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Abstract

This paper provides an explicit isomorphism between the Birman-
Wenzl algebra BWn, constructed by J. Birman and H. Wenzl, and the
Kauffman algebra MTn, subsequently constructed by H.R. Morton and
P. Traczyk. The Birman-Wenzl algebra is defined algebraically using
generators and relations while the Kauffman algebra has a geometric
formulation in terms of tangles. The isomorphism is obtained by con-
structing an explicit basis in BWn, analogous to a basis previously
constructed for MTn using ‘Brauer connectors’. The geometric iso-
topy arguments used for MTn are systematically replaced by algebraic
versions using the Birman-Wenzl relations. This not only gives a di-
rect way of determining the dimension of the Birman-Wenzl algebra,
but also clarifies the role played by the ring of coefficients, Λ, and its
specialisations.

Foreword

This paper is a very lightly edited version of an article originally written in
1989 but never fully completed. It was intended to be a joint paper with
A.J.Wassermann. He had planned to write a final section to make use of
the ability to change at will between the Birman-Wenzl algebra, as given by
generators and relations, and the geometric framework of the tangles, so as
to look in more detail at the representation theory.

One goal of our original approach was to make sure that specialisations
of the coefficient ring could be handled confidently, and that the translations
to and from the tangle context were on a sound footing.

Subsequently others have made progress in this way, in works such as
[6], but we had a number of requests for our earlier account, and so I put it
into this more accessible form on the Liverpool knot theory pages in 2000.

In order to have a more permanent place for it I have now put it on
ArXiv. I had hoped to make this a joint submission, but I have been unable
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to re-establish contact with Wassermann to get his formal agreement. The
present paper is largely the result of our joint discussions, although I take
responsibility for the eventual content and exposition.

1 Introduction

In recent years there has been considerable interest in deformations of the
classical ‘centraliser algebras’ of Schur, Weyl and Brauer. These play an im-
portant role in several areas, including exactly solvable models in statistical
mechanics, quantum groups, von Neumann algebras and knot theory. It has
long been recognized that these links are more than tenuous and if properly
exploited lead to fruitful interchanges between the different disciplines. The
first and most spectacular instance of this was of course Vaughan Jones’ pio-
neering work on subfactors, which led to his discovery of new link invariants.
Subsequently these invariants were understood in terms of solutions of the
quantum Yang-Baxter equation and vertex models. The central thread run-
ning through all these topics is the quantum group obtained by deforming
the universal enveloping algebra of the unitary group. One has also to de-
form the centraliser algebras, which amounts to replacing the group algebra
of the symmetric group by the Hecke algebra (of type A).

After these discoveries, somewhat curiously history took a reverse turn.
Kauffman discovered new link invariants, based on a purely skein theoretic
characterisation of Jones’ original invariants. It was natural to ask whether
Kauffman’s invariants could be obtained by algebraic means. This led Bir-
man and Wenzl to introduce a deformation of an abstract algebra first intro-
duced by R. Brauer. An alternative knot-theoretic approach to deforming
Brauer’s algebra was later given in terms of tangles by Morton-Traczyk and
by Kauffman himself. The original algebra of Brauer bore the same relation
to the orthogonal group as the group algebra of the symmetric group did to
the unitary group.

By exploiting the new insights provided by Vaughan Jones’ work on
subfactors (in particular his ‘basic construction’), Wenzl was able to acquire
a fuller understanding of Brauer’s algebra, and resolve some old questions on
semisimplicity raised by Brauer and Weyl. Subsequent studies have shown
that the Birman-Wenzl algebra does indeed provide the correct analogue of
the Hecke algebra for the quantum group corresponding to the orthogonal
group. Most recently Wenzl has been able to construct new examples of
subfactors using these algebras as a substitute for the Hecke algebras.

In this paper we provide an explicit isomorphism between the Birman-
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Wenzl algebra BWn, constructed by J. Birman and H. Wenzl in [1], and
the Kauffman algebra MTn, subsequently constructed by the author and P.
Traczyk in [11]. The Birman-Wenzl algebra is defined algebraically using
generators and relations while the Kauffman algebra has a geometric formu-
lation in terms of tangles. We obtain this isomorphism by constructing an
explicit basis in BWn, analogous to a basis previously constructed for MTn

using ‘Brauer connectors’. The geometric isotopy arguments used in [11]
are systematically replaced by algebraic versions using the Birman-Wenzl
relations. This not only gives a direct way of determining the dimension of
the Birman-Wenzl algebra, but also clarifies the role played by the ring of
coefficients, Λ, an integral domain.

In fact, in [1] the authors prefer to consider the algebra BWn ⊗Λ k,
where k is the field of fractions of Λ. This enables them to imitate V.
Jones’ basic construction and thus determine the structure of the algebra.
At a crucial point in proof of their main result (theorem 3.7) they need
to use a specialisation of Λ. Since the algebra is defined by generators
and relations over Λ, any such specialisation automatically extends to BWn

although not necessarily to the algebra BWn ⊗Λ k. This difficulty can be
overcome by observing that the existence of a basis implies that BWn is
free as a module over Λ. The arguments presented in [2] p.55 to prove that
the Hecke algebra is generically semisimple may then be adapted to prove
the same result for BWn, i.e. the specialisations of BWn are semisimple for
a Zariski open subset of the parameter space Spec(Λ). Wenzl has carried
out a more detailed analysis, based on Jones’ basic construction, in order to
determine precisely when the algebras fail to be semisimple.

This paper is divided into six sections. In section 2 we review the def-
initions of the algebras to be studied, with some historical comments. In
section 3 we use the basic solution of the Yang-Baxter equation for the or-
thogonal group together with a simple skein-theoretic argument to provide
a short self-contained definition of Kauffman’s two-variable link invariant.
We also briefly discuss the duality between the quantum orthogonal group
and the Birman-Wenzl algebra. In section 4 we give an inductive defini-
tion of a basis for the Birman-Wenzl algebra and outline the more formal
aspects of the proof. The inductive procedure relies on a natural filtration
analogous to the one extensively used by Hanlon and Wales in their studies
of Brauer’s algebra [7]. Effectively the proof that the proposed basis is a
spanning set is achieved by a double induction, which from the point of view
of tangles depends both on the number of strings and then on the number of
‘through’ strings. The remaining two sections are devoted to various stages
of the inductive argument showing that the natural surjective maps from
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the Birman-Wenzl algebras to the tangle algebras are isomorphisms. In sec-
tion 5 we treat the case in which there are no ‘through’ strings: a complete
understanding of this case is crucial for the subsequent reasoning since it
allows us to use geometry in place of algebra in a controlled way. Finally in
section 6 we perform the main step of the induction.

2 Three algebras

2.1 The Birman-Wenzl algebra

We start by recalling the definition of the Birman-Wenzl algebra. We have
made a slight change by the introduction of some minus signs, in accordance
with Kauffman’s ‘Dubrovnik’ version of his link invariant. As explained in
[11] and below, this makes it much easier to see the connection with Brauer’s
centraliser algebras.

Let Λ be the quotient ring Z[λ±1, z, δ]/ < λ−1 − λ − z(δ − 1) >. Thus
Λ (or more accurately its complexification) is the coordinate ring of the
irreducible quasiprojective variety defined by λ 6= 0, λ−1 − λ = z(δ − 1) in
A3.

Definition. The Birman-Wenzl algebra BWn is the quotient of the free al-
gebra over Λ with generators g±1

1 , g±1
2 , . . . , g±1

n−1 and e1, e2, . . . , en−1 modulo
the ideal generated by the relations:
(1) (Kauffman skein relation) gi − g−1

i = z(1 − ei).
(2) (Idempotent relation) e2i = δei.
(3) (Braid relations) gigi+1gi = gi+1gigi+1 and gigj = gjgi if |i− j| > 1.
(4) (Tangle relations) eiei±1ei = ei and gigi±1ei = ei±1ei.
(5) (Delooping relations) giei = eigi = λei and eigi±1ei = λ−1ei.

Remark. If z is taken to be invertible then the idempotent relation follows
from the delooping and skein relations.

In Birman and Wenzl’s original version several of their relations could
be omitted without loss, given invertibility of z. They use v in place of λ in
the coefficient ring.

The presentation given here is intended to be sufficiently symmetric to
allow for easy comparison with the tangle algebra, while maintaining the
coefficient ring Λ as in [11].

4



2.2 Kauffman’s tangle algebra

Definition. An (m,n)-tangle is a piece of knot diagram in a rectangle R
in the plane, consisting of arcs and closed curves, so that the end points of
the arcs consist of m points at the top of the rectangle and n points at the
bottom, in some standard position.

An example of a (4, 2)-tangle is shown in figure 2.1.

Figure 2.1

Definition. Two tangles are ambient isotopic if they are related by a
sequence of Reidemeister’s moves I, II and III, (see figure 2.2), together
with isotopies of R fixing its boundary.

I

II

III

Figure 2.2

They are regularly isotopic if Reidemeister move I is not used.

Notation. Write Um
n for the set of (m,n)-tangles up to regular isotopy.

The set Un
n admits an associative multiplication, defined by placing rep-

resentative tangles one below the other.
A well-known subset Bn consists of geometric braids, in this context

represented by tangles (necessarily without closed components) where the
height coordinate in R increases monotonically on each component. It can
be shown that Bn is the full group of units in Un

n under the multiplication.
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The closure, T̂ , of an (n, n)-tangle T, is defined, by analogy with the
closure of a braid, to be the link diagram (or (0, 0)-tangle) given from T
by joining the points on the top of R to those on the bottom by arcs lying
outside R with no further crossings.

We define a closure map ε : Un
n → U0

0 , by ε(T ) = T̂ .

From Un
n we construct the algebra MTn, which we call Kauffman’s tangle

algebra, as an algebra over a ring Λ, as in [11]. We shall take Λ to be the
ring

Λ = Z[λ±1, z, δ]/ < λ−1 − λ = z(δ − 1) > .

Then Λ is isomorphic to a subring of Z[λ±1, z±1], by taking δ = 1 + (λ−1 −
λ)/z. It admits a homomorphism e : Λ → Z[δ] with e(z) = 0, e(λ) = 1
and e(δ) = δ. The main aim of this paper is to show that the Birman-Wenzl
algebra BWn is isomorphic to MTn, on specialisation of coefficients.

Certain features of MTn, for example its dimension, and its relation to
Brauer’s algebra [3], appear here very simply, using the homomorphism e
and the Dubrovnik invariant D. These features of BWn, not proved directly
in the original approach, then follow at once.

Definition. Kauffman’s tangle algebra, MTn, is the Λ-module, constructed
from Λ[Un

n ] by factoring out three sets of relations:

T+ − T− = z(T 0 − T∞), (1)

where T±, T 0, T∞ are represented by tangles differing only as in figure 2.3,

T T
+ oT T

°_

Figure 2.3

T right = λ−1T, T left = λT, (2)

where T right and T left are given from T by adding a left or right hand curl
as in figure 2.4,

T
right

T
left

Figure 2.4
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T ∐O = δT, (3)

where T ∐ O is the union of T and a circle having no crossings with T or
itself.

Proposition 2.1 Composition of tangles induces a Λ-bilinear multiplica-
tion on MTn making MTn an algebra over Λ.

Proof : The relations (1)-(3) carry down under the multiplication in Λ[Un
n ].

2

Proposition 2.2 The map ε induces a Λ-linear map ε : MTn →MT0.

We now give the homomorphism ϕ : BWn → MTn which provided the
intuition behind Birman and Wenzl’s description of BWn.

Definition. Write Gi, Ei respectively for the tangles in Un
n illustrated in

figure 2.5. Use the same letters for the elements represented by these tangles
in MTn, called si, hi in [11].

i i+1

G
i

i i+1

iE= =

Figure 2.5

Then
Gi −G−1

i = z(1 − Ei)

in MTn, from relation (1) applied to the only crossing in Gi.
Similarly, relation (2) shows that

GiEi = EiGi = λ−1Ei

G−1
i Ei = EiG

−1
i = λEi

and relation (3) that
E2

i = δEi.

Theorem 2.3 A homomorphism ϕ : BWn → MTn may be defined by
ϕ(gi) = Gi, ϕ(ei) = Ei.
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Proof : The relations in BWn are respected. We have already noted that
the skein relation and delooping relations are satisfied by Ei, Gi in MTn.
The other relations hold even at the level of the tangle semigroup Un

n . 2

Our goal is to prove that ϕ is an isomorphism for all n. In this section
we find explicit spanning sets for MTn, and show that ϕ is surjective.

In section 4 we give the proof from [11] that the chosen spanning sets
are a free basis for MTn, using the existence of Kauffman’s invariant.

The proof that ϕ is injective will subsequently be built up in stages, with
the recurring pattern of taking spanning sets for selected subspaces of BWn

and proving that they map to independent sets in MTn.
To save later effort we note here some symmetry of BWn, which carries

over by ϕ to two natural operations in MTn.

Definition. (1) Write ρn : BWn → BWn for the automorphism defined
by

ρn(gi) = gn−i, ρn(ei) = en−i.

(2) Write α : BWn → BWn for the reversing anti automorphism defined
by

α(gi) = gi, α(ei) = ei.

Remark. The symmetry of the relations in BWn ensures that ρn, α are
well-defined.

Proposition 2.4 There is an automorphism ρn of MTn, and an antiauto-
morphism α, with ϕ ◦ α = α ◦ ϕ and ϕ ◦ ρn = ρn ◦ ϕ.

Proof : Write ρn, α : Un
n → Un

n for the natural symmetries given by rotating
a tangle T through π about one of the two axes shown in figure 2.6.

T

ρ
n

α
Figure 2.6

Clearly α(Gi) = Gi, ρn(Gi) = Gn−i, and similarly for Ei. The skein
relations are preserved by ρn and α so that they induce ρn, α : MTn →MTn.
Since ρn(ST ) = ρn(S)ρn(T ) and α(ST ) = α(T )α(S) these are respectively
an automorphism and an antiautomorphism, satisfying the stated relations
on the generators of BWn. 2
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We now continue with the proof that MTn has a finite spanning set, and at
the same time we develop the notation to relate these algebras readily with
Brauer’s centraliser algebras.

2.3 Connectors and Brauer’s algebras

An (n, n)-tangle T consists of n arcs and a number, |T |, of closed curves. If
each arc joins a point at the top to a point at the bottom then the tangle
determines a permutation in Sn.

Definition. For a general tangle we extend the idea of a permutation to
that of an n-connector, defined to be a pairing of 2n points into n pairs.

The set Cn of n-connectors has (2n)!/2nn! elements, the product of the
first n odd integers.

Take the set of 2n points to be the end points of (n, n)-tangles. The arcs
of any T ∈ Un

n pair these end points to give a connector, which we write as
conn(T ) ∈ Cn.

Remark. (Brauer’s algebra) Brauer [3] uses Cn as the basis for an algebra
over Z[δ], (writing n in place of δ and f in place of n ). He divides the 2n
points to be connected into two subsets t1, . . . , tn and b1, . . . , bn, arranged
along the top and bottom of a rectangle, and views a connector c as a set of
n intervals with these 2n points as endpoints, which join the points paired
by c. Two connectors c1 and c2 are composed by placing one rectangle above
the other, giving n arcs whose endpoints are the new top and bottom points,
together with some number r ≥ 0 of closed curves.

Brauer sets c1c2 = δrd, where d is the connector defined by the new
arcs. This defines an associative multiplication on Z[δ][Cn] = An making it
an algebra over Z[δ], called Brauer’s algebra.

Having divided the 2n points in this way there is a natural embedding
Sn ⊂ Cn.

We can modify the map conn : Un
n → Cn to give a multiplicative homo-

morphism c : Un
n → An, which extends to c : MTn → An as follows.

For T ∈ Un
n set c(T ) = δ|T |conn(T ) ∈ An. This can be extended to

c : Λ[Un
n ] → An by setting c(ΣλiTi) = Σ e(λi)c(Ti), using the ring homo-

morphism e : Λ → Z[δ].

Theorem 2.5 There is an induced homomorphism c : MTn → An.

Proof : The relations (1)-(3) defining MTn are respected. 2
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Remark. We show later that An is isomorphic to the Z[δ] algebra MTn⊗Λ

Z[δ] given from MTn by replacing the coefficients Λ with Z[δ], using the
homomorphism e.

The existence of c : MTn → An can be viewed as the consequence of
specialising the coefficients so that the relations no longer distinguish under-
from over-crossings. Then tangles pass to their projections, retaining only
the information of their connectors. The crucial technical feature here is
that we can specialise Λ so as to retain δ, while fixing λ = 1 and z = 0.
Complications arise if we try to do this while working in the ring Z[λ±1, z±1].

Definition. Given a tangle T, choose a sequence of base-points, consisting
firstly of one end point of each arc, and then one point on each closed
component. Say that T is totally descending (with this choice of base
points) if on traversing all the strands of T, starting from the base point of
each component in order, each crossing is first met as an overcrossing.

Remark. We shall assume that for each connector c ∈ Cn a choice of
ordering of base-points for the arcs has been made, and we use this same
choice for all tangles T with c = connT . Note that there are n! 2n poten-
tially different choices possible for each connector. The precise choice is not
material, and we shall have occasion to vary the choice in the course of later
proofs. The result will be simply to alter the choice of linear basis in MTn.

An example of a totally descending (3, 3)-tangle is shown in figure 2.7,
with base-points numbered according to a choice of order.

2

3

1

Figure 2.7

Theorem 2.6 MTn is spanned by totally descending tangles.

Proof : Let T be a tangle representing an element of MTn. Choose base
points for T according to the choice for conn(T ). Traverse the arcs of T in
order. At the first non-descending crossing use relation (1) with T = T±.
Note that conn(T+) = conn(T−), so that T∓, resulting from T with the
crossing switched, has fewer non-descending crossings. Then T is a linear
combination of three tangles, two with fewer crossings and one with fewer
non-descending crossings. The theorem follows by induction, firstly on the
number of crossings, then on the number of non-descending crossings. 2
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Corollary 2.7 MTn is spanned by totally descending tangles without closed
components.

Proof : If T is totally descending, with r closed components, then these
components are unknotted curves stacked below the arcs of T . The tangle
can then be altered by regular isotopy so that the unknotted components
lie well away from the arcs. By using Reidemeister move I as well they can
be changed to have no self-crossings. Then by (2) and (3), T = λkδrT ′ in
MTn, where T ′ consists simply of the arcs of T. 2

Remark. This result holds as stated for n = 0, provided that we admit
the ‘empty tangle’ as an element of U0

0 . In any event MT0 is spanned by a
single element.

Corollary 2.8 MT0 is cyclic.

Theorem 2.9 Let S and T be totally descending (n, n)-tangles, without
closed components, such that conn(S) = conn(T ). Then S and T are ambient
isotopic, and so S = λkT in MTn, for some k.

Proof : Number the arcs of S and T according to the order of their base
points. Since conn(S) = conn(T ), the ith arc in each tangle joins the same
pair of end points. The arcs can be arranged to lie in disjoint levels 1 to
n above the plane of R, since arc i lies above arc j at every crossing when
i < j. Each individual arc is unknotted, because the tangle is descending,
so it can be changed by ambiemt isotopy to an arc without self-crossings in
its level. The resulting tangles are then ambient isotopic by level-preserving
isotopy. 2

Remark. If the arcs of S and T have no self-crossings initially then S and
T are regularly isotopic.

Remark. (Construction) For each connector c ∈ Cn, choose an order for the
arcs. With this order construct a totally descending tangle with connector
c such that any two arcs cross at most once. (Start for example from a
diagram of the connector in which any two arcs cross at most once, and
make it descending, by choosing the sense of each crossing according to the
order of the arcs.) The element Tc ∈ Un

n represented by this tangle then
depends only on c and the chosen order, by Theorem 2.9.

Remark. For c ∈ Sn and a natural choice of order the resulting tangles
Tc have been studied, [4, 5], under the name ‘positive permutation braids’.
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They can be represented by a braid in Bn with positive crossings and per-
mutation c in which any two strings cross at most once.

These braids have also been used in [9, 10], to give easily handled gen-
erators for the Hecke algebra Hn.

Theorem 2.10 MTn is spanned, for every choice of order, by the finite set
{Tc}, c ∈ Cn.

Proof : By theorem 2.6 and its corollary, MTn is spanned by tangles which
are ambient isotopic to Tc, for various c. By use of relation (2), any tangle
ambient isotopic to Tc represents λkTc in Mn, for some k. 2

Remark. The number of crossings in a totally descending tangle Tc depends
on the connector c, not on the order of arcs used. It is simply the number of
pairs of arcs which cross in c, as dictated by whether or not their endpoints
interlock on the boundary rectangle.

Clearly any tangle with k crossings can always be written in MTn as a
linear combination of totally descending tangles with at most k crossings,
by induction on k, using the procedure of theorem 2.6. It follows that if T ′

c,
Tc are totally descending tangles with the same connector c, arising from
different choices of the order of arcs then

T ′
c = Tc +

∑

d

λdTd,

where d runs over connectors with fewer crossings than c.

We finish this section by proving:

Theorem 2.11 The map ϕ : BWn →MTn is surjective.

Proof : We must show that MTn is generated by Ei, Gi, 1 ≤ i ≤ n− 1. It
is enough to show that each totally descending tangle Tc is a monomial in
{Ei} and {G±1

i }.
Assuming that the connector c pairs r points at the top with r at the

bottom, and connects the remaining 2k = n − r points as k pairs, leaving
2k points at the bottom connected as k pairs.

We can then draw the tangle Tc (for any order of the arcs) so that there
are r arcs running monotonically from top to bottom, k arcs running with
a single local minimum from top to top, and k arcs from bottom to bottom
with a single local maximum. We can further assume, since the arcs never
cross twice, that all the local minima on the top arcs are higher up than the
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local maxima, so that there are only r arcs passing through the middle part
of the rectangle.

Now pair arbitrarily the local maxima and minima, and isotop the tan-
gle so that each local minimum moves down to lie directly above its corre-
sponding maximum. We can now decompose the tangle level by level into a
composite of simple tangles in each of which there are n strings all running
vertically, except for one pair, which either cross simply, giving G±1

i , or form
a paired minimum and maximum, giving Ei. An example is shown in figure
2.8.

=

Figure 2.8

2

Remark. It is useful to regard the tangle Tc with r through strings as
a composite of an (n, r)-tangle and an (r, n)-tangle, and it suggests that a
counterpart of (n, r)-tangles might helpfully be studied in relation to BWn.

3 Kauffman’s link polynomial

In this section we discuss Kauffman’s Dubrovnik invariant of links, and its
relation to the solutions of the Yang-Baxter equation for the orthogonal
group.

Kauffman’s polynomial, in its Dubrovnik form, is a non-zero function
D : U0

0 → Λ, i.e. a function on knot diagrams which is unaltered by regular
isotopy.

This function D has the basic properties:
(1) D(K+) − D(K−) = z(D(K0) − D(K∞)) (skein relation)

where the diagrams K±, K0 and K∞ differ only as in figure 2.3, and

(2) D(Kleft) = λD(K), D(Kright) = λ−1D(K),

where Kleft and Kright are given from K as in figure 2.4.
It also satisfies

(3) D(K ∐ O) = δD(K),
where K ∐O is the union of K and a circle having no crossings with K

or with itself, and δ ∈ Λ satisfies λ−1 − λ = z(δ − 1).
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Proposition 3.1 Kauffman’s invariant exists if and only if the cyclic mod-
ule MTo is free.

Proof : We have shown already that MT0 is cyclic, so MT0 is free if and
only if there is a non-zero Λ-homomorphism ϕ : MT0 → Λ.

IfMT0 is free then we may define D on any diagram K by D(K) = ϕ(K).
Conversely, if D satisfies (1)-(3) then it defines a non-zero Λ-homomorphism
D : MT0 → Λ. 2

Remark. (Uniqueness of Kauffman’s invariant) It follows simply from sec-
tion 2 that Kauffman’s invariant is unique, because MT0 is cyclic. It is
determined uniquely by its value on O, the diagram of the unknot with-
out any crossings. D was originally normalised so that D(O) = 1. It now
appears more natural to assign the value 1 to the ‘empty knot’, so that
D(O) = δ.

Kauffman’s original proof of the existence of D, [8], requires a consid-
erable amount of combinatorial argument to show that the elements of Λ
reached by different routes from a given diagram K are independent of any
intermediate choices.

We note here an alternative existence proof, using the Yang-Baxter or-
thogonal invariants.

Proposition 3.2 There exists a regular isotopy invariant of knot diagrams
in Z[s±1] which satisfies relations (1)-(3) with z = s− s−1, λ = s2n−1, δ =
1 + (λ− λ−1)/z, and takes the value 1 on the empty knot.

Proof (Turaev): The invariant is constructed from the q-analogue of the
fundamental representation of the Lie algebra of SO(2n). 2

For each n we have a ring homomorphism en : Λ → Z[s±1] defined by
en(λ) = s2n−1, en(z) = s − s−1. Turaev’s invariant then defines a map
ϕn : MT0 → Z[s±1] with ϕn(aK) = en(a)ϕn(K) for a ∈ Λ.

Proposition 3.3 MT0 is a free Λ-module.

Proof : Suppose not. Then there exists a ∈ Λ, a 6= 0 such that aK = 0,
where K is the empty diagram. Now ϕn(K) = 1 so 0 = ϕn(aK) = en(a)
for all n. This is impossible, since for any given a 6= 0 there exists n with
en(a) 6= 0. 2

This proves the existence of D, given Turaev’s invariants. In princi-
ple D(K) could be calculated explicitly for a given link diagram K from
knowledge of the invariants ϕn(K) for sufficiently many n, as follows:
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Proof : We know that any element a of Λ can be written as a polynomial in
λ±1, z and δ. Now zδ = λ−1−λ+z, so zka can be rewritten as a polynomial
in λ±1 and z alone, for large enough k.

A simple induction, as in theorem 2.6, shows that z|K|D(K) ∈ Λ can
always be written as a polynomial in λ±1 and z; say

z|K|D(K) =
M
∑

r=m

λrPr(z)

=
M
∑

r=m

λrQr(s),

where Qr(s) = Pr(s− s−1).
It is then enough to find Qr(s), m ≤ r ≤M .
Now for each n,

M
∑

r=m

sr(2n−1)Qr(s) = en(z|K|D(K))

= (s− s−1)|K|ϕn(K).

Write V for the k × k Vandermonde matrix with entries

s(2n−1)r, 1 ≤ n ≤ k, m ≤ r ≤M, with k = M −m+ 1.

Then

V











Qm

Qm+1
...

QM











= (s− s−1)|K|











ϕ1

ϕ2
...
ϕk











.

Since V is invertible, we have Qm, . . . , QM , and hence D(K) in terms of
ϕ1, . . . , ϕk. 2

In order to make these calculations explicitly we need bounds for m and
M , in terms of K. It is certainly sufficient to note that |m| ,M ≤ |K|+c(K),
where c(K) is the number of crossings in the diagram, although these bounds
may turn out to be quite generous.

4 A basis for the tangle algebra

In this section we set out the induction to be used in proving that the algebra
BWn defined by generators and relations is isomorphic to the Kauffman
algebra, defined by tangles. We start by reviewing the position for MTn.
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The algebra MTn is shown in [11] to be free over Λ, of the same dimen-
sion, |Cn|, as Brauer’s algebra An. The proof, which we give here, is an easy
consequence of the existence, however established, of Kauffman’s Dubrovnik
invariant D : MT0 → Λ. We make use of the homomorphism e : Λ → Z[δ].

Proposition 4.1 e(D(K)) = δ|K|.

Proof : It follows from condition (1) that e(D(K)) is unaltered when any
crossing in a diagram is switched, and from (2) that it is unaltered by Rei-
demeister move I. Now any diagram can be changed to any other with the
same number of components by a sequence of crossing switches and Reide-
meister moves, so e(D(K)) = e(D(K ′)), where K ′ is the disjoint union of
|K| simple closed curves, giving the result by (3). 2

Theorem 4.2 Any set of tangles {Tc}, c ∈ Cn, without closed components,
having c = conn (Tc) and spanning MTn forms a free Λ-basis for MTn.

Proof : Define a bilinear map b : MTn ×MTn → Λ by b(S, T ) = D(ε(ST )).
Write A for the |Cn| × |Cn| matrix with entries acd = b(Tc, Td).

Suppose that ΣλiTi = 0, λi ∈ Λ. We want to show that λi = 0 for all i.
For each c ∈ Cn replace the cth column of A by the linear combination of the
columns of A with coefficients λi. The new matrix then has determinant
λcdetA and a zero column. The required result follows by proving that
detA 6= 0, since Λ has no zero-divisors.

Now ε(TcTd) ∈ MT0 is represented by a link with r components, say.
Each component contains at least one arc from Tc and one from Td, so
r ≤ n. When r = n each component must have exactly one arc from each,
so that the connector d is the ‘mirror image’ of c, given by interchanging
the roles of the top and bottom points. Set c = d in this case, so that we
have r = n if and only if d = c.

Now apply the homomorphism e to the entries in A. Then, by proposition
4.1, e(acd) = δr, r ≤ n, and r = n if and only if d = c. The matrix e(A) has
then one entry δn in each row and column, so e(detA) = det(e(A)) ∈ Z[δ]
has a non-zero coefficient for δn2

. Thus e(detA) 6= 0, so detA 6= 0. 2

This shows that MTn is a deformation of Brauer’s algebra An, in the
following sense.

Theorem 4.3 There is an isomorphism of Z[δ]-algebras induced by c be-
tween MTn ⊗Λ Z[δ] and An.
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Proof : The map c : MTn → An, defined in section 2, factors through a
Z[δ]-homomorphism MTn ⊗Λ Z[δ] → An. Since MTn ⊗Λ Z[δ] is spanned
over Z[δ] by {Tc} which maps onto a basis of An of the same cardinality,
this set must be a Z[δ]-basis in the specialisation, and the map is hence an
isomorphism. 2

Corollary 4.4 (to theorem 4.2) Any set of tangles with distinct connec-
tors forms an independent set in MTn.

Proof : We have shown that c : MTn → An carries a free Λ-basis to a free
Z[δ]-basis. It follows, using determinantal criteria for independence as in
theorem 4.2, that k elements of MTnwhose images are independent in An

must themselves be independent. 2

We shall prove by induction on n that the homomorphism ϕ : BWn →
MTn is an isomorphism. In the course of the proof we shall construct ex-
plicit bases ϕ−1{Tc} in BWn. As part of the induction we shall use natural

filtrations BW
(r)
n and MT

(r)
n by 2-sided ideals, analogous to the filtration of

An used by Hanlon and Wales, [7]. In the case of MTn this filtration arises
from the geometric viewpoint, as in [11], when we consider tangles of rank
≤ r.

Definition. A tangle T ∈ Un
n has rank ≤ r if it is the composite T = AB

of an (n, r) and an (r, n) tangle.

Remark. Then conn(T ) has at most r arcs connecting top to bottom.
However this is not sufficient for T to have rank r. For example, the tangle
T in figure 4.1 has rank 2, although conn(T ) has no connecting arcs from
top to bottom.

Figure 4.1

Write MT
(r)
n for the subspace of MTn spanned by tangles of rank ≤ r.

Clearly MT
(r)
n is a 2-sided ideal, with

MTn = MT (n)
n ⊃MT (n−2)

n ⊃ . . . .

17



Proposition 4.5 MT
(r)
n is generated, as an ideal, by the element E1E3. . .E2k−1,

where 2k = n− r.

Proof : For r > 0 we can write the identity tangle in Ur
r as

I = C(E1E3. . .E2k−1)D,

where C is an (r, n) tangle and D is an (n, r) tangle, as in figure 4.2.

r

r

n

n

C

D

EEE E
1 3 5 7

Figure 4.2

Then any tangle T = AB of rank ≤ r can be written as T = AC(E1E3. . .E2k−1)BD
with AC,BD ∈ Un

n .
The case r = 0 can be handled similarly, by first writing a tangle T of

rank 0 as T = AE1B where A is an (n, 2) tangle and B is a (2, n) tangle. 2

Definition. For r = n − 2k write BW
(r)
n for the 2-sided ideal of BWn

generated by e1e3. . .e2k−1.

Then
BWn = BW (n)

n ⊃ BW (n−2)
n ⊃ . . . .

Clearly ϕ : BWn →MTn restricts to ϕ : BW
(r)
n →MT

(r)
n .

Our main result, that ϕ is an isomorphism, follows from

Theorem 4.6 ϕ : BW
(r)
n →MT

(r)
n is injective for all n, r.

Proof : The detailed lemmas needed appear in later sections. The scheme
of the proof follows here.

For fixed n we prove the result for r = 0, 1 in section 5 from the injectivity

of ϕ on BWn−1 (= BW
(n−1)
n−1 ) using induction on n.

The proof then continues by induction on r.

For this induction we construct a linear subspace V
(r)
n ⊂ BW

(r)
n , com-

plementing BW
(r−2)
n . The induction step for injectivity of ϕ follows by

establishing:
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(1) V
(r)
n +BW

(r−2)
n is a 2-sided ideal in BW

(r)
n ,

(2) ϕ|V
(r)
n →MTn is injective,

(3) e1e3. . .e2k−1 ∈ V
(r)
n .

In the construction, given later in this section, we exhibit an explicit

spanning set for V
(r)
n whose image in MTn is an independent set of totally

descending tangles. This establishes property (2).
Property (3) is immediate from the construction, and property (1) is

proved in section 6. 2

To describe certain elements in BWn we now draw on Artin’s braid
group.

The braid group on n strings, defined by geometric braids, (particular
types of (n, n) tangles), is known to have the presentation with generators
σi, i ≤ n and relations

σiσj = σjσi, |i− j| > 1, σiσi+1σi = σi+1σiσi+1.

There is then a homomorphism ψ : Bn → BWn defined by σi 7→ gi. Any
two monomials in BWn in g±1

i which arise from the same geometric braid
β will then be equal, and we shall use β to picture the element ψ(β). We
shall also refer to monomials in g±1 as braids in BWn.

There is an antihomomorphism perm : Bn → Sn defined by perm(σi) =
τi = (i i+ 1). With our convention of composition of geometric braids, the
strings in a braid β then join the point i at the top to the point π(i) at the
bottom, with π = perm(β).

Among the elements of Bn we shall use particularly the positive permu-
tation braids and, as special cases, the Lorenz braids .

Definition. A braid in Bn in which all crossings are positive and every
pair of strings crosses at most once is called a positive permutation braid .

Theorem 4.7 A positive permutation braid β is determined by the permu-
tation π = perm(β) induced by its strings.

Proof : Such braids are examples of ‘totally descending tangles’, as defined
in section 2, in which the arcs of the connector all join top to bottom and
are ordered by the order of their initial points. 2

We shall write βπ for the positive permutation braid with permutation
π = perm(βπ), whose strings join the points i at the top with π(i) at
the bottom. The element bπ = ψ(βπ) ∈ BWn, which we shall also call
a positive permutation braid, can be conveniently referred to by the per-
mutation π, rather than choosing one of the many ways of writing it as a
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monomial in gi. For example, the permutation π = (14)(23) ∈ S4 gives
bπ = g1g2g3g1g2g1 = g2g1g2g3g2g1 = . . ..

Definition. A Lorenz braid of type (ℓ, r) is a braid βπ where π ∈ Sn, n =
ℓ+r, does not permute the first ℓ ‘left-hand’ strings, or the last r ‘right-hand’
strings among themselves.

For fixed (ℓ, r) there are (nr ) Lorenz braids, as a Lorenz permutation π is
determined simply by the free choice of endpoints for the right-hand strings.
Note that π is an (ℓ, r) Lorenz permutation if and only if π(i) < π(j) for
1 ≤ i < j ≤ ℓ and for ℓ + 1 ≤ i < j ≤ n. An example of a (3, 4) Lorenz
braid is shown in figure 4.3.

Figure 4.3

Where π−1 is a Lorenz permutation the braid βπ = α(βπ−1) can be
viewed as a Lorenz braid βπ−1 turned upside down. Call α(βπ−1) a reverse
Lorenz braid . Note that (βπ)−1 is not the same braid as βπ−1 but has all
the crossings switched.

Definition. For each n and r = n − 2k write V
(r)
n for the linear subspace

of BW
(r)
n spanned by elements bπw2kbτbµ, where π, µ are (2k, r) Lorenz

permutations, τ is a permutation of the last r strings only, and w2k ∈ BW
(0)
2k .

Proposition 4.8 Given that ϕ|BW
(0)
2k is injective for n ≥ 2k then ϕ|V

(r)
n →

MTn is injective.

Proof : We know that MT
(0)
2k is spanned by |Ck|

2 totally descending tangles,

one for each k-connector of rank 0, and that ϕ|BW
(0)
2k →MT

(0)
2k is surjective.

By hypothesis we can choose a spanning set of |Ck|
2 elements for BW

(0)
2k with

this set of tangles as image.

Then V
(r)
n is spanned by the (nr )2 |Ck|

2 r! elements bπw2kbτbµ, where
π−1, µ are drawn independently from (2k, r) Lorenz permutations, τ from

permutations in Sr and w2k from the spanning set for BW
(0)
2k .

The elements ϕ(bπw2kbτbµ) are represented by tangles in MT
(r)
n each

with exactly r through strings, and all having different connectors. A typical
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such tangle with k = 2, r = 4 is illustrated in figure 4.4. It follows by the
corollary to theorem 4.2 that these tangles are independent in MTn, and

hence that ϕ|V
(r)
n is injective. 2

Figure 4.4

This establishes property (2) of theorem 4.6 under its induction hypoth-
esis.

From theorem 4.6 we eventually build a basis for BWn as a union of

spanning sets for each V
(r)
n . The image of this basis in MTn can be repre-

sented by a set of tangles each with a different connector, and each totally
descending, for some ordering of the arcs.

We note that this gives a complicated check that the dimension of BWn

is

|Cn| =

[n/2]
∑

k=0

(nr )2 |Ck|
2 r!,

where we write r = n− 2k.

5 Generators and relations for the tangle algebra:

the base for induction

In this section we prove injectivity of ϕ on BW
(0)
n or BW

(1)
n , depending on

the parity of n, given injectivity of ϕ|BWn−1. The corresponding sets of
tangles in MTn are those with at most one through string.

We start with some results in BWn which use only the regular isotopy
relations.

Definition. The shift map S : MTn →MTn+1 is a homomorphism defined
on an n-tangle T as shown in figure 5.1.

TS(T)   =

Figure 5.1
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Thus S(Gi) = Gi+1, S(Ei) = Ei+1.
It is clear, from the behaviour on tangles, as shown in figure 5.2, that

WAm = AmS(W ) for W ∈MTm, where Am = GmGm−1 . . . G1.

W

W
=

Figure 5.2

We can define a shift map with similar properties in BW as follows.

Definition. The shift map S : BWn → BWn+1 is defined as a homomor-
phism by

S(gi) = gi+1, S(ei) = ei+1,

extended linearly.

It is simply necessary to check that the relations are respected by S.

Proposition 5.1 The homomorphism S satisfies

wam = amS(w), wbm = bmS(w)

for any w ∈ BWm, where

am = gmgm−1 . . . g1, bm = g−1
m g−1

m−1 . . . g
−1
1 .

Proof : When w = g±1
i or w = ei the result is an immediate consequence of

the relations, and it follows for monomials w by induction on their length.2

We now define Fk ∈MTn, 2k ≤ n, to be the element represented by the
tangle shown in figure 5.3.

2k

F
k

=

Figure 5.3

The following equations in MTn are clear from inspection of representa-
tive tangles.
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Proposition 5.2 For all i < k
(1) GiFk = G2k−iFk,
(2) EiFk = E2k−iFk,
(3) FkGi = FkG2k−i,
(4) FkEi = FkE2k−i.

An example of equation (1) is illustrated in figure 5.4, with i = 1 and k = 3.

=

Figure 5.4

Again it is clear from inspection of the tangles, as shown in figure 5.5,
that

Fk = α(A2k−2)Fk−1E2k−1A2k−2.

By analogy we define fk ∈ BWn inductively, setting f0 = identity, and

fk = α(a2k−2)fk−1e2k−1a2k−2.

We then have Fk = ϕ(fk), and α(fk) = fk, since fk−1 and e2k−1 commute.

=

Figure 5.5

Remark. While it is clear that ρ2k(Fk) = Fk in MTn, it is difficult to prove
directly from the definition and relations in BWn that ρ2k(fk) = fk.

Proposition 5.3 BW
(n−2k)
n ⊂ BWn is the 2-sided ideal generated by fk.

Proof : By definitionBW
(n−2k)
n is the 2-sided ideal generated by e1e3 . . . e2k−1.

By induction on k we can write fk = α(bk)e1e3 . . . e2k−1bk for some invertible
element bk ∈ BW2k, in fact bk can be chosen to be a braid. 2

We now make use of the relations in BWn to prove the analogous results
to proposition 5.2.
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Proposition 5.4 For all i < k
(1) gifk = g2k−ifk,
(2) eifk = e2k−ifk,
(3) fkgi = fkg2k−i,
(4) fkei = fke2k−i.
The same results hold with ρ2k(fk) in place of fk.

Proof : Cases (3) and (4) follow from (1) and (2) by applying α. Applying
ρ2k gives the results for ρ2k(fk). The result is immediate for k = 1. For
i > 1 the result follows from proposition 5.1 by induction on k.

For example, in case (1),

gifk = giα(a2k−2)fk−1e2k−1a2k−2

= α(a2k−2)gi−1fk−1e2k−1a2k−2, by applying α to 5.1

= α(a2k−2)g2k−i−1fk−1e2k−1a2k−2, by induction

= g2k−iα(a2k−2)fk−1e2k−1a2k−2, (i ≥ 2)

= g2k−ifk.

To prove 5.4 when i=1 we set hj = α(aj)α(aj−2)ej+1ej−1.
Since fk = h2k−2fk−2a2k−4a2k−2, the result for cases (1) and (2) will

follow by showing that
(1′) g1hj = gj+1hj

(2′) e1hj = ej+1hj,
for all j.

We prove (1′) and (2′) by induction on j, starting with j = 2. For j = 2
we have

h2 = g1g2e1e3 = e2e1e3 = e2e3e1 = g3g2e3e1.

Then g3h2 = g3g1g2e1e3 = g1h2 and e1h2 = e1e2e1e3 = e1e3 = e3h2.
For the induction step, use the braid relations to write

α(aj)α(aj−2) = g2g1S(α(aj−1)α(aj−3)).

(Compare the two braids illustrated in figure 5.6.)

j

=

Figure 5.6
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Then hj = g2g1S(hj−1). So

g1hj = g1g2g1S(hj−1) = g2g1g2S(hj−1) = g2g1S(g1hj−1)

= g2g1S(gjhj−1), by induction on j,

= g2g1gj+1S(hj−1) = gj+1hj , for j > 2.

Similarly e1hj = ej+1hj , using the relation in BWn that e1g2g1 = g2g1e2. 2

Lemma 5.5 Suppose that ϕ : BWm+1 →MTm+1 is injective. Then BWm+1em =
BWmem.

Proof : By hypothesis it is enough to prove the corresponding result

MTm+1Em = MTmEm.

For an (m + 1,m + 1) tangle T define εm(T ) to be the (m,m) tangle
shown in figure 5.7.

(T) =mε

m

T

Figure 5.7

Using the standard interpretation of εm(T ) as an (m+ 1,m+ 1) tangle
it is clear that εm(T )Em = TEm. Extend the definition of εm to linear
combinations of tangles to define a linear map εm : MTm+1 → MTm, (the
relations are respected). Then any element XEm with X ∈MTm+1 can be
rewritten as XEm = εm(X)Em ∈MTmEm. 2

Corollary 5.6 Under the same conditions, BWm+1e1 = S(BWm)e1.

Proof : Apply the automorphism ρm+1. 2

Proposition 5.7 Suppose that ϕ|BWn−1 →MTn−1 is injective. Then
(1) BW2kfk = BWkfk, for all k with 2k ≤ n,
(2) BW2k+1S(fk) = BWk+1S(fk), for all k with 2k + 1 ≤ n.
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Proof :
(1) The case k = 1 is immediate, since g±1

1 e1 and e1e1 are multiples of e1.
For k ≥ 2 we have k + 1 ≤ n − 1 so that BWk+1ek = BWkek by lemma

5.5. It is enough to show that

giBWkfk ⊂ BWkfk

eiBWkfk ⊂ BWkfk, for all i < 2k.

This is immediate for i < k. For i > k it follows from 5.4, and the fact that
BWk then commutes with ei and gi.

Write fk = ekrk for some rk ∈ BW2k, by induction on k. The remaining
cases with i = k follow by noting that

gkBWkek ⊂ BWk+1ek = BWkek

and ekBWkek ⊂ BWk+1ek = BWkek.

(2) The case k = 1 will be proved directly.
For k ≥ 2 we have k+2 ≤ n−1 so that BWk+2ek+1 = BWk+1ek+1 from

lemma 5.5. We must show that

giBWk+1S(fk) ⊂ BWk+1S(fk),

eiBWk+1S(fk) ⊂ BWk+1S(fk), for i ≤ 2k.

This is immediate for i < k + 1. For i > k + 1 it follows from proposition
5.4, since BWk+1 commutes with gi and ei. The remaining cases follow as
in (1), since S(fk) = ek+1S(rk).

We finish the proof of (2) by showing that BW3e2 = BW2e2. Now
BW2e2 is spanned by e2, e1e2 and g1e2, so we must show that products of
these elements with g2 or e2 on the left still lie in BW2e2. It is a matter of
a quick check from the relations in BW3, to see that e22 = δe2, e2e1e2 = e2,
e2g1e2 = λ−1e2, g2e2 = λe2, g2e1e2 = g−1

1 e2 and g2g1e2 = e1e2. 2

Corollary 5.8 Suppose that ϕ|BWn−1 is injective. Then the ideals gener-
ated by fk in BWn, with k = [n/2], can be written as:

(1) BW
(0)
2k = BWkfkBWk when n = 2k, and

(2) BW
(1)
2k+1 = BWk+1S(fk)BWk+1 when n = 2k + 1.

Proof (1):

BW
(0)
2k = BW2kfkBW2k

= BWkfkBW2k by 5.7,

= BWkfkBWk applying α to 5.7.
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2

Proof (2): The ideal BW
(1)
2k+1 generated by fk is equally generated by

S(fk) = a−1
2k fka2k so the result follows using 5.7 (2) exactly as in (1). 2

We complete this section by showing the injectivity of ϕ on the 2-sided
ideals generated by fk in BWn, k = [n/2], given injectivity on BWn−1.

Theorem 5.9 Suppose that ϕ|BWn−1 →MTn−1 is injective.

Then ϕ|BW
(0)
2k →MT

(0)
2k is injective, when n = 2k,

and ϕ|BW
(1)
2k+1 →MT

(1)
2k+1 is injective, when n = 2k + 1.

Proof : In the case n = 2k we know that ϕ|BWk is an isomorphism to MTk.
We may then choose elements tc ∈ BWk, c ∈ Ck, spanning BWk, with ϕ(tc)
represented by a totally descending tangle Tc say, having connector c.

By corollary 5.8 we have BW
(0)
2k = BWkfkBWk. This is spanned by

|Ck|
2 elements tcfktd, c, d ∈ Ck. It is enough to prove that the images of

these elements are independent in MT2k.
Now these images are represented by the tangles TcFkTd. Different pairs

of connectors (c, d) give tangles TcFkTd with different connectors in C2k,
since the tangles consist of a top and a bottom half, each with k arcs,
affected independently by the connectors c and d. The tangles then represent
independent elements in MT2k, by corollary 4.4.

Similarly when n = 2k+1 we know that ϕ|BWk+1 is an isomorphism to
MTk+1. We may then choose spanning elements tc ∈ BWk+1, c ∈ Ck, with
ϕ(tc) represented by a totally descending tangle Tc say, having connector
c. Again, by corollary 5.8, we have a spanning set {tcS(fk)td}, c, d ∈ Ck+1

with |Ck+1|
2 elements, for the ideal BW

(1)
2k+1.

The images of these elements are represented by tangles TcS(Fk)Td.
Once more we can see that different pairs of connectors (c, d) give tangles
with different connectors in C2k+1 because all but one of the arcs stays either
in the top or in the bottom of the tangle. This guarantees independence in
MT2k+1, as before. 2

Remark. We could in fact show that the composite tangles used in this
proof are themselves totally descending, for some suitable ordering of their
arcs.

We continue in the next section to examine BW
(r)
n for larger r having

established here the start of our induction on r. Note that we could prove

similarly that BW
(r)
2k+r = BWk+rS

r(fk)BWk+r and find a spanning set of

|Ck+r|
2 elements. However, a similar attempt to prove the (false) result for
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r > 1 that these are independent would fail, because some different pairs of
connectors in Ck+r can yield the same connector in C2k+r.

6 Isomorphism between Kauffman’s tangle alge-

bras and the Birman-Wenzl algebras

We finish the proof of injectivity of ϕ : BWn →MTn by proving the remain-

ing induction step, namely that if ϕ|BWn−1 is injective, and ϕ|BW
(r−2)
n is

injective then ϕ|BW
(r)
n is injective. We do this by finding a complementary

subspace V
(r)
n to BW

(r−2)
n in BW

(r)
n on which ϕ is injective.

We recall the definition of V
(r)
n given in section 4 as the subspace spanned

by {bπBW
(0)
2k bτbµ}, where n = 2k+ r, α(bπ), bµ are (2k, r) Lorenz braids in

Bn and bτ is a positive permutation braid on the last r strings in S2k(Br).
Following the scheme of proof in theorem 4.6 we already know, by induction

on n, that ϕ|V
(r)
n is injective.

It remains to show that V
(r)
n + BW

(r−2)
n = BW

(r)
n . Since BW

(r)
n is

the 2-sided ideal generated by fk, and fk ∈ V
(r)
n we need only show that

V
(r)
n + BW

(r−2)
n is a 2-sided ideal. Now α(V

(r)
n ) = V

(r)
n , since the elements

bτ in S2k(BWr) commute with BW2k. Hence it is enough to show that

V
(r)
n +BW

(r−2)
n is a left ideal.

Proposition 6.1 Let n = r+2k and let X
(r)
n be the subspace spanned by the

set {bπbτBW2kfk}, where α(bπ) is a (2k, r) Lorenz braid and bτ is a positive
permutation braid in S2k(Br). Suppose also that ϕ|BWn−1 is injective and
that r ≥ 2. Then

L(r)
n = X(r)

n +BW (r−2)
n

is a left ideal.

Corollary 6.2 V
(r)
n +BW

(r−2)
n is a left ideal, under the hypotheses of propo-

sition 6.1, and hence theorem 4.6 is established.

Proof : Since L
(r)
n is a left ideal, by 6.1, it follows that V

(r)
n + BW

(r−2)
n is

a left ideal, by noting that BW
(0)
2k = BW2kfkBW2k. 2

The proof of proposition 6.1 occupies the rest of this section. The principal
ingredient is an analysis of the elements gibπ and eibπ for positive permu-
tation braids bπ. The following two lemmas are a consequence primarily of
the braid relations.
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Lemma 6.3 Let ρ be any permutation, and let ρ1 be the permutation ρ ◦
(i i + 1). Then the positive permutation braid bρ1

satisfies the equation

bρ1
= gibρ if ρ(i) < ρ(i+ 1),

bρ = gibρ1
if ρ(i) > ρ(i+ 1).

Proof : If ρ(i) < ρ(i+ 1) then each pair of strings in the braid gibρ crosses
at most once, so it is a positive permutation braid. Its permutation is ρ1,
so gibρ = bρ1

.
If ρ(i) > ρ(i + 1) then ρ1(i) < ρ1(i + 1) and the same argument holds

with ρ1 in place of ρ. 2

Corollary 6.4 Any positive permutation braid bρ can be written as the prod-
uct of a word in {gi}, i 6= ℓ, and an (ℓ, r) Lorenz braid.

Proof : By induction on the length of bρ, using 6.3 to write bρ = gibρ1
for

some i 6= ℓ if bρ is not already an (ℓ, r) Lorenz braid. 2

Lemma 6.5 Let ρ be any permutation with ρ(i + 1) = ρ(i) + 1. Then
gibρ = bρgρ(i) and eibρ = bρeρ(i).

Proof : This can be viewed as allowing us to pass a simple crossing along
two parallel strings from top to bottom of a braid. By the hypothesis on
ρ, both gibρ and bρgρ(i) are positive permutation braids, and both have the
same permutation. Hence they are equal, using only the braid relations, by
the fundamental theorem on positive permutation braids. It follows that
g−1
i bρ = bρg

−1
ρ(i) and hence, by the skein relation, that z eibρ = z bρeρ(i).

The lemma follows, if we assume that z is invertible in Λ. Without
inverting z the result follows by induction on the length of bρ, together with
the relation eigi+1gi = gi+1giei+1 and its reverse in BWn. For we can write
bρ = gjbρ1

for some j. Then j 6= i, since the strings i and i+ 1 do not cross
under ρ.

If j = i + 1 then ρ(i + 2) < ρ(i + 1) = ρ(i) + 1, so ρ(i + 2) < ρ(i). We
can then, by lemma 6.3, write bρ = gi+1gibρ2

, and then eibρ = gi+1giei+1bρ2
.

Now ρ2(i+ 2) = ρ(i+ 1) = ρ2(i+ 1) + 1 and bρ2
is shorter than bρ, so that

we can use induction.
A similar argument can be used when j = i−1, while otherwise |i− j| >

2, and eigj = gjei, giving an immediate inductive proof. 2

Lemma 6.6 X
(r)
n S2k(BWr) ⊂ L

(r)
n .
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Proof : X
(r)
n ej ⊂ BW

(r−2)
n ⊂ L

(r)
n for j > 2k, since fkej ∈ BW

(r−2)
n for

j > 2k.
Let bτ be any positive permutation braid in S2kBr and let j > 2k. Then

by 6.3, either

bτgj = bτ ′

or bτgj = bτ ′g2
j = bτ ′ + zbτ − zbτej .

Hence xgj ∈ L
(r)
n for any spanning element x = bπw2kfkbτ ∈ X

(r)
n .

Thus X
(r)
n gj ⊂ L

(r)
n for j > 2k. 2

We now continue the proof of 6.1, to show that L
(r)
n is a left ideal. Lemma

6.6 shows in particular that L
(r)
n bτ ⊂ L

(r)
n for bτ ∈ S2k(Br). It is enough to

show that eix, gix ∈ L
(r)
n for each x = bπw2kfk ∈ X

(r)
n and each i, where

α(bπ) is a (2k, r) Lorenz braid and w2k ∈ BW2k.
Suppose then that x and i are given. We may further suppose that

π(i + 1) > π(i), otherwise bπ = gibπ1
with π1(i + 1) > π1(i). We then

need only prove that eix
′ ∈ L

(r)
n where x′ = bπ1

w2kfk, since gix = g2
i x

′ =
x′ + zgix

′ − zgieix
′ = x′ + zx − λzeix

′ and eix = eigix
′ = λeix

′ from the
skein and delooping relations.

Since π is a reverse (2k, r) Lorenz permutation then π(i+1) = π(i)+1 if
either π(i + 1) ≤ 2k or π(i) > 2k. By 6.5 eix = bπeπ(i)w2kfk in either case.

This lies in X
(r)
n if π(i) < 2k and in BW

(r−2)
n if π(i) > 2k, and similarly

gix ∈ L
(r)
n . It remains to deal with eix and gix when π(i + 1) > 2k and

π(i) ≤ 2k. In this case gibπ is a reverse (2k, r) Lorenz braid, by 6.3, so that

gix ∈ X
(r)
n and we are left to consider eix.

Given π and i, let ρ be the permutation given by

ρ(j) =























2k j = π(i),
j − 1, π(i) < j ≤ 2k,
j + 1, 2k + 1 ≤ j < π(i+ 1),
2k + 1, j = π(i+ 1),
j, otherwise.

Now ρ only makes pairs of strings cross which have not already been made
to cross by the reverse Lorenz braid bπ, so that bπbρ is also a positive per-
mutation braid. Then bπbρ = bπ1

, where π1 = ρ ◦ π. Now ρ permutes the
first 2k strings and the last r strings among themselves, moving π(i) to 2k
and π(i+1) to 2k+1, so x = bπ1

(bρ)
−1w2kfk with bρ ∈ BW2kS

2k(Br). Note
that π−1

1 (i) < π−1
1 (j) for i < j ≤ 2k − 1.
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It is enough, by lemma 6.6, to show that eix
′ ∈ L

(r)
n , for x′ = bπ1

w′
2kfk.

Now π1(i + 1) = 2k + 1 = π1(i) + 1 so, by 6.3, eix
′ = bπ1

e2kw
′
2kfk. This

does not finish the proof, since the element e2k is stuck between BW2k and

S2k(BWr) and we have to use our inductive knowledge of w′
2kfk ∈ BW

(0)
2k

to free it.

Lemma 6.7 Suppose that ϕ|BW
(0)
2k is injective. Then every element in

BW2kfk is a linear combination of elements in the sets

gmgm+1 . . . g2k−2e2k−1BW2kfk,m = 1, . . . , 2k − 2, and e2k−1BW2kfk.

Lemma 6.8 For each m = 1, . . . , 2k − 2 and each positive permutation
braid bρ with ρ−1(i) < ρ−1(j) for i < j ≤ 2k−1 and ρ−1(2k+1) = ρ−1(2k)+1
we have

bρe2kgmgm+1 . . . g2k−2e2k−1 = bρ′e2k−1

for some positive permutation braid bρ′ .

Proposition 6.1 then follows from 6.7 and 6.8, since we can write the
element eix

′ as a linear combination of elements of the form bρ′BW2kfk. All

of these lie in L
(r)
n , since any positive permutation braid bρ′ can be written

as the product bπbρ′′ of a reverse (2k, r) Lorenz braid bπ with a positive
braid which does not involve the generator g2k, by the corollary to lemma
6.3, applied to the reverse braids.

Proof of lemma 6.7: By hypothesis, ϕ gives an isomorphism fromBW2kfk ⊂

BW
(0)
2k to MT2kFk. Now every element of MT2kFk can be written as a linear

combination of totally descending tangles Tc, where the connectors c join
points of the top to the top in some way, and join the bottom points as for
Fk. We may choose the order of strings for each connector c as we wish, so
let us assume that in each tangle Tc the string whose end point is at position
2k on the top lies above all the others. By isotopy of the strings we may
then write each of these tangles Tc as

GmGm+1 . . . G2k−2E2k−1TFk

for some m = 1, . . . , 2k − 2 and some T ∈MT2k as illustrated in figure 6.1.
The isomorphism ϕ then gives a spanning set for BW2kfk as stated. 2

31



T
T
c

=

Figure 6.1

Proof of lemma 6.8: We have

bρe2kgmgm+1 . . . g2k−2e2k−1 = bρgmgm+1 . . . g2k−2e2ke2k−1.

Now the reverse braid g2k−2 . . . gm+1gmα(bρ) is a positive permutation braid,
bρ1

say, since g2k−2 . . . gm is a positive permutation braid on the first 2k− 1
strings only, while α(bρ) = bρ−1 does not make these strings cross. Now

ρ1(2k + 1) = ρ1(2k) + 1, so either g2kg2k−1bρ1
or g−1

2k g
−1
2k−1bρ1

is a positive
permutation braid, bρ2

, say, depending on whether ρ1(2k − 1) < ρ1(2k) or
ρ1(2k − 1) > ρ1(2k), by 6.3.

We can write e2k−1e2k = e2k−1g2kg2k−1 = e2k−1g
−1
2k g

−1
2k−1 by the relations

in BWn. Then e2k−1e2kbρ1
= e2k−1bρ2

. Apply the reversing map to give

bρe2kgmgm+1 . . . g2k−2e2k−1 = α(e2k−1e2kbρ1
)

= α(e2k−1bρ2
)

= bρ′′e2k−1,

where ρ′′ = ρ−1
2 . 2

This concludes the proof of proposition 6.1, and the inductive proof of
theorem 4.6. We have now established that ϕ is an isomorphism from BWn

to MTn for all n, so that we are able to use tangle based arguments in
dealing with the algebra BWn. We have established its dimension over Λ
and also the geometric description of the natural chain of ideals generated
by the elements fk, so we can also study the composition series of this chain
by using the corresponding ideals in MTn generated by Fk.
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