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Abstract 

The presence of some missing outcomes in randomized studies often complicates the 

estimation of measures of effect, even in well designed randomized controlled trials.  

The process may be complicated further when the efficacy rates are close to 0% or 

100% as the standard binomial model is susceptible to model non-convergence. The 

main objective of this study was to compare the performance of multiple imputation 

(MI) and Complete Case analysis for dealing with missing binary outcomes when 

modeling a risk difference. Firstly, however, the binomial regression COPY method and 

the Cheung‟s modified Ordinary Least Squares (OLS) method were examined using 

simulation processes for their appropriateness in risk difference modeling. It was found 

that the number of copies (for the COPY method) required to minimize non-

convergence coincided with the number of copies that gave the most biased estimates of 

the true efficacy difference while increasing the number of copies made the problems of 

non-convergence and bias worse; using Cheung‟s method, however, there was 100% 

convergence with unbiased estimates of effect size. Simulation methods were used to 

compare the performance of complete case (CC) analysis and several multiple 

imputation (MI) models for handling missing outcome data over a wide range of 

efficacy environments and missing value assumptions. When outcomes were missing at 

random (MAR) or completely at random (MCAR), MI analyses that included treatment 

group membership in the imputation calculations yielded unbiased estimates of efficacy 

differences. The CC method was found to be as good, and often better, than MI methods 

when outcomes were MAR or MCAR, with coverage close to 95% in many situations – 
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but neither CC nor MI produced unbiased estimates of effect difference when outcomes 

were missing not at random (MNAR).  It was concluded that CC and MI methods are 

equally good in terms of producing unbiased estimates of effect difference in most 

missing outcome situations, but applying the intention to treat principle (ITT) which 

requires all randomized patients to be included in the primary analysis of a RCT, MI 

should be adopted as the analysis method of first choice, accompanied by a secondary 

CC analysis for sensitivity purposes (i.e. to investigate the extent of any likely bias). 



 

1 
 

Chapter 1 : Missing binary outcome data in randomized controlled 

trials 

1.1 Background and motivation 

Randomized Controlled Trials (RCTs) are the gold standard for evaluating the impact of 

treatment or interventions in clinical and epidemiological research (Montori and Guyatt 

2001). The most important characteristic of a well designed RCT is that it ensures 

unbiased estimates of treatment or intervention effect (Montori and Guyatt 2001, 

Machekano et al. 2008). When the data are fully observed there are well established 

theoretical methods to derive unbiased estimates of treatment or intervention effect in 

RCTs. One major requirement made by the use of these standard methods in analysing 

RCTs is that data are available on all participants recruited in a trial (Allison 2001). In 

RCTS, most of the baseline data are usually collected and are complete, however, in 

practice it is very common to find missing outcome data (Wood et al. 2004). Possible 

reasons for the outcome data to be missing include: loss of participants to follow-up 

before an outcome of interest is measured; sample processing failure by a piece of  

laboratory equipment and loss of a participant‟s laboratory sample (Altman and Bland 

2007); participants withdrawing from a study before an outcome of interest is measured 

due to any of the following: occurrence of adverse events, illness unrelated to a study 

intervention, protocol violation, and ineffective treatment (Molenberghs and Kenward 

2007). 
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The presence of missing data often complicates analyses and the strength of an RCT 

design may be compromised.  Missing outcome data may lead to increased uncertainty 

over estimates of treatment effect and biased estimates if not properly dealt with in 

statistical analyses (Higgins et al. 2008).  

 

For close to four decades now, several statistical methods of handling missing data have 

been developed with active research still ongoing (Rubin 1976, Dempster et al. 1977, 

Diggle and Kenward 1994, Robins et al. 1995, Rotnitzky and Robins 1997, Schafer 

1997, Scharfstein et al. 1999, Little 2002, Kenward and Carpenter 2007).  The methods 

include the multiple imputation (MI) approach, inverse probability weighting (IPW), 

doubly robust inverse probability weighting (DR-IPW) and Maximum Likelihood 

Estimation (MLE). These methods are discussed in detail under literature review in 

Chapter 2. In spite of the broad body of literature on methods of dealing with missing 

outcome data, researchers often use the most expedient approach of excluding 

observations with any missing outcomes which is default in many statistical packages   ( 

Allison 2001, Altman and Bland 2007, Machekano et al. 2008). This method is 

commonly known as complete case (CC) analysis. This CC analysis method may yield 

biased estimates of treatment effect especially when the missing data levels are high 

(Donders et al. 2006, Machekano et al. 2008, Altman 2009). Furthermore the CC 

analysis method lacks a principled statistical foundation and its behavior is 

unpredictable in different missing data scenarios (Kenward and Carpenter 2007). In 

some cases researchers choose a method of handling missing outcome data haphazardly 

during analysis. Choosing a missing data method arbitrarily is dangerous as it ignores 
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the fact that the existing methods are only valid in specific missing data scenarios. Even 

the well known principled methods such as the MI methods (methods that fill in the 

missing observations with randomly generated plausible values based on other observed 

values) are biased in some situations and are not better than CC analysis in other settings 

(Allison 2001, White and Carlin 2010).  The choice of the methods of handling missing 

data depends on the pattern of missing data as well as the mechanism that leads to the 

data being missing (Ibrahim and Molenberghs 2009). The patterns of missing data and 

missing data mechanisms are detailed in Chapter 2.  In summary, the methods for 

handling missing outcome data are well developed for RCTs but are rarely applied in 

practice (Ibrahim and Molenberghs 2009) and the challenge is on the method choice that 

is most appropriate for a particular effect measure and missing data scenario since 

universally robust methods for handling missing data do not exist.  

 

In RCTs, the intervention effect for binary outcomes is often measured using relative 

risks (RR), odds ratios (OR) or risk differences (RD) (Magder 2003). In recent years an 

RD has become a widely reported measure of effect in RCTs especially for malaria 

studies. Examples of trials that report  a risk difference include: (Bell et al. 2008, 

Arinaitwe et al. 2009). Of note, an RD model sometimes fails to converge in software 

(Cheung 2007). 

 

Simulations are computer intensive procedures that are employed to evaluate the 

performance of a variety of statistical methods relative to a known value, called a 

parameter (Burton et al. 2006). 
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Considering that existing methods are not robust in all missing data scenarios, it is 

always important to perform simulation studies to compare the performance of different 

methods of dealing with missing data in order to identify the methods that are the most 

appropriate for a particular scenario.  

 

Simulation studies have examined methods of handling missing binary outcome data 

where the summary measure of interest is an OR, for example: (Machekano et al. 2008, 

White and Carlin 2010, Groenwold et al. 2011). However, little is known on how the 

missing data methods perform when the outcome of interest is an RD rather than an OR. 

Clearly there is a gap in our knowledge of the most appropriate methods of handling 

missing outcome data when estimating the RD from an RCT.   

 

Many principled methods of missing data such as IPW, DR-IPW and MLE are not easy 

to implement by a general researcher. In contrast, the MI approach is a principled 

statistical approach for dealing with missing data that is widely available in many 

software packages and is relatively easier to implement than the other principled 

methods. Furthermore, MI is valid and efficient in many situations when data are MAR. 

In spite of its wide availability in statistical software packages, validity, efficiency and 

relative user-friendliness, researchers rarely apply this method as well as the other 

principled methods when modeling an RD in the presence of missing outcome data. 

Perhaps, researchers do not apply this method because its performance has not yet been 

examined in a simulation study in the context of risk differences. On the other hand, in 

spite of being adhoc, inefficient and potentially biased, the CC method is a commonly 
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used method to estimate an RD in the presence of missing outcome data in RCTs. It is 

important, therefore, to compare the performance of complete case analysis and multiple 

imputation approach in terms of bias and efficiency, for modeling an RD in the presence 

of missing outcome data in an RCT setting using simulations over a range of efficacy 

and missing outcome data scenarios.  

 

Fitting a risk difference model uses the binomial regression model with an identity link 

function as the standard. However, this analysis approach is susceptible to model fail in 

software. The Copy method and Cheung‟s OLS method were potentially identified to be 

used in cases where the binomial regression model fails. 

 

1.2 The “COPY method” and the binomial regression model 

The copy method was proposed by Deddens and Petersen (2003) to deal with the 

problem of model failure when estimating risk ratios with the log-binomial model using 

Maximum Likelihood Estimation (MLE). The non-convergence often arises when either 

or both of the individual risk estimates is close to either 0% or 100%, so the ratio itself 

is either close to zero or approaches infinity). In this approach, multiple copies of the 

dataset are added to the original set; when the binomial regression model is applied to 

this modified data set, the model converges and approximate maximum likelihood 

estimates of the risk ratio are obtained (Deddens and Petersen 2003, Deddens and 

Petersen 2008, Petersen and Deddens 2009).  
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Mathematically, the copy method calculates MLEs using a log-binomial model on an 

expanded version of the data set that contains K-1 copies of the original dataset plus one 

copy of the original dataset in which the values of the binary outcome variable are 

reversed (the 1‟s (successes) are all changed to 0‟s (fails) and the 0‟s (fails) are all 

changed to 1‟s (successes)). When modeling a risk ratio using a log-binomial regression 

model, if the total number of dataset copies, K, is finite, the iterative estimation solution 

moves away from the parameter space and is an MLE for the “copied” dataset (Petersen 

and Deddens 2009).   

 

As K gets increases, the MLE estimate obtained from the “copied” dataset with a log-

binomial model approaches the MLE estimate for the original dataset (i.e. is asymptotic) 

(Deddens and Petersen 2008, Petersen and Deddens 2008, Petersen and Deddens 2009). 

Petersen and Deddens (2008, 2009) recommend that K should be at least 100 (although 

in their paper they used a value of K = 1,000).  

 

Mathematically, expanding the original data set in the manner required for the copy 

method is simply equivalent to creating a new data set consisting of one copy of the 

original data set having a weight of K-1 and one copy of the original data set with the 

outcome values reversed having a weight of one. Lumley (2006) states that use of the 

weights (K-1)/K and 1/K for the original outcome and the reversed outcome datasets 

respectively eliminates the need to adjust the standard error (Lumley et al. 2006). The 

COPY method was examined to assess whether it is an appropriate alternative when the 

standard binomial model fails. It was investigated in terms o f convergence and bias. 
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1.3 Cheung’s modified OLS method 

Cheung (2007) proposed a variation of the Ordinary Least Squares estimation 

methodology to address the address the problem of non-convergence when modeling 

risk difference. The method uses a modified least-squares regression approach with a 

Huber-White robust standard error (Cheung 2007).  

 

Simulation studies were performed to investigate the suitability of this method for 

modeling risk differences, in terms of both convergence and bias as an alternative to the 

binomial regression.  

 

1.4 Description of the motivating malaria efficacy clinical trial data 

1.4.1 Study design 

This research was motivated by a malaria efficacy study that was conducted in Malawi 

between 2003 and 2005 in children aged 1 to 5 years. The methods and the findings of 

this study are detailed in Bell et al (2008) but a brief summary of its rationale, design 

and findings follow: 

 

Bell and colleagues conducted a blinded randomized controlled study to compare the 

efficacy of several Sulfadoxine-Pyrimethamine (SP)–Based Combination therapies. 

They used a total of four treatment groups including the placebo group. The three 

“active” (comparator) treatments were SP plus chloroquine (CQ), SP plus artesunate 

(ART) and SP plus amodiaquine (AQ); the control arm comprised of SP plus placebo 
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(SP was the standard first line treatment for uncomplicated falciparum malaria in 

Malawi during the time when the study was conducted). The study was conducted in 

response to accumulating evidence indicating that SP was developing some resistance 

and because the WHO was recommending the use of combination therapies (especially 

the artemisinin combination therapies (ACTs)).   

 

The study was done in Malawi and was based at the Chileka Health Centre. Chileka is a 

rural area in southern Malawi that has perennial malaria transmission that peaks during 

the rainy season.  The rainy season in this area is between October and May, with the 

heaviest rains occurring somewhere around December to April. 

 

All children in the study area aged between 1 and 5 years were screened for 

uncomplicated falciparum malaria. Children were recruited into the RCT if their weight 

was greater than or equal to 6 kg, if they had an axillary temperature of greater than or 

equal to 37.5
0
C, if they had not been treated with an antimalarial drug or cotrimoxazole 

in the previous 4 weeks, and if they had a plasmodium falciparum parasite density of 

between 2000 and 200,000 parasites/ml – but were excluded from recruitment if they 

had any signs of severe malaria.  

 

Children who met the inclusion criteria were enrolled and randomized in blocks of 12 

(i.e. with 3 children allocated to each of the four treatment arms in each block). Each 

child was assigned a randomization (study) number sequentially.   
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Measurements were taken from each recruited child on days 0, 1, 2, 3, 7, 14, 28 and 42 

and on any other unscheduled day if they were sick during follow up. The clinical 

outcomes were assessed according to the 2003 WHO efficacy protocol (World Health 

Organization 2003). Children were withdrawn from the study if they missed a follow up 

visit detailed above, if they (or their guardian/carer) withdrew consent or if they took 

treatment that was considered to be a protocol violation/deviation.  

 

1.4.2 Sample size and statistical methods 

The study was designed to have 90% power to detect the following difference in the 

proportion of children with an „„adequate clinical and parasitological response‟‟ (ACPR) 

efficacy rate at the conventional 5% significance (alpha) level:  80% response in the SP 

plus placebo arm vs. 95% in at least one of the combination therapies. The literature 

available at the time the study was being designed indicated that SP was developing 

high resistance, so the efficacy of this treatment arm was anticipated to be 80% or lower. 

It was planned that each of the combination therapies would be compared in turn with 

the SP plus placebo group. 

 

It was estimated that 85 children would be required in each treatment arm (total 340 

children) to detect the desired combination treatment effect size. To allow for a loss to 

follow-up rate of up to 15%, the actual sample size was set at 100 children per treatment 

arm (total 400 children). 

 

The primary endpoint was the day 28 ACPR rate (i.e. the proportion of children who 

had an ACPR by day 28). Day 28 ACPR rate was thus a binary variable indicating 
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whether each participating child had a treatment failure or treatment success. Children 

were said to have had a treatment success if they had no fever and no parasaitaemia, 

otherwise they were said to have had a treatment failure.  

 

The primary analysis of the primary endpoint was conducted using the intention to treat 

(ITT) principle whereby all children recruited into the trial were included in the analyses 

according to the group that they were randomized to. This was followed by a secondary 

analysis conducted using a per protocol analysis strategy (as a form of sensitivity 

analysis).  

 

Almost all values were available for the baseline variables because these formed part of 

the inclusion or exclusion criteria. However, there were some children with missing 

outcomes due to a number of reasons, including: lost to follow-up, withdrawal of 

consent, withdrawn from study because of a protocol violation or deviation before the 

day 28 outcome was assessed. A few children had mixed plasmodium falciparum 

malaria genotypes post treatment. In many children for whom parasitaemia was detected 

during follow up, PCR was used to determine whether treatment was a success or not; 

however the outcome remained indeterminate for some children even after performing 

PCR.  

 

The missing outcomes created some challenges in terms of how they should be treated 

in the statistical analysis. In the intention to treat analyses, all children with missing 

outcomes were all classified as successes in a first analysis and then as failures in a 
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second analysis irrespective of which treatment arm they had been allocated to. In the 

per-protocol (PP) analysis, all children with missing outcomes were excluded from the 

analytical process (again irrespective of which treatment arm they had been allocated to) 

- a method that is commonly referred to as “complete case analysis”.  In order to 

improve accuracy, the PP analyses were done using polymerase chain reaction (PCR) 

corrected data to distinguish recrudescences from reinfections. When PCR results 

showed that a post-treatment parasitaemia genotype was a reinfection, the outcome was 

classified as a treatment success to the original parasitaemia genotype. If PCR result was 

indeterminate, the child was assigned a missing outcome value and was excluded from 

the per protocol analysis. 

 

All data analyses were performed using the Stata for Windows software (version SE/8; 

statacorp; College Station, Texas 77845 USA). The outcome statistic chosen to indicate 

effect size was the risk (efficacy) difference between each intervention group and the 

control arm. Binomial regression models were fitted to the data and used to estimate the 

relevant risk differences (along with their corresponding 95%confidence intervals).  

 

1.4.3 Missing outcomes 

By day 14 of the study, 44 (9.7%) of all children recruited had been withdrawn, and this 

number had risen to 51 (11.2%) by day 28. Consequently these children had a missing 

primary endpoint on day 28. The reasons for withdrawal included: lost to follow-up; 

protocol violation; vomiting medication on the first day: voluntary withdrawal of 
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consent. The proportions of children with missing outcomes were similar across the 

treatment groups. Only negligible missing levels were observed in the covariates. 

 

1.4.4 Results for the primary outcome of the historical data: efficacy of 

antimalarials 

The efficacy rates were very high in all of the intervention arms.  The AQ plus SP had 

an efficacy rate that was as high as 97%, 95% CI (93%, 99%) by day 28. The efficacy 

rate was close to the boundary value of 100%. Using the ITT analysis strategy in which 

the missing outcomes were assigned success values, the day 28 ACPR rate was lowest 

in the SP plus placebo group, which had an efficacy rate of 25%, 95% CI (18%, 34%), 

much lower than that anticipated (80%). The AQ+SP group had an ACPR rate of 97%; 

this was significantly higher than for the CQ+SP and ART+SP groups which had 

efficacies of 81%, 95% CI (73%, 88%) and 70%, 95% CI (61%, 78%) respectively (thus 

proving that in malaria treatment studies, efficacies close to the boundaries are just as 

possible as efficacy levels that are away from the boundary). There was no significant 

difference between the CQ+SP and ART+SP groups. 

 

1.4.5 Motivation for designing simulation studies of missing data methods 

During the analysis of this data, we (the co-investigators) noted that there was no clear 

guidance on the choice of an appropriate method of handing missing binary outcome 

data arising from a randomized controlled design when risk differences are of interest.  
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From the literature on similar studies, we noted that authors tended to adopt a method of 

handling missing data arbitrarily without justification. Most commonly, methods were 

selected adhoc and usually involved extreme case (EC) analyses and complete case 

(CC) analyses. The CC analysis simply excludes any cases with missing outcome data 

while EC analysis simply replaces missing outcomes either all as successes or all as 

failures. Both of these methods are prone to bias especially when the levels of missing 

data are high. Statistical power may also be reduced in the case of complete case 

analysis.  

 

In the absence of a clear guidance we were tempted to just choose the missing data 

methods that were being commonly used and to adopt the adhoc methods of complete 

case analysis for the per protocol analyses and extreme case analysis for the intention to 

treat strategy. We did not have any clear basis for the choice of these methods apart 

from being consistent with other researchers who had reported on the same subject area.  

 

This rather negative experience was the motivation to start to think of carrying out a 

simulation study that would provide empirically based guidance on the choice of 

methods for handing missing outcome data. We noticed that there were a number of 

principled approaches published for handling missing data in such scenarios but the 

main challenge was on the method choice.  
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We were aware that the efficacy rates in the Bell et al study were very variable- some 

were very close to the 100% boundary while others were some distance away from the 

boundary – which could also complicate the analyses. For example, efficacies rates of 

25%, 70%, 81% and 97% were observed in the “SP plus placebo”, “ART plus SP”, “CQ 

plus SP” and “AQ plus SP” treatment arms respectively. This provided a rationale for 

the choice of efficacy levels to be considered in a simulation study; efficacy levels were 

chosen in such a way that they covered the whole of the expected efficacy spectrum – 

some of the efficacy levels were chosen to be close to boundary values (in this context, 

close to 100%) while others were chosen to be away from the boundaries.  

 

In addition to the Bell et al study, another malaria efficacy study was underway in 

Malawi at the time of formulating this dissertation project.  So, in order to both inform a 

more informative analysis of the Bell et al study and to guide the preparations for the 

analyses of this second study, simulation studies were planned to address a clearly 

identified gap in our knowledge about the optimum choice of the methods of handling 

missing outcome data (with particular emphasis given to the situation of a binary 

outcome measure). The missing data simulations were planned to be performed over a 

wide range of efficacy rates and over a range of assumption of the mechanisms that may 

be reacting the missing outcomes. The simulation studies on missing data methods are 

the core of this thesis. 
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In most comparative studies, adjusted estimates of treatment effect are of interest, both 

to identify factors that are independently associated with the treatment effect size and to 

ensure that the effect size estimate presented is a true indication of the effect of the 

treatment of interest alone. However, risk difference modeling using the standard 

binomial regression model is susceptible to model failure (model convergence problems 

and estimate bias) when adjusting for other variables. This phenomenon provided 

additional motivation to examine factors that may be associated with the model failure 

and also to perform simulation studies to identify alternative methods that can be used 

when the standard binomial regression model fails to provide an adjusted estimate of 

effect size. 

 

In summary, the analysis of this historical data was very motivating. It was clearly 

observed that although methods of handling missing data are well developed, there is a 

gap in knowledge of the methods that are the most appropriate for modeling a risk 

difference in the presence of missing binary outcome data in the context of a 

randomized controlled design. Furthermore, no universally robust methods of missing 

data exist. Thus, the primary rational for the simulations presented in this thesis was to 

compare methods of handling missing data and thereby to identify the most robust 

method of analysis. In addition, it was deemed important to perform simulation studies 

to understand the issue of non-convergence when modeling a risk difference using the 

standard binomial model and to identify alternative methods for dealing with this 

problem.  
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1.5 Aims of the project 

1.5.1 Main objectives of the study 

The primary objective of this research is to use computer simulation techniques to 

compare the performance, in terms of bias and efficiency, of the MI method and CC 

analysis approach for handling missing binary outcome data when modeling a risk 

difference in the presence of missing outcome data. The comparisons are performed 

over a variety of efficacy and missing binary outcome data scenarios, focusing on a 

randomized controlled trial design. Furthermore, this study identifies the factors that 

may lead to the convergence problems in software when estimating an adjusted risk 

difference. 

 

1.5.2 Specific objectives 

1. To compare the performance of the multiple imputation (MI) method and 

complete case (CC) analysis when estimating a risk difference from a 

randomized controlled design with the following missing data mechanisms:  

a. missing at random(MAR); 

b.   missing completely at random(MCAR); 

c. missing not at random (MNAR). 

2. To assess how the closeness of the efficacy to a boundary value (i.e. to 0% or 

100%) impacts the estimates from CC and MI in terms of bias and efficacy by 

considering the following efficacy scenarios: 

a. the efficacy rates are away from a boundary value in both arms; 
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b. the efficacy rate in one treatment arm is close to a boundary value while in 

the other arm it is away from a boundary value; 

c. the efficacy rates are close to a boundary value in both treatment arms. 

3. To investigate the impact of the following factors on non-convergence of a 

binomial model that estimates a risk difference in Stata statistical software 

package: 

a. one or both efficacy rates close to a boundary value; 

b. the number of covariates in a model; 

c. the correlations between covariates. 

4. To assess the appropriateness of the binomial model, the COPY method of the 

binomial model and Cheung‟s OLS method in terms of convergence and bias. 

 

1.6 Significance of the study 

“Risk difference” is becoming a commonly used measure of effect in medical research 

especially in randomized controlled trials. However, while a risk difference model may 

lead to biased estimates of intervention effect in the presence of missing outcome data, 

the exact nature of this problem is not fully understood. The findings of this research 

will fill this gap in knowledge by providing informed guidance on the relative merits of 

the MI method and CC analysis approach for handling missing binary outcome data 

under different missing data mechanisms and efficacy scenarios.  Knowledge of the 

factors that may lead to a risk difference model failure will help researchers in deciding 

whether to use CC or MI methods and, if the latter are chosen, which covariates should 
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be used in the MI process that are most likely to produce unbiased estimates of the 

effect difference and minimize the risk of model failure.  

 

1.7 Structure of the thesis 

The thesis is structured as follows: Chapter 2 discusses the literature on the common 

measures of effect for binary outcome in randomized controlled trials, missing data 

theory and common approaches for handling missing data. Chapter 3 provides details of 

the statistical and simulation methods compared in this dissertation. Experimental 

findings of the simulation studies on convergence of a binomial model and alternative 

approaches are presented in Chapter 4. Chapter 5 presents experimental findings of the 

simulation studies for the comparisons of methods for dealing with missing data. The 

discussion of all experimental findings is presented in Chapter 6. Study conclusions, 

recommendations and further research questions are also presented in Chapter 6. The 

Stata programs used in the simulation exercises are provided as an appendix at the end 

of the thesis.  
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Chapter 2 : Literature review 

This Chapter describes the common measures of effect for a binary outcome variable in 

RCTs and reviews missing data theory in this situation, focusing on common approaches 

to handling missing binary outcome observations. Both unprincipled and principled 

statistical methods are reviewed, and the strengths and weaknesses of each are discussed.   

This Chapter is structured as follows: firstly, common measures of effect when modeling 

a binary outcome data in RTCs are described; missing data theory in general is then 

reviewed; finally, common approaches to handling missing binary outcome observations 

are discussed. 

 

2.1. Common measures of effect for binary outcome data in RCTs 

The measures of effect in RCTs where the outcome of interest is binary include: odds 

ratios (OR), relative risk/risk (rate, hazard) ratios (RR), risk (rate, hazard) differences 

(RD) and number needed to treat (NNT). However, the most commonly used measures 

are: OR, RR and RDs; there are many examples of these measures reported in the 

research literature for example: (Faucett et al. 2002, Brasseur et al. 2007, Bell et al. 2008, 

Borrmann et al. 2008, Crompton et al. 2008, Faucher et al. 2009, Gesase et al. 2009, 

Chasela et al. 2010, French et al. 2010).   

 

For mainly historical reasons, ORs are the most widely reported measure of effect in 

clinical and epidemiological research, including RCTs. Until fairly recently, there were 
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computational difficulties such that regression models of binary data could only be done 

on odds ratios and not on risk or rate ratios, even though the theory had been well 

developed (Cox and Snell 1970). In fact the Cox proportional hazards regression model 

(Cox 1972) was the first method adopted widely to model rate ratios before Poisson and 

negative regression models appeared in the widely used statistical computer packages. 

The Cox proportional hazards regression model estimates risk ratios by setting the 

follow-up time to 1 (Cummings 2009b). 

 

However, there has been a lot of debate as to which of a RR or an OR is the most 

appropriate statistic to use (Barros and Hirakata 2003); this debate has been extended to 

also include RDs. It has been argued that the OR has been in wide use because it is 

computationally less challenging than the alternatives RR and RDs (Wacholder 1986). 

When analyzing case-control studies, of course, the OR is the only appropriate statistic to 

use to compare risks; the relative risk is mathematically invalid because the selection of 

study participants is based on outcome and not exposure (Miettinen and Cook 1981).   

 

Despite their computational advantages and frequency of use in the past, the continued 

use of ORs for other than case-control studies has been heavily criticized. An OR is 

practically challenging to interpret for many medical researchers (Greenland 1987, 

Barros and Hirakata 2003). It is often interpreted as an approximation of a relative risk 

when in fact this approximation is only valid when the outcome of interest is not common 

(Greenland 1987, Barros and Hirakata 2003).  The main concern among epidemiological 

researchers is that when an OR is misinterpreted as a relative risk even when the 
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prevalence of the outcome measure is common, can easily yield incorrect inferences of 

treatment effect ( Davies et al. 1998, Case et al. 2002, McNutt et al. 2003, Page and Attia 

2003, Cheung 2007).  

 

An OR is routinely chosen as a measure of effect often based on mathematical 

convenience without consideration of whether the results are interpretable (Walter 2000). 

The relative risk, on the other hand, occupies a very special role as a measure of effect for 

binary outcome in cohort studies, in which exposure usually precedes outcome and it is 

generally befitting to use an RR as a measure of effect. For some time now, many 

researchers have been recommending a systematic use of the RR rather than the OR 

whenever appropriate (Axelson et al. 1994, Davies et al. 1998, Grimes and Schulz 2008, 

Cummings 2009a). RDs and RRs are sometimes more biologically plausible than ORs 

which may give them an advantage when describing a risk (Walter 2000). 

 

Further to this debate, Cheung (2007) points out that in the case of equivalence and non-

inferiority studies, the RD has a more meaningful interpretation than either the OR or the 

RR (Cheung 2007). Unfortunately, however, much as the risk difference is becoming a 

more attractive measure of effect for binary outcome measures than both the OR and RR 

because of its interpretational advantages, as will be discussed later in this dissertation, 

the binomial mathematical models used to compute the RD often suffer from 

convergence problems in many (possibly all) statistical software packages (Wacholder 

1986, Cheung 2007).  



 

22 
 

2.2 Risk difference modeling and alternative methods 

2.2.1 Odds ratios and risk ratios 

In comparative studies where the outcome of interest is binary, odds ratios or risk ratios 

are most commonly used to model intervention effect size.  

 

 The odds ratio is the only valid summary statistic in case control studies where the 

selection of study participants (cases and controls) is based on the outcome rather than 

the exposure - in this case a risk ratio cannot be computed directly. More precisely: the 

odds ratio compares the relative odds of a (binary) outcome between treatment groups; 

it is also a commonly used measure of strength of association between outcome and 

exposure in case-control studies. Odds ratios can most easily be obtained from a 

logistic regression model. 

 The risk ratio is the most appropriate summary statistic in cohort studies where 

exposure usually precedes outcome and study participants are selected on the basis of 

their exposure to the risk factor of interest (then followed up to determine the 

incidence of the outcome of interest).  More precisely: the risk ratio compares directly 

the probability of a dichotomous/binary outcome between two groups and is a 

standard measure of effect in cohort studies when the objective is to compare (binary) 

outcomes between groups. Rate ratios can most easily be obtained from a negative 

binomial regression model. 
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The odds ratio is still used widely as the preferred measure of effect even in situations 

where a risk ratio is probably more appropriate. There are several reasons for this: 

 

 The odds ratio has important computational advantages over both the risk difference 

and the risk ratio when adjusting for covariates (Wacholder 1986).  

 The odds ratio does not have the convergence problems encountered in many software 

packages when attempting to estimate and/or manipulate risk ratios and risk 

differences. 

 Most reports of cohort studies in the past have used odds ratios, so using this statistic 

for new cohort studies provides a more ready comparison with findings from previous 

studies. 

 

On the debit side, however, the odds ratio is often used – and interpreted – as if it is 

actually a risk ratio (Zhang and Yu 1998). Such an interpretation is only valid when the 

outcome of interest is rare (Greenland 1987, Zhang and Yu 1998).  Odds ratios are not 

the simple concept many believe them to be (Case et al. 2002, Cheung 2007), so are 

sometimes misinterpreted. Predominantly, many researchers interpret the odds ratio as if 

it is actually a risk ratio (Davies et al. 1998, Case et al. 2002). Such an interpretation may 

lead to an incorrect inference of the treatment effect estimate (Case et al. 2002). The 

degree of error in interpreting an odds ratio as a risk ratio is often small (Davies et al. 

1998, Page and Attia 2003), but can be substantial in some situations (McNutt et al. 2003, 

Page and Attia 2003). The extent of any interpretive error cannot be readily assessed 
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from the value of the odds ratio estimate as this error is a function of the underlying 

probabilities rather than of the odds ratio itself. 

 

The risk ratio also has some limitations, including potentially important interpretation 

problems. For example, the risk ratio for the outcome Y = 0 is not the inverse of the risk 

ratio for the outcome Y= 1 (Blizzard and Hosmer 2006).  This means that when risk 

ratios are used in some RTCs and equivalence studies, evidence of equivalence in the 

failure rate does not necessarily come with evidence of equivalence in the success rate 

(Cheung 2007). This dilemma considerably limits the use of the risk ratio in some 

situations (Cheung 2007). 

 

2.2.2 Risk difference and rationale for its choice 

The risk difference is an alternative statistic for presenting effect size estimates derived 

from binary outcome data, and seems to be the most appropriate method in situations 

where efficacy is high in both treatment groups.  

 

For example, consider a trial that recruits 1000 individuals in the intervention arm and 

1000 participants in the control arm. Let the treatment failure rate be 4% (40/1000) in the 

control group and 1% (10/1000) in the intervention group (i.e. the success rates are 96% 

and 99% in the control and intervention arms respectively). This gives a RR of 4.0 (95% 

CI 2.0 : 8.0; p<0.001). The interpretation of this is that individuals in the control group 
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were 4 times (and statistically significantly) more likely to fail than those in the 

intervention group, with the 95% confidence interval indicating that the true risk ratio lies 

between 2 and 8. On the other hand, using the odds ratios as an alternative for this data 

gives OR=4.1 (95% CI 2.0 : 9.3; p<0.001). The interpretation of this is that the odds of 

treatment failure in the control group is just fractionally over 4 times (and statistically 

significantly) greater than the odds of treatment failure in the intervention group and that 

we can be 95% confident that the true population odds ratio lies somewhere between 2.0 

and 9.0. Clearly, both of these statistics considerably exaggerate the real (i.e. clinically 

important) difference in the relative effects of the two treatments. 

 

Now consider the analysis of this study using risk differences. This would give 

RD=0.03(95% CI 0.02 : 0.04; p<0.001). The interpretation of this statistic is that there is 

a (statistically significant) 3% difference in the risk of treatment failure between the 

intervention and control arms, and that we can be 95% confident that the true population 

risk difference is between 2% and 4%. In this situation, the risk difference is clearly 

providing a more sensible and meaningful assessment of the relative sizes of the 

treatment failure rates than either the odds ratio or risk ratio. It is common in malaria 

efficacy studies to observe treatment efficacy rates that are greater than 90% and just 

slight differences in the success (or failure) rates in such studies are likely to be 

exaggerated if presented as an odds ratio or a risk ratio.  
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As studies are increasingly being analysed using risk differences, it is becoming 

appealing for new studies to be analysed in a similar manner so that the outcome 

measures from different studies can be combined in a meta-analysis /systematic review. 

Risk difference estimation is preferred by many researchers because it is easier to 

interpret than the alternative odds ratio. A risk difference is symmetric so evidence of 

equivalence in failure rate is mathematically equivalent to evidence of equivalence in 

success rate (Cheung 2007); risk ratios, on the other hand, are not symmetric. These 

trends were the primary motivating factor for consider a risk difference model in the 

simulations presented in this dissertation. 

 

The binomial regression model with an identity link function is used to fit a risk 

difference model. However, fitting a risk difference model often encounters the problem 

that the binomial regression model fails to converge (Cheung 2007).  

 

2.2.3 Mathematical principles underlying analytical approaches in risk difference 

models 

This section describes the mathematical principles underlying the logistic regression and 

risk difference models. Firstly the logistic regression model is considered, thereafter a 

risk difference model is described. 
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Estimation of probabilities a logistic regression model (Odds ratios) 

Consider the following  generalized linear model (GLM) again: 

Replace μ with π to estimate probabilities: 

 

 

If the aim of the analysis is to estimate odds ratios, a logit link function is used in the 

GLM and the GLM becomes: 

 

 

 

 

 

 

 

This will result in probability estimates that lie between 0 and 1. This is the reason why 

logistic regression model is likely to converge and provide sensible estimates from the 

equation 2.6 below: 

 

 

Estimation of probabilities from risk difference model (binomial regression with 

identity link) 

Consider the following generalized linear model (GLM) 
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where g(u) is a link function that identifies a function of the mean that is a linear function 

of the covariates  and                      is a set of k explanatory variables. 

 

When the outcome is binary, u becomes π (the proportion of participants with an outcome 

of interest); in other words, π is the probability of observing a specific category of the 

binary outcome. Thus, the GLM can be re-written as in equation 2.2: 

 

 

If the aim of the analysis is to estimate risk differences, an identity link function is used 

in the GLM which reduces to: 

 

 

From the equation above, it should be noted that the estimate of π as a linear function of 

explanatory variables can easily yield estimates of probabilities that are outside the valid 

range 0 to 1. This is so because the expression                                           is unbounded 

and can yield values that range from - to +. But since a binomial model is constrained 

to estimate probabilities that are between 0 and 1, the estimates of probabilities that are 

outside this range may result in computer software not providing results. 
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Now if we consider (2.7)  

and suppose X1 is a binary exposure (0 or 1) that may denote the treatment/ intervention 

that an individual is assigned to.  Then the estimate of the adjusted risk difference 

becomes: 

 

 

 

So the estimate of the risk difference is just        and this does not have boundary 

constraints as is the case with the estimation of probabilities. This suggests that if interest 

is in estimating the risk difference rather than the individual risks (probabilities) 

themselves, estimates of the risk difference based on the above linear model would be 

valid. This is also demonstrated by Cheung (2008), when he established that Ordinary 

Least Squares estimation methods with Huber White standard errors are valid for the 

estimation of risk differences.  This method also avoids the non-convergence problems 

that can be experienced when using the binomial regression model with an identity link 

function because the core function of this binomial regression model is the estimation of 

probabilities. It has already been shown above that such estimation of probabilities based 

on the standard binomial regression model may result in probabilities that are outside 0 

and 1 because the linear function of the covariates is unbounded. The Cheung‟s method 

for modelling risk difference is described in detail in section 3.13 of this dissertation. 
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2.3 Theory of Missing Data 

In this section missing data theory is reviewed. 

 

2.3.3 Missing Data Mechanisms 

Missing data is a common problem in many research disciplines. The process that results 

in missing data is technically known as the missing data mechanism (Rubin 1976, 

Schafer 1997, Little 2002). When handling missing data in a statistical analysis, the 

choice of missing data methods hugely depends on the missing data mechanism (Schafer 

1997). In order to choose an appropriate statistical methodology, therefore, it is 

imperative for the analyst to have an idea or some plausible assumption of the missing 

data mechanism present in the data. In his theory, Rubin (1976) developed a useful 

taxonomy for describing the assumptions regarding the missing data mechanisms which 

provides an important guide to researchers on how to deal with missing data in analyses. 

The missing data theory regards the missingness of data as a probabilistic event.  The 

commonly made assumptions about the distribution of missingness and the missing data 

taxonomy are based on Rubin (1976) are reviewed below. 

 

2.3.4 The Distribution of Missingness 

In this section, the general notation and distribution of missingness is described for a 

general longitudinal study where outcome is repeatedly collected over time. Thereafter 

notation and distribution of missingness is described for a special case where outcome is 

measured only once- at the end of the study. 
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Consider a longitudinal study into which n subjects are enrolled and followed up over 

time such that measurements are taken at baseline and then at specified times during the 

follow up (t assessment times in total).  

 

Let Yij and Xij represent the outcome and a covariate data respectively for study 

participant i (i = 1,2,… , n) measured at time j (j = 1,2,…, t). 

 

In general 
ijY  and 

ijX denote a complete dataset for a longitudinal study where data is 

collected repeatedly over time.  In a typical RCT study, for reasons that may be beyond 

the investigators‟ control, not all  of the 
ijY  and 

ijX  will be observable for all study 

participants no matter how rigorous the researchers may be (i.e. there will be missing 

data, and these may occur in the outcome variable as well as in the covariates). The 

reasons for missing data are usually difficult to precisely determine in practice.  

 

Let  Titii YYY ,...1 be a complete vector of outcomes for individual i taken at times 

tj ,....,2,1  

 

This data can be partitioned into those time points at which the outcome has been 

observed and those whose time points at which the outcome is missing. 
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Thus Yi can be re-written as  )()( , miss

i

obs

ii YYY  , where   )(obs

iY  denotes the observed data 

and )(miss

iY denotes the missing outcomes which should have been observed for individual 

i. 

 

Further, let  Titii DDD ,...1  be a vector that indicates missingness such that 

  if  1  )(miss

iijij YYD   and  )( if  0 obs

iijij YYD 
 
where є means „belongs to‟ 

 

Since, as has been previously mentioned, it is often difficult to precisely establish the 

source of missing data in a dataset, the probability distribution function of the missing 

data indicator variables Di given the fully observed data Yi, is often used as the best 

statistical tool to explain the process that is creating missing data in a dataset and is 

denoted as )|( ii YDf  
(Schafer and Graham 2002). 

 

In this thesis, a special case where missingness is only in the outcome and where the 

outcome is measured only once at the end of the study is considered. Furthermore, the 

baseline variables are collected at the beginning of the study only. This is a common 

design in malaria efficacy RCTs. Now considering this special case, the notations and 

descriptions are presented as follows: 

 

Let Yi and Xi represent the outcome and a covariate respectively for study participant i (i 

= 1,2,… , n)  taken only at one time point. 
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Let Y be a complete vector of outcomes for all individuals in the study. This data can be 

partitioned into those whose outcomes have been observed and those whose outcomes are 

missing. 

 

Thus, Y can be presented as  )()( , missobs YYY  , where   )(obsY  denotes the observed binary 

outcome data and )(missY denotes the missing binary outcomes which should have been 

observed. 

 

In this special case, let D  be a vector that indicates missingness such that 

  if  1  )(miss

i YYD   and  )( if  0 obs

i YYD 
 
where є means „belongs to‟. 

 

The standard nomenclature for missing data mechanisms (Rubin D.B 1976) classifies 

missing data mechanisms as (i) missing at random (MAR), (ii) missing completely at 

random (MCAR), or (iii) missing not at random (MNAR). 

 

2.3.5 Taxonomy for missing data mechanisms 

This section firstly presents taxonomy for missing data for a general longitudinal study 

where outcomes are repeatedly collected over time. Thereafter taxonomy is described in 

terms of a special case where missing data is only in one outcome variable and the 

outcome is measured only once at the end of the study as this is the scenario that is 

considered in the study simulations that have been considered in this thesis 
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2.3.6 Missing At Random (MAR) 

In longitudinal studies where data is repeatedly collected overtime, the outcome data are 

said to be missing at random (MAR) if the probability of being missing depends on the 

observed outcome values and the covariates, but is independent of the specific missing 

outcome values that should have been observed in principle. In mathematical terms this is 

expressed as follows: 

 

   ,  allfor    ),, | (  ),,|(
)()( miss

ii

obs

iiiii YXYDfXYDf   ……………………..……(2.11)
 

 

where   denotes a set of unknown parameters governing the missing data indicators;  

Yi , Xi and Di are the complete outcome data, the covariates and missing data vectors 

respectively.   

 

Example 

Consider a study in which age (years) and haemoglobin level (Hb) in g/dl are two 

variables that a researcher intends to observe on each participant. For now, consider only 

those study participants whose age is observed and equal to a particular value, say 10 

years old. In practice Hb may be missing for some of these participants aged 10 years. 

MAR implies that among these study participants with observed age = 10 years, the 

distribution of Hb values is the same among the cases for which Hb values have been 

observed as it is among the cases for which Hb level is missing. Similarly, for study 

participants with observed age = 11 years, the distribution of Hb is the same among the 
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cases for which Hb is observed as it is among the cases for which Hb level is missing; 

however, the distribution of Hb values for participants with observed age = 11 may be 

different from the distribution of HB values for those with observed age = 10 years. The 

same applies for participants with observed age = 12 years, 13 years… etc.  That is, the 

missing Hb values should be regarded as a random sample of all the Hb values within the 

observed age subgroups.  

 

The practical challenge with the MAR mechanism is that it is often difficult to confirm 

that the probability of data on Y being missing entirely as a function of observed data 

(Little 2002). However, MAR is often plausible in practice (Schafer and Graham 2002, 

Kenward and Carpenter 2007). 

 

2.3.7 Missing Completely At Random (MCAR) 

The outcome data are said to be missing completely at random (MCAR) if the probability 

of being missing does not depend on either the value of the outcome Y or the value of the 

covariate. 

 

Mathematically this is expressed as follows:   

 ,, allfor   )  | (  ), , | ( iiiiii XYDfXYDf  …………………………………… (2.12) 
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In fact this is a special case of MAR in which the probability that data are missing is 

independent of both the specific missing values that in principle should have been 

observed and the values of the observed data (Schafer 1997, Schafer and Graham 2002). 

 

Example 

Revisiting the example above, MCAR implies that the missing Hb values are neither 

related to age nor to the other Hb values (whether observed or not). Thus, with MCAR, 

the component of the data with missing Hb values is a random subset of the complete 

original sample of Hb values – and equally, by definition, the observed sample is also a 

random sample of the original complete sample. In fact, MCAR implies that the missing 

values are  a random sample of all values of the population from which the study sample 

came (Rubin 1976). A typical practical example of MCAR would be a test tube 

containing a laboratory sample being accidentally broken before the sample has been 

processed or the sample become contaminated or non-viable because of an electricity 

failure to the storage facility.  

 

2.3.8 Missing Not At Random (MNAR) 

The outcome data are said to be missing not at random (MNAR) if the probability that 

the outcome data are missing depends on both the observed outcome values and the 

unobserved outcome values. In mathematical terms this is expressed as follows: 

 

 ,, allfor   ),,, | (  ),X , | ( )(

i iii

miss(obs)

ii XYXYYDfYDf 
……………………(2.13)
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Example 

Consider an HIV longitudinal study in which CD4 count is measured for each participant 

at each clinic visit during follow-ups. Suppose that some participants may drop out of the 

study before the study ends due to HIV related death.  These “drop-outs” will have 

missing CD4 count at visits scheduled after they died; it is also likely that they will also 

have low CD4 counts as this is known to be related to HIV related death. In such cases, 

therefore, the missing CD4 counts will be correlated with the actual missing values (i.e. 

those with a low CD4 are more likely to die due to HIV related death than those with a 

high CD4, or more relevantly to the context of this dissertation, those with unobserved 

but a low CD4 count at a missing visit will be more likely to have a missing CD4 count 

value at the that visit because of the value of the CD4 itself which is low and therefore 

may be related to death from HIV related cause). This would be a typical example of 

MNAR.  

 

If data are NMAR then the missingness mechanism is referred to as non-ignorable. When 

the missing data are non-ignorable the missingness models should be correctly specified 

in order to obtain consistent estimates of the parameters of interest (Diggle and Kenward 

1994, Little 2002). 
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2.3.9 Taxonomy for missing data mechanisms described for a special case of an 

outcome variable collected once at the end of the study 

2.3.9.1 Missing At Random (MAR) 

Consider a special case where data is missing only in the binary outcome variable Y, the 

outcome data are said to be missing at random (MAR) if the probability of being missing 

depends on the observed covariates, but is independent of the specific missing outcome 

values that should have been observed in principle. In mathematical terms this is 

expressed as follows: 

 

  ) | 1(Pr  ),|1Pr( XDXYD  …………………………………………………………

…………….(2.14)  

where Y , X are the complete outcome data, the covariates and D  is a vector that 

indicates missingness such that    1D if Y is missing and    0D if Y is observed 

 

Example 

Consider a study in which efficacy (binary: 0=treatment succcess; 1=treatment failure), 

treatment (binary: 0=placebo; 1=Active treatment) and age (years) are the three variables 

that a researcher intends to observe on each participant. For now, consider only those 

study participants whose age is observed and equal to a particular value, say 10 years old 

and are on placebo. In practice efficacy may be missing for some of these participants 

aged 10 years and observed for others. MAR implies that among these study participants 

with observed age = 10 years and are on placebo, the chance of treatment success is the 

same among the cases for which efficacy has been ascertained as it is among the cases for 
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which efficacy is missing. Similarly, for study participants with observed age = 11 years, 

the chance of treatment success is the same among the cases for which efficacy is 

observed as it is among the cases for which efficacy is missing; however, the chance of 

treatment success for participants with observed age = 11 and are on placebo may be 

different from the chance of treatment success for those with observed age = 10 years and 

are on placebo. The same applies for participants with the specified observed ages above 

but who are on active treatment. This also applies to participants with observed age = 12 

years, 13 years, …, etc conditional on their treatment status.  That is, the missing efficacy 

should be regarded as a random sample of all the efficacy values within the observed age 

by treatment subgroups.  

 

2.3.9.2 Missing Completely At Random (MCAR) 

The outcome data are said to be missing completely at random (MCAR) if the probability 

of being missing does not depend on either the value of the outcome Y or the value of the 

covariate. 

 

Mathematically this is expressed as follows:   

  ) 1Pr(  ),|1Pr(  DXYD ………………………………………………………(2.15) 

where Y , X are the complete outcome data, the covariates and D  is a vector that 

indicates missingness such that  1D  if Y is missing and    0D if Y is observed. 
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Example 

Reconsider the example above, MCAR implies that the missing efficacy values are 

neither related to age, treatment on which someone is on nor to the efficacy itself 

(whether observed or not). Thus, with MCAR, the component of the data with missing 

efficacy is a random subset of the complete original sample of efficacy status – and 

equally, by definition, the observed sample is also a random sample of the original 

complete sample.   

 

2.3.9.3 Missing Not At Random (MNAR) 

The outcome data are said to be missing not at random (MNAR) if the probability that 

the outcome data are missing depends on both the observed outcome values and the 

unobserved outcome values. In mathematical terms this is expressed as follows: 

 

  X),Y,Y | 1(Pr  )X , | 1Pr( misobs DYD …………………………………………(2.16) 

 

2.3.10 Remarks on MAR, MCAR, and MNAR assumptions  

There are important implication of the different missing data mechanisms: MAR, MCAR 

and MNAR (Rubin 1987, Allison 2001, Collins et al. 2001, Little 2002, Schafer and 

Graham 2002).  

 

Statistical theory assumes that the data Y are randomly sampled from a distribution 

say ),( Yh , where   denotes unknown parameters governing the distribution of the data 
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Y. When the data Y is fully observed, ),( Yh  describes both the sampling distribution for 

Y and the likelihood function for . Thus, when the data is fully observed for Y, the fact 

that ),( Yh may be regarded as a likelihood function for   allows the application of 

Maximum Likelihood (ML) methods to obtain valid estimates of  (Schafer and Graham 

2002).  

 

The situation is different in the presence of missing data. It is only under the MCAR 

assumption that the distribution of the observed data only denoted as ),( )( obsYh  can be 

regarded as both a correct sampling distribution of Y and a correct likelihood function for 

 producing valid ML estimates of .  In the presence of the missing Y, the distribution 

),( )( obsYh  is not a correct sampling distribution of Y under MAR assumption. However, 

it is a correct likelihood function for  under MAR (Rubin 1976, Schafer 1997, Little 

2002, Schafer and Graham 2002). Thus when the data is MAR, the ML based estimation 

methods yield valid estimates of  . 

 

MCAR is the strongest assumption of the distribution of missingness – but is rarely 

satisfied in practice and is usually hard to justify.  This assumption is usually met where 

the process that leads to the missing data has been made by design of the study (Kenward 

and Carpenter 2007).  
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Example  

Consider an RCT to determine the efficacy of ant-malaria therapy by day 28 from the 

time participants took their first dose. The day 28 outcome would be assessed on all 

participants if there were no losses to follow up. It may also be possible that due to cost 

implications, a researcher may decide to follow up fewer participants up to day 42 and 

day 63 as secondary endpoints. A researcher can decide to take a random sample of 80% 

from the original sample. This means that some participants (20%) will have missing day 

42 and day 63. If all the 80% of the original sample that has been sampled for further 

follow up will be successfully followed up without losses to follow up, then those that 

will have missing day 42 and day 63 observations will be MCAR.  

 

MAR is less restrictive than MCAR and is generally plausible in practice (Collins et al. 

2001, Kenward and Carpenter 2007). MAR assumption plays a critical role in the process 

of handling missing data because valid inferences can be made without regard to the 

missing data mechanism (Rubin 1976, Little 2002, Schafer and Graham 2002, Carpenter 

et al. 2007, Kenward and Carpenter 2007).  

 

2.3.11 Missing data patterns 

A missing data pattern is the way in which the observed and missing values are arranged 

in a data set. The missing data patterns that include: univariate pattern, monotone pattern, 

general pattern (Enders 2010). Schafer and Graham (2002), Van Buuren (2007) and 

Enders (2010) provide excellent descriptions and graphical presentations of the missing 
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data patterns. For the purposes of this thesis univariate pattern, monotone pattern and 

General pattern will be discussed.  

 

2.3.11.1 Univariate missing data pattern 

This is a data configuration such that data is fully observed for variables X1, X2,…, Xk 

but is missing for some participants for variable Y (Schafer and Graham 2002, van 

Buuren 2007, Enders 2010). This pattern may arise in randomized controlled trials where 

baseline variables are rigorously measured at baseline and form part of 

inclusion/exclusion criteria but may be missing for an outcome variable that is measured 

during follow-up. Figure 2.1 below gives a graphical presentation of a univariate pattern. 

In general this is not a common pattern in many study designs. Even in well designed 

randomized studies presence of some missing data in the baseline covariates is inevitable. 

 

Figure 2.1: Illustration of a univariate missing data pattern based on (Schafer and 

Graham 2002, Enders 2010) 
 

 

X1     X2        ….      Xk Y 

  

 

(The shaded area represents the missing Y data.) 
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2.3.11.2 Monotone missing data pattern 

This pattern usually occurs in studies where participants are followed over time. Consider 

data Y1, Y2, ..., Yk that are longitudinally collected at times t1, t2, t3,….., tk respectively. 

Monotone pattern means that if data is missing for Yi then it will also be missing for 

Yi+1…..YK. This missing data pattern is illustrated in figure 2.2 below. 

 

Figure 2.2: Illustration of a monotone missing data pattern based on (Schafer and 

Graham 2002, Enders 2010).  

 

Y1 Y2 …… YK 

    

    

    

    

    

(The shaded area represents the missing data.)   

 

2.3.11.3 General missing data pattern 

Consider a dataset with several variables. In the general missing data pattern, data may be 

missing in any variable. The missing values are scattered all over the dataset. Although it 

is difficult to visually determine a clear pattern, it may still be a systematic pattern 

(Enders 2010). This is probably the most common pattern in practice.  The pattern is 

illustrated in figure 2.3 below. 
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Figure 2.3: Illustration of a general missing data pattern (the shaded area represent 

missing data) 
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2.4 Common approaches for handling missing data 

2.4.3 Unprincipled (adhoc) methods 

The unprincipled statistical methods are methods for handling missing data which are not 

based on statistical models (Kenward and Carpenter 2007). In these methods the data are 

manipulated  such that analyses proceed as if data was completely observed without 

paying attention to the process that is creating missing data (Kenward and Carpenter 

2007). These methods often yield invalid inferences (Kenward and Carpenter 2007). 

Despite the existence of a variety of principled statistical methods of handling missing 

data, missing data is quite commonly handled using unprincipled methods.  

 

There are a number of unprincipled methods and some common ones include: Complete 

Case analysis; Last Observation Carried forward; and Extreme case analysis.  
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2.4.4   Complete case analysis 

Complete case analysis is the commonest approach to analysing incomplete data 

(Klebanoff and Cole 2008).  This approach simply discards all cases with any missing 

values from the analyses. This approach has obvious advantages. Almost all standard 

statistical methods for analysis presume that all subjects have measurements on all 

variables included in the analyses (Allison 2001, Altman and Bland 2007) and therefore 

perform complete case analysis as a default analysis approach. In addition complete case 

analysis approach greatly simplifies the analytical process such that statistical analyses 

proceed as if there were no missing data at all. However, the use of this approach may 

have far reaching statistical consequences for the inferences. Despite its simplicity, 

complete case analysis approach is only valid under the assumption that missingness of 

data is not related to any variable in a dataset (MCAR scenario) (Little 2002, 

Molenberghs et al. 2004). However, the MCAR assumption may not be easily justified in 

practice, rendering the use of complete case analysis questionable in many cases. Even 

where MCAR assumption may be plausible, analyses from complete case analysis would 

suffer from loss of statistical power due to the reduced sample sizes. In the event that data 

are not MCAR, as is often the case, estimates from complete case analysis may be biased 

and would be inefficient, especially in multivariable analyses (Desai et al. 2011). In 

multivariable analyses data may be missing in many variables and a complete case 

analysis will discard a big proportion of the data thereby drastically reducing the sample 

size on which the analyses are based hence inefficient estimates will be obtained (Desai 

et al. 2011). In addition, complete case analysis approach is not consistent with the 

intention to treat principle which is the standard approach for analyzing data from 
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randomized controlled trials (Altman 2009). The intention to treat principle requires that 

all subjects that were randomized in a study are included in the analysis according to their 

randomization. 

 

2.4.5 Last observation carried forward (LOCF) 

LOCF is also one of the commonest solution for analyzing continuous outcome data with 

some missing observations from randomized studies which are longitudinal in design 

(Altman 2009). Missing data for subjects that dropout in longitudinal studies are replaced 

by the last observed measurement taken before the participant dropped out of the study. 

This method greatly simplifies analyses but is highly prone to producing biased estimates 

(Streiner 2008, Altman 2009). It assumes that from the time the last observation was 

taken, the value would have remained the same over time. This is not plausible in many 

cases (Shapiro 2001, Streiner 2008, Altman 2009). Observations are usually variable 

within an individual over time. The main advantage of this approach in randomized 

studies is that it allows application of the Intention to treat principle. However it should 

be noted that although the method is compatible with ITT principle, the estimates may be 

biased, making the inferences difficult to generalize (Lee et al. 1991, Shapiro 2001, 

Streiner 2008, Marshall et al. 2009).   

 

 

Example  

Suppose that in a longitudinal malaria therapy study, two anti-malaria treatments are 

administered to participants. Let measurements be taken on days: 0 (baseline), 1, 3, 7, 14 
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and 28. Let the outcome of interest be adequate clinical and parasitological failure. A 

subject dropping out of the study after day 3 measurement and before day 7 will have the 

day 3 measurement as the last observation. The is participant has a higher chance of 

having treatment failure on day 3 because of pharmacokinetic reasons and it may be 

difficult to justify an assumption that the outcome of this particular participant would 

have remained the same up to day 28. Furthermore, if the dropout is in the 

placebo/control treatment group the resulting estimates of treatment effect may be biased 

in favour  of the active treatment when LOCF approach is used (Streiner 2008). In 

longitudinal studies it is very unlikely that the last measurement would have remained the 

same up to the end of follow up because correlation between repeated measurements tend 

to decrease with increasing time separation (Diggle et al. 2002, Hedeker and Gibbons 

2006). 

 

2.4.6 Extreme case (EC) analysis  

This is another common approach for imputing missing binary outcome in randomized 

controlled studies (Lachin 1999, Higgins et al. 2008, Altman 2009). The missing values 

are replaced with either best-possible values or worst-possible values. For a continuous 

variable the largest and the smallest effect estimates that are consistent with the observed 

quantities are imputed to replace the missing values (Higgins et al. 2008). The estimates 

of treatment effect from the EC analyses are often biased (Lachin 1999). It is often 

difficult to justify that all subjects with missing outcome had the worst treatment or the 

best treatment effect. This approach is only useful for sensitivity analyses (Sterne et al. 

2009). 
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2.4.7 Single imputation methods 

2.4.7.1 Mean imputation 

In the mean imputation each missing value is replaced by the marginal mean. The main 

problem with this approach is that it alters the shape of the distribution of the imputed 

variable (figure 2.4). This method produces biased parameter estimates of location and in 

addition, it does not account for uncertainty due to imputed values (Enders 2010). Of 

course the obvious advantage is that it results in complete data which can then be 

analysed by any standard method of analysis. 

 

Example 

Figure 2.4 below illustrates how the distribution is distorted. A total of 300 hb values 

were simulated with mean=9.2g/dl. Missing values were randomly imposed in 20% of 

the observations. The missing values were then replaced by the mean of the observed 

values.  
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Figure 2.4: Histograms of the observed data and the complete marginal mean 

imputed data 
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2.4.7.2 Hot Deck imputation 

This is a common imputation method in surveys. Suppose that data are measured on two 

variables X and Y such that variable X is complete, but variable Y has some missing 

observations. The hot deck imputation proceeds as follows: Firstly group subjects 

according to values of the complete variable X; then the missing Y observations in each 

group created in first step are replaced by the randomly sampled observed Y values in 

that subgroup. 
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The obvious advantage of this method is that it results in complete data that can be 

analysed by any standard statistical method. In addition it is consistent with the intention 

to treat principle. It will always result in a plausible range of results (Andridge and Little 

2010). However the method lacks theoretical basis (Andridge and Little 2010). Just like 

other single imputation methods, this method results in small standard errors due to the 

fact that uncertainty in the imputed values is not taken into account in the substantive 

analyses because the imputed values are treated as if they were actually observed. 

 

2.4.7.3  Regression imputation - Buck’s method 

This method was proposed by Bulk (1960). It obtains information for imputing missing 

values from other observed variables in the dataset (Buck 1960). It is also referred to as 

conditional mean imputation (Enders 2010). Let p21 X,........,X,X Y, be the p+1 variables 

in a dataset such that Y values are missing for some participants and the variables X1, . . . 

,Xp are fully observed for all participants in the dataset. Firstly, the following regression 

model is fitted to the observed data as follows: 

 

pp XXY   ....110
 …………………………………………………………(2.17) 

The missing Y value for individual i is then imputed using estimates from the regression 

equation below:  

pipii XXY  ˆ....ˆˆˆ
110  ………………………………………………………...(2.18) 

 

The main advantage of this method is that it results in complete data. On the other hand, 

the main weakness of this approach is that correlations are inflated because all the 
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imputed values lie on the fitted regression line without random deviations from the line 

(Enders 2010). It is possible that some of the imputed values may lie outside a plausible 

range using this imputation method. The imputed values lack the variability that would 

have been present if the data had no missing values and this leads to biased parameter 

estimates of location of Y (Enders 2010). 

 

The method provides consistent estimates under MCAR and MAR mechanism (Little 

2002). The major problem with this approach is that variability is underestimated because 

the uncertainties about the imputed values are not taken into account. 

 

2.4.7.4 Stochastic regression 

This method is an extension of the regression imputation technique that aims at reducing 

correlations experienced in regression imputation procedure by adding a random error 

term to the conditional mean imputation equation: 

 

ipipii XXY   ˆ....ˆˆˆ
110  

…………………………………………………………………..…(2.19)  

where ),0(~ 2 Ni
and σ

2
 is usually replaced by 2S in practice, the mean square error 

for the fitted regression model.  

 

This method produces unbiased parameter estimates under MCAR and MAR 

assumptions, however, the resulting standard errors are small resulting in inflated type 
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one error (Enders 2010) because, in the substantive analyses, the imputed values are 

treated as if they were actually observed.  

 

2.4.7.5 Propensity score method 

The propensity score for a participant is the probability that the value of a variable is 

missing, conditional on the values of the other variables for that individual (Rosenbaum 

and Rubin 1983). The missing values of the variable are then imputed using observed 

values of that variable from other individuals for whom the variable has the same 

probability of being missing (Rosenbaum and Rubin 1983, Rosenbaum and Rubin 1984, 

Mattei 2009). This method is often used for dealing with a monotone missing data 

pattern.  

 

Example 

 Let y=( Y1, Y2 , Y3, Y4 ) be the variables of interest such that Y1 is observed for all cases 

while Y2 , Y3, Y4 have some missing values such that if subjects have missing Y2  will 

also have missing Y3 and Y4 ; and those with missing  Y3 will also have missing Y4 ( the 

monotone missing data pattern). The imputation is done sequentially such that first the 

observed values of Y1 are used to impute the missing values for Y2, then the values of Y1 

and Y2 inclusive of the imputed values are used to impute the missing values for Y3, and 

then the values of Y1, Y2 and Y3 inclusive of the imputed values are used to impute the 

missing values for Y4. 
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The propensity score method uses the following steps to impute values for each variable 

Yi with missing values:  

1. A missing data indicator variable Dj is created with the value 1 if Yi  is missing 0 

otherwise where j=2,…..,k and k is number of variables of interest. 

2. A logistic regression model for Dj is then fitted: 

1122110 ....
1

log 















jj

j

j
YYY

p

p
 …………………………..(2.20) 

3. The predicted probabilities of Yj being missing are obtained for each observation using 

the logistic regression model fitted in step 2 above. This predicted probability is called a 

propensity score for each observation.  

4. The observations are divided into a fixed number of groups based on these propensity 

scores.  

5. A bootstrap imputation is then applied to each group created in step 4 to impute the 

missing Yj values using the observed Yj values with the same propensity score as the 

missing Yj values.  The bootstrap approach is carried out as follows: suppose that in a 

particular group, there are n1 observed values of a variable Yj and n0 missing values. Then 

the boot strap imputation proceed as follows 

 

a. Firstly a random sample of size n1 taken from the observed values of Yj sampling 

with replacement. 
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b. Next a random sample of size n0 is drawn for the missing values from the n1 

observations of Yj sampled in step a above. 

 

Steps 1 through 5 above are repeated sequentially for each variable Yj with missing 

values. The logistic regression model in step 2 above uses both the observed and imputed 

values of the variables 121 ...., jYYY

 

as explanatory variables. 

 

The main advantage of this imputation model is that the imputed values are within the 

plausible range of the observed data. Of course in the case of randomized trials, it also 

allows the use of the intention to treat principle. The main disadvantage is that the 

imputed values are treated as if they had been actually observed which results in 

underestimated standard errors. 

 

2.4.8 Principled methods 

The Principled methods of handling missing data are the methods which are based on 

statistical models (Kenward and Carpenter 2007). The principled methods include 

Maximum-Likelihood based methods; Multiple imputation procedures and weighting 

methods.  

 

2.4.8.1 Maximum likelihood based methods   

The likelihood based approach for handling missing data proceeds as follows: 
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Let ),( Yh  be a data model and  ) , | ( YDf be the corresponding missing data 

mechanism where the data model parameter   and the missing mechanism 

parameter are not related. Valid likelihood estimates of the data model parameter  can 

be obtained based on the observed data only  ),( )( obsYh without making reference to the 

process that gives rise to missing data as long as the missingness mechanism is MAR 

(Little 2002) and that   and   are not related (Rubin 1987, Little 2002). The joint 

distribution of the observed data and the missing data mechanism can be obtained as 

follows:   

)()()()( d),,,,(    ),,,( missmissobsobs YDYYhDYh    

)()()()()( d),,|(),,(                            missmissobsmissobs YYYDfYYh  …………..(2.21) 

 

When data is assumed to be MAR or MCAR (also called ignorable), D is independent of   

)( missY
 

)()()()()( ),,(),/(      ),,,( missmissobsobsobs dYYYhYDfDYh  
 

),(),/(                               )()(  obsobs YhYDf …..…………………………………..(2.22)
 

and when the parameters for the data model  and the missingness model  are not 

related, )()(),(  hhh   (Rubin 1976, Rubin 1987, Little 2002) 

 

Thus, likelihood based inference on  can be based on the observed data as long as data 

are either MAR or MCAR; and data model parameter and the missingness model 

parameter are not related. For this reason, when data are either MAR or MCAR, the 
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missingness mechanisms are referred to as ignorable because the likelihood-based 

analysis can proceed in the estimation of data model parameters   without making 

reference to the missingness mechanisms (Rubin 1976, Rubin 1987, Little 2002). The 

Expectation Maximization (EM) algorithm is often used to obtain valid parameter 

estimates from likelihood based analysis in the presence of missing data. The details of 

the EM algorithm are provided in the next subsection. 

 

2.4.8.2 The EM algorithm 

The EM algorithm was formalized and explained by Dempster (1977). It is an iterative 

procedure used for obtaining maximum likelihood estimates of parameters (Dempster et 

al. 1977). It is particularly useful and has wide applications in missing data problems. 

  

1. The first step of an EM algorithm is an estimation of missing data to obtain a 

complete data set. i.e. draw 

)(missY  from the predictive distribution of 
)(missY given the observed 

data
)(obsY : ),|( )()()( obsmiss YYf . 

Then repeat the following steps below: 

2. Estimate model parameters using complete data set obtained in step 1 by averaging 

the complete data likelihood  )/( YL   over ),|( )()()( obsmiss YYf   

3. The missing values are then re-estimated, based on parameter estimates obtained in 

step 2. Then go back to step2. This cycle is repeated several times and it stops when 

the estimates of parameters from the successive iterations remain unchanged. 
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2.4.8.3 Multiple imputation 

Multiple Imputation is a statistical method for dealing with missing data that was devised 

by Rubin (1987). The MI process imputes p>2 values for each missing value in a dataset 

based on information from other variables in the dataset. The imputed values that replace 

the missing values are repeatedly randomly drawn from the predictive distribution of 

)()( | obsmiss YY (Rubin 1987). This essentially means that p different full datasets are 

created by the MI procedure. The MI approach ensures that the imputed values are not 

treated as if they had been actually observed when calculating standard errors. That is, the 

uncertainty about the true value that is missing is accounted for in the MI process when 

calculating standard errors using the observed and the imputed values. Both the between 

dataset imputation and within dataset imputation variability are taken into account. In the 

procedure, the overall estimate of the data model parameter say   (where   could be an 

estimate of a mean, proportion, regression coefficient etc) from the p datasets and the 

overall variance is obtained using Rubin‟s rules  as illustrated below using notation 

similar to that of (Schafer and Graham 2002): 

 

Let  be the parameter of interest that needs to be estimated using the data (substantive) 

model and   be the corresponding variance of the estimates in the absence of missing 

data. Further, let p different datasets be created by imputing p plausible values for each 

missing value. The estimate of  is given by  

 

p

p

i

i
 1

)(̂

 ……………………………………………………………..…….………(2.23) 
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Where )(ˆ i  are estimates from each of the p fully imputed datasets for i=1….p 

 

The mean within imputation variance is given as: 

p

p

i

i
 1

)(̂

 ,………………………………………………………………………….(2.24) 

where )(ˆ i  are estimates of variance from each of the p fully imputed datasets for i=1….p 

and the estimate of between imputation variance  is obtained as follows: 

 

 

1

ˆ

1

2
)(









p

p

i

i 

 ……………………………………………………………………(2.25) 

 

The overall estimate of the variance  is the combined within imputation and between 

imputation variances given as 

 

 )1( 1 p …………………………………………………………………..(2.26) 

 

 

The confidence intervals and statistical test for the parameter   are based on an 

approximation of a Student‟s t-statistic 

Vt~
)(



 
  with  

2

1)1(
1)1( 












 



p
pv degrees of freedom…………(2.27) 
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For large samples, the 95 percent confidence interval for   is estimated 

 *96.1

(van Buuren S. et al. 1999).

 

 

Under MAR assumption the estimates from multiple imputation are consistent, 

asymptotically efficient and asymptotically normal (Rubin 1987, Schafer 1997, Allison 

2001, Little 2002). The advantage of MI over  Maximum Likelihood method is that  MI 

can be used with any type of data and any model type in most statistical software 

packages (Allison 2001).  

 

Multiple imputations procedure can be implemented in the following steps: 

1. p complete datasets are created by imputing missing values based on observed data 

but with some random variation introduced in the imputation process. Under MAR 

the imputations  )()2()1( ,...,, pyyy  are generated from the posterior predictive 

distribution of the missing given the observed values )|( )()( obsmiss yyf . The resulting 

datasets will be slightly different from each other. Each of the of the p datasets can 

then be analysed using a standard applicable method e.g. binomial regression, logistic 

regression, poisson regression etc. This means that there will be p different estimates 

of the parameter of interest. 

2. The estimates from the p datasets are combined into a single set of estimates. This 

procedure is done according to Rubin‟s rule as expressed above in equations 2.23-

2.27. 
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There are many ways of achieving step 1. The methods are either from the Frequentist 

approaches or from the Bayesian paradigm. The common imputation models include: 

stochastic regression method, Propensity score method and Markov Chain Monte Carlo 

(MCMC) 

 

The uncertainty due to imputation is reflected in the variability across the p estimates. 

Multiple imputation is one of the two principled methods (MI and ML) of handling 

missing data that is often much better than the older adhoc methods (Graham 2009). 

However, MI is simpler and more general to use than other principled methods because 

an analyst uses any standard statistical method that would be appropriate if the data were 

not missing (Schafer 1999). One major pitfall of MI approach is that its simplicity can 

easily make the user believe that the data are complete without regard to the missing data 

levels or mechanisms and this may be dangerous because the problem may be too trivial 

that use of MI may lead to significant biases between the complete data and imputed data 

estimates” (Dempster and Rubin 1983). Furthermore, it may be misleading to routinely 

consider MI as a method of choice under MAR assumption because the validity of this 

approach rests on the MAR assumption which is often difficult to test (Carpenter et al. 

2007).   

 

2.4.8.4 Imputation using chained equations 

This imputation approach was devised by Van Buuren et al (1999). As described by 

carpenter and Kenward (2007), Let, x, y, be variables of interest both having  some 

missing data. The imputation by chained equations approach firstly fill in the missing 
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values of x with randomly chosen observed values from x. The variable y is then 

regressed on x that contains both the observed and imputed values, and the missing y are 

filled in using the regression imputation.  Similarly the observed x values are regressed 

on y that now contains both the observed and the imputed values. The values of x that 

were imputed by randomly choosing from the observed values in the first step are now 

replaced with the imputed values using the regression imputation. The procedure is 

repeated until convergence. This complete procedure constitutes one complete imputed 

dataset. Thus, the procedure is repeated m times to achieve m imputed datasets for the 

MI. This procedure is has some similarities with the Bayesian approach in the sense that 

the imputation of the values of a variable at sequence y
(l+1)

  depends only on the values 

y
(l)

. The Bayesian imputation is discussed below 

 

2.4.8.5 Bayesian Multiple Imputation 

The Bayesian MI models are detailed in Rubin (1987). Using notation similar to that of 

(Schafer 1999) , the Bayesian imputation proceeds as follows: Let Y be the only variable 

of interest with n observations  such that ),.....,,(Y 21 jyyy  be the j observed values of 

Y and ),.....,,(Y 21 njj yyy  are missing at random. The data may be partitioned into the 

observed and missing components.  

 

Let ),(~ 2Nyi  
for i=1.2,…,n

 
 and ),( 2  ………………………..(2.28) 

12 )()(  P  under non informative prior  ………………………………(2.29) 
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The posterior distribution of   for the observed data is given by: 

),(~,| 21)()(2  jyNY obsobs

……………………………………………(2.30) 

2

)1(

)(2
)(2 )1(

~|




j

obs
obs Sj

Y


  ………………………………(2.31)  where  





j

i

i

obs yjy
1

1)(

 , 


 
j

i

obs

i

obs
yyjS

1

2)(1)(2 )()1( and 
2

1j
 is the usual chi-square 

statistic with j-1 degrees of freedom. 

 

The missing ),.....,,(Y )()(

2

)(

1


nj yyy

j 
 values are then imputed as follows:

 

1. Firstly a random variance is simulated:
 

 2

1

)(2
))(()(2 )1(

~|




j

obs
obs Sj

Y


  ……………………………………………………(2.32)
 

2. A random mean is then simulated: 

),(~,| )(21)())(()(2)(   jyNY obsobs

………………………………………..…(2.33) 

3. The missing y values are then sampled independently:   

),(~ )(2)(  Nyi  for i=j+1……n   ……………………………………….……(2.34) 

 

This procedure is repeated for
 

k,........,2 where 
 

k
 

is the number of proper 

imputations for y
(miss)

 i.e. when the complete data estimator is the complete data 

maximum Likelihood Estimator (MLE). 

 

This procedure is generalized as follows: 
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Let )|(~),( )()( YPYYY missobs
 
where Y

(miss)
 is ignorable (MAR or MCAR) and 

 
is 

unknown and
 
has a prior distribution. 

 

Since  dYfYYfYYf obsobsmissobsmiss )|(),|()|( )()()()()(

 , 
y

(miss)
 is imputed as follows:

 

1. The first step is to simulate a random draw of   from their observed –data posterior 

distribution 

                 )|(~* )(obsYf  ………………………………………………….………(2.35) 

2. The next step is to draw randomly the missing values of Y, Y
miss 

 from their 

conditional predictive distribution
  

*),|(~ )()(*)( obsmissmiss YYfY …………………………………………………….(2.36) 

 

The Markov Chain Monte Carlo (MCMC) approach is increasingly being used for the 

Bayesian simulations for step 1(Schafer 1999). In very simplistic terms, the MCMC 

proceeds as follows : 

1. Firstly an initial starting value for  say )0( is assigned.  

2. The next step is to draw missing values of Y, Y
miss

 from the conditional predictive 

distribution ),|(~ )1()()()(  obsmissmiss YYfY  for ,....2,1  

3. Then the next step is to sample  from the posterior distribution of  given 

)(, missobs YY : 

),|(~ )()()(  misobs YYf   
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This creates a Markov Chain ),( )()(  missY that converges to a stationary distribution 

)|,( )()( obsmiss YYf   

 

The Gibbs sampler Algorithm is one of the common algorithms used in the MCMC. 

For variables ).....,,( 21 nYYY  in a dataset the Gibbs sampler proceeds by simulating 

from conditional distributions and proceeds as follow: Initialise all variables 

).....,( )0()0(

2

)0(

1 nYYY  

 

1. The first step is to simulate a new 1Y , )( )1(

1Y  given the initialized values of 

).....( )0()0(

2 nYY  i.e. 

),.....,|( )0()0(

2

)1(

1 nYYYf  

 

2. The next step is to simulate a new 2Y
,

)( )1(

2Y given the new,
)( )1(

1Y  and the existing 

).....( )0()0(

3 nYY  

),.....,,|( )0()0(

3

)1(

1

)1(

2 nYYYYf  

3. Then next simulate a new 3Y
,

)( )1(

3Y
given the new, )( )1(

1Y  and )( )1(

2Y and the 

existing 
).....( 0)0(

4 nYY
 

),.....,,,|( )0()0(

4

)1(

2

)1(

1

)1(

3 nYYYYYf  until all Y have been simulated. 
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This creates a single updated dataset. The updated datasets are sampled in similar 

steps to get new updates i.e. the next sample updates will 

be ).....|( )1()1(

2

)2(

1 nYYYf , ).....,|( )1()1(

3

)2(

1

)2(

2 nYYYYf , ).....,,|( )1()1(

4

)2(

2

)2(

1

)2(

3 nYYYYYf  for 

)( )2(

1Y , )( )2(

2Y and )( )3(

3Y respectively and the process continues until convergence. 

That is each new Yj is updated conditional on the latest values of Yj in the chain. 

 

2.4.9 Weighting methods 

Weighting procedures were initially developed for minimizing bias in surveys. In the 

presence of missing data there may be differential response between complete cases and 

those with missing observations. Weights are applied to the complete cases to minimize 

bias resulting from missing data. Inverse Probability weighting (IPW) is a common 

approach for weighting complete cases. The IPW method is often applied when estimates 

are obtained using Generalized Estimating equations (GEE) which are alternatives to 

maximum likelihood estimation especially in longitudinal studies. In GEE the weights are 

estimated as the inverse of the probability of being a complete case. This is a semi-

parametric method and one needs to correctly specify the distribution of missingness in 

order to obtain consistent estimates of the parameter of interest (Robins et al. 1995, 

Rotnitzky and Robins 1997, Bang and Robins 2005).  

 

When the missingness mechanism is not correctly specified, the inverse probability 

weighting tends to result in inconsistent estimates. A variation of the inverse probability 

weighting is known as doubly robust - inverse probability weighting (DR-IPW). The DR-
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IPW produces consistent estimates when either the data model or the missingness model 

is correctly specified and not necessarily both (Scharfstein et al. 1999, Bang and Robins 

2005). The unweighted estimates of parameters from GEE are not valid in the presence of 

missing data that is MAR (Little 2002, Kenward and Carpenter 2007). In the presence of 

missing data, the GEE parameter estimates are valid only when the missing data 

mechanism is MCAR (Kenward and Carpenter 2007). In order to obtain valid estimates 

under MAR when using GEE, weighting methods should be used (Little 2002, Carpenter 

and Kenward 2006, Carpenter et al. 2007). 

 

2.4.10 Discussion of the methods of missing data 

The methods of handling missing data are either principled or unprincipled. Unprincipled 

include Complete Case analysis, Extreme Case analysis, Last observation carried 

forward, and single imputation methods. Single imputation methods include: mean 

imputation, hot deck method, regression imputation method and stochastic regression 

method. Complete case analysis is probably the most common adhoc method that is 

applied in analyses. It is very simple to apply but the estimates of parameters from the 

CC method may be biased and are often in efficient. This method is only valid when data 

is missing completely at random, but even then, the estimates may be inefficient. Extreme 

case analysis is often applied in binary outcomes. In randomized trials this method has an 

advantage of being consistent with the intention to treat principle. However, just like CC, 

this approach often leads to biased estimates of parameters of interest. LOCF is a 

common technique for handling missing data in longitudinal studies. Although it is 

consistent with the intention to treat principle, the estimates from this method may be 
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biased.  Both EC analysis and LOCF analysis approaches are often hard to justify. Single 

imputation methods allow use of all observations but they all underestimate standard 

errors because the uncertainty in the imputed values is not taken into account when 

estimating standard errors. 

 

On the other hand a number of principled approaches exist which are either multiple 

imputation based, maximum likelihood based or weighting based. These methods lead to 

valid estimates of parameters when data is MAR. For example, under MAR assumption 

the estimates from multiple imputation are consistent, asymptotically efficient and 

asymptotically normal (Rubin 1987, Schafer 1997, Allison 2001, Little 2002). Unlike 

Maximum Likelihood method, MI can be used with any type of data and any model type 

in most conventional software (Allison 2001) because the EM algorithm. MI is more 

flexible and because of this it is often used in sensitivity analyses (Kenward and 

Carpenter 2007, Groenwold et al. 2011). On the other hand MI is not robust when the 

imputation model is misspecified. The same is true for the inverse probability weighting 

method but the doubly robust inverse probability weighting method offers a double 

protection to misspecification of either the imputation model or the data model 

(Scharfstein et al. 1999, Bang and Robins 2005, Carpenter and Kenward 2006, 

Machekano et al. 2008). 

 

The critical issue in use of these methods is that it is often difficult to precisely test 

whether data is missing at random against missing not at random. It is therefore important 

to identify methods that are valid / robust in specific scenarios.   
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Chapter 3 : Methodology 

3.0 Methodology 

Two broad sets of simulation studies were performed in this project. The first set of 

simulations investigate the degree of model failure when modelling efficacy (risk) 

differences using the standard binomial regression model with an identity link function, 

and aimed at identifying alternative modelling approaches. The second set of 

simulations address the main objectives of this project that compares the performance of 

the Complete Case analysis and Multiple Imputation procedure over a range of efficacy 

scenarios for dealing with missing binary outcomes. All the studies were done using 

computer simulations. The parameters used to simulate data were based on the estimates 

of a malaria efficacy RCT dataset described in Chapter 1 above. The purpose of this was 

to simulate data that reflects real data as much as possible. 

 

3.1 Choice of variables in the simulated data 

Varying combinations of the following variables were included in the simulations 

described in this Chapter: group (the treatment that the participant was allocated to), 

weight, age, haemoglobin level (hb) and parasite density (parasitaemia). Group was 

included because the primary objective of the original study on which the simulations 

were based was to estimate the efficacy difference (effect size) between the two 

intervention groups. Age is often considered as a potential confounder in 

epidemiological studies so was considered to be an essential element of the substantive 
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model. Two other variables considered likely to be closely associated with outcome in 

malaria studies were haemoglobin and parasite density, so both were considered in 

simulations. Finally, as the dose of many anti-malarial treatments is adjusted for patient 

weight, weight was likely to be associated with outcome so was also included in the 

simulations.  At the planning phase of the simulation exercises, it was expected that 

parasitaemia and weight would be included in imputation models primarily when 

missing outcomes could be considered to be “missing at random” so would provide 

important information in imputing the outcome variable.  

 

3.1 Simulating datasets 

In general datasets have been generated to mimic the real data that has been discussed in detail 

in Chapter 1 above. Below are the details of how data were simulated to mimic the real data. 

 

3.1.1 Number of simulated datasets and sample sizes 

A total of 5,000 data sets were simulated for each scenario that was examined. The 

scenarios that were investigated are described in the subsequent sections below. The 

sample size was 200 participants in each of the 5,000 simulated datasets in a scenario. 

The baseline covariate data was simulated for 200 participants. The two hundred 

participants were then randomized, in blocks of size 10, to two treatment groups: A and 

B in the ratio 1:1. One group represented a control treatment while the other was 

representing an intervention treatment arm.  
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3.2 Characteristics of the simulated dataset 

The parameters used in the simulations were similar to those of an example RCT 

previously described in Chapter 1. The following baseline variables: age, weight (wt), 

haemoglobin (hb) level, parasitaemia count (para) were simulated for each treatment 

group. In order to simulate a multivariate normal distribution for the baseline covariates, 

the original age; wt and para data were first transformed into logarithmic scale (Marshall 

et al. 2010). The estimates of the means, variances and covariances were estimated 

based on the log transformed variables and are detailed in the next subsection below. 

The estimated parameters on log scale were used in data simulations. To maintain the 

skewness of these covariates that would reflect real data, the simulated log-normally 

distributed variables were transformed back to their original scales by taking an 

exponential function of each of these variables.  

 

3.2.1 Parameter values for simulation of covariates 

The matrices of parameters for simulating the baseline covariates were as follows: 

X=



















)log(

)log(

)(log

iaParasitaem

Weight

hb

Agee

 ……………………………………………..(3.1)

 

 























7.10

40.2

32.9

15.3

  

……………………………………………………………………………(3.2) 
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50.1

18.0

66.1

42.0

  …………………………………………………………………......(3.3)

 























00.10.050.20.02

05.000.10.40.16

2.04.000.10.09

02.016.009.000.1

 ……………………………………..….(3.4) 

where: 

X is a vector of the four covariates: logarithmic scale for - age, wt and para; and on 

original scale for haemoglobin (Hb);  

μ is a vector of the mean values for log(age), Hb; log(weight) and log(parasitaemia) 

respectively. 

σ is a vector of the standard deviation values for log(age), Hb; log(weight) and 

log(parasitaemia) respectively; 

ρ is a matrix of the correlations between pairs of the baseline variables. 

The matrix and vector values are derived from the historical data discussed in Chapter 1. 

 

3.3 Randomization and the complete (full) dataset 

The simulated observations with covariate data, generated as described in sections 3.1.3 

above, were then randomized to two treatment groups: A and B in the ratio 1:1. The 

randomization was in blocks of size 10. After randomization of the simulated 

observations (that contain covariate data), the outcome variable was generated 
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(1=success, 0=failure) and treatment group (1=A, 0=B) as described in the next section 

3.1.5 below.   

 

3.4 Simulation of a binary outcome variable 

The binary outcome was then simulated for each of the two groups to achieve the 

desired efficacy (treatment success) rates using a Bernoulli (πi) distribution, where πi is 

the mean proportion of subjects with treatment success (efficacy) in a group i, for i=A, 

B. This resulted in a simulated binary outcome data with πi success rate proportion 

(efficacy) and 1-πi failure rate proportion in each group.  

 

3.5 Investigating the Binomial regression model and alternative approaches for 

modeling efficacy (risk) differences 

The primary aim of this thesis was to compare the performance of the CC analysis 

method and the multiple imputation method for analyzing binary outcome data to 

estimate an efficacy difference. The binomial regression model with an identity link 

function is the standard statistical modeling approach for this. When the binomial 

regression was fitted to the simulations to compare the performance of complete case 

(CC) and multiple imputation (MI) methods, it was observed that some of the models 

failed to converge. This caused great concern. Consequently, simulation studies were 

performed to investigate: the factors that are predictive of model failure; and to assess 

convergence and bias in the alternative approaches- the COPY method and the 

Cheung‟s modified OLS method.  
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3.6 Investigating the effects of proximity to boundary of prevalence levels and 

number of covariates on convergence of a binomial regression model 

To investigate the factors that are associated with model failure, a simulation study was 

conducted as follows: the impact on the convergence of the binomial regression model 

of two factors, the proximity of one efficacy rate to the parameter boundaries (0% and 

100%) and the number of covariates included in the binomial regression model, was 

examined. 

 

Data was generated as described in section 3.1.1. Four efficacy scenarios were 

considered as follows: 60% in group A and 70% in group B; 60% in group A and 80% 

in group B; 60% in group A and 85% in group B; 60% in group A and 90% in group B. 

In these simulation studies, the efficacy rate in one group was being moved towards the 

boundary (100%) 

 

For each efficacy scenario, one, two or three covariates were included in the substantive 

model. The rationale was to monitor the effect of moving one efficacy rate towards a 

boundary value and also the effect of increasing the number of covariates in a model.  

 

3.7 The effect of correlations between covariates on model non-convergence 

In this investigation, the correlations between covariates were removed. This was aimed 

at assessing whether the correlations between covariates have an impact on a risk 

difference model convergence. The correlations between any two covariates were set to 
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0.0. Exactly as for simulations based on the original correlations, for each efficacy 

scenario, one, two or three covariates were included in the substantive model.  

 

3.8 Assessment criteria for factors associated with convergence 

The percentage of the 5,000 datasets that converged were captured and summarised. The 

assessment was based on graphical methods. Line graphs were plotted to assess the 

presence of any trends in the in the percentage of the models that converge as one 

efficacy rates move towards a boundary parameter and also as the number of model 

covariates increases. The corresponding bias was also described using linear graphs. 

 

3.9 The “COPY method” and the binomial regression model 

The copy method was first proposed by Deddens and Petersen (2003) to address the 

problem of non-convergence when estimating risk ratios with the log-binomial model 

using Maximum Likelihood Estimation (MLE), which usually occurs when the risk ratio 

estimate is on the boundary of the parameter space (i.e. when either or both of the 

individual risk estimates is close to either 0% or 100%, so the ratio itself is either close 

to zero or heading off to infinity). As its name suggests, in this approach, multiple 

copies of the dataset are added to the original set, a small additional modification made 

(see below); when the binomial regression model is applied to this modified data set, the 

model converges and approximate maximum likelihood estimates of the risk ratio are 

obtained (Deddens and Petersen 2003, Deddens and Petersen 2008, Petersen and 

Deddens 2009).  
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In more precise statistical/mathematical terms, the copy method involves calculating 

MLEs using a log-binomial model on a new expanded version of the data set that 

contains K-1 copies of the original dataset plus one copy of the original dataset in which 

the values of the binary outcome variable are reversed (the 1‟s (successes) are all 

changed to 0‟s (fails) and the 0‟s (fails) are all changed to 1‟s (successes)). For a log-

binomial model, if the total number of dataset copies, K, is finite, the iterative 

estimation solution is no longer on the boundary of the parameter space and is an MLE 

for the “copied” dataset (Petersen and Deddens 2009).   

 

Petersen and Deddens (2008, 2009) state that, as K gets larger, the MLE estimate 

obtained from the “copied” dataset with a log-binomial model approaches the MLE 

estimate for the original dataset (i.e. is asymptotic), and they recommend that K should 

be at least 100 (although in their paper they used a value of K = 1,000). However, as the 

standard error estimates for the MLEs obtained with the copy method are based on K 

copies, they have to be multiplied by √(K) to convert them to estimates for the original 

(single) dataset. 

 

Mathematically, expanding the original data set in the manner required for the copy 

method is simply equivalent to creating a new data set consisting of one copy of the 

original data set having a weight of K-1 and one copy of the original data set with the 

outcome values reversed having a weight of one. Lumley (2006) states that use of the 

weights (K-1)/K and 1/K for the original outcome and the reversed outcome datasets 
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respectively eliminates the need to adjust the standard error (Lumley et al. 2006). The 

next section (3.1.12) describes how the COPY method was assessed. 

 

3.10 The Assessment of convergence and bias of the COPY method 

The covariate and outcome data was generated as described in section 3.1.1 above. The 

following efficacy rates were considered: 0.85 (85%) for group A and 0.60 (60%) for 

group B, a true absolute efficacy difference of 0.25 (25%); 0.98 (98%) for group A and 

0.60 (60%) for group B, a true absolute efficacy difference of 0.38 (38%); and 0.98 

(98%) for group A and 0.95 (95%) for group B, a true absolute efficacy difference of 

0.03 (3%). The following copies were considered: 0 (no copy method), 10; 20; 50; 100; 

500; 1,000; 1,500; 2,000; 3,000; 5,000; 10,000; 50,000 and 100,000. 

 

3.11 The assessment criteria for the COPY method 

Firstly, the percentage of simulated models that converged using the original dataset on 

its own was compared with the percentage of models that converged using the COPY 

method of the binomial regression model.  The degree of bias in the MLEs of the true 

efficacy difference was then compared between the two analysis methods. Prior to 

considering the simulations studies for investigating convergence and bias of the copy 

method, a single original data set that failed to converge using the standard binomial 

model was assessed. 
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3.12 Cheung’s modified OLS method 

The Cheung‟s OLS, a seemingly potentially more reliable method than the Copy method 

was examined. The method fits the risk difference model using modified least-squares 

regression with a Huber-White robust standard error (Cheung 2007). Theoretically, this 

method should reduce the problem of model non-convergence that can occur when 

fitting a binomial regression model to obtain adjusted estimates of risk differences as it 

uses a different mathematical algorithm.  

 

Cheung‟s modified method uses ordinary least squares (OLS) estimation together with 

Huber-White robust (H-W) robust standard errors. This method is reasonable if interest 

is confined to the estimation of risk differences, but is not suitable if there is interest in 

predicting probabilities for individual patients as estimated values outside the 

probability range 0 to 1 may be yielded. The method was considered for evaluation 

using simulations because the interest in this project was on estimating risk (efficacy) 

differences.   

 

The method was examined using exactly the same efficacy scenarios as presented for 

the COPY method in the section (3.1.12) above. The method was assessed for bias and 

convergence percentage. 
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3.13  Comparison of methods of dealing with missing binary outcome data 

3.13.1 The mechanisms for making data to be missing 

Missing data was imposed on the binary outcome with specific missing rates as 

described in the missing data mechanism sections below. There was no missing data 

imposed on the covariates. This is so because in a randomized controlled setting, 

baseline variables are usually collected as part of the inclusion/exclusion criteria and as 

a result, they are rarely missing. 

 

Three missingness data mechanisms were considered and these are: Missing at random 

(MAR), missing completely at random (MCAR) and missing not at random (MNAR).   

The subsequent sections below describe how the missing mechanisms were generated.  

 

3.13.2 Missing completely at random scenarios 

To generate binary outcome data that is being missing completely at random, firstly a 

random variable is generated using a uniform [0,1] distribution. The random variable is 

then sorted and then the outcomes of the first p% of the participants are coded to have a 

missing outcome, P% takes the following values 5%, 15% and 30%. For example where 

p% is 5%, data is simulated such that in each of the 5000 datasets of size 200, there is a 

5% missing binary outcome data (i.e. a total of 10 observations have missing outcome).  
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3.13.2.1 Missing at random scenarios 

The following logistic regression model was used to generate data that is being missing 

at random:  

wt0.277group2)logit(  ………………………………………………….(3.5)  

 

Thus, outcome data being missing was dependent on treatment group and weight of an 

individual as shown in the model above. There was no missing data imposed on the 

covariates as already explained. 

 

Table 3.1 below presents a summary of data, regression (imputation) models and 

efficacy scenarios that were used in the simulations to compare the methods of dealing 

with missing data. The missing outcome data were imposed on each simulated dataset 

such that missing rates were set at 5%, 15% or 30% in each scenario being investigated 

(table 3.1) below. The specific missing rates were achieved using the missing model 

above combined with a uniform [0,1] distribution as detailed in stata do-files (appendix 

) 
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Table 3.1: Summary of data, regression (imputation) models and efficacy scenarios 

 Description 

Number of datasets  5,000  

Sample size 200, (100 in each treatment group) 

Variables  in the dataset Age, hb , wt* and para*, group and outcome 

Variables in a risk difference 

regression model: 

Continuous covariates: Age and hb . 

Factors: group(binary) 

Outcome: efficacy (binary) 

Measure of effect : Risk difference 

Efficacy rates considered: 85 %  in treatment  A vs 60% in group B 

98% in treatment A vs 60% in group B 

98% in treatment A vs 95% in group B 

*These variables are used only in imputation models 

 

3.13.3   Rationale for choice of the efficacy rates  

The efficacy rates were chosen in order to cover the three broad outcome scenarios that 

occur in practice. Firstly both rates were set to be reasonably away from the boundary. 

This scenario is possible in practice in malaria studies although not common but the 

scenario is likely to occur in many other studies that compare risk differences. An 

efficacy rate of 85 % in treatment A vs 60% in group B was considered for this scenario. 

In another scenario, one arm is set to have an efficacy rate that is close to the boundary 

while the other has efficacy rate away from the boundary value. This is a common 
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scenario in malaria efficacy studies where a new treatment with very high efficacy rate 

is compared with a standard treatment that has low efficacy rates probably due to 

resistance. An efficacy scenario of 98% in treatment A vs 60% in group B was 

considered to be a relevant scenario for this. Then in the third scenario that was 

considered, both efficacy rates were set to be close to a boundary value. This also 

commonly occurs in malaria studies especially in Phase II trials where both treatment 

regimens may have very high efficacy rates that are close to 100 (between 90% and 

99%). An efficacy scenario of 98% in treatment A vs 95% in group B was deemed to be 

relevant for this. When modeling a risk difference, it is known that when efficacy rates 

are close to the boundary, the models tend to have convergence problems (Cheung 

2007). The aim of considering these three scenarios is, therefore, to assess the 

performance of the multiple imputation approach and complete case analysis method in 

relation to the three general efficacy scenarios that occur in practice. It is anticipated that 

the methods of analysis may behave differently when handling missing data in these 

three different efficacy scenarios. Therefore the inclusion of the three possible efficacy 

scenarios when comparing the performance of the methods of handling missing data 

will help to generalize the findings.  

 

3.13.4   Missing not at random scenarios 

The Bernoulli distribution was used to generate data that is being missing not at 

random. The model was Bernoulli distribution was parameterized as Bernoulli (0.06) 

for a 5% missing data, Bernoulli (0.20) for 15% missing data and Bernoulli (0.40) for a 

30% missing data. The model generated a 0 or a 1 for each observations and a further 
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condition was imposed based on this variable so that the missing data should depend on 

the value of the outcome. Then the outcomes were made to missing if they had a 

Bernoulli value of 1 and also if their outcome was 1 (a success outcome). Thus 

individuals with a success outcome (1s) were more likely to have their outcome 

missing. This would cause more individuals to have missing outcomes in the high 

efficacy group than the group with low efficacy which in turn results in would result in 

differential missing rates between the two groups. 

 

Again the percentages of data being missing were set at 5%; 15% and 30% in each of 

the 5,000 datasets and in each scenario being investigated (table 3.2). The details are 

also found in stata do-files (appendix). 

 

3.13.5 Model fitting 

A risk difference regression model was fitted on full datasets as well as on incomplete 

datasets.  

 

An adjusted mean estimate of a risk difference was obtained by fitting a risk difference 

model on the 5,000 full datasets. The resulting estimate was considered to be the true 

population adjusted risk difference.  

 

The risk difference model was fitted using modified least-squares regression with a 

Huber-White robust standard error to obtain unbiased estimates of risk differences 



 

84 
 

(Cheung 2007). This method eliminates the problem of model non-convergence in 

software that sometimes results when fitting a binomial regression model to obtain 

adjusted estimates of risk differences (Cheung 2007). The method uses an ordinary least 

squares (OLS) estimation together with Huber-White robust (H-W) robust standard 

errors.  

 

The simulated datasets with some missing binary outcome data were analysed using 

multiple imputation as well as complete case analysis.  Age, haemoglobin and group 

were included in the data (substantive) models to obtain an adjusted risk difference 

between the control and treatment groups in the full data as well as in the versions with 

some missing outcome data. Several versions of multiple imputation models were 

performed under each efficacy scenario as well as under each missing rate scenario as 

detailed in table 3.2 below 
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Table 3.2: Summary of missing rates, missingness mechanisms, imputation models 

and   model assessment criteria considered in the simulation studies 

Assessment criteria Bias, 95% CI and Coverage 

Missing rates An overall of 5%; 15%; and 30% in each dataset 

Missingness 

mechanism  

Missing At Random (MAR). Missingness dependent on 

weight and group such that those with high weight likely to 

have missing outcome in both groups. Those in the 

investigational treatment group were also simulated to have a 

higher chance of dropout.  

Missing Completely At Random (MCAR). Missingness of the 

outcome was unrelated to any variable whether observed or 

not.  

Missing Not At Random (MAR). Missingness on the outcome 

was dependent on the outcome as well as on group 

Method comparison Multiple imputation and Complete case analysis 

Imputation models 1.logit(outcome)=β0+β1xwt+ β2hb+β3age+β4para 

2.logit(outcome)=β0+β1hb +β2age+ β3para 

3.logit(outcome)=β0+β1group+β2hb+β3age+ β4para 

4.logit(outcome)=β0+β1group+β2wt+β3hb+β4age+βpara 
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3.13.6 Assessment criteria 

The main assessment criteria for comparison of missing data methods are the bias and coverage. 

 

Let   be the parameter of interest. For the purposes of this thesis, this would be the population 

risk difference. In general this is not known in practice because it is difficult to study every 

member of the population of interest.  The parameter  is usually estimated using a sample. The 

estimate may be denoted as ̂  and this estimate may deviate from the true population value. 

Bias is the deviation of the parameter estimate   from the true value  . 

 

Mathematically bias denoted as δ is defined as follows(Burton et al. 2006): 

 

)6.3.......(..........................................................................................ˆ    

Confidence interval is given by
 :

)7.3......(....................).........ˆ()2/1( iSEZ      

Coverage is the proportion that the  100(1-α)% confidence intervals presented by  

)ˆ()2/1( iSEZ      include the parameter   wehre i=1…..N and Nis the number of 

simulations. 

 

3.13.7 Software for simulations and analyses 

Simulations and data analyses were performed using Stata12.1 software (StataCorp. 

2009, Stata Statistical Software: Release 12, StataCorp LP,. College Station, TX, USA) 
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Chapter 4 : Alternative approaches to fitting binomial regression model 

4.1 Chapter structure 

This Chapter describes the problems encountered when using the binomial regression 

model with an identity link function to obtain adjusted risk/efficacy differences.  Factors 

associated with the binomial regression model failure are investigated. Alternative 

approaches to the binomial regression models are considered using simulations and 

findings are presented.  

 

4.2 Binomial regression model 

The binomial regression model with an identity link function is the standard statistical 

method for analyzing binary outcome data to estimate a risk or efficacy difference. This 

regression technique is equivalent to fitting a generalized linear model from a binomial 

family with an identity link function.  

 

When the binomial regression technique was employed during the first set of 

simulations to compare the performance of complete case (CC) and multiple imputation 

(MI) methods, it was found that about 5% of the 5,000 simulated datasets yielded non-

convergent models when comparing efficacy rates of 85% in group A against 60% in 

group B. This was a cause for considerable concern. In a real trial situation, there is only 

one dataset. If a fitted substantive model does not converge for this particular dataset, 
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the data analyst needs to know the next steps that can be taken in order to evaluate the 

findings of the trial. This problem of non-convergence of binomial regression models 

has been reported previously (Wacholder 1986, Cheung 2007). 

 

A search for methods that may be used to model risk/efficacy differences when the 

binomial model yields non-convergent results identified two potentially useful analysis 

policies: the copy method developed by Deddens (2003) and Cheung‟s Modified 

Ordinary Least Squares (OLS) method (2007). However, before evaluating these two 

methods, the factors that are associated with the binomial regression model failure when 

the identity link function is used were investigated. 

 

4.2.1 Factors associated with the failure of a risk difference binomial regression 

model  

The performance of the binomial regression method with an identity link function in the 

presence of a number of factors associated with a risk difference model failure was 

investigated as described in sections 4.2.1 and 4.2.2 below.  
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4.2.2 Effect of proximity to boundary of prevalence levels and number of 

covariates on convergence of a binomial regression model 

Firstly, the influence on the convergence of the binomial regression model of two 

factors, the proximity of one or both prevalence levels to the parameter boundaries (0% 

and 100%) and the number of covariates included in the regression model, was 

examined.  The findings are presented in Tables 4.1 and 4.2, and in Figures 4.1 and 4.2. 

 

When using just a single predictor variable (covariate), the percentage of datasets that 

converged when a binomial regression model was fitted was high (96.8% to 99.7%) 

when the efficacy levels were 60% and 70% for the two groups respectively (i.e. were 

well away from 0% or 100%, the boundary of the parameter space).  Stated the other 

way round, the percentage of datasets that failed to converge in this situation was very 

low (but not negligibly so). 
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Figure 4.1: Percentage convergence by efficacy rates and number of covariates in 

model  
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Table 4.1: Convergence rates by efficacy rate and number of covariates in model 

(averaged over 5000 simulated datasets)  

Covariates: Efficacy rates: 

Number Names 60% vs. 70% 60% vs. 80% 60% vs. 85% 60% vs. 90% 

1 age 99.7 97.9 94.6 85.5 

1 hb 99.9 98.7 94.7 81.3 

1 para 96.8 98.6 92.0 86.6 

1 wt 99.9 98.1 94.2 82.1 

2 hb, age 99.4 94.7 84.5 61.4 

2 age, wt 99.3 94.1 84.7 61.0 

2 age, para 96.0 91.1 82.6 66.1 

2 hb, wt 99.4 95.1 84.7 59.8 

2 hb, para 96.1 91.4 83.3 64.9 

2 wt, para 96.4 92.0 83.0 64.6 

3 age, hb, para 95.7 87.9 73.9 48.1 

3 age, hb, wt 98.8 89.7 73.4 42.9 

3 hb, wt, para 96.3 88.1 74.2 46.4 

3 age, wt, para 95.9 87.6 74.5 47.7 

 

Convergence rates remained high, ranging from 92.0% to 94.7%, even when the larger 

of the two efficacy levels were increased to 85%. However, when the larger efficacy 

level was increased to 90% (still some distance from the boundary), convergence levels 

were found to drop dramatically, to between 81.3% and 86.6%. 

 

Adding additional covariates confounded rather than alleviated this problem.  With the 

larger of the two efficacy levels set at 90%, convergence was obtained for between 

59.8% and 66.1% of models involving two covariates, and for between only 42.9% and 

48.1% of models involving three covariates. 



 

92 
 

In summary, non-convergence rates were found to increase as one or both of the efficacy 

rates moved towards a boundary value irrespective of the number of covariates included 

in the model. Indeed, it is interesting to note that the problem worsened with increasing 

numbers of covariates in the model and as efficacy moved towards a boundary value. 

That is, models with just one covariate had less convergence problems than models with 

two covariates, and in turn these had fewer convergence problems than models with 

three covariates.  For all scenarios examined, convergence was poor when the efficacy 

rate in either group was 90%. 

 

4.2.3 The effect of correlations between covariates on model non-convergence 

In the previous section, the following levels of correlation were assumed between the 

covariates fitted in the different models: 0.4 for haemoglobin and weight; 0.1 for age 

and either weight or haemoglobin; 0.20 for age and weight; 0.02 for parasitaemia.  

These values reflected the levels found in the original dataset on which this simulation 

was based. 
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Figure 4.2: Effect of reducing correlation on convergence (Efficacy rates: 60% and 

85%) 
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Table 4.2: Convergence rates in the presence and absence of correlation between 

covariates (averaged over 5000 simulated datasets): efficacy rates 60% 

and 85% 

Number of covariates Covariates Original  correlations No correlations 

1 age 94.6 97.2 

1 hb 94.7 96.5 

1 para 92.0 92.1 

1 wt 94.2 96.3 

2 hb, age 84.5 91.0 

2 age, wt 84.7 91.1 

2 age, para 82.6 85.7 

2 hb, wt 84.7 91.1 

2 hb, para 83.3 86.1 

2 wt, para 83.0 85.8 

3 age, hb, para 73.9 80.0 

3 age, hb, wt 73.4 84.1 

3 hb, wt, para 74.2 80.2 

3 age, wt, para 74.5 80.4 

 

The influence of this correlation was examined in more detail for efficacy rates in the 

two groups of 60% and 85% respectively, and the findings are summarised in Table 4.2 

and Figure 4.2.  In these simulations the correlations between any two covariates was set 

to zero. Similar findings were obtained for all other efficacy rate comparisons examined 

and so are not reported.  

 

The percentage of datasets that converged improved when the correlations between the 

covariates were removed in all of the models considered. The improvement in 

convergence was most notable in models with higher number of covariates. 
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4.3 The “copy method” and the binomial regression model 

The copy method was first proposed by Deddens and Petersen (2003) to address the 

problem of non-convergence when estimating risk ratios with the log-binomial model 

using Maximum Likelihood Estimation (MLE), which usually occurs when the risk ratio 

estimate is on the boundary of the parameter space (i.e. when either or both of the 

individual risk estimates is close to either 0% or 100%, so the ratio itself is either close 

to zero or heading off to infinity). As its name suggests, in this approach, multiple 

copies of the dataset are added to the original set, a small additional modification made 

(see below); when the binomial regression model is applied to this modified data set, the 

model converges and approximate maximum likelihood estimates of the risk ratio are 

obtained (Deddens and Petersen 2003, Deddens and Petersen 2008, Petersen and 

Deddens 2009).  

 

In more precise statistical/mathematical terms, the copy method involves calculating 

MLEs using a log-binomial model on a new expanded version of the data set that 

contains K-1 copies of the original dataset plus one copy of the original dataset in which 

the values of the binary outcome variable are reversed (the 1‟s (successes) are all 

changed to 0‟s (fails) and the 0‟s (fails) are all changed to 1‟s (successes)). For a log-

binomial model, if the total number of dataset copies, K, is finite, the iterative 

estimation solution is no longer on the boundary of the parameter space and is an MLE 

for the “copied” dataset (Petersen and Deddens 2009).   
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Petersen and Deddens (2008, 2009) state that, as K gets larger, the MLE estimate 

obtained from the “copied” dataset with a log-binomial model approaches the MLE 

estimate for the original dataset (i.e. is asymptotic), and they recommend that K should 

be at least 100 (although in their paper they used a value of K = 1,000). However, as the 

standard error estimates for the MLEs obtained with the copy method are based on K 

copies, they have to be multiplied by √(K) to convert them to estimates for the original 

(single) dataset. 

 

Mathematically, expanding the original data set in the manner required for the copy 

method is simply equivalent to creating a new data set consisting of one copy of the 

original data set having a weight of K-1 and one copy of the original data set with the 

outcome values reversed having a weight of one. Lumley (2006) states that use of the 

weights (K-1)/K and 1/K for the original outcome and the reversed outcome datasets 

respectively eliminates the need to adjust the standard error (Lumley et al. 2006).  

 

Although the copy method is simple to apply and intuitively attractive, no published 

evidence could be found indicating whether the copy method can be extended for use 

with binomial regression models with the identity link function to obtain risk 

differences. In this project, therefore, the copy method was explored using simulation 

methods to assess whether its application can be extended to risk difference modeling 

when the original binomial model fails to converge.   
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4.4 Aims of the copy method assessment 

 To assess whether the copy method resolves non-convergence problems for a 

binomial regression model with an identity link function. 

 To assess whether the copy method produces unbiased estimates of risk differences 

when used with a binomial regression model. 

 

4.4.1 Methodology for data simulations for the copy method assessment   

The following matrices were used to simulate the covariate data based on the real data 

described in Chapter 3 

X= 








Hb

(age)log e

 











32.9

15.3
  











66.1

42.0


 











138.0

38.01


 
where: X is a matrix of the values for the two covariates (logarithmic) age and 

haemoglobin (Hb); 

μ is a vector of the mean values for log(age) and Hb; 

σ is a vector of the standard deviation values for log(age) and Hb respectively; 

ρ is a matrix of the correlations between log(age) and Hb. 



 

98 
 

The outcome data were simulated using Bernoulli distributions with an efficacy rate of 

0.85 (85%) for group A and 0.60 (60%) for group B, a true absolute efficacy difference 

of 0.25 (25%). The procedure was repeated for efficacy rate of 0.98 (98%) for group A 

and 0.60 (60%) for group B; and 0.98 (98%) for group A and 0.95 (95%) for group B. 

 

4.4.2 The assessment criteria 

Firstly, the percentage of simulated models that converged using the original dataset on 

its own was compared with the percentage of models that converged using the copy 

method.  The degree of bias in the MLEs of the true efficacy difference was then 

compared between the two analysis methods. Prior to considering the simulations 

studies for investigating convergence and bias of the copy method, a single original data 

set that failed to converge using the standard binomial model was assessed. 

 

4.4.3 Copy method for a single original data set 

A single data set that failed to converge with the standard binomial regression method 

was investigated whether copy method would make the model converge. Table 4.3 

below summarises the number of copies and whether the model converged or not. 
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Table 4.3: Summary of convergence using copy method for a single dataset 

number of copies RD SE(RD) status 

0 N/A N/A did not converge 

5 
0.108 0.056 

converged 

6 
0.114 0.055 

converged 

7 
0.119 0.054 

converged 

8 
0.122 0.054 

converged 

9 
0.125 0.053 

converged 

10 
0.127 0.053 

converged 

11 
0.128 0.052 

converged 

12 
0.130 0.052 

converged 

13 
0.131 0.051 

converged 

14+ N/A N/A did not converge 

 

 

For small number of copies (1 through 13 of original copies of outcome plus one copy 

of the original dataset with outcomes reversed), with three covariates Hb and age and 

weight, the analyses of the historical data converged. However models stopped 

converging when the number of copies of the original dataset exceeded 13. No statistical 

output was produced in Stata. However Stata reported “convergence not achieved”. The 

number of iterations was then increased from the default 16000 to several thousands of 

iterations but no convergence was achieved. Tables 4.3 above summarise how the 

treatment effect size was changing with an additional copy of the reversed dataset (5-13 

copies). The challenge was to know whether the treatment effect was moving towards 

the expected effect as the number of original copies increased. Unfortunately, the 

correct answer for “the expected effect” is unknown. Therefore one cannot be certain 
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whether the estimate from the 13 copies yield unbiased estimate of the risk differences 

and that the 13 copies are enough. A simulation study was performed to investigate the 

convergence problem and bias using a known treatment effect. The simulated data 

structure is described in section 4.3.2 above. 

 

4.4.4 Bias and convergence rate trends for the COPY method simulations 

4.4.4.1 Efficacy rates 85% vs. 60%  

When 5000 simulated datasets were analysed using a binomial regression model with an 

identity link function without using the copy method, 4.9% (just under 5%) failed to 

converge (Figure 4.3, Table 4.4).  In those models for which convergence was achieved, 

the mean efficacy difference estimate was 0.240 (s.e. 0.003), a (negative) bias of -0.010 

(4.0%).  

 

When the outcomes in one copy of the original dataset were reversed and then appended 

to increasing numbers of copies of the original dataset, the percentage of non-

convergent models initially decreased. However, when the number of copies was 

extended beyond 10, the percentage of non-convergent models started to increase.  At 

between 100 and 150 copies, the non-convergence rate reached the level observed when 

no copies were used, but then continued to increase as the number of copies rose further.  

Although the rate of increase diminished, the percentage of non-convergent model was 

observed to be still rising even when the number of copies used reached 100,000. 
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Figure 4.3: Percentage convergence and (absolute) bias for increasing numbers of 

copies (85% vs. 60%) 
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Table 4.4: Percentage convergence and bias for increasing numbers of copies 

(averaged over 5000 simulated datasets): 85% vs. 60% (RD = 0.250) 

Number 

of copies 

Converged Risk difference (RD) 95% CI for RD 
Bias 

n         (%) Estimate SE LL UL 

0 4755    (95.1) 0.240 0.003 0.235 0.245 -0.010 

10 4992    (99.8) 0.204 0.001 0.202 0.206 -0.046 

20 4939    (98.8) 0.226 0.001 0.224 0.227 -0.024 

50 4860    (97.2) 0.227 <0.001 0.226 0.228 -0.023 

100 4790    (95.8) 0.232 <0.001 0.231 0.233 -0.018 

500 4701    (94.0) 0.248 <0.001 0.247 0.248 -0.002 

1000 4677    (93.5) 0.248 <0.001 0.248 0.248 -0.002 

1500 4668    (93.4) 0.248 <0.001 0.248 0.248 -0.002 

2000 4656    (93.1) 0.239 <0.001 0.239 0.239 -0.011 

3000 4633     (92.7) 0.239 <0.001 0.239 0.239 -0.011 

5000 4609    (92.2) 0.239 <0.001 0.239 0.239 -0.011 

10000 4586    (91.7) 0.239 <0.001 0.239 0.239 -0.011 

50000 4552    (91.0) 0.239 <0.001 0.239 0.239 -0.011 

100000 4537    (90.7) 0.239 <0.001 0.239 0.239 -0.011 

CI: confidence interval LL: lower limit UL: upper limit 

 

 

It was found that the datasets that failed to converge when analysed conventionally were 

predominantly the same as those that failed to converge using the copy method with 
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more than 100 copies.  In addition, some datasets that converged when analysed 

conventionally became non-convergent using the copy method.  

 

The degree of (negative) bias in the MLE estimates increased initially from -0.010 

(4.0%) when no copies were used to -0.024 (9.6%) when 10 copies were used (the 

minus sign here indicating that the MLEs under-estimated the true efficacy difference). 

Bias levels then steadily decreased to just -0.002 (0.8%) when 500 to 1500 copies were 

used.  With more than 1500 copies, bias then increased again, reaching a plateau level of 

-0.011 (4.4%) at around 2000 copies. 

 

Ironically, and perhaps surprisingly, therefore, with the binomial model, the number of 

copies required to minimize the number of non-convergence models was found to 

coincide with the number of copies giving the most biased estimates of the true efficacy 

difference. 

 

4.4.5 Copy method - bias and % convergence trends (95% vs. 90% efficacy rates)  

When 5000 simulated datasets were analysed using a binomial regression model with an 

identity link function without using the copy method, 29% (about 30%) failed to 

converge (Figure 4.4, Table 4.5).  In those models for which convergence was achieved, 

the mean efficacy difference estimate was 0.037 (s.e. 0.001), a (negative) bias of -0.013 

(35%).  
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Figure 4.4: Percentage convergence and (absolute) bias for increasing numbers of 

copies (95% vs. 90%)                         
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Table 4.5: Percentage convergence and bias for increasing numbers of copies 

(averaged over 5000 simulated datasets) : 90% vs. 95% (RD = 0.050) 

Number 

of copies 

Converged Risk difference (RD) 95% CI for RD 

Bias 

n         (%) Estimate SE LL UL 

0 3550    (71.0) 0.037 0.001 0.034 0.040 -0.013 

10 4998    (100.) 0.040 0.001 0.038 0.041 -0.010 

20 4917    (98.3) 0.044 <0.001 0.043 0.045 -0.006 

50 4536    (90.7) 0.059 <0.001 0.058 0.059 +0.009 

100 4143    (82.9) 0.047 <0.001 0.047 0.048 -0.003 

500 3521    (70.4) 0.032 <0.001 0.032 0.032 -0.018 

1000 3385    (67.7) 0.032 <0.001 0.032 0.032 -0.018 

1500 3331    (66.6) 0.025 <0.001 0.024 0.025 -0.025 

2000 3295    (65.9) 0.032 <0.001 0.032 0.032 -0.018 

3000 3258    (65.2) 0.032 <0.001 0.008 0.008 -0.018 

5000 3178    (63.6) 0.023 <0.001 0.023 0.023 -0.027 

10000 3102    (62.0) 0.036 <0.001 0.036 0.036 -0.014 

50000 2981    (59.6) 0.042 <0.001 0.042 0.042 -0.008 

100000 2948    (59.0) 0.042 <0.001 0.042 0.042 -0.008 

CI: confidence interval LL: lower limit UL: upper limit 

 

Similar to the 85% against 60% efficacy rates, when the outcomes in one copy of the 

original dataset were reversed and then appended to increasing numbers of copies of the 
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original dataset, the percentage of non-convergent models initially decreased, reaching a 

zero non-convergence (100% convergence) rate with 10 copies. However, when the 

number of copies was extended beyond 10, the percentage of non-convergent models 

started to increase; again, at between 100 and below 500 copies, the non-convergence 

rate reached the level observed when no copies were used, but then continued to 

increase as the number of copies rose further.  Although the rate of rise was gradual, the 

percentage of non-convergent model was observed to be still increasing even when the 

number of copies used reached 100,000, at which point the proportion of models not 

converging was approximately 60%. 

 

As for the 85% vs. 60% comparison, the same datasets that failed to converge when 

analysed using the conventional approach failed to converge using the copy method 

with more than 100 copies – but in addition some datasets that converged when 

analysed conventionally became non-convergent using the copy method.  

 

The degree of bias in the MLE estimates decreased initially from -0.013 (35%) when no 

copies were used to -0.010 (27%) when 10 copies were used. Bias steadily reduced to -

0.003 (8%) with 100 copies of the original dataset (becoming positive briefly at around 

50 copies). When more than 100 copies were used, the (negative) bias then increased 

again, fluctuating between -0.008 (21%) and -0.027 (73%). 
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Ironically again, with the binomial model, the number of copies required to achieve an 

absence of non-convergent models was found to coincide with the number of copies 

giving the most biased estimates of the true efficacy difference (a risk difference of 4% 

instead of the expected value of 5%). 

 

4.4.6 Copy method - bias and % convergence trends (98% vs. 95% efficacy rates)  

When both efficacy rates were set very close to boundary values, 60.3% of models 

failed to converge using a binomial regression model with an identity link function 

without using the copy method (Figure 4.5, Table 4.6); this is a large and wholly 

unmanageable convergence problem in practice. In those models for which convergence 

was achieved, the mean efficacy difference estimate was 0.036 (s.e. 0.001), a (negative) 

bias of -0.006 (17%).  

 

Similar to the efficacy rates considered in the previous sections, when the outcomes in 

one copy of the original dataset were reversed and then appended to increasing numbers 

of copies of the original dataset, the percentage of non-convergent models initially 

decreased; again, a zero non-convergence rate (100% convergence rate) was observed 

with 10 copies of the original data set. However, when the number of copies was 

extended beyond 10, the percentage of non-convergent models started to increase.  

Again, at about 3000 copies, the non-convergence rate reached the level observed when 

no copies were used (a rate of about 40%), but then continued to increase as the number 

of copies rose further.  The percentage of non-convergent model was observed to be 
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increasing even when the number of copies used reached 100,000, having at that stage 

almost reached 75% (i.e. barely one quarter of models were converging). Again, the 

datasets that did not converge when the copy method was not used also failed to 

converge using the copy method with more than 100 copies; also some datasets that 

converged when analysed conventionally became non-convergent using the copy 

method. 

 

Figure 4.5: Percentage convergence and (absolute) bias for increasing numbers of 

copies (98% vs. 95%)                                
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Table 4.6: Percentage convergence and bias for increasing numbers of copies 

(averaged over 5000 simulated datasets): 98% vs. 95% (RD = 0.030) 

Number 

of copies 

Converged Risk difference (RD) 95% CI for RD 
Bias 

n        (%) Estimate SE LL UL 

0 1987   (39.7) 0.036 0.001 0.035 0.038 +0.006 

10 5000   (100) 0.024 0.001 0.023 0.025 -0.006 

20 4950   (99.0) 0.026 <0.001 0.025 0.027 -0.004 

50 4403  (88.1) 0.028 <0.001 0.028 0.029 -0.002 

100 3756  (75.1) 0.032 <0.001 0.032 0.032 +0.002 

500 2649  (53.0) 0.030 <0.001 0.029 0.030   0.000 

1000 2397  (47.9) 0.030 <0.001 0.029 0.030   0.000 

1500 2255  (45.1) 0.029 <0.001 0.029 0.029 -0.001 

2000 2188  (43.8) 0.040 <0.001 0.040 0.040 +0.010 

3000 2089  (41.8) 0.029 <0.001 0.029 0.029 -0.001 

5000 1977  (35.4) 0.038 <0.001 0.038 0.038 +0.008 

10000 1772  (28.9) 0.040 <0.001 0.040 0.040 +0.010 

50000 1446  (27.6) 0.038 <0.001 0.038 0.038 +0.008 

100000 1380 (27.6) 0.040 <0.001 0.040 0.040 +0.010 

CI: confidence interval LL: lower limit UL: upper limit 

 

The degree of bias in the MLE estimates decreased initially from (an under-estimate of) 

-0.006 (20%), through zero bias at around 5 copies, and then to (an over-estimate of) 

+0.006 (20%) when 10 copies were used. Bias levels then slowly decreased, eventually 

fluctuating around zero and finally plateauing at zero when between 500 and 1000 

copies were used. Bias then increased steadily, reaching a final plateau of around +0.010 

(33.3%) from 5000 copies onwards.  
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The number of copies required to achieve zero non-convergence was again found to 

coincide with the number of copies giving highly biased estimates of the true efficacy 

difference (2.4% instead of the expected 3%).   

 

In summary, irrespective of the sizes of the two efficacy rates being compared, the 

maximum percentage of convergent models was achieved using 10 copies. In general 

terms, when the number of copies was extended beyond 10, the percentage of non-

convergent models increased steadily, continuing to do so even when the number of 

copies used reached 100,000. The number of copies required to achieve minimum non-

convergence models coincided with the number of copies giving high biased estimates 

of the true efficacy difference.  

 

These simulations indicate strongly that the copy method probably has no place in 

modeling risk differences using a binomial regression model, as in general both 

convergence levels and bias were found to be unacceptably high. 

 

4.4.7 Cheung’s Modified Ordinary Least Squares (OLS) method 

As a potentially more reliable method than the Copy method, the results obtained by 

fitting the risk difference model using modified least-squares regression with a Huber-

White robust standard error (Cheung 2007) were examined. Theoretically, this method 

should reduce the problem of model non-convergence that can occur when fitting a 
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binomial regression model to obtain adjusted estimates of risk differences as it uses a 

different mathematical algorithm.  

 

Cheung‟s modified method uses ordinary least squares (OLS) estimation together with 

Huber-White robust (H-W) robust standard errors. This method is reasonable if interest 

is confined to the estimation of risk differences, but is not suitable if there is interest in 

predicting probabilities for individual patients as estimated values outside the 

probability range 0 to 1 may be yielded. The method was considered for evaluation 

using simulations because the interest in this project was on estimating risk (efficacy) 

differences.  Table 4.7 presents the results for the Cheung‟s OLS method. 

 

4.7: Percentage convergence and bias for Cheung’s method 

Efficacy 

rates 

Converged 

N(%) RD     (SE) 
95% CI* 

Coverage Bias 

 LL           UL 

85% vs  

60% 

5000 (100) 
0.250  (0.061) 0.130 0.369 0.950 0.000 

98% vs  

60% 

5000 (100) 
0.380  (0.051) 0.279 0.479 0.946 0.000 

98% vs 95 % 5000 (100) 0.030  (0.026) -0.021 0.079 0.950 0.000 

 

As expected of an OLS regression technique, Cheung‟s modified OLS method yielded 

100% convergence rates and unbiased estimates of risk difference for all of the efficacy 

scenarios that were considered.   
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4.4.8 Conclusion 

Cheung‟s modified OLS method was thus adopted for use in all of the simulations 

reported in the next Chapter to investigate methods for handling missing binary 

outcomes in a randomized controlled trial.  This method avoids any problems of model 

non-convergence when estimating risk differences even when several covariates are 

included in the regression model, making it useful for controlling for potential 

confounders and also for identifying independent predictors of outcome when modeling 

risk differences. In addition, the method yields unbiased estimates of risk differences 

with robust standard errors, thus offering clear statistical advantages over the use of the 

binomial regression method with the Copy method. 

 

When used with an identity link function to estimate either unadjusted or adjusted risk 

differences, the binomial regression model is susceptible to model non-convergence, 

particularly if one or both of the efficacy rates is close to a boundary value (i.e. is close 

to 0% or 100%). Increasing the number of covariates model often merely aggravates the 

problem, rendering the method inappropriate for adjusting for potential confounders. 

High correlations between model covariates also intensify the non-convergence 

problem.  

 

The Copy method has been found to be effective in solving non-convergence problems 

in log-binomial models used to estimate risk ratios – but this research shows clearly that 
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the method is not appropriate for modeling risk differences. In all of the scenarios 

considered, 100% convergence was often achieved when around 10 copies were used – 

but this was found to be the number of copies at which the estimates for the risk 

difference were most biased. Increasing the number of copies beyond 10 simply 

increased the likelihood of non-convergence.  

 

Interestingly, datasets that did not converge with the original binomial model also failed 

to converge with the Copy method, particularly when large numbers of copies were 

made. In addition some of the datasets that were convergent with the original binomial 

regression model become non-convergent with the Copy method. The possible reason 

for this is that the Copy method creates very large datasets. In general, very large and 

very small datasets are both susceptible to non-convergence problems (SAS Technical 

Support 2009).  

 

In addition, bias patterns were found to be very irregular with increasing number of 

copies, a finding that needs further exploration.  This was considered to be outside the 

limitations of this dissertation, the main aim was of which is to compare methods for 

dealing with missing binary outcome data. The non-convergence problems reviewed in 

this Chapter was an unexpected finding along the way and was pursued only as far as 

was necessary to ensure that the evaluation of missing data method comparisons could 

proceed smoothly. 
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Cheung‟s modified OLS method was thus adopted for the estimation of risk differences 

and for use in the simulation-based research reported in the next Chapter to compare 

methods for handling missing binary outcome data. This method was found to have 

excellent convergence properties, and produced unbiased estimates of both unadjusted 

and adjusted risk differences.  

 

If convergence problem do not occur, however, the binomial model has one potential 

advantage in that it provides exact confidence intervals and so may be preferred.  In 

Cheung‟s method, valid model-based estimates of standard errors (and hence of 

confidence intervals) are produced using Huber-White robust formulae, but as these are 

not based directly on the binomial distribution, they produces symmetrical 95% 

confidence intervals for estimates of both the individual group risk levels and the risk 

difference.  Using the binomial distribution, these intervals are asymmetrical.   

 

For estimating risk differences (which, of course, range from - to +), this is only 

likely to be a problem for small sample sizes; for the kind of sample size found in most 

randomized controlled trials, the differences between the confidence intervals for a risk 

difference based on the binomial distribution and on Cheung‟s modified OLS method 

will be numerically too small to be of consequence. 

 

The problem is slightly more acute, however, for estimating individual group risk levels, 

as confidence intervals for risks close to the parameter boundary (i.e. close to 0% and 
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100%) can exceed the parameter boundary.  Thus, negative lower confidence limits are 

possible for risk levels close to 0%, and upper confidence limits in excess of 100% are 

possible for risk levels close to 100%; vigilance is required to spot and appropriately 

adjust these should they occur. 

 

In summary, therefore, the binomial model with an identity link function is the method 

of first choice for estimating risk / efficacy differences, provided the model converges.  

If, as happens worryingly frequently, the model fails to converge, this problem may be 

overcome by using the Copy method – but if convergence still fails when the number of 

copies has reached 10, the binomial model should be considered to have failed and the 

more reliable Cheung modified OLS method should be used. 

 

Because of its considerably greater reliability, Cheung‟s modified OLS method was 

used exclusively throughout the next Chapter, which looks at methods for handling 

missing binary outcomes in the context of a randomized controlled trial. 
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Chapter 5 : An evaluation of methods for handling missing binary 

outcome values using imputation modeling 

5.1 Mathematical approaches for imputing binary outcomes 

 Two different, but related, approaches were used in this Chapter to impute missing 

binary outcome values when fitting substantive models.  

 In one set of analyses, missing outcomes were imputed as binary values using the 

Stata command: mi impute logit. With this command, the imputed outcome values 

are constrained to take the values 0 or 1 only. 

 Then, in a second (otherwise identical) set of analyses, missing outcomes were 

imputed on a continuous scale using the Stata command: mi impute regress. With this 

command, the imputed outcome values are not constrained to be 0 or 1 but can take 

any value between these two boundary values. 

 

Both sets of analyses were carried out using Cheung‟s modified OLS method to obtain 

adjusted efficacy differences; this approach allows efficacy (risk) differences to be 

computed whether the outcome is binary or continuous since the approach employs the 

OLS regression technique to estimate the model parameters and then adjusts the 

standard error estimates for so called “model errors”.  In practice, this means that, in 

cases where the imputed values were on a continuous scale in the fitted regression 

model, the outcome variable contained both the observed binary outcomes and the 

imputed continuous outcome values. 
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In the remainder of this Chapter, the findings obtained when the outcome was treated as 

binary are presented first; the results for data models that used continuous imputed 

outcomes then follow. 

 

5.2 Results for missing data simulations with binary imputed outcomes 

This section presents the findings of the statistical analyses of simulated data sets 

containing missing binary outcome values generated using three different missing data 

mechanism assumptions, namely: MCAR, MAR and MNAR. Under all three 

assumptions and for several different effect size scenarios, missing outcomes were 

imputed as binary variables.  

 

Simulated data sets were generated for the following efficacy rate differences (effect 

sizes) under each of the three missing data mechanism assumptions:  

 60% efficacy in group A versus 85% efficacy in group B;  

 60% efficacy in group A versus 98% efficacy in group B; 

 95% efficacy in group A versus 98% efficacy in group B.   

 

As detailed in the methodology section in Chapter 3, analyses are reported for 5%, 15% 

and 30% missing rates for each of the above efficacy scenarios.   
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5.2.1 Missing At Random (MAR) scenarios 

5.2.1.1 Efficacy rates 85% vs. 60%  

This scenario was purposively chosen such that both efficacy rates were away from the 

boundary values and to ensure that there was a substantial efficacy difference (effect 

size).  The results of these analyses are presented in Table 5.1. 

 

Predictably, as the proportion of missing data increased (and hence as the sample size 

effectively decreased), the effect size estimates from the complete case (CC) became 

increasingly inefficient (i.e. the standard error of this estimate became larger).  
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Table 5.1: Estimated efficacy differences, coverage and bias for different 

proportions of missing MAR outcomes (averaged over 5000 imputed 

data sets): efficacy rates 85% vs. 60% (RD 0.250) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL           UL 

Full data 0.250  (0.061) 0.130 0.369 0.950 0.000 

5% missing 
  

 
  

Complete Case 0.250  (0.063) 0.127 0.372 0.946 0.000 

MI: wt, hb, age, para 0.238  (0.063) 0.116 0.361 0.955 -0.012 

MI: hb, age, para 0.235  (0.063) 0.112 0.358 0.955 -0.015 

MI: hb, age, para, group 0.251  (0.063) 0.128 0.374 0.946 +0.001 

MI: wt, hb, age, para,  group 0.250  (0.063) 0.127 0.373 0.948 0.000 

15% missing 
  

 
  

Complete Case 0.250  (0.066) 0.120 0.380 0.945 0.000 

MI: wt, hb, age, para 0.213  (0.066) 0.083 0.343 0.945 -0.037 

MI: hb, age, para 0.211  (0.066) 0.081 0.341 0.944 -0.039 

MI: hb, age, para, group 0.251  (0.066) 0.121 0.381 0.946 +0.001 

MI: wt, hb, age, para,  group 0.250  (0.066) 0.119 0.380 0.949 0.000 

30% missing 
  

 
  

Complete Case 0.250  (0.073) 0.106 0.393 0.948 0.000 

MI: wt, hb, age, para 0.174  (0.071) 0.034 0.313 0.884 -0.076 

MI: hb, age, para 0.173  (0.071) 0.034 0.313 0.876 -0.077 

MI: hb, age, para, group 0.248  (0.073) 0.104 0.391 0.941 -0.002 

MI: wt, hb, age, para,  group 0.246  (0.073) 0.103 0.390 0.946 -0.004 

 

Much less predictably, however, exactly the same trends occurred for all of the 

imputation models evaluated.  For small to moderate amounts of missing outcome data, 

this finding held irrespective of whether the model was correctly specified or 

misspecified – but, surprisingly, with 30% of outcomes missing, efficiency was slightly 
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better when the model was misspecified (i.e. when treatment group was not included in 

the model). 

 

The estimates of adjusted efficacy difference were unbiased for all missing value levels 

when a complete case (CC) analysis was performed.  Only small amounts of bias were 

detected for those imputation models which included group; for those models that did 

not include group (i.e. for misspecified imputation models), however, the estimates were 

markedly biased, and the degree of bias increased as the proportion of missing outcome 

values increased. 

 

Coverage was generally high for all models at all missing value levels, remaining above 

0.941 (94.1%).  The only (and notable) exception occurred when the proportion of 

missing outcomes reached 30%; in this situation, coverage for the misspecified models 

fell to around 88%, which is unacceptably low. 

 

In this MAR scenario, imputation models not containing both of the variables wt and 

group are technically misspecified as it is these two variables that determine 

missingness.  As expected, therefore, the model containing both wt and group performed 

well for all missing outcome configurations, providing estimates that were only 

fractionally biased and with high coverage.   
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Less expectedly, models including group but excluding wt performed as well as the 

model with both group and wt included, whereas models including wt but excluding 

group performed as badly as models with neither wt nor group included.   

 

In summary, although both the group and wt variables were correlated with missingness, 

the inclusion of group in the imputation models greatly improved the performance of the 

multiple imputation procedures and provided unbiased estimates of effect size, whereas 

the inclusion of weight did not improve performance and produced biased estimates of 

effect size. These findings appear to indicate that, for the estimation of effect size, if 

missingness is related to group membership, excluding this variable from the imputation 

process is critical and will produce biased estimates; however, provided group is 

included in the imputation process, the absence of other covariates or factors linked to 

missingness has relatively little impact on bias levels. 

 

5.2.1.2 Efficacy rates 98% vs. 60%  

This scenario was purposively chosen such that one efficacy rate was close to a 

boundary value and to ensure that there was a substantial efficacy difference (38%). 

This is a common scenario in anti-malaria treatment efficacy trials where a new drug is 

highly efficacious while the standard drug has low efficacy, possibly due to the 

development of resistance.  The results of these analyses are presented in Table 5.2 

below. 
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Table 5.2: Estimated efficacy differences, coverage and bias for different 

proportions of missing MAR outcomes (averaged over 5000 imputed 

data sets): efficacy rates 98% vs. 60% (RD 0.380) 

Model RD     (SE) 
95% CI* Coverage Bias 

LL             UL 
  

Full data 0.380  (0.051) 0.279 0.479 0.946 0.000 

5% missing 
  

 
  

Complete Case 0.380  (0.053) 0.276 0.483 0.942 0.000 

MI: wt, hb, age, para 0.360  (0.053) 0.256 0.465 0.939 -0.020 

MI: hb, age, para 0.361  (0.053) 0.257 0.465 0.944 -0.019 

MI: hb, age, para, group 0.382  (0.053) 0.278 0.486 0.952 +0.002 

MI: wt, hb, age, para,  group 0.382  (0.053) 0.278 0.486 0.952 +0.002 

15% missing 
  

 
  

Complete Case 0.380  (0.056) 0.270 0.490 0.941 0.000 

MI: wt, hb, age, para 0.323  (0.058) 0.210 0.435 0.851 -0.057 

MI: hb, age, para 0.321  (0.058) 0.208 0.434 0.856 -0.059 

MI: hb, age, para, group 0.380  (0.056) 0.270 0.491 0.948 0.000 

MI: wt, hb, age, para,  group 0.380  (0.056) 0.270 0.491 0.947 0.000 

30% missing 
  

 
  

Complete Case 0.380  (0.062) 0.259 0.501 0.939 0.000 

MI: wt, hb, age, para 0.264  (0.063) 0.140 0.388 0.567 -0.116 

MI: hb, age, para 0.264  (0.063) 0.140 0.388 0.563 -0.116 

MI: hb, age, para, group 0.378  (0.063) 0.255 0.501 0.945 -0.002 

MI: wt, hb, age, para,  group 0.377  (0.063) 0.254 0.500 0.947 -0.003 

 

As for the previous scenario above, when the proportion of missing data was increased 

(and hence the sample size effectively decreased), the standard errors of the effect size 

estimates from the complete case (CC) analyses also increased and the effect size 

estimates became increasingly inefficient.  The exact same trends were observed for all 

of the imputation models evaluated – but (possibly because of the very large effect size 
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being simulated in this scenario), the efficiency of the models did not appear to be 

affected by misspecification. 

 

The estimates of adjusted efficacy difference were unbiased for all missing value levels 

when CC analyses were performed.  Only small amounts of bias were detected for those 

imputation models which included group - but again, as in the previous scenario, for 

those models that did not include group the effect size estimates were markedly biased, 

and the degree of bias increased as the proportion of missing outcome values increased. 

 

Coverage was generally high (0.939 (93.1%) or greater) for all CC analyses and for all 

imputation models which included group as a factor.  For misspecified models not 

including group, however, coverage fell to unacceptably low levels: just over 85% with 

15% missing data and just under 57% with 30% missing outcomes. 

 

Fully specified imputation models containing both wt and group performed well for all 

missing outcome configurations, providing estimates that were only fractionally biased 

and with high coverage.  In line with the previous scenario, models including group but 

excluding wt performed as well as the model with both group and wt included, whereas 

models including wt but excluding group performed as badly as models with neither wt 

nor group included. 
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In summary, these findings appear to confirm that, for the estimation of a large effect 

size even if one of the effect sizes is close to a boundary value, if missingness is related 

to group membership, excluding this variable from the imputation process will produce 

biased estimates – but, provided group is included in the imputation process, the absence 

of other covariates or factors linked to missingness has little impact on bias levels. 

 

5.2.1.3 Efficacy rates 98% vs. 95% 

This scenario was purposively chosen such that the efficacy rates in both groups were 

close to boundary values. This is also another common scenario in malaria efficacy 

studies in which both drugs may be highly efficacious. The results of these analyses are 

reported in Table 5.3 below. 

 

All complete case (CC) analyses converged without any problem - but, even though the 

usually reliable Cheung‟s modified OLS method was used, a small number of imputed 

analyses failed to converge, a problem that became more frequent as the proportion of 

missing outcome values increased.  However, this is extremely unlikely to be a problem 

with Cheung‟s method; a more plausible explanation is that, on (the relatively rare) 

occasions when both efficacy rates are close to the same boundary, the imputation 

method replaces all missing outcome values with the same predicted outcome value and 

so both efficacy estimates go to the boundary.  In this case specifically, it is possible that 

some imputation analyses resulted in all outcome values being 1, so the effect size and 

its standard error were both zero, causing even the OLS method to fail. 



 

125 
 

Table 5.3: Estimated efficacy differences, coverage and bias for different 

proportions of missing MAR outcomes (averaged over 5000 imputed 

data sets): efficacy rates 98% vs. 95% (RD 0.030) 

Model 

No. of 

datasets

* 

RD     (SE) 

95% CI* 
Coverag

e 
Bias 

LL           UL 

Full data 5000 0.030  (0.026) -0.021 0.079 0.950 0.000 

5% missing  
  

 
  

Complete Case 5000 0.030  (0.026) -0.022 0.081 0.940 0.000 

MI: wt, hb, age, para 4981 0.029  (0.027) -0.024 0.082 0.957 -0.001 

MI: hb, age, para 4987 0.029  (0.027) -0.024 0.081 0.953 -0.001 

MI: hb, age, para, 

group 
4988 0.031  (0.027) -0.022 0.084 0.954 +0.001 

MI: wt, hb, age, para,  

group 
4990 0.031  (0.027) -0.022 0.085 0.956 +0.001 

15% missing  
  

 
  

Complete Case 5000 0.030  (0.028) -0.024 0.084 0.942 0.000 

MI: wt, hb, age, para 4970 0.026  (0.029) -0.032 0.084 0.977 -0.004 

MI: hb, age, para 4972 0.026  (0.029) -0.031 0.083 0.973 -0.004 

MI: hb, age, para, 

group 
4975 0.031  (0.030) -0.028 0.091 0.957 +0.001 

MI: wt, hb, age, para,  

group 
4977 0.032  (0.031) -0.029 0.092 0.957 +0.002 

30% missing  
  

 
  

Complete Case 5000 0.030  (0.030) -0.029 0.090 0.937 0.000 

MI: wt, hb, age, para 4887 0.022  (0.034) -0.044 0.088 0.987 0.008 

MI: hb, age, para 4933 0.021  (0.033) -0.043 0.086 0.563 -0.009 

MI: hb, age, para, 

group 
4933 0.032  (0.037) -0.041 0.105 0.945 +0.002 

MI: wt, hb, age, para,  

group 
4913 0.033  (0.038) -0.042 0.107 0.947 +0.003 

*: number of data sets for which convergent analysis was achieved. 
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The sample size for these exploratory imputations was set at the same level as the 

original RCT.  Clearly, this sample size was inadequate to detect an effect size as small 

as 0.030 (3%) as all of the analyses conducted under this scenario returned statistically 

non-significant findings (i.e. the 95% confidence intervals for all of the effect size 

estimates spanned zero).  This absence of technical statistical significance does not 

affect the validity of either the analyses presented or the inferences drawn from them as 

the primary objective was to ascertain the influence of missing outcome values (and the 

methods used to handle these) on the estimate of effect size (difference in efficacy levels 

between the two study groups). 

 

Again, increasing the proportion of missing data (and hence decreasing the effective 

sample size) increased the standard errors of the effect size estimates and decreased 

statistical efficiency in all analyses, although this trend was slightly less marked for the 

CC analyses than for the imputed analyses.  The decrease in efficiency was slightly 

greater when group was included in the imputed model analyses than when this key 

missingness variable was excluded. 

 

The estimates of adjusted efficacy difference were unbiased for all missing value levels 

when CC analyses were performed, and only small levels of bias were detected for those 

imputation models which included group.  As in both previous scenarios, for those 

models that did not include group the bias in the effect size estimates was markedly 

greater.  When 30% of outcomes were missing, the imputation models produced bias 



 

127 
 

levels of 0.008 and 0.009; although numerically small, as the efficacy difference is only 

0.030, this represents non-ignorable bias levels of 27% and 30% respectively. 

 

For CC analyses, coverage decreased fractionally as the proportion of missing outcomes 

increased but, even with 30% missing, coverage was a respectable 0.937 (93.7%).  

Unexpectedly, however, coverage appeared to increase for the imputed model analyses 

as the proportion of missing outcomes increased.  This was likely to be a consequence 

of the imputation process pushing both efficacy rate estimates close to the boundary for 

some models (and hence decreasing the estimate of efficacy difference for such models). 

 

In summary, in this MAR situation in which missingness was related to group and wt, 

fully specified imputation models containing both of these variables performed well for 

all missing outcome configurations, providing estimates that were only fractionally 

biased and with high coverage; furthermore, imputed models including group but 

excluding wt performed as well as similar models with both group and wt included, 

whereas models including wt but excluding group performed as badly as models with 

neither wt nor group included. 

 

5.2.1.4 Imputing MAR binary outcomes with binary estimates - summary 

In this situation, CC analyses performed as well, and often better, than imputed model 

analyses, consistently producing unbiased estimates of effect size.  Some degree of 

efficiency was lost as the percentage of missing outcomes increased, due to the resulting 
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decrease in effective sample size, but this was no worse than found in the imputed 

model analyses.   

 

No convergence problems were detected with the CC analyses.  Convergence problems 

were experienced, however, when imputation models were used as an alternative 

method for handling missing outcomes (missing binary outcomes being replaced by 

binary imputation “estimates”) in the situation where both efficacy (risk) levels were 

close to the parameter boundaries, due to all imputed values being allocated to the same 

outcome value resulting in zero standard errors for the effect size estimate.   

 

If missingness in a binary outcome is MAR and related to study group membership, 

excluding this variable from the imputation process appears to produce biased estimates.  

However, if missingness is related also to other factors or covariates, the absence of 

these in the imputation model appears to have little impact on bias levels for the effect 

size estimate provided group is included in the model even if one of the effect sizes is 

close to a boundary value. 

 

5.2.2 Missing Completely At Random (MCAR) scenarios 

In this section exactly the same set of efficacy rates are presented as in the previous 

section but the assumption was made that “data was missing completely at random”.   
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5.2.2.1 Efficacy rates 85% vs. 60%  

The results of these analyses are presented in Table 5.4. 

 

Table 5.4: Estimated efficacy differences, coverage and bias for different 

proportions of missing MCAR outcomes (averaged over 5000 imputed 

data sets): efficacy rates 85% vs. 60% (RD 0.250) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL               UL 

Full data 0.250  (0.061) 0.130 0.369 0.946 0.000 

5% missing 
  

 
  

Complete Case 0.250  (0.062) 0.127 0.372 0.946 0.000 

MI: wt, hb, age, para 0.238  (0.063) 0.115 0.361 0.955 -0.012 

MI: hb, age, para 0.235  (0.063) 0.111 0.358 0.953 -0.015 

MI: hb, age, para, group 0.250  (0.063) 0.128 0.373 0.948 0.000 

MI: wt, hb, age, para,  group 0.250  (0.063) 0.127 0.372 0.946 0.000 

15% missing 
  

 
  

Complete Case 0.250  (0.066) 0.120 0.379 0.946 0.000 

MI: wt, hb, age, para 0.212  (0.067) 0.082 0.343 0.941 -0.038 

MI: hb, age, para 0.211  (0.067) 0.081 0.342 0.949 -0.037 

MI: hb, age, para, group 0.250  (0.066) 0.120 0.380 0.941 0.000 

MI: wt, hb, age, para,  group 0.250  (0.066) 0.119 0.379 0.947 0.000 

30% missing 
  

 
  

Complete Case 0.250  (0.073) 0.107 0.393 0.946 0.000 

MI: wt, hb, age, para 0.174  (0.072) 0.033 0.314 0.888 -0.076 

MI: hb, age, para 0.174  (0.072) 0.034 0.315 0.880 -0.076 

MI: hb, age, para, group 0.248  (0.073) 0.104 0.391 0.951 -0.002 

MI: wt, hb, age, para,  group 0.247  (0.073) 0.103 0.390 0.945 -0.003 

 

Exactly as observed in the MAR case for this efficacy difference scenario, as the 

proportion of missing data increased (and so as the effective sample size decreased), the 
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effect size estimates from both the complete case (CC) and imputed model analyses 

became increasingly inefficient (i.e. the standard error of this estimate became larger).   

 

Like in the MAR case, when outcomes were missing MCAR, no bias was found in the 

effect size estimates both for the CC analyses and for those imputed model analyses that 

included study group membership in the imputation process. This is expected from 

theory for the CC analyses since the remaining subjects constitute a random sample of 

the target population, but is perhaps less predictable for the imputed models involving 

group membership. 

 

Imputation models that failed to include group in the imputation process produced 

(negative) bias levels of around 15% when 15% of outcomes were missing and of 

around 30% when the proportion of missing outcomes was as high as 30%. 

 

The MAR and MCAR analyses were very similar with respect to coverage levels.  In the 

MCAR situation, coverage was generally high for all models at all missing value levels, 

again remaining above 0.941 (94.1%), but with the notable exception of when the 

proportion of missing outcomes reached 30%; in this situation, coverage for imputation 

models with group excluded fell to around 88%, which is identical to that observed in 

the MAR situation and again unacceptably low. 
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In summary, even when missingness in a (binary) outcome measure is MCAR, the 

inclusion of study group membership in the imputation models appears to greatly 

improve the performance of the multiple imputation procedure and provides unbiased 

estimates of effect size even with 30% of outcomes unrecorded.  Excluding group from 

the imputation process, however, appears to produce marked levels of bias (tending to 

under-estimate the true effect size). 

 

5.2.2.2 Efficacy rates 98% vs. 60%  

The results of these analyses are presented in Table 5.5 below. 

 

 

 

 

 

 

 

 

 

 

 



 

132 
 

Table 5.5: Estimated efficacy differences, coverage and bias for different 

proportions of missing MCAR outcomes (averaged over 5000 imputed 

data sets): efficacy rates 98% vs. 60% (RD 0.380) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL            UL 

Full data 0.380  (0.051) 0.279 0.480 0.950 0.000 

5% missing 
  

 
  

Complete Case 0.379  (0.052) 0.276 0.482 0.942 -0.001 

wt, hb, age, para 0.360  (0.054) 0.255 0.465 0.941 -0.020 

MI: hb, age, para 0.361  (0.054) 0.256 0.466 0.945 -0.019 

MI: hb, age, para, group 0.379  (0.053) 0.276 0.482 0.945 -0.001 

MI: wt, hb, age, para,  group 0.382  (0.053) 0.278 0.485 0.950 +0.002 

15% missing 
  

 
  

Complete Case 0.380  (0.056) 0.271 0.489 0.946 0.000 

MI: wt, hb, age, para 0.323  (0.058) 0.209 0.436 0.870 -0.057 

MI: hb, age, para 0.321  (0.058) 0.207 0.435 0.861 -0.059 

MI: hb, age, para, group 0.380  (0.056) 0.270 0.489 0.941 0.000 

MI: wt, hb, age, para,  group 0.380  (0.056) 0.270 0.489 0.948 0.000 

30% missing 
  

 
  

Complete Case 0.380  (0.061) 0.260 0.500 0.944 0.000 

MI: wt, hb, age, para 0.264  (0.064) 0.139 0.389 0.577 -0.116 

MI: hb, age, para 0.264  (0.064) 0.139 0.389 0.574 -0.116 

MI: hb, age, para, group 0.378  (0.062) 0.256 0.500 0.948 -0.002 

MI: wt, hb, age, para,  group 0.377  (0.062) 0.255 0.498 0.944 -0.003 

 

The pattern of results is very similar in this as in the previous scenario: 

 As the proportion of missing data increased (and effective sample size decreased), 

the effect size estimates from both the complete case (CC) and imputed model 

analyses became increasingly inefficient (i.e. the standard error of this estimate 

became larger) at identical rates. 
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 Little or no bias was found in the effect size estimates both for the CC analyses and 

for those imputed model analyses that included study group membership in the 

imputation process.  

 Those imputation models that did not include group in the imputation process again 

produced (negative) bias levels of around 15% when 15% of outcomes were missing 

and of around 30% when the proportion of missing outcomes was as high as 30%. 

 Coverage was generally high for all models at all missing value levels, remaining 

above 0.941 (94.1%) while the proportion of missing outcomes was no greater than 

5%.  However, when the proportion of missing outcomes reached 15%, coverage for 

the imputation models excluding group fell to just under 87%, and when the 

proportion of missing outcomes reached 30%, coverage for these same models fell 

even further to just under 58%. 

 

In summary, as before, when missingness in a (binary) outcome measure is MCAR, the 

inclusion of study group membership in the imputation models appears to greatly 

improve the performance of the multiple imputation procedure and provides unbiased 

estimates of effect size even with 30% of outcomes unrecorded.  Excluding group from 

the imputation process, however, appears to produce marked levels of bias (tending to 

under-estimate the true effect size) which increase as the proportion of missing outcome 

values increases. 
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5.2.2.3 Efficacy rates 98% vs. 95% efficacy   

The results of these analyses are presented in Table 5.6. 

 

Table 5.6: Estimated efficacy differences, coverage and bias for different 

proportions of missing MCAR outcomes (averaged over 5000 imputed 

data sets): efficacy rates 98% vs. 95% (RD 0.030) 

Model 

No. of 

datasets

* 

RD     (SE) 

95% CI* 
Coverag

e 
Bias 

LL           UL 

Full data  0.030  (0.026) -0.020 0.080 0.939 0.000 

5% missing  
  

 
  

Complete Case 5000 0.030  (0.026) -0.021 0.081 0.940 0.000 

MI: wt, hb, age, 

para 
4980 0.029  (0.027) -0.024 0.082 0.955 -0.001 

MI: hb, age, para 4983 0.028  (0.027) -0.024 0.081 0.957 -0.002 

MI: hb, age, para, 

group 
4997 0.030  (0.027) -0.023 0.083 0.949 0.000 

MI: wt, hb, age, 

para,  group 
4986 0.031  (0.027) -0.023 0.084 0.948 +0.001 

15% missing  
  

 
  

Complete Case 5000 0.030  (0.028) -0.024 0.084 0.944 0.000 

MI: wt, hb, age, 

para 
4964 0.026  (0.029) -0.032 0.083 0.973 -0.004 

MI: hb, age, para 4984 0.025  (0.029) -0.032 0.082 0.972 -0.005 

MI: hb, age, para, 

group 
4986 0.031  (0.030) -0.029 0.090 0.956 +0.001 

MI: wt, hb, age, 

para,  group 
4974 0.030  (0.031) -0.030 0.091 0.960 0.000 

30% missing  
  

 
  

Complete Case 5000 0.030  (0.030) -0.029 0.089 0.940 0.000 

MI: wt, hb, age, 

para 
4909 0.022  (0.034) -0.044 0.088 0.985 -0.008 

MI: hb, age, para 4933 0.021  (0.033) -0.044 0.085 0.981 -0.009 

MI: hb, age, para, 

group 
4943 0.032  (0.037) -0.041 0.104 0.970 +0.002 
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MI: wt, hb, age, 

para,  group 
4933 0.031  (0.038) -0.043 0.106 0.975 +0.001 

*: number of data sets for which convergent analysis was achieved. 

 

As in the MAR situation reported earlier, all complete case (CC) analyses converged 

without any problem but again a small number of imputed analyses failed to converge 

and this problem increased as the proportion of missing outcome values increased. 

 

The sample size again proved inadequate to detect an effect size as small as 0.030 (3%).  

All of the analyses returned statistically non-significant findings.   

 

As the proportion of missing data increased (and effective sample size decreased), the 

standard errors of the effect size estimates increased and the efficiency of all analyses 

decreased; this trend was again less marked for the CC analyses than for the imputed 

analyses.  The decrease in efficiency was slightly greater when group was included in 

the imputed model analyses. 

 

The estimates of adjusted efficacy difference were unbiased for all missing value levels 

when CC analyses were performed, and only small levels of bias were detected for those 

imputation models which included group.  As in both previous scenarios, the bias in the 

effect size estimates was markedly greater using imputation models that did not include 

group, reaching ~15% when 15% of outcomes were missing and ~30% when 30% of 

outcomes were missing. 
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In this situation, coverage was worst (0.939 compared to the set nominal level of 0.950) 

when the full data set was analysed.  When missing outcomes were introduced, coverage 

ranged from 0.940 to 0.985; these higher values were again attributed to the imputation 

process pushing both efficacy rate estimates close to the boundary for some models. 

 

In summary, in this scenario CC analyses provided unbiased effect size estimates with 

good coverage and efficiency.  Imputation models containing group membership in the 

imputation process returned estimates that were only fractionally biased and with high 

coverage, although efficiency was observed to fall as the proportion of missing 

outcomes increased.  Imputed models that did not include group in the imputation 

process were moderately efficient but produced biased estimates of effect size (the level 

of bias increasing with the proportion of missing outcomes). 

 

5.2.2.4 Imputing MCAR binary outcomes with binary estimates - summary 

As in the MAR situation, CC analyses performed as well, and often better, than imputed 

model analyses, consistently producing unbiased estimates of effect size.  Some degree 

of efficiency was inevitably lost as the percentage of missing outcomes increased, due to 

the resulting decrease in effective sample size, but this was no worse than found in the 

imputed model analyses.   

 

No convergence problems were detected with the CC analyses, but these were 

experienced when imputation models were used as an alternative method for handling 
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missing outcomes (missing binary outcomes being replaced by binary imputation 

“estimates”) in the situation where both efficacy (risk) levels were close to the 

parameter boundaries, due to all imputed values being allocated to the same outcome 

value (resulting in zero standard errors for the effect size estimate).     

 

In summary, even when missing binary outcomes are MCAR (i.e. when missingness is 

effectively wholly random), excluding study group membership from the imputation 

process appears to produce biased estimates. 

 

5.2.3 Missing Not At Random (MNAR) scenarios 

In this section the same set of efficacy rates are presented as in the previous sections, but 

the assumption is now made that “data is missing not at random”.   

 

Specifically, missingness was simulated to be related to outcome. Subjects for whom the 

treatment was successful (i.e. was coded 1) were more likely to have a missing outcome 

than subjects for whom the treatment was deemed to have failed (i.e. was coded 0). This 

resulted in differential missingness as the group with the higher efficacy rate was likely 

to lose more people with success outcomes than the inferior efficacy group.  

 

The CC analysis, an imputation model containing all covariates (age, hb, wt and para) 

plus group, and an imputation model containing age, hb, wt and para but without group 

were all assessed. The objective was to assess whether complete case analysis and 
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imputation models that included group continued to perform better than imputation 

models that excluded group, knowing quite well that none of these models was correct 

for these missing data scenarios.  

 

5.2.3.1 Efficacy rates 85% vs. 60%  

The results of these analyses are presented in Table 5.7. 

 

Table 5.7: Estimated efficacy differences, coverage and bias for different 

proportions of missing MNAR outcomes (averaged over 5000 imputed 

data sets): efficacy rates 85% vs. 60% (RD 0.250) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL            UL 

Full data 0.250  (0.061) 0.130 0.369 0.950 0.000 

5% missing 
  

 
  

Complete Case 0.258  (0.063) 0.134 0.381 0.942 +0.008 

MI: wt, hb, age, para 0.245  (0.064) 0.120 0.370 0.957 -0.005 

MI: wt, hb, age, para, 

group 
0.258  (0.063) 0.133 0.382 0.947 +0.008 

15% missing 
  

 
  

Complete Case 0.274  (0.068) 0.140 0.408 0.932 +0.024 

MI: wt, hb, age, para 0.233  (0.070) 0.097 0.370 0. 972 -0.017 

MI: wt, hb, age, para, 

group 
0.273  (0.069) 0.138 0.407 0.933 +0.023 

30% missing 
  

 
  

Complete Case 0.298  (0.078) 0.145 0.452 0.895 +0.048 

MI: wt, hb, age, para 0.207  (0.078) 0.054 0.359 0.975 -0.043 

MI: wt, hb, age, para, 

group 
0.294  (0.078) 0.141 0.447 0.897 +0.044 
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As observed in both the MAR and MCAR cases for this efficacy difference scenario, 

when the proportion of missing data was increased (and hence the effective sample size 

reduced), the effect size estimates from both the CC and imputed model analyses 

became increasingly, and unacceptably, inefficient (i.e. the standard error of this 

estimate became larger).   

 

Unlike in both the MAR and the MCAR cases, when outcomes were MNAR there was 

some degree of bias in the effect size estimates from the CC analyses and from both 

imputed model analyses (i.e. irrespective of whether group was used in the imputation 

process). Even more surprisingly, for the multiple imputation analyses: 

 models that included group in the imputation process tended to be more biased than 

models that excluded group (although the differences were numerically quite 

small);    

 models that included group exhibited progressively more positive bias as the 

proportion of missing outcome values increased while models that excluded group 

exhibited progressively more negative bias. 

 

In summary, both the CC and multiple imputation models produced biased estimates of 

effect size.  The exclusion of study group membership in the imputation models 

maintained coverage levels but produced negatively biased estimates of effect size.  

Including study group membership produced virtually identical results to the CC 

analysis, with coverage markedly reduced and effect size consistently over-estimated. 
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5.2.3.2 Efficacy rates 98% vs. 60%  

The results of these analyses are presented in Table 5.8. 

 

Table 5.8: Estimated efficacy differences, coverage and bias for different 

proportions of missing MNAR outcomes (averaged over 5000 imputed 

data sets): efficacy rates 98% vs. 60% (RD 0.380) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL           UL 

Full data 0.380  (0.051) 0.279 0.479 0.950 0.000 

5% missing 
  

 
  

Complete Case 0.394  (0.053) 0.291 0.497 0.938 +0.014 

MI: wt, hb, age, para 0.374  (0.054) 0.267 0.480 0.956 -0.006 

MI: wt, hb, age, para, 

group 
0.396  (0.053) 0.292 0.499 0.946 +0.016 

15% missing 
  

 
  

Complete Case 0.426  (0.056) 0.317 0.536 0.863 +0.046 

MI: wt, hb, age, para 0.361  (0.061) 0.242 0.481 0.973 -0.019 

MI: wt, hb, age, para, 

group 
0.426  (0.056) 0.315 0.536 0.870 +0.046 

30% missing 
  

 
  

Complete Case 0.484  (0.062) 0.364 0.605 0.597 +0.104 

MI: wt, hb, age, para 0.333  (0.071) 0.194 0.472 0.973 -0.047 

MI: wt, hb, age, para, 

group 
0.478  (0.063) 0.356 0.601 0.641 +0.098 

 

As for all the previous scenarios, as the proportion of missing data increased, the effect 

size estimates from both the complete case (CC) and imputed model analyses became 

increasingly inefficient (i.e. the standard error of this estimate became larger).  This 



 

141 
 

trend was slightly more pronounced for the multiple imputation models with group 

membership excluded from the imputation process. 

As in the previous comparison (85% vs. 60% efficacy), the CC analyses and both 

imputation models (i.e. irrespective of whether group was included in the imputation 

process) produced biased effect size estimates. Independent of the proportion of missing 

outcome values, compared with the imputed models that excluded group, the CC 

analyses and the imputed models that included group: 

 were numerically more biased 

 were positively rather than negatively biased 

 were less efficient - coverage rates were poor (86.3% and 87.0% respectively) at 15% 

missing outcomes, and wholly unacceptable at the 30% missing rate (59.7% and 

64.1% respectively).  

 

In summary, both the CC and multiple imputation models produced biased estimates of 

effect size. Again, the exclusion of study group membership in the imputation models 

maintained coverage levels but produced negatively biased estimates of effect size, 

while including study group membership in the multiple imputation process produced 

virtually identical results to the CC analysis, with coverage markedly reduced and effect 

size consistently over-estimated. 
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5.2.3.3 Efficacy rates 98% vs. 95%  

The results of these analyses are presented in Table 5.9. 

 

Table 5.9: Estimated efficacy differences, coverage and bias for different 

proportions of missing MNAR outcomes (averaged over 5000 

imputed data sets): efficacy rates 98% vs. 95% (RD 0.030) 

Model 
No. of 

datasets* 
RD     (SE) 

95% CI* Coverag

e 
Bias 

LL           UL 

Full data 5000 0.030  (0.026) -0.021 0.079 0.935 0.000 

5% missing  
  

 
  

Complete Case 5000 0.031  (0.027) -0.021 0.084 0.947 +0.001 

MI: wt, hb, age, 

para 
4984 0.030  (0.027) -0.024 0.084 0.964 0.000 

MI: wt, hb, age, 

para, group 
4991 0.031  (0.028) -0.023 0.086 0.954 +0.001 

15% missing  
  

 
  

Complete Case 5000 0.035  (0.030) -0.024 0.094 0.951 +0.005 

MI: wt, hb, age, 

para 
4989 0.029  (0.032) -0.032 0.091 0.981 -0.001 

MI: wt, hb, age, 

para, group 
4987 0.036  (0.032) -0.028 0.099 0.962 +0.006 

30% missing  
  

 
  

Complete Case 5000 0.042  (0.036) -0.029 0.113 0.950 +0.012 

MI: wt, hb, age, 

para 
4985 0.029  (0.038) -0.045 0.103 0.994 -0.001 

MI: wt, hb, age, 

para, group 
4990 0.043  (0.041) -0.039 0.124 0.961 +0.013 

*: number of data sets for which convergent analysis was achieved. 

 

As in the previous situations reported in which both efficacy rates were close to a 

boundary value, all complete case (CC) analyses converged without any problem - but 
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again a small number of imputed analyses failed to converge and this problem increased 

as the proportion of missing outcome values increased. 

 

Like the MAR and MCAR cases, the sample size proved insufficient to detect an effect 

size as small as 0.030 (3%).  All of the analyses again returned statistically non-

significant findings. 

 

Again, increasing the proportion of missing data increased the standard errors of the 

effect size estimates and decreased statistical efficiency in all analyses.  The decrease in 

efficiency was slightly greater in the imputed model analyses than the complete case 

analyses especially for the moderate to large missing rates. 

 

It is interesting, and perhaps surprising, to note that the imputed model analyses that 

excluded group produced estimates of effect size that were only very slightly biased. 

The CC analyses and imputed model analyses that included group produced almost 

identically biased estimates of effect size, with bias increasing with the proportion of 

missing outcomes. When 30% of outcomes were missing, the CC analyses and the 

imputation models that included group produced bias levels of 0.012 and 0.013 

respectively; although numerically small, as the efficacy difference is only 0.030, this 

represents non-ignorable bias levels of 40% and 43% respectively.  

 

Coverage was at least 94.7% for all scenarios and all levels of missing data.   
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In summary, when outcomes are MNAR and both groups have efficacy levels close to 

the parameter boundary, the CC analyses and multiple imputation analyses that included 

group in the imputation process produced very similar positively biased estimates of 

effect size, the level of bias being very high when 30% of outcomes were missing. 

Multiple imputation models that excluded group in the imputation process produced 

estimates of effect size that were only very marginally biased.  

 

5.2.3.4 Imputing MNAR binary outcomes with binary estimates - summary 

Unlike in the MAR and MCAR situations, both CC analyses and the imputed model 

analyses (irrespective of whether group was included or not) produced biased estimates 

of effect size.  

 

Consistent with the findings from all the other scenarios considered above, imputation 

models in which group was excluded from the imputation process produced estimates of 

effect size that were negatively biased (i.e. that were biased toward the null hypothesis).  

However, the really striking finding was that the estimates from the CC analyses and 

from imputation models that included group in the imputation process produced 

estimates of effect size that were positively biased (i.e. that were consistently biased 

away from the null hypothesis) – and that the degree of bias was similar for both 

models. 
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Inevitably, some degree of efficiency was lost as the percentage of missing outcomes 

increased in both the CC analyses and the imputed model analyses irrespective of 

whether group was included or not.  Coverage tended to be higher than the expected 

95% using multiple imputation models excluding group. 

 

No convergence problems were detected with the CC analyses, but these were 

experienced when imputation models were used as an alternative method for handling 

missing outcomes (missing binary outcomes being replaced by binary imputation 

“estimates”) in the situation where both efficacy (risk) levels were close to the 

parameter boundaries, due to all imputed values being allocated to the same outcome 

value (resulting in zero standard errors for the effect size estimate).     

 

5.3 Results for missing data simulations with continuous imputed outcomes 

This section presents the findings of the statistical analyses of simulated data sets 

containing missing binary outcome values generated using three different missing data 

mechanism assumptions, namely: MCAR, MAR and MNAR. Under all three 

assumptions and for several different effect size scenarios, missing outcomes were now 

imputed as continuous variables.  In the analyses of substantive models the outcome 

variable contained both the observed binary outcomes and the continuous imputed 

outcomes. 
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As in section 5.2, simulated data sets were generated for the following efficacy rate 

differences (effect sizes) under each of the three missing data mechanism assumptions:  

 60% efficacy in group A versus 85% efficacy in group B;  

 60% efficacy in group A versus 98% efficacy in group B; 

 95% efficacy in group A versus 98% efficacy in group B.   

 

As detailed in the methodology section in Chapter 3, analyses are reported for 5%, 15% 

and 30% missing rates for each of the above efficacy scenarios.  The main aim of these 

scenarios was to establish whether imputing missing outcomes as a continuous variable 

has different statistical implications compared to the intuitively more conventional 

process of imputing missing outcomes as a binary variable. 

 

5.3.1 Missing At Random (MAR) scenarios 

5.3.1.1 Efficacy rates 85% vs. 60%  

The results of these analyses are presented in Table 5.10. 
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Table 5.10: Estimated efficacy differences, coverage and bias for different 

proportions of missing MAR outcomes-continuous imputed 

outcomes (averaged over 5000 imputed data sets): efficacy rates 85% 

vs. 60% (RD 0.250) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL           UL 

Full data 0.250  (0.061) 0.130 0.369 0.946   0.000 

5% missing 
  

 
  

Complete Case 0.250  (0.063) 0.127 0.373 0.952   0.000 

MI: wt, hb, age, para 0.238  (0.063) 0.114 0.361 0.955 -0.012 

MI: hb, age, para 0.238  (0.063) 0.114 0.362 0.947 -0.012 

MI: hb, age, para, group 0.251  (0.063) 0.128 0.374 0.949 +0.001 

MI: wt, hb, age, para,  group 0.251  (0.063) 0.128 0.373 0.951 +0.001 

15% missing 
  

 
  

Complete Case 0.250  (0.066) 0.120 0.380 0.945   0.000 

MI: wt, hb, age, para 0.212  (0.068) 0.080 0.345 0.946 -0.038 

MI: hb, age, para 0.212  (0.067) 0.080 0.344 0.947 -0.038 

MI: hb, age, para, group 0.251  (0.067) 0.119 0.383 0.946 +0.001 

MI: wt, hb, age, para,  group 0.250  (0.067) 0.119 0.382 0.945   0.000 

30% missing 
  

 
  

Complete Case 0.250  (0.073) 0.105 0.393 0.950   0.000 

MI: wt, hb, age, para 0.174  (0.073) 0.031 0.318 0.883 -0.076 

MI: hb, age, para 0.173  (0.073) 0.030 0.317 0.882 -0.077 

MI: hb, age, para, group 0.251  (0.075) 0.104 0.398 0.939 +0.001 

MI: wt, hb, age, para,  group 0.249  (0.075) 0.100 0.396 0.938 -0.001 

 

These findings are virtually identical to those obtained with outcome estimated as a 

binary rather than as a continuous variable (section 5.2.1.1). 
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As the proportion of missing data increased, the effect size estimates from the complete 

case (CC) became increasingly inefficient (i.e. the standard error of this estimate 

became larger); exactly the same trends occurred for all of the imputation models 

evaluated.  For small (5%) to moderate (15%) amounts of missing outcome data, these 

findings held irrespective of whether the model was correctly specified or misspecified. 

 

The estimates of adjusted efficacy difference were unbiased for all missing value levels 

when a complete case (CC) analysis was performed.  As for imputed binary outcomes, 

only small amounts of bias were detected for those imputation models which included 

group; this small degree of bias was positive when 5% and 15% of outcomes were 

missing, but was negative when 30% of outcomes were not available. For those 

imputation models that did not include group (i.e. for misspecified imputation models), 

however, the estimates were markedly biased, and the degree of bias increased as the 

proportion of missing outcome values increased.  

 

Coverage was generally high for all models at all missing value levels, remaining above 

0.945 (94.5%) for small to moderate missing rates.  Consistent with earlier findings for 

the binary imputed outcomes, when the proportion of missing outcomes reached 30%, 

coverage for the misspecified models fell to around 88%, which is unacceptably low. 
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As expected, the model containing both wt and group performed well for all missing 

outcome configurations, providing estimates that were only fractionally biased and with 

generally acceptable high coverage.   

 

Less expectedly, models including group but excluding wt performed as well as the 

model with both group and wt included, whereas models including wt but excluding 

group performed as badly as models with neither wt nor group included, agreeing with 

the earlier findings on the binary imputed outcomes.   

 

In summary, therefore, although both the group and wt variables were correlated with 

missingness, the inclusion of group in the imputation models greatly improved the 

performance of the multiple imputation procedures and provided unbiased estimates of 

effect size, whereas the inclusion of wt did not improve performance and produced 

biased estimates of effect size. These findings appear to indicate that, for the estimation 

of effect size, if missingness is related to group membership, excluding this variable 

from the imputation process is critical and will produce biased estimates; however, 

provided group is included in the imputation process, the absence of other covariates or 

factors associated with missingness has relatively little impact on bias levels. These 

findings are consistent with those considered earlier where the missing outcomes were 

imputed as a binary variable. 
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5.3.1.2 Efficacy rates 98% vs. 60%  

The results of these analyses are presented in Table 5.11. These findings are nearly 

identical to those obtained with outcome estimated as a binary rather than as a 

continuous variable (section 5.2.1.2). 

 

As in the previous scenario considered above, when the proportion of missing data was 

increased, the standard errors of the effect size estimates from the complete case (CC) 

analyses also increased and the effect size estimates became increasingly inefficient.  

The exact same trends were observed for binary imputed outcomes of the imputation 

models evaluated – the efficiency of the models appear to be affected by 

misspecification with standard errors being higher than both the CC and the imputed 

models with group in them.  
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Table 5.11 Estimated efficacy differences, coverage and bias for different 

proportions of missing MAR outcomes-continuous imputed 

outcomes (averaged over 5000 imputed data sets): efficacy rates 98% 

vs. 60% (RD 0.380) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL           UL 

Full data 0.380  (0.051) 0.279 0.480 0.950   0.000 

5% missing 
  

 
  

Complete Case 0.380  (0.053) 0.276 0.484 0.952   0.000 

MI: wt, hb, age, para 0.361  (0.054) 0.256 0.466 0.945 -0.019 

MI: hb, age, para 0.361  (0.054) 0.256 0.466 0.938 -0.019 

MI: hb, age, para, group 0.380  (0.052) 0.278 0.483 0.946   0.000 

MI: wt, hb, age, para,  group 0.380  (0.052) 0.277 0.483 0.943   0.000 

15% missing 
  

 
  

Complete Case 0.380  (0.056) 0.270 0.490 0.941   0.000 

MI: wt, hb, age, para 0.323  (0.059) 0.208 0.438 0.857 -0.057 

MI: hb, age, para 0.322  (0.058) 0.207 0.436 0.859 -0.058 

MI: hb, age, para, group 0.381  (0.056) 0.271 0.491 0.935 +0.001 

MI: wt, hb, age, para,  group 0.380  (0.056) 0.270 0.490 0.939   0.000 

30% missing 
  

 
  

Complete Case 0.380  (0.062) 0.259 0.501 0.952   0.000 

MI: wt, hb, age, para 0.265  (0.065) 0.137 0.392 0.590 -0.115 

MI: hb, age, para 0.263  (0.065) 0.136 0.390 0.573 -0.117 

MI: hb, age, para, group 0.381  (0.063) 0.258 0.503 0.937 +0.001 

MI: wt, hb, age, para,  group 0.378  (0.063) 0.255 0.502 0.932 -0.002 

 

The estimates of adjusted efficacy difference were unbiased for all missing value levels 

when CC analyses were performed.  The estimates of adjusted efficacy difference were 

also unbiased for all missing value levels when MI imputed models with both group and 

wt were performed. Only small amounts of bias were detected for those imputation 
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models which included group. This small bias could go in either direction where it 

occurred - but again, for those models that did not include group the effect size 

estimates were markedly biased, and the degree of bias increased as the proportion of 

missing outcome values increased. 

 

Coverage was generally high (0.93.5 (93.5%) or greater) for all CC analyses and for all 

imputation models which included group as a factor.  For misspecified models not 

including group, however, coverage fell to unacceptably low levels for 30% missing 

data to just over 86%. 

 

Fully specified imputation models containing both wt and group performed well for all 

missing outcome configurations, providing estimates that were only unbiased and with 

high coverage.  In line with the previous scenarios, models including group but 

excluding wt performed as well as the model with both group and wt included, whereas 

models including wt but excluding group performed as badly as models with neither wt 

nor group included. 

 

These findings appear to confirm that, for the estimation of a large effect size even if 

one of the effect sizes is close to a boundary value, if missingness is related to group 

membership, excluding this variable from the imputation process will produce biased 

estimates – but, provided group is included in the imputation process, the absence of 



 

153 
 

other covariates or factors linked to missingness has little impact on bias levels. This is 

again consistent with the findings for the binary imputed outcomes. 

 

5.3.1.3 Efficacy rates 98% vs. 95%  

The results of these analyses are reported in Table 5.12. These findings are almost 

identical to those obtained with outcome estimated as a binary rather than as a 

continuous variable (section 5.2.1.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

154 
 

Table 5.12:  Estimated efficacy differences, coverage and bias for different proportions 

of missing MAR outcomes-continuous imputed outcomes (averaged over 

5000 imputed data sets): efficacy rates 98% vs. 95% (RD 0.030) 

Model 

No. of 

datasets

* 

RD     (SE) 

95% CI* 
Coverag

e 
Bias 

LL           UL 

Full data 5000 0.030  (0.026) -0.020 0.080 0.939   0.000 

5% missing  
  

 
  

Complete Case 5000 0.030  (0.026) -0.022 0.081 0.940   0.000 

MI: wt, hb, age, para 4997 0.028  (0.026) -0.024 0.080 0.947 -0.002 

MI: hb, age, para 4997 0.028  (0.026) -0.023 0.080 0.950 -0.002 

MI: hb, age, para, 

group 
4997 0.029  (0.026) -0.022 0.081 0.940 -0.001 

MI: wt, hb, age, para,  

group 
4995 0.031  (0.026) -0.021 0.082 0.937 +0.001 

15% missing  
  

 
  

Complete Case 5000 0.030  (0.028) -0.024 0.085 0.939   0.000 

MI: wt, hb, age, para 4992 0.025  (0.028) -0.029 0.080 0.950 -0.005 

MI: hb, age, para 4987 0.025  (0.028) -0.029 0.080 0.951 -0.005 

MI: hb, age, para, 

group 
4992 0.030  (0.028) -0.025 0.085 0.933   0.000 

MI: wt, hb, age, para,  

group 
4989 0.031  (0.028) -0.024 0.086 0.939 +0.001 

30% missing  
  

 
  

Complete Case 5000 0.030  (0.030) -0.030 0.090 0.940   0.000 

MI: wt, hb, age, para 4969 0.021  (0.030) -0.038 0.080 0.960 -0.009 

MI: hb, age, para 4964 0.021  (0.030) -0.038 0.080 0.961 -0.009 

MI: hb, age, para, 

group 
4969 0.030  (0.031) -0.032 0.092 0.934   0.000 

MI: wt, hb, age, para,  

group 
4953 0.030  (0.032) -0.032 0.093 0.928   0.000 

*: number of data sets for which convergent analysis was achieved. 

 

All complete case (CC) analyses converged without any problem – but interestingly, as 

in the previous scenarios with both efficacy rates close to a boundary value, a small 
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number of imputed analyses failed to converge, and this problem increased as the 

proportion of missing outcome values increased. Again the most plausible explanation is 

that, on (the relatively rare) occasions when both efficacy rates are close to the same 

boundary, the imputation method replaces all missing outcome values with the same 

predicted outcome value and so both efficacy estimates go to the boundary.  For an 

efficacy rate of 98% it is possible to have all imputed values estimated as “1” even if the 

imputation is on a continuous scale. In this situation, there is no variability in the 

outcome variable resulting in standard errors that are zero causing the estimation 

procedure to fail.  

 

Closer examination of the results, however, indicated that the proportion of non-

convergent models is smaller in this scenario than for the binary imputed outcomes 

considered in section 5.2.1.3. Clearly, and mathematically predictably, if missing 

outcomes are imputed on a continuous scale, even when the efficacy is very high, the 

probability of imputing all of the missing outcomes as being exactly 1 is reduced.  So, 

imputing missing binary outcome using a continuous scale reduces the risk of the model 

failing to converge but affects the effect size estimates minimally. 

 

As in the previous scenarios with both efficacy rates close to a boundary value, the 

sample size used in the simulation was insufficient to detect an effect size as small as 

0.030 (3%) as all of the analyses conducted under this scenario returned statistically 

non-significant findings (i.e. the 95% confidence intervals for all of the effect size 

estimates spanned zero).  Again, this absence of technical statistical significance does 
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not affect the validity of either the analyses presented or the inferences drawn from them 

as the primary objective was to ascertain the influence of missing outcome values (and 

the methods used to handle these) on the estimate of effect size (difference in efficacy 

levels between the two study groups). 

 

Once again, increasing the proportion of missing data (and hence decreasing the 

effective sample size) increased the standard errors of the effect size estimates and 

decreased statistical efficiency in all analyses.  This trend was slightly more marked for 

the analyses of the moderate to high missing outcome rates than for the small missing 

outcome rate analyses.   

 

The estimates of adjusted efficacy difference were unbiased for all missing value levels 

when CC analyses were performed and for those imputation models which included 

group and wt.  Only small levels of bias were detected for those imputation models 

which included group but not wt. As in previous scenarios, for those models that did not 

include group the bias in the effect size estimates was markedly greater.  When 30% of 

outcomes were missing, the imputation models produced bias levels of 0.009; although 

numerically small, as the efficacy difference is only 0.030, this represents non-ignorable 

bias levels 30%. 

 

For CC analyses, coverage decreased fractionally as the proportion of missing outcomes 

increased but, even with 30% of outcomes missing, coverage was a respectable 0.94 
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(94%).  Unexpectedly, however, coverage appeared to increase for the imputed model 

analyses that did not include group in the imputation process as the proportion of 

missing outcomes increased.  As explained in the related scenarios above, this was 

likely to be a consequence of the imputation process pushing both efficacy rate 

estimates close to the boundary for some models (and hence decreasing the estimate of 

efficacy difference for such models).  

 

Surprisingly, this was not the case with those imputed models that included group. For 

those imputations, coverage decreased fractionally as the proportion of missing 

outcomes increased but, even with 30% missing, coverage was 0.928 (92.8%). 

 

Again in this MAR situation in which missingness was related to group and wt, fully 

specified imputation models containing both of these variables performed well for all 

missing outcome configurations, providing estimates that were only fractionally biased 

and with high coverage; furthermore, imputed models including group but excluding wt 

performed as well as similar models with both group and wt included, whereas models 

including wt but excluding group performed as badly as models with neither wt nor 

group included. 

 

5.3.1.4 Imputing MAR binary outcomes with continuous estimates - summary 

In this situation, exactly as observed when MAR binary outcomes were imputed using a 

binary scale, CC analyses performed as well, and often better, than imputed model 
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analyses, consistently producing unbiased estimates of effect size.  Some degree of 

efficiency was lost as the percentage of missing outcomes was increased, due to the 

resulting decrease in effective sample size, but this was no worse than found in the 

imputed model analyses.   

 

No convergence problems were detected with the CC analyses.  Convergence problems 

were experienced, however, when imputation models were used as an alternative 

method for handling missing outcomes (missing binary outcomes being replaced by 

continuous imputation “estimates”) in the situation where both efficacy (risk) levels 

were close to the parameter boundaries, probably due to all imputed values being 

allocated to the same outcome.  However, imputing missing binary outcomes on a 

continuous scale appears to reduce the risk of all imputed values being set at the same 

value and hence the risk of the model not converging.     

 

If missingness in a binary outcome is MAR and related to study group membership, 

excluding this variable from the imputation process appears to produce biased estimates.  

However, if missingness is related also to other factors or covariates, the absence of 

these in the imputation model appears to have little impact on bias levels for the effect 

size estimate provided group is included in the model even if one of the effect sizes is 

close to a boundary value. These findings are consistent with the earlier findings when 

the outcomes were imputed as binary 
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5.3.2 Missing Completely At Random (MCAR) scenarios 

5.3.2.1  Efficacy rates 85% vs. 60%  

The results of these analyses are presented in Table 5.13. These findings are generally 

identical to those obtained with outcome estimated as a binary rather than as a 

continuous variable (section 5.2.2.1).  
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Table 5.13 Estimated efficacy differences, coverage and bias for different 

proportions of missing MCAR outcomes-continuous imputed 

outcomes (averaged over 5000 imputed data sets): efficacy rates 85% 

vs. 60% (RD 0.250) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL           UL 

Full data 0.250  (0.061) 0.130 0.369 0.946   0.000 

5% missing 
  

 
  

Complete Case 0.250  (0.062) 0.127 0.372 0.948   0.000 

MI: wt, hb, age, para 0.238  (0.063) 0.115 0.361 0.955 -0.012 

MI: hb, age, para 0.237  (0.063) 0.113 0.361 0.958 -0.013 

MI: hb, age, para, group 0.251  (0.063) 0.128 0.373 0.953 +0.001 

MI: wt, hb, age, para,  group 0.250  (0.063) 0.128 0.374 0.951   0.000 

15% missing 
  

 
  

Complete Case 0.250  (0.066) 0.121 0.380 0.951   0.000 

MI: wt, hb, age, para 0.212  (0.067) 0.080 0.344 0.944 -0.038 

MI: hb, age, para 0.212  (0.067) 0.081 0.343 0.947 -0.038 

MI: hb, age, para, group 0.250  (0.067) 0.119 0.381 0.941   0.000 

MI: wt, hb, age, para,  group 0.250  (0.067) 0.119 0.381 0.948   0.000 

30% missing 
  

 
  

Complete Case 0.250  (0.073) 0.108 0.394 0.954   0.000 

MI: wt, hb, age, para 0.173  (0.073) 0.030 0.316 0.890 -0.077 

MI: hb, age, para 0.173  (0.073) 0.031 0.316 0.895 -0.077 

MI: hb, age, para, group 0.249  (0.075) 0.103 0.395 0.945 -0.001 

MI: wt, hb, age, para,  group 0.250  (0.075) 0.103 0.396 0.950   0.000 

 

Exactly as observed in the MAR case for this efficacy difference scenario, as the 

proportion of missing data increased, the effect size estimates from both the complete 

case (CC) and imputed model analyses became increasingly inefficient (i.e. the standard 

error of this estimate became larger).   
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Unlike in the MAR case, when outcomes were missing MCAR, no bias was found in the 

effect size estimates both for the CC analyses and for those imputed model analyses that 

included study group membership in the imputation process. Again this is expected 

from theory for the CC analyses since the remaining subjects are just a random sample 

of the target population, but is perhaps less predictable for the imputed models involving 

group membership. 

 

Imputation models that did not include group in the imputation process produced 

(negative) bias levels of around 15% when 15% of outcomes were missing and of 

around 31% when the proportion of missing outcomes was as high as 30%. 

 

The MAR and MCAR analyses were very similar with respect to coverage levels.  In the 

MCAR situation, coverage was generally high for all models at all missing value levels, 

again remaining above 0.941 (94.1%), but with the notable exception of when the 

proportion of missing outcomes reached 30%; in this situation, coverage for imputation 

models with group excluded fell to around 89%, which is slightly higher than that 

observed in the MAR situation and again unacceptably low. 

 

Thus, in summary, even when missingness in a (binary) outcome measure with 

continuous imputed is MCAR, the inclusion of study group membership in the 

imputation models appears to greatly improve the performance of the multiple 

imputation procedure and provides unbiased estimates of effect size even with 30% of 
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outcomes unrecorded.  Excluding group from the imputation process, however, appears 

to produce marked levels of bias (tending to under-estimate the true effect size). The 

findings are similar to those whose outcomes were imputed as binary. 

 

5.3.2.2 Efficacy rates 98% vs. 60%  

The results of these analyses are presented in Table 5.14. These findings are virtually 

identical to those obtained with outcome estimated as a binary rather than as a 

continuous variable (section 5.2.2.2); furthermore, the pattern of results was very similar 

to the previous scenario (85% vs 60% efficacy). 
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Table 5.14:  Estimated efficacy differences, coverage and bias for different 

proportions of missing MCAR outcomes-continuous imputed 

outcomes (averaged over 5000 imputed data sets): efficacy rates 98% 

vs. 60% (RD 0.380) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL           UL 

Full data 0.380  (0.051) 0.279 0.480 0.950   0.000 

5% missing 
  

 
  

Complete Case 0.380  (0.053) 0.277 0.483 0.950   0.000 

MI: wt, hb, age, para 0.361  (0.054) 0.255 0.466 0.938 -0.019 

MI: hb, age, para 0.360  (0.054) 0.255 0.466 0.934 -0.020 

MI: hb, age, para, group 0.380  (0.053) 0.277 0.483 0.945   0.000 

MI: wt, hb, age, para,  group 0.380  (0.053) 0.277 0.484 0.950   0.000 

15% missing 
  

 
  

Complete Case 0.380  (0.056) 0.271 0.489 0.946   0.000 

MI: wt, hb, age, para 0.323  (0.059) 0.208 0.437 0.874 -0.057 

MI: hb, age, para 0.322  (0.059) 0.208 0.437 0.868 -0.058 

MI: hb, age, para, group 0.381  (0.056 0.270 0.491 0.950 +0.001 

MI: wt, hb, age, para,  group 0.380 (0.056) 0.270 0.491 0.940   0.000 

30% missing 
  

 
  

Complete Case 0.380  (0.061) 0.260 0.501 0.944   0.000 

MI: wt, hb, age, para 0.265  (0.065) 0.137 0.393 0.602 -0.115 

MI: hb, age, para 0.263 (0.065) 0.137 0.390 0.578 -0.117 

MI: hb, age, para, group 0.381  (0.063) 0.258 0.504 0.945 +0.001 

MI: wt, hb, age, para,  group 0.379  (0.063) 0.256 0.503 0.950 -0.001 

 



 

164 
 

As the proportion of missing data increased (and effective sample size decreased), the 

effect size estimates from both the complete case (CC) and imputed model analyses 

became increasingly inefficient (i.e. the standard error of this estimate became larger) at 

slightly different rates. 

 

No bias was found in the effect size estimates both for the CC analyses and for those 

imputed model analyses that included study group membership in the imputation 

process for small to moderate missing outcome rates – and only a very small degree of 

bias was observed even when the missing outcome rate was as high as 30%. 

 

Those imputation models that did not include group in the imputation process again 

produced (negative) bias levels of around 15% when 15% of outcomes were missing 

and of around 30% when the proportion of missing outcomes was as high as 30%. 

Coverage was generally high for all models at all missing value levels, remaining above 

0.934 (93.4%) while the proportion of missing outcomes was no greater than 5%.   

 

However, when the proportion of missing outcomes reached 15%, coverage for the 

imputation models excluding group dropped to just under 88%, and when the proportion 

of missing outcomes reached 30%, coverage for these same models fell even further to 

just under 58%. 
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Thus, as before, when missingness in a (binary) outcome measure is MCAR, the 

inclusion of study group membership in the imputation models appears to greatly 

improve the performance of the multiple imputation procedure and provides unbiased 

estimates of effect size even with 30% of outcomes unrecorded.  Excluding group from 

the imputation process, however, appears to produce marked levels of bias (tending to 

under-estimate the true effect size) which increase as the proportion of missing outcome 

values increases. These findings are consistent with those obtained when the missing 

outcomes are imputed as binary. 

 

5.3.2.3 Efficacy rates 98% vs. 95%  

The results of these analyses are presented in Table 5.15.  These findings are virtually 

identical to those obtained with outcome estimated as a binary rather than as a 

continuous variable (section 5.2.2.3). 
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Table 5.15: Estimated efficacy differences, coverage and bias for different 

proportions of missing MCAR outcomes-continuous imputed 

outcomes (averaged over 5000 imputed data sets): efficacy rates 98% 

vs. 95% (RD 0.030) 

Model 

No. of 

datasets

* 

RD     (SE) 

95% CI* 
Coverag

e 
Bias 

LL           UL 

Full data 5000 0.030  (0.026) -0.020 0.080 0.939   0.000 

5% missing  
  

 
  

Complete Case 5000 0.030  (0.026) -0.021 0.081 0.940   0.000 

MI: wt, hb, age, para 4997 0.029  (0.026) -0.023 0.080 0.946 -0.001 

MI: hb, age, para 4994 0.028  (0.026) -0.023 0.080 0.948 -0.002 

MI: hb, age, para, 

group 
4997 0.030  (0.026) -0.021 0.082 0.940   0.000 

MI: wt, hb, age, para,  

group 
4997 0.030  (0.026) -0.021 0.082 0.939   0.000 

15% missing  
  

 
  

Complete Case 5000 0.030  (0.028) -0.024 0.084 0.935   0.000 

MI: wt, hb, age, para 4989 0.025  (0.028) -0.029 0.080 0.961 -0.005 

MI: hb, age, para 4983 0.025  (0.028) -0.029 0.080 0.959 -0.005 

MI: hb, age, para, 

group 
4989 0.030  (0.028) -0.025 0.085 0.943   0.000 

MI: wt, hb, age, para,  

group 
4990 0.030  (0.028) -0.025 0.086 0.944   0.000 

30% missing  
  

 
  

Complete Case 5000 0.030  (0.030) -0.029 0.089 0.940   0.000 

MI: wt, hb, age, para 4964 0.021  (0.030) -0.038 0.079 0.972 -0.009 

MI: hb, age, para 4969 0.021  (0.030) -0.037 0.078 0.968 -0.009 

MI: hb, age, para, 

group 
4964 0.030  (0.031) -0.032 0.091 0.947   0.000 

MI: wt, hb, age, para,  

group 
4971 0.030  (0.031) -0.031 0.091 0.944   0.000 

*: number of data sets for which convergent analysis was achieved. 
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As found in the MAR situation reported earlier with continuous imputed outcomes, all 

complete case (CC) analyses converged without any problem - but a small number of 

imputed analyses did not converge and this problem increased as the proportion of 

missing outcome values increased. 

 

In common with previous scenarios considered in which both efficacy rates were close 

to the boundary, the sample size was insufficient to detect an effect size as small as 

0.030 (3%).  All of the analyses returned statistically non-significant findings.   

 

As the proportion of missing data increased (and effective sample size decreased), the 

effect size estimates from both the complete case (CC) and imputed model analyses 

became increasingly inefficient (i.e. the standard error of this estimate became larger) at 

identical rates. 

 

The estimates of adjusted efficacy difference were unbiased for all missing value levels 

when CC analyses were performed, and for those imputation models which included 

group in the imputation process.  The bias in the effect size estimates was notably 

greater for those imputation models that did not include group, reaching ~17% when 

15% of outcomes were missing and ~33% when 30% of outcomes were missing. 

 

Coverage was worst (0.938 compared to the set nominal level of 0.950) when the full 

data set was analysed.  When missing outcomes were introduced, coverage ranged from 
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0.940 to 0.972; these higher values were again attributed to the imputation process 

pushing both efficacy rate estimates close to the boundary for some models. 

 

In summary, in this scenario CC analyses and those imputation models that included 

group in the imputation process provided unbiased estimates of effect size with good 

coverage and efficiency.  Only those imputation models that excluded group from the 

imputation process produced biased estimates of effect size (the level of bias increasing 

with the proportion of missing outcomes).  Statistical efficiency fell at identical rates for 

both the CC and multiple imputation analyses as the proportion of missing outcomes 

increased. 

 

5.3.2.4 Imputing MCAR continuous outcomes with binary estimates - summary 

As in the MAR situation, CC analyses performed as good, and often better, than 

imputed model analyses, consistently yielding unbiased estimates of effect size.  Some 

degree of efficiency was inevitably lost as the percentage of missing outcomes 

increased, due to the resulting decrease in effective sample size, but this was no worse 

than found in the imputed model analyses.   

 

No convergence problems were detected with the CC analyses, but these were 

experienced when imputation models were used as an alternative method for handling 

missing outcomes (missing binary outcomes being replaced by continuous imputation 

“estimates”) in the situation where both efficacy (risk) levels were close to the 
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parameter boundaries, due to all imputed values being allocated to the same outcome 

value (resulting in zero standard errors for the effect size estimate).     

 

Even when missing binary outcomes are MCAR (i.e. when missingness is effectively 

wholly random), excluding study group membership from the imputation process 

produced biased estimates. 

 

5.3.2.5 Missing Not At Random (MNAR) scenarios 

In section 5.2.3 above, missing MNAR binary outcomes were imputed on a binary scale.  

This section repeats that analysis but with missing MNAR binary outcomes now 

imputed on a continuous scale.  Only CC analyses and two multiple imputation models 

will be considered. The two imputation models are: (i) model with age, hb, wt, para and 

group; (ii) model with age, hb, wt, para. These were chosen specifically to ascertain 

whether the inclusion of group in the imputation models continued to play an important 

role in the imputation process. 

 

5.3.3.1 Efficacy rates 85% vs. 60%  

The results of these analyses are presented in Table 5.16. These findings are virtually 

identical to those obtained with outcome estimated as a binary rather than as a 

continuous variable (section 5.2.3.1). 
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Table 5.16: Estimated efficacy differences, coverage and bias for different 

proportions of missing MNAR outcomes-continuous imputed 

outcomes (averaged over 5000 imputed data sets): efficacy rates 85% 

vs. 60% (RD 0.250) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL            UL 

Full data 0.250  (0.061) 0.130 0.369 0.946   0.000 

5% missing 
  

 
  

Complete Case 0.257  (0.063) 0.133 0.381 0.946 +0.007 

MI: wt, hb, age, para 0.244  (0.064) 0.119 0.370 0.955 -0.006 

MI: wt, hb, age, para, 

group 
0.256  (0.064) 0.132 0.381 0.945 +0.006 

15% missing 
  

 
  

Complete Case 0.273  (0.068) 0.140 0.407 0.932 +0.023 

MI: wt, hb, age, para 0.233  (0.070) 0.096 0.371 0.972 -0.017 

MI: wt, hb, age, para, 

group 
0.272  (0.069) 0.137 0.407 0.933 +0.022 

30% missing 
  

 
  

Complete Case 0.299  (0.078) 0.146 0.451 0.893 +0.049 

MI: wt, hb, age, para 0.211  (0.080) 0.054 0.367 0.972 -0.039 

MI: wt, hb, age, para, 

group 
0.296  (0.078) 0.142 0.450 0.894 +0.046 

 

As observed in both the MAR and MCAR cases for this scenario, as the proportion of 

missing data increased (and so as the effective sample size reduced), the effect size 

estimates from both the complete case (CC) and imputed model analyses became 

increasingly inefficient (i.e. the standard error of this estimate became larger). 

 

Coverage levels were high for the imputation models that excluded group from the 

imputation calculations, irrespective of the proportion of outcomes that were missing.  
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For the complete case (CC) analyses and the imputation models that included group, 

coverage ranged between 93.2% and 94.6% for the 5% and 15% missing rates 

respectively – but when the missing rate was increased to 30% coverage fell to just 

below 90% which was unacceptably low. 

 

Unlike in both the MAR and the MCAR cases, when outcomes were missing MNAR 

there was some degree of bias in the effect size estimates both for the CC analyses and 

for all imputed model analyses irrespective of whether group was included in the 

imputation process or not. Surprisingly (but confirming the findings above when the 

missing binary outcomes were replaced by binary estimates), for the multiple imputation 

analyses: 

 although the differences were numerically quite small, models that included group 

in the imputation process exhibited greater levels of bias than models that excluded 

group from this process;    

 models that included group produced effect size estimates that were increasingly 

positively biased as the proportion of missing outcome values increased while 

models that excluded group produced estimates that were progressively more 

negatively biased; 

 the degree of positive bias in the multiple imputation models that used group 

membership was virtually identical to that in the corresponding CC analyses. 
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In summary, both the CC and multiple imputation models produced biased estimates of 

effect size.  The exclusion of study group membership in the imputation models 

maintained coverage levels but produced negatively biased estimates of effect size.  

Including study group membership produced virtually identical results to the CC 

analysis, with coverage markedly reduced and effect size consistently over-estimated. 

 

5.3.3.2 Efficacy rates 98% vs. 60%  

The results of these analyses are presented in Table 5.17. These findings are nearly 

identical to those obtained with outcome estimated as a binary rather than as a 

continuous variable (section 5.2.3.2).  
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Table 5.17: Estimated efficacy differences, coverage and bias for different 

proportions of missing MNAR outcomes-continuous imputed 

outcomes (averaged over 5000 imputed data sets): efficacy rates 98% 

vs. 60% (RD 0.380) 

Model RD     (SE) 
95% CI* 

Coverage Bias 
LL            UL 

Full data 0.380  (0.051) 0.279 0.480 0.950   0.000 

5% missing 
  

 
  

Complete Case 0.394  (0.053) 0.291 0.497 0.948 +0.014 

MI: wt, hb, age, para 0.374  (0.054) 0.267 0.481 0.955 -0.006 

MI: wt, hb, age, para, 

group 
0.394  (0.053) 0.289 0.498 0.948 +0.014 

15% missing 
  

 
  

Complete Case 0.427  (0.056) 0.317 0.537 0.868 +0.047 

MI: wt, hb, age, para 0.361  (0.062) 0.239 0.482 0.974 -0.019 

MI: wt, hb, age, para, 

group 
0.427  (0.059) 0.311 0.543 0.884 +0.047 

30% missing 
  

 
  

Complete Case 0.486  (0.062) 0.366 0.607 0.584 +0.106 

MI: wt, hb, age, para 0.333  (0.073) 0.189 0.477 0.967 -0.047 

MI: wt, hb, age, para, 

group 
0.486  (0.069) 0.350 0.621 0.667 +0.106 

 

As for the previous scenarios, as the proportion of missing data increased, the effect size 

estimates from both the complete case (CC) and imputed model analyses became 

progressively inefficient (i.e. the standard error of this estimate increased).   

 

Irrespective of whether or not group was included in the imputation calculations, the 

imputation models as well as the complete case analyses returned biased effect size 
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estimates. The imputed models that included group produced more biased estimates than 

those that excluded group.   The effect size estimates from those imputation models that 

included group in their calculations were positively biased for all levels of missing data, 

whereas the estimates from imputation models that excluded group were negatively 

biased.   

 

For all missing outcome levels, imputation models that excluded group produced 

estimates of efficacy difference that were very efficient (coverage rates were actually 

higher than the expected 95%).  Coverage rates for both the CC analyses and the 

imputation models that included group in the imputation process were reasonable when 

only 5% of outcomes were missing, but fell to 86.8% and 88.4% respectively when the 

missing outcome proportion was 15%; when this proportion was increased further to 

30%, coverage was reduced to the unacceptably low levels of 58.4% and 66.7% 

respectively.  

 

In summary, the CC and multiple imputation analyses were all biased in this situation. 

Including study group membership in the multiple imputation models exacerbated rather 

than improved performance, and this became more marked as the proportion of missing 

outcomes was increased.   Excluding group membership from the computation of the 

multiple imputation models maintained coverage levels but produced negatively biased 

estimates of effect size, while including study group produced virtually identical results 

to the CC analysis, with coverage now markedly reduced and effect size consistently 

over-estimated. 
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5.3.3.3 Efficacy rates 98% vs. 95%  

The results of these analyses are presented in Table 5.18. These findings are similar to 

those obtained with outcome estimated as a binary rather than as a continuous variable 

(section 5.2.3.3). 

 

Table 5.18: Estimated efficacy differences, coverage and bias for different 

proportions of missing MNAR outcomes-continuous imputed 

outcomes (averaged over 5000 imputed data sets): efficacy rates 98% 

vs. 95% (RD 0.030) 

Model 

No. of 

datasets

* 

RD     (SE) 

95% CI* 
Coverag

e 
Bias 

LL           UL 

Full data 5000 0.030  (0.026) -0.020 0.080 0.939   0.000 

5% missing  
  

 
  

Complete Case 5000 0.032  (0.028) -0.022 0.086 0.949 +0.002 

MI: wt, hb, age, para 4994 0.030  (0.028) -0.023 0.087 0.957   0.000 

MI: wt, hb, age, para, 

group 
4995 0.032  (0.028) -0.023 0.087 0.947 +0.002 

15% missing  
  

 
  

Complete Case 5000 0.039  (0.033) -0.026 0.103 0.953 +0.009 

MI: wt, hb, age, para 4996 0.029  (0.033) -0.036 0.095 0.979 -0.001 

MI: wt, hb, age, para, 

group 
4994 0.039  (0.034) -0.029 0.106 0.944 +0.009 

30% missing  
 

    
  

Complete Case 5000 0.052  (0.045) -0.037 0.141 0.939 +0.022 

MI: wt, hb, age, para 4994 0.028  (0.043) -0.055 0.112 0.991 -0.002 

MI: wt, hb, age, para, 

group 
4994 0.052  (0.048) -0.042 0.146 0.925 +0.022 

*: number of data sets for which convergent analysis was achieved. 
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As in the similar effect size difference situations reported above, all complete case (CC) 

analyses converged but a small number of imputed analyses failed to converge, with this 

problem increasing as the proportion of missing outcome values rose. 

 

The sample size proved insufficient to detect an effect size as small as 0.030 (3%); all of 

the analyses returned statistically non-significant findings.   

 

Increasing the proportion of missing data (and hence decreasing the effective sample 

size) increased the standard errors of the effect size estimates and decreased statistical 

efficiency in all analyses.   

 

The imputed model analyses that excluded group from the imputation computations 

produced effect size estimates with little or no bias. However, the CC analyses and the 

imputed models that included group produced positively biased estimates, and degree of 

bias increased as the proportion of missing outcomes rose.  When 30% of outcomes 

were missing, both of these models produced identical bias levels of 0.022; although 

numerically small, as the true efficacy difference was only 0.030, this represents a non-

ignorable bias level of 73%. Coverage was at least 92.5% for all scenarios and all levels 

of missing data.   

 

In summary, complete case analyses and multiple imputation models that included 

group in the imputation procedure produced biased effect size estimates (bias reaching 
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almost 75% when the proportion of missing outcomes was raised to 30%), whereas 

multiple imputation models that excluded group from the calculations were virtually 

unbiased for all missing outcome proportions.  

 

5.3.3.4 Imputing MNAR binary outcomes with continuous estimates - summary 

Unlike in the MAR and MCAR situations, both CC analyses and the imputed model 

analyses (irrespective of whether group is included or not) tended to produce biased 

estimates of effect size, with (in general terms) the level of bias increasing as the 

proportion of missing outcomes rose.  

 

The most striking finding was that the exclusion of group from the calculations 

improved the performance of multiple imputation models, although the estimates 

produced remain biased. The estimates obtained from the complete case analyses and 

from those multiple imputation models that included group in the imputation process 

were consistently biased away from the null hypothesis (i.e. over-estimated effect size) 

while excluding group from the imputation analyses produced bias toward the null 

hypothesis (i.e. under-estimated effect size).  This latter finding was consistent with the 

findings from all other scenarios considered in this dissertation in which group was 

excluded from the imputation models, but the former finding was unexpected. 

 

Inevitably, some degree of efficiency was lost as the percentage of missing outcomes 

was increased in both the complete case analysis and the imputed model analyses 
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(irrespective of whether group was included or not).  Coverage was at least 0.947 

(94.7%) in the imputed models that excluded group for all scenarios considered. 

 

No convergence problems were detected with the CC analyses, but some non-

convergence was experienced when imputation models were used as an alternative 

method for handling missing outcomes, despite the fact that the missing binary 

outcomes were now being replaced by continuous imputation “estimates”.  Convergence 

problem were greatest when both efficacy (risk) levels were close to the parameter 

boundaries, suggesting that even imputing binary outcomes on a continuous scale, it is 

possible for all imputed values to be allocated to the same outcome value (resulting in 

zero standard errors for the effect size estimate).     

 

5.3.3.5 Mathematical explanation of bias findings in the MNAR situation 

The relationship found in the MNAR situation using multiple imputation methods 

between the direction of the bias in the effect size estimates and the use of group in the 

imputation calculations was unexpected.  There is a simple mathematical explanation 

for this finding, however, based on the fact that, in the MNAR situation modeled, cases 

that had a treatment success were given a larger probability of having a missing 

outcome than the treatment failure cases.  This is described in table 5.19 below using a 

simple simulated example with 1000 patients in each of groups A and B. 

 

Suppose that: 
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- the efficacy rates in groups A and B are actually 80% and 60% respectively; 

- the probability of the outcome being missing is 20% if the outcome is positive and 

10% if the outcome is negative in both treatment groups. 

 

Table 5.19: The effect size estimate In the absence of MNAR: 

Group:  A B 

Sample size  1000 1000 

Probability  
positive outcome 

occurring 
0.80 0.60 

of: positive outcome missing 0 0 

 
positive outcome not 

missing 
1 1 

 
negative outcome 

occurring 
0.20 0.40 

 
negative outcome 

missing 
0 0 

 
negative outcome not 

missing 
1 1 

Expected number 

of: 

positive 

outcomes 

1000 * 0.80 * 1 = 

800 

1000 * 0.60 * 1 = 

600 

 
negative 

outcomes 

1000 * 0.20 * 1 = 

200 

1000 * 0.40 * 1 = 

400 

Estimated 

efficacy: 
 

800 / (800 + 200) = 

80.0% 

600 / (600 + 400) = 

60.0% 

Estimated effect size: 80.0 – 60.0  =  20.0% 

 

When there are no missing outcomes, the effect size estimate will be unbiased.   
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In the presence of MNAR data, the mathematical explanation for the CC finding is 

presented in table 5.20 below. As shown in the table below, in a MNAR situation, the 

effect size estimate from a complete case (CC) analysis will be positively biased. 

 

Table 5.20: The effect size estimate In the presence of MNAR:  CC analysis 

Group:  A B 

Sample size  1000 1000 

Probability 

of:  

positive outcome 

occurring 
0.80 0.60 

 
positive outcome 

missing 
0.20 0.20 

 
positive outcome not 

missing 
0.80 0.80 

 
negative outcome 

occurring 
0.20 0.40 

 
negative outcome 

missing 
0.10 0.10 

 
negative outcome not 

missing 
0.90 0.90 

Expected 

number of: 
positive outcomes 

1000 * 0.80 * 0.80 = 

640 

1000 * 0.60 * 0.80 = 

480 

 negative outcomes 
1000 * 0.20 * 0.90 = 

180 

1000 * 0.40 * 0.90 = 

360 

 missing outcomes 
1000 - (640 + 180) = 

180 

1000 - (480 + 360) = 

160 

Estimated 

efficacy: 
 

640 / (640 + 180) = 

78.0% 

480 / (480 + 360) = 

57.1% 

Estimated effect size: 78.0 – 57.1  =  20.9% 
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Multiple imputation analysis with group excluded from imputations 

In this situation, the multiple imputation process does not distinguish between the two 

groups when estimating whether a missing outcome should be replaced by a positive or 

negative outcome. Missing outcomes in both groups are thus replaced using the pooled 

efficacy rate for the two groups combined. The mathematical explanation is presented in 

table 5.21 below. 
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Table 5.21: The effect size estimate In the presence of MNAR:  Excluding 

group in imputation models  

Group:  A B 

Sample size  1000 1000 

Probability 

of:  

positive outcome 

occurring 
0.80 0.60 

 
positive outcome 

missing 
0.20 0.20 

 
positive outcome not 

missing 
0.80 0.80 

 
negative outcome 

occurring 
0.20 0.40 

 
negative outcome 

missing 
0.10 0.10 

 
negative outcome not 

missing 
0.90 0.90 

Before 

imputation: 
   

Expected number 

of: 

positive 

outcomes 

1000 * 0.80 * 0.80 = 

640 

1000 * 0.60 * 0.80 = 

480 

 
negative 

outcomes 

1000 * 0.20 * 0.90 = 

180 

1000 * 0.40 * 0.90 = 

360 

 
missing 

outcomes 

1000 - (640 + 180) = 

180 

1000 - (480 + 360) = 

160 

Estimated 

efficacy:  
per group 

640 / (640 + 180) = 

78.0% 

480 / (480 + 360) = 

57.1% 

 Overall 
(640 + 480) / (640 + 180 + 480 + 360) = 

67.5% 

After imputation:    

Estimated 

number of: 

positive 

outcomes 

640 + (180 * 0.675) = 

761.5 

480 + (160 * 0.675) 

= 588 

 
negative 

outcomes 

180 + (180 * 0.325) = 

238.5 

360 + (160 * 0.325) 

= 412 

Estimated 

efficacy: 
 

761.5 / (761.5 + 

238.5) = 76.15% 

588 / (588 + 412) = 

58.80% 
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Estimated effect size: 76.15 - 58.80  =  17.35% 

 

In a MNAR situation, the effect size estimate from a multiple imputation analysis in 

which group membership is excluded from the imputation process will be negatively 

biased. 

 

Multiple imputation analysis with group included in imputations 

In this situation, the multiple imputation process does distinguish between the two 

groups when estimating whether a missing outcome should be replaced by a positive or 

negative outcome. Each missing outcomes is thus replaced using the efficacy rate for the 

group in which that missing outcome occurred. The mathematical explanation is 

detailed in table 5.22 below. 
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Table 5.22: The effect size estimate In the presence of MNAR:  including 

group in imputation models  

Group:  A B 

Sample size  1000 1000 

Probability 

of:  

positive outcome 

occurring 
0.80 0.60 

 
positive outcome 

missing 
0.20 0.20 

 
positive outcome not 

missing 
0.80 0.80 

 
negative outcome 

occurring 
0.20 0.40 

 
negative outcome 

missing 
0.10 0.10 

 
negative outcome not 

missing 
0.90 0.90 

Before 

imputation: 
   

Expected number 

of: 

positive 

outcomes 

1000 * 0.80 * 0.80 = 

640 

1000 * 0.60 * 0.80 = 

480 

 
negative 

outcomes 

1000 * 0.20 * 0.90 = 

180 

1000 * 0.40 * 0.90 = 

360 

 
missing 

outcomes 

1000 - (640 + 180) = 

180 

1000 - (480 + 360) = 

160 

Estimated 

efficacy:  
per group 

640 / (640 + 180) = 

78.0% 

480 / (480 + 360) = 

57.1% 

 overall 
(640 + 480) / (640 + 180 + 480 + 360) = 

67.5% 

After imputation:    

Estimated 

number of: 

positive 

outcomes 

640 + (180 * 0.780) 

= 780.4 

480 + (160 * 0.571) 

= 571.4 

 
negative 

outcomes 

180 + (180 * 0.220) 

= 219.6 

360 + (160 * 0.429) 

= 428.6 

Estimated 

efficacy: 
 

780.4 / (780.4 + 

219.6) = 78.04% 

571.4 / (571.4 + 

428.6) = 57.14% 
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Estimated effect size: 78.04 – 57.14  =  20.90% 

 

In a MNAR situation, the effect size estimate from a multiple imputation analysis in 

which group membership is included in the imputation process will be positively biased 

– and (theoretically) the extent of this bias will be the same as that in a CC analysis. 
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Chapter 6 : Discussion and conclusions 

6.1 The Binomial regression model, Copy method and Cheung’s OLS method 

The binomial regression model with an identity link function is prone to convergence 

problems in software that uses MLE. From the simulation findings in this study, non-

convergence rates were found to increase as at least one of the efficacy rates moved 

towards a boundary value irrespective of the number of covariates included in the 

substantive model. For all scenarios examined, convergence was poor when the efficacy 

rate in either group was 90% or greater. This finding on the boundary efficacy rates is 

consistent with previous publications (Wacholder 1986). Treatments are now becoming 

very effective in malaria studies, so it is common to have at least one efficacy rate 

(usually for the intervention group) near a boundary value (usually 100%). It has been 

suggested (Borrmann et al. 2008) that anti-malarial drugs should be recommended for 

global use only when efficacy is at least 90%.  Thus, in malaria studies attempting to 

report adjusted efficacy differences close to 100%, the binomial regression model is 

likely to be highly susceptible to model failure (non-convergence) severely limiting its 

ability to provide unbiased estimates (or, indeed, any estimates at all) in this situation. 

 

It was interesting to find that this convergence problem worsened as the number of 

covariates in the model was increased. Models with just one covariate tended to have 

less convergence problems than models with two covariates, and in turn these tended 

have fewer convergence problems than models with three covariates, and so on.  This 
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means that the more covariates that are included in the model, the higher the probability 

that the binomial regression model will fail to converge and produce a reliable estimate 

of effect size. In practice, however, many potential confounders usually exists that need 

to be adjusted for in regression models in order to obtain an accurate estimate of true 

treatment success (failure) that is independent of other associated factors. Clearly, 

therefore, the use of the binomial regression model with an identity link function to 

obtain an accurate estimate of effect size while controlling for potential confounding 

variables is probably limited to situations in which efficacy in all treatment groups being 

compared is modest or poor (i.e. ≤90%). 

 

The degree of correlation between confounders / covariates also appears to be associated 

with the risk that the binomial regression model will fail. In the simulations conducted 

for this dissertation, the percentage of datasets that converged improved when the 

correlations between the covariates were removed in all of the models considered. The 

improvement in convergence was most remarkable in models with a large number of 

covariates. Covariates are supposed to be statistically independent and hence 

uncorrelated, but in practice there is always some degree of correlation between 

covariates.  The findings of this study appear to indicate that the application of the 

binomial regression model to obtain adjusted risk (efficacy) differences is probably 

restricted to those situations in which there is truly little or (ideally) no correlation 

between the covariates being adjusted for.  
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The COPY method is known to reduce non-convergence problems when attempting to 

estimate a risk ratio using a log-binomial regression model (Savu et al. 2010). Indeed, 

for a log-binomial regression model, the COPY method provides an effective method of 

estimating prevalence ratios, as long as the starting values are appropriate (Savu et al. 

2010). Unfortunately, however, although the COPY method is simple to apply, and of 

course intuitively striking, it appears not to be an appropriate approach for dealing with 

the problem of non-convergence when trying to obtain unbiased estimates of the 

adjusted efficacy (risk) differences using a binomial regression model with identity link 

function. With the binomial regression model, the number of copies required to 

minimize the risk of a model failing to converge was found to coincide with the number 

of copies that gave the most biased estimates of the true efficacy difference. Counter-

intuitively, increasing the number of copies made both the risk of non-convergence and 

bias in the efficacy difference estimates worse. So, the COPY method is probably best 

suited to risk ratio modeling using the log-binomial regression model.  

 

The main challenge in practice is that researchers generate only one set of data and if 

that particular dataset does not converge in the available software package(s), then 

alternative approaches are immediately needed. The most useful method would be one 

that has 100% convergence and produces unbiased estimates of the risk differences. 

While the COPY method used in conjunction with the binomial regression model and an 

identity link function clearly does not always achieve this ideal, it should not be entirely 

dismissed as a possible analysis option.  Given that, mathematically, binomial 

regression is the best method for estimating effect size differences if the technique 
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works, it should be attempted as the first choice analysis.  If, however, the model fails to 

converge, the COPY method should be attempted, starting with a relatively small 

number of copies (e.g. 5).  The number of copies can be increased to a maximum of 10; 

if the model is still failing to converge, there is little point in adding further copies as 

this is extremely unlikely to achieve convergence.  If convergence is achieved with 10 

or less copies, the effect size estimate is likely to be biased to some degree and so a 

secondary CC analysis may be required to estimate the degree of this bias.  This policy 

should initially be implemented with no covariate adjustment; if convergence problems 

are experienced even with the addition of the COPY method, it is likely that these 

problems will increase when covariate adjustment is attempted, so it might be sensible 

to look for an alternative analysis approach rather than to attempt covariate adjustment 

with the binomial regression model. 

 

A computationally very attractive alternative method is Cheung‟s modified OLS with 

Huber-White robust standard errors. This is a simple regression method that is used for 

the estimation of the risk differences and can be applied using any standard statistical 

software that performs ordinary least-squares regression and has options for obtaining 

Huber-White standard errors. This is probably one of the most attractive features of this 

method. Furthermore, the method offers statistical advantages over the standard 

binomial regression model (with or without the COPY method) because convergence is 

more (but not totally) guaranteed. In addition, the method yields unbiased estimates of 

adjusted risk differences, and valid standard errors can be obtained using the Huber-

White formulae. On the downside, however, unlike the binomial regression model 
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where exact confidence intervals are obtained for the effect size estimate when the 

model is convergent, Cheung‟s modified OLS only provides model based (approximate) 

estimates of the confidence intervals.  

 

Thus, if covariate adjusted efficacy (risk) differences are of epidemiological interest, the 

standard binomial regression model with identity link function, even when modified 

using the COPY method, should not be the sole method for estimating effect size 

differences listed in the statistical analysis plan during the study protocol development. 

The Cheung‟s modified OLS method must be specified as an alternative approach to be 

used should the binomial model fail. 

 

In summary, therefore: 

- the binomial regression model with an identity link function faces an increasing risk 

of convergence challenges especially when at least one of the efficacy rates moves 

towards a boundary; 

- the risk of these convergence problems increases as number of covariates being 

adjusted for increases and also as the correlation between these covariates increases 

- although the COPY method is simple to apply, is intuitively attractive, and is an 

effective approach for handling the problem of non-convergence in other situations 

(e.g. when estimating odds ratios or risk ratios), it does not appear to be as effective 

when used with the binomial model to estimate risk differences; 
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- even when the COPY method does work (i.e. achieves model convergence), it does 

not produce unbiased estimates of the adjusted risk difference; 

- Cheung‟s modified OLS with Huber-White robust standard errors is a sensible 

alternative method when the binomial regression model does not converge, having 

the appealing features of being simple to apply in all standard software and assuring 

convergence to a reliable effect difference estimate. 

 

6.2 Comparison of methods of handling missing data 

6.2.1 Imputing MAR binary outcomes 

For data that was MAR, the performance of Complete Case (CC) analyses was found to 

be as good as, and often better than, using imputed model analyses, consistently 

producing unbiased estimates of efficacy difference.  Under this missing mechanism, the 

performance of CC analyses was found to unaffected by whether the imputed values for 

the missing binary outcomes were estimated on a binary or on a continuous scale. This 

finding is consistent with a recent publication by Groenwold et al (2011) who examined 

missing binary outcomes in a randomized trial setting using odds ratios as the summary 

statistic of interest for estimating the relative effects of two or more treatments and also 

found that the performance of the CC analysis method was either the same as, or better 

than the MI approach. However, since odds ratio modeling and risk difference modeling 

use different mathematical algorithms, it cannot be assumed that the results from an 

odds ratio model can be extrapolated to a risk difference model. So in this study, the 

performance of the CC analysis and MI method were investigated using simulation 
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methods with risk difference now as the outcome measure of interest instead of odds 

ratios.  

 

Under the MAR situation, there was some predictable loss of statistical efficiency in the 

CC analyses as the percentage of missing outcomes increased due to the diminishing 

effective sample size, as has previously been reported (Desai et al. 2011). However, the 

loss in efficiency was the same as, and often better than (i.e. numerically less than), that 

observed in the multiple imputation analyses. This is surprising and unexpected.  

Theoretically MI methods are expected to yield correct standard errors (Donders et al. 

2006), for two reasons.  Firstly, sample size is maintained; secondly uncertainty in the 

imputed values is fully taken into account.  

 

A plausible explanation for this unexpected finding is that, although sample size is 

maintained when using MI procedures, these same procedures also increase the 

variability in the outcome values (irrespective of whether binary or continuous outcome 

values are being imputed) that acts to inflate the standard error of the effect size 

estimate. This increase in variability is likely to result from the random component that 

is added to the missing outcome values during the imputation process (Rubin 1987, 

Rubin 1996, Collins et al. 2001, Little 2002, Groenwold et al. 2011).  For this study, ten 

imputations were used in each multiple imputation procedure, based on published 

recommendations (Rubin 1987, Schafer 1997) that using between 3 and 10 imputations 
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should be sufficient to obtain valid estimates of the effect size parameters. However, 

Bodner (2008) showed that using between 3 and 10 imputations may result in the 

important parameters of interest suffering from huge imputation variability. This study 

appears to confirm this finding, but further research is needed into this important 

influence on the precision of risk / efficacy difference estimates. 

 

No convergence problems were experienced with the CC analyses under the MAR 

condition.  However, convergence problems did occur in the MAR condition when 

imputation models were used to deal with missing outcomes where both efficacy rates 

were close to the parameter boundaries. This, evidently, was due to all imputed values 

being allocated to the same outcome value (which can easily happen when imputing 

only few values) resulting in zero standard errors for the effect size estimate.  This 

phenomenon is often referred to as “perfect prediction” (Royston and White 2011).  

 

Although this phenomenon this occurred regardless of whether the imputed outcomes 

were on a binary or on a continuous scale, perhaps predictably the problem was 

relatively worse in those situations where the outcomes were imputed on a binary rather 

than on a continuous scale. When imputing outcomes on a binary scale there are only 

two possible values that the outcome being imputed can take - either zero or one. So for 

example, if either or both efficacies are high (i.e. ≥95%) and there are relatively few 

missing outcome values, the probability of all of these missing outcomes being 
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estimated as the same value (in this case 1) is likely to be high. When imputing (binary) 

outcomes on a continuous, theoretically each imputed missing outcome can take 

infinitely many values between 0 and 1; even so, when either or both efficacies are high 

(i.e. ≥95%) and there are relatively few missing outcome values, the probability of all of 

these missing outcomes being estimated as the same value (in this case 1) is still likely 

to be high. 

 

This problem of “perfect prediction” can easily be resolved in Stata by using the 

command option “augment”, which causes an augmented regression to be performed 

(Royston and White 2011). In the simulations reported from this study, the augment 

option was used in all situations where the efficacy rates were 95% or 98% for the two 

comparator groups. While the use of this option had a big impact on the overall levels of 

perfect prediction that occurred, it was observed that the augment option only helped to 

reduce the problem but did not completely eliminate it.  

 

Another striking finding under the MAR condition was that the inclusion of treatment 

group membership in the imputation process (i.e. the use of this variable in the 

calculations to estimate the missing outcome values) played a crucial role in improving 

the performance of the imputation process. If missingness in a binary outcome is MAR 

and related to study group membership, excluding this variable from the imputation 

process was found to produce biased estimates of the adjusted efficacy (risk) difference, 
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whereas if group was included in the process, the estimate was unbiased.  However, if 

missingness is related also to other factors or covariates, the absence of these additional 

factors or covariates in the imputation model appeared to have little impact on bias 

levels for the effect size estimate provided group was included in the imputation 

calculations even in the situation where one of the effect sizes was close to a boundary 

value. Clearly, therefore, if missing outcomes are MAR and related to several known 

factors including treatment group membership, including group in the imputation 

process is paramount over all other factors related to missingness. 

 

The MAR assumption is often a plausible assumption in practice and there are many 

clinical trial situations in which it is likely that missing outcomes will be related to other 

observed variables (Schafer and Graham 2002, Kenward and Carpenter 2007). For 

example, it is plausible that the probability of a participant dropping out of clinical trial 

could be associated with the treatment to which the participant was allocated (Altman 

2009). The above findings under the MAR assumption thus occupy a very important 

role in many randomized trials, especially those whose measure of effect is a risk 

difference. 

 

In summary, when some values for a binary outcome variable are MAR (missing at 

random) but all observations are recorded for all other baseline variables, a CC analysis 

produces adjusted estimates that are unbiased with no obvious risk of convergence 

problems so would seem to be the analysis method of choice.  This view would appear 
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to be further supported by the finding in this study that, under the MAR  condition, CC 

often performs as well as or better than multiple imputation methods over a wide range 

of efficacy rates. In addition, CC analyses are easy to implement since this is often the 

default method in statistical software packages.  

 

Unfortunately, however, the CC analysis method is not consistent with the intention to 

treat (ITT) principle, which is the standard approach for the analysis of a RCT. The ITT 

approach requires that all subjects that were randomized should be included in the 

analysis according to their randomization allocation. So, while CC is preferable to MI 

methods on the basis of both performance and ease of application, the ITT principle 

probably over-rides this and so MI should be the analysis method of first choice, with a 

CC analysis performed as secondary (confirmatory / sensitivity) analysis strategy. 

 

6.2.2 Imputing MCAR binary outcomes 

Although it is often difficult for study outcome data to be MCAR, this condition is often 

plausible in malaria efficacy studies where missing outcome is due to for example: 

indeterminate outcomes resulting from the presence of mixed genotypes in the post 

treatment samples; a test tube containing sample being broken before sample 

processing; sample processing failure in a laboratory equipment; samples becoming 

haemolysed and/or clotted. Such events usually happen completely at random and 

making the MCAR assumption valid.  
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As in the MAR situation, CC analyses were found to perform as well as, and often better 

than, multiple imputed methods, consistently producing unbiased estimates of effect 

size.  This is again expected from theory under-pinning CC analyses - the subjects 

remaining in a CC analysis constitute a random sample of the target population (Rubin 

1987, Little 2002, Schafer and Graham 2002, Carpenter and Kenward 2006, Carpenter 

and Kenward 2007).  

 

There was to some extent, again, some degree of efficiency inevitably lost in the CC 

analyses as the percentage of missing binary outcomes increased. As explained for 

MAR situation above, this was due to the resulting decrease in effective sample size, but 

the losses in efficiency observed were no worse than those found in the multiple 

imputation analyses.  Again, a plausible explanation is that, although sample size is 

maintained in MI procedures, there is an increased variability in the imputed outcome 

values that tends to inflate the standard errors. This increase in the variability of the 

outcome values in MI most probably results from the random component that is added 

to the estimates of the missing outcome values during the imputation process (Rubin 

1987, Rubin 1996, Collins et al. 2001, Little 2002, Groenwold et al. 2011). 

 

As in the MAR situation, no convergence problems were experienced with the CC 

analyses. Convergence problems were experienced, however, when imputation models 

were used as an alternative method for handling missing outcomes in the situation where 
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both efficacy (risk) levels were close to the parameter boundaries. These occurred 

irrespective of whether the missing binary outcomes were replaced by binary or 

continuous imputation “estimates”) and, again as in the MAR situation, was attributed to 

all imputed values being allocated to the same outcome value (resulting in zero standard 

errors for the effect size estimate).   

 

Finally, in yet another similar finding to the MAR condition, when missing binary 

outcomes were MCAR (i.e. when missingness was effectively wholly random), 

excluding study group membership from the imputation process was found to produce 

biased estimates. 

 

In summary, therefore, as for the MAR situation, when some values are unrecorded for a 

binary outcome variable but recorded for all other variables, CC analysis would appear 

to be the method of choice for handling missing binary outcomes. Crucially, unlike the 

imputation models, the CC the efficacy (risk) difference regression models will 

converge. So, as a general recommendation based on the simulation studies, CC would 

appear to be preferable to MI methods as the latter offers no statistical advantages. 

However, the intention to treat principle (ITT), the standard for analysing and reporting 

RCTs, probably over-rides this and so MI should be analysis of first choice, with a CC 

analysis performed as secondary analysis strategy for verification and sensitivity 

purposes. The CC should be used for the “per protocol analyses” as MI has no place in 

per “protocol analyses”.  If the MI and CC results disagree, the results of both CC and 

MI should be reported and possible reasons for the discrepancy discussed.  
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Needless to say, in both the MAR and MCAR situations, all of the above problems 

could be either avoided or, at worst, minimised by maximising the collection of the 

outcome measures.  

 

6.2.3 Imputing MNAR binary outcomes 

The possibility of having missing outcomes that are MNAR cannot be ignored in 

practice. Indeed, it is possible that missing outcomes can be directly related to the 

outcome itself. For example, individuals on an inferior treatment may not find any 

benefit from the treatment and so may be more likely to have a treatment failure or to 

drop-out than those individuals on the superior treatment, in which case (some) missing 

outcomes will be MNAR.  

 

Particular attention was directed in this study to the situation in which MNAR was 

linked to group membership. The simulation exercises were set up deliberately so that 

missingness in the binary outcome measure was related to treatment group membership; 

patients in the more effective treatment group were given a higher probability in the 

simulation calculations of having a missing outcome than those in the other, less 

effective, treatment group. In this situation, the findings differed considerably from 

those obtained under both the MAR and MCAR conditions.  Under the MNAR 

condition, both the CC analyses and the multiple imputation analyses were biased, in the 

latter case irrespective of whether or not group was included in the imputation process. 
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This finding is essentially in line with published theory, which states that a wrong model 

is being used in both the CC and MI analyses (Rubin 1976, Rubin 1987, Little 2002, 

Liublinska and Rubin 2012).  The really striking finding, however, was that although 

missingness was related to treatment group membership, including group membership 

in the imputation calculations now increased the degree of bias in the effect size 

estimates compared to excluding group from the imputation process. An examination of 

the mathematical implications of MNAR indicated that, when the aim of the analysis is 

to asses group efficacy (risk) difference, if the MNAR condition is linked directly to 

group membership, in both the CC and MI analysesthe MNAR missingness will in itself 

bias the effect size estimate – and that the inclusion of the group variable in a MI 

analysis actually reinforces and exaggerates the level of bias in the effect size estimate.  

It is likely that this effect is less pronounced in a MI analysis for variables other than 

group membership, that is, if any other variables are related to missingness and are 

included in the MI calculations, this will also increase the bias in the effect size 

estimate, but to a lesser degree than will occur with group.   

 

Both the CC and MI analyses that include group in the imputation process produced 

“positive” bias, in that the effect size estimate tended to be consistently pushed away 

from the null hypothesis (i.e. the effect size tended to be consistently over-estimated), 

whereas those MI analyses that excluded group tended to push the bias towards the null 

hypothesis (i.e. the effect size now tended to be consistently under-estimated). 
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In common with both the MAR and MCAR condition, no convergence problems were 

detected with the CC analyses under MNAR.  Convergence issues did arise, however, 

when multiple imputation methods, irrespective of whether the missing binary outcomes 

were replaced by binary or continuous imputation “estimates”, and this problem was 

particularly acute in the situation where both efficacy (risk) levels were close to the 

parameter boundaries, due to all imputed values being allocated to the same outcome 

value (resulting in zero standard errors for the effect size estimate). 

 

In summary, under the MNAR condition for missing binary outcomes when missingness 

is (either wholly or in part) related to treatment group membership, both CC and MI 

analyses produce biased estimates of effect size (effect difference).  Furthermore, the 

inclusion of group in a multiple imputation analysis will tend to exaggerate bias away 

from the Null hypothesis (i.e. will tend to over-estimate the true effect size); exactly the 

same impact on bias will occur if a CC analysis is carried out in this situation.  

Excluding group from the calculations in a MI analysis produces less bias, but now the 

bias is towards the Null hypothesis (i.e. the true effect size will tend to be under-

estimated). 

 

Thus, multiple imputation methods may have an advantage over CC methods when 

outcomes are MNAR in the sense that, if the variables that cause the non-ignorable 

(MNAR) missing outcomes are known, these variables can be included in the 

imputation calculations.  It was not possible in this study to examine the effects on bias 
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when variables other than group membership that influence missingness are included in 

the imputation calculations, and further research is needed on this important issue – but 

intuitively it is possible that such variables will, if included in the imputations, reduce 

bias (rather than increase bias as happens when group is included). For this reason, MI 

methods play a very important role in performing sensitivity analyses when data are 

MNAR (Carpenter et al. 2007, Kenward and Carpenter 2007). For longitudinal studies 

in which outcome is measured on several occasions, Diggle and Kenward 1994 

proposed a parametric model for analyzing such designs when there are non-ignorable 

dropouts (Diggle and Kenward 1994). 

 

6.3 Consort statement and WHO recommendations on handling missing data 

in RCTs 

The Consort statement states that the statistical analysis strategy for a RCT should be 

clearly stated in advance(Altman et al. 2001), and that this strategy should be based on 

either the ITT (intention to treat) principle or the “on-treatment” principle (commonly 

known as per protocol (PP) principle).  

 

Under the intention to treat principle, all participants recruited in the study are included 

in the statistical analyses within the group to which they were originally randomized. 

The challenge with this is that some of the participants may not have outcomes. 

Although the Consort statement acknowledges that the ITT approach has the advantage 

of reducing any bias resulting from systematic loss of participants (e.g. Lee (1991) and 
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Lachin (2000)), it remains unclear how to include those individuals with some missing 

outcomes. The findings of this study probably provide some guidance on this issue for 

the ITT strategy.  MI may be a useful approach for handling missing outcomes in order 

to be consistent with the ITT principle. However, for the MI approach to be valid, data 

needs to be MAR or MCAR. For MNAR data, the use of MI should be followed by 

sensitivity analyses.(The Consort statement stipulates that the ITT approach is not 

appropriate for assessing adverse events so advises performing additional sensitivity 

analyses in this situation also).  

 

The Consort Guidelines offers the authors of RCT reports strong advice on two 

important issues: 

 What constitutes ITT in their analyses must be clearly defined; the original Consort 

document noted that, out of 249 articles that were reviewed in 1997, only 2% 

clearly stated that all participants who were randomized were analyzed according to 

the group they were randomized to. 

 Removing participants from the statistical analysis process could, irrespective of the 

reasons for exclusion, lead to invalid inferences.  

 

The 2003 WHO report on the assessment and monitoring of antimalarial drug efficacy 

for the treatment of uncomplicated falciparum malaria recommends the application of 

the intention-to-treat (ITT) principle for the primary statistical analysis (apart from when 

survival analyses are being used) followed by secondary per protocol analyses. The 
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results from the secondary per protocol analyses allow comparisons with any available 

historical results.   

 

Clearly, where per protocol analyses are performed, MI does not have any place so the 

CC analysis approach should be employed. This meshes well with the findings of this 

thesis that CC analyses are often better than MI provided the missing binary outcomes 

are either MAR or MCAR. It is emphasized again that this discussion must be 

considered in the context of a RCT design in which a binary outcome is collected at just 

one time point of interest.  

 

6.4 The effect of missing values and the validity of the missing data simulation 

findings 

A number of important assumptions were employed in the simulation studies reported in 

this thesis especially relating to the methods used in the handling of missing data, 

ranging from study design, the outcome measure of interests, efficacy levels, 

missingness being limited to the outcome variable, missingness levels and missingness 

mechanisms. Each of these are now considered in turn. 

 

6.4.1 Study design 

The simulated data used in this study mimicked a real randomized cohort study for a 

special case in which the outcome of interest was measured only once-usually at the end 
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of the study.  This is often the case in randomized controlled trials of malaria efficacy. 

In such studies, the status of study participants at day 28 following the onset of 

treatment is often of particular interest. Thus, although measurements are taken at 

several time points during follow up, the “headline” statistical analysis of the primary 

outcome measure is often based on the outcome data from just this one time point.   

 

It is emphasized at this point that the findings on the methods of handling missing data 

reported in this dissertation are limited to just those studies that are randomized and in 

which the outcome at only one time point is of interest. The results should not be 

extrapolated to longitudinal study designs in which measurements taken at several time 

points of interest. In such studies, the levels of missing data are usually high and 

methods such as complete case analysis may no longer be the appropriate for dealing 

with missing outcome data. 

 

6.4.2 Outcome measure 

The simulation studies reported in this dissertation are based on a binary outcome and 

the measure of effect of interest was risk difference. It is stressed, therefore, that the 

findings are limited to scenarios where the outcome of interest is risk difference. It does 

not matter, however, whether missing values are imputed on a binary or on a continuous 

scale. 
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6.4.3 Efficacy levels 

The simulations covered a wide range of efficacy levels, including close to the 100% 

boundary, so the findings in this dissertation apply over the full range of efficacy values. 

 

6.4.4 Missingness, missingness levels and missingness mechanisms 

The simulations considered a specific scenario in which missing data was confined to 

the outcome variable. This is often the case in randomized studies of malaria efficacy. 

Most of the baseline information data is collected during screening as these often form 

part of the inclusion and exclusion criteria. Therefore the findings of these simulations 

should not be extended to observational studies where there may be high levels of 

missing data in the explanatory variables.  

 

Missing levels for the outcome measure of up to 30% were considered; it remains 

unknown what the findings may be for missing levels that go beyond 30%. However, 

missing levels greater than 30% in the outcome measure during a randomized trial 

probably indicates an important flaw in the design of the study that may have both 

ethical and statistical implications (e.g. is the power of the study may be drastically 

reduced).  

 

In terms of the process that may be creating missing outcomes, all three of the 

categories of missing data mechanisms described by Rubin (1976) were considered in 
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the simulations. Thus, the findings in this dissertation hold for these specific missing 

data mechanisms.  

 

6.5 Bias towards the null observed when wrong models are used (MAR and 

MCAR) 

In situations where both group membership and the value of the (binary) outcome 

measure are linked to missingness, it has been shown in the simulations in this thesis 

that omission of the group variable from the imputation process tends to bias the 

estimate of effect size towards the null. The reason for this is that, if group is omitted 

from the imputation process, the imputed outcome values will not be associated with the 

outcome while observed values will. The overall association between the group and 

outcome will be reduced producing bias that goes toward the null hypothesis. This will 

increase type II error thereby reducing the power of the study to detect the difference in 

effect in the two study groups. A Complete Case analysis maintains the association that 

exists between the outcome and the group variable that is linked to both outcome and 

missingness. Consequently the results from complete case analyses are often better than 

those from MI when data are MAR or MCAR. 

 

6.6 Perfect prediction in MI procedures 

It was observed in the simulation findings that when both efficacy rates were close to 

100% (boundary value), some of the models failed to produce an output (i.e. failed to 
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produce an estimate of effect size) when MI was used – and this happened irrespective 

of whether the imputed values were considered to be binary or continuous.  

 

The explanation for this is probably quite simple and straightforward. Perfect prediction 

(i.e. an estimate of effect size with no error due to all participants having the same value 

for the outcome measure) can arise in any Generalized Linear Model (GLM) that has a 

categorical outcome(White et al. 2010). In the case of the simulations carried out for this 

thesis, it is likely that the reason for perfect prediction in a MI analysis was that all the 

imputed values took the same value across all participants, resulting in zero variance 

estimates and making the calculation of degrees of freedom impossible as division by 

zero is impossible.  

 

The degrees of freedom v for the calculation of confidence intervals and statistical tests 

from MI, is given as: 

2
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, 

where   is the between imputation variance as given by 

Rubin (1976).  So when   is zero, there is likely to be the perfect prediction problem. 

 

White et al (2010) additionally suggest that the problem can arise with standard errors 

that are extremely large, as these usually reflect the approximately flat nature of the 

likelihood. 
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In order to overcome the perfect prediction problem, Stata software includes the option 

“augment” (White et al. 2010). The “augment” option employs an augmented-

regression.  The is an ad hoc process suggested by White et al (2010). In the augment 

process, Stata creates a small number of additional observations that are added to the 

original data during estimation of model parameters. These extra observations assist in 

preventing perfect prediction. The extra observations are given a small weight to limit 

their impact on the estimates of important parameters such as effect size (White et al. 

2010). 

 

However, the simulations for this thesis actually indicated that, in practice, even the use 

of the option augment is not enough to completely prevent perfect prediction when both 

efficacy rates are close to boundary – but it does greatly improve the problem of perfect 

prediction. In all scenarios where perfect prediction has been reported in this thesis, the 

problem was considerably worse when the “augment” option was omitted than when the 

option was included. 

 

6.7 Bias towards the null observed when wrong models are used (MAR and 

MCAR) 

In situations where group is linked to missingness as well as outcome, it has been shown 

in the simulations in this thesis that omission of the group variable from the imputation 

process tends to bias the results towards the null. The reason is that if group is omitted 

from the imputation process, the imputed outcome values will not be associated with the 
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outcome while observed values will. The overall association between the group and 

outcome will be reduced producing bias that goes toward the null hypothesis. This will 

increase type II error thereby reducing the power of the study to detect the difference. A 

Complete case analysis maintains the association that exists between the outcome and 

the variable (group) that is linked to both outcome and missingness. Consequently the 

results from the complete case analyses are often better than those of MI when data are 

MAR or MCAR 

 

6.8 Perfect prediction in MI procedures 

It has been observed in simulation findings that when both efficacy rates are close to 

100% (boundary value), the imputed models result in some of the models failing to 

produce output. This happens irrespective of whether the imputed values are binary or 

continuous. In fact, the perfect prediction may rise  in any Generalized Linear Model 

(GL) that has a categorical outcome (White et al. 2010). In the case of the simulations 

foe this thesis, it is likely that the reason for the perfect prediction is that all the imputed 

values take the same values across the imputations. This results in zero between 

imputation variance and therefore calculation of the degrees of freedom is impossible as 

division by zero is impossible. The degrees of freedom v for calculation of confidence 

intervals and statistical tests from MI, is given as  

2

1)1(
1)1( 












 



p
pv

, 

where   is the between imputation variance as given by  

Rubin (1976).  So when   is zero, there is likely to be the perfect prediction problem. 
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White et al (2010) additionally suggest that the problem arises with standard errors that 

are extremely large, that reflect the approximately flat nature of the likelihood. 

 

In order to overcome the perfect prediction problem, Stata software uses the option 

“augment” (White et al. 2010) to handle perfect prediction directly during imputation. 

The “augment” option employs an augmented-regression.  The is an ad hoc process that 

was suggested by White et al (2010). In the augment process, stata creates some few 

additional observations that are added to the original data during estimation of model 

parameters. These extra observations assist in preventing perfect prediction. The extra 

observations are given a small weight to limit their impact on the estimates of the 

parameters (White et al. 2010). 

 

Practically in the simulations for this thesis, it was observed that even the use of the 

option augment is not enough to completely prevent perfect prediction when both 

efficacy rates are close to boundary. It however greatly improves the problem of perfect 

prediction. In all scenarios where perfect prediction has been reported in this thesis, the 

problem was considerably worse when the “augment” option was omitted than when the 

option was included. 

 

6.9 Practical implications 

In practice, the mechanisms for handling missing outcome observations are 

complicated, particularly when the outcome is a binary variable and so, by definition, 

can take only a limited (in this case, just two) values. In some cases, there may be 
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enough evidence that data are either MAR, MCAR or MNAR, but in others, it may be 

absolutely difficult to tell the mechanism that may be creating the missing outcomes. 

Below is a summary of what may be done under the different practical situations. 

 

What if binary outcome data is MAR or MCAR? 

In practice, if one believes that the data are MAR or MCAR, the CC and multiple 

imputation will mathematically give the same results with minor differences in favour of 

CC, but, although the MI offers no statistical advantages, the intention to treat principle 

(ITT) which is the standard for analysis of RCTs probably over-ride this and MI should 

be analysis of first choice. However, a CC analysis must be performed as part of the 

“Per Protocol” analyses, firstly because MI has no place in “per protocol analysis” but 

secondly, and perhaps more importantly, because the CC yields unbiased estimates of 

effect.  

 

 What if binary outcome data is MNAR? 

In a MNAR situation, neither a CC analysis nor any version of multiple imputation 

yields unbiased estimates of effect difference. To reduce this bias as much as possible, 

an MI approach is required with the imputation calculations based on all possible 

variables that are linked to missingness in the outcomes.  The exception to this is if 

treatment group is itself linked to missingness in the outcome variable – in this situation, 

group membership should not be included in the imputation process as this will serve to 

increase bias in the effect size estimate. Covariates linked directly to the outcomes 
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provide useful information in imputing the missing outcomes, but variables that are 

associated with both the outcome and missingness tend to exaggerate bias if included in 

the imputation process. As previously stated, a detailed examination of the inclusion of 

different types of covariate was not within the limits of this thesis; further research is 

needed to examine in detail the complex inter-relationship between the relationship 

between covariates and missingness in the MNAR condition to fully confirm the above 

recommendations. 

 

What if it is not known whether missing outcomes are MAR, MCAR or MNAR? 

This is clearly the most difficult situation to resolve analytically, and there may not be a 

simple answer.  There are, however, some simple rules that can be applied.  Firstly, the 

statistician must obtain as much information as possible about the study design, and 

must examine the correlation structure between the covariates of interest and also 

between these covariates and the (available) outcomes to try to identify important 

mathematical relationships that might give some clues as to the missingness structure. 

Secondly, all relevant members of the trial team need to then meet to discuss the 

conduct of the study and to explore practical issues that arose during the preparation for 

and the conduct of the trial that might have affected missingness in the outcome 

variable. 

 

In the likely event that there will still be uncertainty about the missingness mechanism 

even when the above actions have been exhausted, the statistician must perform a 
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sensitivity analysis, effectively repeating the primary analysis while varying the 

missingness assumptions in order to estimate the likely bias in the effect size estimate 

under different missingness assumptions.  The trial team is then faced with the final 

challenge of comparing the different estimates obtained in the sensitivity analysis and 

intuitively selecting the “best” of these for publication.  In reality, this may mean 

reporting a range of possible estimates, with an indication that this range covers likely 

positive and negative bias, with the true unbiased estimate lying somewhere within the 

range.  

 

6.9.1 Suggestions for further research 

Inevitably, several “further research questions” were generated by these simulation 

studies. Two of these are considered to be of particular importance. 

 

What is causing the irregular bias patterns in the COPY method of the standard 

binomial risk difference regression model method with increasing number of copies? 

This was a particularly striking and puzzling finding, for which there is no intuitively 

obvious answer. While it was not surprising to find that bias levels changed with 

increasing number of copies, and it was equally unsurprising that bias at first increased 

then decreased (i.e. that there was a turning point in the bias trend), it was totally 

unexpected that the bias trend had more than one turning point.  The “plateau” trend 

found at large numbers of copies was predictable, but as part of a general upwards or 
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downwards exponential trend rather than following a second turning point in the bias 

trend plot. 

 

Further research into this slightly anomalous finding will need to explore whether the 

rather irregular changes in bias levels with increasing copy numbers is a direct 

consequence of the binomial model formula, is it merely a consequence of the 

mathematics underlying the COPY method itself, is it a boundary problem (i.e. a 

consequence of one or both of the effect rates approaching 100%), or is there some other 

explanation. 

 

Why is the power of the study the same for CC analyses and Multiple Imputation 

analyses when outcomes are MNAR, missingness is related to treatment group 

membership, and group is included in the imputation calculations? 

The rather simple mathematical / algebraic explanation offered for the different bias 

trends in the CC, MI without group and MI with group analyses under the MNAR 

condition appear to predict this empirical finding from the relevant simulation exercises.  

This mathematical explanation dealt solely with the very simple case of missingness 

being related only to treatment group membership.  Intriguingly, the simulations looked 

at more complex situations involving additional covariates and still found an apparent 

equality of biases for the MI analysis with group included in the imputations and the CC 

analyses.  Was this just a coincidence?  Would even more complex simulations break 

this apparent equality of bias?  If the biases remain the same even under more complex 
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situations, why is this so?  This is not an intuitively obvious finding – but if it is a true 

generalisable finding, it may reveal something important about the mechanism of the MI 

process in this very particular case of missingness being related to treatment group 

membership and this group membership information being used to inform the 

imputation process.  

 

6.10 Summary conclusion and recommendations 

The binomial regression model with an identity link function was found to be very 

susceptible to model failure when modeling risk (or efficacy) differences. Augmenting 

the standard binomial regression model with the COPY method was found to be an 

ineffective approach for achieving convergent and unbiased estimates of the risk 

differences, particularly if there was a requirement to adjust this estimate the influence 

of confounding covariates and/or factors. 

 

Cheung‟s modified OLS with Huber-White robust standard errors was found to be a 

possible and attractive alternative method in situations where the standard binomial 

regression method does not converge. However, based on its superior statistical 

properties when samples are small, the binomial model with an identity link function is 

recommended as the statistical analysis method of first choice for estimating risk / 

efficacy differences, provided the model converges.  Otherwise the more reliable 

Cheung modified OLS method should be used.  Both statistical methods should be 
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allowed for in the Statistical Analysis Plan sections of clinical trials where the 

estimation of risk / efficacy differences is considered important. 

 

In the comparisons of the methods for dealing with missing (binary) outcomes, both the 

complete case (CC) analysis approach and the multiple imputation (MI) approach that 

included treatment group membership in the imputation calculations provided unbiased 

estimates of both unadjusted and covariate adjusted risk differences in situations where 

either the MAR or MCAR assumption was considered plausible. The statistical 

efficiency of the complete case analysis approach was found to be the same as, and 

often better than, that obtained using the multiple imputation approach (provided that 

group membership was included in the imputation calculations – if group membership is 

excluded from the imputation calculations, the resultant effect size estimate will 

definitely be biased). Complete case analysis would thus appear to be the method of 

choice for the primary analysis, particularly give the additional advantage that it is 

simple to apply and invariably default approach in most statistical software packages.  

 

However, the complete case approach contravenes the intention-to-treat (ITT) principle 

recommended by, among others, the CONSORT Guidelines for the analysis and 

reporting of comparative clinical trials. In which case, an appropriate MI analysis is 

recommended as the analysis method of first choice when the missingness in a binary 

outcome can be considered to be MAR or MCAR, with a per protocol analyses based on 

the complete case approach.  There is no place for multiple imputation in a per protocol 

analysis by definition. The two approaches used in tandem in this way then serve as a 
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sensitivity analysis tool to provide a detailed evaluation of the likely bias in the effect 

size estimate.  

 

When missing binary outcome values have to be assumed to be MNAR, neither a 

complete case analysis nor a multiple imputation based analysis is valid for obtaining 

unbiased unadjusted or covariate adjusted risk / efficacy difference estimates. 

Furthermore, including treatment group membership in the imputation calculation when 

group was considered to be related to missingness was found to inflate rather than to 

moderate bias levels. However, under the MNAR condition the multiple imputation 

approach is recommended as the statistical analysis method of first choice provided all 

covariates and factors considered to be related to missingness (but not group 

membership) are included in the imputation process. 
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Appendices  

Stata programs  

n.b. the programs were substituted by relevant parameters to achieve different scenarios 

 

Appendix: A1 stata commands for generating MCAR data 

Missing Completely at Random scenarios 

 

cd "C:\Documents and Settings\mmukaka\My Documents\Backup\PhD Files\Missing 

data" // specifying directory 

capture program drop RCT // to drop the program before running the updated 

capture program RCT, rclass // 

drop _all // to drop all matrix  

matrix m = (3.15, 9.32, 2.4,10.7) // means for ln(age), hb, ln(wt) and ln(para)  

matrix sd =(0.42,1.66, 0.18, 1.5) // sds for ln(age), hb and ln(wt) and ln(para) 

respectively 

matrix C=(1,  0.09, 0.16, 0.02 \ 0.09, 1,  0.4, 0.2 \ 0.16, 0.4, 1, 0.05 \0.02, 0.2, 0.05, 1)  

//this is the correlation matrix for ln(age), hb, ln(wt), ln(para) 

matrix list C //to check if the correlation matrix has been set up properly 

drawnorm lnage hb lnwt lnpara, n(200) means(m) sds(sd) corr(C) //generating a 

multivariate normal distribution of sample size of 200  

gen age=exp(lnage) // transforming log age to original scale 

gen wt=exp(lnwt) // transforming log  wt to original scale 

gen para=exp(lnpara) // transforming log para to original scale 

 

drop lnage lnwt lnpara // to drop variables that are on log scale 

replace age=60 if age>60 // to maintain age eligibility criteria 

replace age=12 if age<12 // to retain age eligibility criteria 
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gen studyno=_n  // studyno takes observation number 

order studyno hb age wt para // ordering variables 

gen rand=uniform()  // generate uniform distribution 

gen block=int((studyno-1)/10)  // generate block as integer part  

sort block rand // sorting block and rand 

gen grp=1 if block!=block[_n-1] // to assign a block number 

replace grp=grp[_n-1]+1 if block==block[_n-1] //assign block number 

gen grpcode="A"  // assigning labels to groups 

replace grpcode="B" if grp>=6  // assigning labels 

gen group=. // generate blank variable called group 

replace group=1 if grpcode=="A"  // replace value 

replace group=0 if grpcode=="B" // replace value 

gen result=.  

gen result1=. 

replace result1=rbinomial(1,0.85) // 0.85 is replaced by relevant probability value to 

achieve desired efficacy 

gen result2=. 

replace result2=rbinomial(1,0.60) // 0.60 is replaced by relevant probability value to 

achieve 

replace result=result1 if group==0 

replace result=result2 if group==1 

tab result group, col 

keep studyno hb age wt para group result 

gen outcome=result 

gen rand1=uniform() //random number generation 

sort rand1  //to sort treatment in ascending then in each treatment to sort x in descending 

order 

replace outcome=. in 1/10 //to create missing 5% MCAR 
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mi set mlong // setting multiple imputation procedure 

mi register imputed outcome // register variable to be imputed  

mi impute logit outcome wt hb age para, add(10) // impute 10 different data sets using 

MICE, logit is replaced by regress to to impute on continuous scale 

mi estimate: regress outcome group hb age, vce(robust) //Use rubins rule to obtain 

pooled estimates, Cheung‟s method with robust standard errors are used. 

matrix a=e(b_mi) 

matrix s=e(V_mi) 

matrix z=(sqrt(s[1,1]), sqrt(s[2,2]), sqrt(s[3,3]), sqrt(s[4,4])) 

matrix D=a, z 

svmat D, names(vvector) 

return scalar LL=vvector1 - invnormal(0.975)*vvector5 

return scalar UL=vvector1 + invnormal(0.975)*vvector5 

sum outcome if group==0 

return scalar m=r(mean) 

sum outcome if group==1 

return scalar z=r(mean) 

sum outcome  

return scalar q=r(mean) 

end 

set seed 23082 

simulate  vvector1 vvector5 r(LL) r(UL) r(m) r(z) r(q), reps(5000): RCT  

renvars  _sim_1- _sim_7 \group SE LL UL m z q 

gen coverage=1 if  (-.25>= LL &  -.25<= UL) 

replace coverage=0 if coverage==. 

sum group SE LL UL coverage if q!=.  

save wt_hb_age_para2V85_MCAR_bound5%log290313, replace 
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Appendix: A2 stata commands for generating MAR data 

 

Missing at random 

 

cd "C:\Documents and Settings\mmukaka\My Documents\Backup\PhD Files\Missing 

data" // specify directory 

capture program drop RCT // clear program before running next one 

capture program RCT, rclass 

drop _all // clear matrix 

matrix m = (3.15, 9.32, 2.4,10.7) // means for ln(age), hb, ln(wt) and ln(para)  

matrix sd =(0.42,1.66, 0.18, 1.5) // sds for ln(age), hb and ln(wt) and ln(para) 

respectively 

matrix C=(1,  0.09, 0.16, 0.02 \ 0.09, 1,  0.4, 0.2 \ 0.16, 0.4, 1, 0.05 \0.02, 0.2, 0.05, 1)  

//this is the correlation matrix for ln(age), hb, ln(wt), ln(para) 

matrix list C //to check if the correlation matrix has been set up properly 

drawnorm lnage hb lnwt lnpara, n(200) means(m) sds(sd) corr(C) //generating a 

multivariate normal distribution of sample size of 200  

gen age=exp(lnage) // transform to original form 

gen wt=exp(lnwt) // transform to original form  

gen para=exp(lnpara) // transform to original form 

*drop lnage lnwt lnpara 

replace age=60 if age>60  // to retain eligibility 

replace age=12 if age<12 // retain eligibility 

gen studyno=_n  // generate study number equal to observation number 

order studyno hb age wt para // order variables 

gen rand=uniform()  //generate uniform  distribution variable 

gen block=int((studyno-1)/10) // generating block 

sort block rand // sorting data 

gen grp=1 if block!=block[_n-1] // generating block number 
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replace grp=grp[_n-1]+1 if block==block[_n-1] 

gen grpcode="A"  // generating treatment label 

replace grpcode="B" if grp>=6  

gen group=. 

replace group=1 if grpcode=="A" 

replace group=0 if grpcode=="B" 

gen result=. 

gen result1=. 

replace result1=rbinomial(1,0.85) // 0.85 is replaced by relevant probability value to 

achieve 

gen result2=. 

replace result2=rbinomial(1,0.60) // 0.60 is replaced by relevant probability value to 

achieve 

replace result=result1 if group==0 

replace result=result2 if group==1 

tab result group, col 

keep studyno hb age wt para group result 

gen p2=invlogit(2*group+0.277*wt) //to generate a probability of missing as a function 

of weight and group resulting in MAR missingness 

gen outcome= result 

gen rand1=uniform() //random number generation 

gen  x=p2*rand1 // this will assist in achieving a % of missing data of desired rate 

gsort -x  //to sort treatment in ascending then in each treatment to sort x in descending 

order 

replace outcome=. in 1/10 //to create missing 5% in group one with probability of 

missing depending on weight and group 

mi set mlong // setting multiple imputation procedure 

mi register imputed outcome // register variable to be imputed  

mi impute logit outcome wt hb age para, add(10) // impute 10 different data sets using 

MICE, logit is replaced by regress to to impute on continuous scale 
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mi estimate: regress outcome group hb age, vce(robust) //Use rubins rule to obtain 

pooled estimates  

matrix a=e(b_mi) // extract coefficient post estimation 

matrix s=e(V_mi) // extract variance post estimation 

matrix z=(sqrt(s[1,1]), sqrt(s[2,2]), sqrt(s[3,3]), sqrt(s[4,4])) generate  matrix of standard 

errors 

matrix D=a, z // generate matrix of coefficients and standard errors 

svmat D, names(vvector) // generate vectors 

return scalar LL=vvector1 - invnormal(0.975)*vvector5 // lower confidence limit 

return scalar UL=vvector1 + invnormal(0.975)*vvector5 // upper confidence limit 

sum outcome if group==0 // summarise data 

return scalar m=r(mean) // extract mean from summary 

sum outcome if group==1 

return scalar z=r(mean) 

sum outcome  

return scalar q=r(mean) 

end 

set seed 23082 // setting a seed to reproduce data 

simulate  vvector1 vvector5 r(LL) r(UL) r(m) r(z) r(q), reps(5000): RCT  

renvars  _sim_1- _sim_7 \group SE LL UL m z q 

gen coverage=1 if  (-.25>= LL &  -.25<= UL) 

replace coverage=0 if coverage==. 

sum group SE LL UL coverage if q!=.  

save wt_hb_age_para2V85_bound5%log290313, replace 
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Appendix: A3 stata commands for generating MNAR data 

 

Missing not at random 

 

cd "C:\Documents and Settings\mmukaka\My Documents\Backup\PhD Files\Missing 

data" // specifying directory 

capture program drop RCT // to drop the program before running the updated 

capture program RCT, rclass // 

drop _all // to drop all matrix  

matrix m = (3.15, 9.32, 2.4,10.7) // means for ln(age), hb, ln(wt) and ln(para)  

matrix sd =(0.42,1.66, 0.18, 1.5) // sds for ln(age), hb and ln(wt) and ln(para) 

respectively 

matrix C=(1,  0.09, 0.16, 0.02 \ 0.09, 1,  0.4, 0.2 \ 0.16, 0.4, 1, 0.05 \0.02, 0.2, 0.05, 1)  

//this is the correlation matrix for ln(age), hb, ln(wt), ln(para) 

matrix list C //to check if the correlation matrix has been set up properly 

drawnorm lnage hb lnwt lnpara, n(200) means(m) sds(sd) corr(C) //generating a 

multivariate normal distribution of sample size of 200  

gen age=exp(lnage) // transforming log age to original scale 

gen wt=exp(lnwt) // transforming log  wt to original scale 

gen para=exp(lnpara) // transforming log para to original scale 

 

drop lnage lnwt lnpara // to drop variables that are on log scale 

replace age=60 if age>60 // to maintain age eligibility criteria 

replace age=12 if age<12 // to retain age eligibility criteria 

gen studyno=_n  // studyno takes observation number 

order studyno hb age wt para // ordering variables 

gen rand=uniform()  // generate uniform distribution 

gen block=int((studyno-1)/10)  // generate block as integer part  

sort block rand // sorting block and rand 
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gen grp=1 if block!=block[_n-1] // to assign a block number 

replace grp=grp[_n-1]+1 if block==block[_n-1] //assign block number 

gen grpcode="A"  // assigning labels to groups 

replace grpcode="B" if grp>=6  // assigning labels 

gen group=. // generate blank variable called group 

replace group=1 if grpcode=="A"  // replace value 

replace group=0 if grpcode=="B" // replace value 

gen result=. 

gen result1=. 

replace result1=rbinomial(1,0.85) // generate Bernoulli  variable 

gen result2=. 

replace result2=rbinomial(1,0.60) 

replace result=result1 if group==0 

replace result=result2 if group==1 

tab result group, col 

 

keep studyno hb age wt para group result 

gen outcome=result 

gen miss2=rbinomial(1,0.07) 

replace outcome=. if outcome==1 & miss2==1 

egen count=count(miss2) if outcome==. 

 

gen misspercent=count/_N 

sort misspercent 

return scalar x=misspercent in 1 

 

mi set mlong // setting multiple imputation procedure 



 

234 
 

mi register imputed outcome // register variable to be imputed  

mi impute logit outcome wt hb age para, add(10) // impute 10 different data sets using 

MICE,  logit is replaced by regress to impute outcome on continuous 

scale and the variables for the imputation models are replaced as 

required 

mi estimate: regress outcome group hb age, vce(robust) //Use rubins rule to obtain 

pooled estimates  

matrix a=e(b_mi) 

matrix s=e(V_mi) 

matrix z=(sqrt(s[1,1]), sqrt(s[2,2]), sqrt(s[3,3]), sqrt(s[4,4])) 

matrix D=a, z 

svmat D, names(vvector) 

return scalar LL=vvector1 - invnormal(0.975)*vvector5  

return scalar UL=vvector1 + invnormal(0.975)*vvector5 

sum outcome if group==0 

return scalar m=r(mean) 

sum outcome if group==1 

return scalar z=r(mean) 

sum outcome  

return scalar q=r(mean) 

end 

set seed 23082 

simulate  vvector1 vvector5 r(LL) r(UL) r(m) r(z) r(q) r(x), reps(5000): RCT  

renvars  _sim_1- _sim_8 \group SE LL UL m z q x 

gen coverage=1 if  ( -.25> LL & -.25 < UL) 

replace coverage=0 if coverage==. 

sum group SE LL UL coverage if q!=. 

save wt_hb_age_para_mnar5%, replace 
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cd "C:\Documents and Settings\mmukaka\My Documents\Backup\PhD Files\Missing 

data" 

capture program drop RCT 

capture program RCT, rclass 

drop _all 

matrix m = (3.15, 9.32, 2.4,10.7) // means for ln(age), hb, wt and para  

matrix sd =(0.42,1.66, 0.18, 1.5) // sds for ln(age), hb and ln(wt) and ln(para) 

respectively 

matrix C=(1,  0.09, 0.16, 0.02 \ 0.09, 1,  0.4, 0.2 \ 0.16, 0.4, 1, 0.05 \0.02, 0.2, 0.05, 1)  

//this is the correlation matrix for ln(age), hb, ln(wt), ln(para) 

matrix list C //to check if the correlation matrix has been set up properly 

drawnorm lnage hb lnwt lnpara, n(200) means(m) sds(sd) corr(C) //generating a 

multivariate normal distribution of sample size of 200  

 

gen age=exp(lnage) 

gen wt=exp(lnwt) 

gen para=exp(lnpara) 

*drop lnage lnwt lnpara 

replace age=60 if age>60 

replace age=12 if age<12 

gen studyno=_n 

order studyno hb age wt para 

gen rand=uniform()  

gen block=int((studyno-1)/10) 

sort block rand 

gen grp=1 if block!=block[_n-1] 

replace grp=grp[_n-1]+1 if block==block[_n-1] 

gen grpcode="A"  

replace grpcode="B" if grp>=6  
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gen group=. 

replace group=1 if grpcode=="A" 

replace group=0 if grpcode=="B" 

 

gen result=. 

gen result1=. 

replace result1=rbinomial(1,0.85) 

gen result2=. 

replace result2=rbinomial(1,0.60) 

replace result=result1 if group==0 

replace result=result2 if group==1 

tab result group, col 

 

keep studyno hb age wt para group result 

gen outcome=result 

gen miss2=rbinomial(1,0.20) 

replace outcome=. if outcome==1 & miss2==1 

egen count=count(miss2) if outcome==. 

gen misspercent=count/_N 

sort misspercent 

return scalar x=misspercent in 1 

 

mi set mlong // setting multiple imputation procedure 

mi register imputed outcome // register variable to be imputed  

mi impute logit outcome wt hb age para, add(10) // impute 10 different data sets 

mi estimate: regress outcome group hb age, vce(robust) //Use rubins rule to obtain 

pooled estimates  

matrix a=e(b_mi) // extract coefficient post estimation 
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matrix s=e(V_mi) // extract variance post estimation 

matrix z=(sqrt(s[1,1]), sqrt(s[2,2]), sqrt(s[3,3]), sqrt(s[4,4])) generate  matrix of standard 

errors 

matrix D=a, z // generate matrix of coefficients and standard errors 

svmat D, names(vvector) // generate vectors 

return scalar LL=vvector1 - invnormal(0.975)*vvector5 // lower confidence limit 

return scalar UL=vvector1 + invnormal(0.975)*vvector5 // upper confidence limit 

sum outcome if group==0 // summarise data 

return scalar m=r(mean) // extract mean from summary 

sum outcome if group==1 

return scalar z=r(mean) 

sum outcome  

return scalar q=r(mean) 

 

end 

set seed 23082010 

simulate  vvector1 vvector5 r(LL) r(UL) r(m) r(z) r(q) r(x), reps(5000): RCT  

renvars  _sim_1- _sim_8 \group SE LL UL m z q x 

gen coverage=1 if  ( -.25> LL & -.25 < UL) 

replace coverage=0 if coverage==. 

sum group SE LL UL coverage if q!=. 

save wt_hb_age_para_mnar15%, replace 

 

cd "C:\Documents and Settings\mmukaka\My Documents\Backup\PhD Files\Missing 

data" 

capture program drop RCT 

capture program RCT, rclass 
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drop _all 

matrix m = (3.15, 9.32, 2.4,10.7) // means for ln(age), hb, wt and para  

matrix sd =(0.42,1.66, 0.18, 1.5) // sds for ln(age), hb and ln(wt) and ln(para) 

respectively 

matrix C=(1,  0.09, 0.16, 0.02 \ 0.09, 1,  0.4, 0.2 \ 0.16, 0.4, 1, 0.05 \0.02, 0.2, 0.05, 1)  

//this is the correlation matrix for ln(age), hb, ln(wt), ln(para) 

matrix list C //to check if the correlation matrix has been set up properly 

drawnorm lnage hb lnwt lnpara, n(200) means(m) sds(sd) corr(C) //generating a 

multivariate normal distribution of sample size of 200  

 

gen age=exp(lnage) 

gen wt=exp(lnwt) 

gen para=exp(lnpara) 

*drop lnage lnwt lnpara 

replace age=60 if age>60 

replace age=12 if age<12 

gen studyno=_n 

order studyno hb age wt para 

gen rand=uniform()  

gen block=int((studyno-1)/10) 

sort block rand 

gen grp=1 if block!=block[_n-1] 

replace grp=grp[_n-1]+1 if block==block[_n-1] 

gen grpcode="A"  

replace grpcode="B" if grp>=6  

gen group=. 

replace group=1 if grpcode=="A" 

replace group=0 if grpcode=="B" 



 

239 
 

gen result=. 

gen result1=. 

replace result1=rbinomial(1,0.85) 

gen result2=. 

replace result2=rbinomial(1,0.60) 

replace result=result1 if group==0 

replace result=result2 if group==1 

tab result group, col 

 

keep studyno hb age wt para group result 

gen outcome=result 

gen miss2=rbinomial(1,0.40) 

replace outcome=. if outcome==1 & miss2==1 

egen count=count(miss2) if outcome==. 

 

gen misspercent=count/_N 

sort misspercent 

return scalar x=misspercent in 1 

 

mi set mlong // setting multiple imputation procedure 

mi register imputed outcome // register variable to be imputed  

mi impute logit outcome wt hb age para, add(10) // impute 10 different data sets 

mi estimate: regress outcome group hb age, vce(robust) //Use rubins rule to obtain 

pooled estimates  

matrix a=e(b_mi) // extract coefficient post estimation 

matrix s=e(V_mi) // extract variance post estimation 

matrix z=(sqrt(s[1,1]), sqrt(s[2,2]), sqrt(s[3,3]), sqrt(s[4,4])) generate  matrix of standard 

errors 
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matrix D=a, z // generate matrix of coefficients and standard errors 

svmat D, names(vvector) // generate vectors 

return scalar LL=vvector1 - invnormal(0.975)*vvector5 // lower confidence limit 

return scalar UL=vvector1 + invnormal(0.975)*vvector5 // upper confidence limit 

sum outcome if group==0 // summarise data 

return scalar m=r(mean) // extract mean from summary 

sum outcome if group==1 

return scalar z=r(mean) 

sum outcome  

return scalar q=r(mean) 

end 

set seed 23082010 

simulate  vvector1 vvector5 r(LL) r(UL) r(m) r(z) r(q) r(x), reps(5000): RCT  

renvars  _sim_1- _sim_8 \group SE LL UL m z q x 

gen coverage=1 if  ( -.25> LL & -.25 < UL) 

replace coverage=0 if coverage==. 

sum group SE LL UL coverage if q!=. 

save wt_hb_age_para_mnar30%, replace 
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Appendix: A4 stata commands for the Copy method and convergence 

 

COPY method and convergence  

cd "C:\Documents and Settings\mmukaka\My Documents\Backup\PhD Files\Missing 

data" 

 

 

set more off 

capture program drop RCT 

capture program RCT, rclass 

drop _all 

matrix m = (3.15, 9.32, 2.4,10.7) // means for ln(age), hb, ln(wt) and ln(para)  

matrix sd =(0.42,1.66, 0.18, 1.5) // sds for ln(age), hb and ln(wt) and ln(para) 

respectively 

matrix C=(1,  0.09, 0.16, 0.02 \ 0.09, 1,  0.4, 0.2 \ 0.16, 0.4, 1, 0.05 \0.02, 0.2, 0.05, 1)  

//this is the correlation matrix for ln(age), hb, ln(wt), ln(para) 

matrix list C //to check if the correlation matrix has been set up properly 

drawnorm lnage hb lnwt lnpara, n(200) means(m) sds(sd) corr(C) //generating a 

multivariate normal distribution of sample size of 200  

gen age=exp(lnage) 

gen wt=exp(lnwt) 

gen para=exp(lnpara) 

*drop lnage lnwt lnpara 

replace age=60 if age>60 

replace age=12 if age<12 

gen studyno=_n 

order studyno hb age wt para 

gen rand=uniform()  

gen block=int((studyno-1)/10) 

sort block rand 
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gen grp=1 if block!=block[_n-1] 

replace grp=grp[_n-1]+1 if block==block[_n-1] 

gen grpcode="A"  

replace grpcode="B" if grp>=6  

gen group=. 

replace group=1 if grpcode=="A" 

replace group=0 if grpcode=="B" 

gen result=. 

gen result1=. 

replace result1=rbinomial(1,0.80) 

gen result2=. 

replace result2=rbinomial(1,0.60) 

replace result=result1 if group==0 

replace result=result2 if group==1 

tab result group, col 

keep studyno hb age wt para group result 

binreg result group age, rd iterate(1600) // replace with other variables as necessary 

matrix a=e(b) 

matrix s=e(V) 

matrix z=(sqrt(s[1,1]), sqrt(s[2,2]), sqrt(s[3,3]), sqrt(s[4,4])) 

matrix D=a, z 

svmat D, names(vvector) 

return scalar LL=vvector1 - invnormal(0.975)*vvector5 

return scalar UL=vvector1 + invnormal(0.975)*vvector5 

end 

set seed 23082 

simulate  vvector1 vvector5 r(LL) r(UL), reps(5000): RCT  
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renvars  _sim_1- _sim_4 \group SE LL UL  

gen coverage=1 if  (-.20>= LL &  -.20<= UL) 

replace coverage=0 if coverage==. 

sum group if group!=.  

save age_converge, replace 

n.b. the programs were substituted by relevant parameters to achieve different 

scenarios 
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Appendix: A5 stata commands for Cheung’s OLS method and convergence 

 

Cheung’s OLS method and convergence  

 

cd "C:\Documents and Settings\mmukaka\My Documents\Backup\PhD Files\Missing 

data" 

set more off // to suppress more in stata 

capture program drop RCT 

capture program RCT, rclass 

drop _all 

matrix m = (3.15, 9.32, 2.4,10.7) // means for ln(age), hb, ln(wt) and ln(para)  

matrix sd =(0.42,1.66, 0.18, 1.5) // sds for ln(age), hb and ln(wt) and ln(para) 

respectively 

matrix C=(1,  0.09, 0.16, 0.02 \ 0.09, 1,  0.4, 0.2 \ 0.16, 0.4, 1, 0.05 \0.02, 0.2, 0.05, 1)  

//this is the correlation matrix for ln(age), hb, ln(wt), ln(para) 

matrix list C //to check if the correlation matrix has been set up properly 

drawnorm lnage hb lnwt lnpara, n(200) means(m) sds(sd) corr(C) //generating a 

multivariate normal distribution of sample size of 200  

gen age=exp(lnage) 

gen wt=exp(lnwt) 

gen para=exp(lnpara) 

*drop lnage lnwt lnpara 

replace age=60 if age>60 

replace age=12 if age<12 

gen studyno=_n 

order studyno hb age wt para 

gen rand=uniform()  

gen block=int((studyno-1)/10) 

sort block rand 

gen grp=1 if block!=block[_n-1] 
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replace grp=grp[_n-1]+1 if block==block[_n-1] 

gen grpcode="A"  

replace grpcode="B" if grp>=6  

gen group=. 

replace group=1 if grpcode=="A" 

replace group=0 if grpcode=="B" 

gen result=. 

gen result1=. 

replace result1=rbinomial(1,0.80) 

gen result2=. 

replace result2=rbinomial(1,0.60) 

replace result=result1 if group==0 

replace result=result2 if group==1 

tab result group, col 

keep studyno hb age wt para group result 

regress result group age, rd iterate(1600) // replace with other variables as necessary 

matrix a=e(b) 

matrix s=e(V) 

matrix z=(sqrt(s[1,1]), sqrt(s[2,2]), sqrt(s[3,3]), sqrt(s[4,4])) 

matrix D=a, z 

svmat D, names(vvector) 

return scalar LL=vvector1 - invnormal(0.975)*vvector5 

return scalar UL=vvector1 + invnormal(0.975)*vvector5 

end 

set seed 23082 

simulate  vvector1 vvector5 r(LL) r(UL), reps(5000): RCT  

renvars  _sim_1- _sim_4 \group SE LL UL  
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gen coverage=1 if  (-.20>= LL &  -.20<= UL) 

replace coverage=0 if coverage==. 

sum group if group!=.  

save age_converge, replace 

n.b. the programs were substituted by relevant parameters to achieve different 

scenarios 

 


