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Abstract 
Murid herpesvirus 4 (MHV-68) has been widely studied as a model of 
gammaherpesvirus infection. Infection of Apodemus sylvaticus, a natural 
host for MHV-68, revealed that a virally-encoded chemokine binding 
protein (M3) influences the composition of the perivascular and 
peribronchiolar inflammatory infiltration and the formation of BALT in the 
lung during lytic infection. In addition, host genes were identified which 
were expressed at higher levels in the presence of MHV-68 M3 at 14 
days post infection (dpi), including Clara cell secretory protein (CCSP), 
Short palate lung and nasal epithelium clone 1 (SPLUNC1) and Anterior 
gradient 3 (AGR3). The aim of this work was to further investigate the 
expression of these genes and their corresponding proteins in relation to 
respiratory viral infection. 

CCSP and SPLUNC1 have previously been shown to have anti-
inflammatory properties in models of virus, bacteria and allergen induced 
inflammation. AGR3 is thought to be homologous to AGR2, which is 
associated with the transition of Clara cells to mucous cells in the lung. 
Following MHV-68 infection in A. sylvaticus, levels of both CCSP and 
SPLUNC1 were reduced in the bronchioles at 7 dpi and increased at 14 
dpi, compared to mock-infected controls. In the absence of M3, the level 
of CCSP was reduced compared to wild type MHV-68 infected animals at 
both timepoints, whereas no significant difference in the expression of 
SPLUNC1 in the bronchioles was present. The regulation of both of 
these genes has previously been associated with interferon γ (IFNγ); 
infection of 129 wild type and IFNγR-/- mice revealed that CCSP 
expression was increased and SPLUNC1 expression decreased in the 
presence of IFNγ. However, this effect was smaller than that due to 
MHV-68 infection. Expression of AGR3 in the respiratory tract was 
increased in response to MHV-68 infection, whereas AGR2 was 
decreased. To investigate whether these effects were specific to MHV-
68, infection with other respiratory viruses, with different cellular tropisms 
in the respiratory tract were examined in BALB/c mice. Infection with 
Human respiratory syncytial virus, Sendai virus and several strains of 
Influenzavirus A led to a decrease in both CCSP and SPLUNC1 
expression during acute infection, when this was associated with a 
significant inflammatory response in the lung. 

The findings of this work showed that CCSP and SPLUNC1 are 
constitutively expressed in the non-ciliated cells of the respiratory 
epithelium and support the hypothesis that they have an anti-
inflammatory role in the lung. Expression of both proteins is reduced in 
the event of acute viral infection resulting in significant inflammation. In 
MHV-68 infection of A. sylvaticus, increased expression of CCSP and 
SPLUNC1 at later timepoints suggests that these proteins are implicated 
in the resolution of the inflammatory response. 
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1.1 Herpesviridae 
1.1.1 Properties of herpesviruses 
Membership of the Herpesviridae family is based on the architecture of the 

virion. The core consists of linear double stranded DNA within an 

icosadeltahedral capsid, 100 to 110 nm in diameter with 162 capsomeres. The 

capsid is surrounded by an amorphous tegument of variable thickness causing 

occasional asymmetry, and a lipid bilayer envelope with viral glycoprotein 

spikes. The genome consists of a single linear segment of 125-290 kb 

(Davison et al., 2009). The encapsulated virion is 120 – 300 nm in diameter; 

the variation being due to the variable thickness of the tegument [(Pellett and 

Roizman, 2007) Figure 1-1].  

 

Figure 1-1 Schematic diagram of the structure of a herpesvirus virion. 
 

Herpesviruses are widely disseminated and most species have at least one 

(usually species specific) herpesvirus; 200 are known to date and this number 

is likely to increase with further research; it is likely that all vertebrates carry 

multiple herpesvirus species (Davison et al., 2005; Pellett and Roizman, 2007).  

Several species of veterinary importance have one or more herpesviruses;  

host species include mammals, birds, reptiles, fish, amphibians and molluscs 

and eight herpesviruses are known that have humans as their primary host 

(Pellett and Roizman, 2007). 

 

Icosadeltahedral capsid

Amorphous tegument 

Lipid bilayer envelope

Glycoprotein spike 
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In addition to morphological similarities, biological properties common to all 

herpesviruses are known. Firstly, there are common enzymes present in 

numerous herpesviruses, which are involved in nucleic acid metabolism, DNA 

synthesis and the processing of proteins, although the exact combination of 

enzymes may vary between virus species. Secondly, viral DNA and capsid 

assembly occurs within the nucleus of an infected cell. The process of viral 

DNA synthesis and virion assembly (i.e. production of progeny virus) causes 

destruction of the infected host cell. Lastly, the capacity of the virus to 

establish a latent infection in the host, maintaining the presence of the virus 

and the potential for future reactivation and further replication (Pellett and 

Roizman, 2007). Herpesviruses are generally found within a single host 

species and are highly host adapted. As a result, severe infection is not the 

norm and occurs only during infection of the very young, the foetus, 

immunocompromised hosts, or on the occasions that an alternative host 

species is infected (Davison et al., 2005). 

 

1.1.2 Classification of herpesviruses  
Herpesviruses are in the Order Herpesvirales, which is divided into three 

families; the family Herpesviridae contains herpesviruses species which infect 

mammals, birds and reptiles, Alloherpesviridae the herpesviruses of fish and 

amphibians and Malacoherpesviridae, herpesviruses of molluscs (Davison et 

al., 2009). Within the Herpesviridae there are three subfamilies, designated 

Alpha-, Beta- and Gammaherpesvirinae. This classification is based on the 

biological properties of the virus, made by the Herpesvirus Study Group of the 

International Committee on Taxonomy of Viruses (Davison et al., 2009; 

Roizman et al., 1981; Roizman et al., 1992) and is supported by the more 

recent information obtained from DNA sequence analysis (Davison et al., 

2005). Phylogenetic analyses of DNA sequences have demonstrated that 

mammalian herpesviruses come from a clear common evolutionary origin, 

from which the subfamilies have evolved. Subdivision of the Herpesviridae into 

the three subfamilies occurred 80-60 million years ago, around the time of the 

extinction of the dinosaurs (McGeoch et al., 1995; McGeoch et al., 2005). Co-

evolution with hosts since this time has lead to close host-specificity and the 

ability to latently infect these hosts, often over their entire lifespan (Davison, 
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2002). Alphaherpesvirinae exhibit a variable host range (including mammalian, 

avian and reptilian species) and have a short reproductive cycle which 

efficiently destroys infected cells both in vivo and in vitro where virus spread is 

rapid. Unlike other genera in this and other subfamilies (Table 1-1), infection 

with viruses of the genus Simplexvirus is not associated with viraemia, but is 

localised to the epithelium at the site of infection and the sensory neurones 

innervating this site (Davison et al., 2005). The establishment of latency within 

neurones and ganglia, however, is a characteristic of many 

Alphaherpesvirinae (Davison et al., 2005; Pellett and Roizman, 2007). 

Betaherpesvirinae exhibit a more restricted host range, a long reproductive 

cycle and slow progression of growth in culture. A characteristic of this 

subfamily is the development of cytomegaly of infected cells and latency within 

monocytes, found in various tissues, including secretory glands, 

lymphoreticular cells and the kidney (Davison et al., 2005; Pellett and 

Roizman, 2007). Gammaherpesvirinae are restricted to hosts from the family 

or order to which the natural host belongs and predominantly replicate in 

lymphoblastoid cells, although some may also cause lytic infection in 

epithelioid or fibroblastic cells. Latent infection is usually restricted to 

lymphocytes (Davison et al., 2005; Pellett and Roizman, 2007). Within each 

genus, there is a designated “type species” virus, details of which are found in 

Table 1-1. 

 

1.1.3 Gammaherpesvirinae 
The subfamily Gammaherpesvirinae contains four genera; Lymphocryptovirus 

contains Epstein-Barr virus (HHV4) and other viruses which are restricted to 

(new world and old world) primate hosts; Rhadinovirus contains viruses of new 

world and old world primates, as well as humans and other mammals including 

cattle and mice. Two more recently created genera are Macavirus, named for 

Malignant Catarrhal Fever-associated herpesviruses and Percavirus named 

for perissodactyl and carnivore herpesviruses. Further details of individual 

species are given in Table 1-2 (Davison et al., 2009). Each type species from 

each of the genera belonging to the Gammaherpesvirinae is discussed in 

greater detail below. 
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Subfamily Genus Type species Acronym Common name 

Alpha-
herpesvirinae 

Simplexvirus Human 
herpesvirus 1 

HHV1 Herpes simplex 
virus type 1 

Varicellovirus Human 
herpesvirus 3 

HHV3 Varicella-zoster 
virus 

Mardivirus Gallid 
herpesvirus 2 

GaHV2 Marek’s disease 
virus type 1 

Iltovirus Gallid 
herpesvirus 1 

GaHV1 
Infectious 

laryngotracheitis 
virus 

Beta- 
herpesvirinae 

Cytomegalo-
virus 

Human 
herpesvirus 5 

HHV5 Human 
cytomegalovirus

Muromegalo-
virus 

Murid 
herpesvirus 1 

MuHV1 Mouse 
cytomegalovirus

Roseolovirus Human 
herpesvirus 6 

HHV6 Human 
herpesvirus 6 

Proboscivirus Elephantid 
herpesvirus 1 

ElHV1 
Elephant 

endotheliotropic 
herpesvirus 

Gamma-
herpesvirinae 

Lymphocrypto-
virus 

Human 
herpesvirus 5 

HHV4 Epstein-Barr 
virus 

Rhadinovirus Saimiriine 
herpesvirus 2 

SaHV2 Herpesvirus 
saimiri 

Macavirus Alcelaphine 
herpesvirus 1 

AlHV1 
Malignant 

catarrhal fever 
virus 

Percavirus Equid 
herpesvirus 2 

EHV2 Equine 
herpesvirus 2 

Table 1-1 Type species of each genus in the Order Herpesvirales, Family 
Herpesviridae. 
Assembled after Davison et al., 2009. 
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Genus Name Acronym Former name Common name 

Ly
m

ph
oc

ry
pt

ov
iru

s 

Callitrichine 
herpesvirus 3 CalHV3  Marmoset lymphocryptovirus 

Cercopithecine 
herpesvirus 14 CeHV14  African green monkey EBV-like 

virus 
Gorilline 
herpesvirus 1 GoHV1 Pongine 

herpesvirus 3 Gorilla herpesvirus 

Human 
herpesvirus 4* HHV4  Epstein-Barr virus 

Macacine 
herpesvirus 4 McHV4 Cercopithecine 

herpesvirus 15 Rhesus lymphocryptovirus 

Panine 
herpesvirus 1 PnHV1 Pongine 

herpesvirus 1 Herpesvirus pan 

Papiine 
herpesvirus 1 PaHV1 Cercopithecine 

herpesvirus 12 Herpesvirus papio 

Pongine 
herpesvirus 2 PoHV2  Orangutan herpesvirus  

R
ha

di
no

vi
ru

s 

Ateline 
herpesvirus 2 AtHV2  Herpesvirus ateles strain 810 

Ateline 
herpesvirus 3 AtHV3  Herpesvirus ateles strain 73 

Bovine 
herpesvirus 4 BoHV4  Movar virus 

Human 
herpesvirus 8 HHV8  Kaposi’s sarcoma-associated 

herpesvirus 
Macacine 
herpesvirus 5 McHV5 Cercopithine 

herpesvirus 17 Rhesus rhadinovirus 

Murid 
herpesvirus 4 MuHV4  Murine gammaherpesvirus 68 

Saimiriine 
herpesvirus 2* SaHV2  Herpesvirus saimiri 

M
ac

av
iru

s 

Alcelaphine 
herpesvirus 1* AlHV1  Malignant catarrhal fever virus 

Alcelaphine 
herpesvirus 2 AlHV2  Hartebeest malignant catarrhal 

fever virus 
Bovine 
herpesvirus 6 BoHV6  Bovine lymphotropic 

herpesvirus 
Caprine 
herpesvirus 2 CpHV2  Caprine herpesvirus 2 

Hippotragine 
herpesvirus 1 HiHV1  Roan antelope herpesvirus  

Ovine 
herpesvirus 2 OvHV2  Sheep-associated malignant 

catarrhal fever virus 
Suid 
herpesvirus 3 SuHV3  Porcine lymphotropic 

herpesvirus 1 
Suid 
herpesvirus 4 SuHV4  Porcine lymphotropic 

herpesvirus 2 
Suid 
herpesvirus 5 SuHV5  Porcine lymphotropic 

herpesvirus 3 

Pe
rc

av
iru

s 

Equid 
herpesvirus 2* EHV2  Equine herpesvirus 2 

 Equid 
herpesvirus 5 EHV5  Equine herpesvirus 5 

Mustelid 
herpesvirus 1 MusHV1  Badger herpesvirus  

Table 1-2 Confirmed species of the genera from the subfamily 
Gammaherpesvirinae. 
 * type species of the genera. Assembled after Davison et al., 2009. 
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1.1.3.1 Epstein-Barr virus (Human herpesvirus 4) 
Epstein-Barr virus (EBV, HHV4) is the type species of the genus 

Lymphocryptovirus (Davison et al., 2009). It is a widely disseminated 

herpesvirus in humans, with more than 90 % of people having been exposed 

to and carrying antibodies to the virus (Rickinson and Kieff, 2007). Spread of 

the virus is via the oral route by close contact with a virus-shedding carrier, 

and infection during the first three years of life (as is most common in the 

developing world) appears to be asymptomatic. However, in developed 

nations up to half of children are seronegative at the age of ten years and 

acquisition of the virus in adolescence or early adulthood results in the 

development of infectious mononucleosis (IM) in approximately 25 % of cases; 

such cases may be underdiagnosed in other parts of the world (Rickinson and 

Kieff, 2007). IM is characterised clinically by pyrexia, generalised 

lymphadenopathy, splenomegaly, sore throat and the presence of atypical 

activated T lymphocytes (mononucleosis cells) in the blood; some patients 

develop hepatitis, meningoencephalitis and pneumonitis (McAdam and 

Sharpe, 2005). These clinical symptoms occur 4 to 6 weeks after transmission 

and coincide with high titres of virus in throat washings and saliva. It is now 

thought that the target cells for infection are the epithelial cells of the oral 

cavity, particularly the tongue, with lytic replication having been demonstrated 

in cases of oral hairy leukoplakia lesions (a condition seen in AIDS patients) 

and subsequently in the tongue of immunocompetent carriers (Rickinson and 

Kieff, 2007). Infection of oral epithelial cells may occur via initial binding of EBV 

to B cells within the lymphoepithelium of the oropharynx, as it has been shown 

that infection of epithelial cells in vitro is 1,000 times more efficient in the 

presence of resting B cells with surface-bound EBV; binding occurs between 

viral gp350 and cellular CD21 (Shannon-Lowe et al., 2006). 

 

Infection of B cells via CD21 binding leads to two potential outcomes for the 

cell; either lytic infection in which further infectious virions are produced, 

resulting in cell death, or a process which results in latent infection. EBV 

infection of a naive B cell mimics the physiological process whereby the B cell 

enters the germinal centre as a result of antigen stimulation. This occurs via 

hypermutation of immunoglobulin (Ig) light and heavy chains, in which the cells 
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which produce Ig with the highest affinity for the antigen are rescued from 

apoptosis and become memory B cells. Memory B cells are longer lived and 

provide the potential for life-long latent infection of the host (Kutok and Wang, 

2006; McAdam and Sharpe, 2005; Rickinson and Kieff, 2007). Maintenance of 

latent infection is achieved by activation of latency-associated genes causing B 

cells to proliferate, for example, LMP-1, which actives the NF-κB and 

JAK/STAT pathways and inhibits apoptosis by activation of BCL-2. These 

pathways for continued B cell proliferation are a critical component in the 

formation of the B cell lymphomas that are seen in association with EBV 

infection. However, they also facilitate the development of other neoplastic 

conditions, usually in the presence of some form of immunosuppression or 

concomitant infection (Stricker and Kumar, 2010).  

 

Burkitt’s Lymphoma (BL) is a neoplasm of B cells which was first described by 

Denis Burkitt in 1958 as a neoplasm of high incidence in children under the 

age of 15 years in equatorial Africa, a location with endemic malaria. These 

lymphomas are unusual in their location (the mandible, orbit, kidney, adrenal 

gland and ovaries) and have a characteristic “starry sky” histological 

appearance due to the presence of macrophages within sheets of neoplastic 

lymphocytes. Culture of BL cells in vitro led to the identification of a 

herpesvirus by Epstein and Barr in the 1960’s. EBV is believed to contribute to 

the development of the neoplasm by increasing the potential of a genetic 

translocation within the c-MYC gene, promoting entry into the cell cycle and 

activating anti-apoptotic pathways. Subsequently, other forms of BL in other 

geographical locations have been described; sporadic BL (also a neoplasm of 

children and adolescents) and AIDS-BL, which accounts for 30 % of 

lymphoma cases in AIDS patients. The association with EBV in these types of 

BL is less consistent, although all display the same c-MYC mutation (Epstein, 

2001; Kutok and Wang, 2006; Rickinson and Kieff, 2007; Stricker and Kumar, 

2010; Thorley-Lawson and Allday, 2008). 

 

Several other B cell lymphomas are associated with EBV, in both 

immunocompromised patients (e.g., AIDS-associated B cell lymphoma, post-

transplantation lymphoproliferative disorder, Severe combined 
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immunodeficiency-associated B cell lymphoma) and immunocompetent 

patients (e.g. Classical Hodgkin lymphoma), in addition to several neoplasms 

of other cellular origin, for example, nasopharyngeal carcinoma (Kutok and 

Wang, 2006). 

 

1.1.3.2 Herpesvirus saimiri (Saimiriine herpesvirus 2) 
Herpesvirus saimiri (HVS) is the species type rhadinovirus and a natural 

pathogen of squirrel monkeys (Saimiri sciureus), which are found in the 

rainforests of South America. Squirrel monkeys are naturally infected within 

the first two years of life via saliva, which leads to lifelong persistent infection. 

However, there is no evidence that transformation occurs in Squirrel Monkeys 

and consequently lymphomas are not a feature of infection in this species 

(Melendez et al., 1968). Experimental infection of other new world primate 

species leads to T cell lymphoma within two months of infection, including 

cotton top tamarins (Saguinus oedipus), common marmosets (Callithrix 

jacchus) and owl monkeys (Aotus trivirgatus) and some old world primates; 

cynomolgus macaques (Macaca fascicularis) and rhesus macaques (Macaca 

mulatta). In these species, lymphoma develops within lymphoid organs such 

as lymph nodes and the spleen, as well as intestines, kidney, liver, lung 

pancreas and salivary glands. Malignant cells are lymphoblast-like in 

appearance and CD3+ and have been described as pleomorphic 

T-lymphoproliferative disorders, which are similar in appearance to EBV-

induced post-transplantation B-lymphproliferative disease (Fickenscher and 

Fleckenstein, 2001). 

 

1.1.3.3 Kaposi’s sarcoma-associated herpesvirus (Human herpesvirus 8) 
Kaposi’s sarcoma-associated virus (KSHV) is the only herpesvirus of humans 

in the genus Rhadinovirus. It was first described in 1994 after the rise in the 

incidence of Kaposi’s sarcoma in AIDS patients led to a search for an 

associated pathogen. Viral DNA with significant but distant homology to EBV 

was found within Kaposi’s sarcoma (KS) tissue (Chang et al., 1994). KS was 

first described much earlier, in the late 19th century in Eastern Europe and this 

classical form of KS is predominantly found in older men, but is benign and 

non-life threatening (Ganem, 2007). Despite its relatively recent discovery, 
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sequence analysis has shown that different strains are present in different 

geographically distinct populations, suggesting that the virus was established 

within the human population at the time that humans started to migrate from 

Africa into Europe and Asia. This also suggests that there are strong familial 

patterns of spread, either from parents to offspring or between siblings in these 

populations (Ganem, 2007).  

 

Today, the prevalence of KSHV varies widely in different populations of the 

world. The highest incidence is in Africa where up to 60 % of the population 

are seropositive. The Mediterranean basin also shows a higher incidence, 

where 20-25 % of the population have been exposed (Ganem, 2006).  In these 

areas, the prevalence in both men and women and the presence of KSHV in 

young children is highly suggestive of either vertical or horizontal spread within 

families via saliva, in which KSHV is most commonly detected. In the United 

States the incidence in the general population is 1-7 %, however, the familial 

route of infection is less likely as seroprevalence of KSHV increases with age. 

The much higher incidence in homosexual men suggests sexual transmission; 

there is a clear correlation between seroprevalence and the number of sexual 

partners. However, it is still thought that saliva is the main route of 

transmission (Ganem, 2007). The higher incidence within the homosexual 

population became evident in the treatment of AIDS patients, who exhibited a 

much higher incidence of KS. The overall incidence of KS is 1 case per 10,000 

seropositive individuals. The incidence within HIV-positive persons is much 

higher; it is has been found that men infected with both HIV and KSHV, who 

are treated for neither, have a 50 % incidence of KS within ten years (Ganem, 

2007).  

 

Classical KS, as described by Kaposi, is a tumour of “spindle cells”, the 

majority of which are latently infected with KSHV. The origin of these cells is 

not clear as they variably express cell markers indicative of either vascular 

endothelium, lymphatic endothelium or smooth muscle cells (α-actin); the 

expression of these markers may vary within a single mass. To complicate 

matters, it has been shown in vivo that viral infection can cause endothelial 

cells to express lymphatic markers and vice versa. Furthermore, the spindle 
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cells differ from normal neoplastic cells in that they are polyclonal. In addition 

to the spindle cells, other histological features are highly characteristic of KS. 

Neovascular spaces, lined by endothelial cells that are often KSHV negative 

are present early on in tumour growth. Implantation of KS cells into nude mice 

does not result in the growth of a tumour, due to involution of the KS cells, but 

while they are present, new vessels of murine origin grow, suggesting that the 

neoplastic cells induce angiogenic activity. Similarly, inflammatory cells are a 

feature of KS, but these cells do not appear in response to necrosis but are 

present from the earliest stages, suggesting that this too is a result of 

signalling from the KS spindle cells. Individual KS lesions often arise 

simultaneously, within the dermis of the skin on the lower abdomen and legs 

and may either progress slowly to nodular form, or spontaneously regress 

(Ganem, 2006, 2007). 

 

KS in AIDS patients has a more aggressive form; dermal lesions are more 

widespread, often disfiguring and in addition, extracutaneous sites are 

frequently affected, especially the lungs and the gastrointestinal tract. 

Intravisceral lesions are often accompanied by haemorrhage and oedema, and 

gastrointestinal bleeding and respiratory failure are serious sequalae. Other 

more aggressive forms of KS are also seen in young children in endemic 

areas and in iatrogenically immunosuppressed transplant recipients (Ganem, 

2006).  

 

Other than KS, other disorders are associated with KSHV, principally in AIDS 

patients. Primary effusion lymphoma (PEL) and multicentric Castleman’s 

disease (MCD) are both lymphoproliferative B cell disorders which are 

associated with KSHV (Cohen et al., 2005). PEL is characterised by 

proliferation of monoclonal B cells on serosal surfaces (peritoneum, pleura, 

pericardium) and occasionally invasion of solid organs. It is most frequently 

seen in patients with end stage AIDS. The B lymphocytes are CD138+, 

indicative of germinal centre B cell origin, and are most likely of plasmablastic 

lineage, due to their transcription profile and secretion of IL-6 and IL-10, which 

is found in other plasmablastic tumours (Jenner et al., 2003). MCD is a more 

aggressive form of the rare polyclonal lymphoproliferative disease, 



12 

 

Castleman’s disease and is characterised by sustained pyrexia, sweating, 

weight loss, lymphadenopathy and splenomegaly. KSHV-positive cells are 

limited to the mantle zone surrounding germinal centres and represent 10-

50 % of the B cells in this area. Virtually all HIV-positive patients with MCD 

have KSHV-positive B cells, compared to the very rare cases of MCD in HIV-

negative patients in whom only 40-50 % have KSHV-positive B cells; 

Castleman’s disease (in HIV-negative patients) is not associated with KSHV 

(Ganem, 2007). 

 

1.1.3.4 Alcelaphine herpesvirus 1 
Alcelaphine herpesvirus 1 is the species type of the genus Macavirus, one of 

several in the genus that is associated with the disease Malignant Catarrhal 

Fever (MCF). Identification of a herpesvirus as the causative agent of MCF 

was first reported in 1960 (Plowright et al., 1960). The natural hosts of these 

viruses are usually asymptomatically infected, so wildebeest (Connochaetes 

turinus), the natural hosts of AlHV1, are unlikely to show clinical symptoms of 

infection (Russell et al., 2009). The virus is transmitted by cell free virus in 

either nasal or ocular secretions via direct contact or aerosol. Virus secretion is 

highest in young animals; up to 61 % of one to two-month old free and captive 

wildebeest shed virus in ocular fluid, this decreases to less than 2 % in animals 

over 6 months old (Barnard et al., 1989). Transmission of virus to susceptible 

species (many ungulate species including domestic cattle, deer, water 

buffaloes and other free living and captive ruminants) can result in MCF, 

however, these are dead end hosts and are unlikely to infect other animals, 

probably due to viral replication being restricted to cell-associated means with 

no cell-free virus being produced (Russell et al., 2009). The most common 

clinical form of MCF presents with “head and eye” signs, namely, pyrexia, 

inappetance, ocular and nasal discharge and haemorrhagic and erosive 

lesions of the buccal cavity and muzzle. At post mortem examination, petechial 

haemorrhage is found on the tongue, buccal mucosa, urinary bladder, 

gastrointestinal and respiratory tracts, and lymph nodes are enlarged and may 

be haemorrhagic (Russell et al., 2009; Whitaker et al., 2007). In other cases, 

overlapping lesions may include those centred on the skin, alimentary or 

neurological organs. Histologically, lymphoid hyperplasia is present in the 
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paracortical, interfolicular and sinusoidal regions of lymph nodes and the 

periarteriolar sheaths of the spleen. Vasculitis in numerous major organs is 

also a predominant feature, with lymphocytic infiltration of one or more layers 

of arterioles and arteries (Whitaker et al., 2007). Experimental infection of 

rabbits has shown that these infiltrates are predominantly of CD8+ T cells 

(Anderson et al., 2007). Recently, it has been shown that viral gene 

sequences can be detected within many of these infiltrating lymphocytes, 

suggesting that proliferation of lymphocytes and their localisation at the sites of 

the lesion may be due to a direct effect of the virus (Russell et al., 2009).  In 

fatal cases of AlHV1-associated MCF in many deer species, death occurs as 

early as 48 hours after the onset of clinical signs, but up to one week in cattle. 

However, outbreaks of the disease are sporadic within groups of animals and 

there is evidence that some animals may survive infection having shown 

relatively few clinical signs (Russell et al., 2009). 

 

1.1.3.5 Equid herpesvirus 2 
Equid herpesvirus 2 (EHV2) is the type species of the genus Percavirus, which 

contains gammaherpesviruses from perissodactyls and carnivores, namely (to 

date) equines and badgers (Davison et al., 2009). EHV2 has an endemic, 

worldwide distribution, with detection of viral DNA in peripheral blood 

leukocytes ranging from 51 to 80 % of adult horses and 75 to 100 % foals (Bell 

et al., 2006; Borchers et al., 1997; Craig et al., 2005; Dunowska et al., 2002; 

Nordengrahn et al., 2002; Torfason et al., 2008). Foals are infected early in life 

and infection occurs via horizontal transmission, by ingestion or inhalation of 

nasal secretions. It is likely that transmission to young foals also occurs via 

asymptomatic shedding mares. Detection of EHV2 in nasal secretions with 

concurrent signs of upper respiratory infection is common in foals but less 

frequent in adult horses (Dunowska et al., 2002; Fortier et al., 2009; Slater, 

2007). The pharynx has been thought the likely site for initial replication of 

EHV2, due to its frequent isolation from this location, followed by localised 

inflammation and lymphoid activation and dissemination to other organs via 

peripheral blood leukocytes. The site of latency is not known; B lymphocytes 

have been suggested by many researchers, but EHV2 has also been isolated 

from alveolar macrophages, and from peripheral nervous tissue (trigeminal 
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ganglia), particularly when associated with ocular disease (Borchers et al., 

1997; Fortier et al., 2009; Rizvi et al., 1997). 

 

Infection with EHV2 has been associated with keratoconjunctivitis, upper 

respiratory tract disease and may be involved, along with EHV5 (another 

equine gammaherpesvirus) with equine multinodular pulmonary fibrosis 

(Fortier et al., 2009; Kershaw et al., 2001; Williams et al., 2007). Furthermore, 

it has been suggested as a factor in poor performance syndromes or in 

immunosuppression, with evidence of EHV2 predisposing to other respiratory 

infections in foals (Dunowska et al., 2002; Fortier et al., 2009; Nordengrahn et 

al., 1996) .  
 

1.1.4 Murine herpesvirus strain 68 (Murid herpesvirus 4) 
1.1.4.1 Natural history of MHV-68  
Murid herpesvirus 4 (MuHV4, commonly known as MHV-68, γHV-68) is a 

gammaherpesvirus in the genus Rhadinovirus and was first isolated from bank 

voles (Myodes [was Clethrionomys] glareolus) and yellow necked mice 

(Apodemus flavicolis) in Slovakia (Blaskovic et al., 1980). Initially several 

strains were isolated; MHV-60, MHV-68, MHV-72 from M. glareolus and MHV-

76 and MHV-78 from A. flavicollis. It is now thought that these are all related 

strains of MHV-68 (Stewart et al., 2005). Survey of wild rodents in the UK, 

Germany and Thailand found that MHV-68 was present in three Apodemus 

spp., namely A. flavicollis, A. sylvaticus (wood mouse, or long-tailed field 

mouse) and A. agrarius (striped field mouse), but not bank voles, the species 

in which MHV-68 was first described (Ehlers et al., 2007). Furthermore, 

another survey of wood mice and bank voles found that although 13 and 24 % 

wood mice in England and Northern Ireland, respectively, were positive for 

MHV-68 antibodies in sera, only 2.7 % of bank voles were seropositive, 

suggesting that the virus is endemic in wood mice, while bank voles are less 

susceptible to MHV-68 and are not likely to be a natural host (Blasdell et al., 

2003). Bank voles are not found in Northern Ireland, which confirms that  they 

are not required for transmission of the virus between wood mice (Blasdell et 

al., 2003). More recently, a longitudinal study of MHV-68 seroprevelance 

showed similar rates of infection in wild populations of wood mice and bank 
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voles (11 % and 3 %, respectively), but also that MHV-68 was only detected in 

bank voles on a single occasion, whereas 69 % of wood mice that tested 

positive and were retested, remained seropositive on at least one subsequent 

occasion (Telfer et al., 2007). 

 

A survey of wild caught Mus musculus domesticus (house mouse; the species 

of origin of laboratory mice) for common pathogens found 2 out of 43 mice 

(5 %) seropositive for MHV-68, results which the authors speculated were 

likely to be false positive results as subsequent PCR based assays failed to 

confirm the result (Becker et al., 2007). Similarly, Ehlers et al. (2007) did not 

find MHV-68 in M. musculus, but found another, novel gammaherpesvirus 

which was named MmusRHV1.  This virus is phylogenetically separate from 

MHV-68 and sequence analysis placed it in a separate clade to MHV-68. 

MmusRHV1 has genetic sequences more akin to members of the 

Percaviruses and Macaviruses than the Rhadinoviruses, of which MHV-68 is a 

member (Ehlers et al., 2007; Ehlers et al., 2008). 

 

1.1.4.2 Pathogenesis of MHV-68 
MHV-68 has been widely studied in laboratory mice as it is a useful model of 

gammaherpesvirus infection, due to its similarity to other gammaherpesviruses 

in other species (e.g. acute EBV infection in humans) and as the host-

specificity of gammaherpesviruses prevents study of human 

gammaherpesviruses in other species (Nash et al., 2001; Sunil-Chandra et al., 

1992a). The natural route of infection is not known, but is likely to be via the 

respiratory tract, as the lung is a frequent site of virus isolation in wild rodents 

(Nash et al., 1996; Nash et al., 2001). Following intranasal infection of 

laboratory mice with MHV-68, titres of infectious virus increase in the lung, 

peak at 3 dpi then decrease to undetectable levels between 10 and 15 dpi 

(Cardin et al., 1996; Sunil-Chandra et al., 1992a). Alveolar epithelial cells and 

macrophages are the primary sites of infection, with viral antigen detected in 

peribronchiolar and perivascular infiltrates by day 3 pi and within alveolar 

epithelium by day 5 pi. Pulmonary lesions include peribronchiolar, perivascular 

and interstitial infiltration by lymphoid cells, within which necrosis is observed 

from 3 dpi, suggesting that this is a site of virus replication (Sunil-Chandra et 
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al., 1992a). No evidence of lytic replication within lymphocytes has been found 

(Dutia et al., 1999). Lymphoid infiltrates become more extensive by 5 dpi, 

when cellular debris is present within the bronchiolar lumen. Bronchial alveolar 

lavage identified the components of the inflammatory response to be CD11b+ 

macrophages, which peaked in number at days 3-4 pi and then CD8+ T cells, 

which peaked at 8-10 dpi (Nash et al., 1996). From 10 dpi inflammation begins 

to subside, coinciding with viral clearance from the lung, which is mediated by 

CD8+ T cells (Ehtisham et al., 1993). MHV-68 DNA detected by in situ 

hybridisation in peribronchiolar mononuclear cells at 30 dpi, suggests that the 

lung may be a site of viral persistence (Nash et al., 1996; Stewart et al., 1998; 

Sunil-Chandra et al., 1992a). In addition, germinal centre formation in 

perivascular and peribronchiolar areas is present at 30 dpi. Such 

lymphoproliferative responses are common features of gammaherpesvirus 

infections (Stewart et al., 1998; Sunil-Chandra et al., 1994). 

 

Subsequent to the establishment of infection in the lung there is no evidence of 

viraemia, other than in animals less than 3 weeks of age (Nash et al., 1996), 

but dissemination of the virus occurs via the local (mediastinal) lymph nodes 

where dendritic cells, macrophages and B lymphocytes are infected (Nash et 

al., 2001). The tropism of MHV-68 for B lymphocytes is indicated by the 

increased efficacy of infection of these cells via the binding of the gp150 viral 

envelope protein to CD19, present on B lymphocytes. However, this protein is 

not required for the infection of pulmonary epithelial cells (Stewart et al., 1996; 

Stewart et al., 2004). From the lymph node, it is thought that the B lymphocyte 

is the principal cell responsible for dissemination of virus to distant sites, 

including the spleen where latent virus can be detected from one week pi, 

peaking at 2-3 weeks pi and is maintained indefinitely (Nash et al., 1996; Sunil-

Chandra et al., 1992b; Sunil-Chandra et al., 1992a; Weck et al., 1996). In the 

absence of B cells, latency is still established but is less efficient and leads to a 

fatal outcome in B cell deficient mice (Weck et al., 1996). Therefore B 

lymphocytes have a role in the regulation of both latency and reactivation of 

infection (Weck et al., 1999a).  
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The establishment of latency is a characteristic of herpesvirus infection. In 

MHV-68, latency in the lung is established in epithelial cells and B 

lymphocytes, subsequent to clearance of acute infection (Flano et al., 2003; 

Stewart et al., 1998). Latent infection is also detected in the lung in the 

absence of B cells, confirming that other pulmonary sites are capable of 

establishing latency (Usherwood et al., 1996b). In the spleen, in addition to B 

lymphocytes, latent virus can also be detected in macrophages and dendritic 

cells (Flano et al., 2000; Weck et al., 1999b). Splenomegaly and the 

associated lymphoproliferation, arises due to the response of CD4+ T cells to 

infected B lymphocytes (Ehtisham et al., 1993). Latently infected B cells are 

concentrated within germinal centres and increase in number, giving rise to 

either memory B cells, which are disseminated to the bone marrow and other 

lymphoid tissues, or antibody producing plasma cells. This process ensures 

the maintenance of latent MHV-68 infection (Flano et al., 2003; Willer and 

Speck, 2003). The increase in the number of latently infected B cells in the 

spleen also triggers a virus specific CD8+ T cell response, which leads to a 

decline in the number of infected B cells within the spleen and the resolution of 

splenomegaly, which is important in the long term control of infection. 

However, some latently infected B cells escape this cytotoxic T cell response 

(most likely in a similar fashion to EBV, which is dependent on the latency 

genes expressed) and maintain the latent infection (Cardin et al., 1996; 

Ehtisham et al., 1993; Usherwood et al., 1996a; Weck et al., 1996). Alongside 

the development of splenomegaly, there is a subsequent CD8+ T cell-

dominated mononucleosis within the blood, which is mediated by the CD4+ T 

cell-mediated cytokine response and antigen presentation by MHC class II. 

This is similar to the infectious mononucleosis response to EBV infection in 

adolescents (Tripp et al., 1997; Usherwood et al., 1996a).   

 

1.1.4.3 MHV-68 infection in wood mice 
Although MHV-68 has been extensively studied in laboratory mice (Mus 

musculus), this species is not a natural host for this virus and so the 

pathogenesis in the natural host may differ, as other gammaherpesviruses can 

show greatly altered pathogenesis in species other than their natural hosts 

(Ackermann, 2006; Ehlers et al., 2007). Various species of the genus 
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Apodemus have been shown to be hosts of naturally occurring MHV-68 

(Blasdell et al., 2003; Ehlers et al., 2007; Telfer et al., 2007), including 

Apodemus sylvaticus (wood mouse), which has been used to investigate the 

pathogenesis of MHV-68 in a natural host and compared to that seen in 

BALB/c mice (Hughes et al., 2010). Several differences in the inflammatory 

response and behaviour of the virus are seen between wood mice and 

laboratory mice; infectious virus is only detected in the lung at day 7 pi, 

compared to days 5 to 10 pi in BALB/c mice, the titre of which is 1000-fold 

lower in wood mouse lung. Viral antigen is detected in alveolar epithelial cells 

in both species at day 7 pi but persists in the wood mouse to day 14 pi when it 

is found within macrophages and peribronchiolar and perivascular 

lymphocytes. Viral tRNA (vtRNA; a marker for latent virus) is also detected in 

the lung at day 14 pi in wood mice, within lymphocytes, suggesting that despite 

the lower levels of virus replication in the lung, infection results in the effective 

establishment of latency in the natural host. This could be due to better 

evolutionary adaptation in the natural host (Hughes et al., 2010) and is 

consistent with the finding of viral DNA in the lungs of wild wood mice (Blasdell 

et al., 2003).  

 

The inflammatory response also differs in the wood mouse. At day 7 pi the 

diffuse increase in interstitial cellularity observed in BALB/c mice is less 

pronounced in the wood mouse, and the occurrence of alveolar epithelial cell 

necrosis is also reduced. Perivascular and peribronchiolar inflammatory 

infiltrates are a much more significant feature in the wood mouse and are 

dominated by B lymphocytes, as is the iBALT (present at day 14 pi); a feature 

peculiar to MHV-68 infection of the wood mouse (Hughes et al., 2010). 

Moreover, this B lymphocyte population is a significant site of latent infection 

and the increase in numbers of infected B lymphocytes between days 7 and 

14 pi is considered to be due a to a proliferation of this population during 

primary infection (Hughes et al., 2010). 

 

Differences are also present between the two species in the spleen, following 

infection with MHV-68. Splenomegaly and leukocytosis are not features of 

infection in wood mice, in dramatic contrast to that seen in laboratory mice. 
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Despite this, the peak level of latent infection (at day 14 pi) is significantly 

higher in wood mice, with latent virus detected within well-defined secondary 

follicles in germinal centres, in contrast to poorly defined follicles without 

germinal centres in BALB/c mice. This has been postulated to be a result of 

stimulation by the higher number of viral antigen positive macrophages in the 

red pulp of the spleen  in wood mice at day 14 pi, in contrast to BALB/c mice, 

in which viral antigen is not detected at this timepoint, despite the marked 

increase in red pulp cellularity seen in this species (Hughes et al., 2010).  

 

1.1.4.4 MHV-68 genome 
The genome of MHV-68 comprises 118kb of double stranded DNA, with 

variable numbers of 1.23kb terminal repeats at either end (Efstathiou et al., 

1990b). The structure and organisation of the genome together with the 

homology of MHV-68 protein-coding open reading frames (ORFs) with ORFs 

of HVS and EBV, suggested that this was a gammaherpesvirus (Efstathiou et 

al., 1990a). Two strains of MHV-68 have been completely sequenced, the 

WUMS strain (Virgin et al., 1997) and strain g2.4 (Nash et al., 2001), which 

revealed 73 ORFs. MHV-68 also contains genes which are unique to this 

virus, located at the left hand end of the virus genome (Figure 1-2); namely 

M1-M4 and eight vtRNAs (Bowden et al., 1997; Nash et al., 2001).  

 

 

Figure 1-2 The genome of MHV-68. 
Open boxes represent homologous herpesvirus genes involved in DNA 
replication and virus structure. Shaded boxes represent terminal repeat 
sequences. Blue triangles represent MHV-68 specific genes. Abbreviations: 
CCPH = complement control protein homologue; v-cyc = viral cyclin D; vbcl-2 
= viral Bcl-2; LANA = latent nuclear antigen; vGPCR = viral G-protein 
coupled receptor (Stewart et al., 2005). 
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Of the 80 ORFs originally identified, 63 are homologues of genes in HVS (also 

conserved in KSHV) and were named accordingly (Virgin et al., 1997). One 

gene (K3) is an additional homologue of a KSHV gene and so was similarly 

named. Other, unique, genes were named numerically with the “M” prefix (M1-

M14).  

 

Several conserved genes have been identified as having significant homology 

to cellular or viral genes and are potentially involved in the pathogenesis of 

infection (Virgin et al., 1997). ORF4 has significant homology with multiple 

complement regulatory proteins which regulate C3 in the complement cascade 

(Virgin et al., 1997). ORF72 encodes a viral homologue of cyclin-D, critical for 

reactivation from latency and is oncogenic, promoting cell cycle progression 

but is non-essential for lytic infection (van Dyk et al., 1999; van Dyk et al., 

2000). M11 has weak homology to the bcl-2 family of genes, which inhibit 

apoptosis (Virgin et al., 1997). M11 has been shown to protect infected cells 

from TNFα induced apoptosis in vitro (Roy et al., 2000; Wang et al., 1999), 

and M11 protein or RNA is detected in the lung and spleen during both lytic 

and persistent infection and contribute to amplification of latently infected cells. 

M11 mutants are found to result in lower B cell activation, lower viral genome 

loads and reduced viral tRNA expression (de Lima et al., 2005; Roy et al., 

2000). ORF74 is homologous to mammalian G-protein-coupled receptors 

(GPCRs), a homologue of which is also encoded by KSHV (Wakeling et al., 

2001). The predicted structure suggests that this viral protein may signal 

constitutively and is expressed on the surface of infected cells both during 

acute and persistent infection, especially in the lungs of mice. This ORF is 

expressed within transcripts that also contain a viral bcl-2 and therefore, these 

genes may function to promote the growth and survival of MHV-68-infected 

cells (Wakeling et al., 2001). 

 

The functions of M1-M4 viral genes have been studied both independently and 

using MHV-76, a virus isolated at the same time as MHV-68 from Apodemus 

flavicollis (Blaskovic et al., 1980). MHV-76 is essentially identical to MHV-68 

minus the left hand end genes M1 to M4 and the vtRNAs (Macrae et al., 

2001). Infection of mice with this virus reveals that although the genes from the 
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left hand end of the genome are not essential for productive viral replication, 

these genes may play a key role in the pathogenesis of the virus as suggested 

by differences observed in the host response. These differences include an 

increase in pulmonary inflammation which leads to enhanced clearance and 

reduced persistence of MHV-76 in the lung and diminished splenomegaly 

compared to MHV-68 infection with lower numbers of infective centres in the 

spleen. This suggests that the M1-M4 genes and eight vtRNAs play a key role 

in MHV-68 infection, most likely via evasion of the host immune response 

(Macrae et al., 2001). 

 

M1 has homology with poxvirus serpin proteins (Virgin et al., 1997) and also 

with M3 (Alexander et al., 2002; Nash et al., 2001). Poxvirus serpins are 

homologous to cellular proteins which have a wide range of functions, 

including within the inflammatory response, complement activation, 

coagulation, fibrinolysis and apoptosis (Turner and Moyer, 2002). Deletion of 

M1 (and four of the vtRNAs) does not alter the ability of MHV-68 to establish, 

or reactivate from, latency in vivo (Simas et al., 1998). Despite this unaltered 

establishment of latency, M1-deleted viruses show increased reactivation from 

latency, suggesting that a function of M1 is to suppress reactivation (Clambey 

et al., 2000). More recently this has been further investigated and appears to 

occur via induction of CD8+ T cells and subsequent IFNγ secretion, promoting 

latency (Evans et al., 2008). 

 

The M2 gene is not essential for effective lytic replication in the lung during 

acute infection, or for the establishment of latent infection (Macrae et al., 

2003). However, M2 appears to be associated with the establishment of 

latency, as infection with MHV-68 virus with deleted or null M2 results in a 

decrease in the number of latently infected follicles in the spleen and loss of 

the transient rise in the number of latently infected cells following intranasal 

infection (Jacoby et al., 2002; Simas et al., 2004; Usherwood et al., 2000). The 

protein is expressed in the plasma membrane of latently infected B cells, 

located within the germinal centres of the spleen and is recognised by CD8+ T 

cells (Husain et al., 1999; Macrae et al., 2003; Simas et al., 2004). M2 also 

promotes the activation, proliferation and survival of latently infected B cells, 
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via the inhibition of apoptosis and also by interference with the STAT pathway, 

thereby reducing the cellular response to interferons (Liang et al., 2004; 

Madureira et al., 2005). The majority of cells from which virus is reactivated on 

explantation of splenic cells are plasma cells; latently infected plasma cells are 

not a feature of infection with a M2 null MHV-68 virus, suggesting that the 

differentiation of latently infected cells to plasma cells is driven by M2, and that 

M2 is required for efficient reactivation (Jacoby et al., 2002; Liang et al., 2009). 

This plasma cell differentiation has also been shown to be due to IL-10, high 

serum levels of which are M2 dependent (Siegel et al., 2008). 

 

M4 is an immediate/early gene, expressed during lytic replication (Ebrahimi et 

al., 2003; Virgin et al., 1999) and encodes a secreted protein (Evans et al., 

2006; Geere et al., 2006). Infection of mice with a MHV-76 “knock in” virus 

which had M4 inserted, revealed that M4 was expressed during lytic infection 

in the lung and also during the establishment of latency in the spleen; the 

addition of M4 to MHV-76 increased the number of latently infected cells 

(Townsley et al., 2004). This concurs with the use of a mutant MHV-68 

M4.stop virus which showed that M4 was required for the efficient 

establishment of latency in the spleen (Evans et al., 2006; Geere et al., 2006). 

 

Eight vtRNA genes are present in the left hand end of the MHV-68 genome, 

interspersed within the M1 – M3 genes. They are expressed soon after 

infection and are present throughout lytic infection and during latency, when 

they are abundant in the splenic germinal centres (Bowden et al., 1997; Cliffe 

et al., 2009). Their function is as yet unknown, but four of the vtRNAs can be 

deleted without effect on the establishment, or reactivation from, latency 

(Simas et al., 1998). More recently, up to 14 miRNAs have been identified as 

being coded within the vtRNA region (Pfeffer et al., 2005) and this region of the 

MHV-68 gene is responsible for as yet uncharacterised transcripts which are 

implicated in the pathogenesis of the fibroplastic response to MHV-68 infection 

in IFNγR-/- mice (Dutia et al., 2004). 
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1.1.4.5 MHV-68 M3 gene 
Many viruses have evolved mechanisms to interact with the host’s immune 

system in order to promote virus survival within the host. Poxviruses and 

herpesviruses encode proteins that either mimic cytokines or their receptors as 

a method of evading or altering the host immune response (Alcami, 2003). 

Chemokines are chemoattractant cytokines that regulate the movement and 

function of leukocytes (Weinberg et al., 2002). The M3 gene of MHV-68 is a 

viral chemokine binding protein, a class of protein that is secreted from the cell 

during infection and has the ability to neutralise chemokines in solution 

(Alcami, 2003). M3 encodes a 44kDa protein with a signal peptide which is 

abundantly secreted by infected cells in vitro (van Berkel et al., 1999).  M3 is 

transcribed in vivo abundantly during lytic infection in the lung and during early 

stages of latency; latently infected mice show expression of M3 in the spleen 

(Simas et al., 1999; Virgin and Speck, 1999). The M3 protein has no clear 

homology with known cellular or viral gene products, other than a low level of 

homology with MHV-68 M1 (van Berkel et al., 1999). As a secreted protein, M3 

is a candidate for interaction with the host immune response, and has been 

found to bind to a wide range of chemokines in vitro, including at least one 

from each of the CC, CXC, C and CX3C subtypes (Table 1-3). Chemokine 

binding by M3 is functional as shown by inhibition of chemokine-induced 

elevation of intracellular calcium levels and the inability of bound chemokines 

to bind with their receptors due to a higher affinity to M3 than their receptors 

(Parry et al., 2000; van Berkel et al., 2000). M3 was found not to bind CXCL12 

/SDF-1 and evidence of binding of CXCL13/BCA-1 (also known as BLC) was 

variable between authors, which is of note, as these are both B cell 

chemokines (Parry et al., 2000; van Berkel et al., 2000). The binding of M3 to 

CCL2/MCP-1 and CXCL8/IL-8 has been found to be in a similar spatial 

arrangement to that of the receptors of these chemokines, despite the lack of 

sequence homology between these proteins (Alexander et al., 2002; Webb et 

al., 2003). 

 

Intranasal infection of laboratory mice with M3-deficient MHV-68 reveals that 

M3 is non-essential for lytic replication in the lung, nor for spread of the virus to 

the spleen (Bridgeman et al., 2001; van Berkel et al., 2002). However, 
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amplification of latently infected B lymphocytes in the spleen fails to occur and 

leads to a decrease in splenic latent load compared to wild type MHV-68 

infected mice, demonstrated by a decrease in vtRNA transcripts and viral DNA 

load and decreased reactivation of latent virus ex vivo (Bridgeman et al., 

2001). Depletion of CD8+ T cells abrogates the differences seen in M3-null 

infections, which suggests that chemokine neutralisation by M3 blocks 

effective CD8+ T cell recruitment into lymphoid tissue during B lymphocyte 

proliferation (Bridgeman et al., 2001). Intracranial infection of mice with wild 

type and M3-null MHV-68 showed a greater difference when M3 was present; 

M3-null infected mice exhibit considerably lower viral titres in the brain and the 

intracranial inflammatory response is altered from a neutrophilic to a 

lymphohistiocytic meningitis (van Berkel et al., 2002). 

 

 

Systematic 
name 

Alternative 
name(s) 

Responding cell 
types Notes Reference 

CCL2 MCP-1 
actT cells, MØ, 
EL, NK cells, BL, 
immDC 

In vitro (van Berkel et al., 2000)

In vivo (GEM) (Martin et al., 2006) 

CCL3 MIP-1α 
actT cells, MØ, 
EL, NK cells, 
immDC 

In vitro (van Berkel et al., 2000)

CCL5 RANTES 
actT cells, MØ, 
EL, NK cells, 
immDC 

In vitro (Parry et al., 2000; van 
Berkel et al., 2000) 

CCL19 MIP-3β T cells, actT cells, 
mDC In vitro (Jensen et al., 2003) 

CCL21 6Ckine T cells, actT cells, 
mDC 

In vitro 
In vivo (GEM) (Jensen et al., 2003) 

CXCL8 IL-8 NL In vitro (Parry et al., 2000; van 
Berkel et al., 2000) 

CXCL13 BCA-1 
BLC B cells 

In vitro 
(weak binding) (Parry et al., 2000) 

In vivo (GEM) (Martin et al., 2006) 

CX3CL1 Fractalkine actT cells, MØ, 
NK cells In vitro (Parry et al., 2000; van 

Berkel et al., 2000) 
XCL1 Lymphotactin T cells In vitro (van Berkel et al., 2000)

Table 1-3 Evidence for M3-binding of chemokines. 
Key: actT cells = activated T cells; MØ = macrophages; EL = eosinophils; NL 
= neutrophils; BL = basophils; immDC = immature dendritic cells; mDC = 
mature dendritic cells; GEM = transgenic mice that expressed M3 and the 
chemokine of interest in the pancreas 
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Expression of M3 following intranasal infection of wood mice is highest at days 

12 and 14 pi, later than that seen in Mus musculus (Hughes, 2006). M3 

transcripts are located in perivascular and peribronchiolar accumulations of B 

lymphocytes, and macrophages within granulomatous infiltrates at day 7 pi; at 

day 14 pi M3 is present in numerous lymphocytes in the iBALT, in addition 

those in the perivascular and peribronchiolar infiltrates. Extrapulmonary M3 

transcripts are present in the bronchial and submandibular lymph nodes from 

day 7 pi and within splenic follicles from day 10 pi onwards (Hughes, 2006).  

 

Infection of wood mice with a M3-deficient MHV-68 (M3.stop) leads to 

alterations in the inflammatory response, including mixed T and B lymphocytic 

infiltrates in the interstitium, perivascular and peribronchiolar areas (opposed 

to B cell dominated in the wild type MHV-68). A decrease in vtRNA in 

perivascular lymphocytes occurs, indicating a decrease in latency, which is 

either secondary to the smaller infiltrates or a lower proportion of B cells and is 

attributed to the absence of M3. Additionally, no iBALT is present in the 

M3.stop infected lungs, which suggests that iBALT formation is stimulated in 

the presence of M3 due to increased viral persistence and the promotion of B 

cell proliferation (Hughes, 2006). In the spleens of M3.stop-infected wood 

mice, lymphoid follicles are expanded but lack germinal centres; this is similar 

to the response seen in MHV-68 infected Mus musculus. The number of cells 

containing vtRNA transcripts is also decreased, and the reduction in latency 

can be confirmed by a reduction in infective centre assay in the spleen of 

M3.stop-infected wood mice (Hughes, 2006). 

 

The presence or absence of M3 also alters the presence of chemokines in the 

lungs of MHV-68-infected wood mice. MIP-1α/CCL3, RANTES/CCL5 and MIP-

3β/CCL19 are increased in M3.stop infection, consistent with the in vitro 

binding of M3 to these chemokines. These chemokines are involved in T cell 

recruitment and depletion of their effects in vivo decreases inflammation and 

increases viral titre following viral infection; therefore binding of M3 to these 

chemokines may confer a survival advantage (Cook et al., 1995; Culley et al., 

2006). Additionally, MIP-1β/CCL9, MIP-3α/CCL20, KC/CXCL1, MIP-2/CXCL2 

and MIG/CXCL9, which either have not exhibited binding, or have been shown 
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not to bind to M3, are also increased in M3.stop infection. Significantly, SDF-

1α/CXCL12, BLC/CXCL12 and CD30L are decreased in M3.stop infection, 

suggesting that the presence of M3 increased the levels of these chemokines, 

either in relative or absolute terms (Hughes, 2006). SDF-1α and BLC are B cell 

chemoattractants, so an increase in wild type MHV-68 infection corresponds 

with the higher numbers of B lymphocytes in the inflammatory response to wild 

type MHV-68 infection in the wood mouse. CD30L has a role of T and B cell 

segregation in the spleen and BLC/CXCL12 may be relevant to the formation 

of iBALT in the lung. The contradictory reports as to whether BLC is bound by 

M3 may be due to the location and timing of the increased levels of M3 in 

response to viral infection, or due to subtle differences in the coding of these 

chemokines between Mus musculus and Apodemus sylvaticus (Hughes, 

2006). 

 

Analysis of gene expression in the lung in response to M3.MR compared to 

M3.stop infected wood mice also reveals alteration in the expression of other 

genes. These include members of the Palate, lung and nasal epithelium clone 

(PLUNC) family of proteins, SPLUNC1 and LPLUNC1, which were expressed 

at levels 17.6 and 7.3-fold higher, respectively, in M3.MR compared to M3.stop 

infected wood mice; Clara cell secretory protein (CCSP), which showed a 3.3-

fold increase in the presence of M3 and Anterior gradient homologue 3 

(AGR3), which was also increased in the presence of M3 (Hughes, 2006). 

Further details of these proteins are given below (1.5 Expression of proteins in 

the lung in relation to MHV-68 M3). 

 

1.2 Paramyxoviridae 
1.2.1 Paramyxoviridae family 
The family Paramyxoviridae (within the order Mononegavirales) contains many 

viruses of great significance to human and veterinary health (Table 1-4). 

Paramyxoviruses are enveloped negative-strand RNA viruses; the genomic 

negative sense RNA serves as a template for the synthesis of mRNA and also 

the antigenomic (+) strand, from which further copies of the negative sense 

genomic RNA are synthesised. In addition to this, the paramyxoviruses are 
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defined by the presence of the F (fusion) protein within the virus capsid, which 

functions to allow virus-cell membrane fusion (Lamb and Parks, 2007).  

 

Subfamily Genus Viruses 
Pa

ra
m

yx
ov

iri
na

e 

Rubulavirus Mumps virus  
Human parainfluenza virus 2 

Avulavirus Avian paramyxovirus 1 (Newcastle disease 
virus) 

Respirovirus 
Murine parainfluenza virus 1 (Sendai virus)  
Human parainfluenza virus 1 and 3  
Bovine parainfluenza virus 3 

Henipaviruses Hendra virus 
Nipah virus 

Morbillivirus 
Measles virus 
Canine distemper virus 
Rinderpest virus 

Pn
eu

m
ov

iri
na

e 

Pneumovirus 
Human respiratory syncytial virus 
Bovine respiratory syncytial virus 
Pneumonia virus of mice 

Metapneumovirus Human metapneumovirus 
Avian metapneumovirus 

Table 1-4 Examples of members of the family Paramyxoviridae. 
(ICTVdb-Management, 2006; Lamb and Parks, 2007). 

 
The family Paramyxoviridae is divided into two subfamilies (Paramyxovirinae 

and Pneumovirinae), both of which contain more than one genus, 

distinguished by the size and shape of the nucleocapsid, antigenic cross-

reactivity between members of a genus, the presence (or absence) of 

neuraminindase activity and the differences in the number and nature of 

encoded proteins. The virions consist of a lipid bilayer derived from the plasma 

membrane of the host cell, within which are glycoprotein spikes (fusion protein, 

haemagglutininneuraminidase), are roughly spherical in shape and 150-350 

nm in diameter. The nucleocapsid core contains the 15-19 kb single stranded 

RNA, which combined with the N protein, form the helical structure, to which P 

and L proteins are attached. Between the nucleocapsid core and the lipid 
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bilayer there is the matrix protein, which is the most abundant protein in the 

virion (Lamb and Parks, 2007).  

 

1.2.2 Murine parainfluenza 1 (Sendai virus) 
1.2.2.1 Natural history of Sendai virus 
Sendai virus was first isolated from laboratory mice in Sendai, Japan in 1953, 

which were being inoculated with suspensions of lung from an infant who died 

from pneumonia. The origin of the virus is unclear however, as it has been 

isolated from many laboratory species worldwide, including mice, rats, 

hamsters and guinea pigs and was also reported to be the agent of epizootic 

outbreaks of influenza-like disease in pigs in Japan in the 1950’s (Faísca and 

Desmecht, 2007; Percy and Barthold, 2007). Sendai virus is rarely found in 

wild populations of mice, but has been isolated from grey squirrels (Sciurus 

carolinensis) in North Wales (Becker et al., 2007; Greenwood and Sanchez, 

2002). Therefore, Sendai virus appears not to have a restricted host-range and 

could be a zoonotic pathogen, although it is now generally accepted that 

Sendai virus is a rodent pathogen and humans are not natural hosts 

(Brownstein, 2007; Percy and Barthold, 2007). 

 

Sendai virus has been studied in mice both as a model for its human 

parainfluenza counterpart and due to its potential importance as an endemic 

pathogen in laboratory mice. It is also capable of causing acute epizootic 

disease outbreaks in colonies, which cause significant illness in most strains 

and ages, including adult immunocompetent mice (Faísca and Desmecht, 

2007; Percy and Barthold, 2007). Infection is spread most effectively via close 

contact or contaminated fomites, although aerosol transmission has been 

shown to be possible (Faísca and Desmecht, 2007). 

 

1.2.2.2 Pathogenesis of Sendai virus 
Intranasal infection of mice causes a descending respiratory infection in the 

nose, trachea, bronchi and bronchioles with spread into the alveoli (type II 

pneumocytes) also seen. The tropism for the respiratory tract is due to the 

reliance of the virus on a host protease (Tryptase Clara) to cleave the viral 

fusion (F) protein; in the absence of this protease, other cells may be infected, 
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but only one round of replication of the virus occurs (Kido et al., 1992; Tashiro 

et al., 1992). Productive infection occurs within respiratory epithelium and virus 

is detectable in the lung soon after infection, with titres peaking at 4-8 dpi, 

depending on the strain, age and immunocompetence of the mouse. 

Microscopically, the infected epithelium appears focally disorganised, with 

vacuolation of the cytoplasm and a mild neutrophilic infiltrate. These foci 

progress to areas of irregular hyperplasia, with loss of cilia and cellular 

hypertrophy. Eosinophilic intra-cytoplasmic inclusion bodies (accumulated 

ribonucleoproteins) are occasionally present in the epithelium (Faísca and 

Desmecht, 2007; Percy et al., 1994). Infiltration of CD4+ and CD8+ T cells 

leads to cytotoxic T cell-mediated apoptosis of infected cells causing sloughing 

and accumulation of epithelium, mixed with mucin, neutrophils and 

lymphocytes within the airway lumina. This inflammatory response coincides 

with the decline in viral titre in the lung. The inflammatory response and 

subsequent apoptosis may spread into the alveolar walls at the distal end of 

the terminal bronchioles; these foci may coalesce to affect large areas of a 

lobe or several lobes, whereas other areas may be spared (Brownstein et al., 

1981; Brownstein, 2007; Faísca and Desmecht, 2007; Itoh et al., 1991; Percy 

et al., 1994). 

 

Antibodies specific to Sendai virus are detected within the lung as early as 3 

dpi; in the local lymph nodes, IgM levels peak at day 7 pi and IgA and IgM at 

day 10 pi. Levels of these antibodies peak in the spleen at day 14 pi. 

Circulating IgG titres remain high for a prolonged period (Brownstein, 2007; 

Faísca and Desmecht, 2007). Conversely, Sendai virus infection has been 

utilised to study secondary bacterial infection as it induces suppression of 

antibacterial defences; reported potential mechanisms include abnormalities of 

macrophage phagocytosis of bacteria, synergism between Sendai virus and 

bacterial pathogens, destruction of the mucociliary system and beneficial 

properties of the inflammatory oedema for bacterial growth (Faísca and 

Desmecht, 2007; Jakab, 1975).  
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1.2.3 Human respiratory syncytial virus (HRSV) 
1.2.3.1 Natural history of HRSV 
Human respiratory syncytial virus was first isolated from a laboratory 

chimpanzee, and then soon after from human infants with respiratory illness 

(Collins and Crowe, 2007). It is now considered one of the most common 

respiratory viruses, with nearly 70 % of infants infected in their first year and 

the remainder by the age of three years; reinfection occurs every two to three 

years throughout life (Glezen and Denny, 1973; Winn and Walker, 1994). 

Despite this association of HRSV-induced illness in children, the virus is also 

an important risk factor in the elderly and in immunocompromised patients, 

especially those with SCID and following haematopoietic stem cell or lung 

transplants (Graham et al., 2002).  

 

The virion is similar in structure to that described for members of the 

Paramyxoviridae generally (1.2.1 Paramyxoviridae family), although in addition 

to roughly spherical virions of 100 to 350 nm diameter, long filamentous forms 

are also common, which are 60-200 nm in diameter and up to 10 µm in length 

(Collins and Crowe, 2007). The nucleocapsid is a symmetrical helix which 

contains the 15.2 kb negative-sense single strand RNA and is surrounded by 

matrix protein and a lipid envelope that is derived from the host cell’s plasma 

membrane. Within this membrane there are three types of glycoproteins. The 

Fusion (F) protein directs the entry of the virus into the host cell via fusion 

between the virion membrane and the host cell plasma membrane and later in 

infection can mediate fusion of adjacent cells to form syncytia. The G protein is 

the major attachment protein, required for the virus to attach to the host cell. 

The small hydrophobic (SH) protein is the third envelope protein, the function 

of which is not known, but is not required for efficient viral growth either in vitro 

or in vivo (Collins and Crowe, 2007).  

 

1.2.3.2 Pathogenesis of HRSV in humans 
HRSV is one of the most infectious viruses that affect humans; it is spread via 

respiratory secretions in large droplets and close contact with infected 

individuals or fomite contamination, usually with subsequent self-inoculation 

(contaminated hands coming into contact with nasal or conjunctival mucosa). 
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Humans are the only source of infection; there are no other reservoir hosts 

(Collins and Crowe, 2007; Graham et al., 2002; Winn and Walker, 1994). The 

virus replicates in the nasopharynx and in susceptible patients is spread to the 

lower respiratory tract by aspiration of the superficial layer of the respiratory 

epithelium, in a multifocal pattern; the virus is shed from the apical (and not 

basolateral) surface of the cell (Peebles and Graham, 2005). The cytoplasm is 

the site of viral replication and eosinophilic intra-cytoplasmic inclusion bodies 

are often observed in H&E stained sections, in a paranuclear location in 

infected cells (Winn and Walker, 1994). Immunohistology reveals viral antigen 

in small foci (even in fatal cases) in bronchial, bronchiolar and alveolar 

epithelium as well as some syncytial cells, which are not a prominent feature in 

all cases (Neilson and Yunis, 1990). The F protein of HRSV has been reported 

to bind to TLR4, which may alter the recruitment and activation of 

macrophages and monocytes, as well as neutrophils. There is an increase in 

the number of dendritic cells (DC) following infection. However, HRSV is 

associated with plasmacytoid DC-induced reduction of IFNα and myeloid DC-

induced reduction of IFNγ secretion from CD4+ T cell (Collins and Crowe, 

2007).  

 

Infection of the bronchiolar epithelium with HRSV results in necrosis and loss 

of cells, along with proliferation of the epithelium and a neutrophilic infiltrate. 

Lymphocytes, plasma cells and macrophages accumulate in perivascular and 

peribronchiolar cuffs (Graham et al., 2002; Neilson and Yunis, 1990). In 

bronchioalveolar lavage fluid, the predominant cell type are neutrophils (76 %) 

with lymphocytes (9 %), mononuclear cells (10 %) eosinophils (1 %) being 

much less frequent (Everard et al., 1994; Graham et al., 2002). The 

predominance of neutrophils not only leads to clearance of the virus, but also, 

through the destruction of infected cells, contributes to the lesions in the lung 

(Wang et al., 1998). The presence of the inflammatory response is consistent 

with the high level of a number of cytokines commonly found in HRSV, e.g. 

RANTES, MCP-2, MIP-1α, MIP-1β, IL-8 and fractalkine (Peebles and Graham, 

2005; Zhang et al., 2001). Pneumonia is associated with the thickening of the 

alveolar walls due to an infiltration of the interstitium by monocytes (Neilson 

and Yunis, 1990). Excessive mucus secretion is frequently seen and this is an 
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important part of the clinical consequences of infection. In children, the narrow 

diameter of the bronchioles leads to obstruction by mucus, which is admixed 

with desquamated airway epithelial cells, neutrophils, fibrin and lymphocytes; 

this leads to wheezing, air trapping and bronchiolitis obliterans as potential 

outcomes (Peebles and Graham, 2005). It has been shown in mice that this 

excessive mucus secretion is mediated by IL-13, but there are strain variations 

in the extent of this effect (Lukacs et al., 2006; Moore et al., 2009).  

 

1.2.3.3 Experimental infection of mice with HRSV 
Infection of laboratory animals has been performed in cotton rats, mice, ferrets, 

guinea pigs, hamsters and marmosets (Collins and Crowe, 2007). Different 

strains of mice show differences in levels of viral replication, BALB/c mice 

being one of the more permissive strains, although cotton rats are more so; 

however, virus replication is still limited (Domachowske et al., 2004; Graham et 

al., 2002). Using in situ hybridisation on sections from lung of cotton rats, only 

few bronchiolar and alveolar cells showed evidence of virus at the peak of 

infection [day 4 pi (Murphy et al., 1990)]. This is similar to the pattern of virus 

infection in children’s lungs, as described by Neilson and Yunis (1990).  

 

The main histological lesion seen in infected BALB/c mice is bronchiolitis, 

which differs to natural cases, most likely as experimental infection results in 

aspiration of virus directly into the lung and because HRSV in BALB/c mice is 

not directly cytopathic (Domachowske et al., 2004; Graham et al., 2002; 

Peebles and Graham, 2005). However, it has been reported that the primary 

target of HRSV in the mouse model is the alveolar epithelium, which differs to 

the infection in humans (Peebles and Graham, 2005). Bronchiolitis is 

associated with the presence of natural killer cells and CD8+ lymphocytes, 

both of which secrete IFNγ; clearance of the virus occurs alongside the rise in 

the number of CD8+ T cells (Graham et al., 1991; Peebles and Graham, 

2005). However, CD4+ T cells are also required for viral clearance, unlike B 

cells, which although important for protection against subsequent infection, do 

not play a role in viral clearance (Hussell et al., 1997; Hussell and Openshaw, 

1998). In vivo infection of mice leads to similar expression of cytokines as seen 

in human infection, namely RANTES, MCP-2, MIP-1α, MIP-2, IFN-inducible 



33 

 

protein 10 and the IL-8 homologue keratinocyte chemokine (Miller et al., 2004; 

Peebles and Graham, 2005; Power et al., 2001), many of which have 

pathogenic effects in HRSV infection. For example, RANTES and MIP-2 are 

associated with airway hyperresponsiveness, and mice with MIP-1α deficiency 

had reduced inflammation following HRSV infection (Miller et al., 2003; Miller 

et al., 2004). 

 

1.3 Orthomyxoviridae 
1.3.1 Orthomyxoviridae family 
The Orthomyxoviridae family contains the genera Influenzavirus A, 

Influenzavirus B, Influenzavirus C, Thogotovirus and  Isavirus; single stranded, 

negative sense RNA viruses (Wright et al., 2007). Influenza A viruses are 

further classified based on the haemaglutinin (HA) and neuraminidase (NA) 

molecules and named according to the type of virus, host of origin (if not 

human), place of isolation, strain number and year of isolation, for example, 

Influenza A/Mute Swan/MI/451072/06 (H5N1). The influenza virus was first 

isolated from swine in 1930 and from humans in 1933, which was named 

Influenza A; Influenza B, a genetically distinct virus was isolated in 1940 and 

Influenza C in 1947 (Wright et al., 2007).  

 

1.3.2 Influenzavirus A 

1.3.2.1 Natural history of Influenzavirus A 
Influenza A virus infects a wide variety of species other than man, including 

birds, swine, horses, dogs, cats, whales and seals (Figure 1-3). As all known 

strains of HA and NA subtypes are found in aquatic birds (Aniseriformes [e.g. 

ducks, geese and swans] and Charadriiformes [e.g. gulls, terns]), they are 

considered the natural reservoir of Influenza A. The infection of ducks with 

most strains of Influenza A is asymptomatic, with viral replication occurring 

predominantly in the intestinal tract and, to a much lesser degree, in the 

respiratory tract. These avian viruses have evolved into strains which are host-

specific for horses, pigs and humans, among others. Some strains have the 

ability to cross species barriers; hypotheses that swine are an intermediate 

host between humans and birds, with genetic mixing of strains within a swine 

host have been proposed, but evidence for this is contradictory (Webster et al., 
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1992). This “mixing vessel” hypothesis has its basis in the fact that swine 

trachea contain both avian and human type receptors for Influenza virus, and 

can be simultaneously infected with strains from both avian and human hosts, 

leading to the potential for reassortment into new strains (Wright et al., 2007). 

 

Avian influenza viruses are categorised as low pathogenicity or high 

pathogenicity avian influenza (LPAI or HPAI), depending on their pathogenicity 

in domestic chickens. LPAI causes mild respiratory disease, depression and/or 

a decrease in domestic egg production. HPAI viruses are classified as such 

according to criteria defined by the Animal Health OIE, including rate of 

mortality in 4 – 8 week old chickens following intravenous infection, growth in 

cell culture and the amino acid sequence of the haemaglutinin connecting 

peptide (Wright et al., 2007). 

 

 
 
 

 
 
 
 
 
 
 
Figure 1-3 Transmission of Influenza A virus from waterfowl to other species. 
Modified from Wright et al., 2007. 
 

Influenza viruses are continually circulating in the human population, and 

seasonal outbreaks occur in the winter, most likely due to the low indoor 

humidity during this time, which favours the survival of the virus within aerosols 

(Wright et al., 2007). Since 1977, subtypes H3N2 (the cause of the 1968 

pandemic) and H1N1 have been circulating in the population (Webster et al., 

1992). Pandemics have occurred every 8 to 41 years over the last few 

centuries and occur when a new influenza virus appears, immunity to which is 
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therefore low,  and infection spreads globally (Taubenberger and Morens, 

2008). New influenza viruses occur due to antigenic shift; the rearrangement of 

gene segments between two different (often human and avian) viruses present 

within one infected cell, and antigenic drift (point mutations that cause gradual 

antigenic changes). These changes, particularly those which occur in the HA 

gene, lead to viruses which are immunogenically distinct and to which the 

population has no immunity, which therefore have the potential to cause a 

pandemic (Wright et al., 2007). 

 

An H1N1 virus was responsible for the catastrophic 1918-19 Influenza 

pandemic and also for the recent 2009 “Swine Flu” pandemic (Mauad et al., 

2010; Taubenberger, 2006). The 1918-19 pandemic originated in the United 

States, despite its widely used “Spanish Influenza” moniker, spreading through 

Army camps and through movement of troops to Europe. The outbreak has 

been associated with pigs kept at the army camps, but may have originated 

from Kansas, from where recruits were sent to training camps at which the 

outbreaks were reported (Wright et al., 2007).  Recent genetic analysis of the 

strain has shown that the virus had originally evolved within avian hosts and 

that this virus was the common ancestor for the current swine and human 

H1N1 viruses (Taubenberger, 2006). The 2009 pandemic was identified to 

originate in swine in Mexico (Centers for Disease Control and Prevention, 

2009), and was transmissible not only person-to-person, but naturally 

occurring cases in several other species were also reported, including 

domestic turkeys, ferrets, cats and cheetahs (Lohr et al., 2010). 

 

The H5N1 strain has been the cause of outbreaks of influenza in people in 

South East Asia since 1997. The first case was in Hong Kong, in a three year 

old boy and the infection was fatal. Prior to this, transmission of HPAI to 

humans had not been considered a risk and only three previous cases had 

been reported, all of which caused mild symptoms (Kuiken and Taubenberger, 

2008; Wright et al., 2007). Further cases were reported in Hong Kong that year 

and the mortality rate was high (33 %), however no evidence of human to 

human transmission was found. H5N1 HPAI is now much more widely spread 

throughout Asia, the Middle East, Russia, south-eastern and central Europe 
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and parts of Africa. Mortality rates have increased to 59 % (in the period up to 

2007) and evidence of some human to human transmission is reported, but is 

rare (Taubenberger and Morens, 2008; Wright et al., 2007). 

 

1.3.2.2 Pathogenesis of Influenzavirus A in humans 
Transmission of human influenza virus occurs by inhalation of infectious 

particles within droplets (aerosols) and possibly via fomites and self-inoculation 

of the upper respiratory tract and conjunctiva (Kuiken and Taubenberger, 

2008). Infection occurs in the upper respiratory tract, with virus infecting 

predominantly ciliated epithelial cells in the trachea and bronchi. These cells 

express greater numbers of the receptor for human influenza virus, which have 

a terminal sialic acid, linked to a galactose by an alpha-2,6 linkage (Shinya et 

al., 2006). These receptors bind to the HA protein of the virus. In avian 

influenza (specifically, H5N1), the receptor differs and this leads to attachment 

of the virus lower in the respiratory tract (bronchioles and alveoli); H5N1 

preferentially attaches to alveolar macrophages and type II pneumocytes (van 

Riel et al., 2007). This pattern of attachment might explain the high mortality 

rate in H5N1 infected humans, due to the increased likelihood of pneumonia 

with viral attachment at this location, even in the absence of tracheobronchial 

lesions (Korteweg and Gu, 2008; Kuiken and Taubenberger, 2008). 

 

Uncomplicated influenza infection (i.e. that which does not lead to pneumonia) 

in humans causes diffuse, superficial necrotising tracheobronchitis, which 

increases in severity distally in the respiratory tract. The epithelium exhibits 

vacuolisation, oedema and loss of cilia, with extensive desquamation of 

epithelium in severe cases. Within the lamina propria, hyperaemia and 

oedema are present, with infiltration of neutrophils following epithelial necrosis 

and later inflammation dominated by lymphocytes and macrophages 

(Taubenberger, 2006; Walsh et al., 1961). Clinical symptoms are due to 

damage at these sites secondary to viral replication, and the local and 

systemic effects of cytokines and other inflammatory mediators (Eccles, 2005). 

When pneumonia occurs due to extension of viral infection into the lower 

respiratory tract, the primary target cells are the type I pneumocytes and 

ciliated bronchiolar epithelial cells, with non-ciliated epithelium, type II 
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pneumocytes and alveolar macrophages as secondary targets (van Riel et al., 

2007). Damage to type I pneumocytes leads to leakage of fluid across the 

alveolar-capillary barrier and damage to type II pneumocytes reduces their 

ability to absorb this fluid, and produce surfactant, which assists in the 

clearance of fluid by reducing surface tension. The outcome of this is alveolar 

oedema alongside the alveolar necrosis and desquamation of pneumocytes 

into the alveolar lumen (Kuiken and Taubenberger, 2008). Oedema cells and 

necrotic pneumocytes, along with alveolar macrophages, fibrin and hyaline 

membranes fill the alveoli, and the interstitium is thickened by hyperaemic 

capillaries, oedema and infiltration by neutrophils with lesser eosinophils and 

capillary thrombosis (Kuiken and Taubenberger, 2008; Taubenberger and 

Morens, 2008). These changes, with necrotising bronchiolitis and 

tracheobronchitis similar to that described above are the histological lesions 

seen due to influenza virus and are the cause of severe, and occasionally 

fatal, respiratory dysfunction (Kuiken and Taubenberger, 2008). Secondary 

bacterial infection is a common sequel; it is thought that 96 % of deaths in the 

1918-19 pandemic, were due to bacterial pneumonia and this may complicate 

the histological findings; the presence of neutrophils may be due to bacterial 

infection (Kuiken and Taubenberger, 2008; Taubenberger and Morens, 2008). 

The histological lesions seen in pandemics, including the 1918-19 pandemic, 

do not differ greatly from those seen in pneumonia caused by seasonal 

influenza (Taubenberger and Morens, 2008). 

 

1.3.2.3 Experimental infection with Influenzavirus A 
Mice, ferrets and pigs have all been used for the study of experimental 

infection of influenza virus. In the earliest experiments, it was shown that mice 

exhibit similar histological lesions to humans, but are unable to transmit the 

virus between individuals (Shope, 1935). Work since then has revealed that 

infection of mice leads to a highly variable response; most influenza viruses do 

not naturally cause disease in mice. Some strains, those replicated using 

embryonated chicken eggs, may replicate in the respiratory tract of mice, but 

cause no disease; whereas others, especially those which are mouse adapted 

by passage through mouse lungs, can cause severe morbidity and mortality, 

and lethal pneumonia (Tripp and Tompkins, 2009). Mouse adapted strains 
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cause similar lesions to those present in human lower respiratory tract 

infections. Despite the similarities between lesions, mice do not show the 

formation of hyaline membranes or capillary thrombosis that are a feature of 

infection in humans (Taubenberger and Morens, 2008).  

 

Infection of BALB/c mice with a H1N1 virus reconstructed from genomic RNA 

from the 1918-19 pandemic showed marked virulence in mice, similar to the 

increased morbidity and mortality seen in humans during that pandemic, 

including, by day 4 pi, necrotising bronchitis and bronchiolitis with multifocal 

(peribronchiolar) to diffuse, moderate to severe alveolitis. The inflammatory 

infiltrate consisted of neutrophils and macrophages with a moderate to severe 

peribronchiolar and alveolar oedema (Tumpey et al., 2005).  

 

Infection of mice with HPAI H5N1 results in bronchopneumonia with 

desquamation of epithelial cells,  peribronchial and diffuse alveolar interstitial 

inflammation, and intraalveolar oedema at day 4 pi (Nishimura et al., 2000; 

Taubenberger and Morens, 2008). Immunohistology for viral antigen reveals 

that virus is present in epithelial cells of the upper and lower respiratory tract 

(bronchial and alveolar epithelium) by day 1 pi and increased numbers of 

epithelial cells (described as bronchial epithelium in the text but bronchiolar 

epithelium shown in the figures), as well as desquamated epithelial cells within 

bronchioles by day 4 pi (Lu et al., 1999; Nishimura et al., 2000).  Lu et al. 

(1999) also described viral antigen-positive cells within mononuclear cells 

within the “subepithelial interstitium”. Infection of extra-pulmonary sites has 

also been described, with viral antigen present in neurons, ependymal cells 

and glial cells (Lu et al., 1999; Nishimura et al., 2000). Additionally, Nishimara 

et al. (2000) also described multifocal areas of adipocyte necrosis which were 

associated with positive staining for viral antigen and they speculated that this 

may be the cause of other scientists’ reports of virus isolation from other 

organs (e.g. liver, spleen, kidney, heart). Viraemia has been described in 

several papers, and is the suspected route of infection to the brain (Lu et al., 

1999; Nishimura et al., 2000). 
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Reports of experimental infection of mice with LPAI H5N1 are not prevalent in 

the literature. Experimental infection of chickens and ducks has shown that 

these viruses are adapted for either one or the other group of birds; those 

isolated from chickens replicate less well in ducks and vice versa (Mundt et al., 

2009; Spackman et al., 2007). A LPAI H5N1 virus isolated from a Mute Swan 

[A/Mute Swan/MI/451072/06 (H5N1)] intranasally inoculated into chickens and 

ducks, replicated better in ducks, with virus isolated from tracheal and cloacal 

swabs at days 2, 4 and 7 pi in ducks and only at day 2 pi in chickens. 

Seroconversion was similarly higher in ducks than chickens (Mundt et al., 

2009). Histologically, chickens exhibited mild catarrhal tracheitis and mild 

BALT hyperplasia, whereas ducks exhibited mild catarrhal and multifocal 

lymphocytic tracheitis and moderate lymphocytic infiltrates and focal oedema 

within the lung. In contrast, chickens infected with chicken-adapted strains 

exhibited lesions in a variety of organs which were more severe (Mundt et al., 

2009). LPAI H5N1 viruses used in these studies were found to be wild-bird 

adapted strains which were antigenically and genetically distinct from HPAI 

H5N1 (Spackman et al., 2007). The lower pathogenicity is thought to be due to 

differences in the HA protein; HA cleavage is required for function of this 

protein, in HPAI this can be achieved by endosomal proteases during virus 

entry and so has a wide cellular and organ tropism compared to LPAI viruses, 

in which extracellular proteases present in the respiratory and gastrointestinal 

tracts are required for cleavage, hence LPAI viruses are restricted to these 

systems. These differences are dependent on the amino acids present at the 

cleavage site of HA (Boycott et al., 1994; Mundt et al., 2009). 

 

1.4 Interferon γ 
The host response to viral infection is complex, with many cytokines, 

chemokines and cellular components involved. Interferon (IFN) γ is a cytokine 

within the innate immune response and its role in MHV-68 infection has been 

studied by several authors (Dutia et al., 1997; Ebrahimi et al., 2001; 

Gangadharan et al., 2008; Lee et al., 2009; Mora et al., 2007; Sarawar et al., 

1997).  IFNγ also is suggested to have a role in the regulation of the 

pulmonary proteins, CCSP and SPLUNC1 (Britto et al., 2010; Curran et al., 

2009; Magdaleno et al., 1997; Yao et al., 1998a). 
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1.4.1 Interferons in viral infection 
Infection of a host organism by a virus initiates an immune response, the aim 

of which is to eliminate or reduce the harmful effect of the virus. The adaptive 

immune system generates a pathogen-specific response via T and B cells, 

with the ability to establish memory of infection on the occasion of a 

subsequent exposure to the same stimulus. In the interim, the faster innate 

immune response provides a defence via non-specific receptors which 

recognise molecular structures conserved in infectious organisms but are not 

expressed within the host (Biron and Sen, 2007). This requires the actions of a 

pre-existing cell population, of which monocytes or macrophages, dendritic 

cells (DC), natural killer (NK) cells and polymorphonuclear leukocytes are from 

the immune system and express the appropriate receptors. Recognition of 

pathogen-associated molecular patterns (PAMPs) via these receptors initiates 

an innate immune response (Biron and Sen, 2007).  

 

Toll-like receptors (TLR) are trans-membrane proteins which recognise 

PAMPs. Specifically relating to viral antigens, TLR3 recognises double-

stranded RNA, TLR7 and 8 recognise single-stranded RNA and TLR9 is 

activated by DNA containing unmethylated cytidine-phosphate-guanosine 

(CpG) sequences. These TLRs are present within endosomes and, along with 

other cytoplasmic proteins including RNA-activated protein kinase (PKR) and 

RNA helicases, initiate downstream pathways which result in the transcription 

of genes which form the response to infection. Cytokines are a major product 

in this response, including the pro-inflammatory TNFα, interleukins IL- 1, 6, 18, 

12 and interferons. Interferons are divided into three types; type I which 

includes IFNα, IFNβ, IFNε, IFNδ, IFNκ, IFNω and IFNτ, which can be 

synthesised by virtually any cell type in response to the appropriate 

stimulation; transcription of IFNα and IFNβ are the most important in response 

to viral infection. These interferons act to stimulate the transcription of further 

genes which act in many ways to inhibit viral replication via binding or cleaving 

of viral RNA, inhibition of cellular protein synthesis (required by RNA viruses to 

replicate) and promotion of apoptosis of the infected cell (Biron and Sen, 

2007). The second type of interferons, type II, comprises IFNγ. Type III IFNs 

are more recently described and include IFNλ1, IFNλ2 and IFNλ3, also known 
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as IL-29, 28A and 28B, respectively. These IFNs are also induced by viral 

infection and use pathways similar to type I interferons (Randall and 

Goodbourn, 2008). 

 

1.4.2 Interferon γ 
IFNγ is produced by NK cells, monocytes/macrophages, DC, B cells, NKT 

cells (which have characteristics of both NK cells and T cells) and CD4+ Th1 

cells and CD8+ T cells. Of these, the antigen presenting cells (APC; 

monocytes/macrophages, DC) and NK cells are important in early innate 

immunity (Schroder et al., 2004). APC are activated by the presence of 

antigen and secrete IL-12 and IL-18, which stimulates the production of IFNγ 

(Goodbourn et al., 2000; Schroder et al., 2004). In addition, macrophages also 

secrete chemokines (e.g. macrophage-inflammatory protein 1α [MIP-1α]) 

which attract NK cells to the site, which are then stimulated to produce IFNγ 

via IL-12. Inhibition of IFNγ production is mediated by IL-4, IL-10, transforming 

growth factor-β and glucocorticoids (Schroder et al., 2004). IFNγ receptors are 

expressed almost ubiquitously on the surface of cells (Huang et al., 1993b). 

The receptor is composed of two pairs of peptides; IFNγR1 (which bind to 

IFNγ) and IFNγR2 which transduce the signal (Bach et al., 1997; Schroder et 

al., 2004). This signal is transmitted though the Jak/STAT pathway, resulting in 

phosphorylated STAT1 molecules within the cell nucleus binding to the 

gamma activation sequence (GAS), a regulatory region upstream of IFNγ 

inducible genes, leading to the transcription of these genes (Goodbourn et al., 

2000). This signalling is transient; in vitro transcription of genes occurs within 

15-30 minutes of treatment with IFNγ, and STAT activation is inhibited within 1 

hour. Following signal transduction by the receptor-ligand complex, the 

complex is internalised and enters the endosomal pathway where it is 

dissociated. In many cells types IFNγR1 is recycled to the cell surface, but in a 

dissociated form, otherwise IFNγ is degraded within the endosome (Schroder 

et al., 2004). 

 

IFNγ-inducible genes are numerous and have varied functions. Specific anti-

viral effects include production of protein kinase dsRNA-regulated (PKR), a 

kinase which is activated by dsRNA and inhibits viral protein synthesis; 
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dsRNA-specific adenosine deaminase (ADAR) which alters viral mRNA 

causing mistranslation and the generation of non-functional viral proteins; and 

guanylate-binding proteins which have anti-viral properties by an unknown 

mechanism (Goodbourn et al., 2000; Schroder et al., 2004). IFNγ also induces 

the expression of several cytokines and chemokines, including IL-12 which 

activates NK cells and drives CD4+ T cell development to Th1 cells, as well as 

being important in the production of IFNγ itself (Goodbourn et al., 2000). IFNγ 

causes several chemokines to be upregulated which act to attract different 

immune cells towards the site of inflammation, including IFN-inducible protein 

10 (IP-10; monocytes and T cells), monocyte chemoattractant protein-1 (MCP-

1; monocytes/macrophages), monokine-induced by IFNγ (MIG; T cells), 

macrophage-inflammatory protein-1α and -1β (MIP-1α and -1β; CD4+, CD8+ 

and memory T cells), RANTES (CD4+ T cells and monocytes/macrophages), 

ICAM-1 and VCAM-1 (adhesion molecules) (Schroder et al., 2004). 

Additionally, IFNγ upregulates genes which are involved in MHC class I and II 

antigen presentation, increasing the number and variety of viral proteins 

presented on the cell surface, thereby increasing the antigenic stimulation of T 

cells and the induction of cell-mediated immunity. Inhibition of cellular 

proliferation and increased apoptosis is also stimulated. Apoptosis is increased 

via upregulated IRF-1, caspase 1, PKR (which most likely induces Fas), death 

associated proteins, Fas and Fas ligand and increased sensitivity to TNFα-

mediated apoptosis by promotion of TNFα receptor expression on the cell 

surface (Goodbourn et al., 2000; Malmgaard, 2004; Schroder et al., 2004). 

Lastly, via an increase of reactive oxygen species and NO, IFNγ increases 

cells’ microbial killing ability (Schroder et al., 2004). It should be noted that 

there are differences in the levels of IFNγ in different strains of laboratory mice. 

For example, the T cells in C57BL/6 and C3H mice secrete significantly higher 

IFNγ levels than T cells in BALB/c mice (Schroder et al., 2004). 

 

1.4.3 IFNγ in MHV-68 infection 
The secretion of IFNγ in response to MHV-68 infection is consistent with that 

seen in other viral infections. IFNγ is produced in the spleen, mediastinal and 

cervical lymph node cells in response to infection, from as early as day 3 pi, 

peaking at 10 days pi, correlating with viral clearance from the lung (Sarawar 
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et al., 1996). Investigation of the wide ranging effects of IFNγ has been 

conducted using genetically engineered mice which either have a disruption to 

the IFNγ gene, or lack the IFNγ receptor (IFNγR), thereby functionally 

removing the action of IFNγ (Dalton et al., 1993; Huang et al., 1993b). In both 

cases, these mice develop normally and are healthy in the absence of 

infectious disease. However, IFNγ-/- mice exhibit deficits in the ability to deal 

with pathogens, for example, impaired production of macrophage antimicrobial 

products and reduced expression of macrophage MHC class II antigens 

(Dalton et al., 1993). Similarly, IFNγR-/- mice also show increased susceptibility 

to infectious agents (e.g. Listeria monocytogenes and vaccinia virus), despite 

normal cytotoxic and helper T cell responses, most likely due to decreased Ig 

switching causing decreased IgG2a responses (Huang et al., 1993b). 

 

The role of IFNγ in clearing acute MHV-68 infection has been found to be both 

not essential and essential by different authors. Earlier reports found that 

MHV-68 infection in IFNγ-/- (BALB/c) mice resulted in elimination of the virus at 

a similar rate to that seen in wild type mice, despite a higher viral titre in the 

lung at day 13 pi (Sarawar et al., 1997). This was similar to the finding in 

IFNγR-/- (129/Sv/Ev) mice, where no differences were found in either the viral 

titre or the clearance of virus from the lung compared to wild type mice (Dutia 

et al., 1997). However, this was in contrast to the results of infection of IFNγ-/- 

(BALB/c) mice with MHV-68, which caused an acute bronchopneumonia 

characterised by a neutrophilic infiltrate, hyperaemia, interstitial and intra-

luminal oedema and numerous viral inclusion bodies, which was fatal in some 

mice (>60 %) at 9-14 days pi. Those which survived had cleared the virus from 

the lung by day 14 (Lee et al., 2009). Lee et al. (2009) found that this was a 

dose dependent effect, seen with infectious doses of 4 x 105 PFU; at the lower 

dose of 4x103 PFU, IFNγ-/- mice survived the acute infection. The lower dose 

had also been used by Sarawar et al. (1997). The different background strain 

of the mice used may also explain the apparently conflicting results as T cells 

in BALB/c mice secrete lower levels of IFNγ compared to other strains 

(Schroder et al., 2004), or may be due to chemokine differences seen between 

BALB/c and C57Bl/6 mice (Weinberg et al., 2004). Additionally, as acute 

disease was not seen in IFNγ-/- mice infected with MHV-68 lacking viral cyclin 
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or bcl-2 genes, Lee et al. (2009) suggested that the severity of the acute 

disease may be due to early reactivation of latent virus as both of the genes 

are required to control latency. This is supported by the finding that in vitro, 

MHV-68-infected primary bone marrow-derived macrophages subsequently 

treated with IFNγ showed inhibition of lytic viral replication and decreased 

expression of the lytic gene switch 50, which is essential for reactivation. This 

suggests that absence of IFNγ activity may lead to earlier reactivation of the 

virus (Goodwin et al., 2010; Steed et al., 2007).  

 

Intranasal infection of IFNγR-/- (C57BL/6) mice induces a more severe 

perivascular, peribronchiolar and subpleural inflammatory infiltration 

(lymphocytes, plasma cells, neutrophils, eosinophils) compared to wild type 

mice, and hyperplasia and hypertrophy of type II pneumocytes at 15 dpi. In 

wild type mice, the inflammation is less severe and resolves by day 45 pi, 

whereas B lymphocyte dominated infiltrates are still present in the same 

locations in the IFNγR-/- mice at this timepoint and additionally, subpleural 

fibrosis is seen (Mora et al., 2005). The distribution of pulmonary fibrosis is 

more extensive by day 150 pi, when the IFNγR-/- mice exhibit interstitial fibrosis 

with myofibroblasts and a five-fold increase in collagen deposition compared to 

wild type mice. These changes are associated with increased TGF-β 

expression in epithelial cells and alveolar macrophages and increased 

numbers of apoptotic cells (Mora et al., 2005). When IFNγR-/- were treated with 

an antiviral drug (cidofovir) from day 45 pi, the number of mice exhibiting 

severe pulmonary fibrosis decreased, which was associated with decreases in 

TGF-β, VEGF and macrophage activation markers, suggesting that these 

cytokines are a factor in the pathogenesis of the fibrosis (Mora et al., 2007). 

 

Fibrosis in chronic MHV-68 infection of IFNγR-/- mice has been widely reported 

by many authors in several organs, specifically the spleen, mediastinal lymph 

node and liver in addition to the lung (Dutia et al., 1997; Ebrahimi et al., 2001; 

Gangadharan et al., 2009). In the spleen, acute intranasal infection of 

129/Sv/Ev IFNγR-/- mice results in pale, shrunken spleens at day 17-18 pi, 

which histologically show mild white pulp hyperplasia (but less than that seen 

in the wild type mice) and granulocytes are present in the red pulp. At day 21 
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pi in IFNγR-/- mice, there is a mature fibrosis, with fewer granulocytes and at 

least ten-fold fewer cells are present in the spleen compared to infected wild 

type mice, although CD4+ T cells, CD8+ T cells and B cells are all present. 

The reduction in cell numbers returns to normal by day 45 pi (Dutia et al., 

1997; Ebrahimi et al., 2001; Gangadharan et al., 2008). Presence of infectious 

virus and increased levels of latent virus in the IFNγR-/- spleens is insufficient 

to explain the dramatic reduction in cell number and although removal of CD8+ 

T cells results in the abrogation of the fibrosis and the increased number of 

latently infected cells, a decrease in cellularity remains. In contrast, removal of 

CD4+ T cells does not fully abrogate the fibrosis (Dutia et al., 1997). Apoptosis 

as a cause of the reduction in cells number has also been excluded. 

Concurrent with the reduction in spleen cellularity, an increase in circulating 

lymphocytes is observed, which peaks at day 23 pi and resolves by day 45. 

Labelling of peripheral blood leukocytes from the IFNγR-/- mice revealed that 

these cells were not found in the spleen of IFNγR-/- mice, but on infusion into 

the wild type mice, trafficking of these cells into the spleen occurred as normal 

(Ebrahimi et al., 2001). This was thought to be due to increased TNFα levels in 

the spleen of IFNγR-/- mice, which can inhibit cell migration. Chemokines were 

also thought to be a factor in the pathogenesis of fibrosis; in the IFNγR-/- mice 

increased levels of pro-fibroplastic genes TNFα, TNFβ and IL-1β are seen, 

whereas IFNγ is anti-fibrogenic, along with IP-10 and MIG, which are secreted 

at higher levels in the wild type mice (Ebrahimi et al., 2001). A role for 

alternatively activated macrophages has also been suggested, mediated by 

the secretion of IL-4 and IL-13 by Th2 cells, which predominate in the absence 

of IFNγ, as these macrophages are associated with tissue repair and fibrosis 

(Gangadharan et al., 2008). The viral M1 gene appears to have a role in the 

induction of fibrosis in IFNγR-/- mice as infection of these mice with an M1 

deletion mutant virus does not cause the mortality or splenic fibrosis seen with 

wild type MHV-68 infection (Clambey et al., 2000) and M1 has been shown to 

stimulate CD8+ T cells, which are required for secretion of IFNγ (Evans et al., 

2008). 

 

IFNγ has a critical role in reducing the reactivation of latent virus. In the 

absence of IFNγ, a latent infection is established, however, the administration 
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of IFNγ to latently infected cells in vitro was found to reduce the number of 

cells in which this infection was reactivated (Steed et al., 2006). Similarly, in 

wild type mice, the administration of neutralising antibodies to IFNγ at 16 dpi 

leads to a greater recrudescence of lytic infection (Christensen et al., 1999). 

 

1.5 Expression of proteins in the lung in relation to MHV-68 M3 
Previous work in this group has used microarray analysis to identify genes 

upregulated in response to infection of wood mice with M3 deficient MHV-68 

(M3.stop) compared to wild type (M3.MR) virus. This identified the expression 

of SPLUNC1, CCSP and AGR3 as being higher in M3.MR infection (Hughes, 

2006). 

 

1.5.1 Clara cell secretory protein 
1.5.1.1 Clara cells 
Clara cell secretory protein (CCSP, also known as CC10, CC16, uteroglobin, 

secretoglobin (SCGB)1A and polychlorinated biphenyl binding protein) is the 

major secreted protein of Clara cells and one of the main secretory proteins in 

the lung (Broeckaert et al., 2000; Reynolds et al., 2002). Clara cells are non-

ciliated epithelial cells of the respiratory tract. The number and distribution of 

these cells within the respiratory tract differs between species (Massaro et al., 

1994; Plopper et al., 1997). Clara cells have morphological characteristics 

which can be used to identify them ultrastructurally with transmission electron 

microscopy, including lack of cilia, apical projection of the cell into the airway 

lumen, abundant smooth endoplasmic reticulum, electron dense “secretory-

vesicle like inclusions” within the apical cytoplasm and a basal nucleus (Pack 

et al., 1980). Using these characteristics, Pack et al. (1980) found that 

although a large proportion of the luminal surface of the mouse trachea is 

ciliated, the ciliated cells were interspersed with a large number of non-ciliated 

cells. Within the trachea, between 49.4 and 57.5 % of the epithelial cells were 

Clara cells; in the primary bronchus 46 %; axial bronchus 61 % and distal 

airway 71 %, so the frequency of Clara cells within the respiratory epithelium 

increases distally in the respiratory tract (Pack et al., 1980; Pack et al., 1981). 

In contrast, in human respiratory epithelium, there is a complete absence of 

Clara cells in the trachea and bronchi, with very low numbers in the proximal 
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bronchioles and only approximately one in five epithelial cells are Clara cells in 

the most distal (respiratory) bronchioles (Boers et al., 1999). Clara cells in 

humans are also morphologically different; cells are cuboidal and do not 

project into the lumen, nuclei are central and other organelles are less 

prominent (Plopper et al., 1997). Additionally, different types of Clara cell, 

based on morphological variations, have also been described. These include 

the Common type, Type II Clara cells (which have more electron dense 

cytoplasm and fewer electron dense vesicles) and the vesiculated type (in 

which the cytoplasm contains numerous large vesicles containing a faint 

matrix). The latter were postulated to be in transition between Clara cells and 

mucous cells (Pack et al., 1981). Antibodies to CCSP have been widely used 

both as a marker for Clara cells and to locate the protein within the cell, which 

shows that CCSP granules are stored within the electron dense secretory 

vesicles described by Pack et al. (1980), which are located in the apical 

cytoplasm (Ray et al., 1996; Ryerse et al., 2001). These electron dense 

vesicles are absent from the cytoplasm of CCSP-/- mice, along with reduced 

amounts of endoplasmic reticulum; furthermore, the airway lining fluid did not 

contain CCSP (Stripp et al., 2002). 

 

In addition to CCSP, Clara cells also secrete surfactant A, B and D proteins; 

Tryptase Clara (a protease); phospholipase, thought to be secreted and 

important in the regulation of surfactant lipids; β-galactosidase-binding lectins; 

a leukocyte protease inhibitor, which inhibits neutrophil elastase and a 55kDa 

protein (CC55) which has not yet been characterised (Singh and Katyal, 

2000). 

 

1.5.1.2 Function of CCSP 
Clara cell secretory protein is thought to be an anti-inflammatory protein, 

although the precise role of this protein is not yet understood (Singh and 

Katyal, 1997; Wang et al., 2003). First identified as a protein in the uterus of 

pregnant rabbits (uteroglobin), CCSP is able to bind progesterone (Miele et al., 

1987). CCSP also has been shown to bind polychlorinated biphenyl (PCB) 

metabolites, a potentially toxic environmental pollutant (Stripp et al., 1996). In 

the lung, several potential properties have been identified; the inhibition of 
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phospholipase A2 (PLA2) may reduce inflammation as PLA2 is involved in the 

production of arachidonic acid and the availability of prostaglandins and 

leukotrienes (Broeckaert, 2000; Miele et al., 1987; Singh and Katyal, 2000). 

Other immunomodulatory functions described for CCSP include inhibition of 

IFNγ, TNFα and IL-1 and inhibition of leukocyte chemotaxis (Mukherjee et al., 

1999; Singh and Katyal, 2000).  

 

The generation of CCSP-/- mice has allowed further elucidation of the role of 

CCSP in the lung.  In these mice higher levels of other secretory proteins are 

found, including other members of the secretoglobin family, SCGB3A1 and 

SCGB3A2, possibly to compensate for the lack of CCSP (Reynolds et al., 

2002; Watson et al., 2001).  CCSP-/- mice are also associated with increased 

levels of IgA, with IgA mRNA-positive peribronchiolar lymphocytes readily 

detected in CCSP-/- mice, but rare in wild type mice. This peribronchiolar 

distribution has been suggested to be consistent with that of BALT and 

therefore, CCSP may have a role in the formation of BALT (Watson et al., 

2001). Other models of inflammation have suggested that CCSP has a role in 

the resolution of inflammation. Instillation of LPS leads to a rapid decrease of 

CCSP in the BAL fluid and CCSP mRNA in lung tissue (although the number 

of Clara cells remained constant) and the restoration of levels within seven 

days, coinciding with the resolution of the neutrophil-dominated inflammation 

(Arsalane et al., 2000; Snyder et al., 2010). This is a similar finding to the effect 

of acute naphthalane injury, which also leads to a reduction in CCSP mRNA 

levels (Stripp et al., 1995). Following hyperoxia, CCSP-/- mice exhibit reduced 

survival time (compared to wild type mice), increased mRNA for the 

proinflammatory cytokines IL-1β, IL-3 and IL-6 and greater pulmonary oedema 

at later timepoints (82 hours). These results and others suggest that the lack of 

CCSP leads to altered regulation of pulmonary inflammation and a 

proinflammatory state (Johnston et al., 1997; Reynolds et al., 2007).  

 

1.5.1.3 CCSP in disease 
A survey of human patients with acute respiratory distress syndrome found 

significantly higher levels of CCSP in BAL fluid compared to controls, and 

interestingly, that patients who survived had significantly higher levels of CCSP 
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compared to those who died (Jorens et al., 1995). Conversely, patients with 

chronic lung disease, such as chronic obstructive pulmonary disease, cystic 

fibrosis, asthma and exposure to cigarette smoke, are associated with reduced 

levels of CCSP (Ghafouri et al., 2002; Pilette et al., 2001; Robin et al., 2002; 

Snyder et al., 2010). A similar finding has been described in horses with 

equine recurrent airway obstruction (Katavolos et al., 2009).  

 

Further evidence of an anti-inflammatory role includes the in vitro 

antichemotactic and antiphagocytic effects on macrophages, monocytes and 

neutrophils (Miele et al., 1987). The immunomodulatory protein annexin A1 

(ANXA1) is abundant in macrophages, blood leukocytes and ciliated epithelial 

cells of the lung. Lack of CCSP leads to alteration in the post-translational 

modification of this protein, which may alter its function; for example ANXA1 

antagonises neutrophil extravasation. Therefore a decrease in CCSP may 

alter the paracrine control of ANXA1 and contribute to increased inflammatory 

responses (Reynolds et al., 2007). Pulmonary macrophages from CCSP-/- 

mice following stimulation by LPS, show increased TNFα production and 

increased TLR4 expression, suggesting an increased inflammatory response 

in the absence of CCSP (Snyder et al., 2010). Interestingly, several authors 

have shown that TNFα also induces the transcription of CCSP in vitro. As 

TNFα is capable of activating phospholipases (PLA2 is inhibited by CCSP), this 

appears to be a counterregulatory mechanism (Cowan et al., 2000; Yao et al., 

1998b). This was in contrast to Harrod and Jaramillo (2002) who reported that 

both in vitro and in vivo systems showed a decrease in CCSP promoter 

activity, following Pseudomonas aeruginosa infection caused increases in 

TNFα (Harrod and Jaramillo, 2002).   

 

IFNγ induces increased levels of CCSP mRNA, protein and secretion of the 

protein both in vivo and in vitro in a dose dependent manner (Magdaleno et al., 

1997; Yao et al., 1998a). This is controlled via the Jak/STAT1 pathway, IRF-3 

and the respiratory epithelium transcription factors HNF-3α and HNF-3β 

(Bingle et al., 1995; Ramsay et al., 2003). Interestingly, the presence of CCSP 

inhibited the expression of IFNγ by peripheral blood mononuclear cells in vitro. 

This was suggested to be mediated via IL-2, either via a decrease in the 
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cytokine level or inhibition of its interaction with its receptor, or, as IFNγ 

induces PLA2, inhibition of PLA2 may be involved in decreased signal 

transduction (Dierynck et al., 1995). This suggests that the interaction between 

Clara cells and IFNγ is an example of the modulation of epithelial cell function 

by a cytokine, with subsequent epithelial cell modulation of the inflammatory 

response, restricting intra-pulmonary inflammation (Ramsay et al., 2003; Yao 

et al., 1998a). 

 

Clara cells have been identified as contributing to cell renewal in the bronchial 

epithelium of rodents and humans and are designated facultative progenitor 

cells (Boers et al., 1999; Breuer et al., 1990; Hong et al., 2001; Stripp and 

Reynolds, 2008). CCSP positive cells also have characteristics of mucus 

secreting cells, suggesting that they are progenitor cells for different cell types 

in the respiratory epithelium (Boers et al., 1999; Evans et al., 2004). Different 

types of Clara cell have been described based on ultrastructural variations 

which suggest that Clara cells may secrete mucus, or become goblet cells 

(Pack et al., 1981). Sensitisation and subsequent challenge with ovalbumin is 

a common model for allergy-based respiratory disease. In CCSP-/- mice this 

results in increased inflammation (neutrophils; consistent with increased MIP-

2) and also increased mucus production (Wang et al., 2001). In another similar 

model, ATP-challenged mice showed a dramatic increase in CCSP and the 

number of mucous cells, moreover, mucin synthesis was localised to Clara 

cells, indicating that these cells are the origin of the mucous cells, which are 

scant in naïve mice (Evans et al., 2004). Further investigation of the transition 

of Clara cells to mucin producing cells has shown that this is mediated by 

SPDEF, TTF-1 and FoxA2, in response to EGFR activation and IL-13 (Chen et 

al., 2009; Curran and Cohn, 2010). It is now widely accepted that Clara cells 

are the primary mucin-secreting cells in the mouse and in the small airways of 

humans (Davis and Dickey, 2008). 

 

In vitro, encephalomyocarditis virus-infected monocytes treated with 

recombinant CCSP exhibited reduced IFNγ-mediated antiviral activity 

(Dierynck et al., 1995). In vivo, lack of CCSP has consistently resulted in an 

increased inflammatory response following experimental infection with 
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microorganisms, consistent with the assertion that CCSP has an anti-

inflammatory function. Infection of CCSP-/- mice with adenovirus revealed 

increased inflammatory cell counts in BAL fluid, within which the proportion of 

neutrophils was greater than that seen in similarly infected wild type mice 

(Harrod et al., 1998). This is compatible with the increase in MIP-2 and MIP-1α 

mRNA in the CCSP-/- mice, as these are neutrophil-attractant chemokines. In 

addition, IL-6, TNFα, IL-1β and MCP-1 are also increased compared to the 

infected wild type mice (Harrod et al., 1998). Histologically, infiltration by 

mononuclear cells and neutrophils is more extensive in the absence of CCSP 

at both 7 and 14 dpi, suggesting that CCSP reduces the influx of neutrophils 

and monocytes. The increased inflammatory response in CCSP-/- mice was 

suggested to be the underlying cause of the reduced virus load in these mice, 

compared to the wild type mice (Harrod et al., 1998). A similar outcome was 

described following infection with Pseudomonas aeruginosa, which led to 

increased numbers of neutrophils in the BAL fluid, and increased TNFα and IL-

1β in the absence of CCSP (Hayashida et al., 2000). The increased 

inflammatory response was also suggested to be the explanation for the lower 

numbers of viable bacteria which were recoverable from CCSP-/- mice at 24 

hpi, compared to infected wild type mice. Interestingly, the wild type mice 

exhibited a decrease in the levels of CCSP at days 1 to 5 following infection 

with P. aeruginosa, but recovered to baseline levels by day 14, at which time 

the inflammatory response was resolving. It was postulated by the authors that 

in the wild type mice, CCSP levels decreased to allow neutrophils to be 

recruited to the lung, which is otherwise inhibited by CCSP. How this is 

regulated is not clear, as the decrease in CCSP occurred prior to the decrease 

in CCSP mRNA levels and was not associated with Clara cell injury 

(Hayashida et al., 2000). However, the findings of Harrod and Jaramillo (2002) 

suggested that this may be due to TNFα mediated decreased in CCSP 

promoter activity. Infection of CCSP-/- mice with HRSV showed similar 

alterations in the inflammatory response, with an increase in total cell numbers 

in the BAL fluid at days 2 (neutrophils, lymphocytes) and 7 (macrophages, 

neutrophils, eosinophils) pi and increased peribronchiolar infiltrates described 

histologically, with concurrent increases in neutrophil-attractant chemokines 

(MIP-2 and KC) (Wang et al., 2003). In contrast to the previously described 
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experiments, however, this increased inflammatory response did not lead to 

increased viral clearance, but higher viral titres in the CCSP-/- mice than in the 

wild type mice (Wang et al., 2003). An increase in IL-13 was also recorded in 

the CCSP-/- mice, which was suggested to be a cause of mucous metaplasia 

characteristic of HRSV infection and demonstrated by increased numbers of 

AB-PAS positive cells at day 7 pi. Alternatively, the increase in mucus was 

suggested to be secondary to an increase in elastase, from the higher 

numbers of neutrophils present, which increases MUC5AC expression (Wang 

et al., 2003). 

 

1.5.2 SPLUNC1 
1.5.2.1 The PLUNC family of proteins 
The PLUNC (palate lung and nasal epithelium clones) family of proteins are 

relatively recently described and are present in the oral, nasopharyngeal and 

respiratory epithelium (Bingle et al., 2004). These proteins are predicted to 

show structural similarity to LPS-binding protein (LBP) and 

bactericidal/permeability-increasing protein (BPI), which are critical to the host 

innate immune response to LPS. Both proteins bind LPS; LBP subsequently 

signals to the host of the presence of low amounts of LPS, whereas BPI 

renders LPS non-inflammatory (Bingle and Craven, 2002). These two proteins 

could therefore be described as pro-inflammatory and anti-inflammatory, 

respectively. The family of proteins have been divided into two subgroups, on 

the basis that some (the “short” PLUNCs; SPLUNC) have homology only to 

the N-terminal domain of BPI, while the remainder (the “long” PLUNCs; 

LPLUNC) have homology to both the N- and C- terminal domains of BPI. In 

humans, four short and six long PLUNC genes have been identified, although 

LPLUNC5 is likely to be a pseudogene (Barnes et al., 2008; Bingle and 

Craven, 2003). The mouse genome contains homologues of all human 

SPLUNC and LPLUNC genes, with an additional SPLUNC5 gene (Bingle et 

al., 2004; LeClair et al., 2004). Furthermore, homologues have been described 

in other mammalian species (rat, horse, cow and pig), in addition to birds 

(chicken), some amphibians, but not in fish; an indication as to when these 

genes evolved (Bingle et al., 2009). This family of proteins are one of the most 

rapidly evolving mammalian genes, which is characteristic for genes involved 
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in host defence. The clustering of the genes close together on the 

chromosome indicates gene duplication, but the relatively low amino acid 

homology (<25 %) between the paralogues suggests rapid evolution of the 

individual genes  (Bingle et al., 2004).  

 

1.5.2.2 SPLUNC1  
SPLUNC1 (also known as spurt, LUNX, PLUNC) was first identified as a gene 

expressed in the palate and nasopharynx of the mouse embryo (Weston et al., 

1999). In the murine respiratory tract, SPLUNC1 expression is present from 

two days of age and is restricted to the epithelial cells of the trachea and 

mainstem bronchi; distally to this levels drop abruptly, and in the bronchioles 

and the alveoli no expression is present (LeClair et al., 2001; Weston et al., 

1999). These patterns persist into adulthood, but are not present in embryonic 

lung. In the human respiratory tract SPLUNC1 is present in the non-ciliated 

epithelial cells in the airway, cells of the submucosal glands in the upper 

airway, along with minor glands of the tongue and nasal cavity, and the 

mucous acini (but not serous cells) of salivary glands (Bingle et al., 2005; Di et 

al., 2003; Kim et al., 2006; Vargas et al., 2008). The type of cell in which 

SPLUNC1 is found within the submucosal gland has been variable between 

authors, with some identifying serous cells as positive, but mucous cells 

negative (Campos et al., 2004; Kim et al., 2006) and others the opposite, 

finding SPLUNC1 in mucous acini only (Bingle et al., 2005). The presence of 

SPLUNC1 within the ducts of submucosal glands and as an important 

component of the airway lining fluid demonstrates that this protein is secreted 

(Bingle et al., 2005). 

 

1.5.2.3 SPLUNC1 in disease 
In humans, SPLUNC1 has been investigated as a marker of respiratory 

disease. Analysis of nasal lavage fluid (NLF) in workers chronically exposed to 

dimethylbenzylamine (DBMA), shows that levels of SPLUNC1 are initially 

decreased compared to controls, but increase to higher levels than in controls 

in response to acute exposure to the chemical (Ghafouri et al., 2003; Lindahl 

et al., 2001). In contrast, control subjects exhibit a decrease in SPLUNC1 in 

response to the same acute exposure to DBMA (Lindahl et al., 2001). 
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SPLUNC1 was also found to be decreased in the NLF of smokers (Ghafouri et 

al., 2002; Ghafouri et al., 2003). Additionally, people with seasonal allergic 

rhinitis also had lower levels of SPLUNC1 in NLF during symptomatic periods, 

compared to non-symptomatic periods, or healthy controls (Ghafouri et al., 

2006). In contrast, other studies have shown that SPLUNC1 expression is 

increased in the respiratory tract of patients with chronic respiratory conditions. 

In cystic fibrosis patients, SPLUNC1 was found to be increased in nasal cells 

(Roxo-Rosa et al., 2006) and in the epithelium and the mucus plugs within 

lumina of small airways [bronchioles] (Bingle et al., 2007). This is in contrast to 

cases of COPD, in which despite increased levels of SPLUNC1 being detected 

in sputum samples (Di et al., 2003), bronchiolar epithelial cells were not found 

to be positive (Bingle et al., 2007; Liu et al., 2010b). Comparison of lung tissue 

from stable and progressive Idiopathic Pulmonary Fibrosis revealed 

significantly higher levels of SPLUNC1 mRNA in the lung tissue of progressive 

cases (Boon et al., 2009). Immunohistology localised SPLUNC1 to the 

epithelial cells and lumen of airways named as bronchi in the legend, but are 

morphologically comparable to those termed “small airways” [bronchioles] by 

Bingle et al. (2007). Moreover, Boon et al. (2009) described the positive cells 

to be of secretory/goblet type, which is contrary to the finding in cystic fibrosis, 

where goblet cells within the airways were negative for SPLUNC1 (Bingle et 

al., 2007). 

 

In cancers of the lung, nasal and salivary tissues, SPLUNC1 has been variably 

reported as a marker, prognostic indicator and as downregulated, compared to 

non-neoplastic tissue. In a survey of glandular lung tumours, SPLUNC1 was 

shown by immunohistology to be expressed in pulmonary adenocarcinomas, 

muco-epidermoid carcinomas and bronchio-alveolar carcinomas (Bingle et al., 

2005), and in salivary gland papillary cystadenocarcinoma (Vargas et al., 

2008). Two other neoplasms have been investigated by several authors.  Non-

small cell lung cancer (NSCLC) is positive for SPLUNC1 and 80 % of lymph 

nodes with metastases were also positive (Iwao et al., 2001); moreover, the 

presence of SPLUNC1 in these metastases correlated with a poor prognosis 

of survival (Benlloch et al., 2009). In addition, the presence of SPLUNC1 

positive tumour cells in the peripheral blood has been suggested as a 
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diagnostic tool for NSCLC (Cheng et al., 2008; Mitas et al., 2003). In 

nasopharyngeal carcinoma (NPC), SPLUNC1 is downregulated, and has been 

proposed as a putative tumour suppressor gene in this neoplasm (He et al., 

2005; Zhang et al., 2003; Zhang et al., 2010). NPC has a higher occurrence 

within some human populations, which has been correlated with increased 

incidence of infection with Epstein-Barr virus. However, it has also been shown 

that within these populations, two single nucleotide polymorphisms in the 

SPLUNC1 promoter gene show significant association with the susceptibility to 

NPC, which may affect the transcription of SPLUNC1. Furthermore, the 

potential antimicrobial function of the PLUNC proteins was suggested to be a 

link between this polymorphism, infection with EBV and the development of 

NPC (He et al., 2005). This is interesting in light of the finding of Zhou et al. 

(2007) that EBV-transformed B lymphocytes showed a significantly lower 

survival rate in culture in the presence of recombinant SPLUNC1, compared to 

similarly treated normal B lymphocytes, and that EBV DNA in the culture 

supernatant of SPLUNC1 treated cultures was also reduced (Zhou et al., 

2008). 

 

1.5.3.4 Function of SPLUNC1 
SPLUNC1 is expressed by cells in culture; primary human bronchial epithelial 

cells (HBECs) grown at an air liquid interface initially express abundant 

SPLUNC1. Its expression decreases as cells de-differentiate, then is highly 

expressed as cells re-differentiate. It has been reported as the most highly 

expressed gene in HBECs (Campos et al., 2004; Ross et al., 2007) and is also 

expressed by primary tracheobronchial epithelial cells in culture (Bingle et al., 

2007). However, SPLUNC1 is also reported to be highly expressed in cultured 

alveolar type II cells; a cell type which does not express this gene in vivo 

(Ballard et al., 2010). Moreover, the same report also found that CCSP was 

expressed by type II alveolar cells in culture; again this gene is not expressed 

by this cell type in vivo (Ballard et al., 2010). Cell cultures require the addition 

of retinoic acid to maintain the mucociliary phenotype to express SPLUNC1 

(Bingle et al., 2007; Campos et al., 2004; Yeh et al., 2010). Expression of 

SPLUNC1 was not affected by the action of the inflammatory mediators IL-1β 

or TNFα (Bingle et al., 2007) but was downregulated by IL-13 (Yeh et al., 
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2010). SPLUNC1 has been isolated from and shown to be released by human 

peripheral neutrophils in vitro, in response to stimulation with secretagogues 

(Bartlett et al., 2008); however, this was not the finding of Bingle et al. (2007), 

who failed to detect SPLUNC1 in neutrophils in sections of lung tissue. 

 

SPLUNC1 was upregulated in the nasal epithelium following olfactory 

bulbectomy in the rat; olfactory bulbectomy causes degeneration of olfactory 

receptor neurons, which are present within the olfactory epithelium. This 

increase was suggested to be in response to the injury of the respiratory 

epithelium (Sung et al., 2002). In contrast, studies using murine models of 

obliterative airway disease and asthma, have reported a decrease in 

SPLUNC1 expression in these conditions (Follettie et al., 2006; Kuperman et 

al., 2005; Lande et al., 2005). 

 

SPLUNC1 has been investigated as a putative antimicrobial protein in murine 

models of infectious and inflammatory disease. Infection of mice with 

Mycoplasma pneumoniae leads to increased SPLUNC1 mRNA at 4 hours pi, 

but not at 72 hours pi, and treatment of mice with SPLUNC1 neutralising 

antibody lead to increased bacterial burdens and neutrophil counts in BAL 

fluid, suggesting that SPLUNC1 is decreased during the subacute 

inflammatory response (Chu et al., 2007). The same authors also found that 

IL-13 antibody treatment of allergic mice with M. pneumoniae infection led to 

decreased SPLUNC1 and increased bacterial levels, suggesting that 

increased levels of IL-13 in models of allergy impaired SPLUNC1 expression 

and decreased bacterial clearance. This is consistent with the findings of Yeh 

et al. (2010) and Ghafouri et al. (2006) on the interaction between SPLUNC1 

and IL-13. However, IL-4Ra1-/- mice, which lack the signalling pathway for IL-4 

and IL-13, showed reduced levels of SPLUNC1 in an ovalbumin based model 

of airway inflammation (Britto et al., 2010). A similar murine allergy model also 

showed that SPLUNC1 inhibited eosinophilic inflammation in the lung, 

although the mechanism was not defined (Liu et al., 2010a). SPLUNC1-/- mice 

were more susceptible to infection with M. pneumoniae, with a two-fold 

increase in numbers of bacteria and higher neutrophil counts in BAL fluid. 

Similarly, transgenic mice which overexpressed SPLUNC1 were protected, 
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with lower bacterial numbers and lower pro-inflammatory cytokine levels (Gally 

et al., 2010a). In addition, infection of SPLUNC1-/- mice with M. pneumoniae 

suggested that SPLUNC1 was required for the induction of TLR2 signalling in 

response to M. pneumoniae, and impaired expression of SPLUNC1 may be 

implicated in the bacterial infection of patients with chronic lung disease such 

as COPD (Gally et al., 2010b). In an ovalbumin stimulated model of 

inflammation, IFNγR-/- mice failed to show a reduction of SPLUNC1 following 

exposure to ovalbumin, a response seen in the wild type mice, suggesting that 

IFNγ is involved in the inhibition of SPLUNC1 in inflammatory response in the 

respiratory tract (Britto et al., 2010). In another study, naive IFNγR-/- mice 

exhibited increased SPLUNC1 in BAL fluid, in addition to IFNγR-/- mice with 

Th1 and Th2 induced inflammation, suggesting that SPLUNC1 regulates 

inflammation in the healthy lung, but during an inflammatory response, is 

inhibited by IFNγ (Curran et al., 2009). 

 

An additional role for SPLUNC1 has been proposed in the regulation of 

epithelial sodium channels (ENaC) in the respiratory tract, with SPLUNC1 

having been shown in vitro to inhibit ENaC in human bronchial epithelial 

cultures and Xenopus laevis oocytes, which would result in excess fluid within 

the airway lumen (Garcia-Caballero et al., 2009; Rollins et al., 2010). 

Investigation of SPLUNC1 as a surfactant showed that in vitro, the protein 

reduced surface tension at the air-liquid interface and inhibited biofilm 

formation by Pseudomonas aeruginosa (Gakhar et al., 2010). 
 

1.5.3 AGR2 and AGR3 
Anterior gradient homologue 2 (AGR2; also known as, or homologous in other 

species to, Agr2h, Gob-4, hAG-2, mAG-2 (Aberger et al., 1998; Fritzsche et 

al., 2006; Komiya et al., 1999; Zhang et al., 2005)) and anterior gradient 

homologue 3 (AGR3; homologous in other species to Gm888, BCMP11, hAG-

3 (Fletcher et al., 2003)) are homologues of the genes XAG-2 and XAG-3, first 

identified in Xenopus laevis. XAG-2 encodes a secreted protein produced by 

the mucin-producing cement gland, which is located anteriorly in the ectoderm 

of the embryo and is the first ectodermal organ in the developing Xenopus 

embryo (Aberger et al., 1998; Liu et al., 2005). The cement gland functions to 
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attach the embryo to a solid support prior to swimming and feeding. 

Homologues of this protein have been described in varying locations in other 

species. In the mouse, AGR2 is expressed in another secretory cell, the 

intestinal goblet cell (Komiya et al., 1999) and in humans, homologues have 

been described in several tissues containing mucus secreting cells, including 

lung, trachea, pancreas, stomach, colon, prostate gland and small intestine 

(Fritzsche et al., 2006; Persson et al., 2005; Zhang et al., 2005), although the 

function is unclear (Fletcher et al., 2003; Liu et al., 2005).  

 

It has been suggested that AGR2 may have a role as a differentiation factor in 

specifying the dorsal ectoderm to acquire an anterior fate and develop into the 

cement gland and forebrain, in Xenopus (Aberger et al., 1998) and injection of 

AGR2 into Xenopus embryos has been shown to cause enhanced cement 

gland development (Liu et al., 2005). Alternatively, AGR2 and AGR3 may 

function as endoplasmic reticulum oxidoreductases, which are members of the 

protein disulfide isomerase family and are part of the chaperone process, 

ensuring the correct folding of proteins during their synthesis (Persson et al., 

2005). AGR2 has been shown not to be secreted, but tied to the endoplasmic 

reticulum and essential in vivo for the secretion of MUC2 mucin in the goblet 

cells of the intestine, where it forms disulfide bonds with MUC2 during 

processing of the glycoprotein (Park et al., 2009; Zhao et al., 2010). In Clara 

cells, AGR2 is associated with the expression of SPDEF, a gene required for 

the differentiation of these cells to goblet cells in response to allergen 

exposure-induced goblet cell hyperplasia (Chen et al., 2009; Curran and Cohn, 

2010; Park et al., 2007).  

 

AGR3 in humans (hAG-3) has been described as homologous to hAG-2, 

although has only been documented in the lung and the pancreas (Fletcher et 

al., 2003; Persson et al., 2005). The human homologues were originally cloned 

as a gene that is differentially expressed between oestrogen receptor positive 

and negative breast carcinomas (Fletcher et al., 2003; Persson et al., 2005), in 

which both hAG2 and hAG-3 have been suggested as biomarkers of prognosis 

(Adam et al., 2003; Fritzsche et al., 2006). AGR2 is also overexpressed in 
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another neoplasm of a secretory cell, namely prostate adenocarcinoma, with 

expression greatest in high-grade lesions (Zhang et al., 2005). 

 

1.6 Aim of this thesis 
The aim of this work was to investigate the expression of CCSP, SPLUNC1, 

AGR2 and AGR3 in relation to murine models of viral infection in the 

respiratory tract and in particular, to examine the effect of the MHV-68 M3 

gene on the transcription of these genes and the corresponding proteins. This 

was to include localisation of the anatomical sites within the respiratory tract 

and the temporal expression of these genes. Comparison of MHV-68 M3.stop 

and M3.MR infection was used to try and elucidate the role of this viral gene in 

the response to viral infection. As a comparison, the expression of CCSP and 

SPLUNC1 in the context of other respiratory viruses was also investigated. 
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2.1 Cell Culture 
Three cell lines were used in this work; human embryonic kidney 293T cells  

(Graham et al., 1977), mouse fibroblast cells NIH3T3 (Bojan et al., 1983) and a 

transformed fibroblast cell line derived from IFNαβR-/- 129/Sv mouse embryo 

fibroblasts (Muller et al., 1994), named αβSV1 cells (Hughes et al., 2009). All 

cell lines were maintained in Dulbecco’s Modified Eagle Medium (DMEM, 

Lonza), supplemented with 10 % (v/v) Foetal Calf Serum (BioWest), 2mM L-

glutamine (Invitrogen) and 100i.u./ml penicillin/streptomycin (Invitrogen). Cells 

were incubated in a humidified atmosphere at 37 °C, in 5 % CO2. Cells were 

cultured in 150 cm2 vented flasks (Iwaki) and were passaged when 

approaching confluency. Medium was removed from the flask and cells 

washed with pre-warmed (to 37 °C) sterile PBS. Cells were detached by the 

addition of 8ml Versene (Lonza) with 0.25 % (v/v) Trypsin (Gibco). After a 

short incubation period (30 – 60 seconds), 8 ml DMEM was added, cells 

harvested and centrifuged at 100 g for 5 minutes. The supernatant was 

decanted and the cell pellet resuspended in 10 ml DMEM. From this 

suspension a small sample was mixed with an equal volume of Trypan Blue 

and the cell density calculated using a haemocytometer. Suitable numbers of 

cells were then seeded in new flasks or plates as required. 

 

2.2 Viruses 
2.2.1 Viruses used in this thesis 
2.2.1.1 MHV-68 
2.2.1.1.1 MHV-68  
MHV-68 working stocks were produced from sub-master stocks of clone g2.4  

(Sunil-Chandra et al., 1992a). 

 
2.2.1.1.2 MHV-68 M3.stop and M3.MR 
Infection of wood mice was performed using recombinant viruses MHV-68 

M3.stop and MHV-68 M3.MR which were kindly provided by Professors Virgin 

and Speck (Washington University School of Medicine and Emory University). 

Functional ablation of the M3 gene was achieved by targeted disruption 

following the insertion of three in-frame translational stop codons, a frameshift 

mutation, and a novel AvrII site to generate the M3.stop virus. The M3 marker 
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rescue virus (MHV-68 M3.MR) was generated by cotransfection of the parental 

M3-containing plasmid with viral genome derived from the MHV-68-M3.stop 

viral stock. Further characterisation of these viruses has been published (van 

Berkel et al., 2002). 

 

2.2.1.1.3 LH∆GFP 

A recombinant virus with an inserted green fluorescent protein (GFP) was 

utilised in the infection of cell cultures (LH∆GFP). This virus was kindly 

provided by Dr. Bernadette Dutia, University of Edinburgh. The LH∆GFP virus 

had been constructed by co-transfection of viral DNA with DNA containing a 

human cytomegalovirus (HCMV) immediate-early promoter-driven green 

fluorescent protein cassette (CMV-GFP) into baby hamster kidney (BHK) cells 

(Dutia et al., 2004).  

 

2.2.1.2 Sendai virus 
The Sendai virus used was a recombinant virus with an inserted eGFP gene 

inserted between the Sendai virus N and P genes (rSeV/eGFP), produced and 

used in the laboratories of Dr. Ultan Power, Queens University, Belfast. Stocks 

were grown in embryonated chicken eggs and titrated on LLC-MK2 cells. 

 
2.2.1.3 Human respiratory syncytial virus 
Two strains of HRSV were used; a clinical isolate from a hospitalised infant 

with bronchiolitis in the Royal Belfast Hospital for Sick Children (BT2a) and a 

laboratory strain which has been commonly used in experimental work (RSV 

Long); both of which were grown on HEp-2 cells and used in the laboratories 

of Dr. Ultan Power, Queens University, Belfast. 

 
2.2.1.4 Influenza A virus 
Two strains of H1N1 were used in this work; Influenza A/NC/20/99 (H1N1) and 

Influenza A/Ca/04/09 (H1N1). Two strains of H5N1 were used, one of high 

pathogenicity [Influenza A/Vietnam/04/98 (H5N1)] and one of low 

pathogenicity [Influenza A/Mute Swan/MI/451072/06 (H5N1)]. All influenza 

viruses were provided by and utilised in the laboratories of Prof. Ralph Tripp, 

University of Georgia, Athens. 
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2.2.2 Production of MHV-68 stocks 
Flasks (150 cm2) were seeded with αβSV1cells at 2 x 106 cells per flask and 

infected at an MOI of 0.001 in 5ml of DMEM for 60-90 minutes at 37°C when 

cells achieved 70 % confluency. Cells were then washed twice with pre-

warmed sterile PBS and DMEM with 1 % foetal calf serum, 2 mM L-glutamine 

and 100 i.u./ml penicillin/streptomycin. These cultures were monitored daily 

until 100 % cytopathic effect was observed. Cells were then scraped off the 

flasks into the medium and both decanted and centrifuged at 1000 g for 20 

minutes at 4 °C. The resulting cell pellets were resuspended in approx. 0.3 ml 

sterile PBS/150 cm2 flask and transferred to a dounce homogeniser which had 

been pre-chilled on ice, and homogenised to disrupt cell membranes and 

release intracellular virus. This suspension was then centrifuged at 2000 g for 

20 minutes at 4 °C. The supernatant was removed and kept on ice, while the 

cell pellet was resuspended in sterile PBS, homogenised a second time in the 

douncer and the suspension centrifuged as before. The supernatants from 

both homogenisation steps were pooled, aliquoted and stored at -70 °C.   

 

2.2.3 Titration of MHV-68 stocks 
6 well plates (Iwaki) were seeded with approximately 2.5 x 105 NIH3T3 cells 

per well and 5ml DMEM with 10 % foetal calf serum, 2mM L-glutamine and 

100 i.u./ml penicillin/streptomycin added per well, 24 hours prior to titration. 

Ten-fold serial dilutions of stock virus were prepared in DMEM from 10-4 to  

10-9. Medium was decanted from the 6 well plates and 1ml of diluted stock 

virus added per well, each dilution being performed in duplicate. Plates were 

incubated at 37 °C, 5 % CO2 for 1 hour, then the inoculum removed and cells 

washed three times with pre-warmed sterile PBS and fresh DMEM added. 

Plates were then incubated as before, for 4 days. To examine the number of 

plaques, the medium was removed and cells fixed in 4 % PFA for 30 minutes, 

then stained with 0.1 % Toluidine Blue, rinsed in tap water and left to dry. 

Plaques were then counted and the titre calculated as follows: 

Titre (pfu/ml) = Number of plaques x dilution 
                       Final volume of sample 
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2.2.4 Infection of cell cultures 
Transfected cells in 6 well plates were infected with a GFP-labelled MHV-68 

virus (LH∆GFP) when cells were confluent, at an MOI of 0.5, in triplicate. The 

appropriate volume of stock virus in 1ml DMEM was inoculated onto cells and 

plates incubated at 37 °C, 5 % CO2 for one hour. Cells were then washed 

twice with sterile PBS and 2ml DMEM with 10 % FCS, 2 mM L-glutamine and 

100 i.u./ml penicillin/streptomycin added per well. Plates were incubated as 

before. At 12 hours post infection, plates were examined under fluorescent 

light and digital images at 40x magnification taken (ten per transfection). These 

images were then analysed using Nikon NIS-Elements Basic Research 

software v.3.0 (Nikon U.K. Ltd., Kingston, Surrey) to quantify the percentage 

area showing expression of GFP above a threshold, set to eliminate 

background fluorescence. 

 

2.3 Infection of mice 
All in vivo experiments were performed with at least three mice per group and 

were performed once each. 

 

2.3.1 Infection of wood mice (Apodemus sylvaticus) with MHV-68 
Wood mice were obtained from and housed by the Department of Veterinary 

Pathology, Faculty of Veterinary Science, University of Liverpool at the 

Leahurst Field Station. These laboratory-bred mice were 6 - 10 weeks old and 

had previously tested negative for MHV-68 by serology and PCR analysis. 

Mice were lightly anaesthetised using isoflurane and 4x105 pfu of either MHV-

68 M3.MR or MHV-68 M3.stop in 40 µl PBS administered intranasally. Mock-

infection of mice with 40 µl PBS was performed and mice maintained in 

parallel. At either 7 or 14 days post infection, mice were euthanased by 

cervical dislocation following anaesthesia induced by isoflurane.  

 

2.3.2 Infection of 129 wild type and IFNgR-/- mice with MHV-68 
Wild-type 129/Sv/Ev mice and IFN-γR-/- 129/Sv/Ev (Huang et al., 1993a) were 

purchased from B & K Universal (Hull, UK) and bred in-house at the Royal 

(Dick) School of Veterinary Studies, University of Edinburgh, where the 

infection studies were performed. Mice were sex matched and aged 8-10 
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weeks. Mice were lightly anaesthetised using halothane and 4x105 pfu MHV-

68 in 40 µl PBS administered intranasally. Mice were euthanased at 8 or 12 

days post infection by asphyxiation in CO2. Uninfected mice were used as 

negative controls. 

 

2.3.3 Infection of BALB/c mice with Sendai Virus and HRSV 
BALB/c mice were housed at the Medical Biology Centre, Queen’s University 

Belfast, where the infection studies were performed. Mice were all female and 

aged 8 – 10 weeks. General anaesthesia was induced by intra-peritoneal 

injection of xylazine and ketamine and 105 TCID50 of either HRSV Long, HRSV 

BT2a or rSeV/eGFP in 50 µl PBS administered intranasally. Mock-infection of 

mice with 50µl PBS was performed and mice maintained in parallel. Mice were 

euthanased at days 1, 3, 5 and 7 post infection by cervical dislocation, 

following induction of anaesthesia with xylazine and ketamine as before. 

 

2.3.4 Infection of BALB/c mice with Influenza A virus  
BALB/c mice were housed at the Animal Health Research Center, University 

of Georgia, Athens, USA, where the infection studies were performed. 

Uninfected mice and mice which had been mock-infected with allantoic fluid 

were used as negative controls. 

 

2.4 Tissue sampling, Fixation and Histology 
Tissues were removed from mice immediately after euthanasia. From each 

wood mouse, the cardiac lobe of the lung was dissected and snap frozen in 

liquid nitrogen and later stored at -80 °C. Other tissues were fixed in 4 % PFA 

for 24 – 48 hours prior to embedding, with the exception of mice infected at the 

University of Georgia, Athens which following fixation in 4 % PFA for 24 - 48 

hours were transferred into 70 % (v/v) ethanol and transported to the 

University of Liverpool where they were embedded.  Tissues were routinely 

embedded in paraffin wax by the Histology Laboratory, Veterinary Laboratory 

Services, School of Veterinary Science, University of Liverpool. 5 µm sections 

of paraffin-embedded tissue were prepared and mounted on glass slides; for 

routine histopathology sections were mounted on plain slides (ColourSlides, 

Solmedia Laboratory Supplies), for immunohistology and in situ hybridisation 
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adhesive-coated slides were used (PolysineTM, VWR International).  Slides 

were deparaffinated in xylene and rehydrated through graded alcohols, 

followed by staining with haematoxylin (VWR International) for five minutes, 

blueing in running tap water for six minutes and eosin (VWR International) 

staining for two minutes. Sections were then dehydrated in 95 % and absolute 

alcohol, followed by clearing in xylene and mounted in DPX (VWR 

International). 

 

2.5 Immunohistology 
2.5.1 Preparation of slides 
Immunohistology was performed by the Histology Laboratory, Veterinary 

Laboratory Services, School of Veterinary Science, University of Liverpool, on 

PFA-fixed and paraffin-embedded tissue sections using the peroxidase anti-

peroxidase (PAP) technique (Kipar et al., 2001). Sections were placed in 

xylene to dissolve the paraffin wax for 10 minutes and rehydrated in graded 

alcohols (two 3 minute washes in 100 % ethanol, then one 3 minute wash in 

96 % ethanol) followed by inactivation of endogenous peroxidase by 30 minute 

incubation in freshly prepared methanol with 0.5 % (v/v) H2O2 at room 

temperature (RT) (Perhydrol 30 %, Fisher Scientific) then washed twice in 

TBS. Slides were treated in 10mM citrate buffer (0.9 % [v/v] 0.1 M citric acid, 

1 % [v/v] 0.1M sodium acetate [pH 6.0]) for 25-30 minutes at 97 °C for 

improved antigen retrieval. Slides were then placed in coverplates in 

Sequenza racks (Thermo Shandon) and washed with Tris buffered saline 

(TBS, pH 7.4). Non-specific binding of the anti-serum was blocked with 50 % 

swine serum in TBS for 10 minutes at RT. Slides were incubated with primary 

antibody diluted in 20 % swine serum in TBS (dilutions and antibodies in Table 

2-1) for 15-18 hours at 4 °C, washed with TBS and incubated with swine anti-

rabbit IgG (1:100 in 20 % swine serum in TBS, Stratech Scientific Ltd., Vector 

Laboratories, Peterborough, UK) for 30 minutes at RT. Following further 

washing with TBS, 30 minutes incubation with PAP-rabbit at RT (1:100 in TBS, 

Stratech Scientific Ltd.) was performed. Slides were washed again in TBS and 

then removed from the coverplates. Ten minutes incubation with 3,3′-

diaminobenzidine tetrahydrochloride (DAB, Sigma-Aldrich Co. Ltd.) with 

0.01 % H2O2 in 0.1 M imidazole buffer (0.1 M imidazole, 0.1 M HCl [pH 7.1]) at 



67 

 

RT was followed by three washes with TBS and one with distilled water, before 

counterstaining with Papanicolaou’s haematoxylin, dehydration in ascending 

alcohols, clearing in xylene and coverslipping and mounting with DPX (VWR 

International). 

 

Antigen Primary antibody Reference/Source 

MHV-68 
1:2000 Rabbit anti-

MHV-68 
Prof. James Stewart 

CCSP 
1:200 Rabbit anti-

mouse CCSP 

Kindly provided by Dr. 

Barry Stripp 

(Ray et al., 1996) 

SPLUNC1 
1:200 Rabbit anti- 

mouse SPLUNC1  

Kindly provided by Dr. 

Colin Bingle 

AGR2 
1:100 Rabbit anti-

human AG2  

Novus Biologicals, 

Littelton, CO, USA 

HRSV 
1:50 Mouse anti- pan 

RSV (IgG1) 

Abcam,  

Cambridge, UK 

Table 2-1 Primary antibodies used in immunohistology. 
 

2.5.2 Image Analysis of Immunohistological slides 
Image analysis was performed at AstraZeneca, Alderley Park, Cheshire, with 

the kind assistance of Mrs. Alison Bigley of the Analytical Morphology Group. 

Analysis was performed on ACIS II (automated cellular imaging system), 

Chromavision, using ACIS Product version 2.4.8.0 (Clarient, Inc.) and Matrox® 

Imaging Library. 

 

Each slide was digitally scanned. The resulting digital image was 

systematically examined at high power (40x); all tracheal and bronchial 

sections and the bronchiole (if any) nearest the centre of each high power field 

was analysed. Each analysed airway was outlined to exclude alveolar tissue, 

so only respiratory epithelium was analysed. Within these outlined areas the 
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intensity of DAB staining (on a scale of 0 - 255) and the percentage area of 

DAB-stained, haematoxylin-stained and the total stained area was calculated 

using measurements obtained by the ACIS II software. 

 

Each airway was classified either as bronchiole, bronchus or trachea. The data 

from these areas were collated and analysed using Minitab v.15.1 (Minitab 

Ltd., Coventry, UK) and groups compared using two sample T-tests or ANOVA 

with Boneferroni post-tests. Data was judged to be significant when P ≤ 0.05, 

or highly significant when P ≤ 0.005. 

 

2.6 In situ hybridisation 
2.6.1 Synthesis of DIG-labelled RNA robe for ISH 
2.6.1.1 Restriction enzyme digest; preparation of DNA template 
To 5µg DNA extracted from a maxiprep of the appropriate plasmid (2.8.5.4), 

5 µl of the appropriate restriction enzyme (Table 2-2), 5 µl of buffer and RNAse 

free water to a final volume of 30 µl were added and incubated at 37 °C for 2 

hours. DNA was then extracted using Phenol:Chloroform:Isoamyl alcohol 

(25:24:1 [Sigma]), Chloroform:Isoamyl alcohol (24:1[Sigma]) and ethanol, 

resuspended in 30µl RNAse-free water and stored at -20 °C. 

 

Gene Vector 
Enzyme used to 

create sense 
probe; buffer 

Enzyme used to 
create anti-sense 

probe; buffer 
Source 

MHV-68 
tRNA; 

pEH1.4 
pBluescript EcoRI; EcoR1 

buffer (Biolabs) 
HindIII; Buffer B 

(Roche) 

Prof. 
Stacey 

Efstathiou

CCSP pBluescript XhoI; Buffer H 
(Roche) 

EcoRI; EcoRI 
buffer (Biolabs) Prof. 

James 
Stewart SPLUNC1 pBluescript EcoRV; Buffer B 

(Roche) 
SmaI; Buffer 4 

(Biolabs)* 

AG2 pCMV-
SPORT6 

EcoRI; EcoRI 
buffer (Biolabs) 

XhoI; EcoRI 
buffer (Biolabs) Dr. Colin 

Bingle 
AG3 pCMV-

SPORT6 
EcoRI; EcoRI 

buffer (Biolabs) 
XhoI; EcoRI 

buffer (Biolabs) 

Table 2-2 Restriction digest enzymes and buffers used to create DNA 
templates for RNA probes.  
*incubated at 25°C, as per manufacturer’s instructions.  
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2.6.1.2 In vitro RNA transcription 
A DIG RNA labelling kit (Roche) was used to create digoxigenin-labelled RNA 

probes. 1 µg of purified template DNA was placed in an RNase-free reaction 

vial and RNase-free water added to make a total volume of 13 µl. This vial was 

placed on ice and the following reagents added: 2 µl 10xNTP labelling mixture, 

2 µl 10x transcription buffer, 1 µl protector RNase inhibitor and 2 µl RNA 

polymerase. The specific RNA polymerase varied; all anti-sense probes were 

generated with T7 polymerase; sense probes were generated using T3 

polymerase, except in the case of AG2 and AG3, when SP6 polymerase was 

used. The vials were incubated for 2 hours at 37 °C. To each vial, 2 µl DNase I 

was added to remove the template DNA and incubated at 37 °C for 15 minutes 

and then 2 µl 0.2M EDTA (pH 8.0) was added to stop the reaction. To the 

DNase digested probes, 1 µl of 1 mg/ml yeast tRNA was added followed by 

ethanol precipitation and resuspension in 45 µl RNase-free water. 

 

2.6.1.3 Alkaline hydrolysis 
The optimum length of an RNA probe is between 300 and 500 bp; probes 

longer than 500 bp may lead to non specific binding during in situ hybridisation 

(Brown, 1998) and so longer probes were shortened using alkaline hydrolysis. 

To the probe, 5 µl 0.4 M NaHCO3 0.6M Na2CO3 (pH 10.2) was added and 

incubated at 60°C for a period of time calculated thus: 

T =       Li  –  Lf    
           K x Li x Lf 

where T = time/minutes, Li = initial length of fragment, Lf = final length of 

fragment and K = 0.11 kb/min. Following incubation, the reaction was 

neutralised with 5 µl of 3 M sodium acetate (pH 4.6, Sigma) followed by 

ethanol precipitation. The pellet was dried and resuspended in 50 µl RNase-

free water. 

 

2.6.1.4 Dot blot analysis 
Serial ten-fold dilutions of the DIG-labelled RNA probes in 10 µg/ml yeast 

tRNA were prepared and 5 µl volumes spotted onto an Hybond N+ membrane 

(Amersham Biosciences). Using a UV cross-linker the DNA was fixed onto the 

membrane. The membrane was washed in washing buffer (0.1 M maleic acid, 
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0.15 M NaCl [pH 7.5], 0.3 % (v/v) Tween 20) for two minutes, on a shaking 

platform at RT. It was then incubated in blocking solution (10x Blocking 

solution [Sigma] diluted in Maleic acid buffer [0.1 M maleic acid, 0.15 M NaCl, 

pH 7.5]) for 30 minutes, with shaking, as before. This was followed by 

incubation with antibody solution (anti-digoxigenin-AP FAb fragments [Roche] 

diluted 1:5000 in blocking solution) for 30 minutes, with shaking. The 

membrane was then washed twice with washing buffer for 15 minutes each 

time and then equilibrated in detection buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 

9.5) for 3 minutes. One 4-nitro blue tetrazolium chloride (NBT)/5-bromo-4-

chloro-3-indolyl-phosphate (BCIP) tablet (Roche) was dissolved in 10 ml 

double distilled water (final concentration 0.4 mg/ml NBT, 0.19 mg/ml BCIP, 

100 mM Tris buffer pH 9.5, 50 mM MgSO4) and used to incubate the 

membrane in the dark. The colour reaction occurred over the following 1 - 3 

hours at which point the reaction was stopped by rinsing the membrane in TE 

buffer for 5 minutes. 

 

2.6.2 In situ hybridisation (ISH) 
2.6.2.1 Preparation of slides for ISH 
RNA-ISH was performed on 4 % PFA fixed, paraffin wax embedded 5 µm 

tissue sections on Biobond (British Biocell International) coated slides. Slides 

were deparaffinised by washing in xylene twice for 5 minutes, in isopropanol 

twice for 5 minutes, followed by 5 minute washes in 96 % alcohol, 70 % 

alcohol and distilled DEPC-treated water. Slides were then transferred into 

coplin jars and washed with PBS for 5 minutes. Proteolysis was performed as 

follows; 20 minutes incubation with 0.2 M HCl, two 30 minute incubations in 

2xSSC with 5 mM EDTA at 50 °C and digestion in proteinase K (1 µg/ml 

[Roche] in 20 mM Tris [pH 8.0] with 2 mM CaCl2) for 15 minutes at 37°C. 

Slides were then washed in 0.2 % (v/v) glycine-PBS for 5 minutes and post-

fixed for 4 minutes in 4 % PFA, washed twice for 1 minute in PBS and 15 

minutes in PBS with 5 mM MgCl2. Acetylation was the performed using 0.25 % 

(v/v) in 0.1 M triethanolamine (pH 7.5, VWR International) for 10 minutes and 

washed in PBS, twice for 1 minutes and then once for 15 minutes. 
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2.6.2.2 Prehybridisation and Hybridisation 
Slides were prehybridised for 1 hour at 52 °C in pre-hybridisation buffer (0.1 

mg/ml single stranded salmon sperm DNA (Sigma), 0.25 mg/ml yeast tRNA 

(Sigma), 6 x SSC, 45 % (v/v) deionised formamide (Qbiogene), 5 x Denhardt’s 

solution (Qbiogene). Slides were removed from the coplin jar and placed in a 

humidity chamber and tissue sections covered with hybridization buffer (60 % 

[v/v] deionised formamide, 30 mM EDTA [pH 8.0], 30 mM piperazin-N,N’bis(2-

ethanesulfate-acid) [PIPES, pH 7.0, Sigma], 0.9 M NaCl, 6x Denhardt’s 

solution, 0.01 % [v/v] Triton X-100, 0.2 mg/ml yeast tRNA, 0.25 mg/ml single 

stranded salmon sperm DNA, 8000 U heparin [Sigma], 62.5 mg/ml 

dextransulfate solution) containing DIG-labelled probes at varying 

concentrations (1:100 to 1:500), depending on optimal staining results. Slides 

were covered with hydrophobic gel-bond film (Combrex Life Sciences) and 

sealed with rubber glue (Fix-O-Gum), then incubated at 37 °C for 15–18 hours. 

Following incubation, the gel-bond film was removed and slides returned to a 

coplin jar for post-hybridisation washing: two 15 minutes washes in 6x SSC 

with 45 % (v/v) formamide at 42 °C, two 5 minutes washes in 2x SSC at RT 

and two 15 minute washes in 0.2x SSC at 50°C.  

 

2.6.2.3 Detection of hybridised probes 
Prior to detection of the hybridised probes, slides were washed in buffer 1 (100 

mM Tris, 100 mM NaCl, pH 7.5) for 1 minute, then 30 minutes in buffer 1 with 

2 % (v/v) sterile neutral sheep serum (Sigma) and 0.3 % (v/v) Triton X-100, 

both at RT. Detection was performed with alkaline phosphatase-coupled anti-

digoxigenin antibody (anti-digoxigenin-AP FAb fragments, 1:200, Roche) in 

buffer 1 with 1 % (v/v) neutral sheep serum and 3 % (v/v) Triton X-100 in a 

humidity chamber at RT for 2 hours. Slides were washed twice for 15 minutes 

in buffer 1, then once for 2 minutes in buffer 3 (100 mM Tris, 100 mM NaCl, 50 

mM MgCl2, pH 9.5). Detection of hybridised probes used 0.1875mg/ml 4-nitro 

blue tetrazolium chloride (NBT; VWR), 0.1 mg/ml 5-bromo-4-chloro-3-indolyl-

phosphate (BCIP; Sigma) and 0.05 % (w/v) levamisole (Sigma) in buffer 3 at 

RT, in the dark, for between 2 and 16 hours. This reaction was stopped by a 

10 minute wash in buffer 4 (10 mM Tris, 1 mM EDTA), also in the dark. Slides 

were finally washed in distilled water and then counterstained 10 seconds with 
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Papanicolaou's haematoxylin before mounting with glycer-gel (Dako) and 

coverslipping. They were left to dry in the dark.  

 

2.7 Transmission Electron Microscopy 
Sections of lung and trachea (no larger than 2 x 2 x 2mm) were fixed in 4 % 

PFA with 2.5 % glutaraldehyde in 0.1 M sodium cacodylate solution (pH 7.4) 

and kept at 4 °C (all reagents are supplied by TAAB Laboratories). For 

processing, these tissue sections were washed in 0.1M sodium cacodylate 

buffer and secondarily fixed in 1 % osmium tetroxide(aq) for 90 minutes. Tissue 

sections were washed in distilled water and stained en bloc with 2 % uranyl 

acetate in 0.69 % maleic acid for 90 minutes, then dehydrated in ascending 

concentrations of ethanol followed by acetone, before infiltration in 30 %, 70 % 

and 100 % (w/v) resin in acetone for an hour each. Tissue sections were then 

orientated in embedding capsules and left overnight in fresh resin at 60 °C to 

polymerise. Semi-thin sections (0.5 µm) were cut using an ultramicrotome 

(Reichert-Jung Ultracut) with a diamond knife (Diatome Ltd.) and were stained 

with Toluidine blue for viewing with a light microscope and selection of areas 

for ultrastructural examination. Ultrathin (60 nm) sections were cut with a 

diamond knife, mounted on copper grids, stained with Reynold’s lead citrate 

and viewed (H600 Transmission electron microscope, Hitachi). TEM 

processing was performed by the Electron Microscopy Unit, Veterinary 

Laboratory Services, School of Veterinary Science, University of Liverpool. 
 
2.8 Molecular Biology 
2.8.1 Extraction of RNA from tissue 
From tissue which had been stored at -80 °C, 30 mg sections were placed in 

750 µl RLT buffer (Qiagen) which contained 1.43 mM β-mercaptoethanol and 

ground in a tissue homogeniser. A further 750 µl RLT buffer was added to the 

lysate and this was centrifuged at 20,000 g for 5 minutes to remove the cell 

debris. The supernatant was added to a further 1.5 ml buffer RLT and mixed 

with 3 ml 70 % (v/v) ethanol. This mixture was then filtered through an RNeasy 

Mini Spin column (Qiagen) in 700 µl loads by centrifugation at 20,000 g for 30 

seconds. Following this, the RNA bound within the Mini Spin column was 

washed with 700 µl RW1 buffer (centrifuged for 1 minute at 20,000 g), 500 µl 
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RPE buffer (centrifuged for 15-30 seconds at 20,000 g), a further 500 µl RPE 

buffer (centrifuged for 2 minutes at 20,000 g) and finally subjected to a dry spin 

for 1 minute to ensure all buffers and ethanol were removed. The lysate within 

the column was then incubated with 50 µl of RNAse-free water for 20 - 25 

minutes at RT prior to elution by centrifugation at 20,000 g for one minute. The 

RNA concentration was determined by UV spectroscopy by measuring the 

absorbency at 260 and 280 nm. To ensure removal of any remaining DNA, 

samples were treated with DNAse-1 (Invitrogen) as follows: 30 µg RNA was 

incubated with 10 µl 10x DNAse-1 buffer and 10 µl DNAse-1 in a total volume 

of 100 µl at RT for 15 minutes; 10 µl 25 mM EDTA was added to stop DNAse 

reactivity, followed by heat inactivation at 65 °C for 10 minutes. To this, 350 µl 

of RLT buffer and 250 µl 100 % ethanol were added, mixed well and 

transferred to an RNAeasy Mini Spin column and centrifuged at 20,000 g for 

15 seconds. The column and RNA were washed twice with 500 µl RPE buffer 

and centrifuged at 20,000 g for 2 minutes, followed by a dry centrifugation step 

at 20,000 g for 1 minute to ensure removal of all buffers. 50 µl of RNAse-free 

water was then placed into the column and incubated at RT for 5 - 25 minutes, 

followed by elution at 20,000 g for 1 minute. RNA samples were stored at 

-80 °C. 

 
2.8.2 Synthesis of cDNA 
In a 0.2 ml RNase-free centrifuge tube, 2 µg of RNA was placed with 1 µl 

Oligo(dT)15 primer (500 µg/ml), and 1 µl dNTPs (10 mM,) and RNase-free 

water to make a total volume of 13 µl. This was incubated at 65 °C for 5 

minutes and then on ice for 1 minute. Then the following was added to the 

mixture: 4 µl 5x First strand buffer (250 mM Tris-HCl [pH 8.3], 375 mM KCL, 

15 mM MgCl2, Invitrogen), 1 µl DTT (0.1 M, Invitrogen), 1 µl RNase OUT (40 

U, Invitrogen) and 1 µl SuperScript III reverse transcriptase (200 U, Invitrogen). 

This was incubated at 50 °C for 30 minutes, followed by inactivation of the 

reverse transcriptase by incubation at 75 °C for 15 minutes. Finally, 2 U 

RNase H (Invitrogen) was added and incubated at 37 °C for 20 minutes to 

remove any RNA complimentary to the cDNA. The cDNA was stored at 

-20 °C. The concentration of DNA was measured using UV spectrophotometry. 
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2.8.3 General PCR 
Amplification of DNA was performed using cDNA generated from RNA 

extracted from wood mouse lung, using the primers listed in Table 2-3. 

Reactions were carried out in 0.2 ml thin walled tubes, with a total reaction 

mixture of 40 µl, comprising 1 µg cDNA, 10x PCR buffer (Invitrogen, final 

comcentration 20m M Tris-HCl [pH 8.4], 50 mM KCl), 1.5 mM MgCl2, 0.2 mM 

each of dATP, dTTP, dCTP and dGTP (10 mM dNTP mix, Invitrogen), 40 ng of 

each of forward and reverse primers, 2 U DNA polymerase (Platinum Taq 

DNA polymerase, Invitrogen). Reaction mixtures were prepared in a Captair® 

Biohood (Erlab) in which elimination of contaminating DNA by exposure to 

ultraviolet light was performed prior to use. PCR reactions were carried out in 

Thermo Hybaid MBS thermo-cycler (Thermo Electron Corporation). The 

thermal cycling was as follows: 15 minutes at 95 °C, followed by 40 cycles of 

30 seconds denaturation at 95 °C, 30 seconds annealing at 55 or 56 °C and 

45 seconds extension at 72 °C, and final strand extension at 72 °C for 7 

minutes. 

 

Primer 

name 
Gene Primer Sequence 5’→3’ 

Anneal-

ing temp 

Product 

length 

CCSP F1 
CCSP 

CCTCTGGCCTCTACCATGAA 
55°C 351 bp 

CCSP R1 GACAGGGGCCTTTAGCAGTA 

SP1 F1 
SPLUNC1 

ACTCAGACACCAAGAGAGAT 
56°C 

1011 

bp SP1 R5 CGTGAGGAGAAGGAAGACAT 

Table 2-3 Primers used in PCR. 
 

PCR products were electrophoresed through 2 % (w/v) agarose gels 

(Invitrogen; with 0.1 µg/ml Ethidium Bromide [Sigma] in TAE buffer [40 mM 

Tris-base, 20 mM glacial acetic acid, 1 mM EDTA]), having been mixed 5:1 

with loading buffer (50 % [v/v] glycerol, 100 mM Tris-HCl [pH 7.4], 10 mM 

EDTA, 0.02 % [w/v] orange G). Gels were electrophoresed in a horizontal 

elecrophoresis tank (BioRad), filled with TAE buffer, at 100 V. Gels were 

examined under ultraviolet light (Utraviolet Transilluminator, BioRad), digital 
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images taken and size of bands from PCR products compared with 1 kb Plus 

DNA ladder (Invitrogen). 

 

2.8.4 Quantitative fluorescence real-time PCR (qPCR) 
Gene-specific DNA was quantified using 200 ng total cDNA and an Opticon 

Monitor 2 real time PCR machine (MJ Research). Total reaction volume was 

20 µl, including 200 ng cDNA, 10x Buffer (Invitrogen, final concentration 20 

mM Tris-Hcl, 50 mM KCl), 2.5 mM MgCl2 (Invitrogen), Sybr green (Lamb 

Biosciences), 0.25 mM dATP, dGTP, dCTP, dTTP (Amersham), 0.15 % (w/v) 

Triton X-100 (VWR International) 0.4 µg BSA (Promega) and 1 U of DNA 

polymerase (Platinum Taq DNA polymerase, Invitrogen) and 0.05 µM forward 

and reverse primers (Table 2-4).  

 

The cycle parameters were as follows: 94 °C for 10 minutes (hot start), 

followed by 35 cycles of 10 seconds at 94 °C, 20 seconds at 60 °C, 15 

seconds at 72 °C, 1 second at 75 °C to melt off primer dimers and a plate 

reading. The melting curve was created to analyse the specificity of the 

product by measuring fluorescence at 0.2 °C increments from 65 - 95 °C and 

the efficiency of the reaction calculated. The quantity of the gene of interest 

was standardised by comparison with ribosomal protein L8 (rpl8).  

 

Standard curves were constructed by serial dilutions of plasmids containing 

the genes of interest. PCR products of these genes were cloned into pCR2.1 

vector and DNA extracted using QIAGEN Maxi prep kits as described in 

2.8.5.4. The DNA concentration was measured by UV spectrophotometry and 

converted to copy number using the following formula: 

 
  [DNA/g] x [6.022x1023]       = copy number/µl 
[vector + insert/bp] x 660 

 

where 660 = Mr of 2 nucleotides and 6.022x1023 is Avogadro’s constant. Log 

graphs of the standards were used to set the threshold of fluorescence. 

Results were analysed using the Opticon Monitor software v.3.1.32 (MJ 

Geneworks Inc.) and statistical analysis (ANOVA) on Minitab. 
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Primer Gene Sequence 5’→3’ 
Product 

length 

RPL8-f RPL8 CAGTGAATATCGGCAATGTTTTG 
163 bp 

RPL8-r RPL8 TTCACTCGAGTCTTCTTGGTCTC 

gp150-f gp150 CTACTTCTTCATCGGACGCT 
159 bp 

gp150-r gp150 CGGGATCTGTCGGACTGT 

CC10-f CCSP GATCGCCATCACAATCACTGTGG 
156 bp 

CC10-r CCSP GTCTGAGCCAGGGTTGAAAGG 

SPLUNC1-f SPLUNC1 CAGCCTGAAAATCAGCTTGC 
158 bp 

SPLUNC1-r SPLUNC1 TGCACCAGGGTGACATCCAAAC 

Table 2-4 Primers used for qPCR. 
 
2.8.5 Molecular Cloning 
2.8.5.1 Cloning of PCR products 
PCR products were inserted into plasmids (pCR 2.1-TOPO [Invitrogen]) as 

follows: 4 µl of fresh PCR product was incubated for 5 minutes at RT with 1 µl 

salt solution (1.2 M NaCl, 0.06 M MgCl2) and 1 µl vector (10 ng/µl linearised 

plasmid DNA, 50 % glycerol, 50 mM Tris-HCl [pH 7.4], 1 mM EDTA, 1 mM 

DTT, 0.1 % Triton X-100, 100 µg/ml BSA, phenol red). The reaction was then 

placed on ice prior to transformation. 

 

2.8.5.2 Transformation of plasmids 
The product of the cloning reaction, or 5 µl of DNA from a previous plasmid 

preparation, was added to competent Escherichia coli bacteria (Top 10 One 

Shot cells, Invitrogen) which were gently mixed, then incubated on ice for 30 

minutes. The cells and plasmids were then heat-shocked at 42 °C for 60 

seconds and incubated on ice for a further 5 minutes. 800 µl of Luria-Bertani 

medium (LB; 1 % [w/v] tryptone, 0.5 % [w/v] yeast extract, 1 % [w/v] NaCl) with 

50 µl/ml ampicillin was added to the cells and incubated at 37 °C in an orbital 

shaker at 200 rpm, for 45 minutes. A 100 µl sample was plated onto LB agar. 

The remaining culture was centrifuged (2000 g, 5 minutes) and the pellet 
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resuspended in 100 µl LB, plated on LB agar and both plates incubated 

overnight at 37 °C. Individual colonies grown on the plate were added to 10 ml 

LB medium with 50 µg/ml ampicillin and incubated at 37 °C in an orbital shaker 

at 200 rpm overnight. From this, glycerol stocks were made (250 µl of LB 

medium in 750 µl 60 % (v/v) glycerol, vortexed and stored at -80 °C). From the 

remainder of the bacterial culture, the plasmid DNA was purified (minipreps). 

 

2.8.5.3 Small scale purification of plasmid DNA (miniprep) 
Cultures containing transformed bacteria in LB medium were pelleted by 

centrifugation at 4,000 g for 10 minutes. The supernatant was discarded and 

the pellet resuspended in 200 µl Solution I (50 mM glucose, 25 mM Tris-Cl [pH 

8.0], 10 mM EDTA [pH 8.0], 1 mg/ml lysozyme [Sigma]) and incubated at RT 

for 5 minutes. To this 400 µl Solution II (denaturation solution; 0.2 M NaOH, 

1 % [w/v] SDS) was added and incubated on ice for 5 minutes. Following this, 

300 µl Solution III (neutralisation solution; 3 M potassium acetate, 11 % [v/v] 

glacial acetic acid [pH5.5]) was added and further incubated on ice for 5 

minutes. The cells were then centrifuged at 20,000 g for 7 minutes and the 

supernatant collected and transferred to a new centrifuge tube. To the 

supernatant, 500 µl of isopropyl alcohol (Sigma) was added to precipitate the 

DNA and incubated on ice for 15 minutes. The precipitated DNA was pelleted 

by centrifugation at 20,000 g for 5 minutes and the supernatant removed and 

the pellet allowed to air dry, before resuspension in 200 µl TE (pH 8.0). To this 

100 µl 7.5 M ammonium acetate (Sigma) was added and mixed well, followed 

by incubation on ice for 15 minutes. Debris was removed by centrifugation at 

20,000 g for 5 minutes. The supernatant was removed and placed in a new 

centrifuge tube; to this 600µl 100 % ethanol was added and incubated at -

20 °C for one hour. To pellet the DNA centrifugation for 10 minutes at 20,000 g 

was performed, the supernatant removed and the pellet air-dried. The DNA 

was then resuspended in 100 µl TE (pH 8.0) and stored at 4 °C. 

 

2.8.5.4 Large scale purification of plasmid DNA (maxiprep) 
To purify larger quantities of DNA, the QIAGEN Plasmid Maxi Kit (Qiagen) was 

used. Either a single colony grown on a selective LB agar plate or ~5 µl 

partially thawed glycerol stock was placed in 5 ml LB medium with 50 µg/ml 
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ampicillin and incubated with rotation (200 rpm) at 37 °C for 4 – 8 hours. This 

culture was then added to 400 ml LB medium with 50 µg/ml ampicillin in a 2 

litre flask and incubated at 37 °C in an orbital shaker at 200 rpm overnight. The 

bacteria were then centrifuged at 6000 g for 15 minutes at 4 °C and the pellet 

resuspended in 10 ml buffer P1 (50 mM Tris-Cl [pH 8.0], 10 mM EDTA, 

100µg/ml RNase A). The bacteria were then lysed by addition of 10 ml buffer 

P2 (200 mM NaOH, 1 % [w/v] SDS) which was mixed well by inverting the 

tube, then incubated at RT for 5 minutes. To this, 10 ml buffer P3 

(neutralisation buffer; 3 M potassium acetate [pH 5.5]) was added and mixed 

thoroughly before incubation on ice for 20 minutes. The solution was 

centrifuged to remove debris at 20,000 g for 30 minutes at 4 °C and the 

supernatant containing the DNA promptly removed, which was centrifuged 

again at 20,000 g for 15 minutes at 4 °C to ensure all particles were removed. 

To a QIAGEN-tip 500 (equilibrated using 10 ml buffer QBT [750 mM NaCl, 

50 mM MOPS [pH 7.0], 15 % isopropanol [v/v], 0.15 % triton X-100 [v/v]]) the 

supernatant was added and allowed to pass through the tip by gravity flow. 

The DNA was then washed twice with 30 ml buffer QC (1 M NaCl, 50 mM 

MOPS [pH 7.0], 15 % isopropanol [v/v]) prior to elution of the DNA in 15 ml 

buffer QF (1.25 M NaCl, 50 mM Tris-Cl [pH 8.5], 15 % isopropanol [v/v]). To 

the eluate 10.5 ml isopropanol (Sigma) was added and the mixture centrifuged 

at 15,000 g for 30 minutes at 4 °C and the supernatant removed. The resulting 

pellet was washed with 5 ml 70 % ethanol and centrifuged again at 15,000 g 

for 10 minutes. The supernatant was removed, the pellet air dried and the 

DNA dissolved in 500 µl TE buffer (pH 8.0). The yield of DNA was calculated 

using UV spectrophotometry. 

 

2.8.5.5 Transfection 
293T cells were seeded in either 6 well plates at a density of 2.5x105 cells per 

well, or T25 flasks at 5x105 cells per flask, one day prior to transfection; cells 

should be 50 – 80 % confluent at the time of transfection. For T25 flasks, the 

following quantities of DNA and solutions were doubled. On the day of 

transfection, the cell culture medium (DMEM, with 10 % FCS, 2 mM 

L-glutamine and 100 i.u./ml penicillin/streptomycin) was replaced 1 – 4 hours 

prior to transfection. DNA consisted of plasmids with inserted genes of interest, 
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or GFP as a positive control. For each well to be transfected, 250 µl 0.25 M 

CaCl2 was added to 12.5 µg DNA, which was then added drop-wise, with 

gentle agitation, to 250 µl 2xHepes-buffered saline (HEBS; 140 mM NaCl, 1.5 

mM Na2HPO4·2H2O, 50 mM HEPES [4-(2-Hydroxyethyl)-piperazine-1-

ethanesulfonic acid, N-(2-Hydroxyethyl)-piperazine-N′-(2-ethanesulfonic acid)]) 

and incubated at RT for 20 minutes. This solution was then added slowly to 

the cell culture medium in the plates, with gentle agitation to mix the solutions. 

Cells were incubated at 37 °C, with 5 % CO2 for 18 hours. The calcium 

phosphate containing medium was then removed, cells washed twice with pre-

warmed sterile PBS and 2 ml cell culture medium added to each well. Cells 

were again incubated at 37 °C, with 5 % CO2 until 48 hours after the initial 

transfection. At this point, cells which had been transfected with a GFP 

containing plasmid were examined under fluorescent light for evidence of 

transfection efficiency. Transfected cells were infected with MHV-68 at this 

point (2.4.4); for analysis of proteins (2.8.6), cells were washed in pre-warmed 

sterile PBS and detached with versene/trypsin as before (2.1) and seeded 1:4 

in new flasks and cells and supernatant were harvested 24 hours later. 

 

2.8.6 Analysis of proteins 
2.8.6.1 Collection of cells and supernatant 
Supernatant from transfected cells was collected and centrifuged at 2500 g, 

4°C for 5 minutes. The supernatant was then aliquoted and stored at -20 °C. 

The cells from flasks were scraped off the plastic, washed with sterile PBS and 

combined with the cell pellet from the previous centrifugation and centrifuged a 

second time at 2500rpm, 4 °C for 5 minutes. The supernatant was discarded 

and the cell pellet resuspended in 150 µl PBS. To this, 50 µl sample buffer 

(1 M Tris [pH 6.8], 4 % [w/v] SDS [Sigma], 20 % [v/v] glycerol, 4 % [v/v] 

βmercaptoethanol, 0.04 % [w/v] bromophenol blue) was added and samples 

were boiled for 10 minutes, then stored at -20 °C. 

 

2.8.6.2 SDS-PAGE 
Samples were mixed with equal volumes of sample buffer with 10 % (v/v) 1 M 

dithiothreitol (DTT, Sigma) and incubated at 95 °C for 10 minutes, followed by 

centrifugation for 30 seconds to pellet any insoluble precipitate. Samples were 
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electrophoresed at 200 V (20 mA per gel) through 10 % acrylamide (Bio-Rad) 

gels (10 % [w/v] 40 % acrylamide, 375 mM Tris [pH 8.8], 0.1 % [w/v] SDS, 

0.06 % [w/v] ammonium persulphate, 0.08 % [v/v] TEMED [Sigma]), with 10 µl 

samples loaded onto wells within a 5 % acrylamide  stacking gel (5 % [w/v] 

40 % acrylamide, 125 mM Tris [pH 6.8], 0.1 % [w/v] SDS, 0.8 % [w/v] 

ammonium persulphate, 0.2 % [v/v] TEMED) in a Mini-PROTEAN®3 

Electroporesis system (Bio-Rad) filled with running buffer (2.5 mM Tris 

[pH 8.3], 250 mM Glycine, 0.1 % [w/v] SDS). A standard marker for Western 

Blots (Bio-Rad Precision Plus C) was used to indicate the size of proteins. 

 

2.8.6.3 Western Blotting 
Proteins were transferred from the SDS-PAGE gel onto a PVDF membrane 

(Immobilon-P, Millipore), using a Bio-Rad Mini Trans Blot cell, at 100 v 

(350 mA) for one hour, in transfer buffer (running buffer with 20 % [v/v] 

ethanol).  Immunodetection of proteins was performed as follows; the 

membrane was rinsed in PBS for 2 minutes, then incubated in blocking buffer 

(TBS with 0.1 % [v/v] Tween-20 (VWR International), 1 % [v/v] goat serum, 5 

% [w/v] skimmed milk powder), with agitation for one hour at RT, then washed 

in washing buffer (TBS with 0.1 % [v/v] Tween-20) twice for 5 minutes each. 

Antibody detection was performed either using an HRP-conjugated anti-V5 

antibody (anti-V5-HRP [Invitrogen]) for transfected proteins expressed in a 

vector with a V5 epitope (1:2500 in blocking buffer) for 1 hour at RT, with 

agitation, or rabbit anti-actin antibody (Sigma, 1:300 in blocking buffer) for 2 

hours at RT with agitation followed by a secondary HRP conjugated antibody 

(goat anti-rabbit Ig [Harlan Sera Labs] 1:10,000 in blocking buffer) for 1 hour at 

RT, with agitation, for detection of actin as a positive control. Detection of the 

standard marker was performed using StrepTactin-HRP (Bio-Rad, 1:5000). 

Membranes were rinsed in washing buffer, twice, for 5 minutes at RT. 

 

Proteins were visualised using Detection Amersham ECL Western Blotting 

System (GE Life Sciences) which elicits a peroxidase-catalysed oxidation of 

luminol and the light detected by exposure of radiographic film (Hyperfilm ECL 

Western, GE Life Sciences), as per the manufacturer’s protocol. 
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2.8.7 DNA Sequencing 
PCR products generated with CCSP and SPLUNC1 specific primers (Table 

2-3), were cloned into pCR2.1 plasmids, transformed and the resulting DNA 

extracted, as above. Sequencing was performed by Eurofins MWG 

(Ebersberg, Germany) and sequences compared using BLAST (Basic Local 

Alignment Search Tool) programmes, available at 

http://blast.ncbi.nlm.nih.gov/Blast.cgi (Altschul et al., 1990). Comparison of 

nucleotide sequences between species was performed using ClustalW2, 

available at http://www.ebi.ac.uk/Tools/clustalw2/index.html (Larkin et al., 

2007) and displayed using the BoxShade programme, available at 

http://www.ch.embnet.org/software/BOX_form.html. cDNA sequences were 

translated into amino acid sequences using the ExPASy translate tool, 

available from the Swiss Institute of Bioinformatics website, available at 

http://www.expasy.ch/tools/dna.html (Gasteiger et al., 2003). Sequences were 

then compared and displayed using BLAST and BoxShade as before. 
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Chapter 3 Results 
 

 
3.1 MHV-68 infection and its effect on the expression of CCSP and 
SPLUNC1 
 

3.1.1 MHV-68 infection in Apodemus sylvaticus 
 
3.1.2 MHV-68 infection in 129 wild type and IFNγR-/- mice 
 
3.1.3 MHV-68 infection in vitro 

 
3.2 Paramyxovirus infection and its effect on the expression of 
CCSP and SPLUNC1 
 
3.3 Influenza A virus infection and its effect on the expression of 
CCSP and SPLUNC1 
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3.1 MHV-68 infection and its effect on the expression of CCSP and 
SPLUNC1 
3.1.1 MHV-68 infection in Apodemus sylvaticus 
3.1.1.1 Quantification of CCSP and SPLUNC1 expression 
RNA was extracted from the cardiac lung lobe of wood mice infected with 

MHV-68 M3.MR (M3.MR), MHV-68 M3.stop (M3.stop) or mock-infected 

(mock) with PBS, and cDNA was generated by in vitro reverse transcription. 

cDNA (200 ng) was used in each reaction with gene-specific primers to 

quantify the copy numbers of CCSP and SPLUNC1. These copy numbers 

were compared to known copy numbers of serial ten-fold dilutions of a plasmid 

(pCR2.1) containing the gene of interest, which was used to generate a 

standard curve. The values obtained were normalised against the copy 

number of the cellular ribosomal gene RPL8, which was similarly quantified in 

comparison to a standard curve of ten-fold dilutions of a plasmid containing 

RPL8. Melting point analysis was performed to ensure specific amplification of 

the product.  

 

qPCR data for CCSP showed that mRNA copy numbers (measured using 

cDNA as a surrogate) at day 7 pi were similar in mock-infected and both 

infected groups, but M3.stop and M3.MR infected woodmice at day 14 showed 

higher CCSP expression, compared to mock-infected controls (Figure 3-1). 

However, these differences were not statistically significant (comparison of 

M3.MR and mock, P = 1.0; M3.stop and mock, P = 0.0507 [ANOVA]). 

Moreover, the M3.stop infected mice showed a higher expression of CCSP at 

day 14 pi than the M3.MR infected mice, but again, this increase was not 

significant (P = 0.1231 [ANOVA]). This was in contrast to that seen in previous 

experiments which showed significantly higher expression of CCSP at day 14 

in M3.MR infected wood mice compared to M3.stop infected wood mice 

(D. Hughes, unpublished observations). There was an increase in gene 

expression at day 14 pi, compared to day 7 pi, in both the M3.MR and M3.stop 

infected wood mice, However, this was also not a significant change (M3.MR 

day 7 to day 14 pi, P = 0.054; M3.stop day 7 to day 14 pi, P = 0.056 [two 

sample T-test]). 
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SPLUNC1 expression as quantified by qPCR revealed no difference in the 

mock, M3.MR and M3.stop infected mice at day 7 pi (Figure 3-2). At day 14 pi 

mock and M3.MR infected wood mice exhibited similar copy numbers of 

mRNA, but an increase in copy number in M3.stop infected wood mice 

compared to M3.MR and mock-infected wood mice, although this increase 

was not significant (mock and M3.stop P = 0.4542, M3.MR and M3.stop P = 

0.470 [ANOVA]). 
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Figure 3-1 Quantification of mRNA copies of CCSP from wood mice either 
infected with M3.MR, M3.stop or mock-infected, at days 7 and 14 pi.  
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Figure 3-2 Quantification of mRNA copies of SPLUNC1 in wood mice either 
infected with M3.MR, M3.stop or mock-infected, at days 7 and 14 pi.  
 
In both Figures 3-1 and 3-2, 200 ng cDNA was used per reaction and the 
copy number was normalised against RPL8. Data are the mean of 
experiments from three mice per group; bars represent the standard error of 
the mean. Two sample T-tests showed no significant differences between the 
groups. 



86 

 

3.1.1.2 The inflammatory response in MHV-68 infected Apodemus 

sylvaticus 

3.1.1.2.1 MHV-68 M3.MR infection 
At 7 days pi, M3.MR infection in wood mice elicited a moderate to occasionally 

severe, multifocal to coalescing, predominantly peribronchiolar inflammatory 

infiltration, composed of lymphocytes and macrophages, with fewer 

neutrophils (Figure 3-3a). Within these inflammatory foci there were scattered 

necrotic or apoptotic cells and debris. The bronchiolar epithelium was 

unaltered and no changes were seen in the trachea or bronchi. 

 

At day 14 pi, infiltration by inflammatory cells was mild to moderate, 

predominantly either perivascular or peribronchiolar and macrophage-

dominated, with fewer lymphocytes than were seen at day 7 (Figure 3-3b). 

Additionally, mild multifocal granulomatous infiltration was seen within the 

parenchyma. No alteration was present within the bronchiolar epithelium, 

bronchi or trachea. 

 

3.1.1.2.2 MHV-68 M3.stop infection 
Multifocal, mild to moderate mixed (macrophages, with lesser neutrophils and 

lymphocytes) peribronchiolar and perivascular infiltration was present at day 

7 pi (Figure 3-3c). No alterations in the bronchiolar epithelium, the bronchi or 

trachea were observed. 

 

At day 14 pi, mild to moderate, multifocal (perivascular and peribronchiolar) 

inflammatory infiltration was observed, consisting of macrophages and 

lymphocytes (Figure 3-3d). These infiltrates were less macrophage-dominated 

than those seen in M3.MR infected wood mice at the comparable timepoint. 
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Figure 3-3 Histology of lungs 
from M3.MR and M3.stop 
infected wood mice. 
 
(a) M3.MR infected wood 
mouse at day 7 pi, showing 
macrophage and lymphocyte 
dominated peribronchiolar 
infiltration (20x, HE). 
(b) M3.MR infected wood 
mouse at day 14 pi showing 
macrophage dominated peri-
vascular and peribronchiolar 
infiltration (20x, HE). 
(c) M3.stop infected wood 
mouse lung at day 7 pi, with 
peribronchiolar infiltrate 
comprising macrophages 
with lesser lymphocytes and 
neutrophils (20x, HE). 
(d) M3.stop infected wood 
mouse at day 14 pi, with 
macrophages and 
lymphocytes in the peri-
bronchiolar infiltration (20x, 
HE). B = bronchiole, V = 
vessel.

B 

B 

B 

B 

V 

V 

V 
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3.1.1.3 Immunohistology and in situ hybridisation 
3.1.1.3.1 CCSP expression in Apodemus sylvaticus 
qPCR data had shown that CCSP is constitutively expressed in wood mouse 

lung, but there appeared to be marked variation between samples. CCSP is 

expressed in Clara cells, which vary in number at different levels of the 

respiratory tract. In situ hybridisation using CCSP riboprobes and 

immunohistology with CCSP-specific antibodies was used to investigate where 

CCSP genes and proteins were expressed. 

 
3.1.1.3.1.1 In situ hybridisation for CCSP  
In mock-infected wood mice, used to assess constitutive expression, moderate 

transcription was seen, represented by a moderately intense signal within 

infrequent epithelial cells in the trachea (Figure 3-4a), and the number of 

positive epithelial cells increased distally in the respiratory tract; cells were 

frequently positive in the bronchi and proximal bronchioles (Figure 3-4b) and in 

the distal bronchioles the majority of epithelial cells were weakly positive, with 

scattered cells exhibiting stronger signal (Figure 3-4c). Alveolar cells were 

negative (Figure 3-4d). 

 

Following infection of wood mice with either M3.MR or M3.stop, the expression 

of CCSP (detected by RNA-ISH) altered, most notably in the bronchioles. At 7 

dpi, staining was highly variable. In some bronchioles numerous cells exhibited 

strong staining (Figure 3-5a), whereas some bronchioles exhibited reduced 

staining with many negative cells and scattered strongly positive cells (Figure 

3-5b). These bronchioles often exhibited prominent peribronchiolar 

inflammation. At day 14 pi, the signal for CCSP was more frequent in epithelial 

cells within the bronchioles of both M3.MR (Figure 3-5c) and M3.stop infected 

wood mice (Figure 3-5d). The trachea and bronchi showed a similar staining 

pattern to the mock-infected wood mice; the alveoli were consistently negative. 
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Figure 3-5 ISH for CCSP in 
the bronchioles of M3.MR 
and M3.stop infected wood 
mice. 
 
(a) M3.MR infection at day 
7 pi showing a strong signal 
for CCSP in some epithelial 
cells (arrows; 20x). 
(b) M3.stop infection at day 
7 pi showing low numbers 
of cells with a signal for 
CCSP (arrows; 20x). 
(c) Bronchiolar epithelial 
cells positive for CCSP 
were more numerous in 
M3.MR infection at day 14 
dpi (20x). (d) M3.stop 
infected wood mice at day 
14 pi also exhibited 
numerous CCSP positive 
cells (20x).  
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3.1.1.3.1.2 Immunohistology for CCSP  
Immunohistology for CCSP antigen in mock-infected wood mice was used to 

establish the pattern and intensity of constitutive expression of the protein. 

Immunohistology for this antigen is also used in the literature to identify Clara 

cells (Broeckaert et al., 2000). In the trachea of these wood mice, positive 

staining for CCSP was present distally, approximately from the level of the 

mediastinal lymph node, from where cells at regular intervals exhibited 

specific, granular intra-cytoplasmic staining of variable intensity (Figure 3-6a). 

The intra-cytoplasmic staining was similar in pattern in the bronchi, but the 

number of positive cells was increased (Figure 3-6b). Within the bronchioles, 

the number of Clara cells increased dramatically and the majority of the 

epithelial cells were positive for CCSP (Figure 3-6c). Alveolar cells were 

negative (Figure 3-6d). 

 

Quantitative analysis of the immunohistological staining for CCSP was 

performed. The intensity of expression of CCSP (on a scale of 0 – 255), an 

indication of the quantity of protein within cells, and also in the percentage 

area of CCSP positive tissue within the respiratory epithelium, indicating the 

number of cells which are expressing the protein, was determined by analysis 

of immunohistological staining using image analysis software. In the mock-

infected wood mice, this confirmed that Clara cells were most numerous in the 

bronchioles, as this was the site of the largest percentage area of CCSP 

staining (Figure 3-7b). There was a significantly greater percentage of positive 

cells in the bronchi (12.5 %) than the trachea (3.1 %; P = 0.003, two sample T-

test) and a greater percentage of positive cells in the bronchioles (48.8 %) than 

the bronchi (P = 0.001, two sample T-test). In addition, the greatest intensity of 

staining also occurred in the bronchioles (Figure 3-7a), which was significantly 

greater than the staining in the bronchi (P= 0.001, two sample T-test).  

 
The quantitative analysis allowed comparison of the percentage area stained 

and intensity of staining between the mock-infected and the infected wood 

mice. Changes were most marked and consistent in the bronchioles, although 

changes in the trachea were also observed. At day 7 pi there were significant 

decreases in both intensity of staining (P = 0.034, two sample T-test) and 
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percentage area stained (P = 0.003; two sample T-test) in response to 

infection with M3.MR, within the bronchioles. In the trachea there was a similar 

significant decrease in response to infection with M3.stop (intensity P = 0.001, 

percentage area P = 0.036; two sample T-test). Changes following infection 

with M3.MR in the trachea or either virus in the bronchi were not significant 

(Figure 3-8a,b). This indicates that in the first 7 days following infection with 

MHV-68, both the quantity of CCSP and the number of CCSP positive cells in 

the bronchiolar epithelium decreases. Moreover, there were differences 

between the two groups of infected wood mice; the M3.stop wood mice 

exhibited a significant decrease in the intensity of staining in bronchioles (P = 

0.001, two sample T-test) and trachea (P = 0.011, two sample T-test), when 

compared to the M3.MR infected wood mice (Figure 3-8a), although the 

percentage area of tissue stained remained similar (Figure 3-8b). This 

suggests that the lack of M3 protein exacerbated this decrease in the quantity 

of CCSP in Clara cells at day 7 pi. 

 
At day 14 pi there were significant differences seen in the bronchioles only, 

where an increase in both the intensity (P = 0.001, two sample T-test) and the 

percentage area stained (P = 0.001, two sample T-test) were seen between 

M3.MR infected and mock-infected wood mice (Figure 3-10a,b). Significant 

increases in both intensity of staining (P = 0.002, two sample T-test) and 

percentage area stained (P = 0.001, two sample T-test) were also present 

between the M3.stop infected and mock-infected wood mice (Figure 3-10a,b). 

At this timepoint, the consequence of infection appeared to be in contrast to 

that seen at day 7; both of the infected groups showed a significant increase in 

intensity of staining and percentage area stained in the bronchioles, 

suggesting that the quantity of protein and the number of cells containing 

protein had increased. Consistent with the effect present at day 7, was the 

observation that within the bronchioles, M3.stop infected wood mice showed 

significantly lower intensity (P = 0.039, two sample T-test) and percentage 

area stained (P = 0.001, two sample T-test), than the M3.MR mice, suggesting 

that despite the overall increase in CCSP expression at this timepoint, the 

absence of M3 reduced the production of CCSP (Figure 3-10a,b). 



93 

 

  

   

c 

b a 

d 

Figure 3-6 Immunohistology 
for CCSP in mock-infected 
wood mice. 
 
(a) Trachea: Clara cells 
identified by CCSP 
expression, are infrequent. 
They exhibit granular, 
cytoplasmic staining of 
variable intensity (arrows; 
40x). (b) Bronchus exhibiting 
a larger number  of Clara 
cells, compared to the 
trachea (40x). (c) Bronchi-
ole: the majority of epithelial 
cells are positive for CCSP 
(arrows; 40x). (d) Cells 
within the alveoli are 
negative (40x). 
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Figure 3-7 Quantitative analysis of immunohistological staining for CCSP in 
mock-infected wood mice at different levels of the respiratory tract. 
(a) Intensity of staining for CCSP in the respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for CCSP. Data are the mean of 
analysis of tissue from six mice per group; bars represent the standard error 
of the mean. ∗∗ P< 0.005 (two sample T-test). 
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Figure 3-8 Quantitative analysis of immunohistological staining for CCSP in 
wood mice at different levels of the respiratory tract, following infection with 
either M3.MR or M3.stop at 7 dpi. 
(a) Intensity of staining for CCSP in respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for CCSP. Data are the mean of 
analysis of tissue from three mice per group; bars represent the standard 
error of the mean. ∗ P< 0.05; ∗∗ P< 0.005 (two sample T-test). 
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Figure 3-9 Immuno-
histology for CCSP in 
mock-infected, M3.MR 
and M3.stop infected 
wood mouse bronchi-
oles at day 14 pi. 
 
(a) Mock-infected wood 
mouse bronchiole (20x) 
(b) M3.MR infected 
wood mouse bronchiole 
showing predominantly 
strong staining in the 
majority of epithelial 
cells (20x). (c) M3.stop 
infected wood mouse 
bronchiole, which 
exhibits less intense 
staining than the M3.MR 
infected bronchiole, but 
greater intensity than 
that seen in the mock-
infected wood mouse 
(20x). 
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Figure 3-10 Quantitative analysis of immunohistological staining for CCSP in 
wood mice at different levels of the respiratory tract, following infection with 
either M3.MR or M3.stop at day 14 pi. 
(a) Intensity of staining for CCSP in respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for CCSP. Data are the mean of 
analysis of tissue from three mice per group; bars represent the standard 
error of the mean. ∗ P< 0.05; ∗∗ P< 0.005 (two sample T-test). 
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3.1.1.3.2 SPLUNC1 expression in Apodemus sylvaticus 
3.1.1.3.2.1 In situ hybridisation for SPLUNC1  
In situ hybridisation analysis was used in mock-infected wood mice to establish 

the distribution and levels of constitutive expression of SPLUNC1 in wood 

mice (Figure 3-11). ISH revealed moderate to strong signal in numerous non-

ciliated epithelial cells in the trachea, as well as in the epithelial cells in several, 

but not all, submucosal glands (Figure 3-11a). The number of cells in the 

bronchi was also high, showing a similar frequency of signal as seen in the 

trachea (Figure 3-11b). Distal to the bronchi, however, there was a dramatic 

difference; in bronchioles very few cells exhibited only a very faint signal, 

which could be difficult to distinguish from background (Figure 3-11c). The 

alveoli were negative in all wood mice examined (Figure 3-11d).  

 

Following infection, there was little alteration in the distribution of signal for 

SPLUNC1 in wood mice. This was of note, especially as there was little 

upregulation of signal in the bronchioles, where alterations in response to 

infection had been observed in CCSP expression. Despite the lack of signal in 

the mock-infected mice at this anatomical location, as it is the section of the 

respiratory airway closest to the site of infection and the accompanying 

inflammatory response, it was thought that this site may also show alteration in 

response to infection. However, although rare cells exhibited positive signal, 

the change was very minor (Figure 3-12). 

 

Tissue from a wood mouse that had been infected with MHV-68 at day 3 pi 

was also examined using ISH to investigate whether any upregulation of 

SPLUNC1 had occurred prior to day 7 pi, but this also exhibited a faint signal 

in very rare cells, similar to that observed in M3.MR infected wood mice at day 

7 pi (data not shown). 
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Figure 3-11 ISH for 
SPLUNC1 in mock-infected 
wood mice at different 
levels of the respiratory 
tract. 
 
(a) Trachea and sub-
mucosal glands exhibit 
frequent cells positive for 
SPLUNC1 (arrows; 20x). 
(b) Bronchial epithelium 
also exhibits frequent 
strongly positive cells 
(arrows; 20x). (c) Within the 
bronchiole, rare cells exhibit 
a weak signal for SPLUNC1 
(arrows; 20x). (d) Alveoli 
are negative for SPLUNC1 
(20x). 
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Figure 3-12 ISH for 
SPLUNC1 in the bronchi-
oles of M3.MR and M3.stop 
infected wood mice. 
 
(a) Rare positive cells are 
present in the M3.MR 
infected wood mouse 
bronchiole, day 7 pi (arrow; 
20x). (b) Rare faintly 
positive cells are present in 
the M3.stop infected wood 
mouse bronchiole at day 7 
pi (arrows; 20x). (c) M3.MR 
infected wood mouse 
bronchioles at day 14 pi are 
negative for SPLUNC1 
(20x). (d) M3.stop infected 
wood mouse bronchioles at 
day 14 pi are negative for 
SPLUNC1 (20x). 
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3.1.1.3.2.2 Immunohistology for SPLUNC1 
Immunohistology for SPLUNC1 using an antibody to the murine protein, was 

utilised to examine the distribution of this protein within the respiratory tract. In 

the mock-infected animals, staining for the protein was most intense in the 

tracheal and bronchial non-ciliated epithelium, with little discernable difference 

between these two areas (Figure 3-13a,b). In addition, there was strong 

staining in many cells of the submucosal glands, similar to the pattern of 

SPLUNC1 expression demonstrated by ISH (Figure 3-11). Distal to the 

bronchi, the intensity of staining decreased, the proximal bronchioles exhibiting 

stronger staining than the distal bronchioles (Figure 3-13c,d). This finding was 

intriguing as no, or a very low signal for SPLUNC1 had been observed in the 

bronchioles following RNA-ISH (Figure 3-11c).The alveolar cells were negative 

in all sections examined. 

 

Quantitative analysis of the intensity and percentage area stained for 

SPLUNC1 by immunohistology in mock-infected wood mice confirmed that 

expression of the protein was similar in the trachea and the bronchi, and 

significantly lower, in both the percentage area stained (P = 0.001, two sample 

T-test) and the intensity of staining (P = 0.001, two sample T-test), in the 

bronchioles (Figure 3-14).  

 

Following infection with either M3.MR or M3.stop at 7 dpi, alterations in the 

intensity of staining and the percentage area of tissue stained were both seen 

within the bronchioles. There was a highly significant decrease in intensity of 

staining in both M3.MR (P = 0.001, two sample T-test) and M3.stop (P = 

0.004, two sample T-test) infected wood mice, compared to the mock-infected 

wood mice at this timepoint (Figure 3-15a). Similarly, there was a significant 

decrease in the percentage area of tissue stained in both the M3.MR (P = 

0.048, two sample T-test) and M3.stop (P = 0.032, two sample T-test) infected 

wood mice, compared to mock-infected controls (Figure 3-15b). This was a 

similar pattern to the changes observed in CCSP expression in the bronchioles 

at this timepoint. However, the effect of M3 was different in SPLUNC1 

expression; the absence of M3 was associated with a higher staining intensity 

than M3.MR infection (P = 0.012, two sample T-test), although this did not 
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abrogate the effect of infection (Figure 3-15a), in contrast to CCSP, where the 

absence of M3 was associated with further reduction of staining intensity at 

day 7 pi (Figure 3-8a).  

 
The consequence of infection at day 14 pi was in complete contrast to that 

seen at day 7, as SPLUNC1 intensity and percentage area stained were 

increased in response to infection at this timepoint. This was seen in the 

bronchioles, as before, where highly significant increases were observed in 

response to infection by both M3.MR (intensity P = 0.001, percentage area P = 

0.001, two sample T-test) and M3.stop (intensity P = 0.001, percentage area 

P = 0.001, two sample T-test), although here were no significant differences in 

intensity or percentage area stained between the two types of infection 

(intensity P = 0.976, percentage area P = 0.293, two sample T-test; Figure 

3-16a,b). Interestingly, a similar increase in the intensity of staining was also 

seen in the bronchi (P = 0.001, two sample T-test) and the trachea (P = 0.006, 

two sample T-test) following infection with M3.MR; percentage area of 

SPLUNC1 staining in the bronchi was also increased (P = 0.013, two sample 

T-test). However, these anatomical sites, like the bronchioles did not show any 

difference between M3.MR infected and M3.stop infected wood mice. 

 

The presence of SPLUNC1 protein detected by immunohistology in the 

bronchiolar epithelium, in the absence of ISH signal for SPLUNC1 was 

confirmed using a combination of these two techniques on a single slide. This 

showed that SPLUNC1 protein was present in the trachea and bronchi where 

SPLUNC1 is expressed (as demonstrated by RNA-ISH), whereas in the 

bronchiole, protein was present in higher quantities and more distally, in 

terminal bronchioles, than signal for SPLUNC1 (Figure 3-17). This would 

suggest that SPLUNC1 protein is not produced at this location, despite of the 

increased quantity at this timepoint, following infection. As previously stated, 

no signal for SPLUNC1 was seen in the distal bronchioles at 3, 7 or 14 days pi. 
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Figure 3-14 Quantitative analysis of immunohistological staining for 
SPLUNC1 at different levels of the respiratory tract in mock-infected wood 
mice. 
(a) Intensity of staining for SPLUNC1 in respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for SPLUNC1. Data are the mean of 
analysis of tissue from three mice per group; bars represent the standard 
error of the mean. ∗ P< 0.05; ∗∗ P< 0.005 (two sample T-test). 
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Figure 3-15 Quantitative analysis of immunohistological staining for 
SPLUNC1 in wood mice at different levels of the respiratory tract, following 
infection with either M3.MR or M3.stop, at day 7 pi. 
(a) Intensity of staining for SPLUNC1 in respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for SPLUNC1. Data are the mean of 
analysis of tissue from three mice per group; bars represent the standard 
error of the mean. ∗ P< 0.05; ∗∗ P< 0.005 (two sample T-test). 
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Figure 3-16 Quantitative analysis of immunohistological staining for 
SPLUNC1 in wood mice at different levels of the respiratory tract, following 
infection with either M3.MR or M3.stop, at day 14 pi. 
(a) Intensity of staining for SPLUNC1 in respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for SPLUNC1. Data are the mean of 
analysis of tissue from three mice per group, bars represent the standard 
error of the mean. ∗ P< 0.05; ∗∗ P< 0.005 (two sample T-test). 
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a b 

c d 

Figure 3-17 ISH-IH for 
SPLUNC1 and SPLUNC1 
protein at different levels of 
the respiratory tract in a 
M3.MR infected wood 
mouse at day 14 pi. 
 
(a) Bronchus showing 
extensive signal for 
SPLUNC1 (blue-black 
staining) and frequent cells 
positive for SPLUNC1 
protein (brown staining) 
(40x). (b) Proximal 
bronchiole with scattered 
cells exhibiting a signal for 
SPLUNC1 and numerous 
cells and intra-luminal 
material exhibiting positive 
staining for SPLUNC1 
protein (10x). (c) Distal 
bronchiole with positive 
intra-luminal staining for 
SPLUNC1 protein (40x). 
(d) Distal bronchiole with 
scattered cells exhibiting 
intracellular staining for 
SPLUNC1 protein (arrow) in 
the absence of signal for 
SPLUNC1 (40x). 
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3.1.1.3.3 Cellular localisation of SPLUNC1  
SPLUNC1 was shown to be transcribed and translated within non-ciliated cells 

in the upper respiratory tract (Figure 3-13a). Clara cells are present in the 

upper respiratory tract, but are not as frequent as SPLUNC1 positive cells. To 

demonstrate whether Clara cells are capable of transcribing SPLUNC1, 

immunohistology for CCSP (to demonstrate Clara cells) and ISH for SPLUNC1 

was performed on the same tissue section (Figure 3-18). Some non-ciliated 

cells exhibited positive staining for both CCSP and SPLUNC1, whereas others 

were positive for either CCSP or SPLUNC1 alone. This suggests that not only 

Clara cells but also other non-ciliated cells transcribe SPLUNC1. In addition, 

sections undergoing immunohistology for SPLUNC1 were counterstained with 

Alcian blue and Periodic acid Schiff stains, which stain polysaccharides and 

are commonly used to identify mucins. This showed AB-PAS positive cells in 

the bronchi and bronchiolar epithelium, and in submucosal glands that also 

stained for SPLUNC1 (Figure 3-19). This suggests that cells of the mucous cell 

type can also transcribe and secrete SPLUNC1.   

 

 

 

 

Figure 3-18 Immunohistology for CCSP and ISH for SPLUNC1, in the 
bronchus of a M3.MR infected wood mouse at 14 dpi. 
Non-ciliated cells show positive staining for CCSP and SPLUNC1 mRNA 
(arrows, 40x). 
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Figure 3-19 Immunohistology for SPLUNC1 in a M3.MR infected wood 
mouse, counterstained with AB-PAS for polysaccharides. 
(a) Bronchial epithelium and submucosal gland in which cells that are AB-
PAS positive (indicative of mucous cells) and positive for SPLUNC1 are 
present (arrows; 40x). (b) Bronchioles exhibited fewer cells which were AB-
PAS and SPLUNC1 positive (arrow, 40x). 
 

  

a 

b 
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3.1.1.3.4 AGR2 and AGR3 expression in Apodemus sylvaticus 
AGR3 was one of the genes identified as upregulated in the presence of the 

viral M3 gene in M3.MR infected mice, compared to M3.stop infected wood 

mice (Hughes, 2006). AGR2 is thought to be a homologue of AGR3. As little is 

known about the function of these genes, particularly in mice, in situ 

hybridisation and immunohistology were used to describe their locations within 

the lung of wood mice.  

 

In the trachea there was a weak signal for AGR2 using ISH, in the non-ciliated 

cells of the respiratory epithelium and also in some of the submucosal glands 

(Figure 3-20a). In the distal airway, the signal was stronger in the bronchioles, 

predominantly in the apical portion of the non-ciliated epithelial cells (Figure 

3-20b). In M3.MR and M3.stop infected mice at 14 dpi, the signal was 

reduced, in both the trachea (Figure 3-20c) and in the bronchioles (Figure 

3-20d). 

 

Immunohistology for AGR2 protein showed a similar distribution in uninfected 

wood mice; the protein was present in the respiratory epithelium in the non-

ciliated cells of the bronchi and bronchioles (Figure 3-21a,b). 

 
AGR3 distribution and expression was similarly surveyed using ISH. The 

location of cells showing signal in uninfected wood mice was similar to that 

seen for AGR2, with some non-ciliated cells in the respiratory epithelium of the 

trachea positive and also cells within submucosal glands exhibiting positive 

staining (Figure 3-22a).  In the bronchioles more frequent cells exhibited a 

signal, consistent with higher numbers of non-ciliated cells in this location 

(Figure 3-22b). In response to infection, in the trachea M3.MR infected wood 

mice exhibited a stronger signal in a similar distribution to that seen in 

uninfected wood mice (Figure 3-22c), however, M3.stop wood mice showed 

little or no signal (Figure 3-22d). Interestingly, bronchioles showed little or no 

signal in either M3.MR or M3.stop infected wood mice (data not shown). 
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a 

d c 

b Figure 3-22 ISH for AGR3 
at different levels of the 
respiratory tract in the wood 
mouse. 
 
(a) Trachea of an 
uninfected wood mouse 
showing ISH signal for 
AGR3 in non-ciliated cells 
in the respiratory epithelium 
and within the submucosal 
glands (arrows; 20x). 
(b) Bronchiole of an uninf-
ected wood mouse showing 
frequent cells exhibiting 
positive signal for AGR2 
(20x). (c) Trachea of an 
M3.MR infected wood 
mouse at day 14 pi showing 
more frequent cells in the 
respiratory epithelium 
exhibiting positive signal, 
compared to the uninfected  
wood mouse (20x). 
(d) Trachea of an M3.stop 
infected wood mouse 
showing no signal for AGR3 
(10x).
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3.1.1.4 Ultrastructural morphology and location of Clara cells in 
Apodemus sylvaticus 
Transmission electron microscopy (TEM) was used to examine the trachea, 

bronchi and bronchioles of mock-infected and M3.MR infected wood mice at 

day 14 pi. In particular, the morphology of Clara cells was examined, to 

distinguish the different types of Clara cells as described by Pack et al (1981), 

as well as to establish the proportion of respiratory epithelium that are Clara 

cells in the wood mouse. These results should be interpreted with caution, 

however, as the number of animals that were examined was low (one mock-

infected wood mouse, two M3.MR infected wood mice). 

 

Firstly, the overall numbers of ciliated versus non-ciliated cells was established 

as this data is not known in wood mice. The highest proportion of ciliated cells 

occurs in the trachea, with the proportion decreasing distally within the airway, 

where they constitute the minority of cells, in common with other murine 

species (Figure 3-23). Proportions were similar for mock-infected and M3.MR 

infected wood mice. 

 

Within the non-ciliated proportion of epithelial cells in the respiratory tract, 

three types of Clara cells have been described, on the basis of ultrastructural 

morphological properties (Pack et al., 1981). The most frequent type of Clara 

cells seen in the wood mice are those described by Pack et al (1981) as the 

“Common Type”. These cells have a basal nucleus and cytoplasm of moderate 

electron density containing smooth endoplasmic reticulum, mitochondria and 

“mitochondria-like bodies” and vesicles, most commonly in the apical part of 

the cell, adjacent to the luminal membrane, filled with electron dense material, 

though to be CCSP (Figure 3-25a). These cells are of a relatively consistent 

height within the respiratory epithelium, so appear to project further into the 

lumen in the distal airway, where the bronchiolar ciliated epithelium is cuboidal 

rather than columnar (Figure 3-25b). In mock-infected wood mice, this was the 

overwhelmingly dominant type of Clara cell observed (Figure 3-24). The “Type 

II Clara cell” has a more electron dense cytoplasm than the Common type, 

with less smooth endoplasmic reticulum and less frequent electron-dense 

vesicles (Figure 3-25c). This type was consistently seen at all levels of the 
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airway in M3.MR infected wood mice, but infrequently in the mock-infected 

wood mouse (Figure 3-24). The third type of Clara cell is the “Vesiculated 

Clara cell”, in which most or all of the cytoplasm is vesiculated; these vacuoles 

may or may not contain a faint matrix (Figure 3-25d). This type of cell was not 

observed in the mock-infected wood mouse, but was a feature in the M3.MR 

infected wood mice, and represented a growing proportion of the Clara cell 

population in the distal respiratory tract (Figure 3-24). 
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Figure 3-25 TEM of Clara cells in mock-infected and M3.MR infected wood 
mice. 
(a) Common type of Clara cell in the trachea of a mock-infected wood mouse 
with abundant SER and electron dense vesicles (4000x). (b) Common type of 
Clara cell in the bronchiole of a mock-infected wood mouse exhibiting 
numerous electron dense vesicles and prominent apical projection into the 
lumen (3000x). (c) Type II Clara cell in the trachea of an M3.MR infected 
wood mouse, with more electron dense cytoplasm (4000x). (d) Vesiculated 
Clara cell in the bronchiole of an M3.MR infected wood mouse, with 
numerous intracytoplasmic vesicles, which contain electron lucent material 
(3500x). Bars = 2.5µm, C = Clara cell, SER = smooth endoplasmic reticulum, 
black arrows = electron dense vesicles, white arrows = vesicles containing 
matrix. 
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3.1.1.5 CCSP and SPLUNC1 sequences in Apodemus sylvaticus 

3.1.1.5.1 CCSP sequence in Apodemus syvaticus 
CCSP-specific primers were designed and used to amplify cDNA, generated 

from the lungs of wood mice and the PCR products were then cloned into 

plasmids and transformed in E.coli. Several clones were then sequenced, of 

which four resulted in identical sequences of 351 bp in length, which was 

submitted to GenBank (Apodemus sylvaticus clara cell secreted protein 

mRNA. Accession number HM008619. 2010). This sequence was then 

compared to other known sequences using BLAST, which revealed strong 

sequence homology, particularly in other Rodentia species (Rattus norvegicus 

91 %, Mus musculus 92 %, Mesocricetus auratus 84 %, Neomotodon alstoni 

79 %) but also in other species (Oryctolagus cuniculus 71 %, Homo sapiens 

70 % [Figure 3-26]). 

 

This sequence was translated using the ExPASy Translate tool (Gasteiger et 

al., 2003) and the various potential translations (different frame shifts) 

analysed (Figure 3-27). The first 15bp of the 5’ region are untranslated, 

followed by a 292bp coding region and a 44bp 3’ untranslated region. The 

predicted sequence has 96 amino acids (aa), the first 19 of which are 

consistent with signal peptide and the last 77 with mature secretory protein.  

 
The predicted amino acid sequence was compared to that of other species 

using BLAST (Altschul et al., 1997) and exhibited strong homology with other 

rodents, including the rat (86 %), mouse (87 %), Hamster (79 %), Mexican 

volcano mouse (74 %), but different from other species, for example 54 % 

homology with human CCSP and 55 % with the rabbit (Figure 3-28). 
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Na      1ACACACGCTACAATTCCACCCCACATCCAGAGATAG-CCAGAACCTCTGGACGCC---AC 
Ma      1ATACACACTACTATACCACCCCACATCCAGAGACAG-CCAAGCCTCCCAGACTCC---AC 
Mm      1-CACACATTACAACATCACCCCACATCTACAGACA--CCAAAGCCTCCAACCTCT---AC 
As      1-------------------------------------------CCTCTGGCCTCT---AC 
Rn      1----------CAACATCAGCCCACATCTACAGACAG-CCCAAGCCTCCGGCCTCT---AC 
Oc      1--------------AGATCACCGGATCCAGAGCCAGCCCAGAGCCTTCCCATTCTGCCAC 
Hs      1---------------CAGAGACGGAACCAGAGACAGGCCAGAGCATCCCCCTCCT-CCAC 
 
          *** 
Na     56CATGAAGCTCGCCATCACAATCATTCTTGTCATGCTGTCTGTCTGCTACAGCTCGG---- 
Ma     56CATGAAGATTGCCATCACAATGGCTGTTGTCATGCTGTCGGTCTGCTGCAGCTCAGCTTC 
Mm     54CATGAAGATCGCCATCACAATCACTGTGGTCATGCTGTCCATCTGCTGCAGCTCAGCTTC 
As     14CATGAAGGTCGCCATCACAATCGCTGTGGTCATGCTGTCCATCTGCTGCAGCTCAGCTTC   
Rn     46CATGAAGATCGCCATCACAATCACTGTGCTCATGCTGTCCATCTGCTGCAGCTCAGCCTC 
Oc     46CATGAAGCTCGCCATCACCCTCGCCCTGGTCACCCTGGCTCTCCTCTGCAGCCCTGCATC 
Hs     44CATGAAACTCGCTGTCACCCTCACCCTGGTCACACTGGCTCTCTGCTGCAGCTCCGCTTC 
 
 
Na    112-----ACACCTGCCCAGGATTTCTTCAAGTCCTTGAGTACCTCTTCATGGGCTCAGAGTC 
Ma    116TTCAGACACCTGCCCGGGATTTTTTCAAGTCCTTGAGTTCCTCTTCATGGGCTCAGAGTC 
Mm    114TTCGGACATCTGCCCAGGATTTCTTCAAGTCCTTGAGGCCCTCCTCATGGAATCAGAGTC 
As     74TTCGGACATCTGCCCAGGATTTCTTCAAGTCCTTGAGGCCCTCTTTATGGGATCAGAGTC 
Rn    106TTCGGACATCTGCCCAGGATTTCTTCAAGTCCTTGAGGCCCTCCTCCTAGGCTCAGAGTC 
Oc    106TGCAGGCATCTGCCCGAGATTTGCACACGTCATTGAAAACCTCCTCCTGGGCACGCCCTC 
Hs    104TGCAGAGATCTGCCCGAGCTTTCAGCGTGTCATCGAAACCCTCCTCATGGACACACCCTC 
 
 
Na    167CACTTATGAGGCAGCCCTGAAGTTTTACAACCCTGGCTCAGATCTGCAAAATTCAGGGAT 
Ma    176CAGTTATGAGGCAGCCCTGAAGTTTTACAACCCTGGCTCAGACCTGCAAGATTCAGGGAC 
Mm    174TGGTTATGTGGCATCCCTGAAGCCTTTCAACCCTGGCTCAGACCTGCAAAATGCGGGCAC 
As    134CAATTATGAGGCATCCCTGAAGCCTTTCAACCCTAGCTCCGACCTGCAAAATTCAGGAAT 
Rn    166TAATTATGAGGCAGCCCTGAAGCCTTTCAACCCTGCCTCAGACCTGCAAAATGCAGGAAC 
Oc    166CAGTTACGAGACATCCCTGAAGGAATTTGAACCTGATGACACCATGAAAGATGCAGGGAT 
Hs    164CAGTTATGAGGCTGCCATGGAACTTTTCAGCCCTGATCAAGACATGAGGGAGGCAGGGGC 
 
 
Na    227GCAGCTGAAGAAGCT--------------------------------------------- 
Ma    236CCAGTTGAAGAAGCTGGTGGACACCCTCCCCCAGAAGACCAGAATGAACATCATGAAACT 
Mm    234CCAGCTGAAGAGACTGGTGGATACCCTCCCACAAGAGACCAGGATAAACATCATGAAGCT 
As    194CCAGTTGAAGAAGCTGGTGGATACCCTCCCGCAAGAGACCAGAACGAACATCAAGAAGCT 
Rn    226CCAGCTGAAGAGGCTGGTGGATACCCTCCCACAGGAGACCAGAATAAACATCGTGAAGCT 
Oc    226GCAGATGAAGAAGGTGTTGGACTCCCTGCCCCAGACGACCAGAGAGAACATCATGAAGCT 
Hs    224TCAGCTGAAGAAGCTGGTGGACACCCTCCCCCAAAAGCCCAGAGAAAGCATCATTAAGCT 
 
                                                          ^^^    
Na    242---------------AACAAGCAACCTGTGTAATCAAGACCCAAGCTTCTAAGGCGCACC 
Ma    296CTCGGAGATAATCCTAACAAGCCCTCTGTGCAATCAAGACCTAAGCGTCTAAAACTCACC 
Mm    294CACGGAGAAAATCCTAACAAGTCCTCTGTGTAAGCAAGATTTAAGATTCTGAAGCTCACT 
As    254CACGGAGAAAATCCTAACAAGTCCTCTGTGTAAGCAAGATTTAAGAGTCTGAAGCTCACT 
Rn    286CACGGAGAAGATCCTAACAAGTCCTCTGTGTGAGCAAGATTTAAGAGTCTGAAGCTCACT 
Oc    286CACGGAAAAAATAGTGAAGAGCCCACTGTGTATGTAGGATGGAGGAATCCGAGGTCCTGC 
H     284CATGGAAAAAATAGCCCAAAGCTCACTGTGTAATTAGCATTTAGAAGCTGAAGATCC--C 
 
 
Na    287AGACTTTGAAGAT--------ATCCC-CTGCTAAGAGCCC-TGCCGTTGCCCCGTGCCCC 
Ma    356AGACTTCAAAGAC--------ACTCC-CTGATAACAGCCCCTGTCCTCGCCCTGTGCCTC   
Mm    354GGATTTCAGAGAT--------ATTCTACTGCTAAAG--CCTTGTCACTGCCCTGTGTCTC 
As    314GGATTTCCGAGAT--------ATTCTACTGCTAAAGGCCCCTGTC--------------- 
Rn    346GGATTTCAGAGAT--------ATTCTAC-GCTAAAGGCCCCTGTCATTGCCCTCTGCCTC 
Oc    346GGACTTGAGAAGCCGAAGATTTCCACCTTGCTTGAAGCCCCTGCT-GCTGCCCCTGGCC- 
Hs    342CAACTGCTCCAGCCTCTG-CCGCTGCCATGCTTTGAGTCCACGCCCACCAGCCTTGCTCT 
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Na    337C-TGACC--------TCCC-GCACCAGCCCTGC 
Ma    407TGTGACC--------TCCCTGCACCAGCCCTGC 
Mm    404CTCGGCTCCTCGGCTTCCCCACACCAACCCCTC 
As    351--------------------------------- 
Rn    397CTTGACC--------TCCCTACACCAACCCCGC 
Oc    404CTTGGGTCCC-----CCACCCACCCAACCCAGC 
Hs    401CTTCAATAAA-----CCAC--AAGCATCTCAAA 
 

Figure 3-26 cDNA sequence alignment for CCSP, comparing the Apodemus 
sylvaticus sequence with those for CCSP of other species. 
White characters on black background indicate consensus nucleotides; white 
characters on grey background indicate partial consensus nucleotides; black 
characters on white background indicate non-consensual nucleotides. 
*** = start codon   ^^^ = stop codon 
Na = Neotomodon alstoni (Mexican volcano mouse; AJ583234.1) 
Ma = Mesocricetus auratus (Golden hamster; L37041.1) 
Mm = Mus musculus (Mouse; NM_011681.2) 
As = Apodemus sylvaticus (Wood mouse; HM008619) 
Rn = Rattus norvegicus (Brown Rat; BC069174.1) 
Oc = Oryctolagus cuniculus (Rabbit; NM_001082237.1) 
Hs = Homo sapiens (Human; NM_003357.3) 
 

 

 

 

 
CCTCTGGCCTCTACCATGAAGGTCGCCATCACAATCGCTGTGGTCATGCTGTCCATCTGCTGCAGCTCA 
               MetK  V  A  I  T  I  A  V  V  MetL  S  I  C  C  S  S   
GCTTCTTCGGACATCTGCCCAGGATTTCTTCAAGTCCTTGAGGCCCTCTTTATGGGATCAGAGTCCAAT 
A  S  S  D  I  C  P  G  F  L  Q  V  L  E  A  L  F  MetG  S  E  S  N   
TATGAGGCATCCCTGAAGCCTTTCAACCCTAGCTCCGACCTGCAAAATTCAGGAATCCAGTTGAAGAAG  
Y  E  A  S  L  K  P  F  N  P  S  S  D  L  Q  N  S  G  I  Q  L  K  K   
CTGGTGGATACCCTCCCGCAAGAGACCAGAACGAACATCAAGAAGCTCACGGAGAAAATCCTAACAAGT  
L  V  D  T  L  P  Q  E  T  R  T  N  I  K  K  L  T  E  K  I  L  T  S   
CCTCTGTGTAAGCAAGATTTAAGAGTCTGAAGCTCACTGGATTTCCGAGATATTCTACTGCTAAAGGCC          
P  L  C  K  Q  D  L  R  V  Stop  
CCTGTC 

Figure 3-27 Predicted amino acid sequence from cDNA for CCSP in the 
wood mouse. 
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      ~~~~~~~~~~~~~~~~~~~                                # 
As  1 MKVAITIAVVMLSICCSSASSDICPGFLQVLEALFMGSESNYEASLKPFNPSSDL 
Rn  1 MKIAITITVLMLSICCSSASSDICPGFLQVLEALLLGSESNYEAALKPFNPASDL 
Mm  1 MKIAITITVVMLSICCSSASSDICPGFLQVLEALLMESESGYVASLKPFNPGSDL 
Ma  1 MKIAITMAVVMLSVCCSSASSDTCPGFFQVLEFLFMGSESSYEAALKFYNPGSDL 
Na  1 MKLAITIILVMLSVCYS---SDTCPGFLQVLEYLFMGSESTYEAALKFYNPGSDL 
Oc  1 MKLAITLALVTLALLCSPASAGICPRFAHVIENLLLGTPSSYETSLKEFEPDDTM 
Hs  1 MKLAVTLTLVTLALCCSSASAEICPSFQRVIETLLMDTPSSYEAAMELFSPDQDM 
 
           #              #  #           * 
As  56 QNSGIQLKKLVDTLPQETRTNIKKLTEKILTSPLCKQDLRV 
Rn  56 QNAGTQLKRLVDTLPQETRINIVKLTEKILTSPLCEQDLRV 
Mm  56 QNAGTQLKRLVDTLPQETRINIMKLTEKILTSPLCKQDLRF 
Ma  56 QDSGTQLKKLVDTLPQKTRMNIMKLSEIILTSPLCNQDLSV 
Na  53 QNSGMQLKKLVDTLPEKTRVNIVKLSEIILTSNLCNQDPSF 
Oc  56 KDAGMQMKKVLDSLPQTTRENIMKLTEKIVKSPLCM----- 
Hs  56 REAGAQLKKLVDTLPQKPRESIIKLMEKIAQSSLCN----- 

 

Figure 3-28 Amino acid sequence for CCSP from the wood mouse, aligned 
with those from other species, using ClustalW-XXL and Boxshade. 
White characters on black background indicate consensus amino acids; 
white characters on grey background indicate partial consensus amino acids; 
black characters on white background indicate non-consensual amino acids. 
~~~ = signal peptide; * = conserved cysteine for stabilisation of homodimers  
# = amino acids in the wood mouse that are not conserved in any other 
species. 
As= Apodemus sylvaticus (Wood mouse) 
Rn = Rattus norvegicus (Brown Rat; sp|P17559|UTER_RAT) 
Mm = Mus musculus (Mouse; sp|Q06318|UTER_MOUSE) 
Ma = Mesocricetus auratus (Golden hamster; sp|Q8VD96|UTER_MESAU) 
Na = Neotomodon alstoni (Mexican volcano mouse; sp|Q65C83|UTER_NEOAS) 
Oc = Oryctolagus cuniculus (Rabbit; sp|P02779|UTER_RABIT) 
Hs = Homo sapiens (Human; sp|P11684|UTER_HUMAN) 
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Figure 3-29 Phylogram for CCSP based on amino acid comparisons.  
The tree was constructed using the ClustalW program by pair-group 
clustering method. The numerical values indicate mutation distances. 
As= Apodemus sylvaticus (Wood mouse) 
Rn = Rattus norvegicus (Brown Rat) 
Mm = Mus musculus (Mouse) 
Ma = Mesocricetus auratus (Golden hamster) 
Na = Neotomodon alstoni (Mexican volcano mouse) 
Oc = Oryctolagus cuniculus (Rabbit) 
Hs = Homo sapiens (Human) 
  

As 
Rn 
Mm 
Ma 
Na 
Oc 
Hs 

2.97 

11.65 

11.65 

3.39 

2.06 

2.60 
2.60 

0.78 

4.30 
4.30 

9.61 
9.61 
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3.1.1.5.2 SPLUNC1 sequence in Apodemus sylvaticus 
SPLUNC1 specific primers were used to amplify cDNA generated from the 

lung of wood mice. Following cloning, sequencing and translation of this 

product it was found that, in comparison to the amino acid sequence for Mus 

musculus, 10 amino acids were absent at the 5’ end. Therefore 5’RACE was 

utilised to obtain this end of the sequence. This enabled the sequencing of a 

1011 bp cDNA sequence for SPLUNC1 in Apodemus sylvaticus, which  was 

submitted to GenBank (Apodemus sylvaticus short palate, lung and nasal 

epithelium associated (SPLUNC1) mRNA: HM008620. 2010). 

 

Alignment of this sequence using BLAST revealed high levels of homology 

with other rodent species; Mus musculus (93 %) and Rattus norvegicus 

(88 %). The rodents’ sequences for SPLUNC1 contain an additional exon, 

when compared to other species (Figure 3-30), however, either side of this, 

high homology was also seen between Apodemus sylvaticus and Homo 

sapiens (72 and 78 %), Bos taurus (78 and 74 %) and Sus scrofa (73 and 

79 %). 

 

The cDNA sequence obtained for SPLUNC1 from Apodemus sylvaticus was 

translated using ExPASy Translate tool and the potential translations analysed 

to select the correct frameshift (Figure 3-31). The sequence contains a 53 bp 

untranslated 5’ region and a 55bp 3’ untranslated region, with an open reading 

frame comprising 834 bp (278 codons). This is highly similar to that described 

for Mus musculus (Weston et al., 1999). 

 

The predicted amino acid sequence was compared to that of other species 

using BLAST (SIB) and exhibited strong homology with the mouse (92 %) and 

the rat (87 %), and lower homology with other species, for example the pig 

(61 %), the cow (63 %) and human (66 %). The wood mouse sequence 

exhibited the additional sequence in exon 2 found in other rodent species, but 

not present in non-rodent species (Figure 3-32; aa 23-46). The wood mouse 

shows high homology with Mus musculus in this region (83 %). 

 
  



124 

 

Ss     1 ------GCCAGGAAGAGGAGACCAGGACAGCCACCAAAACCTCTGGGAAGTC-GGACATC 
Bt     1 --------------AAGGAGACCACAACAGCTGCCAGGACCTCTGAGAAGCC-AGATCCT 
Hs     1 GAGTGGGGGAGAGAGAGGAGACCAGGACAGCTGCTGAGACCTCTAAGAAGTCCAGATACT 
Mm     1 ----------AGGAGAGGAGCCCAGGACGACCACTGAGACCTT---GAGACTCAGACACC 
As     1 -----------AAATAGAAGATCAAGCACGGCNCTGAGACCTT---GATACTCAGACACC 
Rn     1 -------------TGCGGCCGCCAGACAC-CCACTGAGACCTT---AAGACTCAGACACC 
 
                   *** 
Ss     53AAGAGAG---ATGTCTCAAGTTGCAGGCCTCATTGTCTTCTGTGGGCTGCTGGCCCAGAC 
Bt     45GAGTGAGAGGATGTTTCACATCGGGAGCCTCGTTGTCCTCTGTGGGCTGCTGGCCCCGAC 
Hs     60AAGAGCAAAGATGTTTCAAACTGGGGGCCTCATTGTCTTCTACGGGCTGTTAGCCCAGAC 
Mm     47AAGAGAG---ATGTTTCTAGTTGGGAGCCTCGTTGTCCTCTGTGGGCTGCTGGCCCACAG 
As     46AAGAGAG---ATGTTTCTAGTGGGAAGCCTCGT---CCTCTGTGGGCTGCTGGCCCAGAG 
Rn     43AAGAGAG---ATGTTTCTAGTTGGGAGTCTTGTCGTCCTCTGTGGGCTGCTGGCCCAGAG 
 
 
Ss    110CACAGCGCTGCTGGAAGCCCTGCCC------CT--------------------------- 
Bt    105CACGGCCCTGCTAGAAGCCCTGCCCACGCCCCT--------------------------- 
Hs    120CATGGCCCAGTTTGGAGGCCTGCCCGTGCCCCT--------------------------- 
Mm    104CACAGCACAGCTGGCAGGCTTGCCATTGCCCCTGGGCCAGGGTCCACCCTTGCCACTGAA 
As    100CACAGCACAGCTGGCAGGCCTGCCATTGCCCCTGGGCCAGGGCCTGCCCTTGACCCTGGA 
Rn    100CACAGCCCAGCTAGCAGGCCTGCCTTTGCCCCTTGGGCAGGGTCTGCCTTTGCCCCTGGG 
 
 
Ss    137---------------------------------------------GGGCAAGGCTCTGCC 
B     138---------------------------------------------GGGCCAGACTCTGCC 
H     153---------------------------------------------GGACCAGACCCTGCC 
Mm    164CCAGGGCCCACCGTTGCCACTGAACCAGGGCCAGCTGTTGCCCCTGGCTCAGGGTCTGCC 
As    160CCAGGGCCTGCCTTTGCCACTGAACCAGGGCCTGCCTTTGCCACTGGGCCAGGGTCTGCC 
Rn    160GCAGGGTCTGCCTTTGCC------------------------CCTGGGGCAGGGTCTGCC 
 
 
Ss    152CTTGGC------------CCTGGACCAAAGTCCCACAGATCTT---GTTGGAAGCTTGAC 
Bt    153CTTGGCTGTGACTCCAGCCCTGGCCCCGAGTCCCCCAGATCTT---GCTGGAAGCTTGAC 
Hs    168CTTGAATGTGAATCCAGCCCTGCCCTTGAGTCCCACAGGTCTT---GCAGGAAGCTTGAC 
Mm    224TTTGGCTGTAAGCCCAGCACTGCCTTCAAATCCCACAGATCTTCTTGCTGGAAAATTCAC 
As    220TTTGGCTGTAAGCCCAGCACTGCCTTCAAATCCTACAGATCTTCTGGCTGGAAAATTCAC 
Rn    196TTTGGCCGTGAGCCCAGCACTGCCTTCAAATCCCACAGATCTTCTTGCTGGAAACTTCGC 
 
 
Ss    197AAGTACTCTCAGCAATGGCCTGCTCTCTGAGGGTGTGCTGGGCATTCTTGGAAACCTTCC 
Bt    210AGGTGCTCTCAGCAATGGCCTGCTCTCTGAGGGTCTGTTGGGCATTCTCGAAAACCTTCC 
Hs    225AAATGCCCTCAGCAATGGCCTGCTGTCTGGGGGCCTGTTGGGCATTCTGGAAAACCTTCC 
Mm    284AGATGCTCTCAGCGGTGGCCTGCTGTCTGGGGGGCTGCTGGGCATTTTGGAAAATATTCC 
As    280AGATGCTCTCAGTGGTGGCCTGCTGTCTGGGGGACTGCTGGGCATTTTGGAAAATATTCC 
Rn    256AAATGCTCTCAGTGGTGGCCTGCTCTCTGGGGGACTGCTGGGCATCTTGGAAAATATTCC 
 
 
Ss    257ACTCTTGGACATCCTGAAGGCTGGAGGGAACACTCCCAGTGGCCTGCTGGGAGGCCTGCT 
Bt    270ACTCTTGGACATCCTGAAGACCAGAGGGAACGCTCCCAGTGGTCTGCTGGGGAGCCTGCT 
Hs    285GCTCCTGGACATCCTGAAGCCTGGAGGAGGTACTTCTGGTGGCCTCCTTGGGGGACTGCT 
Mm    344ACTCCTGGATGTTATAAAGTCTGGAGGAGGCAATTCTAATGGCCTTGTTGGGGGCCTGCT 
As    340ACTCCTGGATGTTTTAAAGTCTGGAGGAGGCAATTCTAATGGTCTTGTTGGGGGCCTGCT 
Rn    316ACTCCTGGATGTTATAAAGTCTGGAGGAGGCAGTTCCAATGGCCTTGTTGGGGGCCTGCT 
 
 
Ss    317TGGGAAACTGTCCTCAACGATCCCTCTCCTGAACGACATCGTTGATCTGCAGATCACTGA 
Bt    330TGGGAAAGTGACTTCACTCACCCCTCTCCTGAACAACATCATTGAGTTGAAGATCACTAA 
Hs    345TGGAAAAGTGACGTCAGTGATTCCTGGCCTGAACAACATCATTGACATAAAGGTCACTGA 
Mm    404GGGAAAACTGACGTCATCAGTTCCTCTCCTGAACAACATCCTCGACATAAAAATCACTGA 
As    400TGGAAAACTGACATCATCCCTTCCTCTCCTGAACAACATCCTCGACATAAAAATCACTGA 
Rn    376TGGAAAACTGACGTCATCAGTCCCTCTCCTGAACAACATCCTTGACATAAAAATCACTGA 
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Ss    377TCCCCAGCTGCTGGAACTCGGCCTTGTGCAGAGCCCCGATGGCCATCGTCTCTATGTCAC 
Bt    390CCCTCAGCTGCTGGAGCTTGGCCTTGTGCAGAGCCCTGATGGCCATCGTCTCTATGTCAC 
Hs    405CCCCCAGCTGCTGGAACTTGGCCTTGTGCAGAGCCCTGATGGCCACCGTCTCTATGTCAC 
Mm    464TCCGCAGCTGCTAGAACTTGGTCTTGTGCAGAGTCCTGATGGCCATCGTCTCTATGTCAC 
As    460TCCCCAGCTGCTGGAACTTGGCCTTGTGCAAAGCCCTGATGGCCATCGTCCCTATGTCAC 
Rn    436TCCTCGGCTGCTGGAACTTGGCCTTGTGCAGAGCCCTGATGGCCATCGTCTCTACGCCAC 
 
 
Ss    437CATCCCTCTGAGTCTGGTCCTCAATGTGAAAACGTCTGTGGTCGG---AAGTCTGCTAAA 
Bt    450CATCCCTCTGGGCATGATCCTCAATGTGAAAACGTCCTTGGTGGG---GAGTCTATTGAA 
Hs    465CATCCCTCTCGGCATAAAGCTCCAAGTGAATACGCCCCTGGTCGGTGCAAGTCTGTTGAG 
Mm    524CATCCCTCTGGGCTTGACACTCAACGTAAATATGCCCGTAGTTGG---AAGTCTTTTGCA 
As    520CATCCCTCTGGGCTTGAAACTCAAAGTGAATATGCCCGTAGTTGG---AAGTCTTTTGGA 
Rn    496CATCCCTCTGAGCTTGAAACTCCAAGTGAATATGCCCGTGGTTGG---AAGTTTTTTGCA 
 
 
Ss    494GCTGGCCGTGAAGCTCAACATCACTGTAGAACTCTTAGCTGTGAAAGACGAACAGGGGAA 
Bt    507GCTGGCTGTAAAGCTAAACATCACTGTGGAACTCTTAGCTGTGACAGATGAGCAGAAGCA 
Hs    525GCTGGCTGTGAAGCTGGACATCACTGCAGAAATCTTAGCTGTGAGAGATAAGCAGGAGAG 
Mm    581ATTGGCTGTGAAGCTGAACATTACTGCAGAAGTCTTAGCCGTGAAAGACAATCAGGGGAG 
As    577ATTGGCCGTGAAGCTGAACATCACAGCAGAAGTCTTAGCCGTGAAAGACAATCAGGGGAG 
Rn    553ACTTGCTGTGAAGCTGAACATCACCGCAGAGATTGTAGCCATGAAAGACAATCAGGGGAG 
 
 
Ss    554GAGCCACCTGGTCCTTGGTGACTGCACTCACTCCCCTGGCAGCCTGAAAATCTCCCTGCT 
Bt    567TGTCCACCTGGTTGTTGGCAACTGCACTCACTCCCCTGGCAGCCTGCAAATCTTCCTGCT 
Hs    585GATCCACCTGGTCCTTGGTGACTGCACCCATTCCCCTGGAAGCCTGCAAATTTCTCTGCT 
Mm    641GATTCATCTGGTTCTTGGTGACTGCACCCACTCCCCTGGCAGCCTGAAAATCAGCTTGCT 
As    637GATTCATCTGGTTCTTGGTGACTGCACCCACTCCCCTGGCAGCCTGAATATCACCTTGCT 
Rn    613GATCCATCTGGTTCTTGGTGACTGCACCCACTCCCCTGGCAGCCTGCAAATCACCTTGCT 
 
 
Ss    614TGATGGATTGGGCCCCCTCGTCCCTCAAGACCTTCTTGACAGCATCACTGGAGTCTTGGA 
Bt    627TGATGGATTGGGCTCCCTCCCCATTCAAAGCTTTGTTGATAACCTCACTGGCATCTTGAA 
Hs    645TGATGGACTTGGCCCCCTCCCCATTCAAGGTCTTCTGGACAGCCTCACAGGGATCTTGAA 
Mm    701CAATGGAGT------CACTCCTGTTCAAAGCTTTGTAGACAACCTCACAGGGATATTGAC 
As    697CAATGGAGT------CACTCCAGTTCAAAACTTTTTAGACAACCTCACAGGGATACTGAC 
Rn    673CAATGGAGT------CACTCCTGTTCAGAGCTCTTTAGACAGCCTCACAGGGATACTGAC 
 
 
Ss    674TAATGTCCTTCCTGGGCTGGTGCAGGGCGAGGTGTGCCCTCTGGTCAATGAGGTTCTCAG 
Bt    687TGATGTCCTTCCTGGGCTGGTGCAAGGCAAGGTGTGCCCCCTGGTCAATGCAGTTCTCAG 
Hs    705TAAAGTCCTGCCTGAGTTGGTTCAGGGCAACGTGTGCCCTCTGGTCAATGAGGTTCTCAG 
Mm    755TAAAGTCCTTCCTGAGCTGATCCAGGGCAAGGTATGTCCTCTGGTCAATGGGATTCTCAG 
As    751TAAAGTCCTTCCTGAGCTGATCCAGGGCAAGGTATGTCCTCTGGTCAATGGGATTCTCAG 
Rn    727TAAAGTCCTTCCTGAGCTGATCCAGGGCAAGGTATGCCCTCTGATCAATGGGATTCTCAG 
 
 
Ss    734CCACTTGGACGTCACCTTGGTACATTCCATCGTCGACGCGCTAATCCAAGGGCAGGAATT 
Bt    747CCGCTTGGACGTCACTCTGGTACATTCCATTGTCAACGCACTGATCCATGGGCTACAATT 
Hs    765AGGCTTGGACATCACCCTGGTGCATGACATTGTTAACATGCTGATCCACGGACTACAGTT 
Mm    815CGGTTTGGATGTCACCCTGGTGCACAACATTGCTGAATTACTGATCCATGGACTACAGTT 
As    811TGGTTTGGATGTCACCCTGGTGCATGACATTGCTGACTTACTGATCCATGGACTGCAGTT 
Rn    787CGGTTTGGATGTCACCCTGGTGCATAACATTGCTGAATTACTGATCCATGGAATACAATT 
 
                      ^^^ 
Ss    794TGTCATCAAAGTCTAAGCCCTCCAGCAAGGGACCT-CCCCTCTCCTGAGCTGGACCATTT  
Bt    807TGTCATCAAGGTCTAAGACTTCCAGGAACGGACCT-GGCCTCTGCTGAGCCGAACCGTTT  
Hs    825TGTCATCAAGGTCTAAGCCTTCCAGGAAGGGGC-T-GGCCTCTGCTGAGCTG--------  
Mm    875TGTCATCAAAGTTTAGGCATCCCAGGAAGGAAGGC-TATCTTGGCTGAGCTGAATCATTT  
As    871TGTCATCAAAATTTAGGCTTCCCAGGAAGGAAGGCCTACCTTGGTTGAGCTGAATCATTT  
Rn    847TGTCATCAAAGTTTAGGCTTCCCAGGAAGGAAGGCCCACCTTGGTTGAGCTGAATCGTTT  
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Ss    853CCTGCTGCCC---CATCCACTCCCTGCCCAGCACCCGAGGGCTCACAGAAGGCCAGCCCA 
Bt    866CCTGAGGCTG---GATTCACTGCCTGCCC-------GAGGGCTCACAGAAGGCTGGCCCA 
Hs    875-----------------------CTTCCC--------AGTGCTCACAGATGGCTGGCCCA 
Mm    934CTTGCTGCTCAGTCTCCTGCCTCTTGCCCAGTCTCCCATGGCTCACAGAAAGG-GGCCCA 
As    931CTTGCTGCTCAGTCTCCCGCCTCTTGCCCAGTCTCCCATGGCTCACAGAAAGG-GGCCCA 
Rn    907CTCGATGCTC--TCTCCTGCCTCTTGCCCAGTTTCCCATGGCTCACAGAAAGG-GACCCA 
 
 
Ss    910TGTCCCGGACAAGGACAC---CAGGTCTGGAGACCAGAGCAGCCCGCCCTCCAAGGAA-C 
Bt    916TGTCCTGGACAATGACACAGCCATGTTTGGAGACCAGAGCAGCCTTCTCACCAAGGAAAC 
Hs    904TGTGCTGGAAGATGACAC-------------------AGTTGCCTTCTCTCCGAGGAACC 
Mm    993CATCCTGGAAAA-T-TAT-------------------GTCTTCCTTCTCCTCACGGAGCC 
As    990CATCCTGGAAAAAT-TAT-------------------GTCT------------------- 
Rn    964CGTCCTGGAAAATCATAT-------------------GCCTGCCTTCTCCTCACAGAGTC 
 
 
Ss    966CGCTCCCCCTGCTTCCCCACCAGGCATGTGTGACATTCCCTGTTACTTGCGCAATAAAAT 
Bt    976TTCTCCCTTTGCTTTCCCACCAAGCATGTGT--CATTCCTCGTTCATCACCAAATAAAAC 
Hs    945TGCCCCCTCTCCTTTCCCACCAGGCGTGTGTAACATCCCATGTGCCTCACCTAATAAAAT 
Mm   1032TGATCTCTTCCCATCAGGCACGATTA--------ATCCTGTGATCCTCACTAAATAAAA 
As   1011----------------------------------------------------------- 
Rn   1005TGCTCTCTTTTCCCATCAGACA------------------TGATTAATCCTAAATAAAA 
 
 
Ss   1026CGCCCTTTCTCGGCAAAAAAAAAAAAAAAAAAAAAAAAAAA------------------- 
Bt   1034TGCCCTTTCTCTGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAA 
Hs   1005GGCTCTTCTTCTGCATCAAAAAAAAAAAAA------------------------------ 
Mm   1084TAGCCCTTCATCTGCAAAAAAAAAAAAAA------------------------------- 
As   ---------------------------------------------------------------- 
Rn   1047TAGTTCTTCATCTGCAAAAAAAAAAAAAAAAAA--------------------------- 
 
 
Ss   1067-----------      
Bt   1094AAAAAAAAAAA  
Hs   1035-----------      
Mm   1112-----------     
As   ---------------               
Rn   1079-----------     
 
Figure 3-30 cDNA sequence alignment for SPLUNC1, comparing the 
Apodemus sylvaticus sequence with those published for SPLUNC1 in other 
species. 
White characters on black background indicate consensus nucleotides; white 
characters on grey background indicate partial consensus nucleotides; black 
characters on white background indicate non-consensual nucleotides. 
*** = start codon,  ^^^ = stop codon 
  Ss = Sus scrofa (pig; AK238256.1) 
Bs = Bos taurus (cow; BC114803.1) 
Hs = Homo sapiens (Human; NM_016583.3) 
As = Apodemus sylvaticus (wood mouse; HM008620) 
Mm = Mus musculus (mouse; NM_011126.3) 
Rn = Rattus norvegicus (brown rat; NM_172031.1) 
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 AAATAGAAGATCAAGCACGGCNCTGAGACCTTGATACTCAGACACCAAGAGAGATGTTTCTAGTGGGA 
                                                      MetF  L  V  G     
AGCCTCGTCCTCTGTGGGCTGCTGGCCCAGAGCACAGCACAGCTGGCAGGCCTGCCATTGCCCCTGGGC 
S  L  V  L  C  G  L  L  A  Q  S  T  A  Q  L  A  G  L  P  L  P  L  G  
CAGGGCCTGCCCTTGACCCTGGACCAGGGCCTGCCTTTGCCACTGAACCAGGGCCTGCCTTTGCCACTG 
Q  G  L  P  L  T  L  D  Q  G  L  P  L  P  L  N  Q  G  L  P  L  P  L   
GGCCAGGGTCTGCCTTTGGCTGTAAGCCCAGCACTGCCTTCAAATCCTACAGATCTTCTGGCTGGAAAA 
G  Q  G  L  P  L  A  V  S  P  A  L  P  S  N  P  T  D  L  L  A  G  K  
TTCACAGATGCTCTCAGTGGTGGCCTGCTGTCTGGGGGACTGCTGGGCATTTTGGAAAATATTCCACTC 
F  T  D  A  L  S  G  G  L  L  S  G  G  L  L  G  I  L  E  N  I  P  L   
CTGGATGTTTTAAAGTCTGGAGGAGGCAATTCTAATGGTCTTGTTGGGGGCCTGCTTGGAAAACTGACA 
L  D  V  L  K  S  G  G  G  N  S  N  G  L  V  G  G  L  L  G  K  L  T   
TCATCCCTTCCTCTCCTGAACAACATCCTCGACATAAAAATCACTGATCCCCAGCTGCTGGAACTTGGC 
S  S  L  P  L  L  N  N  I  L  D  I  K  I  T  D  P  Q  L  L  E  L  G   
CTTGTGCAAAGCCCTGATGGCCATCGTCCCTATGTCACCATCCCTCTGGGCTTGAAACTCAAAGTGAAT 
L  V  Q  S  P  D  G  H  R  P  Y  V  T  I  P  L  G  L  K  L  K  V  N   
ATGCCCGTAGTTGGAAGTCTTTTGGAATTGGCCGTGAAGCTGAACATCACAGCAGAAGTCTTAGCCGTG 
MetP  V  V  G  S  L  L  E  L  A  V  K  L  N  I  T  A  E  V  L  A  V  
AAAGACAATCAGGGGAGGATTCATCTGGTTCTTGGTGACTGCACCCACTCCCCTGGCAGCCTGAATATC 
K  D  N  Q  G  R  I  H  L  V  L  G  D  C  T  H  S  P  G  S  L  N  I   
ACCTTGCTCAATGGAGTCACTCCAGTTCAAAACTTTTTAGACAACCTCACAGGGATACTGACTAAAGTC 
T  L  L  N  G  V  T  P  V  Q  N  F  L  D  N  L  T  G  I  L  T  K  V  
CTTCCTGAGCTGATCCAGGGCAAGGTATGTCCTCTGGTCAATGGGATTCTCAGTGGTTTGGATGTCACC
L  P  E  L  I  Q  G  K  V  C  P  L  V  N  G  I  L  S  G  L  D  V  T     
CTGGTGCATGACATTGCTGACTTACTGATCCATGGACTGCAGTTTGTCATCAAAATTTAGGCTTCCCAG       
L  V  H  D  I  A  D  L  L  I  H  G  L  Q  F  V  I  K  I  Stop 
GAAGGAAGGCCTACCTTGGTTGAGCTGAATCATTTCTTGCTGCTCAGTCTCCCGCCTCTTGCCCAGTCT 
 
CCCATGGCTCACAGAAAGGGGCCCACATCCTGGAAAAATTATGTCT 
 

Figure 3-31 Predicted amino acid sequence from cDNA for SPLUNC1 in the 
wood mouse. 
Generated using the cloned cDNA sequence and translated using ExPASy 
(Gasteiger et al., 2003). 
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        ~~~~~~~~~~~~~~~~~~~   ###################### 
Ss    1 MFQVAGLIVFCGLLAQTTALLE------------------------ALP--LGKALPLAL 
Bt    1 MFHIGSLVVLCGLLAPTTALLE------------------------ALPTPLGQTLPLAV 
Hs    1 MFQTGGLIVFYGLLAQTMAQFG------------------------GLPVPLDQTLPLNV 
Mm    1 MFLVGSLVVLCGLLAHSTAQLAGLPLPLGQGPPLPLNQGPPLPLNQGQLLPLAQGLPLAV 
As    1 MFLVGSL-VLCGLLAQSTAQLAGLPLPLGQGLPLTLDQGLPLPLNQGLPLPLGQGLPLAV 
Rn    1 MFLVGSLVVLCGLLAQSTAQLAGLPLPLGQ--------GLPLPLGQGLPLPLGQGLPLAV 
 
 
Ss   35 D----QSPTD-LVGSLTSTLSNGLLSEGVLGILGNLPLLDILKAGGNTPSGLLGGLLGKL 
Bt   37 TPALAPSPPD-LAGSLTGALSNGLLSEGLLGILENLPLLDILKTRGNAPSGLLGSLLGKV 
Hs   37 NPALPLSPTG-LAGSLTNALSNGLLSGGLLGILENLPLLDILKPGGGTSGGLLGGLLGKV 
Mm   61 SPALPSNPTDLLAGKFTDALSGGLLSGGLLGILENIPLLDVIKSGGGNSNGLVGGLLGKL 
As   60 SPALPSNPTDLLAGKFTDALSGGLLSGGLLGILENIPLLDVLKSGGGNSNGLVGGLLGKL 
Rn   53 SPALPSNPTDLLAGNFANALSGGLLSGGLLGILENIPLLDVIKSGGGSSNGLVGGLLGKL 
 
 
Ss   87 SSTIPLLNDIVDLQITDPQLLELGLVQSPDGHRLYVTIPLSLVLNVKTSVVG-SLLKLAV 
Bt   93 TSLTPLLNNIIELKITNPQLLELGLVQSPDGHRLYVTIPLGMILNVKTSLVG-SLLKLAV 
Hs   93 TSVIPGLNNIIDIKVTDPQLLELGLVQSPDGHRLYVTIPLGIKLQVNTPLVGASLLRLAV 
Mm  118 TSSVPLLNNILDIKITDPQLLELGLVQSPDGHRLYVTIPLGLTLNVNMPVVG-SLLQLAV 
As  117 TSSLPLLNNILDIKITDPQLLELGLVQSPDGHRPYVTIPLGLKLKVNMPVVG-SLLELAV 
Rn  110 TSSVPLLNNILDIKITDPRLLELGLVQSPDGHRLYATIPLSLKLQVNMPVVG-SFLQLAV 
 
                                * 
Ss  142 KLNITVELLAVKDEQGKSHLVLGDCTHSPGSLKISLLDGLGPLVPQDLLDSITGVLDNVL 
Bt  148 KLNITVELLAVTDEQKHVHLVVGNCTHSPGSLQIFLLDGLGSLPIQSFVDNLTGILNDVL 
Hs  149 KLDITAEILAVRDKQERIHLVLGDCTHSPGSLQISLLDGLGPLPIQGLLDSLTGILNKVL 
Mm  173 KLNITAEVLAVKDNQGRIHLVLGDCTHSPGSLKISLLN--GVTPVQSFLDNLTGILTKVL 
As  172 KLNITAEVLAVKDNQGRIHLVLGDCTHSPGSLNITLLN--GVTPVQNFLDNLTGILTKVL 
Rn  165 KLNITAEIVAMKDNQGRIHLVLGDCTHSPGSLQITLLN--GVTPVQSSLDSLTGILTKVL 
 
                * 
Ss  198 PGLVQGEVCPLVNEVLSHLDVTLVHSIVDALIQGQEFVIKV 249 
Bt  204 PGLVQGKVCPLVNAVLSRLDVTLVHSIVNALIHGLQFVIKV 255 
Hs  205 PELVQGNVCPLVNEVLRGLDITLVHDIVNMLIHGLQFVIKV 256 
Mm  227 PELIQGKVCPLVNGILSGLDVTLVHNIAELLIHGLQFVIKV 278 
As  226 PELIQGKVCPLVNGILSGLDVTLVHDIADLLIHGLQFVIKI 277 
Rn  219 PELIQGKVCPLINGILSGLDVTLVHNIAELLIHGIQFVIKV 270 
 

Figure 3-32 Predicted amino acid sequence of SPLUNC1from Apodemus 
sylvaticus compared to published sequences of other species. 
White characters on black background indicate consensus amino acids; 
white characters on grey background indicate partial consensus amino acids; 
black characters on white background indicate non-consensual amino acids. 
~~~ = signal peptide;  * = conserved cysteines required for binding between 
BPI N-terminal domain and LPS;  ### = (GL/P/QP/LLPL) repeat present in the 
enlarged exon 2 of rodent species. 
Ss = Sus scrofa (pig; sp|Q5XW65.1|PLUNC_PIG) 
Bs = Bos taurus (cow; sp|Q8SPU5.1|PLUNC_BOVIN) 
Hs = Homo sapiens (human; sp|Q9NP55.1|PLUNC_HUMAN) 
As = Apodemus sylvaticus (wood mouse; HM008620) 
Mm = Mus musculus (mouse; sp|P97361.3|PLUNC_MOUSE) 
Rn = Rattus norvegicus (brown rat; sp|Q8K4I4.1|PLUNC_RAT) 
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Figure 3-33 Phylogram for SPLUNC1 based on amino acid comparisons.  
The tree was constructed using the ClustalW program by pair-group 
clustering method. The numerical values indicate mutation distances. 
Ss = Sus scrofa (pig; sp|Q5XW65.1|PLUNC_PIG) 
Bs = Bos taurus (cow; sp|Q8SPU5.1|PLUNC_BOVIN) 
Hs = Homo sapiens (human; sp|Q9NP55.1|PLUNC_HUMAN) 
As = Apodemus sylvaticus (wood mouse; HM008620) 
Mm = Mus musculus (mouse; sp|P97361.3|PLUNC_MOUSE) 
Rn = Rattus norvegicus (brown rat; sp|Q8K4I4.1|PLUNC_RAT) 
  

Ss 
Bt 
Hs 
Mm 
As 
Rn 

1.51 

0.97 

6.12 
6.12 
6.66 

4.25 
0.52 

2.41 

1.90 
1.90 
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3.1.2 MHV-68 infection in 129 wild type and IFNγR-/- mice 
3.1.2.1 The inflammatory response in MHV-68 infected 129 wild type and 
IFNγR-/- mice 
129 wild type (wt) and 129 interferon gamma receptor knock out (IFNγR-/-) 

mice were infected with a wild type strain of MHV-68 intranasally, euthanased 

at 8 and 12 dpi and the lungs examined by light microscopy including 

immunohistology, using formalin fixed, paraffin embedded tissue specimens 

kindly provided by Dr. Bernadette Dutia, University of Edinburgh.  

 

At day 8 pi, the wild type mouse lungs exhibited mild multifocal aggregates of 

macrophages, lymphocytes and neutrophils (both viable and degenerate), 

admixed with necrotic debris. These inflammatory foci were occasionally 

perivascular or peribronchiolar, but more frequently were randomly situated 

within the alveolar spaces and septa (Figure 3-34). Occasional lymphocyte-

dominated accumulations were observed close to large bronchioles in one 

mouse. The endothelium within blood vessels was activated and showed 

adherent leukocytes, indicating migration of leukocytes from the blood into the 

surrounding lung tissue.  

 

The IFNγR-/- mice exhibited a more severe inflammatory response at day 8 pi; 

a variably intense (mild to marked), multifocal to coalescing, predominantly 

peribronchiolar and perivascular infiltrate (neutrophils, lesser lymphocytes, 

macrophages) was seen which effaced the alveolar architecture at the centre 

of foci, and filled the alveolar spaces at the periphery. Mixed with the 

inflammatory cells were erythrocytes, necrotic cellular debris and fibrin (Figure 

3-35). In addition, there was a mild diffuse, mixed infiltrate (lymphocytes, 

neutrophils, plasma cells, macrophages) surrounding the bronchi, which 

extended into the pleura and the surrounding adipose tissue. 

 

By day 12 pi, wild type mice exhibited more numerous multifocal inflammatory 

infiltrates (lymphocytes, plasma cells, lesser neutrophils and macrophages), 

which were mild to moderate and predominantly perivascular or 

peribronchiolar (Figure 3-36). These inflammatory foci also occasionally 
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contained necrotic cells. Mild lymphoplasmacytic accumulations adjacent to 

bronchi were also seen. 

 

At day 12 pi, IFNγR-/- mice exhibited multifocal marked (and focally extensive) 

accumulations of macrophages, admixed with neutrophils, lesser 

lymphocytes and cellular debris (Figure 3-37a,b). Additionally there were 

moderate, multifocal to coalescing (perivascular and peribronchiolar, with 

“bridges” in between), lymphoplasmacellular infiltrates with lesser neutrophils 

and macrophages (Figure 3-37c,d). Without these foci, alveoli exhibit mild to 

moderate hyperaemia and a mild increase in the number of alveolar 

macrophages. 
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Figure 3-35 Histology of the lungs from MHV-68 infected 129 IFNγR-/- mice at 
day 8 pi. 
(a) Multifocal to coalescing variably intense perivascular and peribronchiolar 
infiltrates (arrows; 4x, HE). (b) Inflammatory infiltrates efface the alveoli at the 
centre of inflammatory foci (40x, HE). 
 

  

a 

b 
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Figure 3-36 Histology of the lung from MHV-68 infected 129 wild type mice at 
day 12 pi. 
(a) Wild type mouse lung showing mild to moderate multifocal infiltrates, 
which are predominantly perivascular and peribronchiolar (arrows; 4x, HE). 
(b) Mixed inflammatory infiltrate adjacent to a bronchiole and within alveolar 
spaces (20x, HE).  
 

  

b 
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Figure 3-37 Histology of 
the lung from MHV-68 
infected 129 IFNγR-/- mice 
at day 12 pi. 
 
(a) Focally extensive 
macrophage dominated 
infiltrates (4x, HE). 
(b) Macrophage (arrows) 
dominated infiltrates, with 
admixed neutrophils and 
lymphocytes (20x, HE). 
(c) Moderate, multifocal to 
coalescing lymphoplasma-
cellular perivascular and 
peribronchiolar infiltrates 
(arrows; 2x, HE). 
(d) Lymphoplasmacellular 
perivascular and peri-
bronchiolar infiltrates (20x, 
HE). 
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3.1.2.2 Immunohistology in 129 wild type and IFNγR-/- mice 
3.1.2.2.1 CCSP expression in 129 wild type and IFNγR-/- mice 
Immunohistological staining for CCSP antigen was performed and slides 

examined visually and quantitatively analysed as before (see 3.1.1.3.1.2). 

Overall, the pattern of distribution of CCSP in uninfected wild type and IFNγR-/- 

mice was similar to that seen in the wood mice; the intensity of staining and 

number of cells stained both increased distally in the respiratory tract. Even 

within the trachea the frequency of positive cells was greater in the distal 

trachea than the proximal trachea. The staining in wild type mice was generally 

more intense (Figure 3-38a,b), compared to that seen in IFNγR-/- mice (Figure 

3-38c,d). In the IFNγR-/- mice, CCSP positive cells tended to project further in 

to the lumen than those of wild type mice; this was most notable in the trachea, 

where the difference in height between the non-ciliated Clara cell and ciliated 

respiratory epithelium is usually minimal (Figure 3-38c). 

 

Quantitative comparison of wild type and IFNγR-/- mice at different timepoints 

in the various anatomical locations revealed that in the trachea, IFNγR-/- mice 

exhibited a significantly lower percentage area of tissue stained, at both day 0 

pi (uninfected; P = 0.025, two sample T-test) and day 12 pi (P = 0.001, two 

sample T-test); no data is available for day 8 pi (Figure 3-39b). The IFNγR-/- 

mice also exhibited reduced intensity of staining in the trachea at days 0 and 

12 pi, although these data were not significantly different (P = 0.052 and 0.272 

respectively, two sample T-test [Figure 3-39a]). In the bronchi, both 

parameters showed considerable overlap at all timepoints and there was no 

significant difference between wild type and IFNγR-/- mice.  

 

In the bronchioles, the percentage area of tissue stained was very similar 

between wild type and IFNγR-/- mice at all timepoints, however, there was a 

small but significant decrease in the intensity of staining for CCSP at all 

timepoints (day 0, P = 0.001; day 8, P = 0.003; day 12, P = 0.023; two sample 

T-test [Figure 3-39a]). 

 

In addition to the differences between wild type and IFNγR-/- mice at the 

various timepoints and levels of the respiratory epithelium, the results over the 
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time-course of infection were also examined. The trachea exhibited a 

decrease in CCSP in response to infection, as shown by the significant 

decrease in percentage area of tissue stained in both wild type (P = 0.0019, 

ANOVA) and IFNγR-/- mice (P = 0.0004, ANOVA), between day 0 and day 12 

pi (Figure 3-40b); in addition there were decreases in the intensity of staining 

for CCSP (Figure 3-40a), which were significant in the wild type mice (P = 

0.0379, ANOVA), but not the IFNγR-/- mice (P = 0.1827, ANOVA). The data for 

the bronchi showed a large variation (as shown by the large standard error of 

the mean [SEM]) and overlap between groups, so that the differences between 

timepoints were not significant.  

 

In the bronchioles there were decreases in intensity of staining for CCSP both 

between days 0 and 8 pi and days 8 and 12 dpi; these decreases were 

significant in the wild type mice between day 0 and day 12 (P = 0.0001, 

ANOVA) and day 8 and day 12 (P = 0.0002, ANOVA) and also in the IFNγR-/- 

mice between day 0 and day 8 (P = 0.0303, ANOVA) and day 0 and day 12 

(P = 0.0001, ANOVA; Figure 3-40a). The percentage area of tissue stained 

showed a slightly different pattern; there were significant decreases between 

day 0 and day 8 in both the wild type mice (P=0.0001, ANOVA) and the 

IFNγR-/- mice (P = 0.0001, ANOVA), however, between days 8 and 12, there 

was an increase in percentage area stained, again in both wild type mice (P = 

0.0001, ANOVA) and IFNγR-/- mice (P = 0.0029, ANOVA). This increase 

between days 8 and 12 pi, however, remained significantly less than the 

percentage area stained at day 0 for both wild type mice (P = 0.0001, ANOVA) 

and IFNγR-/- mice (P = 0.0001, ANOVA; Figure 3-40b). 
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d c 

b
Figure 3-38 Immuno-
histology for CCSP in the 
respiratory tract of 
uninfected (day 0) 129 wild 
type and IFNγR-/- mice. 
 
(a) Trachea in an uninfected 
(day 0) wild type mouse 
exhibits numerous CCSP 
cells within the respiratory 
epithelium (arrows; 40x). 
(b) Bronchiole of an 
uninfected (day 0) wild type 
mouse with several cells 
strongly stained for CCSP 
(arrows; 40x). (c) Trachea of 
an uninfected (day 0) 
IFNγR-/- mouse with 
numerous positive cells, 
which are less strongly 
stained than those in the 
wild type mice (arrows; 40x). 
(d) Bronchiole of an 
uninfected (day 0) IFNγR-/- 
mouse exhibiting cells which 
are less strongly stained 
than in wild type mice, and 
project further into the lumen 
of the bronchiole (arrows; 
40x). 
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Figure 3-39 Quantitative analysis of immunohistological staining for CCSP at 
different levels of the respiratory tract in 129 wild type (wt) and IFNγR-/- (ko) 
mice before and after infection with MHV-68. 
(a) Intensity of staining for CCSP in respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for CCSP. Data are the mean of 
analysis of tissue from two or three mice per group, bars represent the 
standard error of the mean. ∗ P< 0.05; ∗∗ P< 0.005 (two sample T-test). 
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Figure 3-40 Quantitative analysis of immunohistological staining for CCSP at 
different levels of the respiratory tract in 129 wild type and IFNγR-/- (IFNγRko) 
mice, before and after infection with MHV-68. 
(a) Intensity of staining for CCSP in respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for CCSP. Data are the mean of 
analysis of tissue from two or three mice per group, bars represent the 
standard error of the mean. ∗ P< 0.05; ∗∗ P< 0.005 (ANOVA). 
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3.1.2.2.2 SPLUNC1 expression in 129 wild type and IFNγR-/- mice 
Immunohistology for SPLUNC1 antigen was performed on sections of formalin 

fixed paraffin embedded lung tissue and viewed visually and quantitatively 

analysed as previously. In the uninfected (day 0) wild type mice, numerous 

cells within the trachea were positive, but exhibited varying intensity of 

staining. Those cells which exhibited moderate to intense staining were non-

ciliated. In addition, some ciliated cells exhibited faint staining (Figure 3-41a). 

No submucosal glands or bronchi were present on the sections examined. 

Bronchioles were overwhelmingly negative with very rare positive cells within 

the more proximal bronchioles (Figure 3-41b). 

 

In the trachea of IFNγR-/- mice, the proportion of cells positive for SPLUNC1 

was similar to that seen in the wild type mice; the pattern of staining was 

similar however, in that non-ciliated cells were moderately to strongly positive 

and the ciliated cells faintly positive (Figure 3-41c). Submucosal glands 

present were variably stained; some (predominantly acinar serous-type 

glands) exhibited strong cytoplasmic and luminal staining, whereas others 

(mucous-type tubular glands) were predominantly negative (Figure 3-41d). 

Bronchi were not present on the sections examined. As in the wild type mice, 

bronchiolar epithelial cells were negative, with rare positive cells within 

proximal bronchioles. 

 

Quantitative comparison of wild type and IFNγR-/- mice immunohistology 

showed that there were essentially no differences between wild type and 

IFNγR-/- mice in the intensity of staining at day 0 in either the trachea (P = 

0.993, two sample T-test) or the bronchioles (P = 0.415, two sample T-test); 

data are not available for the bronchi. The percentage area of tissue stained 

was very similar in both groups of mice, in the trachea (P = 0.246, two sample 

T-test) and the bronchioles (P = 0.773, two sample T-test [Figure 3-42a,b]). 

Following infection, bronchi exhibited a significantly lower intensity (P = 0.019, 

two sample T-test) and percentage area of tissue stained (P = 0.027, two 

sample T-test) in IFNγR-/- mice than wild type mice at 8dpi. However, this 

relationship was reversed at 12 dpi, when the percentage area was 

significantly higher (P = 0.009, two sample T-test) in IFNγR-/- mice compared 
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to wild type mice; the intensity of staining was also increased in IFNγR-/- mice, 

but this difference was not significant (P = 0.053, two sample T-test [Figure 

3-42a,b]). 

 

In the trachea at day 12 pi (no data are available for day 8) IFNγR-/- mice 

exhibited a highly significant increase in intensity of staining, compared to wild 

type mice (P = 0.001, two sample T-test [Figure 3-42a]), but no difference in 

the percentage area stained (P = 0.607, two sample T-test [Figure 3-42b]). 

The bronchioles showed very little difference between the wild type and the 

IFNγR-/- mice, with the exception of the intensity of staining at day 12 pi, in 

which the IFNγR-/- mice exhibited a small, but significantly higher intensity (P = 

0.011, two sample T-test [Figure 3-42a]). 

 

The quantitative analysis of immunohistological staining for SPLUNC1 was 

also examined to assess the effect of infection at each location in the wild type 

and IFNγR-/- mice. In the trachea of wild type mice, there was a decrease in 

both the intensity (P = 0.0607, ANOVA) and percentage area stained (P = 

0.2739, ANOVA) following infection (at day 12 pi), but neither of the alterations 

were significant (Figure 3-43a,b).  In the bronchi, IFNγR-/- mice exhibited an 

increase in both intensity of staining (P = 0.0068, ANOVA) and percentage 

area of tissue stained (P = 0.0009, ANOVA) between days 8 and 12 pi. In 

contrast, the wild type mice exhibited no significant difference between these 

two timepoints (Figure 3-43a,b). 

 

In the bronchioles, there were small, but significant increases in both the 

intensity of staining and the percentage area stained in response to infection in 

both wild type and IFNγR-/- mice; moreover, these increases were maintained 

from day 8 to day 12 pi (Figure 3-43a,b). In the wild type mice, between day 0 

and day 8, the intensity of staining increased (P=0.0001, ANOVA); followed by 

a small, not significant decrease at day 12 (P = 0.0742, ANOVA). The intensity 

at day 12, however, remained significantly higher than that at day 0 (P = 

0.0075, ANOVA). A very similar pattern was observed in the percentage area 

of tissue stained, with a highly significant increase between days 0 and 8 pi 

(P = 0.0033, ANOVA), followed by a similar percentage at day 12, which 
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remained significantly higher than that seen at day 0 (P = 0.0116, ANOVA). 

This pattern of alteration in response to infection is preserved in the IFNγR-/- 

mice (Figure 3-43a,b), which exhibited a significant increase in both intensity 

(P = 0.0001, ANOVA) and percentage area (P = 0.0102, ANOVA) between 

days 0 and 8 pi, which were maintained between days 8 and 12pi, so that the 

increased intensity and percentage area stained remained significantly higher 

in day 12, compared to day 0 (P = 0.0001 and 0.0002, respectively; ANOVA). 
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Figure 3-42 Quantitative analysis of immunohistological staining for 
SPLUNC1 at different levels of the respiratory tract in129 wild type (wt) and 
IFNγR-/- (ko) mice, before and after infection with MHV-68. 
(a) Intensity of staining for SPLUNC1 in respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for SPLUNC1. Data are the mean of 
analysis of tissue from two or three mice per group, bars represent the 
standard error of the mean. ∗ P< 0.05; ∗∗ P< 0.005 (two sample T-test). 
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Figure 3-43 Quantitative analysis of immunohistological staining for 
SPLUNC1 at different levels of the respiratory tract in 129 wild type and 
IFNγR-/- mice (IFNγRko), before and after infection with MHV-68. 
(a) Intensity of staining for SPLUNC1 in respiratory epithelium (b) Percentage 
area of respiratory epithelium stained for SPLUNC1. Data are the mean of 
analysis of tissue from two or three mice per group, bars represent the 
standard error of the mean. ∗ P< 0.05; ∗∗ P< 0.005 (ANOVA). 
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3.1.3 MHV-68 infection in vitro 
3.1.3.1 Transfection of 293T cells 
Transfection of cells using a vector containing GFP was used as a positive 

control to assess the efficiency of transfection. Approximately 48 hours after 

applying the transfection solution, cells were viewed under fluorescent light 

and approximately 40 % of cells transfected with the GFP containing vector 

were expressing GFP. Supernatants from transfected cell cultures were 

harvested and analysed for the presence of protein from the vector, using an 

anti-V5 antibody to detect the V5 tag present in the vector used 

(pcDNA5/FRT/V5-His-TOPO®, Invitrogen), and also actin as a control, using 

SDS-PAGE and Western Blotting. Although all samples examined were 

positive for actin, the proteins from the genes of interest inserted in the vector 

could not be detected. 

 
3.1.3.2 Infection of transfected cells with MHV-68 
Transfection of 293T cells with pcDNA5/FRT/V5-His-TOPO® vector containing 

inserts for the human genes CCSP, AGR3, SPLUNC1 and SPLUNC1 Cys mut 

(which contained a cysteine mutation, thought to be critical to the three 

dimensional structure and therefore for binding functions) was performed. 24 

hours after the removal of the transfection solution, cells were infected with a 

recombinant virus which contained an inserted GFP (LH∆GFP). At 12 hpi, 

images were taken under fluorescent light and subsequently analysed to 

quantify the percentage area that was positive for GFP. The experiment was 

repeated twice, however, due to different thresholding of the images obtained, 

cannot be combined and so are presented separately. 

 

In both experiments, cells transfected with CCSP exhibited a reduction in the 

percentage of cells infected with LH∆GFP, when compared to the control 

transfection (a vector with no insert). The reductions were 0.552 and 0.363-

fold, respectively in the two experiments (Figure 3-44). This reduction was 

statistically significant in both experiments (P = 0.020 and 0.033, respectively; 

two sample T-test). Both SPLUNC1 and SPLUNC1 Cys mut showed an 

increase in the percentage of cells infected, but these increases were not 

statistically significant. AGR3 exhibited a decrease in the first experiment, and 
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a small increase in the second; neither of these changes were significant 

(Figure 3-44). 
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Figure 3-44 Alteration in the mean GFP positive area of cell cultures 
transfected with different gene-containing vectors compared to cells 
transfected with an empty vector, following infection with MHV-68 LH∆GFP.  
Data represent the mean of ten high power fields per transfection. Two 
replicates of the same experiment. 
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3.2 Paramyxovirus infection and its effect on the expression of CCSP 
and SPLUNC1 
3.2.1 The inflammatory response to HRSV and SeV infection 
To ascertain whether the pattern of alteration in expression of CCSP and 

SPLUNC1 was solely a MHV-68 related phenomenon, or a non-specific 

response to a pneumotropic virus, lungs from animals infected with other 

respiratory viruses were investigated. Mice were infected with either Human 

respiratory syncytial virus (HRSV)-BT2a (a clinical isolate), HRSV-Long (a 

laboratory strain), Sendai virus (SeV) or mock-infected and euthanased at 

days 1, 3, 5 and 7 post infection. 

 

At day 1 pi, lungs from two out of four HRSV-BT2a infected mice exhibited 

scattered mild to moderate foci of viable and degenerate neutrophils, with 

lesser macrophages and admixed with necrotic cellular debris adjacent to 

either bronchioles or vessels (Figure 3-45a). By day 3 pi, all mice exhibited 

mild to moderate multifocal (peribronchiolar and perivascular) infiltrates which 

remained neutrophil-dominated, with lesser macrophages, lymphocytes and 

eosinophils and necrotic cellular debris (Figure 3-45b). In addition, mild diffuse 

type II pneumocyte hyperplasia was seen (Figure 3-45c). Immunohistology for 

HRSV revealed antigen predominantly within the cytoplasm of pneumocytes 

and less frequently in type II pneumocytes and macrophages (Figure 3-45d). 

Rare bronchiolar epithelial cells were also positive for HRSV antigen. 

 

At day 5 pi, inflammatory infiltrates remained predominantly perivascular and 

peribronchiolar but were less neutrophil-dominated and contained increased 

numbers of lymphocytes. Low numbers of neutrophils were seen in the 

interstitium surrounding foci of inflammation. Within larger bronchioles, 

scattered necrotic epithelial cells were observed. Immunohistology for HRSV 

revealed that viral antigen was present in a similar pattern to that seen at day 3 

pi. By day 7, the severity of the perivascular and peribronchiolar infiltrates had 

decreased, and neutrophils were less dominant than seen at earlier 

timepoints. Type II pneumocyte hyperplasia was still observed at a similar level 

to earlier timepoints; however, the level of viral antigen detected by 

immunohistology was reduced. 
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HRSV-Long infected mice at day 1 pi showed a similar response to HRSV-

BT2a infected mice; two out of four mice exhibited small multifocal 

accumulations of viable and degenerate neutrophils. Similar inflammatory cells 

were occasionally seen within bronchiolar lumina (Figure 3-46a). Mice 

euthanased at day 3 pi exhibited mild diffuse neutrophil-dominated interstitial 

infiltrates (Figure 3-46b), opposed to the multifocal mixed infiltrates seen in the 

HRSV-BT2a infected mice. Additionally, immunohistology for HRSV antigen 

revealed fewer positive cells in HRSV-Long infected mice (Figure 3-46c). By 

day 5 pi, the diffuse neutrophilic interstitial infiltrate persisted and in addition 

there were mild multifocal aggregates of lymphocytes and histiocytes present 

in two out of four mice. All mice at day 7 pi exhibited mild, multifocal infiltrates 

that were more mixed (lymphocytes, lesser neutrophils, macrophages), 

predominantly in perivascular and peribronchiolar locations (Figure 3-46d). 

Interstitial neutrophils were still present, but in reduced numbers compared to 

previous timepoints. 
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Infection of mice with SeV led to a different response to that seen with MHV-68 

and HRSV, as this virus induced a necrotising inflammation. At day 1 pi mice 

infected with SeV exhibited mild, scattered multifocal neutrophilic infiltration, 

with frequently degenerate neutrophils and lesser macrophages mixed with 

necrotic cellular debris. By day 3 pi these infiltrates were more frequent, mild to 

moderate and exhibited a perivascular and peribronchiolar distribution (Figure 

3-47a). Infiltrates remained predominantly composed of neutrophils, with fewer 

lymphocytes and macrophages. Along with the necrotic cellular debris in these 

areas, scattered necrotic-apoptotic epithelial cells were present within 

bronchiolar epithelium (Figure 3-47b). The alveoli surrounding the 

inflammatory foci had mildly to moderately increased numbers of neutrophils 

within the interstitium. 

 

5 days pi, the inflammatory response was similar in composition to that seen 

on day 3, but had increased in severity and distribution. Peribronchiolar and 

perivascular infiltrates were moderate, and extended into the surrounding 

alveoli, with neutrophils present within alveolar spaces, along with increased 

numbers of alveolar macrophages and necrosis of pneumocytes (Figure 

3-47c). Bronchioles exhibited increased epithelial cell necrosis, and neutrophils 

were present within the respiratory epithelium and the lumen of airways, along 

with macrophages and cellular debris (Figure 3-48d). 

 

In contrast to the HRSV infected mice, which exhibited evidence of resolution 

of inflammation by day 7 pi, the SeV infected mice at this timepoint had more 

severe inflammation than at the previous timepoint. The lungs exhibited 

moderate to severe, predominantly pyogranulomatous infiltrates with 

numerous degenerate neutrophils, cellular debris and fibrin, centred on 

bronchioles and vessels but extending far into the surrounding parenchyma, 

filling alveolar spaces (Figure 3-48e).  Within pyogranulomatous infiltrates 

small foci of lymphocytes and plasma cells were present (Figure 3-48f). 

Bronchiolar lumina were frequently lined and occasionally occluded by 

degenerate neutrophils and cellular debris; the epithelium variably exhibited 

necrosis or attenuation (Figure 3-48f). 
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Figure 3-47 Histology of 
lung tissue from Sendai 
virus infected BALB/c 
mice. 
 
(a) Mild to moderate 
peribronchiolar and 
perivascular infiltrates at 
day 3 pi (HE, 10x). 
(b) Mixed peribronchiolar 
infiltrates and neutrophils 
within the bronchiolar 
epithelium and lumen; 
day 3 pi (HE, 20x). 
(c) Perivascular and peri-
bronchiolar infiltrates 
extend into the surround-
ing parenchyma on day 5 
pi (HE, 4x). 
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Figure 3-48 Histology of 
lung tissue from Sendai 
virus infected BALB/c 
mice. 
 
(d) Mixed peribronchi-
olar infiltrates are seen, 
with neutrophils present 
within the respiratory 
epithelium, which 
exhibits evidence of 
necrosis; day 5 pi 
(arrows, HE, 20x). 
(e) Loss of alveolar 
structure with moderate 
to severe inflammation 
and evidence of 
pneumocyte necrosis 
[arrows]; day 7 pi (HE, 
20x). (f) Bronchiolar 
lumen occluded with 
inflammatory cells and 
debris, necrosis and loss 
of respiratory epithelial 
cells [arrow]. Addi-
tionally, small foci of 
lymphocytes are present 
within the peribronchi-
olar infiltrates [arrow-
head]; day 7 pi (HE, 
20x).  
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3.2.2 Immunohistology in HRSV and SeV infected BALB/c mice 
3.2.2.1 CCSP expression in response to HRSV and SeV infection 
Immunohistology for CCSP in mock-infected BALB/c mice revealed a similar 

pattern of expression of the protein to that seen in the wood mice. The trachea 

had scattered positive cells in the respiratory epithelium (Figure 3-49a) and 

similarly, the bronchi exhibited infrequent positive cells (Figure 3-49b). In the 

bronchioles, the majority of respiratory epithelial cells were positive, but 

staining was not strong (Figure 3-49c), with the exception of mice at day 1 pi, 

which exhibited diffusely stronger staining for CCSP (Figure 3-49d). This 

phenomenon was also present in the infected mice and so is discounted in the 

following discussion as to the effect of infection on the expression of CCSP. 

 

Infection of mice with either HRSV-Long or HRSV-BT2a revealed little 

alteration in the expression of CCSP. The majority of the epithelium remained 

positive and staining was generally faint to moderate with small foci of 

moderate to strong staining (Figure 3-50a). In the SeV infected mice, days 1 

and 3 pi were similar in the frequency and strength of staining for CCSP as 

that seen in mock-infected mice, however, there was a decrease in the 

strength of staining and marked reduction in the number of positive bronchiolar 

epithelial cells at days 5 and 7 pi. This was most marked in association with 

peribronchiolar inflammatory infiltration (Figure 3-50b-d). 
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Figure 3-49 Immuno-
histology for CCSP in mock-
infected BALB/c mice. 
 
(a) Scattered CCSP positive 
cells are seen in the trachea 
(arrow, 10x). (b) The bronchi 
exhibit scattered positive 
epithelial cells (20x). 
(c) Bronchioles contain 
numerous moderately 
positive cells at days 3, 5 
and 7 pi (20x). (d) 
Bronchiolar staining for 
CCSP at day 1 pi shows a 
stronger reaction than that 
seen at later timepoints 
(20x). 



c 

a 

 

 

b 

d 

158 

 

Figure 3-
histology for 
and SeV inf
mice. 
 
(a) HRSV-
mouse (da
distribution a
of CCSP in 
mice was si
mock-infecte
(20x). (b) 
mouse at da
similar dis
strength of st
infected mice
infection at 
associated w
in the num
positive cells
infected mou
reduced num
positive ce
(20x). 

 

-50 Immuno
CCSP in HRS
fected  BALB/

BT2a infecte
ay 7pi); th
and expressio
HRSV infecte
milar to that i

ed BALB/c mic
SeV infecte

ay 3 pi showin
stribution an
taining to mock
e (20x). (c) Se
day 5 pi wa

with a reductio
mber of CCS
s (20x). (d) Se
use at day 7 p
mber of CCS

ells are see

o-
V 
/c 

ed 
he 
on 
ed 
in 

ce 
ed 
ng 
nd 
k-
V 

as 
on 
P 
V 

pi; 
P 

en 



159 

 

3.2.2.2 SPLUNC1 expression in response to HRSV and SeV infection 
Immunohistology for SPLUNC1 in mock-infected BALB/c mice was most 

prevalent in the trachea, where moderately to strongly positive non-ciliated 

cells in the respiratory epithelium were frequent and in addition, staining was 

seen in some of the submucosal gland epithelium and the glandular lumen 

(Figure 3-51a). Within the bronchi, the number of positive cells was slightly 

less than that seen in the trachea, however, the strength of staining remained 

high (Figure 3-51b). Immediately adjacent to the bronchi, the proximal 

bronchioles exhibited a transitionary area, in which bronchiolar epithelium 

exhibited relatively frequent positive cells (Figure 3-51c), compared to the 

bronchioles generally, in which only very rare positive cells were seen (Figure 

3-51d). In contrast to the immunohistology for CCSP, there was no difference 

seen between any of the timepoints. 

 

Very little difference was observed in the pattern or intensity of staining for 

SPLUNC1 as a result of infection with either HRSV or SeV. The proximal 

bronchioles continued to exhibit a “transitionary” zone between the bronchial 

and bronchiolar staining pattern; bronchioles were overwhelmingly negative. 

Occasional positive cells were observed in the bronchioles of SeV infected 

mice after day 3 pi, but these were infrequent and quantitative analysis would 

be required to establish whether this was a significant increase compared to 

mock-infected mice. 
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3.3 Influenza A virus infection and its effect on the expression of CCSP 
and SPLUNC1 
3.3.1 The inflammatory response to Influenza A virus infection 
BALB/c mice were infected with one of four strains of Influenza A virus; 

Influenza A/Ca/04/09 (H1N1) [Ca H1N1], Influenza A/NC/20/99 (H1N1) [NC 

H1N1], Influenza A/Vietnam/04/98 (H5N1) [HPAI H5N1] or Influenza A/Mute 

Swan/MI/451072/06 (H5N1) [LPAI H5N1], and were euthanased at 12, 24, 48 

and 72 hpi. Controls consisted of uninfected mice and mice which had had 

intranasal administration of allantoic fluid; allantoic fluid-treated mice were 

euthanased at 12 and 24 hpi. 

 

Mice from the allantoic fluid-treated group exhibited mild multifocal aggregates 

of either neutrophils alone or neutrophils and macrophages within alveoli, often 

with amphophilic material in the centre (Figure 3-52a,b).  

 

Infection with Influenza A virus induced a necrotising bronchiolitis, which was 

most severe in the HPAI H5N1 infected mice and increased in severity up to 

72 hpi (the latest timepoint). In the lungs of mice infected with the other strains 

the inflammation was less severe and bronchiolar epithelial cell necrosis less 

widespread. The severity of the inflammatory infiltration increased up to 48 hpi, 

and was maintained between 48 and 72 hpi. 

 

In NC H1N1 infected mice at 12 hpi, mild multifocal neutrophil-dominated 

infiltrates were present, variably peribronchiolar or intra-alveolar. Additionally, 

neutrophils were occasionally present within bronchiolar lumina. At 24 hpi, 

neutrophilic infiltrates were similarly distributed to those seen at 12 hpi, with 

additional perivascular infiltrates. By 48 hpi mild multifocal neutrophil-

dominated peribronchiolar infiltrates also contained low numbers of 

macrophages, and the bronchiolar epithelium exhibited mild multifocal 

necrosis (Figure 3-53a).  72 hpi the inflammatory response was very similar to 

that at 48 hpi, additionally, mild multifocal perivascular oedema was present 

(Figure 3-53b).  

 



162 

 

Ca H1N1 infected mice at 12 hpi exhibited mild multifocal to coalescing 

thickening of the alveolar interstitium by neutrophils (Figure 3-54a), 

occasionally with neutrophils and eosinophilic acellular fluid (oedema) within 

alveolar spaces. Similar interstitial infiltrates were also observed at 24 hpi. By 

48 hpi, mild multifocal necrosis of bronchiolar epithelium was present; 

bronchiolar lumina variably contained viable and degenerate neutrophils, 

macrophages and necrotic cellular debris. Mild multifocal peribronchiolar 

infiltration (neutrophils, lesser macrophages) and mild multifocal perivascular 

oedema are present (Figure 3-54b). At 72 hpi, necrosis of bronchiolar 

epithelium remained mild but was more widespread; other changes were 

similar to those seen than at 48 hpi. 

 

Mice infected with HPAI H5N1 at 12 and 24 hpi exhibited occasional mild, 

multifocal pyogranulomatous infiltration, which were predominantly 

peribronchiolar and more frequent in the cranial lung lobes and occasionally 

extended into the lumen of bronchioles (Figure 3-55a). At 48 hpi, within alveoli, 

small necrotic foci with mild infiltration of neutrophils and macrophages were 

present (Figure 3-55b). Within bronchioles and also the trachea, small foci of 

necrotic epithelial cells were seen, with neutrophils within the epithelial layer 

and adjacent to the airway. Mild multifocal neutrophilic tracheitis was present 

at 72 hpi, whereas the bronchioles exhibit diffuse necrosis and loss of 

epithelium with mild to moderate mixed peribronchiolar infiltration (neutrophils, 

lymphocytes, macrophages [Figure 3-55b]). Multifocally, alveoli also contained 

cellular debris, neutrophils, macrophages and proteinaceous fluid (oedema) 

with mild to moderate interstitial infiltration (neutrophils) and mild to moderate 

perivascular oedema. 

 

Mice infected with LPAI H5N1 exhibited similar changes at 12, 24 and 48 hpi; 

mild multifocal, neutrophil-dominated infiltrates, predominantly peribronchiolar, 

but also, less frequently, within alveoli or bronchiolar lumina (Figure 3-56a). By 

48 hpi, rare necrotic cells were present within bronchioles. At 72 hpi, the 

inflammatory infiltrate was more mixed (neutrophils, lymphocytes, 

macrophages) and present within alveoli (Figure 3-56b) and as peribronchiolar 

aggregates. Fewer lymphocyte-dominated perivascular infiltrates were seen.



Figure 3-
(a) Neutr
in mouse
(b) Pyogr
allantoic f
 

 

 
 

52 Histolo
rophil-dom
e 12 hour
ranulomato
fluid admin

a 

b 

gy of lung 
inated alve
rs after a
ous infiltrat
nistration (a

 

16

tissue from
eolar infiltr

allantoic flu
te within a
arrow; HE,

3 

m allantoic 
rate surrou
uid admin
an alveolus
, 40x). 

fluid-treat
unding am
istration (

s of a mou

 

 

ed BALB/c
phophilic m
arrow; HE

use 24 hou

c mice. 
material 
E, 40x). 
urs after 



Figure 3-
(a) Mild n
(b) Mild p
 

 

53 Histolo
necrosis o
perivascula

a 

b 

gy of lung 
of the bron
ar oedema 

 

164

tissue from
nchiolar ep

at 72 hpi (

4 

m NC H1N
pithelium a
(arrows; H

1 infected 
at 48 hpi (a
E, 20x).  

 

 

BALB/c m
arrows; HE

mice. 
E, 20x). 



Figure 3-
(a) Mild m
hpi (HE, 
luminal n
 

 

54 Histolo
multifocal 

20x). (b)
eutrophils,

a 

b 

gy of lung 
interstitial 
 Bronchio
, macropha

 

16

tissue from
neutrophil
les exhibi
ages and c

5 

m Ca H1N1
l-dominate
t mild mu
cellular deb

1 infected 
ed infiltrate
ultifocal ne
bris at 48 h

 

 

BALB/c m
es are see
ecrosis an
hpi (HE, 20

ice. 
n at 12 
d intra-

0x). 



166 

 

 

 

Figure 3-55 Histology of lung tissue from HPAI H5N1 infected BALB/c mice. 
(a) Mild pyogranulomatous infiltrates present within and around bronchioles 
at 12 hpi (arrows; HE, 20x). (b) Bronchioles exhibit necrosis and loss of 
epithelium with mild to moderate mixed peribronchiolar infiltrates at 72 hpi 
(arrows; HE, 20x). 
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Figure 3-56 Histology of lung tissue from LPAI H5N1 infected BALB/c mice. 
(a) Alveolar neutrophil-dominated infiltrate at 24 hpi (arrows; HE, 20x). 
(b) Mild peribronchiolar mixed infiltrate, with inflammatory cells also present 
in the surrounding alveolar spaces at 72 hpi (arrows; HE, 20x). 
  

a 

b 
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3.3.2 Immunohistology in Influenza A virus infected BALB/c mice 
3.3.2.1 CCSP expression in response to Influenza A virus infection 
Immunohistology for CCSP in uninfected mice was similar to that described 

previously for control mice (Figure 3-49). Both mice treated with allantoic fluid 

and Influenza virus infected mice exhibited stronger staining in bronchiolar 

epithelium at 12 hpi (Figure 3-57a), similar to that described previously in 

HRSV and SeV infected mice at the first timepoint. The intensity of staining in 

allantoic fluid treated mice was similar (faint to moderate) to the uninfected 

mice by 24 hpi (Figure 3-57b). Similar increases seen at 12 hpi in infected 

mice will therefore not highlighted further. 

 

In NC H1N1 infected mice, generally the intensity and distribution of staining 

for CCSP was similar to that seen in the uninfected mice, with the exception of 

bronchioles with mild or moderate peribronchiolar inflammatory infiltration, 

which tended to have far fewer positive epithelial cells (Figure 3-58a). 

 

Ca H1N1 infected mice also showed a reduction in intensity of staining for 

CCSP in bronchioles, at 48 and 72 hpi. Association between this decreased 

staining and peribronchiolar inflammatory infiltration was less strong in this 

group, and a higher proportion of cells remained positive, but with lesser 

intensity (Figure 3-58b).  

 

HPAI H5N1 infected mice exhibited a different pattern of staining; at 48 and 72 

hpi , bronchioles with peribronchiolar inflammatory infiltration contained some 

epithelial cells which exhibited stronger staining than the majority of 

bronchioles in these mice, which generally exhibited only faint positivity overall 

(Figure 3-58c). 

 

LPAI H5N1 infected mice did not show any remarkable difference in the 

distribution or intensity of staining, other than the common increase at 12 hpi 

seen in all groups. At 48 and 72 hpi, bronchiolar epithelium was frequently 

positive, with faint to moderate intensity of staining (Figure 3-58d). 
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3.3.2.2 SPLUNC1 expression in response to Influenza A virus infection 
Immunohistology for SPLUNC1 in uninfected and allantoic fluid-treated mice 

yielded staining similar to that previously described in control BALB/c mice 

(Figure 3-51); frequency and intensity of staining was greatest in the trachea 

and bronchi, with a “transitionary zone” in the proximal bronchiole where the 

proportion of positive cells and the intensity of staining decreased rapidly. 

Bronchioles distal to this zone were negative. 

 

In infected mice, two anatomical areas exhibited differences from the control 

mice. The “transitionary zone” in the proximal bronchiole in NC H1N1, and 

LPAI H5N1 infected mice, at later timepoints (48 and 72 hpi), exhibited staining 

in this area that extended distally to that seen in the control mice (Figure 

3-59a), so a greater number of cells were positive for SPLUNC1 (Figure 3-60). 

Conversely, in HPAI H5N1 infection, staining within the “transitionary zone” 

was much weaker at 72hpi, despite having been unaltered at previous 

timepoints (Figure 3-59b). Lastly, bronchioles in several of the infected mice 

exhibited rare or occasional epithelial cells positive for SPLUNC1; staining was 

either widespread throughout the cytoplasm of scattered cells (Figure 3-59c) or 

concentrated in the apical cytoplasm or on the luminal surface of the cell 

(Figure 3-59d). However, this pattern of staining was inconsistent within 

groups of mice and so conclusions as to whether the viral infection caused 

these changes cannot be drawn. 
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Figure 3-60 Immunohistology for SPLUNC1 from 
the lung of a NC H1N1 infected mouse at 72 hpi. 
Positive staining for SPLUNC1 extends further 
distally in the bronchiole than that seen in 
uninfected mice. (a) Strong staining in bronchus 
(20x). (b) Bronchial-bronchiolar junction (20x). 
(c) Proximal bronchiole (20x). (d) Distal bronchiole 
with occasional cells positive for SPLUNC1 (20x).  
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Chapter 4 Discussion and Conclusions 
 

 

4.1 MHV-68 infection in a natural host 
 
4.2 Protein expression in the mock-infected Apodemus 

sylvaticus lung 
 
4.3 Influence of viral infection on the expression of CCSP 
 
4.4 Influence of viral infection on the expression of SPLUNC1 
 
4.5 Conclusions  
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4.1 MHV-68 infection in a natural host 
4.1.1 Pulmonary inflammatory response to MHV-68 
Experimental infection of wood mice has shown that there are significant 

differences between infection of Apodemus sylvaticus and Mus musculus 

(Hughes et al., 2010). Infectious virus is detectable in the lung for a shorter 

period and at a titre three folds lower in wood mice than that seen in 

comparable infection in BALB/c mice; however viral antigen persists for longer 

in the wood mouse lung and is present in the lung in macrophages and 

peribronchiolar and perivascular lymphocytes at 14 dpi (Hughes et al., 2010). 

The most dominant inflammatory feature in the lungs of wood mice at 7 dpi is 

the perivascular and peribronchiolar lymphocytic infiltration, which is 

composed predominantly of B cells; these infiltrates are far less significant in 

BALB/c mice (Hughes et al., 2010). At 14 dpi, BALB/c mice exhibit a mild to 

moderate interstitial inflammation, which is composed of both B and T cells; 

whereas, in wood mice, the perivascular and peribronchiolar lymphocytes 

remain, and in addition iBALT (which consists predominantly of B cells and 

exhibits germinal centre formation) is seen (Hughes et al., 2010).  

 
4.1.2 The effect of the M3 protein 
The M3 gene of MHV-68 encodes a unique viral chemokine binding protein, 

which binds to a wide range of chemokines in vitro and in vivo (Table 1-3) and 

subsequently has the potential to alter the inflammatory response to MHV-68 

infection. M3 has been shown to bind a range of T cell chemokines, but does 

not bind, or inefficiently binds, B cell chemokines (Parry et al., 2000; van 

Berkel et al., 2000). Considering the prevalence of B lymphocytes in the 

inflammatory response in the lungs of MHV-68 infected wood mice, the action 

of this gene was investigated using MHV-68 with a stop codon inserted in the 

M3 gene (M3.stop), disabling expression of the chemokine binding protein 

(van Berkel et al., 2002). In the M3.stop infected wood mice, the B cell 

dominated infiltrates were replaced with mixed B and T cell infiltrates, and the 

iBALT seen at 14 dpi in the wild type infected wood mice was absent (Hughes, 

2006). This is consistent with the alteration in chemokine expression in the 

absence of M3 compared to wild type MHV-68 infection, which consisted of 

increased levels of the T cell recruiting chemokines MIP-1α, RANTES, and 
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MIP-3β and the decrease in the B cell attracting SDF-1α and BLC, (Hughes, 

2006). As the B lymphocyte is a major site of latency for this virus, recruitment 

of this cell type to the site of infection clearly confers a survival advantage for 

MHV-68, the role cited as the evolutionary stimulus for these proteins (Alcami, 

2003). This suggests that M3 plays an important role in the pathogenesis of 

MHV-68 infection in the wood mouse, a natural host. 

 

In addition to the direct chemokine binding effect of M3, the presence of this 

protein during MHV-68 infection was also found to affect the expression of a 

number of host genes. These included CCSP (Clara cell secretory protein), 

SPLUNC1 (short palate lung and nasal epithelium clone 1) and AGR3 (anterior 

gradient 3). These genes were identified by microarray analysis as having 

higher expression in the lungs of wood mice infected with wild type (M3.MR) 

MHV-68, compared to M3.stop (Hughes, 2006). These data were verified 

using quantitative RT-PCR, to measure the levels of CCSP and SPLUNC1 

mRNA (James Stewart, unpublished observations). The expression of these 

genes and their proteins in the lung in response to viral infection has been the 

focus of this thesis. 

 

4.2 Protein expression in the mock-infected Apodemus sylvaticus lung 
4.2.1 Clara cell secretory protein 
Clara cells secrete a number of proteins, including several surfactant proteins, 

enzymes and immunomodulatory proteins (Singh and Katyal, 2000). These 

cells are identified by morphological characteristics and by the presence of 

CCSP, most frequently by immunohistology (Pack et al., 1980; Ray et al., 

1996; Ryerse et al., 2001). Clara cells are non-ciliated, with basal nuclei, 

abundant smooth endoplasmic reticulum and contain electron dense vesicles, 

which are located in the apical cytoplasm of the cell. In Mus musculus Clara 

cells are columnar, therefore in the distal respiratory tract where the ciliated 

cells are cuboidal, they project into the lumen of the airway. Clara cells in the 

wood mouse are very similar in morphology, with small apical projections in 

the upper respiratory tract and pronounced projections into the lumina of 

bronchioles (Figure 3-25).  
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The proportion of the respiratory epithelium which consists of Clara cells in the 

wood mouse identified using TEM was compared to data published for Mus 

musculus. The wood mouse differed slightly, although as the sample sizes for 

electron microscopy were small, these data are not statistically valid. In the 

mock-infected wood mouse trachea, only 28 % of epithelial cells were Clara 

cells, compared to 49 – 57 % in the laboratory mouse (Pack et al., 1980). 

Distally, there is greater similarity between the two species as wood mice had 

58 % Clara cells in bronchi, compared to 46 – 61 % in laboratory mice, and in 

the bronchioles 75 % and 71 % of cells were Clara cells in wood mice and 

laboratory mice, respectively (Figure 3-23). The difference in the trachea is 

interesting, as this appears to be the site of greatest variation between 

species. For example, in humans, Clara cells are not found in the trachea or 

bronchi and comprise only approximately 20 % of the epithelial cells of the 

bronchioles (Boers et al., 1999). One of the reasons for this difference has 

been suggested to be due to the lack of mucous or goblet cells in the murine 

respiratory epithelium, and the paucity of submucosal glands compared to 

other species (Pack et al., 1981). The small diameter of the airway of mice 

means that overproduction of mucus quickly leads to obstruction of the 

airways. This may explain the lack of mucous cells, even in the event of allergy 

type stimulation, in the distal airways in this species (Evans et al., 2004).  

 

The differences in the proportion of Clara cells in the respiratory epithelium 

within each anatomical location as identified by TEM, was similar to the 

percentage of area stained for CCSP using immunohistology, in the mock-

infected wood mice (Figure 3-6). These data reflect the area within the cells 

which contain CCSP, not the cell as a whole, and subsequently the figures are 

lower. There were also differences between the day 7 and day 14 pi wood 

mice, which suggests that the intranasal instillation of PBS had an effect on the 

expression of CCSP (Figure 3-8 and Figure 3-10). Nevertheless, the 

percentage area stained for CCSP increased significantly between the trachea 

and bronchi, and the bronchi and bronchioles (p=0.003 and p=0.001, 

respectively; Figure 3-7). This is consistent with the number of Clara cells 

increasing in a similar manner (Figure 3-23). Interestingly, the intensity of 

staining for CCSP also increased significantly in the distal respiratory tract 
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(trachea and bronchi, p=0.001; bronchi and bronchioles p=0.001 [Figure 3-7]). 

This implies that aside from the number of Clara cells increasing in the distal 

airway, they are also more productive.  

 

In situ hybridisation for CCSP showed that the gene was constitutively 

transcribed at all levels of the respiratory tract. However, the proportion of cells 

positive for signal for CCSP mRNA varied greatly with relatively few positive 

cells in the trachea, increasing distally to the bronchioles where cells were 

frequently positive (Figure 3-4). This is consistent with the increased intensity 

of immunohistological staining in this location. The anatomical variation in the 

frequency of cells exhibiting mRNA signal is the most likely explanation for the 

variation in the quantitative RT-PCR results (Figure 3-1), as, although these 

results were normalised against the housekeeping gene RPL8, this gene is 

expressed in all cells and does not differentiate between alveolar cells and 

respiratory epithelium. Therefore the number of bronchioles in the sample 

could differ, in addition to variation due to the inclusion or otherwise of 

bronchial tissue. 

 

In summary, Clara cells in wood mice showed similar morphology to laboratory 

mice. The number of Clara cells (shown by transcription of CCSP, presence of 

CCSP by immunohistology and morphology) increased from approximately 

one in four cells in the trachea to three in four cells in the bronchioles. The 

intensity of staining for CCSP was also greatest in the bronchioles, suggesting 

that this anatomical location is the major site of production of this protein. 

 

mRNA extracted from the lungs of wood mice was used to generate cDNA 

which was amplified, cloned and sequenced to obtain the cDNA sequence for 

CCSP from Apodemus sylvaticus, which has been submitted to Genbank. The 

cDNA sequences revealed highest homology with other rodent species (Figure 

3-26). Translation of the cDNA to obtain the amino acid sequence showed 

similarly high homology with other rodent species (Rattus norvegicus 86 %, 

Mus musculus 87 %, Mesocricetus auratus 79 % and Neomotodon alstoni 

74 %; Figure 3-28). The 19 amino acid signal peptide is almost completely 

conserved within these species, with the exception of a single amino acid (3rd; 
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valine in the wood mouse, isoleucine in other rodents) and Neotomodon 

alstoni has a shorter, 16 amino acid signal peptide (Macias et al., 2004). CCSP 

is encoded across three exons; the signal peptide is encoded within the first 

exon at the amino terminus and directs the protein to the endoplasmic 

reticulum for post-translational modification. The signal peptide is then cleaved 

prior to secretion (Gupta and Hook, 1988; Stripp et al., 1994). The second 

exon encodes the majority of the mature protein (61 amino acids), of which 

four in the wood mouse are not conserved in any of the other rodent species 

(Figure 3-28). All of the remaining amino acids in this region are homologous 

with at least one of the rodent species. The remaining 16 amino acids are 

encoded by exon three, which represents the carboxyl terminal portion; this 

includes a conserved cysteine which is required for the stabilisation of 

homodimers. Once secreted, CCSP is present as a homodimer (Stripp et al., 

1994). The similarity of the rodent species’ CCSP, and the differences from the 

protein in other mammals, is demonstrated by the clustering of the rodents in 

the phylogenetic tree in a separate clade from the other mammals (Figure 

3-29). Similarly, this demonstrates the homology between Apodemus 

sylvaticus, Mus musculus and Rattus norvegicus.  

 

4.2.2 Short palate lung and nasal epithelium clone 1 
SPLUNC1 is abundantly and uniformly expressed in the trachea and bronchi 

of Mus musculus. Distal to the division of the mainstem bronchi, expression 

decreases abruptly. Epithelia within the terminal bronchioles, respiratory 

bronchioles and alveoli are negative (LeClair et al., 2001; Weston et al., 1999). 

The precise cellular location of SPLUNC1 transcription is poorly characterised 

in mice, with descriptions of strong uniform staining of the respiratory mucosa 

(LeClair et al., 2001). In contrast, human respiratory epithelium appears to be 

a relatively minor site of SPLUNC1 expression, with occasional non-ciliated 

cells being described as positive in the trachea, but the main source in the 

upper respiratory tract are the submucosal glands and the associated ductular 

epithelium (Bingle et al., 2005; Campos et al., 2004; Di et al., 2003). However, 

there are conflicting reports as to whether it is the mucous or serous glands 

which express SPLUNC1, with both types being described as either positive or 

negative by different authors (Bingle et al., 2005; Campos et al., 2004; LeClair 
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et al., 2001). These glands are more numerous in humans than in mice, which 

may be the reason for the higher levels of SPLUNC1 transcription in the 

respiratory epithelium in mice (Campos et al., 2004). 

 

In the wood mouse, immunohistology for SPLUNC1 protein revealed cells of 

the respiratory mucosa in the trachea and bronchi were frequently, but not 

uniformly, stained (Figure 3-13a). Within these cells, those that are stained for 

SPLUNC1 show lack of cilia and small apical protrusions into the lumen of the 

airway, characteristic of Clara cells. In the bronchi, the number of cells 

positively stained for SPLUNC1 is very similar to the trachea (Figure 3-13b). 

The percentage area stained within the trachea and bronchi are 81.7 % and 

81.1 %, respectively (Figure 3-14b). Therefore, many more cells are identified 

as containing SPLUNC1 than are positive for CCSP in these locations. As a 

visual comparison between the marker of Clara cells (CCSP) and cells which 

transcribe SPLUNC1, combined immunohistology for CCSP and RNA-in situ 

hybridisation for SPLUNC1 was performed (Figure 3-18). This showed that 

cells which transcribed SPLUNC1 included Clara cells, but occasionally other 

cells which were CCSP negative also transcribed SPLUNC1. These CCSP 

negative cells are non-ciliated and morphologically similar to Clara cells. This 

suggests that not all Clara cells in the trachea and bronchi may stain for CCSP 

constitutively, and that Clara cells are one of the major sources of SPLUNC1 in 

the respiratory epithelium of the wood mouse. 

 

In addition to the respiratory mucosa, the submucosal glands are a source of 

SPLUNC1 in both the laboratory mouse and in humans. Within the 

submucosal glands in the respiratory tract of wood mice, cells were variably 

either strongly stained or negative (Figure 3-13a,b). Identification as to whether 

the SPLUNC1 positive cells are mucous or serous cells is problematic, as both 

cell types are often present within single acini. An attempt to clarify this was 

made using an Alcian blue - periodic acid Schiff (AB-PAS) stain, which stains 

polysaccharides and therefore highlights mucus. This showed that although 

PAS positive cells in the respiratory mucosa were also SPLUNC1 positive, 

within the submucosal glands the PAS positive cells appeared to be less 

strongly stained for SPLUNC1 (Figure 3-19). Some cells within the glandular 
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acini which were PAS negative (and therefore are most likely serous cells) 

were also positive for SPLUNC1 (Figure 3-19). In addition, in the submucosal 

glands of IFNγR-/- mice, cells with serous type morphology were strongly 

positive for SPLUNC1 and adjacent mucous cells were negative (Figure 

3-41d). The conflicting reports in the literature suggest that the cell type which 

secretes SPLUNC1 may vary between species, or under different influences, 

with both serous and mucous cells having the ability to express SPLUNC1.  

 

In the bronchioles both the intensity of staining and the percentage area 

stained for SPLUNC1 was significantly lower than in the bronchi (Figure 3-14). 

In the proximal bronchioles relatively frequent epithelial cells are positive and 

staining is quite strong, but these both decrease rapidly in the distal bronchiole 

(Figure 3-13c,d).  This is in contrast to Mus musculus, in which the airways are 

negative for SPLUNC1 distal to the mainstem bronchi (LeClair et al., 2001; 

Weston et al., 1999), and humans, which also do not express SPLUNC1 in 

bronchioles in non-diseased states (Bingle et al., 2005). In the wood mouse 

bronchioles, non-ciliated cells are stained for SPLUNC1, suggesting that Clara 

cells are the source of the protein. However, signal for SPLUNC1 mRNA 

detected by in situ hybridisation was very low in the bronchioles of mock-

infected wood mice (Figure 3-11c). This suggests that either the protein is not 

transcribed in these cells, or that the levels of transcription in the non-diseased 

lung are very low and the protein is stored intracellularly. The dramatic 

difference in the transcription of SPLUNC1 between the bronchi and the distal 

bronchioles may explain the wide range of values obtained by quantitative RT-

PCR in mock-infected mice (Figure 3-2). 

 

In summary, SPLUNC1 is expressed at higher levels in the upper respiratory 

tract, specifically in the trachea and the bronchi. Both non-ciliated cells in the 

respiratory mucosa and the submucosal gland epithelium are shown to 

transcribe and translate the gene. The precise type of glandular cell (i.e. 

serous or mucous) is not clear, but it is likely that both express SPLUNC1 in 

the wood mouse. Additionally, in the wood mouse, SPLUNC1 protein is 

constitutively present in the bronchiolar epithelium, which is in contrast to Mus 

musculus and humans. 
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mRNA extracted from the lungs of wood mice was used to generate cDNA, 

which was amplified, cloned and sequenced to obtain the cDNA sequence for 

SPLUNC1 from Apodemus sylvaticus, which has been submitted to Genbank. 

The cDNA sequences revealed greatest homology with other rodent species 

(Figure 3-30). Translation of the cDNA to obtain the amino acid sequence 

showed similarly high homology with other rodent species (Rattus norvegicus 

87 %, Mus musculus 92 %), with lower homology with non-rodent mammalian 

species (pig, cow, human; Figure 3-30). SPLUNC1 comprises nine exons, of 

which exons 2 - 8 are coding and exons 1 and 9 are non-coding (LeClair et al., 

2001; LeClair et al., 2004). The signal peptide (19 aa) is encoded in the 2nd 

exon and is almost completely conserved between Apodemus sylvaticus and 

the other rodent species examined, with the exception of the loss of an amino 

acid at position 8 in the Apodemus sylvaticus sequence (Figure 3-32). The 

second exon is enlarged in the Mus musculus and Rattus norvegicus and this 

enlargement is also present in the sequence for Apodemus sylvaticus (Figure 

3-32). This region contains a repeat sequence [G(L/P/Q)(P/L)LPL] which is 

repeated four times in the house mouse and the wood mouse, and three times 

in the rat protein (Larsen et al., 2005). That this repeat is not present in any of 

the other PLUNC genes suggests that this sequence is not essential to the 

function of the protein (Larsen et al., 2005). This difference most likely 

represents a deletion within the protein of humans and other species (Bingle 

and Bingle, 2000; LeClair et al., 2001). Towards the carboxyl terminal portion 

two conserved cysteine residues are present and are also conserved in the 

wood mouse, at amino acids 203 and 244; these are of interest as they are 

homologous to those required for the binding between the N-terminal domain 

of BPI and LPS (Larsen et al., 2005). The similarity of the rodent species’ 

SPLUNC1, and the differences with other mammals, is demonstrated by the 

clustering of the rodents in the phylogenetic tree (Figure 3-33). Similarly, this 

demonstrates the homology between Apodemus sylvaticus, Mus musculus 

and Rattus norvegicus.  

 

4.2.3 AGR2 and AGR3 
AGR2 is associated with the secretion of mucin in the goblet cells of the small 

intestine of mice (Park et al., 2009; Zhao et al., 2010) and in Clara cells with 
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the differentiation of these cells to a goblet cell phenotype in a murine model of 

goblet cell hyperplasia in response to allergen exposure (Chen et al., 2009; 

Curran and Cohn, 2010; Park et al., 2007). In humans, AGR3 has been 

described as homologous to AGR2, but this has not been confirmed in mice 

(Fletcher et al., 2003; Persson et al., 2005). AGR2 is present in neoplasms of 

other secretory organs, including prostate gland and breast carcinomas 

(Fletcher et al., 2003; Persson et al., 2005; Zhang et al., 2005). 

 

In uninfected wood mice, AGR2 was present at all levels of the respiratory 

tract, and in both the respiratory epithelium and the submucosal glands in the 

trachea (Figure 3-20a,b and Figure 3-21). Within the bronchiolar epithelium, 

the protein was localised to the non-ciliated cells, which is consistent with the 

reports in the literature cited above that this gene is associate with secretion of 

proteins or mucins (Figure 3-21b).  

 

AGR3 showed a similar distribution in the uninfected wood mouse (Figure 

3-22a,b); in situ hybridisation showed that the gene was transcribed in the 

respiratory and submucosal gland epithelium in the trachea and also within the 

bronchiolar epithelium. This gene was less frequently detected than AGR2. 

 

Limited analysis as to the effect of infection on the expression of these genes 

was performed, due to the limited amount of tissue available. On the small 

sample sizes studied, AGR2 appeared to be downregulated in the trachea and 

the bronchiole at 14 dpi following infection (Figure 3-20c,d), which was in 

contrast to AGR3, which appeared to be upregulated in the trachea in M3.MR 

infection, but downregulated following M3.stop infection (Figure 3-22c,d). 

However, further analysis needs to be performed to confirm these results. 

Work is underway to further describe the distribution of these genes in the 

mouse and the effect of viral infection on their transcription. 

 

4.3 Influence of viral infection on the expression of CCSP 
CCSP has a postulated role as an anti-inflammatory protein, although the 

mechanisms of induction or function of this role are poorly understood. 

Investigation of the action of CCSP in response to viral infection, to date, has 
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focused on the use of CCSP-/- mice and the examination of the alteration in the 

inflammatory response in the absence of CCSP. Both adenovirus and Human 

respiratory syncytial virus infection in CCSP-/- mice led to increased 

inflammatory responses in the lung (Harrod et al., 1998; Wang et al., 2003). In 

adenovirus infection, lack of CCSP was associated with increased 

inflammatory cell counts in BAL fluid and more extensive infiltration of lung 

tissue by inflammatory cells, along with increased transcription of pro-

inflammatory chemokines and cytokines (Harrod et al., 1998). Similarly, 

following HRSV infection, mice lacking CCSP showed increases in numbers of 

inflammatory cells in the BAL fluid, increased peribronchiolar infiltrates and 

increased chemokine levels (Wang et al., 2003). Furthermore, restoration of 

CCSP by intra-tracheal instillation of recombinant human CCSP prior to 

infection with HRSV, lead to abrogation of these increased inflammatory 

responses (Wang et al., 2003). 

 

A similar response in CCSP-/- mice infected with Pseudomonas aeruginosa 

was also observed, with increased neutrophils and cytokines (TNFα and IL-1β) 

in BAL fluid. Moreover, in the simultaneously infected wild type mice, a 

decrease in both CCSP and CCSP mRNA in lung homogenates was seen, 

from as early as 6 hpi. The decreased levels of protein persisted for at least 

the first 5 days pi, but were restored to pre-infection levels by day 14 pi 

(Hayashida et al., 2000). The decrease in protein preceded the decrease in 

mRNA, suggesting that the reduction in protein was mediated by the viral 

infection. Reduction of CCSP due to Clara cell loss was discounted, as other 

Clara cell proteins were unaffected, and there was no histological evidence for 

necrosis or other forms of cell loss (Hayashida et al., 2000).  

 

In the MHV-68 infected wood mice, the most remarkable changes in the 

expression of CCSP were seen in the bronchiolar epithelium (when analysed 

by quantification of immunohistological staining). This is perhaps not 

surprising, as the peribronchiolar tissue is the most frequent site of infection by 

MHV-68; the respiratory epithelium in the upper respiratory tract is 

anatomically remote from the inflammatory response. Additionally, this is the 

site of the greatest number of CCSP expressing Clara cells. In the bronchioles 



185 

 

of both M3.MR and M3.stop infected wood mice there were significant 

decreases in both the intensity of staining and the percentage area of tissue 

stained at 7 dpi (Figure 3-8), with an increase at 14 dpi (Figure 3-10), 

compared to mock-infected controls at each timepoint. Other significant 

changes were also seen in the trachea at 7 dpi, which also exhibited 

decreases in both intensity of staining and percentage area stained in 

response to infection (Figure 3-8). This is consistent with the findings of 

Hayashida et al. (2000), in that there is a decrease in the acute stages of 

bacterial infection followed by an increase at a later timepoint. A proposed 

mechanism for the decrease following acute infection with Pseudomonas 

aeruginosa has been suggested, in which TNFα induces a decrease in CCSP 

via decreased regulation of the CCSP promoter (Harrod and Jaramillo, 2002). 

At 14 dpi there remains an inflammatory response in the lungs of MHV-68 

infected wood mice, but there is a decrease in interstitial infiltrates and 

granulomatous infiltrates, compared to 7 dpi, and inflammatory infiltrates in the 

lung continue to decrease beyond day 14 pi (Hughes et al., 2010).  Thus, the 

increase in CCSP is associated with the time period in which the inflammatory 

response starts to subside. This increase in CCSP and its association with 

decreased inflammation is consistent with the viral infection of CCSP-/- mice, 

which exhibited an increased inflammatory response, compared to the wild 

type mice (Harrod et al., 1998; Wang et al., 2003). These findings are 

consistent with the proposition that CCSP plays an anti-inflammatory role in 

the lung (Harrod et al., 1998; Wang et al., 2003). 

 

In addition to a decrease in CCSP protein, Hayashida et al. (2000) also 

documented a decrease in CCSP mRNA in response to infection with 

P. aeruginosa, at early timepoints (6 hours – 5 days). In LPS-induced injury 

there was also a decrease in CCSP mRNA in the acute response (the first 24 

hours), associated with an increase in inflammatory cell numbers in the BAL 

fluid (Arsalane et al., 2000) or pro-inflammatory cytokines (Snyder et al., 

2010). In the MHV-68 infected wood mice in this study, quantitative RT-PCR 

showed no significant differences in mRNA copy numbers between infected 

and mock-infected wood mice. This suggests that either any decrease similar 

to those described by other authors had already occurred prior to this 
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timepoint, or that this was not a feature in MHV-68 infection. However, the 

decrease in protein levels seen at this timepoint suggests that a prior reduction 

in mRNA was likely to have been the case. The in situ hybridisation for CCSP 

mRNA at day 7 pi (Figure 3-5) shows that some cells had a higher signal for 

CCSP than that seen in many of the mock-infected mice (Figure 3-4). 

However, there was a marked variation in the strength of signal seen within the 

bronchiolar epithelium of infected mice; this has not been quantified to obtain 

an overall signal strength and so is difficult to interpret. There appeared to be a 

tendency for reduced signal for CCSP in bronchioles with marked 

peribronchiolar infiltrates (Figure 3-5). At 14 dpi, there was an increase in 

CCSP in infected wood mice, as shown by RT-PCR, however, due to the wide 

range of values obtained, these results were not statistically significant (Figure 

3-1). However, in situ hybridisation at 14 dpi showed many more epithelial 

cells positive for CCSP in the bronchioles, than at 7 dpi (Figure 3-5c,d). 

 

The examination of the morphology of Clara cells in the respiratory tract of 

wood mice by TEM showed that there was a decrease in the number of Clara 

cells in M3.MR infected mice at 14 dpi, compared to mock-infected wood mice 

(Figure 3-23). Due to the small sample size, however, this result should be 

interpreted with caution, but is of interest, due to the paradoxical increase in 

intensity of staining and percentage area of tissue stained at this timepoint in 

M3.MR infected wood mice, compared to mock-infected wood mice. 

Additionally, in M3.MR infected wood mice, all three of the morphological types 

of Clara cell described by Pack et al. (1981) were present. In mock-infected 

mice, the Common type was the predominant cell type, with low numbers of 

type II Clara cells present in the bronchi (Figure 3-24). The increase in the 

vesiculated type of Clara cell is of interest as Pack et al. (1981) postulated that 

this cell type was an intermediary in the transition between a Clara cell and a 

mucous cell. Evans et al. (2004) also showed that Clara cells have the 

potential to become mucus secreting, while retaining the molecular and 

functional characteristics of Clara cells. Despite mucous metaplasia not being 

a recognised consequence of MHV-68 infection, in light of the different Clara 

cell types identified ultrastructurally, an attempt to quantify goblet type cells 

was made. This was performed using Alcian blue and period-acid Schiff (AB-
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PAS) stains combined with immunohistology for CCSP and immunohistology 

with an antibody to Muc5ac, the most common mucin in the lung. As AB-PAS 

is not specific for mucin, the staining of other polysaccharides in numerous 

cells occurred to some extent and therefore accurate quantification of mucus 

positive cells was difficult. Unfortunately, the Muc5ac antibody led to significant 

non-specific staining in the wood mouse tissue, which also made accurate 

quantification difficult. This remains an area is of interest, however, and will be 

pursued further. 

 

The investigation of the expression of CCSP in the respiratory epithelium in 

response to MHV-68 infection has provided interesting results. To investigate 

whether these changes were uniquely induced by MHV-68, or were a non-

specific response to viral infection in the lung, other respiratory viral infections 

were examined. Infection of BALB/c mice with paramyxoviruses appeared to 

show a correlation between the strength of immunohistological staining for 

CCSP and the severity of the inflammatory response (Figure 3-46 to Figure 

3-50). In all mice, including the mock-infected controls, there was an initial 

increase in staining for CCSP at 1 dpi (Figure 3-49a). However, as this was 

also present in the control mice, this may be due to a local irritation effect due 

to the installation of PBS, or may be an artefact, similar to the vacuolisation of 

the epithelial cytoplasm, which was also seen in H&E stained sections (Figure 

3-45a and Figure 3-46a), and is most likely due to infusion of formalin. A 

similar effect was also present in mice which received allantoic fluid (control 

animals for the influenza virus experiment) at the earliest timepoint (12 hpi; 

Figure 3-57a). 

 

In the mice infected with either strain of HRSV, the inflammatory response was 

mild to moderate, with evidence of resolution of inflammation by 7 dpi. In these 

mice there were limited alterations in the expression of CCSP in the 

bronchioles, with the exception of scattered strongly stained cells in the HRSV-

BT2a infected mice at day 7 pi (Figure 3-50). However, the intensity of staining 

in these tissues has not been quantitatively analysed, which may indicate 

differences not apparent by subjective inspection. Wang et al. (2003) reported 

that the lack of CCSP led to increased inflammation in HRSV infected mice, 
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which was abrogated by the administration of recombinant CCSP to CCSP-/- 

mice. The difference in inflammation was greatest at 7 dpi between the 

CCSP-/- mice and the wild type mice, at which timepoint the inflammatory 

response was subsiding in the work described here. Therefore, it would be of 

interest to quantify the CCSP expression at these timepoints and also at later 

timepoints, to see if any changes in CCSP expression correlate with the 

magnitude of the inflammatory response. 

 

In contrast, the SeV infected mice exhibited a more pronounced inflammatory 

response, which continued to increase in severity up to and including day 7 pi 

(Figure 3-47).  Particularly noticeable in the SeV infected mice was the 

decrease in the strength of staining for CCSP seen in the bronchiolar 

epithelium at days 5 and 7 pi, when the inflammatory response was greatest. 

The decrease in the CCSP was most marked in bronchioles which exhibited 

peribronchiolar inflammation, despite the respiratory mucosa remaining intact 

(Figure 3-50c,d). However, the staining in these mice has not been quantified, 

and so these observations are subjective. This decrease in CCSP is consistent 

with the finding in both the MHV-68 infected wood mice at a similar timepoint 

and with the findings of other authors, which demonstrated a decrease in 

CCSP in the lung at earlier stages following infection of mice with 

microorganisms (Hayashida et al., 2000). 

 

A similar correlation between the intensity and extent of staining for CCSP and 

the magnitude of the inflammatory response was present in the influenza virus 

infected mice. Comparatively, of the strains examined, the greatest 

inflammatory response was observed in the HPAI H5N1 infected mice and the 

least in LPAI H5N1 infected mice. H1N1 strains led to an intermediate 

response (Figure 3-57 and Figure 3-58). Lung tissue from these experiments 

was sampled during the first 72 hpi, and there was little difference in the 

distribution of staining for CCSP at the early timepoints, aside from the 

increases seen in both infected and control animals seen at 12 hpi, mentioned 

above. At later timepoints (48 and 72 hpi), in bronchioles associated with 

peribronchiolar inflammation, there was a decrease in the intensity of staining 

for CCSP, seen in mice infected with Ca H1N1, NC H1N1 and HPAI H5N1 
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(Figure 3-58). This decrease was not apparent in LPAI H5N1 infected mice. 

Similar to the paramyxovirus infected mice, these assessments are subjective 

and staining for CCSP has not been quantified, which may further clarify this 

pattern. However, these results do suggest a decrease in CCSP at early 

timepoints after infection, which is associated with the inflammatory response 

to infection. Examination of similar tissues at later timepoints would be 

interesting, to investigate the pattern of CCSP expression during the resolution 

of inflammation. 

 

Regulation of CCSP expression in vivo has been shown to be influenced by 

IFNγ (Magdaleno et al., 1997). Intra-tracheal instillation of IFNγ led to a seven-

fold increase in CCSP and an upregulation of CCSP mRNA. Investigations 

using in vitro systems suggest that this upregulation was dose dependent and 

instigated via HNF3β and the Jak/STAT1 pathway (Magdaleno et al., 1997; 

Yao et al., 1998a). Interestingly, production of IFNγ by stimulated peripheral 

blood mononuclear cells and lymphocytes, has been shown to be inhibited by 

the presence of CCSP, in vitro (Dierynck et al., 1995). This feedback 

mechanism has been suggested to be important in the regulation of 

inflammatory responses in the lung (Mukherjee et al., 1999). IFNγR-/- mice 

have been used to investigate the role of IFNγ in the response to viral 

infection. Previously, MHV-68 infection of IFNγR-/- mice has been shown to 

result in productive infection in the lung, with no difference in the viral titre or 

viral clearance compared to wild type mice (Dutia et al., 1997). Infection of 

IFNγR-/- mice with MHV-68 in the current study led to a more severe 

inflammatory response than that present in the wild type mice, both at 8 and 

12 dpi (Figure 3-34 to Figure 3-37). In the IFNγR-/- mice, the inflammation was 

more widespread, and at 12 dpi consisted of macrophage dominated infiltrates 

in addition to the lymphoplasmacellular infiltrates seen in both wild type and 

knockout mice. Immunohistology for CCSP was quantitatively analysed and 

revealed that there was a significant decrease in the intensity of staining for 

CCSP in the bronchiolar epithelium in the IFNγR-/- mice, compared to the wild 

type mice, at all timepoints (Figure 3-39). Within the proximal respiratory tract, 

intensity of staining for CCSP was also reduced in the knockout mice, but 

these differences were not significant. Interestingly, the percentage area 
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stained in the bronchiolar epithelium was very similar between the wild type 

and the knockout mice, suggesting that the Clara cells retained the production 

of CCSP in the absence of IFNγ, but at reduced levels (Figure 3-39). This 

decrease in the intensity of CCSP in the mice lacking the ability to respond to 

IFNγ, suggests that IFNγ plays a role in the expression of CCSP, consistent 

with the findings of Magdaleno et al. (1997). However, as this decrease is also 

present in the uninfected IFNγR-/- mice, this also occurs in the absence of an 

inflammatory response. Moreover, the lack of IFNγ signalling led to a decrease 

in CCSP, compared to that seen in the wild type mice, but expression of the 

protein is not completely abrogated. If the extent of the inflammatory response 

influences the expression of CCSP, which has been observed in the other 

experiments in this work, the greater extent of the inflammation in the IFNγR-/- 

mice may also have a role in determining the level of CCSP expression in 

these mice. This is emphasised when the data is compared for either wild type 

or knockout mice over the time course of infection (Figure 3-40). This shows 

that in both groups of mice, there is a decrease in both the intensity of staining, 

and initially, in the percentage area of tissue stained. Interestingly, the 

percentage area of tissue stained for CCSP shows a significant increase in the 

bronchioles of both wild type and knockout mice between 8 and 12 dpi. It is 

possible that this is the first sign of a later increase in CCSP, similar to that 

seen in the MHV-68 infected wood mice, and described by Hayashida et al. 

(2000) in P. aeruginosa infected mice at later timepoints. However, in the work 

by Hayashida et al., this increase was associated with complete resolution of 

the inflammatory response, whereas in the MHV-68 infection of wood mice 

and the 129 wild type and IFNγR-/- mice there remains a significant 

inflammatory response. Examination of later timepoints in this model would be 

worthwhile. The stimulus for this increase in CCSP is not clear, but coincides 

with the decline in viral titre in the lung in both models (Dutia et al., 1997; 

Hughes et al., 2010). Therefore, either the decline in viral titre, or changes 

associated with this decline, for example in cytokines, chemokines or other 

inflammatory mediators, may be implicated.  

 

The initial impetus for this work was the finding of Hughes (2006) that wood 

mice infected with MHV-68 virus lacking the M3 gene resulted in lower levels 
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of CCSP, than mice infected with the wild type MHV-68, at 14 dpi. Quantitative 

analysis of immunohistology for CCSP has shown that, in the bronchioles both 

the intensity of staining and the percentage area of tissue stained were 

significantly reduced in M3.stop infected mice, compared to M3.MR at 14 dpi 

(Figure 3-10). In addition, at 7 dpi, the intensity of staining was also reduced in 

M3.stop infected wood mice, although there was no significant difference in the 

percentage area stained (Figure 3-8). This suggests that the presence of the 

M3 protein resulted in an elevation of the expression of CCSP (Hughes, 2006). 

However, the overall response in CCSP expression in comparison to mock-

infected wood mice was similar in both M3.MR and M3.stop infection, i.e. 

CCSP was significantly lower in infected wood mice compared to mock-

infected wood mice at 7 dpi, and increased at 14 dpi. M3 has been found to be 

expressed at both timepoints, but was significantly higher than other MHV-68 

genes (M1, M2 and M4) at 14 dpi and M3 mRNA is expressed predominantly 

within lymphocytes in perivascular and peribronchiolar infiltrates, as well as in 

granulomatous infiltrates and iBALT (Hughes, 2006). As M3 is a secreted 

protein, it is possible that the protein itself may have a direct effect on Clara 

cells and the expression of CCSP. However, as M3 transcripts are located 

within inflammatory cells, and MHV-68 does not infect the bronchiolar 

epithelium, this appears to be unlikely. In addition, this does not explain why 

there would be an initial decrease in CCSP in the lungs of infected wood mice 

at 7 dpi (compared to mock-infected wood mice). In the lung of wood mice, 

infection with M3.stop was found to result in lower viral titres at 14 dpi, possibly 

as a result of the increased numbers of T cells associated with the absence of 

M3 (Hughes, 2006). This may be implicated in the lower levels of CCSP 

present in M3.stop, compared to M3.MR infected wood mice; however, 

comparative data for viral titres at day 7 were not available. These variations in 

inflammatory response and viral titre between M3.MR and M3.stop infection at 

14 dpi did not influence the levels of IFNγ in the wood mice (Hughes, 2006). 

Therefore, the influence of IFNγ on CCSP discussed previously is unlikely to 

be a significant factor in the differences seen with the presence or absence of 

M3. Previously it has been suggested that one of the immunomodulatory roles 

of CCSP may be in the regulation of BALT, due to the increase in IgA mRNA 

positive lymphocytes in CCSP-/- mice, which was considered to be consistent 
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with the diffuse localisation of BALT (Watson et al., 2001). However, this is not 

consistent with the finding that wild type MHV-68 (M3.MR) infection is 

associated with the induction of BALT, which is generally uncommon in mice, 

and is absent in M3.stop infected wood mice (Hughes, 2006), as M3.MR 

infection results in higher CCSP expression. The function of M3 as a 

chemokine binding protein results in decreased levels of several T cell 

chemokines and subsequently, an altered composition of the inflammatory cell 

response in the lung (Hughes, 2006). Therefore it is possible that either the 

increased number of B lymphocytes, or the relatively higher levels of the 

associated chemokines (BLC and SDF-1α), led to the increased expression of 

CCSP. Alternatively, the decreased levels of numerous chemokines bound by 

M3 (e.g. MIP-1α, MIP-1β, MIP-2, MIP-3α, MIP-3β, MIG, RANTES, KC) in wild 

type MHV-68 infection are associated with the increased levels of CCSP.  As it 

has been shown that CCSP is associated with decreased inflammation in viral 

infection (Harrod et al., 1998; Wang et al., 2003), and increases as the 

inflammatory response resolves (Hayashida et al., 2000), an association with 

altered chemokine signalling is possible. Virally infected CCSP-/- mice 

exhibited an increase in MIP-1α and MIP-2 (Harrod et al., 1998; Wang et al., 

2003), two of the chemokines also increased in M3.stop infected mice 

(Hughes, 2006). This suggests that MHV-68 M3 and CCSP may therefore act 

in a similar manner, which is advantageous in manipulating the host response 

in favour of the establishment of viral infection. However, it is not possible to 

say at this stage whether the increase in CCSP is the cause of the decrease in 

inflammation, or is stimulated by the decrease in mechanisms associated with 

inflammation.  

 

In vitro infection of 293T cells (which had been transfected with a vector 

containing either CCSP, SPLUNC1, SPLUNC1 Cys mutant or AGR3 genes) 

showed that only CCSP transfected cells had an effect on the rate of infection 

with MHV-68. In these cells, the rate of infection was significantly lower than in 

cells which were transfected with an empty vector. In contrast, the addition of 

CCSP to encephalomyocarditis virus infected monocytes in vitro was 

associated with reduced IFNγ-mediated anti-viral activity (Dierynck et al., 
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1995). However, as it was not possible to confirm that the transfected cells 

were expressing CCSP, this finding requires further investigation.  

 

In summary, CCSP expression is altered following infection with the respiratory 

viruses investigated in this study. At earlier timepoints, a reduction of 

expression occurs, most notably within the bronchiolar epithelium. This 

reduction has an association with the presence of pronounced inflammatory 

infiltrates. At later timepoints in MHV-68 infection, there is an increase in 

CCSP expression in the bronchioles. This increase may be associated with the 

resolution of the inflammatory response. MHV-68 M3 protein and IFNγ are 

both associated with increases in CCSP expression at all stages of infection. 

 

4.4 Influence of viral infection on the expression of SPLUNC1 
The palate lung and nasal epithelium clones (PLUNC) family of proteins are 

expressed in the epithelium of the oral, nasopharyngeal and respiratory 

epithelium (Bingle et al., 2004). Their predicted structural similarity to BPI and 

LBP led to the suggestion that these proteins would have an anti-inflammatory 

role (Bingle and Craven, 2004). Within this family of proteins, SPLUNC1 is a 

“short” PLUNC, meaning it displays homology with the N-terminal domain of 

BPI only (Bingle and Craven, 2003). Essential for the binding function between 

BPI and LPS are two conserved cysteine residues (Larsen et al., 2005), which 

are also conserved in Apodemus sylvaticus (Section 4.2.2).  

 

Investigation of SPLUNC1 in naturally occurring disease has found that this 

protein is variably both increased and decreased in different conditions. 

Chronic exposure to epoxy resin in chemical workers, cigarette smoking and 

seasonal allergic rhinitis are all associated with a decrease in SPLUNC1 in 

nasal or BAL fluid (Ghafouri et al., 2002; Ghafouri et al., 2003; Ghafouri et al., 

2006; Lindahl et al., 2001). In contrast, increases in SPLUNC1 in the small 

airways have been reported in patients with cystic fibrosis and progressive 

cases of idiopathic pulmonary fibrosis (Bingle et al., 2007; Boon et al., 2009). 

In COPD patients, SPLUNC1 was found to be increased in sputum samples 

(Di et al., 2003). In vitro investigation of the potential effect of SPLUNC1 in viral 
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infection, using EBV transformed B cells, showed that SPLUNC1 was 

associated with decreased survival of these cells in culture (Zhou et al., 2008). 

 

Immunohistology for SPLUNC1 in the lungs of wood mice infected with MHV-

68 showed that the infection altered the expression of this protein. At 7 dpi, the 

bronchioles exhibited a significant decrease in both the intensity of staining 

and the percentage area stained, following infection with either M3.MR or 

M3.stop (Figure 3-15). This may be expected as this is the location closest to 

the site of infection, and the consequential inflammatory response. However, 

the bronchioles show the least significant expression of SPLUNC1 in the 

respiratory tract. Elsewhere in the respiratory tract, the trachea and the bronchi 

showed no significant differences between mock-infected and infected wood 

mice (Figure 3-15). At 14 dpi the response was very different. In response to 

infection with M3.MR there was a significant increase in the intensity of 

staining at all levels of the respiratory tract, and significant  increases in the 

percentage area of tissue stained in the bronchi and the bronchioles (Figure 

3-16). This is interesting, as the effect of infection extends beyond the site of 

the inflammatory response, suggesting that it is unlikely that this is a direct 

effect of the presence of the virus, which is predominantly found within the 

inflammatory cell infiltrates in the lung. Therefore, the increase in SPLUNC1 in 

the upper respiratory tract is most likely due to an indirect response to the viral 

infection. This pattern of expression of SPLUNC1, namely a decrease at 7 dpi, 

followed by an increase at 14 dpi, is similar to that observed in this study for 

CCSP. Mycoplasma pneumoniae infection in mice has been associated with 

an increase in SPLUNC1 mRNA in the peracute stage (4 hpi), but with no 

discernable difference at 72 hpi (Chu et al., 2007). In the current study, 

comparable early timepoints have not been studied, but it is possible that the 

decrease in SPLUNC1 expression between 4 and 72 hpi continues, resulting 

in an overall decrease at 7 dpi, compared to mock-infected mice. In 

Mycoplasma pneumoniae infection, the ablation of SPLUNC1 using intra-

tracheally instilled antibodies to the protein, or infection of SPLUNC1-/- mice, 

resulted in increased inflammatory responses at early timepoints (1 dpi), 

ascertained by increased neutrophils in BAL fluid (Chu et al., 2007; Gally et al., 

2010a). This suggests that SPLUNC1 has an anti-inflammatory effect, which is 
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supported by the finding that in transgenic mice which overexpressed 

SPLUNC1, Mycoplasma pneumoniae infection resulted in reduced pro-

inflammatory cytokines (KC and IL-6) in BAL fluid at 1 dpi (Gally et al., 2010a). 

These data support the assertion that SPLUNC1 has an anti-inflammatory 

effect in the lung, therefore a mechanism may occur to downregulate the 

expression of this protein in the acute and subacute stages of infection, to 

permit a meaningful inflammatory response to clear the infectious agent 

(Curran et al., 2009). This hypothesis is consistent with the observed changes 

in MHV-68 infected wood mice. Alternatively, SPLUNC1 can be interpreted as 

being critical in the elimination of the infectious agent, as ablation of SPLUNC1 

also led to increased numbers of Mycoplasma pneumoniae, and 

overexpression of SPLUNC1 to a decrease in the numbers of bacteria, in the 

same experiments (Chu et al., 2007; Gally et al., 2010a). 

 

Due to the observed alterations in the quantity of SPLUNC1 in response to 

infection with MHV-68, corresponding alterations in SPLUNC1 mRNA would 

also be expected. Assessment of mRNA copy number by quantitative RT-PCR 

resulted in large variation within the groups and no significant differences were 

found (Figure 3-2). This may be due to variation between individual mice, or 

variation between tissue samples in the quantity of bronchiolar and/or 

bronchial epithelium. Analysis of the location of SPLUNC1 transcription by in 

situ hybridisation revealed that bronchiolar epithelial cells were very rarely 

positive for SPLUNC1. There was little difference in signal between the 

bronchioles of mock-infected, M3.MR or M3.stop infected wood mice (Figure 

3-11 and Figure 3-12). This was an unexpected result, as an increase in 

SPLUNC1 within bronchiolar epithelium at 14 dpi was thought most likely to be 

due to upregulation of transcription of SPLUNC1 in this location at this 

timepoint. To further clarify this, combined immunohistology for SPLUNC1 and 

in situ hybridisation for SPLUNC1 was performed on the same section of lung 

(Figure 3-17). This showed that in the bronchus and the proximal bronchioles, 

both SPLUNC1 mRNA and SPLUNC1 protein were present simultaneously. 

However, in the distal bronchioles, despite the presence of SPLUNC1 in both 

the respiratory epithelium and within the lumen, no evidence of transcription of 

SPLUNC1 was present. This suggests that either SPLUNC1 transcription had 
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occurred previously and the protein had been stored intracellularly, or 

transcription and translation of the protein had occurred elsewhere. However, 

as the ciliated epithelium functions to transport mucus, cellular debris and 

other material from distal airways up and out of the respiratory tract, movement 

of a secreted protein from the proximal to the distal airway seems unlikely. 

Bronchiolar expression of SPLUNC1 is uncommon in other species. The 

presence of SPLUNC1 in the lumen of human small airways has been shown 

to occur in the absence of epithelial staining (Campos et al., 2004). However, 

these authors did not discuss the origin of the protein within bronchiolar lumen. 

SPLUNC1 was found not to be expressed in the small airways (defined as 

those without cartilage or submucosal glands and therefore analogous to 

bronchioles in this study) of “normal” human lung, or in the lung of patients with 

bacterial pneumonia (Bingle et al., 2007). However, in cystic fibrosis, the 

hyperplastic bronchiolar epithelium exhibits SPLUNC1 towards the apical 

surface of cells, along the luminal surface and within the lumen, admixed with 

mucus and inflammatory cells. However, confirmation of SPLUNC1 

transcription at this location was not reported (Bingle et al., 2007).  

 

In response to infection with paramyxoviruses, the expression of SPLUNC1 

within bronchioles was largely unaltered. Strong staining for the protein was 

present within the trachea and bronchi and within the proximal bronchiole 

adjacent to the bronchial-bronchiolar junction, described as the “transitionary 

zone”. Distal to this region, very few cells were positive for SPLUNC1 either in 

mock-infected or infected mice (Figure 3-51). The transitionary zone was the 

site of differences present in the extent of staining for SPLUNC1 following 

infection with Influenza A viruses. Expression of SPLUNC1 appears to extend 

further distally within the bronchiolar epithelium following infection with NC 

H1N1 at 48 and 72 hpi (Figure 3-60). Conversely, in HPAI H5N1 infected mice 

at 72 hpi showed decreased staining in this location (Figure 3-59b). This may 

correlate with the differences in the severity of the inflammatory response 

between these two infections; HPAI H5N1 infected mice exhibited a more 

pronounced inflammatory response, with greater evidence of necrosis and 

perivascular oedema at 72 hpi, in contrast to the NC H1N1 infected mice at 72 

hpi, which exhibited mild multifocal necrosis and neutrophil-dominated 
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infiltrates that had not progressed in severity since the previous timepoint (48 

hpi). To evaluate this further, timepoints beyond 72 hpi should be examined. It 

is possible that increased SPLUNC1 expression may occur during the 

resolution of inflammation, at later timepoints, as seen in the MHV-68 infection 

of wood mice. In other models of disease, SPLUNC1 has been shown to be 

reduced in BAL fluid in mice in acute inflammation induced either by Th1 or 

Th2 cells (Curran et al., 2009) or LPS (Britto et al., 2010). It is also possible 

that alteration of SPLUNC1 expression occurred in the upper respiratory tract, 

however, due to the intensity of staining, this is difficult to assess subjectively 

and therefore, performing quantitative analysis of these results may be 

informative. 

 

Regulation of SPLUNC1 expression by IFNγ has been previously suggested 

following work which showed that SPLUNC1 levels in BAL fluid were elevated 

in naive IFNγR-/- mice (Curran et al., 2009). In addition, failure of IFNγR-/- mice 

to exhibit alterations in SPLUNC1 in response to ovalbumin induced 

inflammation (Britto et al., 2010) and Th1 and Th2 cell induced inflammation, 

lead to the hypothesis that IFNγ inhibits SPLUNC1 to promote an effective 

immune response (Curran et al., 2009). However, the findings of Curran et al. 

(2009) that SPLUNC1 was elevated in naive IFNγR-/- mice is in contrast to the 

results obtained by quantitative analysis of immunohistological staining in this 

study (Figure 3-42). Both the intensity of staining and the percentage area of 

tissue stained were very similar in the IFNγR-/- and wild type mice in the 

trachea and bronchioles at day 0 (uninfected). Unfortunately, there was a lack 

of bronchial tissue in the sections analysed in these mice, so it is possible, as 

this is a site of significant SPLUNC1 expression, that there may be a difference 

between wild type and IFNγR-/- mice in this location.   

 

Following infection with MHV-68, there were alterations in the expression of 

SPLUNC1 between wild type and IFNγR-/- mice. At 8 dpi there were significant 

differences in both the intensity of staining and percentage area of tissue 

stained between wild type and IFNγR-/- mice in the bronchus (Figure 3-42). 

However, the decrease in SPLUNC1 in the IFNγR-/- mice is in contradiction to 

Curran et al. (2009) and also, is contrary to the data for day 12 dpi. It should 
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be noted that the data for the wild type mice in this case consists of 

measurements from a single mouse. Therefore a larger data set should be 

obtained to clarify this result. At 12 dpi there was an overall pattern consistent 

with higher levels of SPLUNC1 in IFNγR-/- mice than wild type mice, 

suggesting that IFNγ may inhibit SPLUNC1. Intensity of staining for SPLUNC1 

was significantly higher in IFNγR-/- mice in the trachea and the bronchioles; in 

the bronchi of the IFNγR-/- mice the increase in intensity of staining was not 

significant, however there was a significant increase in the percentage area of 

tissue stained (Figure 3-42).  

 

In the wild type mice, infection led to decreases (although not significant) in 

SPLUNC1 in the trachea and the bronchi, consistent with the hypothesis of 

Curran et al. (2009) that SPLUNC1 regulates inflammation in the healthy lung 

but is reduced via IFNγ following infection to promote an effective immune 

response. Unfortunately, these data sets are not complete, with timepoints 

missing in both groups. In the IFNγR-/- mice, the trachea showed a significant 

decrease in percentage area stained between 0 and 12 dpi, however the 

bronchi exhibited a large significant increase in both percentage area stained 

and intensity of staining between 8 and 12 dpi. However, as there is no data 

for uninfected bronchi, it is unclear whether this represents a decrease and a 

recovery of SPLUNC1 secretion, or an overall increase. Furthermore, at 12 dpi 

there remains a significant inflammatory response in the lungs of these mice 

and examining the SPLUNC1 levels at later timepoints to investigate whether 

there is an increase in expression of the protein alongside the resolution of 

inflammation, similar to that observed within the wood mice, would be of great 

interest. 

 

It is interesting to note that, despite the changes in the bronchioles of both 

IFNγR-/- and wild type mice being statistically significant, the changes are small 

and the levels are very low. This is possibly comparable to the level of 

expression observed in the BALB/c mice infected with SeV, HRSV and the 

various Influenza A virus strains. Additionally, the changes are increases in 

response to infection, which is in contrast to the overall picture and the findings 

of others (Britto et al., 2010; Curran et al., 2009). The levels are, however, low 
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compared to the bronchi and trachea and unlikely to affect the overall pattern 

of expression of SPLUNC1 in the lung if assessment was performed by a 

method which did not distinguish between anatomical areas, for example by 

analysis of BAL fluid.  

 

MHV-68 M3 protein has previously been shown by microarray analysis to 

increase transcription of SPLUNC1. A higher level of mRNA was detected in 

M3.MR infected wood mice, compared to M3.stop infected wood mice at 14 

dpi, although this difference was not significant (Hughes, 2006). At the similar 

timepoint in this study, no significant differences were present in SPLUNC1 

expression as quantified by analysis of immunohistological staining, between 

M3.MR and M3.stop infected wood mice within the different anatomical 

locations (Figure 3-16). In addition, although significant differences were seen 

in the intensity of staining in the trachea and the bronchioles between M3.MR 

and M3.stop infection at 7 dpi, the intensity was higher in the M3.stop infected, 

not the M3.MR infected wood mice (Figure 3-15). This is unlikely to be 

associated with a response to IFNγ, as levels of this cytokine were similar 

between M3.MR and M3.stop infected wood mice (Hughes, 2006). Therefore, 

the results of the current study do not support a role for the M3 protein in the 

expression of SPLUNC1. 

 

In summary, MHV-68 infection in wood mice provides evidence to support the 

hypothesis of Curran et al (2009) that SPLUNC1 expression is decreased in 

acute inflammation to promote an effective immune response. In this model, 

SPLUNC1 expression is decreased in infected mice compared to mock-

infected wood mice at 7 dpi, but increases by 14 dpi, most notably in the 

bronchioles. This is potentially associated with resolution of inflammation. No 

role for the MHV-68 M3 protein was found in the expression of SPLUNC1 in 

the airways of infected wood mice. In respiratory virus infections other than 

MHV-68, at the early timepoints studied, SPLUNC1 expression in the 

bronchioles is very low. However, there is evidence of reduced SPLUNC1 

expression with an increase in inflammatory response. IFNγ may have a role 

in the suppression of SPLUNC1 in infected mice; however, further work is 

required to complete this data set.  
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4.5 Conclusions 
Clara cell secretory protein and short palate lung and nasal epithelium clone 1 

are two proteins which are expressed in the respiratory epithelium of the lung 

(Bingle et al., 2004; Broeckaert et al., 2000; Reynolds et al., 2002). 

Investigation of the function of both proteins has produced evidence which 

suggests that both may have anti-inflammatory roles in response to infection 

with bacterial and viral pathogens (Britto et al., 2010; Curran et al., 2009; Gally 

et al., 2010b; Gally et al., 2010a; Harrod et al., 1998; Harrod and Jaramillo, 

2002; Hayashida et al., 2000; Liu et al., 2010a; Wang et al., 2003). The genes 

which encode these two proteins were amongst those identified as 

differentially expressed in MHV-68 infection of Apodemus sylvaticus (wood 

mouse), depending on the presence or absence of the virally encoded 

chemokine binding protein, M3 (Hughes, 2006). CCSP, SPLUNC1 and AGR3 

were found to be expressed at higher levels in wood mice infected with the 

wild type MHV-68 (M3.MR) than those infected with a mutant MHV-68 which 

did not express M3 (M3.stop). Further investigation of these results has been 

the focus of the current study. 

 

Anterior gradient homologue 3 (AGR3) is thought to be homologous in humans 

to another gene, anterior gradient 2 (AGR2). AGR2 is associated with the 

post-translational modification of mucins, prior to secretion, in the small 

intestine and the lung (Park et al., 2007; Park et al., 2009; Zhao et al., 2010). 

Both genes were found to be transcribed in non-ciliated cells of the respiratory 

mucosa at all levels of the respiratory tract, and the submucosal glands of the 

upper respiratory tract of Apodemus sylvaticus. Overall, AGR2 was expressed 

at higher levels than AGR3. The cellular location of gene expression was 

consistent with the association of these genes with secretory cells. AGR3 was 

found to be upregulated in response to wild type MHV-68 infection, whereas 

AGR2 expression was decreased. This suggests that these two genes differ in 

regulation, despite being described as homologues in humans. AGR2 has 

been associated with differentiation of Clara cells to goblet cells, so a reduction 

in expression would suggest that MHV-68 infection in Apodemus sylvaticus 

does not induce goblet cell hyperplasia (Chen et al., 2009; Park et al., 2007).  

This is in contrast to the increased number of vesiculated Clara cells observed 
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ultrastructurally in MHV-68 infected wood mice (Figure 3-24). Therefore, the 

increase in AGR3 may be implicated in this morphological change, if these two 

genes are homologous. The sample sizes for these experiments were small, 

however, and further work needs to be done to confirm these initial data and 

investigate potential relationships between AGR3 and goblet cell hyperplasia.  

 

The distribution and morphology of Clara cells was found to be similar in 

Apodemus sylvaticus to that described for Mus musculus (Pack et al., 1981). 

Sequencing of the gene in Apodemus sylvaticus revealed that CCSP in this 

species has high homology with other rodent species. In response to infection 

with wild type MHV-68, there was a decrease of expression of the protein in 

the bronchiolar epithelium at 7 dpi, followed by an increase at 14 dpi. This was 

a similar pattern to that seen in the infection of laboratory mice with 

Pseudomonas aeruginosa (Hayashida et al., 2000). Hayashida et al. (2000) 

reported that CCSP expression initially decreased, but was restored to pre-

infection levels by 14 dpi, which coincided with the resolution of the 

inflammatory response. In other studies, lack of CCSP (in CCSP-/- mice) has 

resulted in greater inflammatory responses following infection with viral and 

bacterial agents and intra-tracheal administration of recombinant CCSP led to 

abrogation of this increased response (Harrod et al., 1998; Hayashida et al., 

2000; Wang et al., 2003). This suggests that CCSP expression is reduced 

during the inflammatory response, but increases in CCSP levels have a role in 

the resolution of inflammation. At 14 dpi there remains an inflammatory 

response in the lungs of MHV-68 wood mice. However, the pattern of 

inflammation has altered from the acute response seen at 7 dpi. This suggests 

that in MHV-68 infection of wood mice, CCSP may have a role in the 

resolution of inflammation following the acute inflammatory response. 

 

Investigation of other respiratory viral infections in Mus musculus (Human 

respiratory syncytial virus, Sendai virus and Influenza A virus) revealed a 

decrease in CCSP expression in the bronchiolar epithelium when infection 

resulted in a significant inflammatory response. This was most notable in mice 

infected with Sendai virus and HPAI H5N1. The timepoints studied did not 
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allow for investigation as to whether CCSP levels later increased with 

resolution of inflammation in these experiments. 

 

Interferon γ has been suggested to have a regulatory role in the expression of 

CCSP, as administration of IFNγ led to an increase in CCSP (Magdaleno et 

al., 1997). In the current study, infection of IFNγR-/- mice with MHV-68 was 

associated with decreased CCSP levels, compared to those in wild type mice. 

However, this decrease in CCSP was present in both infected and uninfected 

mice. Therefore, this suggests that although lack of IFNγ signalling results in a 

decrease in CCSP expression, this effect is less significant than the overall 

response to the viral infection. In addition, the reduced CCSP expression in the 

IFNγR-/- mice could be associated with the increased inflammatory response 

observed in these mice following infection, in a similar trend to that observed in 

mice infected with other viral agents. 

 

The MHV-68 M3 protein binds a range of chemokines, which in vivo results in 

reduced levels of a number of T cell chemokines in MHV-68 infected wood 

mice at 14 dpi (Hughes, 2006). This has been suggested to be the underlying 

mechanism which results in differing inflammatory infiltrates in the lungs of 

wood mice infected with wild type MHV-68 (M3.MR) and MHV-68 M3.stop 

(Hughes, 2006). The lack of functional M3 protein was also associated with 

decreased expression of CCSP (Hughes, 2006). Investigation of the effect of 

M3 on the expression of CCSP in the current study concurred with the findings 

of Hughes (2006). In the bronchiolar epithelium of wood mice infected with 

M3.stop, the expression of CCSP was significantly reduced compared to those 

infected with M3.MR. The overall pattern of CCSP expression in response to 

infection was similar; the M3.stop infected wood mice also showed a decrease 

in expression of CCSP at 7 dpi, compared to mock-infected wood mice, and 

an increase at 14 dpi. However, at both timepoints, lack of M3 resulted in a 

reduction in the expression of CCSP in the bronchioles. M3 binds a large 

range of chemokines (e.g. MIP-1α, MIP-1β, MIP-2, MIP-3α, MIP-3β, MIG, 

RANTES, KC (Hughes, 2006)) and results in a reduction of T cells in the 

inflammatory infiltrate and an increase in B cells. Lack of CCSP in viral 

infection is associated with an increase in chemokines (MIP-1α, MIP-2 (Harrod 
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et al., 1998)). Therefore, it is possible that the decrease in the expression of 

CCSP in M3.stop infected mice is related to the increased level of these 

chemokines. Furthermore, the trend of decreased CCSP in the presence of 

increased inflammatory infiltrates in several of the experiments in this work 

suggested that a chemokine, or another inflammatory mediator, functions to 

down regulate the expression of CCSP. A decrease in this mediator with the 

resolution of inflammation, or the clearance of the infectious agent which 

initiated the inflammatory response, may then result in the restoration of CCSP 

levels. CCSP then may later have a role in the resolution of inflammation, as 

has been shown in work by other authors (Wang et al., 2003). 

 

SPLUNC1 is a member of the palate lung and nasal epithelium clones 

(PLUNC) family of proteins, which have a predicted spatial similarity with LPS 

binding protein and bactericidal/permeability increasing protein, leading to the 

hypothesis that they have an anti-inflammatory role in the lung (Bingle and 

Gorr, 2004). Sequence analysis of the protein in Apodemus sylvaticus showed 

that the gene has high homology with those expressed in other rodents, 

including the presence of a repeat in exon 2, also found in Mus musculus 

(Bingle et al., 2004). The expression of SPLUNC1 in the respiratory tract of 

Apodemus sylvaticus was similar to that described for other species with the 

exception of the bronchiolar epithelium (Bingle et al., 2005; Bingle et al., 2007; 

LeClair et al., 2001; Weston et al., 1999). SPLUNC1 is strongly expressed in 

the upper respiratory tract in the respiratory mucosa and the submucosal 

glands. In both humans and laboratory mice, SPLUNC1 is rarely present within 

the bronchiolar epithelium. Expression of SPLUNC1 has been reported in 

hyperplastic bronchiolar epithelium in cystic fibrosis patients (Bingle et al., 

2007) and in patients with progressive idiopathic pulmonary fibrosis (Boon et 

al., 2009). Staining for SPLUNC1 within the mucus in the bronchiolar lumen of 

COPD patients has also been described (Di et al., 2003). 

 

Investigation of SPLUNC1 expression in the lung of laboratory mice and the 

effect of the absence of the protein in SPLUNC1-/- mice has led to the 

hypothesis that a mechanism to downregulate the expression of this protein 

occurs in the acute and subacute stages of infection, to permit a meaningful 



204 

 

inflammatory response to clear infectious agents (Curran et al., 2009). This 

hypothesis is supported by the findings in the current study, in which MHV-68 

infected wood mice exhibited an initial decrease in SPLUNC1 expression in 

the bronchioles at 7 dpi and an increase at all levels of the respiratory tract at 

14 dpi, compared to mock-infected controls. This was a similar response to 

that seen by other authors in infection with Mycoplasma pneumoniae, which 

was associated with a decrease in the acute stages of infection (Chu et al., 

2007). The alteration of SPLUNC1 expression in the bronchiolar epithelium 

was anatomically closest to the inflammatory response in the MHV-68 infected 

wood mice, and therefore may be expected. However, a parallel increase in 

the expression of SPLUNC1 in these cells was not detected, at either 14 dpi or 

earlier timepoints. The presence of the protein in these cells cannot be 

explained with the results obtained in this study. As previously mentioned, 

SPLUNC1 has been seen in this location in human patients with cystic fibrosis, 

but whether the bronchiolar cells expressed the gene was not investigated in 

this work (Bingle et al., 2007). SPUNC1 has also been detected in mucus 

within the bronchiolar lumen of humans, in the absence of protein in the 

bronchiolar epithelium; however, the source of this protein was not discussed 

(Campos et al., 2004).  

 

Investigation of the effect of other respiratory viruses on the expression of 

SPLUNC1 was also performed. In mock-infected BALB/c mice, SPLUNC1 

expression was strong within the trachea and bronchi, but largely absent from 

the bronchiolar epithelium. Following infection with Influenza A viruses, there 

was an increase in the expression of SPLUNC1 in the proximal bronchioles in 

infection with one strain (NC H1N1) and a decrease in another (HPAI H5N1). 

A correlation between the severity of the inflammatory response and the 

expression of SPLUNC1 was seen, with reduced SPLUNC1 in HPAI H5N1 

infection, in which the inflammatory response was greater than that observed 

in other strains of Influenza A viruses. This suggests that an increase in 

inflammatory infiltrates and the associated increase in inflammatory mediators 

decrease the expression of SPLUNC1. The results are consistent with the 

hypothesis of Curran et al (2009).  
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Regulation of SPLUNC1 in response to infection has been suggested to be 

related to IFNγ, as mice lacking the IFNγ receptor (IFNγR-/- mice) have been 

shown to lack the decrease of SPLUNC1 in response to either Th1 and Th2 

induced inflammation, or ovalbumin induced inflammation (Britto et al., 2010; 

Curran et al., 2009). Infection of IFNγR-/- mice with MHV-68 revealed that, at 

12 dpi, SPLUNC1 was increased in the absence of IFNγ signalling. These data 

support the findings and hypothesis of Curran et al. (2009), which suggest that 

IFNγ has a role in the regulation of SPLUNC1.  

 

Previously, the virally encoded chemokine binding protein, M3, has been found 

to effect the expression of SPLUNC1 in MHV-68 infection (Hughes, 2006). 

However, this is not consistent with the findings of the current study. The 

pattern of expression of SPLUNC1 showed no significant difference between 

M3.MR infected and M3.stop infected mice. This would suggest that the 

mechanism which induces the alteration of expression of SPLUNC1 in 

response to an infectious agent is unlikely to involve the chemokines which are 

bound by M3.  

 

The results of investigation into the alterations of SPLUNC1 and CCSP in 

response to infection with respiratory viruses in this study suggest that both of 

these proteins have a role in the control of inflammation in the lung. Both 

proteins are constitutively expressed in the respiratory mucosa, which has a 

fundamental role in the innate immune response and protection of the lung 

against infectious agents. In the acute stages of infection, reduction in the 

expression of both proteins occurs, which appears to correlate with the extent 

of the inflammatory response. This is consistent with the hypotheses of other 

authors, that this occurs to allow a meaningful inflammatory response to 

eliminate the instigating cause of the inflammation (Curran et al., 2009). The 

subsequent increase in expression at later stages of infection are consistent 

with CCSP and SPLUNC1 having an anti-inflammatory role in the resolution of 

inflammation (Harrod et al., 1998; Reynolds et al., 2007; Wang et al., 2003). In 

view of this potential anti-inflammatory role, understanding the mechanisms 

which control the expression of these proteins is critical in the future 

management of both acute and chronic inflammatory lung disease. 
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To further investigate the role of these proteins in the host response to viral 

infection in the lung, in addition to the recommendations already made to 

extend the work outlined in this study, utilisation of transgenic mice which do 

not transcribe the genes of interest could be used.  Experimental viral infection 

of CCSP-/- mice has been reported using HRSV and Adenovirus, but this work 

although quantitative, did not examine the location of the inflammatory 

response (Harrod et al., 1998; Wang et al., 2003). Furthermore, investigation 

of the viral agents in this study which exhibit different cellular tropisms within 

the lung, and comparison with the response in wild type mice could be 

informative as to the mechanisms of CCSP regulation and function. The 

investigation of viral infection in SPLUNC1-/- mice has not yet been reported in 

the literature. In view of the results demonstrating the variation in SPLUNC1 

expression in response to viral infection in this study, use of a transgenic 

mouse model to further elucidate the role of this protein should be performed.  
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