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Abstract 

 

 

This thesis a research program in which novel and generic optimisation methods were developed so that 

can be applied to a multitude of mathematically modelled business problems which the standard 

optimisation techniques often fail to deal with. The continuous and mixed discrete optimisation methods 

have been investigated by designing new approaches that allow users to more effectively tackle difficult 

optimisation problems with a mix of integer and real valued variables. 

  

Over the last decade, the subject of optimisation has received serious attention from engineers, scientists, 

and modern enterprises and organisations. There has been a dramatic increase in the number of techniques 

developed for solving optimisation problems. Such techniques have been applied in various applications, 

ranging from the process industry and engineering, to the financial and management sciences, as well as 

operational research sectors. Global optimisation problems represent a main category of such problems. 

Global optimisation refers to finding the extreme value of a given nonconvex function in a certain feasible 

region. Solving global optimisation problems has made great gain from the interest in the industry, 

academia, and government.  

 

In general, the standard optimisation methods have difficulties in dealing with global optimisation 

problems. Moreover, classical techniques may fail to solve many real-world problems with highly 

structured constraints, whereas achieving the exact global solution is neither possible nor desirable. One 

of the main reasons for their failure is that they can easily been trapped in local minima. To avoid this, the 

use of efficient evolutionary algorithms is proposed in order to solve difficult computational problems 

where acceptable solutions can be achieved. These techniques have many particular advantages over the 
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traditional optimisation methods, which allow them to be successfully applied in many difficult 

engineering problems.  

 

The focus of this thesis presents practical suggestions towards the implementation of hybrid approaches 

for solving optimisation problems with highly structured constraints. This work also introduces a 

derivation of the different optimisation methods that have been reported in the literature. Major 

theoretical properties of the new methods have been presented and implemented. Here we present detailed 

description of the most essential steps of the implementation. The performance of the developed methods 

is evaluated against real-world benchmark problems, and the numerical results of the test problems are 

found to be competitive compared to existing methods. 
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Notation 

    The set of real numbers. 

Ν   The set of non-negative integers.    

Ø   The empty set (without any element). 

          The set consisting of the three elements     and  . 

        is an element of the set  . 

        is not an element of the set  . 

      The number of elements in the set  , the cardinality of  . 

                The set of elements   such that … 

      There exists an element   such that … 

       For any element   of  . 

       Cartesian product of   and  . 

        A closed interval:  
 

 
          , where a and b are real numbers (a ≤ b). 

Xx

x


)inf(
 

If   has a lower bound, then 
Xx

x


)inf(  is by definition the largest of the lower bound 

of  . 

 If   has no lower bound, then by convention )inf(x . 

x
kx }{

 
Sequence of elements   , for        

 

   Cartesian product of the set , multiplied n times by itself. 

   
  
 

  
    The vector of    with components     ,   . 

     Transpose of the vector   of   . 

        Scalar product of the vector   and  . 

       Euclidian norm of the vector  . 

nj
miijaA
,,1
,,1][






  
Matrix with m rows and n columns,     is the element in row i and column j. 

      Transpose of matrix A. 
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Rank(A)  rank of matrix A ( dimension of the largest regular square submatrix of A). 

       If         is a function of the variables         , then      is the gradient 

of f at the point x, that is the n-vector with components 
  

   
      

  

   
   . 

         Equivalent notation to mean       , the transposed vector of                

is thus the same as the row-matrix with components 
  

      
  , 

  

      
. 

        If         is a function of the variables             , then        is the 

Hessian of f at the point x, that is  the real     (symmetrical) matrix whose 

      element is 
   

      
   . 

      Subdifferential of f at x: set of the subgradients of f at x( for the convex or a 

concave function). 

)}({inf xf
Xx  

By definition,
 

)(inf)}({inf yxf
XxXx 

  . 

   

 where        and         ,    
 

 
         y=f(x)}. 

 

 

)}({sup xf
Xx  

By definition )}({inf)}({sup xfxf
XxXx


  

  

)}({ xfMin
Xx  

Let        and     . If 


)}({inf xf
Xx  

and there exists Xx such 

that )}({inf)( xfxf
Xx

  ,then )()}({ xfxfMin
Xx




. If 


)}({inf xf
Xx

, then by 

convention 


)()}({ xfxfMin
Xx

 . If    , then by convention 




)()}({ xfxfMin
Xx

. 

)}({ xfMax
Xx  

By definition:
 

)}({)}({ xfMinxfMax
XxXx



. 

 cbaMin ,,
 

Minimum of the three real numbers a, b and c. 
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Chapter 1 

General Introduction 

 

 

1.1 Overview 

Optimisation problems are generally composed of three parts: an objective function that needs to be 

optimised, a set of variables that define the problem and on which the objective function depends, and a 

set of constraints that restrict feasible values of these variables. Constraints reduce the feasible space 

wherein solutions to the problem can be found. Formulation of an optimisation problem involves taking 

statements, defining general goals and requirements of a given activity, and transcribing them into a series 

of well-defined mathematical statements. More precisely, the formulation of an optimisation problem 

involves: selecting one or more optimisation variables, choosing an objective function, and identifying a 

set of constraints. Optimisation algorithms need to ensure that a feasible solution is found. That is, the 

optimisation algorithm should find a solution that both optimises the objective function and satisfies all 

constraints. If it is not possible to satisfy all constraints, the algorithm has to balance the trade-off 

between optimal objective function value and number of constrains violated.  

 

Optimisation can be applied to all disciplines.  Many recent problems in Engineering, Science, and 

Economics can be presented as computing globally optimal solutions. Using classical nonlinear 

programming techniques may fail to solve such problems because these problems usually contain 

multiple local optima [1]. Therefore, global search methods should be invoked in order to deal with such 

problems.  
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1.2 Objectives 

 

In this research, constrained optimisation problem is considered in the continuous and discrete search 

space.  The overall objectives of the present thesis were to develop novel hybrid versions of hybrid 

evolutionary approaches as promising solvers for the considered problems. The designed algorithms 

aimed to overcome the drawbacks of slow convergence and random constructions of stochastic methods. 

In these hybrid methods, local search strategies are inlaid inside the evolutionary approaches in order to 

guide them especially in the vicinity of local minima, and overcome their slow convergence especially in 

the final stage of the search. 

 

The optimisation problems exist in many applications and achieving the exact global solution is neither 

possible nor desirable. Therefore, using efficient global search methods is highly needed in order to 

achieve optimal global solutions. It has been found that evolutionary algorithms produce good results 

when applied to these problems and they could obtain highly accurate solutions in many cases [2]. The 

power of evolutionary techniques come from the fact that they are robust and can deal successfully with a 

wide range of problem areas. However, these methods, especially when they are applied to complex 

problems, suffer from the slow convergence and the high computational cost. The main reason for this 

slow convergence is that these methods explore the global search space by creating random movements 

without using much local information about promising search direction. In contrast, local search methods 

have faster convergence due to their using local information to determine the most promising search 

direction by creating logical movements. However, local search methods can easily be entrapped in local 

minima.  

 

Our work has the objective to combine evolutionary approaches with gradient-based search methods to 

design more efficient algorithms with relatively faster convergence than the pure evolutionary methods. 

Furthermore, these hybrid methods are not easily entrapped in local minima because they still maintain 

the merits of the stochastic search. In this study, generic hybrid algorithms that combine these methods 
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are developed in order to deal with the global optimisation problems that have the above characteristics. 

Specifically, local search guidance in the direct search methods is invoked to direct and control the global 

search features of evolutionary approach to design more efficient hybrid methods. 

 
1.3 Organisation and Contributions 

 
In this thesis, details of the implementation are rather technical, thus it makes sense to firstly investigate 

the details of the optimisation approaches for solving constrained optimisation problems, and demonstrate 

some examples of the implemented algorithms. Secondly, theoretical and technical details of the 

developed methods appear towards the end of the thesis detailing the lower level aspects of our 

approaches.  

 

The thesis is organised into seven chapters as follows: 

 The first chapter is introduction to this research program in which novel and generic optimisation 

methods were developed and implemented in order to tackle constrained optimisation problems. 

 

 In chapter 2, some well-known deterministic and stochastic search methods are introduced to be 

used throughout this study. Stochastic search methods are a relatively recent development in the 

optimisation field, aimed to tackle difficult problems, such as ones afflicted by non-

differentiability. Although a casual understanding of some deterministic methods will be useful 

here, especially where the methods are analogous to certain stochastic approaches.  

 

 The third chapter presents the solution of a collection of test models for continuous and mixed-

variables nonlinear programming. It also introduces some modern solvers that are used for 

solving such problems. Results are reported for testing a number of existing state-of-the-art 

solvers for global constrained optimisation and constraint satisfaction on different test problems, 

collected from the literature. This chapter also shows the implementation of different 

deterministic and evolutionary methods for solving nonlinear constrained optimisation problems.  
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 In chapter 4, a new hybrid coevolutionary algorithm is presented. This approach is capable of 

solving difficult real-world constrained optimisation problems formulated as min-max problems 

with the saddle point solution. A two-group model has been considered; in such models 

individuals from the first group interact with individuals from the second through a common 

fitness evaluation based on payoff matrix game. The new approach is fast and capable of global 

search because of combining particle swarm optimisation and gradient search to balance 

exploration and exploitation. When applying this algorithm to specific real-world problems, it is 

often found that the addition of gradient-search mechanism can aid in finding a good global 

optimal solution. The developed algorithm is particularly suited for difficult optimisation 

problems in the sense that the objective function and the constraints are nonsmooth functions and 

the problem has multiple local extrema. 

 

 The fifth chapter introduces an original method for solving general Mixed Discrete Non-Linear 

Programming problems, based on the generic framework of Alternating Optimisation and 

Augmented Lagrangian Multipliers method. An iterative solution strategy is proposed by 

transforming the constrained problem into two unconstrained components or units; one solving 

for the discrete variables, and another for the continuous ones. During the search process, each 

unit focuses on minimising a different set of variables while the other type is frozen. While 

optimising each unit, the penalty parameters and multipliers are consecutively updated until the 

solution moves towards the feasible region. The performance of the algorithm is evaluated against 

real-world benchmark problems; the experiment results indicate that the algorithm achieves an 

exact global solution with better computational cost compared to the existing algorithms. 

 

 The sixth chapter, we developed a hybrid  particle swarm optimisation with branch and bound 

architecture, which is based on the fact that the   evolutionary algorithm has the ability to escape 

from local minima, while the gradient-based method exhibits faster convergence rate.  The 

designed algorithm retains and combines these attractive properties of both teqchneqies; while at 
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the same time mitigates significantly their aforementioned weaknesses. It is particularly suited for 

difficult nonlinear mixed discrete optimisation problems, in the sense that the objective function 

and the constraints are non-smooth functions and have multiple local extrema. The algorithm 

takes advantage of the rapid search of BB, when the evolutionary method has discovered a better 

solution in its globally processed search space. The hybridisation phase of  the new algorithm 

depends primarily on a selective temporary switching from particle swarm optimisation and 

branch and bound methods, when it appears that the current optimum can be potentially 

improved. As will be described later, any such potential improvement is recorded and 

broadcasted to the entire swarm of the particles via its social component update. The validity, 

robustness and effectiveness of the proposed algorithm are exemplified through some well known 

benchmark mixed discrete optimisation problems 

 

 The seventh chapter presents Conclusions and issues for further work, and indicate the potential 

usefulness of the developed approaches. 

 

It has been found that applying a complete local search method in the final stage of the evolutionary 

search techniques helps them to obtain good accuracy quickly. The new hybrid methods are promising in 

practice and competitive with the other compared methods in terms of computational costs and the 

success of obtaining the global solutions. The algorithm developed in chapter 4 shows a superior 

performance in terms of the solution qualities against the compared methods. In Chapter 5 and 6, two new 

algorithms have been proposed as hybrid methods that combine specific strategies to fit the the 

development of the field of general mixed discrete nonlinear programming. Inheriting the advantages of 

the deterministic and stochastic approaches, the new methods are efficient and capable of global search. 

Simulation results based on well-known mixed continuous-discrete engineering design problems 

demonstrate the effectiveness and robustness of the proposed algorithm. The deterministic search method 

scheme applied in the final stage can overcome the slowness of the evolutionary algorithm in its final 

stage and helps in achieving higher quality solutions. Moreover, the proposed new methods are promising 
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in practice and competitive with some other population-based methods in terms of the solution qualities. 

The numerical results shown in chapters 3–6 show that creating gradient-based techniques while applying 

stochastic approach in the proposed methods give better performance of metaheuristics. In addition, 

accelerating the final stage of the evolutionary methods by applying a complete local search technique 

extricates evolutionary methods from wandering around the optimal solution.  
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Chapter 2   

Methods for Constrained Optimisation  

 

 

 

2.1 Introduction 

This Chapter introduces the reader to elementary concepts of generic formulations for linear and 

nonlinear optimisation models, and provide some illustration for different optimisation methods. In 

general, there are two classes of optimisation methods for solving continuous and mixed discrete design 

problems: stochastic and deterministic ones. Stochastic search methods are a relatively recent 

development in the optimisation field, aimed to tackle difficult problems, such as ones afflicted by non-

differentiability, multiple objectives and lack of smoothness. Although a casual understanding of some 

deterministic methods will be useful here, especially where the methods are analogous to certain 

stochastic approaches. In this chapter, some well-known deterministic methods and metaheuristics are 

introduced to be used throughout this study.  

 

2.2 Deterministic Search Techniques 

This section has its objective the discussion of techniques, most of which are derived from the gradient-

based algorithms literature. It deals with techniques that are applicable to the solution of the continuous 

constrained optimisation problem: The Mathematical formulation can be stated as:  
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 

 

 
n

j

i

x

Xx

,l,j,xh

,m,i,xg

s.t

xfMin

















10

10
       (2.1) 

where x


 represents a vector of n  real variables subject to a set of m  inequality constraints )(xg


 
and a 

set of l  equality constraints )(xh


. 

There are many techniques available for the solution of a constrained nonlinear programming problem. 

All the methods can be classified into two broad categories: direct methods and indirect methods. In the 

direct methods, the constraints are handled in an explicit manner, whereas in most of the indirect 

methods, the constrained problem is solved as a sequence of unconstrained optimisation problems [3]. 

In this section, direct search methods are presented in order to deal with the constrained optimisation 

problems that have the above characteristics. In this research, local search guidance in the direct search 

methods is invoked to direct and control the global search features of metaheuristics to design more 

efficient hybrid methods. In the rest of this chapter, some well-known direct and indirect search methods 

are introduced briefly to be used throughout this study. These techniques can be classified as follows: 

 Direct Search Methods 

 

 Random search methods. 

 Heuristic search methods. 

 Complex methods. 

 

 Objective and constraints approximation methods. 

 

 Sequential quadratic programming method. 

 

 Methods of feasible directions. 

 

 Zoutendijk’s method. 

 

 Rosen’s gradient projection method. 

 

 Generalized reduced gradient method. 
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 Indirect Search Methods 

 

 Transformation of variables techniques. 

 Sequential unconstrained optimisation techniques. 

 Interior penalty function method. 

 Exterior penalty function method. 

 Augmented Lagrange multiplier method. 

These search methods have been designed for solving unconstrained optimisation problems. However, 

constrained handling techniques can be used to deal with constrained optimisation problems. More details 

about these methods can be found in [4]. 

 

2.2.1 Mixed Integer Continuous Programming 

Mixed Integer Programming (MIP) refers to mathematical programming with continuous and discrete 

variables and linearity or non-linearity in the objective function and constraints. The use of MIP is a 

natural approach of formulating problems where it is necessary to simultaneously optimise the system 

structure (discrete) and parameters (continuous). These problems arise when some of the variables are 

required to take integer values. MIPs have been used in various applications, including the process 

industry and the financial, engineering, management science and operations research sectors. 

  
A mixed-integer linear program (MILP) is a mathematical program with linear constraints in which 

specified subsets of the variables are required to take on integer values. Although MILPs are difficult to 

solve in general, the past ten years has seen a dramatic increase in the quantity and quality of software - 

both commercial and non-commercial - designed to solve MILPs. The MILP formulation with 0-1 

variables is stated as  
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Q

n

T

{0,1}y                       

X      x, 0  x                    

       subject to

C         min       









bByAx

ydx T

       (2.2)      

                   

where,      x  is a vector of n  continuous variables, 

                 y     is a vector of q  0-1 variables, 

                ,c d   are 1n   and 1q   vectors of parameters, 

                ,A B  are matrices of appropriate dimension,  

                 b      is a vector of  p  inequalities. 

 

Mixed Integer Linear programming methods and codes have been available and applied to many practical 

problems for more than twenty years. The major difficulty that arises in mixed- integer linear 

programming MILP problems for the form (2.2) is due to the combinatorial nature of the domain of y 

variables. Any choice of 0 or 1 for the elements of the vector y results in a LP problem on the x  variables 

which can be solved for its best solution. 

 

One may follow the brute-force approach of enumerating fully all possible combinations of 0 -1 variables 

for the elements of the y vector. Unfortunately, such an approach grows exponentially in time with 

respect to its computational effort. For instance, if we consider one hundred 0 -1 y variables then we 

would have  2
100

 possible combinations. As a result, we would have to solve 2
100

 LP problems. Hence, 

such an approach that involves complete enumeration becomes prohibitive [1]. MINLP refers to 

mathematical programming with continuous and discrete variables and nonlinearities in the objective 

function and constraints. MINLP problems are difficult to solve, because they combine all the difficulties 

of both, the nature of mixed integer programs (MIP) and the difficulty in solving convex or nonconvex 

nonlinear programs (NLP). 
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MINLPs have been used in various applications, including the process industry and the financial, 

engineering, management science and operational research sectors. As the number of binary variables y  

in form (2.2) increase, one is faced with a large combinatorial problem, and the complexity analysis 

results characterize the MINLP problems as NP- complete. At the same time, due to the nonlinearities the 

MINLP problems are in general nonconvex which implies the potential existence of multiple local 

solutions. 

Considerable interest was shown for discrete variables engineering optimisation problems in the late 

1960s and early 1970s. However, at that time optimisation methods for continuous nonlinear 

programming (NLP) problems were not developed, so the focus shifted to the development and evolution 

of numerical algorithms for such problems. In the 1970s and 80s, substantial effort was put into 

developing and evaluating algorithms for continuous NLP problems. Therefore, in recent years, the focus 

has shifted back to applications of optimisation techniques to practical engineering problems that 

naturally used mixed discrete and continuous variables in their formulation [4] .The component structure 

of MIP and NLP within MINLP provides a collection of natural algorithmic approaches. They can be 

classified as: 

 

 Classical solution methods 

 Branch and Bound (BB) 

 Outer Approximation (OA) 

 Extended Cutting Plane methods (ECP) 

 Generalized Bender’s Decomposition (GBD) 

 Hybrid methods 

 LP/NLP based Branch and Bound 

 Integrating SQP with Branch-and-Bound 

 Sequential Cutting Plane (SCP) 

 Outer-Approximation based Branch-and-Cut algorithm 
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In the rest of this chapter, the important details of these methods are explained to be used throughout this 

study. Implementation and numerical examples will be presented in the following chapters. 

 

2.2.2 Branch and Bound method 

A general branch and bound method for MIP problems is based on the key ideas of separation, relaxation, 

and fathoming [2]. The branch and bound (BB) method starts by solving first the continuous NLP 

relaxation. If all discrete variables take integer values the search is stopped. Otherwise, a tree search is 

performed in the space of the integer variables. Then the algorithm selects one of those integer variables 

which take a non-integer value, and branch on it. 

 

Branching generates two new sub problems by adding simple bounds to the NLP relaxation. One of the 

two new NLP problems is selected and solved next. If the integer variables take non-integer values then 

branching is repeated. If one of the fathoming rules is satisfied, then no branching is required, and the 

corresponding node has been fully explored. The fathoming rules are:   

 

- Infeasible solution is detected. 

- An integer feasible node is detected. 

- A lower bound on the NLP solution of a node is greater or equal than the current upper bound. 

Once a node has been fathomed the algorithm backtracks to another node which has not been fathomed 

until all nodes are fathomed.  

 

Branching variable selection  

 

Since branching is in the core of any BB algorithm, finding good strategies was important to practical 

MIP solving right from the beginning. Suppose we have chosen an active node i, associated with it is the 

non-linear programming solution ix . Next we must choose a variable to define the division. The following 

describes the most commonly used variable selection strategies: 
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1.  Lowest-Index-First: 

 It is possible to have some information on the importance of some of the integer variables in a given 

model. The integer variables are arranged in order of importance, the most important of these being 

processed first. This is accomplished by indexing the variables with the decreasing priorities of the 

integer variables and selecting the variable with the lowest index first. 

2.   Most Fractional Integer variables: 

This strategy selects the variable which is farthest from the nearest integer value. This choice is aimed at 

getting the largest degradation of the objective when branching is carried out so that more nodes can be 

fathomed at an early stage. 

3. Use of Pseudo-Costs: 

The concept of Pseudo-cost was first developed for solving mixed integer linear programming problems. 

The pseudo-costs are used as a quantitative measure of the importance of the integer variables and this 

allows the assignment of some priority to the variables. For each integer variable x
j
two quantities are 

defined, lower pseudo-cost ( pcl
j
) and upper pseudo-cost ( pcu

j
). The values of the lower and upper 

pseudo-costs are computed during the tree search. 

Selection of Branching Node 

 

The selection method for branching node may significantly affect the performance of branch and bound 

algorithm [1]. The most commonly used branching strategies are: 

    Depth-first: 

      Whenever a branching is carried out the nodes corresponding to the new problems are given 

preference over the rest of the unfathomed nodes. The child nodes are created as the next nodes to 

optimise. 

 Best-first:  

 In this strategy, the node which currently has the lowest bound in the objective is selected for 

branching. The first solution found is usually close the optimal solution of the problem. 
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 Breadth-first: 

We examine a certain level in the tree entirely before proceeding to the next level in the tree in order 

to get shorter search paths in the tree. 

Hybrid methods 

 Depth-first-then-breadth: 

In the method a depth first search is performed until the first solution is found. The algorithm then 

switches to a breadth first search strategy.  

 Depth-first-then-best: 

As the previous method, a depth first strategy is performed until the first solution is found, then 

switching to a best first method.   

 Depth-first-with-backtracking: 

Backtracking is a systematic way to go through all the possible configurations of a space. 

 

2.2.3 Outer Approximation method 

This algorithm is based on the concept of defining an MILP master problem. Relaxations of such a master 

problem are then used in constructing algorithms for solving the MINLP problem. The method presented 

here is a generalization of Outer approximation proposed by Duran and Grossman [5]. We shall next 

present the reformulation of P as an MILP master problem. Based on this reformulation an algorithm is 

presented which solves a finite sequence of NLP sub problems and a MILP or MIQP master problem, 

respectively. 

The MINLP model problem P is reformulated as an MINLP problem using Outer approximation; the 

reformulation employs projection onto the integer variables and linearization of the resulting NLP sub 

problems by means of supporting hyper planes.  

It can be shown that it suffices to add the linearisation of strongly active constraints to the master 

program. This is very important since it reduces the size of the MILP master program relaxation that is 
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solved in the Outer Approximation Algorithms. In this subsection the simplifying assumption is made that 

all     are feasible. The first step in reformulating P is to define the NLP sub problem.  

             

min               ( , )

( ) 
. .                ( , ) 0

j

xj

j

x X

f x y

NLP y
s t g x y










        (2.3) 

In which integer variables are fixed at the value y  y j . By defining ( )jv y as the optimal value of the sub 

problem ( )jNLP y it is possible to express P in terms of a projection onto the y variables, that is                      
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The assumption that all are feasible implies that all sub problems are feasible. Let
jx denote an optimal 

solution of NLP( jy ) for jy Y . In order to derive a correct representation it is necessary to consider how 

NLP solvers detect infeasibility. Infeasibility is detected when convergence to an optimal solution of a 

feasibility problem occurs. At such an optimum, some of the nonlinear constraints will be violated and 

other will be satisfied and the norm of the infeasible constraints can only be reduced by making some 

feasible constraints infeasible. The equivalent MILP problem is  
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      (2.5) 

 

The relaxation of the master problem can be employed to solve the model problem P. The resulting 

algorithm is shown to iterate finitely between NLP sub problems and MILP master problem relaxations. 

This algorithm is shown to be efficient if curvature information is present in the problem. 
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Linear Outer Approximation Algorithm: 

- Initialisation   

  Repeat    111 ,,,0 UBDSTi 

 Where  )()( jjj yNLPtosolutionoptimalanisxandfeasibleisyNLPjT 

  )()( kkk yFsolvesxandfeasibleinisyNLPkS   

1.  Solve NLP(
jy ) of F(

jy ),the solution is 
jx  

2.  Linearize Objective and constraints function about (
jx ,

jy ). 

3.  If (NLP(
jy ) feasible )   Then 

     update current best point by setting     * *, ,j j ix x y y UBD f    

     else     1j jUBD UBD   

4. Solve the current relaxation Mj of the master program M, giving a new     . 

5.    Set  j = j+1    Until (Mj is infeasible). 

 

 

Fig. 1.1 Linear Outer Approximation algorithm. 

 

 

 

 

 

Nonlinear Programming 

NLP – sub problem 

Mixed Integer Linear 
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No 
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linearization 

     STOP 



29 
 

2.2.4 Extended Cutting Plane method 

 

The ECP method, which is an extension of Kelly’s cutting plane algorithm for convex NLP, does not rely 

on the use of NLP sub problems and algorithms [2]. It relies only on the iterative solution of the problem 

(M-MIP) by successively adding a linearization of the most violated constraint at the predicted point  

                                       
^

k

j( , )  :   {  arg  {max  g ( ,y ) } k k k k

j J
x y J J x


       (2.6) 

Convergence is achieved when the maximum constraint violation lies within the specified tolerance. The 

optimal objective value of (M-MIP) yields a non-decreasing sequence of lower bounds. It is possible to 

either add to (M-MIP) linearization of all the violated constraints in the set kJ , or linearization of all the 

nonlinear constraints j J . In the ECP method the objective must be defined as a linear function, which 

can easily be accomplished by introducing a new variable to transfer nonlinearities in the objective as an 

inequality.  

 

The ECP method is able to solve MINLP problems, including general integer variables and not only 

binary variables, and no integer cuts are needed to ensure convergence. ECP methods are oftenly claimed 

to have slow convergence. The number of non-linear function evaluations used to obtain the optimal 

solution has in several cases been even magnitudes lower than when using MINLP methods based on 

solving NLP sub problems. 

 

2.2.5 Generalized Bender’s Decomposition (GBD) method 

 

The GBD method is similar to the Outer- Approximation method [1]. The difference arises in the 

definition of the MILP master problem (M-MIP). The first step is to express P in terms of a projection 

onto the integer variables 

                                       






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y j

j

V
yv        (2.7) 

v is the set of all the integer assignments. 
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The optimal value of the NLP sub problems defined by: 
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Benders’ Decomposition is able to treat certain nonconvex problems that are not readily solved by other 

methods such as BB or OA. 

The reformulation does not contain the continuous variables x: 
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Decomposition models with integer variables usually decompose into a master problem that comprises al 

the integer variables and sub problems, which evaluate the remaining variables. Sub problems with 

integer variables introduce additional difficulties and require the use of nonlinear duality theory. 

  

2.2.6 LP/NLP based Branch and Bound 

This approach covers problems with nonlinearities in the integer variables. The motivation for the 

LP/NLP based branch and bound algorithm is that outer approximation usually spends an increasing 

amount of computing time in solving successive MILP master problem relaxation. This approach avoids 

the re-solution of MILP master problem relaxation by updating the branch and bound tree. Instead of 

solving successive relaxations of M, the algorithm solves only one MILP problem which is updated as 

new integer assignments are encountered during the tree search [2]. 

Initially an NLP sub problem is solved and the initial master program relaxation is set up from the 

supporting hyperplanes at the solution of the NLP - sub problem. The MILP problem is then solved by a 

branch and bound process with the exception that each time a node gives an integer feasible solution
iy .    



31 
 

Algorithm 

 

1. Consider MILP branch and bound. 

2. Interrupt MILP, when 
jy  found. 

3. Solve NLP (
jy ) to get 

jx . 

4. Linearise f , c  about (
jx ,

jy ) 

5. Add linearization to tree. 

6. Continue MILP tree search. 

              Until 

              lower bound > upper bound 

 

As in the two outer approximation algorithms the use of an upper bound implies that no integer 

assignment is generated twice during the tree search. Since both the tree and the set of integer variables 

are finite the algorithm eventually encounters only infeasible problems and the stack is thus emptied so 

that the procedure stops.   

This method can also be applied to the GBD and ECP methods. The LP/NLP method commonly reduces 

quite significantly the number of nodes to be enumerated. The trade-off is that the number of MLP sub 

problems may increase. This method is better suited for problems in which the bottleneck corresponds to 

the solution of the MILP master problem. 

 

2.2.7 Integrating SQP with Branch-and-Bound 

 

An alternative to nonlinear branch-and-bound for convex MINLP problems is due Borchers and Mitchell 

[6]. They observed that it not necessary to solve the NLP at each node to optimality before branching and 

propose d an early branching rule, which branches on an integer variable before the NLP has converged.  

The algorithm is based on branch and bound, but instead of solving an NLP problem at each node of the 

tree, the tree search and the iterative solution of the NLP are interlaced. Thus the nonlinear part of (P) is 

solved whilst searching the tree. The nonlinear solver that is considered in this method is a Sequential 

Quadratic Programming (SQP) solver. The basic idea underlying this approach is to branch early – 

possibly after a single QP iteration of the SQP solver. 
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This approach has a similar motivation as the Outer Approximation algorithm [5] but avoids the 

resolution of related MILP master problems by interrupting the MILP branch and bound solver each time 

an integer node is encountered. At this node an NLP problem is solved and new outer approximations are 

added to all problems on the MILP branch and bound tree. Thus the MILP is updated and the tree search 

resumes. 

Algorithm     

1. Initialisation:  Obtain the continuous relaxation of P  

2. Set the upper bound to infinity 

3. While (there are pending nodes in the tree) do 

 Select an unexplored node 

  Repeat (SQP iteration) 

           Solve QPs for a step dk. 

           if (QPs infeasible) then fathom node and exit 

                 Set   1 1( , ) ( , ) ( , )k k k k k k

x yx y x y d d     

          if( (
( 1)ky 

) integral ) then  

             Update current best point by setting  

                             
* * 1 1 * 1 *( , ) ( , ),   and k k kx y x y f f U f      

              else choose a non integral 
( 1)ky 

 and branch 

            endif  

            exit 

            endif 

4. Compute the integrity gap  
1 1max | ( ) |k k

i i iy round y     

5. if  ( )   then 

 - Choose a non-integral 
( 1)ky 

and branch, exit 

       end if 

      end while 

 
The value of       is suggested for the early branching rule and this value has also been chosen here. 

The algorithm has to be modified if a line search or a trust region is used to enforce global convergence 

for SQP. The key idea in the convergence proof is that the union of the child problems that are generated 
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by branching is equivalent to the parent problem. This algorithm has two important advantages. First, the 

lower bounding can be implemented at no additional cost. Secondly, the lower bounding is available at all 

nodes of the branch and bound tree. 

  

2.2.8 Sequential Cutting Plane (SCP) 

 

This algorithm integrates cutting plane techniques with branching techniques. Rather than solving a 

linearized MILP problem to feasibility or optimality, it applies cutting planes in each node of the branch 

and bound tree. The technique differs from the -ECP method, where the generation of cutting planes is 

separated from the branching process [7]. For the NLP sub problems, we solve a sequence of linear 

programming (LP) problems. Note that the SCP algorithm could also be considered to be a form of 

Successive Linear Programming (SLP). However, a more general version of the SCP algorithm could, if 

desired, also retain the cutting planes between the LP sub iterations. The algorithm also generates explicit 

lower bounds for each node in the branch and bound tree. The algorithm obtains explicit lower bounds on 

the nodes when performing NLP iterations in the nodes. 

 

The first LP sub iteration within NLP iteration provides a lower bound on the node. When branching, the 

child nodes inherit the lower bound of the parent node. Whenever the current upper bound is improved, 

you may drop any node with a lower bound greater than or equal to the current upper bound. You may, 

therefore, in some cases drop nodes in the tree without solving any additional LP problems for those 

nodes. Explicit lower bounds have a significant impact on the convergence speed as it means less sub 

problems solved. 

 

The algorithm builds a branch and bound tree where each node represents a relaxed NLP sub problem of 

the original problem (P). Each NLP sub problem is solved using a sequence of LP problems, but the NLP 

sub problem is not solved to optimality. We then choose an integer variable with a non-integral value in 

the current iteration and branch on this variable generating two new NLP sub problems. The first LP 
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problem in an NLP iteration provides a lower bound for the optimal value of the NLP sub problem. The 

lower bounds of the nodes can be used for removing nodes from the tree any time we improve the 

currently best known solution for the original problem (P).  

 

The algorithm does not solve the NLP sub problems to optimality. It interrupts the NLP procedure before 

an optimal point has been found in order to make the branch and bound algorithm faster. If the current 

iteration is converging to a non-integral point, we may branch early on any variable in 
ky  that has a non-

integral value, rather than waste effort on finding an optimal, non-integer, solution for the current sub 

problem. 

The algorithm uses an NLP version of the Sequential Cutting plane algorithm to solve the NLP sub 

problems. The difference from the SQP approach is that it solves a sequence of LP problems rather than 

QP problems in order to find a solution to the NLP sub problems.   

 

2.2.9 Outer-Approximation based Branch-and-Cut algorithm 

 

The algorithm integrates Branch and Bound, Outer Approximation and Gomory Cutting Planes [5]. Only 

the initial Mixed Integer Linear Programming (MILP) master problem is considered. At integer solutions 

nonlinear Programming (NLP) problems are solved, using a primal-dual interior point algorithm. The 

objective function and constraints are linearised at the optimum solution of those NLP problems and the 

linearisations are added to all the unsolved nodes of the enumerations tree. Also, Gomory cutting planes, 

which are valid throughout the tree, are generated at selected nodes. These cuts help the algorithm to 

locate integer solutions quickly and consequently improve the linear approximation of the objective and 

constraints, held at the unsolved nodes of the tree. 

The complete algorithm is described in the following: 

Algorithm 

1. Initialisation:  {0,1}p

o   is given; set   1

^

1

^

,1 STi . 

2. Set up initial master problem: 
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2.1  If NLP( o ) is feasible, solve it and set
^

0 {0} T  . 

 Otherwise solve
0F( ) and set

^

0 {0}S   . Let 0x be the optimum of NLP (
0 ) or

0F( ) . 

2.2 If 0x  is the optimum of NLP(
0 ) then set 0 0( , )oUBD f x   . 

 Otherwise set 0UBD  . 

2.3 Linearise objective and constraints about 0( , )ox   and form the initial 0-1 MILP master problem
^

0M . 

2.4 Define
^

0M  as the root of the search tree. Let  be the list which contains the unsolved nodes and set. 

3. Node selection: If    , then Stop. Otherwise select a node 0 1( , )
i i

R R  and remove it from the list . 

4. Solve the LP relaxation of the 0-1 MILP problem 
^

iM  and let 
^ ^

( , , )x    be its optimum solution. 

5. If  
^

{0,1}p   then 

5.1 Set 
^

i  and solve NLP( i ) if it is feasible or F( i ) otherwise. Let ix be the optimum of NLP( i ) 

or      F( i ). 

5.2 Linearise objective and constraints around ( ix , i ) and set 
^ ^

1 { }i iT T i   or 
^ ^

1 { }i iS S i   as 

appropriate. 

5.3 Add the linearisations to 
^

iM and to all the nodes in . Place 
^

iM back in . 

5.4 Update incumbent solution and upper bound: 

      If NLP( i ) is feasible and ( , )iif x   < iUBD  then 

               * *( , ) ( , )i ix x    and  1 ( , )ii iUBD f x    

      Otherwise   1i iUBD UBD   

5.5 Pruning: Delete all nodes from with 1iUBD  . 

Go to Step 3 

6.   If 
^

{0,1}p  then 

6.1 Cutting versus Branching Decision: If cutting planes should be generated then go to Step 6.2. 

Otherwise go to Step 6.3 

6.2 Cut generation: Generate a round of Gomory mixed integer cuts using every row corresponding to a 

fractional basic variable in the optimal tableau of an LP relaxation. 
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Add all those cuts to 
^

iM and store them in the pool. Go to step 4. 

6.3 Branching: Select a violated 0-1 variable in 
^

  say )1,0(

)(^



r

 . Create two new nodes 

1 1

0 1 0 1( , ) ( { }, )i i i iR R R r R     and 
1 1

0 1 0 1( , ) ( , { })i i i iR R R R r    . 

Add both nodes to the list . Go to Step 4. 

 

If iUBD  1 upon the termination of the algorithm, then * *( , )x  is the optimal solution of the original 

0-1 MINLP problem. Otherwise the problem is infeasible. 

 

Algorithm OA-BC requires an initial 0-1 vector to be given by the user. If such a vector is not available 

then the algorithm can start by solving the NLP relaxation of the initial 0-1 MINLP problem. If the 

solution of the NLP relaxation satisfies all the integrality constraints then that solution also solves the 

initial 0-1 MINLP problem and the algorithm can stop. If the NLP relaxation is infeasible then the initial 

0-1 MINLP problem is also infeasible and the algorithm can stop. Finally if the NLP relaxation is feasible 

and has a non-integer optimum solution, then the initial 0-1 MILP master problem can be formulated by 

linearising the objective and constraints around that solution.  
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2.3 Comparison of MINLP optimisation methods 

 

The MINLP optimisation methods represent quite different solution approaches. A comparison between 

all these methods can be described as the following: 

 

Comparison of MINLP methods 

Method Advantages Disadvantages 

 

 

BB 

Finds an optimal solution if the 

problem if of limited size and 

enumeration can be done in 

reasonable time. 

Extremely time consuming. The 

number of nodes in a branching tree 

can be too large. 

 

 

OA 

Avoids solving huge number of 

nonlinear programming problems. 

 

 

- Potentially large number of 

iterations. 

- Adding Hessian term to the MILP 

becomes MIQP. 

 

 

 

 

ECP 

- Only solving MILP problems 

instead of NLP problems, in each 

iteration the nonlinear constraints 

need not be calculated at relaxed 

values of the integer variables. 

-  solves MINLP problems 

including general integer variables 

and not only binary variables. 

 

- It has slow convergence. 

- The most time consuming step in 

the ECP algorithm is the solution of 

the MILP sub problems. 

 

 

GBD 

 - Solves a large scale of linear 

programs. 

 - Problems have a special structure 

called Block Diagonal structure. 

 -    Only active inequalities are                      

considered. 

The MILP master problem is given 

by a dual representation of a 

continuous space. 



38 
 

 

 

 

LP/NLP-

BB 

- This approach avoids the re- 

solution of MILP master program 

relaxations by updating the branch 

and bound tree. 

- This approach covers problems 

with non-linearities in the integer 

variables. 

                                                                               

- Unlike ordinary branch and bound, 

a node cannot be assumed to have 

been fathomed, if it produces an 

integer feasible solution. 

- QP/NLP differs from LP/NLP 

because QP rather than LP problems 

are solved in the tree search. 

 

 

SQP-BB 

- Its not necessary to solve the 

NLP at each node to optimality 

before branching. 

- This algorithm gives a factor of 

about 3 improvement in terms of 

CPU time compared to nonlinear 

BB. 

It needs a good NLP solver to 

interrupt the SQP method after each 

QP solve. 

 

 

 

 

 

SCP 

- It obtains the lower bound for the 

current NLP sub problem directly 

from the solution of the first LP in 

each NLP iteration. 

- It does not require any additional 

solution to Lagrangian duality 

problems. 

- It introduces a new method for 

selecting the next child node to 

solve in a depth-first search 

strategy. 

- For larger MINLP problems, the 

performance of the algorithm is still 

open. More numerical tests on 

considerably larger problems must 

be performed in order to get a more 

detailed picture of algorithmic 

performance. 

 

 

 

 

 

OA-BC 

- Integrating the construction of the 

outer approximation of the master 

problem into a single tree search. 

- The sequential solution of several 

MILPs is avoided. 

- It spends most of the running time 

solving the NLPs. 

- The number of NLPs solved by the 

algorithm is much larger than the 

OA. 

 

Table 1.1 Comparison of MINLP methods. 
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2.4 Evolutionary Programming  
 

A large number of Evolutionary Algorithms (EA) have been developed. These EAs can be grouped based 

on how individuals are represented, which evolutionary operators are used, and how these are 

implemented. This chapter discusses briefly the concepts of Evolutionary and Coevolutionary 

Programming.  Evolutionary Algorithms can be classified into two classes; population-based methods and 

point-to-point methods. In the latter methods, the search invokes only one solution at the end of each 

iteration from which the search will start in the next iteration. The population-based methods invoke a set 

of many solutions at the end of each iteration. This chapter highlights the principles of genetic algorithms, 

particle swarm optimisation, and differential evolution as examples of population-based methods, and 

simulated annealing as an example of point-to-point methods.  

  

2.4.1 Simulated Annealing  

Simulated annealing is a simple technique that can be used to find a global optimiser for continuous, 

integer and discrete nonlinear programming problems. The approach does not require continuity or 

differentiability of the problem functions because it does not use any gradient or Hessian information [8].   

The SA algorithm successively generates a trial point in a neighbourhood of the current solution and 

determines whether or not the current solution is replaced by the trial point based on a probability 

depending on the difference between their function values. Convergence to an optimal solution can 

theoretically be guaranteed only after an infinite number of iterations controlled by a procedure called 

cooling schedule. The main control parameter in the cooling schedule is the temperature parameter T. The 

main role of T is to let the probability of accepting a new move be close to 1 in the earlier stages of the 

search and to let it be almost zero in the final stage of the search. A proper cooling schedule is needed in 

the finite-time implementation of SA to simulate the asymptotic convergence behaviour of the SA.  
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2.4.2 Genetic algorithms 

 
A genetic algorithm (GA) is a procedure that tries to mimic the genetic evolution of a species. 

Specifically, GA simulates the biological processes that allow the consecutive generations in a population 

to adapt to their environment. The adaptation process is mainly applied through genetic inheritance from 

parents to children and through survival of the fittest. Therefore, GA is a population-based search 

methodology. Nowadays, GAs are considered to be the most widely known and applicable type of 

metaheuristics [9]. 

GA starts with an initial population whose elements are called chromosomes. The chromosome consists 

of a fixed number of variables which are called genes. In order to evaluate and rank chromosomes in a 

population, a fitness function based on the objective function should be defined. Three operators must be 

specified to construct the complete structure of the GA procedure; selection, crossover and mutation 

operators. The selection operator cares with selecting an intermediate population from the current one in 

order to be used by the other operators; crossover and mutation. In this selection process, chromosomes 

with higher fitness function values have a greater chance to be chosen than those with lower fitness 

function values. Pairs of parents in the intermediate population of the current generation are 

probabilistically chosen to be mated in order to reproduce the offspring. In order to increase the 

variability structure, the mutation operator is applied to alter one or more genes of a probabilistically 

chosen chromosome. Finally, another type of selection mechanism is applied to copy the survival 

members from the current generation to the next one. The GA operators of selection, crossover and 

mutation have been extensively studied. Many effective settings of these operators have been proposed to 

fit a wide variety of problems. The GA algorithm can be described as follows: 

Algorithm 

 Initialisation: Generate an initial population 0P . Set the crossover and  

      mutation probabilities )1,0(cP  and )1,0(mP , respectively. Set the generation  

      counter t := 1. 



41 
 

 Selection: Evaluate the fitness function F at all chromosomes in tP . Select an  

intermediate population '
tP  from the current population tP  . 

 Crossover: Associate a random number from (0, 1) with each chromosome in '
tP  and 

      add this chromosome to the parents pool set P
tS if the associated number is less than cP .  

      Repeat the following Steps 1 and 2 until all parents in P
tS are mated: 

1. Choose two parents 1P and 2P  from P
tS .Mate 1P and 2P  to reproduce children 1c and 2c . 

2. Update the children pool set c
tS though },{: 21 ccSS c

t
c
t   and update c

tS  

     through    }.,{: 21 ppSS c
t

c
t    

 Mutation: Associate a random number from (0, 1) with each gene in each 

      chromosome in '
tP ,mutate this gene if the associated number is less than mP , and add 

      the mutated chromosome only to the children pool set c
tS . 

 Stopping Conditions: If stopping conditions are satisfied, then terminate. Otherwise, 

      select the next generation 1tP  from c
tt SP  .Set c

tS to be empty, set 1:  tt , and  

      go to the selection step. 

 

2.4.3 Differential Evolution 

Differential Evolution (DE) can be categorized into a class of floating-point encoded, evolutionary 

optimisation algorithms. Currently, there are several variants of DE. The particular variant used 

throughout this investigation is the DE/rand/1/bin scheme.  Generally, the function to be optimised, f, is 

of the form: 

                     nXf :)(  

As with all evolutionary optimisation algorithms, DE works with a population of solutions, not with a 

single solution for the optimisation problem. Population P of generation G contains popn  solution vectors 

called individuals of the population. Each vector represents a potential solution for the optimisation 

problem. 

          max
)()( ,,1 ,,,1                    GGniXP pop

G
i

G    
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Where      is maximum number of generations reached.  

 

So, the population P of generation G contains popn  individuals each containing paramn  parameters 

(chromosomes of individuals): 

            parampop
G
ji

G
i

G njnixXP ,,1,,,1              )(
,

)()(  
 

In order to establish a starting point for optimum seeking, the population must be initialized. Often there 

is no more knowledge available about the location of a global optimum than the boundaries of the 

problem variables. In this case, a natural way to initialise the population 
)0(P (initial population) is to 

seed it with random values within the given boundary constraints: 

    parampop
L
j

L
j

U
jjiji njnixxxrxP ,,1,,,1                )( )()(

,
)0(

,
)0(  

  

 (2.10) 

where r denotes  a uniformly distributed random value range [0.0,1.0]. 

 

The population reproduction scheme of DE is different from the other evolutionary algorithms. From the 

1
st
 generation forward, the population of the following generation 

)1( GP  is created in the following way 

on the basis of the current population
)(GP . First a temporary (trial) population for the subsequent 

generation,
)1( GP , is generated as follows: 

         

]1,0[],2,0[],1,0[

,,,1,,,1,,,1

 ,,1

,,1,,,1

where

otherwise      

     if    ).(
'

)(
,

,
)()()(

)1(
,

,,,














 
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rFC

iCBAnCnBnA

nD

njni

x

DjCrxxFx
x

r

iiipoppoppop

param

parampop

G
ji

irji
G

B

G

A

G

CG
ji

jijjji







    (2.11)

 

 

A, B and C are three randomly chosen indices referring to three randomly chosen individuals of 

population. They are mutually different from each other and also different from the running index i. New, 
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random, values for A, B and C are assigned for each value of index i (for each individual). A new value 

for the random number r is assigned for each value of index j (for each chromosome). 

 

The index D refers to a randomly chosen chromosome and it is used to ensure that at least one 

chromosome of each individual vector
)1(' GX differs from its counterpart in the previous generation 

)(GX . A new random (integer) value is assigned to D for each value of index i (for each individual). 

 

F and Cr are DE control parameters. Both values remains constant during the search process. As well the 

third control parameter, npop (population size), remain constant, too. F is a real-valued factor in range 

[0.0,2.0] that controls the amplification of differential variations and Cr is a real-valued crossover factor 

in range [0.0,1.0] controlling the probability to choose a mutated value for x instead of its current value. 

Generally, both F and Cr affect the convergence velocity and robustness of the search process. Their 

optimal values are dependent both on objective function, f(X), characteristics and on the population size 

npop. Usually, suitable values for F, Cr and npop can be found by trial-and-error.  

 

The selection scheme of DE also differs from the other evolutionary algorithms. On the basis of the 

current population 
)(GP  and the temporary population

)1(' GP , the population of the next generation 

)1( GP  is created as follows: 

        




 






otherwiseX

xfxfifX
X

G
i

G
it

G
it

G
iG

i
      

)()'(        '

)(

)(
cos

)1(
cos

)1(
)1(

     

 (2.12)

 

 

Thus, each individual of the temporary (trial) population is compared with its counterpart in the current 

population. The one with the lower value of cost function fcost(X) (to be minimised) will survive in the 

population of the next generation. As a result, all the individuals of the next generation are as good or 

better than their counterparts in the current generation. An interesting point concerning the DE’s selection 
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scheme is that a trial vector is not compared against all the individuals in the current population, but only 

against one individual, i.e., against its counterpart in the current population. 

 

2.4.4 Particle Swarm Optimisation 

 

The PSO is a stochastic optimisation method based on the simulation of the social behaviour of bird 

flocks or biological groups in general, that evolve by information exchange among particles in a group. 

The PSO algorithm was first introduced by Kennedy and Ebehart [10] followed by a more general work 

on swarm intelligence [11]. In the PSO, the population is called a swarm and the individuals are called 

particles. Each individual in PSO flies in the search space and returns in its memory the best position it 

ever experienced.  

 

The trajectory of each individual in the search space is adjusted by dynamically altering the velocity of 

each particle, according to its own experience (cognitive component) and the progress of the other 

particles in the search space (social component). The different types of PSO algorithms will be described 

in the later chapters. 

 

2.4.5   Constraint-handling methods 

 
A key factor in solving optimisation problems is how the algorithm handles the constraints relating to the 

problem. In order to apply evolutionary algorithms to constrained optimisation problems, additional 

mechanisms need to be employed to ensure that the search process focuses on the feasible space. Over the 

last few decades, several methods have been proposed to handle constraints in evolutionary algorithms 

[12]. These methods can be grouped to four categories: 

 

 Methods that preserve the feasibility of solution. 

 Methods based on penalty functions. 

 Methods which make a clear distinction between feasible and infeasible solutions. 

 Other hybrid methods. 
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The most common approach to improve evolutionary algorithms performance to deal with constrained 

optimisation problems is based on penalty functions. However, the major disadvantage of this approach is 

that there are some parameters which must be adjusted to guarantee convergence of the proposed method. 

 

2.4.6 Coevolution 

 
Coevolution is the complementary evolution of closely related species. Based on the kind of interaction 

between individuals of the different spices, two kinds of coevolutionary algorithms are identified, namely 

competitive coevolution and cooperative coevolution [13]. In competitive coevolution, an inverse fitness 

interaction exists between the computing species. A win for one species means a failure for the other. To 

survive, the losing species adapts to counter the winning species. In cooperative coevolution, the success 

of one species improves the overall quality of all individuals in all species. Cooperative coevolution is 

achieved through a positive feedback among the species that take part in the cooperating process. 

 

In standard EAs, evolution is usually viewed as if the population attempts to adapt in a fixed physical 

environment. In contrast, coevolutionary algorithms realize that in natural evolution the physical 

environment is influenced by other independently acting biological populations. Evolution is therefore 

not just local within each population, but also in response to environmental changes as they are caused by 

other populations. Another difference between standards EAs and CEAs is that EAs define the meaning 

of optimality through an absolute fitness function. This fitness function then drives the evolutionary 

process. On the other hand, CEAs do not define optimality using a fitness function but attempt to evolve 

an optimal species where optimality is defined as defeating opponents. 

 

2.5  Summary 

 
Many optimisation design problems can be formulated as constrained problems which often consist of 

many mixed equality and inequality constraints. In this chapter, we have presented deterministic and 

stochastic search methods. First, an overview of gradient-based search strategies is introduced to describe 
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their verity. Moreover, some approaches for solving mixed discrete continuous optimisation problems 

have been discussed in more depth. Finally, a comparison between all these methods has been provided. 

The rest of the chapter has provided a short summary of evolutionary computation paradigm, with just 

enough information to support the discussions on algorithms that follow in the later parts of the research. 

The Evolutionary algorithms have received a lot of attention regarding their potential for solving the 

numerical constrained optimisation or mixed- variables optimisation problems. Evolutionary computation 

uses iterative progress, such as growth or development in a population. This population is then selected in 

a guided random search using parallel processing to achieve the desired end. Such processes are often 

inspired by biological mechanisms of evolution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Artificial_selection
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Parallel_processing
http://en.wikipedia.org/wiki/Evolution
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Chapter 3 

Implementation and Numerical Experiments 

 

 

 

3.1 Introduction 

This chapter describes the solution of a collection of test models for continuous and mixed-variables 

nonlinear programming. It also presents the state-of-the-art solvers that are used for solving constrained 

optimisation problems. Results are reported for testing a number of existing state-of-the-art solvers for 

global constrained optimisation and constraint satisfaction on different test problems, collected from the 

literature. The test problems are available online in AMPL or GAMS and were translated into the input 

formats of the various solvers. This chapter also shows the implementation of the most powerful 

deterministic and evolutionary methods for solving constrained optimisation problems. These algorithms 

have been implemented in MATLAB 7 or C++, and some of the numerical results of the test problems 

have been compared to show their efficiency and robustness. 

   

3.2 Optimisation problems models format 

Since there is no standard format for nonlinear models, a translation server must be used to transform the 

models from basic format into a number of other formats. The Netlib collection of Linear programming 

(LP) models has been developed in the industry standard MPS format. The MIPLIB collection developed 

later has filled a similar need in the field of Mixed Integer Linear Programming (MIP). In the rapidly 

growing field of Mixed Integer Nonlinear Programming (MINLP) we do not have a similar computerized 
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and easily available collection of models. The MINLP models are represented in modelling system 

languages such as GAMS, AMPL, BARON, LINGO, and MINOPT. A GAMS model translation server 

able to translate the models into the format required by an algorithm. There are some books with test 

models for MINLP optimisation. Floudas and Leyffer [1, 14] have websites with models used to test their 

own codes.  

The largest MINLP models collection is available through a web site at http://www.gams.com, where all 

the models are described in GAMS format but there is a translator that can transform a GAMS model into 

many other formats. The models in the MINLP library vary from small scale literature models to large 

scale real world models from different application areas. 

 

3.3 The model in AMPL 

AMPL is a language for large-scale optimisation and mathematical programming problems in production, 

distribution, blending, scheduling, and many other applications. The fundamental components for all the 

models should include: Sets, Parameters, variables, an Objective, and constraints. The AMPL language is 

intentionally as close to the mathematical form as it can get while still being easy to type on an ordinary 

keyboard and processed by a program. There are AMPL constructions for each of the basic components 

and ways to write arithmetic expressions, sum over sets, and so on. 

 

3.3.1 COP Solvers  

With the recent progress made in global optimisation, the importance of modelling systems has taken on a 

more significant role. In practice, most global solvers require more than black-box function evaluations. 

These solvers need structural information of algebraic expressions to build convex relaxations. These 

solvers can be described as follows: 

 SNOPT Large scale SQP based NLP solver from Stanford University 

 PATHNLP Large scale NLP solver for convex problems from the University of Wisconsin at 

Madison 

http://www.gams.com/solvers/solvers.htm#SNOPT
http://www.gams.com/solvers/solvers.htm#PATHNLP
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 MINOS NLP solver from Stanford University 

 CONOPT Large scale NLP solver from ARKI Consulting and Development 

 KNITRO Large scale NLP solver from Ziena Optimisation, Inc. 

 

Solvers Descriptions 

SNOPT 

SNOPT is a new large scale SQP for solving optimisation problems involving many variables and 

constraints. It minimises a linear or nonlinear function subject to bounds on the variables and sparse linear 

or nonlinear constraints. It is suitable for large-scale linear and quadratic programming and for linearly 

constrained optimisation, as well as for general nonlinear programs. SNOPT is most efficient if only some 

of the variables enter nonlinearly, or if the number of active constraints (including simple bounds) is 

nearly as large as the number of variables. SNOPT requires relatively few evaluations of the problem 

functions. 

PATHNLP 

The PATHNLP solver is suitable for NLP programs. PATHNLP solves an NLP by internally constructing 

the Karush-Kuhn-Tucker (KKT) system of first-order optimality conditions associated with the NLP and 

solving this system using the PATH solver for complementarity problems. The solution to the original 

NLP is extracted from the KKT solution and returned to GAMS. All of this takes place automatically - no 

special syntax or user reformulation is required.  

MINOS 

GAMS/MINOS is the oldest NLP solver available with GAMS and it is still the NLP solver that is used 

the most. MINOS has been developed at the Systems Optimisation Laboratory at Stanford University, and 

development is continuing today. Linearly constrained models are solved with a very efficient and 

reliable reduced gradient technique that utilizes the sparsity of the model. Models with nonlinear 

constraints are solved with a method that iteratively solves subproblems with linearized constraints and an 

http://www.gams.com/solvers/solvers.htm#MINOS
http://www.gams.com/solvers/solvers.htm#CONOPT
http://www.gams.com/solvers/solvers.htm#KNITRO
http://www.gams.com/solvers/solvers.htm#SNOPT
http://www.gams.com/solvers/solvers.htm#PATHNLP
http://www.gams.com/modtype/modeltyp.htm#NLP
http://www.gams.com/solvers/solvers.htm#MINOS
http://www.stanford.edu/group/SOL/index.html
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augmented Lagrangian objective function. This iterative scheme implies that only the final optimal 

solution is feasible for nonlinear models, in contrast to the feasible path method used by the other large 

scale NLP solver, CONOPT.  

CONOPT 

GAMS/CONOPT is an alternative solver to MINOS and other non linear problem (NLP) solvers 

available for use with GAMS. The availability of multiple nonlinear solvers in the GAMS system should 

be seen as an attempt to increase the overall usefulness of nonlinear modelling with GAMS. CONOPT, 

developed by ARKI Consulting and Development in Denmark, is a multi-method solver. CONOPT and 

the other GAMS NLP solvers often complement each other. If one solver fails, one of the others will 

often be able to solve the model. If all solvers fail it is a good indication that the model is very difficult or 

very poorly scaled, and manual intervention from an experienced modeller is necessary.  

KNITRO 

KNITRO is a software package for finding local solutions of continuous, smooth nonlinear optimisation 

problems, with or without constraints. Even though KNITRO has been designed for solving large-scale 

general nonlinear problems, it is efficient for solving all of the classes of smooth optimisation problems. 

KNITRO implements both state-of-the-art interior-point and active-set methods for solving nonlinear 

optimisation problems.  

 

 

 

 

 

 

http://www.gams.com/solvers/solvers.htm#CONOPT
http://www.gams.com/solvers/solvers.htm#CONOPT
http://www.gams.com/solvers/solvers.htm#MINOS
http://www.gams.com/solvers/solvers.htm#KNITRO
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3.3.2 MINLP Solvers 

There are several MINLP solvers available. The solvers differ in the methods they use, in whether they 

find globally optimal solution with proven optimality, in the size of models they can handle, and in the 

format of models they accept. The MINLP solvers can be classified as follows: 

 

 

 Alpha ECP : Extended Cutting Plane Algorithm from T.Westerlund, Abo Akademi University, 

Finland. 

 BARON : Branch-and-Reduce algorithm from N. Sahinidis, University of Illinois Urbana-

Champaign. 

 GAMS/DICOPT : Outer-Approximation algorithm from I.E. Grossmann, Carnegie Mellon 

University. 

 LOGMIP : LogMIP (acronym of Logical Mixed Integer Programming) is a solver for generalized 

disjunctive programs (GDP). 

 MINLP : Branch-and-Bound algorithm from R. Fletcher and S. Leyffer, The University of Dundee. 

 SBB : Branch-and-Bound algorithm from ARKI Consulting and Development. 

 Visual Xpress : MIP solver, free for models with at most 100 rows and 200 variables, and tables and 

variables having at most two dimensions. 

 LINDO,LINGO : for linear and nonlinear mixed integer programs (small-scale versions available for 

free). 

 Setconst : NLP solver with set constrained variables in Matlab , Mixed Integer Nonlinear 

Programming Solver.(seems to assume that for fixed discrete parameters, the problem is convex). 

 MINOPT : A Modelling Language and Algorithmic Framework for Linear, Mixed-Integer, 

Nonlinear, Dynamic, and Mixed-Integer Nonlinear Optimisation. 
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Open Source MINLP solvers 

 

 BNB20: solves mixed integer nonlinear optimisation problems based on branch and bound algorithm. 

 BONMIN (Basic Open-source Nonlinear Mixed Integer programming): an experimental open source 

C++ code for solving general MINLP problems. It is distributed on COIN-OR(www.coin-or.org) 

under the Common Public License.    

 

Solvers Descriptions 

AlphaECP: 

AlphaECP is a general purpose MINLP solver. The ECP (extended cutting plane) method is based on 

cutting plane techniques and the solution of a sequence of mixed integer linear programming problems 

only. Mixed integer problems, with a pseudo-convex objective function subject to pseudo convex 

inequality constraints, can be solved to global optimality with the method.  

BARON: 

BARON is a computational system for solving non convex optimisation problems to global optimality. 

Purely continuous, purely integer, and mixed-integer nonlinear problems can be solved with the software. 

The Branch And Reduce Optimisation Navigator derives its name from combining interval analysis and 

duality in its reduce arsenal with enhanced branch and bound concepts as it winds its way through the 

hills and valleys of complex optimisation problems in search of global solutions.  

DICOPT: 

DICOPT (DIscrete and Continuous Optimiser) is an extension of the outer-approximation algorithm with 

equality relaxation strategies. DICOPT solves a series of NLP and MIP sub-problems using any solver 

supported by GAMS. Although, the algorithm has provisions to handle non-convexities, it does not 

always find the global solution.  

http://www.coin-or.org/
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LOGMIP: 

LogMIP has two main components:  

 A language compiler for the definition of disjunctions.  

 Disjunctive program solvers.  

Those components are linked to GAMS (a computer system for the specification and solution of 

mathematical programs). Both parts are supersets of GAMS language and solvers, respectively. LogMIP 

is not independent of GAMS, it uses the declarations and definitions made into GAMS language format 

for the specifications and solution of a disjunctive problem.  

MINLP: 

MINLP implements a branch-and-bound algorithm searching a tree whose nodes correspond to 

continuous non linearly constrained optimisation problems. The continuous problems are solved using 

filterSQP, a Sequential Quadratic Programming solver which is suitable for solving large nonlinearly 

constrained problems.  

SBB: 

SBB is a GAMS solver for Mixed Integer Nonlinear Programming models. It is based on a combination 

of the standard Branch and Bound method known from Mixed Integer Linear Programming and some of 

the standard NLP solvers already supported by GAMS. During the solution process SBB solves a number 

relaxed MINLP models with tighter and tighter bounds on some of the integer variables. The solutions to 

these submodels are assumed to provide valid bounds on the objective function. SBB will find the global 

optimum if the underlying RMINLP model is convex. If the submodels are not convex then some 

submodels may be solved to a local optimum that is not global, and they may terminate in a locally 

infeasible point even if feasible solutions exist. If a submodel cannot be solved with the default NLP 

solver then SBB has the ability to try to solve it with a sequence of other solvers.  
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3.4 COP Numerical Experiments 

This section describes solving a nonlinear constrained optimisation problem taken from [15].  First, the 

SQP method has been used for solving each problem. The problems can be described as follows:  
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Iter F-count f(x) 
Max 

constraint 

Line search 

step length 

Directional 

derivative 

First-order 

optimality 

0 3 -7973     

1 6 -7174.14 1.624 1 637 1.58e+003 

2 9 -6966.43 0.03487 1 1.12e+003 42.2 

3 12 -6961.82 1.756e-005 1 1.1e+003 0.0265 

4 15 -6961.81 5.414e-012 1 1.1e+003 7.08e-005 

 

Table 3.1 Experiment results. 

 

Global minimum: *x


= (14.095, 0.84296) , )( *xf


 = −6961.81388 

 

The numerical results for solving this problem using the Augmented Lagrangian multipliers method are 

shown in Table 3.2 

 

Optimal objective )( *xf


 −6961.81388 

 Variables solution
*x


 [14.095, 0.84296] 

Lagrangian multipliers 
*


 [0     0     0     0     0     0] 

Penalty parameters *r


 [587.4151  717.9518    0.0575    0.1918    0.0007    0.0007] 

 
Table 3.2 Optimal design of G6 function 
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We shall next, solve the same problem by using Genetic Algorithms, The obtained results are shown as 

follows: 

         

Generation f-count Best f(x) constraint 
Stall 

Generations 

1 1084 -6961.81 8.114e-009 0 

2 2124 -6961.95 0.0007163 0 

3 3176 -6961.81 9.78e-007 0 

4 4232 -6961.81 1.947e-012 0 

 

Table 3.3 Optimisation results. 

 

Fig 3.1 Convergence plots for constrained optimisation problem. 

 

The numerical results using pattern search method can be seen as follows: 

Iter f-count f(x) constraint MeshSize Method 

1 28 -6962 2.74e-007 0.001 Increase penalty 

2 55 -6962 2.74e-007 9.333e-007 Update multipliers 

 

Table 3.4 Iterations history.    
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Fig 3.2 Convergence Characteristics plots. 

 

3.5 MINLP Numerical Experiments  

This section describes solving a collection of test models for mixed integer nonlinear programming. The 

SQP-BB algorithm has been implemented in MATLAB 7 using SQP as NLP solver. This algorithm is 

described in more details in [14].  The implemented algorithm is shown in Fig.3.3. 
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       Fig. 3.3 Integrating SQP and BB 

 

To illustrate the applicability and the efficiency of the implemented algorithm five test problems on 

process synthesis and design proposed by different authors have been chosen. These problems arise from 
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the area of Chemical Engineering, and represent difficult nonconvex optimisation problems with 

continuous and discrete variables. First the Process synthesis problem has a nonlinear constraint and has 

been proposed by Kocis and Grossman [16]. Process flow sheeting problem was first studied by Floudas 

[1] and is nonconvex because of the first constraint. Problems SYNTHES1, SYNTHES2, SYNTHES3 are 

process synthesis problems taken from [14]. 

Header Description 

nv Total number of variables of the problem 

nr Total number of real variables of the problem 

niv Number of integer variables of the problem 

nc Total number of the constraints of the problem 

nec Number of linear equality constraints of the problem 

nic Number of linear inequality constraints of the problem 

nlc Total number of non-linear constraints 

 

Table 3.5 Description of the headers used in table 3.6 

 

Problem nv nr niv nc nec nic nlc 

Process Synthesis 2 1 1 2 0 1 1 

flow sheeting 3 2 1 3 0 2 1 

Synthes1 6 3 3 6 0 4 2 

Synthes2 11 6 5 14 1 10 3 

Synthes3 17 9 8 23 2 17 4 

 

Table 3.6 Test problem Characteristics 

 

Example: Process synthesis problem 

This is a small problem with only one continuous and one discrete variable. It has linear and non-linear 

inequality constraints. This problem has also been solved by other authors [8]. The master problem 

formulation is given below: 
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2

minimize               ( , ) 2

subject to              1.25 0
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 



       (3.2) 

Since this problem has only one continuous and one binary variable, details can be illustrated graphically 

in order to provide a geometrical interpretation of the master problem. 

 

Fig. 3.4 Feasible region and objective function in process synthesis problem. 

 

The results for this problem are: 

   NLP relaxation value = 2.000 

  The optimal solution  y = 1.0000   ,  x =   0.5000   

  Optimal objective function value = 2.000 

  Number of nodes visited by algorithm = 1 

  Number of QP problem solved = 6 

  Seconds of the CPU time needed for the solve = 0.0160 
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                                             max                           Directional         First-order  

 Iter    F-count        f(x)     constraint    Step-size     derivative          optimality               Procedure  

    0        3               3            0.4                                                                            Infeasible start point 

    1        7            2.25         -0.05            1                -0.75              0.81    

    2       11         2.05714         0               1             -0.193               0.565           Hessian modified twice   

    3       15         2.00154         0               1             -0.0556             0.107           Hessian modified twice   

    4       19            2                0               1            -0.00154            0.00311        Hessian modified twice   

    5       23            2                0               1            -1.19e-006         3.03e-006     Hessian modified twice   

 

Table 3.7 numerical results for process synthesis problem. 

 

Fig. 3.4 shows the graphical representation of the constraints involved in the example. The graphical 

solution which can be read from the figure is y = 1, x= 0.5. It is intersection of the active linear and 

nonlinear constraints. The red area is the feasible region that is the design space in which all the 

constraints are satisfied, while the blue area shows the infeasible search design which some of the 

constraints are violated. The geometry evident in the graphical solution of the example is used to show 

some concepts associated with constrained optimisation problems and their characteristics.  

 

 It can be seen that after solving the master problem all integer variables take an integer value then this 

solution also solves the MINLP. So, we do not have to proceed with the searching tree because the integer 

solution has been found. The algorithm terminated with the global minimum. 

 

Example: Process flow sheeting problem 

This problem was fist studied by Floudas [1] and is nonconvex because of the first constraint. It has also 

been solved by Costa and Oliviera [17].The problem is given by 
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This problem has two continuous variables and one binary variable. It also has two linear inequality 

constraints. Since it is a pure 0-1 problem, the NLP sub problems for fixed Y
k
 require only an objective 

function evaluation rather than an optimisation. There are only two possible combinations of the binary 

variables. 

  

Fig. 3.5 Objective function contours and nonlinear feasible region 

 

 

The results for this problem are: 

   NLP relaxation value = 0.5369 

  The optimal solution  y = 1.0000   ,  x1 =   0.9419 , x2 =  -2.1000    

  Optimal objective function value = 1.0765 

  Number of nodes visited by algorithm = 3 

  Number of QP problem solved = 16 

  Seconds of the CPU time needed for the solve = 0.0780 
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The feasible region and the objective function contours are show in Figure 3.5. The global optimum of the 

problem is located where the objective value = 1.0762. The figure also includes the solution to this 

example. The red area shows the feasible region that is the design space in which all the constraints are 

satisfied. In this example, the lower bound lies below the upper bound, so a new NLP sub problem is 

solved, but we have found an integer solution so the best current upper bound has been updated to provide 

a solution for the MINLP master problem. 

 

Example: Synthes1 

 

This problem will illustrate the use of nonlinear 0-1 variables; there are 8 possible combinations of the 3 

binary variables, of which 4 are feasible as determined by the linear inequality constraint. The problem is 

formulated in AMPL and given by 

 Source: Test problem 1 (Synthesis of processing system) in  

 M. Duran & I.E. Grossmann, “An outer approximation algorithm for a class of 

mixed integer nonlinear programs", Mathematical Programming 36, pp. 307-339, 

1986. 

 

Number of variables:   6 (3 binary variables)   

Number of constraints: 6 

Objective nonlinear: 1 

Nonlinear constraints: 2 

 

set I := 1..3; 

 

param u {I} default 2; 

 

var x {i in I} >= 0, <= u[i]; 

var y {I}      binary; 

 

minimise Obj: 

     5*y[1] + 6*y[2] + 8*y[3] + 10*x[1] - 7*x[3] - 18*log(x[2] + 1)  

     - 19.2*log(x[1] - x[2] + 1) + 10; 

 

s.t.c1: 0.8*log(x[2] + 1) + 0.96*log(x[1]-x[2]+1) - 0.8*x[3] >= 0; 

    c2: log(x[2] + 1) + 1.2*log(x[1]-x[2]+1) - x[3] - 2*y[3] >= -2; 

    c3: x[2] - x[1] <= 0; 

    c4: x[2] - 2*y[1] <= 0; 

    c5: x[1] - x[2] - 2*y[2] <= 0; 

    c6: y[1] + y[2] <= 1; 
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Results found by the solver are: 

   NLP relaxation value = 0.7593 

  The optimal solution  y1= 0, y2=1, y3=1 ,  x1= 1.3, x2 = 0, x3 =1    

  Optimal objective function value = 6.9998 

  Number of nodes visited by algorithm = 5 

  Number of QP problem solved = 34 

  Seconds of the CPU time needed for the solve = 0.2190 

 

The example shows that global solution can be obtain by the algorithm. The current upper bound has been 

updated, and it used to derive linearization for the nonlinear functions that are to be included in the 

MINLP master problem. 

 

Example: Synthes2 

 

This problem has more continuous and integer variables; there are 32 possible combinations of the 5 

binary variables, of which 11 are feasible as determined by the linear inequality constraint. there are 3 

nonlinear inequality constraints  and one linear equality constraint. The problem is formulated in AMPL 

and given by 

 Source: Test problem 2(Synthesis of processing system) in  

 M. Duran & I.E. Grossmann, "An outer approximation algorithm for a class of 

mixed integer nonlinear programs", Mathematical Programming 36, pp. 307-339, 

1986. 

 

Number of variables:   11 (5 binary variables)   

Number of constraints: 14 

 

set I := 1..6; 

set J := 1..5; 

param u {I} default Infinity; 

var x {i in I} >= 0, <= u[i]; 

var y {J}      binary; 

 

minimise Obj: 

     5*y[1] + 8*y[2] + 6*y[3] + 10*y[4] + 6*y[5]  

   - 10*x[1] - 15*x[2] - 15*x[3] + 15*x[4] + 5*x[5] - 20*x[6] 

   + exp(x[1]) + exp(0.833333*x[2]) - 60*log(x[4]+x[5]+1) + 140; 

 

s.t. c1: - log(x[4]+x[5]+1) <= 0; 

     c2: exp(x[1]) - 10*y[1] <= 1; 

     c3: exp(0.833333*x[2]) - 10*y[2] <= 1; 

     c4: 1.25*x[3] - 10*y[3] <= 0; 
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     c5: x[4] + x[5] - 10*y[4] <= 0; 

     c6: -2*x[3] + 2*x[6] - 10*y[5] <= 0; 

     c7: -x[1] - x[2] - 2*x[3] + x[4] + 2*x[6] <= 0; 

     c8: -x[1] - x[2] - 0.75*x[3] + x[4] + 2*x[6] <= 0; 

     c9: x[3] - x[6] <= 0; 

     c10: 2*x[3] - x[4] - 2*x[6] <= 0; 

     c11: -0.5*x[4] + x[5] <= 0; 

     c12: -0.2*x[4] - x[5] <= 0; 

     c13: y[1] + y[2] = 1; 

     c14: y[4] + y[5] <= 1; 

 

 

Results found by the solver are: 

   NLP relaxation value =  -8.3652 

  The optimal solution   

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 

0 2 1.07 0.65 0.32 1.07 0 1 1 1 0 

 

 Optimal objective function value = 73.0353 

  Number of nodes visited by algorithm = 13 

  Number of QP problem solved = 80 

  Seconds of the CPU time needed for the solve = 0.5290 

 

Example: Synthes3  

 

This problem has 9 continuous variables and; there are 32 possible combinations of the 5 binary variables, 

of which 11 are feasible as determined by the linear inequality constraint. There are 3 nonlinear inequality 

constraints  and one linear equality constraint. The problem is formulated in AMPL and given by 

  Source: Test problem 3 (Synthesis of processing system) in  
 M. Duran & I.E. Grossmann, “An outer approximation algorithm for a class of 

mixed integer nonlinear programs", Mathematical Programming 36, pp. 307-339, 

1986. 

 

 Number of variables:   17 (8 binary variables)   

 Number of constraints: 23 

 Objective nonlinear: 1 

 Nonlinear constraints: 4 

 

set I := 1..9; 

set J := 1..8; 

param u {I} default 2; 

var x {i in I} >= 0, <= u[i]; 

var y {J} 
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minimise Obj: 

     5*y[1] + 8*y[2] + 6*y[3] + 10*y[4]  

   + 6*y[5] + 7*y[6] + 4*y[7] + 5*y[8] 

   - 10*x[1] - 15*x[2] + 15*x[3] + 80*x[4] + 25*x[5]  

   + 35*x[6] - 40*x[7] + 15*x[8] - 35*x[9] 

   + exp(x[1]) + exp(0.833333*x[2]) - 65*log(x[3]+x[4]+1)  

   - 90*log(x[5]+1) - 80*log(x[6]+1) + 120; 

 

s.t. c1:  - 1.5*log(x[5]+1) - log(x[6]+1) - x[8] <= 0; 

     c2:  - log(x[3]+x[4]+1) <= 0; 

     c3:  - x[1] - x[2] + x[3] + 2*x[4] + 0.8*x[5]  

          + 0.8*x[6] - 0.5*x[7] - x[8] - 2*x[9] <= 0; 

     c4:  - x[1] - x[2] + 2*x[4] + 0.8*x[5] + 0.8*x[6]  

          - 2*x[7] - x[8] - 2*x[9] <= 0; 

     c5:  - 2*x[4] - 0.8*x[5] - 0.8*x[6] + 2*x[7]  

          + x[8] + 2*x[9] <= 0; 

     c6:  - 0.8*x[5] - 0.8*x[6] + x[8] <= 0; 

     c7:  - x[4] + x[7] + x[9] <= 0; 

     c8:  - 0.4*x[5] - 0.4*x[6] + 1.5*x[8] <= 0; 

     c9:  0.16*x[5] + 0.16*x[6] - 1.2*x[8] <= 0; 

     c10: x[3] - 0.8*x[4] <= 0; 

     c11: - x[3] + 0.4*x[4] <= 0; 

     c12: exp(x[1]) - 10*y[1] <= 1; 

     c13: exp(0.833333*x[2]) - 10*y[2] <= 1; 

     c14: x[7] - 10*y[3] <= 0; 

     c15: 0.8*x[5] + 0.8*x[6] - 10*y[4] <= 0; 

     c16: 2*x[4] - 2*x[7] - 2*x[9] - 10*y[5] <= 0; 

     c17: x[5] - 10*y[6] <= 0; 

     c18: x[6] - 10*y[7] <= 0; 

     c19: x[3] + x[4] - 10*y[8] <= 0; 

     c20: y[1] + y[2] = 1; 

     c21: y[4] + y[5] <= 1; 

     c22: - y[4] + y[6] + y[7] = 0; 

     c23: y[3] - y[8] <= 0; 

 

Results found by the solver are: 

   NLP relaxation value = 15.0822 

  The optimal solution   

 

x1 x2 x3 x4 x5 X6 x7 x8 x9 y1 y2 y3 y4 y5 y6 y7 y8 

0 2.0 .46 .58 2.0 0 0 .26 .58 0 1 0 1 0 1 0 1 

 

 Optimal objective function value =  68.0097 

  Number of nodes visited by algorithm = 29 

  Number of QP problem solved = 298 

  Seconds of the CPU time needed for the solve = 1.4060 
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This example shows that the algorithm requires a large number of QP solved per node in order to solve 

the MINLP problem. Eight nodes have been fathomed due to infeasibility or the current value of the 

objective function was higher than the current bound. If one of the fathoming rules is satisfied, then no 

branching is required. The algorithm uses backtracking search strategy to select which node to solve next. 

An optimal solution has been found after 29 NLP problems solved. 

 

Results and discussion  

The performance of the implemented algorithm was compared to the nonlinear branch and bound solver 

MINLP-BB [14], available at NEOS server and the Sequential Cutting Plane algorithm which uses 

CPLEX library to solve LP problems [18]. A numerical comparison with existing solvers shows that the 

performance of the algorithm is competitive with the existing algorithms. However, the overall number of 

QP problems that are being solved can be reduced using different NLP solvers. 

 

Table 3.9 summarise the results obtained when the integration of SQP and BB algorithm were used. The 

number of nodes generated in the branch and bound tree, as well the number of mixed integer nonlinear 

programming problems solved gives an indication of the relative performance of the implemented 

algorithm.  

 

Header Description 

Problem Name of the optimisation problem 

NLPs Number of NLP problems solved in order to solve the problem 

NLP-R Non-linear Programming relaxation ( initial solution ) 

Obj_f The value of the function at the optimum point 

Nodes Number of nodes visited by the algorithm 

QPs Number of QP problem solved 

CPU Seconds of the CPU time needed for the solve 

 

Table 3.8 Description of the headers used in table 3.9 
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Problem NLP-R Obj_f Nodes QPs CPU 

Process Synthesis 2.000 2.000 1 6 0.0160 

Flow Sheeting 0.5369 1.0765 3 16 0.0780 

Synthes1 0.7593 6.0098 5 34 0.2190 

Synthes2 -8.3652 73.0353 13 80 0.5290 

Synthes3 15.0822 68.0097 29 298 1.4060 

 

Table 3.9 Test results for the test problems 

The algorithm solves MINLP problems by solving a sequence of non-linear programming problems, in 

contrast to other solvers that typically solve a sequence of LP, QP, NLP, or MILP problems. It performs 

as well on problems with linear or non-linear constraints. The implemented algorithm uses slightly more 

CPU time than the MINLP-BB solver. 

 

3.6 Penalty function approach for the discrete nonlinear problems  
 

This approach treats the requirement of discreteness in the MDNLP problems by defining additional 

constraints and constructs a penalty function for them [4]. The added term only penalizes non-discrete 

design variables and it imposes penalty for deviations from the discrete values. The augmented function 

can be defined as follows:   

1
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1 and ijij dd  are the two neighbouring discrete values for x. 

ks  denote the penalty parameters of the penalty term for the discrete design variables.  

- A convergence criterion guarantees that the optimisation process is ended if the design variables are 

sufficiently close to the prescribed discrete variables and can be expressed as follows: 



68 
 





















 ijijijij

ii
dddd

qq
11

1)1(


 where, 
ijij

iji

i
dd

dy
q






1

    (3.7) 

 
 Example: 

 

Consider the following optimisation function. 

4 3 28
( ) 2 8

3

{ 1,0,1,2}

f x x x x x

x

   

 

 

 
Fig 3.6 Objective function and augmented objective function. 

                                                   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.7 Behaviours of F(x) for the various penalty parameters S. 
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Case 2: 

 

}3 ,5.2 ,2 ,5.1 ,1 ,5.0 ,0 ,5.0 ,1 ,5.1 ,2{ x  

 

 
 

Case 3: 

 

}0.5 ,3.0  ,0.1  ,3.0, 1  ,2.1,4.1 ,5.1 ,7.1{ x  

 

 

Fig 3.8 Behaviours of F(x) for different discrete requirements. 

 

 

In this research, the original method has been developed to solve MINLP problems. The augmented 

Lagrangian function can be extended to solve MINLP problems. The augmented objective function can 

be formulated by combining the penalty function and the Lagrangian multiplier methods as follows: 
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where, 

 

i donate the values of Lagrangian multipliers for the inequality constraints 

k
ir are the penalty parameters for the ith constraints 

i is necessary to convert the inequality constraints to equality constraints 
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Where, d is a set of discrete values, 

1 and ijij dd  are the two neighbouring discrete values for y. 

 

The minimisation can be started by setting the values of k
imi r,,  to 0, 0, 1 respectively, and then these 

values have to be updated in each iteration as follows:  
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MDNLP example:  

 

Consider the following optimisation problem: 
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The solution to this problem using branch and bound method is )1 , 4.6(),(  yx  with 88.130f , while 

the continuous solution using SQP is )923.1 ,1 (),(  yx  with f = 18.388.  The augmented Lagrangian 

multipliers function is as  follows: 
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The equations can be written as:  
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In the first equation, if 0026 321  xxx  , which violates the constraints.  
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Then, the solution for the unconstrained problem is  
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By updating the values of 21,  with fixed value of r=5, we get  

 

9291.1 , 9567.0

   9385.1 , 8838.0

)3(*)3(*

)2*()2*(





yx

yx
 

 

 

The following table shows the parameters values in 10 iterations: 

 

The iterations history
 

)(
1
i       )(

2
i  )(

3
i    )(

4
i   )(i

kr     
)*(ix    )*(iy      ),( yxh  ),( yxf  

  0        0   0    0     5 0.6891 1.9504 -0.1025 17.5639 

  0    3.1091   0 -1.0254     5 0.8838 1.9385 -6.3125e-004 18.2808 

  0    4.2711   0 -1.0317     5 0.9567 1.9291 -5.0343e-004 18.3734 

  0    4.7037   0 -1.0368     5 0.9839 1.9256 -1.8743e-004 18.3862 

  0    4.8647   0 -1.0386     5 0.9940 1.9243 -7.0042e-005 18.3880 

  0    4.9247   0 -1.0393     5 0.9978 1.9238 -2.6114e-005 18.3883 

  0    4.9470   0 -1.0396     5 0.9997 1.9236 -3.6237e-006 18.3883 

  0    4.9553   0 -1.0397     5 0.9999 1.9236 -1.3448e-006 18.3883 

  0    4.9584   0 -1.0397     5      1 1.9235 -5.0234e-007 18.3883 

 
Table 3.10 Optimal solutions. 

 

3.7 Constrained Optimisation Experiments 

This section presents solving a nonlinear constrained optimisation problem taken from [15].  Four 

different algorithms have been implemented and applied for tackling this problem. The first two are 

deterministic methods (SQP and ALM), while the other two are stochastic methods (PSO and GA). The 
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numerical results and the convergence behaviour for each method are shown below. The problems can be 

described as follows:  
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 (3.11) 

SQP Method 

Iter F-count f(x) 
Max 

constraint 

Line search 

step length 

Directional 

derivative 

First-order 

optimality 

0 6 -32217.4         3.237                                             

1 12 -30374.6             0   1 84.6           305    

2 18 -30665.9      0.000353             1 324   9.26   

3 24 -30665.5    3.162e-009             1 265 0.00147    

 

Table 3.11 Experimental results. 

 

Global minimum: *x


= (78.0000   33.0000   29.9953   45.0000   36.775) , 

 )( *xf


 = -30665.539 
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ALM method 

The numerical results for solving this problem using Augmented Lagrangian multipliers method are 

shown in Table 3.12 

 

Optimal objective )( *xf


 -30665.539 

 Variables solution
*x


 
[78.0028, 32.9992, 29.9809, 45.0000,36.8109] 

Lagrangian multipliers 
*


 
[398.7382, 0, 0,0, 0,807.249 ,  49.0407,  83.6634, 

    0, 0, 0, 0,0, 0, 26.6518, 0] 

Penalty parameters *r


 [ 305,1,1,1,1,1234.8, 15,305,11,1,3,1,1,1,2296,1] 

 
Table 3.12. Optimal design  

 

 

Genetic Algorithm 

 

Global minimum: *x


= (78.001, 33.012, 33.116, 45, 29.627) 

)( *xf


 = -30076.1152 

   

 

Fig.3.9 Convergence Characteristics plots 
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Particle Swarm Optimisation 

Global minimum: *x


= (78.0027, 32.9992, 29.9807, 45.0000, 36.8114) 

)( *xf


 = -30667.9073 

 

Fig. 3.10 Convergence plot for a nonlinear constrained optimisation problem using PSO. 

 

 

 

3.8 Summary 

In this Chapter, a collection of test models for continuous and mixed-variables nonlinear programming 

has been presented. The results of the implemented algorithms have been checked with a number of 

existing state of the art solvers for global constrained optimisation. In the later chapters, the new 

algorithms will be described and the major theoretical properties of these methods will be illustrated. The 

validity, robustness and effectiveness of the new algorithms are compared through some well known 

benchmark optimisation problems. 
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Chapter 4 

A Hybrid Cooperative Search Algorithm  

for Constrained Optimisation 

 

 

4.1 Introduction 

Many engineering design problems can be formulated as constrained optimisation problems which often 

consist of many mixed equality and inequality constraints. In this chapter, a hybrid coevolutionary 

method is developed to solve constrained optimisation problems formulated as min-max problems. The 

new method is fast and capable of global search because of combining particle swarm optimisation and 

gradient search to balance exploration and exploitation. It starts by transforming the problem into an 

unconstrained one using an augmented Lagrangian function, then using two groups to optimise different 

components of the solution vector in a cooperative procedure. In each group, the final stage of the search 

procedure is accelerated by a simple local search method on the best point reached by the preceding 

exploration based search. We validate the effectiveness and robustness of the proposed algorithm using 

several engineering problems taken from the specialist literature. 

 

4.2 General Background 

In the last decade, there has been a dramatic increase in the number of the techniques developed to solve 

Constrained Optimisation Problems (COP). Evolutionary Algorithms (EAs) have been widely used for 

solving such problems. These algorithms share the principle of being computer-based approximate 
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representations of natural evolution. They typically alter the population solutions over a sequence of 

generations according to statistical analogues of the process of evaluation. Such techniques have been 

applied in various works [19, 20, 21], where promising results have been obtained.  However, classical 

EAs techniques may fail to solve many real-world optimisation problems with highly structured 

constraints, whereas achieving the exact global solution is neither possible nor desirable. Therefore, the 

use of Co-Evolutionary Algorithms (CEAs) is highly needed in order to solve difficult computational 

problems where acceptable solutions can be achieved. CEAs have many particular advantages over the 

traditional EA methods, which make them successfully applied in many difficult engineering problems 

[22, 23, 24]. These algorithms can perform better than the standard EA methods because of their 

parallelism and high efficiency in exchanging information between individuals.  

 

In general, coevolutionary algorithms represent a natural approach to applying evolutionary computation 

to refine multi population behaviours. In order to apply a cooperative coevolutionary framework to solve 

a particular problem, the problem has to be decomposed into subcomponents and assign each 

subcomponent to a subpopulation [25]. By dividing a complicated problem into several relatively simple 

sub-problems, the algorithm can effectively solve complicated optimisation problems with highly 

structured constraints. These subpopulations should be evolved by a particular evolutionary method and 

co-evolved simultaneously. One of the most crucial steps in a CEA is the fitness of an individual, which 

should be based on its interaction with other individuals in the population.  

In recent years, coevolutionary algorithms have received a lot of attention regarding their potential for 

solving the numerical constrained optimisation problems where several researchers proposed some new 

methods. Huang et al. [26] introduced an effective coevolutionary Differential Evolution (DE) for 

constrained optimisation where a special penalty function is designed to handle the constraints, then a 

coevolution model is presented and differential evolution is employed to perform evolutionary search in 

spaces of both solutions and penalty factors. Another similar work is that of Liu et al. [27] that presented 

a memetic coevolutionary DE algorithm for solving COP. Two cooperative populations are constructed 
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and evolved by independent DE algorithm. The purpose of the first population is to minimise the 

objective function regardless of constraints, and that of the second population is to minimise the violation 

of constraints regardless of the objective function. Furthermore, He and Wang [28] introduced 

coevolutionary Particle Swarm Optimisation (PSO) for constrained optimisation by employing the notion 

of coevolution to adapt penalty factors. PSO is applied with two kinds of swarms for evolutionary 

exploration and exploitation in spaces of both solutions and penalty factors. Krohling and Coelho [29] 

also presented an approach based on coevolutionary PSO to solve COP formulated as min-max problems. 

Two populations of PSO are evolved, and a Gaussian probability distribution is used to generate the 

acceleration coefficients of PSO.  In the field of GAs, Tahk and Sun [30] proposed an efficient 

coevolutionary augmented Lagrangian method with an annealing scheme for COP, where the populations 

of the parameter vector and the multiplier vector approximate the zero-sum game by a static matrix game. 

Selection, recombination, and mutation are done by using the evolutionary mechanism of conventional 

evolutionary algorithms such as evolution strategies and evolutionary programming. The work of Park et 

al. [31] used a coevolutionary Genetic Algorithm (GA) specifically designed to optimise gas production 

system, whereas a fuzzy-formulation is combined with a coevolutionary GA for solving optimum gas 

production rates of each well to minimise investment cost with given constraints in order to enhance 

ultimate recovery. 

At the mean time, hybrid metaheuristics have received considerable interest in recent years. A variety of 

hybrid coevolutionary approaches have been proposed in the literature. Son and Baldick [32] proposed a 

hybrid coevolutionary programming for Nash equilibrium search in games with local optima, whereas a 

parallel and global search coevolutionary algorithm is applied to locate the real Nash equilibrium. 

Another hybridisation strategy has been presented by Rivera et al. [33] which is a multiobjective hybrid 

methodology for cooperative-coevolutionary optimisation of radial basis function networks. 

 

In this chapter, a new Hybrid Coevolutionary Particle swarm optimisation architecture, named HCP, is 

presented. This coevolutionary approach is capable of solving difficult real-world constrained 
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optimisation problems formulated as min-max problems with the saddle point solution. We consider a 

two-group model; in such models individuals from the first group interact with individuals from the 

second through a common fitness evaluation based on payoff matrix game. In each group, a population of 

independent PSO is evolved, the first population evolves the variable vector while the other the 

Lagrangian multiplier vector. In order to enhance the poor convergence of simple coevolutionary 

programming, a hybrid approach is suggested, where the optimisation of each group takes advantage from 

combining the global but slow search of PSO with the rapid but local search of Quasi-Newton method 

(QN). When applying HCP to specific real-world problems, it is often found that the addition of gradient-

search mechanism can aid in finding good solutions quickly and reliably. The hybridization phase of HCP 

based on fine-tuning the PSO performance in an attempt to achieve improved results in exploring the 

search space. At the end of the optimisation, the first group provides the variable vector, and the second 

group provides the Lagrange multiplier vector.  

 

4.3. Cooperative Coevolutionary framework 

 

4.3.1 Augmented Lagrangian method 

A constrained optimisation problem can be converted to an equivalent unconstrained problem by using 

the penalty function approach, where there is no need to adjust the optimisation algorithm to work on 

constraints [2]. Then, an algorithm for unconstrained problems can be used to find solutions that do not 

violate the constraints. The Augmented Lagrangian Method (ALM) is the most robust of the penalty 

function methods. This method can also be used to convert the constrained problem into an unconstrained 

one by defining the Lagrangian for the constrained problem, and then by maximising the Lagrangian [3]. 

More importantly it also provides information on the Lagrangian multipliers at the solution. The equality 

and inequality constraints can be introduced into the objective function by augmenting it with a weighted 

sum of the constraint functions.  
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We shall next describe the concept of Lagrangian duality where the optimisation problem has two 

different presentations, the primal and the dual problem; the relation between the two problems is 

provided by an appropriate duality theory [34]. The general constrained problem formulation which is 

called the primal problem (P) can be stated as:  
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where x


 represent a vector of n  real variables subject to a set of m  inequality constraints )(xg
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set of l  equality constraints )(xh
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. The Lagrangian function ),,( 


xL
 
of (P) can be defined as: 

 
 


m

i

l

i

iiii xhxgxfxL
1 1

)()()(),,(


     (4.2) 

where


 is a vector of Lagrangian multipliers for the inequalities )(xg


, and 


 is a vector of the 

Lagrangian multipliers for the equalities )(xh


. The problem (P) can be solved if one can find a saddle-
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x of the Lagrangian function. The dual function ),( 
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If the problem (P) has a saddle point ),,( *** 


x , then we have  
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Where the optimal value of the primal problem (P) equals the optimal value of the dual problem (D). 

Conversely, if there is a solution 
*x


of (P) and 0* 


, such that )(),( *** xf


 , then (P) has a saddle 

point and ),,( *** 


x is such a saddle point. This property applies, in particular, to convex programming 

and corresponds to the saddle point of the Lagrangian function defined by Eq. (4.2), and then we have: 
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xLxLxL       (4.5) 



81 
 

The dual function   can be described as a concave function of 


and 


. The concavity of  makes it 

possible to state that every local optimum of  is a global optimum. The dual problem (D) will therefore 

in general be more easily solved than the primal problem (P), where: 

 

),(),( **

,





Max       (4.6) 

In order to design an efficient duality framework for solving nonconvex constrained optimisation 

problems; a combination of the Lagrangian approach with penalty function method has to be used by 

adding a quadratic penalty term to the Lagrangian function in Eq. (4.2), which can now be defined as:  
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The r represents the positive penalty terms for the corresponding two types of constraints.  xi


  is used to 

convert the inequalities to equalities via setting 
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It can be shown that the solution of the primal problem is identical to that of the augmented function

 rx


,,,  . The optimal solution
*x


can be obtained by an unconstrained search if ),( ** 


is known and 

the search starts from point close to
*x


. The most critical point of the deterministic augmented Lagrangian 

methods is how to select an appropriate updating strategy so that it converges to ),( ** 


. The proposed 

HCP algorithm overcomes this difficulty by the use of a cooperative coevolutionary approach to applying 

evolutionary computation to achieve the saddle point ),,( *** 


x .  

Example: 

The example presented here is a constrained problem to show that the property in Eq.(4.7). Consider a 

convex problem given by  
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Here we have,  

  54),(  ,   32),( 2121
2
2

2
121  xxxxgxxxxf                            

The objective function f and the constraints g, and h are convex. Therefore there is a saddle point where 

),()( *** xf  

)54(32),( 21
2
2

2
1  xxxxxL   

Hence, the dual function: 

 5
12

25
)( 2   

The maximum of  is obtained when 0







, hence 2.1*  , then we have: 

3)2.1(5)2.1(
12

25
)()( 2**  xf . 

The solution for this problem is found as: 2.1*
1  x , and 2.06/*

2  x , which is the 

unconstrained minimum of the primal and dual problems.  

 

4.3.2 PSO Module  

The PSO is a stochastic method for global optimisation that exploits a population of potential solutions to 

probe the search space. This derivative free approach is particularly suited to continuous variable 

problems and has recently been successfully applied to many optimisation problems [11,19]. In this 

evolutionary method, a group of particles optimises a certain objective function (.)f , where the trajectory 

of each individual in the search space is adjusted by dynamically alternating the velocity of each particle, 

according to its own experience (cognitive knowledge) and the progress of other particles (social 

knowledge) in the search space. 

In the PSO, we have a set of possible solutions 
nx   (the particle positions), with xjs denoting the s

th
 

vector component of the j
th
 particle. At each k

th
 iteration of the swarm operation, each position k

jx  is 

updated according to the velocity k

jv  of the j
th
 particle, according to 

   
k

js

k

js

k

js

k

js

k

s

k

js

k

js

k

js

k

js

k

js

k

js

vxx

xGrcxPrcvv













1

1

22

1

11

1

   (4.9) 
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where c1 and c2 are acceleration constants that control how far each particle moves in a single iteration, 

 1,0, 21 jkjk rr  are uniform randomly generated numbers that attain the stochastic swarm behaviour. It 

can be seen from the three components of Eq.(4.9), that the trajectory of each j
th
 particle is adjusted to 

take into account its own best known solution Pj (individual experience), and the best known solution G 

in the entire swarm (collaboration between the N members). The personal and global best positions are 

correspondingly given by 
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In the proposed HCP algorithm, an efficient automation strategy for the PSO with linear time-varying 

acceleration coefficients was adopted [35].  Under this development, the cognitive parameter 1c  starts 

with a high value max1c and linearly decreases to min1c , whereas the social parameter 2c  starts with a low 

value min2c and linearly increases to max2c . Both parameters can be updated according to 
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     (4.11) 

where, maxk  is the maximal number of iterations and k is the current number of iterations. 

 

4.3.3 Gradient search Module 

 
In HCP algorithm, the search toward the optimal solution is guided by the Quasi-Newton method, which 

based on the idea of building up curvature information as the iterations of a descent method proceed [3]. 

After a continuous constrained problem is transformed to a continuous unconstrained one through the 

augmented Lagrangian function, a standard QN algorithm can be employed to efficiently minimise it. 

Second-order gradient-based algorithms proceed towards the minimum point of a minimising function 
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 xf


 in a sequential manner by updating the current solution in each (k+1)
th
 iteration as 

   kkkk xfxHxx



 11

      (4.12) 

To reduce the computational load of estimating the Hessian H at point 
kx


 in each iteration, QN builds up 

curvature information using first-order derivatives by applying the Sherman-Morrison formula  
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where 0H  is usually taken to be the identity matrix. 

 

4.3.4 Coevolutionary Game Theory 
 

In this section, we shall confine our intention to zero-sum games with two players [36]. In such games, 

the competitive aspect is extreme, since whatever is won by one player is lost by the other. Assume that 

player 1 (P1) has strategies 
ANAA ,....,1 and that player 2 (P2) has strategies

BNBB ,....,1 . Then, for every 

pair of strategies ),( ji BA , there will be a pay-off ),( ji BAP for Player P1. Since the game is a zero-sum 

game, the corresponding pay-off for player P2 must be ),( ji BAP . Thus, the game may be described by 

the BA NN   matrix of real number in which the entry of the in the ith row and jth column is ),( ji BAP . 

In a more general framework, these outcomes represent utility transfers from one player to the other. 

Thus, we can view each element of the matrix as the net change in the utility of P2 for a particular play of 

the game, which is equal to the negative of the net change in the utility of P1. Then, regarded as a rational 

decision maker, P1 will seek to minimise the outcome of the game, while the P2 will seek to maximise it, 

by independent decisions. 

Let x


 and y


 denote individuals representing the options iA and jB , respectively, where x


 varies over 

all mixed strategies for A, and y


 varies over all mixed strategies for B. Assume that the game is to be 
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played only once, then it would seem to be plausible for P1 and P2 to get values that are at least as big as 

the values that they can be sure of obtaining the so-called security levels. Define these values S1 and S2 as 

follows:  

),(minmax1 yxPS
yx




 
     (4.14) 

),(minmax2 yxPS
xy


       (4.15) 

The score of the match ),( ji BA is defined as the value of ),( ji yxS . It should be noted that, the security 

level of P1 (the minimiser) never falls below the security level of P2 (the maximiser), i.e.  

),(max)()(),(min **
i

y
i

x
yxPPSPSyxP


    (4.16) 

Where
*, yx


denote security strategies for P1 and P2, respectively. 

To illustrate these facets of matrix game, let us now consider the following )53(  matrix: 

 

 

 

 

 

Here P2 has unique security strategy, “column  3” (i.e. j
*
=3), securing him a gain-floor of 

1)3,(min  iPS i .  P1, on the other hand, has two security strategies, “row 1” and “row 2” (i.e. 
*

1i =1, 

*

2i =2), yielding him a loss-ceiling of 5),2(max),1(max  jPjPS jj
which is above the security 

level of P2. Now, if P2 plays first, then he chooses his security strategy “ column 3”, with P1’s unique 

response being “row 1” ( 
i =1), resulting in an outcome of S = –1. If P1 plays first, he is actually 

indifferent between his two security strategies. In case he chooses “row 1”, then P2’s unique response is 

“column 2” (
j = 2), whereas if he chooses “row 2”, his opponent’s response is “column 3” (

j = 3), both 

pairs of strategies yielding an outcome of S = 5. 

 

    P2   

 –4 5 –1 2 0 

P1 0 –2 5 1 1 

 2 1 7 –3 4 
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4.3.5 The proposed HCP Algorithm  
 

The basic idea of the proposed method is to decompose the search space into two subpopulations, and 

then use the best individuals from each subpopulation collaborating together for fitness evaluation. The 

algorithm descends in the original continuous variable space x


and ascends in the Lagrangian-multiplier 

space of ),( 


. For each subpopulation being evolved, the search towards the optimal solution is 

processed by integrating the PSO and QN methods to facilitate exploration and exploitation. The two 

groups are involved to solve saddle point problems, whereas the potential solutions of each group form 

their own sub-population, and evolve only in their own group. Both populations create a matrix game 

which is defined by the individuals of the two opposing groups. The structure of the HCP method is 

shown in Fig. 4.1, and the algorithm can be described by the following steps: 

  

(1) Lagrangian formulation 

At the beginning of the HCP algorithm, it requires a complete unconstrained optimisation before 

performing any decomposition procedures. Hence, the concept of augmented Lagrangian is used to 

transform the problem to unconstrained one. The ALM function can be incorporated into the HCP 

algorithm according to Eq.(4.7), whereas the approach preserves separability without violating or using 

explicit constraints. The choice of the penalty weight plays an important role in the convergence behavior 

of the algorithm. It should be kept as low as possible, just above the limit below which infeasible 

solutions are optimal. Therefore, In each iteration k , the penalty parameters can be updated as the 

following: 

mirtr i

t

i ,,1 , 0       (4.17) 

 

Where t  and 
0

ir  are the user-defined values according to 1t , and 00 ir . The same rule applies to 

updating the equality penalty k

jr , lj ,,1  . The user can also control the growth of the penalties by 

setting an upper value for them. 
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(2) Initialisation of populations 

Two populations of PSO are created randomly within the design space. The size of each population is 

predefined and fixed throughout. The first population (P1) presents the parameter solution vector x


, while 

the second population (P2) presents the Lagrangian multipliers vector ),( 


. The algorithm takes each 

function variable as a separate subpopulation of individuals, so each population group has its own 

evolutionary process.  

 

(3) Matrix game 

Based on the description in the previous sections, the coevolutionary matrix game can be presented by an

BA NN   payoff matrix, where each group plays some pure strategy. Each population is defined as the 

collection of all particles representing the potential solutions. The security level of the first population 

group (P1) is the maximum value it can expect in the worst possible case, that is, the case when the 

second population group (P2) tries to minimise P1’s pay-off. Similarly, the security level of P2 can be 

obtained by applying the same procedures to P2’s payoff matrix. 

(4) Evaluation of population 

The security strategy of the matrix games has been applied to determine the fitness of each particle in the 

swarm. The first group is focusing on evolving the solution vector
*x


, with the Lagrangian vector fixed. 

The second group has its objective maximising the Lagrangian by finding the appropriate vectors 

),( ** 


while fixing x


. For the first population, the fitness function for each particle is defined as: 

Uixxf i
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
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    (4.18) 

For the second population, the fitness function is defined as: 

Vjxf jj
Px

jj ,,2,1),,(min),(
1







     (4.19) 

Where U and V are the size of each population group. 
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(5) Invoke PSO and QN modules for P1 

In general, a stochastic optimiser algorithm will need a very large number of iterations to make it more 

probable that it will reach a global optimum. Therefore, the HCP algorithm combines the advantages of 

random search and deterministic search methods. At the beginning of the search procedure, the PSO is 

used mainly for minimising the continuous solution vector x


 in order to determine the optimal feasible 

region surrounding the optimum point. The inherent search mechanism of PSO should be modified to 

locate the feasible region near the optimum solution. Therefore, we use an efficient method, called fly-

back mechanism proposed by He et al. [19], which utilizes the information about the feasible region that 

the particle learned from its fly experience during the search process, where the optimal feasible region is 

determined according to the sorted fitness values. The process terminates when the population fitness 

value becomes stable. 

 At the end of the search of PSO, the best known solution of all the swarm particles G is chosen as a 

starting search point for the iterative QN method that is subsequently used to replace PSO to find the final 

optimum solution, since the gradient-based method usually has faster convergence rate and higher 

convergence efficiency compared to stochastic random search method.  The hybridisation phase in each 

group is designed to provide greater emphasis on optimality during the search process, so as to avoid the 

algorithm to converge to the local optima. 

 

(6) Invoke PSO and QN modules for P2 

As discussed earlier, the second population group has its own objective and separate evolutionary process. 

It only focuses on optimising the Lagrangian multiplier vector ),( 


, whereas a hybrid mechanism 

combining PSO and QN methods has been used to obtain the solution vector ),( ** 


. However, the 

fitness of an element in the second population depends on the outcome of the first population, which is 

the leader group. 
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(7) Termination criteria  

As a result, the global best in the first population group is the solution for the continuous variables vector

x


, while the global best in the second population group is the solution for the Lagrangian multiplier 

vector ),( 


. The process of the HCP algorithm is terminated when the relative error between the 

augmented function in two successive iterations becomes very small, or the maximum number of 

iterations is reached.  

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 4.1 Flowchart of the proposed HCP algorithm. 
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4.4 Benchmark problems 

The performance of the proposed coevolutionary algorithm was investigated on well known and widely 

used problems frequently employed in the literature, where several coevolutionary algorithms developed 

for constrained optimisation are compared. The algorithm has been implemented in MATLAB 7.7, using 

some minor components available as part of the optimisation toolbox. All the programs were run on a 3.2-

GHz AMD Athlon processor with 2 GB of RAM. Five test problems proposed by different authors have 

been chosen to illustrate the applicability and the efficiency of the implemented algorithm. This has been 

done by performing 100 independent runs for each test case. 

In order to investigate the best performance of the HCP algorithm, different population sizes are used for 

each problem with the maximum number of search iterations maxk set to 2000. The experimental results 

suggested that for all benchmark tests, a small population could produce quickly good results.  However, 

in some cases, the choice of a smaller population size produces solutions that are a little worse than the 

cases of larger population. Hence, the population size’s choice should depends on the complexity of such 

problem, because the different optimisation problems converge differently. It also observed that the 

population ratio is not a critical parameter for the proposed coevolutionary approach. Hence, we 

recommend using the same population size for each optimisation group. 

 

A. Himmelblau’s Function   

The first example is a common benchmark problem in nonlinear constrained optimisation, which was 

originally proposed by Himmelblau [37]. This problem has five design variables, six nonlinear 

constraints, and ten boundary conditions as follows: 
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Several attempts have been made to solve this problem. For instant, Himmelblau used a generalised 

reduced gradient method to search for the optimal solution and the best result obtained was –30,373.94. 

This problem was also investigated by Runarsson and Yao [38], where an evolutionary strategy with 

stochastic ranking has been used to solve the problem. They reported a best result of –30,665.53. Gen and 

Cheng [39] have tackled this problem using an improved GA and the best solution they obtained was –

30,183.57. In our approach, the HCP had the lowest objective function value with lower computational 

cost than all of the other algorithms. The algorithm found an optimal objective function value of –

30,665.57 when using a population size of 30 particles. Furthermore, we have investigated the 

convergence behaviour of the HCP algorithm when varying the population size in each PSO+QN model.  

For instance, when using a population size of 15 particles, an optimal objective function value of –

30,661.19 was produced after performing 100 runs. The number of fitness function evaluations for the 

best run was 7,400. In the mean time, a value of –30,665.57 with 16,520 function evaluations was 

obtained when using a population size equal to 40. Obviously, a larger number of particles produces the 

best optimal solution but involves a higher computational cost, while a smaller number of particles has 

better computational efficiency but with a considerably poorer performance. In conclusion, for this 

problem, we recommend using 30 particles for each population group. 

 

The optimal results of Himmelblau’s problem are shown in Table 4.1, where the final outcome of each 

group has been presented (
*x


 and 
*


). The mean fitness value for 100 independent runs was –30629.36 
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with a standard deviation of 83.67. The run that resulted in the best objective function value performed 

12,000 function evaluations. Fig.4.2 shows a plot of the performance of the HCP algorithm. 

 

Optimal objective )( *xf


 30665.57  

 Variables solution
*x


 ]8109.36,00.45,9809.29,9992.32,0027.78[  

Lagrangian multipliers 
*


 ]0,6.26,0,0,0,0,0,0,6.83,0.49,2.807,0,0,0,0,7.398[  

Penalty parameters *r


 ]1,2295,1,1,1,2,1,10,304,14,12347,1,1,1,1,304[  

 
Table 4.1. Optimal design of Himmelblau’s Function. 

 

 

 
Fig.4.2 Evolution plot for Himmelblau’s Function. 

 

 

B. Minimisation of the weight of a tension/compression string 

 
This is a more complicated example taken from [15], which tackles the minimisation of the weight of a 

tension/compression spring subject to constraints on minimum deflection, shear stress, surge frequency, 

and limits on outside diameter. As shown in Fig.4.3, the design variables are the wire diameter )( 1xd , the 

mean coil diameter )( 2xD , and the number of active coils )( 3xP . The mathematical formulation of this 

problem is stated as: 
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Fig.4.3 Tension/compression string design problem. 

 

 

 This problem has been investigated by previous researchers to minimise the weight of a tension spring. 

Belegundu [15] used a method based on Lagrange multipliers technique to solve this problem, while 

Arora [4] has used a numerical optimisation method called constraint correction at constant cost. The best 

known results was obtained by Coello and Montes [40] using a dominance-based selection scheme to 

incorporate constraints into the fitness function of a genetic algorithm.  In HCP algorithm, the optimum 

value of the objective function is found to be slightly better than the result reported by Coello and Montes 

[41], but with a significant improvement in the number of function evaluations compared. MDNLPs 

typically include continuous, discrete and integer design variables. In this case, a rounding off technique 

based on the work of Ringertz [42] is used for treating the discreteness requirements on the number of 

active coils )( 3xP .As has been observed in our numerical experiments, this simple truncation of their real 

values does not effect the search performance and keeps the handling of continuous and discrete variables 

uniform. The mean value from this problem after 100 runs was 0.0127 with a standard deviation of 

0.00019. The number of fitness function evaluations for each run was 650, when using a population size 

of 10 particles. The convergence plot of the best solution produced by all runs are shown in Fig. 4.4, 

d

P P D
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while a comparison of results of the proposed algorithm, as well as results published in the literature are 

shown in Table 4.2. 

 Quantity HCP [Coe02] [Aro89] [Bel82] 

x1 0.051987 0.051989 0.053396 0.050000 

x2 0.363964 0.363965 0.399180 0.315900 

x3 10.890521 10.890522 9.185400 14.25000 

g1 -0.0014 -0.0000 0.0000 -0.0000 

g2 0.0000 -0.0000 -0.0000 -0.0037 

g3 -4.0611 -4.0613 -4.1238 -3.9383 

g4 -0.7226 -0.7226 -0.6982 -0.7560 

)( *xf


 0.012679 0.012681 0.012730 0.012833 

 

Table 4.2 Comparison of the results for the minimisation of the weight of a tension spring. 

 

 
Fig.4.4 Performance of the minimisation of the weight of a tension spring problem. 

 

C. Pressure Vessel Design  

This problem was introduced by Sandgren [43] and aims to minimise the total cost of materials for 

forming and welding of a pressure vessel. A cylindrical vessel is capped at both ends by hemispherical 

heads as shown in Fig. 4.5. There are four design variables: sT (Thickness of the shell), hT (Thickness of 

the head), R (inner radius), and L (length of the cylindrical section of the vessel, not including the head). 

sT  and hT are integer multiples of 0.0625 in., which are the available thicknesses of rolled steel plates, 

and R  and L  are continuous. The problem can be described as follows: 

0 100 200 300 400 500 600 700
0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028
Evolution plot

number of function evaluations

o
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 v

a
lu

e



95 
 

20010,20010

1875.60625.0,1875.60625.0

0240)(

0
3

4
000,296,1)(

000954.0)(

00193.0)(.

8419166137781162240)(

43

21

44

3
34

2
33

232

131

3
2
14

2
1

2
32431















xx

xx

and

xxg

xxxxg

xxxg

xxxgts

xx.xx.xx.xxx.xfMin












  

 

Fig.4.5 Pressure vessel design problem. 

 

 

This problem has been solved by previous researchers as a mixed integer problem. It was tackled by Deb 

[44] using evolutionary algorithm called GeneAS and the best solution he found was 6410.38. It was also 

dealt with by Coello [40] using GA with dominance-based tournament selection to handle the constraints. 

He reported an optimal objective value of 6059.94. The best result was obtained by He et al. [19] by 

applying improved PSO, and it was 6059.71. The present algorithm has found a slightly better solution of 

6059.69 when the number of particles was set to 30. The total number of function evaluations performed 

was 30,000, while the mean value for all the runs was 6174.13 with a standard deviation of 112.81. The 

convergence behaviour of the HCP algorithm has been shown in Fig. 4.6, where the search process 

performed in the space of the integer and continuous variables.  
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Fig. 4.6 Evolution plot of pressure vessel design. 

 

 

 

D. Welded Beam Design  

This problem was first investigated by Ragsdell and Phillips [45]. The objective is to find the minimum 

cost design of a structural welded beam design, with seven linear and nonlinear constraints on )( 1g  shear 

stress )( , )( 2g  bending stress in the beam )( , ),,( 543 ggg side constraints,  )( 6g  end deflection of the 

beam )( , and )( 7g buckling load on the bar )( cP . As shown in Fig.4.7, there are four design variables
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The numerical parameters for the model are chosen as: ,6000lbP   .,14inL   ,1030 6 psiE   

,1012 6 psiG   ,13600max psi  ,30000max psi .25.0max in .  

 

Fig.4.7 Welded beam design problem. 

Many researchers have tried to solve this problem using different techniques. Ragsdell and Phillips [45] 

have tackled the problem using geometric programming, and the best solution they obtained was 2.3859. 

Ray and Liew [46] used a society and civilization algorithm to deal with this problem. They reported a 

best result of 2.3854. The best known results were obtained by He et al. [19] using an improved PSO, 

where the optimal solution was 2.3809. It has been found that the HCP algorithm obtain an optimal 

objective function value of 2.3809 when using a population size of 25. It can be noted that the HCP found 
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the same global optimum as He et al. However, it is worth mentioning that the number of fitness function 

evaluations of He et al. was 30,000, while only 6,200 function calls are needed to achieve the optimum 

solution by using the present algorithm. The mean value for the 100 runs performed was 2.382, with a 

standard deviation 0.00628. Fig. 4.8 shows a plot of the performance of the HCP algorithm. 

 

Fig.4.8 Evolution plot of welded beam design problem. 

 

E. 10-Bar Planar Truss Structure 

The geometry of 10-bar truss structure is show in Fig. 4.9. This optimisation problem has been studied by 

many researchers such as Haftka [47] and Achtziger [48]. The objective of this problem is to minimise the 

weight of the structure. The variables in this case were the cross sectional areas of each member. There 

are 10 design variables and the minimum cross-sectional area of each member is 0.1 in
2
. The problem 

contains two bays, each of 360 inches in length as well as height. There are two loads of P =100 kip 

located at nodes 2 and 4, respectively. The members are subject to stress limitations of ±25 ksi, but for the 

ninth member, those limits are modified to ±75 ksi. The material mass density is set as 0.1lbm/in
3
. The 

entire cross sectional areas are design variables and can range from 0.1 to 10.0 in
2
. All nodes in both 

directions are subject to a displacement limitation of ±2.0 in. 
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Fig.4.9 The 10-Bar Planar Truss Structure. 

Due to the nature of the problem, it was determined to use a finite element analysis of the truss for 

optimisation. The proposed coevolutionary algorithm procedure was developed for the optimisation of 

planar truss.  This problem has been investigated by previous researchers to minimise the weight of the 

structure. It was solved by Simulated Annealing Technique by Haftka et al. [47], and the best optimal 

solution he obtained was 1.5283 lb. The same problem was also solved by using Sequential Quadratic 

Programming, and the minimum weight was 1.497 lb. The present algorithm has found an optimal 

solution of 1.514 lb when the number of particles was set to 30. Table 4.3 presents the results obtained for 

a continuous variable problem using different optimisation methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3. Comparison of the results for the minimisation of 10-bar truss. 

 

Quantity HCP SA SQP 

x1 7.51 7.37 7.09 

x2 0.46 0.62 0.10 

x3 8.43 8.61 8.10 

x4 3.54 3.38 3.90 

x5 0.10 0.10 0.10 

x6 0.46 0.10 0.10 

x7 6.28 6.52 5.80 

x8 5.00 4.77 5.51 

x9 3.35 3.18 3.68 

x10 0.64 0.87 0.14 

)( *xf

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In this problem of truss structure, the HCP algorithm achieved the good solution after 800 iterations. It 

has been found that the proposed approach is quite efficient and capable of finding lighter and reasonable 

structural designs in most cases with different parameter settings. As seen in table 4.3, The results from 

SQP showed better accuracy than the present algorithm for this problem, while HCP was better than the 

SA method. 

4.5 Analysis of HCP  

This article presented a method of swarm evolution under a cooperative framework.  Simulation results 

based on well-known constrained engineering design problems suggest that the HCP algorithm works 

well in different cases and is capable of locating the global optimum for all the problems in a reliable 

manner. Moreover, the HCP obtains some better solutions than those previously reported in the literature. 

The main reason is that, each group is of much smaller scale than the original problem and can be solved 

in less effort with more accuracy than the original problem. Additionally, in each sub-problem, the 

gradient search becomes effective when the solution region is found and local search with fast 

convergence is needed. This is an important advantage of the proposed algorithm over previous 

coevolutionary algorithms since the the hybridisation phase provides a good opportunity to escape from 

the local solution so that the algorithm has more chances to get a better solution with less computational 

cost.  

  

The HCP algorithm does not need additional fitness evaluation for each sub-problem. Instead, the 

individuals from the first group interact with individuals from the second through a common fitness 

evaluation based on coevolutionary matrix game. It should also be noted that, for each variables vector
*x


, the cost function )( *xf


 and the constraints )( *xg


, )( *xh


 have been calculated i times in total, where 

Ui ,,2,1  , then the augmented function ),,,( rx


 can be calculated for all Lagrangian multipliers 

by simple calculation according to Eq.(4.7). So, there is no need to evaluate )( *xf


, )( *xg


, and )( *xh


 again 
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as long as the variables solution vector
*x


 is the same. Therefore, the computational cost of the proposed 

approach can be compared to other methods based on evolution of a single group.  

 

With some numerical experiments, it has been found that, the sizes of the population could be chosen 

based on the complexity of the problem. For instant, the welded beam design problem contains a highly 

nonlinear constrains, which required a large number of individuals in each population group, while it was 

much easier to tackle other constrained problem (G1-G13) presented in the literature which can be found 

in [49]. For these problems, we observe that with average population size of 10, the HCP algorithm was 

able to achieve the global optimum solution. However, this is not the case when dealing with difficult 

optimisation problems considered in this paper, whereas the evolutionary process is unlikely to come up 

with exact best response with such low population size. Hence, increasing the population size increases 

the convergence ability of the proposed algorithm.  

   

In order to further assess the benefits from the proposed algorithm, the first problem is considered here for 

the purpose of comparing with other evolutionary algorithms published in the literature such as improved 

PSO [19], and coevolutionary PSO using Gaussian distribution [29]. When the iteration number is 3000 

and swarm size is 30 for 100 executions, the proportion of PSO runs converged to global optimum is 

78%, while PSO-GD has 54%, when the maximum iteration number is 2000 with swarm size 30. When 

applying the proposed method to this problem, the convergence rate is found to be better than both 

algorithms. The proportion of HCP runs converged to global optimum is 81%. Moreover, the total 

number of function evaluations was reduced by approximately 86% compared to the standard PSO 

method. The performance behaviour of these three algorithms is shown in Fig.4.10. It can be seen that, 

the HCP converges more quickly with better solution than other algorithms. 
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Fig.4.10 Search process comparison for Himmelblau’s function. 

 

 

 

4.6  Summary  
 

In this chapter, we have developed and investigated a novel coevolutionary method whereas several test 

cases have been chosen to reflect the efficiency of our framework in dealing with variety of real-world 

optimisation problems. The HCP algorithm is developed to solve constrained optimisation problems 

formulated as min-max problems. Through a coevolutionary game approach, we exploit the success of 

HCP in processing non-linear and non-convex problems.  

 

We have found that the hybridisation phase used during the evolutionary process of each sub-population 

is very efficient in increasing the convergence rate of the algorithm. The HCP is also very suitable for 

parallel computation that decreases the run time required for achieving the optimum solution. It also has 

been proved that, this method allows the use of different evolutionary methods for optimising any set of 

variables. Moreover, experiments of the developed algorithm show that it outperforms other methods 

presented in the literature in terms of both accuracy and computational efficiency.  
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Chapter 5 

An Alternating Optimisation Approach for Mixed Discrete 

Non Linear Programming 

 

 

 

 

 
 

 

 

5.1 Introduction 

 
This chapter contributes to the development of the field of Alternating Optimisation (AO) and general 

Mixed Discrete Non-Linear Programming (MDNLP) by introducing a new decomposition algorithm 

(AO-MDNLP) based on the Augmented Lagrangian Multipliers method. In the proposed algorithm, an 

iterative solution strategy is proposed by transforming the constrained MDNLP problem into two 

unconstrained components or units; one solving for the discrete variables, and another for the continuous 

ones. Each unit focuses on minimizing a different set of variables while the other type is frozen. During 

optimising each unit, the penalty parameters and multipliers are consecutively updated until the solution 

moves towards the feasible region. The two units take turns in evolving independently for a small number 

of cycles. The validity, robustness and effectiveness of the proposed algorithm are exemplified through 

some well known benchmark mixed discrete optimisation problems. 

 

5.2 General Background 

This work addresses the mixed discrete programming problem, which seeks a global optimum to an 

optimisation formulation with an objective function subject to a set of linear and nonlinear constraints 

where the decision variables are both continuous and discrete. In the last decade, there has been a 
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dramatic increase in the techniques developed to solve MDNLP problems [14, 19, 34]; such techniques 

have been applied in various domains, ranging from the process industry and engineering, to the financial 

and management sciences as well as operational research sectors. The challenging difficulty of MDNLP 

problems is their high nonlinearity and non-differentiability due to the combinatorial nature of the 

associated discrete-valued variables. 

 

The categories of algorithms for solving MDNLPs can be mainly divided into stochastic and deterministic 

ones. The stochastic methods are employing randomised searches and aim to tackle the problem of local 

optimality. Examples include Simulated Annealing [8], Genetic Algorithms [34, 43], Differential 

Evolution [50], Particle Swarm Optimisation [19, 51], and other hybrid methods [20, 52, 53]. The 

deterministic ones take a different approach and adopt a systematic way of approaching the optimum; 

popular examples include the Non-Linear Branch-and-Bound [6, 14], Sequential Linearization [54, 55], 

the Penalty Function approach [43,56], and the Lagrangian Relaxation methods [57, 58]. 

 

This article proposes an original method for solving MDNLP problems, based on the generic framework 

of Alternating Optimisation (AO) introduced by Bezdek and Hathaway [59]. AO is a very efficient 

iterative procedure for solving large problems by alternating between restricted subsets of variables. It has 

good convergence properties, reduced development times and the ability to reduce the risk of getting 

trapped in a local minima. Its main drawback, however, is that AO cannot be adapted easily for use with 

constrained optimisation problems. In this article, the AO procedure was applied to the constrained 

formulation of MDNLP by partitioning and processing each discrete and continuous subset of the mixed 

decision variables with different, and more suitable to each subset, solvers. The solvers combine a 

standard Quasi-Newton gradient-based method [2, 3], with a Lagrangian formulation of the MDNLP, 

together with a Branch-and-Bound search [6, 60] for the continuous and discrete variables, respectively. 
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5.3 Employed Optimisation Models and Algorithms 

5.3.1 The MDNLP formulation 

An MDNLP optimisation problem contains continuous, integer and discrete variables, with linear and 

nonlinear constraints, and also constraints on the value sets of the discrete variables. It can be stated as 
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where x


 is the vector of cn  continuous variables and y


 is the vector of dn  discrete variables within the 

value set X. The problem also accounts for m  inequalities )y,x(g


 and l  equalities )y,x(h


. k
Y  is the 

discrete value set of each k
th
 discrete variable yk. The major difficulty that arises in the MDNLP problems 

is due to the combinatorial nature of the Y variables, as the number of possible solutions rises 

exponentially with the discrete variables domain. Therefore, complexity analysis characterises MDNLP 

problems as Non-Polynomial Complete [61]. 

 

5.3.2 The augmented Lagrangian multipliers method 

An effective way for solving a continuous optimisation problem with constraints using solvers for 

unconstrained problems, is to convert it to an equivalent unconstrained one by using the penalty approach, 

where all constraints  xg


 and  xh


 are converted to extra penalty terms added to the objective function 

 xf


. Such an advanced penalty method is the Augmented Lagrangian Penalty Function (ALPF) [3, 62] 

which combines the properties of the quadratic penalty function and the Lagrangian formulation of the 

problem. The ALPF can be expressed as 
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where {1,m} and {m+1,m+l} are the Lagrangian multipliers for the m inequalities and the l  

equalities, respectively. The ri represent the positive penalty terms for the corresponding two types of 
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constraints.  x
i


  is a used to convert the inequalities to equalities via setting 
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The optimum solution 
*x


 is computed as a sequence of iterative unconstrained subproblems with regular 

updates of the penalties 
k

i
r  and the multipliers 

k

i
  at each iteration k. The optimisation is initialized with 

the values of 00

mi

0
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 and 1rr 0
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i
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  as suggested by Rao [2]. Because the correct penalty factors 

and the Lagrangian multipliers are problem dependent and, thus, unknown, they are continually updated 

as 
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To make the procedure more efficient, instead of fixing the penalties ri, an adaptation strategy [63] has 

been used to regulate the penalty decrease/increase. For instance, if a current point 
kx


 violates the i
th
 

inequality constraint  k

i
xg


, 
k

i
r  must be increased to eventually move the final solution to the feasible 

region. The following heuristic is used to update the penalty parameters 
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where   is the user-defined tolerance for acceptable constraint violations. The same rule applies to 

updating the equality penalty 1



k

jmr , based on the violation condition   xh j


.  

The following termination criterion has been used to examine how close the search approaches to the 

optimum solution. Firstly, the solution is obtained when the relative error between the augmented 

function in two successive iterations becomes small, according to  
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Since  becomes a nonconvex function, it is important to check for optimality of the obtained solution
*x


, 

as this is the case when the corresponding multiplier vector 
k


 approaches the optimal one 
*


 [35]. The 

algorithm was terminated if the current feasible point 
*x


satisfies the Karush-Kuhn-Trucker (KKT) 

conditions which are necessary for 
*x


to be a global optimum of   
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5.3.3 Unconstrained optimisation 

After a continuous constrained problem is transformed to a continuous unconstrained one through the 

ALPF, a standard Quasi-Newton (QN) algorithm [62] can be employed to efficiently minimise it. Second-

order gradient-based algorithms proceed towards the minimum point of a minimizing function  xf


 in a 

sequential manner by updating the current solution in each (k+1)
th
 iteration as 

   k1kk1k xfxHxx



        (5.8) 

 

To reduce the computational load of estimating the Hessian H at point 
kx


 in each iteration, QN builds up 

curvature information using first-order derivatives by applying the Sherman-Morrison formula  
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where       (5.9) 

where 0H  is usually taken to be the identity matrix. 

 

5.3.4 The Branch-and-Bound algorithm 

This is an established generic algorithm for efficiently enumerating and searching parts of optimisation 

problems. The BB method for discrete problems [1,64] is based on the mechanisms of separation, 



108 
 

relaxation and fathoming in a search tree. Its principle lies in successive decompositions of the original 

problem to smaller disjoint subproblems until an optimal solution is found. 

 

The algorithm starts by solving first the continuous relaxation problem using a Non-Linear Programming 

(NLP) solver. If all discrete variables take discrete values the search is stopped. Otherwise, a tree search is 

performed in the space of the discrete variables. Then the algorithm selects one of those discrete variables 

which take a non-discrete value and branch on it. Branching generates two new subproblems by adding 

simple bounds to the NLP relaxation. Then, one of the two new NLP problems is selected and solved. If 

the discrete variables take non-discrete values then branching is repeated, while if one of the fathoming 

rules is satisfied, then no branching is required, and the corresponding node is flagged as fully explored. 

When during the search discrete solutions are found, they can provide upper bounds on the optimal value 

of the original problem. Once a node has been fathomed the algorithm backtracks to another node which 

has not been explored until all nodes are fathomed. The general operations of the algorithm are shown in 

Table 5.1. 

 

Place the continuous relaxation and set upper bound to infinity. 

while there are unexamined subproblems/nodes in the tree 

 Select an unexplored node. 

 Solve the NLP problem on the discrete variable y. 

 Obtain lower bound. 

 if the solution is optimal and y value is fractional: 

  Branch on y. 

 endif 

 Solve NLP problem until: 

  - The subproblem is infeasible, or 

  - A discrete feasible solution is found (record the value of this solution as upper bound), or 

  - The lower bound is greater than the objective value of a previous discrete solution. 

 Continue branching and solving NLP subproblems. 

Endwhile 
 

Table 5.1 Main Branch-and-Bound operations. 
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5.4 The Proposed AO-MDNLP Framework 

5.4.1 Alternating Optimisation (AO) 

AO is a generic methodology for locating the solution of an optimisation problem by partitioning and 

treating independently the design variables. It has been shown that the AO method very efficiently 

converges to at least a local minimum regardless of the initialisation [65]. The principle advantage of AO 

is that it replaces the optimisation of the objective function with a sequence of easier optimisations 

involving the different partitions of the design variables. 

 

If we assume that we have to minimise a function  xf


 of n variables, the original problem can be 

partitioned into N autonomous subsets of variables (with ns variables in each s
th
 subset, with nn

N

1s s
 

) and the process of optimisation alternates between these subsets until the global problem is completed. 

The flowchart in Figure 1 illustrates the operation sequencing of AO, where the strikethrough notation i
x  

indicates variables that are fixed with respect to the current subproblem at index i. In later sections, the 

parameter t is used to define the number of cycles to be used during the AO optimisation process.   

 

Figure 5.1 Iteration procedure of Alternating Optimisation. 

Set t=0, the termination tolerance  , maximum cycles limit 

tmax, and the number of subsets of variables N. 
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nx 


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Example: Hartmann function 

A classic benchmark problem in nonlinear optimisation introduced by Dixon and Szego [66] has been 

used to demonstrate the application of AO, It minimises the following 

     














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
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


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



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
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
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1j

2
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

 (5.10) 

 

This problem has six continuous variables   6

61
x,,xx  


. Suppose we choose N=2 arbitrary 

partitions   3

3211
x,x,xx 


, and   3

6542
x,x,xx 


 of n1=n2=3 variables each. The minimisation 

can start by setting the initialisation point to  1,1,1,1,1,1x0      


, and then minimise  xf


 by alternatively 

minimizing each subset of the partitioned variables independently. 

 

Cycle t 
t

1
x


 
t

2
x


 
1tt xx 


 

0 (1, 1, 1)  (1, 1, 1) ---- 

1 (0.1312, 0.2005, 0.5683)
 

(0.2718, 0.3128, 0.6595)
 

1.6428 

2 (0.2015, 0.1501, 0.4774)
 

(0.2753, 0.3117, 0.6573)
 

0.1256 

3 (0.2017, 0.1500, 0.4769)
 

(0.2753, 0.3117, 0.6573)
 

0.0005 

4 (0.2017, 0.1500, 0.4769)
 

(0.2753, 0.3117, 0.6573)
 

0.0000 

Table 5.2 Applying AO on the Hartmann function.  

 

Table 5.2 shows a possible outcome of applying AO on this example. The algorithm converges quickly to 

the optimum solution requiring only four cycles to satisfy the stopping condition 41tt 10xx  


. This 

simple example indicates that the AO framework can provide the means for solving many large scale 

problems that are difficult to process by existing methods, and it leads to easier subproblems with solution 

spaces much more reduced than the original n-dimensional one. 
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5.4.2 The AO-MDNLP algorithm 

Based on our observation that MDNLPs have highly structured constraints with mixed variables, This 

method proposes to partition these MDNLPs by their variables into two subproblems and solve each 

subproblem as in the example before but using the Lagrangian transformation and also with different and 

appropriately efficient subsolvers for each subset. This new architecture combines the previously 

discussed robust components, namely the AO framework, the ALPF model and the QN and BB 

algorithms. The rationale behind this variable partitioning is to allow many computationally expensive 

MDNLP problems to be solved by existing solvers more efficiently. This is possible because the proposed 

AO-MDNLP method leads to smaller and simpler structured subproblems that are easier to minimise, 

while the Lagrangian framework supports resolution of the violated constraints across the subproblems 

using an effective updating strategy. 

 

Because the original problem in Eq. (5.1) consists of the objective function  y,xf


 and the constraints 

 y,xg
i


 and  y,xh

j


 the constraints (without assuming a specific problem structure) are always 

associated with both continuous and discrete variables. In order to apply AO, the problem was 

decomposed into two subproblems; one optimising the set of x


 and the other the set of y


 variables. To 

make the handling of the constraints more uniform and also efficient, the ALPF has been used to allow 

the continuous subproblem to be converted to an unconstrained one. Overall, the proposed method 

decomposes the MDNLP problem of Eq. (5.1) to two units, where an unconstrained problem is solved at 

each unit. Unit-A fixes all variables y


 and minimises the ALPF using QN, defined as 
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 (5.11) 
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After Unit-A performing the full minimisation of  ryx


,,,   with respect to x


, some of the penalty 

parameters 
k

i
r  and the Lagrangian multipliers 

k

i
  are consecutively updated. The unconstrained 

optimisation of  r,,y,x


  has to be carried out for a sequence of values r


 and 


  until the solution 

moves towards the feasible region, where the Lagrangian multipliers can be estimated more accurately.  

 

The iterative process stops when the augmented function is not changing much between two successive 

iterations. In the mean time, a test for the satisfaction of the KKT conditions is performed before taking 

the current solution as an optimum solution. 

 

Subsequently, Unit-B takes turn in the optimisation process and the continuous variables x


 become 

fixed. The unit invokes a Branch-and-Bound algorithm to minimise the discrete variables y


 only, but 

instead of solving a constrained problem at each node of the BB tree, the augmented function ),,,( 


ryx  

is minimised for the relaxed component of y


 using QN. This setup is efficient, because at each node the 

subproblem has nc less dimensions that the standard unpartitioned BB. The penalty parameters 
k

i
r and the 

Lagrangian multipliers
k

i
  have to be consecutively updated at each node in order to find the feasible 

continuous solution. When solving each subproblem in the BB tree, the following condition must be 

satisfied before taking the obtained point as a discrete solution 

 k
i

k
i dymax        (5.12) 

where 
k
iy  is the discrete value of the 

thi discrete variable at the iteration k , and 
k
id  is the nearest discrete 

value for the discrete design variable
k
iy . Once a node has been fully explored, the global search 

procedures of BB have to be carried out until a discrete solution has been found. The selection method for 

branching node may significantly affect the performance of BB. Our approach uses the depth-first with 

backtracking strategy (Ringertz 1988) until all the nodes have been explored. 

 

After convergence of both units, the algorithm composes the final solution by combining the partial final 
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solution generated by each unit. The algorithm terminates with the current solution, if the maximum 

number of cycles is reached or if the following necessary stopping criteria is met 

     tttt yxyx


,, 11       (5.13) 

The overall implementation of the proposed AO-MDNLP is presented in Table 5.3. 

 

Stage 1: Initialisation 

Set cycle count 0t , termination tolerance , and maximum cycles limit maxt . 

Pick an initial iterate  00 , yx


, and set  .r,r,, 0

mi

0

i

0

mi

0

i 


  

 
Stage2: Optimisation 

while (t  tmax) 

Form ),,,( ryx


  according to Eq. (5.11). 

 
%Unit-A: 

while (the termination criterion in (5.6) and (5.7) is not met) 

Minimise ),,,( ryx


  using QN method. 

Update the parameters r


, according to Eq. (5.4) and (5.5).  

end while 

Record the obtained solution ),( tt yx


. 

 
%Unit-B: 

while (there are unexamined nodes in the BB tree) 

Minimise ),,,( ryx


  at each node on the discrete variable y . 

end while 

Record the obtained solution ),( tt yx


. 

 
Stage 3: Convergence 

if (the necessary stopping condition in (5.13) is met) 

Terminate the algorithm with ),( ** yx


as an optimum solution. 

else 
Increase cycle number as t=t+1. 

end if 
end while 

Table 5.3 Pseudo-Code for the AO-MDNLP algorithm.  
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5.5 Numerical Experimentation 
 

In this section, the performance of the proposed AO-MDNLP was investigated with a number of difficult 

real-world bench problems from mechanical engineering and chemical process synthesis, frequently 

employed in the literature. In all experiments, the constraint tolerances 4
hg, 10ε   are used for both 

equality and inequality constraints. A complete implementation of the AO-MDNLP algorithm has been 

developed in Matlab 7.4, running on a 2.0GHz Pentium 4 CPU with 1GB of RAM. 

 

5.5.1 Results 

Experiment 1: 

This is a nonconvex problem from [1], which involves a process flow sheeting problem. It has two 

continuous variables and one discrete variable with three linear and nonlinear inequality constraints, and 

is given by 

 
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    (5.14) 

The optimum results obtained by the present approach are listed in Table 5.4.  

Cycle 

 t 
   121 ,,; yxxyx t

A
t
A 


    121 ,,; yxxyx t
B

t
B 


  yxf


,     11,,  tttt yxyx


 

0 (1, 1, 1) (1, 1, 1) 1.35 ---- 

1 (0.5944, -1.4835, 0.4395) (0.5944, -1.4835, 1.00)
 

0.1446 2.5164 

2 (0.9418, -2.0998, 1.00)
 

(0.9418, -2.0998, 1.00)
 

1.0758 0.7075 

3 (0.9418, -2.0998, 1.00)
 

(0.9418, -2.0998, 1.00)
 

1.0758 0.0000 

Table 5.4 Alternating Optimisation results of experiment 1. 

 

Experiment 2:  

 
This problem arises in the synthesis of chemical process, and it was investigated by Duran and 

Grossmann [5]. The goal is to determine the optimal solution of a chemical process system. The problem 
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has three continuous variables and three discrete variables with six linear and nonlinear inequality 

constraints. The master problem can be formulated as follows 
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

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 (5.15) 

 

The optimal solutions obtained using the AO-MDNLP algorithm, are presented in Table 5.5. 

Cycle 

t 

 t
A

t
A yx


;  

 321221 ,,,,, yyyxxx  

 t
B

t
B yx


;  

 321321 ,,,,, yyyxxx  
),( yxf


    11,,  tttt yxyx


 

0 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1) 19.5234 ---- 

1 
(1.1542, 0.5502, 1, 

0.2751, 0.3020, 0)
 

(1.1542, 0.5502, 1, 

0, 1, 1)
 11.5790 1.1073 

2 (1.3, 0, 0.9995, 0, 1, 1)
 

(1.3, 0, 0.9995, 0, 1, 0)
 

6.0098  0.5692 

3 (1.3, 0, 0.9995, 0, 1, 1 )
 

(1.3, 0, 0.9995, 0, 1, 0)
 

6.0098  0.0000 

Table 5.5 Optimal design of process synthesis problem. 

 

 

Experiment 3: 

 

Consider the optimal design problem of a pressure vessel given in [43]. The objective of this problem is 

to minimise the total cost of materials for forming and welding of a pressure vessel. The design variables 

of the problem are specified as:
Tyyxxyx ),,,(),( 2121


, which correspond respectively to the sell 

thickness, spherical head’s thickness, shell radius, and shell length, where 1y and 2y represent discrete 

values, integer multiples of 0.0625, while 1x and 2x are continuous variables. The mathematical 

formulation of the problem is 
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   (5.16) 

 

 

The AO cycles results of the pressure vessel design problem are shown in Table 5.6. 

Cycle 

t 

);( t
A

t
A yx


 

),,,( 2121 yyxx  

);( t
B

t
B yx


 

),,,( 2121 yyxx  
),( yxf


 

 

),(),( 11  tttt yxyx


 

0 (1, 1, 1, 1) (1, 1, 1, 1) 25.4066 ---- 

1 
(159.84, 209.1, 

 2.733, 1.625) 

(159.84, 209.1, 

 2.9375, 1.6250)
 168,004.3 261.8 

2 
(46.19, 180.4, 

 2.9375, 1.6250) 

(46.19, 180.4, 

 2.8750, 1.4375)
 32,659.5 117.2 

3 
(42.0989, 176.6305, 

 2.8750, 1.4375)
 

(42.0989, 176.6305, 

0.8125, 0.4375)
 6,059.65 6.01 

4 
(42.0989, 176.6305 

, 0.8125, 0.4375)
 

(42.0989, 176.6305, 

0.8125, 0.4375)
 6,059.65  0.000 

Table 5.6 Optimal design of the pressure vessel. 

 

 

 

Experiment 4: 

  

This problem was studied by Duran and Grossmann [5]. It has more continuous and discrete variables; 

there are 32 possible combinations of the 5 binary variables, of which 11 are feasible as determined by the 

linear inequality constraint. There are 3 nonlinear inequality constraints and one linear equality 

constraints. The problem formulation is given below 
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  (5.17) 

This example shows that the global solution can be obtained by the algorithm as shown in Table 5.7.  

Cycle 

t 

   ,,,; 321 xxxyx t
A

t
A 


 

54321654 ,,,,,,, yyyyyxxx  

   ,,,; 321 xxxyx t
B

t
B 


 

54321654 ,,,,,,, yyyyyxxx  
),( yxf


    11,,  tttt yxyx


 

0 (1,1,1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,1,1,1) 74.1025 ---- 

1 

(1.904, 1.9995, 2.6218, 0.6264, 

0.3132, 2.6217, 0.5713, 0.4292, 

0.3277, 0.094,0) 

(1.904, 1.9995, 2.6218, 

0.6264, 0.3132, 2.6217, 

1,1,0,1,0)
 

6.4246 3.1125 

2 
(1.999, 2.121, 0, 2.761, 1.381, 0, 

1, 1, 0, 1, 0)
 

(1.999, 2.121, 0, 2.761, 

1.381, 0, 0, 1, 1, 1, 0)
 73.5040 4.4122 

3 
(0, 2, 1.0784, 0.652, 0.326, 

1.0784, 0, 1, 1, 1, 0) 

(0, 2, 1.0784, 0.652, 0.326, 

1.0784, 0, 1, 1, 1, 0)
 73.0353 3.4498 

4 
(0, 2, 1.0784, 0.652, 0.326, 

1.0784, 0, 1, 1, 1, 0)
 

(0, 2, 1.0784, 0.652, 0.326, 

1.0784, 0, 1, 1, 1, 0)
 73.0353 0.0000 

 

Table 5.7 Alternating optimisation of process synthesis problem. 

 

 

 

Experiment 5: 

 

This problem was investigated by Kocis and Grossmann [16], and Costa [17]. It tackles the optimal 

design of multi-product batch plant with M serial processing stages, where fixed amounts iQ  from N  
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products must be produced. This problem contains a large number of nonlinear inequality constraints; it 

also has 22 continuous variables and 24 discrete variables. The master problem formulation can be stated 

as:  
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where, the numerical parameters for the model are chosen as: 6M , 5N , 6000H , 250j , 

6.0j , ,3u
jN  300l

jV , and 3000u
jV . The values of ,,, l
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3.2  2.3  4.4  6.5  6.4  6.8

 1.2  2.1  3.9  8.3  4.7  6.4

t  and

2.1  1.6  4.5  2.4  3.6  1.2

2.5  1.2  2.7  1.6  2.3  4.7

2.9  3.2  3.6  1.6  2.6  0.7
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Table 5.8 summarizes the optimal results of the batch plant problem, where the optimal solution has been 

found in four AO cycles with an optimal objective function value of 
5102.8551 . 

The optimal solution ),( ** yx  

461]

[),(





0,0,0,00,0,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,1,               

544,7.7528,7.6 7.8706, 7.5882, 7.5452, 8.0064, 0, 0, 0.6931, 986,0.6931,1.0 0.6931,               

,1.3083,245,1.22381.2238,1.8 1.1632, 6.2642, 6.4588, 6.5896, 6.6468, 5.9395,yx


 

Table 5.8 Optimal design of batch plant problem. 
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Note that, not all the AO iterations results for the batch plan problem were included because of its large 

size. However, the convergence behaviour of the proposed algorithm has been shown in Figure 5.2, where 

the AO search process performed in the space of the discrete and continuous variables. The convergence 

graph Figure 2(a) shows the decrease of the objective function in Unit-A while performing the full 

minimisation of  ryx


,,,   with respect to x


. Figure 5.2(b) shows the development of the objective 

function in Unit-B when applying the BB method to minimise  ryx


,,,   with respect to y


.   

  
(a)Unit 1 evaluation plot (QN method) (b)Unit 2 evaluation plot (BB method) 

 

Figure 5.2 Objective function evaluations during the AO process.  

 

 

5.5.2 Discussion of results 
 

The performance of the AO-MDNLP algorithm is investigated using five MDNLP problems. Problems 1 

to 4 are considered here for the purpose of comparing with the improved Particle Swarm Optimisation 

(PSO) introduced by He et al. [19] and a Hybrid Genetic Algorithm (MDHGA) proposed by Rao and 

Xiong [67] which are the state of the art methods for solving MDNLP problems. Problem 3 has been 

chosen to evaluate the efficiency of the proposed algorithm against other stochastic methods presented in 

the literature. Problems 5 can be considered as more complex global optimisation problems, where AO-

MDNLP algorithm is needed to find the optimal values of the discrete and continuous variables. Table 5.9 

summarizes all the obtained results using the proposed approach. 



120 
 

 

Experiment 

index 

No. of 

continuous 

variables 

No. of 

discrete 

variables 

No. of 

Constraints 

No. of 

AO cycles 

Optimal 

objective 

function value 

1 2 1 3 3 1.0758 

2 3 3 6 3 6.0098 

3 2 2 4 4 6,059.65 

4 6 5 14 4 73.0353 

5 22 24 73 4 285,506.5 

Table 5.9 Experimental results of the AO-MDNLP algorithm. 

 

It is important to note that, when the problem is partitioned by its variables, each subproblem is of much 

smaller scale than the original problem and can be solved in less time with more accuracy than the 

original problem. This can be exploited in a multi-processor architecture with relaxed synchronisation 

between the units to enable faster execution. The proposed AO-MDNLP algorithm for handling mixed-

variables is found to work efficiently because of using an appropriate solver for optimising each different 

type of variables. 

For Experiment 1, the optimal solution is 1.0758 which agrees with Floudas [1]. In Experiment 2, the 

AO-MDNLP converges to the optimum solution after only three cycles; the optimal objective function 

value of 6.0098 is similar to the best known results reported by Duran and Grossmann [3]. 

 

 MDHGA algorithm PSO algorithm AO-MDNLP algorithm 

Experiment ),(* yxf


 
Function 

evaluations 
),(* yxf


 
Function 

evaluations 
),(* yxf


 
Function 

evaluations 

1 1.077 1,221 1.076 1,802 1.0758 690 
2 6.15 10,352 6.01 11,589 6.0098 5880 
3 7284.02 26,459 6,059.71 28,187 6,059.65 9,765 
4 73.124 25,616 73.0468 26,432 73.0353 17,226 

Table 5.10 Comparison of the proposed algorithm performance with PSO and MDHGA. 

 

As shown in Table 5.10, a comparison is made to evaluate the performance of our approach with the 

popular PSO and a hybrid GA in terms of both solution accuracy and computational cost. The AO-

MDNLP algorithm slightly outperformed both algorithms in terms of solution accuracy. However, the 
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proposed approach provides much better performance in terms of computational cost, as it requires 

significantly fewer function evaluations to solve each problem.  

 

In order to further assess the efficiency of the proposed algorithm, its results have been compared with 

those published in the literature such as Evolutionary Algorithm (EA) [68], Evolutionary Programming 

method (EP) [69], and Genetic Algorithm (GA) [70]. As shown in Table 5.11 for Experiment 3, the 

optimum value of the objective function is only found to be slightly better than that of the best known 

solution found by He et al. [19], but with a significant improvement in the number of function 

evaluations. The number of function evaluations needed is 28,187 in He et al., while in our algorithm the 

total number of function evaluations required to converge is 9,765. 

 

Quantity MDHGA EP EA GA PSO AO-MDNLP 

1x  1.1875 1.000 0.9345 0.8125 0.8125 0.8125 

2x  0.625 0.625 0.5000 0.4375 0.4375 0.4375 

3x  61.4483 51.1958 48.3290 40.097398 42.0984456 42.0989 

4x  27.4037 90.7821 112.6790 176.65404 176.636595 176.6305 

1g  -0.0015 -0.0119 -0.00475 -0.00002 0.00000 0.00000 

2g  -0.0388 -0.1366 -0.038941 -0.035891 -0.0358808 -0.0358 

3g  -963.9357 -13584.5631 -3652.876 -27.886075 0.00000 0.00000 

4g  -212.5963 -149.2179 -127.321 -63.345953 -63.363404 -63.6948 

),( yxf


 7,284.02 7,108.6160 6,410.381 6,059.946 6,059.714 6,059.654 

Table 5.11 Optimal solution of pressure vessel design problem (Experiment 3). 

 

 

In Experiment 5, the batch plant problem with larger size is used to illustrate the efficiency of the 

algorithm. It was able to find the optimum solution in only four AO cycles. The optimal objective 

function obtained was 285,506.5, with 104,319 function calls. The computational time increases for this 

problem, but optimal solutions are provided at the end, where other algorithms such as outer 

approximation method [5] fails to give any results as soon as the problem size begins to be larger. 

Overall, our experiments show that one advantage of the proposed approach is that it is more likely to 
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find the global optimum solution, where it is difficult to achieve in practice. Furthermore, it can cope with 

problems that involve different search spaces, and makes it possible to solve large-scale optimisation 

problems that may otherwise be computationally difficult and cause the algorithm to fail.  

5.5. Summary  

In order to improve upon existing optimisation methods, this Chapter examines the idea of modifying 

traditional alternating optimisation by introducing an algorithm for solving MDNLP problems. A 

decomposition technique has been discussed and some computationally efficient procedures have been 

presented. The key to this technique is an augmented Lagrangian function which preserves separability 

without violating or using explicit constraints. The proposed approach shows robustness in a diverse 

range of problems and that it can be beneficial for cases where the problem has many strongly interacting 

variables. It should be noted that, this technique allows the use of any method for optimising each set of 

variables. The idea should be also extendable to other decomposition strategies; future work could 

attempt to address further decomposing or portioning subproblems in order to exploit their special 

structure, so that instead of having two units more units are used to hierarchically decompose the 

problem.  
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Chapter 6 

A Hybrid Particle Swarm Branch-and-Bound (HPB) 

Optimiser for Mixed Discrete Nonlinear Programming 

 

 

 

 

 

 

 

6.1 Introduction 

 

This work proposes a new algorithm for solving Mixed Discrete Non-Linear Problems (MDNLP), 

designed to efficiently combine the Particle Swarm Optimiser (PSO), a well-known global optimisation 

technique, and the Branch-and-Bound (BB), a widely used systematic deterministic algorithm for solving 

discrete problems. The proposed algorithm combines the global but slow search, and the rapid but local 

search capabilities of the PSO and the BB, respectively, to simultaneously achieve improved optimisation 

accuracy and low computational resources. It is capable of handling arbitrary continuous and discrete 

constraints without the use of the frequently cumbersome to parameterise penalty function. At the same 

time, it maintains a simple, generic and easy to implement architecture, and it is based on the Sequential 

Quadratic Programming (SQP) for solving the NLP subproblems in the BB tree. The performance of HPB 

is evaluated against real-world MDNLP benchmark problems, and it is found to be highly competitive 

compared to existing algorithms. 

6.2. General Background 

MDNLP refers to mathematical optimisation problems with multiple variables and nonlinearities in the 

objective function and/or the likely constraints, in which specified subsets of the variables are required to 



124 
 

take on discrete values, while the remaining are continuous. In the last decade, there has been a dramatic 

increase in the techniques developed to solve MDNLPs [14, 19, 34]. Such techniques have been applied 

in various applications, ranging from the process industry and engineering, to the financial and 

management sciences, as well as operational research sectors. MDNLP problems are notoriously difficult 

to solve, because they combine two difficult types of subproblems, namely the mixed discrete problem 

and the convex or non-convex nonlinear one. 

The general MDNLP formulation can be stated as 
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problem MDNLP      (6.1) 

 

where x


 is a vector of nc continuous variables and z


 is a vector of nd discrete variables. The problem 

also accounts for nineq inequalities  z,xg


 and neq equalities  z,xh


. Zk is the discrete set of values where 

each k
th
 discrete variable is allowed to take values from. The primary difficulty that arises in Eq. (6.1) is 

caused by the discrete nature of domain Z, since for large nd and discrete domain sizes Z , the number of 

possible combinations increase exponentially. Therefore, complexity analysis characterises MDNLP 

problems as Non-Polynomial Complete (NPC) [1]. 

 

In general, there are two classes of optimisation methods for solving mixed discrete design problems: 

stochastic and deterministic ones. Stochastic search methods are a relatively recent development in the 

optimisation field, aimed to tackle difficult problems, such as ones afflicted by non-differentiability, 

multi-modality, multiple objectives and lack of smoothness. Examples of such methods include Simulated 

Annealing [71], Genetic Algorithms [8, 72], Genetic Programming [17, 73], Evolution Strategies [13, 74], 

and hybrid methods [75, 76]. Various population-based stochastic methods have been recently proposed 
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for MDNLP. Successful examples include the PSO [19], Genetic Algorithms [39], and Differential 

Evolution [50]. The principal advantage of these methods is that the search can be performed through the 

entire design space without specific knowledge of the problem. The disadvantage however, is that they 

cannot guarantee to find the global optimum within finite time, and as such, they are all computationally 

intensive and frequently exhibit slow convergence. 

 

The deterministic search algorithms, on the other hand, take a different approach and adopt a systematic 

way of approaching the optimum. Diverse variations of these methods exist [77], with recent 

representative examples the Nonlinear Branch-and-Bound [6, 14], the Sequential Linearisation [54, 55], 

the Penalty Function approach [78, 79], and the Lagrangian Relaxation methods [80, 81]. Although, their 

main advantage is that they can use the structure of the problem to speed up the search for the discrete 

variables, their shortcoming is that they cannot cope with very non-smooth functions and multiple local 

minima. 

 

In this article we propose the Hybrid PSO-BB architecture (HPB), which is based on the fact that the PSO 

has the ability to escape from local minima, while the BB exhibits faster convergence rate. HPB retains 

and combines these attractive properties of PSO and BB, while at the same time mitigates significantly 

their aforementioned weaknesses. It is particularly suited for difficult MDNLP problems, in the sense that 

the objective function and the constraints are non-smooth functions and have multiple local extrema. The 

HPB takes advantage of the rapid search of BB, when the PSO has discovered a better solution in its 

globally processed search space. The hybridisation phase of HPB depends primarily on a selective 

temporary switching from PSO to BB, when it appears that the current optimum can be potentially 

improved. As will be described later, any such potential improvement is recorded and broadcasted to the 

entire swarm of PSO particles via its social component update. 
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6.3 The Proposed Architecture 

6.3.1 The Particle Swarm Optimisation (PSO) module 

The PSO is a stochastic optimisation method based on the simulation of the social behaviour of bird 

flocks or biological groups in general, that evolve by information exchange among particles in a group. 

The PSO algorithm was first introduced by Kennedy and Ebehart [10] followed by a more general work 

on swarm intelligence [11]. In the PSO, the population is called the swarm and the individuals are called 

particles. Each particle flies in the search space and remembers the best position it ever experienced. The 

trajectory of each individual in the search space is adjusted by dynamically altering the velocity of each 

particle, according to its own experience (cognitive component) and the progress of the other particles in 

the search space (social component). 

In the PSO (see Fig.6.1), we have a set of possible solutions 
nx   (the particle positions), with xjk 

denoting the k
th
 vector component of the j

th
 particle. The initial velocity 

 t
j

v  is set at random for every 

particle, velocity should be maintained within the range  maxmax , VV  to reduce the likelihood of particles 

leaving the space. if velocity of particle is greater than maxV  or less than maxV , its set to maxV . At each 

t
th
 iteration of the swarm operation, each position 

 t
j

x  is updated according to the velocity 
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j

v  of the j
th
 

particle, according to 
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    (6.2) 

where cc and cs are acceleration constants typically fixed to 2.0 that control how far each particle moves 

in a single iteration,  1,0r,r
jtsjtc
  are uniform randomly generated numbers that attain the stochastic 

swarm behaviour, and  1,0  is an inertia term regulating each particle’s momentum. It can be seen 

from the three components of Eq.(6.2), that the trajectory of each j
th
 particle is adjusted to take into 

account its own best known solution Pj (individual experience), and the best known solution G in the 
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entire swarm (collaboration between the N members). The personal and global best positions are 

correspondingly given by 
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      (6.3) 

The role of the inertia weighting function  is critical to the PSO’s convergence, since it controls the 

influence of the previous history of the velocities on the current one. Accordingly, the inertia weighting 

function regulates the trade-off between the global and local exploration abilities of the swarms [82]. For 

the current work, we employ a very effective PSO variant, the Time Varying Inertia Weight (TVIW) PSO 

[83] that employs an adaptive acceleration term defined as 

  t
t

max

minmax

max

t 





        (6.4) 

max and min are the maximum and minimum values of the inertia term (typically set to 0.9 and 0.4, 

respectively) and tmax the maximum number of iterations. Using this mechanism, the TVIW-PSO manages 

a more wandering early search, while towards the end of the run, when the space area containing the 

global optimum is found; it gradually assumes a more locally fine-tuning mode. 
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Fig.6.1 The TVIW-PSO algorithm. 

 

6.3.2  Handling of Constraints 

A critical part of MDNLP is how the algorithm handles the constraints, such as the 0g
i
 , 0h

j
 , or the 

membership of the discrete variables Zz


 in Eq.(6.1). In the context of evolutionary optimisation, 

several mechanisms have been proposed to enforce inequality and equality constraints [12]. Overall, these 

can be grouped to four categories: ones that preserve the feasibility of solutions [84], penalty functions 

[85], ones which differentiate between feasible and infeasible solutions [9], and hybrid methods [86, 87]. 

Penalty functions are one of the most popular and direct approaches to handle constraints [6, 7, 82, 88]. 

However, their major disadvantage is the need for careful and often problem-specific calibration of 

coefficients and parameters. 

In this work, we employ a very efficient constraint handling method referred to as the Fly-Back 
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mechanism [19], which is capable of maintaining a feasible population throughout the entire swarm 

lifetime. The idea is each particle has to fly back to its previous position when Eq.(6.2) takes it outside the 

feasible region. Experimental evaluations in [19] and our current comparisons with other methods here, 

indicate that this technique can locate better minima with fewer iterations, and more importantly, with no 

penalty parameters and coefficients needed tuning. The Fly-Back is managed by a simple modification of 

the particle update, such as 
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where only inequalities and continuous variables are shown for simplicity. 

In order to apply fly-back to constrained optimisation problems, all randomly initialised solutions need to 

be located within the feasible search space. In general, but more critically for MDNLP cases with many 

complex nonlinear constraints gi and hj, it is time consuming to randomly find a swarm composed of N 

fully feasible solutions 
 0

j
x . In this work, we have implemented an efficient constraint attainment 

formulation based on the SQP algorithm to generate random particles inside the feasible space with the 

minimum number of iterations, while maintaining at the same time an adequate initial sampling of the 

search space. 

6.3.3 Treatment of Discrete Variables 

MDNLPs typically include continuous, discrete and integer design variables. There are several methods 

that allow evolutionary techniques to handle discrete variables. Examples of such methods include 

rounding off [41], cutting plane technique [18], and pure discrete ones [89]. In this work, a truncation 

operator is used for enforcing the discreteness requirements on 
dn1

ZZz  


. Specifically, we 

maintain all nd components of z


 as real variables. Within each j
th
 particle xj, these are concatenated with 

the nc continuous variables x


 of the generic formulation of Eq.(6.1), so that the PSO velocity and 

position updates in Eqs.(6.2, 6.3) are left unrestricted. As has been observed in [42], this simple 
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truncation of their real values does not affect the search performance and keeps the handling of 

continuous and discrete variables uniform. 

6.3.4 The Sequential Quadratic Programming (SQP) module 

The SQP [2, 35] is a well-known method to solve nonconvex, nonlinear optimisation problems with linear 

or nonlinear constraints, and its overall operation is as follows. Assuming, for simplicity, that we 

minimise a function f(x) with only inequality constraints   0xg 


, the SQP is executed for a number of 

iterations starting from an initial, not necessarily feasible solution point 0
x


. At each thk  iteration, each 

current solution k
x


 is updated to 1k
x




 by finding a direction k

d


 and a step k towards that direction as 
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At the beginning of the thk  iteration, we update a Hessian matrix Hk which is maintained as a positive 

definite matrix using the following scheme 
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In the above, k

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 is the Lagrange multiplier vector at the thk  iteration while )()(),( xgxfxL T 
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the underlying Lagrangian. The moving direction k
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Finally, k in Eq.(6) is calculated by minimising the following exterior penalty function 
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where 
k,i
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  is the weight of the ith constraint at iteration k and depends on the multiplier i,k from solving 
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The termination of Eq.(6) is achieved when the relative objective value decrease cannot exceed a user-

defined tolerance  as 
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6.3.5 The Branch-and-Bound (BB) module 

Branch-and-Bound is an established and generic algorithm for efficiently enumerating and searching parts 

of discrete problems. The algorithm generally alternates between two main steps: branching, which is a 

recursive subdivision of the search space, and bounding, which is the computation of lower and upper 

bounds for the global minimum of the objective function in a sub-region of the search space. The 

nonlinear BB for mixed-integer problems [14] is based on the mechanisms of separation, relaxation, and 

fathoming. The algorithm performs a tree-search, and starts by solving first the continuous problem 

relaxation using a Non-Linear Programming (NLP) solver. If all discrete variables take discrete values the 

search is stopped. Otherwise, a tree search is performed in the space of the discrete variables. Then the 

algorithm selects one of those discrete variables which take a non-discrete value, and branch on it. One 

can eliminate more branches if a smaller upper bound is generated as early as possible. This can be 

accomplished by choosing the right variable for branching at each step. In our work, for efficiency we 

used the Min-Clearance Difference method [90] to choose the k
th
 variable by determining the minimum 

difference between the non-discrete optimum values and their nearest allowable values for the next 
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branching step. The criterion can be defined as 
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       (6.13) 

where i
z  is the clearance for the i

th
 design variable. 

Branching generates two new sub problems by adding simple bounds to the NLP relaxation. One of the 

two new NLP problems is selected and solved next by using the SQP method. If the discrete variables 

take non-discrete values then branching is repeated. Otherwise, if one of the fathoming rules is satisfied, 

then no branching is required and the corresponding node has been fully explored. The following three 

fathoming rules may be used to fathom a given candidate problem: 1. Infeasible subproblem, 2. Discrete 

feasible solution (record the value of this solution as upper bound), 3. Lower bound greater than the 

objective values of a known discrete solution. If discrete solutions are found, they provide upper bounds 

on the optimal value of the original problem. Once a node has been fathomed, the algorithm backtracks to 

another node which has not been fathomed until all nodes are fathomed. An overview of the nonlinear BB 

algorithm is shown in Fig.2. 
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Fig.6.2 The nonlinear Branch-and-Bound algorithm. 
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The optimal solutions obtained during the tree-search process are presented in Fig.6.3.  

 

Fig.6.3 Branch-and-Bound tree. 
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solutions, with the minimum objective function value. The search process terminates when there are no 

unexplored parts of the solution space. 

 

6.3.6 Integrating and sequencing the PSO and BB 

As discussed earlier, the integration framework introduced in this work aims to improve the solution 

accuracy compared to existing methods. Multi-method integration and hybridisation approaches have 

been shown effective in various works. Recently, [91] proposed a hybrid Genetic Algorithm (GA) and 

PSO for solving mixed-variables optimisation problems by incorporating evolutionary optimisation 

elements into the socially inspired PSO. [52] also presented a hybrid PSO-GA for recurrent network 

design, based on the concept of the maturation phenomenon in nature. The work of [60] presented a 

model for the hybridisation of memetic GAs with a truncated BB algorithm trying to boost performance 

through mutual collaboration. An efficient method designed for a specific application, the solution of the 

economic dispatch problem was proposed in [92]. This combined the PSO with SQP, by calling SQP 

selectively in each iteration to fine-tune the PSO solution. Our method is a direct extension of [92], aimed 

for generic optimisation in the MDNLP domain and not only NLP type problems. Another similar work is 

that of [93] that presented a hybrid BB-PSO algorithm, but specifically designed to solve integer 

separable concave programming problems, where the lower bound of the optimal value was determined 

with linear relaxation and the upper bound with PSO. Another hybridisation strategy has been proposed 

by [94] which is a PSO-based memetic algorithm for the flow shop scheduling problem that applies the 

evolutionary mechanism of PSO to perform exploration and several adaptive local searches. 

 

Concerning MDLNP optimisation, previously proposed related approaches include the work of [79] that 

incorporated a dynamic penalty approach and PSO. A penalty function for the discrete design variables 

was introduced to handle them similar to the continuous design variables. [67] proposed a hybrid GA for 

solving MDNLP. In their approach, the GA was used to determine the optimal feasible region 

surrounding the global optimum, and a gradient method was subsequently used to find the final solution. 
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Furthermore, [68] combined adaptive genetic search strategies for MDNLP, while [50] introduced a 

Differential Evolution algorithm capable of optimising integer, discrete, and continuous variables and 

handling multiple constraints using penalty functions. Recently, [95] proposed an improved PSO 

algorithm for solving nonconvex MDNLP problems with equality constraints; the original problem is 

transformed into one with no constraints after mixed variables are partitioned and reduced. [96] presented 

an improved GA that uses information theory to refresh the population as prematurity occurs. A modified 

local search is performed to determine the more-feasible solutions in a period of generations. 

 

In this work, the proposed HPB algorithm integrates the PSO and the BB methods to facilitate an accurate 

and at the same time rapid search for generic MDNLP problems. At the beginning of the proposed 

algorithm, the BB is used to determine a feasible initial solution for the PSO. This solution is taken as the 

best known solution 
 tG  of all the swarm agents. In each iteration, whenever an improvement in the 

currently stored global solution is achieved by the PSO, this improved 
 tG  is passed over to the BB 

module as a starting point. This is the principal link between PSO and the BB, as by exploiting the rapid 

convergence properties of BB, the PSO global search is influenced by the improved 
 tG , which 

propagates to all particles through the social interactions of Eq.(6.2). As seen in Fig.6.4, it is 

advantageous that the BB is not needed to be called in every single iteration but, similar to the NLP work 

of [92], only when the PSO has found a better solution. When BB completes, 
 tG  is updated and the PSO 

resumes. During PSO search, the discrete elements z


 of position vectors 
 tx  are truncated to the nearest 

valid discrete points. In any case, all solutions are guaranteed not to exceed the bounds of the search space 

because the infeasible particles are pulled back to the feasible region using the fly-Back mechanism. The 

search continues until a termination criterion, such as the maximum number of iterations T, is satisfied. 

 

Numerical experimentations show that PSO and BB have their individual advantages and characteristics 

when solving different optimisation problems. The principal objective of HPB is to combine and preserve 

these characteristics for a wide range of difficult problems. As the experimental results show that the 
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proposed HPB framework combines the PSO and BB algorithms in a highly efficient manner in terms of 

both accuracy and computational cost. Experiments show that HPB outperforms other methods because of 

using an efficient strategy which allows the utilisation of the fast search mechanism of the BB method 

while maintaining the global optimisation properties of PSO. Furthermore, stochastic search methods 

require many function evaluations as compared to derivative-based optimisation methods, which is the 

cost of not using derivatives. The proposed algorithm can quickly find the optimum point by using 

deterministic search method. Hence, the HPB algorithm requires significantly fewer function evaluations 

to converge, and at the same time reduces the number of iterations for most of the studied problems. 

 

As described in the previous subsections, an important user-oriented advantage of HPB is that there are 

no penalty functions, and it thus has much fewer parameters needed adjusting compared to other 

techniques, such as [6, 22, 97]. To avoid expensive global optimisation, HPB uses an efficient fly-back 

method to handle the nonlinear constraints, where particles are allowed to be attracted only to feasible 

solutions; this ensures that the personal best positions are always feasible. Moreover, the HPB algorithm 

uses SQP to determine the upper bounds needed in BB, which reduces the computational expenses when 

compared to other works, such as [93] which renewed the upper bound using PSO. The overall operation 

sequencing of the HPB is provided in Fig.6.4 and Table 6.1.  
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Fig.6.4 Flowchart of the proposed HPB algorithm 
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Stage 1: Initialisation Stage 

 set iteration count t =1, and other user-defined algorithmic parameters 

 for each j
th
 particle, where j =1,…,N  

  set a random initial position  0

j
x  

  if  0

j
x  lies outside the feasible space 

   Apply a goal attainment method to make it feasible 

  endif 

  set a random initial velocity  0

j
v  

 endfor 

Stage 2: Optimisation Stage 

 while termination condition is not satisfied 

  %Evaluation phase 

  for each particle 
 t
j

x  

   Decompose 
 t
j

x  to its continuous part x


 and its discrete part z


 

   Truncate z


to the nearest discrete values 

   Evaluate the objective function  z,xf


, and record it 

   Update personal best )(t
jP & global best 

)(tG via Eq.(3) 

  endfor 

  %Hybridisation phase 

  if t = =1 OR     1t)t( GfGf   (i.e., first entry or PSO achieved improvement) 

   Invoke BB module, starting the optimisation from 
)(tG ,  

   and record its final solution 
*x


 

   if     t* Gfxf 


 (i.e., BB achieved improvement) 

    set 
*)t( xG


  

   endif 

  endif 

  %Creation of next generation swarm 

  set t = t + 1 

  for each particle 
 t
j

x  

   Update position and velocity 
 t
j

x  and 
 t
j

v  via Eq.(2) 

   if the position of particle 
 t
j

x  lies outside the feasible space 

    Fly-back the current particle to its previous position 
 1t

j
x 

, according to Eq.(5) 

   endif 

  endfor 

 endwhile 

 

Table 6.1 Detailed sequencing of operations for the proposed HPB algorithm.  
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6.4 Numerical Experiments 

In this section, we evaluate the proposed HPB with a number of difficult real-world MDNLP bench 

problems frequently employed in the literature. These problems arise in mechanical engineering, and 

represent highly nonconvex optimisation problems. In order to investigate the best performance of the 

HPB algorithm, different population sizes are used for each problem with different number of 

generations. The experimental results suggested that for all benchmark tests, a very small population of 

20 could produce quickly good results. This value was fixed for all the experiments, and we only varied 

the total number of search iterations for experimental efficiency as the different test cases converge 

differently. In addition, 50 independent runs were carried out for each case. A linear decrease in the 

inertia term , with a maximum and minimum of 0.9 and 0.4, respectively was adequate to improve the 

convergence rate of the HPB algorithm for all cases. The default values of acceleration constants cc and cs 

were both set to 2.0 for the same reason. The constraint tolerances 4
hg, 10ε   are used for both equality 

and inequality constraints in all runs. 

A. Pressure Vessel Design  

In practical design optimisation problems, continuous, and discrete variables occur quite frequently. Here 

we take a pressure vessel design optimisation problem from Sandgren [43]. The objective of this problem 

is to minimise the total cost of materials for forming and welding of a pressure vessel. The design 

variables of the problem are as shown in Table 6.2. 

 

Design Variables Definition Unit Remarks Discrete Length 

x1 thickness (Ts) inch discrete 0.0625 

x2 thickness (Th ) inch discrete 0.0625 

x3 radius (R) inch continuous --- 

x4 length (L) inch continuous --- 

Table 6.2 Design variables of a Pressure Vessel. 
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The mathematical formulation of the problem is 

 






































200x10

200x10

1875.6x0625.0

1875.6x0625.0

0240x)X(g

0x
3

4
xx000,296,1)X(g

0xx00954.0)X(g

0xx0193.0)X(g

xx84.19xx1661.3xx7781.1xxx6224.0Xf

4

3

2

1

44

3

34

2

33

232

131

3

2

14

2

1

2

32431



subject to

min

   (6.15) 

We now compare the performance of our approach with other methods presented in the published 

literature. Pressure vessel design is a common benchmarking problem for MDNLP, and many researches 

have tried to solve it using different techniques [19, 40, 44, 69]. In this example, HPB had the lowest 

objective function value over the 50 test runs, with a significantly lower computational cost than all of the 

other algorithms. The optimal results of this problem are shown in Table 6.3. 

 

Quantity 
EP 

 [69] 

EA 

 [44] 

GA 

 [40] 

PSO 

 [19] 
HPB 

x1 1.000 0.9345 0.8125 0.8125 0.8125 

x2 0.625 0.5000 0.4375 0.4375 0.4375 

x3 51.1958 48.3290 40.097398 42.0984456 42.09893 

x4 90.7821 112.6790 176.654047 176.636595 176.6305 

g1 -0.0119 -0.00475 -0.00002 0.00000 0.00000 

g2 -0.1366 -0.038941 -0.035891 -0.0358808 -0.03587 

g3 -13584.5631 -3652.87683 -27.886075 0.00000 0.00000 

g4 -149.2179 -127.321 -63.345953 -63.363404 -63.69484 

f(X) 7,108.6160 6,410.3811 6,059.94634 6,059.7143 6,059.65457 

Table 6.3 Optimal solution of pressure vessel design problem. 

 

 

In our algorithm, we have used a population size of N=20, and the maximum number of search iterations 

was set to T=200. From Table 6.3, it can be seen that, the present algorithm reported the best performance 

to this problem. The run that resulted in the best objective function value performed 4,013 function 

evaluations and required 3.9 seconds of CPU time. The mean value of the objective function over the 50 
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test runs was 6,059.84, with standard deviation of 0.02194. The best-known result was obtained by [19] 

using an improved PSO. The HPB algorithm slightly outperformed that algorithm in terms of solution 

accuracy. However, the proposed approach provides much better performance in terms of computational 

cost.  

The performance of HPB and the algorithm described in [19] is compared in Table 6.4. The run that 

resulted in the best convergence properties are presented in Fig.6.5. The faster HPB convergence can be 

observed from Fig.6.5(b).  

 

Table 6.4 Comparison of the HPB algorithm performance on the pressure vessel design problem.  

 

  
(a) Improved PSO (1000 generations) (b) HPB (200 generations) 

Fig.6.5 Performance comparison for the pressure vessel design problem.  
 

 

 

B. Spring Design 

This example tackles the design of a compression coil spring under constant load for minimum volume of 

materials as shown in Fig.6.6. This problem has been solved by many authors [19, 50, 43, 44], as it 

illustrates the use of continuous, discrete, and integer variables. There are two linear and six nonlinear 
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constraints, while the design variables are summarised in Table 6.5. 

Design Variables Definition Unit Remarks Discrete Length 

x1 the wire diameter (d) inch discrete vary 

x2 the mean coil diameter (D) inch continuous --- 

x3 the number of active coils (N) --- integer 1 

Table 6.5 Design variables of Compression coil spring. 

 

The master problem formulation is given below 
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The values of pre-assigned parameters are chosen as 
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Fig.6.6 Compression coil spring. 

 

Comparisons of results of the proposed algorithm, as well as results published in the literature are shown 

in Table 6.6. 

Quantity 
Sandgren 

[43] 

GeneAS 

[44] 

DE 

[50] 

PSO 

[19] 
HPB 

x1 0.283 0.283 0.283 0.283 0.283 

x2 1.180701 1.226 1.22304101 1.22304101 1.22301421 

x3 10 9 9 9 9 

g1 -54309 -713.510 -1008.8114 -1008.8114 -1011.6168 

g2 -8.8187 -8.933 -8.9456 -8.9456 -8.9457 

g3 -0.08298 -0.083 -0.083 -0.083 -0.0830 

g4 -1.8193 -1.491 -1.777 -1.777 -1.7769 

g5 -1.723 -1.337 -1.3217 -1.3217 -1.3216 

g6 -5.4643 -5.461 -5.4643 -5.4643 -5.4643 

g7 0.0000 0.0000 0.0000 0.0000 0.0000 

g8 0.0000 -0.009 0.0000 0.0000 0.0000 

f(X) 2.7995 2.665 2.65856 2.65856 2.65850 

Table 6.6 Optimal solution of spring design problem. 

 
 

In this case, the optimum value of the objective function is found to be slightly better than that of [19, 50] 

but with a significant improvement in the number of function evaluations compared. The mean value for 

the objective function obtained from 50 runs was 2.6621, with a standard deviation 0.0239. From 

2D x  
1d x

 

displacement 

free length 
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Table 6.7, HPB demonstrates substantial gain in effectiveness and performance compared to [19] 

algorithm. The convergence plots of the best solutions produced by all runs are shown in Fig.6.7. 

 

Method Iterations Particles Runs 
Function 

evaluations 

Mean 

value 

Standard 

deviation 

CPU 

time 

PSO  f(X)= 2.65856 500 30 100 15,000 2.73802 0.10706 5.8s 

HPB  f(X)= 2.65850 40 20 50 835 2.6985 0.0239 2.0s 

Table 6.7 Comparison of the proposed algorithm performance on the spring design problem.  

 

 

  
(a) Improved PSO (500 generations) (b)HPB (40 generations) 

Fig.6.7 Performance comparison for the spring design problem. 

 
 

C. Welded Beam Design   

This problem is chosen from [45] and involves finding the minimum cost design of the structural welded 

beam design, with seven linear and nonlinear constraints. It has four design variables expressed in Table 

6.8. 

Design Variables Definition Unit Remarks Discrete Length 

x1 thickness of the weld (h) inch integer 1 

x2 length of the welded joint (l) inch integer 1 

x3 bar thickness (t) inch discrete 0.5 

x4 bar breadth (b) inch discrete 0.5 

Table 6.8 Design variables of a welded beam.  
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The problem can be mathematically formulated as follows: 
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The numerical parameters for the model are chosen as: 
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This problem has been solved by previous researchers [12, 45] as a continuous optimisation problem, 

while other author [67] solved it as a mixed discrete problem. This problem is highly nonlinear and 
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non-convex. The number of particles was set to N=20, and the number of search iterations was T=40. 

From Table 6.9, HPB reported the best result to this problem over 50 runs. The total number of function 

evaluations performed was 702. The mean value for all the runs performed was 4.3923 with a standard 

deviation 0.9267. The performance of HPB can be summarised in Table 6.10, while Fig.6.8 shows 

convergence characteristic of HPB algorithm in welded beam design.  

Quantity 
Ragsdell 

[45] 

GA 

[12] 

MDHGA 

[67] 
HPB 

x1 0.2455 0.205986 1 1 

x2 6.1960 3.471328 2 1 

x3 8.2730 9.020224 4.5 4.5 

x4 0.2455 0.206480 1 1 

g1 -5,743.826517 -0.074092 -6,685.2615 -891.365 

g2 -4.715097 -0.266227 -5,111.111 -5,111.111 

g3 0.000000 -0.000495 0.00000 0.00000 

g4 -3.020289 -3.430043 -1.4313 -1.6478 

g5 -0.120500 -0.080986 -0.8750 -0.8750 

g6 -0.234208 -0.235514 -0.2259 -0.2259 

g7 -74.2768560 -58.666440 -248,338.48 -248,338.48 

f(X) 
2.38593732 

continuous solution 
1.728226 

continuous solution 
5.67334 

discrete solution 
4.352135 

discrete solution 

Table 6.9 Optimal solution of welded beam design. 

 

Method Iterations Particles Runs 
Function 

evaluations 

Mean 

value 

Standard 

deviation 

HPB f(X)= 4.352135 40 20 50 702 4.3923 0.9267 

  Table 6.10 Computational performance of HPB algorithm for welded beam design problem.  

 

 
Fig.6.8 Evolution plots of welded beam design. 
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D. Speed Reducer Design 

This is a more complicated example taken from [2]. The objective of this problem, shown in Fig.6.9, is to 

minimise the weight of the speed reducer subject to constraints on bending stress of the gear teeth, surface 

stress, transverse deflections of the shafts and shaft stresses. The design variables with their types are 

shown in Table 6.11. The mathematical formulation of the problem is given by: 
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Fig.6.9 Speed reducer design. 

 

Design Variables Definition Unit Remarks Discrete Length 

x1 face width (b) inch discrete 0.1 

x2 module of teeth (m) inch discrete 0.1 

x3 number of teeth on pinion (n) inch integer 1 

x4 length of shaft 1 between bearings (l1) inch discrete 0.1 

x5 length of shaft 2 between bearings (l2) inch discrete 0.1 

x6 diameter of shaft 1 (d1) inch discrete 0.01 

x7 diameter of shaft 2 (d2) inch discrete 0.01 

Table 6.11 Design variables for a speed reducer. 

 

 

This problem was investigated by Li and Papalambros [98], Azarm and Li [99], and Rao and Xiong [67]. 

The results in [98, 99] violate the fifth and the eleventh constraints which lead to infeasible solution. The 

best-known result was obtained by [67] using a hybrid genetic algorithm. In our algorithm, we have used 

a population size of N=20, and the maximum number of search iterations was set to T=100. As shown in 

Table 6.12, HPB found an optimal objective function value of 2,998.6. The mean fitness value for 50 

independent runs was 3,044.16 with a standard deviation of 57.9806. The run that resulted in the best 

objective function value performed 3,029 function evaluations and required 7.6 seconds of CPU time. The 

over all computational results have been shown in Table. 6.13, while Fig.6.10 shows a plot of the 

performance of the HPB algorithm. 
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Quantity 
Li 

[98] 

Azarm 

[99] 

MDHGA 

[67] 
HPB 

x1 3.5 3.5 3.5 3.50 

x2 0.7 0.7 0.7 0.70 

x3 17 17 17 17.0 

x4 7.3 7.3 7.3 7.30 

x5 7.3 7.71 7.8 7.70 

x6 3.35 3.35 3.36 3.36 

x7 5.29 5.29 5.29 5.29 

f(X) 2,985.22 2,996.3 3,000.83 2,998.6 

Table 6.12 Optimal solution of speed reducer design. 

 

 

 

Method Iterations Particles Runs 
Function 

evaluations 

Mean 

value 

Standard 

deviation 

HPB f(X)= 2,998.6 100 20 50 3,029 3,044.16 57.9806 

  Table 6.13 Computational performance of HPB algorithm for speed reducer design problem.  

 

 
Fig.6.10 Evolution plots of speed reducer design. 
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6.5  Discussion 

The experimental results suggest that the algorithm works well in different cases and is capable of 

locating the global optimum for all the problems in the present study in a reliable manner. For cases A 

and B, Tables 6.4 and 6.7 present the computational performance of the HPB and the improved PSO [19]. 

  

The difference in the convergence capability of HPB and PSO is apparent, and shows that the integration 

of the population-based evolutionary search with the global methodical search is justified. For comparison 

purposes, we have selected the problem of pressure vessel in case A to evaluate the performance of HPB 

against the PSO.  

 

With the iteration number and the swarm size set to 1000 and 30 respectively, the proportion of PSO runs 

converging to global optimum in 100 executions is about 63%, while HPB has 84%, when the maximum 

iteration number is 200 with swarm size 20 and for 50 executions. Furthermore, the total number of 

function evaluations was reduced by 86.8%. For case B, the optimal objective function value has been 

found to be nearly the same as [19], which corresponds to a much lower percentage improvement than 

before, but with a significant improvement in the number of function evaluations, as HPB has reduced the 

number of function calls by 94.4%. Similarly, for the test cases C and D, the approach was able to achieve 

good results with relatively small populations and by using a relatively low number of generations. The 

optimum value of the objective function is found to be better than the one presented in [67]. 

 

 

 

 

 

 

 



152 
 

 

Case A: Pressure vessel design Case B: Spring design 

  
Case B: Spring design Case D: Speed reducer design 

Fig.6.11 The decrease of discovered objective value during HPB's optimisation process. 

 

The main advantage of HPB is its computational efficiency. Specifically, regardless of how many 

iterations the algorithm is run, the number of evaluations of the fitness function, which is the most time 

consuming part, is reduced since the BB module is only invoked when the PSO locates a new prosperous 

solution. As shown in Fig.6.11, we have presented case A, B, C, and D to illustrate the convergence 

characteristic of HPB during the search process where it can be seen that, HPB is very efficient in terms 

of the number of function evaluations, because the information generated inside the hybrid algorithm can 

be shared by every algorithm involved. Additionally, the cooperation of PSO and BB is synchronised in 

such a way that it balances the frequency of invoking the expensive components and searching globally 

the solution space. However, the convergence speed of HPB is not the same for all the benchmark tests, 
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and it was much dependent on the nature of the MDNLP problem. Nevertheless, it was found that a 

steady solution could always be obtained for all test cases because the BB algorithm guarantees a good 

starting point for the PSO. Another advantage of HPB is its user-friendliness, as apart from the total 

number of iterations, it does not require the user to set any parameters critical to the convergence and 

global optimality of a particular problem. 

6.6 Summary  

We have introduced a hybrid algorithm which combines the characteristics of PSO and BB to facilitate an 

accurate and rapid search for generic MDNLP problems. The designed HPB algorithm combines the 

global but slow search, and the rapid but local search capabilities of the PSO and the BB, respectively, to 

simultaneously achieve improved optimisation accuracy and low computational resources. Additionally, it 

uses the fly-back method to deal with constraints, thus eliminating the penalty factors required for 

constraint handling, and providing initial feasible particles which lead to faster convergence. The PSO is 

used mainly to determine the optimal feasible region surrounding the optimum point. Then, the best 

known solution of all the swarm particles is chosen as a starting search point for the iterative gradient 

method that is subsequently used to replace PSO to find the final optimum solution. Experiments of HPB 

show that it outperforms other methods presented in the literature in terms of both accuracy and 

computational efficiency. The HPB algorithm also produces better solutions than the ones found by the 

BB and PSO methods when used separately, with lower number of function evaluations in each run. 
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Chapter 7  

Conclusions and Issues for Further Work 

 

 

This project has developed novel and generic optimisation methods that can be applied to a multitude of 

mathematically modelled business problems. It presents a derivation of the different Continuous and 

Mixed Discrete Nonlinear Programming algorithms that have been reported in the literature. Major 

theoretical properties of these methods have been presented. All the algorithms have been implemented 

and the numerical results of the test problems have been compared with the existing algorithms. 

For the constrained global optimisation problems, different search methods have been presented in 

Chapters 2–3 based on stochastic and deterministic methods. Moreover, a new hybrid coevolutionary 

method has been invoked in chapter 4 in order to overcome the drawbacks of metaheuristics. The 

numerical results shown in Chapters 3–6 show that creating gradient-based techniques while applying 

stochastic approach in the proposed methods give better performance of metaheuristics. In addition, 

accelerating the final stage of the evolutionary methods by applying a complete local search technique 

extricates evolutionary methods from wandering around the optimal solution.  

 

In the forth Chapter, we have developed and investigated a novel coevolutionary method for solving 

constrained optimisation  problems through a coevolutionary game approach, we exploit the success of 

HCP in processing non-linear and non-convex problems. The hybridisation phase used during the 

evolutionary process of each sub-population is very efficient in increasing the convergence rate of the 
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algorithm. Furthermore, experiments of HCP show that it outperforms other methods presented in the 

literature in terms of both accuracy and computational efficiency. The proposed algorithm is also very 

suitable for parallel computation that decreases the run time required for achieving the optimum solution. 

It should be noted that, this method allows the use of different methods for optimising any set of 

variables. Our future work will focus on the techniques that combine the advantage of different 

evolutionary methods that may further increase the capability of the designed algorithm to tackle 

problems with mixed discrete-continuous variables. 

 

In order to improve upon existing optimisation methods, the fifth Chapter examines the idea of modifying 

traditional AO method by developing an algorithm for solving MDNLP problems. A decomposition 

approach has been discussed and some computationally efficient procedures have been presented. The 

AO-MDNLP algorithm shows robustness in a diverse range of problems and that it can be beneficial for 

cases where the problem has many strongly interacting variables. The idea should be also extendable to 

other decomposition strategies; future work could attempt to address further decomposing or portioning 

subproblems in order to exploit their special structure, so that instead of having two units more units are 

used to hierarchically decompose the problem. For larger MDNLP problems, the performance of the AO-

MDNLP algorithm is still open, where more numerical tests on considerably larger problems can be 

performed in order to get a more detailed picture of algorithm performance. 

 

In the sixth Chapter, we have introduced a hybrid method which combines the characteristics of PSO and 

BB to facilitate an accurate and rapid search for generic MDNLP problems. The combined algorithm 

produces better solutions than the ones found by the BB and PSO methods when used separately, with 

lower number of function evaluations in each run. Future work could attempt to develop techniques that 

combine the advantages of different evolutionary algorithms with other deterministic methods, that may 

further increase efficiency and automate the termination conditions and the total number of iterations for 

arbitrary problems. For instance, a new hybrid optimisation algorithm that combines PSO method with a 

negative subgradient search technique can be developed for solving MDNLP problems.  Furthermore, 
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because of the limitation that the current HPB cannot efficiently exploit parallel architectures since BB is 

invoked under exact conditions, further work is needed to adapt such hybrid algorithms for parallel 

architectures, so that different parts of the problem can be solved with suitable decompositions of the 

search space. 

All in all, the author believes that the developed approaches have introduced efficient algorithms for 

optimisation theory. These algorithms are successfully demonstrated against real-world benchmark 

problems, and it is found to be highly competitive compared to existing algorithms. The effectiveness and 

robustness of the designed methods are validated using several engineering optimisation problems.  
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