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Abstract

We present the construction of heterotic string models built using the free fermionic

formulation, and focus on how additional U(1)s may arise. We motivate an anomaly

free combination, U(1)ζ , as a proton lifetime preserving symmetry external to a

left–right symmetric gauge group. This same combination is found to nullify lepton

number in U(1)B−L to form a leptophobic combination, also in left–right symmetric

models, which we compare to other leptophobic U(1) combinations constructed in

the context of different gauge groups.

We then accommodate U(1)ζ as a proton lifeguard symmetry in an effective

field theory. We present a comparative study of how gauge coupling unification

constraints may be satisfied when SO(10)×U(1)ζ 6⊂ E6 and when the U(1)ζ charges

do have an E6 embedding. We show that without such an embedding, current values

of sin2 θW (MZ) and α3 (MZ) rule these models out. We go on to discuss how viable

string models with this property included may be constructed.

i



Declaration

I hereby declare that all work described in this thesis is the result of my own re-

search unless reference to others is given. None of this material has previously been

submitted to this or any other university. All work was carried out in the Theo-

retical Physics Division of the Department of Mathematical Sciences, University of

Liverpool, U.K. during the period of October 2009 until September 2013.

ii



Publication List

This thesis contains material that has appeared in the following publications by the

author:

• A. E. Faraggi and V. M. Mehta, Proton Stability and Light Z ′ Inspired

by String Derived Models, Physical Review D 84 (2011), 086006, arXiv:1106.

3082[hep-ph].

• A. E. Faraggi and V. M. Mehta, Leptophobic Z ′ in Heterotic–String De-

rived Models, Physics Letters B 703 (2011), 567, arXiv:1106.5422[hep-ph].

• A. E. Faraggi and V. M. Mehta, Proton Stability, Gauge Coupling Uni-

fication, and a Light Z ′ in Heterotic–String Models, Physical Review D 88

(2013), 025006, arXiv:1304.4230[hep-ph].

iii

http://dx.doi.org/10.1103/PhysRevD.84.086006
http://dx.doi.org/10.1103/PhysRevD.84.086006
http://arxiv.org/abs/1106.3082
http://arxiv.org/abs/1106.3082
http://dx.doi.org/10.1016/j.physletb.2011.08.046
http://dx.doi.org/10.1016/j.physletb.2011.08.046
http://arxiv.org/abs/1106.5422
http://dx.doi.org/10.1103/PhysRevD.88.025006
http://dx.doi.org/10.1103/PhysRevD.88.025006
http://arxiv.org/abs/1304.4230


Acknowledgements

During my time in Liverpool, I’ve had the pleasure of working with and meeting

some great friends and colleagues. The memories made here will stay with me forever

and I have many people to thank. Firstly, my supervisor, Alon Faraggi, for the ideas

and directions from which this work spawned.

A great deal of thanks to John Gracey and Dave Muskett, to who I am hugely

indebted and my gratitude to Ian Jack and Thomas Mohaupt for helping me get

to this stage, despite the bumpy road along the way. Thank you also to Tim Jones

and Steve Downing for the squash games and for letting me win sometimes.

I’d like to thank my friends Owen Vaughan, Gary Soar, Ruofan Liao, Adriano Lo

Presti, Elisa Manno, Conor Smyth, Aaron Roberts, Aaron Bundock, Katie Walters,

Rob Purdy, Panos Athanasopoulos, Josh Davies, David Errington, Tomàš Ježo, Paul
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Chapter 1

Introduction

The recent discovery of the Higgs boson at the LHC [1, 2] lends further credence to

the hypothesis that the Standard Model (SM) provides a viable effective parameter-

ization of all subatomic interactions. However, there are many observed results that

simply cannot be reproduced within this framework. The unification with gravity

and the quantization of electromagnetic charges are but two of these unanswerable

questions within the framework of the SM. Current energies being explored at the

LHC could lead to interesting new physics beyond the Standard Model (BSM).

1.1 Proton Stability

The main aim of this thesis is to provide a viable solution to the problem of proton

stability in a class of supersymmetric extensions of the Standard Model originating

in the heterotic string, while accommodating other nuances of the SM, e.g. light

neutrinos, three generations and a light Higgs. We propose an additional gauge

symmetry, external to that of the SM gauge group, SU(3)C×SU(2)L×U(1)Y , that,

should it remain unbroken to sufficiently low energy, may suppress proton decay

mediating operators (PDMOs) that commonly appear in these scenarios. With

current limits at τp & 1034 years [3] the question of proton stability is at the forefront
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1.1. Proton Stability

of testing BSM physics.

In the SM, accidental global symmetries conserve baryon and lepton number at

the renormalizable level. PDMOs may be induced at dimension-6, i.e.

1

Λ2
p

QLQLQLLL, (1.1)

which, from the current bound on the proton lifetime, indicate that the SM is an

effective field theory (EFT) below a cutoff, Λp ∼ 1016GeV.

Many extensions of the SM that have been proposed to address other issues,

in particular the hierarchy problem, introduce a cut–off at the TeV scale. Such

extensions consequently induce proton decay at an unacceptable rate. For example,

in supersymmetric extensions of the SM, operators violating baryon and lepton

number are induced at the renormalizable level. These are given by

QLLLd
c
L,

ucLd
c
Ld

c
L,

(1.2)

where each of the fields represents a chiral supermultiplet. One must then rely

on some ad hoc global or discrete symmetries, to forbid the unwanted terms. For

example, in the MSSM, R–parity is invoked to forbid these operators. R–parity is

a Z2 symmetry of matter states. The charges are given by a linear combination of

SM quantum numbers:

QR = (−1)3(B−L)+2s , (1.3)

where B and L are the baryon and lepton numbers, and s the spin. R–parity is

used to distinguish between SM states and their superpartners, with the SM fermions

having charge +1 and their supersymmetric scalar partners charge −1. This also

results in the lightest superpartner being a dark matter candidate as it must be
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Chapter 1. Introduction

stable. When looking for a unified theory, one must also consider the high energy

regime, i.e. O (MPlanck). Attempts have recently been made to derive R–symmetries

of this type from string models [4–7]. However, it is expected that only local sym-

metries survive quantum gravity effects [8] and so in this thesis we do not consider

such symmetries. Instead we investigate an alternative appealing proposition for the

suppression of PDMOs: the existence of an abelian gauge symmetry beyond that

of the SM gauge group. Allowing the SM matter states to be charged under this

additional gauge symmetry, we may forbid PDMOs, which are then only induced

at the symmetry’s breaking scale. For the extra symmetry to provide adequate

suppression of the unwanted terms, it has to exist at a mass scale within reach of

contemporary particle accelerators [9, 10].

The simplest abelian extension one may construct to prohibit PDMOs is by

gauging baryon minus lepton number, U(1)B−L, which naturally arises in SO(10)

Grand Unified Theories (GUTs). To date, many SO(10)–based models have been

constructed following the various symmetry breaking patterns of this rank-5 Lie

group, both in the context of a top–down approach, e.g. the heterotic string (see

e.g. [11] and references within) and in a bottom–up field theory construction [12–16]

in 4- and 5-dimensions.

Gauged–(B − L) (GBL) in SO(10) has the advantage of being an anomaly free

symmetry. That is, as each of the SM generations (plus a right–handed neutrino)

is embedded in a single SO(10) spinorial representation, the 16, the only two U(1)

combinations free of gauge and gravitational anomalies are U(1)B−L and U(1)Y

(or any linear combinations thereof). In the literature, the phenomenology of this

minimal gauge extension of the SM has been widely explored (see e.g. [17] and

references therein). U(1)B−L has also been discussed within the context of the free

3



1.1. Proton Stability

fermionic models of the heterotic string in Standard–like (SL) models [18–20] and in

extra dimensional heterotic string models [21]. In [22], it was shown that sufficiently

low neutrino masses could not be produced in SL models built in the free fermionic

construction.

The requirement of light neutrino masses necessitates that lepton number is

broken. In bottom–up SO(10) grand unified models, one can use the 126 represen-

tation, which breaks lepton number by two units and leaves an unbroken symmetry,

which still forbids the dimension-4 PDMOs. However, the 126 representation, in

general, does not arise in perturbative string models [23]. This implies that lepton

number is broken by unit–one carrying fields and thus, the dangerous dimension-4

PDMOs are generated. Specifically, in SO(10), these operators are contained in the

164 term,

QLLLd
c
Lν

c
L,

ucLu
c
Ld

c
Lν

c
L,

(1.4)

where νcL is the SM singlet field, i.e. the CP–conjugate of νL, and gets a vev of the

order of the GUT scale. Additionally, the 164 gives rise to the dimension-5 terms

contained in

QLQLQLLL,

ucLd
c
Ld

c
Le

c
L,

(1.5)

which are not forbidden by U(1)B−L. It is therefore apparent that gauged baryon

minus lepton number by itself is not sufficient to guarantee proton stability. Other

local gauge symmetries, possibly in conjunction with U(1)B−L, are needed to ensure

proton stability [24, 25]. In this thesis, our discussion focusses on a specific U(1)

combination that incorporates U(1)B−L but allows for phenomenologically viable
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Chapter 1. Introduction

neutrino masses and forbids PDMOs up to dimension-6. The necessary requirements

and conditions for allowing this U(1) to be light are discussed in Section 1.3.

1.2 Unification

Another remarkable feature of the MSSM, as well as being the minimal extension to

the SM that allows for SUSY and thus alleviates the electroweak–Planck hierarchy

problem, is that, at one–loop, the SM gauge couplings unify, i.e. extrapolating the

current experimental data for α3(MZ), α2 (MZ) and α1 (MZ)∗, we find unification

at MGUT ∼ 2 · 1016GeV [26–28].

However, as we are constructing a string–inspired model, string–scale unification

is expected. In the heterotic string the scale at which coupling unification is pre-

dicted is MS ∼ 5 · 1017GeV [29]. In our analysis we vary the unification scale in this

range, i.e. MGUT ≤ µ ≤ MS. We see the effect of this variation on our low–energy

obervables, sin2θW (MZ) and α3 (MZ), in Figure 1.1. As µ moves away from the

MSSM unification scale, MGUT, and toward the string scale, MS, we notice that the

values of sin2θW (MZ) and α3 (MZ) move away from their experimental results. The

factor of 20 discrepancy between these unification scales was discussed in [30] and it

was concluded that intermediate matter thresholds contributed enough to overcome

its effect, allowing string unification in a wide class of realistic free fermion heterotic

string models. In the analysis of our string–inspired model, we will look to ac-

commodate intermediate scales in order for gauge coupling unification at the string

scale to occur. It has also been demonstrated that nonperturbative effects arising

in heterotic M–theory [31] can push the unification scale down to the MSSM unifi-

cation scale [32]. As our additional U(1) will take charge assignments that satisfy

∗α2 and α1 ≡ 5
3αY are extracted from sin2θW and αEM.
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1.3. Low–scale U(1)

heterotic string constraints, i.e. an E8 embedding, we expect a similar model based

in the heterotic M–theory regime to have equivalent charge assignments. Thus, al-

lowing variation of the unification scale, from MGUT to MS, may also account for

nonperturbative effects.

0.1

0.12

0.14

0.16

0.18

0.2

0.216 0.218 0.22 0.222 0.224 0.226 0.228 0.23 0.232

α
3(

M
Z
)

sin2 θW (MZ)

Figure 1.1: sin2θW (MZ) vs. α3(MZ) with 2 · 1016 . µ . 5.27 · 1017 GeV.
The current limits are sin2θW (MZ)

∣∣
MS

= 0.23116± 0.00012 and α3(MZ) = 0.1184± 0.0007[33].
Here µ runs from right to left.

1.3 Low–scale U(1)

Additional abelian spacetime vector bosons beyond those that mediate the SU(3)×

SU(2)×U(1)Y subatomic interactions are abundant in extensions of the SM. Their

existence, in both GUTs and string theories, have been amply discussed in the

literature [34–36], with the most appealing abelian extensions arising in SO(10) and

E6 [37–42]. The embedding of the SM states∗ in three generations of the spinorial 16

∗with three right–handed neutrinos
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Chapter 1. Introduction

representation strongly hints at the realisation of SO(10) in nature, while E6 GUTs

go a step further by accommodating both matter and Higgs states in a common

representation, the 27. These GUT groups may be reproduced in the heterotic string

regime and broken directly to the SM or to subgroups with additional abelian factors

[43–46]. A class of three generation heterotic-string models that produce these GUT

embeddings are the free fermion models of [18, 19, 47–51], which correspond to

compactifications on Z2 × Z2 orbifolds [52–58] due to the relation of bosons and

fermions in two dimensions,

ψµ + iχµ =:eiX
µ

: . (1.6)

This will be the formulation used to discuss our heterotic string models and we

review their structure in Chapter 2. The discussion of additional U(1)s in the

context of free fermion models has included those that act as proton lifeguards [9,

10, 25, 59] as well as other motivations from potential BSM signatures [60, 61] and

supersymmetry breaking [62].

Recently a leptophobic U(1) was motivated due to an excess in the W + 2 jets

channel detected at CDF [63]. The absence of such an enhancement in the dilepton

channel, as well as constraints arising from direct production at LEPII, TeVatron and

LHC searches necessitates suppressed couplings to leptons. This posed an interesting

problem as most GUT and string theory models will produce extra bosons with

unsuppressed coupling to both leptons and baryons. It is, therefore, of interest to

examine how a leptophobic Z ′ can arise [60, 64]. From a bottom–up approach, one

can simply gauge the baryon number, U(1)B. This exercise has been undertaken [65,

66] and within Type-I string theories a gauged U(1)B may indeed arise. However, in

GUTs and string models, abelian extensions of the Standard Model typically have

7



1.3. Low–scale U(1)

unsuppressed couplings to leptons.

The abundance of U(1) symmetries in GUTs, and the string models from which

they originate, does not necessarily result in their existence at accessible energies.

For example, much of the discussion of U(1) symmetries as proton lifeguards in free

fermion models has focussed on the requirements necessary for their existence at the

string–scale in addition to accommodating the constraints coming from SM data.

These requirements include:

PDMOs – the dimension-4, -5 and -6 proton decay mediating operators must be

forbidden;

Light neutrinos – lepton number violation must be allowed in order for a seesaw–

mechanism to be realised;

Yukawa couplings – the SM fermions must still form the necessary couplings with

the electroweak Higgs doublets in order to generate the correct mass terms

upon breaking of SU(2)L × U(1)Y ;

Family universal – to avoid flavour changing neutral currents, and to avoid generation–

dependent couplings that may induce rapid proton decay, we demand family

universality;

Anomaly freedom – to build a consistent effective field theory (EFT) that can

describe low–scale physics, while allowing for an additional abelian gauge sym-

metry accessible at current experiments, requires the theory to be anomaly

free.

Building a string–inspired model that satisfies these constraints does not guarantee

that its low–energy EFT will do so. In the examples mentioned previously, the ex-

8



Chapter 1. Introduction

istence of the desired symmetry in explicit string constructions guarantees anomaly

freedom of the additional U(1), yet facilitating satisfaction of these properties in

a phenomenologically viable toy–model can prove to be difficult. In this thesis we

construct a string–inspired field theory model that takes into account the ingredi-

ents, in particular the string charge assignments, from the string–derived models to

explore some phenomenological properties of the extra U(1).

1.4 Inspiration from strings

The models that we use in this thesis are constructed in the free fermionic formu-

lation (FFF) of the heterotic string. In the extra–dimensional construction of the

heterotic string [67–69], comprising of a supersymmetric left–moving sector and a

purely bosonic right–moving sector, it is predicted that there exist ten spacetime

dimensions, six of which are compactified on some 6-dimensional manifold, M6.

However, the FFF of the heterotic string is constructed directly in four dimensions,

removing the necessity of some geometrical interpretation for the additional dimen-

sions. The additional degrees of freedom are thought of as fermions that freely

propagate on the string worldsheet, the two–dimensional surface mapped out by the

string propagating through time.

In the geometrical construction of the heterotic string, as the right–moving sec-

tor is purely bosonic, there is a mismatch between the number of dimensions of

the left– and right–moving sectors. That is, the left–moving sector corresponds to

a superstring sector, i.e. a 10-dimensional theory, whereas the right–moving sector

corresponds to a bosonic string sector, i.e. a 26-dimensional theory. This discrep-

ancy in dimension is resolved by compactifying the sixteen additional dimensions of

the bosonic sector on some internal 16-dimensional torus. This torus corresponds

9



1.4. Inspiration from strings

directly to an even, self–dual lattice, Γ, which is equivalent to the root lattice of

E8 × E8 or the weight lattice of Spin(32)
Z2

.

In extra dimensional models, the additional dimensions are thought to be of

microscopic scale (or even Planck), invisible to current detectors. The additional

dimensions, though, contain a lot of information that dictates the physics of the

four dimensions that we see. This is because in the extra dimensional construction

of heterotic string models, the ten–dimensional theory fixes the gauge and matter

content. Thus, the description ofM6 becomes very important in determining unified

string models of particle physics.

However, with the absence of extra dimensions, physics in the FFF of the het-

erotic string is not determined by specifying the geometry of additional spacetime

dimensions. In fact, to specify models in the FFF, one only requires two ingredients:

the phases picked up by the worldsheet fermions; and the generalised GSO phases

(see 2.1 and proceeding discussion). Realistic unified string models are, therefore,

readily constructed within this framework. Due to their accessibility, one can do

vast searches through string vacua [70] with relative ease. New techniques are being

adapted for geometrical constructions but for now, comprehensive scans of possible

models in string vacua are restricted by our knowledge of M6 geometries [71, 72].

With access to the string vacua in 4-dimensions in the FFF of the heterotic

string, the charge assignments of our states, gauge structure and matter content

of our low–scale models are readily available, while the preservation of string–scale

physics, i.e. modular invariance, conformal invariance, etc., is already built in.

10



Chapter 1. Introduction

Outline

In this thesis, we discuss the phenomenological effects of an additional abelian gauge

symmetry, external to an SO(10) GUT group. This U(1) is generated by a linear

combination of the Cartan generators of the 8-dimensional visible gauge group in

the heterotic string construction, and an example is constructed that forbids proton

decay mediating operators up to dimension-6 while allowing for light neutrinos via

a seesaw mechanism. Another example has suppressed couplings to leptons to form

a leptophobic Z ′.

Chapter 2

In this chapter we introduce important concepts with regard to a particular con-

struction of the heterotic string: the free fermionic formulation. We give examples of

how GUT models are built within this framework and how GUT representations are

decomposed under low–scale gauge groups that eventually break to the SM gauge

group, SU(3)C × SU(2)L × U(1)Y . We discuss the string formation of additional

U(1)s and motivate two examples: a proton lifeguard combination and a leptopho-

bic U(1). We also outline the stringy origins of the matter we will use to build

our string–inspired model when constructing a specific model accommodating our

proton–protecting U(1).

Chapter 3

Using the rules and techniques of the previous chapter, we discuss a particular U(1)

combination originally motivated as a solution to the Wjj anomaly found at the

CDF detector back in 2011: a leptophobic U(1). We summarise previous examples

of leptophobic U(1)s and their respective gauge group embeddings. We then present

11



1.4. Inspiration from strings

a new combination that features in models with the left–right symmetric breaking

pattern of SO(10). The analysis carried out in this chapter featured in [61].

Chapter 4

Here we specify a model whose attributes allow the suppression of proton decay

mediating operators up to dimension-6. We build a spectrum, starting with the

MSSM, that satisfies the string charge assignments. We present the spectra above

and below an intermediate SU(2)R symmetry breaking scale and also the respective

superpotentials. The analysis done in this chapter featured in [73].

Chapter 5

Having specified a model in the previous chapter, we now look at phenomenological

constraints that can be applied to our string–inspired model. Specifically we look

at how both proton lifetime limits and gauge coupling unification constrain our

model. For the GCU analysis, we present a comparison of two classes of models:

SO(10) × U(1)ζ 6⊂ E6 and SO(10) × U(1)ζ ⊂ E6. This allows us to discuss the

benefits and difficulties in each. The analysis done in this chapter featured in [74].

Chapter 6

To accompany the analysis and conclusions of the previous chapter, we present a

“recipe” for constructing the SO(10)×U(1)ζ ⊂ E6 model within the free fermionic

formulation of the heterotic string. This model must accommodate the properties

of our proton protecting U(1) while, in principle, allowing for gauge coupling uni-

fication and LRS intermediate gauge structure. The discussion in this chapter also

featured in [74].
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Chapter 1. Introduction

Chapter 7

To conclude we summarise our results and discuss possible future projects that may

extend this work.

Appendix A

In the first appendix, we present the root vectors in the basis we use to construct

SO(10). We use these to build the 16 representation explicitly.

Appendix B

Here we present the model building rules applicable to the free fermionic formulation

of the heterotic string.

13



Chapter 2

Model Building & Free Fermionic
Formulation

In this review chapter, we present the formalism we use to construct our string

models. It treats the extra degrees of freedom, commonly compactified as extra

dimensions, as free fermions on the string worldsheet and, thus, these are string

models constructed directly in four dimensions. In this section we review the con-

struction and structure of the free fermionic formulation; the framework within

which we build our models. We then discuss the various semi–realistic gauge groups

and matter representations that have been explored in the literature.

From a two–dimensional perspective, bosons and fermions are equivalent, with

real fermions and bosons carrying conformal weight 1
2

and 1 respectively. Thus, we

may construct a worldsheet theory for any type of string in either the bosonic or

fermionic language. Here and for the remainder of this thesis, we focus on models

originating from the heterotic string in the fermionic language. We note here that,

due to the equivalence between bosons and fermions in two–dimensions, there is a

subtle correspondence between free fermionic models and those constructed in the

bosonic language. This is beyond the scope of this thesis, but has been explored in

[52–58].

14



Chapter 2. Model Building & Free Fermionic Formulation

2.1 Free Fermionic Formulation

As we are now restricting ourselves to only the four dimensions that have been ob-

served in nature, we induce a conformal anomaly on the worldsheet, i.e. the trace

over all conformal states in our string theory is now non–zero. This is rectified by

including freely propagating fermions as worldsheet degrees of freedom. Requiring a

cancellation of the conformal anomaly gives, in the light–cone gauge, 18 worldsheet

Majorana–Weyl fermions in the supersymmetric sector and 44 worldsheet Majorana–

Weyl fermions in the bosonic sector. We also have the superpartner of the bosonic

coordinates in the supersymmetric sector and the bosonic coordinates themselves

in both sectors. In the right–moving, bosonic sector, we actually complexify 32

fermionised real degrees of freedom; these 16 complex fermions define our gauge

structure. This corresponds to the 16-dimensional internal torus of the compact-

ified heterotic string, corresponding to an E8 × E8 root lattice or Spin(32)
Z2

weight

lattice. Due to the non–geometrical interpretation of these models, the additional

12 Majorana–Weyl fermions, bosons corresponding to the compactified dimensions

in the bosonic language, allow us to increase the rank of our overall gauge group up

to 22. However, as we will see later, these will play the role of a ‘counting’ operator

for the number of generations in our semi–realistic models. A full list of worldsheet

fields is given in Table 2.1.

All of the physics is contained within the one–loop partition function, i.e. the

vacuum–to–vacuum amplitude, and thus gives us access to the full theory,

Z =
∑
a,b

c

(
a
b

)
Z

[
a
b

]
. (2.1)

Contributing to this are the phases of the fermions around the non–contractible

cycles of our toroidal worldsheet (see Figure 2.1), described by the 64-component

15



2.1. Free Fermionic Formulation

Label Description

Left–moving

Xµ Bosonic coordinates with spacetime index, µ = 0, . . . , 3

ψµ Majorana–Weyl superpartners of the bosonic coordinates
with spacetime index

χ1,...,6 Majorana–Weyl superpartners to the six compactified di-
mensions

y1,...,6, w1,...,6 Majorana–Weyl fermions that correspond to the bosons
describing the six compactified dimensions in the bosonic
formulation

Right–moving

X
µ

Bosonic coordinates with spacetime index

y1,...,6, w1,...,6 Majorana–Weyl fermions that correspond to the bosons
describing the six compactified dimensions in the orbifold
formulation

ψ
1,...,5

, η1,2,3 Complex fermions that describe the visible gauge sector

φ
1,...,8

Complex fermions that describe the hidden gauge sector

Table 2.1: States that describe our worldsheet, where we have separated the internal freely
propagating fermions from the spacetime coordinates. As shown, we have 18 in the left–moving,

supersymmetric sector and 44 in the right–moving, bosonic sector in the light–cone gauge.

vectors a and b. In fact, along with the generalised GSO (GGSO) coefficients,

c

(
a
b

)
, (2.2)

we have the tools to describe our models in full. However, as is generic in string

model building, one must also take into consideration an overcounting over the spin–

structures i.e. the phases picked up on parallel transport around the loops. In other

words, our theory must remain modular invariant. This was considered in [75, 76]

and we follow the rules laid out in these papers, known henceforth as the ABK rules

to construct our models. We reproduce these rules in Appendix B for reference.

As mentioned above, to specify the models we must specify the phases, α(f),

picked by the worldsheet fermions when transported along the non–contractible
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Chapter 2. Model Building & Free Fermionic Formulation

Figure 2.1: When parallel transported around either of the two non–contractible loops of the
torus, the fermions pick up a phase, α(f), and the bosonic coordinates remain invariant.

loops of the torus, i.e.

f → −eiπα(f)f, α(f) ∈ (−1, 1], (2.3)

where the minus sign is simply convention and f corresponds to our worldsheet

fermions. Applying different boundary conditions to each of our fermions will corre-

spond to different models in the FFF. These models are generated by a set of basis

vectors, bk, describing the transformation properties of the 64 worldsheet fermions

and span a finite additive group

Ξ =
k∑
i

nibi (2.4)

' ZNi ⊕ · · · ⊕ ZNk , (2.5)

where ni = 0, . . . , Ni − 1. In our construction, we will see that this additive set

consists of

Ξ = Z7
2 ⊕ Z4, (2.6)

17



2.1. Free Fermionic Formulation

where the Z2 corresponds to a basis vector with α(f) = 0, 1, i.e. antiperiodic or

periodic fermions only, and the Z4 a basis vector with some fermions picking up a

complex phase, i.e. α(f) = 1
2
.

The physical massless states in the Hilbert space of a given sector, α ∈ Ξ, are

then obtained by acting on |0〉α with the worldsheet bosonic and fermionic mode

operators, with frequencies νb, νf , νf∗ , and by subsequently applying the GGSO

projections, {
eiπ(bi·Fα) − δαc∗

(
α
bi

)}
|s〉α = 0 (2.7)

to preserve modular invariance where δα describes the spacetime statistics of the

sector α, i.e.

δα = eiπα(ψµ)

= ±1

(2.8)

i.e. δα = −1 if ψµ is periodic in the sector α and thus the state is a spacetime

fermion, and δα = +1 if ψµ is antiperiodic in the sector α, resulting in a spacetime

boson. Also we have that

(bi · Fα) ≡


∑

real+complex
left

−
∑

real+complex
right

 (bi(f)Fα(f)), (2.9)

where Fα(f) is a fermion number operator counting each mode of f once (and if f

is complex, f ∗ minus once). All physical states must satisfy the Virasoro condition,

M2
L = −1

2
+
αL · αL

8
+
∑

νL = M2
R = −1 +

αR · αR
8

+
∑

νR (2.10)

where α = (αL|αR) ∈ Ξ and the massless states are M2
L = M2

R = 0.

Thus, the states that are allowed in the Hilbert space are

H =
⊕
α∈Ξ

k∏
i=1

{
eiπ(bi·Fα) = δαc

∗
(

α
bi

)}
Hα. (2.11)
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Chapter 2. Model Building & Free Fermionic Formulation

Those that do not satisfy (2.7) and thus do not appear in H are said to be projected

out.

For a sector consisting of periodic complex fermions only, the vacuum is a spinor,

|±〉, representing the Clifford algebra of the corresponding zero modes, f0 and f ∗0 ,

which have fermion number F (f) = 0,−1 respectively. In addition, the Cartan

subalgebra of our rank–22 group is U(1)22, generated by the right–moving currents,

ff
∗
. For each complex fermion, f , the U(1) charges correspond to

Q(f) =
1

2
α(f) + F (f). (2.12)

The representation (2.12) shows that Q(f) is identical with the worldsheet fermion

numbers, F (f), for worldsheet fermions with Neveu–Schwarz boundary conditions,

α(f) = 0, and is F (f) + 1
2

for those with Ramond boundary conditions, α(f) = 1.

The charges for the |±〉 spinor vacua are ±1
2
.

2.2 Model–building

As we are building our string models within the heterotic string regime, we will now

discuss the correspondence between the standard compactification methods used

and their description in the FFF.

The gauge structure in the geometrical interpretation comes from an internal 16-

dimensional torus in the right–moving sector. This sector is purely bosonic and so, in

order for the conformal anomaly to be cancelled it must be a 26–dimensional sector.

However, this is in disagreement with the left–moving sector which can be described

by a 10-dimensional superstring. This discrepancy requires the additional sixteen

dimensions to be purely internal. In fact, the only even, self–dual 16-dimensional

torus on which a consistent theory may be reproduced corresponds to the root lattice
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2.2. Model–building

of E8 × E8 or the weight lattice of Spin(32)
Z2

as first demonstrated in [67–69].

In the FFF of the heterotic string, the gauge structure can be described by any

of the right–moving free fermions, in general. In fact, the simplest case is that all

44 fermions are periodic. Allowing the left–movers to also remain invariant under

parallel transport around a and b forms a 64-vector with all the worldsheet fermions

being periodic. This is known as the 1 vector and generates an SO(44) gauge group,

the starting point of all NAHE–based models. As shown in Appendix B and [75–77],

models built in the FFF all begin with the 1 vector. Below we will briefly discuss

the construction of the NAHE set [78], focussing on the visible gauge and matter

sectors. As our main aim is to explore specific models rather than generalities in

the construction, we specify our gauge structure to be described by sixteen complex

right–moving fermions, ψ
1,...,5

, η1,2,3, φ
1,...,8

, where:

• φ1,··· ,8
generate the rank eight hidden gauge group;

• ψ1,··· ,5
generate the SO(10) GUT gauge group;

• η1,2,3 generate the three remaining U(1) generators in the Cartan subalgebra

of the observable rank eight gauge group.

A combination of these three U(1) currents plays the role of the proton lifeguard

[73] and a linear combination of these will also be shown to cancel the lepton num-

ber component of U(1)B−L such that an effective baryon number gauge symmetry

results. As we will demonstrate further, the different patterns of symmetry breaking

come from different boundary conditions on these generators of the gauge groups.
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Chapter 2. Model Building & Free Fermionic Formulation

2.3 The NAHE set

There are two broad classes of free fermionic models that have been studied in the

literature: the first are models that utilise the NAHE set of boundary condition

basis vectors, which we discuss here; the second are the models spanned in the

classification of [57, 79, 80]. The two classes differ in that the first allows and

uses complexified internal fermions from the set {y, w|y, w}, resulting in additional

U(1) gauge symmetries, whereas such fermions have not been incorporated in the

second class to date. The treatment of the sixteen complex worldsheet fermions that

generate the gauge degrees of freedom is identical in the two classes of models. As

both the extra proton safeguarding U(1) and the leptophobic U(1) symmetry arise

exclusively from these worldsheet fermions, the two classes are identical in respect to

the extra U(1)s of interest here. To date, the majority of phenomenological studies

of free fermionic models are NAHE–based [78] with the notable exception being the

exophobic∗ Pati–Salam vacua of [81–83]. For definiteness, we discuss the NAHE–

based models and provide a brief discussion of how the different gauge structures

of these models are derived. This will highlight necessary techniques of symmetry

breaking/enhancement which will become useful later on. The first stage in the

construction of these models consists of the 1 vector, mentioned before, where,

1 =
{
ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ

1,...,5
, η1,2,3, φ

1,...,8
}
. (2.13)

We are using the convention of any fermions present in {. . . } transforming trivially

under parallel transport and | separates right–movers, indicated also with bars, from

left–movers. In the case of the 1 vector, the right–moving fermions are indistinguish-

∗i.e. models without exotics. Exotics are states that have fractional electromagnetic charge
and are stable at low energies.

21



2.3. The NAHE set

able and so generate an SO(2n), where n is the number of complex fermions. In this

case n = 22 and so we have the gauge bosons of SO(44) originating in the 0–sector,

or the NS–sector, i.e.

ψµφ
a
φ
b|0〉

NS
for a, b = 1, . . . , 44. (2.14)

At this stage the spectrum also contains the gravity multiplet, a tachyon and no

supersymmetry. The gravity multiplet is actually a model–independent feature and

can be shown to be present in all string models built in the FFF, independent of

specifying basis vectors.

We then add the vector

S =
{
ψµ, χ1,...,6

}
. (2.15)

The S–sector is now also massless and is, in fact, a Ramond vacuum due to the

presence of only complex periodic fermions; we may complexify real fermions with

equivalent boundary conditions in the spin–structures as

ψµ =
1√
2

(
ψ1 + iψ2

)
χ12 =

1√
2

(
χ1 + iχ2

)
χ34 =

1√
2

(
χ3 + iχ4

)
χ56 =

1√
2

(
χ5 + iχ6

) (2.16)

or their conjugates λ∗ ab = 1√
2

(
λa − iλb

)
. As mentioned previously these carry U(1)

charge, ±1
2
, and so we introduce a combinatorial notation[(

4
0

)
+ · · ·+

(
4
4

)]
(2.17)

where the combinatorial factor counts the number of |−〉 in the degenerate vacuum

of a given state. Our GGSO projection c

(
1
S

)
= ±1 allows only an odd (−1) or
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Chapter 2. Model Building & Free Fermionic Formulation

even (+1) number of |−〉. Our choice is even, i.e. c

(
1
S

)
= +1. The S–sector

contains the gravitini, [(
4

even

)]
∂X

µ|0〉S, (2.18a)

and the gaugini, [(
4

even

)]
φ
a
φ
b|0〉S, (2.18b)

of our spectrum and we see that we have N = 4 spacetime SUSY. As of yet, neither

of our sectors, 0 or S, contain matter states.

2.3.1 Adding b1

To complete the NAHE set, we add the basis vectors b1, b2 and b3,

b1 =
{
ψµ, χ12, y3,...,6 | y3,...,6, ψ

1,...,5
, η1
}
, (2.19a)

b2 =
{
ψµ, χ34, y1,2, w5,6 | y1,2, w5,6, ψ

1,...,5
, η2
}
, (2.19b)

b3 =
{
ψµ, χ56, w1,...,4 |w1,...,4, ψ

1,...,5
, η3
}
. (2.19c)

These act in similar fashion and so it will be demonstrative to explore one of these,

say b1, in more detail and simply show the highlights of the other two. We first

consider how this acts on our gauge bosons in the 0–sector. From (2.8) we see that

δb1 = −1. (2.20)

This implies that for a state to survive the GGSO projections, pairs of internal

fermions forming bosonic states with ψµ in the NS–sector must satisfy,

b1 · FNS = 0 mod 2. (2.21)

23



2.3. The NAHE set

As we can see, the states that survive and correspond to gauge bosons are

ψµ
{
y3,...,6, ψ

1,...,5
, η1
}{

y3,...,6, ψ
1,...,5

, η1
}
|0〉

NS
' SO(16); (2.22a)

ψµ
{
y1,2, w1,...,6, η2,3, φ

1,...,8
}{

y1,2, w1,...,6, η2,3, φ
1,...,8

}
|0〉

NS
' SO(28). (2.22b)

Therefore our gauge group has broken from

SO(44)→ SO(16)× SO(28). (2.23)

In the S–sector, we find that two of our gravitini are projected out,[(
4
1

)
+

(
4
3

)]
∂X

µ|0〉S →
(

2
1

)
︸ ︷︷ ︸
ψµ, χ12

[(
2
0

)
+

(
2
2

)]
︸ ︷︷ ︸

χ34, χ56

∂X
µ|0〉S, (2.24)

resulting in N = 4→ N = 2 spacetime SUSY. We also have four generations of the

128 spinor representation of SO(16) coming from the b1–sector: the vacuum of the

b1 sector is Ramond, i.e. a degenerate |±〉, and so we have[(
12
0

)
+ · · ·+

(
12
12

)]
, (2.25)

i.e. 4096 states. The GGSO projection, c

(
1
b1

)
is chosen such that only the even

states remain, i.e. [(
12

even

)]
= 2048 states. (2.26)

This can be decomposed into the 128 and 128 of SO(16) as[(
2
0

)
+

(
2
2

)]
︸ ︷︷ ︸

ψµ,χ12

{[(
2
0

)
+

(
2
2

)]
︸ ︷︷ ︸

y3,...,6

[(
8

even

)]
︸ ︷︷ ︸
y3,...,6,ψ

1,...,5
,η1

+

(
2
1

) [(
8

odd

)]}

(2.27)
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Chapter 2. Model Building & Free Fermionic Formulation

where [(
8

even

)]
' 128 (2.28a)

and [(
8

odd

)]
' 128. (2.28b)

As stated, we have four generations of each representation coming from the b1–

sector. In the (b1 + S)–sector we have the superpartners of these states. In fact,

S is our SUSY generator, thus any states that appear in the sector α will have

superpartners in α + S.

We will now see how this decomposes under b2 and b3, along with the gauge

bosons in the NS–sector.

2.3.2 Addition of b2 and b3

We will find that adding b2 and b3 results in the gauge group SO(10)×SO(6)3×E ′8
with N = 1 spacetime SUSY and that the vacuum contains forty–eight multiplets

in the 16 chiral representation of SO(10), sixteen coming from each of b1,b2,b3.

Gauge bosons At the level of {1,S,b1}, we had the gauge bosons in (2.22) gen-

erating SO(16) × SO(28), with 4 generations of the 128 and 128 of SO(16)∗. We

also had N = 2 SUSY. Adding b2 in the NS sector decomposes the SO(16) gauge

bosons as,

ψµ
{
y3,...,6, η1

}{
y3,...,6, η1

}
|0〉

NS
' SO(6)1, (2.29a)

ψµ
{
ψ

1,...,5
}{

ψ
1,...,5

}
|0〉

NS
' SO(10), (2.29b)

∗As well as our spinor representations, we have scalars that transform under both gauge groups.
We do not include these in our demonstrative analysis.
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2.3. The NAHE set

i.e. SO(16) → SO(10) × SO(6)1. In a similar fashion, the SO(28) is broken to

SO(22)× SO(6)2, with the generating bosons,

ψµ
{
y1,2, w5,6, η2

}{
y1,2, w5,6, η2

}
|0〉

NS
' SO(6)2, (2.30a)

ψµ
{
w1,...,4, η3, φ

1,...,8
}{

w1,...,4, η3, φ
1,...,8

}
|0〉

NS
' SO(22). (2.30b)

The b3 then splits the {w1,...,4, η3} and the
{
φ

1,...,8
}

resulting in SO(22)→ SO(6)3×

SO(16)′. The SO(6)i are flavour symmetries as the different generations are charged

under each different SO(6). We will see that our proton lifetime preserving U(1)

will originate in these and that we may form a linear combination that is family

universal,

U(1)ζ = U(1)1 + U(1)2 + U(1)3 (2.31)

The sector, ξ, formed by the combination

ξ = 1 + b1 + b2 + b3 ≡
{
φ1,...,8

}
, (2.32)

generates [(
8

even

)]
' 128. (2.33)

However, unlike the b1–sector, the massless states of ξ in the left–moving sector

are not degenerate; they are obtained by acting on the vacuum with a fermionic

oscillator. Therefore,

ψµ
[(

8
even

)]
|0〉ξ (2.34)

transform as gauge bosons. These combine with the 120 in the NS–sector and form

the adjoint of E8. Therefore, the hidden SO(16)′ gauge group is enhanced to E8
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and

SO(10)× SO(6)3 × E ′8 (2.35)

is the overall gauge group at the level of the NAHE set.

Chiral Matter Earlier we saw that we have four generations of the 128 and 128

of SO(16) originating in b1, at the level of the set {1,S,b1}. With the addition of

b2, we must now decompose as SO(10)× SO(6)1 representations. Considering the

GGSO projections,

c

(
1
b1

)
= c

(
1
b2

)
= −1, (2.36)

we find that (2.27) decomposes as

ψµ,χ12︷ ︸︸ ︷{(
2
0

) y3,...,6|y3,...,6︷ ︸︸ ︷[(
4

even

)] ψ
1,...,5︷ ︸︸ ︷[(
5

even

)]
+

(
2
2

)[(
4

odd

)] [(
5

odd

)]} η1︷ ︸︸ ︷(
1
0

)
(2.37a)

+

{(
2
2

) [(
4

even

)][(
5

odd

)]
+

(
2
0

)[(
4

odd

)] [(
5

even

)]}(
1
1

)
(2.37b)

where [(
5

even

)]
' 16 (2.38)

with [(
5
0

)]
(2.39)

being the highest weight. Also, [(
5

odd

)]
' 16 (2.40)
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with [(
5
5

)]
(2.41)

the highest weight in this case. We explicitly construct the 16 representation in this

basis in Appendix A. For b2 and b3, the corresponding fermions are

4 = {y1y2, w5w6, y1y2, w5w6}, 2 = {ψµ, χ34}, 5 = {ψ1,...,5} and 1 = {η2} and

4 = {w1,...,4, w1,...,4}, 2 = {ψµ, χ56}, 5 = {ψ1,...,5} and 1 = {η3} respectively and

so we have a total of 48 generations of the 16 and 16 representations, sixteen com-

ing from each of the bi–sectors. As we can see, the multiplicative factor determining

the number of 16s comes from the boundary conditions on{
yi, wi|yi, wi

}
. (2.42)

This was discussed in depth in [84, 85]. We also notice that, at the level of the

NAHE set, half the generations per bi carry charge of the opposite sign to the

other half of the 16 representations under the U(1) combination, (2.31). As we will

see, upon breaking SO(10) using further basis–vectors at the string scale, we are

able to project out half the states of each representation resulting in a complete

representation being formed by states with Qζ of opposite sign. This is dependent

on the symmetry breaking pattern down from SO(10) and our choices of GGSO

projections, as outlined in the next section. The GGSO projections that we have

used for the NAHE set are summarised as:

1 S b1 b2 b3



1 1 1 −1 −1 −1

S 1 1 1 1 1

b1 −1 −1 −1 −1 −1

b2 −1 −1 −1 −1 −1

b3 −1 −1 −1 −1 −1

(2.43)
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2.4 Beyond the NAHE set

The second stage consists of adding three or four basis vectors, typically denoted

by {α, β, γ}, to the NAHE set. The additional basis vectors reduce the number of

generations to three and break the four dimensional gauge symmetry. In this section

we explore the various patterns of SO(10) breaking and how they are realised in the

FFF. We also look at how the matter representations are decomposed for our various

symmetry breaking patterns.

2.4.1 Visible Gauge–Symmetry Breaking Patterns

At the level of the NAHE set, the GUT group in the visible sector is SO(10),

generated by the worldsheet fermions ψ
1,...,5

. Assigning different boundary condi-

tions to these fermions, in a way consistent with the string constraints outlined

in Appendix B, leads to various symmetry breaking patterns at the string scale,

MS. We will outline those commonly seen in semi–realistic free fermionic models

below. When breaking to the maximal subgroups, the flipped SU(5) (FSU5) and

Pati–Salam (PS) breaking patterns, we use a single basis vector to break SO(10)

at the string scale. However, we may also employ more than one basis vector to

break the GUT group further at MS, removing the need for an intermediate GUT

scale, MGUT; the standard–like (SL) and left–right symmetric (LRS) models being

the most commonly seen in the literature [18, 19, 51].

Flipped SU(5)

As the fermions generating our SO(10) GUT group are complex, we may assign

them rational boundary conditions [75, 76] corresponding to the fermions picking

up a complex phase, i.e. Z4 boundary conditions.
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In order to break SO(10)→ SU(5)× U(1) we take

α
{
ψ

1,...,5
}

=

{
1

2

1

2

1

2

1

2

1

2

}
. (2.44)

Assuming δα = −1⇔ α (ψµ) = 1, we require the
{
ψ
}{
ψ
}

pairs to satisfy

α · FNS = 0 mod 2 (2.45)

in order for the states to survive the GGSO projection. Therefore, the only combi-

nations permitted are

ψµψ
i∗
ψ
j|0〉NS (2.46a)

ψµψ
i
ψ
j∗|0〉NS. (2.46b)

We can easily see that we now have 25 generators: 20 for i 6= j and 5 Cartan

generators, where i = j. Thus we have a rank–5, dimension–25 group, i.e.

U(5) ' SU(5)× U(1). (2.47)

The FSU5 models were first constructed in string–models in [48, 78, 86] and further

phenomenological analysis was done in [87, 88].

Pati–Salam

To break SO(10)→ SO(6)×SO(4) makes use of only periodic boundary conditions

for the SO(10) generators, i.e. Z2 boundary conditions,

α
{
ψ

1,...,5
}

= {11100} . (2.48)

Again assuming δα = −1 ⇔ α (ψµ) = 1, we require (2.45) to hold for the
{
ψ
}{
ψ
}

pairs and so only

ψµψ
i
ψ
j|0〉NS

(2.49)
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for i, j = 1, 2, 3 or i, j = 4, 5 survive. The GGSO projections remove 24 generators

from our spectrum and we are only left with 21: 15 originating from i, j = 1, 2, 3

and 6 from i, j = 4, 5. Therefore, our gauge group is now a product of a rank–

3, dimension–15 group, i.e. SO(6) ' SU(4), and a rank–2, dimension–6 group,

i.e. SO(4) ' SU(2)× SU(2), and so the resulting breaking is

SO(10)
α−→ SU(4)× SU(2)× SU(2). (2.50)

Standard–like

Here we apply both breaking patterns demonstrated above in two separate basis

vectors,

α
{
ψ

1,...,5
}

=

{
1

2

1

2

1

2

1

2

1

2

}
(2.51a)

β
{
ψ

1,...,5
}

= {11100} . (2.51b)

As we saw previously, following the application of α, 25 generators remain:

i 6= j


ψµψ

i∗
ψ
j|0〉NS

ψµψ
i
ψ
j∗|0〉NS

 20 generators, (2.52a)

i = j { ψµψi∗ψj|0〉NS } 5 Cartan generators. (2.52b)

Applying β projects out 12 gauge bosons and only the combinations i, j = 1, 2, 3 and

i, j = 4, 5 survive. Thus, the product of a rank–3, dimension–9 group, i.e. U(3) '

SU(3)×U(1), and a rank–2, dimension–4 group, i.e. U(2) ' SU(2)×U(1), remain.

Our symmetry breaking pattern at the string–scale is

SO(10)
α,β−−→ SU(3)× U(1)× SU(2)× U(1). (2.53)
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Left–right Symmetric

Similarly, we can break SO(10) → SU(3) × SU(2) × SU(2) by the application of

two basis vectors,

α
{
ψ

1,...,5
}

= {11100} (2.54a)

β
{
ψ

1,...,5
}

=

{
1

2

1

2

1

2
00

}
. (2.54b)

The application of α to the NS sector of the NAHE set gives, as was shown previously,

the PS gauge group, i.e. SO(6)×SO(4). Applying β projects out 6 generators from

the 15 that generate SO(6) and leaves the SO(4) untouched. We are now left with

a rank–3, dimension–9 group, i.e. U(3), as seen earlier. Therefore our visible gauge

group at the string–scale is

SO(10)
α,β−−→ SU(3)× U(1)× SU(2)× SU(2). (2.55)

SU(4)× SU(2)×U(1)

Alternatively, we can instead assign ψ
4,5

complex boundary conditions, i.e.

β
{
ψ

1,...,5
}

=

{
000

1

2

1

2

}
. (2.56)

This would result in

SO(10)
α,β−−→ SU(4)× SU(2)× U(1) (2.57)

as 2 gauge bosons would be projected out from the 6 that generate SO(4). Here the

SO(6) generators remain untouched.

However, the SU(4)×SU(2)×U(1) (SU421) models do not provide phenomeno-

logically viable vacua in which to construct realistic effective field theories [89].
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2.4.2 Matter

So far, viable three generation models with SU(5)× U(1) [78], SO(6)× SO(4) [49,

50], SU(3) × SU(2) × U(1)2 [18–20], or SU(3) × SU(2)2 × U(1) [51, 90], SO(10)

subgroups have been constructed. Three chiral generations arise from the sectors b1,

b2 and b3, and are decomposed under the final SO(10) subgroup below. The flavour

SO(6)3 groups are broken to products of U(1)n with 3 ≤ n ≤ 9. This comes from

assigning different boundary conditions to {y3,...,6 | y3,...,6} in b1, {y1,2, w5,6 | y1,2, w5,6}

in b2 and {w1,...,4 |w1,...,4} in b3, than to our right–moving complex fermions ηi in

bi, which generate the U(1)1,2,3 factors.

Above, we have shown the origin of the 16 representation of SO(10) in free

fermion models. Here we present how these are decomposed under the various

subgroups.

FSU5 Breaking SO(10)→ SU(5)× U(1) decomposes the 16 as

16→ 15 + 101 + 5−3, (2.58)

corresponding to[(
5
0

)
+

(
5
2

)
+

(
5
4

)]
→
(

5
0

)
︸ ︷︷ ︸

15

+

(
5
2

)
︸ ︷︷ ︸

101

+

(
5
4

)
︸ ︷︷ ︸

5−3

,
(2.59)

where the U(1) charges are Tr [U(5)]. These representations then break to the SM

states in the usual way:
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(
5
0

)
→
(

3
0

)(
2
0

)
︸ ︷︷ ︸

ec

, (2.60a)

(
5
2

)
→
(

3
2

)(
2
0

)
︸ ︷︷ ︸

dc

+

(
3
1

)(
2
1

)
︸ ︷︷ ︸

QL

+

(
3
0

)(
2
2

)
︸ ︷︷ ︸

νc

, (2.60b)

(
5
4

)
→
(

3
2

)(
2
2

)
︸ ︷︷ ︸

uc

+

(
3
3

)(
2
1

)
︸ ︷︷ ︸

LL

, (2.60c)

with

Y =
1

3
Tr [U(3)C ] +

1

2
Tr [U(2)L] , (2.61)

where

Tr [U(3)C ] =
3

2
(B − L) ≡ QC (2.62)

and

Tr [U(2)L] = 2T3R ≡ QL. (2.63)

This combination is a universal combination for NAHE–based models. Before break-

ing to the SM, the FSU5 model may also go via an intermediate breaking at the

string scale,

SU(5)× U(1)→ U(3)C × U(2)L → SU(3)C × SU(2)L × U(1)Y (2.64)

i.e. via the SL gauge group mentioned earlier. Alternatively, a heavy Higgs mecha-

nism may be employed to break FSU5 to the SM directly.
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PS Writing our 16 in combinatorial notation, decomposed under the PS gauge

group,

SO(6)× SO(4) ' SU(4)C × SU(2)L × SU(2)R. (2.65)

we have

[(
5
0

)
+

(
5
2

)
+

(
5
4

)]
→

FL︷ ︸︸ ︷[(
3
1

)
+

(
3
3

)](
2
1

)
(2.66a)

+

[(
3
2

)
+

(
3
0

)][(
2
2

)
+

(
2
0

)]
︸ ︷︷ ︸

FR

(2.66b)

i.e. 16 → (4,2,1) +
(
4,1,2

)
. This will break to the SM states via the LRS gauge

group

SU(4)C × SU(2)R × SU(2)L → SU(3)C × SU(2)R × SU(2)L × U(1)C (2.67)

as

[(
3
1

)
+

(
3
3

)](
2
1

)
→

QL︷ ︸︸ ︷(
3
1

)(
2
1

)
+

LL︷ ︸︸ ︷(
3
3

)(
2
1

)
, (2.68a)

[(
3
2

)
+

(
3
0

)][(
2
2

)
+

(
2
0

)]
→

QR︷ ︸︸ ︷(
3
2

)[(
2
2

)
+

(
2
0

)]

+

(
3
0

)[(
2
2

)
+

(
2
0

)]
,︸ ︷︷ ︸

LR

(2.68b)

35



2.4. Beyond the NAHE set

where (2.68b) then decomposes to the SM states,

QR ∼
(

3,2,1,−1

2
,
1

2

)
→

ucL︷ ︸︸ ︷(
3,1,−2

3

)
+

dcL︷ ︸︸ ︷(
3,1,

1

3

)
, (2.69a)

LR ∼
(

1,2,1,
3

2
,
1

2

)
→ (1,1, 0)︸ ︷︷ ︸

νcL

+ (1,1, 1)︸ ︷︷ ︸
ecL

. (2.69b)

The breaking of SO(10)→SU(3)C ×SU(2)L×SU(2)R×U(1)C is via the PS gauge

group, and it is clear from (2.66), the states in FL and FR must have charges of

opposite sign under the U(1)ζ combination in (2.31), whereas breaking SO(10) via

FSU5 does not give these charge assignments. In fact, taking this route of symmetry

breaking pattern restricts the charge of all the states in the 16 to be of the same

sign as either (2.37a) or (2.37b) are projected out.

In order to elucidate the U(1)1,2,3 charges of the matter states in the free fermionic

models, it is instructive to extend the SO(10) symmetry, at the level of the NAHE

set, to E6. This is achieved by adding to the NAHE set the basis vector [91, 92],

x ≡
{
ψ

1,··· ,5
, η1,2,3

}
. (2.70)

2.4.3 Addition of x

As there are 8 periodic right–moving complex fermions, the vacua in the x-sector

are degenerate, |±〉. Thus, before the GGSO projections, we have 256 states,[(
8
0

)
+ · · ·+

(
8
8

)]
. (2.71)

Once we apply the GGSO projections

c

(
x
1

)
= c

(
x
S

)
= ±1, (2.72)
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half of these states are projected out. We are therefore left with either[(
8

even

)]
(2.73a)

or [(
8

odd

)]
. (2.73b)

For our choice of GGSO,

c

(
x
1

)
= c

(
x
S

)
= −1 (2.74)

we keep (2.73a). As we saw earlier, the NS-sector contains the gauge bosons that

generate

SO(10)× U(1)3 × SO(16)′ (2.75)

and the gauge bosons in the ξ-sector enhance the hidden SO(16)′ → E ′8.

The gauge bosons coming from the x-sector transform as the 16 and 16 of

SO(10),

ψ
1,...,5︷ ︸︸ ︷[(
5

even

)] η1,2,3︷ ︸︸ ︷[(
1
0

)(
1
0

)(
1
0

)]
+

[(
5

odd

)][(
1
1

)(
1
1

)(
1
1

)]
, (2.76)

and enhance the SO(10) × U(1) → E6 where the U(1) combination is given by

(2.31). Adding the x basis–vector at the level of the NAHE set, the gauge group

is enhanced to SO(4)3 × E6 × U(1)2 × E ′8 with N = 1 space–time supersymmetry.

There are 24 generations in the 27 representation of E6, eight from each twisted

sector. In the free fermionic construction these are the sectors (b1;b1+x),(b2;b2+x)

and (b3;b3+x), where the sectors bi produce the spinorial 16 of SO(10), as shown
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previously, and the sectors (bi+x) produce the vectorial (10+1)+1 representations

in the decomposition of the 27 representation of E6

27 = 16± 1
2

+ 10∓1 + 1±2 (2.77)

under SO(10)×U(1). The additional “1” arising in the (bi+x) sectors is an E6 sin-

glet. These are obtained by acting on the vacuum with the oscillators of the complex

worldsheet fermions
{
ψ

1,...,5
ηi
}

, which have Neveu–Schwarz boundary conditions in

the sectors bi+x.

The vacuum of the sectors bi contain twelve periodic fermions, with each periodic

fermion giving rise to a two dimensional degenerate vacuum |+〉 and |−〉 with fermion

numbers 0 and −1, respectively. After applying the GGSO projections, we can write

the degenerate vacuum of the sector b1 in combinatorial form:[(
4
0

)
+

(
4
2

)
+

(
4
4

)]{(
2
0

) [(
5
0

)
+

(
5
2

)
+

(
5
4

)](
1
0

)
(2.78a)

+

(
2
2

)[(
5
1

)
+

(
5
3

)
+

(
5
5

)] (
1
1

)}
(2.78b)

where 4 = {y3y4, y5y6, y3,4, y5,6}, 2 = {ψµ, χ12}, 5 =
{
ψ

1,...,5
}

and 1 = {η1}. We

notice that half of the states from (2.27) are projected out due to our choice of

c

(
x
b1

)
= −1 (2.79)

The first term in square brackets counts the degeneracy of the multiplets, being

eight in this case. The two terms in the curly brackets correspond to the two CPT

conjugated components of a Weyl spinor. The first term among those corresponds to

the 16 spinorial representation of SO(10), and fixes the space–time chirality prop-

erties of the representation, whereas the second corresponds to the CPT conjugated

anti–spinorial 16 representation.
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The charge under the U(1) symmetry generated by η1 is determined by its vac-

uum state, being a Ramond state in the |+〉 vacuum for the degenerate vacuum

in (2.78a). Hence, in this case the U(1)1 charge is +1
2
. Similar vacuum struc-

ture is obtained for the sectors b2 and b3 with {χ34, y1,2, w5,6|y1,2, w5,6, η2} and

{χ56, w1,...,4|w1,...,4, η3} respectively.

The 10 + 1 in the 27 of E6 are obtained from the sector bi+x. The effect of

adding the vector x to the sectors bi is to replace the periodic boundary conditions

for
{
ψ

1,...,5
, ηi
}

with periodic boundary conditions for ηj,k with i 6= j 6= k and

i, j, k ∈ {1, 2, 3}. Consequently, massless states from the sectors bi+x are obtained

by acting on the vacuum with a fermionic oscillator.

If the space–time vector bosons that enhance the SO(10) × U(1) symmetry to

E6 are projected out, either the spinorial 16 or the vectorial (10 + 1) + 1, survive

the GGSO projections at a given fixed point. By breaking the degeneracy with

respect to the internal fermions {y, w|y, w} we can obtain spinorial and vectorial

representations from the twisted sectors at different fixed points. A classification of

symmetric free fermionic heterotic string models along these lines was done in [57,

79, 80, 93].

When the SO(10)×U(1) symmetry is enhanced to E6, the charges of the spinorial

16, the vectorial 10 and the singlet 1, under the U(1)ζ , are fixed by the E6 symmetry,

as shown in (2.77). When the E6 symmetry is broken by the GGSO projections,

i.e. the x–sector bosons are projected out, the U(1)ζ charges are not restricted by

the E6 embedding, and can take either sign. The U(1) symmetry that serves as

the proton lifeguard is a combination of the three U(1) symmetries generated by the

worldsheet complex fermions η1,2,3. The states from each of the sectors b1, b2 and b3

are charged with respect to U(1)1, U(1)2 and U(1)3, respectively. Consequently, the
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U(1) combination in (2.31) is family universal. This is also true of the leptophobic

combination as it is just a linear combination of U(1)ζ and U(1)B−L.

2.5 Light U(1)s

In the string derived models of [18–20, 48, 49, 78], the U(1)1,2,3 are anomalous.

Therefore, U(1)ζ ≡ U(1)A is also anomalous and must be broken near the string

scale. In the string derived left–right symmetric models of [51], U(1)1,2,3 are anomaly

free and hence the combination U(1)ζ is also anomaly free. It is this property of

these models which allows this U(1) combination to remain unbroken.

It is instructive to study the characteristics of U(1)ζ in the left–right symmetric

string derived models [51], versus those of U(1)A in the string derived models of [19,

49, 78, 94]. We note that both U(1)ζ as well as U(1)A are obtained from the same

combination of complex right–moving worldsheet currents η1,2,3. The distinction

between the two cases, as we describe below, is due to the charges of the SM states,

arising from the sectors b1, b2 and b3, under this combination.

The periodic boundary conditions of the worldsheet fermions ηi ensures that the

fermions from each sector bi are charged with respect to one of the U(1)i symmetries.

In the models of [18–20, 48, 49, 78] the charges of a given bi generation under U(1)i is

of the same sign, whereas in the models of [51] they differ. In general, the distinction

is by the breaking of SO(10) to either SU(5)×U(1) or SO(6)×SO(4). In the former

case they will always have the same sign, whereas in the latter they may differ. This

can be clearly seen in (2.37). The crucial point is that the PS breaking pattern

allows the terms carrying odd and even combinatorial factors to come with opposite

charges under U(1)j. This results from the GGSO projection of the basis vector

γ on the states arising from the sectors bi fixing the vacuum of ηi with opposite
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chirality in the two terms of (2.66). The reason being that the combinatorial factor

with respect to ψ
1,...,3

is odd in the first term and even in the second, with the

γ projection that utilises (2.48) being blind to ψ
4,5

. On the other hand, in the

models that utilise (2.44), the γ projection is not blind to ψ
4,5

, and consequently,

the vacuum of ηi is fixed with the same chirality for all the states arising from the

sector bi.

Thus, in models that descend from SO(10) via the SU(5)×U(1) breaking pattern

the charges of a generation from a sector bi, where i = 1, 2, 3, under the correspond-

ing symmetry U(1)i, are either +1
2

or −1
2

for all the states from that sector. In

contrast, in the left–right symmetric string models, the corresponding charges, up

to a sign, are

Qj(2L) = +1/2; Qj(2R) = −1/2, (2.80)

i.e. the charges of the SU(2)L doublets have the opposite sign from those of the

SU(2)R doublets. In fact, this is the reason that, in contrast to the FSU5 and

the SL string models, in the LRS models, the U(1)i symmetries are not part of

the anomalous U(1) symmetry. This arises because the SO(10) symmetry is not

enhanced to E6. If the NAHE symmetry is extended to E6, the spinorial 16 states

with the “wrong” U(1)ζ charge are projected out, as is the case in the FSU5 and

SL models, as well as the PS models constructed to date.

The LRS model given in Table 2.2 and (2.81) is an example of an explicit string

model that exhibits this property. The full massless spectrum of this model, as

well as the superpotential up to quintic order, are given in [51]. We note that the

boundary conditions on
{
φ

1,...,8
}

correspond to a breaking pattern in the hidden

sector which may result in interesting physics. However, we will not discuss this
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further in this thesis. We refer the interested reader to [51] for the full gauge group

of the model, including the hidden sector.

ψµ χ12 χ34 χ56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0

β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0

γ 0 0 0 0 1
2

1
2

1
2 0 0 1

2
1
2

1
2 1 1

2
1
2

1
2

1
2

1
2

1
2 0

y3y6 y4y4 y5y5 y3y6 y1w5 y2y2 w6w6 y1w5 w2w4 w1w1 w3w3 w2w4

α 1 0 0 0 0 0 1 1 0 0 1 1

β 0 0 1 1 1 0 0 0 0 1 0 1

γ 0 0 1 0 1 0 0 1 0 1 0 0

c

(
α
1

)
=− c

(
α
S

)
= −c

(
α
b1

)
= −c

(
α
b2

)
= −c

(
α
b3

)
=

c

(
β
1

)
=− c

(
β
S

)
= −c

(
β
b1

)
= −c

(
β
b2

)
= c

(
β
b3

)
=

i c

(
γ
1

)
=− c

(
γ
S

)
= c

(
γ
b1

)
= c

(
γ
b2

)
= c

(
γ
b3

)
=

−c
(
α
β

)
=− c

(
α
γ

)
= c

(
β
γ

)
= 1

(2.81)

Table 2.2: LRS Model 1 boundary conditions. Below are the GGSO coefficients, where the
GGSO coefficients for the NAHE set were already shown in (2.43). Taken from [51].

2.5.1 Proton Lifeguard

The preservation of the U(1) combination

U(1)ζ = U(1)1 + U(1)2 + U(1)3
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as an anomaly free symmetry is the key to keeping it as an unbroken low–scale

symmetry. The left–right symmetric string models admit cases without any anoma-

lous U(1) symmetry; free of any gauge and gravitational anomalies. We note that

there may exist string models in the classes of [19, 49, 78, 94] in which U(1)ζ is

anomaly free. This may be the case in the so–called self–dual vacua of spinor vector

duality. In [79] a duality symmetry was uncovered in the space of fermionic Z2×Z2

symmetric orbifolds under the exchange of the total number of twisted spinor plus

anti–spinor and twisted vector representations of SO(10). The self–dual models are

the models in which the total number of spinors and anti–spinors is equal to the

total number of vector representations. The self–dual models are free of any U(1)

anomalies. Thus, in such self–dual models with three light chiral generations the

U(1)ζ combination is anomaly free and can remain unbroken below the string scale.

Such quasi–realistic self–dual string models, with an anomaly free U(1)ζ , have not

been constructed to date.

Here, we discuss the stringy origins of the SM matter and additional matter that

may be included in our effective theory to allow U(1)ζ to remain anomaly free. In

addition to the three light SM generations arising from the twisted sectors, bi, the

string models contain additional states arising from the twisted or untwisted sectors.

The additional spectrum is in general highly model dependent. Later we will fix our

string–inspired model by fitting it with additional states that are compatible with

the string charge assignments.

The twisted sectors can produce additional states that arise from spinorial rep-

resentations of the underlying SO(10) symmetry with charges ±1
2

under U(1)i. The

original Z2 × Z2 orbifold that underlies the free fermionic models has forty–eight

fixed points. Additional states may also arise from different fixed points.
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Sectors that contain the basis vectors that break the SO(10) gauge symmetry,

generically produce exotic states with fractional QEM that must obtain a sufficiently

high mass. We note the existence of exophobic heterotic string models in which

fractionally charged states appear only in the massive string spectrum [83]. We do

not consider these states further here.

As shown previously, the twisted sectors bi+x produce states that transform in

the vectorial representations of the underlying SO(10) GUT symmetry. A twisted

sector that produces SO(10) vectorial representations does not exist in the model

of Table 2.2. An alternative model that gives rise to twisted states in the vectorial

representation of SO(10) is given in Table 2.3.

The sector b1+b2+α + β in the additive group, Ξ, spanned by this basis gives rise

to twisted vectorial SO(10) representations. In this sector, the charges under the

U(1)ζ are fixed by the vacuum of the η1 and η2.

In the left–right symmetric models, the twisted sectors bi+x produce states that

transform as SU(2)L × SU(2)R bi-doublets with the U(1)ζ charge assignments

(1,2,2, 0,±1) (2.83)

as well as colour triplets. The U(1)ζ charges of these colour triplets is dependent

upon the γ projection and there are several possibilities. If the twisted plane pro-

duces bi–doublets with Qζ = +1, then the γ projection dictates that any colour

triplet arising from that sector is neutral under U(1)ζ . In this case, we must take

the colour triplets to have the charges

(3,1,1,−1, 0) +
(
3,1,1,+1, 0

)
(2.84)

The vectorial states arising from the twisted sector also depend, however, on the

specific choice of basis vectors and the pairing of the worldsheet fermions from
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ψµ χ12 χ34 χ56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0

β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0

γ 0 0 0 0 1
2

1
2

1
2 0 0 1

2
1
2

1
2 0 1

2
1
2

1
2

1
2

1
2

1
2 0

y3y6 y4y4 y5y5 y3y6 y1w5 y2y2 w6w6 y1w5 w2w4 w1w1 w3w3 w2w4

α 1 0 0 0 0 0 1 1 0 0 1 1

β 0 0 1 1 1 0 0 0 0 1 0 1

γ 0 0 1 0 1 0 0 1 0 1 0 0

c

(
α
1

)
=− c

(
α
S

)
= −c

(
α
b1

)
= −c

(
α
b2

)
= −c

(
α
b3

)
=

c

(
β
1

)
=− c

(
β
S

)
= −c

(
β
b1

)
= −c

(
β
b2

)
= −c

(
β
b3

)
=

i c

(
γ
1

)
=− c

(
γ
S

)
= c

(
γ
b1

)
= c

(
γ
b2

)
= c

(
γ
b3

)
=

c

(
α
β

)
=− c

(
α
γ

)
= c

(
β
γ

)
= 1

(2.82)

Table 2.3: LRS Model 2 boundary conditions and GGSO projection coefficients for the
additional basis vectors, {α, β, γ}, where the GGSO coefficients for the NAHE set were already

shown in (2.43). Taken from [51].

the set {y, w|y, w} into complex fermions. There exist choices of basis sets that

produce vectorial states from none, one, two or three of the twisted planes. To date,

only models of the first and second class have been studied in detail, where the

example in Table 2.2 belongs to the first kind, and the example in Table 2.3 belongs

to the second. If the twisted plane produces both electroweak doublets and color

triplets, the γ–projection dictates that they have ±1 and vanishing U(1)ζ charges,
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respectively, and vice versa.

An alternative possibility, is that more than one twisted plane produces states

in vectorial SO(10) representations. In this case, one plane can produce bi–doublets

and a second plane produces the colour triplets. Here, the charges of the twisted

colour triplets are not correlated with those of the bi–doublets and we can obtain

twisted vectorial colour triplets with charges

(3,1,1,+1,−1) +
(
3,1,1,−1,+1

)
(2.85a)

or

(3,1,1,+1,+1) +
(
3,1,1,−1,−1

)
. (2.85b)

Electroweak Higgs bidoublets may also arise from the untwisted sector. However,

in this case the γ GGSO projection dictates that they are neutral under U(1)ζ ,

H0 = (1,2,2, 0, 0) =

(
Hu

+ Hd

Hu Hd
−

)
. (2.86)

The untwisted Higgs bidoublet is the one that forms invariant leading mass terms

with the Standard Model matter states, due to the fact that theQL andQR multiplets

carry opposite U(1)ζ charge.

The string models may also produce SO(10) singlets, which carry U(1)ζ charges.

The singlets can arise from the Neveu–Schwarz untwisted sector and twisted sectors

that produce vectorial representations, like the sector b1+b2+α + β. The U(1)ζ

charges are fixed according to the following rules:

In the untwisted sector these states arise by acting on the vacuum with two

oscillators, ηi and ηj. Their U(1)ζ charges are fixed by the γ projection according

to the sign of δγ in (2.7), being zero for δγ = +1 i.e. γ (ψµ) = 0 and ±2 for δγ = −1,

i.e. γ (ψµ) = 1. As the twisted sector we consider, for concreteness, the sector
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b1+b2+α+ β. The singlets from that sector are obtained by acting on the vacuum

with η3, or with an oscillator of a real fermion from the set {y w}, which are not

periodic in b1+b2+α + β. The U(1)ζ charges are again fixed by the γ projection.

The γ GGSO projection phase in this sector can be either ±1 or ±i. As we have

seen, depending on this GGSO phase and the type of state, the U(1)ζ charges in

this sector can be ±2, ±1 or zero. Therefore, we can have a combination of singlets

with charges +2 and +1, as well as singlets with vanishing U(1)ζ charge.

2.5.2 Leptophobic U(1)

At the stage of the NAHE set, the gauge group reads

SO(10)× SO(6)3 × E ′8

where the additional basis vectors, {α, β, γ}, break the SO(10) GUT group as de-

tailed in Section 2.4. The flavour SO(6)3 symmetries are broken to U(1)3+n with

n = 0, · · · , 6. The first three, denoted by U(1)i, arise from the world–sheet cur-

rents ηiηi
∗

where i = 1, 2, 3. These three U(1) symmetries are present in all the

three generation free fermionic models which use the NAHE set and we saw a linear

combination of these form the proton lifetime preserving U(1)ζ . Additional horizon-

tal U(1) symmetries, denoted by U(1)j with j = 4, 5, ..., arise by pairing two real

fermions from the sets

{
y3,...,6

}
,

{
y1,2, w5,6

}
,

{
w1,...,4

}
, (2.87)

as mentioned previously. The final observable gauge group depends on the number

of such pairings. The model, introduced in [60], is based on a Standard–like gauge

symmetry and there are three such pairings, {y3y6, y1w5, w2w4}, which generate

three additional U(1) symmetries, denoted by U(1)4,5,6. It is important to note that
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the existence of these three additional U(1) currents is correlated with a superstring

doublet–triplet splitting mechanism [20, 95]. Due to these extra U(1) symmetries,

the colour triplets from the NS sector are projected out of the spectrum by the

GGSO projections while the electroweak doublets remain in the light spectrum.

The full massless spectrum and charges are given in [60].

ψµ χ12 χ34 χ56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0

β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0

γ 0 0 0 0 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1 1 1

2
1
2

1
2 0

y3y6 y4y4 y5y5 y3y6 y1w6 y2y2 w5w5 y1w6 w1w3 w2w2 w4w4 w1w3

α 1 1 1 0 1 1 1 0 1 1 1 0

β 0 1 0 1 0 1 0 1 1 0 0 0

γ 0 0 1 1 1 0 0 0 0 1 0 1

c

(
α
1

)
=c

(
α
S

)
= c

(
α
b1

)
= −c

(
α
b2

)
= −c

(
α
b3

)
=

c

(
β
1

)
=c

(
β
S

)
= −c

(
β
b1

)
= −c

(
β
b2

)
= c

(
β
b3

)
=

−c
(
γ
1

)
=c

(
γ
S

)
= i c

(
γ
b1

)
= c

(
γ
b2

)
= i c

(
γ
b3

)
=

c

(
α
β

)
=− i c

(
α
γ

)
= i c

(
β
γ

)
= 1

(2.88)

Table 2.4: Standard–like model boundary conditions and GGSO coefficients, with others
specified by modular invariance. This model accommodates a leptophobic U(1). Taken from [60].

For some choices of the additional basis vectors there may exist a combination

X = nαα + nββ + nγγ (2.89)
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for which XL ·XL = 0 and XR ·XR 6= 0 that produces additional space–time vector

bosons, just as x did previously. In the example given in Table 2.4, these may come

from X = 1 + α + 2γ and transform as triplets under SU(3)C with U(1) charges.

Thus, they enhance the SL gauge group to

SU(4)C × SU(2)L × U(1)C′ × U(1)L (2.90)

with the U(1) generator of SU(4)C being the leptophobic combination discussed in

[60, 61]. Here the U(1)C′ is a combination of U(1)C , generated by (2.62), and U(1)7′ ,

generated by the worldsheet current φ
1
φ

1−φ8
φ

8
, and U(1)L is generated by (2.63).

Forming anomaly free, leptophobic, abelian symmetries in free fermionic heterotic

string models is highly non–trivial and model–specific. We give a specific example

later in this work, based on the SL symmetry breaking pattern [60] and find that

the LRS symmetry breaking pattern may also produce a suitable symmetry.

2.6 Normalization of U(1)s

An important consideration when investigating phenomenological aspects of string

models is the proper normalization of U(1)s. As detailed in Sections 2.5.1 and 2.5.2,

we are interested in the different phenomenological implications of light U(1)s. As

we have seen, different boundary conditions coming from the basis vectors {α, β, γ}

result in different symmetry breaking patterns. A common feature of these models,

however, is the occurrence of additional U(1) symmetries.

As all of the models come from a single GUT symmetry, there are model–

independent features one may exploit within the context of a given model. For

example, gauge coupling unification. Taking the LRS breaking pattern as our model,

with each gauge group there is an associated coupling constant, i.e. α3, α2R, α2L and
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2.6. Normalization of U(1)s

αC . Just as with the gauge couplings of the MSSM, discussed in Section 1.2, these

run with energy scales. In fact, they are expected to unify at some high scale as

they are embedded within an SO(10) GUT, with a single gauge coupling expected

to continue running beyond this, αG, that will unify at the string scale with αζ , the

coupling of our U(1)ζ , external to the SO(10) GUT.

In GUT constructions the normalization of abelian generators is fixed by their

embedding in non–abelian groups. This results in non–abelian gauge couplings,

αNA, being unchanged, i.e. they are already normalized. In the case of abelian

gauge groups, their respective gauge couplings, αA, will require some normalization

constant to satisfy

αG ≡ αiNA = kiα
i
A. (2.91)

However, in string theory the non–abelian symmetry is not manifest, and the proper

normalization of the U(1) currents is obscured. The U(1) normalization in string

models that utilise a worldsheet conformal field theory construction is fixed by their

contribution to the conformal dimensions of physical states. Also, one has the

choice of normalizing the non–abelian gauge couplings too. This is due to the re-

lationship between low–energy effective gauge symmetries and their descriptions as

worldsheet Kač–Moody algebras. One may rewrite the standard one–loop renormal-

ization group equations (RGEs),

α−1
i (MGUT) = α−1

i (µ)− βi
2π

log

(
MGUT

µ

)
+ ∆

(GUT)
i (2.92)

in a string model as [96]

4π

αi (µ)
= ki

4π

αstring

+ βi log
M2

string

µ2
+ ∆

(string)
i , (2.93)
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where ki are the relevant normalization constants, βi are the one–loop β–functions,

∆i are the heavy unification–scale thresholds and αstring ≡ αi (Mstring). The difference

is due to the unification with gravity in string theory [97]i.e.

8π
GN

α′
= g2

i ki = g2
string. (2.94)

The ki featuring in (2.91) are the Kač–Moody levels of the gauge group. These are

related to the normalization of the generators, which is a subtle issue in the analysis

of gauge coupling unification in string models. The procedure for fixing the normal-

ization of U(1)s was outlined in [30, 98] and we repeat it here for completeness.

In unified string models, the Kač–Moody level of non–abelian group factors is

always one. In the FFF of the heterotic string, a given U(1) current, U , in the

Cartan subalgebra of the four dimensional gauge group, is a combination of the

simple right–moving worldsheet currents

U(1)f ≡ f ∗f, (2.95)

corresponding to individual worldsheet fermions, f . U then takes the form

U =
∑
f

af U(1)f , (2.96)

where the af are model dependent coefficients. Each U(1)f is normalized to one, so

that 〈U(1)f , U(1)f〉 = 1, and each of the linear combinations must also be normalized

to one. The proper normalization coefficient for the linear combination U is given

by

N =

(∑
f

a2
f

)− 1
2

, (2.97)

and the properly normalized U(1) current is, thus, given by Û(1) = N · U .
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2.6. Normalization of U(1)s

In general, the Kač–Moody level, k, of a U(1) generator can be deduced from

the operator product expansion between two of the U(1) currents, and is given by

k = 2N−2 = 2
∑
f

a2
f . (2.98)

The result is generalised to k =
∑

i a
2
i ki when the U(1) is a combination of several

U(1)s with different normalizations. This procedure is used to determine the Kač–

Moody level, k1, of the weak–hypercharge generator, as well as that of any other

U(1) combination in the effective low–energy field theory.

In the LRS heterotic string models, the SO(10) symmetry is broken to SU(3)C×

U(1)C × SU(2)L × SU(2)R, where the combinations of worldsheet currents

1

3

(
ψ
∗
1ψ1 + ψ

∗
2ψ2 + ψ

∗
3ψ3

)
(2.99)

and

1

2

(
ψ
∗
4ψ4 + ψ

∗
5ψ5

)
(2.100)

generate U(1)C and T3R , respectively, where the latter is the diagonal generator of

SU(2)R. The weak–hypercharge is then given by

U(1)Y = T3R +
1

3
U(1)C . (2.101)

In our analysis of gauge coupling unification, the symmetry of SU(2)R is incorporated

at the MR scale, where above this scale the multiplets are in representations of the

LRS gauge group and below the MR scale they are in SM representations. The

weak-hypercharge coupling relation is given by

1

α1(MR)
=

1

α2R(MR)
+
kC
9

1

αĈ(MR)
=

1

α2R(MR)
+

2

3

1

αĈ(MR).
(2.102)
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Here we have used (2.98) to find that the Kač–Moody level of U(1)C is kC = 6.

Again using (2.98) we find that k1 = 5
3

as expected. This reproduces the expected

result at the unification scale

sin2θW (MS) =
1

1 + k1

≡ 3

8
. (2.103)
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Chapter 3

A Leptophobic U(1) from the
Heterotic String

In the previous chapter we outlined the general approach to model building in the

free fermionic formulation of the heterotic string. In the coming chapters, we spec-

ify models that exhibit properties that may be advantageous for phenomenological

purposes. These include a leptophobic U(1) symmetry. These form an interesting

problem, as additional abelian gauge symmetries that arise in string and GUT mod-

els, generically couple to leptons and baryons equally. The interest in leptophobic

symmetries arose, for example, as a possible explanation for the 3.2σ excess in the

Wjj channel at CDF, back in June 2011 [63] and continues to be of interest in

collider searches.

3.1 Standard–like models

The string construction of such a symmetry was briefly outlined in Section 2.5.2 and

also in [60]. The key to understanding how the leptophobic U(1) arises in the model

of [60] are the charges of the matter states from the sectors b1, b2 and b3 under

the flavour U(1)j with j = 4, 5, 6. For example, the charges of the states from the
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Chapter 3. A Leptophobic U(1) from the Heterotic String

sector b1 are given in Table 3.1 and are similar for the states from the sectors b2

and b3. With these charge assignments, the quarks are charged with respect to the

Field Q1 Q2 Q3 Q4 Q5 Q6

QL
1
2 0 0 −1

2 0 0

ucL
1
2 0 0 1

2 0 0

dcL
1
2 0 0 1

2 0 0

LL
1
2 0 0 −1

2 0 0

ecL
1
2 0 0 1

2 0 0

νcL
1
2 0 0 1

2 0 0

Table 3.1: 1 generation of MSSM matter, originating in the b1–sector, with charges under
U(1)i, with i = 1, . . . , 6. As presented in [60].

following combination

U(1)B =
1

3
U(1)C − (U(1)4 + U(1)5 + U(1)6), (3.1)

whereas the leptons are neutral with respect to it. Hence, this combination is a

family universal, leptophobic U(1) symmetry. In the model of [60] additional space–

time vector bosons arise from the sector X = 1 + α+ 2γ in which XL ·XL = 0 and

XR · XR = 8. The additional vector bosons transform as triplets of SU(3)C and

enhance it to SU(4)C , where the U(1) combination given by

U(1)B′ = U(1)B − U(1)7 + U(1)9, (3.2)

is the U(1) generator of the enhanced SU(4) symmetry. Here, U7 and U9 arise from

the world–sheet complex fermions φ
1

and φ
8

that generate the hidden E ′8 symme-

try. In this model the U(1)1,2,3 symmetries are anomalous, with Tr[U(1)1] = 24,

Tr[U(1)2] = 24 and Tr[U(1)3] = 24. Hence, the family universal combination of
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3.1. Standard–like models

these three U(1) is anomalous, whereas the two family non–universal combinations

are anomaly free. The U(1)4,5,6,7,9 are, however, anomaly free. Hence, the leptopho-

bic U(1) combination is anomaly free and can remain, in principle, unbroken down

to low scales.

The existence of a leptophobic, family universal and anomaly free U(1) is highly

non–trivial and not generic in phenomenological heterotic string models. To demon-

strate that this is indeed the case, we examine the model of [19, 99]. The sectors

bi produce the three chiral generations that are charged with respect to the same

flavour symmetries, but differ from the corresponding charges in the model of [60].

For example, the states from the sector b1 carry the charges in Table 3.2. We ob-

Field Q1 Q2 Q3 Q4 Q5 Q6

QL
1
2 0 0 −1

2 0 0

ucL
1
2 0 0 1

2 0 0

dcL
1
2 0 0 −1

2 0 0

LL
1
2 0 0 1

2 0 0

ecL
1
2 0 0 1

2 0 0

νcL
1
2 0 0 −1

2 0 0

Table 3.2: 1 generation of MSSM matter, originating in the b1–sector, with charges under
U(1)i, with i = 1, . . . , 6, for Standard–like models akin to [19, 99].

serve that ecL ad LL have like–sign charges under U(1)4. Since they carry opposite

sign charges under U(1)C , U(1)4 cannot be used to cancel the B−L charge for both

these states. Since they also carry like–sign charges under U(1)1, a leptophobic,

family universal U(1) cannot be made from these U(1) symmetries. The model of

[19, 99] preserves the cyclic S3 permutation of the NAHE set. Hence, a similar

charge assignment is obtained in the sectors b2 and b3. In this model the flavour
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symmetries U(1)4,5,6 are anomalous. Therefore, their combination with U(1)C is not

anomaly free and must be broken.

Taking another example of the Standard–like gauge symmetry breaking pattern,

we consider the model of [18, 100]. In this model the states from the sector b1 carry

the U(1) charges detailed in Table 3.3. In this sector the combination given in (3.1)

Field Q1 Q2 Q3 Q4 Q5 Q6

QL −1
2 0 0 1

2 0 0

ucL −1
2 0 0 −1

2 0 0

dcL −1
2 0 0 −1

2 0 0

LL −1
2 0 0 1

2 0 0

ecL −1
2 0 0 −1

2 0 0

νcL −1
2 0 0 −1

2 0 0

Table 3.3: 1 generation of MSSM matter, originating in the b1–sector, with charges under
U(1)i, with i = 1, . . . , 6, for the SL models of [18, 100].

is leptophobic. However, the states from the sector b2 have charges as in Table

3.4, which differ making (3.1) family non–universal. Also, due to the charges of the

leptonic states, the combination is no longer leptophobic and so is now unsuitable.

Furthermore, the flavour symmetries are anomalous in this model and, conse-

quently, as is the combination given in (3.1). So, is the existence of a leptophobic

U(1) combination therefore a peculiarity of the model of [60]? As seen from the

charge assignments in Table 3.1, the key is that the charges of the left– and right–

handed fields differ in sign with respect to U(1)4,5,6 in the sectors b1, b2 and b3

respectively. This model preserves the cyclic permutation symmetry of the NAHE

set and, therefore, the U(1) combination in (3.1) is family universal. The U(1)4,5,6

are also anomaly free in the model of [60] and, therefore, their combination with
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Field Q1 Q2 Q3 Q4 Q5 Q6

QL 0 1
2 0 0 1

2 0

ucL 0 −1
2 0 0 1

2 0

dcL 0 −1
2 0 0 −1

2 0

LL 0 1
2 0 0 −1

2 0

ecL 0 −1
2 0 0 −1

2 0

νcL 0 −1
2 0 0 −1

2 0

Table 3.4: 1 generation of MSSM matter, originating in the b2–sector, with charges under
U(1)i, with i = 1, . . . , 6.

U(1)B−L is also anomaly free. In this model the gauge symmetry is enhanced by

space–time vector bosons arising from the twisted sector, X. However, we can envi-

sion a more systematic classification, along the lines of [79, 83], and that the extra

bosons can be projected out from the spectrum in vacua that resemble the properties

of this model. In such a case, the leptophobic U(1) will arise without enhancement.

3.2 Left–right symmetric models

As seen from the other two examples provided by the models in [19, 99] and [18, 100],

the existence of a family universal, anomaly free, leptophobic U(1) combination in

heterotic string vacua is highly non–trivial. A class of models that reproduces the

conditions for the existence of such a U(1) combination are the left–right symmetric

models of [51]. However, in this case the U(1) symmetries that are combined with

U(1)B−L are not the flavour U(1)4,5,6, but rather the U(1)1,2,3. This possibility is

particular to the left–right symmetric heterotic string models, and is not applicable

in the other quasi–realistic free fermionic models, in which the SO(10) symmetry is

broken to the flipped SU(5), SO(6)× SO(4) or SU(3)× SU(2)×U(1)2 subgroups.
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The reason is that, in these cases, the charges of all the states from a given sector

bj are the same with respect to U(1)j with j = 1, 2, 3. This situation arises because

the states from the sectors bj in these models preserve the E6 charge assignment

under the decomposition E6 → SO(10) × U(1). A further consequence is that the

U(1) combination which arises from E6 becomes anomalous in these models [101].

On the other hand, in the left–right symmetric models, the GGSO projection

that breaks

SO(10)→ SU(3)× U(1)× SU(2)2

dictates that the U(1)1,2,3 charges of the left–handed fields, QL and LL, differs in sign

from those of the right–handed fields, QR and LR, just as we discussed previously.

Their charges with respect to U(1)4,5,6 may, or may not differ in sign and are model–

specific. Hence, for example, in the first model of [51], described in Table 2.2, we

find the charges for the sector b1, detailed in Table 3.5, with similar charges under

U(1)2,3 for the states from the sectors b2 and b3 respectively. The U(1) combination

Field Q1 Q2 Q3 Q4 Q5 Q6

QL −1
2 0 0 −1

2 0 0

ucL
1
2 0 0 1

2 0 0

dcL
1
2 0 0 1

2 0 0

LL −1
2 0 0 1

2 0 0

ecL
1
2 0 0 −1

2 0 0

νcL
1
2 0 0 −1

2 0 0

Table 3.5: 1 generation of MSSM matter, originating in the b1–sector, with charges under
U(1)i, with i = 1, . . . , 6 for the LRS model of Table 1 in [51].
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given by

U(1)B =
1

3
U(1)C − U(1)1 − U(1)2 − U(1)3, (3.3)

is family universal, anomaly free and leptophobic. In the left–right symmetric mod-

els, the U(1)1,2,3 are anomaly free due to the specific symmetry breaking pattern and

consequent charge assignments, whereas U(1)4,5,6 may be anomalous or anomaly free

in different models. The left–right symmetric free fermionic heterotic string models

therefore provide a second example that produces a potentially viable leptophobic

U(1) at low scales. In both cases, it is seen that the mechanism that yields a lep-

tophobic U(1) symmetry involves the existence of a combination of flavour U(1)

symmetries that nullifies the lepton number component of U(1)B−L.

The left–right symmetric models produce examples that are completely free of

any gauge or gravitational anomalies. Specifically, all U(1) symmetries in these

models are anomaly free. Hence, any combinations of the U(1) symmetries, including

the leptophobic combination, are anomaly free.
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String–Inspired Models

In this chapter, we specify a model that forbids proton decay mediating operators

up to dimension-6, requiring any states that feature in our low–energy effective

field theory (EFT) to satisfy the string constraints presented in Section 2.2. A more

detailed discussion specific to this construction was outlined in Section 2.5.1. In this

model, we assume the SO(10)→SU(3)C×SU(2)L×SU(2)R×U(1)C GUT symmetry

breaking occurs at the string scale, using the mechanism specified in Chapter 2. We

emphasise here that this model exhibits an extra U(1) that satisfies the constraints

outlined in Section 1.3 and is external to the SO(10) GUT symmetry. This U(1)ζ

symmetry forbids the dimension-4, -5 and -6 PDMOs at the string scale and, by

keeping the U(1) sufficiently light, we may adequately suppress these operators,

induced after the U(1) is broken. The U(1) arises as an anomaly free symmetry in

the string models but we need to ensure that it remains anomaly free in the low–

energy EFT. For this purpose, we construct a string–inspired model that takes into

account the U(1) charges of the Standard Model matter states as they arise in the

string model, and we augment the model with additional states, compatible with

the string charge assignments, to render the spectrum of the string–inspired EFT

anomaly free. The analysis done in this section was first presented in [73].
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4.1 Low-scale construction

The MSSM matter states originate in the 16 of SO(10) (with the right–handed

neutrino, νc) and decompose under the left–right symmetric gauge group in the

representations shown in Table 4.1. The electroweak Higgs states lie in a bidoublet

representation of the LRS gauge group and originate in the 10 representation of

SO(10) (also shown in Table 4.1). This bidoublet is neutral under both U(1)C and

U(1)ζ .

SO(10) Field SU(3)C SU(2)L SU(2)R QC Qζ

16i

QiL 3 2 1 +1
2 −1

2

QiR 3 1 2 −1
2 +1

2

LiL 1 2 1 −3
2 −1

2

LiR 1 1 2 +3
2 +1

2

10 H0 1 2 2 0 0

Table 4.1: MSSM with SU(3)C × SU(2)L × SU(2)R × U(1)C × U(1)ζ quantum numbers, with
i = 1, 2, 3 for the three generations. The representations of SO(10) from where the states

originate are also shown.

In order for us to construct a consistent low–scale model, we must ensure our EFT

is anomaly free. We now analyse where the gauge and gravitational anomalies could

originate and, should any arise, augment our field content with fields satisfying the

string charge assignments, as alluded to in Section 2.5.1, such that the EFT becomes

anomaly free.

Anomalies

When a classical symmetry is broken by quantum corrections it is said to be anoma-

lous. This only becomes problematic for gauge symmetries; should a global sym-
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metry be anomalous upon quantization, processes that were previously forbidden,

may be induced. However, should a gauge symmetry be anomalous, this could have

ramifications for unitarity and the renormalizability of our theory. Thus, in order

for our additional U(1) to be an allowed gauge symmetry of our theory, we must

ensure that it is free of anomalies. In the string–derived model of [51], the U(1)ζ is

anomaly free as it includes the full massless string–scale spectrum. Only including

the representations in Table 4.1, one would not expect, a priori, U(1)ζ to be free

of gravitational and gauge anomalies. As discussed in Section 1.3, only U(1)B−L

and U(1)Y form anomaly free combinations with a complete spinor representation

of SO(10).

To construct a consistent model with our LRS gauge group and additional U(1),

we need to consider the following anomaly diagrams (shown in Figure 4.1):

A1 : (SU(3)2
C × U(1)ζ) – Only quarks are summed over in this diagram and we find

that, for Table 4.1, it is anomaly free.

A2 : (SU(2)2
L × U(1)ζ) – Due to our charge assignment, the left-handed quark and

lepton fields have the same sign resulting in an anomaly. In fact, ASM2 = −2.

A3 : (SU(2)2
R × U(1)ζ) – Again, because of our charge assignment for right-handed

quark and lepton fields there is a resulting anomaly. In fact, ASM3 = +2.

A4 : (U(1)2
C × U(1)ζ) – All fermions are summed over in this diagram. As left- and

right-handed fields have charges of opposite sign under U(1)ζ , it is found to

be anomaly free.

A5 :
(
U(1)C × U(1)2

ζ

)
– Again all fermions are summed over in this diagram. It is

also found to be anomaly free due to the opposite-signed U(1)ζ charges for
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4.1. Low-scale construction

left- and right-handed doublets.

A6 :
(
U(1)3

ζ

)
– Again we sum over all fermions and the diagram is found to be

anomaly free.

A7 : (U(1)ζ ×Gravity) Here we also sum over all fermions. Due to our choices of

Qζ , this diagram is obviously anomaly free.

As mentioned previously, U(1)B−L is anomaly free for the MSSM states and three

generations of right–handed neutrinos, i.e. the complete 16 representation of SO(10).

Thus, we must only check for anomalies in diagrams involving a U(1)ζ vertex, all

of which are shown in Figure 4.1. These one–loop diagrams are induced above the

SU(2)R breaking scale. At this stage the spectrum possesses mixed anomalies in

the SU(2)2
L × U(1)ζ and SU(2)2

R × U(1)ζ diagrams, A2 and A3 respectively. In the

string vacua, these anomalies are cancelled by additional states that arise in the full

string spectrum. As shown in [51] the U(1)ζ is anomaly free and in fact the LRS

gauge group is entirely free of gauge and gravitational anomalies. However, the

additional spectrum in the string vacua is highly model dependent. We, therefore,

judicially augment the spectrum in Table 4.1 with additional states that cancel the

SU(2)2
L,R×U(1)ζ mixed anomalies and are compatible with the string charges. This

guarantees that any combination of the U(1) generators in the Cartan subalgebra

of the SU(3)C × SU(2)L × U(1)Y × U(1)Z′ gauge group is anomaly free. That is, it

guarantees that any U(1)Z′ arising from this group is anomaly free at the low scale.

To obtain a spectrum which is free of the mixed anomalies we look to add states

charged under each of the anomalous symmetries, i.e. SU(2)L, SU(2)R and U(1)ζ ,

that also leave the other diagrams anomaly free.
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A1 :

SU(3)C SU(3)C

U(1)ζ

A3 :

SU(2)R SU(2)R

U(1)ζ

A2 :

SU(2)L SU(2)L

U(1)ζ

A4 :

U(1)C U(1)C

U(1)ζ

A5 :

U(1)ζ U(1)ζ

U(1)C

A6 :

U(1)ζ U(1)ζ

U(1)ζ

A7 :

Gravity Gravity

U(1)ζ

Figure 4.1: The relevant diagrams considered in our analysis of the anomalies. These are only
those that occur at the high scale, however including anomaly cancelling states that agree with
the string charge assignments negates anomalies in any symmetry that is a combination of the

Cartan generators.
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4.1. Low-scale construction

Anomaly Cancelling Doublets

If we try and mimic E6 by adding states originating in the 10, i.e. by “completing”

the 27 representation of E6, we would require states transforming as

H1 ∼ (1,2,2,±1,±1) . (4.1)

Given that

A2 = −2; (4.2a)

A3 = +2, (4.2b)

clearly means that bidoublets are ruled out as anomaly cancelling doublets (ACDs).

This leaves us with the option to add states originating in the 16. These must have

Qζ = ±1
2

and, as A1 = 0, must be added with vector–like charges under SU(3) or as

colour singlets. We choose the latter for simplicity. This leaves us with the option

of lepton–like states

H i
L ∼

(
1,2,1,±3

2
,+

1

2

)
H i
R ∼

(
1,1,2,∓3

2
,−1

2

)
(4.3)

where i = 2, . . . , 2n. In order to satisfy (4.2), n = 4. However, these induce

anomalies in diagrams involving a U(1)C vertex. Adding states with vector–like QC

charges but with Qζ of the same sign should resolve this problem. In fact, adding

H ij
L =

(
1,2,1,+

3

2
,+

1

2

)
,

H ′ ijL =

(
1,2,1,−3

2
,+

1

2

)
,

H ij
R =

(
1,1,2,−3

2
,−1

2

)
,

H ′ ijR =

(
1,1,2,+

3

2
,−1

2

)
,

(4.4)
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where j = 1, 2 and i = 1, 2, 3, the spectrum becomes free of all anomalies. Thus, we

now have an EFT free of gravitational and gauge anomalies.

Heavy Higgs States

In addition to the ACDs, heavy Higgs states in vectorlike representations are needed

to break the SU(2)R×U(1)C ×U(1)ζ → U(1)Y ×U(1)Z′ at some intermediate scale

below MS. These are

HR +HR =

(
1,1,2,+

3

2
,∓1

2

)
+

(
1,1,2,−3

2
,±1

2

)
. (4.5)

These pick up a vev in the neutral directions, NR and NR, which leave the combi-

nations

Y = T3R +
1

3
QC , (4.6)

QZ′ =
1

5
QC −

2

5
T3R ±Qζ , (4.7)

unbroken at the low scale. In fact, in generic SO(10) GUT models, the weak hyper-

charge is given by (4.6), where T3R is the diagonal generator of SU(2)R and

QC =
3

2
QB−L,

as described in (2.62). The sign of Qζ (HR) and Qζ

(
HR
)

will result in a differ-

ent U(1)Z′ combination shown in (4.7) and thus, different phenomenology for each

model. We will focus on the linear combination resulting from the charge assign-

ments

HR +HR =

(
1,1,2,+

3

2
,−1

2

)
+

(
1,1,2,−3

2
,+

1

2

)
, (4.8)

i.e.

QZ′ =
1

5
QC −

2

5
T3R +Qζ (4.9)
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but include a brief discussion on the alternative case and its phenomenological im-

plications in the next section. The electromagnetic U(1) charge is then given by the

combination,

QEM = T3L + Y. (4.10)

The augmentation of the states in Table 4.1 with the states given by (4.4), guar-

antees that the low–energy EFT above and below the intermediate breaking scale

is completely free of gauge and gravitational anomalies. These states satisfy the

string charge assignments and would originate from a different fixed point to that of

the 16 containing the MSSM. We note here that we envisage problems with gauge

coupling unification due to the presence of these extra doublets and so we include

triplets in order to slow down the running of SU(3), hopefully reinstating one–loop

unification. The number of triplets is treated as a free parameter, nD. Specifying a

string model, however, would restrict nD as alluded to in Section 2.5.1. This issue

will be discussed in further detail in Chapter 5.

The spectrum of our model above the left–right symmetry breaking scale is sum-

marised in Table 4.2. The spectrum below the intermediate symmetry breaking

scale is shown in Table 4.3. The anomaly freedom of our model allows the U(1)Z′

combination generated by (4.9) to be viable to low energies, limited only by ex-

perimental constraints, which include gauge coupling unification and proton decay

suppression. These will be discussed further in the following chapter.

4.2 Superpotentials

First we briefly discuss the superpotentials above and below the SU(2)R gauge sym-

metry breaking. We may be able to impose phenomenological constraints on the
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allowed couplings which may indicate our low–energy U(1)Z′ symmetry breaking

scale. The most general superpotentials, up to trilinear couplings, at both the high

scale, invariant under SU(3)C×SU(2)L×SU(2)R×U(1)C×U(1)ζ , shown in (4.11),

and at the low scale, invariant under SU(3)C × SU(2)L × U(1)Y × U(1)Z′ , shown in

(4.12), are

W =hQQLQRH0 + hLLLLRH0 (4.11a)

+ λHHLHRH0 + λH′H
′
LH
′
RH0 (4.11b)

+ hHLHLH
′
LS + hHRHRH

′
RS (4.11c)

+ µH0H0φ+ µ1LLHLφ+ µ2LRHRφ+ µDDDφ+ µSSSφ+ µ3φφφ (4.11d)

+ η1LRHRS + η2HRHRS + η3H
′
LHRH0 + η4H

′
RHRφ+ η5HRHR, (4.11e)

and

W =huQLu
c
LH

u + hdQLd
c
LH

d + heLLe
c
LH

d + hνLLν
c
LH

u (4.12a)

+ λHHLNRH
d + λ′HHLERH

u + λH′H
′
LE
′
RH

d + λ′H′H
′
LN
′
RH

u (4.12b)

+ hLHLH
′
LS + hRERE

′
RS̄ + h′RNRN

′
RS̄ (4.12c)

+ µDDDφ+ µSSSφ+ µφφφφ (4.12d)

+ µHuHdφ+ µ1LLHLφ+ µ2e
c
LERφ+ µ2′ν

c
LNRφ (4.12e)

+ η1ν
c
LS + η2NRS + η3H

′
LH

u + η4N
′
Rφ, (4.12f)
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4.2. Superpotentials

where all indices have been suppressed. Terms in (4.11d) may also be written as

bilinear terms, as φ is a gauge–singlet. However, bilinear terms do not appear

in the string–scale superpotential due to conformal invariance. We presume that

states not present here, but present in the full string–derived model, acquire mass

at the string scale and, as we are only considering the low–energy aspects of this

model, do not include them here. In the same way, we do not include terms in the

superpotential that would not appear in a string–derived superpotential, i.e. bilinear

terms. We emphasise that this analysis is string–inspired; we must satisfy the string

constraints but have more freedom to choose states that allow our model to satisfy

phenomenological constraints also.

It is interesting to note here that the extra quarks, D+D, exhibit a global U(1)

symmetry. This global U(1) results in the lightest extra quark being stable. In order

to suppress the abundances of nuclear isotopes which contain such stable relics, the

lightest exotic quarks should be heavier than 10 TeV [102]. This scale, MD, will

become important when we discuss gauge coupling unification in the next chapter.

The µ2′ term may induce an unstable lightest neutralino, due to mixing between

neutralinos and leptons. Thus, the LSP would not be a dark matter candidate, unlike

in the MSSM. The couplings labelled by ηj are those that involve the heavy Higgs

fields that break the left–right symmetry, acquiring a vev at high energies. The terms

(4.11a, 4.12a) produce the MSSM Dirac masses for the quarks and leptons, including

a Dirac mass term for the neutrino, admitted due to the left–right symmetry.

The couplings in (4.11b, 4.11c, 4.11d) involve couplings of the additional dou-

blets, triplets and singlets in the model. There is also the µ parameter; the usual

supersymmetric Higgs parameter akin to that in E6 inspired models or the NMSSM.

The couplings in (4.11e) are those that involve the couplings to the heavy Higgs
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fields. We note that the choice given in (4.9) forbids the Higgsino–neutrino mix-

ing term LLHRH0 at the expense of the νcL fields becoming charged under U(1)Z′ ,

whereas the alternative choice in (4.7) allows the neutrino–Higgsino mixing term,

but keeps the νcL fields neutral under the respective U(1)Z′ combination. This issue

again relates to the scale of SU(2)R breaking and the consequent suppression of the

left–handed neutrino masses. We will examine this question in more detail in future

work. We note here that some couplings in (4.12) may still need to be suppressed

to avoid conflict with the data. We defer this discussion to future analyses.

There are also gauge invariant terms that may appear in (4.12) that do not orig-

inate from renormalizable terms at the high scale, i.e. not present in (4.11). These

terms are suppressed by at least MR
MS

and so, dependent on how low the SU(2)R

breaking scale is, are not expected to provide large contributions. Nevertheless,

these terms may have interesting phenomenological effects and so we defer these

investigations to future work as this is beyond the scope of this thesis. These ad-

ditional terms are shown below in (4.13). Included are bilinear terms that may

originate from bilinear terms at the high scale. As discussed above, these may not

be generated directly in a string–derived model as renormalizable terms and so we

do not include these in (4.11) and thus (4.12).

71



4.2. Superpotentials

WNR =µ′DDD̄ + µ′SSS̄ + µ′φφφ

+ µ′HuHd + µ′1LLHL + µ′2e
c
LER + µ′2′ν

c
LNR

+ λ1QLd
c
LH
′
L + λ2LLe

c
LH
′
L + λ3H

′
LH
′
LE
′
R

+ λ4ν
c
LERE

′
R + λ5e

c
LERN

′
R + λ6ν

c
LNRN

′
R + λ7LLHLN

′
R +HLH

′
LNR

+ λ8H
uHdN ′R + λ9DDN

′
R + λ10N

′
RSS

+ λ11HLH
dS + λ12LLH

uS

+ λ13H
′
LH

uφ

+ λ14NRSφ+ λ15ν
c
LSφ+ λ16ν

c
LN

′
RS

+ λ17N
′
RN

′
R + λ18N

′
RN

′
RN

′
R + λ19N

′
RN

′
Rφ+ λ20N

′
Rφφ.

(4.13)

As νcL is charged under U(1)Z′ its mass is protected and thus cannot acquire a vev

greater than MZ′ which is expected to be low. In order to have sufficiently low left–

handed neutrino masses, the model admits an extended seesaw mechanism. Also,

due to the additional U(1)ζ combination in (2.31), resulting in the low–scale U(1)Z′

combination in (4.9), we find that the Majorana mass term,

νcLν
c
LSS, (4.14)

that violates lepton number, is allowed in our low–energy superpotential. This

originates from the non–renormalizable operator

LRLRSSHRHR (4.15)
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also resulting in too light a right–handed neutrino mass due to the M3
S suppression.

However, a larger mass may also be generated via the extended seesaw mechanism

discussed below.

Extended Seesaw Mechanism

The seesaw mechanism used in this model generates a small neutrino mass, mν ∼ 1

eV, by way of a 9× 9 matrix in the (νL, ν
c
L, S) flavour basis:

M =

 0 MZ 0
MZ 0 MR

0 MR A

 . (4.16)

We note that A is dependent on the mass matrix of the singlet, S. On first look, this

will be proportional to the scale at which φ gains mass, Mφ. Therefore the analysis

of the neutrino mass would follow along the lines of [10, 103], where the relevant

couplings are

hνLLν
c
LH

u + µSSSφ+ η1ν
c
LS〈NR〉.

However, further analysis would need to be conducted to specify the phenomenology

of the neutrino sector. Other examples of non–GUT U(1)s, with origins in the

heterotic string and similar neutrino sectors, are detailed in [59] including a string–

inspired toy–model.

We note that the intermediate scale breaking is a free parameter in this model

as it is not constrained by a doublet–triplet splitting mechanism, which is induced

at the string–scale [95]. Hence, the masses of the left–handed neutrinos can be used

to constrain the intermediate scale. The νL masses can be sufficiently suppressed

by the extended seesaw mechanism, and by rendering the left–handed neutrinos

unstable by the coupling to light sterile neutrinos, φm. Such states may arise, for
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example, from hidden sector condensates in the string models. The renormalization

group evolution of the gauge and superpotential couplings, together with hidden

sector dynamics are also expected to fix all scales in the string models.

Proton Decay Mediating Operators

Turning to the PDMOs, we note that with both choices in (4.7) the dimension-4

baryon number violating operator that arises from

QRQRQRHR → ucdcdc〈NR〉 (4.17a)

as well as the dimension-5 baryon number violating operators

QLQLQLLL → QQQL (4.17b)

QRQRQRLR →
{
ucdcdcνc

ucdcdcec
(4.17c)

are forbidden by U(1)Z′ . The lepton number violating operators that arise from

QLQRLLHR → QLdc〈NR〉 (4.18)

LLLLLRHR → LLec〈NR〉 (4.19)

are also forbidden for the model of (4.9). For the other model of (4.7), the lepton

number violating operators are allowed. Hence, the PDMOs are suppressed by

MZ′/MS, which yields adequate suppression provided that the U(1)Z′ breaking scale

is sufficiently low as discussed in [9, 10].
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Field SU(3)C ×SU(2)L ×SU(2)R U(1)C U(1)ζ β3 β2L βY

QiL 3 2 1 +1
2 −1

2 1 3
2

1
6

QiR 3 1 2 −1
2 +1

2 1 0 5
3

LiL 1 2 1 −3
2 −1

2 0 1
2

1
2

LiR 1 1 2 +3
2 +1

2 0 0 1

H0 1 2 2 0 0 0 1 1

H ij
L 1 2 1 +3

2 +1
2 0 1

2
1
2

H ′ ijL 1 2 1 −3
2 +1

2 0 1
2

1
2

H ij
R 1 1 2 −3

2 −1
2 0 0 1

H ′ ijR 1 1 2 +3
2 −1

2 0 0 1

Dn 3 1 1 +1 0 1
2 0 1

3

D
n

3 1 1 −1 0 1
2 0 1

3

HR 1 1 2 +3
2 −1

2 0 3
5 1

HR 1 1 2 −3
2 +1

2 0 3
5 1

Si 1 1 1 0 −1 0 0 0

S
i

1 1 1 0 +1 0 0 0

φa 1 1 1 0 0 0 0 0

Table 4.2: High scale spectrum of Model I and SU(3)C × SU(2)L × SU(2)R × U(1)C × U(1)ζ
quantum numbers, with i = 1, 2, 3 for the three light generations, j = 1, 2 for the number of

doublets required by anomaly cancellation, n = 1, ..., k, and a = 1, ..., p. The βi show the
contributions for each state, relevant for the RGE analysis later.
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Field SU(3)C ×SU(2)L T3R U(1)Y U(1)Z′ β3 β2L βY

QiL 3 2 0 +1
6 −2

5 1 3
2

1
6

uc iL 3 1 −1
2 −2

3 +3
5

1
2 0 4

3

dc iL 3 1 +1
2 +1

3 +1
5

1
2 0 1

3

LiL 1 2 0 −1
2 −4

5 0 1
2

1
2

ec iL 1 1 −1
2 +1 +3

5 0 0 1

νc iL 1 1 +1
2 0 +1 0 0 0

Hu 1 2 +1
2 +1

2 −1
5 0 1

2
1
2

Hd 1 2 −1
2 −1

2 +1
5 0 1

2
1
2

H i
L 1 2 0 +1

2 +4
5 0 3

2
3
2

H ′ iL 1 2 0 −1
2 +1

5 0 3
2

3
2

EiR 1 1 −1
2 −1 −3

5 0 0 1

N i
R 1 1 +1

2 0 −1 0 0 0

E′ iR 1 1 +1
2 +1 −2

5 0 0 1

N ′ iR 1 1 −1
2 0 0 0 0 0

Dn 3 1 0 +1
3 +1

5
1
2 0 1

3

D
n

3 1 0 −1
3 −1

5
1
2 0 1

3

Si 1 1 0 0 −1 0 0 0

S
i

1 1 0 0 +1 0 0 0

φa 1 1 0 0 0 0 0 0

Table 4.3: Low scale matter spectrum of Model I and SU(3)C × SU(2)L × U(1)Y × U(1)Z′

quantum numbers with βi contributions.

76



Chapter 5

Phenomenological Analysis

In the previous chapter we discussed the construction of a string–inspired left–right

symmetric model that accommodated an additional U(1) forbidding proton decay

mediating operators yet allowing for light neutrinos via an extended seesaw mech-

anism. It is expected that, in a full string–derived model, the gauge and matter

structure is fully defined, along with intermediate symmetry breaking and matter

scales. In our string–inspired approach, we may use limits on experimental data

to apply stringent constraints on these intermediate scales. Here we will discuss

the phenomenological implications that arise, focussing on the constraints brought

about due to proton stability and gauge coupling unification.

We first analyze restrictions on intermediate gauge symmetry breaking scales

coming from the suppression of proton decay mediating operators. These are for-

bidden up to dimension-6 but are induced once U(1)Z′ is broken. We discuss the

relevant couplings in the superpotential, from where these PDMOs originate, and

look at what limits this analysis provides for our intermediate gauge breaking scales,

MR and MZ′ .

For the gauge coupling unification analysis, we discuss two classes of models

mentioned previously: SO(10)×U(1)ζ 6⊂ E6 and SO(10)×U(1)ζ ⊂ E6, specifying
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a toy–model with U(1)ζ embedded in E6. We look at how their respective spectra

affect the renormalization group equations. These are run for the SM gauge cou-

plings and we focus on how each class may accommodate the low–energy limits of

α3(MZ) and sin2θW (MZ) in a comparative analysis.

5.1 Proton Stability Constraints

Here we analyze constraints coming from the suppression of PDMOs. As we saw

in Chapter 4, the U(1)ζ combination forbids PDMOs up to dimension-6, due to

the charge assignments of SU(2)L and SU(2)R doublets having Qζ of opposite sign.

Once the low scale combination U(1)Z′ , a linear combination of U(1)ζ , U(1)B−L and

T3R , is broken, operators that cause rapid proton decay will be induced. Thus,

we may constrain the U(1)Z′ breaking scale by requiring sufficient suppression of

PDMOs. Depending on which high scale superpotential operators the PDMOs orig-

inate from, requiring sufficient suppression may also constrain the SU(2)R breaking

scale.

The strongest constraints will come from dimension-4 and -5 operators. It is

expected that dimension-6 operators will be sufficiently suppressed, once limits on

lower dimensional operators are satisfied. Dimension-5 PDMOs originate from the

term

λIIIQQQL, (5.1a)

which in the SM is the dimension-6 PDMO that is not forbidden. Introducing SUSY

allows a dimension-5 PDMO to originate from it, thus carrying a 1
MS

suppression. In

our construction, this model is gauge invariant when coupled to two U(1)Z′ breaking
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singlets,

QQQLSS

The dimension-4 PDMOs are

λ′Iu
c
Ld

c
Ld

c
L, (5.2a)

λ′IIQLLLd
c
L, (5.2b)

and, in LRS models with additional U(1)s, are induced from nonrenormalizable

terms,

λIu
c
Ld

c
Ld

c
L〈NR〉Φ1, (5.3a)

λIIQLLLd
c
L〈NR〉Φ2, (5.3b)

where Φ1 and Φ2 are generic combinations of U(1)Z′ breaking singlets ensuring

these terms are gauge invariant and satisfy the string selection rules. 〈NR〉 is the

vev that breaks SU(2)R at MR. In general, the vevs of both sets of intermediate

symmetry breaking states,
(
NR +NR

)
and

(
S + S

)
determine the suppression of

these operators via

λ′I ∼
〈NR〉
MS

(〈Φ〉
MS

)n
, (5.4a)

λ′II ∼
〈NR〉
MS

(〈Φ′〉
MS

)n′
. (5.4b)
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In our model, the dimension-4 PDMOs originate in the higher dimensional operators

λIu
c
Ld

c
Ld

c
L〈NR〉S, (5.5a)

λIIQLLLd
c
L〈NR〉S. (5.5b)

Thus, in our model, this equates to n = n′ = 1, i.e. these operators are induced at

quintic order. The suppression of the dimension-5 operator, in (5.1), is

λ′III
MS

∼
(〈S〉
MS

)2

. (5.6)

Experimental limits [3] impose constraints on the product, 〈λ′I · λ′II〉 such that

〈λ′I · λ′II〉 . 10−29, (5.7)

where we have assumed the

p→ e+π0

channel dominates. We have also used the current bound [33],

md̃c & 1.11 TeV,

assuming SUSY masses are degenerate at MSUSY. Given these assumptions we also

find that

λIII

MS

. 10−25,

which indicates that

λIII . 7 · 10−8, (5.8)
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with the heterotic string scale taken to be ∼ 5 · 1017GeV. As both our MR and

MZ′ scales are not constrained by other phenomenological data (constraints from

GCU are explored in the next section), we may treat them as free parameters here.

Taking SU(2)R to be broken at the string scale, results in

MZ′ ∼MS

(
1

τp

M4
SUSY

m5
p

) 1
2

∼ 1200 GeV, (5.9)

which is just beyond the current limits on Z ′LR [33]. Allowing MR

MS
. 1 would increase

MZ′ , should future experiments raise the limits. This value of MZ′ sufficiently

suppresses the dimension-5 coupling which indicates an upper limit to be

MZ′ . 2 · 105 GeV, (5.10)

should proton decay be detected soon. Constraints from the unification analysis are

expected to more accurately determine the behaviour of these intermediate scales.

It is interesting to note that as the lifetime of the proton is pushed higher, the mass

limit on a proton–protecting Z ′ decreases. This indicates that current limits on

proton lifetime experiments are close to our theoretical prediction, should a Z ′ be

discovered at LHC energies. Further analysis of the couplings of such a Z ′ would be

required in order to identify any distinguishing signatures that could be exhibited.

This is beyond the scope of this current work and is left for future exploration.

5.2 Gauge Coupling Analysis

We now turn to our analysis of gauge coupling unification. Here we discuss specific

examples of our U(1)ζ external to SO(10) and how their respective spectra affect the

unification of the SM gauge couplings: α3, α2L and αY . We run the RGEs from the

high scale to the low scale via intermediate gauge symmetries breaking and matter

states decoupling, in order to check agreement with experimental data.
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Model I

This model is an example of a three generation, free fermionic model that yields an

unbroken, anomaly free U(1) symmetry. Heterotic string models with this property

break the SO(10) symmetry to the left–right symmetric subgroup [51] and are there-

fore supersymmetric and completely free of gauge and gravitational anomalies. The

U(1)ζ symmetry in the string models is an anomaly free, family universal symmetry

that forbids the dimension-4, -5 and -6 PDMOs, while allowing for the SM fermion

mass terms. A combination of U(1)ζ , U(1)B−L and U(1)T3R , the U(1)Z′ remains

unbroken down to low energies and forbids baryon number violation while allowing

for lepton number violation. Hence, it allows for the generation of small left–handed

neutrino masses via a seesaw mechanism, specifically an extended seesaw with the

singlets, S and S [73]. Proton decay mediating operators are only generated when

the U(1)Z′ is broken. Thus, the scale of the U(1)Z′ breaking, MZ′ , is constrained by

proton lifetime limits and can be within reach of the contemporary experiments. The

model is summarised by the spectra in Table 4.2, above the intermediate SU(2)R

breaking scale MR, and Table 4.3, below MR, and the superpotentials of (4.11) and

(4.12); above and below MR respectively. As seen previously, the combination form-

ing our proton-protecting U(1)ζ , in (2.31), does not admit an E6 embedding, i.e. our

matter cannot originate from a single 27 of E6. Rather than accommodate an E6

charge assignment, we have taken advantage of the intermediate LRS gauge struc-

ture, with SU(2)L and SU(2)R doublets acquiring U(1)ζ charges of opposite sign.

However, as we saw in the previous chapter, the effective U(1)ζ became anomalous

requiring additional anomaly cancelling doublets. The large β–function contribu-

tion of the ACDs increases the likelihood of approaching a Landau pole before the

unification scale. Extra triplets are also included in an attempt to negate any ad-
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verse gauge coupling unification effects of the doublets i.e. the triplets serve to slow

down the running of α3 such that unification is reached before the Landau pole. As

our U(1) 6⊂ E6, the number of triplets is not restricted by the number of complete

representations. This will be investigated further when we discuss the GCU analysis

of this model.

Model II

The second class of models preserves the E6 embedding of the U(1)ζ and is akin to

Z ′ models arising in string–inspired E6 models [38, 39, 104–106]. For these models,

the spectrum consists of three generations of 27 representations that decompose

under SO(10)× U(1)ζ as:

27i → 16i1
2

+ 10i−1 + 1i2 (5.11)

where i = 1, 2, 3. Under SU(3)C × SU(2)L × SU(2)R × U(1)C × U(1)ζ , this results

in a similar spectrum to the LRS model. The main difference between the spectra

of these models is that Model II includes full 27 representations of E6 where Model

I does not.

The states of the MSSM and the right–handed neutrino lie in the 16 of SO(10)

and so decomposes exactly as for Model I,

Qi
L ∼

(
3,2,1,+

1

2
,+

1

2

)
;

Qi
R ∼

(
3,1,2,−1

2
,+

1

2

)
;

LiL ∼
(

1,2,1,−3

2
,+

1

2

)
;

LiR ∼
(

1,1,2,+
3

2
,+

1

2

)
,

(5.12a)

with the proviso that the charges under U(1)ζ all take the same sign. The 10

decomposes as

H i ∼ (1,2,2, 0,−1) ; Di ∼ (3,1,1,+1,−1) ; D
i ∼

(
3,1,1,−1,−1

)
. (5.12b)
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The remaining singlets are neutral under the SM gauge group and are used to

break the U(1)Z′ . In addition to the complete SO(10) representations above, the E6

spectrum includes a bidoublet,

H0 ∼ (1,2,2, 0,−1) , (5.12c)

that facilitates gauge coupling unification. Upon breaking of the intermediate gauge

symmetry, this bidoublet will form the electroweak Higgs doublets. The model also

contains the pair of heavy Higgs right–handed doublets,

HR +HR =

(
1,1,2,

3

2
,
1

2

)
+

(
1,1,2,−3

2
,−1

2

)
. (5.12d)

These would be used to break the SU(2)R symmetry as outlined in Model I. Sym-

metry breaking mechanisms and a full spectrum analysis of this model, including

construction of the superpotential, are beyond the scope of this demonstrative anal-

ysis.

Intermediate Gauge and Matter Scales

To conduct a direct comparison of the two model classes, we require the intermediate

gauge structure of both models to be equivalent and so it is instructive to detail the

symmetry breaking patterns at this stage. The SM gauge group will be embedded

in SO(10). As previously mentioned, this is broken to the LRS gauge group via the

addition of basis vectors, α, β, and γ at the string scale, MS. The SU(2)R is then

broken at some intermediate scale, MR. Suppression of PDMOs requires that this be

around the string scale for phenomenologically accessible values of MZ′ . In keeping

the scale of MR high, MZ′ is required to be sufficiently low for adequate suppression

of dimension-4, -5 and -6 operators that induce rapid proton decay.
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We contrast the analysis in the LRS heterotic string models with the models

that admit the E6 embedding of the U(1)Z′ charges. In both models there are six

intermediate gauge symmetry and matter scales between MS and MZ , corresponding

to:

MR: SU(2)R breaking scale. In Model I, the neutral components of HR + HR ac-

quire a vev to break the SU(2)R symmetry and leave the hypercharge and the

orthogonal combination, U(1)Z′ , unbroken. Thus, the pair of heavy Higgs’,(
HR +HR

)
, and SU(2)R gauge bosons, WR, decouple from the spectrum at

this scale. This is assumed to be the case in Model II also, although the

symmetry breaking mechanism has not been analyzed for this toy–model.

MD: Colour triplet scale. The additional colour triplets in Model I acquire a mass

at this scale. The presence of this scale may also help resolve the discrepancy

between the MSSM unification scale and string–scale unification [30]. For

Model II, due to the embedding of the bidoublets and triplets in a fundamental

10 representation of SO(10), this scale is equivalent to MZ′ . This is because

the triplets and doublets acquire their mass from the U(1)Z′ breaking singlets.

For Model I, this is not necessarily the case.

MZ′ : U(1)Z′ breaking scale. The U(1)Z′ is broken at this scale by SM gauge singlets

acquiring vevs. The anomaly cancelling doublets also acquire mass at this scale

in Model I and, in both models, only the MSSM spectrum survives to lower

scales. From the analysis of our PDMOs, this should be within an accessible

energy range, with our previous results indicating MZ′ ∼ O (TeV).

MSUSY: SUSY breaking scale. The current bounds from the LHC will be included here

to allow for a phenomenologically viable supersymmetry scale. We take the
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SUSY masses to be degenerate and only the SM states remain down to the

lower scales. The additional Higgs doublet of the MSSM is also decoupled at

this scale. Further analysis of the SUSY spectrum is left to future work.

Mt,Mh: Top quark and Higgs boson mass scale. At Mt, the top quark is decoupled and

at Mh, the remaining Higgs doublet is also decoupled, leaving the remaining

spectrum to run down to the Z–scale; at which the gauge data is extracted.

By starting from the string scale and evolving the couplings down toMZ , our analysis

may test whether the predictions of these models are in accordance with low–energy

experimental data.

Low–energy inputs

For our analysis, we take the following values for the masses and couplings [33]:

MZ = 91.1876± 0.0021 GeV

α−1 ≡ α−1
EM (MZ) = 127.944± 0.014

sin2θW (MZ)
∣∣
MS

= 0.23116± 0.00012

α3(MZ) = 0.1184± 0.0007.

(5.13)

We also include the top quark mass of Mt ∼ 173.5 GeV [33] and the Higgs boson

mass of Mh ∼ 125 GeV [1, 2] in our analysis but these are not expected to have a

large effect.

5.2.1 Renormalization Group Equations

For the RGE running of both models, we follow the methods outlined in [30]. String

unification implies that the SM gauge couplings are unified at the heterotic string

scale, MS. As discussed previously, taking into consideration nonperturbative effects

and intermediate scale threshold contributions, one may resolve the discrepancy
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between the MSSM GUT scale, MGUT, and the heterotic string scale, MS. The

one–loop RGEs for the couplings are given by

4π

αi (µ)
= ki

4π

αstring

+ βi log
M2

string

µ2
+ ∆

(total)
i , (5.14)

where βi are the one–loop β–function coefficients, and ∆
(total)
i represents possible

corrections from the additional gauge or matter states i.e. in each model, we initially

assume the MSSM spectrum between the string scale, MS, and the Z–scale, MZ ,

and treat all perturbations as effective correction terms. Explicitly, in our case, the

gauge coupling RGEs are,

1

αi (MS)
=

1

αi (MZ)
− bMSSM

i

2π
log

MS

MZ

− 1

2π

∑
j

bIMij log
MS

Mj

+
bSPi
2π

log
MSUSY

MZ

+
bti
2π

log
Mt

MZ

+
bhi
2π

log
Mh

MZ

,

(5.15)

where i = Y, 2L and 3, and j represents the intermediate scales MR,MD and MZ′ .

At the string unification scale we have

αS ≡ α3(MS) = α2(MS) = k1αY (MS), (5.16)

where k1 = 5/3 is the canonical SO(10) normalization in both cases due to our

hypercharge embedding discussed previously. Using the relations

α2 (MZ) =
α (MZ)

sin2θW (MZ)
; αY (MZ) =

α (MZ)

1− sin2θW (MZ)
, (5.17)

where α (MZ) ≡ αEM(MZ), and the unification condition, (5.16), we may obtain

expressions for sin2θW (MZ) and α3(MZ) [30],

sin2θW (MZ)
∣∣
MS

=∆sin2θW
MSSM + ∆sin2θW

IM + ∆sin2θW
SP + ∆sin2θW

IG

+ ∆sin2θW
Top + ∆sin2θW

Higgs + ∆sin2θW
TC

(5.18)
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and

α3(MZ)|MS = ∆α3
MSSM + ∆α3

IM + ∆α3
SP + ∆α3

IG + ∆α3
Top + ∆α3

Higgs + ∆α3
TC. (5.19)

As mentioned, ∆MSSM represents the one–loop contributions from the spectrum

of the MSSM between the unification scale and the Z–scale. The following five

∆ terms correspond to corrections from the intermediate matter thresholds, the

light SUSY partner thresholds, the intermediate vector bosons corresponding to the

SU(2)R symmetry breaking, the top quark contribution and the electroweak Higgs

contribution respectively. The last term,

∆sin2θW
TC = ∆sin2θW

HS + ∆sin2θW
Yuk. + ∆sin2θW

2-loop + ∆sin2θW
Conv. , (5.20)

includes the corrections due to heavy string thresholds, those arising from Yukawa

couplings, two–loops and scheme conversion. These corrections were shown to

be small for certain classes of heterotic string models constructed within the free

fermionic framework [30] and are neglected for this demonstrative analysis.

Rearranging the RGEs for sin2θW (MZ), we obtain

∆sin2θW
MSSM =

1

1 + k1

[
1 +

α

2π
(k1b

MSSM

2 − bMSSM

Y ) log
MS

MZ

]
; (5.21a)

∆sin2θW
IM+IG =

1

2π

k1α

(1 + k1)

∑
j

(
bIM+IG

2j − bIM+IG

1j

)
log

MS

Mj

; (5.21b)

∆sin2θW
SP = − 1

2π

k1α

(1 + k1)

(
bSP1 − bSP2

)
log

MSUSY

MZ

, (5.21c)

where α = αEM (MZ), Mj are the intermediate gauge and matter scales discussed

88



Chapter 5. Phenomenological Analysis

earlier and we have used b1 ≡ bY
k1

. Similarly for α3(MZ), we have:

∆α3
MSSM =

1

1 + k1

{
1

α
+

1

2π

[
(1 + k1) bMSSM

3 − (bMSSM

2 + k1b
MSSM

1 )

]
log

MS

MZ

}
; (5.22a)

∆α3
IM+IG =

1

2π

1

(1 + k1)

∑
j

[
(1 + k1) bIM+IG

3j −
(
bIM+IG

2j + k1b
IM+IG

1j

) ]
log

MS

Mj

; (5.22b)

∆α3
SP = − 1

2π

1

(1 + k1)

[
(1 + k1) bSP3 − (bSP2 + k1b

SP

1 )

]
log

MSUSY

MZ

. (5.22c)

∆Higgs and ∆Top take the same form as ∆SP for both α3(MZ) and sin2θW (MZ).

Numerical Analysis – Model I

The β–functions for Model I correspond to,

bMSSM

i =

 11

1

−3

 ; (5.23a)

bIM+IG

ij =

 −4 2
3
nD 18

0 0 6

0 nD 0

 ; (5.23b)

bSPi =


25
6

25
6

4

 ; bti =


17
18

1
2

2
3

 ; bhi =


1
6

1
6

0

 . (5.23c)

where i = Y, 2L and 3C and j = MR,MD and MZ′ . Both (5.23a) and (5.23c) are

generic for models based on the MSSM. The matrix, (5.23b), is specific to our model

but its form is generic for models that have the same symmetry breaking pattern.

For calculating the one–loop β–functions below MSUSY we used [107]

bi =
g3

16π2

[
−11

3
t2(V ) +

2

3
t2(F ) +

1

3
t2(S)

]
(5.24)
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where for SU(N), t2(V ) = N and t2(F ) = t2(S) = 1
2
. Incorporating supersymmetry

sets t2(F ) = t2(S) for scalar multiplets and t2(V ) = t2(F ) for vector multiplets.

Thus,

bSUSY

i =
g3

16π2
[−3t2(V ) + t2(S)] . (5.25)

The β–function contributions for Model I are shown in Tables 4.2 and 4.3, and are

also summarised in (5.23). The numerical output of equations (5.21) and (5.22) is

generated subject to the variation of the scales. The hierarchy of the scales was

constrained to be

MS &MR > MD &MZ′ &MSUSY > MZ . (5.26)

The relevant mass ranges for the intermediate scales were scanned to find phe-

nomenologically viable areas of the parameter space. When first running the RGEs,

we restricted the allowed range of sin2θW(MZ) and α3(MZ) to 5σ from the central

values shown in (5.13). The RGEs were run in Mathematica. Restricting the output

to the experimentally constrained interval produced no phenomenologically viable

results. Allowing the values of sin2θW (MZ) and α3(MZ) to run freely and restricting

the relevant mass scales to (in GeV)

2 · 1016 ≤ MS ≤ 5 · 1017;

109 ≤ MR ≤ 5 · 1017;

105 ≤ MD ≤ 1012;

103 ≤ MZ′ ,MSUSY ≤ 1010,

(5.27)

also produced no phenomenologically viable results, as shown in Figure 5.1 (see

(5.13) for current experimental limits).

Numerical analysis – Model II

To further elucidate the constraints on the LRS heterotic string models arising

from coupling unification, we contrast the outcome with the corresponding results
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Figure 5.1: Freely running sin2θW (MZ) and α3(MZ): sin2θW (MZ) vs. α3(MZ) with
0 < αstring . 0.1.

when the U(1)ζ charges are embedded in E6 representations. We run the RGEs in

exactly the same way as shown for the LRS model, restricting the mass scales to

the hierarchy

MS &MR &MD = MZ′ &MSUSY �MZ . (5.28)

As discussed earlier, MD
!

= MZ′ due to the states originating in the 10 representation

acquiring mass through couplings with the singlet that breaks U(1)Z′ . A string–

derived model would afford more flexibility that we do not make use of in our

analysis here.

In this case, the β–functions for bMSSM
i , bSPi , b

t
i and bhi are identical to (5.23a) and

(5.23c) respectively, and so their contributions are identical to those in Model I. For
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bIM+IG

ij , we have

bIM+IG

ij =

 −4 2 3
0 0 3
0 3 0

 . (5.29)

At this stage, for comparative clarity, we keep separate the β–functions for the scales

MD and MZ′ . Reasons for doing so will be elaborated on later.

Running the RGEs for Model II, we find that unification does occur, as found in

previous literature. We note that the phenomenologically viable results (see Figure

5.2) required MS ∼MGUT ∼ 2 · 1016 GeV as expected. The other intermediate scales

were found to be (in GeV)

1013 ≤MR ≤ 1016; 103 ≤ MD ≤ 108; 103 ≤ MSUSY ≤ 1 · 106, (5.30)

with MZ′ between 1 − 105 TeV. Fine–tuning the MSUSY allows for MZ′ to be in

agreement with current experimental bounds.

Model I vs Model II

From our numerical analysis above, we found that, for unification to occur, the

U(1)ζ charges must have an E6 embedding. We can, more precisely, elucidate the

contrast between the two cases by examining the contributions of the intermediate

gauge and matter thresholds, the light SUSY thresholds and the Higgs and top

quark thresholds, to sin2θW (MZ) and α3(MZ). If we take MS to coincide with the

MSSM unification scale and with MR as well, then (5.21a) and (5.22a), which only

contain the MSSM contributions, are in good agreement with the observable data,

with

∆sin2θW
MSSM = 0.231 and ∆α3

MSSM = 0.117. (5.31)
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Figure 5.2: Freely running sin2θW (MZ) and α3(MZ): sin2θW (MZ) vs. α3(MZ) with
0 < αstring . 0.1 for Model II.

For both models, as Mt and Mh are fixed, the top and Higgs contributions equate

to

∆sin2 θW
Higgs = 1.63 · 10−5; ∆α3

Higgs = 6.28 · 10−3; (5.32a)

∆sin2 θW
Top = 3.33 · 10−5; ∆α3

Top = −1.71 · 10−2. (5.32b)

The lower bound on MSUSY is also equivalent for both models, as we have taken the

superpartner masses to be degenerate at MSUSY ∼ 1 TeV, and contributes as

∆sin2 θW
SP = −3.10 · 10−3; ∆α3

SP = 4.73 · 10−3. (5.32c)

As MSUSY increases it is clear that the SUSY spectrum contributions will increase,

however, these are not expected to be significant given the mass hierarchy of (5.26).

Therefore, the corrections arising from the intermediate gauge and matter thresh-

olds in (5.21b) and (5.22b) must cancel to reaffirm unification. Using the expressions
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in (5.21b) and (5.22b) we find that, in the case of the spectrum and charge assign-

ments in the LRS heterotic string model, shown in Tables 4.2 and 4.3, the threshold

corrections from intermediate gauge and matter scales are given by

∆sin2θW
IM+IG =

1

2π

k1α

1 + k1

(
12

5
log

MS

MR

− 2nD
5

log
MS

MD

− 24

5
log

MS

MZ′

)
, (5.33a)

∆α3
IM+IG =

1

2π (k1 + 1)

(
4 log

MS

MR

+ 2nD log
MS

MD

− 9 log
MS

MZ′

)
. (5.33b)

In the case of models that admit an E6 embedding of the U(1)ζ charges, the same

threshold corrections are given by

∆sin2θW
IM+IG =

1

2π

k1α

1 + k1

(
12

5
log

MS

MR

− 6

5
log

MS

MD

+
6

5
log

MS

MH

)
, (5.34a)

∆α3
IM+IG =

1

2π (k1 + 1)

(
4 log

MS

MR

+ 6 log
MS

MD

− 6 log
MS

MH

)
. (5.34b)

We see from (5.33a) that the corrections from the intermediate doublet and triplet

thresholds contribute with equivalent sign. Treating the number of triplets, nD as

a free parameter allows us to solve the relations

∆sin2θW
IM+IG = ∆α3

IM+IG = 0. (5.35)

However, we find that, due to the requirement that MR � MD, (5.35) cannot be

satisfied. We therefore conclude that a low scale Z ′ in the LRS heterotic string

models is incompatible with the gauge data at the Z–boson scale. In contrast, from

(5.34) we see that the corresponding corrections cancel each other, provided that

MH = MZ′ = MD. This is expected to be the case as both the triplet and doublet

masses are generated by the Z ′ breaking vev. This cancellation is, of course, the well

known cancellation that occurs when the representations fall into SU(5) multiplets.

Allowing MR ' MS

2
, i.e. MR ∼ 1016 GeV, then compensates for the SUSY threshold
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at ∼ 1 TeV, enabling accommodation of the low–energy data, as illustrated in Figure

5.2.
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Accommodating U(1)ζ ⊂ E6 in
heterotic string models

Here we present the potential route one may take to build a model that incorporates

the proton–protecting U(1)ζ described above but with the E6 embedding required

for gauge coupling unification. As we saw in Section 2.3, at the level of the NAHE

set, the visible GUT gauge group is SO(10). We then went on to see the various

breaking patterns following the further addition of basis vectors. However, we may

also add basis vectors that enhance the gauge symmetry. For example, we saw

previously, employing

x ≡
{
ψ

1,...,5
η1,2,3

}
resulted in gauge bosons, additional to the ones in the NS–sector, that enhance

SO(10) × U(1)ζ → E6. In this example we find that these bosons will enhance

SU(3)C×SU(2)L×SU(2)R×U(1)C×U(1)ζ to the Pati–Salam gauge group with an

additonal U(1). This U(1) is, in fact, a rotation of our original U(1)ζ and remains

anomaly free due to the presence of all of the states in the 27 representation of E6 in

our low–energy effective theory. Here we discuss how viable heterotic string models

with E6 embedding of the U(1)Z′ charges may be obtained, extending our initial
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discussion in [74].

6.1 Enhancement to E6 in string models

From the analysis of Section 5.2, we found the SO(10)×U(1)ζ 6⊂ E6 model, Model

I, gave results inconsistent with gauge coupling constraints. On the other hand,

with Model II, we found that the gauge coupling data seems to indicate the U(1)ζ

charges must admit an E6 embedding. We emphasize that the indication is that the

charges must admit an E6 embedding and not that the E6 symmetry is necessarily

realised.

In our previous model, we found that the gauge bosons generating our visible

group, SU(3)C×SU(2)L×SU(2)R×U(1)C×U(1)ζ , originated in the NS sector only.

In general, the vector bosons that generate the visible four dimensional gauge group

in the string models arise from two principal sectors: the untwisted sector and the

sector x =
{
ψ

1,··· ,5
, η1,2,3

}
. We have not included the basis vector x in this analysis

thus far. As mentioned earlier, in Section 2.4.3 we found that including the x vector

at the level of the NAHE set, along with the relevant GGSO projection coefficients,

enhanced SO(10)×U(1)ζ → E6. This is due to the gauge bosons that transform in

the 16 and 16 of SO(10).

Before adding the bj vectors to complete the NAHE set, the gauge group is

SO(44), with N = 4 spacetime SUSY, generated by the basis vectors

b = 1,S.

At this stage the gauge bosons originate only in the NS sector.

The complex right–moving worldsheet fermions that generate the Cartan subal-

gebra of the observable gauge group are all periodic in the x–sector. Thus, adding
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6.1. Enhancement to E6 in string models

x at this stage, breaks

SO(44)→ SO(16)× SO(28) (6.1)

by projecting out some of the gauge bosons from the NS sector. However, in the

x–sector, further gauge bosons appear transforming in the spinorial representation

of SO(16). These combine with the adjoint of SO(16) and form the adjoint repre-

sentation of E8, i.e.

120 + 128→ 248,

just as we saw the ξ–sector enhance the hidden SO(16) in Chapter 2. The gauge

group at this stage now reads

E8 × SO(28). (6.2)

The basis vector S generates N = 4 spacetime SUSY which remains unbroken. The

bj vectors are then included, breaking the visible gauge group to

E6 × U(1)2 × SO(4)3. (6.3)

With the inclusion of the bj vectors, SUSY is now broken to N = 1. This gauge

group, with N = 1 spacetime SUSY, may also be generated by the set of basis

vectors

b = {1,S,x, ζ,b1,b2} . (6.4)

At the level of the E8 × E8 heterotic string in ten dimensions, the vector bosons of

the observable E8 are obtained from the untwisted sector and from the x–sector.

The set {1,S,x, ξ} produces a model with gauge symmetry, at a generic point in
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Chapter 6. Accommodating U(1)ζ ⊂ E6 in heterotic string models

the compactified space, of either E8 × E8 or SO(16) × SO(16) depending on the

GGSO phase c

(
x
ξ

)
= ±1.

Adding the basis vectors b1 and b2 reduces the spacetime supersymmetry to

N = 1 just as before. The observable gauge symmetry then reduces from either

E8 → E6 × U(1)2 or SO(16)→ SO(10)× U(1)3. The additional vectors, {α, β, γ},

reduce the gauge symmetry further. Aside from the model of [108], all the quasi–

realistic free fermionic models follow the second symmetry breaking pattern. That

is, in all these models, the vector bosons arising from the x–sector are projected out.

6.2 Embedding U(1)ζ in E6

We consider, then, the SL symmetry breaking pattern induced by the following

boundary condition assignments in two separate basis vectors

α
{
ψ

1···5
}

=

{
1

2

1

2

1

2

1

2

1

2

}
⇒ SU(5)× U(1), (6.5a)

β
{
ψ

1···5
}

= {1, 1, 1, 0, 0} ⇒ SO(6)× SO(4). (6.5b)

The inclusion of (6.5) in two separate boundary condition basis vectors reduces the

SO(10) gauge symmetry to SU(3)C × SU(2)L × U(1)C × U(1)L, where

2U(1)C = 3U(1)B−L and U(1)L = 2U(1)T3R (this was explored in more detail in

Chapter 2). For appropriate choices of the GGSO projection coefficients, the vector

bosons arising from the x–sector enhance the SU(3)×SU(2)×U(1)2×U(1)ζ arising
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6.2. Embedding U(1)ζ in E6

from the untwisted sector to SU(4)C × SU(2)L × SU(2)R × U(1)ζ′ , where

U(1)4 = U(1)C + 3U(1)L − 3U(1)ζ ; (6.6a)

U(1)2 = U(1)C + U(1)L + U(1)ζ ; (6.6b)

U(1)ζ′ = −3U(1)C + 3U(1)L + U(1)ζ . (6.6c)

U(1)4 and U(1)2 are embedded in SU(4)C and SU(2)R, respectively, and U(1)ζ is

given by (2.31). The matter representations charged under this group arise from

the sectors bj and are complemented by states from bj+x to form the ordinary

representations of the Pati–Salam model. The difference, as compared to the Pati–

Salam string models of [49, 50], is that U(1)ζ′ is anomaly free. The reason is

that all the states of the 27 representation of E6 are retained in the spectrum,

whereas in the Pati–Salam models of [49, 50] the corresponding states are projected

out. The symmetry breaking of the Pati–Salam SU(4)C × SU(2)R group is in-

duced by the vev of the heavy Higgs in the (4,1,2)− 1
2

+(4,1,2)+ 1
2

representation of

SU(4)C ×SU(2)L×SU(2)R×U(1)ζ′ . In addition to the weak–hypercharge, this vev

leaves the unbroken combination

U(1)Z′ =
1

2
U(1)B−L −

2

3
U(1)T3R +

5

3
U(1)ζ′ , (6.7)

which is anomaly free and admits the E6 embedding of the charges. Due to the

incorporation of U(1)ζ in this model, it is expected that problematic PDMOs are

forbidden, while the inclusion of the full 27 representation of E6 allows for agreement

with gauge coupling unification data. A full string–model, or a string–inspired

approach along the lines of Chapter 4 should be conducted to examine these issues

further.
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Chapter 7

Conclusions

In this thesis we constructed an SO(10) string–inspired Grand Unified model that

took advantage of left–right symmetric charge assignments to accommodate an ad-

ditional U(1), external to the SO(10) and not embedded in E6, that forbids proton

decay mediating operators up to dimension–6. We also presented the formation of a

leptophobic U(1), that also took advantage of the LRS breaking pattern of SO(10).

These models were constructed within the free fermionic formulation of the heterotic

string, which allowed us to break SO(10) at the string scale, MS, and form U(1)

combinations free of gauge and gravitational anomalies.

Having constructed a viable U(1) combination in the main bulk of this thesis,

that, should it survive to sufficiently low scales, would adequately suppress proton

decay mediating terms, we found, using the field content in our model, it was in-

compatible with low–scale gauge coupling constraints. However, our comparative

analysis showed that embedding this U(1) in E6 allowed for gauge coupling uni-

fication at, or close to, MS ∼ 2 · 1016 GeV, as has been previously shown in the

literature.

In this analysis, we assumed that an E6 embedding of our U(1) may be derived

from the string and assigned the charges according to this prescription. In the last

101



chapter we were able to show how such a model may be derived from the string

and presented how our U(1) combination may be accommodated within such an

embedding.

Further exploration of the phenomenology of a model that could accommodate

the U(1) of Chapter 6 is required. Some work has been carried out previously in

[105, 109] within the context of an orbifold E6 model. Given the equivalence be-

tween free fermion models and orbifold constructions, the resulting phenomenology

would have similar implications. However, should a full string–model be built, there

may be unique signatures that could distinguish (6.7) from other additional abelian

symmetries beyond the Standard Model.
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Appendix A

SO(10) weights and roots

The simple roots of SO(10) for the fundamental weight basis are

α1 = (1,−1, 0, 0, 0) ;

α2 = (0, 1,−1, 0, 0) ;

α3 = (0, 0, 1,−1, 0) ;

α4 = (0, 0, 0, 1,−1) ;

α5 = (0, 0, 0, 1, 1) .

(A.1)

In Figure A.1 we construct the 16 representation. This corresponds to the notation

used in (2.38) where [(
5
0

)]
= |+1

2
,+

1

2
,+

1

2
,+

1

2
,+

1

2
〉
α

(A.2a)

[(
5
2

)]
= |−1

2
,−1

2
,+

1

2
,+

1

2
,+

1

2
〉
α

(A.2b)

[(
5
4

)]
= |−1

2
,−1

2
,−1

2
,−1

2
,+

1

2
〉
α
. (A.2c)

Here, | 〉α represents the permutations of the vacua charges in the sector α.
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(+, +, +,�,�)

(+, +,�, +,�)

↵2 ↵4

(+,�, +, +,�)

(�, +, +, +,�)

(�, +, +,�, +)

(�, +,�, +, +)

(�,�, +, +, +)

(+, +,�,�, +)

↵1 ↵2

(+,�, +,�, +)

↵4 ↵3

(+,�,�, +, +)

↵3 ↵5

(+,�,�,�,�)

↵2 ↵1

(�, +,�,�,�)

↵5 ↵2

(�,�, +,�,�)

↵3

(�,�,�, +,�)

↵4

(�,�,�,�, +)

(+, +, +, +, +)

↵4

↵5

↵1

Figure A.1: Weight diagram for the 16 of SO(10), where the weights are ± 1
2 .
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Appendix B

Rules for Model Building in the
Free Fermionic Formulation

Here we present the model building rules used in constructing heterotic string models

using the free fermionic formulation. These were first presented in [75, 76] and are

known as the ABK rules.

Theorem A To any consistent fermionic string theory there corresponds a finite

additive group of vectors of boundary conditions

Ξ ' ZN1 ⊕ · · · ⊕ ZNk (B.1)

generated by a basis {b1, . . . ,bk} which we may choose as canonical, i.e.

(A1)
∑

imibi = 0 ⇐⇒ mi = 0 mod Ni ∀ i

and which obeys the following conditions:

(A2) 1 ∈ Ξ

(A3) Nij bi · bj = 0 mod 4,

with Nij the least common multiple of Ni and Nj;
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(A4) Nib
2
i = 0 mod 8 if Ni is even;

(A5) the number of real fermions which are simultaneously periodic under any four

boundary condition basis vectors bi, bj, bl, bm is even;

(A6) the boundary condition matrix corresponding to each bi is an automorphism

of the Lie algebra defining the worldsheet supercharge.

Theorem B For any such group Ξ, there exist 2Πi>j gij consistent string theories,

where gij is the greatest common divisor of Ni and Nj. These correspond to the gij

different choices for every coefficient c

[
bi
bj

]
, for i > j, such that:

(B1) c

[
bi
bj

]
= δbie

2πin
Nj = δbie

πi(bi·bj)
2 e

2πim
Ni ;

with n and m (i- and j-dependent) integers, and to the two possible choices for

(B2) c

[
b1

b1

]
= ±e

πib2
1

4 .

Any such choice can be uniquely extended to all pairs of elements of Ξ, using the

properties

(B3) c

[
α
α

]
= e

πi(αα+1 1)
4 c

[
α
b1

]N1
2
,

(B4) c

[
α
β

]
= e

πi(αβ)
2 c

[
β
α

]∗
,

(B5) c

[
α

β + γ

]
= δα c

[
α
β

]
c

[
α
γ

]
.

The full one–loop amplitude is given by a sum over all spin–structures

[
α
β

]
, cor-

responding to pairs of elements in Ξ, with weight c

[
α
β

]
.
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