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Abstract 

The conjunctiva is a mucous membrane which forms the majority of the ocular surface, and 

plays a key role in ocular surface defence and maintenance of the tear film.  Ex vivo 

expansion of conjunctival epithelial cells offers potential to reconstruct the ocular surface 

in cases of severe cicatrising disease; but in order to ensure long term success, conjunctival 

stem cells which produce both keratinocytes and goblet cells must be present.  An initial 

biopsy rich in stem cells would aid this, however the distribution of human conjunctival 

stem cells has not been clearly elucidated.  I hypothesised that human conjunctival 

progenitor cells reside in specific areas of the tissue. 

 

A surgical method to retrieve whole human conjunctival tissue for research purposes is 

described.  Expression of the stem cell marker ABCG2 and the transit amplifying cell marker 

p63 was assessed across 22 different regions of such fixed paraffin-embedded tissue, with 

significantly higher expression of ABCG2 demonstrated basally in the medial canthal and 

inferior medial/central forniceal areas.  Tissue was also cultured ex vivo, and clonogenic 

ability assessed across 8 different regions.  Significantly higher colony forming efficiency 

was demonstrated in the medial canthal and inferior forniceal areas.  Similar significant 

patterns were demonstrated for the expression of the stem cell markers ABCG2, ΔNp63 

and Hsp70 in these cultures, with highest expression of each in these same areas, and 

significant associations between each marker.  Increasing donor age and longer post 

mortem retrieval times were associated with significantly lower ABCG2 expression in fixed 

tissue, colony forming efficiency, and stem cell marker expression in cell cultures.  

Preliminary propagation studies demonstrated that conjunctival epithelial cell growth is 

supported by fibronectin, collagen IV and laminin 1. 

 

This is the first study to comprehensively assess the distribution of human conjunctival 

progenitor cells.  Substantial evidence is here presented that progenitor cells are 

distributed basally throughout the human conjunctiva, but with highest levels in the medial 

canthal and inferior forniceal areas.  This region may offer physical protection and niches 

which are rich in goblet cells, vasculature, melanocytes and immune cells.  Biopsies from 

this area, from younger donors, and with short post mortem retrieval times offer the 

greatest potential to developing stem cell-rich epithelial constructs for transplantation. 
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Glossary 

Adult Stem Cell Multipotent cells resident in fetal or adult tissue that are responsible for tissue 

replenishment and repair. 

Airlifting Cultivation of epithelial cells at the air-liquid interface to induce stratification. 

Amniotic Membrane The innermost layer of the placenta, consisting of a thick basement 

membrane and avascular stroma. 

Ankyloblepharon Adhesion of the superior and inferior eyelids. 

Basement Membrane A sheet of supporting and anchoring tissue which underlies epithelia. 

Bulbar Conjunctiva The portion of the conjunctiva which covers the surface of the eye, from 

the limbus to the fornices. 

Caruncle An ovoid body of modified skin at the medial canthus, adjacent to the plica 

semilunaris. 

Cell Cycle An orderly series of events within a cell that lead to its replication. 

Cicatrising Conjunctivitis Severe inflammation and scarring of the conjunctiva. 

Collagen A group of naturally occurring proteins which are the main components of connective 

tissue. 

Conjunctiva A mucous membrane that forms the majority of the ocular surface and plays a key 

role in ocular surface defence and maintenance of the tear film. 

Cornea The transparent refractive window at the front of the eye. 

Differentiation The process by which a less specialised cell becomes a more specialised cell 

type. 

Ectoderm One of the three primary germ cell layers in the early embryo, which differentiates to 

form amongst other tissues, the nervous system, epidermis, and parts of the eye. 

Entropion In-turning of the eyelid towards the eye. 

Epithelium A tissue that lines the cavities and surfaces of structures the body and many glands. 

Extracellular Matrix Extracellular tissue which provides structural and proliferative support to 

cells. 

Feeder Layer A layer of cells used to condition the media and support the growth of other cells 

in culture. 

Fibronectin A high-molecular weight glycoprotein, which is widely distributed in the 

extracellular matrix and plasma. 

Forniceal Conjunctiva The portion of the conjunctiva which lines the fornix, adjoining the 

bulbar and palpebral conjunctiva. 
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Fornix A deep arch of tissue, such as that formed between the eye and eyelid. 

Goblet Cell Large glandular simple columnar epithelial cells which secrete mucin. 

Induced Pluripotent Stem Cell Pluripotent stem cells derived by artificial genetic 

reprogramming of non-pluripotent cells. 

J23T3 Cells A mouse fibroblast cell line widely used to support the culture of keratinocytes. 

Keratinocyte The predominant cell type of epithelia. 

Label-Retention The cellular retention of DNA markers, a marker of slow-cycling and/or 

asymmetric division. 

Lacrimal Gland A gland in the superior lateral aspect of the orbit which secretes the aqueous 

portion of the tear film. 

Lagophthalmos The inability to completely close the eyelids. 

Laminin A group of naturally occurring proteins which are major components of basement 

membranes. 

Lateral Canthus The lateral junction of the superior and inferior eyelids. 

Limbus The border of the cornea with the conjunctiva and sclera. 

MCF7 A breast cancer cell line. 

Mesoderm One of the three primary germ cell layers in the early embryo, which differentiates 

to form amongst other tissues, connective tissue, muscles, and parts of the eye. 

Medial Canthus The medial junction of the superior and inferior eyelids. 

Meibomian Gland Sebaceous glands within the tarsal plate of the eyelid which secrete lipids 

which form the superficial lipid layer of the tear film. 

Mitosis A complex series of events by which a cell separates previously replicated  

chromosomes - the process by which cells divide to produce daughter cells genetically identical 

to the parent cell. 

Mucin Heavily glycosylated, high molecular weight glycoproteins which form gels. They are key 

components of secretions on all moist epithelia. 

Mucocutaneous Junction The transitional zone where mucosal epithelium and epidermis 

adjoin, such as at the eyelid margin. 

Multipotency The ability of a cell to differentiate into a number of closely related cell lineages. 

Ocular Surface The cornea, limbus, conjunctiva and tear film. 

Palpebral Conjunctiva The portion of the conjunctiva which covers the inner aspect of the 

eyelid, from the mucocutaneous junction to the fornices. 

Passage Sub-culturing of cells in vitro to maintain growth and/or expand the number of cells.  

Plasticity The ability of adult stem cells to broaden their potency upon exposure to a novel 

environment. 
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Plica Semilunaris A narrow crescentic fold of medial bulbar conjunctiva, adjacent to the 

caruncle. 

Pluripotency The ability of a cell to differentiate into all adult cell lineages - a feature of 

embryonic stem cells. 

Potency The ability of a cell to differentiate into different cell types.  

Progenitor Cell Any dividing cell with the capacity to differentiate, including putative stem cells 

in which self-renewal has not been demonstrated. 

Self-renewal Cellular division that generates at least one daughter cell equivalent to the mother 

cell with latent capacity for differentiation - the defining property of stem cells. 

Stem Cell A cell that that can give rise to multiple differentiated cell types, and has the ability to 

self-renew and resist progression along the line of specialisation. 

Stem Cell Niche The cellular microenvironment that provides support and stimuli, enabling 

stem cells to remain quiescent and maintain self-renewal. 

Stemness An unproven notion that common genes and mechanisms regulate different stem 

cells. 

Symblepharon Adhesion of the bulbar and palpebral conjunctiva. 

Tarsal Conjunctiva The portion of the conjunctiva which covers the inner aspect of the tarsal 

plate of the eyelid, thus forming the majority of the palpebral conjunctiva. 

Tear Film A complex layer of aqueous, mucin and lipid which coats the surface of the eye. 

Terminally Differentiated Cell A cell which no longer maintains the capacity to divide. 

Totipotency The ability of a cell to differentiate into all fetal and adult cells - a feature of zygotic 

stem cells. 

Transit Amplifying Cell The progeny of stem cells, which have low proliferative capacity and 

initially may retain self-renewal, but ultimately are fated for differentiation. 

Trichiasis Abnormally positioned eyelashes which are mis-directed towards the eye. 
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Abbreviations 

ABCG2   ATP-Binding Cassette Protein G2 

APES   3-aminopropyltriethxysilane 

BrdU  Bromodeoxyuridine 

BSA   Bovine Serum Albumin 

CDK   Cyclin-Dependent Kinase 

CFE   Colony Forming Efficiency 

CK  Cytokeratin 

DMEM   Dulbecco’s Modified Eagle’s Media 

DMSO   Dimethyl Sulphoxide 

DNA   Deoxyribonucleic Acid 

EDTA   Ethylenediaminetetraacetic Acid 

EGF   Epidermal Growth Factor 

FCS   Fetal Calf Serum 

H&E   Haematoxylin and Eosin 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic Acid 

HRP   Horseradish Peroxidase 

Hsp70   Heat Shock Protein 70 

MEM   Eagles Minimal Essential Media 

mRNA   Messenger Ribonucleic Acid 

NBF   Neutral Buffered Formaldehyde 

NHSBT   National Health Service, Blood and Transplant 

PAS   Periodic Acid Schiff  

PBS   Phosphate Buffered Saline 

PC   Progenitor Cell 

PCNA   Proliferating Cell Nuclear Antigen 

PCR   Polymerase Chain Reaction 

PI   Propidium Iodide 

PMRT   Post Mortem Retrieval Time 

PS   Penicillin-Streptomycin solution 

SC   Stem Cell 
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1. Introduction 

1.1. The Human Ocular Surface 

The ocular surface comprises the cornea, limbus, conjunctiva and tear film (Figure 

1); all aspects of which are essential for ocular functions.  The cornea is the 

transparent refractive window of the eye, the clarity of which is essential for vision.  

The health of the cornea and thus maintenance of vision depends on the ocular 

surface as a whole.  The border of the cornea with the conjunctiva/sclera is termed 

the limbus and is where the corneal epithelial stem cells (SC) reside.  The 

conjunctiva comprises the majority of the ocular surface.  It plays a key role in its 

immunological defence; provides a barrier to protect the underlying tissues; and as 

a mucous membrane, it is critical for maintaining the tear film, thus preventing 

desiccation and preserving homeostasis of the ocular surface. 

 

 

Figure 1: Schematic drawing of the human ocular surface, which comprises the cornea, limbus, 
conjunctiva and tear film.  Adapted in part from Paulsen and Berry (Paulsen and Berry, 2006). 

 

 

The ocular surface is in turn protected by the superior and inferior eyelids.  The 

form and shape of the eyelids are maintained by a dense fibrous tissue termed the 

tarsal plates, which contain the lipid-secreting meibomian glands.  Blinking, which 

protects the eye from trauma and foreign bodies and helps to redistribute the tear 

film, is achieved by the levator palpebrae superioris and orbicularis oculi muscles.  

Rows of eyelashes on each eyelid further increase protection from foreign debris.  
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The eyelids fuse medially and laterally at the medial and lateral canthi respectively 

(Bron et al., 1997). 

 

1.1.1. The Cornea and Limbus 

The cornea lies within the outer protective fibrous structure of the eye, otherwise 

formed by the sclera.  It is 540-700µm in thickness (Dawson et al., 2011) and 

comprised of five layers as shown in Figure 2.  The superficial epithelium is 

continuous with the limbal and then conjunctival epithelia peripherally.  These 

epithelia bear many resemblances, but differ significantly in that the corneal and 

limbal epithelia do not possess goblet cells. 

 

 

 
Figure 2: Photomicrograph of the normal human cornea demonstrating the 5 different layers, from 
the epithelium externally (forming part of the ocular surface), to the endothelium internally (H&E 
stain). Scale bar 50µm. 

 

 

The corneal epithelium is a stratified squamous non-keratinised non-secretory 

epithelium of 5-6 layers of cells in depth.  The basal cells are columnar, the 

intermediate cells are polyhedral, and the superficial cells become increasingly 

wider and flattened to create a smooth surface (Bron et al., 1997).  The superficial 

cells have numerous microplicae and express membrane-associated mucins which 

form a dense glycocalyx at the epithelium-tear film interface.  The overlying tear 
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film is protective both immunologically and in preventing epithelial desiccation (see 

Section 1.1.3).  The cells are connected by numerous desmosomes, which reduce 

shear and enable them to provide a barrier to control the hydration of the 

underlying stroma.  Although dendritic cells are present in the peripheral 

epithelium in the adult, the central corneal epithelium is effectively devoid of 

immunocompetent cells or melanocytes (Bron et al., 1997).  

 

The basement membrane of the corneal epithelium is primarily composed of 

collagens IV and VII, and is also rich in laminins -332 and γ2, fibronectin and other 

glycoproteins including fibrillin, nidogen, clusterin and perlecan (Schlötzer-

Schrehardt et al., 2007).  This anchors the epithelium to a modified acellular region 

of the stroma, known as Bowman’s layer.  This latter structure is 8-14µm thick and 

terminates peripherally at the summits of the marginal corneal capillary arcades 

(Bron et al., 1997). 

 

The epithelium is the most densely innervated tissue in the body, with primarily 

sensory but also sympathetic fibres, which respond to mechanical, chemical and 

temperature stimuli (Dawson et al., 2011).  These are supplied by the anterior 

ciliary nerves and those of the surrounding conjunctiva (Bron et al., 1997).  

 

The corneal epithelium responds rapidly to disruptions in its integrity by initial 

amoeboid sliding of cells at the wound margin, followed by cell replication.  SCs, 

that are cells which can give rise to multiple differentiated cell types, have the 

ability to self-renew and resist progression along the line of specialization (Potten 

and Loeffler, 1990, Mikkers and Frisén, 2005) (see Section 1.5) reside in basal crypts 

of the limbal epithelium.  They are responsible for renewing and maintaining the 

corneal epithelium by superficial and centripetal migration of their differentiating 

progeny (see Section 1.6.1).  In comparison to that of the cornea, the limbal 

epithelium is approximately 10 cells in depth and features radial papillae (the limbal 

palisades of Vogt).  The basement membrane bears many similarities to that of the 

cornea but is richer in collagen IVα2, laminin α1, β1 and γ1, and contains lower 

levels of clusterin and fibrillins (Schlötzer-Schrehardt et al., 2007).  The underlying 
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stroma is equally innervated, but additionally densely vascularised (Li et al., 2007).  

The cells within this region also act as a barrier preventing encroachment of the 

conjunctival epithelium with its blood vessels which would otherwise impair 

corneal transparency (Chen and Tseng, 1991). 

 

The stroma is a dense connective tissue formed of 200-250 lamellae of thick (30nm) 

flattened parallel collagen fibres which stretch from limbus to limbus.  The fibres 

are predominantly collagen type I, with lesser amounts of type V and VI.  Regular 

spacing of the fibres at 42-44nm apart is maintained by the surrounding 

proteoglycans, which are predominantly composed of chondroitin sulphate and 

keratan sulphate glycosaminoglycans.  This organised structure ensures that the 

stroma scatters less than 10% of normal incident light.  Modified fibroblasts named 

keratocytes are scattered throughout the stroma, which secrete and maintain the 

stromal extracellular matrix.  Immunocompetent cells are also dispersed 

throughout, with dendritic cells distributed more anteriorly and macrophages 

posteriorly (Dawson et al., 2011).   

 

The posterior surface of the cornea is lined by the corneal endothelium, which rests 

upon a modified 10-15µm thick basement membrane (Descemet’s membrane).  

This is composed of collagen IV, laminin and fibronectin and increases in thickness 

throughout life.  The endothelium is a barrier monolayer of hexagonal cuboidal cells 

which are interconnected by numerous tight junctions and gap junctions.  The tight 

junctions are however significantly more permeable than those of the corneal 

epithelium; thus the endothelium actively controls fluid and electrolyte transport 

across the posterior surface of the cornea by a ‘pump-leak’ model (Noske et al., 

1994).  As such it has a critical role in maintaining corneal hydration and hence 

transparency (Bron et al., 1997). 

 

Other than the marginal corneal arcades, the cornea is an avascular structure, and 

is dependent upon the tear film and aqueous as sources of oxygen and other 

nutrients (Bron et al., 1997, Dartt, 2011).  The transparency of the cornea may be 

attributable to a number of factors: the regularity and smoothness of the surface 
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epithelium, the regular spacing arrangement of collagen fibres within the stroma, 

and its avascularity (Bron et al., 1997).  Disturbance to any of these properties may 

reduce visual acuity.  The regular spacing of collagen fibres within the stroma may 

be disrupted by either increased corneal hydration or scarring secondary to any 

form of injury (Dawson et al., 2011). 

 

1.1.2. The Conjunctiva 

The conjunctiva is a thin transparent mucous membrane which connects the eye to 

the eyelids.  It covers the inner surface of the eyelids from the mucocutaneous 

junction posterior to the openings of the meibomian glands at the eyelid margin, to 

the fornices, and across the surface of the eye to the limbus, where it is continuous 

with the limbal and corneal epithelia.  It is thus a relatively large tissue, with an 

estimated total surface area of 12cm2.  Although it is a continuous tissue it is 

described in distinct areas: the palpebral (that covering the inner aspect of the 

eyelids); the bulbar (that covering the sclera of the eye); and the forniceal 

conjunctiva (the area comprising the annular sac adjoining the two).  The palpebral 

conjunctiva is mostly comprised of the tarsal (that overlying the tarsal plates) with a 

small region of marginal (that adjacent to the mucocutaneous junction) and the 

remainder termed orbital conjunctiva, as shown in Figure 1 (Bron et al., 1997).  The 

superior fornix lies approximately 8-10mm and the inferior fornix approximately 

8mm from the limbus.  Medially the fornix is replaced by the caruncle and plica 

semilunaris (Figure 1), whereas laterally the fornix is deep at approximately 14mm 

from the limbus (Pepperl, 2007).  The conjunctiva is strongly adherent to the tarsal 

plates, to the globe adjacent to the limbus, and to connective tissue deep in the 

fornices in order to maintain their depth.  In other areas it is loose and flexible, a 

property conveyed by elastic fibrils within the lamina propria, thus allowing free 

movement of the eye and eyelids (Bron et al., 1997).  The conjunctiva is thus 

dynamic in shape, and the delineation of the zones of the conjunctiva is therefore 

not precise.  
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The conjunctiva is a highly specialised tissue, composed of a stratified non-

keratinized epithelium containing goblet cells, which rests on a basement 

membrane and an underlying vascular lamina propria (Figure 3). It is thin and 

translucent.  The epithelium comprises mostly cuboidal and polyhedral cells, and 

varies from 2-9 layers of cells in depth.  It is deepest at the marginal zone where the 

basal layers feature papillae, whilst the remaining tarsal conjunctiva comprises 2-5 

layers of cuboidal cells.  Additional intermediate layers of polyhedral cells are found 

in the forniceal and canthal regions.  As the bulbar conjunctiva approaches and is 

continuous with the limbal conjunctiva, the cells of the deeper layers become taller 

and the superficial cells become flattened (Bron et al., 1997).  Similar to the corneal 

epithelium, the superficial cells have numerous microplicae and express 

membrane-associated mucins which form a dense glycocalyx at the epithelium-tear 

film interface (see Section 1.1.3). 

 

 

 
Figure 3: Photomicrograph of the normal human conjunctiva showing 4-5 layer polygonal cell 
epithelium with goblet cells. The epithelium rests on a basement membrane and an underlying loose 
connective tissue, the lamina propria (H&E stain). Scale bar 50µm. 

 

 

Large round or oval goblet cells are scattered throughout the epithelium, with the 

exception of the marginal zone.  They span the entire depth of the epithelium, with 

a slender basal portion and broad apical portion distended by their secretory 

products.  They appear either singly or in clusters, the latter often within intra-

epithelial crypts.  They are most dense nasally, especially in the plica semilunaris, 

and in the inferior fornix (Kessing, 1968) (Figure 4).  These cells are packed with 

copious large secretory granules, releasing the gel-forming mucin MUC5AC, which 
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forms the bulk of the mucin component of the tear film (Inatomi et al., 1996, 

McKenzie et al., 2000), and an array of antimicrobial factors (see Section 1.1.3).  

Goblet cell mucin production appears to be controlled by activation of the 

sympathetic and parasympathetic nerve supply, and also stimulated by growth 

factors such as epidermal growth factor (EGF), and purinergic agonists.  The latter 

may be released from nerves, platelets, damaged cells or bacteria (Dartt, 2004). 

 

Additional glandular tissue is also located in the conjunctival fornices.  Krause’s 

accessory lacrimal glands which are adjunctive to the lacrimal gland in secreting the 

aqueous component of the tear film (see Section 1.1.3), are located predominantly 

in the superior and inferior fornices.  Saccular and branched crypts, which have 

been considered rudimentary accessory lacrimal glands, but also contain goblet 

cells, are located in the inferior and superior fornices (Kessing, 1968) (Figure 4). 

 

 

 
Figure 4: Schematic diagram demonstrating the distribution of A) goblet cells (black) and Krause’s 
accessory lacrimal glands (green) B) saccular and branched crypts (red) and C) intra-epithelial 
mucous crypts (blue) across the conjunctiva.  These all predominantly reside within the fornices 
and/or medial canthal area. Dashed lines (----) represent the borders of the intra-palpebral bulbar 
conjunctiva, the fornices and the margins of the tarsal plates.  Adapted from Kessing (Kessing, 1968). 

 

 

The conjunctival epithelium is also populated by scattered melanocytes and a 

wealth of immune cells.  The latter provide both innate and adaptive effector 

mechanisms to destruct invading pathogens.  Lymphocytes (predominantly T cells), 

dendritic cells and neutrophils reside within the epithelium; whilst lymphocytes 
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(often forming lymphoid aggregations), neutrophils, plasma cells and mast cells are 

found in the underlying lamina propria (Bron et al., 1997).  In addition, the goblet 

cells secrete a wealth of antimicrobial factors into the tear film (see Section 1.1.3).  

Together this forms the eye-associated lymphoid tissue (EALT), a component of the 

mucosal immune system.  This system one of the few sites that confers immune 

privilege, by immunological ignorance and tolerance, based on different-reactivity 

and anti-inflammatory responses distinct from the central immune system (Knop 

and Knop, 2007). 

 

The medial canthal area contains a narrow crescentic fold of bulbar conjunctiva 

known as the plica semilunaris (Figure 1); this enables full ocular abduction despite 

the shallow medial fornix.  Being highly vascular, hence pink in colour, and 

especially rich in goblet cells, melanocytes, and both specific and non-specific 

immune cells; it has been proposed that the plica semilunaris is a specialised organ 

of ocular defence (Arends and Schramm, 2004).  Medial to the plica semilunaris lies 

the caruncle, an area of modified skin with a stratified squamous epithelium rich in 

goblet cells, modified lacrimal glands, melanocytes, specific and non-specific 

immune cells, hairs and sebaceous glands (Bron et al., 1997, Arends and Schramm, 

2004). 

 

The conjunctival epithelium has an immense regenerative capacity and wound-

healing response (Dartt, 2004), with both the keratinocytes and goblet cells being 

capable of proliferation (Wei et al., 1995, Pellegrini et al., 1999, Shatos et al., 2003).  

The distribution of conjunctival SCs has not however been clearly elucidated (see 

Section 1.6.2). 

 

The conjunctival basement membrane is similar but subtly different to that of the 

limbal and corneal epithelia.  It is again comprised primarily of collagens IV and VII, 

laminins -332, α3, γ1, γ2 and 5, integrin-β4, nidogen, clusterin, perlecan and 

fibronectin.  Similar to the limbal basement membrane it is rich in collagen IVα2, 

laminin γ1 and nidogens; whereas in common with the corneal epithelial basement 

membrane it is rich in clusterin (Tuori et al., 1996, Schlötzer-Schrehardt et al., 2007, 
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Messmer et al., 2012).   These components may be altered in the presence of 

disease (Messmer et al., 2012).  Unlike the corneal epithelium, the conjunctival 

epithelium rests on an underlying lamina propria comprised of highly vascularised 

loose connective tissue, which is also rich in immune cells as described above.   

 

The rich vascular supply to the conjunctiva is provided from the palpebral branches 

of the ophthalmic and lacrimal arteries, and from the anterior conjunctival 

branches of the anterior ciliary artery.  Together these form anastomoses of 

marginal and peripheral tarsal arcades and a pericorneal plexus.  The conjunctival 

veins accompany and outnumber the arteries, draining into the post-tarsal venous 

plexus or the superior or inferior ophthalmic vein.  In addition, there is an irregular 

network of lymphatics (Bron et al., 1997). 

 

The conjunctiva is supplied by sensory, sympathetic and parasympathetic nerves, 

but not as richly as the cornea.  These derive from the infra- and supratrochlear, 

infra- and supraorbital and lacrimal nerves, which are branches of the ophthalmic 

division of the trigeminal nerve (cranial nerve V), and the sympathetic plexus (Bron 

et al., 1997). 

 

1.1.3. The Tear Film and Ocular Mucins 

The pre-ocular tear film is a complex layer consisting of aqueous, mucin and lipid 

components, the depth of which remains debated, with reports varying widely from 

3-45µm depending on the analytical method employed  (Paulsen and Berry, 2006).  

These three components are hypothesised to form a multifaceted structure as 

shown in Figure 5. 

 

The aqueous component of the tear film is primarily produced by the lacrimal 

gland, and accessory lacrimal glands.  The former resides in the superior lateral 

aspect of the orbit, within the lacrimal fossa.  The conjunctival keratinocytes and 

goblet cells, and to a small extent the corneal keratinocytes also appear to secrete 

water and electrolytes (Dartt, 2011).  The lacrimal gland fluid is isotonic, which is of 
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key significance in preventing aqueous deficiency dry eye.  In addition, the lacrimal 

glands and accessory lacrimal glands secrete MUC7, and a range of antimicrobial 

proteins including lactoferrin, lysozyme and IgA  (Dartt, 2011). 

 

 
 

Figure 5: Schematic drawing of the structure of the tear film on the ocular surface, demonstrating 
the epithelial surface glycocalyx, thick mucous/aqueous layer and thin superficial lipid layer.  A 
variety of antimicrobial agents are enclosed within. Adapted from Gipson (Gipson, 2004). 

 

 

The other main constituent of the tear film is mucin.  These are heavily 

glycosylated, high molecular weight glycoproteins with tandem repeats of amino 

acids rich in serine and threonine in their backbone, that serve as sites for O-

glycosylation (Gipson, 2004).  They are present on all moist epithelia, and are 

characterised by their hydrophilicity and ability to form gels.  Numerous mucins 

have been characterised which are either gel-forming/secretory or membrane-

associated.  The superficial cells of the corneal and conjunctival epithelia express a 

range of membrane-associated mucins on their microplicae including MUC1, MUC4 

and MUC16 (Inatomi et al., 1995, Pflugfelder et al., 2000, Argüeso et al., 2003a); 

these contribute to a dense glycocalyx barrier at the epithelial-tear film interface.  

The large gel-forming mucin MUC5AC is secreted from conjunctival goblet cells 

(Inatomi et al., 1996, McKenzie et al., 2000), which forms the scaffolding of the tear 

film, together with the small soluble mucin MUC7 produced by the lacrimal gland, 

and soluble forms of the membrane-associated mucins (Dartt, 2004, Gipson, 2004, 
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Paulsen and Berry, 2006).  In addition, the goblet cells also secrete trefoil proteins 

which interact with mucins, transferrin and antimicrobial factors such as peroxidase 

and defensins (Iwata et al., 1976, Langer et al., 1999, Haynes et al., 1999, 

McNamara et al., 1999). 

 

The superficial lipid component, a product of the meibomian glands of the eyelids is 

a complex of polar and non-polar lipids, including free fatty acids, triacylglycerols 

and wax and sterol esters.  There is increasing evidence that the polar lipids interact 

with the major proteins of the tear film (lactoferrin, lysozyme, lipocalin and IgA), 

thus creating a stable inner lipid-aqueous interface beneath the outer non-polar 

lipid-air interface.  This complex layer varies from 13-100nm in depth, and plays a 

key role in preventing aqueous evaporation, thus preserving the integrity of the 

whole tear film complex (Butovich et al., 2008). 

 

The unique composition of the tear film confers many critical functions.  The gel-

like consistency of the mucous/aqueous layer lubricates and prevents desiccation of 

the ocular surface epithelia.  The glycocalyx provides a deep barrier which prevents 

pathogen penetrance and anchors the mucous/aqueous layer (Gipson, 2004, 

Kesimer et al., 2013).  In addition to the plethora of secreted antimicrobial factors, 

mucins also bind and trap bacteria (Mantelli and Argüeso, 2008), recruit leucocytes 

(Aknin et al., 2003) and activate neutrophils (Aknin et al., 2004).  Bacteria together 

with cellular debris and foreign bodies are then removed with tear film movement 

during blinking, to be cleared down the nasolacrimal drainage system (Dartt, 2011).  

Finally, the smooth surface that is created by the tear film is optimal for light 

refraction (Paulsen and Berry, 2006). 

 

The conjunctiva plays a key role in maintaining a healthy tear film.  The presence of 

goblet cells and its large surface area result in it having a substantially greater 

capacity to produce mucins than the lacrimal gland or corneal epithelium.  Ocular 

surface mucin production is tightly regulated, both by its synthesis and secretion 

and by the proliferation of ocular surface cells (Dartt, 2004).  This is critical, as 

either mucin under- or overproduction may cause ocular surface disease (Lemp and 
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Marquardt, 1992).  Conversely, ocular surface disease (see Section 1.3.1) itself is 

associated with both goblet cell depletion (Tseng et al., 1984, Doughty, 2012); and 

alterations in the expression, distribution and/or glycosylation of mucins, resulting 

in severe dry eye (Argüeso et al., 2003b).  Normal mucin glycosylation is important 

for neutrophil activation (Aknin et al., 2004). 

 

1.2. Development of the Human Ocular Surface 

The eye develops from week 4 of embryogenesis, from invaginations of both neural 

and surface ectoderm, together with consolidation of some of the surrounding 

mesoderm.  The details of the future ocular surface are apparent from the 7th to 8th 

week of embryogenesis, when surface ectoderm consolidates centrally to form the 

future cornea, and folds in on itself superiorly and inferiorly to form the future 

conjunctiva (Duke-Elder and Cook, 1963) (Figure 6). 

 

 

 
Figure 6: Schematic drawing to demonstrate the development of the human ocular surface at the 
7

th
-8

th
 week of embryogenesis.  Following invagination of the lens vesicle, surface ectodermal tissue 

differentiates to become the corneal, limbal and conjunctival epithelia. The latter folds in on itself as 
the underlying mesoderm proliferates, thus creating the conjunctival fornices and eyelids. Adapted 
from Wolosin et al. (Wolosin et al., 2004). 
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Once the lens vesicle separates from the invaginating surface ectoderm, a 

remaining few Pax-6 positive surface ectodermal cells begin to differentiate 

(Nishina et al., 1999).   Initial epithelial differentiation involves a switch from the 

universal stratified epithelial cytokeratins CK5 and CK14, to the tissue specific 

cytokeratins CK3 and CK12 for the cornea, and CK4 for the conjunctiva.  The 

phenotypic characteristics of the two epithelia then develop; the control of which 

appears to be underpinned by large subsets of genes only present in each tissue 

(Turner et al., 2007). 

 

At week 8, a two-three layered epithelium with junctional complexes resting on a 

thin basal lamina is detectable.  The cells are flat and rich in glycogen granules 

(Sellheyer and Spitznas, 1988).  At the same time, the mesoderm underlying the 

future conjunctiva proliferates to create eyelid folds (Figure 6).  These advance 

towards each other and elongate laterally to become the eyelids, and thus generate 

the fornices (Duke-Elder and Cook, 1963). 

 

At the 9th week of embryogenesis the epithelia fuse along the eyelid margin, such 

that the future cornea and conjunctiva then develop in a protected cavity (Duke-

Elder and Cook, 1963).  The conjunctival epithelium is well differentiated by this 

stage; with larger cells possessing microplicae; and with goblet cells detectable in 

the forniceal conjunctival area, and shortly afterwards extending towards the 

palpebral and bulbar conjunctival regions (Sellheyer and Spitznas, 1988, Miyashita 

et al., 1992).  The tight structural integrity of the epithelia which is created by hemi-

desmosomes, desmosomes and tonofilaments, does not however form until the 4th 

month.  It has been proposed, that it is for this reason that the tissue is protected 

by eyelid fusion in the early months (Sellheyer and Spitznas, 1988). 

 

Vascularisation develops from the 12th week, but only to the limbal and conjunctival 

epithelia.  The mesoderm lying immediately underneath develops centrally into the 

corneal stroma, and elsewhere, into the sub-conjunctival connective tissue (Tenon’s 

capsule), extra-ocular and eyelid muscles, sclera, and within the developing eyelids 

forms the tarsal plates (Duke-Elder and Cook, 1963). 
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The plica semilunaris and caruncle develop from the 3rd month.  It is not clear 

whether the plica semilunaris originates from the superior and inferior forniceal 

tissue and merges, or whether its origin is more nasal (Arends and Schramm, 2004).  

It develops at a different rate to the surrounding tissues, and consequently is 

relatively large at stages.  Although ultimately it has the highest concentrations of 

goblet cells, they are not detectable here until the 4th month.  At this same time, a 

dense infiltration of leucocytes is noted in both the epithelium and underlying 

connective tissue.  Its rich vascular network develops by the 5th month (Arends and 

Schramm, 2004). 

 

The eyelids remain adherent until the 5th to 7th month; with separation beginning 

nasally (Duke-Elder and Cook, 1963, Andersen et al., 1965).  The fully formed ocular 

surface is then revealed. 

 

1.3. Human Conjunctival Disease 

1.3.1. Diseases Affecting the Conjunctiva 

The conjunctiva is subject to a wide variety of insults including: trauma (chemical, 

mechanical and thermal), infection (including trachoma), neoplasms, 

oculocutaneous disease (including ocular mucous membrane pemphigoid, linear 

IgA disease, Stevens-Johnson syndrome and atopic keratoconjunctivitis), other 

systemic diseases (such as Sjögren’s syndrome and graft-versus-host disease), drug-

induced, and topical therapy (such as the use of anti-glaucoma medication).  In the 

most severe forms, many of these processes may trigger limited or chronic 

inflammation, fibrosis, keratinisation and scarring (cicatrisation) (Bernauer et al., 

1997). 

 

Such fibrosis and scarring leads to numerous sequelae including: forniceal 

shortening, symblepharon, ankyloblepharon, entropion, trichiasis, lagophthalmos, 

predisposition to ocular surface infection, and severe dry eye secondary to goblet 

cell and mucin deficiency.  These diseases are characterised by unremitting ocular 
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pain, and the secondary tear film deficiency and resulting limbal SC failure lead to 

corneal desiccation, conjunctivalisation, vascularisation and ulceration, with loss of 

sight (Figure 7).  Scarring may be so aggressive that in end-stage disease the 

fornices may be totally obliterated and the cornea becomes opaque (Bernauer et 

al., 1997). 

 

 

 
Figure 7: Clinical images of cicatrising conjunctival disease. A) Severe conjunctival scarring with 
symblepharon in ocular mucous membrane pemphigoid, B) conjunctival and corneal desiccation and 
scarring in chemical burn injury, C) acute conjunctival scarring in Stevens-Johnson Syndrome. Images 
courtesy of Professor S. B. Kaye. 

 

 

The reported incidence and morbidity of these conditions varies greatly.  Trachoma 

is endemic in more than 50 countries, with highest prevalence in sub-Saharan and 

East Africa, the Middle East, the Indian sub-Continent and Southeast Asia; but is 

rarely seen in the Western world.  It is estimated that 1.3 million people are blind 

from the disease (Burton and Mabey, 2009).  In developed countries, chemical and 

thermal burns represent 7-18% of ocular injuries seen in emergency departments 

(Merle et al., 2008) and 17.3% of battlefield injuries (Ari, 2006); 33% of which 

experience visual disability and 15% blindness (Kuckelkorn et al., 2002).  The annual 

incidence of ocular mucous membrane pemphigoid has been reported as 1.16 per 

million, with ocular involvement in 60-95% (Chan et al., 2002); and of Stevens-

Johnson syndrome is 2-3 per million, with ocular involvement in 43-81%, and 

permanent visual disability in 35% (Fritsch, 2008). Yet the overall annual incidence 

of all cicatrising conjunctivitis in the UK has recently been reported as 1.3 per 

million, but this is thought to be an underestimation (Radford et al., 2012). 
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Although Chlamydia trachomatis infection is treatable with oral antibiotics, lack of 

access to healthcare and repeated infections mean that severe ocular surface 

cicatrisation is widespread.  At this end-stage, like the other conditions above there 

is a lack of an effective treatment (see Section 1.3.2).  Given the chronic pain and 

visual disability which ensue, these conditions represent a significant burden to 

individuals, healthcare systems and wider societies. 

 

1.3.2. Management of Cicatrising Conjunctival Disease 

Cicatrising conjunctival disease is one of the most challenging conditions for 

ophthalmologists to treat.  Early diagnosis and management are essential for any 

prospect of obtaining a favourable outcome (Williams et al., 2011).  Sadly, 

trachoma is often untreated/recurrent and thus progresses to end-stage 

cicatrisation, and chemical and thermal injuries often progress to severe disease 

despite immediate treatment.  Many of the other diseases are often only 

recognised at late stages due to their rarity (Radford et al., 2012). 

 

Organised trachoma control programs using widespread antibiotic therapy has had 

variable success (Burton and Mabey, 2009).  Treatment options for other diseases 

are limited and usually aimed at preventing disease progression and symptom 

control.  Early aggressive intervention in the acute stages of chemical or thermal 

injuries and Stevens-Johnson syndrome may help prevent blinding sequelae.  

Chemical injuries should be managed with immediate copious irrigation.  Intensive 

topical tear supplements, steroids, antibiotics, ascorbate and citrate have all been 

advocated for these acute conditions; together with the early use of amniotic 

membrane transplantation, which reduces inflammation and scarring, and 

promotes epithelisation (Fish and Davidson, 2010, Liu et al., 2012b, Ciralsky et al., 

2013). 

 

Long term management of chronic cicatrisation aims to control inflammation with 

systemic steroids or immunosuppressive agents; and to eliminate correctable 

factors which may exacerbate ocular disease.  These latter measures encompass 
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artificial tear supplements (including autologous serum tears), punctual occlusion, 

surgical correction of trichiasis or entropion, and prevention and/or treatment of 

secondary bacterial infection (Bernauer et al., 1997).  Side effects of 

immunosuppressive agents may however be significant, and despite control of 

inflammation, progressive symblepharon formation often still occurs (Radford et 

al., 2012). 

 

Endeavours to surgically reconstruct the ocular surface with excision of scar tissue 

and application of a tissue substitute have resulted in limited success.  Conjunctival 

autografts were first used to cover small conjunctival defects with success (Thoft, 

1977, Vastine et al., 1982), but are insufficient in size to replace areas of 

widespread disease or to reconstruct the fornices.  Thus oral mucosa (Shore et al., 

1992), nasal turbinate mucosa (Wenkel et al., 2000) and amniotic membrane 

(Honavar et al., 2000, Barabino and Rolando, 2003) have all been proposed.  As 

many of these diseases affect other body sites, alternative mucous membranes may 

also be involved in the original disease process.  Their use is also not without 

morbidity to the donor site, and furthermore they are prone to shrinkage and often 

give cosmetically poor results (Shore et al., 1992, Schrader et al., 2009b).  Although 

amniotic membrane has been demonstrated to enhance conjunctival regeneration 

(Barabino and Rolando, 2003); it is prone to recurrent shrinkage in the presence of 

uncontrolled inflammation, with recurrent symblepharon formation in 10-44% and 

progressive loss of approximately half of the fornix depth originally obtained within 

4 months of surgery (Honavar et al., 2000, Barabino and Rolando, 2003).  

Attempted limbal SC or corneal transplantation to improve vision is prone to failure 

in the presence of such significant conjunctival disease (Tseng et al., 2005, Shortt 

and Tuft, 2011). 

 

There is evidently a great need to establish alternative methods to regenerate or 

reconstruct a healthy ocular surface in these patients.  Transplantation of a cultured 

conjunctival epithelial equivalent containing SCs and their progeny offers one such 

approach; replenishing a deficient ocular surface and leading to restoration of 

function (Holland, 1996).  Conjunctival replacement therapy would also assist 
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ocular surface reconstruction in many cases of conjunctival loss, such as post-

surgical excision of neoplastic lesions and pterygia, and in glaucoma surgery. 

 

1.4. The Cell Cycle and Cell Division 

Two distinct types of cell division take place in eukaryotes: that producing daughter 

cells which are genetically identical to the parent cell (mitosis), and that producing 

haploid gametes (meiosis).  Mitosis is responsible for tissue replenishment and 

repair, which occurs within the framework of the cell cycle. 

 

1.4.1. The Cell Cycle 

The cell cycle is an orderly series of events which takes place within the cell, leading 

to its division and duplication (replication).  It consists of four distinct phases as 

shown in Figure 8. 

 

Figure 8: Diagram to represent the phases of the cell cycle.  The cell grows continuously in 
interphase (G1, S and G2), with DNA synthesis confined to S phase, and gaps at G1 and G2.  The 
nucleus and cytoplasm divide (mitosis and cytokinesis) in M phase.  Cells may exit the cycle into G0 
either temporarily or indefinitely.   

 

 

DNA synthesis and chromosomal replication occurs during S phase (synthesis), a 

process which requires 10-12 hours.  Chromosomal segregation (mitosis (see 

Section 1.4.2)) and cytoplasmic division (cytokinesis) occur as a rapid (less than 1 

hour) series of events in M phase (mitosis).  These stages are separated by gap 
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phases (G1 and G2), which enable protein and organelle synthesis, permit 

monitoring of the internal and external environments and control checkpoints 

before committing to the active S or M phases.  G1, S and G2 phases are together 

termed interphase.  Completion of the whole cycle takes approximately 24 hours 

(Alberts et al., 2008). 

 

Quiescent or senescent cells enter the G0 state, where they may remain for long 

periods of time or indefinitely.  Senescence may occur as a result of detected DNA 

damage or degradation.  Terminally differentiated cells (see Section 1.5) 

permanently exit the cell cycle at G0 with no possibility of re-entry (Zieske et al., 

2004). 

 

1.4.2. Mitosis 

Mitosis is itself a complex series of events which result in separation of the 

previously replicated chromosomes.  It may be segregated into five distinct phases: 

 Prophase - nuclear material condenses from loosely coiled chromatin into 

discrete chromosomes, with each replicated sister chromatid being bound 

centrally at the centromere. 

 Prometaphase - the nuclear membrane disintegrates and the centromeres 

attach to a complex of microtubules which form the mitotic spindle. 

 Metaphase - the chromosomes align at the equator of the mitotic spindle, 

poised for segregation. 

 Anaphase - the sister chromatids separate and the chromosomes are drawn to 

opposite poles of the spindle / ends of the cell. 

 Telophase - the chromosomes decondense and the nuclear membranes reform 

(Alberts et al., 2008). 

 

Cytokinesis then ensues to complete cellular division and the M phase of the cell 

cycle (see Section 1.4.1). 
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1.4.3. Regulation of Cell Division and Growth 

Regulation of the cell cycle is governed by a complex network of regulatory 

proteins, known as the cell-cycle control system.  This not only controls the 

proliferation of cells, but is crucial to cell survival: both by detection of DNA damage 

(enabling its repair or apoptosis of the cell), and in prevention of uncontrolled cell 

division (Alberts et al., 2008).  The key regulatory molecules of the cell cycle are the 

cyclin-dependent kinases (CDKs).  At least 9 have been identified in mammalian 

systems, each regulating specific control points within the cell cycle.  CDKs are in 

turn regulated both positively by cyclins, and negatively by cyclin-dependent kinase 

inhibitors.   

 

The decision to proliferate is made in G1 phase of the cycle.  Both intracellular and 

extracellular signals ensure that cell growth and division is regulated in response to 

local requirements.  The primary positive signals for which are provided by various 

extracellular growth factors, such as EGF and keratocyte growth factor.  These 

induce formation of the CDK4(6)/cyclin D complex.  Inhibitory signals are provided 

by cell contact inhibition, cAMP and transforming growth factor-β (TGF-β).  Both of 

these mitotic and anti-mitotic CDK/cyclin signalling pathways focus on a single 

protein pRb.  A critical mass of cyclin D and E must be reached to enable 

phosphorylation of Rb, which triggers the MAP kinase pathway and the expression 

of cell proliferation genes, permitting the cell to enter S phase.  This checkpoint is 

known as the restriction point, beyond which cells are no longer dependent on 

extracellular proliferation stimulants to proceed through the remainder of the 

cycle.  (Zieske et al., 2004, Alberts et al., 2008). 

 

There are two other main checkpoints of the cell cycle: the DNA replication 

checkpoint, and the spindle checkpoint.  The first occurs at the end of G2 phase. 

The presence of unreplicated DNA initiates negative signals to block the action of 

CDK1/cyclin B complex (also known as maturing promoting factor) until DNA 

replication is complete.  The cell is then permitted to enter M phase.  The second 

occurs in metaphase.  Improper attachment of the replicated  chromosomes to the 
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mitotic spindle initiates negative signals to block the anaphase promoting complex, 

until correct chromosomal alignment is achieved (Alberts et al., 2008). 

 

It has been suggested that SCs (see Section 1.5) are arrested in the G1 phase of the 

cell cycle rather than G0, and are actively inhibited from proliferating in their 

resting state (Joyce et al., 1996). 

 

1.5. Stem Cells 

SCs are present in all multicellular organisms, and can be defined as cells that can 

give rise to multiple differentiated cell types, that is multipotency, have the ability 

to self-renew, and resist progression along the line of specialization (Potten and 

Loeffler, 1990, Mikkers and Frisén, 2005).  Thus they can theoretically generate and 

maintain a tissue for a lifetime.  Transit amplifying cells (TAC) arise from these, have 

a low proliferative capacity and represent the largest group of dividing cells.  These 

generate terminally differentiated cells which no longer have the capacity to divide 

(Lajtha and Holtzer, 1979, Barrandon, 1993) (Figure 9).  The purest SCs are zygotic 

SCs, in that they are unlimited in their self-renewal and can differentiate into all 

fetal and adult cells (totipotency) (Smith, 2006). 

 

 

Figure 9: Schematic diagram to represent the turnover of stem cells to maintain self-renewal and 
produce transit amplifying and terminally differentiated cells. 
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The term progenitor cell (PC) is attributed to any dividing cell with the capacity to 

differentiate.  It is often used within research to recognise putative SCs in which 

self-renewal has not yet been demonstrated (Smith, 2006). 

 

The manner in which SCs maintain both self-renewal and the production of 

daughter cells with more restrictive properties is not clear.  It is widely accepted 

that SCs are able to divide both symmetrically (generating increased numbers of 

SCs) during embryonic development or injury, and asymmetrically (maintaining the 

number of SCs, whilst generating daughter TACs) (Snippert and Clevers, 2011).  

Regulation of this is proposed to be attributable to distinctive gene expression 

patterns, in combination with unique epigenetic mechanisms including DNA 

methylation, histone modifications, and non-coding RNA-mediated regulatory 

events (Wu and Yi, 2006). 

Although specific SC genes have been identified, various transcriptome analyses 

suggest that SCs do not have a unique transcriptional profile (Ivanova et al., 2002, 

Ramalho-Santos et al., 2002); but rather their common feature may be a large 

accessible chromatin thus enabling expression of a large number of genes (Mikkers 

and Frisén, 2005). 

 

1.5.1. Adult Stem Cells 

In the adult state, SCs are responsible for tissue replenishment and repair, and the 

maintenance of all regenerative tissues such as epithelia (Fuchs and Chen, 2013).  

Although adult SCs are only multipotent, they often possess greater functional 

versatility than expected; with the ability to cross lineage barriers and adopt 

expression profiles and functional phenotypes of cells unique to other tissues upon 

exposure to a novel environment - an ability termed plasticity (Smith, 2006). 

 

1.5.2. The Stem Cell Niche 

The immediate environment of SCs and their interaction with it has been termed 

the ‘stem cell niche’ (Spradling et al., 2001).  This highly regulated 

microenvironment plays a key feature in their function; the ability of a SC to self-
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renew and remain in a quiescent state is governed not only by the intrinsic proteins 

it expresses, but also by the extrinsic signals it receives from its niche 

microenvironment (Fuchs and Chen, 2013).  The niche provides protection from 

differentiation and apoptotic stimuli and safeguarding from excessive SC 

production which may lead to cancer.  It must also balance the requirements for SC 

quiescence and activity (Moore and Lemischka, 2006).  Although there is diversity 

of SC niches and some of their signalling pathways, both positive and negative 

signalling are integrated, and some key molecules and pathways such as the Wnt 

signalling pathway appear to be consistent across niches from all tissues and organs 

(Mitsiadis et al., 2007). 

 

Niches may be simple (containing a single SC), complex (containing two or more 

SCs), or a quiescent storage niche.  Loss of SCs and SC niches in vivo may induce 

tissue construction of new simple niches.  It has been proposed that any tissue that 

is dependent on SCs and capable of growth is likely to have the capacity to produce 

new niches (Ohlstein et al., 2004). 

 

Adult SC niches have been characterised in many tissues including the bone 

marrow, incisor, epidermal hair follicles and intestinal epithelium (Moore and 

Lemischka, 2006, Mitsiadis et al., 2007).  Typically epithelial SC niches occur in basal 

clusters throughout the tissue, a key exception to this being corneal epithelial SCs 

which reside in the limbus (Dua et al., 2005, Shortt et al., 2007a, Shanmuganathan 

et al., 2007). 

 

1.5.3. Identification of Stem Cells 

Whilst a single unambiguous indicator of a SC in any organism remains elusive, SCs 

may be characterised by a number of indirect properties which include: expression 

of specific molecular markers, slow cycling (label-retention), a high level of dye 

efflux activity (side population) or clonogenicity. However, none of these criteria is 

specific (Barrandon, 2007). 
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Stem Cell Marker Expression 

SCs may be identified by their possession of distinctive molecular markers.  The 

expression of these markers may be assessed by immunohistochemical or 

immunocytochemical techniques, or the levels of their mRNA expression detected 

by molecular techniques such as real time polymerase chain reaction (rtPCR).  The 

purity of many of these markers as true SC markers is however controversial and 

their expression may be altered in in vitro culture conditions (Vascotto and Griffith, 

2006). 

 

Label Retention 

The slow-cycling nature and/or asymmetric division of SCs may be measurable in 

vivo or in vitro by either tritiated thymidine ([3H]TdR)- or bromodeoxyuridine 

(BrdU)-label retention (Cotsarelis et al., 1990, Tumbar et al., 2004).  These in vivo 

studies are however restricted to use in laboratory animal models which may not 

accurately represent the anatomical or pathophysiological state of the human 

being, and slow-cycling nature does not necessarily indicate the proliferative 

potential of a cell (Pellegrini et al., 1999, Snippert and Clevers, 2011).  Indeed, the 

basis of label retention as a marker of SCs has been questioned (Kiel et al., 2007, 

Snippert and Clevers, 2011).  

 

Dye Efflux Activity 

The DNA dye Hoechst 33342 can be used ex vivo to identify a side population of SCs 

which demonstrate very low fluorescent emission intensities and a reduced 

bathochromic shift, due to their ability to actively efflux Hoechst (Challen and Little, 

2006).  This characteristic is mediated by the SC marker ATP-binding cassette 

protein G2 (ABCG2) (Zhou et al., 2001) (see Section1.6.3). 

 

Clonogenic Ability 

SCs demonstrate the highest clonogenic ability of all cells in vitro, with single cells 

producing large rapidly growing colonies (holoclones), in contrast to the limited 

growth (paraclones and meroclones) produced by TACs (Barrandon and Green, 

1987).  This must however, be assessed by colony forming efficiency (CFE) assays ex 
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vivo, thus perhaps not representing the true potential of the SC within its natural 

niche.  Self-renewal is considered the ultimate indicator of stemness.  It is best 

demonstrated by the clonal analysis of a single isolated cell, followed by serial 

transplantation (of it or its progeny) and long-term reconstitution of a tissue 

(Barrandon, 2007).  Thus without first isolating individual cells, CFE is correctly a 

measure of PCs rather than SCs. 

 

1.5.4. Human Stem Cell-Based Therapies 

Recognition of the role of SCs in tissue repair and regeneration, and their unique 

ability to treat a wide spectrum of diseases that are ineffectively treated by 

traditional approaches, has led to much interest in SC-based therapies; either in the 

possibility of manipulating SCs in situ using drugs, or expanding them ex vivo.  The 

use of haematopoietic SCs in bone marrow transplantation and autologous 

epidermal keratinocyte SC therapy for the management of severe burns, has paved 

the way for other tissue-specific therapies.  Although few SC therapies have yet 

reached clinical use, there is a plethora of research activity in the field.  Research is 

required to both further characterise the biology of SCs and to further develop 

therapeutic strategies (Mayhall et al., 2004).  Due to the ethical issues surrounding 

the use of embryonic SCs, much research has focused on the use of adult SCs and 

induced pluripotent SCs. 

 

1.6. Ocular Surface Stem Cells 

Like all epithelia,  the corneal and conjunctival epithelia are renewed constantly, a 

process for which they rely on the presence of SCs.  Although the two are closely 

related, both being demonstrated to arise from a few surface Pax-6 positive 

ectodermal cells in animals and humans (Koroma et al., 1997, Nishina et al., 1999)  

(see Section 1.2), they are of distinct cell lineages.  Each produce their own 

phenotype when rabbit cells are injected into athymic mice (Wei et al., 1996) or 

human cells are cultured in vitro (Pellegrini et al., 1999); and limbal but not 
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conjunctival cells can restore the human corneal epithelium in vivo (reviewed in 

(Lavker et al., 2004). 

 

1.6.1. Limbal Stem Cells 

Much evidence including pigment migration studies (Davanger and Evensen, 1971), 

label-retaining studies (Cotsarelis et al., 1989), proliferative capacity (Ebato et al., 

1988, Lindberg et al., 1993) and the expression of progenitor markers (Pellegrini et 

al., 2001, Di Iorio et al., 2005, Budak et al., 2005, Dua et al., 2005, Kawasaki et al., 

2006) suggests that animal and human corneal epithelial SCs reside in the basal 

layers of the limbal epithelium; hence they are termed limbal SCs.  Indeed, 

conjunctivalisation of the rabbit cornea is demonstrated post limbal epithelial 

removal (Kruse et al., 1990, Chen and Tseng, 1991, Huang and Tseng, 1991), and 

human corneal epithelial regeneration has been demonstrated following limbal 

grafting (Kenyon and Tseng, 1989).  The complementary XYZ model for corneal 

epithelial maintenance, whereby basal TACs and their differentiated progeny 

migrate both superficially and centripetally, before being shed (Thoft and Friend, 

1983) is widely accepted.  By this process the entire human epithelium is renewed 

every seven days (Hanna et al., 1961).  The human limbal SC niche resides in limbal 

epithelial crypts between the palisades of Vogt (Dua et al., 2005, Shortt et al., 

2007a, Shanmuganathan et al., 2007), and is characterised by the presence of 

melanocytes, Langerhans cells and T lymphocytes (Li et al., 2007), rich 

vascularisation (Goldberg and Bron, 1982), and a unique expression of extracellular 

matrix components (Schlötzer-Schrehardt et al., 2007) (see Section 1.1.1). 

 

Limbal SC deficiency in humans may develop in a variety of conditions including 

those causing cicatrising conjunctival disease (see Section 1.3.1) and hereditary 

disorders such as aniridia.  It is characterised by encroachment of the conjunctival 

epithelium with its blood vessels over the corneal surface.  This not only results in 

visual impairment, but the new epithelium is prone to constant erosion and 

breakdown, causing chronic pain and photophobia (Shapiro et al., 1981, Tseng, 

1996). 
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1.6.2. Conjunctival Stem Cells 

Animal Studies 

Studies in animal models have generated much conflicting evidence as to the 

location of conjunctival SCs.  These have predominantly been label-retention 

studies.  Using [3H]TdR, one research group identified label-retaining cells 

throughout the mouse conjunctiva, but predominantly in the fornix (Wei et al., 

1995), and subsequently demonstrated that the forniceal epithelia also shows a 

significantly greater proliferative response to both acute and chronic chemical 

stimulation (Lavker et al., 1998).  A similar study to the latter, but using BrdU in rats 

again demonstrated label-retaining cells throughout the conjunctiva, but conversely 

with greatest proliferative response in the limbal and palpebral regions (Chen et al., 

2003).  Other studies have documented movement of labelled conjunctival cells.  

Pe’er et al. studied rat conjunctiva following a single dose of [3H]TdR.  Over a 28 day 

period labelled cells became more abundant in the fornix and declined in the limbal 

and palpebral areas.  They concluded that SCs are present in the limbus and 

mucocutaneous junction and stream towards the fornix (Pe'er et al., 1996).  These 

findings were in part confirmed by both Wirtschafter et al. and Su et al., using BrdU 

in rabbits.  They both additionally noted long-term label retention at the 

mucocutaneous junction and concluded that this was the source of conjunctival SCs 

(Wirtschafter et al., 1997, Wirtschafter et al., 1999, Su et al., 2011) A subsequent 

study of the movement of mouse bulbar conjunctival cells by BrdU pulse-chase, in 

contrast concluded that they are uniformly distributed and generally immobile 

(Nagasaki and Zhao, 2005).  Aside from the inherent presumption that the 

anatomical distribution of SCs should be constant across species, the accuracy of 

label retention studies in isolating SCs has also been questioned (Kiel et al., 2007, 

Snippert and Clevers, 2011).  These factors may explain the conflicting results that 

these studies demonstrate. 

 

Two recent studies have compared the clonogenic ability of conjunctival epithelial 

cells across the whole tissue in animal models.  Su et al. demonstrated both higher 

CFE and proliferating cell nuclear antigen (PCNA) expression in the palpebral region, 

than in the forniceal, than bulbar regions of the rabbit conjunctiva (Su et al., 2011).  
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The highest level of PCNA expression has however previously been noted in the 

mucocutaneous junction of the rabbit conjunctiva (Wirtshafter et al. 1999).  Eidet et 

al. also demonstrated clonogenic ability throughout the rat conjunctival epithelium, 

but conversely with highest CFE levels in the forniceal epithelium, especially 

superiorly (Eidet et al., 2012a).  Indeed, a previous study has also demonstrated 

greater growth of rabbit forniceal cells in culture than either palpebral or bulbar 

cells (Wei et al., 1993). 

 

Human Studies 

There are very few studies concerning the location of SCs in human conjunctiva.  An 

in vitro study analysing the clonogenic properties of the ocular surface epithelia 

indicated that SCs are uniformly distributed in small biopsies of bulbar and forniceal 

conjunctiva from one donor (Pellegrini et al., 1999).  Expression of the SC marker 

ABCG2 (see Section 1.6.3) has been demonstrated immunohistochemically in basal 

clusters of conjunctival epithelium, with highest levels in the palpebral-forniceal 

zone, but it is not clear whether the whole conjunctival tissue was assessed, nor 

from how many donors (Budak et al., 2005).  A further immunohistochemical 

assessment of a number of SC markers including ΔNp63 and ABCG2 (see Section 

1.6.3) concluded the presence of rare scattered bulbar conjunctival SCs, but did not 

assess other areas of the conjunctiva, and the number of tissues included in this 

study is not clear (Vascotto and Griffith, 2006).  More recent studies (published 

during the conduction of this study) have not provided much greater clarification on 

the overall distribution of conjunctival SCs.  Qi et al. confirmed the findings of 

Vascatto and Griffin in the bulbar conjunctiva using tissue from four donors and 

additional SC markers, but did not assess other areas (Qi et al., 2010).  Two further 

studies have assessed expression of a host of pluripotency genes by real-time PCR.  

Pauklin et al. assessed bulbar and forniceal tissue from four donors, demonstrating 

similar levels of pluripotent markers throughout, but higher levels of ABCG2 gene 

expression in the fornices (Pauklin et al., 2011).  Harun et al. assessed biopsies of 

tissue from inferior bulbar, forniceal and tarsal conjunctiva of three donors, 

reporting highest levels of pluripotency genes in the fornices (Harun et al., 2013).  A 

recent immunohistochemical study using several SC markers has also proposed that 
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the ductal epithelium of the meibomian glands and the bulge region of the eyelid 

hair follicle may represent sites for human conjunctival SCs (Tektaş et al., 2012).  

Clearly further investigation is thus required to clarify the location of human 

conjunctival SCs. 

 

Conjunctival keratinocytes and goblet cells are derived from a common bipotent 

progenitor which may be a TAC (Wei et al., 1997, Pellegrini et al., 1999).  The drive 

to differentiate into goblet cells appears to be time-dependent at specific cell 

doubling intervals (Pellegrini et al., 1999).  Goblet cells themselves may also retain 

some proliferative potential (Wei et al., 1995, Shatos et al., 2003, Pellegrini et al., 

1999). 

 

Wherever the richest sources of conjunctival SCs lie, it can be presumed that 

widespread or total severe conjunctival disease (see Section 1.3.1) results in, or is at 

least characterised by conjunctival SC loss.  Goblet cell deficiency alone is certainly 

implicated in many disabling conjunctival diseases (Doughty, 2012, Tseng et al., 

1984). 

 

1.6.3. Ocular Surface Stem / Progenitor Cell Markers 

Although there are no definitive markers of ocular surface SCs a number of putative 

markers are recognised, some of which are widely renowned SC markers detectable 

in other tissues.  They include an array of structural and regulatory proteins, 

transporters, enzymes and growth factors.  Most putative conjunctival SC markers 

are recognised limbal SC markers (Budak et al., 2005, Vascotto and Griffith, 2006, Qi 

et al., 2010, Pauklin et al., 2011), although there are some distinct differences, 

particularly in cytokeratin (CK) expression (Kasper et al., 1988, Elder et al., 1997, Qi 

et al., 2010).  Many markers do not discriminate true stemness but rather may also 

detect a fraction of TACs which retain a stem-like phenotype (Vascotto and Griffith, 

2006), and hence should correctly be termed PC markers.  ABCG2 and ΔNp63α are 

considered to be the most reliable ocular surface SC markers (Vascotto and Griffith, 
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2006), although some evidence even questions their validity (Chen et al., 2004, 

Watanabe et al., 2004, Kawasaki et al., 2006). 

 

ABCG2 

ATP-binding cassette protein (ABCG2) is a lipid membrane ATP-dependent 

transport protein that is expressed in many adult SCs and has been proposed as a 

universal SC marker (Zhou et al., 2001).  Although its precise physiological role 

remains unclear, it may protect cells by exporting a wide variety of endogenous and 

exogenous compounds out of cells, and promote maintenance and proliferation of 

the SC phenotype (Ding et al., 2010).  It has been detected in the basal cells of the 

limbus and bulbar conjunctiva, but not in the suprabasal cells of these tissues or in 

any layers of the cornea (Chen et al., 2004, Watanabe et al., 2004, Budak et al., 

2005, Vascotto and Griffith, 2006).  Indeed the efflux of Hoechst 33342 by side 

population cells (see Section 1.5.3) is mediated by ABCG2 (Zhou et al., 2001); and 

these cells comprising <1% of ocular surface cells exhibit many features of stemness 

(Budak et al., 2005). 

 

ΔNp63α 

p63 is a transcription factor involved in morphogenesis and is critical for 

maintaining SC populations.  p63-null mice lack stratified squamous epithelia (Yang 

et al., 1999), and hetereozygous humans develop ectodermal dysplasias (Rinne et 

al., 2006).  The p63 gene generates TAp63 and ∆Np63 isoforms, each having α, β 

and γ isotypes (Yang and McKeon, 2000).  ∆Np63 sustains the proliferative potential 

of keratinocytes (Parsa et al., 1999), and specifically ∆Np63α is the major transcript 

expressed by ectodermal SCs, including ocular surface SCs (Di Iorio et al., 2005, 

Kawasaki et al., 2006).  ∆Np63α acts as a transcriptional repressor at select p53 

growth regulatory gene promoters, and loss of ∆Np63α facilitates the growth arrest 

associated with differentiation (Westfall et al., 2003).  The antibody to the ∆Np63α 

isotype is not however widely available for immunochemical techniques, hence 

most studies have employed antibodies to ∆Np63 (Chen et al., 2004, Vascotto and 

Griffith, 2006).  Identification of all p63 isoforms (by the common 4A4 clone of 

antibody) is considered a marker of TACs (Parsa et al., 1999). 
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Cytokeratins 

Keratins form the predominant cytoskeletal component of epithelial cells, 

maintaining cell morphology, intracellular signal transduction, mobility and 

proliferation (Fenteany and Glogauer, 2004).  They have long been proposed as 

markers of conjunctival differentiation (Krenzer and Freddo, 1994).  They were 

divided by Moll et al. into smaller acidic type I (CK9-20) and larger, neutral-basic 

type II (CK1-8); and are obligate heterpolymers combining a type I with type II 

subunit (Moll et al., 1982).  CK8, 15 and 19 are reported as putative limbal SC 

markers (Merjava et al., 2011a, Yoshida et al., 2006, Kasper et al., 1988, Barnard et 

al., 2001, Chen et al., 2004); and CK5, 8 and 15 have been noted in basal layers of 

the conjunctival epithelium (Pitz and Moll, 2002, Qi et al., 2010, Merjava et al., 

2011b).  Conversely, CK19 has long been recognised as marker of conjunctival 

epithelial phenotype, being expressed throughout all layers of the epithelium 

(Kasper et al., 1988, Elder et al., 1997).  Similarly, CK3 has been proposed as a 

negative limbal SC marker (being expressed in the suprabasal and superficial layers 

of the limbal epithelium and throughout the central corneal epithelium); but 

conversely is not expressed in any layers of the bulbar conjunctiva (Merjava et al., 

2011b).  Clearly further studies are required to clarify CK expression and validity as 

SC markers across the ocular surface. 

 

α9β1 Integrin 

Integrins are transmembrane glycoproteins, composed of an α and β chain, that 

mediate cell-cell and cell-matrix attachments (Belkin and Stepp, 2000).  α9β1 

integrin has been demonstrated in basal limbal epithelial cells (Stepp et al., 1995); 

and limbal cells adhering to the β1 integrin ligand collagen IV, possess SC properties 

(Li et al., 2005).  However widespread expression of the β1 subunit has also been 

detected across the corneal epithelium; thus bringing into question its validity as an 

SC marker (Vascotto and Griffith, 2006). 

 

Hsp70 

Heat shock proteins (Hsp) act as molecular protein chaperones to preserve 

epithelial cell integrity, and are thus upregulated in response to various 
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environmental stresses (Garrido et al., 2001).  Hsp70 has been implicated in corneal 

epithelial proliferation, differentiation and migration during wound healing 

(Mushtaq et al., 2007), and is reported to be up regulated by ∆Np63α (Wu et al., 

2005).  It is highly abundant in the basal layers of the limbal and bulbar conjunctival 

epithelia (Lyngholm et al., 2008) and its expression is correlated with ∆Np63α 

expression (Ma et al., 2012).  It has however also been reported to a minor extent 

in the central corneal epithelium (Lyngholm et al., 2008) and is thus perhaps better 

considered a PC or TAC marker. 

 

N-Cadherin 

Cadherins are transmembrane proteins which form desmosome junctions.  It has 

been suggested that N-Cadherin is involved in the maintenance of haematopoietic 

SCs (Zhang et al., 2003, Calvi et al., 2003).  N-Cadherin has also been detected in 

limbal SCs (Hayashi et al., 2007), and shown to play a key role in their maintenance 

in vitro (Higa et al., 2009). 

 

CD168 

Cluster of differentiation 168 (CD168), otherwise known as Hyaluronan-mediated 

motility receptor (HMMR/RHAMM) is a receptor for hyaluronan, an important 

component of the extracellular matrix (Turley et al., 2002) and has been implicated 

in mobilisation of haematopoietic SCs (Pilarski et al., 1999).  It has been proposed 

as a negative limbal SC marker (Ahmad et al., 2008). 

 

Other markers  

There are a wealth of additional reported putative limbal SC markers which may 

also represent conjunctival SC markers.  These include EGF (Zieske and Wasson, 

1993), nerve growth factor and its receptor TrkA (Qi et al., 2008) and pluripotency 

genes such as OCT4 and NANOG (Pauklin et al., 2011), and the negative expression 

of connexin 43 (Wolosin et al., 2000).  Some of these markers have recently been 

demonstrated in the basal layers of the conjunctival epithelium, and thus are also 

proposed as putative conjunctival SC markers (Vascotto and Griffith, 2006, Qi et al., 

2010, Pauklin et al., 2011). 
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1.7. Ocular Surface Epithelial Propagation Ex Vivo 

The discovery by Rheinwald and Green that a feeder layer of inactivated J23T3 

murine fibroblasts (3T3) permitted the clonal growth of keratinocytes (Rheinwald 

and Green, 1975a, Rheinwald and Green, 1975b), paved the way for animal and 

human in vitro epithelial culture studies.  Methods for isolating and expanding 

epithelial SCs ex vivo were subsequently established (Barrandon and Green, 1987).  

More recent years have led to an increasing interest in the isolation and ex vivo 

expansion of human corneal and conjunctival SCs (Lindberg et al., 1993, Pellegrini et 

al., 1999, Ramaesh and Dhillon, 2003, Papini et al., 2005, Ahmad et al., 2006). 

 

1.7.1. Culture Conditions 

Animal or human cells may be harvested by enzymatic digestion or used in explant 

culture.  Cultures have traditionally been performed using co-culture with an 

inactivated 3T3 feeder layer (Lindberg et al., 1993, Pellegrini et al., 1997), which is 

thought to act as a surrogate SC niche environment.  Although culture systems have 

been described where there is no contact with the feeder layer or no feeder layer 

present (Ang et al., 2004b), there is no definitive evidence that these actually 

support SCs.  Culture on amniotic membrane alone (Tsai et al., 2000, Grueterich et 

al., 2003) or in combination with 3T3 feeder layers (Koizumi et al., 2001) has also 

been employed; however, it appears that a feeder layer is required to maintain SC 

phenotype in culture (Balasubramanian et al., 2008).  The addition of 

hydrocortisone, fetal calf serum (FCS), EGF and insulin to the media, amongst other 

factors, improves cell morphology, proliferation and stratification (Rheinwald and 

Green, 1975b, Hayashi et al., 1978, Lindberg et al., 1993, Pellegrini et al., 1999).  

Airlifting may then be employed to promote stratification and differentiation of the 

epithelial culture (Meller and Tseng, 1999). 

 

Given the aim of generating human epithelial constructs for clinical transplantation, 

and the increasing concerns regarding the risk of transmission of xenobiotic 

infective agents, advances have been made to negate the requirement of both 

murine feeder cells and FCS in the culture conditions.  Amniotic membrane (Ang et 
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al., 2004a, Chen et al., 2007, Shahdadfar et al., 2012) or alternative feeder layers 

(Omoto et al., 2009, Schrader et al., 2010, Sharma et al., 2012, Schrader et al., 

2012) have been employed, and FCS has been replaced with autologous or cord 

blood serum (Ang et al., 2005b, Nakamura et al., 2006, Kolli et al., 2010, Shahdadfar 

et al., 2012, Ang et al., 2011, Schrader et al., 2012).  Though, to date there is no firm 

evidence that human epithelial SCs are maintained in such environments. 

 

Whilst significant advances have been made in generating human limbal SC 

containing epithelial constructs in vitro (Ahmad et al., 2006, Mariappan et al., 2010, 

Osei-Bempong et al., 2009); there remains much discrepancy amongst research 

groups regarding optimal culture conditions, and uncertainty to the true SC content 

of such constructs.   

 

Development of a conjunctival SC containing epithelial equivalent is even more 

complex, due to the additional need to also support the growth of goblet cells.  

Whilst both goblet cells and mucins have been demonstrated in human conjunctival 

cultures (Corfield et al., 1991, Frescura et al., 1993, Diebold and Calonge, 1997, 

Pellegrini et al., 1999, Risse Marsh et al., 2002, Shatos et al., 2003, Berry and 

Radburn-Smith, 2005), there has generally been a notable absence in stratified 

constructs (Tanioka et al., 2006).  Goblet cells require stringent culture conditions; 

being supported by RPMI-1640 media (Shatos et al., 2003), rather than Dulbecco’s 

modified eagle’s media (DMEM) and Ham’s F12 media commonly used in other 

studies.  There is a quandary for example, in the addition of hydrocortisone to 

media, which although improves epithelial cell morphology and proliferation 

(Rheinwald and Green, 1975b), has been shown to inhibit differentiation of goblet 

cells in chick embryo duodenal explants (Black and Moog, 1977).  Other studies 

have however demonstrated that hydrocortisone appears to increase the 

production of mucins in human conjunctival cultures (Diebold et al., 1999, Gipson et 

al., 2003).  Similarly, although rabbit and human conjunctival epithelial PCs capable 

of generating goblet cell phenotypes have been cultured in vitro on amniotic 

membrane (Meller et al., 2002, Budak et al., 2005), it is noted that non-goblet cell 
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differentiation is either preferentially promoted or results in potential loss of PCs 

(Meller et al., 2002). 

 

However, studies employing keratinocyte growth media (Lonza, USA) have 

demonstrated positivity for MUC5AC mRNA in stratified human epithelial 

equivalents (Ang et al., 2004b, Ang et al., 2004a).  On tissue culture plastic alone, 

these constructs showed equivalent CFE to cells cultured with serum and a 3T3 

feeder layer; and on amniotic membrane they showed higher CFE than cells 

cultured with serum (Ang et al., 2004a).  Notably, the use of human serum in 

conjunctival cultures has been demonstrated to additionally negate the 

requirement for bovine pituitary extract, and produce constructs with both 

comparable CFE and clusters of goblet cells (Ang et al., 2005b).  Significantly, human 

conjunctival PCs and goblet cells have recently been noted to be preserved in a 

serum-free system co-cultured with mitotically active subconjunctival fibroblasts 

(Schrader et al., 2010).  The use of umbilical cord blood serum has also 

demonstrated higher proliferative capacity (Ang et al., 2011).  A completely 

xenobiotic-free culture system for human conjunctival epithelial PCs using human 

serum and a MRC-5 human fetal lung fibroblast feeder layer has been reported, but 

supports lower CFE and SC marker expression (Schrader et al., 2012). 

 

1.7.2. Substrates 

Epithelial cells require a basement membrane or matrix to support their adhesion 

and growth; indeed the nature of the matrix determines the cell growth pattern 

and differentiation (Ma, 2008).  Substrates for ex vivo expansion must therefore be 

tailored to mimic the native extracellular matrix of a specific cell type; and with 

regard to transplantation, to be amenable to surgical manipulation, integrate with 

the host tissue and modulate the wound healing response. 

 

In order to preserve optical clarity and hence vision, the development of substrates 

to support corneal and/or limbal epithelial growth is dictated largely by the need 

for transparency.  Substrates for conjunctival reconstruction are in contrast not 
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restricted in this manner, but must be flexible and elastic materials, able to 

accommodate eye movement; yet strong enough to act as a mechanical barrier to 

prevent re-scarring and symblepharon formation in forniceal reconstruction (Kearns 

et al., 2012).  In addition, they must provide sufficient cellular attachment to 

prevent sloughing off of the epithelium by mechanical shearing forces in both 

surgical transplantation and postoperative movement of the eye and eyelids (Ang 

et al., 2004a).  Specifically, they must also promote the regenerative capacity of SCs 

and goblet cells. 

 

Human amniotic membrane has long been the favoured substrate for ocular 

surface reconstruction as its thick basement membrane and avascular stroma has 

similar constituents to the human limbal and conjunctival basement membranes 

(Fukuda et al., 1999).  It is thin and elastic, relatively transparent, promotes rapid 

epithelialisation, and has anti-inflammatory, anti-scarring, anti-angiogenic and 

analgesic properties (Liu et al., 2010).  Indeed it has been demonstrated to enhance 

corneal and conjunctival regeneration when used as a protective onlay or for 

human fornix reconstruction in a variety of disease processes (Barabino and 

Rolando, 2003, Honavar et al., 2000, Solomon et al., 2003).  It may be processed 

and preserved by a variety of methods (Shortt et al., 2009), including 

decellularisation to reduce the risk of disease transmission (Wilshaw et al., 2006).  

Decellularised amniotic membrane has been shown to enhance cell attachment and 

support a more mature human limbal tissue construct (Grueterich et al., 2002, 

Koizumi et al., 2007), but the process may remove the high levels of growth factors 

present in the intact membrane which maintain SCs in culture (Hernandez Galindo 

et al., 2003).  The ideal preparation remains debated (Osei-Bempong et al., 2009, 

Chen et al., 2010). 

 

In either form, amniotic membrane remains the most widely used substrate for the 

successful transplantation of human limbal SC epithelial equivalents (Baylis et al., 

2011).  It has also been demonstrated to support the growth of rabbit conjunctival 

PCs and goblet cells (Meller et al., 2002), and stratified human conjunctival 

epithelial constructs (Ang et al., 2004a, Martínez-Osorio et al., 2009).  It has been 
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used as a substrate for transplantation of small areas of ex vivo expanded human 

conjunctival epithelium (Tan et al., 2004, Ang et al., 2005a, Ang and Tan, 2005).  

However, amniotic membrane is variable in quality (Liu et al., 2010), liable to 

shrinkage (Barabino and Rolando, 2003, Honavar et al., 2000), and its in vivo 

degradation rate is very unpredictable: with reports varying from less than 3 weeks 

to greater than 24 weeks on the human ocular surface (Vyas and Rathi, 2009). 

 

Fibrin, a fibrous non-globular protein, used in the form of both films and gel 

matrices, offers better mechanical properties and transparency (Liu et al., 2012a), 

and have been demonstrated to maintain rabbit and human holoclones and limbal 

SCs in culture (Han et al., 2002, Liu et al., 2012a), but there are no reports of their 

use to support conjunctival cells.  They have been successfully employed in human 

limbal SC transplantation for over 10 years (Rama et al., 2010).  However, even 

following additional crosslinking, fibrin degrades within a few days (Han et al., 

2002), which is unlikely to offer sufficient time for the cells to lay down a new 

replacement basement membrane, and thus it is improbable that it would offer 

benefit in forniceal reconstruction. 

 

Use of other biological substrates such as collagen and laminin have been reported. 

Collagens are triple helix proteins which self-assemble into scaffolds providing 

structural integrity.  Collagen IV is the major component of basement membranes.  

In addition to providing a structural scaffold, it interacts with the cells it supports 

and promotes cell adhesion, migration, growth and differentiation (Khoshnoodi et 

al., 2008).  It has been demonstrated to support the growth of limbal SCs 

(Chakraborty et al., 2013).  Collagen I gels have been successfully used to culture 

both human limbal epithelial constructs (Levis et al., 2010, Mi et al., 2010) with 

evidence to support the presence of limbal SCs (Levis et al., 2010), and stratified 

human conjunctival epithelium constructs (Berry and Radburn-Smith, 2005). 

 

Other constituents of basement membranes which may also be considered include 

laminins and fibronectin.  Laminins are heterotrimeric glycoproteins composed of 

differing combinations of alpha, beta and gamma subunits.  Laminin 1 is an α1 β1 
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γ1 trimer, and is the other major structural constituent of basement membranes.  It 

also promotes cell adhesion, migration, growth, and differentiation (Malinda and 

Kleinman, 1996); and has been reported to maintain a conjunctival epithelial cell 

line (Lin et al., 2000) and undifferentiated pluripotent SCs (Hoffman et al., 1998).  

Fibronectin is a high-molecular weight glycoprotein which is a product of most 

epithelial cells, and is widely distributed in both the extracellular matrix and the 

plasma.  It aids cellular migration during wound healing and development, and 

regulates cell growth and differentiation (Pankov and Yamada, 2002).  Used as a 

substrate, it sustains human embryonic cells in an undifferentiated phenotype 

(Kalaskar et al., 2013).  Biological substrates are however often inconsistent in 

quality and carry the risk of disease transmission and allograft rejection (Liu et al., 

2010). 

 

Synthetic substrates offer a reliable disease free alternative.  Ultrathin Poly(ε-

Caprolactone), a bio-resorbable polymer which is elastic and mechanically strong 

has been demonstrated to support the growth of stratified human conjunctival 

epithelial sheets with equivalent levels of goblet cells as seen on amniotic 

membrane (Ang et al., 2006).  In order to maintain long-term reconstruction of the 

fornices in severe ocular surface disease, a synthetic non-degradable scaffold which 

maintains forniceal depth may be more likely to offer greater success. 

 

1.8. Human Ocular Surface Regenerative Therapies 

The development of SC-based therapies has offered a significant breakthrough in 

the management of many diseases.  Therapies for the ocular surface offer a cure for 

many otherwise unmanageable chronically painful and blinding eye conditions.  The 

ocular surface is unique in that it easily accessible, not only conferring benefit for 

initial surgical intervention, but also for long-term follow-up of the acceptance of 

such grafts into the host environment.  Whilst there has been significant progress in 

the development of limbal SC therapies, such that they are now recognised 
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treatments; much remains to be achieved in the development of conjunctival SC 

therapies for severe conjunctival disease. 

 

1.8.1. Limbal Stem Cell Transplantation 

Traditionally limbal autografts and allografts were performed (Herman et al., 1983, 

Kenyon and Tseng, 1989, Thoft, 1984) with variable degrees of success.  The 

advances in cell culture techniques and preparation of cohesive sheets of stratified 

epithelia detailed above have since enabled transplantation of ex vivo expanded 

limbal epithelium taken from a small biopsy (Pellegrini et al., 1997).  This has 

overcome the risk of inducing limbal SC deficiency in the healthy donor eye and 

often the need for systemic immunosuppression.  Significant clinical improvements 

in corneal clarity and ocular surface stability have been achieved with these 

methods (Schwab, 1999, Tsai et al., 2000, Grueterich et al., 2002, Di Iorio et al., 

2010, Rama et al., 2010).  Reported success rates range from 0-100%, with a mean 

of 76-77% (Shortt et al., 2007b, Baylis et al., 2011). 

 

The long-term outcomes and fate of the transplanted SCs are not however clear.  

Although a few studies describe post-operative follow-up up to 10 years (Tsai et al., 

2000, Rama et al., 2010), the mean follow-up times are generally less than 3 years, 

with failures normally occurring within the first 1-2 years (Sangwan et al., 2006, 

Pauklin et al., 2010, Rama et al., 2010).  The absence of detectable donor DNA 

beyond 9 months (Daya et al., 2005) raises questions as to whether viable SCs have 

been transplanted, or whether restoration of the limbal SC niche revives host SCs.  

Transplantation of TACs alone may give the impression of success but result in early 

failure (Holland, 1996).  There are clearly still many improvements to be made and 

questions to be answered. 

 

1.8.2. Conjunctival Epithelial Transplantation 

Conjunctival epithelial transplantation was first described by Thoft in the form of 

multiple autografts for monocular chemical burns (Thoft, 1977), however, this or 

equivalent allografts cause considerable co-morbidity to the donor eye.  In light of 
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the apparent success of transplantation of limbal cultivated epithelial equivalents, 

interest in conjunctival epithelial expansion developed.  There are a number of 

reports of the limited clinical success of transplantation of autologous cultivated 

conjunctival epithelial equivalents on amniotic membrane.  These were performed 

to replace focal areas of conjunctival loss in cases with limited deficiencies, such as 

post excision of pterygia or viral papillomas (Tan et al., 2004, Ang et al., 2005a, Ang 

and Tan, 2005).  Patients were followed up for up to 25 months and success defined 

as persistent epithelialisation and absence of significant complications.  Histologic 

examination of the transplanted tissue in each case showed a 4-5 layer deep, 

stratified squamous epithelial sheet.  Interestingly there was no mention of the 

presence of SCs or goblet cells or assessment of the mucin expression within these 

cultured epithelial equivalents; and equally no attempts were made to 

postoperatively define the grafted conjunctival epithelium by either impression 

cytology or confocal analysis (Tan et al., 2004, Ang et al., 2005a, Ang and Tan, 

2005).  Thus it is plausible that these constructs were relatively sparse or even 

absent of SCs, goblet cells or mucins. 

 

Given that these reports are in conditions with relatively localised conjunctival 

disease, it may be that there are sufficient SCs, goblet cells and mucin production 

from the remaining healthy conjunctiva to maintain the tissue and a healthy tear 

film in these cases.  However, in conditions with extensive conjunctival destruction, 

with widespread SC and goblet cell loss, and where large grafts would be required, 

this is unlikely to hold true.  Long-term success rates may also depend upon these 

factors. 

 

The ideal transplanted ex vivo expanded conjunctival tissue would be fully 

functioning with normal mucin production, and contain an adequate number of SCs 

(Holland, 1996, De Luca et al., 2006).  Additionally, it would be supported by a 

substrate which supports these cells, is flexible, elastic, inert and maintains a 

reconstructed fornix.  An initial greater concentration of SCs can only aid both SC 

and goblet cell levels, and mucin production from the transplanted tissue.  This 
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could be achieved by further research into the location of conjunctival SCs to aid 

choice of initial biopsy site. 

 

1.9. Summary, Hypothesis and Aims 

 

1.9.1. Summary 

The conjunctiva is a mucous membrane which forms the majority of the ocular 

surface, and plays a key role in ocular surface defence and maintenance of the tear 

film.  Ex vivo expansion of conjunctival epithelial cells offers potential to reconstruct 

the ocular surface in cases of severe cicatrising disease; but in order to ensure long 

term success, conjunctival stem cells which produce both keratinocytes and goblet 

cells must be present.  An initial biopsy rich in stem cells would aid this, however 

the distribution of human conjunctival stem cells has not been clearly elucidated. 

  

1.9.2. Hypothesis 

I hypothesise that PCs are located in specific areas of the human conjunctiva, and 

can be identified using CFE assays and the immunochemical detection of putative 

SC markers. 

 

1.9.3. Aims 

1) To develop a technique to retrieve whole human cadaveric conjunctiva. 

2) To identify and locate the PC-rich areas within the retrieved whole conjunctiva 

by CFE assays and immunochemical staining. 

3) To assess the effect of donor age and post mortem retrieval time (PMRT) on 

markers of PCs. 

4) To culture conjunctival cells in vitro on suitable substrates into stratified sheets 

of conjunctival epithelium. 
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2. Materials and Methods 

2.1. Tissue Retrieval 

Ethical approval was obtained from Trent Research Ethics Committee (REC 

reference 07/MRE04/31) to retrieve human conjunctival tissue from patients who 

had died and whose next-of-kin had given consent for eye and eye tissue donation 

for transplantation and research.  In addition to the standard exclusion criteria for 

ocular tissue donation (UK Blood Transfusion and Tissue Transplantation Services, 

2013), an additional exclusion of those who had undergone previous eyelid surgery 

was applied.  Consent was obtained by the Tissue Services nurses at National Health 

Service, Blood and Transplant (NHSBT) and was fully compliant with the relevant 

legislation that is, The Human Tissue Act (Human Tissue Act, 2004), the European 

Union Tissues and Cells Directive (Tissues and Cells Directive, 2004) and the Data 

Protection Act (Data Protection Act, 1998). 

 

A surgical technique was developed to retrieve whole conjunctival tissue.  This 

conformed to the standards for eye retrieval for transplantation and research (The 

Royal College of Ophthalmologists, 2008).  Conjunctival tissue from both eyes was 

retrieved from each donor within 28 hours of death.  A single surgeon (R. Stewart) 

retrieved all tissues.  Tissue was numbered consecutively 01, 02 etc.  Each right 

conjunctiva (01, 03, 05...) was processed for cell culture studies and the left (02, 04, 

06...) fixed and paraffin-embedded for immunohistochemical staining.  Data on 

donor age, sex, cause of death and PMRT was recorded for comparative analysis. 

 

2.2. Tissue Fixation, Paraffin Embedding and Sectioning 

2.2.1. Fixation and Embedding 

Whole conjunctival specimens were rinsed in phosphate buffered saline (PBS) 

(Oxoid Ltd) and surgically divided into sections as demonstrated in Figure 10. The 
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lateral, central and medial eyelid sections encompassed complete tissue from the 

bulbar conjunctiva adjacent to the limbus to that at the eyelid margin.  The other 

sections comprised the closely connected bulbar, forniceal and tarsal tissue 

immediately adjacent to the medial and lateral canthi, and were hence termed 

canthal areas for ease of nomenclature.  Each section was pinned onto cork board 

and fixed with 3.7% neutral buffered formaldehyde (NBF) (Bios Europe Limited) for 

24 hours.  The specimens were then processed through ethanol (Dept. Chemistry, 

University of Liverpool), xylene (Fisher Scientific) and paraffin (Surgipath) wax 

washes overnight using a tissue processor (Shandon) and embedded in Formula R 

paraffin wax (Surgipath) using an embedding unit (Shandon). 

 

 

 
Figure 10: Schematic diagram to represent the dissection of conjunctival tissue into specific areas for 
comparative immunohistochemical studies. 

 

 

2.2.2. Sectioning 

A microtome (Shandon) was used to cut sections of the paraffin embedded 

conjunctival specimens.  The paraffin blocks were trimmed back using 30µm 

sections with the microtome until tissue from the whole specimen was present on a 

section.   Consecutive 4µm sections were then cut, wet mounted onto glass slides 
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and labelled serially.  Sections were cut in the axial plane from the canthal 

specimens and in the sagittal plane from all other specimens. 

 

2.2.3. Slides 

Tissue sections were wet mounted onto either superfrost glass slides (Thermo 

Scientific) which were precoated with 3-aminopropyltriethoxysilane (APES) (Sigma), 

or onto X-tra adhesive slides (Surgipath). 

 

APES Coating 

Superfrost glass slides were immersed in 3% APES/acetone (Sigma) solution for 30 

seconds at room temperature and then rinsed in acetone followed by deionised 

water before being left to dry overnight in a chemical fume hood.  The process was 

repeated the following day to “double APES coat” the slides before use. 

 

2.3. Histology 

To define the anatomy of the tissue specimens a section of each was stained with 

haematoxylin and eosin (H&E).  The slides were firstly de-paraffinised with a series 

of 5 minute xylene and 100% then 70% ethanol washes.  They were then stained 

with Haematoxylin solution Gills III (Surgipath) for 3-5 minutes at room 

temperature, rinsed in running tap water, briefly in 1% acid-alcohol (Surgipath) and 

again in running tap water, before staining with alcoholic Eosin (Surgipath) for 5 

minutes at room temperature. Following a further brief rinse in running tap water 

the slides were dehydrated with 70%, 90% and 100% ethanol for 30 seconds each in 

turn before being returned to xylene for 2 minutes and mounted with pertex 

(Surgipath) and glass cover slips (Surgipath).  Multiple images were taken along the 

length of each specimen with an Olympus BX60 microscope and merged manually 

in Microsoft PowerPoint 2007. 
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2.4. Immunohistochemical Studies 

Slides were deparaffinised through xylene and ethanol washes as in Section 2.3 and 

then placed into PBS.  Antigen retrieval (see Section 2.4.1) was performed in most 

cases prior to antibody staining. 

 

2.4.1. Antigen Retrieval 

Various antigen retrieval techniques were used depending on the primary antibody: 

incubation with trypsin (Sigma) at 37°C for 30 minutes; microwaving in 0.01M 

citrate (BDH) buffer pH6 for 5-20 minutes before allowing to cool for 10 minutes at 

room temperature; incubating with Envision Target Retrieval pH9 (Dako) for 10 

minutes at 95°c; and microwaving in 0.001M ethylenediaminetetraacetic acid 

(EDTA) (Sigma) buffer pH8 for 5 minutes. 

 

2.4.2. Antibody Staining 

Specific antibodies for epithelial (CK), SC and differentiation markers, and markers 

of other cell lineages namely melanocyte and neural cells were used as shown in 

Table 1.  The p63 antibodies identify differing isotypes of the transcription factor, 

and are subsequently referred to as simply ∆Np63 (clone ∆N, Biolegend) and p63 

(clone 4A4, Dako).  The pan-CK antibodies each recognise an array of but not all 

CKs, thus using multiple pan-CK antibodies detected overlapping spectra. 

 

Slides were rinsed in 0.05% PBS tween (Sigma), before and after blocking of 

endogenous peroxidases with 0.03% hydrogen peroxide (EnvisionTM kit, Dako) for 

10 minutes at room temperature.  Blocking of non-specific antibody binding was 

then performed with 20% goat serum (Dako) for 30 minutes at room temperature, 

before incubating with the primary antibodies for 2 hours (30 minutes for CK19) at 

room temperature, at varying dilutions in 1% goat serum.  Slides were then rinsed 

three times with 1% goat serum before adding the secondary antibody, horseradish 

peroxidase (HRP) anti-mouse (EnvisionTM kit) or HRP anti-rabbit (EnvisionTM kit) as 

appropriate for 30 minutes at room temperature. 3-amino-9-ethylcarbazole (AEC) 
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chromagen was allowed to develop for 5-15 minutes, and after counterstaining 

with haematoxylin for 30 seconds, the slides were mounted with Aquatex aqueous 

mountant (Merck) and glass cover slips (Surgipath) and imaged on an Olympus 

BX60 microscope.  A representative image was taken from the central area of each 

tarsal, forniceal and bulbar zone, along each superior and inferior specimen, and 

from the central area of each canthal specimen. 

 

Antibody Clone Source 

CK19 

ABCG2 (anti-BRCP) 

p63 

p63 

CD168 

Pan-CK 

Pan-CK 

Pan-CK 

Melan-A 

S-100 

RCK108 

21 

ΔN 

4A4 

2D6 

MNF116 

 AE1/AE3 

Lu5 

A103 

polyclonal 

Dako 

Chemicon 

Biolegend 

Dako 

Abcam 

Dako 

Dako 

Abcam 

Dako 

Dako 

 
Table 1: Table of antibodies used for immunohistochemical studies with clone and source. 

 

 

Limbal, placental, tonsillar, melanoma and colonic tissue were used as positive 

controls (see Section 2.4.3) and 1% goat serum alone was used as a negative 

control.  Protocols were optimised using various antibody concentrations and 

antigen retrieval methods. 

 

Due to constraints of large numbers of slides to process, it was not possible to run 

all samples for each antibody together.  Thus samples representing all areas of 2 

donor tissues were processed together with positive and negative controls as a 
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single experiment. Positive and negative controls from each experiment were then 

compared across experiments to ensure equivalent staining. 

 

2.4.3.  Tissue for Positive Controls 

Limbal tissue that had been consented for both transplant and research purposes 

was obtained as corneo-scleral rings remaining after corneal graft procedures from 

Organ Donation and Transplantation (NHSBT).  This was similarly fixed with 3.7% 

NBF for 24 hours before being processed and paraffin-embedded, and 4µm sections 

cut with a microtome as in Section 2.2.  Pre-prepared slides of placental, tonsil, 

melanoma and colonic tissue, as control tissue for ABCG2, pan-cytokeratins, Melan-

A and S-100 staining respectively were a kind gift from Mr S. Biddolph, Department 

of Pathology, Royal Liverpool University Hospital. 

 

2.4.4. Semi-Quantitative analysis 

Expression of immunohistochemical markers in tissue sections was analysed using 

two semi-quantitative grading scales.  The first represented the proportion of 

positively staining epithelial cells throughout the epithelium: 0 cells: -, ≤1/3 cells: +, 

1/3-2/3 cells: ++, and ≥2/3 cells: +++.  The second scale also took into account 

intensity of positive staining as described in Table 2.  Distribution and localisation of 

marker expression were also qualitatively assessed. 

 

Proportion of 
positively 

staining cells 

Staining Intensity 

None Mild Moderate Intense 

0 

≤ 1/3 

1/3 – 2/3 

≥ 2/3 

- 

N/A 

N/A 

N/A 

N/A 

+/- 

+ 

++ 

N/A 

+ 

++ 

+++ 

N/A 

++ 

+++ 

++++ 

 

Table 2: Table to quantify immunohistochemical staining grading scale 2 by proportion of and 
intensity of positively staining cells in an area. N/A = not applicable. 
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2.4.5. Presentation of Results 

Images and grading scales from all areas were compared and presented on a 

schematic diagram of the whole conjunctiva as labelled in Figure 11. 

 

  

Figure 11: Schematic diagram of the whole human conjunctiva with fornices represented by dashed 
lines (-----), labelling the multiple areas assessed for immunohistochemical staining. 
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2.5. Cell Culture 

All work was undertaken using an aseptic technique in a class II microbiological 

safety cabinet (Walker) cleaned with virkon (DuPont) and 70% ethanol.  Cells were 

cultured in an incubator (New Brunswick) at 37°C with 5% carbon dioxide (CO2). 

 

2.5.1. Cell Sources 

Human conjunctival epithelial cells were obtained from donors within 28 hours of 

death and the cells harvested (see Section 2.5.2) within 48 hours of death.  Limbal 

tissue was obtained as outlined in Section 2.4.3.  A J23T3 mouse fibroblast cell line 

(3T3) was kindly received from Dr. S. Ahmad (Newcastle University).  The MCF7 

breast carcinoma cell line was obtained from frozen supplies in the Institute of 

Ageing and Chronic Disease, University of Liverpool. 

 

2.5.2. Conjunctival Epithelial Cell Harvesting and Culture 

Tissue Dissection 

Tissue dissecting and processing was carried out under aseptic conditions in a 

laminar air flow hood.  Whole conjunctival specimens were washed in PBS 

containing 2% penicillin-streptomycin (PS) (Sigma) and 2% fungizone (Sigma) for 

one hour at room temperature with gentle agitation.  If the cells were to be 

harvested the following day the tissue was then stored in CO2 independent media 

(see Section 2.5.3) at +4°C overnight. 

 

The tissue was rinsed in PBS, the underlying fat and connective tissue was carefully 

removed using sterile Moorfields dissecting forceps and Westcott scissors (Malosa 

Medical), taking care not to damage the conjunctival epithelium.  The conjunctival 

epithelium was surgically divided using Westcott scissors into 8 approximately 

equal areas representing the tarsal, forniceal and bulbar areas of both superior and 

inferior conjunctiva, and the medial and lateral canthal areas, as shown in Figure 

12.  The medial and lateral canthal areas similarly comprised the closely connected 

bulbar, forniceal and tarsal tissue immediately adjacent to the canthi as those in 
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Figure 10, and were hence also termed canthal for ease of nomenclature.  Various 

methods were then employed to harvest and culture the epithelial cells as 

described below. 

 

 

 
Figure 12: Schematic diagram to represent the dissection of conjunctival tissue into specific areas for 
cell culture comparative studies. 

 

 

Trypsinisation in cloning rings 

Sterile 8mm cloning rings (Millipore) were placed either directly, or with sterile high 

vacuum grease (Dow Corning) onto the epithelial surface of each area of the 

conjunctiva.  60µl of 1x trypsin EDTA (trypsin) (Sigma) was added and the tissue 

incubated for a selection of time periods: 1, 3, 5, 10, 15 and 20 minutes, at 37°C.  

The trypsin-cell solution was gently agitated by drawing and discarding with a 200µl 

micropipette (Thermo Scientific) and transferred into 1ml of media and centrifuged 

at 1000rpm/180g for 5 minutes.  The supernatant was discarded and the cell pellet 

re-suspended, counted and seeded as per Sections 2.5.4 and 2.5.5.  Remaining 

tissue was assessed for residual epithelial cells by fixation, paraffin embedding, 

sectioning and H&E staining as in Sections 2.2 and 2.3 above. 
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Trypsinisation of chopped whole tissue 

Each area of conjunctiva was finely chopped with sterile scissors, placed in a 15ml 

centrifuge tube with 1ml of trypsin and incubated at 37°C for 20 minutes with 

gentle agitation.  The trypsin-cell solution was removed and neutralised in 10ml of 

fresh conjunctival media.  This cycle was repeated a further 3 times with fresh 

trypsin added to the tissue each time.  The cell suspensions were pipetted up and 

down 50 times to disperse the cell clumps, passed through a 70µm pore cell 

strainer (BD Biosciences) and then centrifuged at 1000rpm/180g for 5 minutes.  The 

supernatant was discarded and the cell pellet re-suspended, counted and seeded as 

per Sections 2.5.4 and 2.5.5. 

 

Explant Culture 

2 x 2mm specimens of each conjunctival area were surgically dissected and these 

explants were placed epithelial side up in tissue culture plates (Greiner Bio One).  

Sufficient media to barely cover the explants only was used for the first 3 days to 

encourage the explants to attach to the plates. 

 

Explants or cell suspensions were plated onto tissue culture plates with and without 

an inactivated 3T3 feeder layer or MatrigelTM basement membrane matrix (BD 

Biosciences) (see Section 2.5.5). 

 

2.5.3. Media Preparation 

C02 Independent Media 

C02 Independent Media (Invitrogen) with 1g/l glucose, 10% FCS (Biosera), 2% PS 

and 2% fungizone was used to store conjunctival tissue at +4°C overnight prior to 

cell harvesting and culture.  This contains a unique phosphate-based buffering 

system. 

 

Conjunctival/Limbal Epithelial Cell Media 

3 parts low glucose (1g/L) DMEM with pyruvate and glutaMAX (Invitrogen) and 1 

part Ham’s F12 media (Invitrogen), was mixed with 10% FCS, 1% PS, 1% fungizone, 
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and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (Sigma) and 

sodium hydrogen carbonate (NaHCO3) (BDH) to final concentrations of 20mM and 

26mM respectively.  Complete media for final use was made by adding transferrin 

(5µg/ml) (Sigma), insulin (5µg/ml) (Sigma), triiodothyronine (1.4ng/ml) (Sigma), 

adenine (12µg/ml) (Sigma), hydrocortisone (0.4µg/ml) (Sigma) and EGF (0.1µg/ml) 

(Sigma).  Complete media was used within 1 week of preparation. 

 

J23T3 Cell Media 

High glucose (4.5g/L) DMEM with glutaMAX (Invitrogen) with 10% FCS, 1% PS and 

1% fungizone was used when growing 3T3 cells alone. When acting as a feeder 

layer with conjunctival cells, complete conjunctival media was used. 

 

MCF7 Cell Media 

Eagle’s minimal essential media (MEM) with glutaMAX (Invitrogen), with 10% FCS, 

1% non-essential amino acids (Invitrogen), 1% PS and 1% fungizone was used. 

 

2.5.4. Cell Growth 

Feeding 

Cells were fed every 2-3 days by removing 70% of the existing media and replacing 

it with fresh media pre-warmed to 37°C.  Some media was purposefully left as it 

may contain growth factors secreted by the cells.  Cells were frequently inspected 

under a Nikon Diaphot microscope to monitor growth and detect any infection. 

 

3T3 and MCF7 Cell Passage 

When cells reached 90% confluency they were split (passaged).  3T3 and MCF7 cells 

were split 1:20 and 1:3 respectively.  The media was removed and discarded into 

bleach solution; cells were washed twice with PBS and then incubated at 37°C with 

trypsin for 5 minutes.  Having ensured the cells had detached from the tissue 

culture flasks by viewing under the microscope the trypsin was neutralised with 10x 

volume of media and the suspension centrifuged at 1000rpm/180g for 5 minutes.  

The supernatant was discarded and the cell pellet re-suspended in 1ml fresh media 
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by drawing and dispensing with a micropipette.  This was diluted with an 

appropriate volume of media (see Section 2.5.3) into a fresh culture flask. 

 

Cell Counting 

In order to plate at specific concentrations, cell solutions were evenly suspended by 

repeated drawing and dispensing with a micropipette and 10µl pipetted onto a 

haemocytometer.  This was viewed under the microscope and all cells counted in 

each of the four 1mm2 corner squares of the grid.  Cells touching the top and left 

border gridlines, but not the bottom or right borders were counted as shown in 

Figure 13.  The average number of cells per 1mm2 grid represents the number of 

cells x104/ml. 

 

 

 
Figure 13: Schematic diagram representing the method of cell counting with a haemocytometer. 
View of one 1mm

2
 corner square.  All cells including those touching the top and left border gridlines 

are counted (black) but not those touching the bottom or right gridlines (red). 

 

 

Viable cell counts were performed by gently but evenly mixing 10µl of cell 

suspension with an equal volume of 0.4% trypan blue (Sigma), allowing to stand for 

2 minutes and then similarly counting the unstained (viable) rather than stained 

(dead) cells. 
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Cryopreservation 

Surplus cells were kept in liquid nitrogen as stock.  Following trypsinisation cells 

were re-suspended in media as above.  900µl of each cell suspension was 

transferred into a 1ml cryovial on ice and 100µl of dimethyl sulphoxide (DMSO) 

(Sigma) was gradually added with continuous swirling of the tube to ensure even 

dispersal.  Cryovials were placed in an isopropanol container (Nunc) at room 

temperature and subjected to gradual temperature loss at a rate of approximately  

-1°C /minute to reach -80°C, before long-term storage in liquid nitrogen. 

 

Cell Recovery 

As viable cells must be protected from DMSO, the cryovials were thawed in a +37°C 

water bath and the contents immediately transferred into 20ml of warmed media.  

This was centrifuged at 1000rpm/180g for 5 minutes and the supernatant 

discarded.  The cell pellet was re-suspended in fresh media and transferred into a 

culture flask. 

 

2.5.5. Conjunctival Epithelial Growth 

Primary conjunctival epithelial explants or cells were seeded onto tissue culture 

plates alone or plates pre-seeded with a 3T3 feeder layer or basement membrane 

matrix.  Primary cells at passage zero were seeded at 15000 cells/cm2.  Cultures 

were maintained with conjunctival epithelial cell media (see Section 2.5.3). 

 

Feeder Layer 

3T3 cells were grown in 175cm2 tissue culture flasks. When near confluent they 

were removed with trypsin (see Section 2.5.4), and re-suspended to 1x107 cells/ml.  

In order to inactivate the cells, 50µl mitomycin C (Sigma) was added per ml of cell 

suspension to give a final concentration of 20µg/ml, and the suspension carefully 

re-suspended to ensure effective mixing.  Following incubation at 37°C for 1hr with 

gentle agitation, the suspension was centrifuged at 1000rpm/180g for 5 minutes 

and the supernatant discarded.  The cell pellet was washed four times with 10ml 
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media, and the cells seeded as a feeder layer at 1x105 cells/cm2 as shown in Figure 

14. 

 

 

Figure 14: Schematic diagram to demonstrate conjunctival epithelial cell seeding on a feeder layer. 

 

 

MatrigelTM basement membrane matrix 

Tissue culture plates were coated with MatrigelTM basement membrane matrix 

using the thin gel method for cell growth on the surface of the gel.  The matrix was 

thawed and mixed to homogeneity with a cooled micropipette.  50µl/cm2 was 

pipetted onto culture plates on ice, and the plates incubated at 37°C for 30 minutes 

prior to seeding of conjunctival cells. 

 

Conjunctival Cell Passage 

Prior to confluency of the epithelial colonies, the cells were passaged.  The media 

was removed and the cells washed with PBS before incubation with 0.02% EDTA 

solution (Sigma) for 30 seconds.  Following vigorous pipetting over the base of the 

well to ensure removal of all the feeder cells the EDTA was discarded and the 

remaining epithelial cells incubated with trypsin for 10 minutes at 37°C.  

Conjunctival media was added to neutralise the trypsin and the suspension 

centrifuged at 1000rpm/180g for 5 minutes.  The supernatant was discarded and 

conjunctival cells reseeded onto fresh 3T3 feeder layers at 6000 cells/cm2. 

 

Morphological Assessment 

Cells were imaged regularly in phase contrast with a Nikon Diaphot microscope to 

qualitatively assess morphology and growth. 
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Limbal Epithelial Cell Growth 

Limbal cells were isolated from corneo-scleral discs (see Sections 2.5.1 and 2.5.2) 

and cultured in the same manner to conjunctival epithelial cells  (see Sections 2.5.3 

and 2.5.4), for comparative CFE assays and use as immunocytochemical positive 

controls. 

 

2.6. Colony Forming Efficiency Assays 

In order to determine the efficiency of conjunctival cells to make colonies, CFE 

assays were performed at the first conjunctival cell passage. 

 

A 6 well tissue culture plate was taken for each area of the conjunctiva and pre-

seeded with a 3T3 feeder layer as above (see Section 2.5.5).  Having removed the 

primary conjunctival cells as detailed above (see Section 2.5.5) a viable cell count 

was performed using trypan blue (see Section 2.5.4).  Viable conjunctival cells were 

seeded at varying concentrations per 9.6cm2 well of a 6 well plate (Greiner) as 

shown in Figure 15. 

 

 

 
Figure 15: Schematic diagram to represent CFE assay plate, showing number of viable conjunctival 
cells seeded into each 9.6cm

2
 well. 

 

 

The cultures were treated as all others above and on the 16th day of culture, 

following removal the media, the cells were washed with PBS and fixed with 3.7% 
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NBF (Bios Europe Limited) for 10 minutes at room temperature.  The NBF was 

discarded, and after a further wash with PBS, the cell colonies were stained with 1% 

Rhodamine B (Sigma) in methanol (Fisher Scientific) for 10 minutes at room 

temperature.  Colonies were counted and the CFE calculated using the formula: 

Number of colonies formed / number of cells plated x 100. 

 

CFE assays were similarly performed on limbal epithelial cells at the first passage for 

comparative analysis. 

 

2.6.1. Presentation of Results 

Images and grading scales from all areas were compared and presented on a 

schematic diagram of the whole conjunctiva as labelled in Figure 16. 
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Figure 16: Schematic diagram of the whole human conjunctiva with fornices represented by dashed 
lines (-----), labelling the multiple areas assessed for colony forming efficiency assays and 
immunocytochemical staining. 
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2.7. Immunocytochemical Studies 

2.7.1. Cell Growth and Fixation 

Conjunctival epithelial cells were equivalently also cultured in 8 well permanoxTM 

plastic labteks (VWR) at passage 1 to enable immunocytochemical staining for SC 

markers.  MCF7 and limbal cells were similarly cultured for antibody optimisation 

and positive controls, and 3T3 cells alone as negative controls. 

 

At day 9, upon near confluency cells were washed twice with PBS and fixed with 

100% methanol at -20°C for 10 minutes, air dried and stored at -80°C. 

 

2.7.2. Antibody Staining 

Antibodies shown in Table 3 were optimised.  In addition to the SC and TAC markers 

assessed in fixed tissue (Table 1) an additional antibody to ABCG2 was assessed in 

an attempt to seek more optimal staining, as well as antibodies to N-Cadherin and 

Hsp70.  Time constraints prevented assessment of the latter two antibodies in fixed 

tissue. 

 

Cells were permeabilised and blocked together with 0.1% tween (Sigma), 1% Bovine 

Serum Albumin (BSA) (Sigma), and 10% goat serum for 1 hour at room 

temperature.  They were then incubated with the primary antibodies at varying 

concentrations in 1% goat serum for 1 hour at room temperature.  Following 3 

washes with PBS they were incubated with the secondary antibody Alexafluor 488 

goat-anti-mouse (Invitrogen) or Alexafluor 488 goat-anti-rabbit (Invitrogen) as 

appropriate, 1:250 in PBS for 1 hour at room temperature.  Further PBS washes 

were undertaken before and after secondary staining for 10 minutes with 1% 

propidium iodide (PI) (Sigma) in 10% RNase (Sigma).  The gasket was removed, 

slides mounted with aqueous fluorescent mountant (Dako) and imaged on a 

Polyvar microscope (Reichert Jung). 
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MCF7 or limbal cells were used as a positive controls, and conjunctival cells with 1% 

goat serum alone in place of the primary antibody as a negative control. 

 

Antibody Clone Source 

CK19 

ABCG2 (anti-BRCP) 

ABCG2 (anti-BRCP) 

p63 

p63 

N-Cadherin 

Hsp70 

CD168 

RCK108 

21 

MM0047-2J39 

ΔN 

4A4 

3B9 

BRM-22 

2D6 

Dako 

Chemicon 

Abcam 

Biolegend 

Dako 

Life Technologies 

Abcam 

Abcam 

 
Table 3: Table of antibodies used for immunocytochemical studies with clone and source. 

 

 

2.7.3. Quantitative analysis 

Expression of immunocytochemical markers was graded quantitatively by the 

number of positively staining cells per average of 5 x20 random fields of view with a 

grading scale of 0 cells: -, <5 cells: +/-, 5-10 cells: +, 10-15 cells: ++, 15-20 cells: +++, 

and >20 cells: ++++. 

 

2.7.4. Presentation of Results 

Images and grading scales from all areas were compared and presented on a 

schematic diagram of the whole conjunctiva as labelled in Figure 16. 
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2.8. Conjunctival Cell Growth on Extracellular Matrix Proteins 

In order to optimise conjunctival epithelial cell adhesion and growth the effect of 

pre-coating tissue culture plastic with laminin 1, collagen IV or fibronectin was 

established. 

 

2.8.1. Extracellular Matrix Protein Coatings 

Extracellular matrix proteins were defrosted at +4°C for 15 minutes, diluted 

appropriately and coated on to pre-chilled 24 well tissue culture plastic plates. 

 

Collagen IV 

Mouse collagen IV (R&D Systems) was diluted in cold sterile deionised water to a 

concentration of 5µg/ml. 150µl per cm2 was spread completely over the base of 

each well and allowed to absorb for 2 hours at room temperature. The excess 

protein solution was then aspirated, PBS added and the plates stored for up to one 

week at +4°C prior to use. 

 

Fibronectin 

Bovine fibronectin (R&D Systems) was diluted in cold serum-free DMEM to a 

concentration of 5µg/ml. Great care was taken not to aspirate or swirl the solution. 

150µl per cm2 was spread completely over the base of each well and allowed to 

absorb overnight at +4°C before the excess solution was removed. The wells were 

rinsed with PBS before storing airtight at +4°C for up to 1 week. 

 

Laminin 1 

Mouse laminin 1 (R&D Systems) was diluted in cold serum-free DMEM to a 

concentration of 10µg/ml.  150µl per cm2 was spread completely over the base of 

each well and allowed to absorb for 1 hour at 37°C before the excess solution was 

removed and the plates allowed to air dry at room temperature. Plates were stored 

airtight at -20°C for up to 1 week. 

 

All coated plates were rinsed with sterile culture media immediately prior to use. 
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2.8.2. Cell Seeding 

Primary conjunctival cells were seeded on the coated plates at 15000 cells/cm2 and 

maintained in the standard manner as above (see Section 2.5.4).  Cells were 

similarly seeded at the same concentrations onto a 3T3 feeder layer in the standard 

manner as a control.  Experiments were carried out in triplicate for each matrix 

protein / control at each time point. 

 

2.8.3. Assessment of Cell Growth 

Cell Morphology 

Cell morphology on each coating / control was assessed qualitatively by phase 

contrast imaging on a Nikon Diaphot microscope at day 2, 4, 7, 10 and 14. 

 

Cell Adhesion and Growth 

At the same time points cells were fixed with 3.7% NBF as in Section 2.7.1 and 

stained for 10 minutes with 1% PI in 10% RNase.  The control plates cultured on 3T3 

feeder layers were additionally stained with CK19 as per Section 2.7.2.  The cells 

were viewed on a Nikon Diaphot fluorescent microscope and 3 images taken (one 

centrally and two randomly placed) of each well at x10 magnification. Nuclei were 

counted and averaged for each well.  Only nuclei of cells staining positive for CK19 

were counted in the control plates.  Growth curves for each coating were then 

determined. 

 

2.9.   Statistical Methods 

Microsoft Excel 2007 (Microsoft) and SPSS Statistics 20 (SPSS) programs were used 

for statistical analysis. For all statistical tests p<0.05 was considered significant 

(α=5%).   

 

As the variability of immunohistochemical staining, CFE and immunocytochemical 

staining across different areas of all conjunctival specimens and cell cultures could 

not be assumed to be of normal distribution, non-parametric statistical tests were 
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employed.  Given the dependency of results across each tissue to each other, 

analysis was performed with a Friedman test, and post-hoc analysis with a Wilcoxon 

signed rank test, both of which take these factors into account.  Bonferroni 

corrections were made to account for multiple tests. 

 

The correlation between immunocytochemical staining for different markers and 

between these, CFE and immunohistochemical staining were each assessed with a 

Kendall’s Tau correlation coefficient.  This is a measure of rank correlation between 

two measured quantities. 

 

The effect and interaction of donor age and PMRT on immunohistochemical 

staining, CFE and immunocytochemical staining was assessed with a generalised 

linear mixed model.  This model is a flexible generalisation of ordinary linear 

regression that allows for response variables with non-parametric error distribution 

and both fixed and random linear prediction. 

 

In contrast, the effect of cell seeding number on CFE measurements and the 

comparison of conjunctival epithelial cell growth on different extracellular matrix 

proteins could be assumed to be parametric and independent data.  These were 

therefore analysed using a one-way analysis of variance (one-way ANOVA) test.  

This technique compares the mean of multiple samples, and is considered robust 

given normal data distribution and independency.  Post-hoc analysis of cell growth 

on extracellular matrix proteins was analysed using a Student’s paired t-test, which 

compares the sample and hypothesised means in parametric data. 
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3. Results 

3.1.  Conjunctival Retrieval 

3.1.1. Surgical Retrieval Technique 

A technique was developed to successfully excise whole human cadaveric 

conjunctiva.  This was performed within 28 hours of death.  The eyes and 

surrounding tissue were cleaned with sterile water followed by a 5% (w/v) solution 

of povidone iodine (Moorfields Pharmaceuticals).  The surgical technique is 

demonstrated in Figure 17 and Figure 18.  Using an aseptic technique, both eyelids 

were split medially to laterally along the grey line using a number 15 scalpel blade 

(Swann Mortonn) and Moorfields forceps (Malosa Medical).  The dissection was 

continued back along this surgical plane until beyond the level of the fornices 

(Figure 17A-C, Figure 18).  Great care was taken not to touch or handle the 

conjunctiva with any instruments as histological analysis of initial samples revealed 

corresponding tarsal epithelial loss as shown in Figure 19.  Traction sutures and 

adhesive strips were employed to assist dissection at this stage but not found to be 

of benefit.  The medial and lateral canthal areas were similarly dissected to adjoin 

the upper and lower eyelid dissections (Figure 17D).  A speculum (Malosa Medical) 

was used to maintain the eyelids in an open position and a 360° limbal peritomy 

was then performed with Westcott scissors (Malosa Medical) as close to the limbus 

as possible, followed by a full blunt dissection below Tenon’s capsule in the 

episcleral space around the surface of the globe.  This dissection was similarly 

continued until past the level of the fornices (Figure 17E-F, Figure 18).  These two 

natural surgical planes do not meet, and thus the fatty tissue and Tenon’s capsule 

behind the conjunctiva was then divided until the anterior and posterior planes 

met, as demonstrated in Figure 18.  It was found that it was easier to perform this 

dissection from the anterior plane using scissors to cut down onto the globe taking 

care to do so beyond the fornices so as not to breach the conjunctiva (Figure 17G).  

This was completed circumferentially allowing the conjunctiva to be excised as a 
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whole specimen as shown in Figure 17H and Figure 20.  Tissue was placed in sterile 

media for transportation.  Single-use disposable instruments were used throughout 

the procedure in accordance with the standards for eye retrieval for transplantation 

and research (The Royal College of Ophthalmologists, 2008, UK Blood Transfusion 

and Tissue Transplantation Services, 2013). 

 

Following retrieval of the conjunctiva, the eyes were then retrieved for 

transplantation and/or research purposes in the standard manner (The Royal 

College of Ophthalmologists, 2008, UK Blood Transfusion and Tissue 

Transplantation Services, 2013).  No trauma to any eyes was noted.  Eye sockets 

were reconstructed using wet cotton wool and plastic eye shields (Figure 17I) which 

hold the eyelids in a closed position in accordance with the guidance standards of 

The Royal College of Ophthalmologists (The Royal College of Ophthalmologists, 

2008) producing good aesthetic results (Figure 17J). 
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Figure 17: Images of the surgical technique for retrieval of whole human cadaveric conjunctiva: A) a 
grey line eyelid split is made with a scalpel blade, B) the incision is extended posteriorly C) and deep 
to the fornices. D) The incision is adjoined to an equivalent lower eyelid incision at both canthi. E) A 
full 360° limbal peritomy is made with scissors and F) a deep blunt sub-Tenon’s dissection is 
performed. G) The fatty tissue and Tenon’s capsule posterior to the fornices is divided to enable H) 
whole conjunctival excision. I) Eye sockets are reconstructed with cotton wool and eye shields to 
produce J) good aesthetic reconstruction. 

 

 

 

 
Figure 18: Schematic diagram to demonstrate the surgical technique for conjunctival retrieval in the 
sagittal plane. The eyelids are split anteriorly-posteriorly commencing at the grey line alongside the 
tarsal plates and deep past the fornices (– –), a 360°C limbal peritomy is performed with full deep 
sub-Tenon’s blunt dissection (‐‐‐‐), and the fatty tissue between the two surgical planes divided (∙∙∙∙∙). 
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Figure 19: Section of human conjunctival tissue from the upper eyelid demonstrating loss of tarsal 
conjunctiva due to instrument damage in retrieval process (H&E stain).  Photomicrographs stitched 
together manually in Microsoft PowerPoint. Scale bar 1mm 
 

 

 

 

 

Figure 20: Image of whole human cadaveric conjunctival specimen with eyelids everted such that 
the tarsal epithelium is visible. Scale bar 1cm. 

 

Conjunctival 
epithelium 

Almost complete 
loss of conjunctival 

epithelium 

Conjunctival 
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Tarsal Plate 
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3.1.2. Tissue Retrieved 

Conjunctiva was retrieved from 18 donors in total, giving 36 whole conjunctival 

specimens.  These included 5 male and 13 female donors, aged 22-93 (mean 75.4, 

median 80.5) years; all of which were Caucasian.  The PMRTs varied from 8.5-27.5 

(mean 20.9, median 22) hours.  The donor demographics, causes of death and 

PMRTs are detailed in as detailed in Table 4.  Initial specimens were used to 

develop and optimise tissue retrieval, tissue fixation and embedding, and cell 

harvesting and culture techniques. 

 

Limbal tissue was obtained from 3 Caucasian donors: 2 male and 1 female, aged 57-

74 (mean 63.3, median 68) years. 
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Donor Age 
(Years) 

Donor Sex Cause of Death Tissue 
Number 

Post mortem 
Retrieval Time 

(Hours) 

70 Male Pneumonia 
01 19.5 

   02 20.5 

65 Male CVA 
03 23.5 

   04 25.0 

79 Female CVA 
05 22.0 

   06 23.5 

62 Female Multi-organ failure 
07 25.5 

   08 26.0 

93 Female CVA 
09 18.5 

   10 19.0 

57 Female Pneumonia 
11 27.5 

   12 28.0 

85 Female Renal failure 
13 26.0 

   14 26.5 

92 Female Gastroenteritis 
15 17.0 

   16 17.5 

76 Female Cardiac failure 
17 18.0 

   18 18.5 

85 Male Myocardial infarction 
19 9.0 

   20 8.5 

82 Female Bowel ischaemia 
21 25.0 

   22 25.5 

22 Male Multi-organ failure 
23 24.0 

   24 24.5 

84 Female Pneumonia 
25 21.5 

   26 22.0 

90 Female Renal failure 
27 15.75 

   28 16.25 
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68 Female Gastric haemorrhage 
29 24.0 

   30 24.5 

89 Female Gastroenteritis 
31 23.5 

   32 24.0 

82 Male Pneumonia 
33 16.5 

   34 16.5 

76 Female Carcinomatosis 
35 15.5 

   36 16.0 

 

Table 4: Table showing donor demographics, cause of death and PMRTs of conjunctival tissue 
retrieved. (CVA = Cerebrovascular Accident). 

 

3.2. Tissue Histology 

H&E staining of superior and inferior specimens demonstrated continuous sections 

of conjunctival tissue extending from bulbar though forniceal to tarsal conjunctiva.  

An example of which is demonstrated in Figure 21.  Similar sections of canthal 

tissue demonstrated complete sections of conjunctival tissue. 
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3.3. Immunohistochemical Studies 

3.3.1. Antibody Optimisation 

Antibodies for immunohistochemical studies were optimised by comparing both 

different antigen retrieval techniques and different antibody dilutions using positive 

control tissue.  Optimal staining was assessed taking into account both staining 

intensity, minimal background staining and in the case of heat-induced antigen 

retrieval, significant loss of tissue from the slides with increasing antigen retrieval 

time.  An example of antibody optimisation results for ABCG2 is shown in Figure 22. 

The final protocols used for each antibody are shown in Table 5.  

 

 

 

Figure 22: Photomicrographs of immunohistochemical antibody optimisation for ABCG2 using 
placental tissue, varying times of citrate buffer antigen retrieval and varying antibody dilutions. 
Positive immunoreactivity in brown is observed throughout the cytoplasm (arrows), with 
haematoxylin counter-staining in blue. Scale bars 50µm.  In this case, optimal staining balanced 
against minimal tissue loss during antigen retrieval was achieved with 10 minutes of citrate buffer 
and 1:20 antibody dilution, and was used as a final protocol. 



  Results 

74 
 

Antibody Clone Source Antigen Retrieval Antibody 
Dilution 

Secondary 
Antibody* 

CK19 

ABCG2 

p63 

Pan-CK 

Pan-CK 

Melan-A 

S-100 

RCK108 

21 

4A4 

MNF116 

AE1/AE3 

A103 

polyclonal 

Dako 

Chemicon 

Dako 

Dako 

Dako 

Dako 

Dako 

Target Retrieval 

Citrate 10m 100°C 

None 

None 

Trypsin 30m 37°C 

Target Retrieval 

Citrate 10m 100°C 

1:100 

1:20 

1:50 

1:100 

1:200 

1:100 

1:1000 

Anti-mouse 

Anti-mouse 

Anti-mouse 

Anti-mouse 

Anti-mouse 

Anti-mouse 

Anti-rabbit 

 
Table 5: Table of optimised immunohistochemical protocols for different antibodies used. 
*Secondary antibody is HRP anti-mouse or anti-rabbit. 

 

 

Despite numerous attempts at optimisation on limbal positive control samples no 

clear positive immunohistochemical staining was obtained with pan-CK Lu5, ΔNp63 

or CD168 antibodies. These antibodies were therefore not used in any further 

immunohistochemical analyses. 
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3.3.2. Grading of Immunohistochemical Staining 

Immunohistochemical staining was graded semi-qualitatively as described in 

Section 2.4.4.  Examples of staining images for each grading system are 

demonstrated in Figure 23 and Table 6. 

 

Equivalent staining was demonstrated across all positive and negative control 

samples from different experiment runs for each antibody; thus enabling direct 

comparisons to be made across samples from all tissues. 

 

  

 

Figure 23: Figure to demonstrate the first immunoreactivity grading scale employed (the proportion 
of positively staining cells per image: 0 cells: -, ≤1/3 cells: +, 1/3-2/3 cells: ++, ≥2/3 cells: +++).  
Photomicrographs showing positive ABCG2 immunoreactivity in brown, with haematoxylin counter 
staining in blue. Scale bars 50µm. 
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3.3.3. Cytokeratin 19 Staining 

Immunohistochemical staining for CK19 confirmed the presence of conjunctival 

epithelium in all samples.  An example of which is shown in Figure 24.  CK19 

expression would not be expected in goblet cells, but it was not possible to 

accurately exclude this in these studies as the goblet cell bodies underlying the 

large secretory component of the cells are usually not easibly detectable. 

 

 

 
Figure 24: Photomicrographs of immunohistochemical staining for CK19.  Positive immunoreactivity 
in brown is observed throughout the cytoplasm (arrows), with haematoxylin counter-staining in 
blue. A) Immunoreactivity is demonstrated throughout most layers of the conjunctival epithelium, B) 
tonsillar tissue positive control, C) negative control.  Scale bars 50µm. 

 

 

3.3.4. Further Immunohistochemical Staining 

Further immunohistochemical staining for ABCG2, p63 and pan-CK MNF116 and 

AE1/AE3 antibodies were assessed across all tissue sections as described in Figure 

10.  This enabled analysis of the multiple comparison sites labelled in Figure 11.  

Data for each of these is presented in Section 3.3.5 to Section 3.3.8, with sample 

images from one donor tissue (tissue 26) presented on a schematic diagram of the 

conjunctiva for both ABCG2 and p63. 

 

3.3.5. ABCG2 Staining 

ABCG2 staining was demonstrated across the conjunctiva in the basal epithelium.  

Staining was noted not only at the cell membranes but also frequently throughout 

the cytoplasm as shown in Figure 25.  ABCG2 expression would not be expected in 

goblet cells, but as noted above it was not possible to accurately exclude this in 

these studies as the goblet cell bodies underlying the large secretory component of 

the cells are usually not easibly detectable (Figure 26).  
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Figure 25: Photomicrographs of immunohistochemical staining for ABCG2 in the bulbar-forniceal 
conjunctival epithelium.  Positive immunoreactivity in brown is observed both at the cell membrane 
(black arrows) and throughout the cytoplasm (dashed arrows), with haematoxylin counter-staining 
in blue. A) and B) Immunoreactivity is demonstrated to varying levels in the conjunctival epithelium, 
C) placental positive control and D) negative control.  Scale bars 50µm. 

 

 

Staining across sections from 10 donors was compared.  Highest levels of staining 

were seen in the medial canthal and forniceal areas, especially inferiorly.  In these 

areas staining was demonstrated in the majority of epithelial cells, but most intense 

basally, with often only the superficial epithelial layers spared.  Lowest levels of 

staining were demonstrated in the tarsal conjunctival epithelium, hence a pattern 

of more intense staining in the forniceal than bulbar than tarsal areas was noted, as 

shown in Figure 26. 

 

These patterns were consistently demonstrated across each donor tissue.  An 

example of the pattern of staining across the whole conjunctiva from one donor is 

demonstrated in Figure 27.  The overall gradings averaged from all donors are 

demonstrated on schematic diagrams using both grading scales (see Section 2.4.4).  

Gradings from scale 1 are shown in Figure 28, and from scale 2 in Figure 29.  The 

overview of comparative sites compared in these diagrams is labelled in Figure 11. 
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Figure 26: Photomicrographs of immunohistochemical staining for ABCG2 across the conjunctiva.  
Positive immunoreactivity in brown is observed both at the cell membranes and throughout the 
cytoplasm (arrows), with haematoxylin counter-staining in blue. Mild immunoreactivity is observed 
in A) tarsal, intense staining in B) forniceal and moderate staining in C) bulbar areas.  Scale bars 
50µm. 

 

 

Although similar patterns of grading were demonstrated from each grading scale 

(Figure 28 and Figure 29); scale 2 (Figure 29), in also taking into account the 

intensity of staining, revealed greater variation across the tissue as a whole. Non-

parametric Friedman tests were employed demonstrating significant variation in 

staining across the whole tissue using either grading scale (p<0.01 for each).  The 

areas with overall highest staining grades (+++) using scale 2 (Figure 29) were 

located in a region comprising the medial canthal area and inferior medial and 

inferior central fornix.  Post-hoc analysis of data using either grading scale 

confirmed significant increased staining in this region compared to the rest of the 

tissue using a Wilcoxon signed ranks test (p<0.01 for each).  Greater staining was 

also shown in the fornices than bulbar than tarsal areas, and this pattern was 

replicated in both superior and inferior conjunctiva, with greater staining in inferior 

compared to superior areas. 

 

Given that intensity of marker expression cannot necessarily be assumed to have a 

linear correlation to the level of antigen present, immunohistochemical grading 

scale 1 (taking into account solely the proportion of positively staining cells) was 

used for further ABCG2 analysis from hereon. 
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Figure 27: Schematic diagram of the human conjunctiva (as labelled in Figure 11) with fornices 
represented by dashed lines (-----), demonstrating photomicrographs of immunohistochemical 
staining for ABCG2 across all areas of the conjunctiva from one donor (tissue 26). Positive 
immunoreactivity in brown is observed both at the cell membranes and throughout the cytoplasm, 
predominantly in the basal layers of the epithelium. In this example, immunoreactivity is observed 
most intensely in the medial canthal and forniceal areas. Haematoxylin counter-staining in blue.  A) 
Placental positive control, B) negative control.  Scale bars 50µm. 
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Figure 28: Schematic diagram of the human conjunctiva (as labelled in Figure 11) with fornices 
represented by dashed lines (-----), demonstrating average grades of immunohistochemical 
reactivity for ABCG2 using grading scale 1 (Figure 23) by proportion of immunoreactive cells, across 
all areas of the conjunctiva from all 10 donors.  Highest grades of staining are observed in the medial 
canthal, inferior medial and inferior central forniceal areas (red) compared to other areas (p<0.01). 
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Figure 29: Schematic diagram of the human conjunctiva (as labelled in Figure 11) with fornices 
represented by dashed lines (-----), demonstrating average grades of immunohistochemical 
reactivity for ABCG2 using grading scale 2 (Table 6) by proportion and intensity of immunoreactive 
cells, across all areas of the conjunctiva from all 10 donors.  Highest grades of staining are observed 
in the medial canthal, inferior medial and inferior central forniceal areas (red) compared to other 
areas (p<0.01). 
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Although the areas of most intense ABCG2 staining within the conjunctival 

epithelium are also rich in goblet cells (Kessing, 1968), no correlation was noted 

between direct proximity of ABCG2 positively staining cells to goblet cells.  Indeed 

varying intensity of ABCG2 staining was observed in close proximity to clusters of 

multiple goblet cells, with no clear pattern to different areas of the tissue as shown 

in Figure 30.  

  

 

  
Figure 30: Photomicrographs of immunohistochemical staining for ABCG2 in the conjunctiva in 
proximity to clusters of goblet cells (arrows).  Positive immunoreactivity in brown varies from A) light 
to D) intense, with haematoxylin counter-staining in blue. A) Tarsal conjunctiva, B) tarsal-forniceal 
conjunctiva, C) medial canthal conjunctiva and D) forniceal conjunctiva.  Scale bars 50µm. 
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3.3.6. p63 Staining 

p63 staining was similarly demonstrated across the conjunctiva in the basal layers 

of the epithelium (Figure 31).  Staining across sections from only 2 donors was 

compared due to the manufacturers discontinuing the antibody and no suitable 

substitute being traced.  Staining was solely nuclear, but the distribution across the 

tissue demonstrated similar patterns to that seen for ABCG2 (Figure 27, Figure 28 

and Figure 29), with highest levels of staining seen in the medial canthal and 

forniceal areas, especially inferiorly.  In these areas there was both a greater 

proportion of positively staining epithelial cells, thus incorporating the intermediate 

epithelial layers, and a greater staining intensity.  Lowest levels of staining were 

again demonstrated in the tarsal conjunctival epithelium, producing the same 

pattern of more intense staining in the forniceal than bulbar than tarsal areas, as 

shown in Figure 31.  Again, although p63 expression would not be expected in 

goblet cells, it was not possible to accurately exclude this in these studies as the 

goblet cell bodies underlying the large secretory component of the cells are usually 

not easily detectable. 

 

 

 
Figure 31: Photomicrographs of immunohistochemical staining for p63 across the conjunctiva.  
Positive immunoreactivity in brown is observed in the nuclei (arrows), with haematoxylin counter-
staining in blue. Mild immunoreactivity is observed in A) tarsal, intense staining in B) forniceal and 
moderate staining in C) bulbar areas, with D) limbal positive control and E) negative control.  Scale 
bars 50µm. 
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These patterns were demonstrated across both donor tissues.  An example of the 

pattern of staining across the whole conjunctiva from one donor is demonstrated in  

Figure 32 and the overall gradings averaged from both donors using grading scale 1 

(Figure 33) and grading scale 2 (Figure 34).  The overview of comparative sites 

compared in these diagrams is labelled in Figure 11. 

 

Friedman tests again confirmed significant variation of staining across the tissue 

using either grading scale (p=0.02 for each).  Overall highest staining grades (+++) 

using grading scale 2 (taking into account the intensity of staining), were noted in 

the same region as those with highest staining for ABCG2, namely that comprising 

the medial canthal area and inferior medial and inferior central fornix, but this was 

not statistically significant compared to the rest of the conjunctiva on post-hoc 

analysis using either grading scale with a Wilcoxon test (p=0.5 for each).  The 

pattern of greater staining in the fornices than bulbar than tarsal areas, and greater 

staining in the superior than inferior conjunctiva was also replicated.  There was 

insufficient data from p63 immunohistochemical staining to enable a statistical 

correlation analysis between this and ABCG2 immunohistochemical staining. 
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Figure 32: Schematic diagram of the human conjunctiva (as labelled in Figure 11) with fornices 
represented by dashed lines (-----), demonstrating photomicrographs of immunohistochemical 
staining for p63 across all areas of the conjunctiva from one donor (tissue 26). Positive 
immunoreactivity in brown is observed in the nuclei, predominantly in the basal layers of the 
epithelium. In this example, immunoreactivity is observed most intensely in the medial canthal and 
inferior forniceal areas. Haematoxylin counter-staining in blue.  A) Limbal positive control, B) 
negative control.  Scale bars 50µm. 
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Figure 33: Schematic diagram of the human conjunctiva (as labelled in Figure 11) with fornices 
represented by dashed lines (-----), demonstrating average grades of immunohistochemical 
reactivity for p63 using grading scale 1 (Figure 23) by proportion of immunoreactive cells, across all 
areas of the conjunctiva from 2 donors.  Significant variation of staining was observed across the 
tissue (p=0.02), but although highest grades of staining were observed in the medial canthal, inferior 
medial and inferior central forniceal areas this was not significant (p=0.5). 
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Figure 34: Schematic diagram of the human conjunctiva (as labelled in Figure 11) with fornices 
represented by dashed lines (-----), demonstrating average grades of immunohistochemical 
reactivity for p63 using grading scale 2 (Table 6) by proportion and intensity of immunoreactive cells, 
across all areas of the conjunctiva from 2 donors.  Significant variation of staining was observed 
across the tissue (p=0.02), but although highest grades of staining were observed in the medial 
canthal, inferior medial and inferior central forniceal areas this was not significant (p=0.5). 
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In a similar manner to the pattern of ABCG2 staining, no correlation of intensity of 

p63 positively staining cells was noted to the immediate proximity of goblet cells.  

Similarly, varying intensity of p63 staining was observed in close proximity to 

clusters of multiple goblet cells with no clear pattern to different areas of the tissue 

as shown in Figure 35. 

 

 

 
Figure 35: Photomicrographs of immunohistochemical staining for p63 in the conjunctiva in 
proximity to clusters of goblet cells (arrows).  Positive immunoreactivity in brown varies from A) light 
to D) intense, with haematoxylin counter-staining in blue. A) Tarsal conjunctiva, B) - D) forniceal 
conjunctiva.  Scale bars 50µm. 
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3.3.7. Pan-Cytokeratin MNF116 Staining 

Pan-CK MNF116 staining was demonstrated throughout the conjunctival 

epithelium.  Staining intensity varied to some degree amongst adjacent cells but 

overall the staining amongst epithelial cells was intense with the vast majority of 

cells staining strongly, giving a universal grading of +++ or ++++ across the tissue as 

a whole depending on the grading scale employed.  The apical secretory portion of 

the goblet cells did not stain positively for MNF116, the slender nature of the basal 

bodies meant true positive or negative staining here could not be precisely 

elucidated.  No pockets of non-staining basal cells were noted, suggestive of SCs.  

The staining across the tissue is summarised with representative images from the 

tarsal, forniceal and bulbar areas shown in Figure 36. 

 

 

 
Figure 36: Photomicrographs of immunohistochemical staining for MNF116 across the conjunctiva.  
Positive immunoreactivity in brown is observed in the cytoplasm (arrows), with haematoxylin 
counter-staining in blue. Intense immunoreactivity is observed throughout all layers of A) tarsal, B) 
forniceal and C) bulbar conjunctiva. D) tonsil positive control, E) negative control.  Scale bars 50µm. 

 

 

3.3.8. Pan-Cytokeratin AE1/AE3 Staining 

Pan-CK AE1/AE3 staining was similarly demonstrated throughout the conjunctival 

epithelium.  Staining intensity was intense throughout with little variation between 

cells.  Again the apical secretory portion of goblet cells did not stain positively, and 

true positive or negative staining of their slender basal bodies could not be 

precisely ascertained.  A universal grading of +++ or ++++ across the tissue as a 
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whole depending on the grading scale employed was similarly demonstrated.  This 

is summarised with representative images from the tarsal, forniceal and bulbar 

areas in Figure 37. 

 

 

 
Figure 37: Photomicrographs of immunohistochemical staining for AE1/AE3 across the conjunctiva.  
Positive immunoreactivity in brown is observed in the cytoplasm (arrows), with haematoxylin 
counter-staining in blue. Intense immunoreactivity is observed throughout all layers of A) tarsal, B) 
forniceal and C) bulbar conjunctiva. D) tonsil positive control, E) negative control.  Scale bars 50µm. 

 

 

One small collection of basal non-staining cells was noted in the forniceal region of 

one sample as shown in Figure 38. 

   

 

 
Figure 38: Photomicrographs of immunohistochemical staining for AE1/AE3 in the forniceal 
conjunctiva.  Positive immunoreactivity in brown is observed in the cytoplasm (arrows), with 
haematoxylin counter-staining in blue.  A) intense immunoreactivity is observed throughout all 
layers of the forniceal conjunctiva, but a small collection of non-immunoreactive cells are 
demonstrated basally (arrow). B) Negative control.  Scale bars 100µm. 
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In order to further investigate the nature of this cluster of cells, Melan-A and S-100 

stains were employed to exclude melanocytic or immunological origin respectively.  

Both of these cell types were demonstrated in the conjunctival epithelium as shown 

in Figure 39 and Figure 40, but unfortunately the adjacent histological section to 

that used in Figure 38 had already been used in a previous experiment and thus 

further characterisation of this non-AE1/AE3 staining cluster of cells was not 

possible.  No further non-immunoreactive clusters of cells were observed. 

 

 

Figure 39: Photomicrographs of immunohistochemical staining for Melan-A. Positive 
immunoreactivity is observed in the cytoplasm in brown with haematoxylin counter-staining in blue. 
A) Occasional immunoreactive cells (arrows) are observed in the conjunctival epithelium, B) 
melanoma positive control, C) negative control.  Scale bars 50µm. 

 

 

 

Figure 40: Photomicrographs of immunohistochemical staining for S-100. Positive immunoreactivity 
is observed in the cytoplasm in brown with haematoxylin counter-staining in blue. A) Occasional 
immunoreactive cells (arrows) are observed in the conjunctival epithelium and lamina propria, B) 
colonic positive control, C) negative control.  Scale bars 50µm. 
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3.3.9. Immunohistochemical Staining and Donor age 

Immunohistochemical staining (using grading scale 1) across all areas of the 

conjunctiva for each donor tissue was averaged and compared to donor age.  There 

were greater numbers of older donors, but despite this, a significant association of 

reduced ABCG2 staining with increasing donor age was established using a 

generalised linear mixed model (p<0.01).  This data is shown in Figure 41.  Although 

the linear trend line does not appear to demonstrate a clear relationship, this data 

includes the pattern from all areas across the tissue for each donor.  In taking this 

into account the statistical analysis shows a significant correlation.  There was 

insufficient data to analyse this association for p63 staining. 

 

 

Figure 41: Line graph showing variance in average conjunctival ABCG2 immunohistochemical 
staining grade with donor age.  A decrease in ABCG2 staining is demonstrated with increasing donor 
age (p<0.01)*. Error bars +/- 1SD, ---- linear trend line. 

 

 

3.3.10. Immunohistochemical Staining and Post Mortem 

Retrieval Time 

Immunohistochemical staining (using grading scale 1) across all areas of the 

conjunctiva for each donor tissue was averaged and similarly compared to PMRT.  

Times varied from 8.5-28 hours.  Longer PMRTs were associated with significantly 

lower ABCG2 staining by analysis with a generalised linear mixed model (p<0.01).  
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This data is shown in Figure 42.  Similarly, although the linear trend line does not 

appear to demonstrate a clear relationship, by taking into account the pattern of 

data from all areas across the tissue as a whole the statistical analysis shows a clear 

significant correlation.  Again there was insufficient data to analyse this association 

for p63 staining. 

 

 

Figure 42: Line graph showing variance in average conjunctival ABCG2 immunohistochemical 
staining grade with PMRT. A decrease in ABCG2 staining is demonstrated with increasing PMRT 
(p<0.01)*. Error bars +/- 1SD, ---- linear trend line. 
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3.4. Cell Culture 

Conjunctiva from 17 eyes (from 17 donors) was processed for cell culture.  Initial 

tissue was used to develop techniques and optimise methods for cell harvesting 

and culture. 

 

3.4.1. Conjunctival Cell Harvesting 

Experiments were undertaken to ascertain the optimal methods for conjunctival 

epithelial cell harvesting 

 

Trypsinisation in cloning rings 

8mm cloning rings placed on the conjunctival tissue were used to hold trypsin 

inside for varying time periods, but proved unsuccessful.  Due to the irregular 

conjunctival surface, the trypsin often leaked out, and the addition of high-vacuum 

grease only enabled the rings to slide off the mucous membrane.  Very few cells 

(<6000) were counted in the trypsin cell supernatant obtained from each cloning 

ring by this method, thus seeding concentrations were very low.  No cell growth 

was observed from these samples in culture.  In order to ascertain the depth of 

epithelium removed with different trypsin incubation time periods, the remaining 

tissue was NBF fixed and wax embedded, but sections revealed loss of epithelium 

not only within the area inside the cloning rings, but completely across the whole 

specimens, as shown in Figure 43. 

 

 

 

 
Figure 43: Section of human conjunctival tissue demonstrating complete loss of epithelium following 
cell harvesting attempts with cloning rings (H&E stain). Photomicrographs stitched together 
manually in Microsoft PowerPoint. Scale bar 1mm. 

 

 

Diameter of cloning ring: 8mm 
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Trypsinisation of chopped tissue 

Total cell counts of 347-1479 x104 (mean 878 x104) per whole conjunctiva were 

obtained after trypsinisation of whole chopped tissue.  These were successfully 

grown in culture on 3T3 feeder layers as detailed below. 

 

3.4.2. Conjunctival Epithelial Cell Growth 

No growth of cells obtained following trypsinisation of chopped whole tissue was 

observed in culture on tissue culture plastic alone or on MatrigelTM basement 

membrane matrix.  Discrete colonies of closely apposed polygonal cells with a high 

nuclear:cytoplasmic ratio were observed on the 3T3 feeder layer by day 7 (Figure 

44). 

 

 

 
Figure 44: Phase contrast micrographs of conjunctival epithelial cell culture at day 7 on A) tissue 
culture plastic, B) Matrigel

TM
 basement membrane matrix and C) 3T3 feeder layer. Conjunctival 

epithelial cell colonies (arrow) are only observed growing on the feeder layer. Scale bars 100µm. 

 

 

Conjunctival explants were similarly plated on tissue culture plastic alone, on 

MatrigelTM basement membrane, and on the 3T3 feeder layer.  No growth was 

observed from any explants cultured up to day 21 (Figure 45), however this 

experiment was only repeated on two occasions.  Closer inspection of the latter 

revealed a very sparse feeder layer beside the explants and dense 3T3 cells around 

the periphery of the wells.  This was a consistent finding, likely due to mechanical 

disruption of the feeder layer whilst placing the explants. 
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Figure 45: Phase contrast micrographs of conjunctival epithelial explants (arrows) at day 7 on A) 
tissue culture plate, B) Matrigel

TM
 basement membrane matrix and C) 3T3 feeder layer. No cell 

growth was observed on any extracellular matrix. Scale bars 100µm. 

 

 

All further studies were therefore employed following cell harvesting by 

trypsinisation of whole chopped tissue and seeding on a 3T3 feeder layer.  Using 

this technique conjunctival epithelial growth was established from all 8 areas of the 

conjunctiva described in Figure 12. Colonies were first observed from day 4 to 7 and 

gradually enlarged and fused, such that the cells became 70-80% confluent as a 

uniform population of densely packed polygonal cells with cobblestone appearance 

by day 10-14.  Colonies were consistently observed earlier in the medial canthal and 

forniceal areas, and to a lesser extent inferior bulbar and lateral canthal areas.  

Larger colonies were observed in these areas than in other areas at equivalent time 

points.  An example of comparative growth images from one donor is shown in 

Figure 46. 

 

Conjunctival epithelial cell culture was maintained up to passage 3.  At passage 1 

the cells were enlarged but remained polygonal in shape.  With additional passages 

cells became increasingly elongated and more differentiated in appearance with a 

lower nuclear:cytoplasmic ratio, as shown in Figure 47. All cultures reached 

senescence by passage 4. 
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Figure 46: Phase contrast micrographs of conjunctival epithelial cell cultures from one donor (tissue 
23), demonstrating differing size of colony formations (arrows) in culture from different conjunctival 
areas.  Largest colonies are demonstrated in the medial canthal and inferior forniceal areas in this 
donor at day 7. Scale bars 100µm. 
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Figure 47: Phase contrast micrographs of conjunctival epithelial cells demonstrating that epithelial 
cells become increasingly more differentiated in appearance with increasing passage (p). Scale bars 
100µm. 

 

 

Cultures from two early specimens became infected (tissue 05, bacterial infection, 

and tissue 11, fungal infection).  No association was observed between infection 

and donor age, cause of death or PMRT from these 6 initial cultures; there was 

insufficient data for statistical analysis.  The additional step of washing out the 

donor fornices with povidone iodine before tissue retrieval was then introduced, 

following which no further infections were encountered. 
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Tissues 15, 21 and 29 failed to produce cell colonies in culture despite using 

previously successful techniques.  One of these may be attributable to a drop in the 

incubator temperature, but there were no apparent reasons to account for the 

other two (tissues 15 and 21).  Whilst these latter two were from elderly donors 

with relatively long PMRTs (92 years / 17 hours, and 82 years / 25 hours 

respectively), cultures were successfully generated from other tissues with similar 

donor characteristics (tissues 25, 27 and 31). 

 

3.4.3. Comparative Limbal Epithelial Cell Growth 

Limbal epithelial cells were harvested from corneo-scleral discs using the same 

technique as per successful conjunctival cell harvesting and culture (see Section 

3.4.2).  These cells demonstrated similar regular polygonal morphological features, 

but with faster growth rates, reaching confluence by day 7 (Figure 48), as compared 

to day 10-14 for conjunctival epithelial cultures. 

 

 

 
Figure 48: Phase contrast micrographs of passage 0 limbal and conjunctival epithelial cells in culture 
demonstrating similar epithelial cell morphology but higher growth rates in culture of limbal 
epithelial cells. Limbal cells are observed to reach confluence at day 7, compared to conjunctival 
cells which are near confluency at day 10. Scale bars 100µm 
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3.5. Colony Forming Efficiency Assays 

CFE assays were performed on conjunctival and limbal epithelial cells from 8 and 3 

donors respectively.  A single plate of 6 wells was assessed for each area of the 

conjunctiva, an example of which is shown in Figure 49.  

 

 

 
Figure 49: Colony forming efficiency (CFE) assay plate demonstrating conjunctival epithelial cell 
colonies stained with 1% Rhodamine B.  Wells plated with A) 0, B) 500, C) 1000, D) 2000, E) 5000 and 
F) 10000 cells per 9.6cm

2
 well. Scale bar 1cm. 

 

 

Higher number of colonies growing in the well seeded with 10000 cells (1x104 

/9.6cm2) led to colony overcrowding by the time of fixation thus it was often not 

possible to obtain an accurate count from this well as shown in Figure 49, and this 

data was therefore incomplete. 

 

3.5.1. Cell Seeding Number and Colony Forming Efficiency 

In order to accurately interpret the CFE data the relationship between the number 

of cells seeded per well, and both the number of colonies cultured and CFE was 

firstly determined. 

 

Although a linear association in number of cells seeded per well to number of 

colonies cultured was demonstrated at lower seeding densities, no proportionate 
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increase in number of colonies cultured was demonstrated at the highest seeding 

density of 10000 cells per well, as shown in Figure 50. 

 

 
 

Figure 50: Line graph showing the effect of cell seeding number on number of colonies cultured. A 
linear association is observed at lower concentrations, but the number of colonies cultured reaches 
a plateau at 5000 cells per well. Error bars +/- 1SD. 

 

 

Similarly, although there was significant variation in the CFE data at lower seeding 

densities,  represented by the relatively large error bars in Figure 51; no significant 

difference was demonstrated between CFE values generated from these wells 

seeded with 500, 1000 and 2000 cells as assessed using a one-way ANOVA test 

(p=0.94).  Significantly lower CFEs were generated from both the wells seeded with 

5000 cells (p<0.01) and 10000 cells (p<0.01), as also assessed using a one-way 

ANOVA test. 

 

For these reasons, together with the colony overcrowding and difficulty obtaining 

an accurate count described in Section 3.5 above, and hence a significant level of 

missing data, readings from both the wells seeded with 5000 and 10000 cells/well 

were excluded from all further calculations and analysis.  Thus the CFE for each 

plate was determined as the mean CFE value from wells seeded with 500, 1000 and 

2000 cells only. 
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Figure 51: Line graph showing the effect of cell seeding number on CFE value. No difference in CFE is 
observed at seeding densities less than 2000 cells per well (p=0.94), but significantly lower CFE is 
observed at both 5000 (p<0.01)* and 10000 cells per well (p<0.01)*. Error bars +/- 1SD. 

 

 

3.5.2. Colony Forming Efficiency across the Conjunctiva 

CFE assays from different regions across the conjunctiva as shown in Figure 16, 

demonstrated varying clonogenic ability across the tissue as a whole, with a 

consistent pattern shown in all 8 separate donors.  A non-parametric Friedman test 

confirmed significant overall variation across the tissue in all donors (p<0.01). 

 

Overall highest CFE levels were consistently noted in the medial canthal, usually 

followed by the inferior forniceal areas.  Post-hoc analysis with a Wilcoxon test 

showed statistically significantly higher CFE in the medial canthal area alone 

(p<0.01) and in the medial canthal and inferior forniceal areas together (p<0.01) 

compared to all other areas.  Higher CFE was shown in the fornices than bulbar 

than tarsal areas, and this pattern was replicated in both superior and inferior 

conjunctiva, with higher CFE in inferior compared to superior areas.  Using the 

schematic diagram of the whole conjunctiva labelled in Figure 16, an example of 

CFE images from one donor (tissue 31) is shown in Figure 52.  Data from all 8 

donors is demonstrated in a comparative histogram in Figure 53, and as overall 
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mean values in Figure 54.  Data from each of the 8 donors individually is shown in 

Figure 55 to Figure 62.  In order to further investigate the variation in CFE values 

between donors further analysis including donor age (Section 3.5.3) and PMRT 

(Section 3.5.4) was performed. 

 

 

 
Figure 52: Schematic diagram of the human conjunctiva (as labelled in Figure 16) with fornices 
represented by dashed lines (-----), demonstrating varying colony growth on CFE analysis as stained 
with Rhodamine B, from each comparative tissue area from one donor (tissue 31). In this example, 
greater number of colonies are observed in the medial canthal, inferior forniceal and inferior bulbar 
areas. 
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Figure 53: Histogram demonstrating the CFE values across 8 different areas of the conjunctiva from 
all 8 donors (each represented in different shade of blue).  For each highest CFE was observed in the 
medial canthal and inferior forniceal areas.  Error bars +/- 1SD. 

 

 

 

Figure 54: Histogram demonstrating the mean overall CFE values across 8 different areas of the 
conjunctiva from all 8 donors.  The highest CFE was observed in the medial canthal area alone 
(p<0.01)*, and medial canthal and inferior forniceal areas combined (p<0.01)*.  Error bars +/- 1SD. 
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Figure 55: Histogram demonstrating the CFE values across 8 different areas of the conjunctiva from 
one donor (tissue 17). Highest CFE was observed in the medial canthal and inferior forniceal areas. 
Error bars +/- 1SD. 

 

 

 

Figure 56: Histogram demonstrating the CFE values across 8 different areas of the conjunctiva from 
one donor (tissue 19). Highest CFE was observed in the medial canthal, inferior forniceal and inferior 
bulbar areas. Error bars +/- 1SD. 
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Figure 57: Histogram demonstrating the CFE values across 8 different areas of the conjunctiva from 
one donor (tissue 23). Highest CFE was observed in the medial canthal and inferior forniceal areas. 
Error bars +/- 1SD. 

 

 

 

Figure 58: Histogram demonstrating the CFE values across 8 different areas of the conjunctiva from 
one donor (tissue 25). Highest CFE was not observed in the medial canthal area. Error bars +/- 1SD. 
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Figure 59: Histogram demonstrating the CFE values across 8 different areas of the conjunctiva from 
one donor (tissue 27). Highest CFE was observed in the medial canthal, inferior bulbar and inferior 
forniceal areas. Error bars +/- 1SD. 

 

 

 

Figure 60: Histogram demonstrating the CFE values across 8 different areas of the conjunctiva from 
one donor (tissue 31). Highest CFE was observed in the medial canthal and inferior forniceal areas. 
Error bars +/- 1SD. 
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Figure 61: Histogram demonstrating the CFE values across 8 different areas of the conjunctiva from 
one donor (tissue 33). Highest CFE was observed in the medial canthal, inferior forniceal and inferior 
bulbar areas. Error bars +/- 1SD. 

 

 

 

Figure 62: Histogram demonstrating the CFE values across 8 different areas of the conjunctiva from 
one donor (tissue 35). Highest CFE was observed in the medial canthal and inferior forniceal areas. 
Error bars +/- 1SD. 
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3.5.3. Colony Forming Efficiency and Donor Age 

Whole conjunctival CFE was determined as the average CFE reading from all 8 

individual areas for each donor and was compared to donor age.  There was a 

significant clustering of older donors.  CFE significantly reduced with age as 

established using a generalised linear mixed model (p<0.01).   This model takes into 

account the pattern of data across all areas of the conjunctivas which is averaged 

when the data is demonstrated in Figure 63. 

 

 

Figure 63: Line graph showing the variance in whole conjunctival CFE with donor age. A decrease in 
CFE value was demonstrated with increasing donor age (p<0.01)*. Error bars +/-1SD, ---- linear trend 
line. 

 

 

3.5.4. Colony Forming Efficiency and Post Mortem Retrieval Time 

Whole conjunctival CFE was similarly compared to PMRT.  All this tissue was 

retrieved within 24 hours of death with a range from 9-24 hours.  Longer PMRTs 

were associated with significantly lower CFE values in culture by analysis with a 

generalised linear mixed model (p<0.01).  Again this model takes into account the 

pattern of data across all areas of the conjunctiva which is averaged when the data 

is shown in Figure 64. 
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Figure 64: Line graph showing the variance in whole conjunctival CFE with PMRT. A decrease in CFE 
value was demonstrated with increasing PMRT (p<0.01)*. Error bars +/-1SD, ---- linear trend line. 

 

 

3.5.5. Conjunctival versus Limbal Colony Forming Efficiency 

Higher CFE was observed from limbal epithelial cell cultures than that from 

conjunctival epithelial cell cultures.  No statistical analysis was possible due to 

insufficient limbal CFE values, but the trend was observed in both comparisons to 

overall conjunctival CFE and to conjunctival CFE from the medial canthal area alone.  

This data is demonstrated in Figure 65. 
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Figure 65: Histogram showing comparative CFE across the whole conjunctiva, medial canthal 
conjunctiva alone and limbus, with representative CFE images below each. Highest CFE is 
demonstrated in the limbus than either the whole conjunctiva or medial canthal area alone 
(insufficient data for statistical analysis). Error bars +/- 1SD. 
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3.6. Immunocytochemical Studies 

Immunocytochemical studies were performed on cultures from the same 8 donors 

on which CFE assays were assessed, enabling direct comparisons. 

 

3.6.1. Antibody Optimisation 

Antibodies for immunocytochemical studies were optimised by comparing both 

different antibodies (in the case of ABCG2) and different antibody dilutions, using 

positive control cells. Optimal staining was assessed taking into account both 

staining intensity and minimal background staining. An example of antibody 

optimisation results for ABCG2 on MCF7 cells are shown in Figure 66.  The final 

protocols used for each antibody are shown in Table 7. 

 

 

 

Figure 66: Photomicrographs of immunocytochemical antibody optimisation for ABCG2 using MCF7 
cells and antibodies from both Chemicon and Abcam at both 1:20 and 1:50 antibody dilutions. 
Positive immunoreactivity in green is observed in the cytoplasm (arrows), with PI nuclear counter-
staining in red. Scale bars 25µm.  In this case, optimal staining was achieved with the Chemicon 
antibody at 1:20 dilution, and was used as a final protocol. 

 

 

The ABCG2 antibody supplied by Chemicon was used in preference to that supplied 

by Abcam.  Despite numerous attempts at optimisation on positive control samples 

no clear positive immunocytochemical staining was obtained with p63 (clone 4A4), 

N-Cadherin or CD168 antibodies. These antibodies were therefore not used in any 

further analyses. 
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Antibody Clone Source Antibody 
Dilution 

Secondary 
Antibody* 

CK19 

ABCG2 

p63 

Hsp70 

RCK108 

21 

ΔN 

BRM-22 

Dako 

Chemicon 

Biolegend 

Abcam 

1:50 

1:20 

1:100 

1:1000  

Anti-mouse 

Anti-mouse 

Anti-rabbit 

Anti-mouse 

 

Table 7: Table of optimised immunocytochemical protocols for different antibodies used. 
*Secondary antibody is alexafluor 488 goat anti-mouse or -rabbit 

 

 

3.6.2. Grading of Immunocytochemical Staining 

Immunocytochemical staining was graded qualitatively as described in Section 

2.7.3.  An example of staining images for each grade is demonstrated Figure 67. 

 

 
 

Figure 67: Examples of photomicrographs of immunocytochemical staining for Hsp70 to 
demonstrate the immunoreactivity grading scale employed (the number of positively staining cells 
per average of 5 x20 fields of view: 0 cells: -, <5 cells: +/-, 5-10 cells: +, 10-15 cells: ++, 15-20 cells: 
+++, >20 cells: ++++). Positive immunoreactivity is observed in green (arrows) with PI nuclear 
counter-staining in red. Scale bars 50µm. 
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3.6.3. Cytokeratin 19 Staining 

Intense CK19 staining was demonstrated consistently across all cultures used for 

immunocytochemical staining, confirming the presence of conjunctival epithelial 

cells in culture.  This is shown in Figure 68.  

 

 

 

Figure 68: Photomicrographs of immunocytochemical staining for CK19.  Positive immunoreactivity 
is observed throughout the cytoplasm in green (arrows), with PI nuclear counter-staining in red. A) 
Intense staining of conjunctival epithelial cells, B) MCF7 positive control and C) negative control.  
Scale bars 50µm. 

 

 

3.6.4. Further Immunocytochemical Staining 

Immunocytochemical staining with ABCG2, ΔNp63, and Hsp70 antibodies were 

assessed on passage 1 cultures from all 8 regions of the conjunctiva as described in 

Figure 12, and from the same 8 donor tissues which were used for CFE analysis.  

This enabled comparative data across the conjunctival tissue as a whole to be 

obtained and correlations to be made with proliferative potential in culture.  

 

Data for each of these markers is presented in Sections 3.6.5 to 3.6.7 with sample 

images from one donor (tissue 19) presented on a schematic diagram of the 

conjunctiva.  The overview of comparative sites compared on the schematic 

diagrams is labelled in Figure 16. 
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3.6.5. ABCG2 Staining 

ABCG2 staining was demonstrated in a proportion of cells cultured from all regions 

across the conjunctiva.  Staining was not noted to be predominantly at the cell 

membrane, but rather also consistently within the cytoplasm.  Clusters of positively 

staining cells were usually found in close proximity.  An example is shown in Figure 

69.  

 

 
 

Figure 69: Photomicrographs of immunocytochemical staining for ABCG2.  Positive immunoreactivity 
is observed throughout the cytoplasm in green (arrows), with PI nuclear counter-staining in red. A) A 
collection of positively staining conjunctival epithelial cells, B) MCF7 positive control and C) negative 
control.  Scale bars 50µm. 

 

 

Staining patterns were consistently demonstrated across the different anatomical 

areas for each donor tissue, with significant variation across the tissue as a whole as 

assessed by a Friedman test (p<0.01).  Highest levels of staining were demonstrated 

in the medial canthal and forniceal areas, especially inferiorly.  Statistically 

significance was noted to both the higher level of staining in the medial canthal 

area alone (p<0.01), and in the medial canthal and inferior forniceal areas grouped 

together (p<0.01), as assessed by a Wilcoxon signed rank test.  Lowest levels of 

staining were demonstrated in the tarsal conjunctival epithelium, hence the pattern 

of increased staining in the forniceal than bulbar than tarsal areas was again 

apparent.  An example of the pattern of staining across the whole conjunctiva from 

one donor is demonstrated in Figure 70 and the overall gradings averaged from all 8 

donors in Figure 71 and Figure 72. 
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Figure 70: Schematic diagram of the human conjunctiva (as labelled in Figure 16) with fornices 
represented by dashed lines (-----), demonstrating photomicrographs of immunocytochemical 
staining for ABCG2 across 8 areas of the conjunctiva from one donor (tissue 19). Positive 
immunoreactivity is observed at the cell membranes and within the cytoplasm in clusters of cells in 
green, with PI nuclear counter-staining in red. In this example, larger clusters of positively staining 
cells are observed in the medial canthal and inferior forniceal areas. A) MCF7 positive control, B) 
negative control.  Scale bars 50µm. 
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Figure 71: Schematic diagram of the human conjunctiva (as labelled in Figure 16) with fornices 
represented by dashed lines (-----), demonstrating average grades of immunocytochemical reactivity 
for ABCG2 in cell cultures from 8 areas of the conjunctiva from 8 separate donors.  Highest grades of 
staining were observed in the medial canthal (p<0.01) (red) and together with inferior forniceal 
(p<0.01) (red) and inferior bulbar areas compared to other areas. 
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Figure 72: Histogram demonstrating the overall level of ABCG2 staining in cell cultures from 8 
different areas of the conjunctiva from 8 separate donors.  Highest grades of staining were observed 
in the medial canthal (p<0.01)* together with inferior forniceal areas (p<0.01)*. Error bars +/- 1SD. 
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3.6.6. ΔNp63 Staining 

ΔNp63 staining was similarly demonstrated in a proportion of cells cultured from all 

regions across the conjunctiva.  Staining was entirely nuclear, hence no secondary 

PI nuclear stain was employed.  Fewer cells were noted to stain for ΔNp63 than for 

ABCG2.  They were demonstrated both in clusters and in isolation.  An example is 

shown in Figure 73.  

 

 

 

Figure 73: Photomicrographs of immunocytochemical staining for ΔNp63.  Positive immunoreactivity 
is observed in the nuclei in green (arrows). A) A collection of positively staining conjunctival 
epithelial cells, B) limbal positive control and C) negative control.  Scale bars 50µm. 

 

 

Patterns were similarly consistently demonstrated across each donor tissue, with 

significant variation across the tissue as a whole as assessed by a Freidman test 

(p<0.01).  Highest levels of staining were again demonstrated in the medial canthal 

and forniceal areas, especially inferiorly.  Statistically significant higher levels of 

staining were noted in the medial canthal area alone (p<0.01), and the medial 

canthal and inferior forniceal areas grouped together (p<0.01), as assessed by a 

Wilcoxon signed rank test.  The same patterns of higher staining in the forniceal 

than bulbar than tarsal areas was again apparent.  An example of the pattern of 

staining across the whole conjunctiva from one donor is demonstrated in Figure 74 

and the overall gradings averaged from all 8 donors in Figure 75 and Figure 76. 
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Figure 74: Schematic diagram of the human conjunctiva (as labelled in Figure 16) with fornices 
represented by dashed lines (-----), demonstrating photomicrographs of immunocytochemical 
staining for ΔNp63 across 8 areas of the conjunctiva from one donor (tissue 19). Positive 
immunoreactivity is observed in the nuclei of clusters of cells in green. In this example, the largest 
clusters of positively staining cells are observed in the medial canthal area. A) Limbal positive 
control, B) negative control.  Scale bars 50µm.  
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Figure 75: Schematic diagram of the human conjunctiva (as labelled in Figure 16) with fornices 
represented by dashed lines (-----), demonstrating average grades of immunocytochemical reactivity 
for ΔNp63 in cell cultures from 8 areas of the conjunctiva from 8 separate donors.  Highest grades of 
staining were observed in the medial canthal (p<0.01) (red) and together with inferior forniceal 
(p<0.01) (red) and inferior bulbar areas compared to other areas. 
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Figure 76: Histogram demonstrating the overall level of ΔNp63 staining in cell cultures from 8 
different areas of the conjunctiva from 8 separate donors.  Highest grades of staining were observed 
in the medial canthal (p<0.01)* together with inferior forniceal areas (p<0.01)*. Error bars +/- 1SD. 
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3.6.7. Hsp70 Staining 

Cells staining positively for Hsp70 were similarly demonstrated in a proportion of 

cells cultured from all regions across the conjunctiva.  Staining was uniformly 

cytoplasmic, usually in clusters of cells together.  Proportionately greater number of 

cells were noted to stain positively for Hsp70 than either ΔNp63 or ABCG2.  An 

example is shown in Figure 77. 

 

 

 

Figure 77: Photomicrographs of immunocytochemical staining for Hsp70.  Positive immunoreactivity 
is observed throughout the cytoplasm in green (arrows), with PI nuclear counter-staining in red. A) A 
collection of positively staining conjunctival epithelial cells, B) limbal positive control and C) negative 
control.  Scale bars 50µm. 

 

 

Again staining patterns were consistently demonstrated across each donor tissue, 

with significant variation across the tissue as a whole as assessed by a Friedman 

test (p<0.01), with highest levels of staining in the medial canthal area alone 

(p<0.01) and the medial canthal with inferior forniceal areas (p<0.01) as assessed by 

a Wilcoxon signed rank test, and lowest levels in the tarsal areas.  The pattern of 

forniceal staining greater than bulbar than tarsal areas was again replicated.  An 

example of the pattern of staining across the whole conjunctiva from one donor is 

demonstrated in Figure 78 and the overall gradings averaged from all 8 donors in 

Figure 79 and Figure 80. 

 

 

 



  Results 

125 
 

 

 

Figure 78: Schematic diagram of the human conjunctiva (as labelled in Figure 16) with fornices 
represented by dashed lines (-----), demonstrating photomicrographs of immunocytochemical 
staining for Hsp70 across 8 areas of the conjunctiva from one donor (tissue 19). Positive 
immunoreactivity is observed throughout the cytoplasm in clusters of cells in green, with PI nuclear 
counter-staining in red. In this example, large clusters of positively staining cells are observed 
throughout all areas of the conjunctiva but less so in the tarsal areas. A) Limbal positive control, B) 
negative control.  Scale bars 50µm. 
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Figure 79: Schematic diagram of the human conjunctiva (as labelled in Figure 16) with fornices 
represented by dashed lines (-----), demonstrating average grades of immunocytochemical reactivity 
for Hsp70 in cell cultures from 8 areas of the conjunctiva from 8 separate donors.  Highest grades of 
staining were observed in the medial canthal (p<0.01) (red) and together with inferior forniceal 
areas (p<0.01) (red), compared to other areas. 
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Figure 80: Histogram demonstrating the overall level of Hsp70 staining in cell cultures from 8 
different areas of the conjunctiva from 8 separate donors.  Highest grades of staining were observed 
in the medial canthal (p<0.01)* together with inferior forniceal areas (p<0.01)*. Error bars +/- 1SD. 

 

 

3.6.8. Correlation between the Immunocytochemical Stains 

In order to ascertain whether there was a correlation between the distribution 

patterns of staining with each SC marker from cultures across different anatomical 

areas of the conjunctiva, a Kendall’s Tau correlation coefficient was employed.  This 

showed significant correlations between each stain independently (p<0.01 for 

each). 
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3.6.9. Immunocytochemical Staining and Donor Age 

It was already established that there was a significant clustering of older donors for 

the tissue used for CFE and immunocytochemical studies, as demonstrated in 

Figure 63.  Whole conjunctival immunocytochemical staining was determined as 

the average staining from all 8 individual areas for each donor and was compared 

to donor age.  Significantly lower staining to ABCG2 and Hsp70 were noted with 

increasing donor age (p<0.01 for each), as assessed using a generalised linear mixed 

model.  No relationship was however evident between ΔNp63 staining and donor 

age (p>0.1).  By taking into account the pattern of staining values across the whole 

conjunctiva, statistical significance is achieved even though the linear trend lines of 

the average grades do not always appear to show a clear correlation.  This data is 

shown in Figure 81. 

 

3.6.10. Immunocytochemical Staining and Post Mortem 

Retrieval Time 

Whole conjunctival immunocytochemical staining was similarly compared to PMRT.  

Longer PMRT was associated with significantly lower levels of ABCG2 staining 

(p<0.01), but no relationship was evident between staining intensity of ΔNp63 

(p=0.45) or Hsp70 (p>0.1), as also assessed using a generalised linear mixed model.  

This data is shown in Figure 82. 
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Figure 81: Line graphs showing the variance in conjunctival cell culture staining for A) ABCG2, B) 
ΔNp63 and C) Hsp70 with donor age. A reduction in both ABCG2 and Hsp70 staining is observed with 
increasing donor age (p<0.01 for each)*, but no relationship was evident between ΔNp63 staining 
and donor age. Error bars +/-1SD, ---- linear trend lines. 
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Figure 82: Line graphs showing the variance in conjunctival cell culture staining for A) ABCG2, B) 
ΔNp63 and C) Hsp70 with PMRT. A reduction in ABCG2 staining is observed with increasing PMRT 
(p<0.01)*, but no relationship was evident between ΔNp63 or Hsp70 staining and PMRT. Error bars 
+/-1SD, ---- linear trend lines. 
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3.7. Stem Cell Marker Staining and Colony Forming Efficiency 

A Kendall’s Tau correlation coefficient using all eight tissue areas was employed to 

assess the correlation between the different putative SC marker staining by 

immunocytochemistry and CFE.  Significant associations were noted between each 

marker independently (p<0.01 for each). 

 

Similarly, the immunohistochemical staining for ABCG2 was also correlated to both 

CFE, and to the immunocytochemical staining for each SC marker using a Kendall’s 

Tau correlation.  These analyses only included data from 5 donors which were used 

in both assessments.  Significant associations were noted between ABCG2 

immunohistochemical staining and CFE (p<0.01), and between ABCG2 

immunohistochemical staining and each SC marker immunocytochemical staining 

independently (p<0.01 for each). 
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3.8. Conjunctival Cell Growth on Extracellular Matrix Proteins 

Conjunctival epithelial cells grew on all three extracellular matrix proteins showing 

similar morphology on each to those control cultures on 3T3 feeder layer (Figure 

83). However growth rates varied. 

 

 
 

Figure 83: Phase contrast micrographs of conjunctival epithelial cell growth on A) collagen IV, B) 
fibronectin, C) laminin 1 and D) 3T3 feeder layer at day 10. Similar cell morphology is observed on 
each extracellular matrix protein but with greater number of cells evident on B) fibronectin. Scale 
bars 100µm. 

 

 

Higher growth rates were demonstrated on fibronectin than on collagen IV than on 

laminin 1.  This was statistically significant with one-way ANOVA testing at day 7 

(p<0.01) but not at day 10 (p>0.06).  Indeed, the difference in growth rates 

between fibronectin and laminin 1 alone at day 10 by Student’s paired t-test were 

not significant (p>0.05).  This data is demonstrated in Figure 84. 

 

Despite staining the conjunctival cells grown on the 3T3 feeder layer with CK19 it 

proved impossible in practice to differentiate the conjunctival nuclei from the 3T3 

nuclei.  Conjunctival epithelial cell culture was previously shown not to be 

supported by tissue culture plastic alone.  Thus a control growth curve was not 

obtainable for comparative growth in this experiment. 
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Figure 84: Line graph showing conjunctival epithelial cell growth curves on various extracellular 
matrix protein coatings. Highest growth rates were observed on fibronectin, with significant 
differences seen at day 7 (p<0.01)*, but there was no significant difference between growth on any 
extracellular matrix protein by day 10. Error bars +/-1 SD. 
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3.9. Summary of Key Findings 

Development of a technique to retrieve whole human cadaveric conjunctiva has 

enabled an assessment of expression of a SC (ABCG2) and TAC (p63) marker in fixed 

tissue, clonogenic ability, and expression of several SC markers (ABCG2, ΔNp63 and 

Hsp70) in cell cultures, all across the tissue as a whole.  Each component of this 

study demonstrates clear evidence that conjunctival PCs exist throughout the tissue 

but with significantly higher levels in a region comprising the medial canthal and 

inferior forniceal areas.  Given the CFE and SC marker expression in cell cultures 

were undertaken on cultures from the same 8 donors, this data can be clearly 

summarised in an overall comparative chart (Figure 85). 

 

 

Figure 85: Overall graph showing both CFE and expression of the SC markers ABCG2, ΔNp63 and 
Hsp70 in cell cultures from 8 donors across 8 different areas of the human conjunctiva. Error bars +/- 
1SD. 

 

 

The significant correlations between each of the patterns of distribution of ABCG2 

in fixed tissue, CFE, and expression of each SC marker in cell cultures adds further 

credence to this pattern of human conjunctival PC distribution. 
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Evidence is also presented that both increasing age and PMRT are associated with a 

reduction in ABCG2 expression in both fixed tissue and cell cultures, CFE.  
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4. Discussion 

The conjunctiva is a mucous membrane that forms the majority of the ocular 

surface.  It is of integral importance both to provide immunological defence and 

also to sustain a healthy tear film containing mucins.  The tear film is essential; not 

only to maintain and prevent desiccation of a healthy corneal epithelium thus 

preserving vision, but the antimicrobial proteins and scaffold of mucins within bind 

and trap bacterial pathogens thus also preventing ocular infection (Gipson, 2004). 

 

The conjunctiva is susceptible to a wide spectrum of diseases causing a 

considerable burden to society.  This includes a significant cohort such as trachoma, 

chemical and thermal burns, mucous membrane pemphigoid and Stevens-Johnson 

syndrome, which may result in cicatrisation, chronically painful eyes and blindness 

(Burton and Mabey, 2009, Radford et al., 2012).  Treatment modalities for these 

severe inflammatory disorders are presently very limited and primarily aimed at 

alleviation of symptoms and prevention of disease progression.  Transplantation of 

a conjunctival epithelium offers potential to restore a healthy ocular surface in 

cases of extensive conjunctival scarring.  Ex vivo expansion of cells enables large 

autografts to be generated, but both goblet cells and SCs must be present, both to 

produce a functioning conjunctival epithelium and to facilitate long-term success 

(Holland, 1996, Pellegrini et al., 1999).  To achieve this goal the conjunctival SCs 

must first be localised and characterised (Mason et al., 2011).  This is the first study 

to comprehensively assess the distribution of PCs across the whole human 

conjunctiva. 

 

Conjunctival Tissue for Research 

There has been a relative paucity of research into the pathophysiology of and 

potential treatments for conjunctival diseases compared to diseases affecting other 

structures in the eye.  This may in part be explained by the comparative rarity of 
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blinding conjunctival disease in the Western world, but may also be attributable to 

a lack of human tissue for research.  

 

Although animal models are available for research they often do not accurately 

reflect the anatomical or pathophysiological state of the human being, may not be 

susceptible to the same diseases, and knockout models of specific diseases may not 

be available.  Human conjunctival cells may be obtained for research by impression 

and brush cytology techniques but these only enable collection of the superficial 

epithelial layers and disturb the normal anatomy (Calonge et al., 2004, Tsubota et 

al., 1990).  Small samples of full thickness conjunctiva may be obtained from 

surgical specimens (Ang et al., 2004a) or cadaveric donors (Cook et al., 1998), but 

many studies would benefit from assessment of larger sheets of tissue or indeed 

the tissue as a whole, enabling comparison of different areas. 

 

The technique I have developed to retrieve whole cadaveric conjunctiva (as 

described in Figure 17 and Figure 18) is relatively simple, yet innovative.  Great care 

is required to preserve the integrity of the tarsal epithelium as initial samples 

revealed damage likely attributable to instrument handling (Figure 19), but this 

technique could easily be performed by those with basic surgical training or 

researchers with experience of tissue dissection.  Single-use disposable instruments 

were used for all retrievals in this study to comply with the standards for eye 

retrieval for transplantation and research (The Royal College of Ophthalmologists, 

2008, UK Blood Transfusion and Tissue Transplantation Services, 2013) and in order 

to minimise the risk of transmission of variant Creutzfeldt-Jakob Disease (vCJD) 

(National Institute for Health and Clinical Excellence, 2006), as consent had also 

been obtained for the eyes to be used for transplantation.  Despite splitting of the 

eyelids anterio-posteriorly to obtain the tarsal conjunctiva, good aesthetic results 

were still achieved (Figure 17J), with final donor cosmesis equal to that of standard 

eye retrieval.  This is of utmost importance, both in respect for the donor and as 

relatives and friends may wish to view the body after retrieval (The Royal College of 

Ophthalmologists, 2008). 
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This novel technique to retrieve whole human cadaveric conjunctiva has not only 

enabled completion of this research project but will benefit much future ex vivo 

conjunctival research.  This is of particular benefit to those studies requiring a 

continuum of conjunctival tissue such as anatomical research of the conjunctival 

vasculature and the distribution of immune cells. 

 

Human Conjunctival Tissue Retrieved 

Sufficient donor tissue was available for this project thanks to a dedicated eye 

retrieval consortium and established telephone consent process at NHSBT.  

Conjunctiva was retrieved from 18 donors (36 eyes) in total.  All donors were 

Caucasian, reflecting that of the majority of the local population.  The causes of 

death (Table 4) similarly reflect those commonly observed in the developed world, 

excluding conditions such as haematological malignancies, septicaemia, viral 

hepatitis and multiple sclerosis; all of which are contraindications for eye donation 

for transplantation (The Royal College of Ophthalmologists, 2008, UK Blood 

Transfusion and Tissue Transplantation Services, 2013). 

 

Although donor age ranged from 22-93 years, the ages were heavily skewed, with 

the median age being 80.5 years (Table 4).  Given a significant proportion of deaths 

at younger ages in the developed world may be attributable to the contraindicated 

conditions mentioned above, which have been excluded from this study, this age 

spectrum was not unexpected.  In order to obtain a wider distribution of donor 

ages specific attempts were made to recruit younger donors from deaths on the 

intensive care unit but unfortunately these were not successful.  The donor age 

range of the limbal tissue used was lower (57-74 years).  This tissue was obtained 

post corneal graft surgery and thus reflects the age of donor eyes used for 

transplantation rather than simply retrieved.  Currently there is no age limit on 

corneas used for transplantation in the United Kingdom, but they must meet 

certain criteria including an endothelial cell count of greater than 2200 cells/mm2 

(UK Corneal Transplant Service Eye Banks); a measure which decreases with age 
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(Laule et al., 1978).  The current (2012-2013) average donor age for corneal 

transplantation in the United Kingdom is 71.4 years (NHSBT data). 

 

Ideally tissue should be retrieved as soon as possible.  The ocular surface microbial 

flora increases post mortem even under closed eyelids and with refrigeration (Berry 

and Radburn-Smith, 2005) rendering culture infection more likely.  There is also 

some evidence that proliferative potential of the limbal epithelium reduces with 

increased PMRT (Kim et al., 2004, Shanmuganathan et al., 2006).  The Royal College 

of Ophthalmologists recommend that enucleation should take place up to 

(preferably not longer than) 24 hours post mortem (The Royal College of 

Ophthalmologists, 2008).  In practice, extensions post 24 hours have been not 

infrequently permitted.  Indeed in this study, tissue was retrieved up to 27.5 hours 

post mortem.  Likewise to donor ages, PMRTs were similarly skewed: ranging from 

8.5 to 27.5 hours but with a median time of 22 hours (Table 4).  More recent 

recommendations from the Department of Health demand that ocular tissue is 

retrieved within 24 hours post mortem provided the body has been refrigerated 

within 6 hours (The Advisory Committee on the Safety of Blood Tissues and Organs, 

2011).  Even with a dedicated eye retrieval consortium and telephone consent, 

significant time delays were often experienced in contacting and interviewing the 

donor’s family during a time of intense grieving.  Reducing tissue retrieval times 

remains to be a significant challenge. 

 

Confirmation of Conjunctival Tissue Origin 

The tissue retrieved was confirmed to be conjunctival in origin by both histology 

(Figure 21) and immunohistochemical staining for CK19 (Figure 24).  Similarly all the 

cells cultured from the tissue were also confirmed to be of conjunctival phenotype 

by immunocytochemical staining for CK19 (Figure 68).  Cytokeratin 19 has long 

been recognised as a marker of conjunctival epithelial phenotype, being expressed 

intensely throughout all layers of the bulbar and tarsal conjunctiva (Kasper et al., 

1988, Elder et al., 1997).  Equivalent results were demonstrated in this study with 

deep staining throughout all layers of the epithelium in all areas, confirming that it 
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was conjunctival in origin (Figure 24).  Given that CK19 expression is usually 

confined to the basal cells of stratified epithelia, it has been postulated that the 

distribution in the conjunctiva may be attributed to either high proliferative activity 

(Pitz and Moll, 2002) or a close relationship with simple epithelia (Kasper et al., 

1988).   

 

CK19 is also recognised as a limbal SC marker (Barnard et al., 2001, Chen et al., 

2004) and is not expressed in the central adult corneal epithelium (Lauweryns et al., 

1993, Elder et al., 1997).  Indeed CK3 negative, CK19 positive cells are considered 

evidence of conjunctivalisation of the cornea in limbal SC deficiency (Donisi et al., 

2003, Sacchetti et al., 2005).  Some recent studies have however, demonstrated 

CK19 positive cells within the superficial layers of both the central and peripheral 

cornea, and proposed CK13 (Ramirez-Miranda et al., 2011) or CK7 (Jirsova et al., 

2011) as more specific markers of conjunctival epithelium;  but conversely, there is 

also evidence of CK7 positivity in the basal and suprabasal layers of the cornea 

(Elder et al., 1997).  Thus there remains to be some controversy over the most 

specific conjunctival cytokeratin marker and the diagnosis of limbal SC deficiency by 

cytokeratin expression. 

 

Immunohistochemical Stem Cell Marker Expression 

Specimens of the superior and inferior tissue were sectioned for 

immunohistochemical studies to incorporate the full length of tissue from eyelid 

margin to limbus, thus facilitating optimal visualisation of the normal histology 

(Figure 21) and subsequent anatomical localisation of staining. 

 

Specimens were fixated with NBF and paraffin-embedded as this better preserves 

tissue morphology than cryosectioning and enabled long-term storage of samples 

whilst both more tissue was being retrieved and immunohistochemical techniques 

and protocols were being optimised.  Chemical fixation however cross-links 

proteins which often renders target antigen epitopes inaccessible to larger antibody 

molecules, thus antigen retrieval techniques are frequently required.  These 
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techniques may cause tissue degradation, loss of morphology, and high levels of 

background staining (Shi et al., 2001, Leong, 2004).  Although paraformaldehyde is 

reported to have less effect on concealment of epitopes, it has a short shelf life and 

NBF remains the most favoured fixative in practice.  Great difficulty was 

encountered in this study in preventing tissue degradation and maintaining the 

samples on the slides.  This was most problematic during heat-induced antigen 

retrieval but evident even during initial de-waxing with xylene.  The tarsal plate is 

renowned for its poor adhesion to slides (personal communication with Mr S. 

Biddolph, Dept. of Pathology, Royal Liverpool University Hospital).  APES coating of 

slides was of little benefit and tissue adherence was only greatly improved by the 

use of pre-prepared adhesive slides.  Cryopreservation and sectioning may have 

been preferential in avoiding the need for antigen retrieval and would also have 

enabled a greater array of suitable SC marker antibodies to be employed. 

 

There is a wealth of reported putative SC markers.  Given the proximity and many 

similarities of the conjunctival epithelium to the corneal epithelium I examined 

recognised markers of limbal SCs, as have previous authors (Budak et al., 2005, 

Tanioka et al., 2006, Vascotto and Griffith, 2006).  Indeed, many of these have been 

proposed as markers of conjunctival SCs (Budak et al., 2005, Vascotto and Griffith, 

2006, Qi et al., 2010, Pauklin et al., 2011). 

 

Although a number of markers were investigated for immunohistochemical 

analysis, similarly none had previously been optimised in our laboratories and only 

a few were optimised sufficiently for use in this study (Table 5).  This included only 

one recognized SC marker (ABCG2) (Zhou et al., 2001) and one recognized TAC 

marker (p63) (Parsa et al., 1999).  Ideally multiple markers would have been studied 

to provide confirmatory immunohistochemical evidence of SC distribution.  Future 

work should endeavor to optimize additional SC marker antibodies to this aim. 

 

Moderate degrees of background staining remained in the immunohistochemical 

images (Figure 25 to Figure 39), even despite additional blocking with 3% hydrogen 

peroxide for 5-10 minutes.  This may be attributable to the antigen retrieval 
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techniques employed, but is also a recognised weakness of the EnvisionTM system, 

thought to be attributable to the larger reaction product (Leong, 2004). 

 

Quantitative image analysis software, such as the AequitasTM Image Analysis 

Software (Dynamic Data Links Ltd) is available and has been successfully employed 

in immunohistochemical studies (Howard et al., 2010); but this relies on a grey-

scale value of staining and is thus not possible in the presence of haematoxylin 

counterstaining.  The latter was employed to enable accurate localisation of 

antibody staining within the epithelium.  Various semi-quantitative grading 

methods have been advocated, usually incorporating both intensity of staining 

and/or proportion of positively staining cells (Adams et al., 1999, Leong, 2004).  I 

thus devised two similar grading scales (see Section 2.4.4, Figure 23 and Table 6) for 

use in this study.  The first scale employing solely proportion of positively staining 

cells was used throughout the analysis.  The second scale which additionally 

employed a qualitative assessment of staining intensity demonstrated equivalent 

statistical significance in the variation across the tissue, but was useful to identify a 

smaller region of highest immunoreactivity. 

 

As loss of tarsal epithelium was noted in some early embedded specimens (Figure 

19) and trauma to the eyelid margin in others, conjunctival tissues were selected 

for immunohistochemical analysis on the basis of the most complete intact 

epithelium demonstrated on H&E histology.  The selection of tissues used did not 

therefore replicate those used for immunocytochemical and CFE studies, although 

there was considerable overlap.  Likewise, assessment of SC marker expression at 

the eyelid margin was not feasible within this study, as later described. 

 

Expression of ABCG2 was demonstrated in the basal layers of the epithelium 

throughout all areas of all conjunctival specimens (Figure 26 to Figure 29).  The 

presence of staining not solely restricted to the cell membranes but additionally 

often seen throughout the cytoplasm has been previously reported in both human 

limbal (Chen et al., 2004, Dua et al., 2005) and conjunctival cells (Budak et al., 

2005); and likely represents cytoplasmic processing of the protein and/or non-
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specificity of the antibodies.  In areas in the conjunctiva with highest levels of 

staining, intense membrane and cytoplasmic staining was demonstrated basally but 

also to some degree throughout the majority of epithelial cells, thus sparing only 

the superficial layers (Figure 26).  This pattern of staining replicates that previously 

noted in immunohistochemical studies of the limbal and conjunctival epithelium 

(Dua et al., 2005, Budak et al., 2005), although particularly high levels of staining 

were demonstrated in the limbal crypts and basal cells (Dua et al., 2005).  Although 

these immunohistochemical staining patterns would perhaps support ‘the notion’ 

that ABCG2 is better considered a PC marker rather than a pure SC marker, this is 

not consistent with either the level of staining demonstrated in cell cultures in this 

or other human studies (Tanioka et al., 2006, Schrader et al., 2009a, Eidet et al., 

2012b), or the intense immunofluorescent staining noted in the basal layer alone of 

the bulbar conjunctiva in another study (Qi et al., 2010).   

 

A clear pattern of varying levels of ABCG2 staining was consistently demonstrated 

across the whole conjunctival tissue, but more intense in some areas than others.  

Statistically significantly higher levels were demonstrated in a region comprising the 

medial canthal area and inferior medial and inferior central fornices (Figure 29).  

Higher levels of staining in the forniceal than in bulbar than in tarsal areas was 

demonstrated (Figure 26).  This reflects the findings of a previous study where 

higher expression was noted in the palpebral-forniceal zone than in the palpebral 

area of the conjunctiva (Budak et al., 2005). 

 

Although only two conjunctival specimens were stained immunohistochemically for 

p63, a consistent pattern was demonstrated between them.  As expected for a 

nuclear TAC marker, staining was solely nuclear in origin, and in areas of most 

intense staining it incorporated not only the basal layers but also the intermediate 

layers of the epithelium (Figure 31).  Similar expression of p63 has been 

demonstrated throughout the layers of the human limbal epithelium (Chen et al., 

2004), and to a lesser degree (with marked basal but only mild suprabasal staining) 

in the bulbar conjunctiva (Qi et al., 2010).  More so, the pattern across the tissue, 

which has not been previously assessed, replicated that of the distribution of 
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ABCG2 staining (Figure 29), but with greater distinction (Figure 32, Figure 34).  

Statistically significant highest staining levels were similarly demonstrated in the 

area comprising the medial canthal and the inferior medial and inferior central 

forniceal areas. 

 

Highest levels of both ABCG2 and p63 immunohistochemical staining were 

predominantly detected in the basal layer throughout the conjunctival epithelium.  

This distribution pattern supports the hypothesis that the conjunctival epithelium is 

maintained by PCs within its basal layer (Vascotto and Griffith, 2006, Qi et al., 

2010); a pattern that is replicated in other stratified epithelia (Alonso and Fuchs, 

2003, Daniels et al., 2001). 

 

The Search for a Cytokeratin Stem Cell Marker 

While there is evidence that the human basal conjunctival epithelial cells express a 

similar pattern of SC markers to that of the basal limbal epithelium (Budak et al., 

2005, Vascotto and Griffith, 2006, Qi et al., 2010, Pauklin et al., 2011), the 

expression of cytokeratins are unique (Kasper et al., 1988, Elder et al., 1997, Qi et 

al., 2010), and none had been clearly identified as markers of conjunctival SCs. 

 

Thus, with the aim of identifying prospective negative conjunctival SC markers, I 

therefore employed a number of pan-cytokeratin antibodies which each detected 

differing incomplete but overlapping arrays of the spectrum of cytokeratins.  

Comparative studies of these may have elucidated a smaller number of potential 

negative CK candidate SC markers to further investigate.  Indeed a collection of 

basal non-AE1/AE3 staining cells were demonstrated (Figure 38) which may 

represent a collection of basal SCs.  Unfortunately, adjacent tissue sections were no 

longer available to further investigate the nature of these cells and their CK or other 

SC marker expression, or to exclude melanocytic or immunological cell origin.  No 

further collections of non-staining cells were noted on pan-cytokeratin staining.  

Since the commencement of this study CK8, 14 and 15 have been reported in the 
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basal layers of the bulbar conjunctival epithelium in other studies (Merjava et al., 

2011b, Qi et al., 2010) and may represent positive conjunctival SC markers. 

 

The Eyelid Margin 

The eyelid margin is a transitional zone between two epithelial phenotypes: the 

mucous membrane of the conjunctiva and the keratinized epithelium of the skin.  

This mucocutaneous junction has been proposed as a source of palpebral 

conjunctival epithelial SCs in several animal label retention studies (Pe'er et al., 

1996, Wirtschafter et al., 1999, Su et al., 2011).  However, the validity of such 

studies in the detection of SCs has been questioned (Pellegrini et al., 1999, Kiel et 

al., 2007, Snippert and Clevers, 2011).  Liu et al. recently detected CK14 positive 

cells in the basal layers of the mucocutaneous junction of the monkey conjunctiva, 

and also concluded that this may represent a conjunctival SC niche (Liu et al., 2007); 

yet CK14 is widely expressed in all epithelial layers of the human bulbar conjunctiva, 

limbus and the central cornea (Merjava et al., 2011b), and is unlikely to be a marker 

of SCs.  A more comprehensive study of the expression of a battery of cytokeratin, 

mucin and SC markers at the mucocutaneous junction in the human eyelid 

demonstrated no expression of CK15, ABCG2 or integrin-β1 there but significant 

expression of N-Cadherin.  Conversely CK15, integrin-β1 and N-Cadherin were 

expressed in the ductal epithelium of the meibomian glands, and CK15 in the bulge 

region of the eyelid hair follicle.  The authors conclude that these two latter regions 

may represent sites for conjunctival SCs (Tektaş et al., 2012). 

 

An area of high epithelial turnover known as Marx’s line is described clinically in 

humans with lissamine green staining.  It lies directly posterior to the 

mucocutaneous junction in healthy eyelids (Hughes et al., 2003, Bron et al., 2011).  

It is speculated that this is caused by both mechanical stress and hyperosmolar 

physiological stress secondary to evaporative water loss from the tear meniscus at 

the eyelid margin (Bron et al., 2011).  It is not clear whether the sparse evidence 

above for the proliferative cells at the eyelid margin represents this proliferative 

zone or SCs to support this region or the palpebral conjunctiva.  
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Human conjunctival specimens in this study were obtained by surgically excising 

down the grey line, hence anterior to the tarsal plate (Figure 17, Figure 18).  All 

specimens should therefore have incorporated the mucocutaneous junction, but in 

reality it was often not evident.  This may be due to loss of eyelid margin epithelium 

(attributable to surgical trauma or sloughing off of the superficial layers post 

mortem); the increasing irregularity of the anatomical junction that is noted with 

increasing age (Bron et al., 2011); or anterior migration of the mucocutaneous 

junction which is often secondary to chronic blepharitis (Bron et al., 2011).  Given 

the older age distribution of donors enlisted in this study, the latter two 

explanations may well be responsible.  This inability to delineate the 

mucocutaneous junction in many specimens meant that SC localisation by 

immunohistochemical analysis at the eyelid margin was not possible in this study. 

 

Whether there is indeed a focal concentration of SCs supplying the conjunctiva at 

the eyelid margin, and the exact origin of these cells remains to be determined.  It is 

perhaps also interesting to note that the basal epithelial layers of the marginal zone 

of the human conjunctiva feature papillae (Bron et al., 1997); a characteristic not 

observed in the remaining conjunctiva, but well described in the human limbal 

epithelium (Dua et al., 2005).  Certainly further studies to investigate the clonogenic 

ability of these cells are required (Liu et al., 2007). 

 

Conjunctival Epithelial Cell Culture 

Development of a technique to harvest and culture conjunctival epithelial cells 

proved to be challenging.  Primary cell cultures are more liable to infection, and 

many other factors such as donor age and PMRT may contribute to culture success 

or failure (Baylis et al., 2013, James et al., 2001).  Cultures from two specimens in 

this study became infected, after which the additional step of washing out the 

donor fornices with povidone iodine prior to tissue retrieval was introduced with 

good effect.  This gave an overall contamination rate of 11.1%.  Given the small 

sample size and nature of the tissue retrieved (the eyelid margins being exposed, 

and the folds of tissue in the fornices being difficult to clean) this does not compare 
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unfavourably with a reported microbial contamination rate of 5% of human corneas 

in culture (Armitage and Easty, 1997).  Although no association between donor 

factors and infection in culture was noted in this study, significantly higher 

contamination rates have been previously reported in those with infectious causes 

of death and longer PMRTs (Armitage and Easty, 1997).  The latter is presumably 

due to an increasing microbial load developing on the ocular surface with lack of 

tears and blinking post mortem (Berry and Radburn-Smith, 2005). The use of 

povidone iodine is recommended practice for eye retrieval in Australia and the USA 

(Eye Bank Association of America, 2011, Eye Bank of South Australia, 2012), and it 

would seem reasonable to also adopt this practice in the UK. 

 

Several other specimens failed to culture colonies for no apparent reason despite 

using previously successful techniques.  Similarly there was no apparent correlation 

of this to donor age, cause of death or PMRT.  It is for this reason that the CFE and 

immunocytochemistry results are not from complete chronological specimens.  

Indeed, despite the more established techniques, fresh human cadaveric limbal 

epithelial biopsies may have culture success rates as low as 60% (James et al., 

2001). 

 

Conjunctival epithelial cell harvesting with cloning rings proved unsuccessful, but 

the more established technique of trypsinisation of whole chopped tissue resulted 

in colony growth on a 3T3 feeder layer (Figure 44).  The use of a 3T3 feeder layer for 

culture of epithelial cells was first proposed by Rheinwald and Green in 1975 

(Rheinwald and Green, 1975a, Rheinwald and Green, 1975b).  Fibroblasts are 

required for both epithelial cell colony formation and subsequent growth, but the 

fibroblasts usually take over the culture unless inactivated.  It is believed that 

fibroblasts secrete factors into the media which aid growth but their presence is 

also required as epithelial growth is not supported in 3T3 conditioned media alone 

(Rheinwald and Green, 1975a, Rheinwald and Green, 1975b).  Traditionally 

inactivation was achieved with irradiation, but it can equally be achieved chemically 

with mitomycin C.  It was therefore not unexpected that conjunctival epithelial cells 

growth was not supported by tissue culture plastic alone (Figure 44). 
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MatrigelTM basement membrane matrix is a commercially available substrate 

comprised of 56% laminin, 31% collagen IV, heparan sulphate, 8% nidogen and an 

array of growth factors.  It supports the attachment and growth of a variety of cells 

including rabbit conjunctival epithelial cells (Tsai and Tseng, 1988), and has been 

reported to maintain feeder-free growth of human embryonic SCs (Xu et al., 2001, 

Ludwig et al., 2006) and induced pluripotent SCs (Takahashi et al., 2007).  The 

normal human conjunctival basement membrane contains laminins α1, α3, γ1 and 

5, in addition to integrin-β4 and collagens IV and VII (Messmer et al., 2012).  It is 

therefore perhaps surprising that MatrigelTM basement membrane matrix did not 

support the growth of conjunctival epithelial cells either seeded post enzymatic 

digestion (Figure 44) or by explant culture (Figure 45) in this study, especially 

considering that both laminin 1 and collagen IV alone supported conjunctival 

epithelial growth (Figure 83).  However this experiment was not performed on 

repeated occasions and is thus worth repeating before definitive conclusions are 

drawn. 

 

Although I was unable to establish conjunctival epithelial growth from explants 

(Figure 45), similarly this experiment was only performed on two occasions and 

there was a sparsity of feeder layer cells in proximity to them.  This likely represents 

the mechanical removal of 3T3 cells during placement of the explants.  To alleviate 

this problem the 3T3 feeder layer may be added to the culture dish after 

attachment of the explants (James et al., 2001); but even when using this technique 

trypsinisation has been shown to be more reliable in producing limbal epithelial 

cultures than explant outgrowths (James et al., 2001).  In addition, given that by 

their very nature SCs remain in their niche and have been suggested not to migrate 

out of explants (Selver et al., 2011), the outgrowths may not incorporate as higher 

concentration of SCs as compared to cultures post-enzymatic digestion.  For these 

reasons, I therefore continued to culture cells post enzymatic digestion of whole 

chopped epithelial tissue. 

 

Human conjunctival epithelial cells can be successfully grown without a feeder 

layer, either by using an alternative substrate such as amniotic membrane (Ang et 
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al., 2004a, Tanioka et al., 2006), acellular dermis (Yoshizawa et al., 2004) or gelatin 

(Vascotto and Griffith, 2006); or in the presence of specialised keratinocyte serum-

free media (Ang et al., 2004b).  But there is no evidence that SCs are supported in 

these systems, and indeed cells cultured in serum-free media demonstrate lower 

colony forming capacity compared to those cultured in the presence of a 3T3 feeder 

layer (Ang et al., 2004b).  Thus in order to maintain optimal proliferative potential 

for comparative studies across different areas of the conjunctiva, media containing 

FCS in conjunction with a 3T3 feeder layer was used in this study.  The epithelial 

media was prepared according to compositions used in previously established 

laboratories (Pellegrini et al., 1999, Kolli et al., 2008). 

 

Cultured human conjunctival cells demonstrated typical epitheliod morphology and 

growth patterns as previously described under these culture conditions in other 

studies (Pellegrini et al., 1999, Ang et al., 2004b, Vascotto and Griffith, 2006, 

Schrader et al., 2009a).  Colonies are the progeny of a single cell (Rheinwald and 

Green, 1975b, Lindberg et al., 1993).  Thus the development of colonies from all 

areas of the conjunctiva (Figure 46) implies the presence of PCs throughout the 

tissue.  Indeed epithelial cells from the central and paracentral cornea do not 

produce colonies in culture and cannot be serially cultivated (Lindberg et al., 1993, 

Pellegrini et al., 1999); being solely differentiated cells, as consistent with the XYZ 

model of maintenance of the corneal epithelium by limbal SCs (Thoft and Friend, 

1983). 

 

Although goblet cells were not noted to be present in human conjunctival cell 

cultures in this study, no specific attempts were made to identify them.  

Appropriate methods to achieve this are Periodic Acid Schiff (PAS) staining or 

immunocytochemical staining to MUC5AC or UEA-1 lectin; these markers to the 

cells secretory product will not however detect immature, migrating or proliferating 

cells which lose their secretory products (Fostad et al., 2012).  More accurate 

identification may thus be achieved using the RCK105 clone of CK7 (Shatos et al., 

2003).  Early human conjunctival epithelial culture studies similarly reported no 

evidence of goblet cells in cultures (Diebold and Calonge, 1997, Risse Marsh et al., 
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2002), but concluded that they were not necessarily absent but perhaps required 

different culture conditions or time to develop (Diebold and Calonge, 1997).  

Indeed, human goblet cells have been successfully isolated and cultured in RPMI-

1640 media, and the addition of EGF has been shown to stimulate their 

proliferation (Shatos et al., 2003).  Goblet cells have also been reported in 

conjunctival co-cultures with a 3T3 feeder layer (Pellegrini et al., 1999, Ang et al., 

2004b, Berry and Radburn-Smith, 2005).  They are observed with much greater 

frequency in confluent cultures; and occur singly, as doublets or in clusters of up to 

10 cells (Pellegrini et al., 1999, Ang et al., 2005b, Berry and Radburn-Smith, 2005).  

Most reports relating to human conjunctival epithelial culture do not however 

mention their presence or absence (Yoshizawa et al., 2004, Tanioka et al., 2006, 

Schrader et al., 2009a, Ang et al., 2011, Schrader et al., 2012). 

 

All primary cells have a limited life-span in culture.  In vitro conditions cannot 

exactly replicate those in vivo, and with increasing subculture in non-optimal 

conditions, cells typically become increasingly more differentiated in appearance 

until cellular senescence ensues.  The changing morphology of conjunctival cells 

during serial cultivation (figure 31) and the attainment of senescence by passage 4 

are consistent with that demonstrated in primary conjunctival epithelial cell 

cultures in other studies (Schrader et al., 2009a). 

 

Cellular Growth, Clonogenic Ability and Proliferative Capacity 

Cellular growth, clonogenic ability and proliferative capacity may be assessed by a 

number of different measures.  The former may easily be measured by outgrowth 

measurements from explant cultures (Ang et al., 2004b, Eidet et al., 2012a), but is 

difficult to quantify in dissociated cells seeded in co-culture.  Clonogenic ability 

indicates the capacity of a single cell to generate a colony and is typically measured 

by the CFE assay (Pellegrini et al., 1999).  In contrast, proliferative potential is a 

measure of the capacity of a cell to self-renew and produce subsequent generations 

(Pellegrini et al., 1999).  This may be assessed by the number of cell generations 

maintained until senescence (Ang et al., 2005b), the cell population doublings 
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(Schrader et al., 2009a) or a BrdU ELISA cell proliferation assay (Ang et al., 2004a, 

Ang et al., 2005b). 

 

As this study aimed to assess the distribution of SCs across the conjunctiva, I 

performed CFE assays.  Isolation of single cells in order to assess true holoclone 

growth was however beyond the scope of this study.  Given no differentiation to 

clone type (Barrandon and Green, 1987) was made, as indeed most previous 

studies have not, this should strictly be considered a measure of PCs rather than 

SCs.  Culture wells were seeded with variable number of cells.  Those seeded with 

5000 or 10000 cells demonstrated proportionally fewer colonies and lower CFE 

(Figure 50 and Figure 51).  An observation likely due to increased demand for 

nutrients, growth factors and oxygen in the media, increased accumulation of toxic 

metabolic by-products and cell contact inhibition.  In addition, colony counts were 

often unobtainable in these wells due to overcrowding (Figure 49), thus these wells 

were excluded from the analysis. 

 

Clonogenic ability was consistently demonstrated across all areas of the conjunctiva 

but with uneven distribution and with a replicable pattern across all 8 donors 

(Figure 55 to Figure 62); indicating again that although there are PCs throughout 

the human conjunctiva, some areas are richer in PCs than others.  These regions 

were namely foremost the medial canthal area and then the inferior fornix, where 

significantly higher CFE was noted.  Consistent patterns of higher CFE in the fornices 

than bulbar than tarsal conjunctiva, and in the inferior than superior conjunctiva 

were again apparent. 

 

Two analogous studies comparing growth and CFE across the whole rabbit and rat 

conjunctiva have been recently reported.  Su et al. examined the cellular growth, 

proliferative potential and CFE from the palpebral, forniceal and bulbar areas of 

New Zealand white rabbits.  They report palpebral and forniceal cells reached 

confluence faster and were maintained through significantly more cell generations 

than bulbar cells; and that CFE was higher in the palpebral than forniceal than 

bulbar cells.  It is not however clear how many subjects were included, and no 
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distinction was made between the superior and inferior regions of the conjunctiva 

(Su et al., 2011).  Eidet et al. similarly report cellular growth from explant cultures 

and CFE from 6 regions across the rat conjunctiva in 6 subjects.  Significantly larger 

outgrowth was demonstrated from the superior and inferior forniceal explants, and 

more so in the superior tarsal than superior bulbar epithelium.  Markedly higher 

CFE was noted in the superior fornix than all other areas.  The canthal regions were 

not specifically assessed (Eidet et al., 2012a).   

 

Only one previous study has assessed the clonogenic ability across the human 

conjunctival epithelium (Pellegrini et al., 1999).  Although in contrast the authors 

noted comparable rates across the four bulbar and two forniceal areas, assays were 

only compared from cells obtained from single 1-2mm2 biopsies from a single 

donor, and did not include assessment of the tarsal regions.  Thus this present 

study is the first study that has comprehensibly examined the clonogenic ability of 

the human conjunctival epithelium as a whole. 

 

Although not a formal assessment, the observation of colonies at earlier time points 

and of larger colony size at equivalent time points in cultures from the medial 

canthal area, fornices and inferior bulbar conjunctiva (Figure 46) suggests that 

these areas which demonstrate higher clonogenic ability also show greater rates of 

cellular growth.  Proliferative potential of cultures from different areas across the 

conjunctiva, as measured by passage number achieved, was not formally assessed 

in this study. 

 

Higher clonogenic ability and greater cellular growth rates were demonstrated from 

limbal than from conjunctival cell cultures (Figure 65 and Figure 48).  This effect was 

noticeable to both the overall conjunctival CFE and that from the medial canthal 

area alone, although statistical analysis was not possible due to the small sample 

size.  Given the significant decline noted in conjunctival CFE with increasing donor 

age (Figure 63), this may be in part be attributable to younger donor age of the 

limbal tissue (median 68 years versus median 80.5 years).  It is also worth noting 

that the limbal tissue had been maintained in organ culture for a period of time 
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prior to cell culture.  Pellegrini et al. performed similar comparative CFE assays from 

4 limbal and 6 bulbar/forniceal human conjunctival biopsies noting equivalent 

values throughout, but samples were only assessed from biopsies from a single 

donor (Pellegrini et al., 1999).  In contrast, Lindberg et al. demonstrated higher 

proliferative potential (as measured by population doublings) in limbal compared to 

bulbar conjunctival cells from 6 human donors (Lindberg et al., 1993).  It is well 

recognised that the limbus acts as a SC niche to maintain the corneal epithelium 

which is devoid of SCs (Daniels et al., 2001, Dua et al., 2005, Stepp and Zieske, 2005, 

Tseng, 1996).  Given that I have demonstrated clonogenic ability throughout the 

human conjunctiva in this study, it is plausible that equivalent areas as enriched in 

SCs as the limbus are not required, as they are not supplying other areas devoid of 

SCs such as the limbus does to the cornea.  Comparative data from a greater 

number of donors would enable statistical analysis to verify any difference. 

 

Immunocytochemical Stem Cell Marker Expression 

In order to complement studies assessing the immunohistochemical expression of 

ABCG2 and the clonogenic ability of cells across the human conjunctiva, I also 

performed comparative studies of SC marker expression in cell cultures.  SC 

markers selected for immunohistochemical studies were similarly investigated with 

the addition of N-Cadherin and Hsp70. 

 

SC marker expression in cultured conjunctival epithelial cells was assessed from the 

same cultures (same tissue divisions from the same donor tissues) as for CFE assays, 

thus enabling direct comparisons. 

 

Cultured cells for immunocytochemical staining were fixed with methanol as this 

enabled long-term storage whilst a range of antibodies were being optimised.  

Alcohol fixation has however been reported to produce less reproducible staining 

and false-negative staining for antibodies to nuclear antigens (Gong et al., 2004, 

Skoog and Tani, 2011).  NBF offers an alternative fixation agent.  

Immunocytochemistry is a complex technique with numerous stages that require 
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optimisation to provide maximal specificity and sensitivity of staining.  None of the 

antibodies included in this study had been previously optimised in our laboratories.  

Optimisation is often time-consuming and satisfactory staining is not always 

achieved.  Indeed a number of antibodies such as N-Cadherin and CD168 were not 

sufficiently optimised for inclusion in the final comparative staining. 

 

Cells expressing ABCG2, ∆Np63 and Hsp70 were demonstrated in cultures from all 

regions of the conjunctiva from all 8 donors.  Significant variation was shown across 

the regions with a consistent pattern for each marker of significantly higher staining 

both in the medial canthal region alone and in the medial canthal and inferior 

forniceal regions together (Figure 70 to Figure 72, Figure 74 to Figure 76, and Figure 

78 to Figure 80).  The pattern demonstrated for CFE levels across the tissue was 

replicated; with the same regions that demonstrated highest CFE also showing 

highest SC marker expression.  Similarly, greater levels of staining in inferior 

compared to superior areas of the tissue, and greater levels in the forniceal than 

bulbar than tarsal areas were noted.  There was highly significant positive 

correlation in this distribution pattern not only between each marker but also 

between each marker and CFE levels. 

 

Expression of both ABCG2 and p63α (Schrader et al., 2009a) or ∆Np63α (Eidet et al., 

2012b) have been previously demonstrated in human conjunctival epithelial 

cultures, but not compared in cultures from across different areas of the tissue.  

Although attempts have been made to compare ABCG2 and p63 gene expression 

using PCR from human conjunctival cells from across the tissue, there has been no 

complete study.  Harun et al. compared expression of a number of SC marker genes 

including ABCG2 from passage 2 cells cultured from small biopsies from only the 

inferior bulbar, forniceal and palpebral areas.  No ABCG2 genes were detected in 

cells from any area (Harun et al., 2013).  While Pauklin et al. demonstrated higher 

levels of ABCG2 genes in cells from forniceal than from bulbar conjunctiva from 4 

donors; they conversely showed higher levels of ∆Np63α genes in the bulbar 

conjunctiva.  They did not assess the tarsal conjunctival cells, nor was there a 

comparison between superior and inferior areas (Pauklin et al., 2011).  Expression 
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of the translated proteins is perhaps of greater physiological relevance.  This is the 

first study not only to compare degree of ABCG2 and ∆Np63 protein expression 

across cultures from differing regions of the human conjunctiva, but also to assess 

the whole tissue. 

 

ABCG2 and p63α expression and CFE have been concurrently assessed in other 

studies of human conjunctival cell cultures.  It is observed that all factors reduce 

together with serial passage (Schrader et al., 2009a) and when cultured in a 

xenobiotic-free culture system (Schrader et al., 2012).   The positive correlation 

between both ABCG2 and ∆Np63 marker expression; and between each of them 

and CFE is also confirmed in their distribution across the different areas of the 

human conjunctiva in this study, at a highly statistically significant level.  This 

supports the proposal of both of these markers as putative conjunctival SC markers 

(Budak et al., 2005, Vascotto and Griffith, 2006, Qi et al., 2010, Pauklin et al., 2011). 

 

Hsp70 has been proposed as a possible limbal SC marker and is also reported to be 

widely expressed in the basal layer of the bulbar conjunctiva (Lyngholm et al., 

2008).  The significant positive correlations of the distribution of Hsp70 staining 

compared to both ABCG2 and ∆Np63 staining and to CFE in this study suggests that 

it may also be considered as a putative conjunctival SC marker; but without data to 

demonstrate co-localisation of staining to specific cells this cannot be confirmed.  

Higher levels of staining were demonstrated for Hsp70 (Figure 80) than for the 

other SC markers in conjunctival cultures in this study (Figure 72, Figure 76).  This is 

perhaps to be expected given Hsp70 expression has been demonstrated in all 

ocular surface cells with proliferative properties including to a minor extent even in 

the central corneal epithelium (Lyngholm et al., 2008).  It is perhaps more 

appropriate that it is therefore considered a PC or TAC marker. 

 

The significant correlations both between immunocytochemical SC marker 

expression and between them and CFE demonstrated in this study (see Section 3.7 

and Figure 85) also reflects the pattern of the PC distribution across the human 

conjunctiva indicated by ABCG2 immunohistochemical analysis; with PCs present 
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throughout the tissue but with highest levels in the medial canthal and inferior 

forniceal areas. 

 

Summary of Human Conjunctival Progenitor Cell Distribution 

There has been much conflicting evidence as to the location of both animal (Wei et 

al., 1993, Pe'er et al., 1996, Wirtschafter et al., 1997, Lavker et al., 1998, 

Wirtschafter et al., 1999, Chen et al., 2003, Su et al., 2011, Eidet et al., 2012a) and 

human (Pellegrini et al., 1999, Budak et al., 2005, Vascotto and Griffith, 2006, 

Pauklin et al., 2011, Harun et al., 2013, Tektaş et al., 2012) conjunctival SCs.  The 

lack of a single definitive SC marker, the interspecies variation and doubt regarding 

the strength of label-retaining studies, and the limited access to whole human 

conjunctival tissue for research purposes have substantially hindered progress in 

this field. 

 

This is the first study to comprehensively assess the whole human conjunctival 

tissue, and to localise PCs by both clonogenic ability and SC marker expression.  

Although some previous studies have utilized sections of human conjunctiva, only 

the bulbar or bulbar and forniceal areas have been examined (Vascotto and Griffith, 

2006, Qi et al., 2010, Pauklin et al., 2011); or it is not clear whether the whole tissue 

has been assessed (Budak et al., 2005).  Other authors have sampled small biopsies 

of tissue from various regions (Pellegrini et al., 1999, Harun et al., 2013); but if 

indeed SCs are scattered throughout the epithelium such as is proposed in the skin 

(Alonso and Fuchs, 2003), assuming their distribution is not uniform, this latter 

method risks sampling areas with inaccurate representations of SC concentration.  

Although some other studies have examined the expression of a more complete 

battery of SC markers (Vascotto and Griffith, 2006, Qi et al., 2010, Pauklin et al., 

2011), none of these studies examined the whole tissue.  More so, this present 

study assesses tissue from a greater number of donors than any of the 

aforementioned studies, and attempts to localize the PCs by both clonogenic ability 

and SC marker expression in both fixed tissue and cultured cells from the same 

donors. 
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Substantial evidence from each aspect of this study indicates the presence of PCs 

throughout the human conjunctival epithelium, but with significantly highest 

concentrations in the medial canthal and inferior forniceal areas.  The significant 

positive correlations between clonogenic ability and SC marker expression in both 

cultured cells and fixed tissue adds further credence to these conclusions.  Thus my 

hypothesis that PCs are located in specific areas of the human conjunctiva, and can 

be identified by such methods can be accepted. 

 

These findings are in keeping with other reports suggesting that human conjunctival 

epithelial SCs are located predominantly in the fornix (Budak et al., 2005, Pauklin et 

al., 2011), but are also present in other areas (Pellegrini et al., 1999, Budak et al., 

2005, Vascotto and Griffith, 2006, Qi et al., 2010, Pauklin et al., 2011). 

 

It is likely that the SCs are scattered across the basal layer of the whole human 

conjunctival epithelium.  Immunohistochemical staining of tissue sections 

demonstrated predominantly basal ABCG2 and p63 staining throughout the tissue, 

a finding confirmed in areas of the conjunctiva in other studies (Budak et al., 2005, 

Vascotto and Griffith, 2006, Qi et al., 2010).   

 

This theory of scattered human conjunctival SCs would also explain why the 

conjunctival cells, in comparison to the SC-rich cells of the limbus, exhibit lower CFE 

values as demonstrated in this study (Figure 65), lower proliferative potential 

(Lindberg et al., 1993), and a lower expression of pluripotency/multipotency 

molecules (Pauklin et al., 2011).  However these findings are in discrepancy to those 

reported in other studies by comparative CFE (Pellegrini et al., 1999), and 

expression of ABCG2 (Budak et al., 2005, Pauklin et al., 2011).  It also contradicts 

the assumption that CK19 expression throughout all layers of the conjunctiva may 

be attributed to a particularly high proliferative activity (Pitz and Moll, 2002). 
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Proposed Model of Conjunctival Epithelial Renewal 

Aside from the single collection of AE1/AE3 negative basal cells (Figure 38), 

histological and immunohistochemical examination revealed no distinct defined 

collections of SCs or TACs, and no obvious morphologically distinct region or niche 

for the conjunctival SC, such as are seen in the limbus as the source of corneal 

epithelial cells.  It has been proposed that there are pockets of SCs throughout the 

basal layer of the human conjunctival epithelium (Qi et al., 2010).  Certainly, the 

widespread expression of SC markers in the basal conjunctival epithelium noted 

both in this study (Figure 26, Figure 27) and in other studies (Budak et al., 2005, 

Vascotto and Griffith, 2006, Liu et al., 2007, Qi et al., 2010) would be in keeping 

with this.  The co-localization of SC and TAC markers within the same layer (Figure 

26, Figure 31) suggests a heterogeneous distribution of both cell types, which has 

also been reported by other authors (Vascotto and Griffith, 2006). 

 

It is therefore plausible that a similar renewal model to the inter-follicular SC model 

proposed in the skin (Alonso and Fuchs, 2003) is also true of the conjunctival 

epithelium; whereby in addition to the stem cells of the bulge of the hair follicle, 

scattered single basal epithelial SCs give rise to single maturing columns of TACs 

and differentiated cells through the layers of the epithelium (Alonso and Fuchs, 

2003).  Scattered ∆Np63 and CK19 expression has been detected in the superficial 

layers of the conjunctival epithelium (Vascotto and Griffith, 2006).  However the 

∆Np63 antibody used in this study was not specific to the α isoform which is 

recognized as a SC marker (Di Iorio et al., 2005, Kawasaki et al., 2006).  These cells 

may thus represent a collection of TACs or even less terminally differentiated cells 

that form part of a maturing SC column.  Indeed, the petalloid arrangement of 

surface human conjunctival epithelial cells described around a central core of cells 

(Pfister, 1975), and the general immobility of bulbar conjunctival cells in transgenic 

mice (Nagasaki and Zhao, 2005) may also be consistent with this theory. 

 

Until a pure conjunctival SC marker or clear measure of slow-cycling and 

proliferation potential within human tissue is identified, one can only speculate on 

the nature of conjunctival epithelial renewal. 
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The Relation of Progenitor Cell to Goblet Cell Distribution 

This widespread distribution of conjunctival PCs across the tissue but with highest 

levels in the medial canthal and inferior forniceal areas mimics that of the 

distribution of human goblet cells and intra-epithelial mucous crypts as shown in 

Figure 4 (Kessing, 1968).  Indeed more intense ABCG2 staining has been previously 

correlated to the goblet cell-rich areas of the conjunctiva (Budak et al., 2005).  

There was not however, an apparent direct relationship in immediate co-

localisation of these cells within the epithelium in immunohistochemical studies; 

with very variable levels of both ABCG2 and p63 positive cells noted adjacent to 

clusters of goblet cells (Figure 30, Figure 35).  Similarly, the crypt SCs in the colonic 

epithelium are not noted in immediate proximity to goblet cells (Moore and 

Lemischka, 2006).  Assessment of the co-localisation of PCs and goblet cells in 

culture was not possible in this study, given the culture conditions used did not 

favour the growth of goblet cells as previously discussed.  This distribution pattern 

may simply reflect the pattern of epithelial renewal in the conjunctival epithelium: 

as goblet cells arise from a common conjunctival bipotent SC or TAC (Pellegrini et 

al., 1999), thus greater concentrations would perhaps be expected in proximity to 

them.  However, their co-existence may alternatively be essential to the 

conjunctival SC niche; and it is perhaps not coincidental that the bulge SCs of the 

skin epidermal hair follicle also reside in close proximity to sebaceous glands 

(Alonso and Fuchs, 2003, Mitsiadis et al., 2007).   

 

The Medial Canthal and Inferior Forniceal Areas 

As the richest source of human conjunctival PCs, the medial canthal and inferior 

forniceal areas may offer greater physical protection to the PC niches.  But perhaps 

more importantly, these regions, and in particular the plica semilunaris and 

caruncle, are also densely vascularised, and especially rich in goblet cells, intra-

epithelial mucous crypts and the accessory lacrimal glands (Kessing, 1968, Bron et 

al., 1997, Arends and Schramm, 2004); although the nature and significance of 

these relationships remains to be established.  These areas are additionally noted 

to contain melanocytes (Bron et al., 1997, Arends and Schramm, 2004), and the 
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plica semilunaris to be abundantly infiltrated with both specific and non-specific 

immune cells (Arends and Schramm, 2004).  These features are common to other 

SC niches such as the limbus (Li et al., 2007).  Rich vascularisation provides a 

plentiful supply of nutrients, blood-borne growth and survival factors (Tseng, 1996).  

Melanin offers protection against the carcinogenic insult from ultraviolet light and 

subsequent formation of reactive oxygen species (Boulton and Albon, 2004).  It is 

interesting to note, that whereas the limbal SCs are predominantly located 

superiorly and inferiorly (Shortt et al., 2007a), the conjunctival PCs reside 

predominantly close to the midline.  It has been suggested that the plica 

semilunaris plays an important role as a specialised organ in ocular defence (Arends 

and Schramm, 2004), but perhaps its significance extends further than this, to also 

incorporate conjunctival epithelial renewal. 

 

The Implications of Human Conjunctival Progenitor Cell Distribution 

The implications of the distribution of conjunctival PCs are numerous.  Firstly, 

knowledge of the PC-rich areas enables avoidance or minimisation of damage to 

them during conjunctival or other ocular surgery.  Conversely, biopsies taken with a 

view to ex vivo expansion for conjunctival epithelial replacement should be taken 

from these PC-rich areas to provide optimal success (Holland, 1996, De Luca et al., 

2006, Shortt et al., 2007a).  Additionally, the medial canthal and inferior forniceal 

areas are possibly the sites where any topically administered eye medications will 

naturally accumulate, and are thus most exposed to toxicity from the preservatives 

within.  It is therefore perhaps imperative that preservative-free topical ophthalmic 

medications are considered in any patient with significant conjunctival disease.  It is 

also noteworthy that this PC-rich zone is an area which is often more severely 

affected in inflammatory disorders such as mucous membrane pemphigoid. 

 

The Effect of Donor Age on Human Conjunctival Progenitor Cells 

SC niche microenvironments of a variety of tissues are known to deteriorate with 

age, with a subsequent critical effect on SC number, phenotype and clonogenic 

ability (Wagner et al., 2008, Gago et al., 2009, Zhao et al., 2008, Zheng et al., 2009).  
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Indeed, increasing donor age was associated with significantly lower CFE (Figure 

63), significantly lower expression of ABCG2 in both tissue sections and cultured 

cells (Figure 41, Figure 81), and significantly lower expression of Hsp70 in cultured 

cells (Figure 81) in this study.  These findings should however, be interpreted with 

caution given the skewed distribution of donor age.  In a previous study comparing 

human conjunctival epithelial culture methods, the authors comment that no 

significant differences in cell proliferation were noted with varying donor age (Ang 

et al., 2004a), but the data is not shown and the donor age distribution was 

similarly skewed.  A significant reduction in CFE of human limbal cells with 

increasing donor age has been recently reported (Notara et al., 2013), and a similar 

trend of reduction in limbal culture success rates previously noted (James et al., 

2001).  Other studies have however demonstrated no association of donor age to 

limbal culture success rate (Kim et al., 2004, Baylis et al., 2013) or proliferative 

potential (Shanmuganathan et al., 2006).  It is interesting to note that equally no 

relationship between increasing donor age and cell culture success rate was noted 

in this study: there are many confounding factors to culture success, and perhaps 

CFE is a more accurate measure.  These latter studies also compared tissue from 

corneo-scleral rims that had been stored in organ culture for up to 93 days prior to 

cell culture (Baylis et al., 2013).  It is not clear whether tissue used in Notara et al.’s 

study was also previously subjected to organ culture, and if so the duration of 

(Notara et al., 2013).  The effect of such storage on culture success rates and 

proliferative potential is however also debated (James et al., 2001, Kim et al., 2004, 

Shanmuganathan et al., 2006, Baylis et al., 2013). 

 

Only one study has assessed the effect of donor age on SC marker expression of 

human ocular surface epithelial cultures.  It is interesting, that despite noting 

changes in the limbal SC niche microstructures, together with a reduction of CFE 

with increasing donor age; no associated reduction in SC marker expression in 

cultures was noted (Notara et al., 2013).  In contrast, in this study such relationships 

were ascertained in conjunctival tissue sections and for some SC markers in 

cultures.  Clearly further investigations to clarify any relationships are indicated. 
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The Effect of Post Mortem Retrieval Time on Human Conjunctival Progenitor Cells 

Significant associations were detected between increasing PMRT and lower CFE 

(Figure 64), and lower expression of ABCG2 in both tissue sections and cultured 

cells (Figure 42, Figure 82).  These results should however similarly be interpreted 

with some caution due to the skewed distribution of PMRTs in this study.  Previous 

studies have shown longer death to enucleation time, but interestingly not 

enucleation to culture medium time is associated with reduced human limbal 

epithelial culture success, growth rates and proliferative potential (Kim et al., 2004, 

Shanmuganathan et al., 2006).  This is likely related to poor SC survival during a 

period of lack of vascular perfusion of the niche after death before being placed in 

nutrient-rich culture medium (Baylis et al., 2013).  However, other studies report no 

adverse effects of such delays (Baylis et al., 2013).  No previous studies have 

assessed the effect of PMRT on conjunctival clonogenic ability or conjunctival or 

limbal SC marker expression. 

 

It is interesting to note, that although significant correlations between ABCG2 

expression and both increasing donor age and PMRT, and between Hsp70 

expression and increasing donor age were detected, no correlation was detected 

between ∆Np63 expression and either factor (Figure 82).  Although p63 is 

considered a TAC marker (Parsa et al., 1999), the ∆Np63 antibody encompasses the 

∆Np63α isoform which is considered a relatively pure SC marker (Kawasaki et al., 

2006).  The reduction of CFE is perhaps however more clinically significant (Notara 

et al., 2013).  Certainly this data indicates that conjunctival cultures generated from 

younger donors and those with shorter PMRTs have greater proliferative potential, 

a factor which is of great clinical significance in generating epithelial equivalents for 

ocular surface reconstruction. 

 

The Clinical Need for Progenitor Cells and Goblet Cells in Epithelial Constructs for 

Transplantation 

Goblet cell and mucin deficiency are implicated in a wide spectrum of disabling 

conjunctival diseases (Tseng et al., 1984, Doughty, 2012), and it can be presumed 
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that there is also significant SC deficiency in widespread severe conjunctival 

disease.  Furthermore, reconstruction of the ocular surface in these severe cases 

will often require transplantation of large epithelial constructs.  The levels of SCs 

and goblet cells in small ex vivo cultured conjunctival constructs for transplantation 

into otherwise healthy eyes may not be critical, and indeed transplantation of 

present constructs is reported with some success (Tan et al., 2004, Ang et al., 

2005a, Ang and Tan, 2005).  However, it is paramount that optimal levels of SC and 

goblet cells are achieved for extensive transplantations in severe disease, both to 

produce a functioning epithelium and to facilitate long-term success (Holland, 1996, 

Pellegrini et al., 1999).  Indeed, limbal epithelial transplantation containing 

inadequate numbers of SCs are associated with poor clinical outcomes (Rama et al., 

2010), and MUC5AC deficiency causes functional and structural changes in the 

ocular surface (Floyd et al., 2012). 

 

The localisation of the PC rich areas of the human conjunctiva in this study enables 

optimal PC rich biopsies to be selected for ex vivo expansion (Holland, 1996).  Given 

these biopsies will often be required from patients with extensive ocular surface 

damage and associated conjunctival SC loss, this even more pertinent.  For those 

patients with particularly severe disease who are unable to provide an adequate 

biopsy, the significance of younger donor age and shorter PMRTs to increasing SC 

yield and clonogenic ability in culture, will enable optimal selection of allograft 

donor tissue. 

 

Ultimately, further characterisation of the conjunctival PCs will enable their positive 

selection and enrichment of cultures, such as has been achieved for limbal SC 

cultures (Hayashi et al., 2007, Arpitha et al., 2008). 

 

Both goblet cells and mucins have been demonstrated in human conjunctival 

cultures (Corfield et al., 1991, Frescura et al., 1993, Diebold and Calonge, 1997, 

Pellegrini et al., 1999, Shatos et al., 2003, Berry and Radburn-Smith, 2005, Ang et 

al., 2005b), but this has been difficult to achieve (Ang et al., 2004b).  This is despite 

the recognition that commitment to goblet cell differentiation may arise from TACs 
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(Pellegrini et al., 1999); perhaps as the factors or stimuli regulating their 

proliferation is poorly understood (Shatos et al., 2003).  Although goblet cell 

differentiation in culture has been aided by the addition of various growth factors 

(Shatos et al., 2003, Ríos et al., 2006, Li et al., 2010), higher initial concentrations of 

PCs in culture can only further support their development.  Indeed, rat forniceal 

biopsies have been shown to yield the greatest number of goblet cells (Fostad et 

al., 2012). 

 

More specific than the need for goblet cells in epithelial constructs is the need for a 

normal mucin profile, including not only secreted MUC5AC but also the relative 

expression of membrane-associated mucins MUC1, 4 and 16.  Human conjunctival 

cells in culture have been demonstrated to both synthesise and secrete mucins 

(Corfield et al., 1991, Frescura et al., 1993), and limbal epithelial cells cultured on 

amniotic membrane to express MUC1, 4 and 16 but at altered levels to normal 

tissue (Pauklin et al., 2009).  Given that both over and underproduction of mucins 

may induce ocular surface disease (Dartt, 2004), culture conditions must be 

optimised to achieve normal mucin profiles. 

 

The Requirement of a Suitable Substrate 

As the nature of the underlying matrix plays a key role in determining cellular 

growth and differentiation (Lin et al., 2000, Ma, 2008), this must be intimately 

involved in the pursuit to produce a conjunctival epithelial equivalent which is 

replicable of the physiological state. 

 

Substrates for conjunctival epithelial replacement must ideally be flexible and 

elastic to accommodate eye movement, mechanically strong to maintain 

reconstructed fornices (Kearns et al., 2012), provide good cellular attachment (Ang 

et al., 2004a), and promote the development of normal conjunctival epithelial 

physiology including the regenerative capacity of SCs and goblet cells. 
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To date, no substrate fulfils these requirements adequately.  Although amniotic 

membrane has been favoured and indeed used in clinical transplantation, it is 

variable in quality (Liu et al., 2010), liable to shrinkage (Barabino and Rolando, 

2003, Honavar et al., 2000), and unpredictable in its rate of degradation (Vyas and 

Rathi, 2009).  Stratified conjunctival epithelial constructs have also been cultured 

on collagen gels (Berry and Radburn-Smith, 2005), and the polymer ultrathin Poly(ε-

Caprolactone) (Ang et al., 2006).  Although the latter is a synthetic product which 

offers consistency in quality and is disease free; both are bio-resorbable materials.  

Long-term success in maintaining reconstructed fornices may be more likely to be 

achieved with a synthetic non-degradable scaffold.  Expanded-

polytetrafluoroethylene (ePTFE) is one such material.  It offers biostability, porosity 

and excellent mechanical properties including elasticity and high tensile strength.  It 

has been successfully used as a ‘stent’ for short-term forniceal maintenance in 

anophthalmic patients (Demirci et al., 2010), and as a substrate for the attachment 

and proliferation of retinal pigment epithelial cells (Williams et al., 2005, Krishna et 

al., 2011).  Although it is opaque, given the conjunctiva is not within the visual axis 

as the corneal epithelium is, optical clarity of a substrate is not required here.  

However being hydrophobic, it requires surface modification to enhance cellular 

adhesion.  Such modification should aim to mimic the normal extracellular matrix 

and may be achieved in a number of different ways, such as plasma polymer 

coating (Notara et al., 2007) or coatings with extracellular matrix proteins. 

 

With a view to developing suitable substrate(s) for conjunctival epithelial 

constructs, attachment and growth of conjunctival cells on various extracellular 

matrix proteins were assessed.  Each could be further developed as a pure 

biological substrate or as a coating on a synthetic substrate such as ePTFE.  Growth 

rates on collagen IV, fibronectin, and laminin 1 were compared with the aim of 

replicating features of the normal conjunctival basement membrane (Tuori et al., 

1996, Schlötzer-Schrehardt et al., 2007, Messmer et al., 2012).  

 

Conjunctival epithelial cells maintained similar morphology on each coating and 

were equally comparable to the control cells cultured with a 3T3 feeder layer 



  Discussion 

166 
 

(Figure 83, Figure 84).  Although statistically fibronectin supported greater growth 

at day 7 in culture, the effects were no longer apparent by day 10.  However, it 

must be noted that these results have not been replicated, and thus these findings 

can only be judged as preliminary data.  Cell counts for the control cells cultured 

with a 3T3 feeder layer were also not possible. 

 

Given the normal conjunctival basement membrane comprises a variety of 

extracellular matrix proteins (Tuori et al., 1996, Schlötzer-Schrehardt et al., 2007, 

Messmer et al., 2012), it is likely that optimal epithelial growth would be 

maintained by a combination of these.  As such it is surprising that conjunctival 

epithelial cells were not successfully cultured on MatrigelTM basement membrane 

matrix (Figure 44, Figure 45), which contains both laminin and collagen IV in 

addition to other proteins and growth factors.  It would be interesting to further 

compare conjunctival epithelial cell growth on coatings of each of these 

extracellular matrix proteins in differing concentrations, and also in combination 

with differing proportions of each.  Indeed, the understanding of niche 

environments and the complexities of basement membrane compositions is 

becoming increasingly apparent; and it is likely that the ideal biological substrate or 

coating would comprise a composite of not only specific isoforms of these 

extracellular matrix proteins but also others such as nidogen, perlecan and clusterin 

which are found in the physiological basement membrane (Schlötzer-Schrehardt et 

al., 2007). 

 

Time restraints to this study unfortunately limited any further work to develop 

stratified conjunctival epithelial cell cultures on these coatings, and to ascertain 

their similarities to retrieved donor conjunctival epithelium in terms of their 

histological structure, expression of SC markers, presence of goblet cells, and their 

mucin profiles. 
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Overall Summary and Implications 

Severe conjunctival diseases cause significant chronic pain, predisposition to ocular 

surface infections and often secondary blindness.  Their management remains to be 

a great challenge to ophthalmologists.  The prospect of a functional cultured 

conjunctival epithelial equivalent to restore the ocular surface of these patients 

offers immense hope. 

 

This study describes an innovative technique to successfully retrieve whole human 

cadaveric conjunctival tissue for research purposes.  This will benefit a wide range 

of future research into human conjunctival anatomy, pathophysiology and potential 

therapeutic targets.  Using this technique I have performed the first comprehensive 

assessment of PCs across the whole human conjunctiva.  Substantial evidence is 

presented through both CFE and SC marker expression that human conjunctival PCs 

are scattered throughout the tissue in the basal layer of the epithelium, but are in 

highest concentrations in the medial canthal and inferior forniceal areas.  These 

areas may provide greater physical protection.  But perhaps more importantly, they 

and in particular the plica semilunaris, are noted to be especially rich in goblet cells, 

intra-epithelial mucous crypts and the accessory lacrimal glands, blood vessels, 

melanocytes and immune cells; features which are common to other SC niches and 

may constitute features of the human conjunctival SC niche.  Clonogenic ability and 

SC marker expression were inversely proportional to both donor age and PMRT.  

Finally, preliminary studies demonstrated fibronectin, collagen IV and laminin 1 

may all support conjunctival epithelial ex vivo expansion. 

 

As in all research, there are limitations to this study.  Firstly, CFE and SC marker 

expression on cultured cells were performed at passage 1 in culture; ideally with 

sufficient cells these would have both been performed at passage 0.  Secondly, 

immunohistochemical analysis was taken comparatively of subjectively selected 

representative images from each defined zone.  In addition, the loss of eyelid 

margin epithelium and inability to consistently identify the mucocutaneous junction 

on immunohistochemical specimens meant that specific assessment of SC marker 

expression at the eyelid margin was unobtainable.  In common with all studies 
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assessing SC marker expression, given there is no single definitive SC marker, a 

wider range of putative markers would have ideally been employed.  Furthermore, 

only preliminary data was obtained on growth on different extracellular matrix 

proteins towards the development of a suitable substrate.  Finally, because the 

sample sizes were limited, there is a risk that the results considered non-significant 

may well have been significant (i.e. type II error). 

 

Conjunctival biopsies for human ex vivo expansion should be taken from the PC-rich 

medial canthal or inferior forniceal areas.  Ideally biopsies should be retrieved from 

young donors with short PMRTs.  I now hypothesise that such tissue can be 

propagated ex vivo into PC-rich functional epithelial equivalents on suitable 

substrates.  Future work should be directed to this aim, to offer optimal success in 

long-term restoration of the ocular surface. 
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5. Conclusions 

 

 Whole human cadaveric conjunctiva can be successfully retrieved with good 

donor cosmesis. 

 

 Both expression of the SC marker ABCG2 in fixed tissue, CFE and the expression 

of the SC markers ABCG2, ΔNp63 and Hsp70 in cell cultures, indicate that 

conjunctival PCs are distributed throughout the human conjunctiva, but with 

significantly highest levels in the medial canthal and inferior forniceal areas.   

 

 Increasing donor age is associated with a significant reduction in both ABCG2 

expression in fixed tissue, CFE and ABCG2 and Hsp70 expression in cell cultures.  

Similarly, increasing PMRT is associated with a significant reduction in both 

ABCG2 expression in fixed tissue, CFE and ABCG2 expression in cell cultures. 

 

 Preliminary results demonstrate that primary human conjunctival epithelial cell 

growth is supported by fibronectin, collagen IV and laminin 1 coatings. 
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6. Future Work 

Future research should aim to further investigate the distribution of conjunctival 

PCs, in particular at the eyelid margin and in their relation to goblet cells.  Although 

the technique employed in this study to retrieve whole conjunctival research 

specimens is notable, obtaining full thickness eyelid specimens from surgical 

procedures would enable better analysis of the distribution of PCs at the eyelid 

margin.  Studies should seek to assess the expression of further putative SC markers 

across the tissue, such as connexin 43 (Wolosin et al., 2000), integrin-β1 

(Pajoohesh-Ganji et al., 2006), CK15 (Qi et al., 2010, Pauklin et al., 2011) and TrkA 

(Qi et al., 2008, Qi et al., 2010).  Molecules associated with 

pluripotency/multipotency such as NANOG, OCT4 and SOX2 (Nichols et al., 1998, 

Mitsui et al., 2003, Chambers et al., 2003) have also been detected in the human 

conjunctiva (Pauklin et al., 2011); and an assessment into their expression across 

the whole tissue would also be warranted.  Employing molecular techniques such as 

PCR would enable quantifiable assessment of SC marker gene expression, although 

this does not necessarily directly correlate with protein expression. 

 

The conjunctival SC niche may then be characterised in terms of the relations to the 

immediately adjacent cells, the preferential expression of basement membrane 

proteins and proteoglycans, the signalling pathways controlling its regulation, and 

age-related effects.  In order to further understand the mechanisms of conjunctival 

epithelial renewal, the effect of donor age and PMRT should be further clarified by 

the addition of fresh surgical samples and tissue from younger donors; and the 

development of goblet cells and regulation thereof should be investigated. 

 

Using PC-rich biopsies from the medial canthal and inferior forniceal conjunctiva, 

culture conditions should be optimised to maintain the PCs in vitro and replicate 

the conjunctival SC niche to develop a stratified, functional and self-renewing 

epithelium for transplantation.  In particular, optimal levels of functional goblet 
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cells must be obtained.  Specific substrates should be developed to support such 

constructs, with properties that are suitable for ocular surface transplantation and 

in particular to maintain forniceal reconstruction.  This offers the prospect of a 

long-awaited successful treatment for a multitude of severely disabling ocular 

surface disorders. 
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