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Abstract 

Within the switching technology and switchgear industry, the insulation properties of gases are 

extensively utilized as excellent methods of arc quenching. To optimize the efficiency and 

effectiveness of switchgear performance in interruption of the fault current through extinguishing 

the arc as well as to withstand the rate of rise of recovery voltage (rrrv) after current zero, the 

properties of these gases have been utilized. The present research is to develop a technique to 

identify the probe current flow during the weakened dielectric strength of the gases. Through the 

probe current flow during the weakened dielectric strength of the gases, the behaviour of the 

gases are described and compared since gases are most used in the circuit breaker for fault 

current extinction.  

In particular, the properties of sulphur hexafluoride (SF6) gas have been widely utilized due to its 

outstanding properties, but, given the connection of SF6 with global warming, there is a drive to 

find alternatives (National Electrical Manufacturers Association). Although the exposed SF6 gas 

is recycled back into the cylinder after exposure, there may be some leakages into the 

atmosphere. More so, the decomposed SF6 gas into sulphur-fluoride and metal fluoride powdery 

substances when exposed to the environment after the gas might have been recycled may 

contribute to global warming at a later period. Hence, this research is focused to develop a 

technique used to determine the behavior of alternative gases which are potential candidates to 

replace SF6. The work is an experimental assessment of gases and their reaction to the presence 

of an arc discharge and recovery from that exposure. The investigation of these gases is achieved 

by using a negative DC voltage-biased dielectric probe and monitoring small current flow 
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through this probe. The primary gases considered are dry air, nitrogen (N2) and sulphur 

hexafluoride (SF6) as a comparison. 

The probe current flowing through these gases are investigated and identified respectively. The 

research identifies the variation in leakage current in compressed dry air in a changing electric 

field and pressure rise, typical examples of gas behaviour in an electric field. The search 

indicates that nitrogen gas is more susceptible to the fault current as compared to dry air, 

followed by sulphur hexafluoride SF6 gas. These gases were examined from the probe current 

flow responses obtained from the negative DC voltage-biased dielectric probe when the fault 

current was passed in the gases’ respective vicinity. Consequently, the research identified that a 

SF6 dielectric medium has better insulation property regarding the fault current as compared to 

dry air and N2 gas mediums under the same experimental conditions. The probe current flow in 

N2 gas was experimentally determined and calculated, and the direction of current flow before 

and during the arcing period of the arc discharge was also identified. The direction of current 

depended on the circuit condition; in this case, the dielectric probe operates below its breakdown 

voltage in the gas, meaning the probe tips and the surrounding gas may have with positive ions, 

thus applying the positive half cycle of fault current will repel the positive ions while 

recombining with the negative ions and electrons. Moreover, the polarities of the probe voltages 

(input V1 and output V2) may also influence the direction of the probe current flow during the 

arcing period, since current flow is conventionally from negative to positive. The probe current 

flowing during the arc was identified as more when compared to no arc discharge. The gap 

resistance for nitrogen gas at various increases in pressure before and during the arcing era were 



 

Abstract 

 
 

v 
 

also calculated. The result demonstrates that the gap resistance of nitrogen gas is greater when no 

arc was present, though both show some forms of variation over time. 
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Chapter 1 Introduction 

Short line fault and short circuit fault current flow are most prevalent characteristics in electrical 

power transmission and distribution systems. Short line fault, a fault on an overhead line a short 

distance from the breaker [1], constitutes the most onerous transient recovery voltage while the 

short circuit fault close to the circuit breaker consists of the re-strike voltage of a high-frequency 

oscillation determined by the inductance, capacitance and resistance of the system [2, 3]. These 

fault currents impose the most serious general hazard to the electrical power network 

components and are the prime concerns in developing and applying protection systems. The 

circuit breaker or switchgear withstands the transient voltage for short periods after the electrical 

power has been interrupted [4],[5]. The optimisation of the circuit breaker is to effectively 

interrupt the fault current through extinguishing the arc and to withstand the rate of rise of 

recovery voltage (rrrv) after current zero. In this, SF6 has been in use since 1960 as an alternative 

method to oil and air insulation. It is also been used as an arc-quenching arc medium in high-

voltage switchgear. This has been due to the favourable electro-technical, chemical and physical 

properties characterised by SF6, [6], but since SF6 has been shown to contribute to global 

warming, there is an environmental drive to find an alternative for the purpose of interrupting 

fault currents and dealing with the rate of rise of recovering voltage (rrrv) [7].  During the 

interruption process, the arc discharge forms a conducting path between the electrodes which 

must become a non-conducting path after current interruption in a short period of time (µs). This 

recovery period can be split into two periods: thermal recovery and dielectric recovery. The 

thermal recovery phase, which depends on the energy loss from the previously conducting arc 

channel, can last for a few µs, and this is followed by the dielectric recovery period. The 

dielectric recovery period can last 10’s of µs and is characterised by the cooling of gas and by a 
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recombination process as it cools. The end of the dielectric recovery period is characterised by 

achieving maximum dielectric withstand. 

The present research is focused on the behaviour of alternative gases which are potential 

candidates to replace SF6. The work is an experimental assessment of gases and their reactions to 

the presence of an arc discharge and the recovery from that exposure. This investigation uses a 

negative voltage DC-biased dielectric probe monitoring small current flow in the probe. The 

primary gases considered are dry air, nitrogen and sulphur hexafluoride. 

1.1 Aims and Objectives 

The research aim is to investigate the behaviour of gases when a positive half-cycle of fault 

current is passed through a circuit breaker producing an arc discharge. This is interrupted by the 

breaker. The negatively biased DC voltage dielectric probe is positioned near the arc and 

interrogates the dielectric property of the gas. The behaviour of the gases is described from the 

dielectric probe response by the small current flow detected when dielectrically weakened gas is 

between the electrodes of the dielectric probe. 

 To achieve the primary objectives of the research, the following investigations were carried out 

and reported in this thesis: 

 Optimise the operational performance of the dielectric probe by varying the limiting 

resistor to obtain the leakage current in the milliampere range and to confirm its 

operation. 

 Design and build a dielectric probe circuit capable of detecting small currents flowing 

through dielectrically weakened gas. 
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 Analyse the output from the probe and relate it to the condition of the gas. 

 Develop a simple model to explain the events detected by the dielectric probe. 

 Compare other gases with SF6.     

The objectives of the project are discussed within six chapters, beginning with an introduction in 

chapter 1. Each subsequent chapter is outlined below. 

 Chapter 2 presents the literature review and theoretical background on small current 

measurement techniques, advantages, disadvantages and applications. In addition, descriptions of 

dielectric probe module at zero input response, electrical insulation mediums, ionization and 

decay processes in gas, as well as electrical discharges measurements, peak current and current 

zero measurement are also outlined.  

Chapter 3 describes the equipment and apparatus used for the research. These include dielectric 

probing circuit, arcing current circuit, voltage probes, test circuit breaker components and 

experimental earth.   

 Chapter 4 presents the experimental setup and preliminary tests carried out, including 

descriptions of pressure gauge calibration, preliminary check of oscilloscope, and high voltage 

probe verification. Operations of dielectric probing circuit and setup for weakened dielectrically 

gas detection technique in nitrogen gas, dry air and sulphur hexafluoride gases are presented. 

Chapter 5 presents the experimental results, while the analysis and discussions of the results 

from the research are reported in chapter 6.  

Chapter 7 provides the conclusion drawn from chapters 4, 5 and 6, alongside recommendations 

for future research in this area. 
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Chapter 2 Theoretical Background 

2.1 Introduction   

This chapter presents a review of the techniques for small alternating current (AC) measurement 

as well as an overview of how low current is acquired, comprising the principles/methods, 

advantages, disadvantages and some of their applications. The techniques considered include 

current transformer, optical current sensor, optical current transformer, Rogowski coil, Hall 

Effect and shunt resistor current. The chapter also discusses components of current which 

include electrical insulation mediums, ionization and decay processes, type of arc and electric 

arc, post-arc current, and electric discharge measurement, peak current and current zero 

measurement.  

2.2  Types of Current Measurement Techniques 

 

2.2.1 Current Transformer (CT)  

CT, together with voltage transformer (VT) (or potential transformer [PT]), is known as an 

instrument transformer. CT is one of the most basic measuring elements in electric power 

systems. When the current in a circuit is too high to be applied directly to measurement 

instruments, a current transformer reduces the current accurately proportional to the current in 

the circuit to be measured. This can then be connected conveniently to measurement and 

recording instruments. A current transformer also isolates the measuring instruments from what 

may be very high current in the monitoring circuits. 
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2.2.1.1 Background Current Transformer 

Power quality assessment relies on the accurate measurement of current and voltage. Current 

transformers exhibit good frequency response under distorted conditions, although this is only 

valid for a low impedance load on the secondary of the current transformer. Moreover, 

measuring accuracy of electromagnetic CT is high in steady state [8], so, after long-term applied 

research, the accuracy of measuring steady-state current is able to reach several ten thousandths. 

The primary objective of current transformer design is to ensure that the primary and secondary 

circuits are efficiently coupled, so that the secondary current bears an accurate relationship to the 

primary current. The primary winding is connected in series with the source current to be 

measured, and the secondary winding is normally connected to a meter, relay, or a burden 

resistor to develop a low-level voltage that is amplified for control purposes. 

 

2.2.1.2 Theory of Current Transformer 

Current transformers operate on the same principles as other transformers with magnetic cores. A 

transformer consists of a primary and one or more secondary windings around a closed magnetic 

path formed by the magnetic core. Current in the primary winding sets up a change of flux in the 

core. Ignoring losses, the secondary winding sets up a change of flux, equal in magnitude but 

reversed in direction to oppose this change in flux. This simplified and ideal description can be 

refined to account for secondary effects due the materials and construction methods used [8, 9]. 

The voltages are proportional to the numbers of turns in the coils: the coils with more turns have 

the higher voltage [10].  High permeability and low core loss materials in toroidal shapes are 

recommended to reduce errors due to leakage flux and high magnetizing currents. Materials 

selected for a current transformer depend on the operating frequency, accuracy and cost [11]. 
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High permeability materials in toroidal shapes afford close core coupling and link both windings 

to minimize leakage flux. Such coupling is increased if the primary winding has several turns; 

however, satisfactory results can be obtained with only a single turn. For best results, the 

secondary winding should be evenly spaced completely around the core. The exciting current 

determines the maximum accuracy that can be achieved with a current transformer. 

 

2.2.1.3 Advantages of Current Transformers 

The main purpose of the current transformer is to produce, from the primary current, a 

proportional secondary current which can be measured easily or used to control various circuits. 

Current transformers can be used in a synthetic circuit to measure the fault current, facilitating 

the safe measurement of large currents, often in the presence of high voltages. The primary 

winding is connected in series with the source current to be measured, while the secondary 

winding is normally connected to a meter, relay, or a burden resistor to develop a low level 

voltage that is amplified for control purposes [9]. Commonly, cores with high effective 

permeability are used in current transformers in order to minimize magnetizing current and 

reduce errors [11]. 

 

2.2.1.4 Disadvantages of Current Transformers  

In short circuit fault occasions, serious magnetic saturation occurs, resulting to secondary current 

output waveform distortion; hence, the CT is not able to reflect the transition process accurately, 

which may bring about protection mistake actions through not allowing the measurement of DC 

signals. Isolation between primary and secondary sides is implicitly given with limited frequency 

range problem. The main error in a current transformer is magnetizing current that causes ratio 
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and phase displacement errors. [12].  Though metering accuracy has been attainable using 

conventional CTs, there has always been a concern about the low-end meter accuracy. 

Considering the discussed issues above, the application of CT may not be realistic as a primary 

sensor for this research. 

 

2.2.1.5 Applications of Current Transformers 

Current transformers do not allow the measurement of DC signals, so they cannot be suitable for 

dielectric discharge detection; however they can be used in the measurements of inductive 

currents and voltage waveforms with secondary load impedance. Isolation between primary and 

secondary sides is implicitly given with limited frequency range problem. The main error in a 

measurement type current transformer (CT) is magnetizing current that causes ratio and phase 

displacement errors[11].  Current transformer is best performed in steady state AC current 

measurement. 

 

2.2.2 Optical Current Sensor  

Optical current sensors (OCS), also known as magneto-optic current transducers (MOCTs), are 

increasingly accepted in measuring of high voltage due to their superior accuracy, bandwidth, 

dynamic range and inherent isolation. Once deemed specialized devices intended for novel 

applications, optical sensors have risen to a performance level exceeding conventional magnetic 

devices. With this new technology (i.e., magneto-optical current transducers based on the 

Faraday Effect), there is enthusiasm about how the development will revolutionize older 

technology [13]. 
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2.2.2.1 Background of Optical Current Sensor 

The Magneto-optic or Faraday Effect was first reported by Michael Faraday in 1845. Serious 

research into implementing the Faraday Effect into highly accurate current measuring 

applications began in the late 1970s. These efforts resulted in a number of successful field trials 

using optical current sensor-based metering systems that date back to 1986. The installations 

utilized porcelain columns with data-acquisition capabilities. However, as reported by Maffetone 

[14], such earlier data-acquisition systems did not lend themselves to the analysis of waveform 

quality and performance as required for the present installation. Since Faraday’s early discovery, 

this phenomenon has been observed in many solids, liquids, and gases. 

 

2.2.2.2 Theory of Optical Current Sensor  

Optical-based current measurement devices, known as magneto-optic current transducer, are 

based on the Faraday Effect, which states that, when polarised light passed through a glass 

material (Faraday material) that is parallel to a strong magnetic field, the plane of the light 

rotates. Figure 2.1 illustrates the polarized light. The amount of rotation   for the given material 

is proportional to the strength of the applied magnetic field and the distance travelled by the light 

through the medium. The rotation α is mathematically expressed as:  

                          1 

where I is the current in amperes, n is the number of loops around the conductor,    is the 

constant of permeability which is equals unity in air, and V is the Verdet constant (0.31 x 10
-5

 

rad/amp-turn), which is defined as the rotation per unit path per unit field strength and    is the 

angle of rotation in radian [15]. 
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Figure 2.1. The rotation of the plane of polarization of the light path, Gondge [16].   

 

 

To examine this principle closer, the following definitions are offered. The rotation θ of the 

plane of polarization of the light path with respect to the length L of that path is proportional to 

the magnetic field intensity Н and can be expressed as: 

  

  
  ⃗⃗                              2 

 

Therefore, 
  

   
      ⃗⃗⃗⃗  ⃗                    3 

 

From Ampere’s law 

∮  ⃗⃗                               4 

 

It follows that,      

                               5 

                           

Solving for single loop for bulk glass, then   = 1 and     =1,  

We have,                                                

                                    6 

Electronic signal processing circuitry is then utilized to precisely evaluate this low level 60 Hz 

intensity variation, and calculate a calibrated signal that is exactly in phase with respect to the 

primary current sine wave. 
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2.2.2.3 Advantages of Optical Current Sensors 

The major benefit of an optical current sensor is immunity to geomagnetic effects and 

electromagnetic induction EMI. Magneto-optic current transducers (MOCTs) are utilised to 

improve performance and reliability and to solve problems in electrical power and transient 

recording. Each one of these areas has several difficulties that engineers have endured with 

conventional current transformers measurement. MOCTs will not saturate under heavy fault 

current and eliminate burden concerns, offering increased frequency response and an entirely 

optical power interface; hence, it affords total isolation which increases the safety for both 

personnel and equipment. It has metering accuracy and eliminates the low-end meter accuracy. 

MOCT has very high bandwidth and extremely wide dynamic range, freedom from saturation 

effects and DC operation. With temperature-compensating controls incorporated into the MOCT 

electronics, the long-term seasonal performance of the device will be attained. 

 

2.2.2.4 Disadvantages of Optical Current Sensors  

The problem with this approach is the relative movement between the core and the glass. The 

conductor encircled by a number of glass blocks, forming a closed path; this method renders the 

sensor insensitive to interfering magnetic fields [17]. This method has complex optical sensor 

assembly resulting in inadequate sensitivity. Although the glass block sensor offers some 

significant advantages compared with the coiled fibre sensor, the additional problems included in 

most designs include the sensors being sensitive to interfering magnetic fields, as closed optical 

paths are not normally formed round the conductors. Secondly, in common with the coiled fibre 

type, these sensors are sensitive to fibre down lead vibration. Pilling [18] noted that mechanical 

perturbations of the optical fibres connecting the sensor to the optoelectronic processing system 
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result in optical intensity changes, which are manifest as noise. Moreover, as Faraday rotation 

depends on the Verdet coefficient of the optical sensing material, materials with high Verdet 

coefficients have temperature and stress dependent birefringence properties, since the Verdet 

constant of dielectric material varies with temperature and wavelength of the optical source. In 

addition, the measurement may be affected by environmental perturbations such as temperature 

fluctuations and wavelength noise of the light source [19, 20]. 

 

2.2.2.5 Applications of Optical Current Sensors  

The Optical Current Sensor (OCS) Method cannot be applied in this research due to its 

complexity which includes relative movement between the core and the glass, mechanical 

perturbations of the optical fibres; nonetheless, this method has many applications in the power 

distribution industry, as both absolute and differential AC and DC measurements up to very high 

currents are possible.  

 

2.2.3 Optical Current Transformers  

Optical current transformers (OCT) are gaining credibility in power engineering given their 

advantages of high resistance to electro-magnetic interference, magnetic-saturation-free and 

hysteresis-free performance and lack of need for extra power supply in the primary side. 

Furthermore, as one type of electric current transformers (ECT), OCT can interface with digital 

relay protection devices easily and meet the real-time demands of current automation [21, 22]. 

2.2.3.1 Background of Optical Current Transformers 

As the name implies, the optical current transformer (OCT) is a combination of optical sensor 

and current transformers made of optical fibre; hence, it utilizes the Faraday Effect in current 
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measurement [23]. In electrical industries, OCT is commonly employed for high accuracy in the 

steady state applications.     

2.2.3.2 Theory of Optical Current Transformers 

On the high voltage side, a high current signal is changed to a small electric signal, converted to 

data electric signal by electronic circuit, and then changed to a data optical signal. The signal is 

transmitted to the low voltage side by optical fibre and is demodulated to a weak electric signal 

which is proportional with heavy current at high voltage side. The amplitude value and phase 

information of heavy current are thus obtained [24, 25].  OCT is also utilized to measure the 

primary current. 

 

2.2.3.3 Advantages of Optical Current Transformers  

The OCT is used in protection and metering systems with currents flowing in high voltage 

conductors. It utilizes the Faraday Effect to measure primary current, exhibits excellent electrical 

isolation and comes in small sizes. OCT has high resistance to electro-magnetic interference. It is 

magnetic-saturation-free and hysteresis-free and has no need for extra power supply in primary 

side as in CT. It can interface with digital protection device easily and meet the real-time 

demands of current measurement. The optical electric current transformer is light in weight and 

costs little. Based on virtual instrument and digital signal processing technology, error measuring 

system is designed by using Lab View software and DAQ-2006 data acquisition card to obtain 

real-time current. Also, in terms of virtual instruments, an optical electric current transformer 

error measuring system could be designed easily. OCT is, in principle, a suitable replacement for 

a conventional device for power system protection purposes without loss of system quality or 

reliability. It adopts high precision iron core coil and has outstanding insulation. 
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2.2.3.4 Disadvantages of Optical Current Transformers  

The OCT is subject to the problem of linear birefringence (i.e., double refraction—the 

decomposition of a ray of light into two rays when it passes through certain anisotropic materials 

such as crystals of calcite or boron nitride) due to stress of bending fibres and change of 

temperature. These problems are solved by using double-coated twisted fibres. 

 

2.2.3.5 Applications of Optical Current Transformers  

Due to OCT complexity and linear birefringence resulting from temperatures, this method of 

current measurement cannot be applied in this work. OCT is best used for the high-voltage, high-

current signal measurement as compared to currents in milliampere. OCT is used to measure 

exact amplitude value and phase information of analogue signals of power systems. It is able to 

measure phase errors and ratio errors of optical electric current transformers. In most 

applications, OCT is employed for its high accuracy in steady state while a Rogowski coil is 

employed for high accuracy in transient state applications [15, 21]. 

 

2.2.4 Rogowski Coil  

Rogowski coils perform passive current measurements and are used in testing, measurement 

devices and power-monitoring activities, although calibration is required to account for 

manufacturing variations in the coil and to provide uniform device-to-device sensitivity. 

Traditionally, coils are compensated with an amplifier, making both the coil and the amplifier a 

matched pair. Rejustors provide a passive compensation solution for Rogowski coils, enabling 

http://en.wikipedia.org/wiki/Ray_(optics)
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Anisotropic
http://en.wikipedia.org/wiki/Calcite
http://en.wikipedia.org/wiki/Boron_nitride
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coil manufacturers to produce devices with uniform performance increasing interchange ability 

while reducing manufacturing complexity [26, 27]. 

 

2.2.4.1 Background of the Rogowski Coil 

A Rogowski coil, named after Walter Rogowski, is an electrical device for measuring alternating 

current (AC) or high-speed current pulses. The device use a helical coil sensor which is 

uniformly wound onto a relatively long non-magnetic circular or rectangular strip, usually 

flexible (figure 2.2)  [28]. The  helical coil of wire has the lead from one end returning through 

the centre of the coil to the other end, so that both terminals are at the same end of the coil. The 

whole assembly is then wrapped around the straight conductor whose current is to be measured. 

The first description was given by Rogowski and Steinhaus in 1912 [29]. Sometimes this coil 

arrangement is called a Chattock coil (or Rogowski–Chattock potentiometer). Indeed, the 

operating principle of such a coil sensor was first described by Chattock in 1887 (it is not clear if 

Rogowski knew of the disclosure by Chattock, because in Rogowski’s article Chattock was not 

cited)[30].  However, Chattock used it to measure magnetic fields rather than currents [31, 32]. 

2.2.4.2 Theory of the Rogowski Coil 

 

The principle of operation of this sensor is based on Ampere’s law rather than Faraday’s law. If 

the coil of length l is inserted into a magnetic field, then the output voltage v is the sum of 

voltages induced in each turn (all turns are connected in series). The output signal of the 

Rogowski coil depends on the number of turns per unit length N/l and the cross section area A of 

the coil (see figure 2.3) [33]. Since the voltage that is induced in the coil is proportional to the 

rate of change of current i in the straight conductor, the output of the Rogowski coil is usually 

http://en.wikipedia.org/wiki/Walter_Rogowski
http://en.wikipedia.org/wiki/Electricity
http://en.wikipedia.org/wiki/Alternating_current
http://en.wikipedia.org/wiki/Alternating_current
http://en.wikipedia.org/wiki/Helix
http://en.wikipedia.org/wiki/Coil
http://en.wikipedia.org/wiki/Wire
http://en.wikipedia.org/wiki/Lead_(electronics)
http://en.wikipedia.org/wiki/Terminal_(electronics)
http://en.wikipedia.org/wiki/Conductor_(material)
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Voltage
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connected to an electronic integrator circuit in order to provide an output signal that is 

proportional to the current. 

 

 
Figure 2.3 shows a Rogowski coil wrapped around a current-carrying conductor [34]. 

The voltage drop across the Rogowski coil is expressed as                    

                                                      
     

 

  

  
                                                                

                                                           
  

  
                                      7                                                                                                      

where   = 4π x 10
-7   

is the magnetic constant, A = πR
2
 is the cross sectional area of the toroidal, 

N is the number of turns, l = 2πR is the length of the winding,  
  

  
  the rate of change of the 

current threading the loop, M is mutual inductance of a Rogowski coil. This formula assumes the 

turns are evenly spaced and that these turns are small relative to the radius of the coil itself. At 

high frequencies, the impedance of a Rogowski coil's inductance will increase and so decrease 

the output. The inductance L of a toroidal coil is expressed as: 

                                                
 (  √(     ))                 8                                                                                                                                                                                                                        

where R is the major radius of the toroidal, and a is its minor radius. 

i 

v 

a 

l 

R 
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Several methods in measuring the low amplitude current by a Rogowski coil are discussed in 

‘Studies of Rogowski coil current transducer for low amplitude current (100A) measurement’, in 

which the mutual inductance M of a Rogowski coil need to be improved on [35]. 

 

2.2.4.3 Advantages of Rogowski Coils 

A Rogowski coil may have many features which give it advantages over other methods of 

current measurement (including current transformers) in this application. These advantages 

include flexibility in usage, for a Rogowski coil is made open-ended, allowing it to be wrapped 

around a live conductor without disturbing current from the capacitor bank and during 

breakdown voltage. Secondly, unlike conventional transformers that have an iron core, the 

transformer in a Rogowski coil uses an air core which provides low impedance so there is no 

danger of saturating the core (as can occur in iron core transformers). A Rogowski coil does not 

suffer from magnetic saturation under transient condition, and, therefore, it has high measuring 

accuracy in a transient state. It is linear, meaning that the same transducer can be used to 

measure a wide range of currents. For example, a breakdown voltage test and protection 

functions could be combined. This feature is also very useful in installations where there is some 

uncertainty as to the level of current which will flow, as the sensitivity of the measuring system 

can be adjusted after the measuring coil has been installed without the need to change the coil. 

Rogowski coil transducers are highly suitable for protection applications because they do not 

saturate in the early stages of transiency even when asymmetric components (DC offsets) are 

present. It has wide bandwidth, ranging from less than 1 Hz to several hundred kHz depending 

on the coil type. It is useful for harmonic analysis for it does not create harmonics. The systems 

can be made with an uncertainty better than 0.1%., and this accuracy can be maintained even 
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with a split coil. A Rogowski coil is compacted, lightweight and can be fitted in confined space. 

It is light enough to be suspended on cabling if necessary. A Rogowski coil is typically made 

from an air core coil, so, in theory, there is no hysteresis, saturation, or non-linearity. 

 

2.2.4.4 Disadvantages of Rogowski Coils 

One disadvantage of the coil is that the Rogowski coil produces output voltage proportional to 

di/dt. Therefore, by connecting or disconnecting moments, the emf goes “infinite”. Transient 

voltage suppressors (TVS) or other protections have to be considered to prevent overloading the 

downstream electronics. Voltage drop is only generated when there are changes in the magnetic 

field; therefore, a Rogowski coil cannot be used to measure the DC component in the current as 

in an RC circuit of dielectric probe. A Rogowski coil relies on measuring magnetic field, thus 

making this type of current sensor susceptible to external magnetic field interference compared 

to shunt resistor sensors and current transformer core coil [36]. 

 

2.2.4.5 Applications of Rogowski Coils   

Considering the measurement technique and the features of the coil, a Rogowski coil cannot be 

applied to measure the output current from Brandenburg high voltage DC power supply since the 

principle is based on a time-varying magnetic field. However, the technique could be used to 

measure the arc current from the synthetic AC power supply system that has a time-varying 

component (e.g., a magnetic field). With the f coil flexibility, it is possible to make a direct 

measurement of the current flowing down the capacitor bank circuit and hence obtain a reliable 

measurement. Since the coils are linear, the same equipment can cope with any current level. In 

terms of protection, Rogowski coils are useful because of their good transient performance and 
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high-current capability. As the coils are compact, they are easier to fit on existing installations 

without the need for expensive modifications. Finally, Rogowski coil current transducers offer a 

useful contribution to the art of measuring electric currents under difficult or unusual 

circumstances, as well as for more normal situations.  Dickinson  [37] observed that a wider 

understanding of what the coil is and what it can do is obviously essential if its full potential is to 

be exploited. 

 

2.2.5 Hall Effect Current Sensor 

In power systems, safety and reliability are the most important considerations. To meet safety 

and reliability requirements, appropriate current monitoring devices are sought for measuring 

currents for metering and fault protection. The Hall effect, entirely integrated on a single silicon 

chip, is becoming popularly in use. This has resulted a in low-cost, high-volume application of 

the Hall effect as obtained in Kun-Long[38] and Honeywell[39]. 

 

2.2.5.1 Background of the Hall Effect Current Sensor 

In his paper, Kun-Long [38] wrote that the Hall effect was discovered by Dr Edwin Hall in 1879 

while he was a doctoral candidate at Johns Hopkins University in Baltimore. Hall was attempting 

to verify the theory of electron flow proposed by Kelvin some 30 years earlier. Dr Hall found 

that, when a magnet was placed so that its field was perpendicular to one face of a thin rectangle 

of gold through which current was flowing, a difference in potential appeared at the opposite 

edges. Moreover, he found that this voltage was proportional to the current flowing through the 

conductor and the flux density or magnetic induction perpendicular to the conductor. Although 

Hall’s experiments were successful and well received at the time, no applications outside of the 
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realm of theoretical physics were found for over 70 years. With the advent of semiconducting 

materials in the 1950s, the Hall effect found its first applications, although severely limited by 

costs. In 1965, Everett Vorthmann and Joe Maupin, MICRO SWITCH Sensing and Control 

senior development engineers, teamed up to find a practical, low-cost solid state sensor. Many 

different concepts were examined, but they choose the Hall effect for the basic reason that it 

could be entirely integrated on a single silicon chip. This breakthrough resulted in the first low-

cost, high-volume application of the Hall effect in solid state current monitoring devices and 

other applications [39].  

 

2.2.5.2 Theory of the Hall Effect Current Sensor 

When a current-carrying conductor is placed into a magnetic field, a voltage will be generated 

perpendicular to both the current and the field. This principle is known as the Hall effect. Figures 

2.4 and 2.5 illustrate the basic principle of the Hall effect. It shows a thin sheet of 

semiconducting material (Hall element) through which a current is passed.  

 
Figure 2.4 shows Hall Effect principle with no magnetic field 

 

 
Figure 2.5 shows Hall Effect principle under a magnetic field influence 
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The output connections are perpendicular to the direction of current. When no magnetic field is 

present as shown in figure 2.4, current distribution is uniform and no potential difference is seen 

across the output. When a perpendicular magnetic field is present, as shown in figure 2.5, a 

Lorentz force is exerted on the current. This force disturbs the current distribution, resulting in a 

potential difference (voltage) across the output. This voltage is called the Hall voltage (VH). The 

interaction of the magnetic field (B) and the current (I) is shown in equation form as equation 9. 

                               9 

 Hall effect sensors can be applied in many types of sensing devices. If the quantity to be sensed 

is incorporated with a magnetic field, a Hall sensor will perform the task.           

                                                                                       

2.2.5.3 Advantages of a Hall Effect Current Sensor 

A Hall effect sensor can totally be isolated from another high-voltage electrical system which 

eliminates many safety concerns. The resolution can be improved by looping the wire through 

the current clamp as many times as to double, triple, or quadruple the sensitivity or resolution of 

the sensor. The Hall effect current sensor does not get hot when in use and has inherent voltage 

isolation from the current path, as reported in Kun-Long[38]. It can be integrated into the Hall 

element and interface electronics on single silicon chip [40]. The use of a Hall Effect device 

increases the accuracy of current in both ‘high current path and a low current path’ 

measurements and provides more signal than the shunt solution over current measurement range. 

Hall Effect devices are readily apparent with the low insertion loss. The device improves current 

measurement accuracy over a wider current range, reducing power consumption by significantly 

reducing the 1
2
R loss. The obvious benefit for a small form-factor Hall effect solution is that the 

volume required is a fraction of the equivalent CT solution, and, in addition, there is an 
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elimination of gain and additional protection components. It has a nice advantage over 

safeguards in protecting data acquisitions [41].  

 

2.2.5.4 Disadvantages of a Hall Effect Current Sensor 

The drawback of this technology is that the output from a Hall Effect sensor has a large 

temperature drift, and it usually requires a stable external current source. Hall effect sensors are 

somewhat less common compared to the CT [36]. The device output voltage is very small, 

requiring high amplification. The sensitivity is temperature dependent and requires adequate 

compensation. There is an inevitable offset, i.e., a small DC voltage at zero current; the offset 

amplitude and temperature coefficient are subject to significant fluctuations. Also noted is 

sensitivity to short current peaks in the circuit: according to the hysteresis properties of the core 

material, these peaks can cause a static magnetization in the core that results in a permanent 

reminisce, and finally in an offset alteration of the Hall element  

 

2.2.5.5 Applications of a Hall Effect Current Sensor  

In terms of this research, the Hall Effect method might not suitable since it requires an external 

power source as compared to the shunt resistor method in use. The current detected will require 

amplification before it can be used. Although a Hall Effect magnetic detector has inherent 

voltage isolation from the current, the device sensitivity is temperature dependant which needs to 

be compensated before the current can be used. The use of a Hall effect device increases the 

accuracy of current in both ‘high current path and a low current path’ measurements and 

provides more signal than the shunt solution over the measurement range, yet the Hall effect 
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device has an inherent small DC voltage at zero current; this offsets amplitude and temperature 

coefficient which are subject to significant fluctuations.  

 

2.2.6 Shunt Resistor Current Sensor 

Shunt current measurement techniques are in wider use since they were the first possible method 

for current detection, monitoring and measurement. Measuring current requires careful 

consideration when setting up measurement system. It should be understood that two factors 

needed to be consider in ensuring accurate measurement, i.e., the device measurement method 

and impact of measurement on the circuit [42]. 

 

2.2.6.1 Background of the Shunt Resistor Current Sensor 

With its importance in electric power control and stability, many studies and implementations 

have been carried out to improve techniques of shunt resistor current measurement methods [43]. 

This method was applied and used in post-arc detection and measurements by Michel [5]. 

 

2.2.6.2 Theory of the Shunt Resistor Current Sensor  

The shunt resistor current measurement method adopts the Ohms law principle of current 

measurement. A known resistance of shunt is placed in series with the load so that all of the 

current to be measured will flow through it. The voltage drop across the shunt is proportional to 

the current flowing through it, since its resistance is known. A milli-voltmeter connected across 

the shunt can be scaled to directly display the current value (see figure 2.6) [34]. 

http://en.wikipedia.org/wiki/Electrical_resistance
http://en.wikipedia.org/wiki/Series_circuit
http://en.wikipedia.org/wiki/Voltage
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Figure 2.6 shows a Voltmeter measuring a voltage drop across a resistor. 

 

In the shunt method, a low value of Rshunt is chosen to minimize the power dissipation of the 

shunt. If the shunt resistor of the device is too large as opposed to the resistance of the circuit 

under test, the voltage burden will cause large errors [42, 44]. In order not to disrupt the circuit 

characteristics, the resistance of the shunt is normally very small. Shunts are rated by maximum 

current and voltage drop at that current. All shunts have a derating factor for continuous use, 

66% being the most common. Current shunt measurement techniques have two methods of 

measurements: low-side current sensing and high-side current sensing. The low-side refers to the 

return path from the load and the low-side is usually at a low voltage to ground (see figure 2.6). 

Similarly, the high-side refers to the supply path to the load, and the high-side is usually at a high 

voltage to ground (see figure 2.7). The decision to place a current shunt in either position has 

advantages and disadvantages. 

 

 
Figure 2.6 shows low-side current sensing, sense resistor between load and ground. 

 

 

 
Figure 2.7 shows high-side current, sense resistor between supply and load current shunt monitor   
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2.2.6.3 Advantages  

       Current shunts are considered more accurate and cheaper due to current shunt low-side 

advantages, including shunt resistor current measurement low input common mode voltage, 

ground referenced output voltage, easy single-supply design, straight forward design which 

rarely requires more than an operational amplify to implement, inexpensive and precise. Other 

are high-side advantages such as load is grounded, load not activated by accidental short at 

power connection, high-load current caused by short circuit can be detected, it is easy to use, 

provides a ground-referenced current- or voltage-source output that is proportional to the current 

of interest, provides high common-mode rejection without the difficulty of resistor matching, can 

sense high-side currents in the presence of common-mode voltages and can have a pair of 

differential inputs that can be connected to shunts which are at voltages well in excess of the 

voltage that the amplifier is powered from and power management.  

 

2.2.6.4 Disadvantages  

Some alternatives to shunts can provide isolation from the high voltage by not directly 

connecting the meter (Hall effect current sensors and current transformers) to the high voltage 

circuit [45].  Although the voltage drop is small, this can have a negative impact on the circuit 

under test and the measurement. This voltage is known as the voltage burden and is a series 

voltage errors introduced by the device. There are thermal limits where a shunt will no longer 

operate correctly. At 80 °C, thermal drift begins to occur; at 120 °C thermal drift is a significant 

problem, depending on the design of the shunt; and, at 140 °C, the  resistor (usually manganin 

alloy) used becomes permanently damaged due to annealing resulting in the resistance value 

drifting up or down. National Instruments [42] suggested that, if the current being measured is at 

http://en.wikipedia.org/wiki/Hall_effect
http://en.wikipedia.org/wiki/Current_transformer
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a high voltage, this voltage will be present in the connecting leads to and in the reading from 

instrument itself. Sometimes, the shunt is inserted in the return leg (i.e., grounded side) to avoid 

this problem. Low-side disadvantages are enumerated as follows: The load is lifted from direct 

ground connection and can be activated by accidental short at ground end load switch; high-load 

current caused by a short is not detected, adds undesirable resistance in the ground path and may 

require an additional wire to the load that could otherwise be omitted. High-side disadvantages 

are also listed as the high-input common mode voltage is often very high, and the output needs to 

be level-shifted down to system operating voltage levels. It requires very careful resistor 

matching in order to obtain an acceptable common-mode rejection ratio (CMMR). The high-side 

needs to withstand very high common-mode voltages, often outside the limits of the supply rails 

of the amplifier [44]. 

 

2.2.6.5 Applications  

Shunt resistor current device and low-side current sensing are used in this research for over 

current-protection and controlling circuits, could measure as much as 4-20mA system current, 

used for programmable current sources. Linear and switch-mode power supplies, used in 

proportional solenoid control, create linear systems. A current shunt is considered accurate and 

cheaper when within the thermal limit despite the voltage burden and series voltage error 

introduced by the device which error is not significant  
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2.3 Spark Plug Sensor (Dielectric Probe) 

2.3.1 Dielectric Probe Capability 

The behaviour and characteristic of electrical insulation gas could be studied and obtained with a 

dielectric probe. This is achieved when the probe is electrically biased in the vicinity of ionised 

gas. During passing of a pulse current or arcing current in the circuit breaker filled with test gas, 

an arc produced. This will heat up the gas and its surroundings causing the atoms/molecule of the 

gas to dissociate into ions (positive ions and negative ions) and electrons. These discharges are 

either attracted or repelled to the biased dielectric probe connected to resistance and capacitor 

(RC) circuit. The dielectric-withstand capability of the contact gas is determined by the thermal 

characteristic of the gas. And, to a large extent, the dielectric probe response is influenced by the 

interrupter, the arcing and interrupted current, and the thermal behaviour of the arc voltage in the 

gas. If the gas in the arcing area is very hot following current zero due to the arc’s stored thermal 

energy, and the arc energy exceeds removal of the energy by the interrupter gas , the dielectric-

withstand capability of the gas will be quite low resulting in increase conductivity in the gas. The 

rising transient recovery voltage following current zero may cause reigniting of the arc and may 

result in fault current to flow again. The dielectric probe detects this residual discharge during 

these periods.  
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Figure 3.4a shows dielectric probe. 

 

The dielectric probe has the capability to detect and measure low residual current before, during 

and post current zero periods of the arcing current in gas. Researchers have investigated the 

behaviour of gas in circuit breakers following current interruption using dielectric probes to 

examine the intrinsic properties of gas temperature and mass density [46] [47].  In this research, 

a negative DC voltage applied dielectric probe will be used to investigate and detect probe 

currents during an arcing fault current periods in some insulation gases including dry air, 

nitrogen and sulphur hexafluoride. The dielectric probe as shown in figure3.4a comprises two 

electrode tips made of 20% copper and 80% tungsten that will withstand repetitive discharge and 

minimum wear. The gap length will be adjusted to fit the research purposes for various insulation 

gases. 

2.3.2 Spark Plug Sensor Module at Zero Input Response 

Electrode gap 

Flange 

PTFE brushing 

High tension terminal 
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Spark plug sensor (dielectric probe) module at zero input response tends to illustrate the 

fundamental operational process and parameters of a spark plug as a sensor. It shows the 

researcher how the spark plug works as a dielectric probe. Below is the theory of a dielectric 

probe at zero input response. Figure 2.8 shows circuit diagram of RC circuit at zero response: 

when an initial condition is present but no independent source, also known as ZERO INPUT 

CASE [48]. 

Considering figure 2.8, the diameter d of the spark plug tips surfaces were obtained using 

micrometre screw gauge as 8.5 x 10
-4

meter and the gap distance D was obtained using the feeler 

gauge as 1 x10
-3

meter, so the spark plug capacitance Ca between the two tips in Farad  could  be 

determined  using the expression 10. 

 

     
    

 
                                          10 

Where A is the area of either of the tip in square meter the spark plug sensor, 𝜺 is permittivity of 

free space equal’s 8.85x10
-12 

F/m in air. K1 is the dielectric constant of the space between the 

electrodes (it is the ratio of the permittivity of dielectric in use to the permittivity of free space, 

dimensionless). In this case K1 = 1 in air [48]. 
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                      Figure 2.8 shows dielectric                          Figure 2.9 shows equivalent  
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C 
D 

Re 

Ca Ra 

iR 

Vc 

+ 

- 

C Vc 

ic 

R 

 

With this, the capacitance reactance Ra in ohms of the spark plug could be obtained with 

expression shown below. 

   
 

     
                                     11 

Where f is the frequency; the equivalent resistance R is obtained as shown in figure 2.9, since Re 

and Ra are in series, then 

                                                12 

Let the current iR drained into the resistor R and capacitor C current ic 

And the voltage across the capacitor C be vc(o) for time t = 0 

Let the voltage across the capacitor C be vc(t) for time t ≥ 0 

And current flowing through the capacitor and resistor be iC and iR respectively 

Then from Kirchhoff current law KCL, total current in the RC circuit in figure 2.9 is expressed 

as:  
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                                                    13 

Defining currents in terms of voltages, we have 

 
   

  
   

 
                                                   14 

Equation (14) above is a first order differential equation (ODE) and figure 2.9 is called a first 

order circuit since the variable vc and its derivative are of first order. Equation (14) is a 

homogeneous equation since the right hand side equation is zero. The coefficient of vc and its 

derivative are constant. Therefore, vc (t) could be determined as the solution of equation (14) 

which satisfies the first-order differential equation with boundary condition vc(o). 

Re-arranging equation (14), we have 

                     
 

  

   

  
 

 

  
                                         15 

Separating the variables in equation (15), we have 
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Integrating equation (16) both sides with respect to time t 

∫
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Taking the power of e of equation (17) results in: 

  ( )    
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Where K is constant of integration, the power of e is dimension less and RC = τ is the time 

constant of the circuit and expressed in seconds, i.e., 
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      (      ). 

When t =0,   vc(t) becomes vc(0) 

Hence, equation (18) becomes,  

  ( )                                                                                      19 

Placing equation (9) into equation (18), we have: 
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 ,    for, t ≥ 0             20 

Equation (20) is the solution of the differential equation of equation (16) subject to the initial 

condition that voltage across the capacitor at t = 0 is vc(0) 

Current drained into the resistor R is obtained as 
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Capacitor current for, t ≥ 0   
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Sketching the function   ( ) versus t for t ≥ 0 is shown in figure 2.10, using table 2.1:  

  ( )    ( ) 
 

 

  
 
 1 0.367879 0.135335 0.049787 0.018316 0.006738 

t 0 RC 2RC 3RC 4RC 5RC 

Table 2.1 shows vc(t) for time t ≥ 0 and t 

The result shows that 

Initially the capacitor discharges to vc(0) at t = 0. 

The capacitor start discharging through resistor R exponentially when t > 0 
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Figure 2.10 shows decay voltage across the capacitor 

The energy store in the capacitor is  

  ( )  
 

 
   

 ( ) , when    t = 0                                      23 

And  

                   ( )  
 

 
   

 ( ) , when    t ≥ 0                          24 

The voltage goes to zero as time goes to infinity. Also, the energy stored in the capacitor goes to 

zero as time goes to infinity [49, 50]. 

The power absorbed by the resistor R is 
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The total energy absorbed by the resistor is, 
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2.4 Electrical Insulation Mediums 

 Insulation mediums may be classed as solid, liquid, vacuum and gas. This research will focus on 

vacuum and gases which includes air, nitrogen N2, and sulphur hexafluoride SF6. 

Characteristic Unit of measurement Air N2 SF6 

Molecular weight g/mol 28.95 28.0134 146.05 

Temperature °C -140.5 -147 45.5 

Pressure Bar 37.71 33.999 37.59

Specific gravity 

 (at 1.013 bar and 21 °C ) 

 

- 1 0.967 

5.114 

Table 2.2: Typical characteristics of insulating gases, Air Liquid [51]. 

 

Gases and vacuum insulation systems can suffer failure when a sufficiently large voltage is 

applied. This voltage increases the electric field within the gas/vacuum insulation. In gases, this 

leads to ionisation, a separation of electrons from neutral atoms or molecules leaving positively 

charged ions. These ions and electrons are accelerated by the electric field reaching the point 

where the voltage is applied. Once this happens and with continuing ionisation, current will flow 

and the insulation of the medium will fails [52, 53]. Under the influence of electrical field 

electrons, the ions accelerate to the anode and cathode respectively. Townsend and Streamer 

theories explain the initial breakdown mechanism. Physical conditions in a gas between the 

anode and cathode such as pressure, temperature, nature of electrode (material and geometry 

configuration) and number of the initial ionisation products govern the breakdown process [52-

55]. The mechanism in a vacuum is different than in gas. The principal breakdown mechanism is 

the emission of electrons from the cathode (field emission). These electrons are accelerated by 
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the electric field between the anode and cathode. The impact of the electron on the anode may 

induce the emission of a positive ion. If sufficient electrons traverse the gap between the anode 

and cathode, then current will flow and the insulation of the medium fails. The voltage at which 

this happen is the breakdown voltage of the medium; with this, under high vacuum condition 

below 0.133μbar (10
-4

 tor), a vacuum has high breakdown strength [55].  Some properties and 

characteristics of insulating gas are illustrated in Table 2.2. SF6 gas has higher molecular weight 

and specific gravity as compared to nitrogen gas and air, thus higher ionisation energy than the 

air and the N2 gas. This a peculiar advantage SF6 has over other insulation gases [51]. 

2.5  Ionization Processes in Gases 

The method of dislodging an electron from an atom or molecule of a gas in its normal state, 

making a positive, ion is known as ionization process. This process can be achieved when high 

voltage is applied to two electrodes immersed in the gaseous medium. The processes of 

breakdown in gases could be by a single process or a combination of the processes like 

ionization by collision, photo-ionization, secondary ionization, electron attachment and 

detachment, excitation, photoionization, photo-absorption, ionization by metastable thermal 

ionization and recombination  processes [52-54].  

2.6 Types of Arcs 

An arc in circuit breakers could be classed as high (or atmospheric) pressure arcs in gases and 

vacuum arcs in vacuum. High pressure arcs are within the pressure range of 1.01325 bars to 

some 101.325 bars while vacuum arcs form with ambient pressure below 0.133μbar [52, 53]. 
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2.7  Electric Arc 

Electric arcs or discharges are encountered in electrical apparatuses in electrical networks when 

the insulation apparatus is overstressed. As shown figure 2.11, the effect of high current density 

toward a narrow path leads to strong heating, contact material melting and evaporation. The 

discharges are due to electrical flashover and short circuits in the systems. The electric arcs in 

some cases are unwelcome results of lightning strikes or insulation failures [57].  

 

 

 

Figure 2.11 shows effect high-current density toward a narrow path 

    

Electric arcs are created when the contacts of the switch or circuit breaker are opened in order to 

interrupt current. This allows the current to continue to flow until a natural current zero of AC 

current is reached, and the arc is extinguished. An electric arc is initiated either by an electric 

flashover between two electrodes or by separation of two contacts from each other carrying a 

current. An electric flashover may start as a Townsend avalanche or as a streamer process (see 

figure 2.12). The Townsend discharge is a gas ionization process where an initially very small 

amount of free electrons, accelerated by a sufficiently strong electric field, gives rise to electrical 

conduction through a gas by avalanche multiplication leading a breakdown voltage. When the 

number of free charges drops or the electric field weakens, the phenomenon ceases. It is a 

process characterized by very low current densities. In common gases like noble gas (argon, 

neon etc.) filled tubes, typical magnitude of currents flowing during this process range from 

about 10
−18

 A to about 10
−5

A, while applied voltage is almost constant [57]. 

Fixed contact 

(Cathode) 
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Anode region 

 

 Cathode region 
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Figure 2.12 Avalanche effect between two electrodes 

                                        

The breakdown voltage of an insulator is the minimum voltage that causes a portion of an 

insulator to become electrically conductive.  Breakdown voltage is also sometimes called the 

"striking voltage or sparking voltage" in gases [58]. Properties of electric arcs between the anode 

and cathode are described in terms of region of an arc channel (as in a cathode region, an anode 

region and an arc column) shown in figure 2.13.  

Breakdown voltage is often encountered in insulators and might be seen as the maximum voltage 

difference that can be applied across the insulator before collapse and conducts; it is the 

minimum voltage that causes a portion of an insulator to become electrically conductive [59, 60].  

The temperature in the arc column was mentioned to be around 5000K to 20000K, according to 

Solver [57], at which point gas molecules are largely dissociated into free atoms. 

 

 

 

 

                                                    

Figure 2.13 shows regions of an arc channels 
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At such temperature, the travel velocities of the electrons, ions and atoms are so high that 

ionization takes place when they collide; also, a recombination process takes place where 

electrons, negatively charged ions and positively charged ions form neutral atoms.  

At thermal equilibrium, the gas in a plasma state occurs where high amount of free electrons, 

negative ions and positive ions are at balanced rate of ionization and recombination. The fraction 

f of the atoms that ionized in oxygen and nitrogen was calculated by means of Saha’s equation 

29: 

                     
  

    
                    

 
 ⁄     

    
  ⁄

                                                  29 

where e =1.6 x 10
-19

, the charge of electron, Vi = ionization potential of the gaseous medium, k = 

1.38 x 10
-23

, Boltzmann constant, P = the gas pressure in bars and T = the ionisation temperature 

in Kelvin, [57]Solver [59]. 

The electrons and negative ions have much higher mobility than the positive ions. Therefore, 

almost the entire current flow is due to the electrons. The total arc voltage, as well as the voltage 

gradient along the arc, depends on the current magnitude, the type of gas and the pressure.  

 

 

 

 

 

 

Figure 2.14 shows typical potential distributions along an arc channel 
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When the arc is in thermal balance, the arc column adjusts itself in such a way that the power 

supplied to the column (the Ohmic heating) attains a minimum value. If there is a disturbance 

from this situation, which tends to increase the resistance of the arc, the Ohmic heating would 

increase. Consequently, the temperature and diameter of the arc would increase, and 

automatically counteract the disturbance. If, on the other hand, there is a disturbance which tends 

to increase the temperature or diameter of the arc, then the power losses would increase and tend 

to bring the arc back to the original situation. The current that flows in the arc channel is 

associated with magnetic forces, which leads to an internal overpressure P in the arc channels. 

This phenomenon is known as the pinch effect. The resulting overpressure in the centre of the 

arc column is expressed as 

                                      
   

 

        
                                                                    30 

As P is close to the electrodes, the arc diameter is often smaller than further away from the 

electrodes. This means that there will be a gradient in current density, and therefore also a 

gradient in the internal pressure. This pressure gradient will contribute to a transport of plasma 

and metal vapour from the electrode into the arc column. Close to the cathode there will be an 

accumulation of positive ions, arriving from the arc column, as shown in figure 2.14 between 

Vcathode and Vanode. Due to these space charges or spatial current, there will be high electric field 

strength close to the cathode surface (the cathode drop). This high field strength is essential for 

efficient field emission of electrons into the arc. The anode mainly serves as a collector of 

electrons, arriving from the cathode having been influenced by the electric field and current 

density in the anode region. The electrons will arrive at a high speed and deliver all their energies 
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to the anode. The energies may include thermal, kinetic, photonic etc. The anode surface will 

therefore keep at a higher potential with the aid of the applied voltage [5, 59, 60]. 

2.8  Post-Arc Current  

Post-arc currents or transient currents widely are known phenomena that appear in electrical 

power circuits after current interruption. In electrical systems-rated voltages where circuit 

breakers are used to interrupt the current in medium voltage (<69kV), high voltage (100-287kV) 

and extra-high voltage (>500kV) systems after the electrical power has been interrupted [4, 5] 

experience trouble associated with such discharges after current zero is common to the 

distribution and transmission circuits. Methods of current detection and measurement have been 

explained in [61-68]. 

2.9  Electrical Discharge Measurement Methods 

With the advancements in electrical and optical measurement technologies had deep the physical 

understanding of electrical discharge at atmospheric pressure discharges. Among such 

technological methods are biased probe, electro-optic sensors, electrostatic sensors, laser wave-

front sensors and laser-induced fluorescence methods. A biased probe is a static device solely 

suitable for steady state discharges, as the majority of polarity ions generated in ionization region 

drift between the electrodes and finally to the passive collector electrode. In electro-optic sensors 

method, birefringence occurs in some materials when the electric field is applied across them. 

Birefringence causes orthogonal components of polarisation of light to travel at different 

velocities. Electrostatic sensors methods include an electrostatic probe using the measure of 

surface charge distribution on solid insulation such as insulating spacers and insulating plates 

accompanied by the occurrence of partial discharge. In laser-induced fluorescence methods, 
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charged particles and various chemical species such as radicals and metastable are in discharged. 

In laser wave-front sensor, the distribution measurement of a laser wave front is used to know 

electron density by using a single optical path: a laser beam is expanded to match the size of 

measurement region and transmit through the discharge region. These measurement methods are 

applied to physical parameters such as steady-state corona, Steamer development, long gap 

discharge, surface discharge and barrier discharge under atmospheric condition.    

2.10 Peak-Current Measurement 

Peak-current measurement as to arc current measurement is important to obtain real time 

information. Types of coaxial current shunt have been in used for peak current measurement. For 

instance, a coaxial current shunt of 0.178mΩ resistance in band width of 750 kHz and a pulse 

current rating of 100kA was used and designed by Grundy  [16, 64].  This current shunt has a 

four-terminal device connected in series with the power circuit and has two connections across 

its resistive element for measuring purposes. The potential difference between the measurement 

terminals of a low-value Ohmic shunt is expressed in equation 31 as 

                                    ( )     ( )    
  ( )

  
     

  ( )

  
                                     31 

This shunt has been used by investigations by various other experimentalists [64, 67, 68]. The 

shunt design has a good low mutual inductance and low inductance. During the peak current 

period, the  
  ( )

  
 is not large. Therefore, the second and the third terms on the right hand side 

(RHS) of equation (32) were negligible and the whole equation approximated to  

                                                 ( )     ( )                                                            32 
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The Ohmic value of this shunt was chosen on the basis of giving a good signal-to-noise ratio and 

to minimise heating. A current shunt between 0.5mΩ and 10mΩ was recommended as ideal for 

such investigations, [69].  A 2m length of coaxial cable fitted with BNC connectors connected 

the measuring terminal of the shunt to an oscilloscope; it was advised that when connecting a 

low-output impedance (1.038mΩ) measuring apparatus to high-input impedance (10MΩ) 

monitoring equipment, one should insert a 50Ω termination onto the input to the oscilloscope. 

This matching impedance stops the formation of reflected waves in the cable. Using a 

mismatched termination can cause an appreciable error (33% with a 75Ω terminator).  Since the 

bandwidth of this amplifier was DC of 50 MHz and has a rise time of 7ns, the amplifier 

saturation will not be a problem because the peak voltage is approximately 20 volts, well within 

the normal operating range of the Tektronix 1A1 pre-amplifier used [69].  

2.11 Measurement of Current Zero  

During one half cycle of arc current measurement, current zero and small post-arc current were 

investigated. A 19.83mΩ current shunt with 2MHz bandwidth and a rise time of 170ns was used 

for the current zero investigation arcs. A diode clipper (figure 2.15) eliminates current level from 

400 volt that would be applied to the pre-amplifier of the oscilloscope, which would not only 

cause saturation of the amplifier but also cause permanent damage. 

 

 

                             Figure 2.15 Diode clipper circuit 

As described by Spencer  [69], diodes must have a low capacitance (2nF) and an extremely small 

leakage current with the rise time of 15ns were discussed. 

  
Signal input Protected output 
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2.12 Process in Pre-breakdown and Breakdown of Gases 

In the influence of an applied electric field, electrons drift in the direction opposite to the electric 

field. The electrons could be released from a cathode, or from a gas molecule, or atoms or ions, 

by photo or detachment These processes are as result of  gained energy  from the field and lose 

energy by collisions with the gas molecules or atoms in the inter electrode gap. The processes are 

accomplished by one or combinations of the following mechanisms:  by collision ionization (i.e., 

by direct ionization and dissociative); gas phase photo ionization (i.e. with high [photon], energy 

collision with a gas molecule or atom will result to the gas molecule or atom to ionize; 

recombination (i.e., positive ion and an electron or negative ion form neutral atoms or molecules 

in the gas at the electrode) (image charges); excitation (i.e., electronic excitation, dissociative 

excitation and photo excitation); attachment (i.e., direct attachment, dissociative attachment and 

three-body attachment [stabilization and charge transfer]), detachment (i.e.,  auto-detachment,  

photo detachment, collision detachment processes); charge exchange (conversion) (i.e., defined 

as the mean number of negative ion conversion occurring per second per unstable negative ion); 

secondary electron emissions from surfaces, this includes secondary photoelectron emissions 

from surfaces, secondary photoelectron emissions by positive ion impacts from  surfaces and 

secondary photoelectron emission by meta-stable from surfaces; and diffusion (i.e., the statistical 

random motion of specific types of particle will cause a net velocity from region of high 

concentration to region with a lower concentration resulting to anisotropic in the  present of 

electric field) [58, 59]. 
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2.13 Summary  

Sourcing for means and improved methods of low current measurements has led to the search 

and study of different techniques of electric current measurements such as optical current (OC) 

method, current transformer method, shunt resistor current method, Hall Effect method, and 

Rogowski coil methods as described above. Thus, depending on the desired electrical parameters 

needed, advantages, and disadvantages from each or combination of these methods could be used 

to achieve efficient and effective low-current measurement. From the study, shunt resistor 

current method (low-side current sensing, sense resistor between load and ground) was chosen 

for this research due its characteristics and advantages as elaborated above. The technique shows 

that it is possible in reproducing replication of its type in its ratio. The chapter also explain the 

characteristic of dielectric probe and its module at zero input response. Electrical insulation 

mediums, ionization processes in gas, types of arcs, electrical discharge measurement methods 

were discussed. Finally peak current measurement, current zero pre-breakdown and breakdown 

processes were discussed. These enable the researcher to obtain and understand the fundaments 

research. 
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Chapter 3 Description of Equipment    

3.1  Introduction 

The equipment used in this research is briefly described as in figure 3.1a: power supply; 

dielectric probing circuit as the sensor; arcing current circuit use to created short circuit (fault) 

current; voltage probes used to inter-face the high voltage source with the oscilloscope; test 

circuit breaker and experimental earth.  

 

 

 

                              Figure 3.1a shows block diagram research apparatus equipment 

 

3.2  Dielectric Probing Circuit  

The dielectric probe is used to test the local dielectric strength of gas within a circuit breaker. 

This is done through the monitoring of small current flows in the probe circuit. As shown in 

figure 3.1b, it consists of isolated power supply transformer, a Brandenburg high-voltage power 

supply unit, coupling resistor R1, capacitor C, and limiting resistor R2 connected in series with 

dielectric probe and experimental earth (Ground). Figure 3.2 present the pictorial view of the 

schematic diagram of the probing circuit. The circuit components were measured to determine 

their values. These include the coupling resistors R1 (1.585MΩ), the capacitor C; high voltage 

electrolytic capacitor (140µF, 133kV/50Hz), limiting resistor R2 (58.4kΩ), as in figures 3.1 and 

3.2  
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Figure3.2 shows photograph of dielectric probing circuit diagram  
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Figure 3.1b shows coupled dielectric probing circuit diagram 
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The isolating transformer supplies the Brandenburg high-voltage power supply unit. It serves to 

isolate the Brandenburg high-voltage power supply unit from the mains and potential earth 

faults.  

The Brandenburg high-voltage DC (HV DC) power supply unit provides a negative output and is 

connected to the dielectric probing circuit. A series resistor (R1) is connected between the HV 

supply and the probe to limit the current protecting the HV DC source over current. Resistor R1 

(figure 3.3a) is connected to capacitor C, and R2 serves as a second limiting resistor to stop 

excessive current flow in the probe’s gap. The time constant for this part of the circuit is (R2C). 

 

Figure3.3a shows resistors stack 

Resistor R1 is made up of groups of high voltage axial-lead colour coded resistor types, soldered 

on bread board and cascaded to obtain 1.585MΩ as shown in figures 3.2 and 3.3a.  
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Resistors R2, as shown in figure 3.3b, are a series of ceramic resistor discs connected in series 

with copper foils to obtain 58.4kΩ. Each of the ceramic resistors was  
 

 
inches (31.75mm) in 

diameter and 0.984inches (25mm) in length. Lead foils (b) or copper foils (c) as shown in figure 

3.4 were inserted between the ceramic resistors when connected in series. These foils enable 

better bonding between the resistors. Ceramic resistors have excellent stability at high 

temperatures within a specified voltage range, and are resistant to both humidity and mechanical 

shocks. They have instant overload capability with a low noise figure, and are non-flammable, 

low-inductance and precision resistance tolerance [70]. 

 

 

Figure 3.3b shows ceramic resistors in series with copper foil sheets in between two resistors. 

 

Ceramic resistors are susceptible to failure under high voltage conditions. In circuits where there 

are possibilities of transient potentials, considerably high voltage may be applied to the resistor 

for a short period of time. Applied power within the specifications generally will not cause any 

significant degradation to the resistor but the resistance value may vary significantly due to 

repeated pulsing over a long period[43, 71]. The Brandenburg high voltage direct voltage source 

used was confirmed to have a rating of 50kV and 1mA. 
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 A Tektronix oscilloscope and two high voltage probes, and a laptop with software, not shown, 

were used in data collation and processing. Figure 3.1 shows the schematic of the RC circuit with 

the dielectric probe connected. The gap length in this probe is adjusted for different operating 

conditions. The current into the probe and voltage drop across the limiting resistor (R2) were 

measured during testing. 

 

 

Figure 3.4 shows ceramic resistor (a), structured cylindrically of  
 

 
inches (31.75mm) in 

diameter and 0.984inches (25mm) in length resistor. Lead foil (b) and copper foil (c) 

 

The oscilloscope type used is Tektronix, DPO2000 series, with 6 recording channels [72, 73].  

The vertical and the horizontal sensitivities were set on 1kV/div and 10ms/div respectively. The 

Brandenburg HVDC source, oscilloscope and the laptop were powered from isolation 

transformers, not shown. Figure 3.13 shows circuit configuration of dielectric probe (a) 

connected to test circuit breaker (b) with limiting resistor (c) in series and high voltage probes (d) 

used in detecting voltage drop across the limiting resistor. 
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3.3  Voltage Probes 

A number of voltages were taken in the probe and arcing circuits during testing. Two were used 

to record the differential voltage across the limiting resistor R2 and therefore to deduce the 

current into the probe. Another voltage measured the arc voltage. The voltage probes are ISO900 

compliant with the Tektronix 96015A passive high voltage probe [73]. The probe has 

corresponding capacitance compensation range of 7pF to 49pF and has 1000x attenuation factor 

such that the voltage displayed on the oscilloscope is understated by factor of 1000. Table 3.1 

illustrates some specifications of P6015A, 1000x high voltage probe[72]. The current through the 

arc was measured using a shunt resistor (figure 3.12).  Figure 3.12 shows the circuit connection 

for the dielectric probe (a) coupled to test circuit breaker and connected in series with the 

limiting resistor R2 (c) and two HV probes.  

 

Max input voltage Bandwidth 

(MHz)/ft-cable 

Rise time 

(ns) 

Input impedance/ 

capacitance 

DC attenuation 

20kV(rms) 

40kV -100ms 

75/10ft-cable 4.6 100MΩ/3pF 1000x 

Table 3.1 High voltage probe specification 
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3.4   Spark Plug Sensor (Dielectric Probe) 

 

 

Figure 3.5 shows dielectric probe 

 

Figure 3.5 shows the dielectric probe. The probe comprises two electrode tips made of 20% 

copper and 80% tungsten alloy that will withstand repetitive discharge activity with minimum 

wear. The gap length will be adjusted to fit the research purpose in various insulation gases. 

3.5   Arcing Current Circuit 

A block diagram of arcing current test circuit is shown in figure 3.6a. This is used to generate 

pseudo current (DC trigger) and half sinusoidal arc currents (AC trigger) that vary from zero to 

several kilo-Amperes peaks current. Figure 3.6b shows the schematic circuit diagram of the 

arcing current test circuit.  Ignitron1 (DC trigger) with 4.5Ω resistor is used to generate a quasi-

current, ignitron 2 (AC trigger) and  ignitron 3 (AC trigger) generate a positive half-fault current 

and negative half cycle AC (fault) current  through the reactor respectively.  To achieve one 
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positive half AC current, the 33mF capacitor bank is charged up to 565V; on triggering ignitron 

2, the capacitor will be discharged through the inductor (L) into the test circuit breaker and the 

current shunt resistor to the experimental earth is used to determine the arc current in the 

oscilloscope [69]. The ignitron 4 and ignitron 5 are used to dump residual energy during DC 

arcing while the mechanical pneumatic dumps are used to discharge the capacitor banks to earth 

after each experiment.  These units are hooked up to the control panel that is sequentially set for 

trigger. 

 

Figure 3.6a shows block diagram of arcing current test circuit  

 

 

 

 

 

Figure 3.6b shows arcing current test circuit 
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Figure 3.7 is a photograph of the arcing current producing experimental test circuit. The 

photograph shows the capacitor bank (A), ignitrons and control signal interface (B), resistor 

stack (C), discharge mechanism and output cabling (D). These facilitate the formation of positive 

half currents that were triggered into the test chamber. 

 

                 Figure 3.7 shows photograph of arcing current test circuit. 

3.6 Arcing Current Circuit Operation 

Figures 3.6a and 3.6b show the block and schematic circuit diagrams of the arcing current test 

circuit configuration. After the control panel is set as previously explained, the circuit is 

triggered from the control panel (sequential trigger timer); sequentially, the poker begins to move 

from the fixed contact, taking 10 milliseconds (ms) to begin opening, and opened fully within 

40ms. Meanwhile, the ignitron 1 through the limiting resistor (4.5Ω) is triggered into the reactor 

(184µH) to generate pseudo (quasi) DC current from the capacitor bank voltage of about 575V 

during the breaker opening. This will result in a weak discharge between the contacts opening. 

At this point, the ignitron 2 is triggered through the reactor, bypassing the 4.5Ω resistor into the 

breaker and generating the fault current that will further increase the energy of the discharges 

A 
D 
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(arc current) into heat, lighten and electromagnetic reaction in the breaker chamber. After about 

20ms of the ignitron 2 triggered, ignitrons 4, 5 and pneumatic ignitron are set on to discharge the 

residual energy of the capacitor bank and the system into the experimental earth. Shunt resistor 

of 0.178Ω connected in series monitors the fault current flow in the circuit breaker.  

3.7   Test Circuit Breaker 

The test circuit breaker unit is shown in figure 3.8: it has a tube steel with a wall thickness of 

about 3cm, a diameter of 27.5cm and a height of 148.5cm. Inside this steel enclosure are the 

inner electrodes, nozzle etc., providing a gas tight seal to the breaker. A viewing window in the 

steel enclosure allows optical access to the inner components. Attached to the external body of 

the circuit breaker (figure 3.8) are inlet and outlet points for mounting other accessories 

including a gas inlet, a pressure gauge, a pressure relief valve etc.; the enclosed volume can be 

filled with different gases. The electrical connection to the fixed electrode is made via cast resin 

brushing mounted to the fixed contact sub-assembly (figure 3.12) at the top of the steel pressure 

vessel flange. The fixed contact is made of cylindrical slits of copper fins 2cm in diameter and 

20.1cm length (figure 3.11). The fins allow easy movement and proper contact with the poker. 

At the top of the steel pressure vessel, the flange is also fitted with a pressure relief valve to 

prevent over-pressurisation in the circuit breaker. Figure 3.12 shows the connections to the fixed 

contact cast resin brushing on test circuit breaker (A) of a high voltage probe (C), used in 

measuring arc voltage and current shunt resistor (B) used for fault current measurement. The 

current shunt measures the fault current i.e., a known resistance of shunt is placed in a series so 

that the entire fault current flows through it. The voltage drop across the shunt resistor is 

measured and the current flowing through the shunt resistor can be determined. The shunt 

resistance has a low value of Rshunt power dissipation in the shunt. If the shunt resistor value is 

http://en.wikipedia.org/wiki/Electrical_resistance
http://en.wikipedia.org/wiki/Series_circuit
http://en.wikipedia.org/wiki/Voltage


Chapter 3 

Description of Equipment    

54 
 

too large compared to the resistance of the circuit under test, the voltage burden causes large 

errors, resulting in excessive heating and reduced current flow, according to Matthaei [44]. In 

order not to disrupt the characteristics of the electrical circuit, the resistance of the shunt is 

normally chosen in order to be small, within the ranges of 0.1 to 0.178 milli-ohms, here used for 

the fault current measurement. Shunts are rated by maximum current [43]. The moving contact 

sub-assembly with the moving contact of 2cm in diameter and about 20.1cm in length with 

aluminium base is shown in figure 3.10. It is mounted on high-voltage Kevlar insulator with the 

moving contact assembly operated by an ETNA hydraulic mechanism unit. The hydraulic 

mechanism allows adjustment of the circuit breaker trip speed characteristic by modifying the 

hydraulic choke and the operating pressure via hydraulic switches. The mechanism is initiated 

using 125V, 52Ω DC trip and close coils activated from a signal timing unit. From the viewing 

window, the activities in the internal of the circuit breaker including the chamber, the arcing, 

fixed and moving contacts are observed. Figure 3.13 shows the dielectric probe (a) connected to 

test circuit breaker (b) with limiting resistor (c) and high voltage probe (d). 

http://en.wikipedia.org/wiki/Electrical_circuit
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Figure 3.8 shows test circuit breaker outfit 

 

 

Figure 3.9 shows internal view of test circuit breaker chamber, viewing windows and the spindle 

(poker) 
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Figure 3.10 shows the moving contact sub-assembly 

 

 

 

 

Figure 3.11 shows fixed contact sub-assembly.  
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Figure 3.12 shows the fixed contact of test circuit breaker (A), current shunt resistor (B) and high 

voltage probe connection(C). 

 

Figure 3.13 shows dielectric probe (a) connected to test circuit breaker (b) with limiting resistor 

(c) and high voltage probe (d) 

 

3.8  Equipment Configuration 

Figure 3.14 shows the complete set-up of the schematic experimental circuit diagram used in 

probing the gases. The dielectric probing circuit is coupled to the synthetic circuit through the 

circuit breaker, sealed and air-tight, placed about 55mm apart from the current-carrying 

electrode.   
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Figure 3.14 Coupled schematic diagrams of arcing current test (synthetic test) circuit and 

dielectric probing circuits 

 

3.9  Gas Handling 

Figure 3.15 shows the schematic diagram of test circuit breaker and the pneumatic manifold 

fitting. The circuit breaker is drained to a vacuum with Hanning Electroweak vacuum pump 

(E8LD4BI-162). The valves are ball valve with a pressure gauge connection for gas inlet and 

monitor into the circuit breaker. Valves V1 and V4 are close to the atmosphere and test gas while 

V2, V 3 and V5 are open to the circuit breaker and the vacuum pump evacuates the circuit breaker 

to vacuum.   
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Figure 3.15 shows configuration of test circuit breaker and accessories 

To refill the circuit breaker with gas, V1, V2, V 3 and V5 are close. V4 and the gas regulator on the 

gas cylinder is open and set to the desired pressure before opening V5 to fill the circuit breaker. 
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A combined pressure and vacuum gauge is used to monitor and measure the gas pressure on the 

inside circuit breaker.  

3.10  Experimental Earth 

The experimental earth used consists of copper rods bonded and buried in the ground whose 

terminal outputs have zero potential. For measurement purposes, the experimental earth serves as 

a constant potential reference against which other potentials can be measured, as noted by 

Donald [49] [87]. 

 

 

 

 

Figure3.16 shows copper rods structured into mat of 12m
2
 buried 4cm depth into the ground 

 

In the laboratory setup, the experimental earth is buried near the experiment system, connected 

with shorter and lower impedance copper cables capable of carrying several kilo-amperes. Figure 

3.16 shows a typical experimental earth. Copper rods were bonded and structured to form 6m x 

2m mat and were buried at a depth of 4cm with a terminal output near the laboratory setup. 

Isolation transformers were used to eliminate any mains earth or mains looping problems that 

might be caused by powering equipment from either the same or different phases of the mains 

supply [69, 74]. 
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3.11 Summary 

The circuit configurations and components need to be familiar with as to ensure better response 

of the circuit components. This chapter explained the experimental apparatus and the setup. It 

commenced with simplified block diagram of the experimental structure as in figure 3.1a. This is 

followed by the diagrams of the dielectric probing circuit, arcing current circuit and the 

explanation of the circuits components.  Figure 3.6a and 3.6b shows the block and circuit 

diagram of the arcing current test circuit connections. Figure 3.14 shows the complete schematic 

setup of the apparatus used for the research. The operations and functions of the circuit 

components are explained in this chapter and chapter 4.   
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Chapter 4  Experimental Setup and Preliminary Test 

4.1  Experimental Procedures – Introduction 

This chapter presents the experimental procedure used in probing the dielectric strength of 

different gases with a dielectric probe and explains how the dielectric circuit works. The chapter 

also presents the methods used to determine pre-breakdown of dielectric strength, weakened 

dielectric strength and dielectric strength breakdown of different insulation gases using a 

negatively biased high-voltage dielectric probe when fault current is passed in the gases. 

Preliminary checks and testing of the apparatus were performed before undertaking experimental 

tests in the presence of an arc. 

4.1.1 Pressure Gauge Calibration 

A pressure gauge of combined pressure and vacuum type was used to monitor the insulation gas 

pressures in the test circuit breaker. The pressure side ranges from 0 to 150 pounds per square 

inch (lb. /in
2
) while the vacuum side ranged from 0 to -30 inches of mercury (inHg). This was 

checked and converted into absolute pressure in bars and then into kilo Pascal as shown in figure 

4.1 and in table 4.1.  
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0.5bar 
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0bar 

Figure 4.1 shows schematic pressure gauge scale 
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The checking and conversion is necessary to gauge the amount of pressure being fed into the 

circuit breaker during the research on a standard pressure scale.  

Known that:  30inHg = 1.016bar =101.591kPa;  

                       1 Atmosphere = 1.01325bar = 101.325kPa  

Figure 4.1 shows the schematic figure of gauge scale measurement. Table 4.1 presents pressure 

in bars and then scaled into absolute pressure in kilo Pascal (kPa) scale in table 4.1. Also the soft 

vacuum pressure was scales as -30inHg = -101.591kPa. 

Absolute pressure pab for -30inHg = -101.591kPa + 101.325kPa = -0.266kPa 

Taking absolute pressure, the below table 4.1 of pressure conversion is obtained: 

Gauge pressure scale Absolute pressure kPa 

0bar 0 +1.01325 1.01325bar 101.325kPa 

0.5bar 0.5+1.01325 1.51325bar 151.325kPa 

1.0bar 1.0+1.01325 2.01325bar 201.325kPa 

1.5bar 1.5+1.01325 2.51325bar 251.325kPa 

2.0bar 2.0+1.01325 3.01325bar 301.325kPa 

Table 4.1 presents gauge scale at absolute pressure 

 

4.1.2 Preliminary Check of the Oscilloscope 

Tektronix DPO2024 Digital Phosphor oscilloscope is used in this research, with the following 

specifications: 200 MHz bandwidth; 4 analogue channels; sample rates up to 1GS/s and 1 Mega 

sample record length on all channels; 5,000 waveforms per second (wfm/s), maximum waveform 

capture rate and a suite of advanced triggers, serial bus trigger and decode, at the same time 

using 1X/10X probe per channel. The test of the oscilloscope is necessary to confirm that the 
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oscilloscope specifications are within the calibration range of ±0.03V from the manufacturer’s 

specification. A channels check of the oscilloscope without input from Brandenburg HVDC 

source was carried out. The voltage drop differences of both channels 1 and 2 were measured to 

be ±0.02V. This value is within acceptable limit of the Tektronix oscilloscope threshold accuracy 

of ±0.03V[72].     

4.1.3 Probe Consistency Check     

A probe consistency check is important in this research since the probes are to be used to 

determine potential differences across limiting resistors. This is to make sure that both probes 

have the same output characteristics. The calibrator generator on the Tektronix instrument 

generates a square wave of 5 volts which was applied to the two P6015A 1000X high voltage 

(HV) probes at the same point. The outputs were read from the oscilloscope (figure 4.2a) into an 

Excel file. A sample of such an Excel file is shown in figure 4.2b. As shown from both figures, 

the probe tends to have a signal-to-noise ratio of 244:1.  

Figure 4.2a shows oscilloscope wave form output from the two P6015A 1000X HV probes 

Although there was noise associated with the output signals from the probes, the probes reveal 

the same output signal within the range of 5V. The noise level from the oscilloscope input 

channels could be reduced from the variable low pass filter (noise filter) knob on the 
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oscilloscope. It is also noted that the digitization of the analogue signals adds additional noise 

which may be due to the bit range of the ADC (8 bits). The bit noise is reduced by using the full 

dynamic range of the screen setting. 

 

Figure 4.2b shows the Excel waveform output from the two P6015A 1000X HV probes with a 5 

volt input signal from the Tektronix instrument 

The DC calibration and comparison were also carried out on P6015A probes with no adjustments 

on the compensation box. The oscilloscope was set at 5V/div, 40ns/div and 10 MHz, with the 

calibrator generator signal at maximum output of 10V not shown, and the oscilloscope waveform 

output of the two probes shows a 19ns phase shift. This is skewed to 19ns to align both 

waveforms into the same phase. The result also shows the same output waveform from the high 

voltage probes. 

4.1.4 Voltage Probe Calibration 

Two P6015A 1000X HV probes were calibrated in order to ensure that the probes have the same 

reference.  Both probes were connected to the output terminals of a Brandenburg high voltage 

source, through 10 metre length of coaxial cables and their respective compensation boxes and 

then to the Tektronix oscilloscope. The oscilloscope is set at 2kV/div on the vertical axis, 

10ms/div on the horizontal axis and at 10Hz of frequency. The Brandenburg high voltage source 
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is switched on and allowed to stabilize; the high tension is then switched on and the voltage is 

increased in steps of 1kV until to 12kV. At every 1kV, the output from the Tektronix probes 

were read and recorded as shown in table A1 (see appendix A). With the same voltage applied to 

the probes, there was a difference of 650V at 12kV between probe 1 and probe 2 (i.e., probe 1 

reads 12000V while probe 2 reads 11350V: see figure 4.3). With this, it becomes necessary to 

determine the correction factor k, used to normalise the voltage difference between both probes 

voltage measured at the same point. Figure 4.3 shows the input voltage in kV, the recorded 

voltage from both probes and the voltage difference from both probes (Probe 1 – Probe 2).  

 

Figure 4.3 compares the voltage difference (V) between Probe 1and Probe 2 and the voltage drop 

from both probes plotted against input voltage (kV) 

 

Figure 4.4 shows the graph used to obtain the correction factor k (i.e., the graph of voltage 

differences between Probe 1 and 2) at the same voltage point versus voltage recorded from Probe 

1. Figure 4.4 shows the voltage difference between Probe 1 and Probe 2 at the same reference 

with the input voltage from Probe 1. The figure shows a linear trend line and the error bars. The 
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trend line was used to determine the correction factor k. The correction factor k was used in the 

research results implementation in chapter 5. Figure 4.5 shows the input voltage and the recorded 

voltage in kV from probe 1 and 2 after the application of the correction factor k (see table A1 in 

appendix A). 

 

Figure 4.4 shows the graph of voltage difference between Probe 1 and Probe 2 at the same 

potential versus the recorded voltage from Probe 1.  

 

 

Figure 4.5 shows the input voltage in kV and the recorded voltage from Probe 1 and 2 after the 

application of the correction factor k. 
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 The graph shows that for both probes (1and 2) voltage differences of 650V for 12kV output 

have been corrected.   

4.2 Experimental Procedures 

This section explains the measurement technique of leakage current in dry and probe current 

flow using the negatively biased dielectric probe when the fault current was passed in the 

vicinity of an interrupter. The section commenced with the operational procedure of the probing 

circuit (4.2.1) then followed the procedure in atmospheric air as to understand the experimental 

method of the probing circuit (4.2.2). The probing circuit is set up in dry air in a circuit breaker 

with varying voltage to ensure the leakage currents out are consistent (4.2.3). Next step is to the 

test the circuit breaker opening sequence with a 9VDC battery, which also shows a reliable 

opening (4.2.4); section 4.2.5 presents the technique to measure dielectrically weak gas probe 

current. The probe detects the dielectric strength of the gas locally and determines its current-

carrying capacity. 

4.2.1 Operation of Probing Circuit  

Figure 3.1b shows the dielectric probing circuit configuration. When the Brandenburg high 

voltage source is switched on, the potential difference across the resistor R1 is equal to this 

applied voltage. The voltage across resistor R1 will start to reduce as the potential difference 

across the capacitor C increases as the capacitor charges up. At full charge, the potential 

difference across resistor R1 will be close to zero, and, ideally, if no current flows through the 

test gap, it will be zero. However, when current flows through the test gap, it is supplied by the 

capacitor. The capacitor will begin to discharge and the voltage will decrease. The current is then 

supplied by the Brandenburg through the resistor to replace the lost charges. The R2C (τ) is the 
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time constant of the circuit which determines the rate of charging and discharging of the 

dielectric probe circuit. This charging and discharging increases the temperature of the electrode 

tips and increases the energy levels of the electrode tip surfaces and gas, causing polarization and 

ionization of the gas atoms/molecules between arena of the dielectric probe. These processes 

occur due to highly induced energies in the gas atoms/molecules. This may result in the worst 

case of dielectric failure or dielectric breakdown of the gap. The voltage at this point is called 

breakdown voltage: the maximum voltage difference that could be applied across the gap before 

the gap insulation fails and conducts significantly. The high voltage source is regulated and 

maintained to the threshold voltage level of the dielectric probe before breakdown occurs. This 

could be termed as the pre-breakdown period when the gas atoms/molecules are ionized but still 

maintain some of dielectric properties. The electric field in between the gap will cause the charge 

carriers to move to their respective electrodes. If this happens then the charge flow would be 

detected as a current flow in the circuit. This charge flow will reduce the resistance between gap 

of the dielectric probe resulting in continuous flow of current which will depend on the amount 

of discharge from the capacitor C, the electric field and the nature of the gas of the electrodes. At 

the point of dielectric failure, as the current flow increases, the resistance of the gap will be 

reduced, resulting in the reduction of the voltage to the point where the current flow will stop 

followed by a recovery voltage period. This phenomenon has been explained by the Townsend 

avalanche or Streamer process [58, 60, 75].  

4.2.2 Procedure in Atmospheric Air 

The function of the dielectric probe was tested with atmospheric air as the host gas. This is to 

ensure correct operation of the probe and to understand the leakage current before deploying the 

spark plug in other gases. The dielectric probe is placed in air at atmospheric pressure and 
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connected as shown in figure 3.1b. The dielectric probe electrode gap is set at 1mm apart and 

connected to a limiting resistor R2  through the R1C (resistant-capacitor) circuit to a Brandenburg 

negative high voltage (HV) DC power supply. R2C also serves as the timing components of the 

dielectric probing circuit. The Brandenburg unit is supplied by an isolation power transformer 

(1:1) from the mains. The purpose of the resistor R1 is to limit the current from the Brandenburg 

unit, which also acts as a limiting resistor to limit the current to the dielectric gap electrodes. The 

isolation power transformer (1:1) is used to eliminate any mains earth or earth loop problems that 

may be caused by the interconnection of multiple earth from different sources.  An electrical 

experimental earth is connected to the circuit, which has an appropriate current-carrying capacity 

in order to serve as an adequate zero-voltage reference part. The electrical experimental earth 

also serves as a zero voltage reference point against which other potentials can be measured. The 

Brandenburg power supply unit is switched on and allowed to warm up; the high tension is then 

switch on and gradually increased from 0 to about 6kV to observe and obtain the pre-breakdown 

and breakdown voltage of the dielectric probe gap. The input and output voltages across the 

limiting resistor are measured with two high-voltage single-end probes on a Tektronix 

oscilloscope (DPO2000 series) for processing. The voltage drop across this limiting resistor is 

divided by its resistance value to determine the current flowing in the gap. To achieve the 

leakage in milliamperes, the experiment started with limiting resistor of 0.25Ω and gradually 

increased to about 58.4 kΩ before the leakage within the range of milliampere was obtained.   

4.2.3 Setup for Leakage Current Detection  

Figure 3.14 shows the schematic circuit of dielectric probe circuit configuration and arcing 

current test circuit diagrams connected together. The previous circuit provides the arc current for 
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the test and the dielectric probe monitors the dielectric strength of the gas and its ability to carry 

low current.   

Where: 

 R1: is a current limiting resistor to protect the Brandenburg (approximately 1.585MΩ) 

 R2: is a current limiting resistor (approximately 58.4kΩ) 

 R: is shunt resistor (0.178mΩ) 

 C: is high voltage capacitor (1400pF)  

The test circuit breaker is evacuated to a vacuum (-30inHg) and later refilled with the test gas 

(e.g., dry air) at different pressure levels. The pressure is increased from 0 bars (atmospheric 

pressure of dry air), in steps of 0.5 bars, to 2 bars. At each pressure, the high voltage source from 

the Brandenburg unit is increased to a value just below the breakdown voltage of the dielectric 

probe in dry air and a set of readings were taken. The data were collected through high-voltage 

single-end probes to a Tektronix (DPO 2024 Phosphor) oscilloscope, and then input into the 

laptop for processing. The breakdown voltage is monitored by V1 if it occurs and the leakage 

current through the gas is obtained by dividing the voltage difference (V1 –V2) across R2. The 

dielectric probe circuit is coupled to the synthetic experimental test circuit shown in figure 3.14. 

As previously explained, the Brandenburg negative HV supply (equipment specification 50kV, 

1mA) was used with an isolation transformer, coupled through a limiting resistor R1 and a timing 

component (R2C) to the dielectric probe. The voltage difference across the limiting resistor is 

measured, and the leakage current is also determined. The results are presented in chapter 5. 
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4.2.4 Circuit Breaker Timing Test 

 

 

 

 

 

                                                                                                                                                                                                                  

Figure 4.6 shows the Circuit Breaker Timing Test Circuit 

 

The circuit breaker (CB) opening timing test is an important conditions in post-current zero 

measurement. If not properly set, it will result in a mismatch between the circuit breaker opening 

time and the triggering of the synthetic circuit. The test is used to set and check the duration of 

the CB opening with which the timing of the DC trigger unit and the half cycle AC unit will be 

determined and set on the control panel. To set the timing correctly, a 9-volt battery is placed 

across the terminals of the circuit breaker. The voltage is monitored across these terminals. When 

the breaker is operated, the contacts separate and the voltage is recorded across the terminals. 

This can be used to synchronize the opening of the circuit breaker with the various triggering 

events in the synthetic current circuit. Figure 4.6 shows the experimental set up of timing test 

circuit and the operations of the circuit component are presented in section 3.5. 

In this trial, the test circuit breaker is kept in the closed position and the 9V battery is connected 

between the two terminals of the closed breaker and then triggered open without the operation of 

the arcing test and the dielectric probe circuits. Figure 4.8 shows an Excel waveform of circuit 

breaker contacts opening sequence. From zero (0) to twenty (20) milliseconds the poker moves 
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off from a fixed contact. Thereafter, the actual opening time duration lasted for the next ten (10) 

milliseconds as shown in the figure. This procedure was repeated for three consecutive times, 

each time obtaining the same result. 

 
 

Figure 4.8 shows the opening sequence of the CB contacts 

 

Figure 4.8 shows the opening of the contact in the circuit breaker. The spike type of signal 

between A and B indicates the “contact bounce type of effect”. The breaker’s contacts have 

separated at C. It takes 10ms from triggering to opening. 

Information obtained from the opening time for the CB were used in setting the DC trigger unit 

at 20ms and the half-cycle AC unit at 10ms. The capacitor bank unit was set between 45 (on the 

capacitor bank setting) and above to generate about 575V, so as to obtain the pre-set fault current 

value and a dump trigger unit for the dumping of residual energy as set at 20ms. 

Figure 4.8 shows the result of the Excel file waveform of the 9-volt test conducted on the circuit 

breaker. The figure shows the parting period (A and B) of the contacts in the circuit breaker. The 

spiked type of signal between A and B indicates “contact bounce type of effect”. The breaker’s 

contacts have separated at C. The circuit breaker takes 10ms from trigger to fully open. From 

zero (0)  to twenty (20) milliseconds the poker (moving contact) begins to separate from the 
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fixed contact, this lasts for the next ten (10) milliseconds as shown in figure 4.8 (A-B). During 

the contact separation, a DC current is passing between the contacts (fixed and moving). As the 

contacts separate, a low-current AC arc discharge is produced. At a pre-determined time of 

10ms, the AC current passes through the separated contacts. The triggering of the DC and AC 

currents is controlled, and each lasts for 20ms and 10ms respectively. Another trigger used to 

dump residual charges (energy) from the capacitor 20ms after the AC and the DC currents have 

ceased to flow. Repeating the procedures for three consecutive times obtains the same result. 

This shows that the breaker opening time is consistent and is synchronised with the synthetic 

circuit operation. 

 

4.2.5 Setup for Dielectrically Weak Gas Detection 

As shown in figure 3.14, the synthetic experimental test circuit and dielectric probe circuit are 

used together. To record arc voltage in the circuit breaker during the test, a high-voltage probe 

was connected to the fixed contact while the other in the circuit breaker is at experimental earth. 

A positive half-cycle of fault current, triggered from the capacitor bank, flows through the test 

circuit breaker and is measured from a shunt resistor (0.178mΩ), which is connected in series to 

the synthetic circuit. A coaxial cable takes the signal to the oscilloscope, as shown in figure 3.12. 

The test circuit breaker is evacuated to approximately -30 inches of mercury with a vacuum 

pump and refilled with test gas (e.g., nitrogen gas). The dielectric probing circuit is switched on 

and allowed to stabilize, and the voltage is then set below the breakdown voltage. This is 

recorded while contacts were in closed position in the test circuit breaker. The synthetic 

experimental test circuit is switched on and allowed to warm up.  The charging voltage on the 

capacitor bank is then set to approximately 575V. The sequence of triggers to operate the circuit 
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breaker starts the current flow and subsequent data capture is controlled from a control unit from 

the chamber. The arc will heat the surrounding gas to various temperatures (i.e., mono-

homogeneity). Heating of the test gas (the interrupter) will cause ionisation and dissociation 

which can lead to current conduction if this gas flows through the dielectric probe. The 

conducted current can vary depending upon the condition of the gas. In the worst case, the gap of 

the dielectric probe may completely breakdown which will be indicative of severe dielectric 

failing of the gas. Figure 4.9 shows an oscilloscope waveform of pulse current and arc voltage 

triggered into the circuit breaker, inverted input and output voltage from the limiting resistor at 

dielectric pre-breakdown before impulse current, breakdown of dielectric strength of dielectric 

probe during the impulse current and dielectric strength recovery during and after current zero 

periods in insulation gas.  

 

Figure 4.9 shows typical oscilloscope waveform of dielectric breakdown. 

 

This test is repeated, but the high voltage applied to the dielectric probe is lowered to such a 

level as to negate voltage breakdown as shown in figure 4.10. A voltage drop should occur 

without dielectric strength breakdown. A small current flow will happen due to an increase in the 

conductivity in gas through the gap of the probe. The state of the gas is determined by its 

temperature, ignoring any electrode impurity.  The probe current detected during the test will 
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depend on the type of insulation gas (type of interrupter), the gas pressure, the electric field, the 

orientation (0 or 90 degree) of the dielectric probe and the magnitude fault current. The 

information from the probe will allow assessment of the nature of the gas during arcing and the 

recovery period after current zero. In general, the following events occur during the test process. 

At trigger period and post current zero period, heat generated from the arc due to the pulse 

current will fuse into the interrupter gas, weakening the dielectric capability of the gas; heat 

might be generated during the current interruption due to electromagnetic reaction at the point of 

contacts separation which are passed into the test gas (e.g., nitrogen); and during the dielectric 

strength recovery at and after current zero periods might result in reigniting low current. 

 

Figure 4.10 shows oscilloscope waveform of inverted input and output voltage drop due to 

dielectrically weakened gas detected. 

 

Within these processes in the arc chamber, low current flow may be detected by the dielectric 

probe. Detailed explanation of ionisations processes were discussed in  Meek [58] and 

Blower[76]. The voltage drop due to dielectric weakened strength in the gas as a result of 

induced heat from the arc voltage was detected with the spark plug sensor (see figures 4.10 and 

4.11) The recorded figure 4.10 shows the oscilloscope waveform of fault current and arc voltage. 

Also shown are the voltages V1 and V2 across R2. The change shows dielectrically weak gas 

Probe voltages 

Arc voltage 

Fault current 
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detected by the probe. Figure 4.11 shows the pulse current and arc voltage and the two probe 

voltages across the limiting resistor and the associated flowing of probe (discharge) current. The 

results and the analysis are presented in chapter 5 and chapter 6 respectively. 

 

Figure 4.11 shows the arc current and voltage triggered into the circuit breaker, input and output 

voltage drop from the limiting resistor and discharged current due to dielectrically weak gas 

detected during the impulse arc current. 

4.2.6 Observations 

The ceramic limiting resistors tend to increase their value when subjected to repeated high value 

of DC voltages, ranging from 6kV and above. This may be that the ceramic resistors have 

positive temperature coefficient. At this value, the spark plug sensor will be hissing without 

breakdown and Brandenburg milli-ammeter will overage. This will damage the power supply, if 

not protected by R1. The limiting resistors are polarised, having diode characteristics (i.e., 

forward and reverse biasing). The characteristics of the ceramic resistor were discussed in 

section 3.2 and shown in figure 3.4, [71, 77][82], [83].  The spark plug sensor tips do carbonise, 

reducing the set gap of 1mm. 
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4.2.7 Precautions 

After every experimental test, a short time of about three minutes was set aside before carrying 

out another experimental test since ceramic resistors are susceptible to failure under high-voltage 

conditions. Applied power within the specifications generally will not cause any significant 

degradation to the resistor, but the resistance value may vary significantly due to repeated 

pulsing over a long period [43, 71]. The limiting resistors are stacked in a forward direction 

when being stacked as to avoid reversed value. The tips of the spark plug sensor were regularly 

inspected and the surface de-carbonised to ensure proper contact to the insulation gases on test at 

the commencement of the experiment. The tips are re-adjusted to 1mm gap apart to maintain the 

same gap distance. 

4.2.8 Summary 

In the chapter the experimental procedure and setup for the research carried out were discusses. 

It start with an introduction which is followed by pressure gauge verification, preliminary checks 

on the oscilloscope, probe uniformity check as in subsections 4.1.4 and 4.1.2. These are followed 

by the experimental procedure and setup which includes probing circuit operation, probing 

circuit operation in atmospheric air, leakage current detection, circuit breaker timing test and 

dielectrically weak gas detection. The chapter concludes with observations and precaution taken 

during the research. 
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Chapter 5 Experimental Results 

5.1 Introduction 

This chapter reports experimental results taken during this research. The results are taken from a 

probe used to determine the dielectric condition of a gas when it has been subjected to an arc 

discharge. The probe dielectrically stresses the gas by applying a relatively high negative voltage 

across a small gap between two electrodes. The chapter begins with the calibration of the voltage 

probes and the functionality of the negative high voltage power source. This is followed by 

results taken to determine current loss due to corona discharge etc. This leakage current was 

determined in compressed dry air and used in section 5.2.  The experimental results of probe 

currents detection are presented in three sub-sections of section 5.3 for nitrogen gas (sub-section 

5.3.1), dry air (sub-section 5.3.2) and sulphur hexafluoride SF6 gas (sub-section 5.3.3) when a 

fault current is passed through these gases. The dielectric capacity of each gas is determined by 

applying a negative high voltage DC to the dielectric probe during the half-cycle AC fault 

current and immediately afterwards. Chapter 6 presents the results analysis and discussions. 

5.2 Leakage Current in Dry Air  

Results of leakage current tests in dry air with the dielectric probe electrode tips set at separation 

distance of 4.85mm and with an applied negative voltage are presented below.  The circuit 

breaker chamber is pumped down to a vacuum (-30mmHg) and then filled with dry air to three 

different pressures (0, 0.5 to 2bar). At every pressure increment, the output of the HV source is 

increased gradually to a point where the dielectric probe begins to breakdown. The applied 

voltage is then reduced to just below breakdown voltage point of the dielectric probe. The time-

varying voltages during the test are recorded (see tables in appendix 2B). The data obtained for 



Chapter 5 

Experimental Results 

80 
 

probe voltage V2 corrected by adding the calculated voltage differences between probes V1 and 

V2. Appendix B explains and shows the typical data and calculations. Figures 5.4a and 5.4b 

show the results. Fig 5.4a shows a typical result of probe voltage (input V1 and output V2) 

increasing across the limiting resistor as the pressure of dry air is increased. Figure 5.4b shows 

the graphical result of probe current variation in dry air at different pressures when a negative 

voltage DC is applied to the probe before the breakdown of the dielectric of the probe. The graph 

shows a negative current (approximately -0.5mA) at 0.5bar of the dry air and positive current at 

the remaining three pressures (1, 1.5, and 2 bar) as shown in figure 5.4b. The graph shows three 

separate experimental results carried out to ascertain the probe response at different pressures of 

dry air. The results show experimental “shot to shot” variations as expected, but they also show a 

consistent behaviour at the various pressures.   

 

Fig 5.4a shows typical result of probe voltage (input V1 and output V2) across the limiting 

resistor in dry air. 
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Fig 5.4b shows variation in leakage current in dry air at atmospheric pressure (table 4.1). 

 

5.3  Probe Current in Gases 

This section presents the experimental results of probe currents detected in nitrogen gas, dry air 

and in sulphur hexafluoride gas when the fault current passes in the arena of the gases 

respectively. These results will clearly show the behaviour of each gas when the negative high 

voltage DC is applied to the dielectric probe during the passage of the fault current near the 

gases. 

5.3.1 Probe Current in Nitrogen Gas 

5.3.1.1 Detection of weakened Dielectric Strength in Nitrogen Gas 

This sub-section reports the results for a probe current flowing through the dielectric probe in 

nitrogen gas during arcing fault current. The dielectric probe gap is set to 1mm and then coupled 

into the test circuit breaker. The dielectric probe is placed 55mm from the contact electrodes 

where the AC arc discharges are produced in the test circuit breaker. The circuit breaker is 

pumped down to a vacuum (-30inHg) and then refilled with nitrogen gas at various pressures 

from 0 to 2bar in 0.5bar steps (see table 4.1). Negative high voltages were applied to the 
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dielectric probe ranging from -3.5kV to -12kV for the pressure used. The high voltage DC is set 

just below the dielectric breakdown voltage of the gas inside the circuit breaker filled with the 

nitrogen gas. The fault current of about 3.8kA peak with frequency of 50Hz passes through the 

circuit breaker producing an arc with a voltage of about 575V.  The current is supplied from a 

33mF capacitor bank through an 184µH reactor. The arc heats the test gas causing it to 

dissociate. This may also diffuse, producing ionized products if sufficient energy is transferred 

into the test gas. During the dissociation, ions are formed and electrons are free to move, 

resulting in low current flow. 

 

Figure 5.5a shows oscilloscope waveform.  

 

Figure 5.5b shows an Excel download of oscilloscope waveform data.  

As the gas moves away from the arc, it cools, and recombination takes place. Gas further away 

from the arc is heated by conduction, convection and radiation, increasing the energy level of the 

Current=3.6kA 
Arc Voltage=276V 
V1=-4080V 
V2=-4069V 
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atoms/molecules of nitrogen gas. Figure 5.5a shows the recorded oscilloscope waveforms of the 

positive half-cycle AC current of about 3.6kA at 50Hz with the associated arc voltage. The 

figure also shows inverted voltages V1 and V2 across the limiting resistor connected to the 

dielectric probe. The pressure is 0bar and the orientation is at 90
0
.  Figure 5.5b shows the result 

of Excel file waveform of negative voltage DC (Probe input voltage V1 and Probe output voltage 

V2) from the limiting resistor applied to the dielectric probe for nitrogen gas at atmospheric 

pressure when the fault current passes in the circuit breaker with time. It shows reduced negative 

voltage between 0.034s and 0.056s during the dielectric strength weakened period and gradual 

dielectric strength recovery after the arcing current is extinguished. The high voltage DC applied 

to the dielectric probe enhances the drift of any ions towards the anode and cathode of the probe. 

Depending upon the type of ion charges in the leakage current, this indicates the current-carrying 

capacity of the gas. The more ionized the test gas, the higher the probe current. A high probe 

current flow will indicate a weakened dielectric state of the gas. The reduced dielectric strength 

of the probe gap shows as voltage drops across the limiting resistor as shown in figure 5.5b.   

Results 

For clarity in figure 5.6, the following terms are briefly explained:   

Variables (A, V) denote current in Amperes and arc voltage in Volt 

Current denotes fault current in Amperes. 

Probe input V1 and probe output V2 in Volts indicate voltages from the limiting resistor before 

and during the arcing periods with time in seconds  

Probe current denotes low current flow in milliampere detected in nitrogen gas at atmospheric 

pressure. 
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Figure 5.6 shows the complete arcing period at atmospheric pressure of nitrogen gas.  

Figure 5.6 shows the results for a typical case in nitrogen gas at atmospheric pressure, an 

example to illustrate the behaviour of nitrogen gas at the passage of fault current in it. The figure 

shows low current flow through the dielectric probe in milliampere (probe current), probe 

voltage (input V1) and probe voltage (output V2) in volts with time in seconds across the 

limiting resistor for nitrogen gas at atmospheric pressure during and immediately after arcing  of 

the positive half AC  current period. The derived current passing through the dielectric probe has 

an initial negative value at the beginning of the arcing period. This is followed by a period of 

positive values that is highly oscillatory. At about 0.06 seconds, there is a negative value for the 

current followed by a positive value starting at .07 seconds. The result shows a complex picture 

emerging from the test condition, and chapter 6.3.1.1 presents the analysis and discussion.   

 

5.3.1.2 Current Directions during Arcing Periods in Nitrogen Gas 

 

This section presents the results of the dielectric probe response to low current flow in the gas 

before, during and after the arc current in the circuit breaker filled with nitrogen gas ranging 

from 0bar to 2bars.  Tests performed in 0.5 bar steps and with negative high voltage DC applied 

to the dielectric probe.  The experimental data determined the value and the direction of the 
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probe current flow, and the direction of electron (e
-
) flow in the circuit are analysed and 

discussed in sub-section 6.3.1.2. 

5.3.1.2.1     0 bars of Nitrogen Gas 

Figure 5.7a shows arc current and arc voltage produced in the circuit breaker, the probe voltages 

V1 and V2 from the limiting resistor connected to the dielectric probe at atmospheric pressure.  

The leakage current through the dielectric probe is negative before an arc discharge is initiated. 

This may be related to a higher applied voltage. However, there is a small increase in the 

negative value at arc initiation. The current will become positive for the majority of the arcing 

period and beyond before returning to a slightly negative value at 0.052 seconds. The trend is 

similar to those observed in figure 5.6. Figure 5.7b shows V1, V2 and the corresponding value of 

the probe current. It shows a reduction in the applied negative voltage drop during the dielectric 

strength-weakened period. After the extinction of the fault current between 0.05 seconds and 

0.07 seconds, the figure shows an increase in the applied negative voltage and in the probe 

current flowing, followed by the return of these variables to the previous level. 

 

 
Figure 5.7a shows the graph of the arcing periods for atmospheric pressure of nitrogen gas. 
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Figure 5.7b shows increase in the applied negative after fault current zero. 

 

It was shown in sub-section 4.2.3 (leakage current detection) that experiments were carried out to 

detect leakage current in dry air when no impressed arc current and in section 5.2 (experimental 

result), the results show leakage currents detected and measured. And, section 6.2 (current 

variation in dry air) discussed the current flow before dielectric breakdown at no fault current. 

These explain the typical characteristic of the gases’ behaviours in an electric field.  When the 

arc current was discharged, it results in an increase in the leakage (probe) current flow (i.e., 

weakened dielectric strength and breakdown of dielectric strength) and then followed by 

dielectric recovery. These were repeated in dry air, nitrogen and sulphur hexafluoride to justify 

that the leakage current obtained were not noise measurements.  

The heat generated due to the arc in the interrupter is in-homogeneous; this might lead to positive 

and negative rise in the probe current flow.       

5.3.1.2.2      0.5 bars of Nitrogen Gas 

Figure 5.8a shows the arc current, voltages V1, V2 and the derived dielectric current for 0.5 bars 

of nitrogen gas. The probe current flow through the gas is positive at about 0.58mA within the 

period of 0 to 0.036s before arcing commenced, but increased in negative value when the arc was 

initiated to about -1.13mA at 0.036s.  It lasts for a while before commencing a decrease in the 

value of about 0.35mA at 0.41s after the peak arcing fault current period.  An oscillatory 
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waveform of probe current lasted for 5ms before the fault current zero periods. It may signify a 

non-uniform hot gas from the arc is mixing with the nitrogen gas, resulting in the variation in the 

probe current flow. This period shows the weakened dielectric strength of the probe in the gas, 

which is similar in trend to that in nitrogen gas at atmospheric pressure.  At post-current zero 

periods, there is a small decrease in the probe current from 0.87mA at 0.046s to approximately 

0.58mA at 0.047s. In addition, there was another increase in negative value of -1.14mA at 

0.052s, followed by a decrease in its value to 0.58mA at 0.056s. Between 0.059s and 0.074s, 

there was a small increase and a decrease in the probe current flow before it returned to its initial 

value. The large increase in negative value in probe current at 0.052s might be due to spikes 

from the ignitron during the dump of residual energy from the capacitor bank to the experimental 

earth. Within the periods 0.059s to 0.074s, the probe current flow may be due to the remnants of 

the hot gas remaining in the nitrogen gas since the arcing current is zeroed.  

 

 
Figure 5.8a shows the graph of the arcing periods in 0.5bars of nitrogen gas. 
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Figure 5.8b shows the graph voltages (V1, V2) and the probe current for 0.5 bars of nitrogen gas.  

 

Figure 5.8b is a detailed illustration of figure 5.8a as discussed previously. The figure shows the 

reduced negative voltage drop during the weakened dielectric strength for 0.5bar of nitrogen 

(between 0.0366s and 0.0466s), an increase in the negative voltage at post current zero (from 

0.0466s to 0.08s) and the probe current flow during these periods.  

 

5.3.1.2.3    1.0 bar of Nitrogen Gas 

Figure 5.9a shows the arc current, probe voltages (V1, V2) and the probe current for 1.0 bar of 

nitrogen gas. The probe current flow through the gas is negative before the arc commenced, but, 

on initiating the arc, the current flow increased in positive value. The current flow has a complex 

trend of positive current flow during the arcing of the fault current period (within 0.038s and 

0.048s) and, in the post-current zero periods (from 0.048s to 0.08s), followed by the return to its 

previous value. Within the arcing of the fault current and post current zero periods, there are 

continuous increases and decreases in probe current flow. This may indicate the period the heat 

from the arc is diffusing in the nitrogen gas. In addition, the rise in the probe current flow 

signifies that the dielectric strength of the probe weakens in the gas. 
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Figure 5.9a shows the graph of the arcing periods for 1.0 bar of nitrogen gas. 

 

 

 
Figure 5.9b presents the graph probe voltages (V1 and V2) and the probe current for 1.0 bar of 

nitrogen gas. 

 

Figure 5.9b illustrates figure 5.9a in more detail, showing probe voltages V1 and V2 and probe 

current before, during and after the fault current arcing periods. Specifically at 0.044s, the 

maximum of the weakened dielectric strength occurs and the maximum of the probe current flow 

of about 0.65mA flows in the dielectric medium.  As in the previous figure, this an increase in 

the applied negative voltage and the derived current in the post current zero periods is seen 

between 0.057 seconds and 0.077 seconds in the figure 5.9b.  

 

5.3.1.2.4    1.5 bars of Nitrogen Gas 

Figure 5.10a shows the arc current, voltages (V1 andV2) and the derived dielectric current for 

1.5 bars of nitrogen gas. The probe current flowing through the gas also shows a negative value 
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of about -0.38mA before the arc commenced but increased in negative value to about -0.99mA at 

0.037s seconds during the arc initiation. This continues by decreases and increases in the 

negative value within the arcing periods. This is an indication of weakened dielectric strength of 

the gas in the arc.  

 

 
Figure 5.10a shows the whole of the arcing periods for 1.5 bars of nitrogen gas. 

 

 

At extinction of the fault current, there is a rise in the negative probe current flow to -0.92mA at 

0.05s, followed by a recovery to its previous state. The current flow at this point might be due to 

the spike from the ignitron dump of residual energy from the capacitor bank to earth.   

 

Figure 5.10b shows the graph voltages (input V1 and output V2) and corresponding probe 

current for 1.5 bars of nitrogen gas. 
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Figure 5.10b shows figure 5.10a in more detail, showing the applied voltages V1 and V2 across 

the limiting resistor and the corresponding probe current during the completely arcing periods. It 

shows reduced voltage drops and an increase in the negative probe current during the weakened 

dielectric period of the gas at 0.037s, the point of initiation of the fault current as explained 

above. As in figures 5.8b and 5.9b, where there was an increment in the applied negative voltage 

after the fault current was extinct. Figure 5.10b shows an increment in the applied negative 

voltage with the corresponding probe current flow during the post-current zero periods, though 

smaller in value. 

 

5.3.1.2.5    2.0 bars of Nitrogen Gas 

Figure 5.11a shows the arc current, voltages (V1, V2) and the derived dielectric current for 2.0 

bars of nitrogen gas. In this case, the probe current flowing through the gas is positive (0.33mA 

at0.037s) before the commencement of the arc at 0.036s but increased in positive value to 

0.65mA at 0.04s. The current flow recovered to about 0.33mA at 0.0428s and then continued to 

increase and decrease in negative values to -0.93mA at 0.045s and 0.33mA at 0.048s in the post-

current zero periods. These signify the dielectric weakened periods in the gas. There is a rise in 

positive probe current to 0.91mA at 0.051s, which might be due to highly ionised particles, 

electromagnetic energy or/and to ignitron dump. This is followed by a small oscillatory probe 

current flow before final recovery period at 0.08s. The current flow at this point may be due to 

the retained hot gas from the arc in the nitrogen gas after current zero periods resulting ions 

dissociation and current flow in the dielectric medium.     
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Figure 5.11a shows the whole of the arcing periods in 2.0 bars of nitrogen gas. 

 

 

 
Figure 5.11b shows the graph probe voltages (V1 and V2) and corresponding probe current for 

2.0 bars of nitrogen gas. 

 

Figure 5.11b shows probe voltages (input V1 and output V2) across the limiting resistor and the 

corresponding probe current before, during and after arcing periods. It shows a more detailed 

analysis of figure 5.11a. The applied negative voltage shows an increase in its value just 

immediately at the end of the fault current arcing period as seen between 0.051seconds and 0.08 

seconds, before returning to its initial state. It shows a similar trend as can be observed in the 

previous figure such as figures 5.7 and 5.8.  
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5.3.1.3    Dielectric Probe Orientation in Nitrogen Gas Results 

Results from tests probing current-carrying capacity of dielectrically weakened gas when the 

dielectric probe is oriented to 0
0
 (figure 5.12a) and 90

0
 (figure 5.12b) are reported. The 

orientation of the probe is changed to understand the effect that this has on its response.  The aim 

of this work is to detect and compare the probe (low) current flowing during the hot gas in 

nitrogen gas when the probe is oriented to 0
0
 (figure 5.12a) and 90

0
 (figure 5.12b) during the 

arcing current periods. Figures 5.12a and 5.12b show the directions of 0
0
 and 90

0
 orientations of 

the dielectric probe as coupled to the circuit breaker. The experiments are carried out in nitrogen 

at gas pressures between 0.0 bar to 2.0 bar, at 0.5 bar steps with a voltage  set between -4kV to -

9kV applied to the dielectric probe when a positive half cycle (fault) current of about 3kA peak 

is passed through.  At current zero, recombination is taking place and local thermal equilibrium 

exists such that there are equivalent amounts of ions and electrons. The post-current zero is the 

period immediately after the fault current is extinct. Immediately after current zero, a voltage 

stresses the gap between the arcing electrodes, post-arc current can flow, and a low current is 

formed. The dielectric probe may detect the re-ignition of the arc through its response to 

dielectrically weakened gas. The low arc current will create ions from the test gas (nitrogen gas) 

which will result in probe current flow and weakened dielectric strength in the dielectric 

medium. 
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Figure 5.12a shows dielectric probe at 0-degree orientation position. 

 

 

Figure 5.12b shows dielectric probe at 90-degree orientation position. 

 

5.3.1.3.1    Result for 0 bars of Nitrogen Gas 

Figures 5.13a and 5.13b show the result of applied half-cycle AC (fault) current of about 3kA at 

50Hz producing an arc voltage in the circuit breaker in nitrogen gas at 0.0 bar with a negative 

high voltage DC applied to the dielectric probe which is oriented at either 0
0
 or 90

0
. Section 

6.3.1.3 presents the discussion of these results and shows the results of the whole dielectric probe 

Electrodes partially shielded 

Electrode not shielded 
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response to low current flow in dielectrically weakened nitrogen gas at 0
0
 and 90

0 
orientation 

with an arc current of about 3kA peak.  

 

Figure 5.13a shows fault current, arc voltage, low current detected, probe voltages (V1 and V2) 

across the limiting resistor at 0
0
orientation of the dielectric probe. 

 

 

At 0
0
 orientations, figure 5.13a shows the derived current passing through the dielectric probe 

before, during and after the trigger period of the arcing fault current. Between 0.0 seconds and 

0.037 seconds, there is an average leakage current of about 0.19mA. This is followed by a trigger 

period that shows negative increase and decrease in the derived current that passes through the 

dielectric probe. It shows the complex and variable response of the dielectric probe during the 

discharge, followed by the post-current zero periods that starts at 0.047s. The probe current flow 

indicates the commencement of dielectric strength-weakened periods of the probe for 0.0bar of 

nitrogen gas.  Within the period 0.047s to 0.06s, the probe current increases and decreases to the 

value of 0.37mA and -0.61mA, this is followed by a recovery toward its initial value. The current 

flow might be due to the retained hot gas in the nitrogen gas after fault zero. 
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Figure 5.13b shows fault (current), probe current flow, probe voltages (V1, V2) across the 

limiting resistor for 90° orientation of the dielectric probe. 

 

 

For 90
0
 orientations, figure 5.13b shows the derived current passing through the dielectric probe. 

The current flow is at the average current of -1.5mA within the time of 0.0 seconds to 0.0356 

seconds and then followed by periods between 0.0356 seconds and 0.047 seconds commencing 

with an oscillatory probe current. This period shows the complex and variable response of the 

dielectric probe, followed by the post-current zero periods between 0.047 and 0.08 seconds that 

shows an increase and decrease in the probe current flow in this period. In addition, the 

directions of current flows are in anti-clockwise directions, which may be because the V1 is less 

negative than V2 and may depend on the condition of the circuit. The result of orientations are 

discussed in sub-section 6.3.1.3.1  

 

5.3.1.3.2     Result in 0.5 bars of Nitrogen Gas 

Figures 5.14a and 5.14b show the results for 0
0
 and 90

0
 orientations for a fill pressure of 0.5 bars 

of nitrogen gas under similar conditions as in the previous test. 

The probe current flowing through the dielectric probe at both orientations before the arc shows 

initial time-varying current flow at these periods.  
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However, during the trigger for 0
0 

orientations shows increase and decrease in the probe current 

flow in the positive value between 0.036 seconds and 0.048 seconds. This arcing fault current 

period resulted in weakened dielectric strength of the probe in the gas. This is followed by an 

increase in negative current flow of -0.18mA from 0.048 seconds towards 0.054 second, and then 

continued to decrease to 0.99mA at 0.065s and finally returned to its previous value at 0.08s. 

These periods are termed post-current zero with arcing current extinguished.  

 

 

Figure 5.14a shows fault current, probe current detected, probe voltages (V1 and V2) across the 

limiting resistor at 0
0
 orientation of the dielectric probe. 

 

 

The probe current flow at these periods may be due to either ignitron dumps of residual energy 

and/or due to the remnant hot gas from the arc in nitrogen gas after current zero. The direction of 

probe current flow is clockwise and may be due to the influence of the voltages polarities and the 

state of the circuit. In the case of 90
0
 orientations within the 0.0 second to 0.036 seconds, shows 

a probe current of about -0.11mA. During the arcing period, the probe current flow increased to 

0.28mA at 0.038s, decreased to -0.55mA at 0.039s and then increased to 0.14mA at 0.048s at 

fault current zero periods. 
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Figure 5.14b shows fault current, low residual current detected, probe voltage (input V1 and 

output V2) from the limiting resistor at 90° orientation of the dielectric probe. 

 

 

This probe current continues into the post-current period with a gradual reduction to -0.89mA at 

0.067s before turning to the previous value at 0.08s. The large probe current flow at the arcing 

period signifies weakens dielectric of the nitrogen gas. During the post-current zero, an increase 

in negative probe current flow is shown. These might be due to the same reasons stated during 

the 0
0
 orientation. The direction of probe current flow is counter-clockwise and may be due to 

V1 being more negative than V2. The discussion of the combined graphs of both orientations is 

in sub-section 6.3.1.3.2 

 

 

5.3.1.3.3     Result in 1.0 bar of Nitrogen Gas 

Figures 5.15a and 5.15b show the results for 1.0 bar fill of nitrogen gas at the same conditions 

for 0
0
 and 90

0
 orientations obtained respectively. 

 Both probe currents passing through the dielectric probe have initial small varying positive and 

negative values before the arcing current at about 0.032 seconds. At this point for 0
0
 orientation, 

the probe current starts increasing negatively to about -0.65mA at 0.036s and then decreases in 

value to about 0.31mA at 0.039s. Between 0.039s and 0.048s, there is an oscillatory probe 
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current flow in the fault current arcing periods; this continued up to 0.052s in the post-current 

zero periods before regaining its initial values towards 0.08s. The increase in the negative probe 

current between 0.032s and 0.036s may be due to the arcing quasi-current before the arcing fault 

periods where the probe current increases positively. These caused the dielectric weakness of the 

nitrogen gas.  In the post-current zero periods, the rise in probe current may be due to the 

ignitron dump and the retained hot gas from the arc in the nitrogen gas after the fault current has 

stopped arcing. In addition, V1 is more negative in value as compared to V2 and the state of the 

circuit which determines the probe current flow in a counter-clockwise direction at this period. 

 

 

Figure 5.15a shows fault current, probe current, and probe voltages (V1and V2) across the 

limiting resistor for 0
0
 orientation of the dielectric probe. 

 

 

For 90
0
 orientations, the probe current starts increasing positively from 0.21mA at 0.037s to 

0.68mA at 0.039s and back to 0.25mA at 0.042s. The probe current flow shows a small 

increment of about 0.33mA at 0.045ms and a decrease to 0.25mA at 0.048s before rising to 

0.91mA at 0.052s in the post-current period, followed by regains of the current flow to its initial 

value at 0.08s. As previously, the dielectric weakness of the nitrogen gas commences within the 

period of 0.037s to 0.048s and caused by the arc discharges. Then, in the post-current zero 

periods (0.048s to 0.08s), there is an increase and decrease in the probe current flow that might 
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be due to the ignitron dump and the hot gas retained in the nitrogen gas just immediately after 

fault current zero. The direction of probe current flow is clockwise which signifies that V1 is less 

negative than V2 and may depend on the circuit. The combined figures 5.15a and 5.15b are 

discussed in sub-section 6.3.1.3.3.    

 

 
Figure 5.15b shows fault current, probe current flow, probe voltages (V1and V2) across the 

limiting resistor at 90
0 

orientation of the dielectric probe. 

 

 

 

5.3.1.3.4     Results in 1.5 bars of Nitrogen Gas 

Figures 5.16a and 5.16b show the results for 0
0
 and 90

0
 orientation tests conducted for 1.5 bars of 

nitrogen gas within the same the experimental conditions as previously discussed respectively. 

Both results have approximately the same initial values of probe current flowing through the 

dielectric probe except at about 0.031 seconds, just before the trigger period where the probe 

currents flowing start showing differences in current flow magnitudes. 

For 0
0
 orientations, figure 5.16a shows probe current increase from -0.27mA at 0.031s to 

0.26mA at 0.036 seconds followed by -0.52mA at 0.037s. This is followed by a small increment 

of -0.35mA at 0.038 seconds before increasing from -0.49mA at 0.04 seconds to about 0.57mA 

at 0.043 seconds and then decreasing to -0.56mA at 0.0476 seconds during the arcing period. In 

the post-current zero periods, immediately after current zero, there is an increase and decrease in 
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the probe current flow to 0.4mA at 0.052 seconds and -0.67mA at 0.059 seconds before a return 

toward the original value.  As discussed previously, the arcing period causes the dielectric 

weakness of the nitrogen gas. The increase and decrease of the current flow during the post-

current zero might also be due to the ignitron dump and/or the retention of the hot gas from the 

arc in the nitrogen gas after fault current zero. At this point, V1 is more negative than V2; hence, 

the current flow is in a counter-clockwise direction. 

 

 

Figure 5.16a shows fault current, probe current flow and probe voltages (V1, V2) across the 

limiting resistor for 0
0
 orientation of the dielectric probe. 

 

 

 
 

Figure 5.16b shows fault current, probe current detected, probe voltages (V1, V2) across the 

limiting resistor for 90
0 

orientation of the dielectric probe. 

 

For 90
0
 orientations as shown in figure 5.1.6b, probe current also decreases from 0.16mA at 

0.037 seconds to –0.49mA at 0.04 seconds and then increases to about 0.67mA at 0.044 seconds. 
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At this point, the current flow starts increasing and decreasing. It starts from -0.61mA at 0.05 

seconds to 0.44mA at 0.062 seconds, before returning to its earlier value at 0.08s. The upsurge 

and reduction in the probe current flowing through the dielectric probe during the arcing period 

is an indication of dielectric weakness of the nitrogen gas. In addition, after fault current zero, 

there is current flow. As previous, this might due to spikes from the ignitron dump and/or 

residual heat retained in the nitrogen gas during the arcing period.  Moreover, the current flow 

direction is clockwise at this period. This implies that V1 is less negative than V2 in polarity. 

Sub-section 6.3.1.3.4 presents the discussions of the combined orientations. 

 

5.3.1.3.5     Results in 2.0 bars of Nitrogen Gas 

Figures 5.17a and 5.17b show the results for the 2.0 bars of nitrogen gas test with dielectric 

probe orientations for 0
0
 and 90

0
 under the same experimental conditions. Both figures show a 

similar trend in varying probe current with time, between 0.0 to 0.026 seconds before the arcing 

current. Immediately after this period, both currents have different details.  

For 0
0
 orientations, the probe current increased negatively from -0.18mA at 0.036 seconds to 

0.75mA at 0.037 seconds and then continued to increase and decrease up to -0.82mA at 0.05 

seconds during the arcing fault current periods. This was followed by an increase to 0.25mA at 

0.053 seconds and decrease to -0.92mA at 0.064 seconds, before return towards its initial value 

at 0.08 seconds in the post-current zero periods. As before, the rise in the probe current flow 

signifies the weakened dielectric strength of the dielectric probe in gas. 
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Figure 5.17a shows fault current, probe current and probe voltages (V1, V2) across the limiting 

resistor for 0
0
 orientation of the dielectric probe. 

 

 

In the post-current zero periods, the rise in the probe current might be due to the residual energy 

from the ignitron dump and/or hot gas retained in the nitrogen gas after fault current zero.  At 

this period, the V1 is more negative than V2 in polarity causing the probe current flowing in a 

counter-clockwise direction.  

 

 
 

Figure 5.17b shows fault current, probe current, and probe voltages (V1, V2) across the limiting 

resistor for 90
0
 orientation of the dielectric probe. 

 

During the arcing period, the probe current had a negative value of -0.62mA at 0.04 seconds as 

in figure 5.17b for 90
0
 orientations.  This is followed by an increase to 0.55mA at 0.045 seconds 

before fault current zero periods. At arc current zero, there is another increase and decrease in 
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negative probe current flow to -0.68mA at 0.051 seconds and 0.3mA at 0.065 seconds before a 

return to its previous value. The current flow during the arcing period is an indicator of 

weakened dielectric strength of the probe during the arc discharge in the gas. The current flow 

during the post-current zero periods might be due to the residual energy from the ignitron dump 

to the earth and the probe current is flowing in a clockwise direction, meaning V1 is less 

negative than V2 at this point in time. Sub-section 6.3.1.3.5 presents discussion of both 

orientations. 

 

5.3.2 Probe Current in Dry Air 

This section reports the result of low current flowing through the dielectric probe during the 

arcing period in dry air. The research is to study and find the dielectric probe response to probe 

current flow during dielectrically weakened dry air. The test conducted in dry air of zero bar of 

pressure with a negative DC voltage set between -4.5kV to -5kV applied to the dielectric probe 

when a positive half-cycle AC current of about 3kA peak passed in the dry air locality. The 

dielectric probe gap is set at 1.5mm and then coupled into the test circuit breaker at the same 

experimental conditions as discussed in the previous sections (i.e., in nitrogen gas test). The 

reduced dielectric strength of the gap is present in terms of voltage drops across the limiting 

resistor and probe current flowing through the dielectric probe during the dielectric weakened 

period in the dry air as shown in figure 5.18a. Repeating the tests at 0.5 bar increments within the 

same test conditions did not achieve the weakened dielectric strength in subsequent readings. 

Sub-section 5.4.2.1 presents the typical results of the test. 
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5.3.2.1 Results in 0 bars of Dry Air 

 

Figure 5.18a presents the results for 0.0 bars of dry air showing the AC fault current, arc voltage, 

probe voltages (V1, V2) into the dielectric probe, and the probe current flow during the test. The 

probe current flow response of the dielectric probe is positive in value before the fault current 

begins and then goes to negative and positive values during the arcing period of the fault current.  

 

 

Figure 5.18a shows half AC fault current, input and output voltages, arc voltage and low current 

flow in dielectric of dry air at atmospheric pressure.   

 

 This is immediately followed by the recovery of the probe current to its previous state after the 

fault current has been extinguished at about 0.046 seconds. The figure also shows reduced 

applied negative voltages at this period. Figure 5.18b illustrates the input and output voltages 

across the limiting resistor applied to the dielectric probe before, during and after the arcing fault 

current periods. It shows the reduced voltage drop during the peak period of the arcing fault 

current at about 0.041 seconds. 

Figure 5.18c shows the result of the complete arcing periods of dielectric probe response to low 

current flow; it is made of pre-trigger initiation period (A-B), trigger initiation period (B-C), 
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arcing period (C-D) and post-current zero periods (D-E). The section of 6.3.2 presents the 

detailed discussion of this figure. 

 

Figure 5.18b show the completely arcing fault current period with the corresponding voltage 

drop for dry air of atmospheric pressure.  

  

 
 

Figure 5.18c shows the probe (low) current flow through the dielectric probe for dry air at 

atmospheric pressure. 
 
 

5.3.2.2 Results in 0.5 to 2.0 bars of Dry Air 

Repeating the experiment for 0.5 to 2.0 bars in dry air did not show the reduced dielectric 

strength as seen in the previous tests. As shown in figures 5.19a, typical results were obtained at 

the increment of dry air pressure to 0.5sbars. Figure 5.19a shows that, at 0.044 seconds, there is a 

change in the probe current flow in the dielectric probe from its previous positive and negative 
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varying values to a positive one of 0.53mA. This is then reduced to -0.29mA at 0.056s and then 

returns to its prior value of 2.7µA at 0.08s. However, there is an indication between 0.05 and 

0.06 seconds of an increase in the negative probe current. 

 
Figure 5.19a shows fault (current), probe current flow and probe voltages (V1, V2) across the 

limiting resistor with time. 

 

5.3.3 Probe Current in Sulphur Hexafluoride (SF6) Gas 

The results for SF6 dielectric strength probing using the dielectric probe with gap set at 0.5mm 

connected to a negative DC voltage with fault currents of about 3kA and 18.5kA passing through 

the gas are presented respectively. The results show dielectric breakdown (figures 5.20 and 5.22) 

and no breakdown (figures 5.21 and 5.23) of the gas during the arcing periods. The weakened 

dielectric strength has been difficult to achieve with this configuration of dielectric probe in 

sulphur hexafluoride gas.  

5.3.3.1 Fault Current of 3.2kA in SF6 Gas 

Figure 5.20a shows the results of oscilloscope waveforms of an inverted negative DC voltage 

(input V1 and output V2) in volts from the limiting resistor with time applied to the dielectric 

probe when a fault current of about 3.2kA passed in the circuit breaker producing an arc voltage 

of 260V. The dielectric probe gap is set at 0.5mm with applied voltage of about -4.5kV. Figure 
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5.20b shows the results of Excel file waveforms of the negative DC voltage (input V1 and output 

V2) from the limiting resistor applied to the dielectric probe when the fault current passed in the 

circuit breaker produces an arc. A low residual current flow through the dielectric probe after it 

has broken down.   

 
Figure 5.20a shows oscilloscope waveform results of  fault current,  arc voltage and an inverted 

negative DC voltage (V1, V2), in Volts across the limiting resistor with time. 

 

 
Figure 5.20b shows the results of Excel file waveforms of the fault current, arc voltage, negative 

DC voltage (input V1 and output V2) and low current flow though the SF6 gas.  

  

Figure 5.20c is a magnified Excel file of waveforms of the fault current, dielectric probe current, 

arc voltage and V1, V2 from the limiting resistor with time during the arcing period. As in figure 

5.20c, the low probe current is detected at about 0.195mA before of 0.0316s.  Then dielectric 

breakdown commenced with an increase in negative current of about -4mA at 0.0319s and then 

dielectric recovery period with maximum current detected as 2.3mA at 0.0332s. The figure also 
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shows a decrease in applied negative probe voltage as the dielectric probe current increases 

during the breakdown period and is then followed by recovery voltage as the gap of the dielectric 

probe recovers. 

 

Figure 5.20c shows magnified Excel file waveforms of figure 5.20b. 

 

 
 

 

Figure 5.21a shows the results of oscilloscope wave forms of V1, V2 in volts from the limiting 

resistor with time when a fault current of 3.2kA passed through the circuit breaker. This 

produces an arc with an arc voltage of about 300V. There is no dielectric breakdown of the 

dielectric probe in SF6 gas as previously recorded. The dielectric probe gap is set at 0.5mm with 

applied voltage of about -4.5kV. Figure 5.21b shows the results of Excel file waveforms of 

 

Figure 5.21a shows the results of oscilloscope waveforms of the fault current, arc voltage and 

V1, V2 in Volts across the limiting resistor with time at no SF6 dielectric breakdown 

Fault Current 

Input V1 

Arc voltage 

Output V2 
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figure 5.21a with dielectric probe current flow through the gas. It also shows leakage in steady 

current of -0.447mA and there is no dielectric breakdown period detected. 

 

 
Figure 5.21b shows the results of Excel file waveforms of figure 5.21a with derived dielectric 

probe current flowing through the circuit breaker. 

 

 

5.3.3.2 Fault Current of 18.5kA in SF6 Gas 

The experiment in section 5.3.1.5.1 was repeated with a higher positive half-cycle fault current 

of about 18.5kA with the results as in figure 5.22a. The results shows oscilloscope waveforms 

V1and V2 from the limiting resistor with time applied to the dielectric probe when a fault current 

of 18.5kA passed through the circuit breaker filled with sulphur hexafluoride gas at atmospheric 

pressure.  The dielectric probe gap is set at 0.5mm with applied voltage of about -5kV. Figure 

5.22b shows the results of the Excel file waveforms of V1, V2, the arcing current and the 

detected probe current flowing through the dielectric probe in SF6 gas at atmospheric pressure. 

Figure 5.22c is a magnified result of Excel file waveforms of figure 5.22b. It also shows a probe 

current flow detected of about 0.73mA at 0.0396 seconds before dielectric breakdown, and then 

the dielectric breakdown period is followed with an increase in negative current of about -

3.77mA at 0.0399 seconds. This continued with the dielectric recovery period. The figure also 
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shows a decrease in negative voltage as the probe current rises during the breakdown period and 

is then followed by the recovery voltage.  

 
 

 
Figure 5.22b shows the results of Excel file waveforms of figure 5.22a with dielectric probe 

current flowing through the gas. 

 

 

 
 

Figure 5.22c shows magnified waveforms of figure 5.22b. 

  

 
Figure 5.22a shows the results of the fault current, arc voltage and V1, V2 in Volts across the 

limiting resistor with time at SF6 dielectric breakdown 

(Fault) Current 
Input V1 

Arc voltage 

Output V2 
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Figure 5.23a shows the results of oscilloscope waveforms of an inverted V1 and V2 applied to 

the dielectric probe when a fault current of 18.5kA is passing through the circuit breaker.  

There was no dielectric breakdown of the dielectric probe in sulphur hexafluoride gas as seen in 

figure 5.23a. The dielectric probe gap is set at 0.5mm with applied voltage of about -5kV. Figure 

5.23b shows the results of Excel file waveforms of figure 5.23a with the leakage steady current 

of 0.72mA flowing through the gas and no dielectric breakdown record at this period.  

 

 
 

 

Figure 5.23b shows the Excel file waveforms of figure 5.23a with dielectric probe current 

flowing through the gas at no dielectric breakdown. 

 

Figure 5.23a shows the results of the fault current, arc voltage and V1, V2 in Volts from the 

limiting resistor with time at no SF6 dielectric breakdown.  

(Fault) Current 

Output V2 

Input V1 
Arc voltage 
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                         Figure5.24a                                                  Figure 5.24b 

 

Figure 5.24 compares the dielectric probe states before (figure 5.24a) and after (figure 5.24b) the 

usage in an arcing fault current period in SF6-filled circuit breaker. Figure 5.24b shows 

decomposed particles of sulphur-fluoride gases and metal-fluoride, by-products of white 

powdery substances as seen during the test in SF6 gas. These particles may be partially 

contributing factors to the SF6 dielectric breakdown during the arcing period. Figure 5.25 shows 

the effect of the arcing current on the current-carrying electrode. The hot gas from the arc 

voltage may heat up the parting electrodes, resulting in the melting and wearing of the electrode 

as shown in figure 5.25b. Figure 5.25a shows the copper electrode before usage while figure 

5.25b shows the electrode after use in the circuit breaker.   

 

    Figure 5.25 

a 
b 
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This chapter presents the test results of probing N2 gas, dry air and SF6 gas. A negative voltage-

biased dielectric probe was used in an arcing fault current environment to investigate these gases. 

The chapter begins with the results of experimental components validation, which includes high-

voltage power source, high-voltage probe, dielectric probe and the test circuit breaker. This was 

followed by the results of probe current flow for N2 gas and probe current flow for 0
0
 and 90

0
 

orientations of the dielectric probe at the same experimental settings. The result shows that when 

the fault current was passed and extinguished, the dielectric probe response to the probe current 

detected confirms the presence of thermal energy (hot gas) in the circuit breaker. The discussion 

of the direction of probe current flow is in the next chapter. The test result for dry air followed 

next. The weakened dielectric strength obtained only in atmospheric pressure when the probe 

tips were set to 1.5mm as compare to 1mm set for N2.  The result also shows a very quick 

recovery at the extinction of the arcing fault current. In SF6, the results show either dielectric 

breakdown (figures 5.20 and 5.22) or no dielectric strength breakdown (figures 5.21 and 5.23). 

However, the recovery process shows a similar trend to that of nitrogen recovery when the arc 

was extinct. The discussion and analysis of results are in the next chapter. 

 



Chapter 6 

Results Analysis and Discussion 

115 
 

Chapter 6 Results Analysis and Discussion 

6.1 Introduction 

This chapter presents the results, analysis and discussions of the experimental results obtained in 

chapter 5. It analyses and explains in detail the physical processes and behaviour of low current 

flow in the dielectric probe. The probe is connected to a negative high voltage DC source and is 

used to interrogate the insulation strength of various gases. The gas pressure is varied from 0 to 2 

bars. Tests were done in the presence of an electrical discharge, aiming to determine the effect of 

the arc on the insulation integrity of the gases used.  

6.2  Current Variation in Dry Air  

Leakage current variation in the dielectric medium of dry air (section 5.1) is shown in figure 

5.4b. This result was obtained with a negative voltage being applied to the dielectric probe. The 

graph shows a gradual increment in negative current from 0 bars to 0.5 bars which then reduces 

and becomes a positive current at about 1 bar. The trend then reverses and increases negatively 

towards the 1.5 bars as shown in figure 5.4b. The graph shows consecutive results exhibiting 

tests to test variation but with a consistent trend.  The trends are broadly similar although their 

magnitudes vary. The trend behaviour is encouraging.  The difference in the current magnitude 

may be due to changing environmental conditions (e.g., temperature, humidity and the circuit 

breaker chamber) all of which affect the dielectric condition of the gas. Others factors could 

include electrode field configuration, the nature of electrode surfaces in the probe and 

availability of initial species for ionisation processes[53, 55]. Researchers Frank [78] and Meek 

[58] have shown that leakage current (in term of sparkover voltage) increases as the pressure 

increases in an increasing electric field but above a certain pressure, the current starts decreasing 



Chapter 6 

Results Analysis and Discussion 

116 
 

with increasing pressure until a critical pressure is reached due to increased space charge effect. 

Above the critical pressure there is a gradual rise in the discharge current with the pressure 

increments, confirming that the sparkover voltage above a certain maximum pressure was due to 

corona stabilization during field modification arising from the space charges.  In addition to the 

critical pressure, the corona-onset and sparkover voltage coincides resulting in an increment in 

the sparkover voltage only slightly increasing in gap spacing. It was suggested that, within the 

maximum pressure, corona streamer propagation across the gap is enhanced by reduced positive-

ion diffusion and secondary process is by photo-ionization at a higher gas density. These would 

cause the decrease in sparkover voltage and disproportionately low increase in sparkover voltage 

with gap spacing at high pressures [58, 78]. The tests tend to confirm the proper operation of the 

dielectric probe. 

6.3 Probe Current in Gases 

6.3.1 Nitrogen Gas 

6.3.1.1 Probe Current in Nitrogen Gas 

Section 5.3.1.1 describes the result of probe current flow detected in nitrogen gas from the 

dielectric probe biased with negative voltage during an arc event in the circuit breaker. The gas 

(nitrogen) in the chamber will be heated up by energy dissipated by the arc from the fault 

current. The arc heating will dissociate the surrounding gas, producing ions and electrons. The 

biased dielectric probe will attract positive ions, and because the probe is operating below the 

breakdown voltage then the assumption is that these positive ions are from the gas as a result of 

the arc. A small current flows in the probe when a positive ion is neutralised by the probe. 

Hence, the probe response is related to the ionised state of the gas (figures 5.5a and 5.5b). The 

figures are typical examples of the experiment repeated three times in nitrogen gas. The results 
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show the same trends but have different magnitudes. The voltage drop is recorded across the 

limiting resistors with the two high voltage probes connected to the Tektronix oscilloscope for 

processing and analysis. 

 

 

Figure 6.1 shows a labeled figure 5.6 in the previous sub-section 5.4.1.1. (A, BD, C, D  reference 

the vertical lines) 

 

 

Figure 6.1 shows the probe current in milliamps flowing through the limiting resistor and by 

implication through the nitrogen gas is at 0 bar (atmospheric pressure). This current was detected 

during the arcing event. The probe voltages (V1, V2) in volts with time in seconds are also 

shown.  

Before the main arcing period between 0 and 0.0356s (figure 6.1A-B), the circuit breaker 

mechanism is opening and a low current dc arc is drawn between the electrodes in the circuit 

breaker. During this period, the probe current is approximately -0.18mA flow. This initiation 

period lasts for 0.016s with a quasi-DC arc of about 135A being drawn between the electrodes. 

This period is followed by the main arc period with a duration of about 0.0104s starting at 

0.0356s and finishing at 0.046s (Figure 6.1BD). The main arcing period has the peak fault 
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current at 0.0396s (figure 6.1C) and the current zero period occurring at 0.046s (figure 6.1D). 

There is a recovery period after current zero that lasted for about 0.0412s (figure 6.1D-J). 

Energy from the discharge will be dissipated to the gas from the beginning of arcing (figure 

6.1B) to the end (figure 6.1D). From 0.0356s to 0.0396s (figure 6.1B-C), the probe current 

increases to about -0.53mA at 0.0375s and then decreases to about -0.31mA at 0.0397s. At this 

point in time, it is unlikely that this is the effect of hot dissociated gas may be due to optical 

radiation triggering the gap in the probe, since the transit time of the hot gas between the arcing 

electrodes and the sensor is about 12.3ms in an estimated temperature of 200
0
C from the arc for 

nitrogen gas at atmospheric pressure, NIST [79]. Figure 6.1a shows the distance between the 

arcing electrode and the dielectric probe, and the transit time of the hot gas to the probe, with a 

55mm distance between the arcing electrodes and the dielectric probe.   

 

Figure 6.1a shows the travelled distance and time of the hot gas for nitrogen gas at atmosphere to 

the dielectric probe. 

 

 

 From 0.039s to 0 0532s (figure 6.1C-E), rapid positive oscillations are seen with an average 

frequency of about 640Hz.   This period consists of peak fault current period, current zero period 
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and part of the post-current zero recovery periods. The dielectric probe response shows 

continuous change in the probe current, which reduces as the gas recovers from the arc 

discharge.  After fault current zero period (0.0461s) as in figure 6.1D, the probe response still 

shows repetitive oscillations of the probe current up to the time of 0.0564s (figure 6.1E). These 

oscillations may signify the presence of the hot gas from the arc. At the period (figure 6.1D-E), 

the current flow in the probe may continue due to the residual heat in the gas. Then between 

0.0604s and 0.0684s (figure 6.1F-G), the current flows in negative direction with a gradually 

increases. This may also indicate the highly ionized particles during the hot gas mixing phase 

with the nitrogen gas. This may cause this low current flow after current zero prior to full 

recovery of the dielectric strength of the gas. Al figure 6.1(H-I) shows a positive rise in the probe 

current during this recovery period and then complete recovery between 0.0684s to 0.086s 

(figure 6.1H-I).  These changes in the polarity of the current might be due to hot gas and retained 

ionized products from the arc. These may further reduce the dielectric strength of the dielectric 

probe and is then followed by dielectric recovery back to the normal energy levels, with the 

results indicating a highly complex gas structure.  Since at fault current zero, it is expected that 

recombination is taking place and that local thermal equilibrium exists such that there are 

equivalent amounts of ions (the positive ions and negative ions) and electrons, it is implied that 

the voltage drop across the current limiting resistor of the probe, probe current flow detected and 

weakened dielectric strength are due to heat transfer from the the arc to the nitrogen gas as from 

figure 6.1(B-J) during the arcing fault current.  

 

6.3.1.2 Current Directions during Arcing 

The results of direction of probe current flow were presented in chapter 5, sub-section 5.4.1.2. 

Figure 6.2a shows a labelled diagram of figure 5.7a. It is used as a typical example to illustrate 
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the direction of probe current and electron flowing in the probing circuit.  Figure 6.2a show  V1, 

V2 and probe current flowing through the dielectirc probe for 0.0bar of nitrogen gas before the 

arcing fault current. It also shows  V1min , V2min  and corresponding probe current flow at the 

same period, where V1min  and V2min are voltages across the current limiting resistor at the point 

of weakened dielectric in nitrogen gas at atmospheric pressure.  

 

Figure 6.2a shows the graph of voltages (input V1 and output V2) and the probe current as 

illustrated in figure 5.7a. 

 

 

 

 

Figure 6.2b illustrates the probing circuit before the arc. 

From figure 6.2b, the voltage difference from both probes is obtained as: 

                                       ∆V =    V1   -   V2 

                                       ∆V = (-4229) V – (-4218) V = -11V 

And  the probe current I2 is calculated as: 
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while the gap resistance is Rg is obtained as: 

   |
     

  
|  |

  (      )

           
|          

The calculated probe current I2 is a negative current, the  direction of probe current I2 in  a 

counter-clockwise direction while the electrons flow in a clockwise direction before the arcing 

fault current discharges. Figure 6.2c shows the circuit status, the directions of the calculated 

probe current and the electron flow.  

 

 

 

 

Figure 6.2c illustrates the directions of probe current and the electron flow before the arcing faut 

current.  

 

Figure 6.2d shows the direction of probe current I2w and electron flow during the period of the 

dielectrically weakened gas and is detemined as follows:                                                                                                                                     

                         ∆ Vw   =    V1min - V2min     

where  ∆Vw is the voltage difference between V1min and V2min, during the arcing period, see 

figures 6.2a and 6.2d. 

                          ∆Vw=  (-3701) V -  (-3717) V = 16V 

    
   
 

  
   

           
          

where            voltage differences before and during arcing periods. 
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 Figure 6.2d illustrates the circuit diagram during the peak of the arcing fault current. 

Then the gap resistance Rgw is obtained as: 
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 Figure 6.2e shows the direction of calculated probe current and electron flow during the peak 

arcing fault current.  

 

The probe current     may flow in a counter-clockwise direction while the electrons may flow in 

the clockwise direction since the calculated current     is a positive value as shown in figure 

6.2e. The experiments were repeated with various values of nitrogen gas pressure from 0 to 2 

bars, incremented at 0.5 bar step. The summarized data are presented in table 6.1 and table 6.2 

obtained before and during the arcing fault current period respectively. The probe voltages 

before (input V1 and output V2)  and during (input V1w and output V2w), used for the pre-set 

pressures, are shown in figures 6.3 and 6.4. Figure 6.3 shows that the voltage increases (made 

more negative ) as the pressure  rises. V1w and V2w are shown during the arcing in figure 6.4. The 
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probe voltages before arcing shows a higher negative value than the probe voltage during the 

arcing period as compared from both tables. This is an indication that nitrogen gas has higher 

dielectric strength before the arc period as compared to the arcing (dielectric strength weaken) 

period. The dielectric strength of nitrogen is also described in terms of the gap resistance as seen 

from table 6.1 and table 6.2. It shows higher gap resistance before the fault current period as 

compared to the arcing period which has a low gap resistance.  Figure 6.5 shows probe current 

variation in nitrogen gas pressure (I2) before and (I2w) during the arcing current.  Moreover, 

figure 6.5 shows the increase in probe current flow (I2w) to about +1mA at 0.5bar and then 

reduces to about +0.74mA at 1.0 bar then followed a gradual rise to -0.8mA for 2.0 bars of 

nitrogen gas during the arcing period. Before the arc, the probe current flow (I2) shows the same 

trend as exhibited by I2w during the fault current but has lower values of the current flow. The 

probe current flows during the arcing periods were obtained for the dielectric weakened periods 

in the nitrogen gas.    

 

Pressure Input V1 Output V2 ∆V I2 Rg 

bar V V V mA MΩ 

0 -4229 -4218 -11 -0.19 22.4 

0.5 -6120 -6154 34 0.583 10.57 

1 -8108 -8060 -48 -0.822 9.81 

1.5 -10000 -9977 23 0.394 25.33 

2 -11422 -11442 -20 -0.342 33.41 

Table 6.1shows the pre-set pressures,  probe voltage (input V1 and output V2 ), calculated probe 

current I2 and gap resistance Rg  before the arc. 

 

The direction of probe current flow depends on the polarity of the probe input voltage V1 and the 

probe output voltage V2, meaning if the input voltage V1 is more negative than the output voltage 

V2, the probe current may flow from V2 toward V1 (counter-clockwise direction in the circuit as 
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in figures 6.2c). The obtained calculated probe current I2 is in negative polarity which implies 

that the leakage current will flow in a counter-clockwise direction while the electrons will flow 

in the opposite direction as in figure 6.2c before the arc.  

 

 

Figure 6.3  shows the graph of probe voltages (input V1 and output V2 ) from the limiting resistor 

R  versus the pre-set pressure before the arc. 

 

Pressure Input V1w Output V2w ∆V I2w Rgw 

bar V V V mA MΩ 

0 -3701 -3717 16 0.274 13.57 

0.5 -5720 -5778 58 0.993 5.8 

1 -7727 -7770 43 0.736 10.55 

1.5 -9841 -9882 41 0.702 14.08 

2 -11320 -11273 -47 -0.805 14.01 

Table 6.2  shows the pre-set pressure,  probe  voltage (input V1w and output V2w ), calculated 

probe current I2w and gap resistance Rgw  during the arcing fault current (dielectric weakened) 

period. 
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Figure 6.4 shows the graph of probe  voltages (input V1w and output V2w) from the limiting 

resistor R  versus pre-set pressure during  the arc.  

 

 

Figure 6.5 shows the graph of varying probe current  I2  before the arc (no dielectric weakened 

period) and probe current  I2w  during the arc (dielectric weakened period) versus pressure. 

 

In another scenario, as shown in figure 6.2e, V1min is less negative than V2min  and the probe 

current flows from V1 toward V2 (counter-clockwise direction in the circuit). The calculated 

probe current I2w is in positive polarity which implies that the current will flow in a counter-

clockwise direction while the electrons will flow in the opposite direction during the arcing. 
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Added to these, during the arcing process, the heat transferred into the nitrogen gas spreads 

throughout the whole circuit breaker chamber. By implication, the direction of probe current 

flow may depend on the circuit operating condition since the dielectric probe operates below the 

breakdown voltage. And the probe current and the calculated gap resistance may depend on the 

chamber conditions as at the time of the experiment. 

6.3.1.3 Probe Orientation in Nitrogen gas  

6.3.1.3.1 Result in 0 bars of Nitrogen Gas 

Dielectric probe orientation in nitrogen gas and the results being presented in section 5.4.1.3 are 

discussed in this section. The objective of the dielectric probe is to understand the effect that this 

may have on the probe response to low current flow during the arcing period of a positive half-

cycle AC current in the circuit breaker filled with nitrogen gas at different pressures. 

 

 
Figure 6.6 compares the probe current detected during post current zero periods for 0.0bar of 

nitrogen gas for 0
0
 and 90

0
 orientations.  

 

 

Figure 6.6 shows the graph of the probe current flow during the whole of the arcing period for a 

positive half cycle of fault current in nitrogen gas with time, for 0 bar and for 0
0
 and 90

0
 

orientations. In figure 6.6, between 0 and 0.017s (A-B) shows an approximate varying probe 
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current flow for the dielectric probe orientations, though the current flow for 90
0
 shows more 

positive than that for 0
0
 orientations. Then from 0.0172s to 0.0353s (B-C) the arc current rises to 

about 90A (quasi dc current), the probe current starts changing towards the negative value. At 

0.0172 seconds both probe currents read -3.5 µA for 0
0
 and 0.12mA for 90

0
. There is little 

decrease and increase between B1, B2 and B3 in figure6.6 before the main trigger with -0.52mA 

at 0.037s for 0
0
 and -0.51mA at 0.036s for 90

0
. The probe current flow is low between 0 and 

0.0172s (A-B) looks similar, but shows that shot-to-shot variation may produce the difference in 

both current magnitudes. This is followed by the period 0.0172s (B) that shows a gradual rise in 

probe currents to 0.027s (B1) followed by a decrease at 0.032s (B2) and at B3. This may indicate 

the transfer of heat to cooler gas from low quasi-steady DC arc before the main arc current is 

triggered at C. Between 0.033s (B3) and the trigger period 0.036s (C), the probe currents look 

similar, indicating that the orientation of the probe is not important during this period. At about 

0.036s (C), there is an increase in probe current to about -0.51mA and then followed by an 

increase to 0.13mA at 0.037s (D) for 90
0
 orientation.  And the 0

0
 orientation at the time of 0.037s 

had a probe current of about -0.52mA (D) and then reduces to about -8.1µA at 0.0388s (F). This 

variation may signify a non-homogeneous mixing of the hot and cooler gas. This increase in 

probe current is due to heat transfer from the arc voltage during the passage of the half fault 

current into the nitrogen gas. The dielectric probe response between 0.036s and 0.037s (C-D) 

shows fast responses for 90
0
 and 0

0
 orientations. At 0.037s, both probe currents read -0.51mA for 

90
0
 and -0.14mA for 0

0
.
  

Both probe currents exhibit a similar pattern although the detail is 

different in both magnitude and the occurrence of the arc peak and trough of the waveforms. 

This difference may indicate the effect of the shield on the probe response at 0
0 

orientations. 
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Between 0.037s (D) and 0.04s (G) is the peak fault current period. The probe current increased to 

about -0.8mA at 0.0404s and then reduces at 0.044 (H), subsequently increasing to 0.16mA at 

0.045s for 90
0
 orientations (I). For a 0

0
 orientation, from 0.039 to 0.044 (F to H) is a slow rise in 

probe current of about -0.48mA at 0.044s which is then followed by the period where the current 

is -0.1mA at 0.045s. At (G), the arc current is at maximum and, at this time, there is maximum 

heat transfer to the surrounding gas. The current zero periods at 0.047s (I) means that the rapid 

fluctuations start just after arcing continues through into post-current zero approximately (L). 

Both orientations of the probe display similar trends of behavior, but the 90
0
 orientation of the 

probe shows a positive current flow. After (L), there is an increase in the negative value of the 

probe current flow, reading a maximum at L1/L2 followed by a slow decay to M. Although there 

are detailed differences in the response of the probe in the two orientations, the result from each 

are markedly very similar. The dielectric probe shows a period where there are rapid fluctuations 

in the probe current which may be an indication of the non-homogeneous nature of the hot gas 

spread. This is then followed by a relative steady period which may indicate that sufficient 

mixing of hot and cooler gas has taken place to produce a more homogenous gas structure.  

 

6.3.1.3.2 Result in 0.5 bars of Nitrogen Gas 

Figure 6.7 shows a graph of probe current flow during the arcing period of the fault current for 

0.5 bar of nitrogen gas with time for 0
0
 and 90

0
 orientations. Between 0.0 (A) and 0.036s (C), 

both probe current flows show about -0.12mA at 0.0s to -0.077mA at 0.036s just before the arc. 

The figures also show initial time varying probe currents at these periods. During the arcing fault 

current between 0.036s and 0.047s (C-D), the probe current commences with increases and 

decreases in positive values for a 0
0
 orientation. It rises from -0.167mA at 0.0364s to 0.79mA at 
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0.0375s and reduces to -0.025mA at 0.038s. This is followed by another increase to 0.95mA at 

0.041s and decreases to -0.16mA at 0.046s and then increases to 1.1mA at 0.048s (D) in post-

current zero period.  For a 90
0
 orientation, the probe current starts with a small increase followed 

by a decrease to a negative value. It decreases from 0.32mA at 0.038s to -0.52mA at 0.039s and 

is then followed by another decrease from 0.21mA at 0.04s to -0.36mA at 0.044s and finally an 

increase to 0.22mA at 0.048s. During this period, both orientations show almost similar trends, 

though with differences in the magnitudes of current flows.  It also shows a point of coincident 

of -0.05mA at 0.047s for both probes at fault current zero. 

 

 
Figure 6.7 shows probe current detected during post current zero periods (D-E) in 0.5bar of 

nitrogen gas. 

 

 

Just after current zero periods (D), the probe response shows a relatively steady period of change 

(0.0484s) from the rapid changes in probe output seen after current zero. This is similar to the 

previous test (figure 6.6) and the same reasons hold for the behavior. However, the 0
0
 degree 

probe orientation has a positive current response whereas, previously (figure 6.6), this was only 

seen for 90
0
 orientations. The implication at this stage is that this may be a random event and not 

due to the arc light affecting the operation of the probe. 
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6.3.1.3.3 Result in 1.0 bar of Nitrogen Gas 

Figure 6.8 presents probe current flow for probe orientations for 0
0 

and 90
0
 in 1.0 bar of nitrogen 

gas with time; 0.048s (D) shows the end of fault current and commencement of post-current zero 

regimes from 0.048s to 0.089s (D-E). At the current zero, the probe’s response has similar trends 

but different magnitudes. The rapid oscillations seen in the previous results during the arcing 

period are not as marked as before (i.e., in figures 6.6 and 6.7).   

 

 
Figure 6.8 shows the probe current flow during post-current zero periods (D-E) for 1.0 bar of 

nitrogen gas. 

 

 

The current zero period is also less pronounced with a quicker recovery of the gas being implied 

than the previous two tests. This implies that, whilst there is still the same non-homogeneity in 

the heating, it is less evident.  

 

6.3.1.3.4 Result in 1.5 bars of Nitrogen Gas 

Figure 6.9 shows probe current flow during the orientation of dielectric probe for 0
0 

and 90
0
 in 

1.5 bars for nitrogen gas. Figure 6.9 (D) shows the end of the fault current and commencement of 

post-current zero regimes (D-E). During the arcing period, the probe detected a rapidly changing 

environment. This is followed in the period after current zero by a relatively slower changing 
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environment as the gas recovers from the effect of the arc. Both probes show a positive current 

response.   

 

 

Figure 6.9 shows the arcing current, probe current detected during post-current zero periods (D-

E) in 1.5 bars of nitrogen gas for 0
0
 and 90

0
 degree orientation. 

 

 

6.3.1.3.5 Result in 2.0 bars of nitrogen gas 

 

Figure 6.10 shows arcing current, probe current flow during post-current zero periods (D-E) for 

2.0bar of nitrogen gas. 

 

Figure 6.10 shows probe current flow for 0
0 

and 90
0
 orientation of dielectric probe for 2.0 bars of 

nitrogen gas. The figure 6.10 (D) shows the end of the fault current at 0.047s and the beginning 

of post-current zero periods between 0.047s to about 0.085s (D-E). At the arcing period, C-D is 
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an oscillatory waveform of the probes current; as in the previous tests, it is seeing a rapid change 

towards the current zero and the point of coincident of both current flows. The probe currents 

changing continued into the post-current zero, and at about 0.056s there is a gradual increase and 

decay towards the period at 0.085s.  

 

6.3.2 Probe Current in Dry Air 

 

Figure 6.11 shows probe current flow for 0.0 bars of dry air in an arcing current.  

Figure 6.11 shows the graph of dielectric probe response to probe current flow for dry air at 

atmospheric pressure. This result was obtained from the dielectric probe whose tips were set at 

1.5mm and biased with negative voltage in an arcing fault current as described in sub-section 

5.4.2.1. At the initial periods between 0.0s to 0.017s (A-B), before the arc shows approximate 

probe current flow of 0.076mA; this is followed by periods between 0.017s to 0.036s (B-C) with 

quasi-fault currents of about 134.8A. The probe current at this period is approximately measured 

to be 0.12mA at 0.024s. This is followed by the arcing fault current period at 0.036s (C). The 

current flow begins a negative value increase from about 0.1mA at 0.037s to -0.64mA at 0.039s 

and is then followed by a rise to about 0.1mA at 0.0415s, continuing for another negative value 

of -0.51mA at 0.054s before final regaining its initial value at about 0.08s (E). The dielectric 

probe response to the probe current flow between 0.036s and 0.046s (C-D) may indicate that the 
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heat from the arc is mixing with the dry air in the chamber and may also result in thermal 

turbulence as shown in the rising and falling from the probe current flow response from the 

dielectric probe, followed by a recovery period into the post-current zero periods between 0.046s 

and 0.08s (D-E). The response of the probe to changes in the gas is similar to that of nitrogen 

with a possible difference in the recovery period after current (D). Between D-E, in the post-

current zero periods, the probe response shows the same probe current flow value before the 

arcing fault current; this may signify that the heat energy was not retained in the dry air after 

current zero periods as observed in nitrogen gas, implying immediate dielectric recovery at this 

period. The dielectric weakness in dry air as in figure 5.18a was obtained when the dielectric 

probe gap was adjusted to 1.5mm at atmospheric pressure after several attempts in probing the 

dry air in 1mm of gap length. The tests were repeated for 0.5 to 2.0 bars at the increment of 0.5 

bars of dry air as shown in the typical figure 5.19a and figure 5.19b. The calculated probe current 

and gap resistance for dry air at atmospheric pressure during weakened dielectric strength of the 

probe set at 1.5mm gap are -51.37µA and 84.39MΩ.  

6.3.3 Probe Current at 3.2kA and 18.4kA in SF6 Gas 

The result of SF6 gas behaviour during the passing of positive half-cycle fault current of about 

3.2kA and 18.5kA are reported in section 5.3.3, with the intention to determine the weakened 

effect of arcing on the dielectric strength of SF6. Figures 5.20c and 5.22c are magnified Excel 

file waveforms of the fault current, probe current, arc voltage and negative voltage (V1 and V2) 

from the limiting resistor with time. Both figures show a similar trend in behaviour except in the 

magnitude of the probe current flows and the probe voltages. Prior to dielectric breakdown as 

shown in figure 5.20c, the probe current is about 0.195mA with probe voltage set at about -

4480V at approximate time of 0.0316s, followed by dielectric breakdown period that lasted for 
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0.8ms with increase in maximum negative probe current of about  -4mA at 0.0318s. At this 

instance, the probe voltage starts decreasing from about -4480V to -1818V with a probe current 

of 2.4mA at 0.0326s to the point where the current flow cannot sustain the dielectric breakdown, 

followed the recovery period that lasted for 47.4ms.  

As seen in the gases, before the arcing current beginning shows that leakage current flow but at 

different magnitude of current values (figures 5.7b for nitrogen gas, 5.18a for dry air and 5.20a 

for SF6 gas). The weakened dielectric strength of nitrogen gas and dry air shows the same trend 

at different amplitudes obtained at 1mm gap for nitrogen gas and 1.5mm for dry air, but this 

proved difficult to achieve in SF6 gas even after reducing of the gap to about 0.5mm. During the 

post-current period in nitrogen gas (figure 5.7b) and SF6 gas (figure 5.20c), an increasing and 

decaying behaviour is shown when compared to dry air (figure 5.18c) that recovered 

immediately at this period.  

 

6.4  Results Discussion 

6.4.1 Introduction 

Section 6.4 discusses and correlates the results of the probe current flow investigated in chapters 

five and six for dry air, nitrogen and sulphur hexafluoride gases. It relates the characteristics and 

behaviour of gases under investigation when heat energy from the arc passes through these 

gases. 

 

6.4.2 Leakage Current in Dry Air 

The investigation of compressed dry air in section 5.2 identifies the flow of probe current in 

current interrupter. A typical illustration is shown in figure 5.4, when a dielectric probe biased 
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with negative DC voltage is coupled in a circuit breaker filled with dry air. The interrupter 

behaviours are affected by physical conditions of the gas, namely pressure, temperature, 

electrode field configuration, the nature of electrode surfaces and availability of initial 

conducting governing the ionisation processes [53, 55].The dielectric probe response to arcing is 

consistent in its trend as the pressure is increased.  

6.4.3 Probe Current 

The results of the investigation on probe current flow were carried out for nitrogen gas (section 

5.4.1), compressed dry air (section 5.4.2) and sulphur hexafluoride gas (section 5.4.3) with 

applied negative DC voltage on dielectric probe when an arc is present inside the breaker for 

various gases. The three gases under investigation before the arc shows leakage current flow; 

these are shown in figure 5.6 for nitrogen gas (section 5.4.1), in figure 5.18 for dry air (section 

5.4.2) and in figure 5.22 for SF6 (section 5.4.3). These investigations confirm that the current 

flow is an inherent characteristic in interrupters as presented in sections 5.2 and 6.2. The 

dielectric probe is negatively biased while the biasing voltage is set just a bit below the 

breakdown voltage of the probe in the test gas and the positive side is grounded to earth. 

Applying a positive half-fault current creates an arc voltage that stresses the gap of the parting 

electrodes carrying the fault current. The arc’s electromagnetic force with ions (positive and 

negative) and electrons will create heat in the test gas. The test gas will absorb the heat and 

dissociate into ionized particles which will be attracted by the dielectric probe to neutralise; these 

movements of the charges may result in a small current flow. The type of current flow will be 

determined by the discharging fault current, the mode of the biased probe and the nature of the 

test. In this case, the fault current is a positive half-AC current and the dielectric probe is 

negatively biased in the three types of gases mentioned above. During the arcing periods, 
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nitrogen gas shows dielectric strength weakness when the dielectric probe tips were set into a 

1mm gap. The probe currents were achieved from atmospheric pressure of nitrogen gas up to 2 

bars of pressure as shown in section 5.4.1. Moreover, the dielectric probe response to probe 

current flow after current zero indicates the retention of the heat from the arc voltage when the 

fault current has been extinguished, resulting in a gradual dielectric strength recovery time 

(section 5.4.1). Similarly, the same procedure was applied to the compressed dry air but could 

achieve the probe current only when the dielectric probe gap was adjusted to 1.5mm and in an 

atmospheric pressure of the dry air wherein the weakened dielectric strength was obtained as 

shown in section 5.4.2 and in figure 5.18. The dielectric recovery period shows quick recovery 

which signified that the dry air did not retain the heat energy, unlike in nitrogen gas where the 

hot gas from the arc was retained after the fault current zero periods. Subsequent increments in 

the pressure for dry air following the same procedure and condition could not detect a 

pronounced weakened dielectric strength of the probe (sub-section 5.4.2.2 and figure 5.19a), 

rather showing a change in the probe current flow in the dielectric probe from its previous 

varying positive and negative values to a positive one. However, the increasing and decaying 

trends show similar current flow during the post-current zero periods. 

The obtained probe current and gap resistance for dry air at 1.5mm and for nitrogen gas at 1mm 

under the identical experimental conditions are shown below. Normalising the gap resistance 

indicates that dry air is six times higher than that of the nitrogen gas under this test condition as 

shown in table 6.3. 

Gas Pressure Probe current Gap resistance Normalising Gap length 

Dry air Atmospheric  -51.3µA 84.39MΩ 6 1.5mm 

Nitrogen gas Atmospheric 0.274mA 13.57MΩ 1 1.0mm 

Table 6.3  shows calculated probe current I2w and gap resistance Rgw  during dielectric weakened 

period at atmospheric pressure and same experimental condition. 
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Also, in SF6 gas, the weak dielectric strength proved difficult to achieve with the dielectric probe 

within the same conditions and experimental limits. The dielectric probe tips were also adjusted 

to 0.5mm from 1mm gap. This was done to reduce the negative DC voltage to suit the test 

condition. To induce an effect, the positive half-cycle of fault current was varied as presented in 

section 5.4.3, in figures 5.20 and 5.22. The experiment varies between dielectric strength 

breakdown (as in figures 5.20 and 5.22) and no breakdown (as in figures 5.21 and 5.23) but has a 

gradual recovering characteristic as in nitrogen gas. In separate investigations carried out where 

the fault current was made constant while varying the applied negative voltage to the dielectric 

probe, it was observed that reduction in voltage difference of -23V will result in no breakdown 

from the dielectric strength. The voltage difference was about 0.5% of the input voltage of -

4463V at no breakdown. This indicates that the breakdown in SF6 may be partially due to 

decomposed ionic particles of sulphur-fluoride gases and metal-fluorides (the by-products of 

white powdery substance as seen in figure 5.24). With the present configuration, probing the 

weakened dielectric strength of SF6 might also be difficult due to SF6 having a higher molecular 

weight, density and the pronounced tendency to capture free electrons, forming heavy ions with 

low mobility, making the development of electron avalanches very difficult. The dielectric 

strength of SF6 is higher than that of dry air and N2 gas under the same condition [55]. To 

achieve the reduced dielectric strength of SF6 gas, the effect of its higher potential gradient needs 

to be carefully considered. In the arcing period, the three gases under investigation show that, at 

weakened dielectric strength, the probe current flow rises while the applied negative DC voltage 

reduces. 

Section 5.4.1.2 investigates the direction of probe current flow before and during arcing periods 

in nitrogen gas. The probe response to the arc indicates the present of thermal energy in the 
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circuit breaker at post-current zero periods. Tables 6.1 and 6.2, and figures 6.3 and 6.4 presents 

summaries of data and results of probe voltages from the limiting resistor into the dielectric 

probe. In both cases, the results show an increase in probe voltage as the pressure rises. 

However, the voltages obtained during the arcing period shows lower values than for no arc. The 

results were also compared in terms of probe current flow against the pressure of nitrogen gas at 

these periods as in figure 6.5. Figure 6.5 show more probe current flowing during dielectrically 

weakened periods when compared to no dielectric strength weakened periods.  

The circuit condition before the arcing may also influence the direction of the current flow since 

the probe circuit is operated below the breakdown voltage of the dielectric probe. This might 

result in more positive ions at the tips and the surrounding gas before the arc. When the arc 

current is passed through the gas, this may causes the positive ions being repelled and the 

recombination of the negative ions at the tips and the surrounding gas thereby setting in motion 

the ions and electrons in the dielectric medium. The pre-set negative DC voltage is set below the 

breakdown point of the dielectric probe. Applying the positive half cycle AC current will 

definitely repel the +ve charges and neutralise the –ve charges, resulting in +ve charge to flow, 

i.e., in figure 6.2d; the probe current is in a counter-clockwise direction during the arc. Also, the 

directions of probe current flow may be  determined and influenced by the potential polarities of 

the input and the output of voltages, whose the input or output is more negative than other (see 

figure 6.2c to figure 6.2e) since current flow is conventionally from negative to positive. In 

figure 6.2b, the probe current flow shows a clockwise direction but the calculated current flow is 

negative, meaning the current flow will be as shown in figure 6.2c at no arc condition. 

Section 5.4.1.3.5 deals with the orientations of the dielectric probe in nitrogen gas. The change is 

to understand the effect the orientation has on the dielectric probe response to the probe current 
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flow during the arcing fault current. Figures 6.6 to 6.10 show the results of the behaviour of 

nitrogen gas in terms of probe current flow response from the probe at various incremented 

pressures when the arcing fault current were passed through individually. In either position, the 

dielectric probe orientation shows similar trends since the probe current flows during the passage 

of the fault current in the vicinity of the gas. The difference in magnitude of the probe current 

detected may be due to fault current, shot-to-shot variation during setting and triggering from the 

synthetic circuit. The shield at 0
0
 orientations has a relatively low effect on current flow during 

the fault current passed in the nitrogen gas. 

 

In summary, this chapter analysed and discussed the experimental results generated from the 

investigation on probe current flow in dry air, nitrogen (N2) gas and sulphur hexafluoride (SF6) 

gas. The chapter commenced with the confirmation of the correct dielectric probe operation in 

dry air. This was then followed by the analysis of probe current flow in N2, dielectric probe 

orientation for 0
0
 and 90

0
 also in N2 gas. Furthermore, the analysis and discussions on probe 

current flow in dry air and SF6 gas were considered. Finally, the results from N2, dry air and SF6 

were discussed as a component from which their behaviours with negative voltage applied 

dielectric probe in a fault current were assessed. The assessment confirms that N2 gas has a lesser 

dielectric strength as compared to the dry air and to SF6 gas, as N2 gas has shown to exhibit a 

weaker dielectric potential in relation to dry air and SF6 within the same experimental conditions.   
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Chapter 7 Conclusion and Further Work 

 

7.1 Introduction 

The conclusion of the research and the implications arising from the results in chapter 5 and the 

analysis in chapter 6 are presented and discussed considering the techniques and the gases 

investigated throughout the work.  This chapter also provides suggestions for further research. 

 

7.2 Conclusion  

The dielectric probe was used during the operation of a circuit breaker filled with dry air, 

nitrogen and sulphur hexafluoride gas.  The probe was connected to a negative DC voltage 

supply. Initial tests were conducted to verify the operation of the circuit breaker as in sub-section 

4.2.4 and the correct operation of the dielectric probe in dry air as in sub-section 5.2 whose gap 

was set between 4.8-4.9 mm was performed inside the circuit breaker. As seen in section 5.2, 

consistent patterns of results were obtained which also confirmed by previous researchers [58].  

For tests in nitrogen, the dielectric probe tips were set at 1mm gap and positioned approximately 

55mm away from the fault current carrying electrodes of the circuit breaker. The tests were 

undertaken for a range of pressures from near vacuum up to 2 bars of nitrogen gas (5.4.1).  Apart 

from the reduced dielectric strength during the fault current zero periods, the investigation 

identifies probe current flow before, during and after the arcing fault current in the circuit 

breaker. The results from the dielectric probe were used to estimate gap resistance. The result 

shows that, when the fault current is extinguished, the gap resistance gradually increases back to 

its original form before the arcing current.  As in tables 6.1 and 6.2, the gap resistance between 0 

and 1.0 bar reduces with pressure rise, but, as the pressure increases above 1.0 bar toward 2.0 
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bars, the gap resistance starts increasing with pressure rise. This may signify that the dielectric 

strength increases with the increase in gas pressure. The change in the resistance confirms the 

present of hot gas in the circuit breaker which is dielectrically weaker than the initial dielectric 

strength of the gas. The transfer of energy from the arc to the surrounding gas is complex, and 

this is highlighted by the variation of the probe gap resistance. During the period, before the 

arcing, the gap resistance remains constant. Then during the arcing period the gap resistance 

changes rapidly, an indication of non-homogenous hot gas flow. After current zero, the gap 

resistance commences, gradually regaining its resistance as the hot gas dissipates away from the 

nitrogen gas.   

Also, in nitrogen gas as in sections 5.4.1.2 and 6.3.1.2, the experimental data were used 

empirically to determine the values and directions of the probe current in the circuit before and 

during the arcing period of the fault current. Typical examples are illustrated in figures 6.2a to 

6.2e, showing the determined probe current values, the direction of probe current and electron 

flow in the circuit. Typical currents recorded during the test in N2 indicate that the current flow 

through the gas is lower before than during the arcing current. This is shown in tables 6.1, 6.2 

and in figure 6.5. In both cases, the current flow varies as the pressure upswings but appears that 

more current flows during the weakened dielectric stages of the gas. During and after the arc, the 

circuit breaker shows unusual current flow pattern which indicates highly complex conditions in 

the gap and surrounding gas. Tests indicate that the current flow in the dielectric probe could be 

into the gap or away from it. These are seen from increases and decreases of the probe current 

flow with respect to time during and after the arc. Also, the circuit condition at this stage of the 

arcing may also influence the direction of the probe current flow since the dielectric probing 

circuit is operated below the breakdown voltage of the dielectric probe. This might result in more 
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positive ions at the tips and the surrounding gas before the arc. When the arc current is passed in 

the nitrogen gas environment, this may result in the positive ions being repelled and a 

recombination of the negative ions at the tips and the surrounding gas thereby influencing the 

movement of the ions and electrons in the dielectric medium. However, the direction of current 

flow may likewise be determined by the polarity of the terminal voltages (V1 and V2).  Section 

6.4.3 discussed and explained the possible influential factors and direction of the probe current 

flow with negative voltage applied dielectric probe. The movement of the charges may weaken 

the dielectric strength of the probe in the gas, invariably weakening the dielectric strength of the 

gas under study.   

In compressed dry air, the dielectric probe gap was adjusted to 1.5mm, and only in atmospheric 

pressure of the dry air (in section 5.4.2 and in figure 5.18) was the weakened dielectric strength 

detected. When a half cycle of fault current was passed through the circuit breaker, the weakened 

dielectric strength and low probe current were detected. The compressed dry air proves to be 

more resistive to the fault current as compared to the nitrogen gas. Table 6.3 confirms that, under 

this test condition, dry air is six time higher than nitrogen gas at the same circumstance. The 

probe response to the current flow after fault current zeroed under the similar settings shows 

quicker recovery as compared to nitrogen. The implications of the dry air behaviour of the fault 

current suggests that dry air may have better insulation capability as compared to the nitrogen 

gas. 

The tests in sulphur hexafluoride gas (SF6) proved difficult to achieve the SF6 dielectric 

weakness due to the superior arc-quenching ability of the gas. The investigations were carried 

out when the dielectric probe electrode tips were set to 0.5mm. The study shows SF6 is more or 

less affected by the fault current as in dry air. This was evident by the lack of any reduction in 
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dielectric strength by the probe as discussed in section 6.3.3 and in section 6.4.3. These 

characteristics of the SF6 gas might be linked to the physical and chemical properties of SF6 gas, 

including its higher molecular weight and density and pronounced tendency to capture free 

electrons forming heavy ions with low mobility, making the development of electron avalanches 

very difficult. With this, a SF6 dielectric medium indicates better insulation properties to the fault 

current as compared to dry air and N2 gas mediums under the same experimental conditions. 

 

7.3 Further Work 

The detection of probe current flow through gas during the arcing period of fault current has 

proved successful over a relatively small area using low pressure and limited applied negative 

DC voltage to the dielectric probe. This could be done, but was not within the scope of this 

study. The methodologies used with this project could be used to run long-term tests in gas-

insulated switchgear and in circuit breakers, but the dielectric probe will need to be checked 

regularly for the decomposed solid by-products deposited from the gases, for this may cover and 

reduce the sensitivity of the gap of the probe as shown in figure 5.24b. It may cause frequent 

breakdown in the probing circuit of the dielectric probe. The arcing contacts are not nozzled, so 

the arc voltage will spread round the circuit breaker. The dielectric probe depends on the 

discharge from the gas while the gas depends on the heat from the arc, meaning the circuit 

breaker needs to be insulated so as not to absorb the heat from the arc internally and externally. 

Thermal absorption of the metallic steel body of the circuit may cause a loss of heat energy to the 

test gas under investigation.  These may affect repeatability of probe current detected and subject 

the current flow to the circuit breaker’s experimental conditions. For the monitoring and control 

of the fault current discharges, the electrodes carrying the fault current electrodes need be 
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nozzled so as to direct the hot gas from the arc to a specific direction (i.e., in the dielectric probe 

direction in the test gas). This may increase the dielectric probe response effectiveness to the 

probe current flow during the arcing periods.  During such arcing periods, the gases decompose, 

forming solid by-products.  For instance, the SF6 gas decomposes to form sulphur-fluoride gases 

and metal-fluorides which are toxic, dry air forms corrosive nitrogen oxides and other 

compounds, and nitrogen gas forms nitric oxide (NO), a colourless gas formed in the electric-arc 

process and nitrogen dioxide. These by-products will cover the dielectric probe tips while 

reducing the dielectric probe’s chances of establishing contact with ions and electrons. The probe 

needs to be checked regularly and the deposited cleaned for better response. The by-products 

will lessen the quality of the gas in use for the arc monitor, and the circuit breaker needs to be 

pump down and refilled with fresh gas after long-term usage as to maintain the value of the 

interrupter.    
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Appendix A 

Let probe 1 output be A ± ạ Volts  

And probe 2 output is B ± ḅ Volts, where ạ and ḅ are the error voltage.  

Equation 4.1 is used to obtain the voltage difference between Probe 1 and Probe 2 as shown in 

table A1. Table A1 is used to obtain figure 4.2, figure 4.3 and figure 4.4.  

 Recorded voltage Voltage difference (Q) 

Input voltage 

 (kV) 

Probe 1 

(Output voltage) volt 

Probe 2 

(Output voltage) volt 

(Probe 1- Probe 2) 

volt 

0 1280±80 1200±80 80±113.14 

2 1920±80 1840±80 80±113.14 

3 2960±40 2720±80 240±113.14 

4 3920±80 3780±80 160±89.44 

5 4960±40 4640±80 320±89.44 

6 5920±40 5600±40 320±56.57 

7 6960±40 6560±40 400±113.14 

8 7920±80 7520±80 400±113.14 

9 8960±40 8480±40 480±56.57 

10 9920±80 9360±80 560±89.44 

11 10920±80 10320±80 600±113.14 

12 11920±80V 11280±80 640±113.14 

Table A1 shows probe voltage (V1 and V2) from the Brandenburg HV power supply and 

voltage difference from both probes at the same point. 

For example, to obtain the voltage difference for input voltage at zero output of the Brandenburg 

is illustrated as follows: 
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   Probe 1- Probe 2 =   (      )   (     )        √                        4.1 

  (       )   (       )              √        
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Appendix B 

In order to normalize the voltage drop from probe 1 and 2 at the same potential, a correction 

factor was determined. The value of the correction factor k is obtained from the linear trend line 

equation from figure 5.2 (sub-section 5.1.1) and as presented in equation 5.1 below. The voltage 

difference between probe 1 and 2 is drawn as against the input voltage V1 as presented in the 

tableA1 (appendix A) and in figure 5.2. The example below illustrates how the correction factor 

k and leakage current I2 were obtained. 

                                                                      

From table 5.1B, the input voltage V1 equal to -6204.78V is obtained. 

Therefore, k is calculated as: 

        (         )                                                                 

where k is the voltage difference between probe 1 and 2 probe at atmospheric dry air of input 

voltage of -6204.78V. The k value is added to the output voltage value V2 as to correct the 

voltage difference between both probes and presented in the tables (5.1B, 5.2B and 5.3B). 

The leakage current I2 is determined for 0 bar pressure as illustrated below. 

     
  

  
 
     
  

  
(                  ) 

      
 

     

      
           

Tables 5.1B, 5.2B and 5.B presents the data obtained in various pressure ranges in bars, probe 

voltage 1 (input V1) and probe voltage 2 (output V2) and the leakage current in milliamperes 

while the result is shown in figure 5.4. 
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Pressure Probe voltage Voltage difference Probe current 

(bar) Input V1(V) Output V2(V) V1-V2 ∆V/R (mA) 

0 -6252.5 -6263.9 11.47 0.196 

0.5 -6402.7 -6405.3 2.58 0.0442 

1 -7532.4 -7573.9 41.48 0.71 

1.5 -8479.9 -8506.6 26.72 0.46 

2 -9656.2 -9686 29.81 0.5104 

Table 5.1B 

Pressure Probe voltage Voltage difference Probe current 

(bar) Input V1(V) Input V1(V) V1-V2 ∆V/R (mA) 

0 -6204.8 -6209.8 5.03 0.086 

0.5 -6395.6 -6378 -17.62 -0.31 

1 -7431.7 -7453.6 21.88 0.375 

1.5 -8389.8 -8394.9 5.12 0.0877 

2 -9670.2 -9677.5 7.25 0.124 

Table 5.2B 

Pressure Probe voltage Voltage difference Probe current 

bar Input V1 (V) Output V2(V) V1-V2 ∆V/R (mA 

0 -6268.15  -6270.1 1.95 0.033 

0.5 -6466.1 -6438.6 -27.48 -0.471 

1 -7504 -7533.8 29.75 0.509 

1.5 -8466.2 -8472.5 6.3 0.108 

2 -9670.2 -9677 6.71 0.115 

Table 5.3B 

The below figures (1B, 2B, 3B, 4B and 5B) shows typical graphs of probe voltage and probe 

current versus time determined at various pressures in dry air when the high voltage is set at no 

dielectric breakdown while figure 6B and 7B shows a typical results of probe voltage (input V1 

and output V2) from the limiting resistor (from table 5.1B) and results of leakage current 

variation with rise in pressure in  dry air (from tables 5.1B, 5.2B and 5.3B). 
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Figure 1B in atmospheric pressure of dry air. 

 

 

Figure 2B in 0.5bar of dry air 

 

 

Figure 3B in 1.0bar of dry air 
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Figure 4B in 1.5bar of dry air 

 

 

Figure 5B in 2.0bar of dry air 

 

 

Fig 6B shows typical result of probe voltage (input V1 and output V2) from the limiting resistor 

in dry air. 
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Fig 7B shows variation in leakage current in dry air at atmospheric pressure (table 4.1) 
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