysis of VDBP, 

RBP-4, and FINC are 12%, 15%, and 6%, respectively. The running gel solution was 

prepared according to Table 2.4, and immediately poured into a gel cast (BioRad, 

Hemel Hempstead, UK) and allowed to set. A stacking gel solution was added to the 

cast followed by a 10-well or 15-well comb and allowed to set.  
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Table 2.4- Recipe for 10 ml of Resolving Gels and 4ml of Stacking Gel for SDS-PAGE 

Components required /ml 
Gel Density 

6% (FINC) 12% (VDBP) 15% (RBP-4) 5% (Stacking) 

H20 5.3 3.3 2.3 2.7 

30% acrylamide mix 2.0 4.0 5.0 0.67 

1.5M Tris (pH 8.8) 2.5 2.5 2.5 0.5 

10% SDS 0.1 0.1 0.1 0.04 

10% ammonium persulphate 0.1 0.1 0.1 0.04 

TEMED 0.01 0.006 0.005 0.005 
Abbreviations: Sodium dodecyl sulphate (SDS); Polyacrylamide Gel Electrophoresis (PAGE); fibronectin 
(FINC); retinol-binding protein 4 (RBP-4); vitamin D-binding protein (VDBP); Tetramethylethylenediamine 
(TEMED) 

 

2.3.4.2 Sample preparation 

Four micro-litres of diluted serum samples/standards (Table 2.5) or 10µg of cell 

lysate were denatured and ionised by adding 3µl of 5x reducing sample buffer 

(300mM Tris pH 6.8, 50% Glycerol, 10% SDS, 0.05% Bromophenol blue, 5% 

Dithiothreitol [DTT]) and made up to a final volume of 10µl using 1x reducing 

sample buffer in a 0.5ml Eppendorf microfuge tube. The mixture was heated at 95°C 

for 15 minutes then cooled on ice for 3 minutes. Finally, the mixture was flash spun 

at 13,000g to bring down condensation prior to gel loading. 

Table 2.5- Preparation of samples and standards for western blot 

Analyte Protein Dilution Sample Volume (µl) 
Standard volume (µl) 

Std 1 Std 2 Std 3 

VDBP 1:100 4 2 4* 6 

RBP-4 1:10 4 2 4* 6 

FINC 1:10 4 4 6 10* 

*The volume of serum standard was used in the densitometry analysis of serum samples 

 

2.3.4.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Prior to performing polyacrylamide gel electrophoresis, the 

wells were flushed with running buffer to remove any un-

polymerised polyacrylamide. Five micro-litres of PageRuler™ 

Pre-stained Protein Ladder (Fermentas, York, UK; Figure 2.3) 

was loaded into the first well and 10µl of prepared 

standard/samples were loaded to each subsequent well. 

Electrophoresis was performed using the Mini-PROTEAN 

Tetra Electrophoresis System (Bio-Rad, Hemel Hempstead, 

UK) set at 25-50mA constant (depending on the number of 

gels) until the dye front completely left the gel (approximately 

1-1.5 hour).  

Figure 2.3-  

Pre-stained protein 

ladder used in western 

blot analysis 
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Proteins in the gel were transferred onto a nitrocellulose membrane using the Mini-

Transblot pack (Bio-Rad, Hemel Hempstead, UK) set at 110V (constant voltage) for 

1 hour. The membrane was incubated at room temperature with 20ml of 5% milk 

diluted in phosphate buffer solution with 1% Tween-20 (5% milk-PBST solution) for 

2 hours followed by incubation with the appropriate concentration of primary 

antibody diluted in 5% milk-PBST solution for 16 hours at 4°C (Table 2.6). The 

membrane was then washed six times at 10-minute intervals (1 hour) with PBST 

followed by incubation with the appropriate secondary antibody-HRP diluted in 5% 

milk-PBST for 1 hour. After a further six washes at 10-minute intervals, the 

membrane was incubated with Enhanced Chemiluminescence (ECL) substrate 

(Western Lightning®  Plus, PerkinElmer, Cambridge, UK) for 4 minutes followed by 

chemiluminescence detection by x-ray films (Fisher Scientific, Leicestershire, UK) 

or the Kodak digital imaging machine. For subsequent western blotting of β-Actin in 

protein lysates, the membrane was incubated at 60°C for 30 minutes in stripping 

buffer, rinsed with PBST, and then incubated with primary β-Actin antibody 

(1:10,000 dilution) for 16 hours. Washes, secondary antibody incubation, and 

detection were carried out as described above. Each gel was repeated twice to obtain 

three sets of results per gel, per antibody.  

 

  

2.3.5 Relative quantification of western blots 

The Kodak digital imaging machine and Kodak molecular imaging software 

(Carestream molecular Imaging, Woodbridge, USA) were used to analyse the 

Western Blot images. The relative quantity of protein in each band was assessed 

using densitometry analysis. To define the profiles a rectangular box was defined 

arbitrarily with the same width as the widest band on the film and longer than the 

Table 2.6- Summary of sample preparation, primary antibody, and secondary antibody information 

Analyte 
MW 

(kDA) 
Primary anti-analyte antibody Secondary anti-primary antibody-HRP 

Company Dilution Description Company Dilution Description 

VDBP 53 Abcam 1:30,000 Rabbit Monoclonal Dako 1:3,000 
Polyclonal Goat Ant-

rabbit Ig/HRP 

RBP-4 25 Santa Cruz 1:5,000 Mouse Monoclonal Dako 1:3,000 
Polyclonal Goat Ant-

mouse Ig/HRP 
FINC 

 
220 Santa Cruz 1:20,000 Mouse Monoclonal Dako 1:3,000 

Polyclonal Goat Ant-
mouse Ig/HRP 

Beta-

Actin 
42 Sigma-Aldrich 1:10,000 Mouse Monoclonal Dako 1:3,000 

Polyclonal Goat Ant-

mouse Ig/HRP 

Abbreviations: vitamin D-binding protein (VDBP); retinol-binding protein (RBP-4); fibronectin (FINC); 
Immunoglobulin (Ig); expected molecular weight (MW) Note: 5% Milk in Phosphate Buffer Solution with 1%-
Tween 20 used as blocking solution; 
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largest band. This same box was used to measure all bands in the image, resulting in 

a mean intensity value for all bands. To account for gel-to-gel variation relative 

intensities for each sample were calculated by dividing sample mean intensity by the 

internal control mean intensity. 

2.3.6 Statistical Analysis 

2.3.6.1 General statistics, univariate, and multivariate analyses 

All continuous data (e.g. Age, serum analyte levels) were classified as non-

parametric data and were summarised using median and range. The Kruskal-Wallis 

test was used to determine whether there is a significant difference in non-parametric 

distribution between multiple (>2) groups (e.g. age versus PDAC, CP, HC, and DC). 

For univariate analysis, the Wilcoxon‟s test was used to assess any difference in the 

distribution of a non-parametric variable (e.g. age) between two groups and the 

Fisher‟s Exact test was used to assess the difference between two categorical 

variables (e.g. gender versus PDAC/Control). Variables that were significant on 

univariate analysis were further tested using multivariate analysis to identify any 

independent variables. For univariate and multivariate analyses, a p-value of <0.05 

was considered statistically significant.  

 

In Hierarchical Cluster Analysis, data from each variable was first standardised by 

mean and standard deviation to give a value between -1 and 1. The standardised 

values were then analysed by Ward‟s minimal variance method and represented 

graphically in a heat map.  

Data from the current study were also graphically represented using box plots, 

mosaic plots, logistic plots, and receiver-operator characteristic (ROC) curves. 

 

2.3.6.2 Correlation analysis 

The correlation between age and the relative serum concentration of VDBP, RBP-4, 

and FINC were assessed using Kendall Tau () multivariate correlation analysis for 

non-parametric tied data. The Kendall  coefficient ranges from -1 to 0 to 1 where a  

coefficient of -1 or 1 represents a perfect negative or positive correlation, 

respectively, and a coefficient of 0 indicates that there is no correlation. The 

associated p-value represents how confident the test is that the actual value would 
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be more negative or more positive than then calculated value. In the current study, 

a Kendall Tau coefficient of >0.5 was regarded as significant. 

 

2.3.6.3 Diagnostic potential of biomarkers for PDAC  

The diagnostic accuracies of biomarkers were assessed using ROC Area Under 

Curve (AUC) and a ROC-AUC of >0.70 was considered statistically significant. In 

sections 2.4.2.6 to 2.4.2.10, the accuracies of VDBP, RBP-4, and FINC for 

diagnosing PDAC were independently assessed against the each of the following 

groups: HC, CP, DC, and all controls (HC, CP, and DC together). Additionally for 

each group, the diagnostic accuracy of the three proteins as a single combined 

marker of pancreatic cancer was assessed.  

The Multinomial Logistic Regression (M-LR) model was used to combine candidate 

markers into a single marker by generating a disease-predicting algorithm, which 

estimates the probability of PDAC based on the relative serum concentrations of 

VDBP, RBP-4, and FINC. The estimated probability of PDAC ranges from 0-1 

where an estimated PDAC probability value of 0 indicates a likely control sample 

whereas a value closer to 1 indicates a likely pancreatic cancer sample.  

2.3.6.4 Software for statistical analyses 

All statistical analyses were performed using JMP version 8.02 (SAS, 

Buckinghamshire, UK). In addition, Microsoft Excel 2007 (Microsoft Limited, 

Berkshire, UK), was used to graphically represent the data.  
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2.4 Results 

2.4.1 Phase I- Validation of iTRAQ results by Western Blotting 

The aim of Phase I is to validate the serum expression of VDBP, RBP-4, and FINC 

in individual samples used by the original iTRAQ experiment (which consisted of 

pooled samples from 5 patients per disease group) by Western Blotting. An example 

of Western Blot image for VDBP, RBP-4, and FINC is shown in Figure 2.4 and the 

expected molecular weight of each protein can be found in Table 2.6. Results from 

densitometry analyses were expressed as a ratio relative to the intensity of the control 

reference band. The relative intensities (RI) of FINC, RBP-4, and VDBP for each 

disease group in the original iTRAQ experiment were comparable to the Western 

Blot results (Figure 2.5A-F). Furthermore, the RIs of all three proteins were 

decreased in the cancer groups (EC and LC) compared to the control groups (CP and 

HC). In particular, the pattern of FINC expression in the western blot analysis is 

almost identical to the original iTRAQ results. The box plots in Figure 2.6 confirm 

this pattern and therefore suggest that the results were not due to the effects of 

outliers. However, results from Phase-I were not sufficiently powered to show any 

significance on further statistical analysis (Figure 2.6). Therefore, all three proteins 

were analysed in Phase-II of the current study, which involves a larger sample set 

from the Liverpool Pancreatic Cancer Database.  

Figure 2.4- Western blotting (WB) of original 

iTRAQ samples. [A] WB image of iTRAQ result 
for Vitamin D-Binding Protein (VDBP). Serum 

sample results were standardised to 4µl of Sigma 

control serum (Std).Samples were diluted 1:100 
[B] WB image for Retinol-Binding Protein 4 
(RBP-4). Serum sample results were standardised 

to 4µl Std. Samples diluted to 1:10 [C] WB image 

of Fibronectin (FINC). Serum sample results were 

standardised to 10µl Std, Samples diluted to 1:10.  
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Figure 2.5 (Above)- [A-F]Bar charts 

showing the mean relative intensity of the 

chronic pancreatitis (CP, n=5), lymph node 

positive later-staged pancreatic cancer (LC, 

n=5), lymph node negative earlier-staged 

pancreatic cancer (EC, n=5), and healthy 

volunteers (HC, n=5) in the original iTRAQ 

experiment (A,C, and E; consists of pooled 

samples from the 5 patients in each disease 

group) and in Phase I (B,D, and F, samples 

were analysed individually by Western 

Blotting ).  

Figure 2.6 (left)- Box plots showing the 

relative intensities of VDBP, RBP, and FINC 

in each disease group. Relative intensities 

were obtained following densitometry scan of 

Western Blot images then comparing the 

density of each sample with an internal 

control on the same gel. 
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2.4.2 Phase II- Further Validation by Western Blot (Liverpool samples) 

2.4.2.1 Patient demographics and clinical characteristics 

The aim of Phase II is to further verify the serum expression of VDBP, RBP-4, and 

FINC in a larger sample set consisting of 20 PDAC, 10 CP, 20 DC, and 10 HC 

individuals (Table 2.7). As expected, the serum level of CA19-9 in the PDAC group 

is significantly higher than the control group (Wilcoxon‟s Test, p=0.0003; Table 2.7). 

Furthermore, a significant difference in age between the PDAC group and the 

Control group was observed (69 years versus 53 years; Wilcoxon‟s Test, p=0.0018; 

Figure 2.7). However, we did not find any statistical difference in gender between 

the two groups (Fisher‟s Exact Test, P>0.05). In view of the fact that the current 

study involves a relatively small sample size and that there is a large number of 

missing data for diabetes especially in the HC group, the correlation between PDAC 

and diabetes cannot be fully elucidated.  

Table 2.7- Summary of patient Demographics in Phase-II (Liverpool database) 

Parameters 
Disease Groups 

P-value 
PDAC (n=20) CP (n=10) DC (n=20) HC (n=10) 

Age (median/year) 69 51 64 36 0.0018 

Gender 
  Male/Female (n) 

 
10/10 

 
2/8 

 
15/5 

 
5/5 

 

N.S. 

Median CA19-9 (range)  307 (10-10061) 12 (7-50) 21 (0-1402) 6 (2-12) 0.0003 

History of Diabetes (n) 
  Yes/No (n) 

  Unknown 

 
4/15 

1 

 
0/9 

1 

 
2/16 

2 

 
-/- 

10 
N.S. 

Abbreviations: Chronic pancreatitis (CP); Node positive later-staged pancreatic cancer (LC); Node negative 
earlier-staged pancreatic cancer (EC); Healthy volunteers (HC). 

 

  

Figure 2.7- [A] Comparison of age between patients with pancreatic cancer (PDAC) and control 

patients (inc. healthy volunteers and chronic pancreatitis; Wilcoxon’s Test, p=0.0018)); [B] 

Comparison of serum CA19-9 levels between the PDAC and control groups (Wilcoxon’s Test, 

p=0.0003) 

P=0.0003 

 

p=0.0018 
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2.4.2.2 Western Blot images for VDBP, RBP-4, and FINC 

Examples of Phase II Western Blot images are shown in Figure 2.8. All gels were 

analysed by Western Blot in triplicates.   

Figure 2.8- Examples of Phase II Western Blot (WB) images. [A] WB of PDAC, CP, and HC samples 

for VDBP, [B] WB of DC samples for VDBP. [C] WB of PDAC, CP, and HC samples for RBP-4. [D] 

WB of DC samples for RBP-4. [E] WB of PDAC, CP, and HC samples for FINC. [F] WB of DC 

samples for FINC.  
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2.4.2.3 The serum level of VDBP in PDAC and Controls 

The serum level of VDBP was significantly reduced in patients with pancreatic 

cancer compared to individuals with chronic pancreatitis and healthy volunteers 

(Wilcoxon‟s Test, p=0.004 and p=0.006, respectively; Figure 2.9A-B; Table 2.8). 

However, the expression of VDBP was similar between individuals with PDAC and 

biliary obstruction (DC) (Wilcoxon‟s Test, p=0.465; Figure 2.9B). Further analyses 

stratified patients into PDAC and non-cancer groups (Figure 2.9C). Statistical 

analysis by Wilcoxon‟s Test showed that there was significant difference in the 

serum level of VDBP between the PDAC group and the combined HC and CP group 

(p<0.001). However, when the DC group was added to the combined control group 

(i.e. PDAC against HC, CP, and DC) this significance is lost (Wilcoxon‟s, p=0.113). 

This may be explained by the apparently low relative intensity of VDBP in both the 

PDAC and DC groups Figure 2.9A.  

Table 2.8- Relative quantification of serum VDBP by densitometry analysis 

VDBP 
Chronic Pancreatitis Disease control Healthy Control Pancreatic Cancer 

Median (Range)  Median (Range)  Median (Range)  Median (Range)  
Relative intensity* 1.350 (1.128-1.922)  1.066 (0.894-1.274)  1.338 (1.156-1.520)  1.066 (0.892-1.562)  

Note: *relative intensity calculated from densitometry results: sample mean region of interest (ROI ) intensity 
divided by the standard reference mean ROI Intensity  

 

 

  

Figure 2.9- [A] Box plots showing the relative intensity 

of VDBP in individuals with chronic pancreatitis (CP, 

n=10), disease controls (DC, n=20), healthy volunteers 

(HC, n=10), and pancreatic cancer (PDAC, n=20) 

Kruskal Wallis’s Test showed significant difference 

between the groups (p<0.001). [B] Univariate analyses 

represented graphically. The relative intensity of VDBP 

in PDAC was individually compared to HC, CP, and 

DC. [C]Box plots showing that the p-value is 

significantly decreased when the DC group is added to 

the combined control group (HC+CP). 
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2.4.2.4 The serum levels of RBP-4 in PDAC and Controls 

Results from the Kruskal Wallis Test showed that there was a statistically significant 

decrease in the serum level of RBP-4 between the disease groups (p=0.043; Table 

2.9; Figure 2.10A). On univariate analysis, the expression of RBP-4 was 

significantly decreased in the PDAC group compared to the HC and the CP groups 

but not the DC group (Wilcoxon‟s Test, p=0.011, p=0.031, p=0.176; Figure 2.10B). 

Further analysis stratified the groups into PDAC and control groups (Figure 2.10C). 

Results suggest that there was a significant difference in serum level of RBP-4 

between PDAC and the combined HC/CP control group (Wilcoxon‟s Test, p=0.004)). 

This significance was maintained even when DC was added to the combined control 

group (Wilcoxon‟s Test, p=0.014). 

Table 2.9- Relative quantification of serum RBP-4 by densitometry analysis 

RBP-4 
Chronic Pancreatitis Disease control Healthy Control Pancreatic Cancer 

Median (Range)  Median (Range)  Median (Range)  Median (Range)  
Relative intensity* 1.260 (0.996-1.387) 1.177 (0.857-1.446) 1.240 (1.076-1.646) 1.066 (0.666-1.410) 

Note: *relative intensity calculated from densitometry results: sample mean region of interest (ROI ) intensity 
divided by the standard reference mean ROI Intensity  

 

  

Figure 2.10- [A] Box plots showing the relative intensity 

of RBP-4 in individuals with chronic pancreatitis (CP, 

n=10), disease controls (DC, n=20), healthy volunteers 

(HC, n=10), and pancreatic cancer (PDAC, n=20) 

Kruskal Wallis’s Test showed significant difference 
between the groups (p=0.043). [B] Univariate analyses 

represented graphically. The relative intensity of RBP-4 

in PDAC was individually compared to HC, CP, and DC. 

[C] Box plots showing that the difference in FINC 

relative intensity remains significant even when the DC 

group is added to the combined control group (HC+CP). 
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2.4.2.5 The serum level of FINC in PDAC and Controls 

General analysis by Kruskal Wallis Test showed that the there is insignificant 

difference in serum FINC level between the disease groups (p=0.146; Figure 2.11A; 

Table 2.10). However, on univariate analysis, the expression of FINC was 

significantly decreased in the PDAC group compared to the HC and the CP groups 

but not the DC group (Wilcoxon‟s Test, p=0.031, p=0.035, p=0.176; Figure 2.11B). 

Further analysis stratified the groups into PDAC and control groups (Figure 2.11C). 

Again, there seemed to be a significant difference in serum level of FINC between 

PDAC and the combined control group (HC+CP; Wilcoxon‟s Test, p=0.009). This 

significance was maintained when DC was added to the combined control group 

(Wilcoxon‟s Test, p=0.012). 

Table 2.10- Relative quantification of serum FINC by densitometry analysis 

FINC 
Chronic Pancreatitis Disease control Healthy Control Pancreatic Cancer 

Median (Range)  Median (Range)  Median (Range)  Median (Range)  
Relative intensity* 1.989 (1.224-2.428) 2.018 (0.918-2.999) 1.941 (1.707-2.170) 1.754 (0.919-2.125) 

Note: *relative intensity calculated from densitometry results: sample mean region of interest (ROI ) intensity 
divided by the standard reference mean ROI Intensity  

 

  

Figure 2.11- [A] Box plots showing the relative 

intensity of FINC in individuals with chronic 

pancreatitis (CP, n=10), disease controls (DC, n=20), 

healthy volunteers (HC, n=10), and pancreatic cancer 

(PDAC, n=20) The difference in FINC relative intensity  
was not statistically significant (p=0.146). [B] 

Univariate analyses represented graphically. The 

relative intensity of FINC in PDAC was individually 

compared to HC, CP, and DC. [C] Box plots showing 

that the difference in FINC relative intensity remains 

significant even when the DC group is added to the 

combined control group (HC+CP). 
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2.4.2.6 Accuracy of candidate markers for the diagnosis of PDAC versus HC 

Results from the diagnostic accuracy analyses for PDAC against healthy controls are 

summarised in Table 2.11. On univariate analysis, VDBP, RBP-4, and FINC were 

significant discriminators of PDAC against HC (Wilcoxon‟s test, all p<0.05). 

However, this significance was not maintained on multivariate analysis i.e. the three 

markers were not independent to each other. Nevertheless, results from ROC analysis 

showed that VDBP, RBP-4, and FINC were all relatively accurate at discriminating 

between PDAC against HC with ROC-AUCs of 0.82, 0.80, and 0.75 respectively. In 

particular, VDBP achieved a relatively high sensitivity (0.75) and specificity (1.00) 

at the optimal cut-off of 1.15 (Figure 2.12). A preliminary analysis was performed to 

assess the impact of combining the three markers on the accuracy for the diagnosis of 

PDAC against HC. Interestingly, the diagnostic accuracy was increased to 0.89 when 

the three markers were combined by the M-LR model with relative sensitivity and 

specificity of 0.85 and 0.90 at a cut-off of 0.70 (Figure 2.12). Although results from 

this analysis would require verification in an independent sample set. 

Table 2.11- The diagnostic accuracy of VDBP, RBP-4, and FINC for PDAC against HC 

Biomarker 
 Pancreatic Cancer versus Healthy Control 

Univariate Multivariate ROC-AUC C/O Sensitivity Specificity 

VDBP 0.006 0.05 0.815 1.15 0.75 1.00 

RBP-4 0.011 0.09 0.790 1.13 0.75 0.80 

FINC 0.031 0.16 0.745 1.68 0.45 1.00 

Combined - - 0.890 0.70 0.85 0.90 

Abbreviations: Vitamin D-Binding Protein (VDBP); Retinol-Binding Protein 4 (RBP-4); Fibronectin (FINC); 

M-LR combined marker consisting of VDBP, RBP-4, and FINC (Combined); Receiver Operator Characteristics 
Area Under the curve (ROC-AUC); Cut-off for the reported sensitivity and specificity (C/O) 
 

  

Figure 2.12- Logistic Plots 

showing the diagnostic 

accuracy of [A] VDBP ,[B] 

RBP-4, and [C] FINC as 

individual markers of PDAC 

against HC. [D] Logistic 

plot showing the diagnostic 

accuracy when all three 

proteins were combined. 

Individuals with PDAC are 

coloured Blue HC in red. 

The optimal cut-off value 

(C/O) was determined by 

ROC and is shown on the 

logistic plots as a solid 

black line. Although results 

from this preliminary 

analysis was encouraging, 

further analysis would be 

required to verify the 

accuracy of the M-LR model 
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2.4.2.7 Accuracy of candidate markers for the diagnosis of PDAC against CP 

Results from the diagnostic accuracy analyses for PDAC against chronic pancreatitis 

are summarised in Table 2.12. On univariate analysis, VDBP, RBP-4, and FINC 

were significant discriminators of pancreatic cancer against chronic pancreatitis 

(Wilcoxon‟s test, all p<0.05). Furthermore, this significance was maintained on 

multivariate analysis i.e. the three markers were independent markers of pancreatic 

cancer against CP. In addition, results from ROC analysis showed that VDBP, RBP-

4, and FINC were all relatively accurate at discriminating between PDAC against CP 

with ROC-AUCs of 0.83, 0.75, and 0.74 respectively. Again, VDBP appeared to be 

the best individual maker with a relatively high sensitivity (0.75) and specificity 

(0.90) at the optimal cut-off of 1.15 (Figure 2.13). Similar to the HC results, the 

accuracy of combining all three markers for the diagnosis of PDAC against CP was 

assessed (Figure 2.13). Results showed that there is a dramatic increase in the 

diagnostic accuracy with relative sensitivity and specificity of 0.85 and 1.00 at a cut-

off of 0.70. Again, despite these encouraging results, further validation on an 

independent samples set would be necessary. 

Table 2.12- The diagnostic accuracy of VDBP, RBP-4, and FINC for PDAC against CP 

Biomarker 
 Pancreatic Cancer versus Chronic Pancreatitis 

Univariate Multivariate ROC-AUC C/O Sensitivity Specificity 

VDBP 0.004 0.002 0.825 1.15 0.75 0.90 

RBP-4 0.031 0.03 0.745 1.13 0.75 0.80 

FINC 0.035 0.029 0.740 1.72 0.50 0.90 

Combined - - 0.920 0.70 0.85 1.00 

Abbreviations: Vitamin D-Binding Protein (VDBP); Retinol-Binding Protein 4 (RBP-4); Fibronectin (FINC); 
M-LR combined marker consisting of VDBP, RBP-4, and FINC (Combined); Receiver Operator Characteristics 
Area Under the curve (ROC-AUC); Cut-off for the reported sensitivity and specificity (C/O) 
 

  

Figure 2.13- Logistic Plots showing the diagnostic accuracy of [A] VDBP ,[B] RBP-4, and [C] FINC as 

individual markers of PDAC against chronic pancreatitis. [D] Logistic plot showing the diagnostic accuracy 

when all three proteins were combined. Individuals with PDAC are coloured Blue and chronic pancreatitis are in 

red. The optimal cut-off value (C/O) was determined by ROC and is shown on the logistic plots as a solid black 

line.   
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2.4.2.8 Accuracy of candidate markers for the diagnosis of PDAC against DC 

Results from the diagnostic accuracy analyses for PDAC against disease controls are 

summarised in Table 2.12. On univariate analysis, VDBP, RBP-4, and FINC were 

not significant discriminators of pancreatic cancer against individuals with biliary 

obstruction (DC) (Wilcoxon‟s test, all p>0.05). Subsequently, no multivariate 

analysis was performed. Furthermore, results from ROC analysis showed that VDBP, 

RBP-4, and FINC were not sufficiently accurate at discriminating between PDAC 

against DC with ROC-AUCs of 0.57, 0.63, and 0.63 respectively. Moreover, the 

diagnostic accuracy was not significant (AUC 0.74) when the three markers were 

combined by multinomial logistic regression (M-LR) with relative sensitivity and 

specificity of 0.55 and 0.90 at a cut-off of 0.62 (Figure 2.14).  

Table 2.13- The diagnostic accuracy of VDBP, RBP-4, and FINC for PDAC against DC 

Biomarker 
 Pancreatic Cancer versus Disease Control 

Univariate Multivariate ROC-AUC C/O Sensitivity Specificity 

VDBP 0.465 - 0.568 1.36 0.25 1.00 

RBP-4 0.176 - 0.625 1.13 0.75 0.55 

FINC 0.176 - 0.625 2.20 1.00 0.45 

Combined - - 0.743 0.62 0.55 0.90 

Abbreviations: Vitamin D-Binding Protein (VDBP); Retinol-Binding Protein 4 (RBP-4); Fibronectin (FINC); 

M-LR combined marker consisting of VDBP, RBP-4, and FINC (Combined); Receiver Operator Characteristics 
Area Under the curve (ROC-AUC); Cut-off for the reported sensitivity and specificity (C/O) 
 

  

Figure 2.14 Logistic Plots showing the diagnostic accuracy of [A] VDBP ,[B] RBP-4, and [C] FINC as 

individual markers of PDAC against disease control. [D] Logistic plot showing the diagnostic accuracy when all 
three proteins were combined. Individuals with PDAC are coloured Blue and disease controls are in red. The 
optimal cut-off value (C/O) was determined by ROC and is shown on the logistic plots as a solid black line.   
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2.4.2.9 Diagnostic accuracy of PDAC against all controls 

Results from the diagnostic accuracy analyses for PDAC against all controls are 

summarised in Table 2.14. On univariate analysis, only RBP-4, and FINC were 

significant discriminators of pancreatic cancer against chronic pancreatitis 

(Wilcoxon‟s test, p<0.05). Furthermore, results from multivariate analysis indicate 

that only RBP-4 was an independent discriminator of pancreatic cancer against 

control subjects. Results from ROC analysis showed that VDBP, RBP-4, and FINC 

were insufficiently accurate at discriminating between PDAC against controls 

subjects with ROC-AUCs of 0.626, 0.696, and 0683, respectively. Similar to 

previous results, the diagnostic accuracy was increased when all three markers were 

combined by M-LR modelling with ROC-AUC of 0.756 and relative sensitivity and 

specificity of 0.70 and 0.80 at a cut-off of 0.36 (Figure 2.15), although this result 

would required verification with an independent sample set. 

Table 2.14- The diagnostic accuracy of VDBP, RBP-4, and FINC for PDAC against all controls 

Biomarker 
 Pancreatic Cancer versus all controls 

Univariate Multivariate ROC-AUC C/O Sensitivity Specificity 

VDBP 0.113 - 0.626 1.069 0.55 0.75 

RBP-4 0.014 0.006 0.696 1.130 0.75 0.67 

FINC 0.021 0.067 0.683 1.853 0.70 0.65 

Combined - - 0.756 0.36 0.70 0.80 

Abbreviations: Vitamin D-Binding Protein (VDBP); Retinol-Binding Protein 4 (RBP-4); Fibronectin (FINC); 

M-LR combined marker consisting of VDBP, RBP-4, and FINC (Combined); Receiver Operator Characteristics 
Area Under the curve (ROC-AUC); Cut-off for the reported sensitivity and specificity (C/O) 
 

  

Figure 2.15 Logistic Plots showing the diagnostic accuracy of [A] VDBP ,[B] RBP-4, and [C] FINC as 

individual markers of PDAC against all control subjects. [D] Logistic plot showing the diagnostic accuracy 
when all three proteins were combined. Individuals with PDAC are coloured Blue and controls are in red. The 

optimal cut-off value (C/O) was determined by ROC and is shown on the logistic plots as a solid black line.   
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2.4.2.10 Accuracy of candidate markers for the diagnosis of PDAC against HC 

and CP combined 

In view of the fact that existing literature on novel biomarkers invariably compared 

PDAC against HC and CP control subgroups only and to facilitate the comparison 

between the current and previous biomarker studies, a separate analysis was 

performed to determine the overall performance of the three markers in absence of 

the DC group (see Table 2.15). Results from this analysis indicated that VDBP, 

RBP-4, and FINC were all independent markers of PDAC against the combination of 

HC and CP (Figure 2.17 and Figure 2.16). Furthermore, ROC analysis demonstrated 

that the markers have a relatively high accuracy for discriminating between PDAC 

against HC and CP with ROC-AUCs of 0.82, 0.77, and 0.74. Finally, results from the 

combination of the markers by M-LR were encouraging with ROC-AUC of 0.91 and 

relative sensitivity and specificity of 0.85 and 0.95, respectively, at the optimal cut-

off of 0.59 (Figure 2.17). However, similar to previous analyses, results from this 

analysis would require verification with an independent sample set 

Table 2.15- The diagnostic accuracy of VDBP, RBP-4, and FINC for PDAC against HC and CP 

Biomarker 
 Pancreatic Cancer versus healthy control and chronic pancreatitis 

Univariate Multivariate ROC-AUC C/O Sensitivity Specificity 

VDBP <0.001 0.002 0.820 1.15 0.75 0.95 

RBP-4 0.004 0.015 0.768 1.13 0.75 0.80 

FINC 0.009 0.028 0.741 1.70 0.45 0.95 

Combined - - 0.908 0.59 0.85 0.95 

Abbreviations: Vitamin D-Binding Protein (VDBP); Retinol-Binding Protein 4 (RBP-4); Fibronectin (FINC); 

M-LR combined marker consisting of VDBP, RBP-4, and FINC (Combined); Receiver Operator Characteristics 
Area Under the curve (ROC-AUC); Cut-off for the reported sensitivity and specificity (C/O) 
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Figure 2.16- Heat maps showing the clustering of patients according to the cancer status. [A] Clustering in 
absence of the DC subgroup resulted in two defined clusters. Cluster 1 (Blue) consists of PDAC samples only 
whereas cluster 2 (Red) consists of mainly HC and CP samples. 
[B] Clustering of all PDAC and control samples. Although the heat map pattern is similar to [A], Clustering of 

patients became much less define when the disease control group is added to the analysis (marked). 

 

 

 

  

Figure 2.17 Logistic Plots showing the diagnostic accuracy of [A] VDBP ,[B] RBP-4, and [C] FINC as 
individual markers of PDAC against the combined HC and CP group. [D] Logistic plot showing the diagnostic 
accuracy when all three proteins were combined. Individuals with PDAC are coloured Blue and HC/CP are in 

red. The optimal cut-off value (C/O) was determined by ROC and is shown on the logistic plots as a solid black 
line.   
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2.4.2.11 Correlation between age and candidate protein markers 

Univariate analysis of demographical data in section 2.4.2.1 showed that individuals 

in the PDAC group were older compared to individuals in the control subgroups. 

This is supported by the pattern shown in Figure 2.18. Therefore, the correlations 

between age and the relative serum concentrations of the VDBP, RBP-4, and FINC 

in PDAC patients and controls were independently assessed using the Kendall Tau 

non-parametric correlation analysis. Results indicated that there was minimal 

correlation (Kendall <0.5) between age, individual protein markers, and the M-LR 

disease-predicting model (Table 2.16; see section 2.3.6.2 for a description of the 

Kendall Tau test and the interpretation of its results). 

 

 

 

 

 

 

 

 

 

  

Table 2.16- Correlation between Age, individual protein markers, and disease-predicting formulae 

 Controls PDAC 

Parameters Kendall τ Prob>|τ| Kendall τ Prob>|τ| 

Vitamin D-Binding Protein -0.32 <0.01 0.27 0.10 

Retinol-Binding Protein 0.06 0.58 0.00 1.00 

Fibronectin <-0.01 0.94 -0.11 0.52 

M-LR algorithm 0.03 0.77 0.00 1.00 

Abbreviations: Multinomial Logistic Regression (M-LR); Artificial neural network (NN) 

Note: Kendall Tau () coefficients ranges from -1 (perfect negative correlation) to 0 (no correlation) to +1 

(perfect positive correlation); Prob>|| represents the probability that the actual correlation coefficient 
() would be greater than the calculated coefficient. 

Figure 2.18- Two-way clustering of Age, vitamin D-binding protein (VDBP), Retinol-Binding 

Protein 4 (RBP-4), and Fibronectin (FINC). Whilst the heat map pattern suggests that VDBP, 

RBP-4, and FINC may be decreased in older individuals, this is likely to be attributable to the fact 
that individuals in the PDAC groups are older than individuals in the control group. 

Standardised relative intensity on western blot densitometry analysis (RI)  
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2.4.3Phase III- Validation with pre-diagnostic samples (UKCTOCS) 

2.4.3.1Characteristics of the UKCTOCS samples 

Pre-Pancreatic cancer (PPC) samples were stratified into six time-categories 

according to the duration between sample collection and diagnosis: 0-0.5, 0.5-1, 1-2, 

2-3, 3-4, and over 4 years). Each time group therefore, consists of 10 PPC samples 

and 10 matched HC samples. There were no significant difference in age, gender (all 

females), or delay in sample processing between the PPC and HC group.  

 

Table 2.17- UCKTOCKS samples characteristics 

Time category 
 (years) 

Age/ years 
Collection to processing 

Time (hours)  
Collection to diagnosis 

Time (Months) 

Median (range) p Median (range) p Median (range) 

0 yr - 0.5yr 
         HC, n=10 64 (52-75) 

N.S. 
22 (19-25) 

N.S. 
- 

    PPC, n=10 65 (57-78) 22 (20-26) 2.1 (1.3-5.5) 

0.5yr – 1yr 
 

 
 

 
     HC, n=10 62 (53-72) 

N.S. 
20 (19-24) 

N.S. 
- 

    PPC, n=10 70 (57-73) 21 (19-24) 9.5 (6.3-11.0) 

1yr – 2yr 
 

 
 

 
     HC, n=10 60 (53-72) 

N.S. 
23 (19-46) 

N.S. 
- 

    PPC, n=10 61 (53-72) 23 (20-46) 17.4 (12.7-22.7) 

2yr – 3yr 
 

 
 

 
     HC, n=10 61 (51-73) 

N.S. 
24 (18-25) 

N.S. 
- 

    PPC, n=10 61 (52-71) 24 (18-25) 28.2 (24.6-34.3) 

3yr – 4yr 
 

 
 

 
     HC, n=10 58 (52-71) 

N.S. 
23 (21-43) 

N.S. 
- 

    PPC, n=10 61 (57-75) 23 (21-44) 39.3 (36.6-47.9) 

4+ years 
 

 
 

 
     HC, n=10 61 (51-72) 

N.S. 
20 (4-26) 

N.S. 
- 

    PPC, n=10 65 (52-73) 20 (2-22) 60.6 (52.1-80.6) 
Abbreviations: N.S. Not significant (Wilcoxon’s Test p>0.05); Healthy Control (HC); pre-diagnosis pancreatic 
cancer samples (PPC) 
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2.4.3.2 Example of Western Blot images for VDBP and RBP-4 

Examples from the Western Blot analyses of UKCTOCS samples for VDBP and 

RBP-4 are shown in Figure 2.19.  

  

Figure 2.19- Western Blot images of VDBP and RBP-4 for UKCTOCS Samples [A]Western Blot 

of UKCTOCS Gel 11 for VDBP; [B] Western Blot of UKCTOCS Gel 15 for VDBP; [C] Western 

Blot of UKCTOCS Gel 11 for RBP-4; [D] Western Blot of UKCTOCS Gel 15 for RBP-4. Each gel 

consists of 5 PPC samples each from a different time-category and 5 matching controls and was 

analysed in triplicate.  

Abbreviations: Pre-Pancreatic Cancer (PPC); Healthy Controls (HC); Molecular Weight Band 

(MWB)  
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2.4.3.3 Selection of markers for validation in Phase III 

Due to a limitation in the availability of the UKCTOCS samples, it was decided that 

only RBP-4 and VDBP would be validated in Phase III. This is because RBP-4 was 

the only significant biomarker on multivariate analysis when comparing PDAC 

against control samples (HC, CP, and DC) in Phase-II of the current study. 

Furthermore, VDBP was also analysed since it was the best discriminator of PDAC 

against HC and CP. In addition, the protein requirement for the relative 

quantification of VDBP was a tenth compared to either RBP-4 or FINC.  

 

2.4.3.4 The level of VDBP in pre-diagnosis samples compared to Controls 

Univariate analysis by Wilcoxon‟s Test indicated that there is no significant 

difference in the serum level of VDBP in pre-diagnostic pancreatic cancer samples 

compared to the matched controls across most time categories (Figure 2.20 and 

Table 2.18). However, in the 2-3 years category, there is a significant decrease in the 

serum level of VDBP in control subjects compared to PPC. The reason for this 

difference is unclear but likely to be co-incidental. 

 

 

 

 

 

 

 

 

 

 

Figure 2.20- Box Plots showing the level of VDBP between pre-diagnosis pancreatic cancer (PPC) 

and healthy controls (HC) across the six time categories. Univariate analysis by Wilcoxon’s Test 

showed no significance expect for the 2-3 yr category where VDBP in HC is lower than PPC. 
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Table 2.18- Relative quantification of serum VDBP in UKCTOCS samples by densitometry analysis 

VDBP 
Time Categories (years before diagnosis)/ median (range) 

0-0.5 0.5-1 1-2 2-3 3-4 4+ 

Control 

PPC 

1.03 (0.75-1.31) 

0.95 (0.81-1.40) 

1.07 (0.79-1.28) 

1.09 (0.82-1.38) 

1.06 (0.79-1.16) 

1.06 (0.75-1.31) 

0.95 (0.88-1.04) 

1.12 (0.93-1.25) 

1.02 (0.93-1.10) 

1.10 (0.88-1.32) 

1.03 (0.78-1.32) 

1.04 (0.86-1.38) 

Note: *relative intensity calculated from densitometry results: sample mean region of interest (ROI ) intensity 
divided by the standard reference mean ROI Intensity  

 

2.4.3.5 Change in the relative serum level of VDBP through time 

Subsequent analyses aimed to identify any trends in the serum level of VDBP 

through time. There were three individuals in the PPC group with data from at least 

four different time categories: PPC patients 10, 12, and 20. Interestingly, PPC patient 

10 showed a progressive decrease in relative serum level of VDBP closer to 

diagnosis; however, this pattern was not maintained in the other two individuals with 

PPC (Figure 2.21). Therefore, whilst the relative serum level of VDBP may not a 

good predictor of pancreatic cancer development in all patients, a gradual decline in 

VDBP over time may be observed in certain individuals and may be an indication of 

pancreatic malignancy. 

 

  

Figure 2.21- scatter plots showing the change 

in relative serum level of VDBP across 

different time categories. PPC patient 10 

showed a progressively decreasing serum 
level of VDBP closer to diagnosis. However, 

this trend was not followed in patient 12 and 

20. 
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2.4.3.6 The level of RBP-4 in pre-diagnosis samples compared to Controls 

There appears to be a trend towards lower serum expression of RBP-4 in the PPDC 

group. However, univariate analysis by Wilcoxon‟s Test yielded insignificant results. 

Furthermore,the serum level of RBP-4 between the PPC and HC groups across the 

other time categories also yielded insignificant results (Wilcoxon‟s Test) p>0.05; 

Figure 2.22 and Table 2.19). 

  

Table 2.19- Relative quantification of serum RBP-4 in UKCTOCS samples by densitometry analysis 

RBP-4 
Time Categories (years before diagnosis)/ median (range) 

0-0.5 0.5-1 1-2 2-3 3-4 4+ 

Control 

PPC 

1.18 (0.94-2.00) 

1.07 (0.82-1.84) 

1.27 (0.99-1.76) 

1.18 (0.86-1.56) 

1.21 (1.05-1.47) 

1.22 (0.93-1.49) 

1.18 (0.98-1.33) 

0.86 (1.24-1.43) 

1.25 (1.11-1.64) 

1.33 (1.03-1.62) 

1.17 (0.93-1.91) 

1.23 (0.93-1.58) 

Note: *relative intensity calculated from densitometry results: sample mean region of interest (ROI ) intensity 
divided by the standard reference mean ROI Intensity  

  

Figure 2.22- Box Plots comparing the serum level of RBP-4 between healthy controls (HC) and pre-

diagnosis pancreatic cancer (PPC) patients. Univariate analyses indicated that there is no 

significant difference between the two groups in any of the time groups. 
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2.4.3.7 Change in the relative serum level of RBP-4 through time 

Subsequent analyses aimed to identify any trends in the serum level of RBP-4 

through time. There were three individuals in the PPC group with data from at least 

four different time categories: PPC patients 10, 12, and 20. Similar to VDBP, the 

serum level of RBP-4 in PPC patient 10 seemed to be decreasing closer to diagnosis. 

However, there was a sudden drop in RBP-4 level at 2-3 year pre-diagnosis. Once 

again, this pattern was not maintained in the other three individuals with PPC. 

Clearly, the relative serum level of RBP-4 is also not a good predictor of the 

development of pancreatic cancer (Figure 2.23).  

 

  

Figure 2.23- Scatter plots showing the serum 
level of RBP-4 through time. The serum level of 

RBP-4 seems to follow a progressively 

decreasing pattern closer to diagnosis. 

However, there is an unexplained drop in RBP-

4 level at 2-3 years pre-diagnosis. This patter is 

not seen in the other two PPC patients. 
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2.4.4 Expression of VDBP, RBP-4, and FINC in cell lines 

2.4.4.1 Quantification of cell lysate 

The protein concentrations of cell lysates were quantified by Bradford Assay. Linear 

modelling of the reference standards generated a linear equation with a R
2
 value of 

0.998 therefore indicating that the linear equation fits the data almost perfectly. The 

concentration of each lysate was calculated using this linear equation and the volume 

of lysate required for 10µg of protein was calculated for each lysate. 

Table 2.20- Protein quantification of cell lysate by Bradford Assay 

Cell-line Av. Bradford Concentration µg/µl Volume (µl)/ 10 µg 

HEPG-2 1.08 6.74 1.48 

HEK 0.65 2.01 4.97 
BXPC-3 0.67 2.20 4.54 

ASPC 1.20 8.08 1.24 
PANC-1 1.02 6.09 1.64 

CFPAK 0.94 5.18 1.93 
FAMPAC 0.76 3.26 3.06 

Note: Protein Concentration= 0.5*(Bradford assay reading-0.4642)/ 0.0457;  
Reference standard curve R2= 0.9976 
 

 

  

Figure 2.24- Standard Reference Curve for the Bradford protein quantification assay. To 

calculate the protein concentration of cell lysate, the linear equation for the line of best fit was 
rearranged for x: x=(y-0.4642)/0.0457. Since 2µl of lysate was used in the protein, the 

calculated result was then divided by 2 to give the concentration in µg/µl.  
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2.4.4.2 Expression of VDBP, RBP-4 and FINC in cancer cell lines 

Western blot analysis of the two non-cancer cell lines HEPG-2 (hepatocellular cancer) 

and HEK (human embryonic kidney) and five pancreatic cancer cell lines BXPC-3, 

ASPC, PANC-1, CFPAK, and FAMPAC showed that VDBP, RBP-4, and FINC 

were present in an undetectable quantity in these cell lines (Figure 2.25). 

  

Figure 2.25- Images from Western Blot (WB) of 1 hepatocellular carcinoma cell line (HEPG-2), one human 
embryonic kidney cell line (HEK), and five pancreatic adenocarcinoma cell line (BXPC-3, ASPC, PANC-1, 

CFPAK, and FAMPAC) for VDBP, RBP-4, and FINC. [A] WB results indicate that VDBP is expressed in serum 
standards (Std) but cannot be detected in cell lines. [B]Beta-actin of VDBP blot. [C] RBP-4 is expressed in 
serum standards but cannot be detected in cell lines. [D]Beta-actin of RBP-4 blot. [E] FINC is expressed in 

serum standards but cannot be detected in cell lines. [F] Beta-actin of FINC blot. 
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2.5 Discussion 

Recent advances in protein identification techniques have enabled researchers to 

mine the serum proteome in greater depth. Indeed, the advent of protein detection 

techniques such as iTRAQ/MS and protein microarray has opened up a new 

dimension in biomarker research. These new techniques have proven to be as reliable, 

accurate, and sensitive for the discovery of less abundant and smaller proteins 

compared to traditional methods such as spot identification for 2D polyacrylamide 

gel electrophoresis
128

. In particular, the mass spectrometry analysis performed by 

Murray et al. from this department has identified over 300 proteins with over 95% 

identification confidence including many novel proteins, which have never been 

associated with pancreatic cancer by previous studies.  

2.5.1 VDBP, RBP-4, and FINC for the diagnosis of pancreatic cancer 

The current study sought to verify the serum concentrations of three protein markers 

(VDBP, RBP-4, and FINC) identified by the iTRAQ experiment mentioned above. I 

observed that in concordance with the original iTRAQ results, western blot analyses 

of these proteins demonstrated a general decrease in relative serum concentrations of 

all three proteins in individuals with pancreatic cancer compared to controls (Phase I, 

section 2.4.1). Furthermore, I found that in agreement with existing literature
225

, 

validation with the LPCD independent sample set indicated that the presence of 

biliary obstruction has a negative impact on the diagnostic accuracies of all three 

markers (Phase II, sections 2.4.2.6 to 2.4.2.10). This finding once again emphasised 

the importance of recognising the potential confounding effects of benign 

pancreaticobiliary diseases (e.g. biliary obstruction) in the discovery of serum 

proteomic biomarker for pancreatic cancer. Nonetheless, preliminary results from 

sections 2.4.2.6Error! Reference source not found., 2.4.2.7, and 2.4.2.10 suggest 

that VDBP, RBP-4, and FINC are accurate diagnostic markers of PDAC against 

individuals with CP or HC. In addition, we report that the use of the M-LR model to 

combine all three markers dramatically improved the diagnostic accuracy for PDAC 

in the absence of DC. However, further validation with an independent validation 

sample set would be necessary to assess the integrity of the individual and combined 

markers.  
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2.5.2 VDBP and RBP-4 as screening modalities for pancreatic cancer 

Pancreatic cancer is a disease of late presentation where the majority of individuals 

with PDAC have metastatic, inoperable disease at diagnosis
54-55

. As such, much 

effort has been put into the search for a marker, which can detect the presence of 

early-stage PDAC with the ultimate aim of implementing a nation-wide screening 

programme for pancreatic cancer. Such implementation would facilitate the early 

detection of PDAC in otherwise asymptomatic individuals thereby increasing the 

chance of resectable disease, which in turn, would improve the prognosis for these 

patients.  

Results from the current study thus far were based on the use of serum samples from 

patients with confirmed resectable (therefore by mostly early-stage) PDAC. Whilst 

biomarkers discovered and verified in this way can be concluded to be good 

indicators of early-stage PDAC, their potential as a screening modality remain 

untested. Phase-III of the current study sought to address this issue by using samples 

from the UKCTOCS trial, which consisted of serum samples taken from up to 6 

years before the confirmed diagnosis of PDAC. Results from this analysis indicated 

that neither VDBP nor RBP-4 was sufficiently accurate as single markers of PDAC 

in the pre-diagnosis setting.  

There were several limitations to this study. In particular, a relatively small number 

of samples were analysed in the first validation set meaning that the current study 

should be regarded as a pilot screen of candidate markers aimed at assessing their 

potential utility as markers of pancreatic cancer and further validation with a larger 

independent sample set would be required to confirm our findings. Furthermore, the 

use of Western Blotting for the quantitative protein analysis has its own inherent 

limitations, such as the need to compare values across different blots.  
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2.5.3 The roles of VDBP, RPB-4, and FINC in pancreatic cancer 

The exact roles of VDBP, RPB-4, and FINC in pancreatic cancer and the reason 

behind their apparent decrease in the serum of individuals with PDAC are not clear. 

However, there are a number of hypotheses, which may explain the inverse 

relationship between the serum concentrations of the three proteins and the presence 

of PDAC. One explanation could simply be that patients with PDAC are generally 

under-nourished (e.g. due to anorexia or impaired absorption), which subsequently 

result in a decreased production of these proteins
21

. Furthermore, the fact that the 5-

year survival rate of resectable pancreatic cancer is <25% due to cancer recurrence 

and metastasis
88

 suggest that most patients with resectable PDAC may have an 

underlying micro-metastasis undetectable by conventional diagnostic procedures at 

the time of surgery. Therefore, specifically for the two hepatocyte-secreted proteins, 

VDBP and RBP-4, another possible explanation for the decrease in serum VDBP and 

RBP-4 could be that the production of both proteins is impaired in the presence of 

pancreatic liver metastasis.  

2.5.3.1Vitamin D-Binding protein and cancer 

There is a current lack of evidence associating VDBP specifically with pancreatic 

cancer. However, increasing evidence has suggested that VDBP may be associated 

with several types of cancers through its metabolite, DBP-MAF
226-229

. In particular, 

an in vivo study by Kisker et al. demonstrated that BxPC-3, a pancreatic cancer cell 

line, is capable of converting VDBP to DBP-MAF and in addition, the systemic 

administration of DBP-MAF (4ng/kg) has significant antiproliferative and 

antiangiogenic effects on immune-compromised mice implanted with BxPC-3
227

. 

The authors however, did not discuss the apparent contradiction in the ability of a 

cancer cell line to convert DBP into an anti-tumour factor. One possible explanation 

is that pancreatic cancer is characterised by an unusually hypoxic condition and as 

such, very limited amount of systemic DBP is converted into DBP-MAF and 

subsequently does not have a noticeable effect on the tumour. Another possible 

explanation is that VDBP may be readily converted to DBP-MAF and that this 

stimulates tumour-associated macrophages in the tumour microenvironment to 

promote growth and proliferation.  
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2.5.3.2 Retinol-Binding protein and cancer 

The association between retinol-binding proteins (RBP) and pancreatic cancer was 

first described in 1984 by Fabris et al.
212

. The authors observed that the serum 

concentration of RBP is significantly lower in patients with chronic pancreatitis and 

pancreatic cancer compared to healthy subjects
212

. Furthermore, this association was 

also observed by later studies in a number of other epithelial cancers and benign 

diseases such as malnutrition and liver cirrhosis 
220, 230-232

. Although the findings 

originally reported by Fabis et al.
212

 was not fully recapitulated by this study, as I 

found that the levels of RBP-4 were down regulated in PDAC compared to HC but 

not in CP compared to HC, this difference may be accountable by the fact that the 

current study analysed a specific member of the RBP family (RBP-4) rather than 

RBP in general. 

Interestingly, recent studies have focused on the role of RBP in type II diabetes and 

insulin resistance where the authors described an inverse association between the 

serum concentration of RBP-4 and insulin sensitivity 
233-237

. This association may be 

of biological relevance to the poor glycaemic control in pancreatic cancer. 

Particularly in patients with tumour-induced dysfunction of pancreatic endocrine 

cells where there is an increased insulin resistance, a higher sensitivity to insulin 

would be desirable, which would correlate to decrease in circulating RBP. Therefore, 

combining the two observations given above, we propose that as a part of a complex 

compensatory mechanism for the decreased insulin secretion in PDAC, hepatocyte 

may inhibit the production of RBP-4 to increase the sensitivity of the liver to insulin. 

2.5.3.3 Fibronectin and cancer 

Fibronectin is an essential component of the extracellular matrix (ECM). It has been 

associated with tissue fibrosis and several types of cancer through its role in 

controlling cellular proliferation, differentiation, and organization of tissue 

architecture
147, 154, 185, 238-239

. In particular, several studies have demonstrated that 

there is extensive remodelling of the ECM in pancreatic cancer by fibroblasts and 

pancreatic stellate cells (PSCs), which may induce a permissive microenvironment 

for the transition of cancer cells from dormancy to growth
147, 152-154, 185, 238-240

. 

Furthermore, the release of angiogenic factors from the remodelled ECM may trigger 

the angiogenic switch thereby promoting tumour growth and metastasis
198

. Recently, 
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evidence indicated that pancreatic cancer-associated fibrosis might be partially 

attributable to elevated levels of TGF-β, which alters the ECM composition by 

promoting collagen and fibronectin gene transcription, production, and secretion in 

PSCs
185, 238, 241-242

. Therefore, it is conceivable that the decrease in the serum 

concentration of FINC may be due to an excess consumption of circulating FINC as 

the result of extensive remodelling of the tumour microenvironment by tumour-

associated cells such as PSCs.  

Finally, the finding that all three proteins were down regulated in individuals with 

benign biliary obstruction may provide some indication as to why they are observed 

to be down regulated in PDAC. Over 70% of patients with PDAC have biliary 

obstruction at presentation
21

. Such obstructions are frequently associated with the 

impairment in liver function, which may account for the decrease in the three 

proteins observed in PDAC. 
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3.1 Introduction 

The role of cytokines, chemokines, and growth factors (CCGFs) in pancreatic 

inflammatory diseases (e.g. acute and chronic pancreatitis) has been reported by 

many studies
138-144

. Although there is a current lack of evidence directly associating 

CCGFs with pancreatic cancer, recently, evidence from clinical and experimental 

studies have demonstrated that CCGFs play a pivotal role in mediating cancer-related 

inflammation
144-150

, which in turn is an essential component for the formation, 

propagation, survival, and metastasis of several other types of cancers
143, 151-154

. In 

2000, Hanahan et al.
45

 proposed in their review that there are six hallmarks of cancer, 

of these, five hallmarks were mediated by CCGFs including self-sufficiency in 

growth signals, insensitivity to anti-growth signals, limitless replicative potential, 

sustained angiogenesis, and evading apoptosis. Recent studies have now associated 

the sixth hallmark (tissue invasion and metastasis) with CCGFs by demonstrating 

their role in stimulating tumour-associated macrophages to promote the remodelling 

of the extracellular matrix in the tumour microenvironment
187, 198

. More importantly, 

results from a recent review by Colotta et al.
150

 would suggest that cytokine mediated 

cancer-related inflammation should be regarded as the seventh hallmark of cancer.  

Therefore, based on the evidence above, we postulate that CCGFs should also be 

heavily involved in pancreatic cancer and that certain CCGFs would be differentially 

expressed only in cancer-related inflammation and not benign inflammatory 

conditions. To test this hypothesis, we utilise a relatively new multiplex assay, the 

LUMINEX cytokines assay, to quantify and compare the presence of CCGFs in 

serum samples from four distinct disease groups: pancreatic cancer, chronic 

pancreatitis, biliary obstruction, and healthy controls. The multiplex cytokines assay 

combines several existing technologies including microsphere, flow cytometry, 

conventional ELISA, digital, traditional chemistry, digital signal processing, and dual 

laser detection to quantify the serum concentrations of 27 different CCGFs 

simultaneously in a single sample. Furthermore, we will use the resulting data was 

used to assess the diagnostic potential of CCGFs as individual markers of resectable 

PDAC. In addition, we will present a statistical method for the selection of 

independent biomarkers amongst a large number of potential biomarkers and two 

independent methods, which can be employed to combine the selected markers in to 

a single diagnostic marker panel for PDAC. 
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3.2 Study Aims 

The aims of the current chapter include: 

 To determine the serum expression of 27 CCGFs in resectable PDAC and 

Control subjects. 

 To determine the diagnostic potential of CCGFs for resectable pancreatic cancer 

 To compare the diagnostic potential of novel CCGF markers against CA19-9 

 To determine the effects of combining candidate CCGF markers on the 

diagnostic accuracy for pancreatic cancer 

 To validate the disease-predicting algorithms generated in aim (4) using an 

independent validation sample set. 

 

3.3 Materials and Methods 

3.3.1 Patients and Samples- The Liverpool Pancreatic Cancer 

Database 

One-hundred and eighty pre-operative serum samples were prospectively collected at 

the Royal Liverpool University Hospital from patients with resectable PDAC (n=90), 

CP (n=30), obstructive jaundice (DC, n=30), and healthy volunteers (HC, n=30) 

between 1996 and 2010; Table 3.1). Serum samples were collected in Sarstedt 

Monovette tubes (Sarstedt Ltd, Leicester, UK) and allowed to clot at room 

temperature for 15 minutes. The serum fraction was acquired by centrifugation at 

800x g for 10 minutes, which was then aliquoted into cryotubes (Nunc GmbH & Co 

KG., Thermo Fisher Scientific, Langenselbold, Germany). All samples were stored at 

minus 80°C until analysis. 

Of the 90 individuals in the control group, 44 were female and 46 were male and of 

the 90 individuals with PDAC, 42 were female and 48 were male. Although there 

was a significant difference in age between the PDAC group and the individual 

control subgroups groups (CP, DC, and HC), there was no significant difference 

when the PDAC group was analysed against the overall Control group (Wilcoxon‟s 

Test, P=0.073; Table 3.1). Furthermore, analysis of available demographical data 

showed that there was no significant difference in gender, histories of smoking, 

diabetes, or pancreatitis in the PDAC group compared to the controls (Fisher‟s Exact, 
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p>0.05). In addition, comparison of the serum bilirubin levels indicated that 

individuals in the PDAC and DC groups have a significantly higher serum 

concentration of bilirubin compared to the CP group. Furthermore, the serum CA19-

9 levels in the PDAC group is significantly higher compared to all control subgroups 

(Wilcoxon‟s Test, p<0.001; Table 3.1). It should be noted that some demographical 

data could not be obtained due to privacy and confidentiality reasons. 

In subsequent analyses, samples within each disease group were randomised into the 

Discovery Phase and the Validation Phase in a 2 to 1 ratio (see sections 3.3.1.1, 

3.3.1.2, and 3.3.2 for details). 

Table 3.1- Demographical and clinical characteristics of individuals involved in this study 

Characteristics 

Disease groups Cancer status 
CP DC HC PDAC p (K-W) Control PDAC p (W) 

Count, n 30 30 30 90 - 90 90 - 

Age 
        

    Median 60 72.5 56.4 66.5 
<0.001 

62 66.5 
N.S. 

    Range 50-78 24-86 37-77 36-81 24-86 36-81 

Gender, n 
        

    Female/male 14/16 15/15 15/15 42/48 N.S. 44/46 42/48 N.S. 

Smoking 
        

    Yes 19/6 20/7 -/- 51/22 
N.S. 

39/13 51/22 
N.S. 

    Unknown 5 3 30 17 38 17 

Diabetes 
        

    Yes 7/18 4/23 -/- 14/59 
N.S. 

11/41 14/59 
N.S. 

    Unknown 5 3 30 17 38 17 

Alcohol 
consumption         

    Yes 16/8 17/10 -/- 55/18 
N.S. 

33/18 55/18 
N.S. 

    Unknown 6 3 30 17 39 17 

Pancreatitis 
        

    Yes 30/0 3/0 -/- 4/43 
-/- 

33/0 4/43 
-/- 

    Unknown 0 27 30 43 57 43 

Bilirubin 
        

    Median 6 34 -/- 46.5 
<0.001 

15 46.5 
<0.001 

    Range 1-261 6-643 -/- 5-448 1-643 5-448 

CA19-9 
        

    Median 21.5 24.5 4.5 656.5 
<0.001 

13.4 188.1 
<0.001 

    Range 0-331 0-1402 0-18 0-42094 0-1402 0-42094 

Abbreviations: chronic pancreatitis (CP); disease controls (DC); healthy controls (HC); pancreatic cancer (PDAC); 
Kruskal Wallis’s test *p (K-W)+; Wilcoxon’s Test *p (W)]; p-value <0.05 (N.S.); data unavailable (-/-)  
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3.3.1.1 Discovery Phase patient demographics and sample characteristics 

One-hundred and twenty samples including sixty individuals with PDAC and twenty 

individuals from each of the three control subgroups (CP, DC, and HC) were 

randomly chosen and analysed in Discovery Phase (Table 3.2). Although a 

significant difference in age was observed between HC and other disease subgroups, 

there were no significant difference in age, gender, histories of smoking, diabetes and 

alcohol consumption between the PDAC group and the combined Control group. As 

expected, the serum levels of bilirubin and CA19-9 were significantly higher in the 

PDAC group compared to the overall control group. 

Table 3.2- Demographical and clinical characteristics of individuals in the Discovery Phase 

Characteristics 
Disease groups Cancer status 

CP DC HC PDAC p (K-W) Control PDAC p (W) 

Count, n 20 20 20 60 - 60 60 - 

Age 
        

    Median 60 74 56 67 
0.002 

62 67 
N.S. 

    Range 50-78 45-86 37-77 36-81 37-86 36-81 

Gender, n 
        

    Female/male 8/12 11/9 10/10 31/29 N.S. 29/31 31/29 N.S. 

Smoking 
        

    Yes/No 12/4 13/5 -/- 34/15 
N.S. 

25/9 34/15 
N.S. 

    Unknown 4 2 20 11 26 11 

Diabetes 
        

    Yes/ No 5/11 4/14 -/- 12/28 
N.S. 

9/25 12/28 
N.S. 

    Unknown 4 2 20 10 26 10 

Alcohol 
consumption         

    Yes/ No 10/5 12/6 -/- 34/15 
N.S. 

22/11 34/15 
N.S. 

    Unknown 5 2 20 11 27 11 

Pancreatitis 
        

    Yes/ No 20/0 1/0 -/- 3/24 
-/- 

21/0 3/24 
-/- 

    Unknown 0 19 20 23 39 23 

Bilirubin 
        

    Median 8 30 -/- 38 
<0.001 

14 38 
<0.0028 

    Range 4-58 6-585 -/- 5-379 4-585 5-379 

CA19-9 
        

    Median 21 44 5 293 
<0.001 

15 293 
<0.001 

    Range 0-188 4-1402 0-18 0-42094 0-1402 0-42094 

Abbreviations: chronic pancreatitis (CP); disease controls (DC); healthy controls (HC); pancreatic cancer (PDAC); 
Kruskal Wallis’s test *p (K-W)+; Wilcoxon’s Test *p (W)]; p-value <0.05 (N.S.); data unavailable (-/-)  
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3.3.1.2 Validation Phase patient demographics and sample characteristics 

The Validation Phase utilized sixty independent samples for the validation of the two 

disease-predicting algorithms generated in the Discovery Phase (Table 3.3). The 

sample set includes thirty individuals with PDAC and ten individuals from each of 

the control sub-groups (CP, DC, and HC). Again, whilst a significant difference in 

age was observed between the HC and the other disease groups, there were no 

statistical difference in age, gender, histories of smoking, diabetes, and alcohol 

consumption between individuals with PDAC and the combined Control group. 

Similar to the Discovery Phase, there was a significant increase in serum 

concentration of bilirubin and CA19-9 in individuals with PDAC compared to the 

Controls group. 

Table 3.3- Demographical and clinical characteristics of individuals in the Discovery Phase 

Characteristics 

Disease groups Cancer status 
CP DC HC PDAC p (K-W) Control PDAC p (W) 

Count, n 10 10 10 30 - 30 30 - 

Age 
        

    Median 60 73 57 66 
0.029 

61 66 
N.S. 

    Range 52-77 24-84 44-71 45-77 24-84 45-77 

Gender, n 
        

    Female/male 6/4 4/6 5/5 11/19 N.S. 15/15 11/19 N.S. 

Smoking 
        

    Yes/No 7/2 7/2 -/- 17/7 
N.S. 

14/4 17/7 
N.S. 

    Unknown 1 1 10 6 2 6 

Diabetes 
        

    Yes/No 2/7 0/9 -/- 2/1 
N.S. 

2/16 2/1 
N.S. 

    Unknown 1 1 10 7 12 7 

Alcohol 
consumption         

    Yes/No 6/3 5/4 -/- 21/3 
N.S. 

11/7 21/3 
N.S. 

    Unknown 1 1 10 6 12 6 

Pancreatitis 
        

    Yes/No 10/0 1/0 -/- 1/17 
-/- 

11/0 1/17 
-/- 

    Unknown 0 9 10 12 19 12 

Bilirubin 
        

    Median 6 51 -/- 52 
0.005 

22 52 
<0.0028 

    Range 1-261 6-643 -/- 11-448 1-643 11-448 

CA19-9 
        

    Median 24 22 4 125 
<0.001 

12 125 
<0.001 

    Range 5-331 0-265 0-15 5-2749 0-331 5-2749 

Abbreviations: chronic pancreatitis (CP); disease controls (DC); healthy controls (HC); pancreatic cancer (PDAC); 
Kruskal Wallis’s test *p (K-W)+; Wilcoxon’s Test *p (W)]; p-value <0.05 (N.S.); data unavailable (-/-)  
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3.3.2 Study design 

Approval for the current study was obtained from the relevant research ethics 

committee including the multicentre research ethics committee (MREC) for the use 

of the serum samples from the Liverpool Pancreatic Cancer Database (LPCD). 

Informed consent was obtained from all individuals involved.  

The serum concentrations of CCGFs in one hundred and eighty serum samples were 

quantified using the BioRad Pro 27-Plex Human Cytokines Assay. Basic analyses 

(including median, univariate, multivariate, and ROC analyses) were performed to 

determine the serum expression and diagnostic accuracies of each CCGF for PDAC 

against the following disease groups: HC, CP, DC, and all controls. Subsequent 

analyses were designed to evaluate the impact of combining several CCGF markers 

into a single combined marker on the diagnostic accuracy for PDAC. This was 

achieved by dividing the study into a Discovery Phase and a Validation Phase 

(Figure 3.1).  

In the Discovery Phase, CCGF data from 120 randomly selected serum samples were 

analysed by stepwise regression model to select candidate markers for combination 

by two independent modelling methods (multinomial logistic regression model [M-

LR] and artificial neural network model [NN]) to generate two independent disease-

predicting algorithms. The accuracies of the disease-predicting algorithms for DPAC 

were represented by ROC-AUC. In the Validation Phase, the two disease-predicting 

algorithms were directly applied to the CCGF data from the sixty remaining samples 

and their diagnostic accuracies assessed by ROC. 

A separate analysis was performed to compare the diagnostic accuracy of the current 

biomarker standard, CA19-9, against those of the individual and combined CCGF 

markers. This was achieved by completing the quantification of serum CA19-9 using 

a CA19-9 ELISA assay and by statistical comparison using ROC-AUCs, sensitivities, 

and specificities. Furthermore, the effects of including CA19-9 as the fifth marker in 

the generation of the disease-predicting algorithms on the diagnostic accuracy in the 

Discovery and Validation Phases will be determined. Finally, the impact of each 

candidate biomarker on the M-LR CCGF algorithm and the M-LR CCGF-CA19-9 

algorithm will be evaluated by comparing the diagnostic accuracies of the algorithms 

when each of the four CCGFs was independently removed (section 3.4.5).  
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Figure 3.1- Study design. 180 serum samples from the Liverpool Pancreatic Cancer 
database were quantified for 27 serum CCGFs in this study, of these, 90 were PDAC, 90 

were non-cancer: 30 CP, 30 DC, and 30 HC. A basic analysis was performed to 

determine the serum expression and diagnostic accuracy of CCGFs for pancreatic 
cancer against all control groups using univariate, multivariate, and ROC analyses. The 

study is then divided into 2 Phases. In the Discovery Phase, CCGF data from 120 serum 

samples was used to select potential CCGF markers for combination by stepwise 

regression. A disease predicting algorithm was then generated using two independent 
modelling methods (multinomial logistic regression [M-L] and artificial neural network 

[NN] models). Finally, the diagnostic accuracies of the two models were determined 

using ROC. The Validation Phase aimed to validate the diagnostic accuracies of CCGFs 
as individual markers of PDAC and to validate the Discovery Phase disease-predicting 

algorithms using an independent sample set consisting of 60 serum samples. Results 

were then compared to CA19-9 in a separate section. 
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3.3.3 Quantification of Cytokines, Chemokines, and Growth Factors 

A panel of 27 CCGFs were simultaneously quantified by the BioPlex Pro 27-Plex 

Human Cytokines Assay kit (BioRad Laboratories Inc, California, USA). The 

CCGFs analysed were Platelet-Derived Growth Factor (PDGF), Interleukin (IL)1, 

IL-1 receptor alpha (IL-1R, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, 

IL-13, IL-15, IL-17, Eotaxin, Basic Fibroblast Growth Factor (FGF-b), Granulocyte 

Colony-Stimulating Factor (G-CSF), Granulocyte-Macrophage Colony-Stimulating 

Factor (GM-CSF), Interferon Gamma (IFN-), Monocyte Chemotactic Protein-1 

(MCP-1), Macrophage Inflammatory Protein 1-alpha (MIP-1, Macrophage 

Inflammatory Protein 1-beta (MIP-1, Interferon Gamma Inducible Protein-10 (IP-

10), Vascular Endothelial Growth Factor (VEGF), Tumour Necrosis Factor-alpha 

(TNF-), and Regulated Upon Activation Normal T-Cell Expressed And Secreted 

Protein (RANTES). This BioPlex Pro 27-Plex Human Cytokines Assay kit provides 

a mixture of 27 magnetic micro-bead populations pre-coated with antibodies specific 

to a corresponding CCGF. Each bead population is internally dyed with a mixture of 

red and infrared dye, which produces a unique signature that can be identified by the 

dual laser technology in the Luminex-200 system. Serum samples were analysed in 

duplicate using a standardised assay protocol:  

3.3.3.1 Sample and Standard Preparation  

All samples and standards were thawed and kept on ice until ready to use. 30µl of 

each serum sample was diluted by a factor of four using 90µl of sample diluent. 

Premixed lyophilized standard was reconstituted in 500µL of sample diluent, 

vortexed for 3 seconds then incubated on ice for 30 minutes. 128µl of reconstituted 

standard was added to 72µl of standard diluent in a 1.5ml Eppendorf microfuge tube 

followed by seven 1/4 serial dilutions to generate eight standard references. 200µl of 

standard diluent was aliquoted for use as a “Blank” sample (Figure 3.2).  

  

Figure 3.2- (image from BioPlex Pro Cytokines Assay manual). Serial dilutions of reconstituted lyophilized 
standards. 128 µl of Reconstituted standard was added to 72µl of standard diluent followed by seven 1/4 

serial dilutions to generate 8 standard references. 150µl of standard diluent was used for blank sample. 
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3.3.3.2 Coupled magnetic beads, detection antibody, and Streptavidin-PE 

preparation 

Coupled magnetic beads (10x) were centrifuged for 30 seconds and then re-

suspended using a pipette. 575µl of coupled beads (10x) were diluted to 1x 

concentration using 5175µl of assay buffer. Reconstituted coupled beads were kept 

on ice and protected from light until ready for use. 

The detection antibody was prepared when the magnetic coupled beads were 

incubated with standard/sample. Detection antibody (10x) was centrifuged for 30 

seconds before 300µl of detection antibody (10x) was diluted with 2700µl of 

detection antibody diluent into 1x concentration. The diluted serum detection 

antibody was protected from light until ready for use. 

The Streptavidin-PE was prepared when the magnetic coupled beads were incubated 

with detection antibody. Streptavidin-PE (100x) was centrifuged for 30 seconds 

before 60µl of Streptavidin-PE (100x) was diluted with 5940µ l of assay buffer into 

1x concentration. The diluted Streptavidin-PE (1x) was protected from light until 

ready for use. 

3.3.3.3 Assay Procedure 

The 96-well multiplex plate was pre-wet with 100µl of assay buffer. The buffer was 

removed by vacuum manifold and the bottom of the plate was dried using a clean 

paper towel. The coupled beads (1x) were vortexed for 30 seconds and 50µl was 

aliquoted into each of well. The plate was washed (and vacuum emptied) twice with 

100µl of wash buffer. 40µl of prepared standards, blank, or serum samples were 

vortexed for 3 seconds before being added to each well, and incubated at room 

temperature on a shaker (900rpm) for 30 minutes. The plate was washed (and 

vacuum emptied) three-times with 100µl of wash buffer. 25µl of 1x detection 

antibody (for preparation see section 3.3.3.2) was vortexed for 3 seconds before 

being added to each well and incubated on a shaker (900rpm) at room temperature 

for 30 minutes. The plate was washed (and vacuum emptied) three-times with 100µ l 

of wash buffer. 50µl of Streptavidin-PE (1x) was vortexed for 3 seconds before being 

added to each well and incubated on a shaker (900rpm) at room temperature for 10 

minutes. The plate was washed (and vacuum emptied) three-times with 100µl of 

wash buffer. 125µl of assay buffer was added to each well and shaken (900rpm) for 
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30 seconds at room temperature before detection by the LUMINEX-200 systems 

(Luminex Co, Austin, USA).  

The LUMINEX-200 was calibrated per experiment and the Bio-Plex Manager 

Software Version 5.0 was used covert assay data to serum concentration in pg/ml.  

3.3.4 Quantification of serum CA19-9 by ELISA 

The serum concentration of CA19-9 in 141 serum samples has been previously 

measured, either at diagnosis or in the department by Dr Sarah Tonack. The current 

study quantified the remaining 39 samples using a CA19-9 ELISA kit (Alpha 

Diagnostics).  

A 96-well streptavidin-coated ELISA plate was pre-wet with 200µl of wash buffer. 

Then 25µl of standards (provided by the kit) and sample were aliquoted into the 

appropriate wells in duplicate followed by 100µl of biotinylated anti-CA19-9 

antibody. After the mixture was allowed to incubate at room temperature for 60 

minutes, the content was discarded and the wells were washed five times manually 

using 200µl of wash buffer per well. 100µl of anti-CA19-9-HRP conjugate was then 

added to each well. The content was mixed and allowed to incubate at room 

temperature for a further 60 minutes. Once completed, the wells were washed 

manually five times using 200µl of wash buffer and incubated with 100µl of 

chromogenic HRP substrate solution for 30 minutes at room temperature. This will 

cause a varying degree of colour shift from clear to blue, which is directly 

proportional to the concentration of CA19-9. After incubation, the reaction was 

stopped by adding 50µl of stop solution to all wells and mixed gently for 3-10 

seconds. The stop solution changes the colour of the solution from blue to yellow and 

the intensity of yellow is again proportional to the serum concentration of CA19-9. 

Finally, an ELISA reader was used to quantify the colour intensity at a wavelength of 

450nm. 

The ELISA readings were exported to Microsoft Excel for further analysis. A linear 

equation was generated using the ELISA readings of the standard references with 

known concentrations of CA19-9. This equation was then used to convert ELISA 

readings from the samples into estimated serum CA19-9 concentrations. 
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3.3.5 Statistical Analysis 

3.3.5.1 General statistics, univariate, and multivariate analyses 

All continuous data (e.g. Age, serum analyte levels) were classified as non-

parametric data and were summarised using median and inter-quartile range (IQR). 

The Kruskal-Wallis test was used to determine whether there is a significant 

difference in non-parametric distribution between multiple (>2) groups (e.g. age 

versus PDAC, CP, HC, and DC). For univariate analysis, the Wilcoxon‟s test was 

used to assess any difference in the distribution of a non-parametric variable (e.g. age) 

between two groups and the Fisher‟s Exact test was used to assess the difference 

between two categorical variables (e.g. gender versus PDAC/Control). Variables that 

were significant on univariate analysis were further tested using multivariate analysis 

to identify any independent variables. For univariate and multivariate analyses, a p-

value of <0.05 was considered statistically significant.  

 

In Hierarchical Cluster Analysis, data from each variable was first standardised by 

mean and standard deviation to give a value between -1 and 1. The standardised 

values were then analysed by Ward‟s minimal variance method and represented 

graphically in a heat map.  

Data from the current study were also graphically represented using box plots, 

mosaic plots, logistic plots, and receiver-operator characteristic (ROC) curves. 

 

3.3.5.2 Correlation analysis 

The correlation between age and the relative serum concentration of CCGFs were 

assessed using Kendall Tau () multivariate correlation analysis for non-parametric 

tied data. The Kendall  coefficient ranges from -1 to 0 to 1 where a  coefficient of -

1 or 1 represents a perfect negative or positive correlation, respectively, and a 

coefficient of 0 indicates that there is no correlation. The associated p-value 

represents how confident the test is that the actual value would be more negative or 

more positive than then calculated value. In the current study, a Kendall Tau 

coefficient of >0.5 was regarded as significant. 
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3.3.5.3 Diagnostic accuracies of CCGFs for PDAC  

The Receiver-Operator Characteristic (ROC) Area Under Curve (AUC) was used to 

assess the diagnostic accuracies of the markers. A ROC-AUC of >0.70 was 

considered statistically significant. An optimal cut-off value was obtained from the 

ROC analysis and the relative sensitivity and specificity at the optimal cut-off was 

reported.  

3.3.5.4 Selection of candidate markers 

Cytokine markers, which showed significance on univariate analyses were analysed 

in the Discovery Phase using the Stepwise Regression model with parameters of 

<0.05 for entering and >0.05 for leaving the model. Briefly, at each step, the 

cytokine marker with the lowest Wald/Score p-value that is also <0.05 is entered into 

the model. The Wald/Score p-values for each cytokine marker were then recalculated 

and a marker will leave the model if it has a p-value of >0.05. This process is iterated 

until no further cytokine marker can enter or leave the model.  

3.3.5.5 Generating disease-predicting mathematical algorithms: M-LR and NN 

The four most significant cytokine markers selected by the stepwise regression 

model were used to generate two independent disease-predicting algorithms using 

two separate modelling methods: Multinomial Logistic Regression (M-LR) model 

and Artificial Neural Network (NN) model. Both models are designed to estimate the 

probability of PDAC using the serum concentration of selected CCGF markers. The 

resulting probability value ranges from zero to one where an estimated probability 

value close to zero indicates that the sample is likely to be a non-cancer sample 

whereas a probability value closer to one suggests a pancreatic cancer sample. 

Briefly, the M-LR model combines the markers using a simple logistic function with 

the appropriate coefficients. This function was then transformed mathematically into 

a value ranging from zero to one. The artificial neural network model utilizes 

multiple complex logistic functions. The input data (i.e. serum concentrations from 

selected CCGFs) were randomly entered into a pre-defined number of „hidden nodes‟. 

At each hidden node, a logistic function was generated. The logistic functions from 

all the nodes were then combined into a single logistic function and transformed into 

a probability value, which ranges from zero to one.  
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3.3.5.6 Diagnostic accuracies of the models 

The optimal cut-off values for the estimated probability of pancreatic cancer 

generated by the models were determined by ROC. A sample with an estimated 

probability above the cut-off value was classified as pancreatic cancer and a 

probability value below the cut-off was classified as control. The sensitivity and 

specificity of the predicted classifications were the then calculated and the results 

were graphically represented as mosaic plots. 

            
                        

                                                  
 

             
                        

                                                  
 

 

3.3.5.7 Software for statistical analyses 

All statistical analyses were performed using JMP version 8.02 (SAS, 

Buckinghamshire, UK). In addition, Microsoft Excel 2007 (Microsoft Limited, 

Berkshire, UK) was used to graphically represent the data. 
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3.4 Results 

3.4.1 Basic analysis- CCGFs as individual markers of PDAC 

3.4.1.1 Diagnostic accuracy of individual CCGFs for PDAC against HC 

Results from the basic analysis of the twenty-seven CCGFs and CA19-9 serum 

concentration data obtained using the 180 serum samples are summarised in Table 

3.4. Fourteen CCGFs and CA19-9 were observed to have a significantly different 

serum concentration between the PDAC group and the HC control subgroup, 

(Univariate by Wilcoxon‟s Test, p<0.05). In addition to CA19-9, eleven CCGFs 

were identified as up regulated in PDAC compared to HC including PDGF, IL-4, IL-

6, IL-8, IL-9, IL-10, IL-17, IFN-, IP-10, MIP-1 and VEGF. Furthermore, three 

CCGFs were down regulated in PDAC compared to HC including IL-1, IL-5, and 

IL-13.  

Subsequent analyses assessed the diagnostic accuracies of the twenty-seven CCGFs 

and CA19-9 for differentiating between PDAC and HC. Results from ROC analysis 

showed that seven CCGFs and CA19-9 had a ROC-AUC of >0.7 and are therefore 

good discriminators between the two disease groups. In particular, IP-10, IFN-, and 

CA19-9 were highly accurate markers of PDAC with ROC-AUCs of 0.90, 0.91, and 

0.95, respectively (Table 3.4).  

We report that whilst IFN-achieved a sensitivity of 0.89 and a specificity of 0.87 at 

the optimal cut off value of 65.44 pg/ml, CA19-9 remained the most accurate single 

marker of PDAC against HC with a sensitivity of 0.92 and a specificity of 0.97 at a 

cut-off of 16 U/ml (Figure 3.3) 

                                                                                                                                                                                                                                                                             

  

Figure 3.3- Logistic Plot showing the diagnostic accuracies of IFN-g (left) and CA19-9 (right) for 

PDAC against HC. Optimal cut-off as determined by ROC (C/O). Individuals with PDAC are 

coloured Blue and individuals in the HC group are in Red. 
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Table 3.4- Diagnostic potential of CCGFs and CA19-9 for PDAC against HC 

A
n

al
yt

e 

Quartile (pg/ml) 

Univariate 
(p) 

Reg. 
Diagnostic accuracy 

Healthy Control PDAC 

25th  Median 75th  25th  Median 75th  AUC C/O Sens. Spec. 

PDGF 9037.4 12048.2 16887.7 12415.5 15557.1 20338.0 0.013 Up 0.65 12463.50 0.76 0.53 

IL-1 1.1 1.5 1.9 0.0 0.0 0.0 <0.001 Down 0.19 2.41 0.14 0.97 

IL-1R 40.2 76.5 108.1 32.1 70.8 160.3 0.687 - 0.53 112.74 0.36 0.80 

IL-2 0.0 0.0 0.0 0.0 0.0 0.0 0.313 - 0.52 2.78 0.03 1.00 

IL-4 1.3 1.7 2.0 1.5 3.4 6.2 <0.001 Up 0.74 2.40 0.62 0.97 

IL-5 1.3 1.5 1.9 0.0 0.0 0.0 <0.001 Down 0.19 3.91 0.13 0.97 

IL-6 1.9 3.3 5.4 2.6 9.5 21.0 <0.001 Up 0.72 7.72 0.71 0.93 

IL-7 2.7 4.4 5.7 0.0 9.5 24.6 0.094 - 0.60 8.62 0.54 0.97 

IL-8 6.8 8.3 10.7 10.7 23.6 40.3 <0.001 Up 0.77 16.18 0.64 1.00 

IL-9 0.0 0.0 0.0 0.0 0.0 11.2 0.007 Up 0.65 1.34 0.46 0.87 

IL-10 0.0 0.0 0.0 0.0 2.4 18.7 <0.001 Up 0.77 0.86 0.59 0.97 

IL-12 5.0 11.1 18.5 0.0 13.2 38.4 0.946 - 0.50 22.92 0.39 0.87 

IL-13 0.0 0.2 2.7 0.0 0.0 0.0 0.004 Down 0.35 5.66 0.12 0.97 

IL-15 0.0 0.0 0.0 0.0 0.0 0.0 0.091 - 0.54 0.40 0.09 1.00 

IL-17 0.0 0.0 0.0 0.0 0.0 136.9 <0.001 Up 0.72 32.27 0.44 1.00 

Eotaxin 74.1 109.0 166.8 0.0 106.8 187.6 0.394 - 0.55 0.00 0.38 1.00 

FGF Basic 0.0 0.0 0.0 0.0 0.0 0.0 0.237 - 0.53 11.08 0.09 1.00 

G-CSF 0.0 0.0 3.4 0.0 0.0 1.7 0.415 - 0.46 22.82 0.07 1.00 

GM-CSF 0.0 0.0 0.0 0.0 0.0 1.8 0.328 - 0.55 0.53 0.30 0.80 

IFN- 38.2 47.4 59.6 90.3 153.1 247.5 <0.001 Up 0.91 65.44 0.89 0.87 

IP-10 320.6 448.1 700.6 880.2 1368.9 2298.6 <0.001 Up 0.90 749.31 0.84 0.80 

MCP-1 18.4 31.6 47.1 8.5 40.3 64.7 0.799 - 0.52 45.81 0.40 0.77 

MIP-1 0.0 0.0 0.0 0.0 0.0 0.0 0.313 - 0.52 17.15 0.03 1.00 

MIP-1 59.8 83.4 127.9 83.0 111.4 161.3 0.002 Up 0.69 68.57 0.91 0.40 

RANTES 6638.6 7709.4 9163.9 6059.4 7421.9 9591.6 0.451 - 0.55 6539.75 0.40 0.79 

TNF- 0.0 0.0 0.0 0.0 0.0 0.0 0.301 - 0.53 30.45 0.08 1.00 

VEGF 16.8 52.5 108.1 35.2 167.2 307.0 0.002 Up 0.69 153.80 0.54 0.90 

CA19-9 2.0 4.5 9.3 49.0 188.1 656.5 <0.001 Up 0.95 16.40 0.92 0.97 

Note: Sensitivity (Sens.); Specificity (Spec.); Wilcoxon’s Test p-value (Univariate, (P)); Inter-quartile range= 

25th to 75th quartile; Receiver-Operator Characteristic Area Under Curve (AUC); Optimal Cut-off as 

determined by ROC (C/O); Regulation in PDAC (Reg.)  
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3.4.1.2 Diagnostic accuracy of individual CCGFs for PDAC against CP 

Results from the basic analysis of the twenty-seven CCGFs and CA19-9 serum 

concentration data obtained using the 180 serum samples are summarised in Table 

3.5. Thirteen CCGFs and CA19-9 were observed to have a significantly different 

serum concentration between the PDAC group and the CP control subgroup, 

(Univariate by Wilcoxon‟s Test, p<0.05). In addition to CA19-9, seven CCGFs were 

identified as up regulated in PDAC compared to CP including IL-4, IL-8, IL-10, IL-

17, IFN-, IP-10, and VEGF. Furthermore, six CCGFs were down regulated in 

PDAC compared to CP including IL-1, IL-1R, IL-5, IL-13, G-CSF, and Eotaxin.  

Subsequent analyses assessed the diagnostic accuracies of the twenty-seven CCGFs 

and CA19-9 for differentiating between PDAC and CP. Results from ROC analysis 

showed that four CCGFs and CA19-9 had a ROC-AUC of >0.7 and are therefore 

good discriminators between the two disease groups. In particular, IL-1, IFN-, and 

CA19-9 achieved a relatively high accuracy for diagnosing PDAC with ROC-AUCs 

of 0.83, 0.83, and 0.84, respectively. Furthermore, we report that IL-1 and IFN-

achieved similar sensitivity (0.77 and 0.76, respectively) and specificities (1.00 and 

0.90) at optimal cut-off values of 0.00 pg/ml and 90.73 pg/ml compared to CA19-9 

(sensitivity, 0.78; specificity; 0.83 at cut-off of 45.8 U/ml; Figure 3.4). 

  

Figure 3.4- Logistic Plot showing the diagnostic 

accuracies of [A] IL-1b, [B] IFN-g, and [C] CA19-

9 for PDAC against CP. Optimal cut-off as 

determined by ROC (C/O). Individuals with PDAC 

are coloured Blue and individuals in the CP group 

are in Red. 
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Table 3.5- Diagnostic potential of CCGFs and CA19-9 for PDAC against CP 

A
n

al
yt

e 

Quartile (pg/ml) 

Univariate 
(p) 

Reg. 
Diagnostic accuracy 

Chronic Pancreatitis PDAC 

25
th

 Median 75
th

 25
th

 Median 75
th

 
AUC C/O Sens. Spec. 

PDGF 7996.0 13657.4 22684.7 12415.5 15557.1 20338.0 0.163 - 0.59 8989.14 0.93 0.33 

IL-1 1.6 1.9 2.2 0.0 0.0 0.0 <0.001 Down 0.83 0.00 0.77 1.00 

IL-1R 87.3 111.7 204.6 32.1 70.8 160.3 0.026 Down 0.36 221.72 0.18 0.87 

IL-2 0.0 0.0 0.0 0.0 0.0 0.0 0.313 - 0.52 2.78 0.03 1.00 

IL-4 1.4 1.8 2.2 1.5 3.4 6.2 0.003 Up 0.68 2.40 0.62 0.87 

IL-5 1.7 2.1 2.9 0.0 0.0 0.0 <0.001 Down 0.17 6.11 0.08 1.00 

IL-6 5.1 8.5 17.8 2.6 9.5 21.0 0.879 - 0.51 7.72 0.71 0.47 

IL-7 4.4 5.8 8.2 0.0 9.5 24.6 0.309 - 0.56 14.07 0.47 0.97 

IL-8 12.3 15.6 21.1 10.7 23.6 40.3 0.039 Up 0.63 29.46 0.40 0.97 

IL-9 0.0 0.0 18.9 0.0 0.0 11.2 0.717 - 0.49 16.86 0.80 0.27 

IL-10 0.0 0.0 1.7 0.0 2.4 18.7 0.004 Up 0.67 1.93 0.54 0.87 

IL-12 3.1 12.0 24.2 0.0 13.2 38.4 0.729 - 0.48 20.97 0.42 0.73 

IL-13 0.2 1.9 3.9 0.0 0.0 0.0 <0.001 Down 0.26 9.59 0.09 1.00 

IL-15 0.0 0.0 0.0 0.0 0.0 0.0 0.091 - 0.54 0.40 0.09 1.00 

IL-17 0.0 0.0 0.0 0.0 0.0 136.9 <0.001 Up 0.70 32.27 0.44 1.00 

Eotaxin 106.2 132.6 205.7 0.0 106.8 187.6 0.045 Down 0.62 0.00 0.38 0.97 

FGF Basic 0.0 0.0 0.0 0.0 0.0 0.0 0.637 - 0.48 123.88 0.03 1.00 

G-CSF 0.0 1.0 10.1 0.0 0.0 1.7 0.010 Down 0.65 7.28 0.88 0.43 

GM-CSF 0.0 0.0 2.9 0.0 0.0 1.8 0.994 - 0.50 21.32 0.08 0.97 

IFN- 35.8 52.3 73.9 90.3 153.1 247.5 <0.001 Up 0.83 90.73 0.76 0.90 

IP-10 401.5 588.0 1053.8 880.2 1368.9 2298.6 <0.001 Up 0.81 797.21 0.83 0.67 

MCP-1 27.5 50.3 101.2 8.5 40.3 64.7 0.061 - 0.61 9.99 0.27 1.00 

MIP-1 0.0 0.0 0.0 0.0 0.0 0.0 0.977 - 0.50 17.15 0.03 1.00 

MIP-1 65.0 136.0 188.2 83.0 111.4 161.3 0.585 - 0.53 161.65 0.77 0.47 

RANTES 6159.9 8188.9 8883.9 6059.4 7421.9 9591.6 0.752 - 0.54 10996.50 0.18 0.90 

TNF- 0.0 0.0 0.0 0.0 0.0 0.0 0.530 - 0.48 326.57 0.04 1.00 

VEGF 17.3 58.2 145.8 35.2 167.2 307.0 0.007 Up 0.66 164.89 0.51 0.83 

CA19-9 10.3 21.5 42.5 54.8 225.0 721.5 <0.001 Up 0.84 45.80 0.78 0.83 

Note: Sensitivity (Sens.); Specificity (Spec.); Wilcoxon’s Test p-value (Univariate, (P)); Inter-quartile range= 25th 
to 75th quartile; Receiver-Operator Characteristic Area Under Curve (AUC); Optimal Cut-off as determined by 
ROC (C/O); Regulation in PDAC (Reg.) 
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3.4.1.3 Diagnostic accuracy of individual CCGFs for PDAC against biliary 

obstruction (DC) 

Results from the basic analysis of the twenty-seven CCGFs and CA19-9 serum 

concentration data obtained using the 180 serum samples are summarised in Table 

3.6. Thirteen CCGFs and CA19-9 were observed to have a significantly different 

serum concentration between the PDAC group and the DC (biliary obstruction) 

control subgroup, (Univariate by Wilcoxon‟s Test, p<0.05). In addition to CA19-9, 

seven CCGFs were identified as up regulated in PDAC compared to DC including 

PDGF, IL-4, IL-10, IL-17, IFN-, IP-10, and VEGF. Furthermore, six CCGFs were 

down regulated in PDAC compared to DC including IL-1, IL-1R, IL-5, IL-13, G-

CSF, MCP-1, and IL-13.  

Subsequent analyses assessed the diagnostic accuracies of the twenty-seven CCGFs 

and CA19-9 for differentiating between PDAC and DC. In additional to CA19-9m 

results from ROC analysis showed that four CCGFs had a ROC-AUC of >0.7 

including IL-17, PDGF, IFN-, and IP-10, which indicated that they are good 

discriminators of PDAC against biliary obstruction. In particular, IFN-achieved a 

much higher accuracy for diagnosing PDAC against DC (ROC-AUC, 0.86 and 0.75, 

respectively). Furthermore, we report that IFN-is the most accurate diagnostic 

marker for PDAC against DC with a sensitivity of 0.74 and a specificity of 0.87 at a 

cut-off of 92.51 pg/ml whereas CA19-9 only achieved a sensitivity of 0.87 and a 

specificity of 0.57 at an optimal cut-off of 33U/ml (See Figure 3.5). 

  

Figure 3.5- Logistic Plot showing the diagnostic accuracies of IFN-g (left) and CA19-9 (right) 

for PDAC against DC. Optimal cut-off as determined by ROC (C/O). Individuals with PDAC are 

coloured Blue and individuals in the HC group are in Red. 
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Table 3.6- Diagnostic potential of CCGFs and CA19-9 for PDAC against DC 

A
n

al
yt

e 

Quartile (pg/ml) Univariate 

Reg. 
Diagnostic accuracy 

Disease Control PDAC (p) 

25th Median 75th 25th Median 75th 
 

AUC C/O Sens. Spec. 

PDGF 2397.6 7893.3 16658.8 12415.5 15557.1 20338.0 <0.001 Up 0.76 9198.56 0.91 0.60 

IL-1 1.2 1.8 2.2 0.0 0.0 0.0 <0.001 Down 0.18 5.67 0.08 1.00 

IL-1R 80.7 147.5 242.4 32.1 70.8 160.3 0.007 Down 0.66 104.02 0.63 0.70 

IL-2 0.0 0.0 0.0 0.0 0.0 0.0 0.992 - 0.50 10.55 0.99 0.03 

IL-4 0.5 1.5 2.1 1.5 3.4 6.2 <0.001 Up 0.70 2.40 0.62 0.90 

IL-5 0.7 1.8 2.6 0.0 0.0 0.0 <0.001 Down 0.19 4.97 0.10 1.00 

IL-6 6.8 11.4 17.2 2.6 9.5 21.0 0.543 - 0.46 56.59 0.13 0.97 

IL-7 1.1 5.7 9.8 0.0 9.5 24.6 0.228 - 0.57 13.56 0.48 0.90 

IL-8 13.0 19.4 29.2 10.7 23.6 40.3 0.606 - 0.53 24.64 0.48 0.70 

IL-9 0.0 11.6 25.4 0.0 0.0 11.2 0.051 - 0.62 11.10 0.76 0.53 

IL-10 0.0 0.3 1.9 0.0 2.4 18.7 0.008 Up 0.66 6.22 0.41 0.97 

IL-12 3.4 13.4 27.2 0.0 13.2 38.4 0.975 - 0.50 37.86 0.27 0.97 

IL-13 0.2 2.5 4.0 0.0 0.0 0.0 <0.001 Down 0.26 15.83 0.07 1.00 

IL-15 0.0 0.0 0.0 0.0 0.0 0.0 0.091 - 0.54 0.40 0.09 1.00 

IL-17 0.0 0.0 0.0 0.0 0.0 136.9 <0.001 Up 0.72 4.59 0.47 0.97 

Eotaxin 64.1 132.3 158.6 0.0 106.8 187.6 0.350 - 0.45 169.60 0.30 0.83 

FGF 
Basic 

0.0 0.0 0.0 0.0 0.0 0.0 0.237 - 0.53 11.08 0.09 1.00 

G-CSF 0.0 3.3 9.1 0.0 0.0 1.7 0.006 Down 0.64 2.42 0.80 0.50 

GM-CSF 0.0 0.0 7.1 0.0 0.0 1.8 0.111 - 0.42 116.61 0.03 1.00 

IFN- 26.9 47.6 79.4 90.3 153.1 247.5 <0.001 Up 0.86 92.51 0.74 0.87 

IP-10 461.1 571.1 951.1 880.2 1368.9 2298.6 <0.001 Up 0.79 733.62 0.86 0.63 

MCP-1 28.7 56.0 99.7 8.5 40.3 64.7 0.014 Down 0.65 12.80 0.28 1.00 

MIP-1 0.0 0.0 0.0 0.0 0.0 0.0 0.313 - 0.52 17.15 0.03 1.00 

MIP-1 73.6 107.4 158.9 83.0 111.4 161.3 0.544 - 0.54 80.88 0.81 0.37 

RANTES 4648.6 6196.6 8911.7 6059.4 7421.9 9591.6 0.063 - 0.39 17980.18 0.96 0.13 

TNF- 0.0 0.0 0.0 0.0 0.0 0.0 0.093 - 0.54 2.68 0.09 1.00 

VEGF 14.0 49.3 111.6 35.2 167.2 307.0 <0.001 Up 0.70 197.16 0.48 0.93 

CA19-9 8.5 24.5 128.6 49.0 188.1 656.5 <0.001 Up 0.75 33.00 0.87 0.57 

Note: Sensitivity (Sens.); Specificity (Spec.); Wilcoxon’s Test p-value (Univariate, (P)); Inter-quartile range= 25th 
to 75th quartile; Receiver-Operator Characteristic Area Under Curve (AUC); Optimal Cut-off as determined by 
ROC (C/O); Regulation in PDAC (Reg.) 
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3.4.1.4 Diagnostic accuracy of individual CCGFs for PDAC against all Controls 

Results from the basic analysis of the twenty-seven CCGFs and CA19-9 serum 

concentration data obtained using the 180 serum samples are summarised in Table 

3.7. Fourteen CCGFs and CA19-9 were observed to have a significantly different 

serum concentration between the PDAC group and the overall control group, 

(Univariate by Wilcoxon‟s Test, p<0.05). In addition to CA19-9, nine CCGFs were 

identified as up regulated in PDAC compared to CP including PDGF, IL-4, IL-8, IL-

10, IL-17, IL-15, IFN-, IP-10, and VEGF. Furthermore, four CCGFs were down 

regulated in PDAC compared to Controls including IL-1, IL-5, IL-13, and G-CSF.  

Subsequent analyses assessed the diagnostic accuracies of the twenty-seven CCGFs 

and CA19-9 for differentiating between PDAC and Controls. Results from ROC 

analysis showed that four CCGFs and CA19-9 had a ROC-AUC of >0.7 and are 

therefore good discriminators between the two disease groups. In particular, IFN-, 

and CA19-9 achieved a relatively high accuracy for diagnosing PDAC with ROC-

AUCs of 0.87 and 0.85, respectively. Furthermore, we report that IFN- and CA19-9 

have comparable diagnostic accuracy at their optimal cut-off values for PDAC 

against Control subjects with sensitivities of 0.77 and 0.87 and specificities of 0.89 

and 0.73, respectively (Figure 3.6). 

A multivariate analysis was performed on CCGFs, which were significant on 

univariate analysis to identify independent discriminators of PDAC amongst control 

subjects. Results indicate that IL-4, IL-17, G-CSF, and IL-10 were independently 

significant as diagnostic markers of PDAC (Table 3.7).  

 

  

Figure 3.6- Logistic Plot showing the diagnostic accuracies of IFN-g (left) and CA19-9 (right) 

for PDAC against all controls. Optimal cut-off as determined by ROC (C/O). Individuals with 

PDAC are coloured Blue and individuals in the HC group are in Red. 
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Table 3.7- Diagnostic potential of CCGFs and CA19-9 for PDAC against all Controls 

A
n

a
ly

te
 Quartile (pg/ml) 

Uni 

(p)  
Multi 

(p) 

Reg. 

Diagnostic accuracy 

Disease Control PDAC 

25
th

 Median 75
th

 25
th

 Median 75
th

 AUC C/O Sens. Spec. 

PDGF 6767.2 11958.9 17565.9 12415.5 15557.1 20338.0 <0.001 0.294 Up 0.67 9198.56 0.91 0.40 

IL-1 1.3 1.7 2.2 0.0 0.0 0.0 <0.001 0.902 Down 0.18 5.67 0.08 0.98 

IL-1R 60.7 106.0 190.6 32.1 70.8 160.3 0.034 0.862 Down 0.41 316.37 0.12 0.91 

IL-2 0.0 0.0 0.0 0.0 0.0 0.0 0.316 - - 0.51 2.78 0.03 0.99 

IL-4 1.2 1.7 2.0 1.5 3.4 6.2 <0.001 <0.001 Up 0.73 2.40 0.62 0.91 

IL-5 1.3 1.8 2.6 0.0 0.0 0.0 <0.001 0.338 Down 0.18 4.69 0.12 0.96 

IL-6 3.8 6.3 13.6 2.6 9.5 21.0 0.143 - - 0.56 7.72 0.71 0.58 

IL-7 3.3 5.2 8.0 0.0 9.5 24.6 0.068 - - 0.58 13.56 0.48 0.93 

IL-8 8.8 13.6 20.2 10.7 23.6 40.3 0.001 0.756 Up 0.64 23.30 0.52 0.82 

IL-9 0.0 0.0 17.0 0.0 0.0 11.2 0.639 - - 0.52 2.47 0.44 0.62 

IL-10 0.0 0.0 0.7 0.0 2.4 18.7 <0.001 0.033 Up 0.70 1.93 0.54 0.87 

IL-12 3.5 11.7 21.8 0.0 13.2 38.4 0.885 - - 0.49 20.71 0.43 0.74 

IL-13 0.0 1.2 3.8 0.0 0.0 0.0 <0.001 0.481 Down 0.29 5.66 0.12 0.94 

IL-15 0.0 0.0 0.0 0.0 0.0 0.0 0.004 1.00 Up 0.54 0.40 0.09 1.00 

IL-17 0.0 0.0 0.0 0.0 0.0 136.9 <0.001 <0.001 Up 0.71 36.76 0.43 1.00 

Eotaxin 82.2 123.2 180.0 0.0 106.8 187.6 0.076 - - 0.58 0.00 0.38 0.99 

FGF Basic 0.0 0.0 0.0 0.0 0.0 0.0 0.387 - - 0.52 11.08 0.09 0.97 

G-CSF 0.0 0.9 8.5 0.0 0.0 1.7 0.004 <0.001 Down 0.38 103.72 0.03 1.00 

GM-CSF 0.0 0.0 3.0 0.0 0.0 1.8 0.736 - - 0.49 99.65 0.04 0.99 

IFN- 36.8 48.1 71.4 90.3 153.1 247.5 <0.001 0.605 Up 0.87 88.95 0.77 0.89 

IP-10 399.8 533.4 890.8 880.2 1368.9 2298.6 <0.001 0.059 Up 0.83 797.21 0.83 0.70 

MCP-1 24.5 44.5 93.6 8.5 40.3 64.7 0.054 - - 0.58 9.99 0.27 0.99 

MIP-1 0.0 0.0 0.0 0.0 0.0 0.0 0.305 - - 0.51 17.15 0.03 1.00 

MIP-1 68.4 104.1 164.4 83.0 111.4 161.3 0.128 - - 0.57 81.26 0.80 0.39 

RANTES 5911.6 7498.2 9013.1 6059.4 7421.9 9591.6 0.688 - - 0.48 7272.12 0.49 0.55 

TNF- 0.0 0.0 0.0 0.0 0.0 0.0 0.359 - - 0.52 30.45 0.08 0.98 

VEGF 17.3 51.0 113.3 35.2 167.2 307.0 <0.001 0.120 Up 0.68 156.68 0.53 0.86 

CA19-9 4.8 13.4 41.5 49.0 188.1 656.5 <0.001 - Up 0.85 33.00 0.87 0.73 

Note: Sensitivity (Sens.); Specificity (Spec.); Univariate analysis by Wilcoxon’s Test p-value (Uni 

(P));Multivariate by Logistic Regression p-value (Multi (P)) Inter-quartile range= 25th to 75th quartile; Receiver-
Operator Characteristic Area Under Curve (AUC); Optimal Cut-off as determined by ROC (C/O); Regulation in 
PDAC (Reg.) 
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3.4.1.5 Correlation studies to determine the relationship between CCGFs 

The fourteen CCGFs, which were significant on univariate analysis, were analysed 

for non-parametric correlation. The correlation between CCGFs were analysed 

independently for the Control group (HC, CP, and DC) and the PDAC group.  

Five pairs of CCGFs were found to have a significantly positive correlation (Kendall 

 Test, >0.5 and p<0.05) in both the control group and the PDAC group. In 

particular, results from Table 3.8 and Table 3.9 suggest that regardless of the disease 

status, there seemed to be a positive correlation between the serum concentrations of 

IL-1 and IL-5 as well as between IL-4 and IFN-. It is also interesting to note that in 

general, the strength of the correlations appeared to be stronger in PDAC patients 

(Kendall Tau coefficient >0.7) compared to controls (Kendall Tau coefficient <0.65).  

In addition to non-parametric correlation studies, the relationships between 

individual CCGFs were analysed by hierarchy clustering. Results from this analysis 

confirmed the findings from the non-parametric correlation studies. Indeed, the heat 

map in Figure 3.7 identified separate three groups of CCGFs with similar patterns of 

serum expression (especially in the PDAC patients): (a) IL-10 and IL-17; (b) IL-4 

and IFN-; (c) IL-1, IL-5, and IL-13.  

Table 3.8- The correlation between individual CCGFs in the Control Group 

CCGF 1 CCGF 2 Kendall τ Prob>|τ| Plot 

IL-5  IL-1  0.6323 <0.0001              ++++++++     

IFN- IL-4  0.6089 <0.0001              ++++++++     

IL-4  IL-1  0.5386 <0.0001              +++++++      

IL-4  PDGF  0.5133 <0.0001              ++++++       

G-CSF  IL-1  0.5049 <0.0001              ++++++       
Note: Kendall Tau (t) coefficient ranges from -1 to 1 where -1 and 1 represents a perfect negative (-) and positive 

(+) correlation , respectively and a Tau coefficient of 0 represents no correlation. + under Plot represents 

positive correlation 
 

Table 3.9- The correlation between individual CCGFs in the PDAC group 

CCGF 1 CCGF 2 Kendall τ Prob>|τ| Plot 

IL-13 IL-5  0.973 <0.0001 ++++++++++++ 

IL-13 IL-1  0.968 <0.0001 ++++++++++++ 

IL-5 IL-1  0.968 <0.0001 ++++++++++++ 

IFN- IL-4  0.721 <0.0001 +++++++++    

IL-17 IL-10 0.613 <0.0001 ++++++++ 
Note: Kendall Tau (t) coefficient ranges from -1 to 1 where -1 and 1 represents a perfect negative (-) and 

positive (+) correlation , respectively and a Tau coefficient of 0 represents no correlation. + under Plot 

represents positive correlation 
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In summary, results from initial analysis indicated that individual CCGFs were 

insufficiently accurate as standalone markers for resectable pancreatic cancer. 

However, IFN- has been shown to have a similar accuracy compared to the standard 

biomarker, CA19-9. Nevertheless, the aim of the Discovery Phase will be to 

determine the value of combining a panel of CCGF to improve the diagnostic 

accuracy of CCGFs as markers for pancreatic cancer. 

 

 

  

Figure 3.7- Two-Way Hierarchical clustering of the fourteen significant CCGFs and CA19-9. 

Individuals with resectable pancreatic cancer (PDAC) are displayed in blue and control patients in 
red. It can be seen from the heat map that the serum concentrations of IL-10 and IL-17 were similar, 

especially in individuals with PDAC. Similarly, IL-4 and IFN-g appeared to be increased in the same 

individuals with PDAC. In addition, it is also worth noting that the patterns of IL-1b, IL-5, and IL-13 

expression in the serum were almost identical to each other in individuals with PDAC.  
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3.4.2 Discovery Phase- Diagnostic potential of CCGFs in combination 

One hundred and twenty randomly selected samples were analysed in the Discovery 

Phase to identify candidate biomarkers, which can be combined as a single marker 

for the diagnosis of PDAC. 

3.4.2.1 Selection of CCGFs for combination 

The fourteen CCGFs, which were significant in section 3.4.1.4 were shortlisted for 

further selection by stepwise regression (see section 3.3.5.4). The selection process 

was completed in four steps, after which no further CCGF satisfied the criteria for 

entering or leaving the model (Table 3.10). Amongst the fourteen CCGF markers, 

four were identified as independently significant combined markers for 

discriminating PDAC against control subjects: IL-4, IL-17, G-CSF, and IP-10 (Table 

3.10). In view of the results from the previous section, which suggested that some 

CCGFs might share a common serum expression pattern, the stepwise regression 

model was repeated four times, each with one marker (IL-4, IL-17, G-CSF, or IP-10) 

excluded from the analysis. However, none of the alternative models was better than 

the original (Table 3.11).  

Cluster analysis was performed on the four CCGFs selected by the stepwise 

regression model (Candidate CCGFs) and a heat map was created to illustrate 

graphically the regulation of CCGFs in the serum of cancer and control subjects 

(Figure 3.8). It appeared from the heat map pattern that PDAC is associated with the 

up-regulation of IL-4, IL-17, or IP-10 whereas the up-regulation of G-CSF appeared 

to identify a group of control patients, some of whom have a high serum IL-4 

concentration. 

Table 3.10- CCGF markers selected by the stepwise regression model for combination 

Step Parameter Action Wald/Score p-value R
2 

1 Il-17 Entered < 0.0001 0.23 

2 IL-4 Entered < 0.0001 0.51 

3 G-CSF Entered < 0.0001 0.78 

4 IP-10 Entered    0.0003 0.86 

Note: The R2 value reflects how closely the data fits with the model 
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Table 3.11 -Alternative markers for combination 

Step Parameter Action Wald/Score p-value R2 

IL-17 excluded 

1 IP-10 Entered <0.001 0.18 

2 PDGF Entered <0.001 0.28 

3 VEGF Entered   0.012 0.32 

4 IL-4 Entered <0.001 0.46 

5 PDGF Removed   0.066 0.42 

6 IL-1 Entered <0.001 0.49 

7 G-CSF Entered <0.001 0.69 

8 IFN- Entered <0.001 0.76 

9 VEGF Removed   0.072 0.74 

10 IL-5 Entered <0.001 0.83 

11 IL-4 Removed   0.184 0.82 

IL-4 removed 

1 IL-17 Entered <0.001 0.23 
2 IFN- Entered <0.001 0.45 

3 G-CSF Entered <0.001 0.70 
4 IL-17 Removed <0.001 0.53 

G-CSF removed 
1 IL-17 Entered <0.001 0.23 
2 IL-4 Entered <0.001 0.51 
3 IL-1 Entered   0.018 0.55 

4 IP-10 Entered <0.001 0.62 
5 IFN- Entered   0.017 0.66 

6 IL-17 Removed <0.001 0.57 

IP-10 removed 
1 IL-17 Entered <0.001 0.23 
2 IL-4 Entered <0.001 0.51 
3 G-CSF Entered <0.001 0.78 
4 IL-8 Entered   0.004 0.83 
5 IL-5 Entered   0.011 0.87 
6 IL-1 Entered   0.139 0.88 
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3.4.2.2 Diagnostic accuracy of the combined CCGF marker 

Subsequent analyses combined the four candidate markers using two independent 

modelling methods: Multinomial logistic regression (M-LR) and Artificial Neural 

Network (NN). Each model generated a mathematical algorithm, which predicted the 

probability of PDAC based on the serum concentrations of IL-4, IL-17, G-CSF, and 

IP-10. The resulting probability values range from zero (likely control) to one (likely 

PDAC). The diagnostic accuracy of each model are summarised in Table 3.12 and 

graphically represented in Figure 3.9 and Figure 3.10.  

Results from the analysis of the diagnostic accuracy of the M-LR model were 

promising. In the Discovery Phase, the M-LR model achieved a very high diagnostic 

accuracy with ROC-AUCs of >0.99 for discriminating PDAC from the CP, DC, and 

HC control subgroups individually and as a combined Control group (Figure 3.9). 

Two PDAC patients were misdiagnosed as Control at the optimal cut-off value of 0.4 

(as determined by ROC) and one Control subject (from the CP subgroup) was 

misclassified as PDAC (Table 3.12). 

Results from the analysis of the diagnostic accuracy of the NN model were equally 

encouraging. In the Discovery Phase, the NN model again achieved a very high 

diagnostic accuracy with ROC-AUCs of 0.99 for discriminating PDAC from CP, DC, 

and HC control subgroups individually and as a combined Control group (Figure 

3.10). Only one Control subject (CP subject) was misdiagnosed as PDAC at the 

optimal cut-off value of 0.365 (as determined by ROC) and two individuals with 

PDAC were misclassified as Control (Table 3.12). 

Table 3.12- Diagnostic accuracy of the combined CCGF marker in the Discovery Phase 

Parameter 
Multinomial Logistic Regression 

 
Artificial Neural Network 

C/O AUC Sens. Spec. 
 

C/O AUC Sens. Spec. 
PDAC Vs CP 0.4 0.99 0.97 0.95 

 
0.365 0.99 0.97 0.95 

PDAC Vs DC 0.4 1.00 0.97 1.00 
 

0.365 1.00 0.97 1.00 

PDAC Vs HC 0.4 1.00 0.97 1.00 
 

0.365 1.00 0.97 1.00 

PDAC Vs Controls 0.4 0.99 0.97 0.98 
 

0.365 1.00 0.97 0.98 
Abbreviations: Cut-off value (C/O) for the relative Sensitivity (Sens.)and specificity (Spec.); Receiver Operatory 
Characteristics Area Under Curve (AUC); resectable pancreatic cancer (PDAC); chronic pancreatitis (CP); disease 
controls (DC, mainly obstructive jaundice); Healthy volunteers (HC) 
Note: The same algorithms (M-LR or NN) were used for each parameter.  
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Figure 3.9- Accuracy of the multinomial logistic 

regression algorithm (M-LR) for discriminating 

PDAC from control subjects. Individuals with 

PDAC were coloured blue and control subjects in 

red [A] Logistic plot of cancer status (y-axis) 

against the predicted probability of PDAC (x-axis). 

The optimal cut-off value (C/O) is 0.4 [B] A mosaic 

plot of actual diagnosis (y-axis) against predicted 

diagnosis (x-axis). [C] ROC curve of the sensitivity 

against 1-specificity of the M-LR model with an 

area under curve of 0.994.   

  

 

Figure 3.10 Accuracy of the Artificial Neural 

Network model (NN) for discriminating PDAC 

from control subjects. Individuals with PDAC 

were coloured blue and control subjects in red 

[A] Logistic plot of cancer status (y-axis) against 

the predicted probability of PDAC (x-axis). The 

optimal cut-off value (C/O) is 0.365 [B] A mosaic 

plot of actual diagnosis (y-axis) against predicted 

diagnosis (x-axis). [C] ROC curve of the 

sensitivity against 1-specificity of the NN model 

with an area under curve of 0.996.   
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3.4.3 Validation Phase- Validation of the disease-predicting algorithms 

3.4.3.1 The diagnostic accuracy of the prediction models in the Validation Phase 

Both algorithms generated in the Discovery Phase by the M-LR and the NN models 

were directly applied to the CCGF data from the sixty samples in the validation 

sample set. The resulting probability values were classified into PDAC if the 

probability was >0.4 and Control if the probability was ≤0.4. The results are 

summarized in Table 3.13, Error! Reference source not found. and Figure 3.11.  

Although the diagnostic accuracy of the M-LR combined CCGF algorithm was 

slightly reduced in the Validation Phase compared to the Discovery Phase, the M-LR 

model still performed very well with ROC-AUCs of >95% for discriminating PDAC 

from CP, DC, and HC control subgroups individually and as a combined Control 

group. Furthermore, we report that the M-LR model only misclassified two 

individuals in the PDAC group and no Control subjects were misclassified. 

Results from the validation of the NN combined CCGF algorithm were remarkable 

with ROC-AUCs of 1.00 discriminating PDAC from the CP, DC, and HC control 

subgroups as individually and as a combined Control group. Furthermore, all 

individuals in the validation sample set were correctly classified into their disease 

group at the Discovery Phase defined cut-off value of 0.4.  

 

Table 3.13- Diagnostic accuracy of the combined CCGF marker in the Validation Phase 

Parameter 
Multinomial Logistic Regression 

 
Artificial Neural Network 

C/O AUC Sens. Spec. 
 

C/O AUC Sens. Spec. 
PDAC Vs CP 0.4 0.97 0.93 1.00 

 
0.365 1.00 1.00 1.00 

PDAC Vs DC 0.4 0.95 0.93 1.00 
 

0.365 1.00 1.00 1.00 

PDAC Vs HC 0.4 0.95 0.93 1.00 
 

0.365 1.00 1.00 1.00 

PDAC Vs Controls 0.4 0.96 0.93 1.00 
 

0.365 1.00 1.00 1.00 
Abbreviations: Cut-off value (C/O) for the relative Sensitivity (Sens.)and specificity (Spec.); Receiver Operatory 
Characteristics Area Under Curve (AUC); resectable pancreatic cancer (PDAC); chronic pancreatitis (CP); disease 
controls (DC, mainly obstructive jaundice); Healthy volunteers (HC) 
Note: The same algorithms (M-LR or NN) were used for each parameter.  
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Figure 3.11- Accuracy of the Multinomial Logistic 

regression model (M-LR) in the Validation Phase. 

Individuals with PDAC were coloured blue and 

control subjects in red [A] Logistic plot of cancer 

status (y-axis) against the predicted probability of 

PDAC (x-axis). The optimal cut-off value (C/O) is 0.4 

[B] A mosaic plot of actual diagnosis (y-axis) against 

predicted diagnosis (x-axis). [C] ROC curve of the 

sensitivity against 1-specificity of the M-LR model 

with an area under curve of 0.957   

Figure 3.12 Accuracy of the Artificial Neural 

Network model (NN) in the validation phase. 

Individuals with PDAC were coloured blue and 

control subjects in red [A] Logistic plot of 

cancer status (y-axis) against the predicted 

probability of PDAC (x-axis). The optimal cut-

off value (C/O) is 0.365 [B] A mosaic plot of 

actual diagnosis (y-axis) against predicted 

diagnosis (x-axis). [C] ROC curve of the 

sensitivity against 1-specificity of the NN model 

with an area under curve of 1.00.   
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3.4.4 The diagnostic accuracy of CA19-9 compared to CCGFs 

3.4.4.1 Quantification of CA19-9 

The serum concentration of CA19-9 in the 180 individuals involved in the current 

study was determined by ELISA. Of these, 141 samples were previously quantified 

(section 3.3.4) and 39 samples were quantified in the current study using a 

commercially available CA19-9 ELISA kit. An image of the ELISA plate at 

quantification is shown in Figure 3.13. It can be seen in Figure 3.13 that many 

PDAC samples are clearly more yellow in colour compared to healthy controls 

(virtually all colourless) and the intense yellow colour in some DC and CP samples 

suggest these patients are likely to have a high serum expression of CA19-9.  

 

  

Figure 3.13- [Above] CA19-9 ELISA plate layout. Note that sample were analysed in duplicates. 

Wells 1A to 2D were pre-mixed standard references. PDAC samples were coloured in light blue, 

disease controls (BIL) in pink, chronic pancreatitis (CP) in grey and healthy volunteers in green. 

Sample X40-X42 were from the sample patient but at different dilutions. 

[Below] A photograph of the ELISA plate at plate reading. Note that the intensity of the yellow colour 

directly correlates to the concentration of CA19-9.  
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3.4.4.2 The diagnostic accuracy of CA19-9 compared to the NN-CCGF algorithm 

Univariate analysis showed that CA19-9 was significantly raised in pancreatic cancer 

compared all control groups (Wilcoxon’s Test, p<0.01; sections 3.4.1.1 to 3.4.1.4 ). 

Furthermore, it was the most accurate individual marker of PDAC against the HC 

and CP control subgroups. Therefore, subsequent analyses aimed to compare the 

diagnostic accuracy of CA19-9 with that of the M-LR and NN combined CCGF 

algorithms described in sections 3.4.2 and 3.4.3 (for ease of reading, the results for 

the NN combined CCGF algorithm from sections 3.4.2 is included in Table 3.14).  

In the Discovery Phase, CA19-9 was highly accurate for discriminating PDAC 

against HC with ROC-AUC of 0.94 with an optimal sensitivity and specificity of 

0.92 and 0.95, respectively (Table 3.14). However, CA19-9 was less accurate for 

discriminating PDAC from the CP and DC control subgroups with ROC-AUCs of 

0.86 and 0.73, respectively. Furthermore, on analysis of the diagnostic accuracy of 

CA19-9 for PDAC against all control subjects, ROC analysis yielded a ROC-AUC of 

0.85 and an optimal sensitivity and specificity of 0.73 and 0.90, respectively (Table 

3.14). Comparing the diagnostic accuracy of CA19-9 for the CP, DC, and HC control 

groups individually and as a combined Control group showed that CA19-9 alone was 

less accurate than either the M-LR or the NN combined CCGF algorithm. 

Similarly in the Validation Phase, CA19-9 was highly accurate at discriminating 

between PDAC and HC (ROC-AUC= 0.98) but performed less well against CP and 

DC (ROC-AUC 0.78 and 0.78, respectively; Table 3.14). Furthermore, the 

diagnostic accuracy of CA19-9 against all control groups yielded ROC-AUC of 0.85 

and a relative sensitivity of 0.5 and a relative specificity of 0.90 at the diagnostic 

phase cut-off value of 125U/ml. Again, comparison between the accuracies of CA19-

9 and the M-LR or NN combined CCGF algorithm in the Validation Phase showed 

that CA19-9 alone was a less accurate diagnostic marker of PDAC. 

Table 3.14- The diagnostic accuracies of CA19-9 and the CCGF Neural Network Algorithm 

Parameters 

 Carbohydrate Antigen 19-9  CCGF Neural Network Algorithm 

C/O 

Discovery Validation 

C/O 

Discovery Validation 

AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. 

PDAC Vs 

CP 
45.0 0.86 0.78 0.90 0.78 0.73 0.70 0.365 0.99 0.97 0.95 1.00 1.00 1.00 

PDAC Vs 

DC 
125.0 0.73 0.73 0.75 0.78 0.50 0.80 0.365 1.00 0.97 1.00 1.00 1.00 1.00 

PDAC Vs 

HC 
16.0 0.94 0.92 0.95 0.98 0.93 1.00 0.365 1.00 0.97 1.00 1.00 1.00 1.00 

PDAC Vs 

Controls 
125.0 0.85 0.73 0.90 0.85 0.50 0.90 0.365 1.00 0.97 0.98 1.00 1.00 1.00 

Abbreviations: ROC area under curve (AUC); cut-off value (C/O); sensitivity (Sens.); Specificity (Spec.); Chronic pancreatitis 

(CP), Disease controls (DC), Healthy volunteers (HC), combined CP+DC+HC (Controls)  
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3.4.5 CA19-9 in combination with CCGFs 

The Discovery Phase was repeated with CA19-9 included in the selection process for 

candidate CCGFs. Interestingly, the same four CCGFs were selected in step 1-4 in 

the stepwise regression model. However, CA19-9 remained statistically significant 

after step 4 and therefore it was added to the combination in step 5 (Table 3.15). 

Two-way hierarchical clustering of CA19-9 with the four candidate markers showed 

a similar pattern compared to the same analysis in section 3.4.2.1, Figure 3.8. 

However, it was unclear from the heat map as to the exact contribution of CA19-9 in 

the diagnostic algorithm. 

Table 3.15- CCGF markers selected by the stepwise regression model for combination 

Step Parameter Action Wald/Score p-value R2 

1 IL-17 Entered < 0.0001 0.23 

2 IL-4 Entered < 0.0001 0.51 

3 G-CSF Entered < 0.0001 0.78 

4 IP-10 Entered    0.0003 0.86 

5 CA19-9 Entered    0.0048 0.90 

Abbreviations: Interleukin (IL); granulocyte colony stimulating factor (G-CSF); Interferon-gamma inducible 
protein 10 (IP-10), Carbohydrate Antigen 19-9 (CA19-9) 

Note: R2 ranges from 0-1 and directly correlates how closely the model fits the data 

  

Figure 3.14- Two-Way hierarchical analysis of CA19-9, IP-10, IL-4, G-CSF, and IL-17. Individuals 

with PDAC were coloured Blue and controls in Red. Results from the heat map showed a similar 

pattern to Figure 3.8 and the samples were broadly clustered into a PDAC dominated group and a 

Control dominated group. However, the exact contribution of CA19-9 in the prediction process could 

not be elucidated  from the heat map.  
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3.4.5.1 Discovery Phase- accuracy of the combined CCGF-CA19-9 marker 

Using the same sample randomisation as described in section 3.3.2, the CCGF-

CA19-9 combined algorithm achieved ROC-AUCs of 0.999 for both the M-LR and 

the NN models in the Discovery Phase. At the optimal cut-off of 0.38 (M-LR model) 

and 0.4 (NN model), the models yielded sensitivities of 1.00 and relative specificities 

of 0.98 (Table 3.16, Figure 3.15, Figure 3.16 ). The CCGF-CA19-9 model appeared 

to be slightly more robust than the CCGF combined algorithm as evident by the fact 

that it only misclassified one control subject as PDAC. Furthermore, the logistic plot 

of cancer status against the predicted probability of PDAC was better defined than 

the previous models i.e. most samples were either at the control end (probability= 0) 

or at the PDAC end (probability =1).  

Table 3.16- Diagnostic accuracy of the CCGF-CA19-9 marker in the Discovery Phase 

Parameter 
Multinomial Logistic Regression 

 
Artificial Neural Network 

C/O AUC Sens. Spec. 
 

C/O AUC Sens. Spec. 
PDAC Vs CP 0.38 1.00 1.00 0.95 

 
0.4 1.00 1.00 0.95 

PDAC Vs DC 0.38 1.00 1.00 1.00 
 

0.4 1.00 1.00 1.00 

PDAC Vs HC 0.38 1.00 1.00 1.00 
 

0.4 1.00 1.00 1.00 

PDAC Vs Controls 0.38 1.00 1.00 0.98 
 

0.4 1.00 1.00 0.98 
Abbreviations: Cut-off value (C/O) for the relative Sensitivity (Sens.)and specificity (Spec.); Receiver Operatory 
Characteristics Area Under Curve (AUC); resectable pancreatic cancer (PDAC); chronic pancreatitis (CP); disease 
controls (DC, mainly obstructive jaundice); Healthy volunteers (HC) 
Note: The same algorithms (M-LR or NN) were used for each parameter. AUCs rounded to 2dp 

  

Figure 3.15- Diagnostic accuracy of the Multinomial 

logistic CCGF-CA19-9 algorithm. Individuals with 

PDAC were coloured Blue and controls in Red. [A] At 

the optimal cut-off value of 0.38, the M-LR CCGF-

CA19-9 algorithm misclassified only one control 

patient (arrowed).    From the logistic plot, it can be 

seen that the majority of PDACs were lined up at 

probability of PDAC=1 and the majority of controls 

were lined up at probability of PDAC=0. [B] This 
mosaic plot showed that only one control was 

misclassified (arrowed). [C] ROC curve with ROC-

AUC of 0.999 
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Figure 3.16- Diagnostic accuracy of the Artificial 

Neural Network CCGF-CA19-9 algorithm. 

Individuals with PDAC were coloured Blue and 

controls in Red. [A] At the optimal cut-off value of 

0.48, the NN CCGF-CA19-9 algorithm misclassified 

the same control patient (arrowed).From the logistic 

plot, it can be seen that the majority of PDACs were 

lined up at probability of PDAC=1 and the majority 

of controls were lined up at probability of PDAC=0. 

[B] This mosaic plot showed that only one control 
was misclassified (arrowed). [C] ROC curve with 

ROC-AUC of 0.999 
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3.4.5.2 Validation Phase- validation of the CCGF-CA19-9 algorithms 

The combined CCGF-CA19-9 algorithms and their relative cut-off values were 

directly applied to an independent validation sample set consisting of 30 PDAC, 10 

CP, 10 DC, and 10 HC (section 3.3.1.2 for details regarding the samples).  

With the Discovery Phase cut-off of 0.38, the multinomial logistic CCGF-CA19-9 

algorithm achieved the same accuracy as the M-LR CCGFs algorithm described in 

section 3.4.2.2 with a ROC-AUC of 0.96 and relative sensitivity and specificity of 

0.93 and 1.00, respectively. Interestingly, the two misclassified individuals with 

pancreatic cancer in the CCGF-CA19-9 algorithm were the same as the two 

identified by the M-LR combined CCGF algorithm in section 3.4.3.1.  

Similarly, the NN CCGF-CA19-9 algorithm achieved the same accuracy as the NN 

combined CCGF algorithm described in section 3.4.3.1 with a ROC-AUC of 1.00 

and relative sensitivity and specificity of both 1.00.  

In view of the fact that only one individual with chronic pancreatitis was 

misclassified in both the Discovery and Validation Phase, it would seem that the 

addition of CA19-9 to the NN algorithm might slightly improve the diagnostic 

accuracy of the model. Interestingly, review of the misclassified patient‟s medical 

records revealed that this patient was initially suspected of pancreatic cancer but 

there were no signs of the primary tumour of metastasis on contrast enhanced CT and 

biopsy was negative.  

Table 3.17- Diagnostic accuracy of the CCGF-CA19-9 markers in the Validation Phase 

Parameter 
Multinomial Logistic Regression 

 
Artificial Neural Network 

C/O AUC Sens. Spec. 
 

C/O AUC Sens. Spec. 

PDAC Vs CP 0.38 0.96 0.93 1.00 
 

0.4 1.00 1.00 1.00 

PDAC Vs DC 0.38 0.95 0.93 1.00 
 

0.4 1.00 1.00 1.00 

PDAC Vs HC 0.38 0.95 0.93 1.00 
 

0.4 1.00 1.00 1.00 

PDAC Vs Controls 0.38 0.96 0.93 1.00 
 

0.4 1.00 1.00 1.00 
Abbreviations: Cut-off value (C/O) for the relative Sensitivity (Sens.)and specificity (Spec.); Receiver Operatory 
Characteristics Area Under Curve (AUC). Note: The same algorithms (M-LR or NN) were used for each parameter. 
AUCs rounded to 2dp 
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Figure 3.17- Diagnostic accuracy of the M-LR CCGF-

CA19-9 algorithm in the validation phase. Individuals 

with PDAC were coloured Blue and Controls in Red. 

[A] Logistic Plot showing that two patients with 

pancreatic cancer were misclassified as controls 
(arrowed). [B] This mosaic plot of actual cancer status 

(Blue for cancer; Red for controls) against the 

predicted cancer status (columns) showed that all 

controls were correctly classified but two PDACs were 

classified as control (arrowed). [C] ROC curve of the 

M-LR CCGF-CA19-9 algorithm with a ROC-AUC of 

0.96 

Figure 3.18- Diagnostic accuracy of the NN CCGF-CA19-

9 algorithm in the validation phase. Individuals with 

PDAC were coloured Blue and Controls in Red. [A] This 

logistic plot showed that all samples were classified 

correctly [B] This mosaic plot of actual cancer status 
(Blue for cancer; Red for controls) against the predicted 

cancer status (columns) showed that all controls and 

PDACs were correctly classified. [C] ROC curve of the NN 

CCGF-CA19-9 algorithm with a ROC-AUC of 1.00. 
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3.4.6 The impact of each biomarker on the M-LR diagnostic algorithm 

A separate analysis was performed to assess the contribution of each CCGF marker 

towards the diagnostic accuracy of the M-LR CCGF algorithm and M-LR CCGF-

CA19-9 algorithm for PDAC against all controls. This was achieved by assessing the 

diagnostic accuracies of the M-LR algorithms when each CCGF was independently 

removed. It should be noted that a new M-LR algorithm was generated upon the 

removal of each CCGF in order to maximise the diagnostic accuracy of the 

remaining markers.  

Results from the Discovery Phase suggest that the removal of IL-4, IL-17, G-CSF, 

IP-10, or CA19-9 from the M-LR algorithms will lead to a decrease in the diagnostic 

accuracy of the models (Table 3.18). However, the effect of removing one CCGF 

appeared to be well compensated by the remaining markers. In particular, the 

removal of IP-10 caused minimal decrease in the ROC-AUC in both the M-LR 

CCGF and the M-LR CCGF-CA19-9 algorithms (AUC, 0.994 versus 0.984 and 

0.999 versus 0.995, respectively; Table 3.18).  

Results from the Validation Phase are displayed in Table 3.19. When the M-LR 

CCGF algorithm generated in the Discovery Phase were directly applied to the 

Validation sample set, the impact of the removal of IL-17 was immediately obvious 

with a decrease in AUC from 0.940 to 0.814 on removal. Furthermore, there is a 

general decrease in the diagnostic accuracy in the Validation Phase compared to the 

Discovery Phase upon the removal of any CCGF. 

Table 3.18- Accuracy of the M-LR CCGF and CCGF-CA19-9 markers in the Discovery Phase 

Parameter  
(PDAC versus all controls) 

M-LR CCGF algorithm 
 

M-LR CCGF-CA19-9 algorithm 

C/O AUC Sens. Spec. 
 

C/O AUC Sens. Spec. 

Original Algorithm 0.400 0.994 0.97 0.98 
 

0.38 0.999 1.00 0.98 

Removal of IL-4 0.369 0.928 0.90 0.87 
 

0.38 0.931 0.88 0.88 

Removal of IL-17 0.380 0.940 0.90 0.90 
 

0.33 0.957 0.93 0.92 

Removal of G-CSF 0.460 0.958 0.88 0.93 
 

0.39 0.969 0.93 0.90 

Removal of IP-10 0.350 0.984 0.97 0.97  0.40 0.995 0.98 0.97 

 
Table 3.19- Accuracy of the M-LR CCGF and CCGF-CA19-9 markers in the Validation Phase 

Parameter  
(PDAC versus all controls) 

M-LR CCGF algorithm 
 

M-LR CCGF-CA19-9 algorithm 

C/O AUC Sens. Spec. 
 

C/O AUC Sens. Spec. 

Original Algorithm 0.400 0.957 0.93 1.00 
 

0.38 0.956 0.93 1.00 

Removal of IL-4 0.369 0.898 0.80 0.80 
 

0.38 0.956 0.93 1.00 

Removal of IL-17 0.380 0.814 0.77 0.83 
 

0.33 0.929 0.80 0.83 

Removal of G-CSF 0.460 0.989 0.87 0.97 
 

0.39 0.993 0.93 0.97 

Removal of IP-10 0.350 0.972 0.97 0.97  0.40 0.967 0.93 1.00 
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3.5 Impact of clinical-demographical factors on the 

accuracy of the disease-predicting models 

3.5.1 Impact of Patient Age on the serum levels of candidate CCGFs 

Analyses of demographical data in section 3.3.1 suggested that, as expected 

individuals with PDAC were generally older compared to individuals in the chronic 

pancreatitis or the healthy control subgroups. Although results shown no significant 

difference in age between the PDAC and the DC control sub-group, it is still 

important to identify any correlations between age, individual CCGFs, and the 

disease-predicting formulae.  

Correlation analyses of age against serum concentrations of IL-4, IL-17, G-CSF, and 

IP-10 yielded Kendall Tau correlation coefficients () of <0.3 (both control and 

PDAC group) suggesting that age is independent to the serum concentrations of the 

four candidate CCGFs (Table 3.20). Furthermore, correlation analysis of age and 

estimated probabilities generated from the prediction formulae yielded Kendal  

coefficients of <0.2, which indicate that there is minimal correlation between the two 

variables. A hierarchical clustering analysis was performed for age against each 

CCGF individually and graphically represented in Figure 3.19. Results showed that 

although individuals with PDAC tended to be older, the serum concentrations the 

four CCGFs were not influenced by age. 

Table 3.20- Correlation between Age, individual CCGFs, and disease-predicting formulae 

 Controls PDAC 

Parameters Kendall τ Prob>|τ| Kendall τ Prob>|τ| 

IL-4 -0.03 0.67 0.05 0.52 

IL-17 0.01 0.87 0.02 0.81 

G-CSF 0.13 0.11 -0.07 0.40 

IP-10 0.28 <0.01 0.15 0.05 

M-LR algorithm -0.08 0.27 0.15 0.04 

NN algorithm -0.18 0.01 0.04 0.63 

Abbreviations: Interleukin (IL); Granulocyte colony stimulating factor (G-CSF); Interferon-gamma inducible 
protein-10 (IP-10); Multinomial Logistic Regression (M-LR); Artificial neural network (NN) 
Note: Kendall Tau () coefficients ranges from -1 (perfect negative correlation) to 0 (no correlation) to +1 

(perfect positive correlation); Prob>|| represents the probability that the actual correlation coefficient () 
would be greater than the calculated coefficient. 
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3.5.2 Impact of diabetes on the serum levels of candidate CCGFs 

The correlation between the presence of diabetes (a frequently reported disease in 

PDAC), the serum levels of candidate CCGFs, and the estimated probability values 

generated by the disease-predicting formulae were investigated. Univariate analyses 

of the serum levels of candidate CCGF markers and the estimated probabilities 

generated by the disease-predicting formulae against available data on diabetes status 

yielded insignificant results (Wilcoxon‟s Test, p>0.05; Table 3.21). Furthermore, a 

final analysis was performed to determine the accuracy of the two disease-predicting 

formulae for discriminating between diabetics and non-diabetic (Figure 3.20). 

Results from this analysis showed that neither algorithms is accurate at discriminate 

between diabetics and non-diabetics (ROC<0.7). It should be noted however, that 

there is a substantial number of missing data (especially for HC subgroup), which 

may decrease the integrity of these results. 
Table 3.21- Correlation between Diabetes, individual CCGFs, and disease-predicting formulae 

Parameters Characteristic 
Univariate Analysis, p-value 

Controls PDAC All data 
IL-4 

Diabetes 

0.43 0.54 0.81 

IL-17 0.30 0.96 0.78 

G-CSF 0.92 0.93 0.98 

IP-10 0.17 0.46 0.23 

M-LR algorithm 0.08 0.70 0.86 

NN algorithm 0.85 0.65 0.72 

Abbreviations: Interleukin (IL); Granulocyte colony stimulating factor (G-CSF); Interferon-gamma inducible 
protein-10 (IP-10); Multinomial Logistic Regression (M-LR); Artificial neural network (NN) 
Note: Wilcoxon’s Test was used for the univariate analysis of non-parametric variables between two groups 

 

 

 

  

Figure 3.20- Accuracy of the disease-predicting algorithms at discriminating between individuals with and 
without diabetes. [A, C] Logistic plots showing the distribution of individuals with diabetes (blue) and without 
diabetes (red) against the probability of PDAC. [B, D] ROC-curves showing the accuracy of the algorithms for 
predicting the presence of diabetes.  ROC-AUC: multinomial logistic regression (M-LR) =0.51 and neural 

network (NN) =0.53  
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3.5.3 Impact of smoking on the serum levels of candidate CCGFs 

Univariate non-parametric analysis was performed to assess the impact of smoking 

on the serum concentrations of candidate CCGFs. Results indicated that smoking 

does not appear to influence the serum concentrations of IL-4, IL-17, or G-CSF. 

However, there seemed to be a statistically significant decrease in the serum levels of 

IP-10 in smokers and when all data were combined (Wilcoxon‟s Test, p=0.04 and 

p=0.01 respectively). However, further analysis using the probability values 

generated by the two algorithms yielded insignificant results on univariate and ROC 

analyses (Wilcoxon‟s Test, p≥0.05; ROC <0.7). Again, these results should be 

considered in view of the fact that there is a large number of missing data for 

smoking status, especially in the HC control subgroup. 

Table 3.22- Correlation between smoking, individual CCGFs, and disease-predicting formulae 

Parameters Characteristic 
Univariate Analysis, p-value 

Controls PDAC All data 

IL-4 

Sm
o

ki
n

g 

0.53 0.52 0.36 

IL-17 0.23 0.54 0.66 

G-CSF 0.37 0.49 0.24 

IP-10 0.06 0.04 (↓) 0.01 (↓ in PDAC) 

M-LR algorithm 0.53 0.05 0.09 

NN algorithm 0.15 0.49 0.61 

Abbreviations: Interleukin (IL); Granulocyte colony stimulating factor (G-CSF); Interferon-gamma inducible 
protein-10 (IP-10); Multinomial Logistic Regression (M-LR); Artificial neural network (NN) 
Note: Wilcoxon’s Test was used for the univariate analysis of non-parametric variables between two groups 

 

  

Figure 3.21- Accuracy of the disease-predicting algorithms at discriminating between smokers and 
non-smokers. [A, C] Logistic plots showing the distribution of smokers (blue) and non-smokers (red) 

against the probability of PDAC. [B, D] ROC-curves showing the accuracy of the algorithms for 

identifying smokers. ROC-AUC: multinomial logistic regression (M-LR) =0.58 and neural network 

(NN) =0.54  
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3.6 Discussion 

Despite evidence from a number of robust studies describing the intimate and 

complex relationships between inflammatory mediators, tumour microenvironment, 

tumour-associated macrophages, inflammation, and cancer in general
150, 187, 191, 196, 

243-246
, the exact roles of cytokines, chemokines, and growth factors (CCGFs) in 

pancreatic cancer continue to elude researchers. It is known that the growth, 

proliferation, and metastasis of cancer cells are governed by many different 

mechanisms and pathways
162, 167, 169, 196, 247

. However, the communication within and 

between these mechanisms and pathways are invariably dependent upon various 

stimulatory and inhibitory mediators, especially CCGFs
167, 169, 179, 248-249

. 

We hypothesized that the initiation and continuation of cellular growth, proliferation, 

and metastasis in pancreatic cancer would require the production and inhibition of a 

number of specific CCGFs. It follows therefore, that there should be a different 

serum CCGF profile between individuals with pancreatic cancer and individuals with 

benign pancreatic inflammatory diseases such as chronic pancreatitis and benign 

biliary obstruction. Results from the current study confirmed this as the 

concentrations of fourteen CCGFs were differentially observed in the serum of 

individuals with pancreatic cancer compared to individuals in the CP, DC, and HC 

control subgroups. 

Results from the Discovery Phase (section 3.4.2.1) showed two important findings. 

First, the serum concentrations of some CCGFs appeared to be directly correlated 

only in individuals with PDAC (e.g. IL-17 and IL-10), which could indicate that 

some CCGFs may be involved in a common signalling pathway in cancer. 

Alternatively, it may an artefact of the heterogeneity of the combined Control group 

where a correlation between CCGFs in one control subgroup may be masked by the  

absence of this correlation in the other two control subgroups. With in mind, a 

stepwise regression model was employed to select CCGFs that were independently 

expressed in PDAC compared to others. This led to the second important finding that 

no single CCGF was differentially observed in all individuals with pancreatic cancer 

compared to Controls (i.e. there is no perfect marker). Rather, we report that each of 

the four independent CCGFs appeared to be responsible for identifying a unique sub-

group of patients in the PDAC or Control groups, which may mean that there are 
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four distinctly different cytokine mediated processes in these individuals. We report 

that IL-4, IL-17, and IP-10 were responsible for identifying a subset of patients with 

PDAC where as G-CSF may play a role in identifying individuals with pancreatic 

inflammatory disease.  

3.6.1 CCGFs for the diagnosis of pancreatic cancer 

For the past few decades, researchers have sought to identify a good and useful 

biomarker for pancreatic cancer. Considering the current lack of success in finding 

an accurate standalone marker of PDAC and in view of the evidence suggesting that 

the growth, proliferation, survival, and metastasis of PDAC is likely to be influenced 

by several independent pathways and processes (section 1.2.3 and 1.4.2), one might 

be tempted to conclude that a “magic marker” for PDAC is extremely unlikely to 

exist. Indeed, results from section 3.4.1 would support this predicament. Despite 

observing that a relatively large number of CCGFs were differentially expressed in 

patients with PDAC compared to controls, only IFN- achieved a similar sensitivity 

and specificity to the widely used biomarker of PDAC, CA19-9, which means that, 

as expected
250

, CCGFs are not sufficiently accurate as individual markers of 

pancreatic cancer.  

In consideration of the above findings, the current study utilised two independent 

models to combine a carefully selected panel of CCGFs- the Multinomial Logistic 

Regression model and the Neural Network model. The diagnostic accuracies for 

these models were very encouraging with ROC-AUCs of ≥0.99 for discriminating 

between PDAC against control subjects. Furthermore, in view of the results from 

section 3.4.3.1 and those from the validation of the NN CCGF algorithm, which 

demonstrated a perfect classification for the independent validation sample set, we 

conclude that a combined CCGF marker consisting of IL-4, IL-17, G-CSF, and IP-10 

may be used as a potential diagnostic biomarker for PDAC.  

Finally, we report that the addition of CA19-9 into the combined CCGF algorithms 

may marginally improves the diagnostic accuracy of both combined CCGF 

algorithms (M-LR and NN). However, results in section 3.4.6 would suggest that 

CA19-9 should not be used in place of any of the four CCGFs 
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3.6.2 The roles of Il-4, IL-17, G-CSF, and IP-10 in PDAC and 

pancreatic inflammatory diseases 

3.6.2.1 Interleukin 4 

IL-4 is a cytokine that is responsible for the activation of a number of immune cells 

(e.g. B-lymphocytes) and plays an important role in promoting the proliferation of T-

lymphocytes
251

. In addition, studies have shown that IL-4 is involved in the 

differentiation of CD4+ T-cells into Type II T-Helper (Th2) cells
139, 252-254

.  

Interestingly, existing literature appears to suggest that IL-4 plays a paradoxical role 

in cancer
251

. Several studies have demonstrated that IL-4 exhibits anti-tumour 

properties by inducing anti-tumour immune response, indeed, the potential of IL-4 as 

an anti-tumour agent was demonstrated in a number of solid tumours including renal 

and colorectal cancers
255-259

, although results from later studies on the therapeutic 

potential of IL-4 were disappointing
260-262

. There is increasing contrary evidence 

indicating that IL-4 acts to protect tumour cells from apoptosis
251

. Concordant to the 

results from the current study, evidence from a number of clinical studies have 

demonstrated that the IL-4 is up regulated in patients with pancreatic cancer as well 

as other types of solid cancers including renal cell, lung, colon, and breast cancers
263

. 

Furthermore, a study by Onishi et al. reported that the IL-4 expression at the tumour 

site is associated with the stage and grade of renal cell carcinoma
264

.  

Despite these observations, the exact biological mechanisms by which IL-4 exert its 

tumour promoting ability in pancreatic cancer is undetermined. However, recent 

evidence from in vitro and in vivo studies have demonstrated that high levels of IL-4 

in the tumour microenvironment can cause the induction of cathepsin activity in 

tumour-associated macrophages and therefore may play an indirect role in promoting 

the remodelling of the tumour microenvironment and ultimately facilitating tumour 

growth, proliferation, and metastasis
265

.  

3.6.2.2 Interleukin 17 

IL-17 belongs to a relatively new subclass of cytokines and is predominantly but not 

exclusively produced by T-helper 17 (Th17) cells which are a newly designated 

subset of CD4+ T-cells
266

. Other immune cells known to secrete IL-17 include 

natural killer T cells, CD8+ T cells, and lymph tissue inducer cells
266

. The role of IL-

17 in malignant diseases is not completely characterised. However, studies have 
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reported that IL-17 plays a role in promoting carcinogenesis and tumour growth by 

facilitating angiogenesis and stimulating remodelling to the extracellular matrix
267-268

. 

Indeed, in vivo studies have demonstrated that, IL-17 can stimulate the production of 

VEGF, prostaglandin E1, and prostaglandin E2 in fibroblasts thereby enhancing 

tumour angiogenesis
267

. Furthermore, recent evidence indicated that IL-17 is 

associated with an increased MMP expression, which in turn facilitates angiogenesis 

through the destruction of the extracellular matrix
266

.  

The biology behind IL-17 induced angiogenesis in pancreatic cancer specifically has 

not been previously reported. However, recent studies have indicated that the 

production of IL-17 (and subsequent angiogenesis) may be regulated by the STAT3 

transcription factor
169

. It has been proposed that the activation of the STAT3 pathway 

by stimuli from cytokine receptors such as IL-6R and IL-10R promotes the gene 

transcription and subsequent production of a number of inflammatory cytokines, 

including IL-6, IL-10, and IL-17, which are responsible for promoting tumour 

survival, proliferation, and angiogenesis
169

. Furthermore, studies have indicated that 

many of these up regulated cytokines are also activators of the STAT3 pathway and 

therefore forming a positive feedback loop for their own production
169

. 

In view of the results from sections 3.4.1.5 and 3.4.2.1 demonstrating that IL-17 is 

an independent indicator of PDAC and that is expression is closely correlated to that 

of IL-10, it is likely that IL-17 may be involved as an activator and/or a downstream 

product of the STAT3 transcription factor pathway in certain individuals with 

pancreatic cancer. 

 

3.6.2.3 G-CSF 

G-CSF, also called CSF3 is one of four members of the colony-stimulating factor 

(CSF) family proteins
269

. Other members of the CSF family including macrophage 

colony stimulating factor (M-CSF), granulocyte macrophage colony stimulating 

factor (GM-CSF), and Multi colony stimulating factor (M-CSF)
269

. G-CSF is a 19.6 

kDa glycosylated protein consisting of 174 amino acid residues and is mainly 

produced by macrophages
270

.  
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The role of G-CSF in pancreatic cancer is unclear. However, studies have shown that 

in the acute inflammatory setting, G-CSF plays an essential role in promoting the 

proliferation of neutrophil colonies, inducing the differentiation of precursor cells to 

neutrophils, and stimulating the activity of mature neutrophils
269-270

. Indeed, results 

from section 3.4.1 showed that the serum concentration of G-CSF is elevated in 

certain individuals with CP and biliary obstruction compared to PDAC. We therefore 

propose that G-CSF is not an indicator of pancreatic cancer. Rather, it is an indicator 

of inflammatory diseases where an elevated G-CSF serum concentration reflects the 

increased neutrophil activity in benign inflammatory diseases.  

 

3.6.2.4 IP-10 

IP-10 is a dimerized 10kDa protein consisting of 98 amino acids, which is 

predominantly secreted by macrophages in response to interferon gamma
271

. IP-10 

belongs to the CXCL chemokine subfamily and is responsible for the recruitment of 

monocytes and T-lymphocytes to its site of production
271

.  

Whilst there is a current lack of evidence associating IP-10 with pancreatic cancer, 

existing literature indicates that IP-10 may play a dual role as an anti-tumour agent 

for cancer in general
272

. First, IP-10 is responsible for the chemotaxis of tumour 

infiltrating T-lymphocytes
273

, in particular NK T-cells, and secondly, studies have 

shown that IP-10 have a role in the prevention of angiogenesis
272, 274-275

. A study by 

Musha et al. demonstrated that Th1 cells along the invasive margin of colorectal 

cancer produce IFN-gamma, which stimulates cancer cells and macrophages to 

produce IP-10 and ultimately resulting in the infiltration of CXCR3 expressing T-

cells at the invasive margin
273

.  

In view of the pro-invasive and aggressive nature of pancreatic cancer and the 

observation in section 3.4.1 that a subset of individuals with PDAC exhibits a higher 

serum level of IP-10, it is possible that the increase in serum level of IP-10 may be 

the direct result of host immune response against PDAC along the invasive margin.  
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4.1 Final Discussion and Conclusions 

The diagnosis of pancreatic cancer is seldom straightforward as patients often present 

with non-specific, systemic symptoms such as pain, weight loss, and jaundice
55

. 

There are two major problems to the current system for the diagnosis of pancreatic 

cancer. The first problem is that most patients seek help from their doctors only when 

they have systemic symptoms (tip of the clinical iceberg). These systematic 

symptoms are often indications of advanced disease and therefore, it is not surprising 

that up to 80% of patients have metastatic disease on presentation. The second 

problem is that patients are referred for further investigation by CE-CT based on the 

vague systemic symptoms, which can also be present in many other benign diseases 

such as peptic ulcer, gall stone obstruction, and cholangitis to name but a few. 

Therefore, the use of an accurate diagnostic biomarker of pancreatic cancer can 

significantly reduce the number of patients with non-malignant diseases undergoing 

an unnecessary invasive and potentially harmful diagnostic procedure.  

In the past few decades, researchers have sought to identify proteomic biomarkers for 

the diagnosis of pancreatic cancer via a number of different approaches. In particular, 

researchers are increasingly interested in newer biomarker discovery techniques such 

as mass spectrometry and protein microarray, which can simultaneously identify 

multiple differentially expressed proteins in pancreatic cancer. However, the progress 

of biomarker research can often be impeded by the verification techniques such as 

western blotting, ELISA, and immunohistochemistry, which are only capable of 

verifying the expression of one protein per experiment. The invention of novel 

experimental methods, such as infrared detection of western blots and the 

development of multiplex assays, have partially addressed this issue. Nonetheless, 

these methods are invariably more expensive (per experiment) compared to 

traditional methods and in particular, the use of multiplexing assays is often limited 

by the availability, sensitivity, and specificity of the detection antibodies.  

Currently, Carbohydrate Antigen 19-9 (CA19-9) is the most widely used biomarker 

for PDAC. However, with reported sensitivities and specificities of 0.87 and 0.73 

from the current series, CA19-9 is neither adequately specific nor adequately 

sensitive as a diagnostic marker. Recent studies have proposed several novel 

standalone markers with high discriminatory power for PDAC and healthy subjects; 
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however, the diagnostic accuracy of the majority of these markers were either 

inferior to CA19-9 or performed poorly in distinguishing between PDAC and chronic 

pancreatitis 
100, 111, 276-283

.  

Considering the current lack of success in finding an accurate standalone marker of 

pancreatic cancer and in view of evidence suggesting that the growth, proliferation, 

survival, and metastasis of PDAC is likely to be influenced by a number of 

independent pathways, it is clear that a single standalone marker for pancreatic 

cancer is extremely unlikely to exist. Therefore, a possible solution would be to 

devise a mathematical algorithm, which would combine a panel of carefully selected 

markers each capable of identifying a unique signalling pathway or characteristic 

found in PDAC. Indeed, a number of studies have attempted to improve the 

diagnostic accuracy of existing and novel biomarkers for pancreatic cancer using 

various classification-modelling methods 
276, 284-286

. In particular, a recent study by 

Zhang et al. reported encouraging results using a panel of four salivary 

transcriptomic biomarkers (KRAS, MBD3L2, ACRV1, and DPM1) combined using 

multinomial logistic regression with reported sensitivity and specificity of 90% and 

95%, respectively, for discriminating between patients with PDAC against 

individuals with chronic pancreatitis and against healthy volunteers
286

.  

Nevertheless, despite the successes reported by studies combining multiple markers, 

their accuracies in the presence of pancreaticobiliary diseases other than chronic 

pancreatitis remain to be validated particularly in light of recent evidence from Yan 

et al.
225

 suggested that the diagnostic accuracy of novel markers might be 

significantly reduced when analysed against individuals with benign biliary 

obstruction.  
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4.1.1 Conclusions from the current study 

In chapters 2 and 3 of this thesis, the diagnostic accuracies of three iTRAQ-identified 

proteins and twenty-seven CCGFs as individual and combined markers of resectable 

pancreatic cancer were explored. Results from both chapters were encouraging.  

4.1.1.1 Validation of iTRAQ results 

In accordance with previous studies on the expression of VDBP and RBP-4 various 

types of cancers, results from chapter 2 indicate that the serum concentration of 

VDBP, RBP-4, and FINC were significantly decreased in pancreatic cancer 

compared to healthy controls and chronic pancreatitis
203, 212, 220, 231, 287

 (sections 

2.4.2.6, 2.4.2.7, and 2.4.2.10). Furthermore, the three proteins achieved a statistically 

significant accuracy for diagnosing PDAC against the HC and CP. However, in 

support of the study presented by Yan et al.
225

, the diagnostic accuracies of the 

markers were significantly decreased when faced with patients with biliary 

obstruction (section 2.4.2.8). Therefore, it can be concluded that whilst VDBP, RBP-

4, and FINC were relatively accurate at discriminating between PDAC against CP 

and HC, their diagnostic accuracy were far inferior to that of CA19-9 and therefore 

not sufficiently accurate to be used for the diagnosis of pancreatic cancer. In addition, 

results from the current study would suggest that biliary obstruction is a disease-

related confounding factor for the diagnostic accuracy of VDBP, RBP-4, and FINC.  

Subsequent analyses sought to improve the diagnostic accuracies by combining the 

markers into a single marker using the M-LR modelling method. Results were 

encouraging for PDAC against CP and HC with a reported sensitivity of 0.85 and a 

specificity of 0.95. However, the confounding effect of biliary obstruction was 

immediately obvious when all control subgroups were considered (sensitivity=0.70; 

specificity=0.80; section 2.4.2.10).  

Phase III of chapter 2 was designed to validate the iTRAQ results with a different 

sample set- the UKCTOCS pre-diagnostic serum samples. Western blotting results 

from this experiment indicated that in the 0-0.5 year pre-diagnosis category, there is 

a trend for decreased serum concentrations of VDBP and RBP-4 in the PDAC group 

compared to their matched controls. However, this tendency did not reach statistical 

significance due to the relatively small sample size (n=10 per group). Furthermore, 

that the serum concentrations of VDBP and RBP-4 in pre-pancreatic cancer patients 
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were comparable with the matched controls in the other time categories (section 

2.4.3). Interestingly, we noted that certain patients exhibited a gradual decrease in 

serum VDBP and RBP-4 nearer to diagnosis. However, the significance of this trend 

must be further analysed before any conclusions can be made.  

Although there are potential advantages for using the UKCTOCS pre-diagnostic 

serum samples for the discovery and validation of potential markers for the screening 

of PDAC, there are also a number of disadvantages. Firstly, these samples were from 

female participants only and therefore results derived from these samples would 

require validation in male subjects. Secondly, ~80% of all patients with pancreatic 

cancer have advanced disease on diagnosis therefore even though a serum sample 

may be labelled as pre-diagnostic, the individual may already be at an advanced of 

pancreatic cancer on sample collection, especially for samples collected in the 

weeks/months prior to diagnosis. This is particularly important because in the 

absence of data regarding the tumour staging for these patients, it would be difficult 

to determine whether an individual designated as pre-pancreatic cancer is likely to 

have already developed pancreatic cancer at the >1 year time-categories.  

4.1.1.2 Discovery and validation of CCGF markers 

In Chapter 3, we described the use of a multiplex cytokines assay to quantify the 

serum concentrations of 27 CCGFs. Furthermore, we assessed the diagnostic 

potential of these CCGFs as an individual and as a combined marker for pancreatic 

cancer. Results from the initial analysis identified fourteen differentially observed 

serum CCGFs in PDAC compared to the HC, CP, and DC control subgroups. In 

particular, IFN- was found to have a comparable diagnostic accuracy to the widely 

used pancreatic cancer biomarker, CA19-9 with sensitivities of 0.77 versus 0.87 and 

specificities of 0.89 and 0.73, respectively. Nevertheless, this level of accuracy is 

insufficient for the diagnosis of pancreatic cancer in a clinical setting.  

Subsequent analysis sought to improve the diagnostic accuracy of CCGFs by 

combining independent markers of PDAC (including IL-4, IL-17, G-CSF, and IP-10) 

using two separate modelling methods: M-LR and NN modelling methods. Results 

from the Discovery Phase were encouraging with reported sensitivities of 0.97 and 

specificities of 0.98. Furthermore, analysis of the diagnostic accuracies of the M-LR 
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CCGF and NN CCGF algorithms in the Validation Phase yielded remarkable results. 

In particular, the NN CCGF algorithm achieved a perfect diagnostic accuracy.  

Direct comparison between the diagnostic accuracy of the NN CCGF models against 

the existing biomarker for pancreatic cancer, CA19-9, in the Discovery Phase 

indicated that the NN CCGF model was the more accurate biomarker compared to 

CA19-9 with sensitivities of 0.97 versus 0.73 and specificities of 0.98 versus 0.90. 

This was reflected in the Validation Phase with sensitivities of 1.00 for the NN 

CCGF algorithm versus 0.50 for CA19-9 and specificities of 1.00 against 0.90, 

respectively.  

In a final analysis, the diagnostic potential of combining CA19-9 with IL-4, IL-17, 

G-CSF, and IP-10 was assessed. Results showed that the NN CCGF-CA19-9 marker 

performed better in the Discovery Phase than the NN CCGF marker with reported 

sensitivities of 1.00 versus 0.97 and specificities of 0.98 versus 0.98, respectively. In 

addition, the CCGF-CA19-9 marker also achieved perfect diagnostic accuracy in the 

Validation Phase.  

In view of the results presented in Chapter 3, we report that a combined marker 

CCGF marker consisting of IL-4, IL-17, G-CSF, and IP-10 may serve as an accurate 

diagnostic marker of pancreatic cancer. Furthermore, we conclude that the addition 

of CA19-9 may improve the sensitivity of the NN CCGF algorithm, which may be 

more desirable in the clinical setting.  

On a more technical note, we would like to emphasize that mathematical predication 

models combining multiple variables, such as the M-LR and the NN models, are 

susceptible to data overfitting. The reason for this is that whilst it would be entirely 

possible to include all 27 CCGFs in the prediction model and the resulting accuracy 

would likely to be extremely high, it would also mean that the model no long 

describes the structure of the data, rather, it would be fitting to individual points. 

Therefore, models with a large number of predictors tend not to generalise well. 

Chapter 3 was designed to account for this effect by the use of an independent 

validation sample set. However, based on the highly accurate predictive ability of the 

combined algorithms, we can conclude that there is minimal data overfitting present 

in our study. 
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4.1.2 General Limitations 

Although the results from the current study were promising, conclusions drawn from 

the current study have several limitations. For example, due to limitations in sample 

availability, the current study did not examine the serum CCGF profiles for other 

inflammatory diseases and other cancers and therefore there is doubt to whether the 

disease-predicting algorithm can be generalised for other benign and malignant non-

pancreatic diseases. Furthermore, as highlighted in a recent review article by Schrohl 

et al., pre-analytical parameters may have an impact on the protein concentrations of 

serum samples, such as the type of container used for serum collection, delays in 

sample processing, and repeated freeze-thaw cycles
288

. However, the impact of these 

parameters on the current study were minimise as serum samples were collected, 

processed, and stored according to a strict standard operations procedure at the 

Division of Surgery and Oncology, University of Liverpool. Despite this, the use of 

serum samples from the Liverpool Pancreatic Cancer database was not without 

disadvantages. In particular, PDAC serum samples were collected from individuals 

with resectable PDAC only and therefore it is unclear as to whether the disease-

predicting algorithms could be generalised to include individuals with metastatic 

pancreatic cancer.  
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4.1.2.1 Limitation of sample size 

The samples size of 180 was decided arbitrarily as there was no previous data, with 

which to base our sample size calculation on. However, in view of the results from 

the current study, we now estimate that the sample size that would be required to 

show a sensitivity of 0.9 and a specificity of 0.9 with 95% confidence (W) is 

approximately 280 patients
289

. 

Power calculation based on the lowest limit for sensitivity (SN) =0.9: 

                                          
           

  
 

              
             

     
 

            
     

   
 

        

   
                              

 

Similarly, power calculation based on the lowest limit for specificity (SP) =0.9: 

                                          
           

  
 

              
             

     
 

            
     

   
 

        

   
                              

Note “Z” is 1.96, which represents the standard deviation of the mean for 95% of sample population 

It is clear from the power calculation that the current thesis is significantly 

underpowered and that more samples for both the PDAC and control groups would 

be required to improve the strength of our study.  
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4.2 Future directions 

The current thesis has identified a number of potential biomarker for pancreatic 

cancer including VDBP, RBP-4, FINC, IL-4, IL-17, G-CSF, and IP-10. However, 

there is a current lack of literature directly associating these proteins to pancreatic 

cancer. Therefore, we propose that future studies should aim to determine the roles of 

these proteins in pancreatic cancer. 

In view of the limitations described in section 4.1.2, we propose that future studies 

should aim to increase the sample size of the study and to analysis the diagnostic 

accuracy of the disease-predicting algorithms against cancers of other origins and 

other inflammatory diseases. Furthermore, the impact of sample collection 

methodology, delays in sample processing, and repeated freeze-thaw on the serum 

concentrations of candidate biomarkers should be assessed.  

Moreover, the UKCTOCS samples (particularly samples within the 0-1 time 

category) should be quantified for serum CCGF and the resulting data used to 

validate the disease-predicting algorithms described in the current thesis and 

furthermore to identify potential pre-diagnostic CCGF markers for pancreatic cancer. 

Finally, considering that we now have CCGF data for ninety PDAC serum samples, 

it would be interesting to conduct a retrospective study with the aim of identifying a 

serum CCGF prognostic marker for pancreatic cancer. 
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