
 

 
 
 
 
 
 
 
Examination of mitochondrial and cellular 
response to metabolic stresses:  changes in 
mitochondrial membrane potential by 
modulators of ischaemic preconditioning and 
metabolic stress-induced extracellular nucleotide 
accumulation. 
 

 

 

Thesis submitted in accordance with the requirements 

of the University of Liverpool for the degree of Doctor in 

Philosophy by Christopher John Eric Thompson. 

 

2013 

  



 

1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I would like to dedicate this thesis to my family whom without their support and 

encouragement this would still be unwritten. This is especially true of Amy Williams 

and my daughter Isla who have helped me all the way and made sure that this 

thesis was submitted in time. 

 

I would like to thank Dr. Alec Simpson for the opportunity to work in his laboratory 

and develop the techniques, critical thinking and analytical skills required in 

scientific research. Dr Helen Burrell’s support in developing techniques, scientific 

reasoning and producing this thesis was invaluable. I would also like to thank Dr 

John Qyale, Dr Tomoko Kamishima and Dr Alex Laude for their support and 

tutelage. Lastly I am grateful to Dr Rachel Carter for her instruction and support in 

working with chick embryos. 



 

 
2 
 

Contents 

 

 

1. Abstract ..................................................................................................... 3 

2. Abbreviations ........................................................................................ 5 

3. Figures ...................................................................................................... 11 

4. Equations ................................................................................................ 17 

5. Introduction ......................................................................................... 18 

6. Methods .................................................................................................. 93 

7. Results - m ..................................................................................... 126 

8. Results - Extracellular Nucleotides ................................... 156 

9. Results - Cardiomyocytes ......................................................... 185 

10. Discussion ............................................................................................ 213 

11. References ........................................................................................... 230 



Abstract 

 
3 
 

1. Abstract 

1.1. Introduction 

Cardiac and cerebral ischaemia can induce cellular hypoxia which results in injury 

potentially via apoptosis.  In 2004, this accounted for 12.9 million (21.9%) of the 

world’s deaths. Brief periods of ischaemia are known to protect cells from a 

subsequent and more sustained ischaemic event. This action is known as ischaemic 

preconditioning (IPC). Pharmacological agents can be used to manipulate IPC.  

Diazoxide is well documented to promote IPC, while 5-hydroxydecanoyl (5-HD) 

abolishes diazoxide-induced IPC. The mitoKATP channel, the sarcoKATP channel or 

succinate dehydrogenase are implicated in facilitating IPC. Actions of these agents 

are likely to converge on mitochondrial function. Also, during hypoxia it is widely 

reported that extracellular ATP becomes elevated. Whilst the activity of ATP via P2 

signalling is well documented along with the activity of adenosine via A receptors, 

little attention has been paid to extracellular ADP or potential P2Y signalling arising 

from hypoxia. The aim of this study was to: 

1. Establish the influence of diazoxide and 5-HD on mitochondrial membrane 

potential (m). 

2. Investigate the generation of extracellular nucleotides during hypoxia. 

3. Generate a cardiomyocyte (CM) model in which IPC and hypoxia-related 

nucleotide modulation could be characterised. 

1.2. Methods 

To measure m, tetramethylrhodamine, ethyl (TMRE) signalling was measured 

using a microplate reader. Hypoxia was replicated by metabolic poisoning (4 mM 

cyanide, 10 mM 2-deoxyglucose (2-DG) and 5 μM ionomycin) and the resulting 

extracellular nucleotide was measured using ATP monitoring reagent (AMR, 

ViaLight) and a Berthold tube luminometer (LB955). HL-1 cells and primary chick 
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CMs were examined to determine if they could be used as a contractile, cultured 

myocyte model. 

1.3. Results 

The IPC-inducing agent, diazoxide, induced significant depolarisation (F/F0=0.098, 

auc. 7.86±1.0%) and surprisingly so did the antagonist, 5-HD (F/F0=0.046, auc. 

3.13±0.6%). When used in combination, 5-HD negated the substantial diazoxide 

induced depolarisation (F/F0=0.036, auc. 5.08±0.7%). After metabolic poisoning, the 

observed extracellular ATP was elevated from 5±1 nM to 60±6 nM. The ADP 

concentration was much greater than the observed ATP and was also elevated from 

259±31 nM to 4202±394 nM during chemical induced hypoxia (CIH). Oxidised ATP 

(oATP) reduced the extracellular ATP and ADP concentration by 53±16% and 

40±32%, respectively. Primary chick CMs offered a more appropriate CM model 

compared to HL-1 cells. Chick CMs displayed contractile activity and positive CM 

specific antibody staining. 

1.4. Discussion 

The data is consistent with a diazoxide-induced depolarisation arising from 

potassium channel modulation, while 5-HD appears to modulate m as a 

metabolic agent rather than as a channel inhibitor. The presence of relatively large 

concentrations of extracellular ADP after CIH, suggest that P2Y1,6,11 signalling may be 

significant in hypoxia. The extracellular nucleotides appear to arise not from ecto-

enzyme activity or connexin release but via an oATP-inhibited mechanism. This 

suggests a potential linkage with P2X7 receptors. Isolated chick primary CMs 

produced a beating myocyte culture expressing cardiomyocyte markers. This model 

system has the potential to be used with recombinant probes in order to monitor 

cell and mitochondrial function during hypoxia. 
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2. Abbreviations 

[Ca2+]c Cytoplasmic calcium concentration 

[Ca2+]m Mitochondrial calcium concentration 

[K+]m Mitochondrial potassium concentration 

m Mitochondrial membrane potential 

2-DG 2-Deoxyglucose 

3-NPA 3-Nitropropionic acid 

5-HD 5-hydroxydecanoate  

5-HD-CoA 5-Hydroxydecanoyl-coenzyme A 

acyl-CoA Acetyl coenzyme A 

ADP Adenosine diphosphate 

AK Adenylate kinase 

ALP Alkaline phosphatase  

AMP Adenosine monophosphate 

ANT Adenine nucleotide translocase  

Ap5A Diadenosine pentaphosphate  

ARL 67156 6-N,N-Diethyl-D-β,γ-dibromomethylene ATP trisodium salt 

ATP Adenosine triphosphate 

BSA Bovine serum albumin 

Ca2+ Calcium ion 
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CABG Coronary artery bypass graft  

CaCl2 Calcium chloride 

CFTR Cystic fibrosis transmembrane conductance regulator  

cGMP Cyclic guanosine monophosphate 

CICR Calcium induced calcium release 

CIH Chemically induced hypoxia  

CM Cardiomyocyte 

CN Cyanide (sodium) 

CNS Central nervous system  

DAPI 4',6-Diamidino-2-phenylindole  

d.H2O Distilled water 

DMEM Dulbecco's modified Eagle medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

E-C Excitation-contraction 

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethylene glycol tetraacetic acid 

eN 5’-nucleotdiase 

E-NPP Ecto-nucleotide pyrophosphatase/phosphodiesterase 

E-NTPDase Ecto-nucleotide triphosphate diphosphohydrolase 

ER/SR Endoplasmic/Sarcoplasmic reticulum  
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ESc Embryonic stem cells  

ETC Electron transport chain  

ETF Electron transferring flavoprotein  

ETF-Q Electron transfer flavoprotein-Q  

FAD(H) Flavin adenine dinucleotide (reduced) 

FCCP Carbonyl cyanide p-(tri-fluromethoxy)phenyl-hydrazone 

FCS Fetal calf serum 

FFA Flufenamic acid  

GDP Guanosine diphosphate 

GTP Guanosine triphosphate 

H2O Water 

HBS HEPES-buffered Saline 

HPLC High performance liquid chromatography 

HUVEC Human umbilical vein endothelial cells 

I-R Ischaemic reperfusion 

IMAC Inner-membrane anion channel  

IMM Inner mitochondrial membrane 

IMS Intramembrane space  

IP3R Inositol trisphosphate receptor 

IPC Ischaemic preconditioning 

K+ Potassium ions 
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KATP channel Potassium ATP channel 

KCl Potassium chloride 

Ki Inhibition constant 

KCO Potassium channel opener 

Km Michaelis-Menten constant 

MAM Mitochondria associated membranes  

MCU Mitochondrial calcium uniporter 

MEM Modified Eagle medium 

MF-20 Sarcomeric myosin heavy chain antibody 

MgCl2 Magnesium chloride 

MgSO4 Magnesium sulphate 

MHC Myosin heavy chain  

mitoKATP Mitochondrial potassium ATP channel 

MODS Multiple organ dysfunction syndrome  

MOPS 3-(N-morpholino) propanesulfonic acid 

mPTP Mitochondrial partial transition pore  

mt[AEQ]WT Mitochondrial aequorin plasmid wildtype 

Na2HPO4 Disodium phosphate 

NaCl Sodium chloride 

NAD+ (H) Nicotinamide adenine dinucleotide (reduced) 

NaOH Sodium hydroxide 
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NCX Na+/Ca2+ exchanger  

NDPK Nucleoside diphospate kinase  

NE Norepinephrine  

NEAA Non-essential amino acid 

NF-κB Nuclear factor-KappaB 

NO Nitric Oxide 

NOS Nitric oxide synthase 

O2 Oxygen 

O2
. Superoxide anions  

OH- Hydroxyl radicals 

OMM Outer mitochondrial membrane  

ONOOH Peroxynitrous acid 

P1 or P2 Purinergic Receptors 

P/S Penicillin/Streptomycin  

PBFI Potassium-binding benzofuran isophthalate  

PDE5 Phosphodiesterase Type 5 

PEP Phosphoenolpyruvate  

Pi Inorganic Phosphate 

PI Propidium Iodide 

PKC or G Protein Kinase C or G 

Q Ubiquinone 
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RLU Relative luminescence units 

RNA Ribonucleic acid 

ROI Region of interest 

ROS Reactive oxygen species 

RyR Ryanodine receptor 

sarcoKATP Sarcomeric potassium ATP channel 

SDS Sodium dodecyl sulfate 

SERCA Sarcoplasmic reticulum calcium transport ATPase  

siRNA Short interfering RNA 

SNAP S-nitroso-N-acetylpenicillamine 

SNP Sodium nitroprusside 

SRCE Store-regulated calcium entry  

SUR Sulfonylurea receptor  

TCA Tricarboxylic acid cycle  

TMRE Tetramethylrhodamine ethyl ester 

Tris-(H)Cl Tris(hydroxymethyl)aminomethane (hydro)chloride 

UCP Uncoupling protein 

UDP Uridine diphospohate 

UTP Uridine triphospohate 

VDAC Voltage-dependent anion channel 
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5.1. Ischaemia  

Ischaemia occurs when a tissue receives an insufficient supply of blood. Reduced 

blood supply arises as a consequence of disease or trauma. Subsequently, tissues 

can become hypoxic or anoxic and thus starved of oxygen. The tissue will then 

suffer injury, which is triggered by an ischaemic cascade. The ischaemic cascade, 

induced by hypoxia, is a series of biochemical changes which involve the loss of ATP 

synthesis (and inversely elevation of ADP, AMP, and Pi). This involves a switch to 

anaerobic metabolism and can result in mitochondrial damage, collapse of the m 

and [Ca2+]m overload, and activation of the caspase-dependent apoptosis cascade 

[1, 2]. 

In 2004, 7.2 million (12.2%) of the world’s deaths were attributed to cardiac 

ischaemia and 5.7 million (9.7%), to cerebrovascular or stroke related disease, of 

which 85% were the result of ischaemic injury  [3]. In the United Kingdom, coronary 

artery disease is the biggest killer and is attributed to 94,000 deaths, annually. It is 

estimated that 2.6 million people, in the UK, are living with coronary artery disease 

and for every 1 in 5 men and 1 in 7 women, will prove to be fatal. 

Cardiac ischaemia occurs when the heart receives insufficient blood flow, most 

commonly as a result of atherosclerosis or acute coronary syndrome. The symptoms 

vary depending upon the exact cause but generally include chest pain (angina 

pectoris) that radiates through the arm and back, limited ability for physical activity, 

and nausea without vomiting. In the cardiovascular system, ischaemic damage to 

the myocytes is well documented, however myocytes are not the only cell affected. 

Due to their localisation, endothelial cells are also subjected to ischaemia and the 

resulting pathological events [4]. During periods of hypoxia, endothelial cells release 

autacoids which modulate the environment as a result of elevated [Ca2+]c,  ATP 

depletion and channel modulation [5]. 

In cerebrovascular disease, interruption of the blood supply, for more than 10 

seconds, can induce unconsciousness and, for more than 1 to 2 minutes, irreversible 

brain damage. Cerebral ischaemia can be either focal, which is localised to a single 
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region and induced by cerebral vessel occlusion, or a global episode, which 

encompasses wide areas and arises from dramatically reduced or halted blood flow. 

Ischaemia is potentially reversible, if the blood flow recovers and as a consequence 

cellular energy demands are met. There is only a small window for recovery before 

cellular damage is irreversible and can result in cell death. In highly metabolic active 

tissue, this can occur in fewer than 2 to 3 minutes; As such the most common sites 

of ischaemic injury are the cardiac and cerebral systems. Ischaemia also affect the 

gastrointestinal system, kidneys and extremities of the limbs (fingers and toes).  

Paradoxically, restoration of blood supply can also cause damage, which can be 

more severe than if induced by the original ischemia. This reperfusion injury will be 

discussed in more detail later (see 5.1.2 Reperfusion Injury) 

5.1.1. Ischaemic Risk Factors 

Ischaemia can be induced by several medical conditions including: atherosclerosis, 

embolism, thromboembolism, coronary artery disease, anaemia, diabetes, high 

blood pressure and blood vessel compression (from tumour growth). 

5.1.1.1. Atherosclerosis 

Atherosclerosis frequently precedes either acute or chronic ischemia due to the 

onset of various coronary syndromes. Atherosclerosis is a common disorder where 

fat, cholesterol, and other substances build up in the walls of arteries and whilst 

originally considered a lipid storage disease, is attributed to inflammatory responses 

[6, 7]. Over time, these plaques can block the arteries and result in acute ischaemic 

conditions such as myocardial infarction and stroke [8-10]. 

Atherosclerosis develops as illustrated in Figure 5-1. Atherosclerosis develops with 

increased low-density lipoprotein and very low-density lipoprotein accumulation in 

the sub endothelial space and the subsequent recruitment of monocytes. The 

monocytes differentiate into macrophages that then engulf low-density lipoproteins 

and cholesterol deposits [11]. The atherogenic lipoproteins infiltrate the sub-
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endothelial space and become oxidised [12]. The modified oxidised lipoproteins 

induce an autoimmune response, stimulating macrophage lipoprotein uptake, 

resulting in the formation of foam cells [13]. As foam cells coalesce, they form fatty 

streaks and ultimately atheromatous plaques. The plaques grow larger over time, 

occluding the artery or becoming unstable and forming a thrombosis or embolism. 

For a complete review please see Glass and Witztum (2001) [14]. One consequence 

of macrophage activation is the release of mitogen and chemo-attractants that 

result in the recruitment and proliferation of smooth muscle cells. 

5.1.1.2. Coronary artery disease 

Coronary artery disease or heart disease and its sequelae: myocardial infarction, 

ischaemia and heart failure, are the leading causes of morbidity and mortality in 

mankind [15].  

Coronary heart disease and other cardiac pathologies can lead to either acute or 

chronic heart failure. Acute heart failure develops rapidly (within hours and days) 

and as compensatory mechanisms cannot establish, it is life threatening. Acute 

insult arises from insults such as, acute myocardial infarctions and arrhythmias and 

can require pharmacological and surgical intervention. Chronic or long term heart 

failure occurs over months or years, rather than the rapid acute failure. The heart 

can undergo adaptive responses to compensate for the failings. Whilst these afford 

a level of protection and preserve function, in the long term they are often 

insufficient to maintain the function of the heart. Chronic heart failure can present 

as either ‘compensated’, where the symptoms are stable and many overt features 

are absent, or ‘decompensated’ where the injury shows deterioration and can 

present as acute episodes. For a full review including management, assessment and 

treatment see Millane et al. (2000) [16]. 
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Figure 5-1. The development of atherosclerosis, from foam cell to rupture. 

The development of arterial atherosclerosis occurs in arterial vessels, with the 

development and localisation of foam cells. The fatty streak can worsen, resulting in 

occlusion of the vessel with the growth of the atheroma. Adapted from Koenig and 

Khuseyinova [17] 
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5.1.2. Reperfusion Injury 

Cells subject to ischaemic insult are subsequently prone to ischaemic reperfusion (I-

R) injuries. The restoration of blood flow, reperfusion, is necessary to prevent 

irreversible damage, such as necrosis and cell death that are associated with 

prolonged ischaemia. While reperfusion is essential and instigates recovery, it can 

also exacerbate injury through oxidative damage, physical damage, tissue damage, 

cell dysfunction and death.  

Under normal circumstances, mitochondria remove cellular calcium to modulate 

signalling and mitochondrial function, through allosteric activation of the enzymes 

regulating oxidative phosphorylation and ATP synthesis (pyruvate dehydrogenase, 

isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase, stimulation of the 

ATP synthase (Complex V), α-glycerophosphate dehydrogenase, and the adenine 

nucleotide translocase (ANT)) [18-21]. During ischaemia, glycolytic ATP production 

cannot match cellular demand, and alongside decreased ATP, lactic acid 

accumulation is observed [1]. Lactic acid lowers the pH, triggering the Na+/H+ 

antiporter, elevating [Ca2+]c [1, 22]. During re-oxygenation, the m is restored and 

the accumulated of [Ca2+]c is sequestered by the mitochondria. Calcium overload 

can also be seen via an increased calcium transient amplitude (as the result of 

elevated action potential duration and store loading), loss of sarcoplasmic reticulum 

(SR) calcium transport ATPase (SERCA) activity, or the loss of calcium-induced 

calcium release (CICR) through the loss of micro-domains, resulting in elevated 

signalling amplitude [23-26]. 

During reperfusion, rapid repolarisation occurs and results in a large uptake of 

calcium along with mitochondrial overload.  This is detrimental to the cells and can 

result in mitochondrial pathology [27, 28]. 

Elevated [Ca2+]c can induce altered gene transcription as seen in cardiac 

hypertrophy and multi organ system failure [29-31].  In the short term, the effects 

of calcium overload can result in the physiological uncoupling of the mitochondria, 

compromising the organelle’s ability to generate ATP [28]. Originally the damage 

observed was attributed to increased membrane permeability, but is now 
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attributed to the formation of the mitochondrial partial transition pore (mPTP). The 

formation of this pore is nearly inevitable during I-R injury as the ideal conditions 

for its formation and opening are m depolarisation, high oxygen, low ATP and 

high reactive oxygen species (ROS) generation [32] 

The mPTP is a, non-selective, 3 nm pore located on the inner mitochondrial 

membrane (IMM), permeable to molecules smaller than 1.5 kDa. Its opening can be 

transient in nature and of a low conductance and can afford cardiac protection by 

limiting mitochondrial calcium overload and related ROS production [1, 33-35]. 

Despite the benefits, the formation of the mPTP can induce m depolarisation, 

reduce ATP synthesis, and potentially reduce swelling of the matrix, which would 

otherwise result in the loss of the membrane integrity, cristae unfolding and would 

lead to mitochondrial membrane rupture. The loss of the mitochondrial membranes 

can culminate in either necrotic cell death or the release of apoptogenic factors 

(cytochrome c) [36-39]. Whilst the mPTP is the end mechanism and proposed 

mechanism for cellular damage (m depolarisation, swelling and rupture), the 

presence of ROS can play a critical role. Despite being discussed as a potential IPC 

trigger, ROS generation is associated with mPTP formation [40, 41]. Mitochondrial 

calcium overload elevates nitric oxide (NO) synthesis which inhibits Complex I and 

IV of the electron transport chain (ETC, see section 5.3.6) resulting in ROS 

generation [19]. 

In the cardiovascular system, I-R can ‘stun’ the myocardium. It was originally 

described by Heyndrickx, in 1975, as “prolonged post ischaemic dysfunction of 

viable tissue salvaged by reperfusion” [42]. Stunning involves a loss in ATP re-

synthesis, contractility and micro-vascular function. Micro-vascular dysfunction, 

where the blood supply never returns to pre-ischaemic rates, arises from 

vasoconstriction, involving platelet and leukocyte activation [43-47]. Reperfusion 

injury can induce arrhythmias, typically after thrombolytic treatment or myocardial 

re-vascularisation surgery. I-R injury often occurs following ischaemic insult, 

resulting from surgeries such as, angioplasty, organ transplantation and bypass 

surgery (typically coronary artery bypass graft (CABG) surgery). Despite the inherent 

I-R risks, patients receiving reperfusion treatment show improved recovery, 
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compared to those who did not receive treatment, emphasising the importance of 

reperfusion, despite the associated risks [43]. 

Central nervous system (CNS) ischaemia contributes to the morbidity and mortality 

of victims of strokes, head trauma and cranial ischaemic events. CNS ischaemia is 

characterised by disruption of the blood brain barrier. I-R injury can induce cerebral 

oedema, elevated intracranial pressure and leukocyte migration. This presents, as 

exacerbated loss of sensory, motor and cognitive function [48]. 

Severe I-R inflammation can induce systematic inflammatory response syndrome or 

even multiple organ dysfunction syndrome (MODS). In intensive care units,  MODS 

accounts for, 30 to 40% of mortalities [49]. A devastating remote organ injury, 

MODS, commonly affects the pulmonary system and after 24 to 72 hours of  

respiratory insufficiency, multi-organ failure follows [50].  

5.1.3. Ischaemic-Reperfusion Physiology 

Several risk factors attribute to I-R injury, with various potential consequences, as 

discussed in section 5.1.2. Despite this, the pathology can be described by 

alterations of cellular, vascular, leukocyte and compliment activation. 

5.1.3.1. Cellular Activation 

During ischaemia, the decrease in ATP synthesis modulates ATP ionic pump action 

resulting in calcium, sodium and water entry and induces ROS synthesis, via adenine 

nucleotide catabolism [51]. The altered calcium handling induces elevations of 

intracellular calcium concentrations and entry through the L-type channel, which 

results in mitochondrial calcium overload and the associated pathology as discussed 

[52]. In cardiac tissue, I-R also modulates the myocardial metabolism, delaying 

functional recovery [53]. 

In the failing heart protein expression is altered including the down regulation of 

uncoupling protein (UCP) (UCPs 2 and 3; see section 5.2.1) [54, 55]. The loss of UCPs 

can affect the proton leak across the IMM and as such have shown significant 
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importance in I-R injury [56]. UCP knockout mice subjected to I-R injury have shown 

elevated ROS generation, whilst over-expression causes reduced generation [57, 

58]. The UCPs have also been proposed to play a role in heart failure, but in a 

paradoxical fashion to in I-R, with down regulation enhancing energetic efficiency 

(tricarboxyic acid cycle (TCA) and ATP synthesis) whilst allowing ROS generation 

[59].  

As discussed, NO concentrations can be elevated in I-R injury and can result in ROS 

synthesis can have direct effects, NO, the endothelium-derived relaxing 

factor (EDRF) induces smooth muscle relaxation, alongside inhibiting complex IV 

and so electron movement (see section 5.3.5) whilst is also believed to act as a 

protective factor via direct opening of the KATP channel, an effect analogous with 

diazoxide [60-62].  

Within minutes of I-R insult, ROS synthesis, including superoxide anions (O2
.-), 

hydroxyl radicals (OH-) and peroxynitrite, is elevated [63]. Elevated ROS production, 

is related to increased leukocyte activity and ATP degradation [64]. Under normal 

circumstances, ATP degradation forms hypoxanthine, which is oxidised by xanthine 

dehydrogenase, forming xanthine via the substrate 

nicotinamide adenine dinucleotide (NAD+). In ischaemia, xanthine dehydrogenase is 

replaced with xanthine oxidase, which produces ROS through its substrate oxygen 

[65]. ROS production is also elevated by the increased pool of hypoxanthine, which 

upon reperfusion, in combination with the elevated oxygen level, is converted to 

ROS [51]. ROS synthesis is a negative factor, acting both as an oxidising and reducing 

agent. Damage to the cell membrane and sarcolemma arises from impaired 

membrane-bound enzyme systems and leukocyte stimulation through endothelial 

platelet activation factors [65-67]. 

Peroxynitrate is formed from NO and superoxide and whilst it is not a free radical it 

is a powerful oxidant and is much more reactive than its parent molecules [68, 69].  

Peroxynitrate can exert direct oxidative modulation in the form of peroxynitrous 

acid (ONOOH), or indirectly via decomposition into highly ROS (hydroxyl radical, 

nitrogen dioxide) [60].  Oxidative modulation can arise from inhibition of complex I, 
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II, III and V (ATP synthase), whilst paradoxically complex IV which is inhibited by NO, 

peroxynitrate appears to exert no inhibitory effect but potentially acting as a 

catalyst [70-75]. Peroxynitrate is also known to modulate the TCA cycle via 

inhibition of the enzyme aconitase (thus inhibiting the citrate to iso-citrate step), 

along with being a putative inducer of mPTP formation and opening, and is 

apoptogenic [61, 62, 76-81]. 

5.1.3.2. Vascular Activation 

At the vascular level, I-R induces pro-inflammation gene expression (adhesion 

molecules and cytokines), whilst down regulating ‘protective’ gene products 

(thrombomodulin and nitric oxide synthase (NOS)). These changes result in 

vasoconstrictive responses [47, 50]. The signalling cue for the described response is 

attributed to extracellular ATP and elevated adenosine concentrations and 

signalling pathways [82, 83]. 

5.1.3.3. Leukocyte Activation 

Reperfusion can induce leukocyte activation. Leukocytes interact with endothelial 

cells through well defined steps namely rolling, firm adhesion and transmigration 

[64]. Activation and accumulation induces vessel narrowing via leukocyte-

endothelial cell adhesion, increasing micro-vascular permeability and toxic extra-

vascular ROS release. 

5.1.3.4. Compliment activation 

The compliment system is a key aspect of the innate immune system, primarily 

cytotoxic and apoptotic activities [84]. Complement activation following I-R is 

associated with a myriad of pathological conditions including myocardial infarction, 

atherosclerosis, hemorrhagic shock and pulmonary injury [85-88]. 

Inflammatory mediators released during I-R induce compliment activation and 

generate changes in vascular homeostasis [89]. Compliment activation occurs along 

3 routes called classical, alternative and lectin compliment activation [89].  In 
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ischaemia, it is the antibody-independent alternative pathway that is activated, 

which leads to formation of complement component 3 (C3) fragments. 

Inflammation is a negative effect on cells since, in ischemia, it has been 

demonstrated to exacerbate tissue injury, affect arterial occlusion and acts as an 

independent risk factor of pathologies such as atherothrombotic stroke [90-92]. 

The anaphylatoxin fragments C3a and C5a activate the complement system, 

activating either: complement receptor type 1 (or CD35), membrane cofactor 

proteins (CD46). Compliment activation can amplify the inflammatory response and 

modulate vascular homeostasis via nuclear factor-kappa B (NF-κB), leukocyte 

adhesion molecule transcription and pro-inflammation cytokines (interleukin-1, -6 

and tumor necrosis factor alpha (TNF-α)) [93, 94].In rat models, C3 fragments were 

shown to stimulate leukocytes, whilst C5 fragments were released in direct 

response to ROS [85, 95, 96]. 

5.1.4. Cardioprotection 

Several endogenous cardio-protective mechanisms exist. IPC arises from brief 

periods of ischaemia, as first described in 1986 by Murry et al., who observed a 

reduction in infarction size  following 4,  5 minute cycles of  circumflex occlusion and 

reperfusion [97]. Ischaemic protection is suggested to act through pathways, 

including activation of G protein-linked phospholipase C coupled receptor, tyrosine 

kinase pathways and protein kinase C (PKC) [98]. IPC releases the inactivation of 

redox-sensitive TCA cycle enzymes, reduces loss of mitochondrial respiration 

function, and prevents the release of cytochrome c, and prevents alterations in 

mitochondrial structure [99]. 

Protection occurs in two phases, acute and delayed. Acute protection occurs in a 1-

2 hour window after the initial insult. This is attributed to elevated adenosine 

signalling and downstream PKC activation [100, 101]. Delayed conditioning, arises 

24 hours post ischaemic insult and lasts for an extended period. Resulting from 

chronic hypoxia, delayed preconditioning is the secondary window of protection 

[102]. The protection afforded is not as potent as the first window but cell survival 
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is still promoted [103]. In brief, delayed IPC follows the paradigm that freely 

diffusible molecules, generated during IPC, triggers cellular adaptation, thus 

activating the PKC signal cascade.  This alters gene expression and the synthesis of 

protective proteins, such as NO synthase and heat shock proteins [50, 104]. For a 

detailed and cardiomyocyte focused review, see Baxter’s 2001 paper [104]. 

Preconditioning is reported to afford protection and recovery from I-R insult by 

reducing infarct size, preserving vascular endothelial function, decreasing 

neutrophil accumulation, and reducing apoptosis [97, 105-107]. Several therapeutic 

treatments are currently used and being developed to combat injury resulting from 

both, ischaemia and reperfusion. The existing cardio-protective mechanisms include 

the use of IPC, calcium preconditioning, potassium (K+) channel opener (KCO), 

delayed preconditioning, adaptive preconditioning, ischaemic post- conditioning, 

and Na+/H+ inhibitors.   

IPC offers protection through increased vascular function, whilst reducing 

apoptosis. In CABG patients, reperfusion arrhythmias were significantly reduced, 

following IPC [108, 109].  

5.1.4.1. Calcium preconditioning 

Transient elevations of intracellular calcium induce calcium preconditioning [110, 

111]. This form of protection arises from significant functional recovery and 

decreased lactate dehydrogenase. The calcium dynamics is a strong PKC activator, 

conferring protection from ischaemic injury [112]. 

5.1.4.2. Post-conditioning 

Perceived as a new concept and area of research, post conditioning was originally 

reported by Sewell, in 1955 [113-115]. Post conditioning is potentially very useful 

clinical tool by reducing I-R injury as late as 6 to 48 hours after focal and global 

insult respectively [116, 117]. Research suggests that post conditioning is as 

effective as pre conditioning in reducing the size of infarction and preserving 

endothelial function [117]. Post conditioning is believed to affect a broad range of 
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triggers, offering anti-arrhythmic protection, whilst reducing ROS production and 

deleterious effects associated with I-R injury [118]. For detailed historical and 

research reviews see Zhao’s 2003 and 2009 papers [116, 117]. 

5.1.5. Medical Intervention 

When administered prior to ischaemia, KCO such as diazoxide and pinacidil, afford 

acute protection [15, 119-124]. The use of KCO has been recorded to aid function 

and compliance by over 50% following I-R insult [125]. The role of K+ influx and the 

associated IPC is presently unknown, but is known to affect mitochondrial ion 

movement and to improve coronary flow through the mechanisms as outlined in 

section 5.4.2 [126]. 

Inhibiting the multi-facetted leukocyte insult is a very powerful tool. Protection 

arises from the use of anti-TNF-α antibodies, which inhibit receptor engagement, 

leukocyte-endothelial interactions (intercellular adhesion molecule 1), and reduce 

lipoxin activation (aspirin) along with leukocyte adhesion molecule synthesis 

(aspirin and glucocorticods) [127, 128]. 

NO treatment affords protection by directly opening the KATP channel, improving 

endothelial function or reducing leukocyte activation. NO derived treatment has 

been shown to occur in cardiac, cerebral and renal tissues [129-131]. While the 

exact pathway of NO protection is unknown it is attributed to cyclooxygenase-2 

activation, arising from the synthesis of prostanoids (prostaglandin (PG) –E2 and –I2) 

[132-137]. NO can offer cellular protection; however in excess it can exhibit 

deleterious effects, on tissue recovery, via ROS generation. 

In response to ROS damage, antioxidant treatments are currently being investigated 

with mixed results. Success in reducing organ failure, in post haemorrhagic shock 

and rejection in renal transplantation has been observed in patients treated with 

the antioxidant superoxide dismutase [138-140]. 

Complement activation therapy is a novel therapeutic option. In rat myocardial 

experiments, complement component 3 (C3) convertase inhibitor, reduced 
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infarction size by 44%, while complement component 5 (C5) antibody treatment 

reduced post CABG operation mortality [141]. 

While several of the treatments described have only shown promise as IPC agents in 

experimental models, KCO, which inhibit multi-facetted leukocyte and antioxidant 

treatments, have all shown positive effects in therapeutic medical intervention. 
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5.2. Mitochondria 

Mitochondria were originally named ‘bioblasts’ by Richard Altmann in 1894 before 

the name mitochondria was coined by Carl Benda [142, 143]. Mitochondria are 

important as not only do they play a critical role in I-R injury and are therefore 

targets of cardioprotection, they are the fundamental site of cellular respiration 

[144]. The importance of mitochondria to cardioprotection is linked to their role in 

cellular respiration, control of apoptosis and calcium dynamics [144-147]. 

5.2.1. Architecture 

Mitochondria are typically 0.5 to 1 μm in diameter and 7 μm long. They appear as 

discrete rod-like structures or as extended tubes that break and reform. They are 

motile and continually fuse and break apart. Mitochondrial abundance is related to 

the aerobic needs of the tissue. Mitochondria have a highly ordered structure as 

seen in Figure 5-2 and discussed below. 

Mitochondria are made from two phosphlipid bilayers, distinct in both appearance 

and physio-chemical properties. The outer mitochondrial membrane (OMM) is 

made up of a ratio of proteins and phospholipids at a ratio of 1:1. This forms a 

widely permeable membrane to ions and molecules smaller than 5000 Da, whilst 

the passage of larger molecules is regulated by the voltage-dependent anion 

channel (VDAC) [148]. The VDAC channel was first discovered by Schein, in 1976, 

and is multifunctional in both metabolic function and also apoptosis [149-151]. 

Proposed to be involved in apoptosis by Shimizu (1999), the VDAC channel has now 

been shown to be involved in both intrinsic (responding to stimulation such as 

[Ca2+]c and ROS) and extrinsic (TNFα and death receptor) apoptosis [152, 153]. 

Alongside being an aspect of apoptosis, the VDAC channel and ANT are thought to 

form the mPTP [154].  

The IMM is made up of a 4:1 ratio of proteins to phospholipids. It encloses the 

mitochondria and where it convolutes it forms the cristae. The IMM is highly 

impermeable and entry is only via channels and transporters. UCP are 
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mitochondrial transporters located on the IMM [155]. Whilst UCP1 is expressed in 

brown adipose tissue, UCP2 and 3 are found in a variety of cell types, notably those 

utilizing β-oxidation [155]. The UCPs act according to their name as they are fatty 

acid anion transporters on the IMM.  They provide an alternative means for proton 

re-entry that is not coupled to ATP synthesis and, subsequently, they can induce 

m uncoupling as they drive thermogenic activity [156, 157]. Whilst the UCPs are 

thermogenic they also afford protection to mitochondria by inducing mild 

uncoupling and by limiting ROS generation [158]. 

The two membranes form an intramembrane space (IMS) or perimitochondrial 

space, a compartmentalisation between the mitochondria and cytoplasm. The IMS 

has a role in oxidative phosphorylation, acting as a store for protons ejected from 

the mitochondrial matrix.  It generates the proton motive force, which is the drive 

for ATP synthesis. The cristae form a larger surface area for the enzymatic reactions 

of oxidative phosphorylation and ATP synthesis. The matrix is a highly concentrated 

mixture of enzymes, mitochondrial DNA, ribosomes and it is the site of aspects of 

cellular respiration (oxidation and the TCA cycle). 

5.2.2. Micro-domains and Related Structures 

The endoplasmic reticulum (ER) or SR is an extensive network of cisternae and 

microtubules and is the site of protein synthesis.  It is also the site of calcium 

signalling via the D-myo-inositol-1,4,5-trisphosphate receptor (IP3R) and ryanodine 

receptor (RyR) [159-162]. It is now well established that mitochondria have an 

intimate relationship, both spatially and functionally, with elements of the ER/SR 

[163, 164]. The close association forms “hotspots” between the ER or SR and the 

mitochondria, thus producing calcium micro-domains.  The regions of elevated 

concentrations of calcium induce mitochondrial uptake by the low affinity 

uniporters [165]. The close apposition between the ER/SR and mitochondria was 

shown to be formed by tethered junctions of 10 to 25 nm [166-168]. The close 

contacts are referred to as the mitochondria associated membranes (MAM) and are 

the sites for calcium signalling and lipid transfer [169-171]. 
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Figure 5-2. Illustration and electron microscope image of mitochondrial 

architecture. 

A) Diagrammatic view of mitochondria, with the major architecture: outer and inner 

membranes (OMM, IMM), intramembrane space (IMS), cristae and matrix. B) 

Electron microscope image of a typical mitochondria in profile. 
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5.3. Cellular Respiration 

The "father of modern chemistry," Antoine Lavoisier originally characterised the 

composition of the air we breathe and studied energy conservation 

and transformation in cells [172]. 

Living cells acquire and use energy in a process, known as energy metabolism. The 

metabolism of glucose and fatty acids occurs through: glycolysis, β-oxidation, the 

TCA cycle and the ETC, as summarised in Figure 5-3. The synthesis of ATP occurs 

through two main processes called oxidative or substrate-level phosphorylation. 

Oxidative phosphorylation occurs in the mitochondria and is the main source of 

ATP. Driven by redox reactions, ATP is synthesised from ADP and Pi. In substrate-

level phosphorylation, ATP is synthesised through the transfer of high-energy 

phosphoryl groups from high-energy compounds to ADP. This occurs during 

glycolysis and the TCA cycle. 

Respiration is the process of releasing energy from the breakdown of glucose, fatty 

acids, glutamine and ketone bodies. Respiration constantly takes place in every 

living cell in order to supply the required energy. In aerobic respiration, all products 

of nutrient degradation converge at the TCA cycle. In the TCA cycle, acetyl-CoA is 

oxidized to CO2, reducing the electron transporting coenzymes (NAD+ and flavin 

adenine dinucleotide (FAD))  to their energy donating states (NADH and FADH2). 

                             

Anaerobic respiration is a form of respiration using electron acceptors other than 

oxygen. For the ETC to function, an exogenous final electron acceptor must be 

present to allow electrons to pass through the system. Alternative final electron 

acceptors have smaller reduction potentials than oxygen and as such less energy is 

released per oxidized molecule. 
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The respiration rate is dictated not only by the concentration of ADP and calcium, 

but it has also been noted that electron availability is a critical factor [173-176].  

Cardiac tissue predominantly generates ATP from β-oxidation of fatty acids [177-

180]. Whilst this is balanced in normal physiology, cardiac tissue can utilize several 

energy sources including, glucose, lactate, glutamate and even ketone bodies during 

atypical and pathological conditions, as discussed in 5.6.2 [180-187]. 

The heart’s ability to function efficiently is highly dependent on the level of cellular 

ATP, with 2% of the cellular ATP pool turned over with every heart beat and at 

maximal cardiac output, the entire pool is turned over every few seconds [188-190]. 

During increased cardiac output, the ADP/Pi concentration is not sufficient to meet 

demand, therefore an alternative mechanism, called calcium-regulated cardiac 

activity, acts as a “real-time” ATP regulator to ensure that demand is met by 

controlling the electron production in the TCA cycle [191]. 

5.3.1. Glycolysis 

In the cytosol, glycolysis converts one molecule of glucose into 2 pyruvate 

molecules. This yields, a net profit of 2 ATP molecules, as summarised in Equation 

5-1. 

 

                         

                               

Equation 5-1. Glycolysis 
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Initially, ATP is used to facilitate glycolysis, but twice as much ATP is generated than 

is consumed overall. ATP is generated through substrate-level phosphorylation as 

phosphoenolpyruvate (PEP) is converted to pyruvate. For complete oxidation, the 

pyruvate molecules are transported to the mitochondrial matrix and converted into 

acetyl-CoA by pyruvate dehydrogenase. In aerobic conditions, the pyruvate 

molecules are transported into the mitochondrial matrix, where they subsequently 

participate in the TCA cycle. 

5.3.2. Beta-Oxidation 

In 1904, Knoop showed that fatty acid oxidation is a process by which two-carbon 

units are progressively removed from the carboxyl end of a fatty acid molecule 

[192]. This oxidation pathway was confirmed by Dakin, whilst the generation of 

acetyl-CoA and the steps were defined by Lynen et al. in 1953 [193-195]. Beta-

oxidation is the main process of fatty acid oxidation and notably occurs, in cardiac 

and skeletal muscle [182]. 

Beta-oxidation consists of four reactions and generates the common intermediary, 

acetyl-CoA, that enters the TCA cycle at the citrate synthase enzyme (Figure 5-7).  In 

conjunction, a shortened acyl-CoA molecule is synthesised and FAD and NAD+ are 

reduced as illustrated in Figure 5-5. 

5.3.3. Glutamate 

The most abundant amino acid, glutamine, is found in abundance in intracellular 

pools [196-200]. Glutamine, via phosphate-dependent glutaminase within the 

mitochondrial matrix, is converted to glutamate [201, 202]. As either a precursor or 

substrate, glutamate can be utilised in cellular respiration via glutamate 

dehydrogenase and enters the TCA cycle as α-ketoglutarate (see Figure 5-6) [201]. 

In the liver and kidney, glutamate can be converted to glucose where the 

appropriate enzymatic machinery is located, as illustrated in the checked section of 

Figure 5-6 [203]. 
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Figure 5-3. Overview of cellular energy metabolism through glycolysis, β-oxidation 

and glutaminase and the interaction with the tricarboxylic acid (TCA) cycle and 

electron transport chain (ETC). 

The diagram presents a simplistic overview of cellular respiration with the energy 

sources, glucose, fatty acids and glutamate, their enzymatic pathway and entry into 

the TCA cycle and ETC. The sites of ATP synthesis are highlighted in red text, whilst 

electron pathways and reduced electron carriers are in green.  
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Figure 5-4. Overview of the steps of glycolysis: glucose to pyruvic acid. 

In glycolysis a single glucose molecule, is degraded into 2 pyruvate molecules, via a series of reactions. ATP is initially used to dephosphorylate 

glucose and fructose-6-phosphate, but is replaced during substrate-level phosphorylation. Phosphoenolpyruvate (PEP). 

 

 

Figure 5-5. Diagrammatic view of the steps involved in β-oxidation: acyl-CoA to acetyl-CoA.  

In β-oxidation acyl-CoA is converted, via a series of enzymatic and electron donating stages, to acetyl-CoA. Acetyl CoA then enters the ETC. 
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Figure 5-6. Overview of glutamate metabolism and involvement in the TCA cycle. 

The diagram presents a simplistic overview of glutamine derived glutamate and its 

involvement in cellular respiration. Glutamate itself acts as a both a substrate or 

precursor in metabolism. The enzymes are donated by green text and the formation 

of glucose is highlighted in the red hatched area (this only occurs in the kidney and 

liver). 
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5.3.4. Tricarboxylic Acid Cycle 

The TCA or Krebs cycle was named after its discoverer, Sir Hans Krebs. Krebs based 

this cycle on four main observations in the 1930s [204].In the TCA cycle, a series of 

sequential reactions oxidise fuel molecules and release electrons. This reduces the 

coenzymes, NAD+ and FAD, converting them to their energy rich forms, NADH and 

FADH2, seen in the equation below. 

 

                                 

Equation 5-2. TCA cycle 

 

Consisting of eight reactions, as summarised in Figure 5-7, the cycle begins with 

condensation of acetyl-CoA and oxaloacetate to generate citrate. The following 

seven reactions regenerate oxaloacetate and include four oxidation reactions. The 

oxidation reactions generate the reduced NADH and FADH2 coenzymes. In addition, 

through substrate-level phosphorylation, a guanosine triphosphate (GTP) molecule 

is formed. The GTP molecule readily transfers a phosphate group to ADP to produce 

ATP. 

5.3.5. Oxidative Phosphorylation  

Oxidative phosphorylation is essentially, the reduction of oxygen through a series of 

redox reactions and cellular respiration (energy transformations) across the ETC. 

The entire process can be surmised in the equation below. 

               

Equation 5-3. Oxidative Phosphorylation 

 

The important aspect of oxidative phosphorylation is not the formation of water, 

but the chemiosmosis of protons across the IMM and the resulting unbalanced 

proton distribution [205, 206]. The proton movement generates the mitochondrial 
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proton motive force, through pH gradient and electrical potential. As described by 

Boyer, and illustrated in Figure 5-8, proton efflux and influx, down the gradient, 

provides the energy for ATP synthesis at the F1FO complex [207, 208]. 
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Figure 5-7. An overview of the tricarboxylic acid (TCA) or Krebs cycle.  

The diagram illustrates an overview of the enzymatic steps of the tri-cyclic acid 

(TCA) cycle, converting citrate (C6) to oxaloacetate (C4). The reduced electron 

donors (NADH and FADH2) and GTP produced are highlighted in red text. The 

dehydrogenase enzymes are named in the hexagonal boxes and the substrates are 

the oval sections. CoA-SH is shortened coenzyme A, NAD+ is nicotinamide adenine 

dinucleotide, NADH is the reduced NAD+, FAD is flavin adenine dinucleotide, FADH2 

is reduced FAD. 
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Figure 5-8. Oxidative phosphorylation: proton efflux and influx across the inner mitochondrial membrane.  

Oxidative phosphorylation is summarised by the efflux of protons through the complexes of the electron transport chain (ETC) and proton 

influx along with the resulting ATP synthesis via ATP synthase. Explain what the green and blue things are in the membrane. 
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5.3.6. The Electron Transport Chain (ETC) 

The ETC couples electron transfer between an electron donor (the reduced 

coenzymes, NADH or FADH2) and an electron acceptor (oxygen) with the movement 

of protons across the IMM.  This process is called oxidative phosphorylation as ADP 

is phosphorylated to ATP using the energy of the oxidative steps. Figure 5-8 

summarises the m and the efflux and influx of protons that drive ATP synthesis 

during this process. 

The original ETC model proposed a freely diffuse and independent series of 

complexes, located in the inner mitochondrial membrane. However it is now 

perceived to exist as a highly-ordered structure of interacting enzymes. This 

structure increases the efficiency and efficacy of electron transfer [209-212]. The 

ETC is a sequence of redox reactions between protein complexes I to IV. These 

complexes are illustrated in Figure 5-10 and discussed below. 

5.3.6.1. Complex I 

Complex I (NADH-coenzyme, ubiquinone (Q) oxidoreductase or NADH 

dehydrogenase), is the first protein in the ETC [213]. The reaction begins with the 

oxidation of NADH, which donates two electrons, reducing coenzyme Q10 or Q to 

ubiquinol (QH2), as described in Equation 5-4. This redox reaction results in the 

efflux of four protons into the IMS of the mitochondria through undefined 

mechanisms that seemingly involve conformational changes of the complex [214]. 

 

               
                 

  

Equation 5-4. Complex I of ETC 
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5.3.6.2. Complex II 

Complex II, which is also called succinate-Q oxidoreductase or succinate 

dehydrogenase is the second entry point of the ETC. Complex II is unique as it is also 

involved in the TCA [215]. At complex II, succinate is oxidised to form fumarate and 

again reduces Q to QH2.  

                         

Equation 5-5. Complex II of ETC 

 

This reaction produces the electron donor FADH2. Whilst the reduced coenzyme 

donates an electron, the energy release does not support proton efflux. 

The third and final entry point into the ETC is the electron transfer flavoprotein-Q 

oxidoreductase (ETF-Q oxidoreductase). This enzyme accepts electrons from the 

electron transferring flavoprotein (ETF), forming QH2, at the surface of the IMM, as 

described in the equation below [216, 217]. ETF-Q oxidoreductase is significant in β-

oxidation as it is the entry route for electron donation from, acetyl-CoA 

dehydrogenases [218, 219]. 

                                

Equation 5-6. ETF-Q oxidoreductase 

5.3.6.3. Complex III 

Complex III, also known as Q-cytochrome c oxidoreductase, cytochrome c reductase 

or cytochrome bc1 complex, catalyses the  redox reaction of QH2 and cytochrome c, 

as described in Equation 5-7 [220]. 

 

                          
                        

  

Equation 5-7. Complex III of ETC 
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The reaction is more complex than the other complexes, as it occurs in two steps, 

which doubles proton efflux [221, 222]. In the first step QH2 is oxidized, donating 

one electron to cytochrome c, whilst the second reduces Q to ubisemiquinone (Q-). 

This initial step releases two protons from the QH2 into the IMS. In step two, the Q- 

intermediate remains bound to the complex and the molecule of QH2. As 

previously, the redox reaction occurs but the second electron reduces the bound Q- 

and gains two proton from the matrix to form a QH2 molecule [223]. 

5.3.6.4. Complex IV 

Complex IV or cytochrome c oxidase is the final protein in the ETC. The last complex 

acts to mediate the reduction of the terminal electron acceptor, oxygen, to water. 

[224]. The redox reaction, of oxygen and cytochrome c aids in establishing the 

proton gradient by directly inducing proton efflux while consuming matrix protons 

during oxygen reduction, as described by Equation 5-8.  

                             
                                 

  

Equation 5-8. Complex IV of ETC 

5.3.7. ATP Synthase  

ATP synthase is the last enzyme in the oxidative phosphorylation pathway. This 

complex utilizes the energy held in the proton gradient, to synthesise ATP, as 

described below. 

               
                     

  

Equation 5-9. ATP synthesis by ATP synthase 

 

The described phosphorylation reaction is an equilibrium, which shifts direction 

depending on the proton motive force. With a high proton gradient and m, the 
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reaction proceeds as desired, from left to right, resulting in the synthesis of ATP via 

proton influx [225]. In the absence of a proton-motive force, the ATP synthesis 

reaction reverses. In this instance, ATP is hydrolysed and the channel acts to efflux 

protons into the IMS, to preserve m. The ATP synthase protein is a complex made 

from a F0 membrane embedded portion and the F1 headpiece, which is the site of 

ATP synthesis.  

To summarise, each molecule of glucose subject to cellular respiration generates a 

potential 36 molecules of ATP if incomplete redox reactions, free radical generation, 

and the ADP concentration are ignored. Glycolysis is responsible for the production 

of only 2 molecules of ATP, whilst β oxidation (of fatty acids) generates 

approximately 14 ATP molecules and the remaining 20 ATP molecules arise from 

oxidative phosphorylation (NADH and FADH2). 
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Figure 5-9. An overview of the electron transport chain (ETC) within mitochondria and entry of NADH and succinate. 

An overview of the enzymes involved in the electron transport chain (ETC). The architecture and relationship of complex I to IV, in relationship 

to each other, the ATP synthase channel and citric acid cycle. The two entry points of the ETC are illustrated: the NADH electron donator 

interaction with complex I and succinate interaction with complex II.  
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Figure 5-10. The complex’s I to IV forming the electron transport chain (ETC).  

Graphical representation of the four complexes that form the electron transport 

chain (ETC) on the inner mitochondrial membrane (IMM). A) Complex I shows the 

structure of the enzyme and flow of electrons, donated by the reduced NADH, 

resulting in the efflux of 4 protons (H+) and reduction of ubiquinone (Q) to ubiquinol 

(QH2). B) Complex II is the site of Succinate entry into the ETC, reducing FAD to 

FADH2, resulting in proton removal from the matrix and the formation of QH2. C) 

Complex III illustrates the 2 step process in the transport of electrons and the efflux 

of four H+ ions. D) The complex IV enzyme is the final step in the ETC resulting in the 

formation of two water (H2O) molecules and the efflux of four H+ ions. FMN is flavin 

mononucleotide, is a prosthetic group of some flavoproteins, cyt c is cytochrome c, 

a heme protein which acts as an electron transfer molecule, reduced (red) and 

oxidised (ox). 
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5.4. Mitochondrial Membrane Potential 

A proton gradient is generated by the efflux of protons across the IMM by complex 

I, III and IV of the ETC (Figure 5-9). The electrochemical gradient generated drives 

ATP synthesis via the F1F0-ATP synthase [226]. The m, established by the proton 

pumps, needs to be maintained at more than 80% to maintain ATP synthesis [227] 

5.4.1. Potassium Cycle 

In mitochondria, K+ plays a vital role in regulating the mitochondrial matrix volume 

and the m. Mitochondrial homeostasis of potassium is governed by 5 different 

mechanisms, as illustrated in Figure 5-11. These mechanisms include the opening of 

a mitoKATP, via K+ “leakage”; the potassium-hydrogen (K+/H+)  antiporter, which 

ejects excess K+ in order to regulate the matrix volume; Pi entry via the Pi/OH 

exchanger (driven by K+ induced alkalisation of the matrix); and the m, which at 

approximately -190mV drives K+ influx via the Eyring rate theory (Equation 5-10). In 

this final mechanism a 10% decrease in m results in a 32% decrease in K+ 

diffusion [228, 229]. 

 

 

 

         
    

 

Equation 5-10. Erying rate theory 

At high potentials, greater than 100mV, the flux of cations (J) can be described by a 

simple exponential function of membrane potential (∆ψ). Where u denotes -

zF∆ψ/RT, P is permeability constant, C10 the bulk ion concentration and f describes 

the portioning into the energy wells at the surface of the membrane. 
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5.4.2. Protection Mediators 

In 1983, Noma first discovered the KATP channels located on the sarcolemma in 

cardiac myocytes. He proposed that they were potential key effectors in IPC, 

affording protection from ischaemia, shortening action potential durations and 

reducing calcium influx into the cytoplasm [15, 98]. Several studies have mimicked 

the protective effect of IPC using pharmacological KATP channel activators and 

inhibited using channel blockers. 

Further research has implicated the mitochondrial K+ channel (mitoKATP) and not the 

sarcoKATP as the key IPC effectors [230]. The ability for mitoKATP channels to be end 

effectors is supported by experimental work with the mitoKATP selective KCO 

opener, diazoxide.  Diazoxide affords cardioprotection without reduction in 

observed action potential duration while being inhibited by the presence of channel 

blockers [15, 121-123]. 

The mitoKATP channel, located on the IMM, is believed to have a similar structure to 

the sarcoKATP but despite  the research over the last 10 years, it has yet to be 

isolated and the structure confirmed [228]. The mitoKATP channels are proposed to 

exhibit similar gating properties to the sarcoKATP, but with a smaller conductance of 

approximately 10 pS [228, 231]. 

There appears to be a paradox as opening of potassium channels would potentially 

lead to depolarisation and a reduction in ATP synthesis. However, it is possible that 

potassium channel opening leads to a compensatory mechanism that affords 

protection [232, 233]. Channel opening offers tight coupling between proton 

pumping and ATP synthesis and requires an impermeable IMM. The opening of the 

mitoKATP channel must modulate mitochondrial function in a manner that 

supersedes energy loss observed in m depolarisation as described in Figure 5-12 

[234]. 
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5.4.2.1. Matrix swelling 

It is well documented that the opening of the mitoKATP channel can induce matrix 

swelling via electrophoretic potassium uptake and the K+/H+ antiporter [235, 236]. 

The potassium influx is accompanied by weak acid (to maintain an electro-neutral 

environment) and water accumulation, leading to matrix swelling. Mitochondrial 

swelling preserves cellular respiration, through improved oxidative metabolism, 

increasing ADP translocation and ATP synthesis. This results from a closer 

association between the IMM  and OMM [236-239].  

5.4.2.2. Calcium Overload 

The opening of the mitoKATP has been demonstrated to reduce m and 

subsequently blunt mitochondrial calcium overload, as modulated by KCO such as 

diazoxide [235, 240, 241]. Calcium release from preloaded mitochondria may occur 

via an alternative channel, postulated to be the cyclosporine A-sensitive mPTP 

[240]. The mechanism of reducing mitochondrial calcium has been attributed to an 

approximate 20mV decrease in the m, which reduces the driving force of calcium 

entry [98, 233]. 

5.4.2.3. ROS production 

Elevated ROS production has been shown to be altered by mitoKATP channel 

modulation. The opening affords ROS-induced cardioprotection via PKC signalling 

and is abolished by the presence of the ROS inhibitor L-nitro-arginine [242-244]. 

5.4.2.4. Mitochondrial Partial Transition Pore 

A proposed end effecter of mitoKATP channel modulation is the formation and 

partial opening of the mPTP and the resulting protective effects associated with the 

m depolarisation, which occur prior to rupture and apoptosis [33, 245, 246].  
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Figure 5-11. Mitochondrial potassium transport: the K+ cycle  

In mitochondria, potassium is vital in regulating m and cell volume. The potassium concentration and gradient is regulated by the mitoKATP 

channel, K+ “leakage”, potassium-hydrogen (K+/H+) antiporter, ETC ejecting protons, and Pi entry via the Pi/OH-
 exchanger. K+ denotes 

potassium ions, H+ denotes protons, Pi denotes inorganic phosphate and OH- denotes hydroxide.  
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Figure 5-12. Putative mechanisms of mitoKATP channel mediated ischaemic 

protection. 

To protect the mitochondria, and cell, during ischaemia and reperfusion the 

putative mechanisms have been proposed. A) Mitochondrial volume, determined 

by the balance between salt influx and efflux from the matrix, may be adjusted to 

optimize energy production or minimize energy loss. B) Mitochondrial calcium 

overload may be slowed by depolarization of the m, and calcium release may be 

initiated by permeability transition pore opening. C) ROS production by the 

mitochondria may be enhanced during early ischaemia to trigger protection but 

inhibited during reperfusion to mitigate damage. Adapted from O’Rourke [98]. 
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5.4.3. Potassium Channel Modulators 

The opening of the mitoKATP channel, resulting in K+  influx was initially proposed by 

Gross et al., in 1999 [230].  

Following this, KCO openers (nicarandil and diazoxide) have been utilised as 

pharmacological IPC agents [15, 120-124]. Diazoxide has since been proposed as a 

mitochondrial specific KCO, modulating the mitoKATP channel only. This is supported 

by a lack of action potential shortening associated with sarcoKATP opening and an 

abrogation of the effects presence of specific mitoKATP blocker 5-HD [121, 122, 247, 

248]. 

5.4.3.1. Diazoxide 

The pharmacological IPC associated with diazoxide, is suggested to result from 

direct modulation and opening of the mitoKATP channel. Data published by Moreau 

et al. (2005) has supported the potential of direct modulation, of the mitoKATP 

channel by diazoxide having demonstrating that it binds to sulfonylurea receptor 1 

and 2A (SUR-1, -2a), proposed channel subunits [249-251] .  

Although diazoxide irrefutably induces IPC, the exact mechanism of action remains 

elusive. In 1999, D’hahan demonstrated diazoxide modulation of the sarcoKATP 

channel occurred, but only in the presence of elevated ADP, which serves as an 

essential cofactor [252]. Suzuki et al. (2003) reported diazoxide to have a Km of 840 

µM, for the sarcoKATP channel [253]. Alongside modulation of potassium channels, 

diazoxide is now believed to potentially affect several mechanisms, including: 

partial inhibition of succinate dehydrogenase, upstream ROS synthesis, generation 

of PKC and opening of the transient mPTP [34, 41, 144, 254-256]. 

It is diazoxides metabolic effects that have gathered interest as an alternative 

explanation of the associated IPC. Forbes et al. (2001) and Hanley et al. (2002), 

amongst others, have demonstrated that diazoxide inhibits succinate 

dehydrogenase, thereby inhibiting complex II of the ETC (see 5.3.6) and affording 

IPC via mitochondrial depolarisation [41, 239, 254, 257-263]. 
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5.4.3.2. 5-hydroxydecanoic acid 

In 1991, McCullough first described 5-HD as an “ischemia selective inhibitor of 

mitoKATP channels” [264]. Following this and its proven ability to abrogate 

pharmacological IPC, 5-HD was promoted as a putative specific mitoKATP channel 

blocker [228, 265, 266]. It has been documented to negate diazoxide induced 

potassium influx, but the presence of ATP and magnesium is required [120, 237].  

Contrary to this, several papers have proposed that, 5-HD opposes diazoxide 

induced pharmacological IPC, by modulating β-oxidation (described in section 5.3.2) 

and acting as a partial substrate. This concept is supported by the fact that 

ischaemic and pharmacological preconditioning can be abolished by trimetazidine, a 

3-ketoacyl-CoA inhibitor [267, 268]. Lehtihet et al., in 2003, documented IPC 

inhibition by glibenclamide. Glibenclamide showed dose dependent inhibition of 

carnitine-palmitoyl transferase 1 (CPT-1) in β-cells, thus preventing fatty acid 

transport across the OMM [269]. It is not clear if 5-HD, in its active form, can enter 

the mitochondria and prevent β-oxidation [237]. 

Whilst 5-HD is well documented to abrogate pharmacological IPC and although 

originally believed to close the mitoKATP channel, it is now perceived to modulated 

β-oxidation. The presence of 5-HD can inhibit β-oxidation which is proposed to 

inhibit IPC whilst paradoxically elevated β-oxidation may also be responsible. The 

succinate dehydrogenase inhibitor 3-nitropropionic acid (3-NPA) induced IPC, was 

prevented by the presence of 5-HD [266]. When metabolised 5-HD forms 5-HD-CoA, 

and depending on the isomer formed, it can act as a weak substrate or an inhibitor 

of β-oxidation [254, 270]. The L-isomer forms a substrate for fatty acid oxidation, 

whilst the D-isomer can result in a bottleneck of the pathway [237, 270-273]. This 

suggests that 5-HD is potentially not a direct inhibitor of the mitoKATP channel but 

rather a metabolic antagonist of diazoxide-induced succinate dehydrogenase 

inhibition [254, 262, 263, 270, 272, 274]. 
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5.4.4. Cyclic GMP Modulators 

A critical element of preconditioning and resulting cardiac protection is NO driven 

cGMP-dependent protein kinase G (PKG) activation [275-277]. In CMs, cGMP-

dependent PKG signalling exerts positive ionotrophic, negative metabolic and 

functional effects [278-280]. The opening of the mitoKATP channel is a proposed end 

effector of PKG in preconditioned hearts compared to non-conditioned hearts and 

as such is a proposed mechanism of IPC [281-283]. 

Whilst guanylate cyclase-driven cGMP production is the main signalling pathway of 

NO, it can also can affect signalling and cellular physiology via direct NO action or 

peroxynitrate signalling, as previously discussed in section 5.1.3 [60]. As a proposed 

mitoKATP channel opener, this is believed to modulate calcium signalling amongst 

other downstream signalling effects.  These include cardiac excitability or 

downstream effects of PKG activation such as modulation of the L-type channel, 

inhibition of mPTP formation and a reduction in mitochondrial swelling and ROS 

production [241, 284-291]. 

The cGMP concentration can be modulated by several means, including NO 

activation of guanylate cyclase, or hydrolysis via phosphodiesterase type 5 (PDE5, 

which preferentially hydrolyzes cGMP) [292]. Zaprinast (ZAP) inhibits PDE5 cGMP 

hydrolysis (maximal inhibition, IC=10 µM), resulting in elevation of cGMP 

concentration even under basal conditions [278, 293]. 

Protein kinase G is proposed to increase mitoKATP channel activity, via PKG-

dependant phosphorylation, but requires the presence of cGMP and ATP [232, 290]. 

Whilst NO has been shown to induce cGMP activation as the trigger for mitoKATP in 

patch clamp models and CMs, it has paradoxically been shown to have no 

comparable effect in whole cell models [290, 294-296]. 

The exogenous NO donors, S-nitroso-N-acetylpenicillamine (SNAP) and sodium 

nitroprusside (SNP), are both known to induce cGMP-dependent PKG activation via 

the activation of guanylate cyclase [288, 290, 297, 298]. The use of the guanylyl 

cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or ODQ confirms 
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SNAP as a NO donor [232, 299]. As NO can modulate several pathways PKG 

inhibitors, KT5823, (Rp)-8-Br-PETP-cGMPS and (Rp)-pCPT-cGMP, were utilized to 

inhibit cGMP-PKG activation, confirming this pathway over other potential routes 

[290, 300]. The cGMP-PKG pathway was corroborated by the PKG activator, (Sp)-8-

Br-PET-cGMP, which mimicked the observed effects induced by NO [300]. 
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Figure 5-13. Proposed cyclic GMP (cGMP) dependent activation pathway of 

protein kinase (PK) and site of inhibitors. 

Diagram of the nitric oxide (NO) and cyclic GMP (cGMP) activation of protein kinase 

G (PKG). Cyclic GMP, and subsequently PKG, can be elevated through NO donor 

stimulation of guanylate cyclase (GC) and inhibition of phosphodiesterase type 5 

(PDE5) cGMP hydrolysis using zaprinast. The mitochondrial potassium ATP channel 

(mitoKATP) is proposed to be activated via PKG-dependent phosphorylation is 

donated by *. 
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5.5. Extracellular Nucleotides 

The concept of purines as extracellular signalling molecules was instigated by Drury 

and Szent-Gyorgyi in 1929 [301]. Subsequently ATP was recognised as the elusive 

source of cellular energy and emerged as a key extracellular signalling molecule 

[301]. They documented the effect of extracellular purines (adenosine and AMP) on 

the heart and found that they pronounced chronotrophic effects and vasodilatory 

action on the microvasular [301]. Numerous studies have since documented the 

role of nucleotides and the expression of receptors ubiquitous to all mammalian 

tissue and essentially all cells in vertebrate organisms [302-305].  

Nucleotide signalling mediates a multitude of biological processes. Depending on 

the expression of particular purinoceptors many varying responses may arise from a 

single agonist. Purinoceptor signalling affects a plethora of responses including 

smooth muscle relaxation and contraction, ion transport, inflammation and 

immune responses, cardiac function and cell proliferation [302].  

5.5.1. Purino Receptors 

ATP and other nucleotides act via cell surface purinoceptors, which are senstive to 

nucleotides in the range of 10-80 µM [306]. The purino receptors consist of two 

main families, P1 and P2, defined by their agonist sensitivity, first indicated in the 

different actions of purines [307]. The receptors were documented by Burnstock in 

1978 and given the nomenclature “P1-purinoceptors” and “P2-purinoceptors” 

before P1 (A) and P2 respectively [308]. The adenosine sensitive P1 or A receptors 

were initially identified in brain slices and are made up of 4 G protein coupled 

receptors; A1, 2A, 2B and 3 [302, 309, 310]. In mammalian tissues, the ATP, ADP, UTP 

and UDP receptor family, P2, comprises of the P2X ligand-gated ion channels (P2X1-

7), and P2Y G-protein coupled receptor (P2Y1, 2, 4, 6, 11-14) [302, 311-315]. The receptor 

sub-family structure and nucleotide sensitivity is illustrated in Figure 5-14, (for a full 

review see  Ralevic and Burnstock (1998)) [302]. 
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P2Y2, P2Y11 and P2X receptors in their various forms are sensitive to ATP, whilst only 

P2Y1, P2Y6 and P2Y11 are ADP receptors. However the P2X channels exhibit 

sensitivity to ADP, but it is a weak agonist compared to ATP [316, 317]. There is 

widespread evidence that the P2Y1 receptors respond selectively to ADP while ATP 

acts is antagonistic [318]. 

5.5.2. Nucleotide Release 

Constitutive release of nucleotides occurs in resting cells. The basal level of ATP is 

dependent on basal release and signal termination, is reported to be 1 to 10 nM at 

the peri-cellular space without bulk diffusion into the extracellular space [304, 314, 

319, 320]. The extracellular nucleotide concentration and signal termination is 

precisely regulated by receptor de-sensitisation and down regulation, nucleotide 

reuptake, and extracellular interconversion by a family of ecto-enzymes [304]. 

It is widely documented that extracellular ATP release occurs in a plethora of cells 

including, epithelial, endothelial, astroyctes, fibroblasts, CMs, and various other 

tissues [321-323]. The extracellular ATP concentration has been reported to be 

nearly four times greater in hypoxic cardiac tissue when compared to cells in 

normoxic conditions [324]. 

Using mathematical modelling it has been suggested that, ADP and AMP are 

released in-conjunction with ATP [325].  It has also been shown that at the cell 

surface, ADP and GDP are detectable at concentrations equal to or greater than 

their respective triphosphates [319].  

Despite continuing research, the exact source and mechanism of nucleotide release 

is yet to be defined, but several non-lytic and apoptotic mechanisms have been 

proposed including 1) mechanical stimulation and ATP channel release, 2) electro-

diffusion through ion channels, 3) facilitated diffusion by nucleotide specific ATP 

binding cassette transporters and 4) vesicular release, as illustrated in Figure 5-15 

[315, 322, 326].  
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5.5.2.1. Mechanical Stimulation ① 

The first documented occurrence of ATP release in response to mechanical 

stimulation, was observed during sustained exercise in human forearm musculature 

[327]. The concept of non-lytic ATP release was strengthened by the pioneering 

work with perfused endothelial cells [328-330]. Following these initial studies, ATP 

release has now been observed in a variety of tissues including umbilical vein, 

endothelia, epithelia and fibroblasts [331-336]. Of the cell lines in which ATP release 

has been observed, epithelial cells are particularly sensitive to sheer stress [315].  

5.5.2.2. ATP Binding Cassette ② 

The ABC transporters are an alternative mechanism of release. Of the ABC 

transporters, it is the cystic fibrosis transmembrane conductance regulator (CFTR) 

that has received the most attention. Whole-cell and single channel 

electrophysiological patch clamp experiments have suggested ATP conductance 

occurs in the regions that exhibit the presence of CFTRs [289, 337]. Despite early 

indication, studies using native, heterologously expressed or highly purified CFTRs, 

showed that ATP conductance remained [338-340]. To further disprove the 

involvement of CFTRs, the extracellular ATP concentration is comparable in normal, 

cystic fibrosis and CFTR-null cells [333, 334, 341]. It appears that CFTRs are not the 

direct sites of ATP release, but the multiple drug resistance protein (MDR) confers 

control over ATP efflux since ATP release is reduced in the presence of MDR-1 

inhibition [315, 342]. 

5.5.2.3. Vesicle Trafficking ③ 

Vesicle trafficking and exocytosis are also a putative mechanism of nucleotide 

release. In astrocytes, vesicular ATP release is well established [343, 344]. It has 

been demonstrated to occur in the vascular endothelium, as it reduced in the 

presence of vesicle inhibitors (monensin and N-ethylanalemide) [323, 345, 346]. 

Whilst the ‘selectivity’ of the inhibitors is disputed, vesicle trafficking remains as a 

potential release mechanism. 
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5.5.2.4. Ion Channels ④ 

Adenosine triphosphate and other nucleotides are proposed to move through ion 

channels such as hemi-, stretch- or voltage-channels. Despite early research, 

stretch-activated cation channels show no close association to ATP release [347, 

348]. Both directly and indirectly, VDACs are ATP conduits [349, 350]. In murine 

cells, VDAC-1 knockouts and inhibition reduce but not fully inhibit ATP release, 

suggesting multiple mechanisms of release [351, 352].  

Connexin and pannexin channels and the P2X7 receptor are all proposed 

mechanisms of ATP release under both basal and stimulated conditions [353, 354]. 

Connexons are 1 to 1.5 nm pores, formed from the oligmerisation of 6 connexins 

[355, 356]. The union of two adjacent hemichannels on cytoplasmic membranes 

form gap junctions [357], forming large conductance channels with the same 

permeability as the hemichannels (<1kDa). The opening of the channel is a ligand-

gating reaction which can switch between its open and closed state in less than a 

millisecond [358]. The most widely distributed connexin, of the 13 subsets, is 

connexin 43.  It is expressed in a majority of cell types including CM and fibroblast 

[359]. The channels can also form non-junctional or ‘unopposed’ hemichannels and 

these have been shown to open under both physiological and pathological 

conditions [360]. 

The channel has been shown to have a higher than expected substrate conductance 

and both the hemichannel and channel is now a proven mechanism of ATP release 

[355, 360-366]. The channel can be modulated by the presence of either 100 μM 

flufenamic acid (FFA) or EGTA, opening and  closing the hemichannel respectively 

[362, 364]. The presence of gap-junction inhibitors have been shown to have mixed 

results with inhibitors such as FFA and carbenoxolone affording no modulation on 

the extracellular ATP. This has been seen in several cell types including endothelial 

and polymorphonuclear leukocytes cells [367-369].  ATP release is also reduced in 

the presence of gap peptides (Cx26, 30 and 43) and in knockout mice [364, 370-

376].   
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Figure 5-14. Purinoceptor family subtypes, P2X, P2Y and A and their structure and 

nucleotide sensitivity. 

Nucleotides mediate signalling and downstream signalling. Nucleotide signalling 

acts via a series of ionotropic P2X receptors and metabotropic P2Y receptors, 

classified by their affinity to ATP and ADP whilst adenosine acts on its own G-

protein-coupled nucleoside-selective receptors.  

 

 

Figure 5-15. Four putative non-lytic nucleotide release mechanisms. 

Proposed non-lytic nucleotide-releasing pathways: ① mechanical stimulation, 

②facilitated diffusion by nucleotide-specific ATP binding cassette (ABC) 

transporters, ③ vesicle trafficking and exocytosis secretions and ④ ion channels. 
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5.5.3. Extracellular Nucleotide Function  

The nucleotides responsible for the observed ischaemic effects, such as vasodilatory 

and chronotrophic modulation, are believed to be attributed to ATP and the 

products of its degregation, adenosine and AMP [82, 83, 323]. Early research on 

nucleotide signalling studied the effect on a variety of tissue, notably on coronary, 

vascular tissue and platelet aggregation [377-379].  

ATP signalling is a proposed candidate of cardiovascular effects, both vasodilation 

and innate immune response activation, as discussed in 5.1.3 [301, 330, 380, 381]. 

ATP has been shown to induce hyperventilation, bradycardia, hypotension and 

apnea, via P2X stimulation [301, 382-384]. Alongside elevated ATP, adenosine is 

also released during hypoxia and shown to induce hyperaemia, increased blood 

flow [301, 383, 385, 386]. 

The co-release of ATP and norepinephrine (NE) or acetylcholine occurs in the 

sympathetic and parasympathetic nervous system, respectively, and can induce an 

excitatory (P2X) or sedative (P2Y) response [332]. In apoptosis, the P2X7 receptor 

acts as a non-selective ion pore of leukocytes, whilst the P2X5 and P2X7 receptors 

induces proliferation, differentiation or apoptosis, respectively in stratified 

epithelium [387, 388]. ADP signalling via P2Y1 and P2Y12 is critical in haemostasis. 

ADP induces platelet aggregation, which can form a platelet plug and repair damage 

but can lead to thrombosis formation and vascular occlusions, which manifest as 

strokes and cardiac infarctions [389-391]. In epilepsy, activation of P2X receptors 

induces generalised motor seizures, whilst ATP acts as a mechano-transducer in 

bone function [382]. In cancer patients, exogenous ATP treatment has had positive 

effects by reducing cachexia (weight loss, muscle atrophy, fatigue and weakness) 

and improving survival rates [392]. 

5.5.4. Ecto-nucleotides 

Once released, ecto-nucleotidases convert ATP into ADP, AMP and adenosine. 

Although this reduces ATP signalling, all of the products exert their own 
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pharmacological effects [382]. This makes the overall effect of ATP addition or 

release potentially very complex. 

Nucleotide concentrations in the extracellular matrix are modulated by several 

ecto-enzymes at both the cell surface and within the extracellular environment 

[304, 393].  

De-phosphorylation or nucleotide hydrolysis is regulated by several enzymes: ecto-

nucleotide triphosphate diphosphohydrolase (E-NTPDase), ecto-nucleotide 

pyrophosphatase/phosphodiesterase (ENPP), alkaline phosphatase (ALP) and ecto-

5’-nucleotdiase (eN) families [21]. Maximal activity is observed in the presence of 

divalent cations, calcium and magnesium, and exhibit a Km in the low micro-molar 

range [304].  

                        

Equation 5-11. Nucleotide hydrolysis and synthesis 

Nucleotide synthesis, or phosphorylation (where Equation 5-11 runs right to left), 

was originally believed to be a strictly intracellular process, but other work shows 

that extracellular ATP synthesis may occur [394]. This process is mediated by the 

following phosphorylation enzymes: adenylate kinase (AK), nucleoside diphosphate 

kinase (NDPK) and F1F0 ATP synthase. 

5.5.4.1. Hydrolysis 

The E-NTPDase family (or ecto-apyrase; Figure 5-16) dephosphorylate a variety of 

nucleoside tri- and di-phosphates in the presence of divalent cations (calcium and 

magnesium). The E-NTPDases  contain an actin-hsp 70-hexokinase β- and γ-

phosphate binding motif and highly conserved apyrase regions [395]. The 

subfamilies exhibit different specificity and ability for nucleotide hydrolysis. E-

NTPDase 1 (CD39 or vascular ATPDase) converts ATP>AMP with only a modest 

appearance of ADP.  It hydrolyses ATP at a molecular ratio 1:0.8 (ATP:ADP). In 

contrast, E-NTPDase 2 (or CD39L1, ecto-ATPase) converts ATP>ADP with minimal 

AMP accumulation with a ratio of 3:1 (ATP:ADP) [304, 396]. E-NTPDase3 (or 
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CD39L3, HB6) and E-NTPDase8 (or hepatic ATPDase) are a secreted proteins, which 

hydrolyse ATP to AMP with transient ADP accumulation [320, 397, 398]. Several 

inhibitors have been developed to inhibit E-NTPDase enzymes hydrolysis. Suramin, 

a non-competitive inhibitor of ATPase, exhibits a Ki=53 µM. 

The ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP or PDNP, PC-1; 

Figure 5-17) family consists of 3 subfamilies. E-NPP1-3 requires calcium binding at 

the EF hand and is optimal within an alkaline pH. E-NPP1 and E-NPP3 hydrolyse, 

ATP>AMP with a Km=13-50 µM, whist E-NPP2 (or autotaxin) hydrolyses 

ATP>ADP>AMP, but neither facilitate AMP>adenosine hydrolysis [396, 399-403]. 

The E-NPP enzymes exist either as a membrane protein or via proteolytic cleavage, 

as a soluble protein, notably E-NPP2 [304, 404]. 

ALP (Figure 5-17) is a homodimeric enzyme, requiring divalent cation binding at 

catalytic sites, for ATP>ADP>AMP>adenosine hydrolysis [322]. The family consists of 

4 members (non-specific, intestinal, placental and germ cell) expressed as either 

GPI-anchored or soluble enzymes [400]. Alkaline phosphatases exhibit a  Km= low 

millmolar [304].  

It is known that eN (also known as CD73; Figure 5-17) occurs as both GPI anchored 

and soluble forms and drive adenosine accumulation via AMP>adenosine 

hydrolysis, expressing a Km =14±3 µM [306, 405, 406]. 

5.5.4.2. Synthesis 

The transphosphorylating enzyme, AK transfers phosphate groups between adenine 

based nucleotides (ATP + AMP   2ADP; proportional to Mg2+ concentration) [407]. 

The AK family exists as both a soluble and membrane bound enzyme, with AK1 

being cytosolic and AK2 located to the internal mitochondrial space [322]. In 

epithelial cells, AKs exert a Km=43 µM (ADP) and Km = 23 µM (ATP), but primarily 

drive ATP synthesis [408].  

The NDPK enzyme, expressed on the plasma membrane or a soluble form (NDP), 

converts ATP + UDP   ADP + UTP.  
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The F1F0 complex is comprised of a 500 kDa central F0 and water soluble F1 “head 

piece” that requires oxidative phosphorylation (NADH/FADH2) to convert ADP to 

ATP. It is not solely located to mitochondria andhas been shown to be expressed by 

endothelial cells [394]. Partial inhibition of ADP>ATP phosphorylation can be 

achieved in the presence of oligomycin [408]. Diadenosine pentaphosphate (Ap5A) 

also reduces ADP>ATP phosphorylation by inhibiting both AK and F1F0 activity [409].  

5.5.4.3. Nucleotide Enzyme inhibitors 

ATP hydrolysis has been shown to be inhibited by the presence of ebselen (2-

phenyl-1,2-benzisoselenazol-3(2H)-one). Ebselen inhibits ATP hydrolysis by 

approximately 60% when used at concentrations less than 100 μM  [410]. Ebselen is 

reported to have negligible effects on ecto-ATPase and AK activity, whilst it inhibits 

NDPK hydrolysis with a Ki=7.6±3 μM [411]. Ebselen is also documented to affect 

various biological activities including NOS, PKC, NADPH oxidase[412]. 

6-N,N-Diethyl-D-β,γ-dibromomethylene ATP trisodium salt (ARL 67156) is 

postulated as a ‘non-specific inhibitor of ectonucleotidases', a ‘non-specific ecto-

triphosphate nucleotidase inhibitor', an ‘inhibitor of the E-NTPDases',  a ‘specific 

inhibitor of E-NTPDase1 and or E-NTPDase2', and a ‘selective ecto-5′-nucleotidase 

inhibitor' [400, 413-419]. ARL 67156 can attenuate ATP and ADP hydrolysis, NTPase 

substrates and decrease ATP- and ADPase activity [398, 419, 420]. Despite the 

evidence, the influence of ARL 67156 on ecto-nucleotides, remains uncertain, but is 

a weak competitive inhibitor of E-NTPDase1, E-NTPDase3 and E-NPP1, and does not 

modulate E-NTPDase2, E-NPP3 and ecto-5′-nucleotidase activity [304, 421, 422]. 

The ALP inhibitor levamisole has been shown to inhibit hydrolysis of both AMP to 

adenosine and ADP to AMP [405, 423-425]. 

Acting in a concentration-dependent manner, Ap5A is an AK inhibitor which causes 

69±5%, 80% and 100% inhibition at 100 µM, 300 µM and 500 µM respectively [306, 

408, 426, 427]. Preventing ATP to ADP hydrolysis, Ap5A is a competitive inhibitor 

and a non-competitive inhibitor of AK synthesis.   
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Figure 5-16. E-NTPDase family substrates and structures 

Predicted membrane topography and catalytic properties of members of the E-

NTPDase family. Enzymes may occur as homomultimers. E-NTPDase5 occurs as a 

soluble protein (arrow). Adapted from Zimmermann [304]. 

 

 

 

Figure 5-17. Nucleotide hydrolysis enzymes structures: ecto-nucleotide 

pyrophosphatase/phosphodiesterase (E-NPP), alkaline phospatase (ALP) and 5’-

nucleotidase (eN). 

Predicted membrane topography and catalytic properties of members of the ecto-

nucleotide pyrophosphatase/phosphodiesterase (E-NPP), alkaline phosphatise (ALP) 

and 5’-nucleotidase (eN). The enzymes may occur as dimers and may become 

transformed into soluble proteins by proteolytic cleavage or endogenous GPI-

specific phospholipase. Adapted from Zimmermann [304]. 
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Figure 5-18. Nucleotide synthesis enzyme activity by nucleoside diphosphate 

kinase (NDPK) and adenylate kinase (AK).  

The action of the nucleotide conversion enzymes, nucleoside diphosphate kinase 

(NDPK) and adenylate kinase (AK) on ATP, ADP and AMP. The enzymes are 

proposed to act in both directions, hydrolysing and synthesising nucleotides. 
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5.6. Cardiac Cells 

The heart is a complex muscular organ consisting of 3 layers, the pericardium (a 

connective tissue layer surrounding the heart), the myocardium (muscular tissue) 

and the endocardium (inner endothelium).  

The myocardium is a collection of adapted CMs, which form concentric layers of 

muscle tissue. Myocytes are approximately 100x20 µm in size and exhibit a striated 

subcellular structure.  They contain large numbers of mitochondria and are fatigue 

resistant. Individual CMs are connected by intercalated discs forming structural 

junctions (desmosomes) and gap junctions, which allow electrical conductance and 

generate a functional syncytium across the cells. 

The contractile apparatus in myocytes is composed of actin and myosin filaments, 

which form the M and Z lines and the A, H and I bands of a sarcomere. At regular 

intervals along the Z lines, there are transverse (T) tubules, which are highly 

organised, three dimensional invaginations of the plasma membrane. T-tubules are 

separated from each other by approx 2 µm long mitochondria and junctional SR 

[428].  T tubules form a close proximity with the terminal cisternea of the SR, the 

site of excitation-contraction (E-C) coupling [428]. 

5.6.1. Excitation-Contraction Coupling 

By converting the electrical excitation (action potential) of the heart into a physical 

contraction of CM, the E-C coupling propels blood around the body. Originating 

with an action potential, the E-C coupling activates the voltage-gated Na+ channel, 

inducing Na+ influx, rapid depolarisation of the cell membrane, opening the L-type 

voltage-gated calcium channels, triggering a rise in [Ca2+]c, above 100 nM [429, 

430].  

The calcium influx (which accounts for less than 20% of total calcium) opens the 

RyR-2 channel, resulting in a further elevation in [Ca2+]c, as a calcium “spark”, via 

CICR from the sacroplasm [429, 431, 432]. Calcium entry occurs over 1 to 2 ms and 
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over the following 10 ms, facilitated by the T-tubule structure, the [Ca2+]c 

substantial increases, which generates cardiac contraction. 

The contractile apparatus in muscle is made from the actin and myosin filaments 

forming cross bridges according to the sliding filament theory. The elevated [Ca2+]c 

binds troponin C, inducing a conformational change, which causes troponin I 

dissociation and exposes the actin binding site. Contraction is brought about as the 

myosin head subsequently forms a cross bridge and generates a ‘working stroke’ 

and longitudinal sliding of the filaments. As the action potential repolarises, the 

[Ca2+]c concentration drops below the 100 nM threshold, unbinding from troponin C 

and again blocking the binding site, which results in relaxation. 

The decrease in [Ca2+]c occurs through a loss of L-type channel activation and 

parallel uptake via the SERCA channel and Na+/Ca2+ exchanger (NCX). Of the 

calcium, 80% is sequestered by the SR and 20% extruded into the extracellular 

environment [429].  

5.6.2. Cardiac Energy Demands 

Cardiac tissue is energetically demanding and the ATP pool is turned over in 

approximately 10 seconds under normal conditions [182, 185, 186]. The ATP supply 

is mainly derived from oxidative phosphorylation, which accounts for 90%, whilst 

the TCA cycle and glycolysis generation attributed the remaining 10% [189, 433].   

The main source of ATP in cardiac tissues is derived from β-oxidation of fatty acids, 

such as triacylglycerol and very low density lipids [177-179]. Fatty acid is 

accumulated in the heart via passive diffusion and a proton carrier-mediated 

pathway via the fatty acid translocase (FAT) and fatty acid transport protein (FATP). 

For a full review please see the referenced papers [179, 434]. While fatty acids are 

the hearts predominate source of energy (70-95%), due to its high energy demand, 

the heart acts as an “omnivore” and takes energy from a variety of carbon sources 

including glucose and glutamate [180-187]. The regulatory pathways which control 

the physiological and pathological switch in energy sources are still elusive, 

although insulin and pyruvate dehydrogenase are known to be involved [180].  
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During hypoxia and ischaemia, despite the loss of oxygen and reduced ATP 

synthesis, β-oxidation remains the major source of energy [435, 436]. Whilst this is 

the case, glucose derived ATP is elevated which has the beneficial effect of requiring 

less oxygen than fatty acid ATP generation [180]. 

5.6.3. Primary Cardiomyocytes 

Heart tissue was first cultured in 1912, when Burrows placed pieces of explanted 

embryonic chick hearts in culture and observed that single, individual cells migrated 

away from the explants [437]. It was not until 1952 that CMs were isolated from 

foetal hearts and the isolation protocol was subsequently developed, where CMs 

were cultured as their component cells for extended periods [438-440].  

In the developing chick heart, contractility can begin within 33-38 hours of 

incubation of a fertilised egg. This occurs in a cluster of cells within a restricted 

region at the right postero-ventral edge of the primitive ventricle. The cardiac cells 

found in this region are significantly differentiated, inducing pacemaker potential, 

and generating a bioelectric potential and contractility [441, 442]. With a short 

embryonic phase and their relative costs, chick CMs have since been used to study 

cardiac physiology, pharmacology and metabolic parameters [443-445].  

The neonatal rat CM model permits the study of many of the morphological, 

biochemical and electrophysiological characteristics [446-449]. Neonatal CMs offer 

a preferential model compared to adult CMs as a typical rat litter of 10–20 neonatal 

pups provides sufficient tissue and is comparatively less expensive than CMs 

isolated from adult rats. Neonatal CMs also offer easier isolation, sensitivity to Ca2+ 

and a stable phenotype that is contractile [450, 451]. 

Despite their advantages, CM isolation techniques and Langendorff preparations 

are time consuming, costly, and limited to cells with adult characteristics. The 

isolation method is not fully specific and a heterogeneous population is regularly 

isolated, with non CMs (fibroblast, leukocytes) overgrowing the desired CMs in 

culture. However the presences of fibroblasts have been shown necessary for 

proper CM growth and function [452, 453]. During their embryonic stage, 
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fibroblasts secrete factors such as, fibronectin, collagen and heparin-binding EGF-

like growth factor (HEEGF), which collaboratively promote CM proliferation via β1 

integrin signalling [454]. The adult heart is prominently two thirds fibroblasts, which 

act as a mechanical scaffold and co-ordinate CM function [455-457]. Primary 

populations also appear to lose their contractile ability and are susceptible to 

oxidative and mechanical injury. Cells can also be damaged by the enzymatic 

solutions used in the digestion process [439, 458-461]. 

5.6.4. Embryonic Stem Cells 

Embryonic stem cells (ESc), originally derived from undifferentiated cells from 

murine embryos, can be kept in permanent culture if grown on feeder layer cells 

(fibroblasts) [462-464]. Cultured ESc form embryoid bodies which can be 

investigated as either a culture population or dispersed single cells. The cell express 

a pattern of cardiac-specific markers and in early development spontaneous 

contraction is observed [465, 466]. 

Despite the potential of ESc, there are associated limitations as undifferentiated 

stem cells exhibit no electrical activity or spontaneous beating and only express 

certain markers.  Likewise, M-band or T-tubule-formation may not be not finalised 

[463, 467, 468]. Differences in ion channel expression and biophysical 

characteristics have also been noted and over time Esc appear to exhaust their 

ability to proliferate and CM phenotype deteriorates [452, 469-471]. 

5.6.5. Cardiomyocyte Cell Lines 

Several alternatives to primary CM isolation have been developed as discussed 

below. Cell lines however are subject to limitations including limited ability to be 

passaged, low recovered from frozen stock, loss of phenotype, and minimal or 

nonexistent contractile activity. 

Cell lines, such as the P19 and MC29 (avian CMs), are useful tools for studying 

cardiomyocyte development and differentiation. Studies using these populations 

were limited by a loss of phenotype and contractile ability [466, 472-474]. Quail 
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CMs have been utilized in experiments, allowing up to 60 passages, before the cells 

begin  to lose CM markers [475].  

The H9c2 cell line is a sub clone derived from BDIX rat heart tissue and is a well 

established CM model [476-478]. In culture, the cells form typical and parallel 

spindle-shaped confluent cultures, but lack gap junctions, caveolae or T-tubules.  

They also form only stress fibres and not myofibrils [479, 480]. The AT1, atrial 

tumour cell line, was developed from differentiated myocytes that had been 

maintained from serial propagations of ectopic grafts. The cell line succeeded and 

they retained their cardiac (atrial) phenotype and capacity to proliferate, however 

they lacked the ability to be continually passaged or reconstituted from frozen 

stores [472, 481]. 

Claycomb et al. have developed a new cell line, HL-1, isolated from the existing AT-1 

CM line. These cells are a hybrid of embryonic and adult CM’s, exhibiting CM 

morphology with a single central nucleus, contractile myofibrils, intercalating discs, 

express myosin heavy chain (MHC), Cx43, and CM electrophysiological 

characteristics [482]. The HL-1 cell line has been extensively cultured and appear to 

be viable following unlimited passaging (at least p240), maintaining their phenotype 

with synchronous and spontaneous contraction in culture [472, 475]. With the 

discussed attributes, the HL-1 cells offer a viable atrial CM model and are a working 

model for studying apoptosis, cell cycle, calcium dynamics and hypoxia & oxidative 

stress [483-486].  

5.6.6. Cardiomyocyte Morphology and Markers 

To confirm the phenotype of cultured cells, the literature was studied to confirm 

specific antibodies and morphology of CMs in culture, in conjunction with observing 

spontaneous beating. 

In vivo CM aggregate to form thick, highly refractive cells. These can be either round 

or spindle shaped, uni-nuclated cells with a fine granular cytoplasm and long actin 

filaments interrupted by osmiophilic dense bodies. They may also contain striated 

myofibrils and pseudopodia processes [487-490]. In cultures, the expression of 
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muscle specific sub structures increases after approximately 3 to 7 days as pre-

myofibrils are replaced by CM iso-forms that mature to express myocyte banding 

(A-, I-Z-I) and ultimately contractile activity [491].  

Cell shape and morphology are intimately linked with certain aspects of cell 

function such as E–C coupling [492]. Figure 5-19 represents photographs of CMs in 

culture. Isolated (Day 0) cells are typically “rod” shaped with rectangular “stepped” 

ends and clear cross-striations. Day 1 CMs remain rod-shaped with clear cross-

striations, and after 6 days the ends become progressively rounded [493]. Figure 

5-19b shows a population of CMs after 16 days in culture, with thin membranous 

pseudopodia developing and projecting into the local environment. With increasing 

time, the pseudopodia spread laterally and also start to appear at other positions 

on the cell. In general, more than 50% of myocytes cultured remain rod-shaped 

after 7 days in culture. However, this is highly dependent on the quality of the 

isolation and varies considerably depending on the CM species and culture 

conditions. 

Once mature, the CMs are identifiable by the presence of MHC, sarcomeric α-

actinin and the prevalence of troponin T [459, 494-497]. Sarcomeric α- actinin, is a 

specific marker for skeletal and cardiac muscle actinins, which are 

microfilament proteins. Figure 5-20A illustrates the labelling of the highly ordered Z 

lines and dots in the stress fibres, whilst the sarcomeric myosin heavy chain 

antibody (MF-20) stains the myosin filaments (Figure 5-20B) [498]. 

Troponin T, a CM specific marker, targets an element of the regulatory protein that 

associates with actin, forming only partially organised patterns [494, 495, 499, 500]. 

Troponin T also acts as a cardiac-specific marker for necrotic damage and was 

recently identified as a sensitive diagnostic tool for early myocardial damage 

monitoring, as the concentration in plasma is increased by 1,000 – 10,000 fold 

within 3 hours of injury [501, 502]. In conjunction with CM specific antibodies, Cx43 

can be utilized to reflect electrical conductivity potential between CMs as it stains 

the Cx43 hemichannel, labelling intact electro-mechanism and coupling [494]. 
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Figure 5-19. CM morphology micrographs of chick cardiomyocytes at 2, 4 and 9 

days in culture. 

Typical morphology of chick CMs after A) 2 days, B) 4 days and C) 9 days in culture. 

Micrographs were obtained using Hoffman modulation contrast optics. Adapted 

from Eatman et al. [503]. 

 

Figure 5-20. Cardiomyocyte immunofluorescence staining with sarcomeric α-

actinin, MF20 and troponin T. 

Immunofluorescence of: A) sarcomeric α-actinin, B) MF20 confirmed the presence 

of myosin and C, D) troponin T staining (anti-cardiac-troponin T mAb). Scale bar (A) 

15 µM, (B, D) 10 μM (C) 25 μM. Adapted from Laugwitz, K.L., et al., Jones & 

Kennedy and Zhu, D. et al. [494, 498, 500]. 
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5.7. Research background 

5.7.1. Mitochondrial Membrane Potential Dyes 

Probes for m need to be easily detectable and distributed across the IMM. TMRE 

is a cell-permeant, cationic dye, that is readably sequestered by active mitochondria 

[504]. TMRE accumulates within the mitochondria, binding to both aspects of the 

IMM, due to its charge and solubility, giving an improved accuracy [505-507]. As a 

m dye, TMRE provides an improvement upon its predecessor R123, which inhibits 

F1F0-ATPase activity.  

TMRE exhibits a shift in the emitted (576 nm) fluorescence in response to changes 

in membrane potential by increasing during hyperpolarisation and decreasing 

during depolarisation, Figure 5-21 [508]. When used at higher concentrations 

(greater than 150 nM) in ‘quenching mode’, the dye accumulates within 

mitochondria in sufficient concentration to form aggregates, thus quenching some 

of the fluorescent emissions of the aggregated dye [507]. Under these conditions, 

once dye is loaded into mitochondria, subsequent MMP depolarization results 

in dye release, unquenching the loaded probe, transiently increasing fluorescent 

signal. Conversely, mitochondrial hyperpolarization result in elevated dye entering 

the mitochondria, resulting in further quenching and a decreased fluorescent signal. 

At quenching mode concentration, TMRE exhibits a non-linear fluorescence, 

allowing dynamic and acute effects of experimental treatments on m to be 

measured [504, 509-512]. 

5.7.2. Mitochondrial Membrane Potential Modulators 

Experimentally, the m can be modulated using the depolarizing and 

hyperpolarizing agents cyanide and oligomycin respectively [507]. Cyanide is a 

complex IV inhibitor, which acts by inducing cytochrome oxidase to complex with 

cytochrome α3. The inhibition of complex IV prevents the flow of electrons through 

the ETC (Figure 5-22A) and consequently prevents proton efflux (Figure 5-22B) [513, 

514]. Oligomycin is a natural antibiotic, obtained by isolation from Streptomyces 
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diastatochromogenes. Oligomycin blocks proton conductance by binding to the 

oligomycin sensitivity-conferring protein (OSCP) of the F1F0-ATPase complex 

(subunits 6 and 9 of F0).  It thereby inhibits ATP synthesis and results in 

hyperpolarisation (Figure 5-22B) [173, 515]. At high concentrations, oligomycin 

inhibits the plasma membrane Na+/K+-ATPase pump but does not affect the Na+-

dependent ADP/ATP exchanger or K+-dependent phosphatase activity. 

Carbonyl cyanide p-(tri-fluromethoxy)phenyl-hydrazone (FCCP) is a protonophore 

and, as such, a potent un-coupler of oxidative phosphorylation in mitochondria 

[516, 517]. The presence of FCCP dissipates the mitochondrial proton gradient, thus 

reducing the driving force of ATP synthesis [516, 518-524]. The presence of FCCP 

induces a marked depolarisation of the M to approximately -60 mV [525-528]. It 

is postulated that the FCCP bypasses mitoKATP channel opening, by ‘short-circuiting’ 

the channel and inducing depolarisation through a parallel leak [233]. 
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Figure 5-21. The effect of the hyperpolarising agent (oligomycin) and depolarising 

agent (FCCP) on fluorescence in ‘quench mode’. 

The change (∆) in Rhod123 fluorescence was measured in individual mitochondria, 

in response to stimulation with FCCP (depolarising agent) and oligomycin 

(hyperpolarising agent). Adapted from Perry et al. (2011) [507]. 

 

 

Figure 5-22. Illustration of A) ETC and proton dynamics under normal conditions 

and in the presence of B) sodium cyanide and C) oligomycin. 

Diagrammatic illustration of the effects on the ETC complex IV and ATP synthase 

apparatus. The dashed arrows represent the original flow of protons (green arrows) 

and electrons (blue arrows). 
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5.7.3. Manipulating ATP Synthesis 

As discussed above, cyanide is a potent m depolarising agent that acts through 

inhibition of electron transport [513, 514]. 2-DG acts as a competitive inhibitor of 

glycolysis [529]. Phosphorylation of 2-DG by hexokinase produces 2-DG-phosphate 

which, unlike glucose-6-phosphate, is not further metabolised [530]. When used in 

conjunction with each other, cyanide and 2-DG induce CIH thus replicating events 

observed in ischaemia [531-534]. 

Produced by bacterium Streptomyces conglobatus, ionomycin is a calcium selective 

ionophore, mobilizing calcium from internal stores and elevating [Ca2+]c. Early 

studies assumed that ionomycin directly facilitated calcium transport across the 

plasma membrane [535-537]. Recent studies have subsequently shown that 

ionomycin also induces store-regulated calcium entry (SRCE) when used at 

concentrations around 100 nM, and it is ionophoretic when used above 1 µM [538, 

539]. At concentrations above 10 µM, ionomycin possibly elicits ATP release 

through positive feedback via the P2X7 channel and exocytosis, triggered by 

elevated [Ca2+]c [540]. 

5.7.4. Measuring Nucleotides 

Quantification of ATP release is complicated and often hindered by mechanical 

perturbations such as routine cell culture, which result in unintended ATP 

(nucleotide) release [315]. Measuring the nucleotide concentration is also difficult 

as the concentration in the extracellular bulk phase often does not coincide with 

the concentration at the cell surface. Several methods exist to measure released 

nucleotides [306, 341, 393, 394, 408, 541-545]. 

Firefly luciferase assays utilizing the ATP specific luciferase-luciferin enzymatic 

reaction are widely used and are an extremely sensitive technique [394]. This 

reaction has been adapted to quantify ADP using phosphoenolpyruvate and 

pyruvate kinase to convert ADP to ATP, thus allowing observation of ADP alongside 

ATP [408]. The classic luciferase assay has also been adapted to quantify real-time 

ATP release in the presence of excess soluble luciferase-luciferin and further 
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improved by anchoring the luciferase molecule to the plasma membrane [541-544]. 

In addition to the luciferase assay, high performance liquid chromatography (HPLC) 

provides a platform for measuring the overall pattern of nucleotides.  

In quantifying the nucleotide concentration in the human umbilical vein endothelial 

cells (HUVEC), ATP concentrations of 1-10 nM and 5-200 nM have been observed 

under basal and stimulated conditions respectively [341, 393, 545]. The extracellular 

nucleotide concentrations in epithelial cells have been observed with nucleotides 

concentrations approximately, ATP≈10 nM, ADP≈40 nM, AMP≈70 nM and adenosine 

≈200 nM [306]. 

5.7.5. Measuring Calcium 

As a ubiquitous second messenger, Ca2+-signalling is involved in several pathways 

including ion channel gating, E-C coupling and contractile activity. It is necessary to 

have a working protocol for measuring it during normal dynamics to allow changes 

that may arise in atypical conditions induced by arrhythmias and ischaemia. 

Fluorescent indicators began with quin-2 and the synthesis of trappable calcium 

indicators, based on a fluorophore and carboxylic acid group that bind Ca2+ [546] 

Fluorescent dyes are easily loaded and through the presence of  acetoxy-methyl 

ester (AM). The ester, which is removed by endogenous esterases, masks the 

carboxylic acid making the molecule lipophilic trapping the acid form of the dye in 

the cell [547-550]. 

The dyes have acknowledged limitations including dye leakage, cell toxicity and 

behaviour as Ca2+-buffers [551, 552]. The development of modern dyes, with higher 

quantum yields, have reduced the drawback associated with dyes, but not removed 

them. 

5.7.5.1. Fura-2 

The calcium sensitive fluorescent ratio-metric dye fura-2 exhibits a spectral shift in 

presence and absence of calcium, thus enabling the calcium concentration to be 
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accurately calculated using the Grykiewicz equation (Equation 5-12) [549, 550, 553, 

554].  Despite the developments, there are still potential issues with partially 

hydrolyzed dye not acting as a calcium indicator, and leakage over time (45% loss 

over 30 minutes) [550]. 

 

 

 

 

 

 

 

               
        

        
       

 

Equation 5-12. Grykiewicz equation 

The Grykiewicz equation allows the conversion of 340nm and 380nm excitation 

derived emission (510nm) to actual Ca2+ concentration. Kd, describes Ca2+ binding 

(225nM at 37oC) [549], R= 240/280 nm ratio, Rmin = 340/380 ratio under calcium-

free conditions, Rmax = 340/380 nm ratio under Ca2+-saturated conditions and Sfb 

denotes the ratio of baseline fluorescence (380nm) under Ca2+-free and -bound 

conditions. 
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5.7.5.2. Fluo-4 

Fluo-4, an analogue of fluo-3, offers high fluorescence emission allowing use at 

lower concentrations. The dye exhibits a large dynamic range between 100 nM to 1 

µM and a Kd = 345 nM. Despite its advantages as a single excitation/emission dye, 

photo-bleaching, dye leakage and compartmentalisation are issues associated with 

fluo-4.  

5.7.5.3. X-Rhod-1 

The long-wavelength calcium indicator, X-Rhod-1, is a derivative of Rhod-2.  It is 

very useful for measuring [Ca2+]m and, due to its positive charge, it is sequestered 

into mitochondria [555, 556]. 

X-Rhod-1 exhibits an excitation spectra peak at 585nm and an emission peak at 

602nm with a Kd=700 nM (22°C) enabling [Ca2+]m to be observed in the micro molar 

range. X-Rhod-1 can detect the mobilization of intracellular calcium stores and 

excitatory stimulation of smooth muscle, which would saturate fluo-3 and rhod-2 

signalling [557-559]. The low-affinity indicator also has a quick ion dissociation rate, 

allowing rapid calcium changes to be tracked [558].  

5.7.5.4. Aequorin 

Aequorin is a Ca2+ sensitive marker that is isolated from Aequorea aequorea [560-

562]. Aequorin measurement is limited to large and robust cells that can withstand 

the insult of microinjection [547]. Compared to other fluorescent dyes, aequorin is 

more sensitive and harmless in biological systems [563, 564].  

Advances in genetics have allowed the mapping of aequorin and the development 

of a working plasmid. In 1992, Rizzuto et al. generated a mitochondrial targeted 

aequorin plasmid, fusing apoaequrion with the targeting presequence of subunit 

VIII of human cytochrome c oxidase [565, 566]. A mitochondrial specific aequorin 

offered a relatively non-traumatic procedure for introducing a specific and sensitive 

[Ca2+]m marker [547, 552]. 
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Aequorin is a 30 kDa globular molecule with a hydrophobic core cavity that 

accommodates coelenterazine.  The aequorin molecule is made from 4, helix-loop-

helix EF hand domains, forming two β sheets [562, 564, 567]. Aequorin has three 

Ca2+ binding domains but only two Ca2+ ions are needed to exhaust the 

luminescence and induce irreversible conformational transition [563, 564, 568].    

Reconstitution of the inert apoaequorin with coelenterazine generates the Ca2+ 

sensitive aequorin [546, 551, 569]. In the presence of Ca2+, aequorin undergoes an 

irreversible reaction generating light, with the emission 469nm and by-products 

carbon dioxide (CO2) and coelenteramide (a blue florescent protein; Figure 5-1) 

[163, 547, 564]. To quantify the observed luminescence subject to Allen and Blinks 

(1977) theory, the calibration curve converts the relative luminescence to [Ca2+]m 

[568, 570, 571]. 

 

 

 

 

        

  
  

      
 

 
  

      
  

      
 

 
  

    

        
 

      
 

 
  

  

 

 

Equation 5-13. Aequorin Calibration 

The equation is derived from Allen and Blinks theory where: [Ca2+] equals the 

calculated calcium concentration, L0 equals the peak luminescence per second, Lmax 

equals the total luminescence observed, KR equals the  dissociation constant for the 

first calcium ion to bind and KTR equals the binding constant of the seconds calcium 

ion to bind. The KR and KTR constants are determined values, specific to the 

coelenterazine and aequorin isoforms. 
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Figure 5-23. Illustration of the reconstitution and activation of aequorin from 

apoaequorin. 

The diagram illustrates the reconstitution of apoaequorin and coelenterazine to 

produce the calcium sensitive aequorin. In the presence of calcium [Ca2+] ions, the 

aequorin undergoes an irreversible reaction which generates coelenteramide, CO2 

and emitted light λ=469nm. 
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5.7.6. Cell Lines 

5.7.6.1. EA.hy926 

The HUVEC EA.hy926 cell line is a permanent human endothelial cell line that was 

established by fusion of primary human umbilical vein cells with a thioguanine-

resistant clone of A549 [572]. Ea.hy926 cells have been maintained for more than 

100 population doublings, providing a durable cell line. The cells demonstrate the 

highly differentiated function and characteristics of human endothelium [572-576]. 

5.7.6.2. HeLa  

The HeLa cell line is the first immortal cancer cell line which hasa stable genome 

during continuous cultivation, since 1951 [577, 578]. HeLa cells have been selected 

due to their documented history as a proven model and physiological attributes 

allowing the measurement of intracellular calcium, m, and cellular functions of 

interest [549, 579, 580]. The HeLa cell line provides a viable working model since 

they are capable of NOS synthesis and, similar to cardiac tissue, predominantly 

derive ATP from β-oxidation [299, 581].  

5.7.6.3. HL-1 cells 

The HL-1 cell line is a hybrid of both embryonic and adult CMs as discussed in 

section 5.6.5. They offer a potential model for use in this study as, whilst exhibiting 

a CM specific phenotype and contractile function, they also offer the ability to be 

continually passaged. 

5.7.6.4. Swiss 3T3 

Swiss 3T3 cells are an immortal line of fibroblast-like cells developed in 1962 by 

Todaro & Green that have since become a standard fibroblast cell line [582, 583]. 

The Swiss 3T3 cells offer a useful non-CM model. 

 

http://www.biology-online.org/dictionary/Line
http://www.biology-online.org/dictionary/Fibroblast
http://www.biology-online.org/dictionary/Cells
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5.8. Hypothesis and Research Aims 

5.8.1. Ischaemic Preconditioning 

Diazoxide is well documented to promote IPC and the presence of 5-HD abolishes 

the protection induced by diazoxide [15, 120-124, 228, 247, 248, 264-266]. 

Diazoxide is known as a KCO and its IPC function is associated with opening of the 

mitoKATP channel. However, some reports suggest it may be via the opening of the 

sarcoKATP channel or inhibition of succinate dehydrogenase (section 5.4.2) [252-254, 

258].  

Surprisingly, there is very little evidence for diazoxide modulating m, which would 

be expected from mitoKATP channel opening and resulting K+ influx [15, 120-124, 

584]. Similarly, 5-HD is supposed to close the mitoKATP channel; therefore 5-HD 

should be seen to abolish the effect of diazoxide on the m. 5-HD has been 

proposed to have other actions than closing the mitoKATP, such as modulating β-

oxidation [254, 262, 263, 270, 272, 274].  

Since the fundamental action of diazoxide and 5-HD effect on m has not been 

directly studied, the first aim was to establish whether diazoxide and 5-HD really 

influenced m. A notable feature of the proposed mitoKATP is that it is activated by 

cGMP. The next aim was to examine if the action of diazoxide, 5-HD and cGMP are 

consistent with a cGMP-activated mitoKATP channel mediating IPC. 

5.8.2. Extracellular Nucleotides 

It is widely accepted that extracellular ATP is elevated during hypoxia (up to a four 

fold increase can occur). The presence of nucleotides, notably ATP and adenosine, 

in the extracellular environment induce a range of P2 receptor mediated signalling 

including vascular tone, angiogenesis, vascular remodelling, cardiac function, and  

positive ionotrophic effects [321, 585-589]. Extracellular ATP is the main element of 

observed P2 signalling. However, it has been shown that the presence of ADP can 

contribute to vascular tone (P2Y11, [589-591]), platelet aggregation (P2Y1, [592, 
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593]), proinflamatory action (P2Y11, [588]) and is also implicated on migraine pain 

via P2Y receptor activation ([594]). 

A great deal of research has focused on ATP signalling and changes during 

pathology, such as decreasing cytoplasmic ATP and an increasing extracellular ATP, 

which have been observed during hypoxia [595]. Recent mathematical modelling 

has suggested that other nucleotides can be released alongside ATP [325]. 

Lazarowski et al. (2000) has also shown ADP at concentrations equal to or greater 

than ATP within the extracellular environment [319]. 

Despite the known effects of ADP signalling via P2Y receptor activation and its 

unique and distinct pharmacology, the elevation of ADP in response to ischaemia 

appears to have received minimal attention. 

The major aim of the project is to look at this section was to observe the 

extracellular nucleotide concentration during CIH, confirming the presence of ADP 

alongside ATP in the extracellular environment. The pathways by which 

extracellular nucleotides accumulate and the influence of ecto-enzyme activity and 

release are examined. 

5.8.3. Cardiomyocytes 

In this thesis the effect of CIH and m are being examined in endothelial and HeLa 

cell models. However ischaemia and preconditioning is mainly relevant to cardiac 

tissue and nucleotide release from the heart is likely to dominate the cardiac 

vascular pharmacology. 

A CM model in which IPC and nucleotide generation and release can be examined 

would be extremely useful. Also there are many unresolved issues regarding cardiac 

metabolism, mitochondrial function and ATP generation that could be investigated 

using a suitable myocytes model.  

Cultured CM cell lines have many advantages over acutely isolated myocyte 

preparations. Currently the use of cell cultures is taking on increasing relevance due 
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to the versatility, economy and convenience of the methodology, as compared to 

whole animal experiments and primary CM isolation [493]. In experimental terms it 

offers, homogenous population (removing interference from non-myocytes), 

reduced loss of membrane proteins expression (from damage during isolation) and 

offer a platform for longer term studies [493, 596]. 

While immortalised cardiac cell lines such as HL-1 cells are commercially available, 

there are still associated issues which primary CM cultures offer an alternative, 

along with being more physiologically relevant both structurally and functionally to 

the living organism [452, 466, 469-475, 479, 481, 597, 598]. Rat neonatal myocytes 

have provided a useful model of cardiomyocyte morphological, biochemical, 

electrophysiological and are well-established in studying the toxicity of drugs [446-

448]. However, there is an associated cost, regulatory issue and complex isolation 

procedures that limit the utility of this model. Stem cells offer an ideal model 

allowing CM models to be studied as either cultured populations or dispersed single 

cells. Whilst ESc express CM specific markers, they are limited by the altered ion 

channel expression and biophysical characteristics [465, 466]. The chick CM models 

are limited by time consuming isolation and preparation protocols. However, 

technique developments offer a low costs, limited regulatory restrictions and easy 

to generate CMs model. 

The HL-1 cell line provides a convenient model and has already been used in 

hypoxia studies, however chick CMs were also examined as primary cell offer 

several advantages on commercial cell lines. 
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6.1. Solutions 

Claycomb Culture Media 10% FCS, 1% P/S, 1% NE (0.1  mM) and L-

Glutamine (2  mM)) [472]. 

Culture Media (CMs)  MEM, 5% FBS, 1% P/S and 5 mM Glucose. 

Culture Media (EA.hy926) DMEM supplemented with 10% FCS, 1% P/S and 

2  mM L-glutamine, replaced every 2 days [572]. 

Passaged at a dilution of 2.0 x106 cells 

approximately every 4 to 5 days. 

Culture Media (HeLa)  DMEM supplemented with 10% Heat inactivated 

FCS, 1% P/S and 1% nonessential amino acids 

(NEAA) [580]. Passaged at a dilution of  

approximately 1.5 x106 cells every 3 days. 

Culture Media (Swiss 3T3) DMEM supplemented with 10% FCS and 1% P/S 

[599]. Passaged at a dilution of 2.5 x106 cells, 

every 3 to 4 days. 

Digestion Buffer SH  50  mM Tris-HCl, 100  mM NaCL, 10 mM MgCl2 

and 1  mM dithioerythritol. 

EB buffer  10  mM Tris-Cl, pH 8.5. 

Enzyme Solution   Perfusion media, HBS (without HEPES), 30 mg 

Collagenase II per 10 ml. 

Freezing Solution  90% FCS, 10% Dimethyl sulfoxide (DMSO). 

HEPES-buffered Saline (HBS)  145 mM NaCl, 5 mM KCl, 1 mM Na2HPO4, 1 mM 

MgSO4, 10 mM HEPES. The buffer was then 

titrated to pH 7.55 at 22oC. At time of use 10 mM 

Glucose and 1 mM CaCl2 or 1 mM EGTA was 

added.  
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Heraeus incubator  5% CO2 and 37oC. 

HPLC Solvent A  8 mM tetrabutylammonium hydrogen sulphate, 

17 mM KH2PO4, pH 5.3. 

HPLC Solvent B  8 mM tetrabutylammonium hydrogen sulphate, 

100 mM KH2PO4, pH 5.3 and 10% methanol. 

Isolation Media 500 ml liquid Hams media, 125 mg Fetuin, 10mg 

Ascorbic Acid, 5g BSA, 5 ml P/S. 

Luria Bertani (LB) agar  40 g/L agar (w/v 37.5%), casein enzymic 

hydrolysate (25%), sodium chloride (25%), yeast 

extract (12.5%). 

Luria Bertani (LB) broth  25 g/L, w/v casein enzymic hydrolysate (40%), 

sodium chloride (40%), yeast extract (20%). 

Opti-MEM   Reduced Serum Media buffered with HEPES, 

sodium bicarbonate and supplemented with 

hypoxanthine, thymidine, sodium pyruvate, L-

glutamine, trace elements and growth factors. 

Phosphate buffered saline (PBS) A simple salt solution containing phosphate ions 

that buffer the pH to 7.2, whilst providing an 

osmotic pressure. 

Potassium HEPES  5  mM NaCl, 145  mM KCl, 1  mM KH2PO4, 1  mM 

MgSO4, 10  mM HEPES. The buffer was titrated 

to pH 7.55 at 22oC. 5 mM Glucose and 1 mM 

CaCl2 or 1 mM EGTA were added at the time of 

use. 

Soybean inhibitor  25 mg soybean inhibitor/ 100 ml PBS. 
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TBE buffer  100 mM Tris base, 90 mM boric acid and 1 mM 

EDTA. 

Trypsin/EDTA  0.05% trypsin and 0.02% 

ethylenediaminetetraacetic acid (EDTA). 

Wash Media   Claycomb media, 5% FCS and 1% P/S. 

Buffer P1  50 mM Tris-Cl, 10 mM EDTA, 100  μg/ml RNase A 

and 0.1% LyseBlue (v/v). 

Buffer P2  200 mM NaOH, 1% SDS (w/v). 

Buffer P3   3 M potassium acetate. 

Buffer QBT  750 mM NaCl, 50 mM MOPS, 15% isopropanol 

(v/v) and 0.15% Triton X-100 (v/v). 

Buffer QC  1M NaCl, 50 mM MOPS and 15% isopropanol 

(v/v). 

Buffer QF   1.25 M NaCl, 50 mM Tris-Cl and 15% isopropanol 

(v/v). 

Buffer TE   10 mM Tris-Cl and 1 mM EDTA. 
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6.2. Cell Preparation 

6.2.1. Cells Culture  

All cells were cultured in sterile T75 flasks with vented caps (Corning) and labelled: 

cell type, passage number, cell dilution and date of seeding. Cells were incubated at 

37oC in 5% CO2 (CO2:air ratio) unless stated otherwise. Once the cells were 100% 

confluent, they were sub-cultured, as described in, 6.2.2 Passaging and sub-

culturing. 

6.2.2. Passaging and sub-culturing 

The culture media was aspirated and the cells washed with 10 ml of PBS. The PBS 

was then aspirated and 4 ml of trypsin/EDTA added.  The cells were incubated for 2 

minutes. The flask was then tapped to help remove the cells from the flask. Once 

the cells had detached, they were pipetted gently up and down, to break up any 

remaining clumps. The cells were re-suspended in fresh culture media at a ratio of 

2.0 x106 cells. 

6.2.3. Freezing cells 

Cells not required for immediate use, were frozen down and stored, using liquid 

nitrogen. The cells were trypsinised (as outlined above) and re-suspended in 10 ml 

of culture media, before being centrifuged at 190x g, for 5 minutes. The 

supernatant was aspirated and the cell pellet re-suspended in 1 ml of freezing 

solution. The cells were transferred to a sterile cryovial labelled: cell type, passage 

number and date of freezing. Cryovials were frozen down to -80oC using a “Mr 

Frosty” filled with isopropanol, which allows freezing at steady 1oC increments. 

After 48 hours at -80oC, the frozen cells were transferred to liquid nitrogen stores, 

until required. 
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6.2.4. Thawing cells 

Cells (HeLa, EA.hy926 and Swiss 3T3) from frozen stocks (as described above) were 

defrosted rapidly in a water bath at 37oC. Once defrosted, the cell suspension was 

transferred drop wise into a T75 flask, containing 20 ml of pre-warmed media. The 

cells were incubated overnight to allow healthy cells to adhere to the flask. The 

following morning, the DMSO contaminated media was replaced with fresh culture 

media. 

When thawing EA.hy926 cells, the cells were transferred to 10 ml of pre-warmed 

culture media and centrifuged at 190x g, for 5 minutes. The supernatant was 

aspirated and the cell pellet was re-suspended in 20 ml of fresh culture media in a 

T75 culture flask. 
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6.3. HL-1 Cell Preparation 

6.3.1. Cell culturing 

HL-1 cells were cultured in complete Claycomb media and were supplemented daily 

with a fresh 25% extra, Claycomb media. As the HL-1 cells exhibit low adhesion 

levels, the flasks were pre-coated with 0.02% gelatin and 0.5% v/v fibronectin (6 ml 

for a T75 and 2 ml for a T25), 24 hours prior to cell culture use. The 

gelatin/fibronectin layer forms a competent extracellular matrix, for the 

cardiomyocytes to adhere and acts as an insoluble cue for the formation of 

actomycin [491]. 

6.3.2. Passaging cells 

Once confluent, the Claycomb culture media was aspirated and the cells briefly 

rinsed with 6 ml of trypsin/EDTA to remove any un-adhered cells. This was then 

replaced with a further 3 ml of fresh trypsin/EDTA before being incubated for 2 

minutes. A final 3 minute trypsin/EDTA wash was applied. Once the cells were in 

suspension, 3 ml of soybean inhibitor was added to inhibit any further the 

trypsin/EDTA action. The cell suspension was repeatedly mixed using a pipette. The 

flask was further rinsed with 5 ml of wash media, which was added to the cell 

suspension, before being centrifuged at 500x g, for 5 minutes. The resulting 

supernatant was aspirated and the cell pellet re-suspended in Claycomb culture 

media, before being transferred to pre-coated flasks at a seeding density of 1x106 

cells. 

6.3.3. Freezing and thawing cells 

Confluent cells were frozen down and thawed as described in their respective 

sections. However, when cells were thawed, the cell culture medium was replaced 

after 4 hours. 
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6.4. Primary Myocytes 

6.4.1. Isolation and Digestion 

The primary myocyte isolation protocol was based upon a method that was 

originally published by DeHann in 1967 and refined by Laugwitz et al. (2005). The 

protocol was further modified as described below [494, 498, 600]. 

Twenty four hours prior to myocyte isolation, the culture plates were pre-coated 

with 0.02% gelatin and 0.5% v/v fibronectin, to improve cell attachment. Fertilised 

eggs were maintained in a Multihatch (mark II) at 37oC in a humid environment 

(approximately 60%) for 8 days, allowing the embryo’s heart to develop. Once ready 

the chicks were euthanised, in accordance to Schedule 1 of 

the Animals (Scientific Procedures) Act 1986, and the hearts dissected out. The 

isolated hearts were rinsed in Tyrodes salt buffer and pooled in a 35mm diameter 

dish, containing pre-warmed culture media. Using warmed media doubles the cell 

viability, in comparison to being maintained on ice [459, 498]. 

The pooled hearts were transferred, into a 15 ml centrifuge tube (Tube A), 

containing 5 ml of enzyme solution. Tube A was then slowly rotated for 10 minutes 

at 37oC [510]. The initial enzymatic wash was discarded. A further 5 ml of enzyme 

solution was added and rotated for a further 10 minutes. The supernatant was then 

transferred to Tube B, which contained 5 ml of soybean inhibition (to inhibit the 

enzymatic digestion), and mixed through repeated inversion. The solution was 

centrifuged at 50x g, for 10 minutes. The resulting supernatant was discarded and 

the cell pellet re-suspended, in 1 ml of culture media. The protocol was repeated 

between 6 to 8 times, until the dissected hearts were reduced to a single 

conglomerate. 

6.4.2. Cell culturing 

Following isolation and digestion, the isolated cells were suspended in 10 ml of 

culture media and centrifuged at 50x g for 10 minutes. The cell pellet was re-
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suspended in 10 ml of isolation media and cultured for 1 hour in a 100 mm culture 

dish at 37oC. This step removed non-myocyte cells, which adhered to the plate 

[601]. The CM rich supernatant was collected and centrifuged at 50x g, for 10 

minutes. The cells were then re-suspended in culture media (supplemented with 2 

mM L-glutamate) plated, and incubated for 24 hours. After the first 24 hours the 

media was replaced with fresh culture media. The elimination of L-glutamate 

facilitates CM culture, whilst reducing fibroblast proliferation [490, 497]. The media 

was replaced every 24 hours. 

6.4.3. Heart Cryostat sampling 

Chick hearts were micro-dissected from E8 embryos ensuring all vessels are 

removed. Isolated the hearts were rinsed in Tyrodes salt buffer. Once rinsed the 

tissue was dehydrate via a graded ethanol series (10%, 20%, 50% 95% and 100%) 

washes for 2 hours each [602]. Before the samples were embedded they were 

subject to two 20 minute xylene washes, ‘a clearing step’ to remove alcohol. The 

tissue was then embedded in melted paraffin, at 60oC.  

To section cardiac samples the cryostat was set to -20oC. Frozen samples were 

mounted onto the specimen chuck using optimal cutting temperature compound 

and loaded onto the specimen holder. With the cryo-microtome blade set at 10o, 30 

μM ‘rough cuts’ were taken to produce a flat section. Once the aspect of the heart 

wanting to be measured was achieved ‘fine sectioning’ 10 μM thin sections were 

cut, with the anti-roll plate down. Desired sections were collected by pressing them 

onto prepared slides. With tissue samples mounted onto slides they were 

subsequently stained as desired with specific antibodies as described in section 

6.10.1 
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6.5. Calcium Measurements 

6.5.1. Calcium Indicators 

To measure cell and organelle calcium dynamics, several techniques were adopted, 

including the use of Ca2+ sensitive fluorescent indicators Fura-2, fluo-4 and x-rhod-1. 

Depending on the nature of the experiment and selected indicator the fluorescence 

was measured either using a FlexStation 3 (section 6.9.2) or Leica confocal 

microscope system (section 6.10).  

The cells were cultured as previously described (section 6.2.1). When working with 

the FlexStation 3, cells were plated at a dilution of 4.0 x106 cells, for 24 to 48 hours 

prior to use. For confocal microscope use, cells were cultured in glass based 35 mm 

petri dishes, 27mm diameter coverslips, at a dilution of 2.0 x 106 cells. Once 

confluent, the culture media was replaced with HBS and the cells were loaded with 

the chosen indicator, as shown in Figure 6-4.  

During the loading of the fluorescent indicators (Fura-2 and Fluo-4) cells were 

incubated in presence of 0.0125% pluronic F127 and 200 μM sulfinpyrazone. 

Following loading, the HBS was replaced with fresh HBS, containing sulfinpyrazone. 

The cells were then incubated for a further period allowing de-esterification to 

occur, ensuring the indicator was hydrolysed..  

6.5.2. Mitochondrial aequorin 

As an alternative to X-Rhod-1, mitochondrial targeted aequorin was used to 

measure [Ca2+]m.  

Cells were cultured at a 1.0 x106 cells dilution, on 16mm diameter round glass 

coverslips, located in 12 well-plates and incubated for 24 hours, prior to 

transfection. Once 50% to 60% confluent, the cells were transfected with the 

mt[AEQ]WT plasmid using the transfection reagent, GeneJuice®. A ratio of 1 μg to 3 

μl, (plasmid to GeneJuice® transfection reagent) ensured maximal transfection 

efficiency, with minimal cytotoxcicty. The mt[AEQ]WT plasmid was incubated at 
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room temperature in Opti-MEM (50 μl per well), for 5 minutes. For every well 

(coverslip) 3 μl of GeneJuice® was added to the Opti-MEM-plasmid mix. The 

resulting solution was gently mixed, by repeated inversion, before being added drop 

wise to the cell culture. Transfected cells were incubated for 48 hours and prior to 

experimentation the aequorin was activated. Apoaequorin was activated by 

incubating the cells, in the absence of light, for 2 hours, in HBS supplemented with 

10 mg/ml BSA and 6 μM native coelenterazine (Figure 5-23) [603].  
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6.6. Plasmid Preparation 

6.6.1. Agar Plates 

15 ml of LB agar was supplemented with either 51.6 μM kanamycin or 143 μM 

ampicillin. This was then poured into a 150mm non-coated petri dish and allowed to 

set for 5 minutes. The dish was then set for a further 20 minutes, under the UV light 

of a closed culture hood. The finished plates were stored upside-down at 4oC, until 

required. 

6.6.2. Plasmid generation 

Filter paper impregnated with plasmid, was folded into quarters and fitted into a 

200 μl modified pipette tip. The modified tip allowed the filter paper to rest above 

any eluted solution. With the filter paper in place, 10 ml of d.H2O was added to the 

paper, and centrifuged at 370x g, for 5 minutess within a 0.6 ml eppendorf tube.  

From the extracted plasmid rich solution, 5 μl was added to 50 μl DH5α competent 

E.coli, stored on ice. The bacteria were then heat shocked, at 42oC for 40 seconds 

and then returned to the ice, for a further 2 minutes. During the freeze-thaw 

process the E.Coli bacteria becomes transiently competent, enabling DNA uptake. 

The plasmid enriched bacteria was cultured in the shaker incubator at 

approximately 300rpm, at 37oC, for 2 hours.  The expanded culture were plated on 

agar plates, using a sterile glass spreader, and incubated, inverted, overnight at 

37oC [604]. As the bacterial colonies become established, discrete single colonies 

were picked and added to 6 ml of LB broth, supplemented with the corresponding 

antibiotic. The starter culture was maintained in the shaker incubator over night. 

Bacterial cultures were incubated and expanded until a sufficient bacterial pellet 

was produced, normally over a period of 4 to 5 days, of successive expansion. 

Bacteria were harvest by centrifuging cultures at 6000x g, for 10 minutes. The 

bacterial pellet was treated using a Qiagen plasmid purification maxi prep kit to 
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isolate the plasmid (section 6.6.3). The purified plasmid purity and plasmid 

concentration measured using a NanoDrop 1000 fluorospectrometer (section 6.6.4).  

Plasmid enriched bacteria samples were stored for future expansions. To achieve 

this from the final broth a 5 ml sample was centrifuged at 6000x g, for 10 minutes. 

The resulting bacterial pellet was re-suspended in LB broth, supplemented with 

more than 20% glycerol (v/v) and stored at -80oC. 

6.6.3. Plasmid Extraction 

To extract the plasmid, the bacterial cell pellet was re-suspended in, 10 ml Buffer 

P1. To this 10 ml Buffer P2 was added and mixed by vigorous inversion of the tube 6 

times and the suspension incubated for 5 minutes, at 22oC. To this 10 ml chilled 

Buffer P3 was added and mixed, by vigorously inverting the tube. The resulting 

lysate was poured into a QIAfilter Cartridge and incubated for 10 minutes, at 22oC. 

During this time a HiSpeed Maxi Tip was equilibrated, by adding 10 ml Buffer QBT 

and allowed to empty. The plunger was then inserted into the QIAfilter Cartridge 

and the cell lysate syringed into the equilibrated, HiSpeed Maxi Tip. Once the lysate 

entered the resin of the HiSpeed Maxi Tip, 60 ml of Buffer QC was added to the 

QIAfilter Cartridge and allowed to empty under gravitational force.  

To elute the plasmid from HiSpeed Maxi Tips, 15 ml Buffer QF was added and the 

plasmid rich elute collected. The plasmid was precipitated, by adding 10.5 ml 

isopropanol. The elute and isopropanol solutions were mixed and incubated for 5 

minutes, at 22oC. The solution was then transferred to a 30 ml syringe with a 

QIAprecipitator Maxi Module attached and syringed under constant pressure. This 

was then repeated by passing 2 ml of 70% ethanol through the QIAprecipitator Maxi 

Module. The membrane of the QIAprecipitator Maxi Module was dried by 

repeatedly passing air through the syringe. Fitting the QIAprecipitator to a 5 ml 

syringe, 1 ml of Buffer TE was passed through into a 1.5 ml eppindorf tube. The 

plasmid rich elute was passed through the QIAprecipitator filter a second time to 

maximise the concentration of plasmid extracted. 
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6.6.4. Plasmid Quantification 

To quantify plasmid concentration and purity a NanoDrop 1000 fluorospectrometer 

(ThermoScientific) was used. The NanoDrop measures the DNA nucleotide 

fluorescence at the absorbance wavelength (260nm) and quantifies the 

concentration of the plasmid, using the following equation: 

                                              

6.6.5. Plasmid Gels 

Plasmid construction was confirmed by running samples through electrophoresis 

agarose gels. The mt[AEQ]WT plasmid was initially segmented, using restriction 

endonuclease EcoR1. A single EcoR1 unit has the enzyme activity to completely 

cleave 1 μg of plasmid, every hour, at 37oC. The plasmid, at a concentration less 

than 10 μg was mixed with 1 μl endonuclease EcoR1 and the digestion Buffer SH. 

The samples were incubated for 1 hour, in a water bath, at 37oC. In parallel to the 

sample, an ‘uncut’ control was incubated in the absence of EcoR1 restriction 

endonuclease. 

During plasmid digestion, the agarose gel was prepared. Agarose was dissolved at 

1% w/v (adequate for 250bp to 12kbp) in 50 ml TBE buffer and heated in the 

microwave, for 1 minute. Once dissolved, 17 μM SYBR safe was added, allowing for 

DNA visualization. The gel was poured to a depth of 3-5mm, into a clean plate and 

the comb located, to a depth of 0.5-1mm above the bottom of the plate. Once the 

gel set, the comb was removed and the plate located on the stage of the 

electrophoresis tank. The bath was filled with TBE buffer, to a depth which covered 

the gel, as illustrated in Figure 6-2. 

To the outside wells, 5 μl of 1Kb Ladder DNA marker was loaded. The Ladder gives a 

reference scale of 300bp to 10Kbp. To the 10 μl samples, 2.5 μl of 5x GelPilot 

loading dye, was added and mixed by repeated pipetting. From the samples 5 μl 

was loaded into desired wells in the agarose gel.  
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Electrophoresis gels were run using a 97V electrical field. The plasmid fragments 

were separated according to size along the gel, which was ran for between 1 to 2 

hours, until the segments were clearly separated. The gels were then photographed 

using a UV light box and Nikon digital camera. 
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Figure 6-1. Diagrammatic overview of the Qiagen HiSpeed plasmid extraction 

procedure. 

Diagrammatic overview of extracting plasmid from bacterial pellet through: alkaline 

lysate, filtration, DNA binding, wash and elution, precipitation and elution. Adapted 

from HiSpeed® Plasmid Purification Handbook (2005). 

 

 

Figure 6-2. Pouring and running an agarose gel 

Diagrammatic overview of pouring an agarose gel. 1) clean the plate, 2) seal the 

ends, 3) pour in 3-5mm agarose gel, 4) position the comb and 5) once finished and 

prepared the gel is ready to run. Adapted from Molecular Cloning: A Laboratory 

Manual [3rd Edition] Figure 5-3.  
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6.7. Mitochondrial Membrane Potential 

6.7.1. TMRE 

To measure m, cells were cultured in black walled 96 well culture plates, at a 

density of 2.0 x106 cells (as described in section 6.2.1). Once confluent, the culture 

media was replaced with, 200 μl per well, HBS supplemented with 3 μM TMRE. The 

cells were incubated for 20 minutes, at 22oC. The TMRE HBS was replaced with, 100 

μl HBS, and incubated for a further 15 minutes, to allow de-esterification [232, 510]. 

6.7.2. Mitochondrial Membrane Potential Modulators 

Once loaded with TMRE, the cell plate was located in the FlexStation. The 

automated plate reader then made experimental additions from the compound 

plate, whilst recording the TMRE fluorescence. 

The fluorescence was measured for 5 minutes, to generate a base line. At 300 

seconds, the selected agonists were added from the compound plate. The agonists 

were 5 times concentrated, as added at a 1.0 x106 cells dilution giving the final 

concentrations: 100 μM SNP, 20 μM SNAP, 20 μM ZAP, 500 μM 5-HD, 500 μM DZ, 6 

μM oligomycin and 4 mM cyanide. Along with the agonist additions a mock  

addition, (HBS, vehicle control), was made during each experimental repeat to 

enable direct comparison. The reagents were used in isolation and as various 

combinations. The resulting fluorescence was recorded for 20 minutes. At the end 

of each experimental run, 10 μM FCCP was added and the signal measured for a 

further 5 minutes. 

The data recorded from the FlexStation 3 was then manipulated and expressed as 

F/F0, as described in section 6.9.2. 
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6.8. Nucleotide Release and Quantification  

6.8.1. Cell poisoning 

EA.hy926 cells were cultured in 12 well culture plates (see section 6.2.1).  Once 

confluent, the culture media was replaced with 200 μl HBS, containing 150 μM 

promidium Iodide (PI) and incubated, for 1 hour. During the incubation period, the 

cells were subjected to a poison cocktail consisting of: 4 mM cyanide, 10 mM 2-DG 

and 5 μM ionomycin, over a window of 5 to 40 minutes. At the end of the poisoning 

protocol, samples were taken from each well. The nucleotide concentration was 

then assayed, using either a tube luminometer (see 6.9.3) or HPLC (see 6.9.5).  

6.8.2. Nucleotide Interconversion 

To study the potential effect of endogenous interconversion enzymes the 

nucleotide assay experiment, as above, was repeated in the presence of selected 

inhibitors. The inhibitors were added to the wells at the beginning of the 1 hour 

poisoning protocol at the desired concentration: 10 mM levamisole, 30 μM ebselen, 

100 μM, ARL 67156 and Ap5A.  

Before Ap5A can be used nucleotide phosphates contaminants need to be removed. 

Ap5A stock was cleaned using  20 units of alkaline phosphatase in a total volume of 

100 μl dephosphorylation buffer (50 mM Tris–HCl, 1 mM EDTA, pH 8.5) for 60 min 

at 37oC prior to use [605-607] 

6.8.3.  Inhibition of nucleotide release 

The nucleotide assay as described in section 6.8.1, was also repeated in the 

presence of the connexin  and pannexins blocker 100 μM flufanamic acid (FFA) or 

the P2X7 channel inhibitor, 100 μm oATP [608-610]. 
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6.8.4. Cell Permeability 

To measure the cell permeability two mechanisms were used. The first was to 

measure the apoptotic markers caspase 3/7, a marker of mitochondrial outer 

membrane permabilisation [611, 612]. In conjunction with taking a sample for 

nucleotide measurement, a 20 μl sample of the HBS buffer solution was taken. To 

this equal parts of Caspase-Glo® 3/7 reagent was added and the solutions mixed by 

repeated inversion. The samples were then recorded using the Berthold tube 

luminometer, as discussed in section 6.9.3. 

Following nucleotide sample collection the PI supplemented HBS buffer was 

replaced with HBS containing 2 μM Calcein AM. The cells were then stored at 4oC, 

prior to being imaged using a LEICA DMIRB microscope with excitation filter 494nm 

(calcein) and 535nm (PI).   

6.8.5. Cell quantification 

Once the samples were taken and the calcein and PI staining was imaged (see 

above), the cell number was recorded. This allowed for accurate comparison 

between experiments. 

The buffer was replaced with, 500 μl Trypsin/EGTA and incubated for 3 minutes. 

The 12 well plate was then tapped to help remove the cells adherent to the plate. 

Once the cells had detached, they were pipetted up and down, to break up any 

remaining clumps. The cells in suspension were then counted using a 

haemocytometer, as described below. 

6.8.6. Haemocytometer 

To quantify cell concentration in suspension a Neubauer haemocytometer was 

used. To prepare the counting chambers, the coverslips were fixed into place so 

that ‘Newton’s rings’ were visible. The cell suspension was then thoroughly mixed 

before adding approximately 10 μl to the edge of the coverslips. The chamber then 

fills via capillary action. 
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It is essential that the cell suspension is dilute enough, that the cells are not 

overcrowded, but more than 100 are counted (giving statistically significant 

readings). Using a 40 times objective, on the microscope, the grid was visible and 

cells brought into the plane of view. In counting the cells the average of 3 large (red) 

squares, illustrated in Figure 6-3, was taken. Only cells within the squares and 

touching the top and right boundary were counted, any that were in contact with 

the bottom or left boarder, were disregarded. Having established a cell number ( ), 

the cell concentration was calculated, using Equation 6-1, adjusting for any sample 

dilutions. 

 

 

 

 

 

 

                  
            

   
 

   
        

 

Equation 6-1. Cell count 

The equation is calculated by dividing the cell number ( ), by the volume of the size 

of the square (1mm2), multiplied by the depth (0.1mm) of the cell chamber. This 

was then multiplied by 1000 converting the units from millimetre to millilitre. 
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Figure 6-3. Haemocytometer, cell counting 

A) Diagram of a haemocytometer, showing the position of the coverslip in relation 

to the counting chamber. B) haemocytometer grid with a depth of 0.1mm, and the 

red square (1mm2), green square (0.0625mm2), yellow square (.0.4mm2) and blue 

square (0.0025mm2). 
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6.9. Measuring Fluorescence & Luminescence 

6.9.1. Fridge Luminometer 

This purpose built luminometer, was used to detect the luminescence emitted from 

mt[AEQ]WT. Transfected cells were initially incubated with ceolenterazine to 

reconstitute activate  aequorin, as described in section 6.5.2.  

Once ready, coverslips were loaded into the purpose-built perfusion chamber, 

heated to 37oC using a thermocirculator. A 35mm diameter, thickness #1 glass 

coverslips, was fixed on the top of the perfusion chamber, using silica gel. The 

perfusion chamber was filled with HBS, with any air being forced out. The chamber 

was then located, immediately below the photocathode of the photomultiplier tube 

(PMT, EMI type 9789). The PMT detects the emitted luminescence. The PMT was 

housed in a light insulated, modified fridge, which maintained the PMT at a 

constant low temperature. Cold air was passed across the PMT face, to prevent 

condensation. The above modifications reduced any noise interference, giving a low 

and stable dark count, of 1 to 5 counts per second. Connected to the PMT, a voltage 

supply (EMI PM28B) provided a regulated 1200 – 1500I current. A fast pre-amplifier, 

amplified current pulses, before being transmitted to an EMI C660 amplifier-

discriminator. The amplifier-discriminator rejected slow fluctuations. The aequorin 

luminescence was captured by the photon counter (SR400) and displayed as 

photometric traces of counts, set at 1 count per second. 

Once the cells were placed in the luminometer chamber, a base line luminescence 

was recorded. Reagents were introduced using a peristaltic pump. Additions were 

made for 2 minutes, to ensure the solution in the chamber was fully exchanged. At 

the end of each experiment, the cells were permeabilised with water containing 

only 10 mM calcium chloride. This lysed the cells and discharged any remaining 

aequorin enabling calibration of the signal. The data was saved as an ASCII text file 

and then imported to Excel. The raw data (RLU), was calibrated and converted to 

[Ca2+]m µM, using the following equation [613]. 
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Equation 6-2. Converting mt[AEQ]WT derived RFU to [Ca2+]m. 

To calculate the precise [Ca2+]m μM the RLU obtained from the luminometer were 

introduced into the above equation. RLU denote the relative luminescence detected 

whilst DC denotes the dark count observed in a cell free system, (equalling 5 RLU).  

6.9.2. FlexStation 3 

The FlexStation 3 (Molecular Devices) is an automated microplate reader that 

allowed for the real time measurement of fluorescence, whilst making automated 

experimental additions. 

The fluorescence of the various dyes, Fura-2, Fluo-4, x-Rhod-1 and TMRE, was 

measured using the FlexStation 3. Cells were cultured in black walled 96 well plates, 

at a 4.0 x106 cell dilution. Once confluent, the cells were loaded with the required 

dye, as described in sections 6.2.1 and 6.7. The culture plate was then located in the 

FlexStation 3.  

The reagents were five times concentrated, as they were added at a ratio of 1 in 5, 

to give the desired final concentrations. The reagents were used alone and in 

various combinations as required. Once prepared, the fluorescence was recorded 

using Softmax Pro software, Flex mode, allowing the addition of compounds 

alongside recordings. The programme setup is described in Figure 6-6 and the 

fluorescent settings in Figure 6-5. 

The resulting fluorescence was plotted as F/F0, (fluorescence (F) divided by the 

average fluorescence during the base line reading from 0 to 300 seconds). This was 
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then normalised to the control mock additions to eliminate any addition artefacts 

and to allow comparison between repeats. 

6.9.3. Tube Luminometer 

Following incubation in the presence of the poison cocktail (as described in 6.8.1), a 

2 μl sample of the buffer was collected. The sample was combined with 20 μl of ATP 

monitoring reagent (AMR, ViaLight®). The AMR emits light, relative to the ATP 

concentration. The emitted relative light units (RLU), was measured using a 

Berthold tube luminometer (LB955) and detected using a photon counter, with a 

380 to 630nm spectral range. For optimal luciferase activity, the luminometer was 

maintained at an ambient temperature (18oC to 22oC).  

Subsequent to the ATP RLU measurements, 10 μM phosphoenolpyruvate (PEP) and 

10 units pyruvate kinase (PK), were added to the tubes. The enzymes converted 

ADP to ATP and the resulting luminescence recorded. 

For each sample the mean bioluminescence was taken from the measurements and 

then converted from RLU into nucleotide concentration, using the calibration curves 

produced, as discussed below. 

6.9.4. Calibration curves 

Calibration curves were constructed from serial ATP and ADP dilutions, 1 pM to 10 

mM. The curves generated, were then used to convert the RLU to nucleotide 

concentrations.  

The ATP calibration curve was plotted as, ATP concentration against RLU (Figure 

8-1). The ADP calibration curve plotted ADP standards against ATP equivalence 

(Figure 8-1). The ATP equivalence was calculated from the RLU generated from ADP 

converted to ATP minus the original count.  Both curves were described by a 

Boltzmann curve of best fit, due to their sigmoidal shape and from this the 

nucleotide concentration was calculated, Equation 6-3. 
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6.9.5. High Performance Liquid Chromatography 

Nucleotide species were separated and quantified using High Performance Liquid 

Chromatography (HPLC; Shimadzu), in parallel to the tube luminometer. The 

protocol used, is based on the based that published by Lazarowski et al. [319].  

A 50 μl sample of buffer solution, from cells subjected to poisoning, as described in 

section 6.8.1, was collected. The buffer sample was heat treated at 100oC, for 10 

minutes, using a heat block Thermo Cycler (PTC-200, Peltier). Heat treating the 

samples, inhibited any subsequent nucleotide interconversion. The samples were 

then treated with 10% Perchloric Acid (5.8M) for 30 seconds, at 22oC. The samples 

were then centrifuged at 1500x g, at 4oC, for 10 minutes. The supernatant was then 

collected ready for nucleotide sampling. 

The treated samples were transferred into HPLC vials and loaded in the auto-

sampler. The ASI-100 automated sample injector (Dionex), sequentially ran the 

samples through a Hypersil BDS C18 column (5 μm, 150x4.6mm). The ion pairing 

mobile phase was developed at 1 ml/minute from: 0 to 4 minutes in 100% solvent A 

and 4 to 30 minutes in 100% solvent B. The solvents were added using a P680 HPLC 

pump (Dionex). The nucleotides ATP and ADP were eluted at 23 minutes and 14 

minutes, respectively [319, 614]. The absorbance was measured at 254 nm and 

monitored on-line, using a Dionex UVD 170U detector.  
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6.10. Confocal Microscopy 

Images were acquired using an inverted Leica SP2 AOBS, 2 -photon laser scanning 

confocal microscope.  

Live cell imaging was recorded using the confocal microscope. The cells were 

cultured on glass bottom 35mm petri dishes, as described in section 6.5.1- Calcium 

Indicators. Once loaded with the Ca2+-sensitive indicators, culture dishes were 

placed on the microscope stage and the cells located within the plane of focus. Live 

fluorescence was recorded in ‘real time’ capture mode at the relevant fluorescence 

as described in Figure 6-5. at described laser lines and emission bands or where to 

find them. 

6.10.1. Immunofluorescence 

Immunofluorescence was used to label cell structures in both cultured cells and 

cryostat sections, using the antibodies described in Figure 6-7 and Figure 6-8. 

Prior to immunofluorescence staining, cells were fixed using PFA. Cells were 

cultured on 16mm diameter round glass coverslips at 2.0 x 106 cells. Once confluent 

the cells were washed, 3 times in PBS. The coverslips were then bathed for 15 

minutes, in 1 ml of 4% PFA/PBS (v/v), at 22oC. The PFA was replaced with, 1 ml 50 

mM ammonium chloride (NH4Cl), for 20 minutes. The ammonium chloride reduces 

potential auto-fluorescence, quenching free aldehydes [615]. The fixed cells were 

permeabilised with 0.2% TritonX-100, for 4 minutes. The coverslips were washed 3 

times, for 2 minute in PBS. 

Once permeabilised, the cells were blocked in a 10% v/v, serum/PBS solution and 

incubated for 30 minutes, at 22oC, in the absence of light. The serum was specific to 

the host of the secondary antibody. This was replaced with a 5% serum/PBS 

solution, containing the primary antibody(s) and incubated for 30 minutes, at 22oC, 

in the absence of light. The coverslips were washed, 3 times in PBS, for 4 minutes. 

Following this they were incubated in 5% serum/PBS, with the desired secondary 

antibody(s), for a further 30 minutes, as before.  
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When the primary antibodies were generated from the same host species, direct 

staining was used. In direct staining, the primary and secondary antibodies were 

incubated in succession. If two structures were labelled the staining protocol was 

repeated after the initial staining. Where the antibodies were generated from 

different host species, indirect staining was used. This method involved co-

incubation of the primary antibodies, followed by the secondary antibodies.  

Once stained the coverslips were subject to a further 3 PBS, 4 minute washes. The 

coverslips were then immersed in PBS and twice in d.H20. Excess water was 

removed using filter paper. The coverslips, were mounted on 26 mm by 76 mm 

superfrosted slides using, 15 μl moviol with 4',6-Diamidino-2-phenylindole (DAPI,  

1/2000). 

Fixed and labelled cells were located on the confocal microscope stage and imaged 

using the 63 time oil immersion objective. The cells were captured using sequential 

imaging at 1024 by 1024 format. Sequential mode removed any bleeding between 

the fluorescence emission channels, ensuring there was no interference between 

labels. 
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Dye Incubation Time De-esterify Time Temperature 

Fura-2   (2.5 μM) 45 minutes 15 minutes 37oC 

Fluo-4       (2 μM) 45 minutes 30 minutes 22oC 

x-Rhod-1  (1 μM) 60 minutes 30 minutes 37oC 

 

Figure 6-4. Table outlining the protocol for calcium dyes. 

The table records the varying concentration levels and incubation times and 

conditions of the 3 different calcium sensitive fluorescent indicators utilised. 

 

 

Dye Excitation Emission Cut Off 

Fura-2 340/380 nm 510 nm 455 nm 

Fluo-4 488 nm 530 nm 515 nm 

x-Rhod-1 540 nm 600 nm 570 nm 

TMRE 549 nm 574 nm 570 nm 

 

Figure 6-5. Table of dye excitation and emission. 

The table shows the excitation and emission of the dyes used with the FlexStation 3 

and the cut-off. 
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Figure 6-6. Overview of the FlexStation 3 software, Softmax Pro, settings. 

FlexStation 3, SoftMax Pro, Flex mode, programme was set with the appropriate, 

excitation and emission wavelength. The Sensitivity was set to readings: 6 and PMT: 

medium, whilst Timing establishes the total run time, Time: 1500s and Interval: 

minimal interval. The Automix and AutoCalibrate were left off, while the Assay Plate 

Type was set as 96 Well Standard and Wells To Read set dependant on how many 

columns were cultured. The Compound Source left as “Beckman 140504” and 

Compound Transfer set to 2 Transfers; transfer 1: pipette height = 200 μl, volume = 

25 μl, rate = 2 and time point 300secs and transfer 2: pipette height = 200 μl, 

volume = 30 μl, rate = 2 and time point 1500secs. Triturate was not used, Pipette 

Tips Layout full rack, Compound & Tip Columns set so the tips column and 

compound fill are the same for each column and AutoRead off. 
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Primary Antibodies Host Species Notes 

anti-Troponin T Rabbit 
Cardiac isoform Ab-1 (clone 13-11) 

[616]. (Thermo Scientific MS-295-P0) 

anti-sarcomeric α-Actinin Mouse 
Derived from clone EA-53.  

(Sigma A7811) 

anti-myosin heavy chain Mouse 
Sarcomeric specific [617, 618] 

(DSHB MF-20) 

 

Figure 6-7. Table of primary antibodies for immunofluorescence labelling. 

The primary antibodies used and their respective host species and any additional 

information regarding the generation. 

 

 

Host Species Reactivity Label or Dye Excitation/ Emission 

Goat anti-rabbit* 
Alexa Fluor® 488     

(A-11012) 
495/519 nm 

Goat anti-mouse* 
Alexa Fluor® 488    

(A-11001) 
495/519 nm 

Goat anti-mouse* 
Alexa Fluor® 594    

(A-11008) 
590/617 nm 

 

Figure 6-8. Table of secondary antibodies for immunofluorescence labelling. 

The secondary antibodies bind to the primary antibody, depending on their 

reactivity. They are labelled with an Alexa Flour® green or red tag, detectable at the 

set excitation and emission values. *All reactivity was IgG target isotype. 
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6.11. Statistics and Data Presentation 

6.11.1. Plotted Data 

In several circumstance the average from multiple and comparable experiments 

was plotted to represent the observed results. In several circumstances a line of 

best fit was applied to the data, including the Boltzmann Curve as described below.  

 

                           
     

    
            

Equation 6-3. Boltzmann curve 

The Boltzmann curve describes the sigmoidal curve of best fit where: y is the 

function, A1 is the low y limit, A2 is the high y limit, x0 is the inflexion point and dx 

is the width. 

 

In some instances the data was not comparable and so typical and representative 

traces have been displayed. The data is displayed as a scatter graph and a smoothed 

trace applied to remove noisy, irregular data using a Fast Fourier Transform (FFT) 

filter. FFT Filter smoothing is accomplished by removing Fourier components with 

frequency’s higher than a cut-off frequency, calculated from the below equation. 

 

        
 

   
 

 

Equation 6-4. The Fast Fourier transform equation  

The equation describes the cut-off frequency, where n denotes the number of data 

points, set at 5, and ∆t is the time or spacing between two adjacent data points. 
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6.11.2. Outliers 

Outliers were defined by Grubb as, a numerical observation that appears to deviate 

markedly from other members of the sample in which it occurs [619]. To test for 

outliers the Grubbs' test, or normed residual test, was applied to detect a single 

outlier in a univariate data set that follows an approximately normal distribution [1, 

2]. Grubbs' test is defined for the hypothesis that H0: is that there are no outliers in 

the data set, whilst Ha: there is exactly one outlier. The test is defined by Equation 

6-5 and Equation 6-6. 

 

   
           

 
 

Equation 6-5. Grubbs’ test for outliers 

The Grubbs' test statistic is the largest absolute deviation from the sample mean in 

units of the sample standard deviation, with Ῡ denoting the sample mean and s the 

standard deviation. 

 

  
     

  
 

             
 

                 
  

 

Equation 6-6. Grubbs’ test for outlier significance. 

For the two-sided test the hypothesis of no outliers (H0) is rejected, based on a 

significance level (α) of 0.05, if the above equation is proven. tα/(2N). N-2 denotes 

the critical value of the t distribution with (N-2) degrees of freedom and a 

significance level of α/(2N). 
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7.1. Introduction 

The mitoKATP channel has yet to be isolated and its’ structure confirmed. However, 

it is postulated to mediate diazoxide-induced IPC [228]. Whilst mitochondrial 

depolarisation may seem paradoxical in affording IPC, there are several 

compensatory mechanisms proposed to be activated in response to the opening of 

the mitoKATP channel, matrix swelling, reduced Ca2+ overload and ROS production 

(for full details please see section 5.4.2) [232-234]. 

Diazoxide is believed to afford IPC via mitoKATP-induced depolarisation, supported 

by inhibition by the ‘specific’ mitoKATP blocker [121, 122, 247, 248]. Surprisingly, 

there is very little evidence for diazoxide modulating m, which would be expected 

from mitoKATP channel opening and resulting K+ influx [15, 120-124, 584]. 5-HD 

inhibits diazoxide-IPC via the mitoKATP channel and therefore would negate m 

depolarisation, however recent data suggests that 5-HD is not as selective as 

perceived but may act via modulation of β-oxidation, as discussed in section 5.4.3.2 

[41, 228, 239, 254, 257-263, 265, 266, 270, 272, 274].  

The mitoKATP channel is sensitive to cGMP-PKG activation and the presence of cGMP 

elevating agents induces mild depolarisation. Subsequently the NO donors, SNAP 

and SNP and PDE5 inhibitor zaprinast were used to induce cGMP-induced mitoKATP 

channel modulation [275-277]. 

As such the effect of diazoxide and 5-HD on modulation of m was examined. 

Secondary to this was to study the effect of diazoxide, 5-HD and cGMP to ensure 

they are consistent with cGMP-activated mitoKATP channel. 
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7.2. TMRE Controls 

The initial aim was to confirm that TMRE can be used to measure m in HeLa cells 

[507, 510, 620-622]. To examine TMRE’s function as a m indicator, known 

depolarising and hyperpolarising agents, sodium cyanide and oligomycin 

respectively, were used to induce increases and decreases in m [525-528].  

Cells were loaded with TMRE (3 µM), as described in the methods section 6.7.1 and 

m measured using the FlexStation3, automated microplate reader. The observed 

fluorescence data was presented as normalised mean trace of F/F0 and the 

percentage change of the area under the curve (auc.) as compared to the control 

(mock additions).  

The representative trace of F/F0 and overall effects following the addition of sodium 

cyanide and oligomycin are illustrated as green and orange traces, respectively, in 

Figure 7-1. Cyanide induced depolarisation resulted in a large upward shift in TMRE 

(F/F0=0.13 and auc. 14.3±2.56%). The addition of oligomycin induced a negative 

shift in the observed fluorescence (F/F0=-0.05 and auc. -5.01±1.8%). 

Sodium cyanide and oligomycin modulated m as expected when using TMRE in 

“quenching mode” as described in section 5.7.1 [173, 507, 513-515]. The results 

confirm a working protocol, allowing the measurement of dynamics in relative 

changes of m [507, 623-625].  

The effect of the vehicles used in the experiments (ethanol and DMSO) were 

investigated (Figure 7-2). Both vehicles provoked negligible effects on the observed 

fluorescence F/F0. Whilst the lack of change confirms that the vehicles alone induce 

little to no m modulation, the addition of FCCP induced m depolarisation as 

expected [516, 517, 525-528]. FCCP typically induces considerable depolarisation, to 

approximately -60 mV [525-528]. The addition of FCCP acts as an internal control, 

confirming TMRE function. 
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Figure 7-1. Sodium cyanide (depolarisation) induces a positive shift in TMRE 

fluorescence and oligomycin (hyperpolarisation) a negative shift, measured in 

HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent, the cells 

were loaded with 3 µM TMRE. The response to the depolarising and hyperpolarising 

agents, 4 mM sodium cyanide (CN) and 6 µM oligomycin (Oligo) were observed, in 

HBS. A) The m is represented as TMRE F/F0 normalised to the mock addition trace 

to eliminate addition artefacts. B) The bar graph indicates the m, represented as 

the percentage change in the integrated F/F0 compared to the control mock 

addition. Error bars represent S.E.M. from the mean of at least 6 repeated 

experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 

0% auc. change.   
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Figure 7-2. Representative trace of the effects of the vehicles (ethanol (EtOH) and dimethyl sulfoxide (DMSO)) on m in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent, the cells were loaded with 3 µM TMRE. The TMRE fluorescence was 

recorded whilst EtOH and DMSO were added (at maximal concentrations used in experiments), in HBS at 37oC. The m is represented as 

TMRE F/F0, the mean of 3 experimental repeats. The solid bar indicates the mock, EtOH and DMSO addition, and 10 μM FCCP. 
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7.3. Ischaemic Preconditioning and m 

In an attempt to understand the mechanisms of pharmacological IPC by diazoxide, 

and the ability for 5-HD to negate it, the modulation of the m was studied using 

TMRE loaded HeLa cells. 

The addition of diazoxide triggered significant depolarisation as represented by an 

upward shift in TMRE (F/F0=0.098 or auc. 7.86±1.0%; Figure 7-3). The presence of 5-

HD also induced a loss of the m as observed by an increase in the TMRE 

fluorescence also (F/F0=0.046 or auc. 3.13±0.6%; Figure 7-3). When used in 

combination, diazoxide and 5-HD, the TMRE fluorescence increased (F/F0=0.036 or 

auc. 5.08±0.7%; Figure 7-3), to a level similar when subjected to 5-HD alone. 

Thus it appears that 5-HD opposed the depolarisation induced by diazoxide. 

Surprisingly 5-HD alone actually depolarised the mitochondria as well. This would 

indicate that the modest depolarisation seen in the presence of 5-HD and 5-HD with 

diazoxide does not modulate IPC. The larger depolarisation induced by diazoxide 

alone could still be important and significant in its function to bring about IPC. 
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Figure 7-3. m dynamics in the presence of putative mitoKATP channel 

modulators, diazoxide (DZ) and 5-HD in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent, the cells 

were loaded with 3 µM TMRE. The m was observed in the presence and absence 

of channel modulators, 500 µM diazoxide, 500 µM 5-HD, either in isolation or in 

combination with each other, and measured in HBS at 370C. A) The m is 

represented as TMRE F/F0 normalised to the mock addition trace to eliminate 

addition artefacts. B) The bar graph indicates the m, represented as the 

percentage change in the integrated F/F0 compared to the control mock addition. 

Error bars represent S.E.M. from the mean of at least 6 repeated experiments. T-

test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 0% auc. change. 
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7.4. Ischaemic Preconditioning and m Modulators  

To measure the effects and to allude to the potential mechanism of action, the m 

modulation exhibited by diazoxide and 5-HD was recorded in the presence of either 

sodium cyanide or oligomycin. 

When monitoring the presence of multiple m modulators, cells were initially 

challenged with either cyanide or oligomycin. Their effects when used in isolation 

are discussed in section 5.7.2 and illustrated in Figure 7-1. When used in 

combination, the TMRE fluorescence is significantly elevated in comparison to the 

effects observed in the presence of either sodium cyanide or oligomycin alone, 

(F/F0=0.6, 61.92±3% auc.; Figure 7-4).  

The exaggerated depolarisation is attributed to F1F0ATPase inhibition by oligomycin. 

Under normal conditions, oligomycin prevents proton influx, whilst cyanide 

prevents proton efflux, as illustrated in Figure 7-5A. During depolarisation of 

mitochondria the proton motive forces result in the F1F0ATPase complex working in 

reverse, using ATP rather than producing it and pumping protons out of the matrix, 

as the mitochondria try to maintain the m. Under these circumstances the 

presence of oligomycin results in an elevated depolarisation as both reagents act to 

prevent proton efflux, as illustrated in Figure 7-5B [626]. 
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Figure 7-4. Sodium cyanide in combination with oligomycin induced an elevated a 

positive shift (depolarisation) in TMRE fluorescence, compared to their use in 

isolation, in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The response to the depolarising and hyperpolarising 

agents, 4 mM sodium cyanide (CN), 6 µM oligomycin (Oligo), either in isolation or in 

combination with each other, was measured in HBS at 370C. A) The m is 

represented as TMRE F/F0 normalised to the mock addition trace to eliminate 

addition artefacts. B) The bar graph indicates the m, represented as the 

percentage change in the integrated F/F0 compared to the control mock addition. 

Error bars represent S.E.M. from the mean of at least 6 repeated experiments. T-

test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 0% auc. change. 
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Figure 7-5. Illustration of sodium cyanide and oligomycin modulation on proton 

movement, across the IMM under normal and depolarised conditions.  

Diagrammatic illustration of the effects on the ETC complex IV and ATP synthase 

apparatus by CN and oligomycin, in A) normal m and B) depolarised, -100 mV, 

mitochondria. The dashed arrows represent the original flow of protons (green 

arrows) and electrons (blue arrows). Also note the reversal of ADP>ATP, to 

ATP>ADP. 
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When challenged with cyanide and diazoxide, there was enhanced loss of m in 

comparison to the actions of either agent alone (F/F0=0.35, 35.35±7.5% auc.; Figure 

7-6). 5-hydroxydecanoic acid caused a small reduction on cyanide-induced 

depolarisation that did not reach statistical significance (F/F0=0.09, 9.14±1.6% auc.; 

Figure 7-6).  

The IPC agent diazoxide and the inhibitor 5-HD’s effect on m were also examined 

in the presence of oligomycin. Diazoxide exhibited a slower but, overall a similar 

amplitude of depolarisation as compared to its addition alone (F/F0=0.07, 

6.67±3.5% auc.; Figure 7-6). Whilst oligomycin slowed diazoxide depolarisation, 5-

HD retarded oligomycin-associated hyperpolarisation (F/F0=-0.02, -2.08±2.4% auc.; 

Figure 7-6). 

Depolarisation was significantly greater in the presence of both cyanide and 

diazoxide in comparison to the changes driven by the reagents alone. The 

depolarisation is larger (35.35±7.5% auc.; Figure 7-6) but not significantly different 

to the additive effects (24.8±4.9% auc.). 

The hyperpolarisation induced by oligomycin reflects continued proton extrusion 

with no compensatory proton influx. The present of oligomycin had minimal effect 

on diazoxide-derived depolarisation, whereas 5-HD appeared to partially relieve the 

oligomycin-induced hyperpolarisation. 
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Figure 7-6. The effect of diazoxide (DZ) and 5-HD on sodium cyanide-

depolarisation and oligomycin-hyperpolarisation in HeLa cells. 
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HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The response to 500 µM DZ and 500 µM 5-HD, on 4 

mM sodium cyanide (depolarisation), 6 µM oligomycin (hyperpolarisation) , was 

measured , in HBS at 370C. A) The m is represented as TMRE F/F0 normalised to 

the mock addition trace to eliminate addition artefacts. B) The bar graph indicates 

the area under the curve of DZ, 5-HD, CN and oligomycin, alone and in various 

combinations additions, compared to the mock additions. The m is represented 

as the percentage change in the integrated F/F0 compared to the control mock 

addition. Error bars represent S.E.M. from the mean of at least 6 repeated 

experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 

0% auc. change. 
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7.5. Cyclic GMP Modulation 

Since cGMP was reported to modulate mitoKATP channels, agents that increase 

cGMP were used to establish whether this pathway has any impact on m. To 

study the effect of cGMP on the m, the exogenous NO donors, (SNAP and SNP), 

and the PDE5 inhibitor (zaprinast) were used to induce cGMP-dependent PKG 

activation, as illustrated in Figure 5-13  [288, 290]. 

The presence of the cGMP modulators induced a small but significant m 

depolarisation; SNAP (F/F0=0.02, 2.2%±0.5 auc.; Figure 7-7), SNP (F/F0=0.05, 

4.9%±1.6 auc.; Figure 7-8) and zaprinast (ZAP, F/F0=0.03, 2.8%±0.8 auc.; Figure 7-9). 

Incubation with both SNAP and diazoxide had no further significant effect on the 

m potential. However, when looking at the trace and auc. the TMRE shift was half 

of that seen in the presence of diazoxide alone (F/F0=0.05,4.4%±1.8 auc.; Figure 

7-7). SNAP had no significant effect on 5-HD-depolarisation (F/F0=0.04, 6.2%±3 auc.; 

Figure 7-7). 

The presence of SNP and diazoxide or 5-HD both induced significant depolarisation 

(F/F0=0.05, 5%±1.8 auc.) and (F/F0=0.05, 5.5%±1.6 auc.), respectively, as seen in 

Figure 7-8. The addition of SNP attenuates diazoxide effect on m, whilst 5-HD-

depolarisation was not altered. 

Zaprinast and diazoxide induced significant depolarisation of the m, whilst 

slowing observed TMRE fluorescence reaching the same overall level as observed in 

the presence of diazoxide only (F/F0=0.04, 5.3%±2.3 auc.; Figure 7-9). Zaprinast and 

5-HD depolarised the m to the same degree as observed in the presence of either 

zaprinast or 5-HD alone (F/F0=0.05, 4%±1.2 auc.; Figure 7-9). 

As SNAP, SNP and zaprinast elevate cGMP by different routes the small 

depolarisation observed in their presence can be attributed to elevated cGMP. 
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Figure 7-7. The effect of cGMP modulator SNAP (depolarisation), on m alone 

and in-conjunction with diazoxide or 5-HD in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The addition of 20 µM SNAP in the presence or 

absence of either 500 µM diazoxide or 500 µM 5-HD was recorded, in HBS at 370C. 

A) The m is represented as TMRE F/F0 normalised to the mock addition trace to 

eliminate addition artefacts. B) The bar graph indicates the m, represented as 

the percentage change in the integrated F/F0 compared to the control mock 

addition. Error bars represent S.E.M. from the mean of at least 6 repeated 

experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 

0% auc. change. 
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Figure 7-8. The effect of cGMP modulator SNP (depolarisation), on m alone and 

in-conjunction with diazoxide or 5-HD in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The addition of 100 µM SNP in the presence or 

absence of either 500 µM diazoxide or 500 µM 5-HD, was recorded, in HBS at 370C. 

A) The m is represented as TMRE F/F0 normalised to the mock addition trace to 

eliminate addition artefacts. B) The bar graph indicates the m, represented as 

the percentage change in the integrated F/F0 compared to the control mock 

addition. Error bars represent S.E.M. from the mean of at least 6 repeated 

experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 

0% auc. change. 
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Figure 7-9. The effect of cGMP modulator, zaprinast (ZAP, depolarisation), on m 

alone and in-conjunction with diazoxide or 5-HD in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The addition of 20 µM ZAP in the presence or 

absence of either 500 µM diazoxide or 500 µM 5-HD, was recorded, in HBS at 370C. 

A) The m is represented as TMRE F/F0 normalised to the mock addition trace to 

eliminate addition artefacts. B) The bar graph indicates the m represented as 

percentagevariance of the integrated F/F0 compared to the control mock addition. 

Error bars represent S.E.M. from the mean of at least 6 repeated experiments. T-

test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 0% auc. change.  
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7.6. FCCP Modulation 

As discussed, FCCP is a protonophore and an effective un-coupler of mitochondrial 

oxidative phosphorylation [510, 516-519, 524]. The presence of FCCP induces a 

large depolarisation of the m, from -180 mV to approximately -60 mV [525-528]. 

As such FCCP was used as a control at the end of each experimental run and also to 

examine any modulation deriving from the presence of m modulating agents. 

The addition of FCCP induced a large and rapid depolarisation of the m F/F0 

(0.49±0.05; Figure 7-10). The presence of diazoxide slightly elevated the overall 

depolarisation (F/F0=0.57±0.1 or auc. 14.4±3%; Figure 7-10). Pre-treatment with 5-

HD prior to FCCP-depolarisation, resulted in no significant deviation from the 

depolarisation induced by FCCP alone (F/F0=0.5±0.1 or auc. 1.6±0.4%; Figure 7-10). 

Pre-treatment with both diazoxide in combination with 5-HD resulted in a transient 

increased depolarisation, before recovering back to the level of depolarisation 

observed in its absence (F/F0=0.77±0.05 or auc.  57±4%; Figure 7-10).   

There was no discernible difference of FCCP-depolarisation in either the absence or 

the presence of cyanide (F/F0=0.46±0.1 or auc. -3.9%±0.7); or cyanide in 

combination with 5-HD (F/F0=0.48±0.1 or auc. 6%±1.3; Figure 7-11). However, the 

presence of cyanide and diazoxide induced significantly elevated depolarisation 

(F/F0=0.48±0.1 or auc. 6%±1.3; Figure 7-11). Similar effects were observed in the 

presence of oligomycin alone (F/F0=0.51±0.1 or auc. 8.5%±1.2), 5-HD (F/F0=0.37±0.1 

or auc. -9.6%±1.1). Treatment with oligomycin in combination with diazoxide 

induced elevated depolarisation (F/F0=0.76±0.1 or auc. 63%±7; Figure 7-12). 

The effect on FCCP driven depolarisation was measured in the presence of the 

cGMP modulators alone and in combination with either diazoxide or 5-HD (SNAP 

Figure 7-13, SNP Figure 7-14 and zaprinast Figure 7-15). The cGMP modulators all 

exhibited minimal effect on FCCP-depolarisation (SNAP F/F0=0.47±0.1 or auc. -

6.7%±1, SNP F/F0=0.52±0.1 or auc. +4.2%±1 and zaprinast F/F0=0.59±0.1 or auc. 

+10%±2). The presence of diazoxide in combination with the cGMP modulators 

elevated the observed TMRE fluorescence: SNAP (F/F0=0.61±0.1 or auc. +28%±3); 
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SNP (F/F0=0.69±0.02 or +50%±4);  zaprinast (F/F0=0.79±0.1 auc. +62%±8). Pre-

incubation with SNP in combination with 5-HD had minimal effect on the observed 

m (F/F0=0.34±0.03, -10%±3 auc.); whilst SNAP and zaprinast reduced the FCCP 

driven depolarisation (SNAP F/F0=0.35±0.1 or auc. -27%±4 and zaprinast 

F/F0=0.32±0.03 or auc. -20%±2).  

Initially FCCP was used as a control however, the data yielded some interesting 

results as illustrated in Figure 7-16. Whilst the shift in depolarisation was 

significantly reduced as m is already depolarised, the presence of both cyanide 

and diazoxide resulted in elevated overall FCCP-depolarisation (Figure 7-16B). 

The presence of diazoxide alone showed a moderate, but not significant, elevation 

in the observed FCCP-derived depolarisation. When used in combination with other 

agents, notably with cyanide or SNP, the overall FCCP-depolarisation was elevated. 

The elevated depolarisation arose from increased shift in F/F0 depolarisation rather 

than m depolarisation arising from the presence of the selected agents. This 

elevated depolarisation occurs because the FCCP induced depolarisation was 

additive to that already induced by diazoxide. 

5-HD alone also exhibited no effect on m depolarisation induced by FCCP. Pre-

incubation with 5-HD in combination with oligomycin or zaprinast significantly 

reduced the overall FCCP-induced depolarisation (Figure 7-12, Figure 7-15 and 

Figure 7-16B), whilst the shift in FCCP-depolarisation is reduced in the combined 

presence of SNAP and 5-HD (Figure 7-13 and Figure 7-16A). 
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Figure 7-10. FCCP depolarisation modulation by the presence of diazoxide (DZ), 5-

HD and DZ and 5-HD, in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The response to 10 µM FCCP was measured, on cells 

in the presence of the channel modulators, 500 µM diazoxide, 500 µM, 5-HD and 

diazoxide and 5-HD in combination and was measured as:  A) the m is 

represented as TMRE (F/F0). B) The solid bar indicates the addition of 10 μM FCCP. 

The m is represented as the percentage change compared to the 10 μM FCCP 

alone. Error bars represent S.E.M. from the average of at least 6 repeat 

experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 

10 μM FCCP. 
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Figure 7-11. FCCP depolarisation modulation by the presence of sodium cyanide 

(CN, no effect) alone and in conjunction with diazoxide (DZ, which elevated 

depolarisation) or 5-HD (no effect) in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The response to 10 µM FCCP was measured, on cells 

in the presence of 4 mM sodium cyanide alone and with either 500 µM diazoxide or 

500 µM 5-HD. A) The m is represented as TMRE (F/F0). B) The solid bar indicates 

the addition of 10 μM FCCP. The m is represented as the percentage change 

compared to the 10 μM FCCP alone. Error bars represent S.E.M. from the average of 

at least 6 repeat experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared 

to the control, 10 μM FCCP, or as indicated by bar, other agents. 
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Figure 7-12. FCCP depolarisation modulation by the presence of oligomycin (no 

effect) alone and in conjunction with diazoxide (DZ, which elevated 

depolarisation) or 5-HD (no effect) in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The response to 10 µM FCCP was measured, on cells 

in the presence of 6 µM oligomycin alone and with either 500 µM diazoxide or 500 

µM 5-HD. A) The m is represented as TMRE (F/F0). B) The solid bar indicates the 

addition of 10 μM FCCP. The m is represented as the percentage change 

compared to the 10 μM FCCP alone. Error bars represent S.E.M. from the average of 

at least 6 repeat experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared 

to the control, 10 μM FCCP, or as indicated by bar, other agents. 
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Figure 7-13. FCCP depolarisation modulation by the presence of SNAP (no effect) 

alone and in conjunction with diazoxide (DZ, which elevated depolarisation) or 5-

HD (no effect) in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The response to 10 µM FCCP was measured, on cells 

in the presence of 20 µM SNAP cyanide alone and with  either 500 µM diazoxide or 

500 µM 5-HD. A) The m is represented as TMRE (F/F0). B) The solid bar indicates 

the addition of 10 μM FCCP. The m is represented as the percentage change 

compared to the 10 μM FCCP alone. Error bars represent S.E.M. from the average of 

at least 6 repeat experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared 

to the control, 10 μM FCCP, or as indicated by bar, other agents. 
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Figure 7-14. FCCP depolarisation modulation by the presence of SNP (no effect) 

alone and in conjunction with diazoxide (DZ, which elevated depolarisation) or 5-

HD (no effect) in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The response to 10 µM FCCP was measured, on cells 

in the presence of  100 µM SNP cyanide alone and with  either 500 µM diazoxide or 

500 µM 5-HD. A) The m is represented as TMRE (F/F0). B) The solid bar indicates 

the addition of 10 μM FCCP. The m is represented as the percentage change 

compared to the 10 μM FCCP alone. Error bars represent S.E.M. from the average of 

at least 6 repeat experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared 

to the control, 10 μM FCCP, or as indicated by bar, other agents. 
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Figure 7-15. FCCP depolarisation modulation by the presence of zaprinast (ZAP, no 

effect) alone and in conjunction with diazoxide (DZ, elevated depolarisation) or 5-

HD (no effect) in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells 

were loaded with 3 µM TMRE. The response to 10 µM FCCP was measured, on cells 

in the presence of 20 µM ZAP cyanide alone and with  either 500 µM diazoxide or 

500 µM 5-HD. A) The m is represented as TMRE (F/F0). B) The solid bar indicates 

the addition of 10 μM FCCP. The m is represented as the percentage change 

compared to the 10 μM FCCP alone. Error bars represent S.E.M. from the average of 

at least 6 repeat experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared 

to the control, 10 μM FCCP, or as indicated by bar, other agents. 
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Figure 7-16. Comparison of the shift (A, blue) and overall (B, red) FCCP induced depolarisation and the effect of the presence of various m 

modulators in the presence or absence of diazoxide or 5-HD, in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells were loaded with 3 µM TMRE. The response to 10 µM FCCP 

was measured, on cells in the presence of 4 mM cyanide (CN), 6 µM oligomycin (Oligo), 20 µM SNAP, 100 µM SNP or 20 µM zaprinast (ZAP) 

alone or in combination with 500 µM diazoxide (DZ) or 500 µM 5-HD. A) The shift in m depolarisation F/F0 following the addition of 10 μM 

FCCP is displayed, whilst B) illustrates the overall F/F0 depolarisation observed. Error bars represent S.E.M. from the average of at least 6 repeat 

experiments. T-test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 10 μM FCCP. 
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Figure 7-17. Comparison of the shift if FCCP-driven depolarisation, relative to the cells pre-exposure to various m modulators in the 

presence or absence of diazoxide or 5-HD, in HeLa cells. 

HeLa cells were cultured in black walled 96 well plates. Once confluent the cells were loaded with 3 µM TMRE. The response to 10 µM FCCP 

was measured, on cells in the presence of 4 mM cyanide (CN), 6 µM oligomycin (Oligo), 20 µM SNAP, 100 µM SNP or 20 µM zaprinast (ZAP) 

alone or in combination with 500 µM diazoxide (DZ) or 500 µM 5-HD. The shift in FCCP-driven depolarisation is represented as the percentage 

change in F/F0 compared to the control FCCP addition alone. Error bars represent S.E.M. from the average of at least 6 repeat experiments. T-

test: *P<0.05, **P<0.01 and ***P<0.001, compared to the control, 10 μM FCCP. 
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7.7. Conclusions 

Diazoxide induces substantial m depolarisation (Figure 7-3). Based on a resting 

m of -180 mV and FCCP inducing depolarisation to -60 mV, diazoxide induces 

depolarisation to approximately -150 mV. The loss of m is consistent with 

mitoKATP opening and subsequent K+ influx. Depolarisation is assumed to be the 

contributing factor of pharmacological IPC, synonymous with diazoxide, irrespective 

of the mechanism of depolarisation [15, 120-124, 584]. 

Diazoxide in conjunction with cyanide enhanced the observed depolarisation 

(Figure 7-6). As cyanide inhibits complex IV of the ETC, if diazoxide depolarisation 

arose from modulation of the ETC (most likely complex II), would the same degree 

of elevated depolarisation be observed? However, the m depolarisation is more 

logical if diazoxide acts in a complimentary manner, indicative of a KCO. Unlike 

when used with cyanide, oligomycin reduces diazoxide-induced depolarisation. The 

modulation of depolarisation is indicative of diazoxide generating K+ influx at a time 

of reduced proton influx (oligomycin), potentially via the mitoKATP opening.  

Diazoxide-induced m modulation is attenuated by 5-HD in the manner that it 

inhibits IPC [228, 264-266]. Despite 5-HDs perceived specificity, recent publications 

have suggested that the antagonistic effects of 5-HD on diazoxide derived IPC may 

arise from metabolic actions rather than as a K+ channel blocker (see section 5.4.3) 

[2, 4, 5, 237, 254, 262-264, 266-274]. 5-HD’s ability to impair oligomycin-

hyperpolarisation, suggests that the net effect maybe decreased proton flux. This 

might arise from a direct effect at the F1F0 ATPase or by a reduction in NADH supply. 

The effect of 5-HD on β-oxidation might mediate such an effect on the latter. Since 

5-HD reduced the oligomycin-induced hyperpolarisation, this is not consistent with 

any inhibition of a K+ channel, the commonly proposed site of action for this drug. 

5-HD induced small depolarisation in the measured m, consistent with it exerting 

metabolic actions rather than a K+ channel inhibitor. If under basal conditions the 



Results - m 

154 
 

channel was closed or nonexistent or open then there would be no m modulation 

or even hyperpolarisation (from reduce K+ influx).  

7.7.1. Cyclic GMP & IPC 

In the absence of specific mitoKATP channel modulators or molecular strategies, the 

cGMP-PKG activation pathway was used as a control [281-283]. The addition of the 

cGMP modulating agents (SNAP, SNP and zaprinast) were selected to induce 

mitoKATP channel opening, allowing observation of the effects of diazoxide and 5-HD 

in relation to direct activation of the proposed channel, mitoKATP. The presence of 

cGMP modulators induced mild depolarisation, consistent with cGMP-PKG opening 

of mitoKATP. However without confirming the precise mechanism of action the 

modulation of diazoxide or 5-HD-induced m is inconclusive. 

Diazoxide-cGMP modulator depolarisation could be explained by competitive 

inhibition, if cGMP acts as a partial agonist relative to diazoxide activation of the 

putative mitoKATP channel. If, for example diazoxide binds to SUR1 and SUR2A 

(putative channel subunits) this could be the site of cGMP-dependent channel 

opening [249-251]. The critical factor is the relatively small effect and the statistical 

power, which requires further experimentation to establish if the observed cGMP 

inhibited diazoxide-depolarisation is a genuine effect. 

Cyclic GMP derived depolarisation was not modulated by the addition of 5-HD. This 

may be as any modulation of m is obscured by 5-HD derived depolarisation. 

Depolarisation induced by the combination of the cGMP-elevating agents and 5-HD 

could suggest a common pathway, explaining why there is no additional modulatory 

or inhibitory effects. Alternatively the cGMP modulators could induce cGMP-

dependent mitoKATP channel opening which is negated by 5-HD.  

  



Results - m 

155 
 

7.7.2. FCCP Depolarisation 

The addition of FCCP was initially used as an internal control to induce large m 

depolarisation (to approximately to -60 mV) at the end of each experiment however 

it yielded some interesting results [516, 517, 525-528].  

FCCP depolarisation was modulated by the presence of diazoxide and 5-HD. The 

data supports the findings that diazoxide is predominantly a mitochondrial KCO. If 

diazoxide were to act on the ETC there would be no additive or compounding 

depolarisation as induced by FCCP and cyanide. However the modulation of two 

independent depolarising mechanisms such as the ETC (FCCP) and mitoKATP channel 

(diazoxide) would explain the additional shift in depolarisation observed. 

The antagonistic effect to FCCP-depolarisation afforded by 5-HD is interesting for 

the fact that the action only arises while in the presence of other m modulating 

agents and not by 5-HD alone. It could be that the β-oxidation in the HeLa cell 

model plays a crucial role or that 5-HD is acting as a channel blocker.  
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8.1. Introduction 

During hypoxia the extracellular concentration of ATP is known to be increased (up 

to 4 fold) and via purinoceptor activation induces a range of downstream dynamics 

events [301, 324]. Whilst elevated extracellular ATP and subsequent P2 dynamics is 

a well-documented event, minimal attention has been paid to extracellular ADP and 

its’ distinct pharmacology via P2Y1,6,11 receptor activation(vasodilation, platelet 

aggregation and proinflamatory action) [82, 83, 301, 316, 317, 321, 323, 324, 383, 

385, 386, 585-594]. 

With both nucleotides having different if not opposing signalling it is important to 

look at their concentration and accumulation in response to metabolic stressing. 

Recent mathematical modelling has suggested that alongside ATP other nucleotide 

including ADP accumulate which has even been shown at  concentrations equal to 

or greater than ATP [319, 325]. 

Subsequently one of the main aims of this section is to look at the extracellular 

nucleotide concentration during CIH and determine if ADP is present alongside ATP. 

The cause of extracellular nucleotide accumulation was also examined with regard 

to ecto-enzyme activity and release.  
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8.2. Calibration Curves 

To measure nucleotide release the sensitivity of the luciferase assay, AMR 

VIALIGHT®, was examined and standard curves for ATP and ADP were generated.  

In a cell-free assay, the light emitted after addition of AMR Vialight® to serial 

dilutions of ATP (1 pM – 10 µM) was recorded. There was a significant fit to a 

Boltzmann curve (R2=1; Figure 8-1A). To quantity the concentration of ADP, the ADP 

in the sample was converted to ATP as described in the methods (section 6.9.4). The 

additional ATP was then determined after measurement of the original ATP present 

in the sample. To allow for the non-linearity of the ATP calibration curve ADP 

standards were converted to ATP to give an ATP equivalence curve. Sample ADP 

measurements were then measured against this curve, Figure 8-1B. This approach 

allowed ADP concentration above 10 nM to be reliably measured.  

To further confirm the concentration of nucleotides, the signal measured by 

luminometry was compared to the area under the curve (auc.) after HPLC at the 

relative elution times for ATP (18.5 minutes) and ADP (14 minutes).  The HPLC 

system showed a lower sensitivity compared to the tube luminometer protocol. The 

ATP samples were only measurable down to the 0.1-1 µM range whilst ADP was 

measurable at concentrations in the 1-10 µM range for HPLC, in comparison to the 

picomolar and nanomolar ranges for ATP and ADP respectively, when using 

luminometry. 
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Figure 8-1. Standard Curves generated in the Tube Luminometer 

system for ATP (A) and ADP (B). 

In HBS supplemented with propidium iodide (PI, 150 µM) cell free 

samples of nucleotides were ran through the Berthold tube 

luminometer. Serial concentrations of ATP (1 pM – 10 μM) and ADP 

(1 pM – 100 μM) were added to tubes containing 20µl AMR. To the 

ADP samples 33.3µl PK and 5.8µl PEP was added converting ADP to 

ATP and re-measured. A) The ATP standard was plotted as ATP LogM 

against RLU and B) the ADP standard as ATP equivalence. The data 

plotted is the mean of 3 repeats and a Boltzman standard curve was 

applied to both. 

 

B. A. 
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Figure 8-2. Standard Curves generated in using HPLC for known ATP (A) and ADP 

(B) standards. 

In HBS supplemented with propidium iodide (PI, 150 µM) cell free samples of 

nucleotides were ran and separated by HPLC via a Hypersil BDS C18 column, with 

ATP and ADP eluting at 18.5 minutes and 14 minutes. A) The ATP standards (logM) 

plotted against the area under the curve (auc.) as recorded from λ=254 nm at 18.5 

minutes. B) The ADP standards (logM) were ran through the HPLC and plotted as 

auc. as measured at the elution point 14 minutes. The data plotted is the mean of 3 

repeats and to the ATP data an exponential growth curve was applied whilst to the 

ADP data a Boltzman standard curve was used. 

B. 

A. 
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8.3. Poisoning and Nucleotide Release 

The released extracellular nucleotide concentration was measured in the presence 

of metabolic poison, cyanide and 2-DG (which act to chemically induce hypoxia) 

supplemented with ionomycin, and compared to release under control conditions 

(in the absence of metabolic poisoning). These initial experiments allowed the 

observation of the basal concentrations of extracellular nucleotides (ATP and ADP) 

including any release arising from mechanical perturbations [315]. 

Under conditions of basal release, the measured extracellular nucleotide 

concentrations after 40 minutes assay period were 5±1 nM (ATP) and 259±31 nM 

(ADP; Figure 8-3D). An initial elevation of ATP occurred, which is suggestive of 

mechanical stimulation during the experimental protocol, in line with the work 

published by Lazarowski et al. (2003) [315].  For each experiment ATP and ADP were 

measured at a time zero nil addition control (T0-NAC), to the left of the curves. The 

T0-NAC measurement of ATP and ADP fell into the range of 1 to 25 nM and 250 to 

550 nM, respectively. This acts as an internal control for elevated extracellular 

nucleotides resulting from mechanical perturbations.  

Incubation with cyanide in combination with 2-DG, for up to 40 minutes, had no 

observable effect on the concentrations of extracellular nucleotides compared to 

the control (Figure 8-3B). Previous experiments have indicated that metabolic 

poisoning with cyanide and 2-DG sufficient to induce an immediate effect on 

cellular ATP [534, 627]. In order to induce metabolic stress ionomycin was added to 

the poison cocktail. Ionomycin alone induced a gradual elevation of ATP and ADP, 

which peaked after 40 minutes with maximum concentration of 36±6 nM and 

2816±402 nM, respectively (Figure 8-3C). One feature of the poison cocktail was 

that it led to a much quicker increase in the release of ATP and ADP as observed in 

the initial 0 to 20 minute poisoning. In the presence of cyanide, 2-DG and ionomycin 

the extracellular ATP and ADP concentrations in EA.hy923 cells was significantly 

elevated in parallel to each other with overall concentrations at 40 minutes of 60±6 

nM (ATP) and 4202±394 nM (ADP; Figure 8-3D). 
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As expected, the extracellular ATP and ADP concentration was significantly elevated 

in the presence of the poison cocktail in comparison to the summation of release in 

response to ionomycin alone and  cyanide in combination with 2-DG. 
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Figure 8-3. Extracellular nucleotide concentration under A. basal conditions and in 

the presence of B. CN + 2-DG, C. oligomycin and D. poison cocktail, in EA.hy926 

cells. 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning was measured, in HBS, via tube 

luminometry. The effect of the extracellular nucleotide concentration was 

measured under A. basal conditions and in the presence of B. 4 mM Cyanide and 10 

mM 2-DG, C. 5 µM Ionomycin and D. the poison cocktail (cyanide, 2-DG and 

ionomycin). The left hand scale and black trace represent the measured 

extracellular ATP (nM), whilst ADP is represented on the right hand scale and red 

trace (nM). T0-NAC denotes the time zero nil addition control. Error bars represent 

S.E.M. from the average of at least 6 repeat experiments. 
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8.4. HPLC Confirm of Poisoning 

To corroborate the extracellular nucleotide concentrations measured using tube 

luminometry, samples were also measured using HPLC. The ATP concentration 

following metabolic poisoning, 0 to 40 minutes, was not detectable using HPLC. The 

calibration curve was sensitive down to the 100 nM range, where as the observed 

ATP concentration in luminometry was less than 100 nM, below the threshold for 

HPLC.  In comparison the ADP concentration was measurable using HPLC. The 

observed ADP concentration was recorded to similar levels as seen using tube 

luminometry (Figure 8-2). 
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Figure 8-4. Extracellular ADP concentration following metabolic poisoning, 

measured using HPLC (black line) and luminometry (red dashed line). 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning was measured, in HBS. The effect of the 

extracellular nucleotide concentration was measured over a period of 0 to 40 

minutes of metabolic poisoning (4 mM cyanide, 10 mM 2-DG and 5 µM ionomycin). 

The black line represents the ADP concentration calculated using HPLC, whilst the 

red dashed line from luminometry. Error bars represent S.E.M. from the average of 

3 repeat experiments. 
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8.5. Ecto-nucleotide Inhibitors 

Since the concentration of extracellular ADP was higher than expected experiments 

were performed to determine if the observed ADP was derived from metabolism of 

ATP. The extracellular nucleotide concentrations were observed in the presence and 

absence of ecto-enzyme inhibitors levamisole, ARL 67156 or ebselen during 

metabolic poisoning. 

In the continued presence of levamisole the observed extracellular concentration of 

ATP became elevated after only 5 minutes of poisoning, and an increased 

accumulation of extracellular ATP was seen compared to poisoning alone (Figure 

8-5A). The overall ATP concentration was elevated by 43% (86±10 nM with 

levamisole compared to 60±6 nM in the control). The extracellular ADP 

concentration was also elevated in the first 5 minutes of metabolic poisoning, 

resulting in an increase of 39% (2934±97 nM; Figure 8-5B). The presence of the 

ecto-nucleotide inhibitor ARL 67156 significantly elevated the nucleotide 

concentration, notably after 10 minutes with the final concentration at 40 minutes 

increased by 103% (122±16 nM, ATP) and 58% (6648±194 nM, ADP; Figure 8-6). The 

presence of ebselen had a less pronounced effect on the nucleotide concentration 

compared to levamisole or ARL 67156, with smaller modulation of the extracellular 

ATP (16±2%, 70±10 nM) and ADP concentration and ADP (15±5%, 4836±1340 nM; 

Figure 8-7). 

Levamisole is an ATP hydrolysis inhibitor and as such it was expected that 

levamisole would lead to an increased concentration of measurable ATP. If any of 

the observed ADP concentration had been derived from alkaline phosphatase 

hydrolysis of ATP, it would be expected that a reciprocal decrease in ADP 

concentration would be observed. However, the concentration of both nucleotides 

was elevated, raising the possibility that both nucleotides are released in response 

to metabolic poisoning rather than levamisole-modulated hydrolysis. Instead, the 

preserved ADP concentration could also be explained by levamisole inhibiting ADP 

to AMP hydrolysis. Again if extracellular ADP had been derived from hydrolysis of 

ATP the presence of ARL 67156 would be expected to reduce the observed ADP.  
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The results however showed that while ATP was significantly elevated during 

inhibition of extracellular hydrolysis, the ADP concentration was also elevated. 

While ARL 67156 is reported to inhibit ATP to ADP hydrolysis, it has also been 

shown inhibit ADP to AMP hydrolysis, thus possibly explaining the ADP elevation 

[398, 400, 413-420]. The presence of ebselen had a small effect on the extracellular 

ADP concentration, suggesting that again either the observed ADP arises from 

mechanisms other than ATP hydrolysis, or that the ebselen-inhibited ecto-enzymes 

(NDPK) are not a pronounced pathway of extracellular nucleotide ‘recycling’.  

As means to potentially induce ‘full’ inhibition of ecto-enzyme modulation on 

extracellular nucleotide concentrations, cells were subjected to metabolic poisoning 

in the presence of all three inhibitors, levamisole, ARL 67156 and ebselen. The 

concentration of extracellular ATP and ADP during metabolic poisoning is illustrated 

in the absence and presence of the enzyme inhibitors, Figure 8-8. 

In the presence of the ecto-enzyme inhibitors a substantial elevation in the 

extracellular nucleotide concentrations was observed. There was a large and rapid 

rise in observed ATP up to 20 minutes where the extracellular concentration 

plateaued at approximately 200 nM, a 333% increase compared to the absence of 

the inhibitors (Figure 8-8A). The measured ADP concentration was also modulated 

by the ecto-enzyme inhibitors and over the first 15 minutes showed a parallel 

increase to ATP, peaking at 9436±1018 nM. However, this does not then level out 

but appears to be gradually decreasing over the remaining course of the 

experiment, but still the extracellular concentration was on average 181% greater 

than during poisoning alone (7624 nM; Figure 8-8B). 
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Figure 8-5. Extracellular nucleotide concentration following metabolic poisoning in 

the presence and absence of the inhibitor levamisole, in EA.hy926 cells. 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning was measured, in HBS, via tube 

luminometry. The effect of the poison cocktail (4 mM cyanide, 10 mM 2-DG and 5 

µM ionomycin) on extracellular nucleotide concentration (A. ATP and B. ADP) was 

recorded in the presence and absence of 10mM levamisole. The data plotted is the 

mean of 27 (poison control) and 6 (levamisole) with S.E.M. error bars. T0-NAC 

denotes the time zero nil addition control. 
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Figure 8-6. Extracellular nucleotide concentration following metabolic poisoning in 

the presence and absence of the inhibitor ARL 67156, in EA.hy926 cells. 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning was measured, in HBS, via tube 

luminometry. The effect of the poison cocktail (4 mM cyanide, 10 mM 2-DG and 5 

µM ionomycin) on extracellular nucleotide concentration (A. ATP and B. ADP) was 

recorded in the presence and absence of 100 µM ARL 67156. The data plotted is the 

mean of 27 (poison control) and 6 (ARL 67156) with S.E.M. error bars. T0-NAC 

denotes the time zero nil addition control. 
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Figure 8-7. Extracellular nucleotide concentration following metabolic poisoning in 

the presence and absence of the inhibitor ebselen, in EA.hy926 cells. 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning was measured, in HBS, via tube 

luminometry. The effect of the poison cocktail (4 mM cyanide, 10 mM 2-DG and 5 

µM ionomycin) on extracellular nucleotide concentration (A. ATP and B. ADP) was 

recorded in the presence and absence of 30µM ebselen. The data plotted is the 

mean of 27 (poison control) and 6 (ebselen) with S.E.M. error bars. T0-NAC denotes 

the time zero nil addition control. 
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Figure 8-8.  Extracellular nucleotide concentration following metabolic poisoning 

in the presence and absence of the inhibitor cocktail (levamisole, ARL 67156 and 

ebselen), in EA.hy926 cells. 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning was measured, in HBS, via tube 

luminometry. The effect of the poison cocktail (4 mM cyanide, 10 mM 2-DG and 5 

µM ionomycin) on extracellular nucleotide concentration (A. ATP and B. ADP) was 

recorded in the presence and absence the inhibitor cocktail (10 mM levamisole, 

100µM ARL 67156 and 30 µM ebselen). The data plotted is the mean of 27 (poison 

control) and 3 (inhibitor cocktail) with S.E.M. error bars. T0-NAC denotes the time 

zero nil addition control. 
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8.6. Cell Permeability 

8.6.1. Caspase 3/7 

With the observed extracellular ADP not necessarily arising from ecto-enzyme 

activity mechanisms of release were considered as a source of the nucleotides. 

Initially the cells permeability was studied using the apoptotic markers caspase 3/7. 

The caspases are a family of proteases, central to apoptosis but also act as markers 

for mitochondrial outer membrane permeabilisation [611, 612].  

The caspase 3/7 dynamics peaks after 15 minutes of poisoning, coinciding with 

elevating extracellular ATP concentration, as illustrated in Figure 8-9. The signal 

appears to diminish at 20 minutes but is again elevated after 30 minutes of 

poisoning, suggesting that mitochondrial outer membrane permeabilisation and 

permeability is elevated from about 15 minutes.  

8.6.2. Calcein and Propidium iodide staining 

As an alternative protocol to measure cell permeability to caspase 3/7, the cells 

ability to retain calcein and take up PI was investigated during the poisoning 

protocol, as seen in Figure 8-10. After calcein loading, all living cells exhibited green 

fluorescence as seen after 0 time in poisoning (Figure 8-10C). Likewise, there was 

minimal PI staining visible in cells before extended periods of metabolic insult 

(Figure 8-10F). The cell staining remained near basal levels for the initial 20 minutes 

of poisoning, before calcein decrease and PI staining is elevated as seen in Figure 

8-10A and B, respectively. The calcein and PI staining appears consistent with the 

observed caspase 3/7 data, suggesting that the cells permeability shifts after 15 to 

20 minutes of metabolic poisoning.  

Whilst PI uptake has been previously used as an indicator of cell death, it has been 

shown as a marker of increased cell permeability and the opening of connexin 

hemichannels [628]. As connexin hemichannels are a proposed mechanism of PI 



Results - Extracellular Nucleotides 

173 
 

uptake the cell staining was examined in the presence of the known channel blocker 

flufenamic acid (FFA) [358]. 

After 40 minutes in the absence of metabolic poisoning the cells showed calcein 

retention and minimal PI uptake, whilst decreased calcein and high PI staining is 

observed in the presence of metabolic poisoning (Figure 8-11A and B and Figure 

8-11C and D, respectively). The addition of FFA in combination with metabolic 

poisoning appeared to have no discernible effect on the cell staining (Figure 8-11E 

and F). In comparison 5 minutes pre-treatment with EGTA, before the poison and 

FFA treatment over 40 minutes, the cells calcein staining was dramatically 

preserved with minimal PI uptake (Figure 8-11G and H). 
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Figure 8-9. Caspase 3/7 dynamics in relation to extracellular ATP concentration 

following metabolic poisoning, in EA.hy926 cells. 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release and caspase 3/7 luminescence was recorded, via tube 

luminometry, in response to poisoning in HBS. The effect of the poison cocktail (4 

mM cyanide, 10 mM 2-DG and 5 µM ionomycin) on A. caspase 3/7 luminescence 

and B. extracellular ATP concentration. The data plotted is the mean of 3 

comparable repeats with S.E.M. error bars. 
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Figure 8-10. Calcein and Propidium Iodide staining during metabolic poisoning 

over a period of 0 to 40 minutes, in EA.hy926 cells. 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning (4 mM cyanide, 10 mM 2-DG and 5 µM 

ionomycin) was measured, in HBS containing 150 μM PI. Once the sample were 

collected the HBS was replaced with 2 μM calcein supplemented HBS. The cells 

were then imaged. Using a Leica DMIRB microscope calcein and PI were imaged at 

excitation/emission at 494/517 nm and 535/617 nm, respectively. A. illustrates the 

calcein dynamics and B. PI during metabolic poisoning over 0 to 40 minutes. Images 

C to E show typical calcein cell staining and F to H PI, during metabolic poisoning at 

0 (C, F), 20 (D, G) and 40 minutes (E, H). 
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Figure 8-11. Calcein and Propidium Iodide staining after 40 minutes of metabolic 

poisoning in the presence of flufanamic acid alone and with pretreatment with 

EGTA, in EA.hy926 cells. 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to, A, B) control, C, D) poisoning (4 mM cyanide, 10 

mM 2-DG and 5 µM ionomycin), E, F) poisoning in combination with 100 μM FFA 

and G, H) poisoning in combination with FFA and EGTA pre-treatment; was 

measured, in HBS containing 150 μM PI. Once the sample were collected the HBS 

was replaced with 2 μM calcein supplemented HBS. Using a Leica DMIRB 

microscope calcein (A, C, E and F) and PI (B, D, F and H) were imaged at 

excitation/emission at 494/517 nm and 535/617 nm, respectively.  
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8.7. Connexin Hemichannel Release 

Connexon hemichannels are a proposed mechanism of nucleotide release as 

discussed in the introduction (section Nucleotide Release). With modulation of 

connexin hemichannels exerting such a pronounced effect on calcein and PI staining 

the channels role on extracellular nucleotide concentration was examined. 

Pre-treatment with either EGTA (connexin channel opener) for 5 minutes prior to 

the 40 minute treatment window or the presence of FFA (channel blocker) showed 

no modulation of the measured extracellular nucleotide concentration (Figure 

8-12). Whilst metabolic poisoning in combination with FFA and EGTA pre-treatment 

prevented calcein loss and PI uptake there was only a moderate decrease in the 

initial extracellular nucleotide concentration (0 to 20 minutes, Figure 8-13). It 

should be noted that pre-treatment with EGTA produced an elevated nucleotide 

concentration at 0 minutes and so whilst a similar nucleotide concentration were 

observed, the rate of release over this period had a gradient of 6.4 compared to 9.4 

(68%, ATP) and a gradient of 244 compared to 510 (48%, ADP) for poisoning with 

FFA and EGTA treatment compared to poisoning alone. 

The data suggests that whilst the cells’ permeability is preserved by the presence of 

connexin blockers, the extracellular nucleotide concentration is only moderately 

affected. This suggests that whilst a portion of the measured extracellular ATP and 

ADP may be derived from connexin release,  it does not account for the majority of 

the observed nucleotide concentration.   
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Figure 8-12. Extracellular nucleotide concentration following metabolic poisoning 

in the presence of FFA and 5 minutes pre treatment with EGTA, in EA.hy926 cells. 

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning was measured, in HBS, via tube 

luminometry. The effect of the poison cocktail (4 mM cyanide, 10 mM 2-DG and 5 

µM ionomycin) on extracellular nucleotide concentration (A. ATP and B. ADP) 

compared to the effect of 5 minutes pre treatment with 10 mM EGTA (pink) or 40 

minutes of 100 μM FFA (blue). The data plotted is the mean of 6 repeats with S.E.M. 

error bars. T0-NAC denotes the time zero nil addition control. 
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Figure 8-13. Extracellular nucleotide concentration (A. ATP and B. ADP) following 

metabolic poisoning in the presence and absence of EGTA, FFA alone and in 

combination, in EA.hy926 cells.  

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning was measured, in HBS, via tube 

luminometry. The effect of the poison cocktail (4 mM cyanide, 10 mM 2-DG and 5 

µM ionomycin) on extracellular nucleotide concentration (A. ATP and B. ADP) in the 

presence of 10 mM EGTA (5 minutes pre-treatment, red), 100 μM FFA (blue) and 

FFA following EGTA pre-treatment (pink). The data plotted is the mean of 6 repeats 

with S.E.M. error bars. T0-NAC denotes the time zero nil addition control. 

 



Results - Extracellular Nucleotides 

180 
 

8.8. P2X7 Release 

Since the modulation of the connexin hemichannels appeared to have minimal 

effect of the observed extracellular nucleotide concretion, the role of the P2X7 

channel was examined.  

To assess the potential of the P2X7 channel being linked to release ofextracellular 

nucleotides, the inhibitor oATP was used [608-610]. Oxidised ATP appears to have a 

marked effect on the measurable ATP and ADP, notably over the first 20 minutes of 

the poisoning protocol. P2X7 channel inhibition with oATP appears to reduce the 

extracellular ATP and ADP concentration by 53±16% and 40±32%, respectively. 

The data suggest that there is a definite aspect of extracellular ATP and ADP that 

arises from an oATP inhibited process. Whilst the most likely target and channel is 

P2X7, like all ‘selective’ inhibitors it now appears to be less selective than assumed 

[629]. Consequently, the findings must be taken as preliminary until further studies 

can confirm the mechanism. 
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Figure 8-14. Extracellular nucleotide concentration (A. ATP and B. ADP) following 

metabolic poisoning in the presence and absence of oxidised ATP (oATP), in 

EA.hy926 cells.  

EA.hy926 cells were cultured in 12 well plates until confluent. Once confluent, 

nucleotide release in response to poisoning was measured, in HBS, via tube 

luminometry. The effect of the poison cocktail (4 mM cyanide, 10 mM 2-DG and 5 

µM ionomycin) on extracellular nucleotide concentration (A. ATP and B. ADP) in the 

presence of 100 μM oATP, oATP and EGTA pre-treatment and oATP in combination 

with poisoning with or without EGTA pre-treatment. The data plotted is the mean 

of 6 repeats with S.E.M. error bars. T0-NAC denotes the time zero nil addition 

control. 
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8.9. Conclusion 

Calibration curves were constructed from serial ATP and ADP and used to convert 

the measured RLU to nucleotide concentrations. The measured extracellular ATP 

and ADP was in the range of 0 to 40 nM and 0 to 3000 nM, respectively. 

To calibrate ATP the known concentrations were plotted against the observed 

luminescence and a Boltzmann curve of best fit applied. This allowed the data 

collected to be converted into nanomolar ATP using Equation 6-2. Calculating ADP 

was more difficult, as it was measured after conversion to ATP. Consequently the 

serial ADP dilutions were plotted against ATP equivalence rather than using counts 

directly derived from ADP on the ATP calibration curve. Once converted to their ATP 

equivalence, the ADP sample concentrations were determined. The ATP 

equivalence and second calibration curve were used to account for inefficiency with 

ADP and ATP conversion.  

To validate the observed concentrations gained from tube luminometry the 

nucleotide concentrations were confirmed using HPLC measurement (Figure 8-4). 

HPLC has been shown to measure ATP and ADP in the picomolar range [334, 614, 

630]. Using a Hypersil BDS C18 column, the system afforded sensitivity down to 100 

nM. As such HPLC did not provided direct ATP values to compare against tube 

luminometry results, data published by Lazarowski et al. (2000) recorded the 

extracellular ATP concentration between 0-100 nM, in comparable cells 

(16HBE14o− human bronchial epithelial cells and ECV-304 human bladder epithelial 

cells) [319, 631]. The results gained from HPLC measurements were directly 

comparable to those seen using luminometry confirming an ADP concentration in 

EA.hy926 cells in the micro-molar range. This concentration was also in-line with 

data published by Lazarowski et al. (2000), where at the cell surface the ADP 

concentration was equal to or greater than ATP [319]. Despite lacking the required 

sensitivity to confirm the observed ATP concentration, HPLC data also measured 

micro-molar extracellular ADP 
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8.9.1. Metabolic Poisoning 

Cyanide and 2-DG are well documented CIH agents however the addition of 

ionomycin was required to further stress the cells, promoting nucleotide release 

[531-534]. Ionomycin can result in P2X7 channel ATP release when used at 

concentrations above 10 μM, however the ionomycin and CIH induced nucleotide 

accumulation was more than the additive effects on the metabolic stressors [540]. 

8.9.2. Cell Permeability 

During the 40 minutes of poisoning the overall calcein signal decreased whilst 

inversely the PI signal increases. Calcein and PI are a measures of cell permeability 

and not cell lysis [628]. Comparing the cell permeability the nucleotide 

concentration preceded the shift in calcein and PI staining, as after 10 minutes 

there was no change in calcein and PI permeability but elevated extracellular 

nucleotide concentration. The modulation of dye permeability in the presence of 

FFA is suggestive of a FFA-sensitive mechanism responsible for extracellular 

nucleotide accumulation. 

8.9.3. Mechanism of nucleotide accumulation 

With the extracellular nucleotide concentration, notably ADP, increasing during 

metabolic stressing, the means of the observed accumulation was examined. If 

extracellular ADP derived from ATP hydrolysis, ecto-enzyme inhibitors would induce 

a dramatic elevation in observed ATP and reciprocal decrease in ADP.  

Levamisole, an inhibitor of ALP, elevated the observed extracellular ATP and ADP 

[398, 400, 405, 413-420, 423-425]. At the concentration used ebselen has been 

shown to induce 60% inhibition of ATP hydrolysis but also modulate NDPK activity, 

as such modulating both hydrolysis and synthesis [410]. With such a large ADP 

concentration it is unsurprising that the ATP is elevated, as either hydrolysis is 

inhibited or ebselen has minimal synthesis inhibition on the significant ADP 

concentration. In the presence of all inhibitors in combination, there was a dramatic 

elevation of both extracellular nucleotide concentrations. This data coupled with 
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the large concentration difference (100 fold) between the two nucleotides, it would 

be energetically difficult for hydrolysis to be the pathway for accumulation, against 

a large concentration gradient of product. Given the relative concentration of ATP 

and ADP, ATP synthesis might be expected. If this was the case this process is not 

inhibited by ebselen since the agent increases both ATP and ADP 

The modulation of dye permeability in the presence of FFA (following 5 minutes 

EGTA pre-treatment) is suggestive of a FFA-sensitive mechanism responsible for 

extracellular nucleotide accumulation. 

The extracellular nucleotide concentration increases in parallel with cell 

permeability, seen by the respective changes in calcein and PI staining (Figure 8-10). 

The dye permeability is related to FFA modulated hemi-channels, as the presence of 

the FFA (maintains staining in poisoned cells comparable to control cells [362, 364]. 

However, the hemi-channel antagonist FFA had minimal effect on the extracellular 

nucleotide concentration [408]. Alternatively to hemi-channels, P2X7 channel have 

been proposed as a nucleotide release pathway, with activation opening ligand-

gated ion channel [632-634]. The inhibitor oATP decreased the observed 

extracellular nucleotide concentrations during the first 20 minutes of metabolic 

stressing [608]. 
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9.1. Introduction 

Ischaemia and ischaemic preconditioning is relevant to cardiac tissue and 

nucleotide release from the heart is likely to dominate the cardiac vascular 

pharmacology. To further study the role of m in IPC and nucleotide release during 

metabolic stressing, a CM model that offers a robust system and convenient 

isolation would be ideal. In striving to generate a viable cell model; CM morphology, 

immunofluorescence and the presence of spontaneous contractile activity was 

sought. 

Cultured CM cell lines have many advantages over acutely isolated myocytes 

preparations including, versatility, economy and convenience but are not suited to 

longer term studies [493, 596]. Alternatively primary CM cultures are more 

physiologically relevant both structurally and functionally but they can be expensive 

and isolation procedures are often complex [446-448, 452, 466, 469-475, 479, 481, 

597, 598].  

In attempting to generate a working CM cell model the HL-1 cell line and primary 

chick CMs were examined. The HL-1 cell line has been shown to maintain CM 

phenotype whilst displaying spontaneous contractile activity and have been used in 

hypoxic studies [472, 475]. With a short embryonic phase and relatively low costs, 

primary chick CMs offer several advantages over cell lines allowing the study of 

cardiac physiology, pharmacology and metabolic parameters [443-445].  
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9.2. Immunofluorescence Controls 

Cardiomyocyte specific antibodies were used to identify cells in a primary culture 

exhibiting a CM-like phenotype. To confirm the validity of the selected antibodies to 

Troponin T, sarcomeric α-actinin and MF-20, were initially visualised with 

immunofluorescence labelling using Swiss 3T3 fibroblasts, as a negative control 

(Figure 9-1) and E8 chick heart sections, as a positive control (Figure 9-2 to Figure 

9-4). 

9.2.1. Negative Control 

These initial experiments also verified that the secondary antibodies (anti-rabbit 

and anti-mouse Alexa Fluor®) did not exhibit any non-specific cross reactivity or  

subsequent fluorescence’s in the absence of primary antibodies (Figure 9-1A to D). 

Panels B and D showed the visible staining of mitochondria and cellular nuclei 

(MitoTracker Red® and DAPI), whilst in panels A and C there was observed 

immunofluorescence staining. 

Pure CM cultures would be an ideal working cell model, as previously discussed, the 

presence of fibroblasts are required to support CM growth and phenotype [452, 

453]. Swiss 3T3 fibroblasts were used as negative controls to ensure the selected 

markers did not show non-specific labelling (Figure 9-1 Frames E to J) [452, 453]. 

9.2.2. Positive Control 

To confirm antibody specificity and CM marker efficacy, chick heart sections were 

used as a positive control. Immunofluorescence labelling allowed precise 

visualisation of any organised cardiac structures (Figure 9-2 and Figure 9-3, 

respectively). The troponin T antibody ubiquitously stained the isolated heart 

sections, whilst the sarcomeric α-actinin and MF-20 antibodies offered more 

distinct staining pattern and as seen at higher magnification (Figure 9-4) allowed the 

visualisation of the characteristic cardiac substructure (Z-banding and myosin thick 

filament). 
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Figure 9-1. Negative control cardiomyocyte immunofluorescence staining in Swiss 3T3 cells. 

Swiss 3T3 cells were cultured on 16mm diameter glass coverslips, as described in the methods. Once confluent the cells were loaded with 

MitoTracker® Red, prior to PFA fixation, as described in the methods.  Swiss 3T3 cells were labelled with:  anti rabbit (A), anti mouse (C), 

Troponin T (E), sarcomeric α-actinin (G) , MF-20 (I) and MitoTracker Red® and DAPI (B, D, F, H and J). The tissue was mounted using Moviol 

containing DAPI and visualised using a Leica SP2 AOBS laser scanning confocal microscope and MaiTai multiphoton system. 
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Figure 9-2. Positive cardiomyocyte control immunofluorescence staining 

(Troponin T and sarcomeric α-actinin) in chick heart section. 

Immunofluorescence of cryostat sectioned E8 chick hearts were isolated and fixed 

in isopropanol. The tissue was stained with: Troponin T (A,D and G), sarcomeric α-

actinin (B,E and H) and as an overlay (C,F and I); and shown as enlargement of the 

same sections (A-C, D-F and G-I). The tissue was mounted using Moviol containing 

DAPI and visualised using a Leica SP2 AOBS laser scanning confocal microscope and 

MaiTai multiphoton system.   
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Figure 9-3. Positive cardiomyocyte control immunofluorescence staining 

(Troponin T and MF-20) in chick heart section. 

Immunofluorescence of cryostat sectioned E8 chick hearts were isolated and fixed 

in isopropanol. The tissue was stained with: Troponin T (A,D and G), MF-20  (B,E and 

H) and as an overlay (C,F and I); and shown as enlargement of the same sections (A-

C, D-F and G-I). The tissue was mounted using Moviol containing DAPI and 

visualised using a Leica SP2 AOBS laser scanning confocal microscope and MaiTai 

multiphoton system.   
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Figure 9-4. Positive cardiomyocyte control immunofluorescence staining (sarcomeric α-actinin and MF-20) in chick heart section. 

Immunofluorescence of cryostat sectioned E8 chick hearts were isolated and fixed in isopropanol. The tissue was stained with: sarcomeric α-

actinin (A, B), MF-20 (C, D) and as an overlay (E, F); and shown as enlargement of the same sections (A, C ,E and B, D, F). The tissue was 

mounted using Moviol containing DAPI and visualised using a Leica SP2 AOBS laser scanning confocal microscope and MaiTai multiphoton 

system.   
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9.3. HL-1 Cardiomyocytes 

When investigating HL-1 CM cell line as a potential myocyte model, the 

recommended culture protocols and media requirements were used. The presence 

of CM markers was investigated using CM specific antibodies. Claycomb et al. 

(1998) reported that the maintenance of the CM phenotype required continuous 

culture in Claycomb Media, whilst they could be maintained for up to 72 hours in 

basic culture media [472, 475]. 

9.3.1. Morphology 

The typical cell morphology after 72 hours in culture under the different conditions, 

are presented in Figure 9-5. The cell density of HL-1 cells in DMEM supplemented 

cultures was much lower in comparison to Claycomb medium. The HL-1 cells that 

were cultured in Claycomb media showed a near 100% confluent population, whilst 

those maintained in supplemented DMEM were still less than 50% confluent. In 

conjunction with the loss of proliferation and resulting lower cell numbers, the 

appearance of large and disperse hypertrophic cells were observed in the absence 

of Claycomb media, suggesting Claycomb media is essential. 

9.3.2. Immunofluorescence 

The HL-1 cells initially exhibited some contractile activity, but in Claycomb media 

the cells are in the constant presence of 100 μM NE. The cells displayed the typical 

morphology of immature myocytes.  

When maintained in continuous culture the contractile activity was quickly lost and 

to investigate the retention of a cardiomyocyte phenotype the presence of the CM 

markers was examined, using the CM markers validated above. MitoTracker® and 

DAPI staining confirmed the presence of viable and confluent cell populations and 

was used as controls when examining the CM markers. Despite the strict adhesion 

to the Claycomb protocol, the cultured HL-1 cells showed no immunofluorescence 

labelling in the presence of any of the CM antibodies, as seen in Figure 9-6A to C. 
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Figure 9-5. Culture media comparison, showing the requirement for Claycomb 

media in HL-1 cell culture. 

HL-1 cells were seeded at ¼ dilution and cultured on fibronectin/gelatine coated, 6 

well plates. The cell cultures were maintained in complete claycomb media, DMEM 

(10% FCS, 1% P/S) and Supplemented DMEM (10% FCS, 1% P/S, 1% L-Glutamine and 

1% Noradrenaline). The cells were feed daily and maintained for 72 hours, 

monitored every 12 hours, with an inverted Nikon Diaphot microscope, 40x 

objective and imaged. 
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Figure 9-6. Cardiomyocyte conformation using immunofluorescence staining 

(sarcomeric α-actinin  and MF-20) in HL-1 cells. 

HL-1 cells were cultured as described in the methods and once confluent loaded 

with MitoTracker® before being PFA fixed and immunofluorescence labelled for CM 

markers: Troponin T (A, D), sarcomeric α-actinin (B, E) and MF-20 (C, F)  in the 

absence and presence of MitoTracker® and DAPI. The slides were mounted using 

Moviol containing DAPI and visualised using a Leica SP2 AOBS laser scanning 

confocal microscope and MaiTai multiphoton system. 
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9.4. Primary Cardiomyocytes 

Since HL-1 cells did not appear to maintain their CM morphology or spontaneous 

contractile activity, primary CMs were isolated from chick embryos. Using a 

technique adapted from Laugwitz et al., isolated primary cardiomyocytes were 

maintained in culture for periods [494, 498, 600]. 

Confirmation of CM in the culture was established initially by observation of typical 

CM morphology (the formation of thick, highly refractive cells, either round or 

spindle shaped, uni-nuclated cells with a finely granular cytoplasm) alongside the 

tell-tale spontaneous contractile activity (Figure 9-7) [487-490].The cells formed a 

monolayer with the appearance of ‘myoball’ type beating structure [635, 636]. 

Conformation of CMs being cultured was supported spontaneous contractile 

activity, as illustrated in relaxed (Figure 9-7B) and contracted (Figure 9-7C) states. 

Preliminary observations were indicative of a CM population. The same cardiac 

specific antibodies for Troponin T, sarcomeric α-actinin and MF-20 (Figure 9-2, 0-3 

and 0-4) that were used above in the intact tissue were used here on the cultured 

cells. The labelling observed, in Figure 9-8 and Figure 9-9, shows distinctive and high 

immunofluorescence patterns, confirming the presence of CMs with contractile 

apparatus.[459, 494-497].  At higher magnifications, the highly ordered actin 

filaments and sarcomeric structure of CMs can be clearly seen [494, 495, 498-500].  

The results confirm that the isolation and culture technique can be used to produce 

viable cultured CMs with contractile activity. 

9.5. Cardiomyocyte Culture Purity 

With a confirmed CM presence, via the appearance of spontaneous contractile 

activity, morphology and immunofluorescence labelling, the cell population and 

proportion of CM compared to non-CMs was examined. The ubiquitous cell marker 

MitoTracker® (red) stained the entire population, whilst cells expressing CM 

phenotype were labelled with sarcomeric α-actinin or MF-20 (green). The 
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immunofluorescence staining shows the appearance of CM aggregating to form 

‘myoballs’. These ‘myoballs’ were the predominant site of cardiac activity (Figure 

9-10).  

The labelling shows that the cultured cells do not form a homogenous population 

but a heterogeneous culture of CM cells, expressing the sarcomeric α-actinin 

substructure, along with non-CMs. The alternative cells may be immature CMs, not 

yet expressing CM markers or fibroblasts, as suggested by their elongated shape 

and adhesion to the culture surface (Figure 9-10C).  
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Figure 9-7. Cardiomyocyte morphology and visualisation of spontaneous 

contractile activity in chick cardiomyocytes. 

Cardiomyocytes were cultured from isolated E8 chick hearts as described in the 

methods. The cells were observed over an extended period and photographed. A) 

shows the typical morphology of cultured CMs after  4 days in culture. Panels B) and 

C) illustrate the observed spontaneous activity in CM cells in both their (B, 22.45 

mm) and contracted state (20.45 mm), illustrated by the parallel lines. 
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Figure 9-8. Cardiomyocyte immunofluorescence staining with Troponin T and 

sarcomeric α-actinin in cultured chick cardiomyocytes. 

Cardiomyocytes were cultured from isolated E8 chick hearts as described in the 

methods. With spontaneous cardiac activity observed, cells were PFA fixed and 

stained with Troponin T (A, D, G and J), sarcomeric α-actinin (B, E, F and K) and as an 

overlay (C, F, I and L). The slides were mounted using Moviol containing DAPI and 

visualised using a Leica SP2 AOBS laser scanning confocal microscope and MaiTai 

multiphoton system. 
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Figure 9-9 Cardiomyocyte immunofluorescence staining using, Troponin T and MF-

20 in cultured chick cardiomyocytes. 

Cardiomyocytes were cultured from isolated E8 chick hearts as described in the 

methods. With spontaneous cardiac activity observed, cells were PFA fixed and 

stained with Troponin T (A, D and G), MF-20 (B, E and F) and as an overlay (C, F and 

I). The slides were mounted using Moviol containing DAPI and visualised using a 

Leica SP2 AOBS laser scanning confocal microscope and MaiTai multiphoton system. 
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Figure 9-10. Cultured chick cell population phenotypes, CM (green) and 

alternative cells (red). 

CMs were cultured from isolated E8 chick hearts as described in the methods. Once 

spontaneous cardiac activity was observed the cells were loaded with MitoTracker® 

before being PFA fixed and immunofluorescence labelled with sarcomeric α-actinin 

(A and B) and MF-20 (C; green). The slides were mounted using Moviol containing 

DAPI and visualised using a Leica SP2 AOBS laser scanning confocal microscope and 

MaiTai multiphoton system. 
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9.6. Calcium Measurements 

To support the immunofluorescence data, and to confirm aspects of normal cell 

physiology, CM Ca2+-dynamics was measured. The control measurements include 

the basal [Ca2+]c and [Ca2+]m concentration along with the typical calcium cycling 

events during beating.  

To observe cytoplasmic and mitochondrial calcium, the Ca2+ sensitive indicators, 

Fluo-4 and X-Rhod-1 were used, as described in the section 6.5.1. Confluent and 

contractile CMs were loaded in separated experiments with Fluo-4, X-Rhod-1 and 

aequorin and the Ca2+ dynamics were observed in real time using a Leica SP2 AOBS 

laser scanning confocal microscope and MaiTai multiphoton system and by 

luminometry for aequorin [555, 556, 558]. 

9.6.1. Cytoplasmic Calcium 

Chick CMs showed loading with the Fluo-4 Ca2+-indicator, illustrated in Figure 

9-11A. This allowed the observation of Ca2+ fluctuations in CMs during spontaneous 

activity. Frame ii. and iv. Illustrate elevated fluorescent intensity during a [Ca2+]c 

spike, in comparison to the ‘relaxed’ state, which is associated with basal [Ca2+]c 

levels, Frame i., iii. and v., Figure 9-11A. 

The Ca2+ signals were illustrated and expressed as a fraction of the basal 

fluorescence (F/F0). This enabled the comparison of Ca2+-dynamics across the entire 

frame and ROI (Figure 9-11B). Across the three ROI, synchronous activity was 

observed with the [Ca2+]c peaking together. However, the intensity of this dynamics 

varies across the ROIs, most notably in ROI 2. In this region the signal amplitude and 

[Ca2+]c spiking is much more variable and does not occur all of the time. Figure 

9-11C, is a representative trace of the individual [Ca2+]c  spike and illustrates the 

characteristic appearance of the responses. The peak shows the rapid elevation and 

slower recovery phase typical of a CM [471]. 
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9.6.2. Mitochondrial Calcium 

To measure [Ca2+]m beating CMs were loaded with X-Rhod-1. Despite being a well-

established technique the observed [Ca2+]m dynamics is poor with no discernible or 

repeated changes in [Ca2+]m were difficult to resolve. In ROI 2 there appears to be 

some periodic fluctuations in X-Rhod-1 fluorescence that could be attributed to 

changes in [Ca2+]m. 

9.6.3. Mitochondrial Aequorin  

As an alternative to X-rhod-1, mt[AEQ]WT was utilized. The benefits of using 

mitochondrial specific aequorin include: organelle targeting and quantification of 

[Ca2+]m. The luminometer allows the measurement of the entire cell population, and 

reduces any errors associated with mitochondrial migration out of the plane of 

focus with confocal microscopy. 

The mt[AEQ]WT plasmid was initially tested on HeLa cells to determine if typical 

aequorin [Ca2+]m responses could be measured using this approach. The presence of 

an appropriately sized mitochondrial aequorin insert (770 bp) in the mt[AEQ]WT 

plasmid was confirmed using the restriction endonucleotide ECOR1. The 

endonucleotide segments the aequorin insert from the pcDNA3.1 backbone (5500 

bp). The agarose gel, using a ladder (columns A, H), the two segments (aequorin and 

pcDNA3.1) are visualized compared to the uncut larger fragment (column C to F and 

B, G, Figure 9-13). 

With a confirmed aequorin insert, the transfection protocol was tested in the HeLa 

cell line (Figure 9-14). HeLa cells were transfected in the presence and absence of 

Ca2+ at a plasmid to GeneJuice® ratio of 1:3 or 1:1.5. The observed Ca2+-dynamics 

illustrates the requirement of Ca2+ during aequorin reconstitution. With a working 

protocol and set transfection ratio the aequorin reconstitution incubation period 

was studied. Maximal reconstitution and optimal luminescence was observed after 

four hours, whilst after two hours, 86% of the maximal signal was obtained. 

  



Results - Cardiomyocytes 

203 
 

With a working transfection protocol was established CMs exhibiting spontaneous 

contractile activity were investigated. The [Ca2+]m waves were observed during 

spontaneous activity, over a  five minute period as illustrated in Figure 9-16. Distinct 

[Ca2+]c waves were observed with Fluo-4, however agonist-induce [Ca2+]m responses 

were clearly visible  in the presence of certain agonists (Figure 9-16). 

The transfection was confirmed by the presence of a noisy trace, elevated above 

the observed baseline or ‘dark count’ at 10 RLU and the large counts recorded in 

during lysis induced by calcium chloride (CaCl2). The measured RLU data was then 

converted to [Ca2+]m nM using Equation 5-13, generating the trace seen in Figure 

9-16. Whilst the noisy trace is indicative of CM Ca2+-dynamics it is not as defined or 

discrete as the cytoplasmic cycling observed using Flou-4 (Figure 9-11). The lack of 

clear and distinct Ca2+-spikes may be attributed to the nature of the detection 

system, as the entire population is measured rather than the observed ‘myoballs’ to 

where the contractile activity appears restricted. 

To attempt to confirm the presence of CM derived Ca2+-dynamics the aequorin 

fluorescence was measure in response to cell stimulation with various agonists: 10 

μM ATP, 100 μM phenylepinephrine (PE) or NE, 20 μM caffeine and potassium 

HEPES (Figure 9-17).  

The addition of ATP induced multiple, clear and defined Ca2+-spikes. As ATP is a 

generic agonist the resulting dynamics cannot rule out ATP acting on a fibroblast 

population (Figure 9-17B). The more CM specific agonists PE and NE had a mixed 

response. Phenylepinephrine inducing several large and prolonged Ca2+-fluctuations 

whilst the presence of norepinehrine gave rise to an initial peak but very little in the 

way of repeatable contractile activity (Figure 9-17C and D, respectively). The 

presence of either caffeine or potassium HEPES had similar effects on already noisy 

traces, increasing the frequency but not the amplitude of the dynamics (Figure 

9-17E and F, respectively). 

Collectively the observed traces in Figure 9-16 and Figure 9-17 are indicative of 

inducible Ca2+-dynamics. However, the signals appear noisy and the fluctuations in 

the observed fluorescence maybe just noise or cycling arising from the non-CM cells 
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within the population. Whilst there is confirmed transfection there is no way of 

confirming that the CM cells were transfected. With no apparent synchronous 

contractile activity or transient inhibition of the dynamics using calcium antagonists, 

such as L-type channel inhibitors, benzothiazepines, or RyR antagonist ruthenium 

red, these findings require further verification [637, 638]. 
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Figure 9-11. Cytoplasmic calcium staining of spontaneous contractile activity in chick cardiomyocytes, using Fluo-4. 

CMs were cultured from isolated E8 chick hearts as described in the methods. Once spontaneous cardiac activity was observed the cells were 

loaded with 2µM Fluo-4 before and observed using a Leica SP2 AOBS laser scanning confocal microscope and MaiTai multiphoton system. A) 

represents a typical series of fluorescence, illustrating the variation between resting and elevated Ca2+ fluorescence intensity. B) data plots  

representative of real-time fluctuations in [Ca2+]c , across the entire frame and the selected regions of interest. C) the frames of typical[Ca2+]c  

wave. 
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Figure 9-12. Mitochondrial calcium staining of spontaneous contractile activity in 

chick cardiomyocytes, using X-Rhod-1. 

CMs were cultured from isolated E8 chick hearts as described in the methods. Once 

spontaneous cardiac activity was observed the cells were loaded with 2µM Fluo-4 

before and observed using a Leica SP2 AOBS laser scanning confocal microscope 

and MaiTai multiphoton system. A) represents a typical series of fluorescence, 

illustrating the variance between resting and elevated Ca2+ fluorescence intensity. 

B) illustrates the real-time fluctuations in [Ca2+]m  across the entire frame and the 

selected regions of interest.  
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Figure 9-13. Agarose gel, showing the construction of mt[AEQ]WT plasmid.  

To confirm the presence of the aequorin insert within the mt[AEQ]WT, the plasmid 

was incubated for 1 hour with 10 units/µl of EcoR I restriction enzyme, to cleave the 

aequorin segment from the pcDNA3 backbone. The gel shows the AXYGEN 1Kb 

ladder (A, H), uncut plasmid (B, G) and then treated plasmids (C-F). 
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Figure 9-14. Transfection reagent ratios and the requirement of calcium in 

working with mt[AEQ]WT in HeLa cells. 

HeLa cells were cultured on 16mm dia. coverslips, in DMEM. Typical responses to 

100µM Histamine are shown in mt[AEQ]WT transfected cells. The experiment was 

performed in HBS in a 37oC heated chamber in a purpose built luminometer. The 

line graph is the real time trace of [Ca2+]m µM, where the solid bar indicated the 

addition of 100µM Histamine, whilst the bar graph represents the peak observed of 

[Ca2+]m µM. 

 

Figure 9-15. Coelenterazine activation of apoaequorin and the subsequent 

mt[AEQ]WT dynamics in response to histamine stimulation, in HeLa cell. 

HeLa cells were cultured in DMEM and once 70% confluent transfected with 

mt[AEQ]WT plasmid for 48 hours. The cells response to 100µM Histamine 

stimulation was then measured in a purpose built luminometer. The cells were pre-

incubated with 6 µM co-elenterazine prior to Histamine treatment, for 1, 4 and 6 

hours. 
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Figure 9-16. Calcium dynamics (mt[AEQ]WT) in cardiac myocytes displaying 

spontaneous activity. 

CMs were cultured from isolated E8 chick hearts and after 72 hours in culture the 

CMs were transfected with mt[AEQ]WT as described in the methods. Once 

spontaneous activity was observed the transfected cells were subject to 2 hours 

incubation with 6 μM coelenterazine. Once ready, coverslips were loaded into the 

purpose-built perfusion chamber and the [Ca2+]m  was measured. A. illustrates the 

observed RLU and B. the resulting [Ca2+]m μM. The bar indicated the addition of 10 

mM CaCl2. Fast Fourier Transform (FFT) filter number of data points set at 5. 
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Figure 9-17. Calcium dynamics in cardiomyocytes transfected with mt[AEQ]WT, 

was measured during spontaneous activity in the absence and presence of various 

agonists. 

CMs were cultured from isolated E8 chick hearts and after 72 hours in culture the 

CMs were transfected with mt[AEQ]WT as described in the methods. Once 

spontaneous activity was observed the transfected cells were subject to 2 hours 

incubation with 6 μM coelenterazine. The coverslips were loaded into the purpose-

built perfusion chamber and [Ca2+]m  was measured in response to various agonists; 

A) control, B) 10 μM ATP, C) 100 μM phenylepinephrine (PE), D) 100 μM 

norepinephrine (NE), E) 20 μM caffeine and F) potassium HEPES. Fast Fourier 

Transform (FFT) filter number of data points set at 5. 
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9.7. Conclusion 

Initial immunofluorescence staining using positive and negative controls confirmed 

that the antibodies, sarcomeric α-actinin, myosin heavy chain MF-20 and Troponin 

T,  are CM specific [459, 494-498]. The antibodies α-actinin and MF-20 showed 

broad, periodic staining of Z-bands and intercalated discs, while Troponin T was CM 

specific but generated less distinctive labelling [498, 639-641].  

The HL-1 cell line was proposed as a working CM model, reported to survive 

repeated sub-culturing, whilst maintaining a CM phenotype and contractile ability 

[472, 475, 483-486]. Despite this, in culture the cells lacked any observable 

contractile activity, either spontaneous or induced. The HL-1 cells also lacked any 

CM specific immunofluorescent staining. As an alternative to the HL-1 CM cell line, 

primary chicks CMs were utilized as a model. Using established isolation techniques 

involving heart isolation and Collagenase II digestion, a contractile CM cell culture 

was developed. The isolated chick cells displayed the ability to be maintained in 

culture, through serial passages (up to two sub-cultures). Alongside the cells ability 

to survive isolation and to proliferate, the cultured cell population displayed distinct 

CM immunofluorescence labelling (Figure 9-8 and Figure 9-9). The most important 

and distinguishing markers was the appearance of maintained spontaneous 

contractile activity in culture, in the absence of external stimuli. 

9.7.1. Cardiomyocyte Culture Purity 

The presence of non-CM cells within the population was not surprising as a 

heterogenous population of CMs and fibroblasts has been shown necessary for 

proper CM growth and function [452, 453, 457]. However within the heterogeneous 

populations, the primary chick cultures form distinct, contractile ‘myoballs’ [635, 

636]. 
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9.7.2. Calcium dynamics 

With spontaneous contractile activity observed in the apparent ‘myoballs’ Ca2+-

dynamics was recorded (Figure 9-11). Whilst Ca2+-cycling is well documented and is 

not the main focus of this study, the recordings support the validity and usefulness 

of the chick CM model. Cell labelling with Fluo-4 displayed discrete and repeatable 

Ca2+-spiking during spontaneous ‘myoball’ contractile activity. However, 

mitochondrial Ca2+-dynamics proved more difficult to measure with either, X-Rhod-

1 labelling or aequorin transfection.  

X-Rhod-1 staining measurements were poor with only periodic [Ca2+]m fluctuations 

observed. Mitochondrial target aequorin provides an improved system but still no 

definitive CM derived signalling was observed. The signalling appears noisy and the 

responses to ATP maybe derived from non-CM cells such as endothelial and 

fibroblasts or via P2Y11 receptor positive ionotropic activation [321, 585-587, 642]. 

However, the luminescence observed in response to PE and NE stimulation implies 

CM specific Ca2+-dynamics.  

Beat-to-beat changes in [Ca2+]m occur during E-C coupling in the heart is believed to 

be either ‘integrating’ or ‘phasic’ uptake [643-646]. Phasic [Ca2+]m-transients, as 

seen in [Ca2+]c, were not observed as spiking may result from small [Ca2+]m fluxes or 

[Ca2+]m transients only in a minority of the cells and subsequently integrated. 
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10.1. Mitochondrial Membrane Potential 

The IPC induced by diazoxide is associated with m depolarisation via mitoKATP 

channel opening, however the precise mechanism of action is still unresolved [254, 

647]. The mechanism of action is further dispute as some laboratories have 

reported that the diazoxide IPC may arise from alternative mechanisms including 

the modulation of the sarcoKATP channel or inhibition of succinate dehydrogenase 

[252-254, 258]. In a similar way the “ischemia selective inhibitor of mitoKATP 

channels” 5-HD has been proposed to have other actions including modulation of β-

oxidation” [254, 262-264, 270, 272, 274]. 

10.1.1. Diazoxide and 5-HD 

Diazoxide induced substantial depolarisation to approximately -150 mV, consistent 

with the IPC synonymous with diazoxide (Figure 7-3) [15, 120-124, 584]. Diazoxide-

induced depolarisation was elevated in the presence cyanide whilst slowed by 

oligomycin (Figure 7-6). The m modulated by cyanide and diazoxide or oligomycin 

suggests that diazoxide is inducing K+ influx, potentially via the mitoKATP opening.  

With 5-HD negating diazoxide IPC, how does 5-HD induce mild depolarising whilst 

also inhibiting diazoxide-induced depolarisation? Does diazoxide IPC arise from ETC 

inhibition and the resulting depolarisation, which is bypassed by 5-HD (by 

modulation of β-oxidation for example) or is 5-HD a metabolic agent inducing 

depolarisation but in the presence of diazoxide also function as a K+ channel 

blocker? Alternatively, is the observed IPC the result of a different pathway entirely, 

such as ROS generation [34, 40, 41, 144, 254-256, 647]? The metabolic effect of 5-

HD assumes that in the presence of adequate substrates 5-HD acts as a weak 

inhibitor of complex II, however in the absence of substrate of during ETC blockages 

(including the presence of diazoxide) 5-HD acts as a substrate [237, 254, 255, 270-

273]. This alternative metabolic mechanism of action has been described by Hanley 

et al. (2002) as illustrated in Figure 10-1 [254] 
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Diazoxide induces depolarisation and whilst the exact mechanism cannot be 

defined, the data is consistent with it being a KCO rather than an ETC modulator. 

Observed depolarisation induced by 5-HD is consistent with it exerting a metabolic 

role through modulation of β-oxidation or the ETC rather than inhibiting mitoKATP 

channel opening. The results suggest that diazoxide-IPC arises from m 

depolarisation, butas 5-HD induces mild depolarisation but does not afford IPC, a 

degree of depolarisation is required to induce IPC. 

 

 

 

Figure 10-1. Pathway of metabolic IPC via the ETC and the involvement of 

diazoxide and 5-HD. 

It has been suggested that diazoxide inhibits succinate dehydrogenase at Complex 

II. 5-HD is proposed to act as a substrate for the enzyme acyl-CoA synthetase, 

feeding into the ETC as depicted. The principal product of this reaction, 5-HD-CoA 

may inhibit or serve as substrate for acetyl coenzyme A (acyl-CoA) dehydrogenase. 

ETF denotes electron transferring flavoprotein and Q denotes ubiquinone. 
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10.1.2. Cyclic GMP & IPC agents  

The addition of cGMP modulators all induced mild depolarisation, consistent with 

cGMP-PKG opening of mitoKATP. The presence of cGMP modulators had minimal 

effect on diazoxide induced depolarisation. Similarly there was nominal modulation 

in the presence of 5-HD, however as 5-HD itself induces mild depolarisation of the 

m which may mask any antagonistic effect of 5-HD on cGMP mitoKATP 

modulation. 

It is well documented that NO activate both cGMP-PKG and cGMP-independent 

pathways. A major issue is that the NO donors, SNAP and SNP, could induce 

depolarisation independent of cGMP, such as binding cytochrome C oxidase, 

competing with O2 as the final electron acceptor in the ETC, thus directly inducing 

depolarisation [648]. To confirm that it is cGMP and not direct NO derived effects, 

the presence of cGMP PKG inhibitors (KT5823, (Rp)-8-Br-PETP-cGMPS and (Rp)-

pCPT-cGMP) could be used[290, 300]. These would attenuate any cGMP and PKG 

induced depolarisation. The PDE5 inhibitor zaprinast induces a small depolarisation, 

suggesting a link between elevated cGMP and depolarisation. How cGMP induces 

m depolarisation is not clear, but the mitoKATP channel remains as a candidate 

[275-277].  

10.1.3. FCCP Depolarisation 

FCCP was initially used as an internal control at the end of each experiment 

inducing large m depolarisation. The presence of diazoxide elevated FCCP-

derived depolarisation whilst 5-HD exerted no discernible effects. The modulation 

of independent depolarising mechanisms such as the ETC (FCCP) and the mitoKATP 

channel (diazoxide) could account for additional diazoxide depolarisation. 

10.1.4. Concluding Remarks 

Considering published data and the results discussed in this thesis, diazoxides 

actions are consistent with it acting as a K+ channel opener. The data is consistent 
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with 5-HD exerting a metabolic effect, possibly modulating β-oxidation as suggested 

by the literature [237, 254, 262, 263, 270-274]. However, it is not necessarily all or 

nothing; instead 5-HD actually could act as both a substrate in β-oxidation and 

exerts the antagonistic effect on diazoxide-induced IPC and depolarisation, as a 

mitoKATP channel blocker. 

From the results, it is clear that the presence of diazoxide-induced a m 

depolarisation, to similar levels as seen with cyanide, whilst 5-HD exerted a much 

smaller depolarisation.  

10.1.5. Future work 

To validate the assumption that diazoxide opens the proposed mitoKATP channel, 

the channel needs to be identified and studied using strategies other than the 

pharmacological agents used here. To determine the involvement of the channel a 

variety of techniques including mitochondrial patch-clamp experiments, measuring 

flavoprotein fluorescence, [K+]m,  short interfering RNA (siRNA) silencing, could be 

used to examine the potential of mitoKATP modulation by diazoxide.  

Flavoprotein fluorescence, resulting from flavoprotein oxidation, has been used as 

an indicator of mitoKATP channel opening in response to diazoxide [121]. This is now 

disputed following the discovery that at concentrations which are known to induce 

IPC and expected to open the channel, diazoxide failed to increase fluorescence 

[254, 647, 649]. In any case, flavoprotein fluorescence is not a direct measurement 

of K+ influx. 

Mitochondrial patch-clamping allows mitochondrial ion channels to be studied [650, 

651]. However, due to mitochondrial proximity to the endoplasmic reticulum, and 

the formation of physical tethers between the organelles, mitochondrial patching 

can be hindered. Also, in these studies it is not a mitochondria but a mitoplast 

(isolated mitochondria with no OMM), reconstituted into proteo- or giant-

liposomes that are used. Whilst oxidative phosphorylation remains, other 
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properties such as the pathway of β-oxidation are interrupted [231, 652-654]. 

Certainly channel function is not being assessed in its natural environment. 

Measuring K+-dynamics in response to the presence of the proposed channel 

modulators would be helpful. It would not confirm the mitoKATP channel, but 

exclude K+-independent pathways from being associated IPC and depolarisation. 

Observing the K+-fluctuations would enable the antagonistic effect of 5-HD to be 

examined and the concept of mutual or isolated pathways responsible for the 

measured responses. However measuring [K+]m proves to be an ambitious 

challenge, with small concentrations and changes difficult to accurately record. The 

K+ indicator, potassium-binding benzofuran isophthalate (PBFI) exhibits a Kd of 10 to 

100 mM (room temperature at pH 7.05) [556, 655, 656]. Whilst this provides a 

system for measuring K+ concentrations via fluorescence activated cell sorting, even 

in apoptotic cells the PBFI increase was only 4 fold [655]. Without improved 

fluorescent probes and detection systems, it may be impossible to measure the 

small change in [K+]m associated with small depolarisation.  

De Stefani et al. (2011) used siRNA silencing screening to knock down expression of 

the mitochondrial calcium uniporter (MCU) protein. This approach could be used to 

identify the mitoKATP channel or silence other potential channels and see the effect 

exerted by diazoxide, 5-HD and other proposed channel modulators [657]. 

Coming back to using pharmacological agents is not ideal, but in the immediate 

future they provide a parallel pathway in trying to ascertain the involvement of the 

mitoKATP channel and the modulators, diazoxide and 5-HD. 

Multiple ETC inhibitors such as myxothiazol (acts on complex II) and cyanide (acts 

on complex IV) could be compared to the effects of diazoxide and cyanide on m 

[513]. If the resulting shifts in m are comparable and blocking of the ETC at 

multiple sites induces accumulative depolarisation, diazoxide may act via oxidative 

phosphorylation modulation. However, if multiple blockers do not induce additive 

effects on depolarisation then the proposed KCO pathway remains a candidate for 

diazoxide-induced depolarisation. Alternatively rotenone, an inhibitor of complex I 
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of the ETC, could be used to inhibit electron transport at the start of the chain and 

as such negate any subsequent inhibition [658, 659]. If diazoxide affects IPC in 

presence of rotenone, it would imply that a change in m arises from KCO 

mediated actions rather than ETC modulation. 

To look at the involvement of ROS within IPC as the key factor, rather than mitoKATP 

opening, they need to be sequestered or their generation needs to be inhibited. To 

achieve this inhibitors of complex I (rotenone) or II (myxothiazol) of the ETC could 

be used to generate ROS species or IPC [513, 658-660]. However in this approach 

the m would already be altered and as such, using the ROS scavengers (such as 

sodium pyruvate, mannitol  and carboxy-PTIO; for full review of ROS scavengers see 

Franco et al. (2007)), would provide a more prudent and beneficial way to assess 

ROS involvement in m and IPC [661-663]. An alternative and more direct 

approach would be to look at the effect of direct ROS signalling using H202 and 

potential IPC or m modulation. If diazoxide IPC resulted from ROS generation, 

then the importance of the m modulation needs to be reconsidered. 

Whilst the data is conclusive that diazoxide induces greater depolarisation than 5-

HD, the data was expressed as F/F0 and not as actual m in millivolts. As such, the 

exact shift in the m can only be estimated and whilst the degree of depolarisation 

may appear significant its scale is unknown. At quenching mode concentration, 

TMRE exhibits non-liner fluorescence, however without directly measuring the F/F0 

at known m the actual membrane potential cannot be determined [504, 509-

512]. To resolve this issue it would be prudent to repeat the experiments whilst 

using a mitochondrial patch clamp technique (see Kirichok et al. and Sorgato et al. 

for further details) [650, 664]. This would offer precise m readings which could be 

used to generate an accurate and reliable calibration curve of TMRE (saturated) as a 

measure of m in HeLa cells. However, plotting F/F0 against m at set points, 

FCCP (-60 mV), resting (-180 mV) and oligomycin (-200 mV) suggests that the 

relationship between F/F0 and m is fairly close to linear. 
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A potential secondary issue arising from the use of TMRE was the assumption that it 

reported m and not cytoplasmic membrane potential. This is highly relevant since 

evidence suggests that diazoxide IPC is mediated via sarcoKATP channel modulation 

[252, 253]. Whilst the response elicited by the controls, cyanide and oligomycin, 

confirmed TMRE as an indicator of m, they did not exclude the potential that 

cytoplasmic membrane potential may also be reported. To confirm that TMRE was 

localised to mitochondria, TMRE loaded cells were co-labelled with a mitochondrial 

membrane dye, such as MitoTracker® Green. The dual staining showed co-

localisation of the probes and absence of plasma membrane signal.  
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10.2. Extracellular Nucleotides 

With ATP and ADP having unique pharmacology and resulting receptor activation 

the extracellular nucleotide concentration during metabolic stressing is important. 

As such the aim of this section was to look at the extracellular nucleotide 

concentration during CIH and determine if ADP is present alongside ATP. The cause 

of extracellular nucleotide accumulation was also examined with regard to ecto-

enzyme activity and release. 

10.2.1. Chemical Induced Hypoxia 

Cyanide and 2-DG are well documented CIH agents however induced minimal 

metabolic stressing prior to the addition of ionomycin. Imamura et al. (2009) have 

shown that, in proliferating cancer cell lines (such as HeLa), ATP synthesis is derived 

from glycolysis and β-oxidation and not pyruvate-derived metabolism [665, 666]. 

Subsequently CIH induced partial reduction in cytoplasmic ATP [666].  

The addition of ionomycin induces a large increase in [Ca2+]c resulting in activation 

of SERCA PMCA and other energy dependant processes. The addition of ionomycin 

needs to be considered, especially for metabolically active CMs and be avoidable by 

replacing glucose within the media with galactose. Changing to galactose elevates 

oxidative phosphorylation and mitochondrial respiration which would exacerbate 

CIH-induced stressing, potentially removing the requirement for ionomycin [667, 

668].  

10.2.2. Permeability and cell lysis 

Calcein and PI do not show catastrophic cell lysis but rather increased permeability 

over the course of the experiment. The modulation of dye permeability in the 

presence of FFA is suggestive of a FFA-sensitive mechanism responsible for 

extracellular nucleotide accumulation. 
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The calcein and PI staining also confirmed that there was no sudden cell death as 

there was no dramatic change in staining. As the dye can permeate hemichannels 

the change in dye retention and uptake does not necessarily represent cell lysis. The 

presence of FFA, an inhibitor of hemichannels, prevented dye permeability but not 

extracellular nucleotide accumulation, suggesting that neither cell lysis or FFA-

sensative release is the mechanism of nucleotide accumulation. 

10.2.3. Nucleotide Calibration Curves 

Calibration curves were constructed from serial ATP and ADP and used to convert 

the measured RLU to nucleotide concentrations.  

The sensitivity of the HPLC system was not sufficient to accurately measure the 

concentration of ATP and ADP, as afforded by tube luminometry. Despite not being 

able to measure the exact nucleotide concentration both systems suggest that the 

concentration of ATP and ADP fell within the range of 0 to 40 nM and 0 to 3000 nM, 

respectively. Other laboratories have been able to use HPLC to measure nucleotides 

down to the picomolar range, which could be attributed to the use of radioactive 

species, 3H or 32P, rather than fluorescence [334, 614, 630].  

10.2.4. Extracellular Concentration 

Elevated extracellular ATP was expected, however the concentration of ADP was 

surprisingly high, approximately 100 fold greater than the prevailing ATP. This 

implies ADP signalling and resulting pharmacology maybe more significant than ATP 

under hypoxic conditions as they act via P2Y1, 6, 11 and P2Y2, 11, P2X, respectively 

[316, 317].  

ADP signalling is primarily associated with platelet aggregation, P2y signalling also 

can activate vasodilation, platelet aggregation, proinflamatory action, ion channels 

(either directly or indirectly), phospholipases, regulate cAMP levels and tyrosine 

kinase mitogen-activated protein kinase cascades [82, 83, 301, 316, 323, 383, 385, 

386, 588-594, 669-671]. 
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10.2.5. Mechanism of extracellular accumulation 

As CIH elevated the extracellular nucleotide concentration, the next step was to 

examine the mechanism of accumulation. There are two predominant mechanisms 

which may account for elevated concentrations; ecto-enzyme activity or release.  

10.2.5.1. Ecto-enzyme activity 

If the extracellular ADP was derived from ATP hydrolysis ecto-enzyme inhibitors 

(levamisole, ARL 67156 or ebselen) would be expected to induce a dramatic 

increase in ATP and reciprocal decrease in ADP concentration.  

The data from ecto-nucleotide inhibition does not confirm the precise effects of 

extracellular enzymes, it does confirm that there is no rapid hydrolysis between 

release and recording, which would have been abolished. With both nucleotides 

increasing in the presence of ecto-enzyme inhibition, two options remain to explain 

the presence of ADP, either extracellular synthesis or cellular release. 

The relative specificity of the ecto-nucleotidase is an issue as inhibiting ATP 

hydrolysis should elevate ATP. However, the ecto-nucleotide enzymes are not 

specific and can inhibit the forward and backward reaction in the equilibrium 

between ATP, ADP and AMP. Unfortunately without precise Ki data for inhibitors 

and knowledge of equilibrium constants for the substrates and products, it is very 

difficult to establish the degree of enzyme activity being inhibited and the precise 

amount of ADP derived from ATP. 

AK activity can be inhibit by Ap5A [409]. However commercial supplies of Ap5A 

contain mononucleotides and clearly the presence of either ATP or ADP would 

interfere with the assays. To measure AK activity commercially available sources of 

Ap5A were used but were contaminated with mononucleotides leading to 

misleading results, if not treated before use [605]. To remove nucleotide 

phosphates contaminants the Ap5A stock was treated with alkaline phosphatise 

however Ap5A remained contaminated and consequently it was not possible to 
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determine if AK was displaying a role in determining the relative ATP:ADP 

concentrations [605-607]. 

10.2.5.2. Release mechanisms 

As discussed in section 5.5.2 Nucleotide Release, the potential release mechanisms 

for nucleotides are; ABC transporters, vesicle trafficking and channels. As the 

calcein and PI staining (Figure 8-10) was FFA-sensitive, connexins and or pannexins 

were implicated as a likely channel, however the presence of FFA had minimal 

effect on the observed nucleotide concentration. Another putative release 

mechanism is the oATP-sensitive P2X7 channel. The addition of oATP decreased the 

observed extracellular ATP and ADP concentrations during the initial 20 minutes of 

poisoning (Figure 8-14). 

In the presence of oATP (100 μM oATP for 0 to 40 minutes) extracellular nucleotides 

were reduced, despite being used at a lower concentrations and reduced period 

than the 1 to 2 hours incubation at 300 μM used by others [610]. Further work 

using oATP at a higher concentration and longer incubation period may induce 

further or complete inhibition of the extracellular nucleotides release. Secondary to 

an extended incubation period, as with most ‘selective’ inhibitors oATP may be less 

specific than proposed or required and as such alternative channel blockers needs 

to be examined [629]. The presence of ionomycin has been shown to induce ATP 

release via exocytosis activation of P2X7 channels [540]. As such the effects of 

ionomycin need to be examined in combination with oATP to see if ATP release 

results from the presence of ionomycin [667, 668, 672].  

Alongside hemi-channels and P2X7 channels, vesicle trafficking is a proposed 

mechanism of nucleotide release, which might be a significant contributor to the 

observed extracellular accumulation. As a potential release mechanism Kreda et al. 

2010 paper supports the observed nucleotide concentrations and this release 

pathway, as they showed within secretary granules the nucleotide pool by 

concentration was ADP > AMP >>ATP [673]. Bodin et al. (2001) reported ATP 

release from endothelia to be via exocytosis [323]. 
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10.2.6. Concluding Remarks 

In this study, the data confirms that ADP is present alongside ATP in the 

extracellular environment. What is surprising is the concentration of the observed 

nucleotides.  

One explanation is that the observed nucleotides both arise from cellular release 

since it is difficult to reconcile the generation of such large amounts of ADP. Whilst 

the exact release mechanism remains elusive the data presented here implicates 

the involvement of the P2X7 channel in some ways and not connexin or pannexins 

hemichannels. Further characterisation of hypoxia and nucleotide release is clearly 

needed. Such characterisation should not be restricted to ATP as occurs in most 

studies.  

One interesting scenarios is that since P2X7 activation may be coupled to exocytosis 

by way of signalling at micro-domains [540]. This may explain the sensitivity of the 

extracellular nucleotide elevations to oATP. The presence of large amount ADP is 

secretary vesicles would explain the large amount of extracellular ADP seen in these 

studies.  

10.2.7. Future Work 

Molecular approaches such as siRNA to establish if extracellular nucleotide 

elevation is arising from hemichannel or P2X7 linked exocytosis would provide 

valuable insight. Additional approaches to inducing CIH are needed. 

Finally measurements of intracellular ATP or the ATP to ADP ratio to link with 

measurement of extracellular nucleotide elevation would be insightful. The ATeam 

probe, a genetically-encoded FRET-based indicators for ATP, that exhibits high 

selectivity to ATP (ε subunit) over other nucleotides; offering sensitivity to ATP in 

the range of 2 μM to 8 mM [666]. Perceval is a fluorescent sensor constructed in 

2009 by Berg et al., Perceval allows the measurement of an  ATP:ADP ratio [627]. 

The sensor function is executed by the backbone of Perceval whilst the fluorescent 

characteristics are mediated by using circularly permuted24 monomeric Venus 
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(cpmVenus). Perceval has a prominent emission peak at 530 nm when excited at 

490 nm and an additional smaller peak at 405 nm excitation and the F490/F405 ratio 

increases threefold and only 1.4 times in the presence of ATP (saturated) and ADP 

(saturated), respectively. As such the probe allows the measurement of both ATP 

and ADP, for a full review please see Berg et al. (2009) [627]. Extracellular 

nucleotide could be measured by these probes of they were attached to cell surface 

proteins. However, they may lack the sensitivity and range of luciferase [666]. 
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10.3. Cardiomyocytes 

To further study nucleotide release in metabolic poisoning and the role of m in 

IPC a working CM model was sought.  

The immunofluorescence labelling results confirmed the presence of cardiomyocyte 

specific markers (sarcomeric α-actinin, myosin heavy chain MF-20 and Troponin T) 

in chick cardiomyocyte heart sections. These markers were not present in Swiss 3T3 

fibroblast cells. The antibodies selected showed CM specific staining in line with 

previously published papers [459, 494-498].  

Whilst HL-1 cells were a proposed functional CM model in culture the cells lacked 

contractile activity or immunofluorescent staining [472, 475, 483-486]. In contrast 

the primary chicks CMs offered a viable cell model with specific CM 

immunofluorescence labelling and spontaneous contractile activity. 

10.3.1. Cardiomyocyte Culture Purity 

The presence of non-CM cells (presumably fibroblasts or endothelial cells) within 

the population was not surprising as a heterogenous population has been shown 

essential for proper CM growth and function [452, 453, 457]. Without fibroblast 

specific staining, using antibodies such as anti-vimentin or CD31, CD34 it is only 

speculation that these non-CM cells are fibroblasts or endothelial cells [674, 675]. 

Homogenous populations remove interference from non-CM cells and are  

achievable using pluripotent stem cells, however fibroblasts are necessary in 

primary cultures [452, 453, 469, 676]. Despite the heterogeneous cell populations, 

the primary chick cultures form distinct, contractile ‘myoballs’ [635, 636]. 

10.3.2. Calcium dynamics 

Spontaneous contractile activity was observed in the apparent ‘myoballs’ Ca2+-

dynamics and was recorded to validate CM physiology. The cell population 

displayed discrete and repeatable [Ca2+]c-dynamics, whilst not discernible from 
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background traces. Mitochondrial target aequorin offered an improved system 

compared to X-Rhod-1 labelling, but still no definitive CM derived signalling was 

observed. The signalling appears noisy and whilst the responses to ATP may derived 

from non-CM, the luminescence observed in response to PE and NE stimulation 

implies CM specific Ca2+-dynamics [321, 585-587, 642]. 

The poor [Ca2+]m-dynamics may arise from a loss of contractile activity whilst 

maintained for an extended period in transfection media (Opti-MEM, which lacks 

FBS and glucose) as opposed to normal culture media. Whilst Opti-MEM media is 

sufficient to support cells, it may not have been sufficient to support co-ordinated 

or synchronous beating. The media change may affect transfection efficacy, toxicity 

was minimised using GeneJuice® as compared to alternative reagents it is 

apparently nontoxic [677]. 

With a heterogeneous population the exact cellular source of observed Ca2+-

dynamics needs confirming. Transient inhibition using calcium antagonists (L-type 

channel inhibitors, benzothiazepines, or RyR antagonist ruthenium red) could 

confirm if the signalling was derived from CM cells within the population [637, 638]. 

Alternatively mapping the transfected cells, using HA-tagged fusion or 

mitochondrial targeted GFP could be used to monitor the specific cells transfected 

and as such the origin of the observed [Ca2+]m dynamics [678].  

Cardiomyocyte and notably primary cell culture transfection using chemical 

techniques has remained an obstacle, with reagents such as lipofection generating 

only 15% transfection [679-683]. Viral transduction may provide an improved 

substitute to plasmid transfection, to introduce mitochondrial targeted aequorin 

and other reporters. Adeno-associated viral (AAV) vectors have received 

considerable attention and appear to be a reliable and effective system giving high 

efficiency of infection and protein expression (88.1% efficacy in rat CMs) [677, 684]. 

The low aequorin luminescence and lack of measurable Ca2+-dynamics may be 

attributed to contractile activity being restricted to ‘myoballs’ whilst the detection 

system measured the entire population. In recording the signalling from the entire 
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population contractile rhythmic [Ca2+]m-dynamics may be difficult to assess when 

spiking in distinct regions or non-CMs occurs. To overcome this problem either pure 

CM populations displaying contractile ability or an alternative detection system 

allow regions of interest to be measured is required. 

The luminescence photometer system however does not allow the measurement of 

distinct regions such as the contractile ‘myoballs’ and so measuring [Ca2+]m changes 

present a major difficulty. As a solution an imaging approach could be adopted 

however imaging is better suited to fluorescence rather than luminescence. 

Confluent CM cultures displaying synchronous activity offer an alternative and 

overcome these issues, as reported by Kucera et al. [685]. The more viable option 

for immediate research using the chick CM model would be to adapt the detection 

system in a manner to enable the ‘myoballs’ to be highlighted as regions of interest, 

as achieved using the confocal microscope to measure [Ca2+]c. 

10.3.3. Concluding Remarks 

The long term aim is to take the protocols and initial findings from the work with 

mitoKATP channel modulators and nucleotide release in HeLa and EA.hy926 cells and 

transfer them to the chick CM cells. These cells have the potential to provide a 

useful model for investigating many aspects of myocyte function. However, 

monitoring of function must take place at the cellular level and not by population. It 

would certainly be interesting to monitor intracellular ATP and ADP during hypoxia 

in these cells. 
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