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Abstract

In the past decade, the study of the renewal risk model in the presence of dependent in-

surance and financial risks and heavy-tailed claims is one of the key topics in modern risk

theory. The purpose of this thesis is to study the renewal risk model with certain dependence

structures. We also assume that claim sizes follow a heavy-tailed distribution, in particular, a

subexponential distribution. We focus on studying the impact of heavy tails and dependence

structures on ruin probabilities and the tail probabilities of aggregate claims.

For the study of dependence structure, we consider two assumptions here, namely, de-

pendence between claims and inter-arrival times and dependence between insurance and

financial risks, particular attention are paid for the dependent insurance and financial risks.

In this case, an equation for the tail probability of maximal present value of aggregate net

loss is derived, and hence some insights into the ruin probability can be obtained.
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Chapter 1

Introduction

1.1 Background

Risk theory is one of the main topics in actuarial science. It is particularly important for the

analysis of the wealth of an insurance company. When considering the risk of a certain class

of insurance business, actuarial researchers usually study the surplus process of an insurance

portfolio. The surplus process is often modelled as a stochastic process {Ut, t ≥ 0} of a

certain structure. Generally, the risk reserve Ut at time t involves three parts: the initial

capital or initial reserve u ≥ 0, the premium income rate c ≥ 0, and the aggregate claims

process {St, t ≥ 0}. It describes the financial status of an insurance business and hence

provides insights into the wealth of the company. In the continuous-time setting, the surplus

process is given by

Ut = u+ ct− St. (1.1.1)

Usually, the aggregate claims process St is assumed to be a stochastic process which is given

by the following random sums

St =
Nt∑
i=1

Ai, t ≥ 0,
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where Nt is a counting process for claim numbers; and {Ai, i = 1, 2, ...} is a sequence of

independently and identically distributed (i.i.d.) random variables representing the sizes of

individual claims. Hence, (1.1.1) is called the classical risk model.

Each insurance company has to face the risk of not having enough surplus to pay claims.

Such a situation is referred to as ruin of the insurance company. A commonly-used tool to

assess this risk is the probability of ruin, which may be treated as a guideline in pricing

insurance policies. Let T denote the time of ruin, which is defined as

T = inf
t≥0
{t : Ut < 0},

with the convention that inf ∅ =∞. By definition, it is the first time when the surplus falls

below zero.

The ruin probability in finite time (or with finite horizon) is defined as

ψ(u, t) = Pr(T ≤ t|U0 = u), (1.1.2)

which denotes the probability that ruin will occur by time t. The ruin probability in infinite

time (or with infinite horizon) is defined as

ψ(u) = Pr(T <∞|U0 = u). (1.1.3)

Note that the Model (1.1.1) is referred to as the continuous-time risk model. In practice

one may only consider the surplus process at regular intervals of time. In this case, the

discrete-time surplus process, in which we consider Un only at discrete time points, can be

written as

Un = u+ cn− Sn = u+ cn−
n∑
i=1

Ai,
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for n = 0, 1, 2..., where U0 = u is the initial surplus, c is the amount of premium per period,

Sn is the claim process and Ai is the amount of claim in the ith period.

Denote the time of ruin by T̃ = min{n : Un < 0}. Then the finite-time and ultimate ruin

probabilities are give by

ψ̃(u, n) = Pr(T̃ < n|U0 = u) (1.1.4)

and

ψ̃(u) = Pr(T̃ <∞|U0 = u), (1.1.5)

respectively.

The Cramér-Lundberg model, the foundation stone of the ruin theory approach, was

introduced in the early 20th century. The main results of the Cramér-Lundberg model were

developed by Lundberg (1903,1932) and Cramér (1930). In the classical risk model, claim

size {Ai, i ∈ N} are positive i.i.d. with common distribution F and having finite mean µ.

The inter-arrival times are denoted by {Bi, i ∈ N} which are i.i.d. exponentially distributed

with finite mean E = 1/λ. The sequences {Ai, i ∈ N} and {Bi, i ∈ N} are independent of

each other. Denote by {Ti =
∑i

k=1 Bk, i ∈ N} the claim arrival times, with B0 = 0. The

number of claims in the interval [0, t] is denoted by Nt = sup{n ≥ 1 : Tn ≤ t}, t ≥ 0, which

forms a homogeneous Poisson process with intensity λ > 0.

For the Cramér-Lundberg model,

EUt = u+ ct− λµt

Therefore, EUt/t→ c−λµ and an obvious condition towards solvency is c−λµ > 0, implying

(Ut) has a positive drift for large t. The net profit condition (the safety loading) is satisfied

ρ =
c

λµ
− 1 > 0.
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Lundberg (1903,1932) and Cramér (1930) also obtained the Cramér-Lundberg approximation

for ψ(u) of (1.1.2). Further work based on the classical risk model can be found in Feller

(1971), Grandell (1991), Rolski et al. (1999), Asmussen (2000), and Dickson and Willmot

(2005). Their achievements include deriving a formula for ψ(u) with u = 0 which depends

only on the mean of the claim distribution and developing an exact form for ψ(u) with

exponential claim distributions.

Another well-known risk model, namely the renewal risk model (also referred to as the

Sparre Anderson risk model) also has been extensively analyzed. Sparre Andersen (1957) ex-

tended the classical model by allowing claim inter-arrival times to have arbitrary distribution

functions. Hence, the claim-number process is a renewal process. The renewal risk model

has played a fundamental role in classical and modern risk theory as a natural generalization

of the compound Poisson risk model. Recent works on the study of Sparre Anderson risk

model includes Chen and Ng (2007), and Biard et al. (2008), they studied the ruin prob-

ability with heavy-tailed claim amounts when some independence assumptions are relaxed.

Further works can be also found in Chen et al. (2010, 2012) as they studied the precise large

deviations of aggregate claims for certain renewal models.

In addition to the ruin probability, researchers are also interested in other actuarial

measures related to ruin. Recently, for practical reasons, precise large deviations of aggregate

claims have received a remarkable amount of attention. Large deviation theory focuses on

the asymptotic behaviour of the tail probability of random sums. The study of precise large

deviations of random sums was initiated by Klüppelberg and Mikosh (1997), who presented

several applications in insurance and finance. The results of precise large deviations for
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random sums make a great contribution to the evaluations of conditional tail expectation

and value at risk of aggregate claims of a large insurance portfolio.

The classical compound Poisson risk model adopts simplifying assumptions to maintain

nice properties and remain mathematically attractive. As it is too ideal to model the real

word, researchers try to relax the assumptions of the classical model to make it more realistic.

A brief review of variants of the classical risk model is given below.

The classical risk theory describing characteristics of the insurance surplus process usually

relies on the assumption of independence of claim sizes and claim interoccurrence times.

However, in many applications this assumption is too restrictive. For instance, for a line

of business covering constructive damages due to earthquakes, more significant damages

are expected with a longer period between claims. Therefore, generalizations to dependent

scenarios are called for. In recent years, a number of results on ruin probabilities have been

obtained for models that allow for specific types of dependence. The risk model with time-

dependent claim sizes can be viewed as a more realistic model (than the classical compound

Poisson risk model) to approximate the behavior of the aggregate claim process in a natural

catastrophe context. Recent works include Boudereault et al. (2006), Cossette et al. (2008),

Badescu et al. (2009), Asimit and Badescu (2010), Li et al. (2010), Chen et al. (2011).

Various different non-standard renewal risk models have been proposed in the recent

literature. In the renewal risk model, several strong hypotheses may be found too restrictive

to model accurately the complex evolution of the reserves of an insurance company. Biard

et al. (2008) suggested that in the real world, the mutual independence among claim sizes

and inter-arrival times is not realistic for a number of reasons. Firstly, the claim amounts
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Xk, k ≥ 1, are not independent in practice, and many present complex forms of positive

dependence: some factors may have an impact on those amounts; some claims of a certain

type may have identical severities depending on outcomes of trails at the court. Secondly,

weather or economic conditions can create as well strong positive dependence on claim

amounts, which can be weakly dependent and independent in the usual regime, and suddenly

become strongly positively dependent if a so-called correlation crisis breaks out. In the case

where the distributions of claim sizes are regular varying, Biard et al. (2008) assumed the

claim sizes are positively dependent and non-stationary and they establish some asymptotic

results on the finite-time ruin probability.

Recently, a vast amount of papers has been published on the issue of ruin of an insurer

who is exposed to a stochastic economic environment. Such an environment has two kinds

of risk, which were called by Norberg (1999) as insurance risk and financial risk, respec-

tively. The first kind of risk is the traditional liability risk related to the insurance portfolio,

and the second is the asset risk related to the investment portfolio. Nyrhinen (1999, 2001)

investigated the asymptotic behaviour of the finite and infinite time ruin probabilities un-

der a general assumption that both insurance and finance risks are independent, Nyrhinen

(1999) employed large deviations techniques in the discrete time model and determined a

crude estimate for the finite-time ruin probability. Following the works of Nyrhinen (1999,

2001), Tang and Tsitsiashvili (2003, 2004) derived precise estimates for the finite time ruin

probability for a discrete time risk model, in which an insurer invested his surplus into both

risk-free and risky assets, which may lead to negative returns. Goovaerts et al. (2005) inves-

tigated the tail probability of discounted aggregate sums of Pareto-like losses in insurance
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with stochastic discount factors which are mutually dependent. Since then, many authors

including Tang and Vernic (2007), Zhang et al. (2009), Weng et al. (2009), and Chen (2011)

have examined some ruin problems for the model.

As cited above, many researchers have taken into account the effect of heavy-tailed dis-

tributions in the risk model. The importance of subexponential class as a useful class of

heavy-tailed distribution functions in the context of applied probability in general, and in-

surance mathematics in particular, was realized early by Teugels (1975). Embrechts et al.

(1997) demonstrated that the class of subexponential distributions played a fundamental role

in actuarial mathematics, especially modelling of large claims. The subexponential class con-

tains many of popular heavy-tailed distributions, such as Pareto, Lognormal, heavy-tailed

Weibull, and Loggamma distributions. Reviews of subexponential distributions can be found

in Bingham et al. (1987), Embrechts et al. (1997), Rolski et al. (1999), Asmussen (2000),

Rachev (2003), and Resnick (2007), among others.

In the following section, we are going to review the research on three aspects, namely

risk models with dependent claim sizes and interarrival time, risk models with dependent

insurance and financial risks and asymptotic behavior of aggregate claims in a renewal risk

model.

1.2 Literature Review

1.2.1 Risk Models with Dependent Claims and Inter-Arrival Times

In recent years, the study of risk models with dependence between claim sizes and claim

inter-occurrence times has been an important topic in the literature. Albrecher and Boxma

(2004) considered a generalization of the classical ruin model to a dependent setting, where
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the distribution of the time between two claim occurrences depends on the previous clam size

and they derived exact solution for the survival probability by means of Laplace transforms.

See also Albrecher and Boxma (2005).

The time-dependent risk model was first proposed by Albrecher and Teugels (2006). In

their paper, they described the surplus process as a random walk with independent incre-

ments over claim arrival times. It allowed the interclaim time and its subsequent claim size

to be dependent according to an arbitrary copula structure. By employing the underly-

ing random walk structure they derived explicit exponential estimates for both infinite- and

finite-time ruin probabilities in the case of light-tailed claim sizes. However, their paper is just

an attempt to obtain a clearer picture of the impact of dependence in risk theory, and many

questions remain open to further study. For instance, one might attempt a similar study for

heavy-tailed claims. Cossette et al. (2008) considered the family of risk models proposed

by Albrecher and Teugels (2006) with a dependence structure between the claim amounts

and the interclaim time defined with a generalized Farlie-Gumbel-Morgenster (FGM) cop-

ula where the individual claim follows an exponential distribution. In this framework, they

derived the Laplace transform of the Gerber-Shiu discounted penalty function

Boudereault et al. (2006) examined several properties of an extension of the classical

compound poisson risk model by assuming a dependence structure in which the claim size

conditional on the interarrival time has a density function equal to a mixture of two arbitrary

density functions, and they studied the Gerber-Shiu expected discounted penalty function

and measured the impact of dependence structure on the ruin probability via the comparison

of Lundberg coefficient. Badescu et al. (2009) considered an extension of the Sparre An-
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dersen insurance risk model with the dependence structure that the joint distribution of the

interclaim time and the subsequent claim size is bivariate phase-type (see e.g. Assaf et al.

1984 and Kulkarni 1986) and they employed the existing connection between risk processes

and fluid flows to the analysis of various ruin-related quantities.

Recently, Asimit and Badescu (2010) introduced a general dependence structure for which

the claim sizes and interarrival times correspondingly form a sequence of i.i.d. random pairs

and that each pair obeys a dependence structure described via the conditional tail probability

of a claim size given the interarrival time before the claim. They presented asymptotic tail

probabilities for the discounted aggregate claims in the compound poisson risk model when

the force of interest is constant and the claim amounts are heavy-tail distribution random

variables. Further study of this model can be found in the literature. Li et al. (2010)

used the same dependence structure as proposed by Asimit and Badescu (2010), to measure

the impact of this dependence structure on the asymptotic tail probability of discounted

aggregate claims in the continuous-time renewal risk model. Chen et al. (2011) used the

size dependent model to study the large deviation of the aggregate amount of claims in a

renewal risk model, and obtained a precise large-deviation formula for a heavy-tailed case.

1.2.2 Risk Models with Dependence in a Stochastic Economic En-
vironment

It is a common practice in risk theory to assume that insurance risk and financial risk are

independent of each other as well. Undoubtedly, this assumption of complete independence

is far unrealistic. A recent new trend of study is to introduce various dependence structures

to the risk model.

9



Tang and Tsitsiashvili (2003), Wang et al. (2005), Goovaerts et al. (2005), Wang and

Tang (2006) further pointed out that the dependent assumption on financial risks is not

necessary. Goovaerts et al. (2005) investigated the tail probability of discounted aggregate

sums of Pareto-like losses in insurance. Here, the discounted sum of losses with finite or

infinite time period can be described as a randomly weighted sum of a sequence of inde-

pendent variables and the independent random variables represent the amounts of losses

in successive development years, while the weights represent the stochastic discount factors

which are mutually dependent.

Tang (2006) considered a discrete-time insurance risk model with risky investments, and

extended the results of Tang and Tsitsiashvili (2003) to the whole subexponential class and

to nonstandard case with associated discount factors.

Following the recent works of Nyrhinen (1999, 2001) and Tang and Tsitashvili (2003,

2004), Tang and Vernic (2007) considered the discrete-time insurance risk model in which

the financial risks constituted a stationary process with finite dimensional distributions of

Farlie-Gumbel-Morgenstern type. They assumed the independence between insurance and

financial risks and obtained an exact asymptotic formula for the ruin probability assuming

the the insurance risks belonged to the class of regularly varying distributions.

Recently, Zhang et al. (2009), Shen et al. (2009), Gao and Wang (2010), Wang and Yin

(2010) considered a special dependence structure, namely bivariate upper tail independence,

for net loss, and obtained the asymptotic tail probabilities of randomly weighted sums and

their maxima for the finite-time and ultimate cases. Simultaneously, Chen and Yuen (2009),

Chen et al. (2010), and Yi et al. (2011) introduced similar dependence structures, which al-
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low nonidentically distributed insurance risks, and derived corresponding asymptotic results

for claim-size distributions belonging to the classes C and D, respectively. In addition, Yang

et al. (2012) investigated the same dependence structure as in Chen et al. (2010) and derived

some further asymptotic and uniformly asymptotic results for the finite-time and ultimate

ruin probabilities under assumptions that the insurance risks are heavy tailed (belong to the

intersection of L and D) and the financial risks satisfy some moment conditions.

However, there are few papers which take into account the dependence between insurance

and financial risks, with the difficulty existing in describing the tail behaviour of the product

of dependent random variables.

Chen (2011) considered a discrete-time insurance risk model in which the insurer makes

both risk-free and risky investments, and derived a general asymptotic formula for the finite-

time ruin probability by assuming that the net insurance losses follow a subexponential

distribution. It is further assumed that the net insurance losses and the stochastic discount

factors correspondingly form a sequence of i.i.d. random pairs following a common bivariate

Farlie-Gumbel-Morgenstern distribution.

1.2.3 Research on the Asymptotic Behavior of Aggregate Claims

The study of precise large deviations of random sums was initiated by Klüppelberg and

Mikosch (1997). They considered the classical risk model with claims following an Extended

Regularly Varying (ERV) distribution. Tang et al. (2001) improved the result of Klüppelberg

and Mikosch (1997) by introducing the compound renewal model which is more realistic than

the classical one. In addition, Ng et al. (2004) studied the precise large deviations for sums of

claims with consistently varying tails. For further applications of precise large deviations to
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insurance and finance, see Mikosch and Nagaev (1998) and Embrechts et al. (1997, Chapter

8), among others.

Recently, for practical reasons, precise large deviations of dependent random variables

have received a remarkable amount of attention. Kaas and Tang (2005) investigated pre-

cise large deviation of a compound sum of claims in which the claims arrive in groups and

the claim numbers in the group may follow a certain negative dependence structure, and

they also built a platform both for the classical large deviation theory and for the modern

stochastic ordering theory. Additionally, Tang (2006) studied the case of negatively depen-

dent claim sizes and found the asymptotic behaviour of precise large deviations is insensitive

to the negative dependence. By extending the negatively dependent structure Liu (2009)

focused on precise large deviations of sums of extended negative dependence (END) random

variables and found that the END structure has no effect on the asymptotic behavior of

precise large deviations of partial sums and random sums either. Furthermore, Chen et al.

(2011) extended the results of Tang (2006) and Liu (2009) to random sums in various situ-

ations and established a precise large deviation result for a nonstandard renewal risk model

in which innovations, modelled as real-valued random variables, are negatively dependent

with common consistently-varying-tailed distribution, and their inter-arrival times are also

negatively dependent.

However, in the literature all large deviation results for loss processes have been studied

for only one kind of claims. That is to say, the company provides only one kind of insurance

contracts. In reality, this assumption is not correct, and, it is worthwhile to extend the study

to the large deviation problem of multi-risk models. In this direction, Wang and Wang (2007)
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investigated large deviations for random sums of random variables with consistently varying

tails in multi-risk models. Extentions of this work can be found in Lu (2012, 2013) who gave

lower and upper bounds for the sums of subexponential claims.

1.3 Outline of the Thesis

In this thesis, we study some risk models with certain dependent structures. Specifically, we

consider two types: i) the dependence between claims and their interarrival times, ii) the

dependence between insurance risk and financial risk. We mainly consider using heavy-tailed

distribution to model random variables.

In Chapter 2, we recall definitions of heavy-tailed distributions and study their properties.

Special attention is paid to the subexponential class as one of the most useful and commonly

used classes of heavy-tailed distributions. Some lemmas regarding heavy-tailed distributions

are given. In addition, relevant extreme value distributions are also discussed.

In Chapter 3, we incorporate the heavy-tailed distributions into the renewal risk model

based on the two dependent assumptions, namely, dependence among claim sizes and de-

pendence between claims and their interarrivals. We give results on the ruin probability and

large deviations of sums of random variables according to different dependent assumptions.

In Chapter 4, we introduce the renewal risk model with dependence structure and pro-

vides another approach to study ruin probability. In this case, an equation for the tail

probability of maximal present value of aggregate net loss is derived, and hence some in-

sights into the ruin probability can be obtained. Chapter 4 is based on the joint work of

Chen et al. (2013).

Chapter 5 of the thesis contains some concluding remarks. Also, we discuss some possi-
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bilities for further study on the topic.
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Chapter 2

Heavy-tailed Distributions

2.1 Notation and Conventions

Throughout this thesis we use the following conventions:

i) Without otherwise stated, the limit procedure is according to x→∞;

ii) We use a∨ = max{a, 0} = a ∨ 0 and a∧ = −min{a, 0} = −(a ∧ 0) to denote the

positive and negative parts of a real number a, respectively.

iii) For two positive functions a(·) and b(·) satisfying

l1 = lim inf
x→∞

a(x)

b(x)
≤ lim sup

x→∞

a(x)

b(x)
= l2, (2.1.1)

for some 0 ≤ l1 ≤ l2 ≤ ∞, we write a(x) = O(b(x)) if l2 < ∞; a(x) = o(b(x)) if l2 = 0;

a(x) � b(x) if 0 < l1 ≤ l2 <∞; a(x) . b(x) if l2 = 1; a(x) & b(x) if l1 = 1; and a(x) ∼ b(x)

if both l1 = 1 and l2 = 1

Notation used is summarized below:
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1E the indicator function of an event
a.s. almost surely
C the class of distributions with consistently-varying tails
cdf cumulative distribution function
D the class of distributions with dominatedly-varying tails
df distribution function
d
= X

d
= Y ⇔ Pr(X > x) = Pr(Y > x) for every x

E expectation
ERV the class of distributions with extended-regularly-varying tails
F 1− F for a distribution F
F ∗G the convolution of distributions F and G
F n∗ the n-fold convolution of a distribution F
F+(x) F (x)1(x≥0) for a distribution F on (−∞,∞)
F←(t) Quantile function F←(t) = inf{x ∈ R, F (x) ≥ t}
iid independently and identically distributed
J±F Matuszewska indices of a distribution F
K the class of heavy-tailed distributions
L the class of long-tailed distributions
pdf probability density function
R the class of distributions with regularly-varying tails
S the class of distributions with subexponential tails
Φ(·) the standard normal distribution
Φα Fréchet distribution
Λ Gumbel distribution
Ψα Weibull distribution
MDA(Φα) Maximum domain of attraction of the Fréchet distribution
MDA(Λ) Maximum domain of attraction of the Gumbel distribution
MDA(Ψα) Maximum domain of attraction of the Weibull distribution

2.2 Brief Review of Heavy-Tailed Distributions

Heavy-tailed distributions have been extensively used for modelling insurance risks for a

long time. In probability theory, heavy-tailed distributions have heavier tails than that of

the exponential distribution. In practice, most of commonly used heavy-tailed distributions

belong to the subexponential class. In this thesis, we follow the style of Embrechts (1997)

to define heavy-tailed distributions. That is, a random variable X or its distribution F is
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said to be heavy-tailed (on the right) if

EesX =

∫ ∞
−∞

esxF (dx) =∞, for any s > 0.

Here, we use K to denote the class of (right) heavy-tailed distributions. There are also other

definitions in use. Some authors use the term to refer to those distributions which have finite

moments up to a certain order; and some others to those distributions that do not have a

variance.

On the contrary, a random variable X or its distribution F is light tailed (on the right)

if there is some s0 > 0 such that

EesX <∞, for all 0 < s < so.

2.2.1 The Subexponential Class

We follow the definition of subexponentiality proposed by Embrechts et al. (1997).

Definition 2.2.1 (Subexponential distribution function)

A df F with support (0,∞) is subexponential, if for all n ≥ 2

lim
x→∞

F n∗(x)

F (x)
= n. (2.2.1)

The class of subexponential dfs will be denoted by S

More generally, a distribution F on (−∞,∞) is also subexponential if F+(x) = F (x)1x≥0 is

subexponential. In this case, relation (2.2.1) still holds.

In order to check the subexponentiality for a df, one does not have to show (2.2.1) for all

n ≥ 2. A sufficient condition for subexponentiality is:

lim sup
x→∞

F 2∗(x)

F (x)
≤ 2 (2.2.2)
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Suppose now that X1, ..., Xn are iid with df F ∈ S. Denote the partial sum of X1, ..., Xn

by Sn = X1 + · · ·+Xn and their maximum by Mn = max{X1, ..., Xn}. Then the relations

Pr(Sn > x) ∼ nF (x) ∼ Pr(Mn > x) (2.2.3)

hold for each n ≥ 2. Actually, the first relation in (2.2.3) is due to Pr(Sn > x) = F n∗(x),

and the second relation in (2.2.3) can be verified as follows:

Pr(Mn > x) = F n(x)

= F (x)
n−1∑
k=0

F k(x)

∼ nF (x), x→∞

Thus, the tail probability of the sum and the maximum of the first n i.i.d. subexponential

random variables are asymptotically of the same order, known as the principle of a single big

jump. If we interpret the random variables as claim sizes, then relation (2.2.3) apparently

indicates the strong influence of the largest claim on the total amount of claims. This feature

explains the relevance of subexponential distributions in modelling heavy-tailed phenomena

in insurance and finance.

Let F denote a distribution function and f denote a density function. The following

examples of subexponential distributions are partially copied from Table 1.2.6 of Embrechts

et al. (1997).

i) Benktander-type I (α > 0, β > 0):

F (x) =

(
1 +

2β

α
lnx

)
exp

(
−β(lnx)2 − (α + 1) lnx

)
;

ii) Benktander-type II (α > 0, 0 < β < 1):

F (x) = exp(α/β)x−(1−β) exp

(
−αx

β

β

)
;
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iii) Burr (α > 0, κ > 0, τ > 0):

F (x) =

(
κ

κ+ xτ

)α
;

iv) Loggamma (α > 0, β > 0):

f(x) =
αβ

Γ(β)
(lnx)β−1x−α−1.

v) Lognormal (−∞ < µ <∞, σ > 0):

f(x) =
1√

2πσx
exp

{
−(lnx− µ)2

2σ2

}
;

vi) Pareto (α > 0, κ > 0):

F (x) =

(
κ

κ+ x

)α
;

vii) Weibull (c > 0, 0 < τ < 1):

F (x) = exp(−cxτ );

From the examples shown above we see that the class S essentially contains three kinds

of distributions: Pareto-like, Logmormal-like, and heavy-tailed Weibull-like distributions.

Next, we will present several properties of the subexponential class.

Lemma 2.2.1 (Lemma A 3.15 of Embrechts 1997). Suppose F and G are dfs on (0,∞). If

F ∈ S and

lim
x→∞

G(x)

F (x)
= c ∈ (0,∞),

then G ∈ S.

Lemma 2.2.2 (Lemma 4.4 of Tang 2004). Consider the convolution of two distributions

F1 and F2 on (−∞,∞). If F1 ∈ S and F2(x) . cF1(x) for some c ≥ 0, then

F1 ∗ F2(x) . (1 + c)F1(x).
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In particular, with c = 0, if F1 ∈ S and F2(x) = o
(
F1(x)

)
, then

F1 ∗ F2(x) ∼ F1(x).

Cline and Samorodnitsky (1994) studied the subexponentiality of the product

Z = XY, (2.2.4)

Lemma 2.2.3 (Theorem 2.1 of Cline and Samorodnitsky 1994) Let X and Y be two in-

dependent random variables with distribution functions F on R and G on R+, respectively.

Denote by H the distribution function of their product XY , We have the H ∈ S if F ∈ S

and there is a function a(·): [0,∞)→ [0,∞) satisfying:

(a) a(x) ↑ ∞,

(b) a(x)/x ↓ 0,

(c) G (a(x)) = o
(
H(x)

)
, and

(d) F (x− a(x)) ∼ F (x).

2.2.2 Regular Variation

Another popular class of heavy-tailed distributions is the class of regularly-varying distribu-

tions, which is of also a subclass of subexponential distributions.

Definition 2.2.2 (Regular Variation in Karamata’s Sense)

(a) A positive Lebesgue measurable function L on (0,∞) is slowly varying at∞ (we write

L ∈ R0) if

lim
x→∞

L(tx)

L(x)
= 1, t > 0 (2.2.5)
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(b) A positive Lebesgue measurable function H on (0,∞) is regularly varying at ∞ of

index α ∈ R (we write H ∈ Rα) if

lim
x→∞

H(tx)

H(x)
= tα, t > 0 (2.2.6)

Usually we write

R = {F df on (0,∞) : lim
x→∞

F (xy)

F (x)
= y−α for some α > 0}. (2.2.7)

We remark that the notion of regularly-varying distributions has been extensively investi-

gated in the literature. For details, we refer the reader to Bingham et al. (1987) and Resnick

(1987).

next we recall some properties of regular variation.

Lemma 2.2.4 (Theorem A3.6 of Embrechts et al. (1997)) Let f ∈ Rα for some α ∈ R and

f is locally bounded on [0,∞).

(a) If α > −1,

lim
x→∞

∫ x
0
f(t)dt

xf(x)
=

1

α + 1
;

if α < −1,

lim
x→∞

∫∞
x
f(t)dt

xf(x)
= − 1

α + 1
.

(b)Suppose F is absolutely continuous with density f such that for some α > 0,

lim
x→∞

xf(x)

F (x)
= α,

then f ∈ R−1−α and consequently F ∈ R−α

The above results are usually referred to as Karamata’s Theorem.
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Lemma 2.2.5 (Convolution Closure of regularly Varying Distributions). Let X and Y be

two independent, regularly varying, non-negative random variables with index α ≥ 0. Then

X + Y is regularly varying with index α and

Pr(X + Y > x) ∼ Pr(X > x) + Pr(Y > x), x→∞.

These results can be found in Lemma 1.3.4 of Embrechts et al. (1997).

Lemma 2.2.6 (Proposition 3 of Breiman (1956)). Let X and Y be two independent random

variables distributed by F and G, respectively, where Y is nonnegative. If F ∈ R−α for some

0 < α <∞ and E[Y β] <∞ for some β > α, then

lim
x→∞

Pr(XY > x)

Pr(X > x)
= E[Y α]

An extension of regular variation is rapid variation. By definition, a distribution F on

(−∞,∞) is said to be rapidly varying which denoted by R−∞, if F (x) > 0 for all x and

lim
x→∞

F (tx)

F (x)
= 0

holds for all t > 1 . For example, lognormal, Benktander-type I and II, and Weibull distri-

butions all belong to this class.

2.2.3 Other Related Classes of Heavy-Tailed Distributions

One useful subclass of S is A, which was introduced by Konstantinides et al. (2002). By

definition, a distribution F on [0,∞) is said to belong to the class A if F ∈ S, and for some

a > 1,

lim sup
x→∞

F (ax)

F (x)
< 1. (2.2.8)
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We remark that the classA almost coincides with S because it excludes only some very heavy-

tailed distribution, such as slowly-varying distributions. Clearly,R ⊂ A, and S∩R−∞ ⊂ A.

Indeed, relation (2.2.8) is satisfied by almost useful subexponential classes with un-

bounded supports on the right, including Pareto, Lognormal, and heavy-tailed Weibull dis-

tributions.

The class of long-tailed distributions, denoted by L, and the class of dominatedly-varying

distributions, denoted by D, are closely related to the class S.

A distribution F on (−∞,∞) is said to belong to L, if F (x) > 0 for all x and

lim
x→∞

F (x− y)

F (x)
= 1, (2.2.9)

holds for all (or, equivalently, for some) y 6= 0.

A distribution F on (−∞,∞) is said to belong to D, if F (x) > 0 for all x and

lim sup
x→∞

F (ax)

F (x)
<∞, (2.2.10)

holds for all (or, equivalently, for some) 0 < a < 1.

A famous subclass of the intersection L ∩ D is ERV, which is the class of distributions

with extended-regularly-varying tails. By definition, a distribution F on (−∞,∞) is said

to belong to ERV(−α,−β) for some 0 < α ≤ β < ∞ if F (x) > 0 holds for all x and the

relations:

y−β ≤ lim inf
x→∞

F (xy)

F (x)
≤ lim sup

x→∞

F (xy)

F (x)
≤ y−α, (2.2.11)

hold for all y ≥ 1.

A larger class is the class C of distributions with consistently-varying tails defined by

lim
y↑1

lim inf
x→∞

F (xy)

F (x)
= lim

y↓1
lim sup
x→∞

F (xy)

F (x)
= 1. (2.2.12)
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The following inclusions hold for these heavy-tailed distribution classes:

• R ⊂ ERV ⊂ C ⊂ D ∩ L ⊂ S ⊂ L ⊂ K,

• D * S and S * D.

The inclusions R ⊂ ERV ⊂ C ⊂ D ∩ L can be easily verified by their definitions. For the

other inclusions above, see Embrechts et al. (1997) for detailed discussions.

Next we present properties of the related heavy-tailed clsses in the following lemma.

Lemma 2.2.7 (Lemma 3.2 of Tang and Tsitsiashvili 2003) Let F1 and F2 be two distribution

functions on R and let F = F1 ∗ F2. If F1 ∈ S, F2 ∈ L and F2(x) = O
(
F1(x)

)
, then F ∈ S

and F (x) ∼ F1(x) + F2(x).

2.2.4 Matuszewska Indices

In this subsection, we introduce Matuszewska indices of a distribution, which are connected

with many useful properties of heavy-tailed classes. Following Theorem of 2.1.5 and Corollary

2.1.6 of Bingham et al. (1987), for a df F on (−∞,∞) and for each v > 0, they defined

J+
F = inf

v>1

{
− logF ∗(v)

log v

}
, J−F = inf

v>1

{
− logF

∗
(v)

log v

}
,

where

F ∗(v) = lim inf
x→∞

F (vx)

F (x)
, F

∗
(v) = lim sup

x→∞

F (vx)

F (x)
. (2.2.13)

The quantities J+
F and J−F are called the upper and lower Matuszewska indices of the nonnega-

tive and nondecreasing function f = 1/F , respectively. In the work of Tang and Tsitsiashvili

(2003), they simply called the quantities J+
F and J−F the upper and lower Matuszewska indices

of the distribution F , respectively. For more details of Matuszewska indices, see Chapter 2.1

of Bingham et al. (1987) and Section 3 of Cline and Samorodnitsky (1994).
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Clearly, F ∈ D if and only if J+
F <∞; F ∈ ERV(−α,−β) then J−F ≥ α and J+

F ≤ β; and

F ∈ Rα then J−F = J+
F = α.

Next, we give some useful lemmas.

Lemma 2.2.8 (Proposition 2.2.1 of Bingham et al. 1987). Let F be a distribution on

(−∞,∞),

(a) For every p1, 0 < p1 < J−F ≤ ∞, there are positive constants C1 and x1 such that the

inequality

F (y)

F (x)
≤ C1

(y
x

)−p1
(2.2.14)

holds whenever y ≥ x ≥ x1

(b) For every p2, 0 ≤ J+
F < p2 <∞, there are positive constants C2 and x2 such that the

inequality

F (y)

F (x)
≥ C2

(y
x

)−p2
, (2.2.15)

holds whenever y ≥ x ≥ x2.

Fixing the variable x = x1 ∨ x2 in (2.2.14) and (2.2.15), we easily see that, for any

0 < p1 < J−F

F (x) = o(x−p1), (2.2.16)

and for any J+
F < p2 <∞

x−p2 = o
(
F (x)

)
. (2.2.17)

In particular, a distribution F ∈ ERV(−α,−β), α < J−F and β > J+
F , the inequalities in

(2.2.14) and (2.2.15) apply to F ∈ ERV(−α,−β).
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Lemma 2.2.9 (Theorem 1.5.6 of Bingham et al. (1987)). If F ∈ R−α for some α ≥ 0, then

for arbitrarily chosen C > 1 and 0 < ε < α, there exists x0 > 0 such that for all x, y ≥ x0,

F (y)

F (x)
≤ C max

((y
x

)−α+ε

,
(y
x

)−α−ε)
. (2.2.18)

This is the well-known Potter’s bound for the class R

2.2.5 Extreme Value Theory for Insurance and Finance

Extreme Value Theory is a classical topic in probability theory and mathematical statistics.

In this chapter, we consider three families of possible limit laws which are known as extreme

value distributions. Firstly, let us give a brief review of maximum domains of attraction.

A distribution function F belongs to the maximum domain of attraction of an extreme

value distribution F0, written F ∈ MDA(F0), if

lim
n→∞

sup
−∞<x<∞

|F n(anx+ bn)− F0(x)| = 0, (2.2.19)

holds for some normalizing constants an > 0 and bn ∈ R.

In other words, for i.i.d. samples {X1, X2, . . .} from F , denoting byMn = max{X1, . . . , Xn}

the block maxima, we have

Mn − bn
an

d
=⇒ F0.

This is the classical Fisher-Tippett theorem, see Embrechts et al. (1997). By the Fisher-

Tippett theorem, only three choices for F0 are possible, namely Fréchet distribution(Φα),

Gumbel distribution(Λ), and Weibull distribution (Ψα).

The functional form of the Fréchet distribution is

Φα(x) = exp{−x−α}, α, x > 0.
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F ∈ MDA(Φα) if and only if xF =∞ and

lim
x→∞

F (xy)

F (x)
= y−α, y > 0.

This means that F is regularly varying at infinity with index −α. There are some

examples of MDA(Φα), also see table 3.4.2 of Embrechts et al. (1997).

• Burr: F (x) = (κ/(κ+ xτ ))α for α > 0, κ > 0, τ > 0;

• Cauchy: f(x) = (π(1 + x2))
−1
, x ∈ R;

• F-distribution: for d1 > 0 and d2 > 0,

f(x) =
1

B (d1/2, d2/2)

(
d1

d2

)d1/2
x
d1
2
−1

(
1 +

d1

d2

x

)− d1+d2
2

;

• Loggamma: f(x) = αβ

Γ(β)
(lnx)β−1x−α−1 for α > 0, β > 0;

• Pareto: F (x) = (κ/(κ+ x))α for α > 0, κ > 0;

• Student’s t: for v > 0,

f(x) =
Γ((v + 1)/2)√
vπΓ(v/2)

(
1 +

x2

v

)−(v+1)/2

.

The Gumbel distribution is given by

Λ(x) = exp{−e−x}, x ∈ R.

F ∈ MDA(Λ) if and only if xF ≤ ∞ and there is some positive auxiliary function a(·) such

that

lim
x↑xF

F (x+ ya(x))

F (x)
= e−y, y ∈ R.
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Recall that the auxiliary function a(·) can be chosen to be the mean excess loss function:

a(x) = E(X − x|X > x).

There are some examples of MDA(Λ) also see Table 3.4.2 of Embrechts et al. (1997)

• Benktander-type I: for α > 0, β > 0,

F (x) = (1 + 2(β/α) lnx) exp{−β(lnx)2 − (α + 1) lnx};

• Benktander-type II: for α > 0, 0 < β < 1,

F (x) = eα/βx−(1−β) exp{−αxβ/β};

• Gamma: f(x) = βα

Γ(α)
xα−1e−βx for α > 0 and β > 0;

• Lognormal: for −∞ < µ <∞ and σ > 0,

f(x;µ, σ2) =
1√

2πσx
exp{−(lnx− µ)2/(2σ2)};

• Weibull-like: F (x) = exp{−cxτ} for c > 0, τ > 0

The functional form of the Weibull distribution is

Ψα(x) = exp{− |x|α)}, α > 0, x ≤ 0.

It is know that F ∈ MDA(Ψα) if and only if xF <∞ and

lim
u→∞

F (xF − x/u)

F (xF − 1/u)
= xα, ∀x > 0.

Hence, MDA(Ψα) can only be used to model bounded risk variables. Examples for the

Weibull case:
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• Beta: f(x) = Γ(a+b)
Γ(a)Γ(b)

xa−1(1− x)b−1 for a > 0 and b > 0;

• Uniform: on (a, b);

• The distribution of stochastic structure of the financial risk Y = 1
c+R

, which will be

introduced in Chapter 4, belongs to MDA(Ψγ), (c > 0 is a constant and R is a random

variable), if R is distributed by a gamma distribution: for α > 0 and β > 0,

f(x) =
βα

Γ(α)
xα−1e−βx,

or an F-distribution: for d1 > 0 and d2 > 0,

f(x) =
1

B (d1/2, d2/2)

(
d1

d2

)d1/2
x
d1
2
−1

(
1 +

d1

d2

x

)− d1+d2
2

.
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Chapter 3

A Risk Model with Dependent Claim
Sizes or/and Inter-arrival Times

3.1 Introduction

In this chapter, we consider risk models in finite-time horizon allowing dependent claims

and dependence between claim sizes and their inter-arrival times. In recent years, some

researchers have considered risk models with dependence assumptions. Among them, Kaas

and Tang (2005) inteoduced negative dependence for claim sizes and Albrecher and Teugels

(2006) first proposed dependence between the waiting time for a claim and its actual size. In

the latter, they described the surplus process as a random walk with independent increments

over claim arrival times.

3.2 Some Basic Results on the Risk Model with De-

pendent Claim sizes

The material presented in this subsection is mainly extracted from Tang (2006). Now as-

sume that the claims, A1, A2, ..., form a sequence of identically distributed, not necessar-

ily independent, and nonnegative random variables with common distribution function F ,

and their inter-arrival times, B1, B2, ..., form another sequence of i.i.d., nonnegative, and
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non-degenerate-at-zero random variables and are independent of the former sequence. Let

Sn =
∑n

i=1Ai, n = 1, 2, ..., denote the partial sums. Here, we assume that the random

variables A1, A2, ..., are negatively dependent. The definition of negative dependence is as

follows:

Definition 3.2.1 We call random variables {Ak, k = 1, 2, ...}

(1) Lower Negatively Dependent (LND) if for each n = 1, 2, ..., and all x1, ..., xn,

Pr(A1 ≤ x1, ..., An ≤ xn) ≤
n∏
k=1

Pr(Ak ≤ xk); (3.2.1)

(2) Upper Negatively Dependent (UND) if for each n = 1, 2, ..., and all x1, ..., xn,

Pr(A1 > x1, ..., An > xn) ≤
n∏
k=1

Pr(Ak > xk); (3.2.2)

(3) Negatively Dependent (ND) if both (3.2.1) and (3.2.2) hold for each n = 1, 2, ..., and all

x1, ..., xn.

Recall that these random variables are called positively dependent (PD) if the inequalities

in (3.2.1) and (3.2.2) hold both in the reverse direction. Roughly speaking, the negative de-

pendence structure describes that the tails of finite-dimensional distributions of the random

variables A1, A2, ... in the lower left and upper right corners are dominated by the corre-

sponding tails of the finite dimensional distributions of a sequence of independent random

variables with the same marginal distributions. It is worthy mentioning that for n = 2,

the LND, UND, and ND structure are equivalent; see, for example, Lehmann (1966). An

extension of this study is pairwise negatively dependence. We say that a sequence of random

variables {A1, A2, ...} is pairwise negative dependent if for all positive integers i 6= j and all
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real numbers xi and xj,

Pr(Ai ≤ xi, Aj ≤ xj) ≤ Pr(Ai ≤ xi) Pr(Aj ≤ xj), (3.2.3)

or, equivalently,

Pr(Ai > xi, Aj > xj) ≤ Pr(Ai > xi) Pr(Aj > xj). (3.2.4)

A simple example in which the underlying random variables are pairwise ND but not inde-

pendent can be constructed in terms of the well-known Farlie-Gumbel-Morgenstern (FGM)

distribution. An n-dimensional FGM distribution has the form

FA1,...,An(x1, ..., xn) =

(
n∏
i=1

Fi(xi)

)(
1 +

∑
1≤j≤k≤n

ajkF j(xj)F k(xk)

)
, (3.2.5)

where F1, ..., Fn are the corresponding marginal distributions of the random variablesA1, ...An,

and ajk are real numbers fulfilling certain requirements so that FA1,...,An is a proper n-

dimensional distribution. Clearly, the random variables A1, ..., An are pairwise ND if and

only if the coefficients ajk are all non-positive. We refer the reader to Kotz et al. (2000) for

a general account on the multivariate FMG distributions. See also Proposition 2.1 of Li et

al. (2006) for another simple construction of a sequence of pairwise ND but not independent

random variables with arbitrarily prespecified marginal distributions.

We also remark that these notions of negative dependence are much more verifiable than

the commonly used notion of negative association, the latter of which was introduced by

Alam and Saxena (1981) and Joag-Dev and Proschan (1983). See also Bingham and Nilisani

(2004) for a recent account and for a list of relevant references.

According to this model, Tang (2006) found that the asymptotic behavior of precise large

deviations is insensitive to the negative dependence.
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Theorem 3.2.1 Let {Ak, k = 1, 2, ...} be UND with commom distribution F ∈ C and mean

0. Then for each fixed γ > 0, the relation

Pr(Sn > x) . nF (x), (3.2.6)

holds uniformly for all x ≥ γn. That is

lim sup
n→∞

sup
x≥γn

Pr(Sn > x)

nF (x)
≤ 1. (3.2.7)

Theorem 3.2.2 Let {Ak, k = 1, 2, ...} be LND with commom distribution F ∈ C and the

mean 0 satisfying xF (−x) = o
(
F (x)

)
, x→∞. Then for each fixed γ > 0, the relation

Pr(Sn > x) & nF (x), (3.2.8)

holds uniformly for all x ≥ γn. That is

lim sup
n→∞

sup
x≥γn

Pr(Sn > x)

nF (x)
≥ 1. (3.2.9)

Liu (2009) extended the results of Tang (2006) to the extended negatively dependent

case. We call random variables {Ai, i ≥ 1} extended negatively dependent (END) if there

exists M > 0 such that both

Pr(A1 ≤ x1, ..., An ≤ xn) ≤M
n∏
k=1

Pr(Ak ≤ xk) (3.2.10)

and

Pr(A1 > x1, ..., An > xn) ≤M

n∏
k=1

Pr(Ak > xk) (3.2.11)

hold for each n = 1, 2, ... and all x1, ..., xn.

The END structure is more general than the ND structure in that it can reflect not

only a negative dependence but also a positive one, to some extent. Liu (2009) derived the

following result.
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Theorem 3.2.3 Let {Ai, i ≥ 1} be END each with mean 0. If

lim
n→∞

1
n

∑n
i=1 F i(x)

F (x)
= 1, and lim

n→∞

1
n

∑n
i=1 F i(−x)

F (−x)
= 1 (3.2.12)

hold, where F ∈ C satisfies F (−x) = o
(
F (x)

)
, x → ∞ with a finite mean, then for large

enough γ relation

Pr(Sn > x) ∼ nF (x), n→∞ (3.2.13)

holds uniformly for all x ≥ γn as n→∞

Chen et al. (2010) extended the results of Tang (2006) and Liu (2009) to random sums.

In particular, they established a precise large deviation result for a compound renewal risk

model in which innovations modelled as real-valued random variables are ND with common

consistently-varying-tailed distribution, and their inter-arrival times are also ND.

Theorem 3.2.4 Let {Ak, k = 1, 2, ..., } be a sequence of nonnegative and END random

variables with common distribution F ∈ C and finite mean µ > 0, and let {Nt, t > 0}

be a counting process (that is, a non-negative, non-decreasing, and integer-valued stochastic

process) independent of {Ak, k = 1, 2, ..., } and satisfying

E
(
Np
t 1(Nt>(1+δ)λt)

)
= O(λt), t→∞, (3.2.14)

for some p > J+
F and all δ > 0. Then, for every fixed γ > 0, the relation

Pr (St − µλt > x) ∼ λtF (x), t→∞, (3.2.15)

holds uniformly for all x ≥ γλt.

Condition (3.2.14) first appeared in Tang et al. (2001) for weakening corresponding con-

ditions in Klüppelberg and Mikosch (1997). This condition is fulfilled at least by commonly-

used renewal counting process; see Lemma 3.5 of Tang et al. (2001). Other research on
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precise large deviation for random sums can be found in Ng et al. (2004), Kaas and Tang

(2005), among others.

3.3 Some Basic Results on the Risk Model with De-

pendence between Claim Sizes and Interarrival Times

In this subsection dependence between claims and their interarrival times in the context

of risk theory is discussed. Boudreault et al. (2006) introduced a risk model with time-

dependent claim sizes and dependence structure between the claim amount Ak and the

interclaim time Bk. They suppose the (conditional) density of Ak|Bk to be defined as a

special mixture of two arbitrary density functions f1 and f2 (with respective means µ1 and

µ2), i.e.,

fAk|Bk(x|y) = e−βyf1(x) + (1− e−βy)f2(x), x, y ≥ 0, (3.3.1)

for k = 1, 2, .... From (3.3.1), the weight assigned to the c.d.f. f1 is an exponential decreasing

function (at rate β) of the time elapsed since the last claim Bk.

Note that this dependence structure can be linked to the one proposed by Albrecher

and Boxma (2004). Next, consider a threshold structure where the threshold r.v.’s {Cj, j =

1, 2, ...} from a sequence of i.i.d. exponentially distributed r.v.’s with mean 1
β
. We assume

that the threshold r.v.’s are independent of all other sources of randomness in the proposed

risk model. If the interclaim time Bj is larger (smaller) than the threshold r.v. Cj, then the

density function of the claim amount Aj is f1(f2). These assumptions lead to (3.3.1) for the

density function of Ak|Bk. The risk model with time-dependent claim sizes and dependence

structure (3.3.1) can be viewed as a more realistic model (than the classical compound

Poisson risk model) to approximate the behavior of the aggregate claim process in a natural

35



catastrophe context. Indeed, suppose Bj is the waiting time between the (j − 1)th and jth

catastrophes and such an event has two possible intensities, say Ij = 1(usual), 2(severe). It

results

Pr(Ij = 1|Bj = y) = e−βy = 1− Pr(Ij = 2|Bj = y), (3.3.2)

and hence

Pr(Aj ≤ x|Ij = i) = Fi(x), i = 1, 2. (3.3.3)

For example, considering earthquakes, one can expect that the longer the time between two

events is the larger the claim amount due to the next catastrophe will be. Hence, more

weight should be assigned to the distribution F2 which is chosen with a heavier tail than F1.

Another dependent structure between claims and their intervals was proposed by Cossette

et al. (2008) in the study of an extension of the classical risk model. They assumed that the

joint distribution of (A,B) is defined with a generalized FGM copula. Copulas are referred

as ’functions that join or couple multivariate distribution functions to their one-dimensional

marginal distribution function’ and as ’distribution functions whose one-dimensional margins

are uniform’. The FGM copula, which belongs to the family of copulas introduced and

studied by Rodriguez-Lallena and Ubena-Flores (2004), is defined by

C(u, v) = uv + θh(u)g(v), (3.3.4)

where h and g are two non-zero real functions with support [0, 1]. In this paper, they

considered the special case where

h(u) = ua(1− u)b; and g(v) = vc(1− v)d. (3.3.5)
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with a, b, c, d ≥ 1. Plugging (3.3.5) into (3.3.4), the expression of the copula is then given by

C(u, v) = uv + θua(1− u)bvc(1− v)d. (3.3.6)

It is obviously an extension to the classical FGM copula

C(u, v) = uv + θuv(1− u)(1− v), −1 ≤ θ ≤ 1. (3.3.7)

The pdf associated to (3.3.4) is given by

c(u, v) = 1 + θh
′
(u)g

′
(v). (3.3.8)

The joint cdf FA,B is given by

FA,B(x, t) = C (FA(x), FB(t)) (3.3.9)

= FA(x)FB(t) + θ (FA(x))a (1− FA(x))b (FB(t))c (1− FB(t))d ,

and the joint pdf fA,B of (A,B) is

fA,B(x, y) = c (FA(x), FB(t)) fA(x)fB(t) (3.3.10)

= fA(x)fB(t) + θh
′
(FA(x)) g

′
(FB(t)) fA(x)fB(t).

Asimit and Badescu (2010) concerned with a different dependent structure. They assumed

that the bivariate random vectors (Ai, Bi), i = 1, 2, ..., are i.i.d. Moreover, there exists a

positive and locally bounded function g(·) such that the relation

Pr(A1 > x|B1 = y) ∼ Pr(A1 > x)g(y) (3.3.11)

holds uniformly for all y ∈ (0, T ] as x→∞, or equivalent,

lim
x→∞

sup
y∈(0,T ]

∣∣∣∣Pr(A1 > x|B1 = y)

Pr(A1 > x)g(y)
− 1

∣∣∣∣ = 0. (3.3.12)
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Relation (3.3.11) defines a general dependence structure which is easily verifiable for some

commonly used bivariate copulas, and allows both positive and negative dependence. It is

also very convenient when dealing with the tail behaviour of the sum or product of two

dependent random variables.

Recently, Chen and Yuen (2012) consider a size dependent renewal risk model and ob-

tained a result of precise large deviations of random sums. They assumed that there is

a nonnegative random variable B∗ such that B conditional on (A > x) is stochastically

bounded by B∗ for all large x > 0; in other words, there is some x0 > 0 such that it holds

for all x > x0 and t ∈ [0,∞) that

Pr(B > t|A > x) ≤ Pr(B∗ > t). (3.3.13)

In contrast to (3.3.11), (3.3.13) describes a dependence structure via the conditional distri-

bution of the inter-arrival time given the subsequent claim size being large. Hence, the model

under (3.3.13) is termed as a size-dependent model. Roughly speaking, (3.3.13) means that

A becoming large does not drag B to infinity. The size-dependent model seems more natural

than the time-dependent model in view of the perception that the waiting time for a large

claim is dependent on the claim size but not vice versa. Actually, let (3.3.11) be valid. As

x→∞, it holds uniformly for all t ∈ [0,∞) that

Pr(B > t|A > x) =
Pr(A > x,B > t)

Pr(A > x)

=

∫ ∞
t

Pr(A > x|B = s)

Pr(A > x)
Pr(B ∈ ds)

≤ 2

∫ ∞
t

h(s) Pr(B ∈ ds)

Note that G0 defined by G0(ds) = h(s) Pr(B ∈ ds) is a proper distribution on [0,∞) since

E[h(B)] = 1, and that the right-hand side above is equal to 2G0(t). Then, one can construct
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a nonnegative random variable B∗ distributed by G∗ = (1−2G0)∨0 to serve as the stochastic

upper bound for Y conditional on (A > x) for all large x.

Recall that two random variables A and B distributed by F and G, respectively, are

called asymptotically independent (in the upper tail) if

lim
u↑1

Pr (B > G←(u)|A > F←(u)) = 0, (3.3.14)

see Section 5.2 of McNeil et al. (2005) for the definition. Clearly, (3.3.13) implies asymptotic

independence of (A,B). Chen an Yuen (2012) derived the following result:

Theorem 3.3.1 Consider the aggregate amount of claims St =
∑Nt

k=1Ak, t ≥ 0. In addition

to (3.3.13), assume that F ∈ C, E[A] = µ and E[B] = 1/λ ∈ (0,∞). Then, for arbitrarily

given γ > 0, it holds uniformly for all x ≥ γt that

Pr(St − µλt > x) ∼ λtF (x), t→∞. (3.3.15)
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Chapter 4

A Risk Model with Dependent
Insurance Risk or/and Financial Risk

4.1 Introduction

Consider an insurer in a discrete-time risk model with time horizon n. Within each period

i the total premium income is denoted by Ci and the total claim amount plus other daily

costs is denoted by Ai, both Ci and Ai are non-negative random variables. Suppose that

the insurer positions himself in a stochastic economic environment, which leads to an overall

stochastic accumulation factor Wi over each period i. Thus, with the initial wealth U0 = x

the current wealth of the insurer at time n is

Un = x
n∏
j=1

Wj +
n∑
i=1

(Ci − Ai)
n∏

j=i+1

Wj (4.1.1)

Now introduce Xi = Ai−Ci and Yi = W−1
i which are respectively interpreted as the net loss

and the overall stochastic discount factor over period i. Following Tang and Tsitsiashvili

(2003), the random variables {Xi}, i = 1, ..., 2 are called insurance risks and {Yi} are called

financial risk.
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The discounted value of the insurer’s wealth process at time n is

Un

(
n∏
j=1

Yj

)
=

(
x

n∏
j=1

Wj +
n∑
i=1

(Ci − Ai)
n∏

j=i+1

Wj

)(
n∏
j=1

Yj

)

= x−
n∑
i=1

Xi

i∏
j=1

Yj

= x− Sn. (4.1.2)

The last sum Sn above represents the stochastic present value of aggregate net loss up to

time n. It is often written in the form

Sn =
n∑
i=1

θiXi, n = 1, 2, ..., (4.1.3)

with θi =
∏i

j=1 Yi Then the probability of ruin by time n is equal to

ψ(x;n) = Pr

(
inf

1≤m≤n
Um < 0

)
= Pr

(
inf

1≤m≤n
Um

m∏
j=1

Yj < 0

)

= Pr

(
inf

1≤m≤n
(x− Sm) < 0

)
= Pr

(
max

1≤m≤n
Sm > x

)
(4.1.4)

= Pr(Mn > x), (4.1.5)

where Mn = max1≤m≤n Sm, n ≥ 1. Therefore, the finite-time ruin probability is the tail

probability of the maximal present value of the aggregate net loss. Norberg (1999) first

introduced the concepts of insurance and financial risks in modeling insurance business, the

first kind of risk is the traditional liability related to the insurance portfolio, and the second

is the asset risk related to the investment portfolio. Now, we give an example of financial

risks. Consider a financial market consisting of a risk-free bond with constant interest rate

r ≥ 0 and a risky stock with stochastic return rate Ri > −1 over period i. Denote by p the
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proportion of the wealth invested in the stock. Note that the insurer may not be allowed to

borrow additional money or take short positions. Thus, p ∈ [0, 1]. Denote by Di the value

process of this investment portfolio. It holds that

Di = (1− p)Di−1(1 + r) + pDi−1(1 +Ri).

Then the stochastic accumulation factor is

Wi =
Di

Di−1

= (1− p)(1 + r) + p(1 +Ri)

and the corresponding financial risk is

Yi =
1

(1− p)(1 + r) + p(1 +Ri)

4.2 Ruin with Insurance and Financial Risks Following

a Special Dependence Structure

Recently, Chen (2011) studied the finite-time ruin probability in a discrete-time risk model

in which insurance and financial risks form a sequence of independent and identically dis-

tributed random pairs following a common bivariate Farlie-Gumbel- Morgenstern distribu-

tion function with parameter −1 ≤ θ ≤ 1 governing the strength of dependence. For the

subexponential case, when −1 < θ ≤ 1, a general asymptotic formula for the finite-time

ruin probability was derived. However, the derivation there is not valid for θ = −1. In this

section, we complete the study by extending Chen’s work to θ = −1. It turns out that the

finite-time ruin probability behaves essentially differently for −1 < θ ≤ 1 and θ = −1.

Consider a discrete-time insurance risk model. Within period i, the net insurance loss is

denoted by a real-valued random variable Xi, i ∈ N. Suppose that the insurer makes both
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risk-free and risky investments, leading to an overall stochastic discount factor, denoted by

a nonnegative random variable Yi, over the same time period. As usual, the probability of

ruin by time n is defined to be

ψ(x;n) = Pr

(
max

1≤m≤n

m∑
i=1

Xi

i∏
j=1

Yj > x

)
, n ∈ N, (4.2.1)

where x ≥ 0 is interpreted as the risk reserve of the insurer.

Recently, Chen (2011) studied the asymptotic behavior of the ruin probability ψ(x;n) in

(4.2.1) for the case with dependent insurance and financial risks. Precisely, it is assumed that

(Xi;Yi), i ∈ N, form a sequence of independent and identically distributed (i.i.d.) random

pairs with a generic random pair (X;Y ) whose components are dependent. The dependence

between X and Y is realized via a bivariate Farlie-Gumbel-Morgenstern (FGM) distribution

of the form ∏
(x, y) = F (x)G(y)

(
1 + θF (x)G(y)

)
, (4.2.2)

where F = 1 − F on R and G = 1 − G on R+ are marginal distribution functions, and

θ ∈ [−1, 1] is a parameter governing the strength of dependence. Under the assumptions

that F is a subexponential distribution function, G fulfills some constraints in order for

the product convolution of F and G to be a subexponential distribution function too, and

θ ∈ (−1, 1], Chen (2011) derived a general asymptotic formula for ψ(x;n). However, the

assumption θ 6= −1 is essentially applied there; see related discussions on Page 1041 of Chen

(2011). Hence, the derivation of of Chen (2011) is not valid for the case θ = −1.

The FGM distribution(4.2.2) describes an asymptotically independent scenario. Pre-

cisely, denote its corresponding copula by C(u, v) = uv (1 + θ(1− u)(1− v)) and the sur-

vival copula by Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v) for (u, v) ∈ (0, 1)2 . For the FGM
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case, it is clear that Ĉ(u, v) = C(u, v). For every θ ∈ [−1, 1], the coefficient of upper tail

dependence is

χ = lim
u↓0

Ĉ(u, u)

u
= 0.

See Section 5.2 of Mcneil et al. (2005) for details of the concepts used here. Nonetheless,

asymptotically independent random variables may still show different degrees of dependence.

In this regard, Coles et al. (1999) proposed to use

χ̂ = lim
u↓0

2 log u

log Ĉ(u, u)
− 1.

to measure more subtly the strength of dependence in the asymptotic independence case.

With a bit of calculation, we see that χ̂ = 0 for θ ∈ (−1, 1] while χ̂ = −1/3 for θ = −1. This

illustrates the essential difference between the cases −1 < θ ≤ 1 and θ = −1.

In this section we look at the same problem but for the case θ = −1 and aim to comple-

ment the work of Chen (2011).

4.2.1 The Main Result

For simplicity, we say a function a(.) define on R+ is an auxiliary function if it satisfies

0 ≤ a(x) < x/2, a(x) ↑ ∞ and a(x)/x ↓ 0.

As in Yang et al. (2011), for a random variable X, we introduce X∗∨ and X∗∧, which are

identically distributed as X∗1 ∨ X∗2 and X∗1 ∧ X∗2 , respectively, and are independent of all

other sources of randomness, where X∗1 and X∗2 are two i.i.d. copies of X. Trivially, if X is

distributed by F, then X∗∨ is distributed by F 2 and the tail of X∗∧ is F
2
.

For two independent random variables X∗ and Y ∗ with distribution functions F on R

and G on R+, respectively, denote by H∗ = F ⊗G the distribution function of the product
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X∗Y ∗. Thus,

H∗(x) =

∫ ∞
0

F

(
x

y

)
G(dy), x > 0. (4.2.3)

We recall here some facts, which will be used tacitly for a few times in this thesis. As usual,

define the essential upper bound of Y ∗ as

ŷ = sup{y : G(y) < 1}. (4.2.4)

If F ∈ L and 0 < ŷ < ∞, then by Theorem 2.2(iii) of Cline and Samorodnitsky (1994),

we have H∗ ∈ L. Recently, Chen and Yuen (2013) also proved the inverse of this assertion;

namely, if H∗ ∈ L and 0 < ŷ <∞ then F ∈ L. Moreover, if F ∈ S and 0 < ŷ <∞, then by

Theorem 2.1 of Cline and Samorodnitsky (1994), as recalled in Lemma 4.2.4 below, H∗ ∈ S.

However, we still do not know yet if the inverse of this assertion is correct.

Recall that the dependence structure of (X, Y ) is described by the joint distribution

function 4.2.2 with θ = −1; that is

∏
(x, y) = F (x)G(y)

(
1− F (x)G(y)

)
, (4.2.5)

with F on R and G on R+. Introduce independent random variables X∗, Y ∗, Y ∗1 , Y ∗2 , Y ∗3 ,...,

with the first identically distributed as X and the other identically distributed as Y . Also

recall X∗∨ and Y ∗∧ introduced in the beginning of this section. Denote by H the distribution

function of the product XY and, as in (4.2.3), denote by H∗ the distribution function of the

product X∗Y ∗. As before, ŷ denotes the essential upper bound of the random variable Y .

In the first result below, the condition 0 < ŷ ≤ 1 indicates that there are risk-free

investments only:

45



Theorem 4.2.1 Let the random pair (X, Y ) follow a bivariate FGM distribution function

(4.2.5) with F ∈ S and 0 < ŷ ≤ 1. Then, it holds for each n ∈ N that

ψ(x;n) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
, (4.2.6)

where, and throughout the paper, the usual convention
∏i

j=2 Y
∗
j = 1 is in force. In the second

result below, the condition 1 ≤ ŷ ≤ ∞ allows to include risky investments

Theorem 4.2.2 Let the random pair (X, Y ) follow a bivariate FGM distribution function

(4.2.5) with F ∈ L, 0 < ŷ ≤ ∞ and H ∈ S. The relation

ψ(x;n) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+

n∑
i=1

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
, (4.2.7)

holds for each n ∈ N under either of the following groups of conditions:

(i) there is an auxiliary function a(.) such that G(a(x)) = o
(
H(x)

)
and H (x− a(x)) ∼

H(x),

(ii) J−F > 0, and there is an auxiliary function a(.) such that G (a(x)) = o
(
H(x)

)
.

Lemma 4.2.5 below gives an asymptotic expression for H(x) in terms of the tails of

products of independent random variables,

H(x) ∼ P (X∗Y ∗∧ > x) + P (X∗∧Y
∗ > x).

This expression can help us verify G(a(x)) = o
(
H(x)

)
and H(x − a(x)) ∼ H(x) in

Theorem 4.2.1 in a given situation. We remark that the condition J−F > 0 in part (ii) of

Theorem 4.2.2 is so mild that, essentially, it does not exclude any distribution function

of practical interest. On the other hand, it is usually troublesome to verify the condition

H(x− a(x)) ∼ H(x) Therefore, part (ii) is more useful than part (i) for applications.
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One naturally wonders if one sum on the right-hand side of (4.2.7) is negligible. The

answer is diverse. Listed below are some important special cases, showing that sometimes

the second sum on the right-hand side of (4.2.7) is negligible and, hence, relation (4.2.7)

reduces to relation (4.2.6), but sometimes not.

Corollary 4.2.1 Let the random pair (X, Y ) follow a bivariate FGM distribution function

(4.2.2) with F ∈ S and 0 < ŷ <∞. Then relation (4.2.6) holds for each n ∈ N.

Corollary 4.2.1 extends Theorem 4.2.1 by loosing the restriction on Y from 0 < ŷ < 1 to

0 < ŷ <∞.

Corollary 4.2.2 Let the random pair (X, Y ) follow a bivariate FGM distribution function

(4.2.2). Relation (4.2.6) holds for each n ∈ N under either of the following groups of condi-

tions:

(i) F ∈ C and EY p <∞ for some p > J+
F .

(ii) F ∈ L ∩ D with J−F > 0 and EY p <∞ for some p > J+
F .

In Corollaries 4.2.1 and 4.2.2, if F ∈ R−α for some α ≥ 0, then applying Breiman’s

theorem (see Cline and Samorodnitsky 1994, who attributed it to Breiman 1965) to relation

(4.2.7), we obtain

ψ(x;n) ∼ E(Y∧)
α1− (EY α)n

1− EY α
F (x), (4.2.8)

where the ratio 1−(EY α)n

1−EY α is understood as n if α = 0. Relation (4.2.8) is identical to relation

(3.2) of Chen (2011) with θ 6= −1.

In the next two corollaries we look at a critical situation with the same heavy-tailed

insurance and financial risks. The first one below addresses the regular variation case:
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Corollary 4.2.3 Let the random pair (X, Y ) follow a bivariate FGM distribution function

(4.2.2). If F ∈ R−α for some α > 0, F (x) ∼ cG(x) for some c > 0, and EY α =∞, then it

holds for each n ∈ N that

ψ(x;n) ∼ (cE(Y∧)
α + E(X+

∧ )α) Pr

(
n∏
j=1

Y ∗j > x

)
. (4.2.9)

The second one below addresses the rapid variation case:

Corollary 4.2.4 Let the random pair (X, Y ) follow a bivariate FGM distribution function

(4.2.2). If F ∈ S ∩ R−∞ and F (x) ∼ cG(x) for some c > 0, then it holds for each n ∈ N

that

ψ(x;n) ∼ (1 + c) Pr

(
X∗Y ∗∧

n∏
j=2

Y ∗j > x

)
. (4.2.10)

4.2.2 Proof of Theorem 4.2.1

The following general derivations will be used in the proofs of both Theorems 4.2.1 and 4.2.2.

Notice the decomposition

Π = F 2G+ FG2 − F 2G2. (4.2.11)

and the facts that X∗∨ is distributed by F 2 and Y ∗∨ by G2. It follows that
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Pr (XY > x)

= Pr (X∗∨Y
∗ > x) + Pr (X∗Y ∗∨ > x)− Pr (X∗∨Y

∗
∨ > x)

= 2 Pr(X∗Y ∗ > x)− Pr(X∗∧Y
∗ > x)

+ 2 Pr(X∗Y ∗ > x)− Pr(X∗Y ∗∧ > x)

− 4 Pr(X∗Y ∗ > x) + 2 Pr(X∗Y ∗∧ ) + 2 Pr(X∗∧Y
∗ > x)− Pr(X∗∧Y

∗
∧ > x)

= Pr(X∗Y ∗∧ > x) + Pr(X∗∧Y
∗ > x)− Pr(X∗∧Y

∗
∧ > x). (4.2.12)

Define

Tn =
n∑
i=1

Xi

n∏
j=1

Yj, n ∈ N. (4.2.13)

Note that Tn is identically distributed as Sn in (4.1.3) due to the i.i.d. assumption on

the sequence {(Xi, Yi), i ∈ N}, and that it fulfills the recursive formula

Tn+1 = (Tn +Xn+1)Yn+1, n ∈ N. (4.2.14)

Similarly to in the derivation of (4.2.12), starting from (4.2.14) and applying the decom-

position in (4.2.11) we have

Pr (Tn+1 > x) = Pr ((Tn +X∗∨)Y
∗ > x) + Pr ((Tn +X∗)Y ∗∨ > x)− Pr ((Tn +X∗∨)Y

∗
∨ > x)

= Pr ((Tn +X∗)Y ∗∧ > x) + Pr ((Tn +X∗∧)Y
∗ > x)− Pr ((Tn +X∗∧)Y

∗
∧ > x)

= I1(x) + I2(x)− I3(x). (4.2.15)

The following lemma is well known and can be found in Embrechts and Goldie (1980),

Cline (1986, Corollary 1) and Tang and Tsitsiashvili (2003, Lemma 3.2):
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Lemma 4.2.1 Let F1 and F2 be two distribution functions on R and let F = F1 ∗ F2. If

F1 ∈ S, F2 ∈ L and F2(x) = O
(
F1(x)

)
, then F ∈ S and F (x) ∼ F1(x) + F2(x).

In the proof of Theorem (4.2.1) we need the lemmas (4.2.2) and (4.2.3):

Lemma 4.2.2 Let (X, Y ) follow a bivariate FGM distribution function (4.2.5). If F ∈ S

and 0 < ŷ <∞, then

Pr(X∗∧Y
∗ > x) = o (Pr(X∗Y ∗∧ > x)) , (4.2.16)

Pr(XY > x) ∼ Pr(X∗Y ∗∧ > x). (4.2.17)

Proof. We start from (4.2.12). Without loss of generality, assume ŷ = 1. We have

Pr(X∗∧Y
∗ > x)

Pr(X∗Y ∗∧ > x)
≤ F (x)2

Pr(X∗ > 2x, Y ∗∧ > 1/2)
=

1

G(1/2)2

F (x)2

F (2x)
. (4.2.18)

By Lemma 5.1 of Cai and Tang (2004), the right-hand side above converges to 0 as x→∞.

This proves relation (4.2.16). Looking at (4.2.12), relation (4.2.16) implies that the second

term on the right-hand side of (4.2.12) and, hence, the third term there also, is negligible.

Then relation (4.2.12) reduces to relation (4.2.17). The following lemma will enable us to

conduct an induction procedure in the proof of Theorem (4.2.1):

Lemma 4.2.3 In addition to the conditions in Lemma 4.2.2, assume 0 < ŷ ≤ 1. Then

XY +X∗ follows a subexponential distribution with tail satisfying, such that

Pr(XY +X∗ > x) ∼ Pr(XY > x) + Pr(X > x). (4.2.19)

Proof. As recalled at the end of previous section, the conditions F ∈ L and 0 < ŷ ≤ 1

imply that Pr(X∗Y ∗∧ > x) is a long tail, and so is Pr(XY > x) by relation (4.2.17). The
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condition 0 < ŷ ≤ 1 implies that Pr(XY > x) ≤ Pr(X > x). The desired results follow from

Lemma 4.2.1.

Proof of Theorem 4.2.1. As analyzed by Chen (2011), it suffices to prove the relation

Pr(Tn > x) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
. (4.2.20)

Note that the first term on the right-hand side of (4.2.20) is a subexponential tail and the

other terms have long tails and dominated by the first. Thus, as in Lemma 4.2.1, the right-

hand side of (4.2.20) indeed gives a subexponential tail for Tn. We employ the method of

induction to complete the proof of (4.2.20). Lemma 4.2.2 shows that relation (4.2.20) holds

for n = 1. Now assume that relation (4.2.20) holds for n and we are going to prove it for

n+1. For I1(x) in (4.2.15), since F ∈ S and 0 < ŷ ≤ 1, we have P (Tn > x) ≤ Pr(
∑n

i=1Xi >

x) ∼ nF (x). By Lemma (4.2.1),

I1(x) =

∫ 1

0

Pr

(
Tn +X∗ >

x

y

)
Pr(Y ∗∧ ∈ dy)

∼
∫ 1

0

(
Pr(Tn >

x

y
) + Pr(X∗ >

x

y
)

)
Pr(Y ∗∧ ∈ dy)

= Pr(TnY
∗
∧ > x) + Pr(X∗Y ∗∧ > x).

The second step is due to Lemma (4.2.1).

Now we turn to I2(x). Note that both X∗∧Y
∗ and TnY

∗ are long tailed, one can choose

some function l(x) with 0 < l(x) ≤ x/2 and l(x) ↑ ∞ such that

Pr

(
X∗∧Y

∗ > x± l(x)

)
∼ Pr

(
X∗∧Y

∗ > x
)

and Pr

(
TnY

∗ > x± l(x)

)
∼ Pr(TnY

∗ > x)

Also note that, by relation (4.2.16) and relation (4.2.20) for n = 1

Pr(X∗∧Y
∗ > x) = o (Pr(X∗Y ∗∧ > x)) = o(1) Pr(Tn > x). (4.2.21)
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We derive

I2(x) = Pr

(
(Tn +X∗∧)Y

∗ > x

)
≤ Pr

(
(Tn +X∗∧)Y

∗ > x, TnY
∗ ≤ l(x)

)
+ Pr

(
(Tn +X∗∧)Y

∗ > x,X∗∧Y
∗ ≤ l(x)

)
+ Pr

(
(Tn +X∗∧)Y

∗ > x, TnY
∗ > l(x), X∗∧Y

∗ > l(x)

)
≤ Pr

(
X∗∧Y

∗ > x− l(x)

)
+ Pr

(
TnY

∗ > x− l(x)

)
+ Pr

(
(Tn +X∗∧)Y

∗ > x,X∗∧Y
∗ > l(x)

)
≤ o(1) Pr(Tn > x) +

(
1 + o(1)

)
Pr(TnY

∗ > x) + Pr

(
Tn +X∗∧Y

∗ > x,X∗∧Y
∗ > l(x)

)
,

where in the last step we used (4.2.21). For the last term on the right-hand side above,

we have

Pr

(
Tn +X∗∧Y

∗ > x,X∗∧Y
∗ > l(x)

)
≤ Pr

(
Tn +X∗∧Y

∗ > x

)
− Pr

(
Tn +X∗∧Y

∗ > x,−l(x) ≤ X∗∧Y
∗ ≤ l(x)

)
≤

(
1 + o(1)

)(
Pr(Tn > x) + Pr(X∗∧Y

∗ > x)

)
−
(

1 + o(1)

)
Pr

(
Tn > x+ l(x)

)
= o(1) Pr(Tn > x)

where in the third step we used Lemma 4.2.1 and in the last step we used relation (4.2.21).

It follows that

I2(x) ≤
(

1 + 0(1)

)
Pr(TnY

∗ > x) + o(1) Pr(Tn > x). (4.2.22)
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On the other hand,

I2(x) ≥ Pr

(
(Tn − l(x))Y ∗ > x,−l(x) ≤ X∗∧ ≤ l(x)

)
≥ Pr

(
TnY

∗ > x+ l(x)

)
Pr

(
− l(x) ≤ X∗∧ ≤ l(x)

)
≥

(
1 + o(1)

)
Pr(TnY

∗ > x).

For I3, by going along the same lines of the derivation for I2 and changing every Y ∗ to Y ∗∧ ,

we obtain

(
1 + o(1)

)
Pr(TnY

∗
∧ > x) ≤ I3(x) ≤

(
1 + o(1)

)
Pr(TnY

∗
∧ > x) + o(1) Pr(Tn > x).

Plugging all these estimates for I1(x), I2(x) and I3(x) into (4.2.15), we obtain

Pr (Tn+1 > x)

. (1 + o(1)) Pr (TnY
∗
∧ > x) + (1 + o(1)) Pr (X∗Y ∗∧ > x)

+ (1 + o(1)) Pr (TnY
∗ > x) + o(1) Pr (Tn > x)

− (1 + o(1)) Pr (TnY
∗
∧ > x)

= o(1) (Pr (TnY
∗
∧ > x) + Pr (Tn > x)) + (1 + o(1)) (Pr (X∗Y ∗∧ > x) + Pr (TnY

∗ > x))

= o(1) Pr (Tn > x) + (1 + o(1))

(
Pr (X∗Y ∗∧ > x) +

n∑
i=1

Pr

(
X∗Y ∗∧Y

∗
i∏

j=2

Y ∗j > x

))

= o(1)
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+ (1 + o(1))

n+1∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)

∼
n+1∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
,

where in the third and fourth steps we used (4.2.20) for n. The lower asymptotic bound is

derived similarly. Hence, (4.2.20) holds for n+ 1.
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4.2.3 Proofs of Theorem 4.2.2

The following first lemma is a restatement of Theorem 2.1 of Cline and Samorodnitsky

(1994), which is crucial for establishing our Theorem 4.2.2(i):

Lemma 4.2.4 Let F be a distribution on R and G be a distribution on R+. We have H∗ =

F ⊗G ∈ S if F ∈ S and there is an auxiliary function a(·) such that G (a(x)) = o
(
H∗(x)

)
and F (x− a(x)) ∼ F (x).

The lemma below dissolves the dependence between X and Y :

Lemma 4.2.5 Let (X, Y ) follow a bivariate FGM distribution function (4.2.5) with ŷ =∞.

If there is an auxiliary function a(·) such that G (a(x)) = o
(
H∗(x)

)
, then

Pr (XY > x) ∼ Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x) . (4.2.23)

Proof. We start from (4.2.12) and are going to prove that the last term on its right-hand

side is negligible, namely,

Pr (X∗∧Y
∗
∧ > x) = o(1)

(
Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y

∗ > x)

)
. (4.2.24)

For this purpose, we do the split

Pr (X∗∧Y
∗
∧ > x) = Pr

(
X∗∧Y

∗
∧ > x,

(
Y ∗∧ ≤ a(x)

)
∪
(
Y ∗∧ > a(x)

))
= J1(x) + J2(x).

By conditioning on Y ∗∧ , we have

J1(x) ≤ F

(
x

a(x)

)∫ a(x)

0

F

(
x

y

)
Pr (Y ∗∧ ∈ dy) = o(1) Pr

(
X∗Y ∗∧ > x

)
.

It is easy to see that

J2(x) = o(1) Pr
(
X∗∧Y

∗ > x
)
. (4.2.25)
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Actually, on the one hand, it is clear that

J2(x) ≤ Pr
(
Y ∗∧ > a(x)

)
= G

(
a(x)

)2

;

while on the other hand, by Jensen’s inequality we have

Pr
(
X∗∧Y

∗ > x
)

=

∫ ∞
0

F

(
x

y

)2

Pr (Y ∗ ∈ dy) ≥ H∗(x)2.

Relation (4.2.25) follows since G (a(x)) = o
(
H∗(x)

)
. Thus, relation (4.2.24) holds.

With (X, Y ) following a bivariate FGM distribution function (4.2.5), we see thatG
(
a(x)

)
=

o
(
H∗(x)

)
is slightly weaker than G

(
a(x)

)
= o
(
H(x)

)
since, by (4.2.23), H(x) . 2H∗(x).

The following lemma is a counterpart of Lemma 4.2.3:

Lemma 4.2.6 In addition to the conditions in Lemma 4.2.5, assume F ∈ L and H ∈ S.

Then XY +X∗ follows a subexponential distribution with tail satisfying

Pr (XY +X∗ > x) ∼ Pr (XY > x) + Pr (X > x) .

Proof. By Lemma 4.2.5,

Pr (XY > x) & Pr
(
X∗Y ∗∧ > x

)
≥ Pr (X∗ > x) Pr

(
Y ∗∧ ≥ 1

)
.

Thus, the result follows from Lemma 4.2.1.

Define

Vn =
n∑
i=1

XiYi

n∏
j=i+1

Y ∗j , n ∈ N.

Lemma 4.2.7 Let (X, Y ) follow a bivariate FGM distribution function (4.2.5) with ŷ =∞

and H ∈ S.
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(i) If there is an auxiliary function a(·) such that G
(
a(x)

)
= o

(
H(x)

)
and H

(
x−a(x)

)
∼

H(x), then each Vn follows a subexponential distribution with tail satisfying

Pr (Vn > x) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+

n∑
i=1

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
;

(ii) If J−F > 0, then the restriction H
(
x − a(x)

)
∼ H(x) on the auxiliary function a(·) is

unnecessary.

Proof. For simplicity, write Zi = XiYi for i = 1, . . . , n. Notice that the sequence {Vn, n ∈ N}

fulfills the recursive equation

Vn+1 = VnY
∗
n+1 + Zn+1.

Applying Lemmas 4.2.4 and 4.2.1, we can conduct a standard induction procedure to prove

that for each n ∈ N, the sum Vn follows a subexponential distribution with tail satisfying

Pr (Vn > x) ∼
n∑
i=1

Pr

(
Zi

n∏
j=i+1

Y ∗j > x

)
=

n∑
i=1

Pr

(
Zi

i∏
j=2

Y ∗j > x

)
(4.2.26)

and that, for each i = 2, . . . , n and all a > 0,

Pr

(
i∏

j=2

Y ∗j > ax

)
= o(1) Pr

(
Zi

i∏
j=2

Y ∗j > x

)
. (4.2.27)

For case (i), we refer the reader to the proofs of Theorem 3.1 of Tang (2006b), Theorem 3.1

of Chen (2011) and, in particular, Theorem 1.1 of Zhou et al. (2012) for similar discussions.

For case (ii), see Theorem 4.1 of Tang (2006a). Since relation (4.2.27) holds for all a > 0, it

is easy to see that, for each i = 2, . . . , n, there is some auxiliary function ai(·) such that

Pr

(
i∏

j=2

Y ∗j > ai(x)

)
= o(1) Pr

(
Zi

i∏
j=2

Y ∗j > x

)
. (4.2.28)

For each i = 2, . . . , n, we split

Pr

(
Zi

i∏
j=2

Y ∗j > x

)
= Pr

(
Zi

i∏
j=2

Y ∗j > x,
i∏

j=2

Y ∗j ≤ ai(x)

)
+O(1) Pr

(
i∏

j=2

Y ∗j > ai(x)

)
.
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By conditioning on
∏i

j=2 Y
∗
j and applying Lemma 4.2.5, the first part is asymptotically

equivalent to

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x,
i∏

j=2

Y ∗j ≤ ai(x)

)
+ Pr

(
X∗∧Y

∗
i∏

j=2

Y ∗j > x,
i∏

j=2

Y ∗j ≤ ai(x)

)

= Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+ Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
+O(1) Pr

(
i∏

j=2

Y ∗j > ai(x)

)
.

By (4.2.28), it follows that

Pr

(
Zi

i∏
j=2

Y ∗j > x

)
∼ Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+ Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
.

Substituting this into (4.2.26) leads to the desired result.

Proof of Theorem 4.2.2. Recall Tn introduced in (4.2.13) and the recursive formula

(4.2.14). The same as before, it suffices to prove the relation

Pr (Tn > x) ∼
n∑
i=1

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
+

n∑
i=1

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
. (4.2.29)

Lemma 4.2.7 shows that the right-hand side of (4.2.29) indeed gives a subexponential tail

for Tn.

Similarly to the proof of Theorem 4.2.1, we employ the method of induction to prove

(4.2.29). Lemma 4.2.5 shows that relation (4.2.29) holds for n = 1. Now, assume that

relation (4.2.29) holds for n and we are going to prove it for n+ 1.

For this purpose, we still start from the decomposition in (4.2.15). For I1(x), since Tn is

subexponential, X∗ is long tailed, and Pr (X∗ > x) = O
(

Pr (Tn > x)
)

, by conditioning on
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Y ∗∧ and applying Lemma 4.2.1 we have

I1(x) =

(∫ a(x)

0

+

∫ ∞
a(x)

)
Pr

(
Tn +X∗ >

x

y

)
Pr (Y ∗∧ ∈ dy)

=
(

1 + o(1)
)∫ a(x)

0

(
Pr

(
Tn >

x

y

)
+ Pr

(
X∗ >

x

y

))
Pr (Y ∗∧ ∈ dy) +O(1)G

(
a(x)

)2

=
(

1 + o(1)
)(

Pr (TnY
∗
∧ > x) + Pr (X∗Y ∗∧ > x)

)
+O(1)G

(
a(x)

)2

.

In the same way, we have

I2(x) =
(

1 + o(1)
)(

Pr (TnY
∗ > x) + Pr (X∗∧Y

∗ > x)
)

+O(1)G
(
a(x)

)
and

I3(x) =
(

1 + o(1)
)(

Pr (TnY
∗
∧ > x) + Pr (X∗∧Y

∗
∧ > x)

)
+O(1)G

(
a(x)

)2

.

Plugging these estimates into (4.2.15) and using the condition G
(
a(x)

)
= o

(
H(x)

)
and

relations (4.2.23)–(4.2.24), we obtain

Pr (Tn+1 > x) ∼ Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x) + Pr (TnY

∗ > x) .

For the last term above, by conditioning on Y ∗ and applying relation (4.2.29) for n it is easy

to show that

Pr (TnY
∗ > x) ∼

n∑
i=1

Pr

(
X∗Y ∗∧

i+1∏
j=2

Y ∗j > x

)
+

n∑
i=1

Pr

(
X∗∧

i+1∏
j=1

Y ∗j > x

)
.

Thus, relation (4.2.29) holds for n+ 1.

4.2.4 Proofs of Corollary 4.2.1

When 0 < ŷ ≤ 1, the result comes directly from Theorem 4.2.1. When 1 ≤ ŷ < ∞, by the

condition F ∈ S and Lemma 4.2.2, we have H(x) ∼ Pr (X∗Y ∗∧ > x) and, hence, H ∈ S.

Furthermore, H ∈ S ⊂ L implies the existence of an auxiliary function a(·) satisfying
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H
(
x− a(x)

)
∼ H(x). Since ŷ <∞, the condition G

(
a(x)

)
= o

(
H(x)

)
in Theorem 4.2.2(i)

holds trivially for every such function a(·). Thus, all conditions of Theorem 4.2.2(i) are

fulfilled.

For each i = 1, . . . , n, by conditioning on
∏i

j=2 Y
∗
j and using relation (4.2.16),

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
=

∫ ŷi−1

0

Pr

(
X∗∧Y

∗
1 >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)

= o(1)

∫ ŷi−1

0

Pr

(
X∗Y ∗∧ >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)

= o(1) Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
.

Substituting this into relation (4.2.7) leads to relation (4.2.6).

4.2.5 Proofs of Corollary 4.2.2

(i) By Theorem 3.3(iv) of Cline and Samorodnitsky (1994), the conditions F ∈ C and

E[Y p] < ∞ for some p > J+
F imply that H∗(x) � F (x). By Lemma 3.5 of Tang and

Tsitsiashvili (2003), the relation x−q = o
(
F (x)

)
holds for every q > J+

F . Define an auxiliary

function a(x) = xr for some r ∈ (J+
F /p, 1). We have

G (xr) ≤ x−rpE[Y p] = o
(
H∗(x)

)
.

Thus, Lemma 4.2.5 is applicable and gives relation (4.2.23). For the two terms on the

right-hand side of (4.2.23), we have, respectively, Pr (X∗Y ∗∧ > x) � F (x) and

Pr (X∗∧Y
∗ > x) ≤

∫ xr

0

F

(
x

y

)2

G(dy) +G (xr)

≤ F
( x
xr

)
H∗(x) + o

(
F (x)

)
= o

(
F (x)

)
= o(1) Pr (X∗Y ∗∧ > x) . (4.2.30)
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It follows from (4.2.23) that

H(x) ∼ Pr (X∗Y ∗∧ > x) � F (x). (4.2.31)

Thus, a(x) = xr satisfies the conditions G
(
a(x)

)
= o

(
H(x)

)
and H

(
x − a(x)

)
∼ H(x)

in Theorem 4.2.2(i). By the first relation in (4.2.31) and Theorem 3.4(ii) of Cline and

Samorodnitsky (1994), it is easy to see that H ∈ C ⊂ S. Thus, all conditions of Theorem

4.2.2(i) are satisfied and we have relation (4.2.7). For each i = 2, . . . , n, similarly to (4.2.30),

by conditioning on
∏i

j=2 Y
∗
j we obtain

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
≤

∫ xr

0

Pr

(
X∗∧Y

∗ >
x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)
+ Pr

(
i∏

j=2

Y ∗j > xr

)

= o(1)

∫ xr

0

Pr

(
X∗Y ∗∧ >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)
+ o

(
F (x)

)
= o(1) Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
. (4.2.32)

Thus, the second sum on the right-hand side of relation (4.2.7) is negligible and we finally

obtain relation (4.2.6).

(ii) With a(x) = xr for some r ∈ (J+
F /p, 1), the verifications of the conditions of Lemma

4.2.5 and Theorem 4.2.2(ii) are similar to those in the proof of Corollary 4.2.2(i), and the

proofs of relations (4.2.30)–(4.2.32) are also the same. A major difference is that we need to

apply Theorems 2.2(iii) and 3.3(ii) of Cline and Samorodnitsky (1994) to the first relation

in (4.2.31) to verify H ∈ L ∩ D ⊂ S.

4.2.6 Proofs of Corollary 4.2.3

As in the proof of Corollary 2.1 of Chen and Xie (2005), by Fatou’s lemma we have

lim inf
x→∞

H∗(x)

G(x)
≥
∫ ∞

0

lim inf
x→∞

G
(
x
y

)
G(x)

F (dy) = E[Xα
+] =∞. (4.2.33)
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It follows that G(x) = o(H∗(x)). By Lemma 3.2 of Chen and Xie (2005), there is an

auxiliary function a(·) : R+ 7→ R+ such that G
(
a(x)

)
= o

(
H∗(x)

)
of Lemma 4.2.5 hold

simultaneously. By Lemma 4.2.5,

H(x) ∼ Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x)

∼ E [(Y ∗∧ )α]F (x) + E
[(
X∗+∧

)α]
G(x)

∼
(
cE [(Y ∗∧ )α] + E

[(
X∗+∧

)α] )
G(x),

where the second step is due to Breiman’s theorem. Hence, H ∈ R−α and the same auxiliary

function a(·) satisfies G
(
a(x)

)
= o

(
H(x)

)
of Theorem 4.2.2(ii). Thus, relation (4.2.7) holds.

Next, we simply (4.2.7) to (4.2.9). For each i = 2, . . . , n, by the Corollary 1 of Embrechts

and Goldie (1980),
∏i

j=2 Y
∗
j follows a distribution function belonging to the classR−α. Based

on the same reasoning as above we see that there is some auxiliary function ã(·) such that

Pr

(
i∏

j=2

Y ∗j > ã(x)

)
= o(1) Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
.

We have

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
∼

∫ ã(x)

0

Pr

(
X∗Y ∗∧ >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)

∼ cE [(Y ∗∧ )α]

∫ ã(x)

0

Pr

(
Y ∗ >

x

y

)
Pr

(
i∏

j=2

Y ∗j ∈ dy

)

∼ cE [(Y ∗∧ )α] Pr

(
i∏

j=1

Y ∗j > x

)
,

where the second step is due to Breiman’s theorem. Similarly, for each i = 2, . . . , n,

Pr

(
X∗∧

i∏
j=1

Y ∗j > x

)
∼ E

[(
X∗+∧

)α]
Pr

(
i∏

j=1

Y ∗j > x

)
.

Substituting these asymptotic results into (4.2.7) gives

ψ(x;n) ∼
(
cE [(Y ∗∧ )α] + E

[(
X∗+∧

)α]) n∑
i=1

Pr

(
i∏

j=1

Y ∗j > x

)
.
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Similarly to (4.2.33), Pr
(∏i

j=1 Y
∗
j > x

)
= o(1) Pr

(∏n
j=1 Y

∗
j > x

)
for every i = 1, . . . , n− 1.

Then relation (4.2.9) follows.

4.2.7 Proofs of Corollary 4.2.4

The following lemma will be needed in the proof of Corollary 4.2.4:

Lemma 4.2.8 For two distribution functions F on R and G on R+, if F ∈ R−∞ and

G ∈ R−∞, then H∗ = F ⊗G ∈ R−∞.

Proof. By (4.2.3), it holds for every a > 0 that

G(ax)

H∗(x)
≤ G(ax)

F (2/a)G(ax/2)
→ 0.

Thus, there is an auxiliary function a(·) : R+ 7→ R+ such that a(x) ↑ ∞, a(x)/x ↓ 0, and

G (a(x)) = o
(
H∗(x)

)
. By (4.2.3) again, for every z > 1,

H∗(xz)

H∗(x)
∼

∫ a(x)

0
F
(
xz
y

)
G(dy)∫ a(x)

0
F
(
x
y

)
G(dy)

≤ sup
0<y≤a(x)

F
(
xz
y

)
F
(
x
y

) → 0.

Hence, H∗ ∈ R−∞.

Proof of Corollary 4.2.4. From the proof of Lemma 4.2.8, there is an auxiliary function

ã(·) such that G
(
ã(x)

)
= o

(
H∗(x)

)
. Then, by Lemma 4.2.5, relation (4.2.23) holds. Since

Pr (X∗ > x) ∼ cPr (Y ∗ > x) and Pr (X∗∧ > x) ∼ c2 Pr (Y ∗∧ > x), by Lemma A.5 of Tang and

Tsitsiashvili (2004) we have

Pr (X∗∧Y
∗ > x) ∼ c2 Pr (Y ∗∧Y

∗ > x) ∼ cPr (X∗Y ∗∧ > x) . (4.2.34)

It follows from relation (4.2.23) that

Pr (XY > x) ∼ Pr (X∗Y ∗∧ > x) + Pr (X∗∧Y
∗ > x) ∼ (1 + c) Pr (X∗Y ∗∧ > x) .
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By Corollary 2.1 of Tang (2006a), Pr (X∗Y ∗∧ > x) is a subexponential tail and, hence, H ∈ S.

Again from the proof of Lemma 4.2.8, there is an auxiliary function a(·) such that G
(
a(x)

)
=

o(1) Pr (X∗Y ∗∧ > x) = o
(
H(x)

)
. Thus, relation (4.2.7) holds.

Next we simplify (4.2.7) to (4.2.10). For each i = 1, . . . , n − 1, since X∗∧Y
∗∏i

j=2 Y
∗
j is

rapidly-varying tailed by Lemma 4.2.8, we have

Pr

(
X∗∧Y

∗
i∏

j=2

Y ∗j > x

)
= o(1) Pr

(
X∗∧Y

∗
i∏

j=2

Y ∗j >
x

2

)

= o(1) Pr

(
X∗∧Y

∗
i∏

j=2

Y ∗j >
x

2
, Yn > 2

)

= o(1) Pr

(
X∗∧Y

∗
n∏
j=2

Y ∗j > x

)
.

Similarly, it holds for each i = 1, . . . , n− 1 that

Pr

(
X∗Y ∗∧

i∏
j=2

Y ∗j > x

)
= o(1) Pr

(
X∗Y ∗∧

n∏
j=2

Y ∗j > x

)
.

It follows from relation (4.2.7) that

ψ(x;n) ∼ Pr

(
X∗Y ∗∧

n∏
j=2

Y ∗j > x

)
+ Pr

(
X∗∧Y

∗
n∏
j=2

Y ∗j > x

)
.

Since
∏n

j=2 Y
∗
j is rapidly-varying tailed by Lemma 4.2.8, applying Lemma A.5 of Tang and

Tsitsiashvili (2004) and relation (4.2.34) we obtain

Pr

(
X∗∧Y

∗
n∏
j=2

Y ∗j > x

)
∼ cPr

(
X∗Y ∗∧

n∏
j=2

Y ∗j > x

)
.

Relation (4.2.10) follows.
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Chapter 5

Concluding Remarks and Future
Research

5.1 Conclusions

In the past two decades, the study of dependence has become a key topic in the actuarial

literature. In this thesis, we investigated several risk models with claim frequencies or their

interarrivals modeled with certain dependence structures and focused on the asymptotic be-

havior of the finite- and infinite-time ruin probabilities and the tail probabilities of aggregate

claims in several nonstandard risk models in which claim sizes are heavy tailed.

In Chapters 2 and 3, we considered two types of dependence structure, namely depen-

dence between claims and their interarrivals and dependence between insurance and financial

risks. We incorporated the heavy-tailed distributions into these renewal risk models based

and gave the relevant results on the ruin probabilities according to different dependent as-

sumption.
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5.2 Future Research Directions

5.2.1 Research Direction 1: Extremal Dependence

Recall two random variables X and Y with distributions F and G are called asymptotically

independent if

lim
q↑1

Pr (F (X) > q | G(Y ) > q) = 0;

they are called asymptotically dependent if the limit exists and is positive.

Recent empirical studies often discover large joint movements of financial variables, ex-

hibiting strong asymptotic dependence. However, our assumption of FGM distribution for

(X, Y ) corresponds to asymptotic independence between the insurance risk X and the fi-

nancial risk Y . It is imperative to extend the study to asymptotically dependent (X, Y ).

The difficulty exists in establishing the subexponentiality for the product XY for dependent

case.

5.2.2 Research Direction 2: Continuous-Time Models

As mentioned before, another trend of the study is to consider continuous-time models.

Starting from Norberg (1999, SPA), a research trend is to consider a continuous-time model

in which the wealth process is defined by

Wt = eRt
∫ t

0

e−RsdPs, (5.2.1)

where Ps = x + cs−aggregate claims. The integral above represents the stochastic present

value of aggregate net profit up to time t.

In the literature, it is often assumed that the two stochastic processes {Ps} and {Rs} are

mutually independent. Such an assumption is obviously unrealistic. My thought is to con-
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struct a discrete-time model as an approximation of the continuous-time model. Importantly,

this approach allows {Ps} and {Rs} to be dependent to a certain extent.
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återförsäkring Av Kollektivrisker. Doctoral Thesis, Akad. Afhandling. Almqvist och

Wiksell, Uppsala.

[49] Mikosch, T.; Nagaev, A.V. (1998). Large deviations of heavy-tailed sums with applica-

tions in insurance. Extremes 1(1):81-110.

[50] Maulik, K.; Resnick, S.; Rootzén, H. (2002). Asymptotic independence and a network

traffic model. Journal of Applied Probability, 39, 671-699.

72



[51] Maulik, K.; Resnick, S. (2004). Characterizations and examples of hidden regular vari-

ation. Extremes 7, 31-67.

[52] Ng, K.W.; Tang, Q.; Yan, J.; Yang, H. (2004). Precise large deviations for sums of

random variables with consistently varying tails. Journal of Applied Probability, 41,

93-107.

[53] Norberg, R. (1999). Ruin problems with assets and liabilities of diffusion type. Stochastic

Processes and their Applications, 81, 255-269.

[54] Nyrhinen, H. (1999). On the ruin probabilities in a general economic environment.

Stochastic Processes and their Applications, 83, 319-330.

[55] Nyrhinen, H. (2001). Finite and infinite time ruin probabilities in a stochastic economic

environment. Stochastic Processes and their Applications, 92, 265-285.

[56] Rachev, S.T. (2003). Handbook of heavy tailed Distributions in Finance. Elsevier.

[57] Resnick, S.I.; Willekens, E. (1991). Moving averages with random coefficients and ran-

dom coefficients autoregressive models. Communications in Statistics. Stochastic Mod-

els, 7, 511-525.

[58] Resnick, S.I. (2007). Heavy-tailed Phenomena; Probabilistic and Statistical Modeling.

Springer: New York.

[59] Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer-

Verlag: New York.

73



[60] Rolski, T., Schmidli, H., Schmidt, V., Teugels, J. (1999). Stochastic processes for insur-

ance and finance. Wiley Sons, New York.

[61] Shen, X., Lin, Z., Zhang, Y. (2009). Uniform estimate for maximum of randomly

weighted sums with applications to ruin theory. Methodology and Computing in Applied

Probability, 11, 669-685.

[62] Sparre Andersen, E. (1957). On the collective theory of risk in the case of contagion

between the claims. Transactions XVth International Congress of Actuaries II, New

York, 219-229.

[63] Su, C.; Tang, Q. (2003). Characterizations on heavy-tailed distributions by means of

hazard rate. Acta Mathematicae Applicatae Sinica, 19, 135-142.

[64] Tang, Q.; Su, C.; Jiang, T.; Zhang, J. (2001). Large deviations for heavy-tailed random

sums in compound renewal model. Statistics and Probability Letters, 52, 91-100.

[65] Tang, Q.; Tsitsiashvili, G. (2003). Precise estimates for the ruin probability in finite hori-

zon in a discrete-time model with heavy-tailed insurance and financial risks. Stochastic

Processes and Application, 108, 299-325.

[66] Tang, Q.; Tsitsiashvili, G. (2004). Finite- and infinite-time ruin probabilities in the

presence of stochastic returns on investments. Advances in Applied Probability, 36,

1278-1299.

[67] Tang, Q. (2006a). The subexponentiality of products revisited. Extremes, 9, 231-241.

74



[68] Tang, Q. (2006b). Asymptotic ruin probabilities in finite horizon with subexponential

losses and associated discount factors. Probability in the Engineering and Informational

Sciences 20, 103–113.

[69] Tang, Q.; Vernic, R. (2007). The impact on ruin probabilities of the association structure

among financial risks. Statistics and Probability Letters, 77, 1522-1525.

[70] Teugels, J.l. (1975). The class of Subexponential distributions. Annals of probability, 3,

1000-1011.

[71] Albrecher, H.; Teugels, J.L. (2006). Exponential behavior in the presence of dependence

in risk theory. Journal of Applied Probability, 43, 257-273.

[72] Wang, D.; Tang, Q. (2006). Tail probabilities of randomly weighted sums of random

variables with dominated variation. Stochastic Models, 22, 253-272.

[73] Wang, D.; Su, C.; Zeng, Y. (2005). Uniform estimate for maximum of randomly weighted

sums with applications to insurance risk theory. Science in China: Series A, 48, 1379-

1394.

[74] Wang, Y.; Yin, C. (2010). Approximation for the ruin probabilities in a discrete time

risk model with dependent risks. Statistics and Probability Letters, 80, 1335-1342.

[75] Weng, C.; Zhang, Y.; Tan, K.S. (2009). Ruin probabilities in a discrete time risk model

with dependent risks of heavy tail. Scandinavian Actuarial Journal, 3, 205-218.

75



[76] Yang, Y.; Hu, S.; Wu, T. (2011). The tail probability of the product of dependent

random variables from max-domains of attraction. Statistics & Probability Letters 81,

1876–1882.

[77] Yi, L.; Chen, Y.; Su, C. (2011). Approximation of the tail probability of randomly

weighted sums of dependent random variables with dominated variation. Journal of

Mathematical Analysis and Applications, 376, 365-372.

[78] Zhang, Y.; Shen, X.; Weng, C. (2009). Approximation of the tail probability of randomly

weighted sums and applications. Stochastic Processes and their Applications, 119, 655-

675.

[79] Zhou, M.; Wang, K.; Wang, Y. (2012). Estimates for the finite-time ruin probability with

insurance and financial risks. Acta Mathematicae Applicatae Sinica (English Series) 28,

795–806.

76


