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Abstract

A two-part experiment studying 255Lr was performed in the University of
Jyväsklyä, Finland. The nucleus was created in the fusion-evaporation re-
action 209Bi(48Ca,2n)255Lr. The first part was performed using RITU and
GREAT, and was run at a high intensity to study the decay properties of
255Lr. The second part combined RITU, GREAT, and SAGE, and was run
at a lower intensity to study excited states in 255Lr.

In parallel a comprehensive GEANT4 simulation has for the SAGE spec-
trometer has been developed. With the goals of better characterising the
experimental setup, and allowing the simulation of complex level schemes
such as those seen in 255Lr for the purposes of testing proposed level schemes
by direct comparison to experimental data.

This thesis reports the results of both the decay and in-beam spectroscopy
of 255Lr, including observation of the previously seen isomeric state with a
half-life of 1.73(4) ms and the observation of two previously unseen transitions
in the ground-state rotational band at energies of 91 and 140 keV.
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“A university is very much like a coral reef. It provides calm waters and
food particles for delicate yet marvellously constructed organisms

that could not possibly survive in the pounding surf of reality,
where people ask questions like ‘Is what you do of any use?’

and other nonsense.”

Science of Discworld
Terry Pratchet, Ian Stewart, and Jack Cohen
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Chapter 1

Introduction

One of the major questions in nuclear physics has always been what is the

limit of nuclear binding and to that end what is the heaviest nuclei that can

exist. The study of superheavy nuclei, those at the higher extremes of mass

and proton number, is at the forefront of this research as it is an excellent

testing ground for nuclear models. The nucleus is made up of positively

charged protons and uncharged neutrons held together by the strong force.

As the number of protons increases, so does the Coulomb repulsion that they

experience. According to the liquid drop model (LDM) [Boh37] Coulomb

repulsion should become large enough to tear the nucleus apart for more

than 104 protons [Kru00], clearly this is not the case however. Elements

with Z up to 118 have been produced with relatively long half-lives [Oga07].

There must be other factors contributing to the binding of the nucleus.

The LDM was the first model to accurately describe nuclear properties

such as the general trend in binding energy. There were however many effects

that it failed to describe such as the enhanced stability at specific numbers
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of protons and neutrons. From this came the idea that the nucleons had

specific arrangements in the nucleus, much like atomic electrons, and from

this arose the shell model.

There is a vast amount of experimental evidence for the existence of magic

numbers at 2, 8, 20, 28, 50, 82, for protons and neutrons, and also 126 for

only neutrons [Cas01]. Furthermore, the next magic number, its value and its

very existence are greatly debated. Comparison of experimental observations

with theoretical models is vital to answering questions such as where is the

next island of stability? What is the heaviest bound nucleus that can exist?

According to theoretical predictions it is expected that a doubly magic

superheavy nucleus will have enhanced stability [Nil68, Nil69, Ćwi05]. This

should lead to a so-called ”island of stability” [Sto06, Oga00] though the

limits of this are unknown.

The upper panel of Figure 1.1 shows theoretical shell closures for Z=50

nuclei. There is little variation within the models shown, and they all strongly

agree on Z=50 and N=82 being the most strongly bound. In the lower half

of this plot, however, there appears to be no definite closed shell but more

an area of increased stability centred between Z=114 and Z=126 depending

on the model.

Theoretical models can be split into two categories, microscopic-macroscopic

models and self-consistent mean-field models. The former consist of a smoothly

varying component described by the LDM, and an oscillatory component

described by the shell model. The latter are formed by an iterative proce-

dure where an initial guess of the wavefunction is chosen to calculate the

potential, then this potential is used to calculate a new wavefunction un-

2



Figure 1.1: Self-consistent mean-field calculations for shell correction ener-
gies, in MeV,for the Z∼50 region, and the super heavy nuclei[Ben01].

til self-consistent convergance is achieved, and entirely shell model based.

Microscopic-macroscopic models generally predict the next doubly magic nu-

cleus to have Z=114 and N=184 [Nil68, Nil69, Par05, Par04, Möl94, Möl92].

Self-consistent models, however, generally disagree with the microscopic-

macroscopic predictions. Comparisons of the mean-field calculations [Kru00,

Ben01] indicate that non-relativistic models [Ćwi96, Ben99] give Z=124-126

and N=184. Relativistic models [Afa03, Ben03, Lal96, Ben99] predict a

higher Z=120 and a lower N=172. A detailed review of experimental studies

relevant to these calculations can be found in [Her11].

Experimentally, these superheavy nuclei are very difficult to produce. The

3



cross section for production of these elements is so low, that one event may

be detected in a day, a week, or even longer. With the heaviest studied so

far being 294
176118 [Oga06]. Here only 3 decay chains were detected in over

45 days of experiment. These extremely low production cross sections for

superheavy nuclei, <1 pb for element 118 [Arm03] mean that is not possible

to get spectroscopic information. The heaviest nucleus to have any spectro-

scopic information measured is 288115 [Rud13]. As can be seen in Figure A.1,

some states that are involved in the closed shell at Z=114, drop in energy

with increasing deformation. Owing to this, these states are accessible in

excitations of lighter deformed nuclei in the Z∼102 region. These nuclei are

relatively easy to produce in fusion evaporation reactions with cross sections

in the microbarn to nanobarn region. This allows for detailed spectroscopic

analysis, which can then be used to inform the theory of heavier spherical

nuclei.

In-beam spectroscopic studies in γ-rays and conversion-electrons being

studied independently have lead to important insight into information such

as rotational structure, deformation and stability against fission. Even-even

nuclei such as 254No [Her02, Her06] and 250Fm [Gre08, Ros09, Bas06] have

been separately studied in both γ-ray and conversion-electron detection ex-

periments. Odd-mass nuclei do provide a more sensitive probe into single-

particle structure at the cost of increased complexity, especially when studied

independently with γ-rays or conversion-electrons. Odd-mass nuclei 253No

[Rei04, Rei05, Moo07], 251Md [Cha07], 255Lr [Ket09] have been studied in

γ-ray, with 253No also being studied in conversion electrons [Her02, Her09].

In 253No a strongly coupled rotational band with intra-band E2 and M1
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transitions has been established. The M1 transitions were not observed in

the early γ-ray experiments [Rei05, Rei04] owing to their low energy and

high conversion coefficients but were observed in the following conversion

electron study [Her02, Her09]. Later, in higher intensity γ-ray studies, some

of these M1 transitions were seen, but lower energy transitions still remain

undetected. This case is similar to that of 255Lr, where alongside the ground

state rotational band, a strongly coupled rotational band band has been

detected [Ket09]. The statistics were not high enough here to measure any

M1 transitions.

In this case a combined γ-ray and conversion electron study of 255Lr has

a higher sensitivity to these highly converted low-energy transitions whilst

retaining the ability to observe the higher energy known transitions, though

the cross section to produce 255Lr is very close to the current experimental

limit with the lowest cross section studied in-beam being 60 nb for 256Rf

[Rub13]. With that in mind it was decided that to meaningfully interpret

the results it was required to better understand the experimental response.

To that end a comprehensive GEANT4 simulation has been developed with

the aim of reproducing experimental data for purposes of testing proposed

level schemes and comparing to experimental data.

In this study, after an overview of the relevant theoretical framework, an

experiment with the aim of studying excited states in 255Lr will be presented.

The experiment was performed at the University of Jyväskylä using the re-

action 209Bi(48Ca,2n)255Lr in two parts with a high intensity decay study at a

beam intensity of∼110 pnA1 and a lower intensity in-beam study at∼10 pnA.

1Particle nanoampere (1 pnA = 6.25× 109 particles incident on target)

5



Alongside this a comprehensive simulation package has been developed using

the GEANT4 toolkit [Ago03]. This simulation has been designed to include

all relevant geometries for the emission, tracking and subsequent detection

of γ-rays and conversion-electrons within the SAGE spectrometer. Within

this simulation there is the ability to enter possible structures and decays

and reproduce the experimental response for that decay, which can then be

directly compared to the experimentally acquired data. Finally results of

this spectroscopic study will be shown and compared to simulated data.
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Chapter 2

Theoretical Framework

2.1 Liquid Drop Model

The LDM was one of the first models proposed to explain the properties of

the nucleus [Boh37]. The LDM treats the nucleus as an incompressible liquid

drop. This model successfully describes bulk properties of the nucleus, such

as fission, fusion, and α decay. However it fails to explain the experimental

observations of systematic deviations in properties such as binding energy,

nuclear charge radii, and the energy of the first excited state. It also fails to

explain to stability of superheavy nuclei since according to the liquid drop

model, nuclei with Z≥104 would be unbound. This led to the development

of the shell model [GM49].

2.1.1 Binding Energy

The binding energy, B, of a nucleus is defined as the energy required to

separate it into its constituent protons and neutrons. The mass of a bound
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nucleus is lower than the mass of its constituent particles by B/c2 which then

follows that

B(Z,A) =
(
Zmp +Nmn −M(Z,A)

)
c2, (2.1)

from [Boh98], where mp and mn are the masses of the proton and neutron,

and M(Z,A) is the observed mass in the ground state.

Figure 2.1: A plot of binding energy per nucleon as a function of mass
number [Cas01].

Binding energy is most often described in the form of binding energy per

nucleon, as shown in Figure 2.1, where binding energy per nucleon is plotted

as a function of mass number. There are a number of interesting conclusions

that can be drawn from this plot. The binding energy per nucleon increases

quickly until A∼10, then there is a slower increase to A∼60, above this B/A

is almost constant, though it slowly decreases with increasing A. The inter-

pretation of this trend is as follows: if every nucleon were to contribute to the
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attractive force experienced by each nucleon in the nucleus, B would increase

proportionally with A2. This is not the case however, as B/A saturates at

a maximum of just over 8 MeV. This indicates that each nucleon only feels

an attractive force from its nearest neighbours. From this it follows that

the nuclear force is a short range force. The fluctuations at low A show the

discrepancies of the LDM, which will be discussed in more detail in later

sections.

2.1.2 Semi-Empirical Mass Formula

Weizsäcker [Wei35] derived an empirically refined formulation of the LDM to

describe the relatively smooth variation in the binding energy with respect

to mass number. The formula is written as:

M(Z,A) = ZmH +Nmn −
1

c2
B(Z,A), (2.2)

from [Boh98], where the binding energy is given as

B(Z,A) = avA− asA2/3 + acZ(Z − 1)A−1/3 − asym
(A− 2Z)2

A
+ δ. (2.3)

The first three terms in the Equation 2.3 can be explained by considering

the terms in the LDM:

• The volume term, avA, where av is constant. This arises due to all

nucleons having the same number of neighbours.

• The surface term, asA
2/3, where as is constant. This counteracts the

volume term, as surface nucleons are less tightly bound, owing to a
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lower number of neighbouring nucleons.

• The Coloumb term, acZ(Z − 1)A−1/3, where ac is constant. This term

accounts for the repulsion between protons within the nucleus and be-

comes more significant in heavier nuclei.

The first three terms of Equation 2.3 fail to describe the curve shown in

Figure 2.1, especially for large A. This is where the LDM breaks down and

shell effects become important. The fourth term accounts for the fact that in

light nuclei, binding energy is maximal for Z=N. For larger nuclei, this is no

longer the case due to the tendency for the neutron-proton interactions being

stronger than for like particles owing to the Pauli exclusion principle. This

symmetry term is of the form −asym(A − 2Z)2/A, where asym is constant.

The final term, δ, is the pairing term, and accounts for alike nucleons forming

pairs, increasing stability in even nuclei. This term is positive for even-even

nuclei, negative for odd-odd nuclei and zero for even-odd nuclei. These five

terms combined give a relatively accurate description of the trend of nuclear

binding energy relative to mass [Cas01].
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Figure 2.2: Chart of nuclides overlaid with the predicted binding energy
per nucleon according to the liquid drop model, also line for various values
of Z2/A tracking the fissility [Sch13].

Figure 2.2 shows the binding energy per nucleon overlaid onto the chart of

nuclides. Although the liquid drop binding energy cannot describe the limits

of nuclear stability, it does track remarkably well. Also overlaid are the

facilities for fission and it can be seen that Z2/A = 40 tracks the upper limit

of known nuclei to a neutron number of around 150 and a proton number of

around 100. Above this, it can be seen that the LDM is breaking down.
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2.2 Spherical Shell Model

The LDM can describe a number of the bulk properties of nuclei, but it fails

at describing the quantal effects. The clearest of which is the existence of

anomalously stable nuclei at certain configurations of nuclei, namely nuclei

with nucleon numbers 2, 8, 20, 28, 50, 82, and also 126 for neutrons. The

magic numbers form the strongest experimental motivation for the formula-

tion of the shell model. Further to this are the discontinuities in the binding

energy as a function of mass for these magic-number nuclei. The first excited

2+ states in these magic-number nuclei are also significantly higher than in

neighbouring nuclei [Cas01].

The spherical shell model makes the assumption that each nucleon moves

independently within the nucleus. The nucleons move within a uniform po-

tential resulting from the averaged interactions of all the nucleons.

The system can be described by the nuclear Hamiltonian H, defined as

H =
A∑
i=1

− h̄2

2m
52
i +

A∑
ij

V (rij), (2.4)

where the first term is the sum of the individual kinetic energies, and the

second term describes the potential acting on all nucleons. This can be

rewritten in the form

H =
A∑
i=1

[
− h̄2

2m
52
i +V (Ri)

]
+
[∑

ij

v(rij)−
∑
i

Vi(ri)
]
, (2.5)

by adding and subtracting a one-body interaction. This can then be simpli-
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fied to

H =
A∑
i=1

hi + Vres, (2.6)

where Vres is a small perturbation on the Hamiltonian for a system of nearly

independent nucleons orbiting in a common mean field potential.

The shell model assumes that this residual interaction is significantly

smaller than the central interaction [Cas01].

2.3 Nilsson Model

The Nilsson model was first proposed by Nilsson [Nil55] in 1955. Nilsson pro-

posed that a deformed nuclear potential could be described by an anisotropic

harmonic-oscillator potential. The model considers a single valence particle

undergoing rapid orbital motion around a relatively stationary axially sym-

metric deformed core. The core has angular momentum R, and the single

particle has angular momentum J. Thus to total angular momentum I can

be written,

I = R + J. (2.7)

The projection of I onto the symmetry axis (z) is K as shown in Figure 2.3.

When there are two single particles, their projections of j1 and j2 onto the

symmetry axis are equal to Ω1 and Ω2, which sum to K. A single-particle

orbiting a deformed core can be completely described by the Nilsson quantum

numbers

Ωπ[NnzΛ], (2.8)
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Figure 2.3: Schematic representation of angular momentum coupling of a
prolate nucleus with a single particle orbiting.

where N is the principal quantum number, denoting the major shell, nz is

the number of oscillator quanta along the symmetry axis, Λ is the projection

of the orbital angular momentum (l) onto the symmetry axis, and Ω is the

projection of the total angular momentum j. Parity, π is (-1)N .

The labels are used to identify single-particle states in the Nilsson diagram

showing single-particle energy plotted against deformation. The Nilsson di-

agrams for proton (Z≥82) and neutrons (N≥126) are shown in Appendix

A.

2.4 Nuclear Rotation

By considering the energy possessed by a rigid rotating body the energy

levels of a rotational band are given,

E(I) =
h̄2

2J0
(I(I + 1)). (2.9)
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This equation defines the static moment of inertia, J0. This assumes that

the nucleus behaves like a rigid body under rotation, which is not the case

as the moment of inertia changes with increasing rotation. To quantify this,

the rotational frequency, ω, must be defined. It is classically defined as

h̄ω =
dE

dIx
, (2.10)

where Ix is the projection of the total angular momentum onto the rotation

axis, given by Ix =
√
I(I + 1)−K2. Quantum mechanically ω becomes,

h̄ω =
dE(I)

d
√
I(I + 1)−K2

. (2.11)

Note that in the even-even case, as J=0 and I=R, thus K=0 and equation

2.11 simplifies to

h̄ω ∼ Eγ
2
, (2.12)

where Eγ is the γ ray energy given by E(I)− E(I − 2).

The kinematic and dynamic moments of inertia J1 and J2 are the first

and second order derivatives of Equation 2.9 and provide a useful perspective

from which to examine rotational bands. Thus, in the case where I∼Ix, the

kinematic moment of inertia is defined as

J1 =

(
2

h̄2
dE(I)

dI

)−1
= h̄

I

ω
, (2.13)
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and the dynamic moment of inertia is defined as

J2 =

(
1

h̄2
d2E(I)

dI2

)−1
= h̄

dI

dω
. (2.14)

When examining a rotational band, these quantities are related to the tran-

sition energies such that J1 becomes

J1 =
h̄2(2J − 1)

Eγ(J→J−2)
, (2.15)

and J2 becomes

J2 =
4h̄2

Eγ(J+2→J) − Eγ(J→J−2)
, (2.16)

for a state with angular momentum I. The kinematic and dynamic moments

of inertia are related via the expression

J2 = J1 + ω
dJ1
dω

. (2.17)

2.5 Isomerism

There is no solid definition of what an isomer is, but it is generally considered

to be a meta-stable excited state with a lifetime of greater than 1 ns [Wal99].

Shown in Figure 2.4, are three types of isomer: shape, spin trap, and K-

trap. Shape isomerism occurs when there is a secondary energy minimum

at large deformation of the nucleus; the primary energy corresponds to the

ground-state. Spin trap isomerism is more common and depends on the

spin selection rules whereby the decay to a lower energy state requires a
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large change in nuclear spin. This means that an emission of radiation with

high multipolarity is needed; these high multipolarity transitions are greatly

hindered and so electromagnetic decay can take a long time to occur. K

isomerism occurs in much the same way as shape isomerism though in this

case it is a secondary minimum for the potential energy at a value of K,

the spin projection. In Figure 2.4 the three described isomers are shown,

on the left a nucleus is shown to have two local minima in the potential

energy plot as a function of shape elongation. In the centre, a nucleus has

a secondary minimum as a function of spin. Finally on the right, a nucleus

has a secondary minimum as a function of spin projection.

Figure 2.4: Illustration of different types of isomers taken from [Wal99].
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>1ns

Figure 2.5: A section of Segré chart, showing the longest lived isomers Z≥82
[Her11].

Figure 2.5 details the currently known longest lived isomeric states above

the closed shell at Z=82. It can be seen that there is a wealth of information

on isomeric states with nuclei in the Z∼95 region. Fewer isomeric states are

known for higher-mass nuclei. However those that are known generally have

half-lives in excess of 1 ms. These isomeric states are often caused by very

pure single-particle states and can provide a great testing ground for nuclear

theories.

2.6 Alpha Decay

Alpha decay is one of the main modes of decay for superheavy nuclei. This

can be understood by looking at how the involved forces scale with the size of

the nucleus. The repulsion of the Coulomb force increases with Z2, whereas

18



the stabilisation of the nuclear binding force only scales with A. Alpha decay

(emission of a 4He nucleus) can be written in the form

A
ZXN →A−4

Z−2 X
′
N−2 + α, (2.18)

where X ′ is the nucleus after α emission. Applying conservation of momen-

tum and energy to the α emission process, the energy emitted, the Q value,

is given by

Q = MX −MX′ −Mα = TX′ + Tα, (2.19)

where MX , MX′ , and Mα are the nuclear masses of the mother, daughter and

α particle, respectively. TX′ and Tα are the kinetic energies of the daughter

nucleus the α particle, respectively. From equation 2.19, it can be seen

that Q is equal to the total kinetic energy of the fragments. It is also clear

that α decay can only happen spontaneously should the Q value is positive.

Although it should be noted that α decay does not become prominent until

Q reaches the order of several MeV.

Due to its composition the α particle has spin and parity of 0+ meaning it

can only take orbital angular momentum lα within the range |Ii− If | < lα <

Ii+If . The angular momenta of the initial and final states of the mother and

daughter nuclei are given by Ii and If respectively. The parity change after

α emission is given by (−1)lα . Additionally if the angular momentum of the

emitted α particle is non-zero, the decay will be hindered by a centrifugal

barrier effect.
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The probability of α decay is given by

Pα decay = Ppreformation × Ptunnel (2.20)

where Ppreformation is the probability that an α particle will form in the nu-

cleus and Ptunnel is the probability that this α particle will then tunnel out

of the nucleus.

2.6.1 Fine Structure

Fine structure occurs when a nucleus emits α particles of more than one

energy, possibly from more than one state, thus populating excited states in

the daughter nucleus. In even-even nuclei, ground state to ground state decay

is generally the most frequent. This is not necessarily true for odd nuclei.

In odd nuclei, ground state to excited state, excited state to excited state

and excited state to ground state can occur. The resulting fine structure

can provide important information about both mother and daughter nuclei,

such as information about single-particle structure when a populated state

subsequently decays.

2.7 Electromagnetic Decay

When an excited state, with a spin Ii, decays to another state, with spin

If , electromagnetic radiation in the form of a γ ray can be emitted. The

energy of the γ ray, Eγ, is directly related to the energy of the initial and

final states, Eγ = Ei − Ef . This also has the effect that the energy of the
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γ rays is quantised, taking only certain values. This makes detecting and

studying the γ-rays emitted incredibly useful in understanding the structure

of nuclear matter. It should also be noted that the kinetic energy of the

recoiling nucleus can be ignored in this case as this energy small compared

to that of the γ rays of interest.

Gamma rays can be classified according to their electromagnetic character

and multipolarity, L. Due to conservation of angular momentum and parity,

π, selection rules arise, which determine whether the emitted radiation is

electric (EL) or magnetic (ML) in nature, where L denotes the order of the

multipole.

The emitted γ ray can carry away L units of angular momentum, mea-

sured in units of h̄, which is limited by the selection rule

|Ii − If | ≤ L ≤ If i+ If ;

L 6= 0.

(2.21)

The nature of the emitted γ ray is defined by conservation of parity rules,

πiπf = πL, (2.22)

where πi is the parity of the initial state, πf is the parity of the final state,

and πL is the parity of the emitted photon, where

∆πEL = (−1)L, (2.23)

∆πML = (−1)L+1. (2.24)
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For transitions between states πi and πf , ∆π = +1 corresponds to no parity

change, whereas ∆π = −1 corresponds to a parity change. It can be seen

that E1, M2, E3, and M4 transitions will induce a change in parity, whereas

M1, E2, M3, and E4 transitions will not.

If the γ ray carries away the maximum amount of angular momentum,

it is said to be a stretched transition. If a non-maximal amount of angular

momentum is carried away, the transition is referred to as folded. Transitions

can be formed of an admixture of different multipoles, though an electric

transition will always dominate a magnetic transition of the same multipole

value. M1 and E2 admixtures are reasonably common. When a transition is

formed by the mixing of two components, the mixing ratio is denoted as δ,

given by,

δ2E2/M1 =
T (E2, I → I − 1)

T (M1, I → I − 1)
. (2.25)

2.7.1 Weisskopf Estimates

The total transition probability from a state with spin Ii to a state with spin

If can be written as [Boh98]

Tfi =
8π(L+ 1)

h̄L[(2L+ 1)!!]2
(
Eγ
h̄c

)2L+1B(σL; Ii → If ), (2.26)

where B(σL) is the reduced transition probability given by

B(EL, Ii → If ) =
1

2Ii + 1
| < f‖Q̂‖i > |2, (2.27)
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for the electric case, and

B(ML, Ii → If ) =
1

2Ii + 1
| < f‖M̂‖i > |2, (2.28)

for the magnetic case. Here Q̂ and M̂ are the electric and magnetic multipole

operators, respectively.

To ease calculation of these terms, Weisskopf [Wei51] made a number of

simplifying assumptions about the nucleus. Firstly a transition is assumed

to be due to a single proton changing from one spherical single-particle state

to another. Secondly, the radial part of the nuclear wavefunction is replaced

with a constant within the nuclear interior, and assumed to be zero outside of

the nuclear volume. Finally angular momentum coupling is neglected. From

these assumptions the following can be obtained:

B(EL) =
(1.2)2L

4π
(

3

L+ 3
)2A

2L
3 [e2(fm)2L] (2.29)

for the electric transitions and

B(ML) =
10

π
(

3

L+ 3
)2A

2L−2
3 [µ2

N(fm)2L−2] (2.30)

for the magnetic transitions, where A is the atomic number.

Table 2.1 shows expressions for the single-particle estimates for transition

probabilities as described in Equations 2.29 and 2.30.
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Transition Probabilities T(s−1) Weisskopf Units Bsp

T(E1)=1.587 · 1015 · E3 ·B(E1) Bsp(E1) = 6.446 · 10−2 · A2/3

T(E2)=1.223 · 109 · E5 ·B(E1) Bsp(E2) = 5.940 · 10−2 · A4/3

T(E3)=5.698 · 102 · E7 ·B(E3) Bsp(E3) = 5.940 · 10−2 · A2

T(E4)=1.694 · 10−4 · E9 ·B(E4) Bsp(E4) = 6.285 · 10−2 · A8/3

T(M1)=1.779 · 1013 · E3 ·B(M1) Bsp(M1) = 1.790
T(M2)=1.371 · 107 · E5 ·B(M2) Bsp(M2) = 1.650 · A2/3

T(M3)=6.387 · 100 · E7 ·B(M3) Bsp(M3) = 1.650 · A4/3

T(M4)=1.899 · 10−6 · E9 ·B(M4) Bsp(M4) = 1.746 · A2

Table 2.1: Transition probabilities T (s−1) for Weisskopf single particle esti-
mates expressed as B(EL) and B(ML). The energies E are measured in MeV
[Rin04]

2.7.2 Internal Conversion

An excited nucleus can decay to a lower energy state by the emission of a

γ ray. There are other processes that compete with γ-ray emission, one of

which is the emission of a conversion electron. Conversion-electron emission

is a process whereby the nucleus interacts with a bound atomic electron,

causing this electron to be ejected from the atom. This process is completely

separate from β decay, in which an electron is emitted from the nucleus

via the decay of a neutron into a proton, an electron, and an electron anti-

neutrino.

As this process is the result of a two-body interaction with a transition

between two well defined states, the energy imparted on the electron will be

well defined. This is not the case in β decay, where the emitted electron has a

range of allowed energies owing to the three bodied nature of the interaction.

Atomic electrons are in bound states; the strength of this binding depends

on the shell which they occupy. This means that the total kinetic energy
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Electron Shell B (keV)
K 152.970
L1 30.038
L2 29.103
L3 22.359
M1 7.930
M2 7.474
M3 5.860
M4 5.176
M5 4.876

Table 2.2: Table of atomic electron binding energies for the innermost tran-
sitions in lawrencium [Fir99]

of the electron will not be the same as the γ ray resulting from the same

transition. The kinetic energy of the emitted electron, Te, can be described

by

Te = ∆E −B. (2.31)

The binding energy B, will depend on the shell from which the electron is

ejected, i.e. the K, L, M, . . . shells. Table 2.2 shows the binding energies

for the innermost transitions in lawrencium. The difference in strength be-

tween the competing γ-ray emission and conversion-electron emission can

vary dramatically; one process may dominate or they can be much closer in

strength. The probability of each decay mode occurring, for a given transi-

tion, is described by the internal conversion coefficient, α, which is defined as

the relative probabity of the decay occuring via conversion-electron emission

versus γ-ray emission.

α =
Ne

Nγ

=
λe
λγ

= αK + αL1 + αL2 + αL3 + αM1 + . . . , (2.32)
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where λ denotes the decay probability of the respective decay mode. From,

this the total electromagnetic decay rate can be written as

λt = λγ(1 + α) = λγ(1 + αK + αL1 + αL2 + . . . ). (2.33)

Internal conversion coefficients for a point nucleus can be defined as

α(EL) ∼=
Z3

n3

( L

L+ 1

)( e2

4πε0h̄c

)4(2mec
2

E

)L+5/2
, (2.34)

for electric multipoles and

α(EL) ∼=
Z3

n3

( e2

4πε0h̄c

)4(2mec
2

E

)L+3/2
, (2.35)

for magnetic multipoles [Kra87].

Some general trends of internal conversion coefficients can be drawn from

Equations 2.34 and 2.35.

• Internal conversion increases rapidly with nuclear charge (atomic num-

ber Z).

• Internal conversion decreases with increasing transition energy (E).

• The probability for internal conversion increases for higher L transitions

(L).

• The probability for internal conversion decreases for higher atomic

shells (n).

For high multipole, low-energy transitions in heavy nuclei, such as 255Lr,

conversion coefficients can be very high, of the order ∼1000. This means that
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Figure 2.6: Internal conversion coefficients αk and αtot, as a function of energy
for E2 and M1 transitions in lawrencium.

transitions could be completely unseen in γ-ray spectroscopy but strong in

electron spectroscopy.

Figure 2.6 details the conversion coefficients as a function of energy for

M1 and E2 transitions, for both K and total conversion. It is interesting

to note that K conversion cannot occur below the K binding energy of the

given nucleus, in this case lawrencium. It is also clear how strongly low

energy transitions will be converted.
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Chapter 3

Experimental Methods

3.1 SAGE Spectrometer

The SAGE spectrometer [Pap10] consists of the JUROGAM II germanium

detector array coupled to a solenoidal magnet which transports conversion

electrons to the SAGE silicon detector.

3.1.1 JUROGAM II array

The JUROGAM II array [Bea96] consists of 24 fourfold segmented Clover

dectors [She99], and 15 EUROGAM Phase I type Compton-suppressed ger-

manium detectors [Nol94, Bea92], though to accommodate the solenoidal

magnet of SAGE, 5 of these Phase I detectors need to be removed leaving 10

Phase I’s.
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Figure 3.1: Schematic Diagram of the setup at Jyväskylä, showing JU-
ROGAM II and the SAGE silicon detector along with RITU and GREAT
[Pap09].

Figure 3.2: The JUROGAM II array, purple dewars indicate Clover detectors,
the golden dewars, Phase I’s. At the front the hexagonal gap can be seen
where the 5 Phase I detectors have been removed to make space for the
solenoidal magnet.
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Figure 3.3: Schematic drawing of the SAGE silicon detector showing the
arrangement of the pixels.

3.1.2 SAGE silicon Detector

The SAGE silicon detector is a highly segmented detector made up of 90

pixels. The detector is 48 mm in diameter with a thickness of 1 mm. Fig-

ure 3.3 shows the arrangement of the pixels along with dimensions and the

numbering scheme used.

3.1.3 SAGE Solenoidal Magnet and High Voltage Bar-

rier

The SAGE solenoidal magnet consists of three separate solenoids, two up-

stream of the target position and a third downstream. The upstream solenoids

are at an angle of 3.2◦ to the beam axis, whilst the downstream solenoid is

on the beam axis. This near-collinear geometry was chosen to minimise the
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Figure 3.4: Schematic of the RITU gas filled separator.

Doppler broadening of the electron peaks, along with reducing the amount

of delta electrons incident of the detector, which are emitted with a heavy

forward focus. The solenoid magnets transport electrons from the target po-

sition to the detector, which is positioned upstream just off beam axis and at

a distance of ∼95 cm. Further to the solenoidal magnet, there is a high volt-

age barrier in position between the target and the detector. When a negative

voltage is applied to this, it has the effect of suppressing the transmission of

low energy electrons, further reducing the background from delta electrons.

3.2 RITU Gas-filled Recoil Separator

RITU is a gas-filled recoil separator [Lei95], consisting of three quadrupole

magnets and one dipole magnet in a QDQQ configuration. This differs to

the standard configuration of DQQ, by the addition of an extra vertically

focussing quadrupole which provides increased acceptance to the dipole. Fig-
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ure 3.4 shows a schematic plan of the RITU gas filled separator, showing the

target chamber, the four magnets, and the GREAT focal plane array.

3.3 GREAT Focal Plane Array

The GREAT Focal Plane Array [Pag03], is a combination of silicon, germa-

nium, and gas detectors, for detecting the arrival and subsequent decay of

reaction products. It is sensitive to α particles, β particles, γ rays, X-rays,

as well as electrons from processes such as internal conversion and β de-

cay. GREAT consists of a number of separate detector systems that will be

expanded upon in the following subsections. At the entrance to GREAT is

the multi-wire proportional counter (MWPC), next are the dual-sided silicon

strip detectors (DSSDs), 11.4 mm behind this is the planar detector. In a

box configuration around the DSSDs are the PIN diodes. Originally behind,

but now above this, is the GREAT Clover detector, further to this another

two fourfold segmented Clover detectors are placed either side. Figure 3.5

shows a schematic view of the GREAT focal plane spectrometer. Visible are

the DSSD, PIN diodes, planar and the GREAT clover. Not shown are the

MWPC and the additional two Clover detectors.

3.3.1 Multi-wire proportional counter

The MWPC, is positioned at the entrance of GREAT. All products passing

through RITU to the focal plane, pass through it, allowing for identification

based on energy loss in the gas along with time of flight in conjunction with

the DSSD. The aperture of the MWPC is 131x50 mm with a vertical 1 mm

32



Figure 3.5: Schematic of the GREAT Focal Plane Array [Pag03].

wide strut in the centre to support the thin mylar foils, used as the anode,

with the wires acting as the cathode. The MWPC is filled with isobutane

gas, this facilitates a small amount of energy loss by particles passing through

it. Particles can then be differentiated depending on their energy loss. This

ability to identify recoils passing through the MWPC allows for distinction

between these and their subsequent radioactive decays.

3.3.2 Double-sided Silicon Strip detectors

The DSSDs, are the implantation detectors, each DSSD is 60 × 40 mm in

size with a thickness of 300µm, with a strip width of 1 mm. Two of these

DSSDs are placed adjacent to each other, giving a total of 120 vertical strips
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on one side and 40 horizontal strips on the other, giving a total of 4800 pixels.

The two DSSDs are mounted 4 mm apart on a hollow block through which

coolant is circulated, cooling the DSSDs to -20◦C. The detection efficiency for

recoils is ∼85%. Further to detecting recoils with a high efficiency the DSSDs

can detect α particles with an efficiency of ∼50% and conversion-electrons

depending on the gain settings used.

3.3.3 Planar detector

The planar detector is a double-sided germanium strip detector, for measur-

ing low energy γ-rays and X-rays. The detector has an active area of 120

× 60 mm and a thickness of 15 mm. The width of the strips on both sides

is 5 mm. The efficiency of the Planar detector, along with the Clover detec-

tors is shown in Figure 3.6. These efficiencies are based on the GEANT4

simulation from Andreyev et al. [And04].

3.3.4 Silicon PIN photodiode detectors

An array of 28 silicon PIN photodiode detectors are mounted in a box ar-

rangement around the DSSDs, in the backwards direction relative to the

beam direction. Each of these PINs has an area of 28 × 28 mm and a thick-

ness of 500µm. This arrangement has an efficiency of ∼20% [And04].

3.3.5 Clover detectors

The GREAT clover detector is made up of four crystals, each with a diam-

eter of 70 mm and a length of 105 mm. The first 30 mm of each crystal is
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Figure 3.6: Efficiency curve for various components in the GREAT focal
plane array - obtained from [GJ08].

also tapered by an angle of 15◦ on the outside surface. Each crystal has

a further four fold segmentation. There is also a suppression shield of bis-

muth germanate crystals surrounding the detector to improve peak-to-total

ratio. Further than the GREAT clover detector there are two more four fold

segmented clover detectors placed to the left and right of the DSSDs.
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Chapter 4

Simulation of the SAGE

spectrometer in GEANT4

4.1 Justification of Simulation

As with any new detector setup, understanding its behaviour is a large part

in analysing any experiment performed with it. A comprehensive simulation

not only allows better understanding of the performance of the setup, but can

be used as a tool to help in the tuning of such things as the electromagnetic

fields with the aim of increasing electron transmission efficiency.

During the design and construction phase of the SAGE spectrometer,

simulations were carried out using the SOLENOID code [But96]. These

simulations were limited to two dimensions with cylindrical symmetry and

focussed only on electron transport. The SOLENOID code did have the

ability to specify an angle between the beam axis and the field axis, but not

the angle between the magnets themselves, which result in a non-cylindrically
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symmetric field.

GEANT4 [Ago03] is a toolkit for the simulation of the passage of particles

through matter. It has a large range of functionality including reproduction

of complex geometry and materials alongside detailed physics models for

the interactions of particles with matter over a wide range of energies. The

toolkit is implemented in the object-oriented programming language C++

and has been used in a wide range of applications in fields such as high energy

physics, nuclear physics, space engineering and medical physics.

A GEANT4 simulation overcomes the restrictions of the previous simu-

lation by being fully three dimensional and can also be expanded to include

the JUROGAM II array. This allows for a more realistic simulation and a

more detailed view of electron motion within SAGE and the volumes where

electrons are being lost [Pap12, Cox13].

4.2 Construction of the Geometry

The accuracy to which the geometry is reproduced is of great importance for

the usefulness of the simulation. Figure 4.1 shows the simulated geometry.

The Phase I and Clover Ge detectors have been reproduced from design

specifications, including the bore hole, Li contacts, Ge crystals, BGO crystals,

Heavymet collimators, and supports. Figure 4.2 shows a cross section view

through two Clover and one Phase I Ge detectors.

Figure 4.3 shows the comparison between the simulated Si detector and

the real detector. In the left image, visible as black lines, the inactive areas

between pixels can be seen. Between each pixel there are 70µm wide inactive
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Figure 4.1: Complete Simulation of SAGE spectrometer, with the SAGE
silicon detector to the left and JUROGAM II array to the right.

strips. This leads to a total inactive area of around 4%. For more in depth

discussion on the SAGE silicon detector see [Pap10].

Figure 4.4 shows a comparison between the simulated high voltage barrier

and the real one. The real high voltage barrier did not have the horseshoe

connector, which is used to charge the high voltage barrier, fitted in this

photo, but it is shown in the simulation.
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Figure 4.2: Cross section view of two Clover(centre, right) and one Phase I
(left) Ge detectors.

Figure 4.3: Comparison of simulated and real Si detectors.
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Figure 4.4: Comparison of simulated and real high voltage barriers, note the
horseshoe is not shown in real image.
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4.3 Analysis of Simulation Data

The ROOT data analysis framework [Bru97] has been used for the extraction

and analysis of data from the simulation. Within the simulation a ROOT tree

is built containing relevant details about each event. These details are mainly

focussed on the values that are measurable in the real setup, namely the

energy deposition within detectors, but also include quantities that cannot

be measured such as,

• initial energies of particles

• initial momentum vector, for analysis of angular emission

• energy deposition in non-detector volumes, e.g. target wheel. This

allows for in depth analysis of where efficiency losses occur, see section

4.5

• information of particles generation, i.e. primary particle, secondary

particle generated from some physical process such as pair-production.

Once this ROOT tree has been generated all subsequent analysis can be

performed afterwards with the use of ROOT codes much faster than running

the simulation. This is done as the tracking of several million electrons in

electromagnetic fields can take many hours, whereas generating a histogram

filled with the electrons detected in a certain volume, such as a single pixel

from a ROOT tree can be done in a fraction of the time. By this method
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techniques such as Compton suppression and add-back can be implemented

also.

4.4 Tuning electromagnetic fields

GEANT4 has a number of models to describe charged-particle motion in an

electromagnetic field depending on the kind of motion, the accuracy of sim-

ulation needed and the type of field in question. Further to this there are a

number of parameters used to describe the required accuracy of the particle

motion in a given field. Here there is a trade-off between the accuracy of the

simulation and the speed at which it can be performed. The initial simu-

lation and generation of the electromagnetic field map was performed using

the OPERA simulation package [Fie07]. This simulation was performed to

an accuracy of 1 cm in a 3D grid setup. The field map used covered an area

of 30 cm × 30 cm × 150 cm containing all volumes that electrons could be

located within. More details on the field simulations can be found in [Pap10].

This meant that the field did not extend for the full simulation, rather only

where the electrons of interest are likely to be affected by it. Further to

this, outside of the vacuum, where the Ge detectors are located, necessarily

had to be a low field region as the Ge detectors are highly sensitive to elec-

tromagnetic fields. To this end, a large number of shielding configurations

were tested, in simulations before construction, with the final setup, and fi-

nally in GEANT4. Figure 4.5 shows a schematic view of the final shielding

configuration.
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Shields
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Solenoid axis
 Beam axis

0 10cm

Figure 4.5: Schematic view of the magnetic coils and shielding within SAGE.

Figure 4.6: Comparison of electron distribution for original detector position
(left) and detector moved by 10 mm towards the beam axis (right).

Initially the effect of the 3.2◦ angle between the upstream and downstream

coils, as can bee seen in Figure 4.5, was underestimated. This caused the

focus of the electrons to be off centre on the detector. This was reproduced

in GEANT4, as can be seen in Figure 4.6 where the initial distribution and

the final distribution of electrons can be seen.

The electron distribution is of great importance since the maximum SAGE

silicon detector count rate is a major limiting factor to the maximum beam

43



intensity. To this end, the size and arrangement of the pixels within SAGE

was chosen with the aim of giving an even count-rate across the whole detec-

tor, with central, smaller pixels experiencing a higher intensity than outer,

larger pixels, which in turn detect more electrons due to their size.

The smallest aperture that electrons pass through in the SAGE spec-

trometer is the carbon foil unit, which is necessary for separating the high

vacuum needed for operation of the high voltage barrier from the He gas

used in RITU, which has an inner diameter of 31 mm. The field map has

been interpolated from a 1 cm3 grid. From this scale it can be seen that us-

ing greater than millimetre accuracy would not give a gain in accuracy and

would only increase the time taken for the simulation considerably.

In GEANT4 the motion of a charged particle in an electromagnetic field

is tracked by integration of it’s equation of motion. This is done using a

Runge-Kutta method, there are other methods for specific types of fields

depending on their level of uniformity and whether they are wholly magnetic

in nature. The integration method is described by the stepper in GEANT4.

1

A number of parameters are used to describe how accurately the path of

a particle is tracked in GEANT4. A curved path of motion is broken down

into a series of linear chord segments, of length set by the user, that closely

approximate the curved path. The distance of closest approach between a

volume boundary and a linear chord segment is known as the miss distance

or chord distance. If this chord distance is below a certain value, again set by

1The 4CashKarpRKF45 stepper was chosen for the best balance between reproduction
of realistic motion and speed of simulation.
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the user, the path of motion will be recalculated with shorter steps, limited in

size by another parameter, to see if the particle will cross the boundary. At

which point if the particle is found to cross the boundary the interaction will

be calculated. These various parameters were all set to a value of 1 mm due to

the accuracy of geometry and field values, anything greater than this would

increase significantly the computational time required without meaningful

change to accuracy.

4.5 Detection Efficiency

The most important aspect of the simulation is the accuracy with which

it reproduces the real experimental efficiency. For the real detector 133Ba

and 209Bi are used for calibration as these give a spread of electron energies

up to ∼1 MeV, see Section 5.1 for more on calibration of the SAGE silicon

detector. With the simulation, it is a simple task to generate a given number

of electrons with a definite energy. For a detailed analysis of the detection

efficiency electrons are generated with energy divisions of 10 keV from 10 to

1000 keV. Through the use of ROOT, electrons with a given initial energy

can then be selected. As can be seen from Figure 4.7 electrons with initially

identical energies will lose varying amounts whilst being transported to the

detector. This can be caused by energy loss in the carbon foils for instance.

Figure 4.7 shows all electrons detected for an initial energy of 100 keV.

Of these a significant fraction have lost a large amount of their initial energy.

The specific structure of this peak can be explained by the source geometry

used. To best match the real data points, the 133Ba source geometry was re-
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Figure 4.7: Simulated electrons in the SAGE silicon detector with an initial
energy of 100 keV.

produced. This consists of a thin mylar window on the face pointing towards

the detector and a thicker acrylic backing pointing away. Electrons emitted

towards the detector lose a small amount of energy exiting the source and are

found in the main peak, electrons emitted at a backwards angle which are

reflected by the magnetic field lose a larger amount of energy and make up

the second lower energy peak. If only the number of electrons detected was

taken as a measure of the efficiency, it would be a great overestimation, and

in a realistic case where there would be more than one energy peak and it

would not be possible. Ideally all the electrons in the peak would be counted

and those that would be considered background if it were real data would

be discounted. To achieve this a fitting algorithm was developed combin-

ing a Crystal Ball Function [Gai82] to fit the peak with a combination of a

quadratic and a step function to fit the background. It can be seen that the

blue line is a good match to the full energy deposition peak. The solid red
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line shows the combined step function and the quadratic. This is close to

what would be expected for fitting a real peak with this kind of background.

The need for this background subtraction diminishes as the energy of

the emitted electron increases, and is required even less for γ rays, but for

consistency purposes all fits are done using the same algorithm.

Figure 4.8: Simulated efficiency curve for the SAGE silicon detector com-
pared to measured values for peaks in 133Ba and 207Bi.

Figure 4.8 shows a simulated efficiency curve for electrons of energies from

0 to 1000 keV. It can be seen that for energies below 200 keV this simulation

underestimates the electron efficiency, but for higher energies there is a good

agreement. The source of this discrepancy is not yet understood and it may

be due to missing geometry as detailed in Section 4.9 or to some other reason.

Figure 4.9 details the efficiency as a function of high voltage barrier set-

47



Figure 4.9: Simulated SAGE silicon detector efficiency as a function of high-
voltage barrier setting.

ting. It can be seen that the efficiency below 200 keV is affected by the

high-voltage barrier settings. The effect of the high-voltage barrier is pre-

dictable and proportionate to the barrier setting.

Figure 4.10 shows a comparison of simulated and measured efficiency for

a barrier setting of -30kV. Here it can be seen that there is a good agree-

ment with measured efficiency for energies above 200 keV, below this there is

still some difference between simulation and measured values, though from

50 keV downwards there is once again good agreement between simulation of

measurement.

Alongside the detection efficiency of electrons with the SAGE silicon de-

tector the detection efficiency for γ rays with the Jurogam II array is an
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Figure 4.10: Comparison of measured and simulated SAGE silicon detector
efficiency for a high voltage barrier setting of -30kV.

important part of this simulation. Figure 4.11 shows a comparison of simu-

lated and measured efficiency for the JUROGAM II array. It can be seen that

there is a very good agreement in shape between simulation and measured

efficiency, though in the simulation the efficiency is between 1-2 % higher at

all points. The reason for this is likely to do with a combination of geom-

etry not yet included in the simulation, namely the aluminium holder the

target wheel sits in, the motor used to rotate the wheel and tin and copper

absorber foils on the faces of the Phase I and Clover detectors, and inaccu-

racies in crystal size and position. Though the effect seems too pronounced

for such a small amount of missing geometry to be the only cause. One fur-

ther affect on low energy efficiency for both silicon and germanium detectors
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Figure 4.11: Simulated efficiency of the Jurogam II array also shown in blue
is a calculated efficiency curve.

that has not been taken into account is the effect of low energy noise. For

real detectors a threshold signal limit has to be set to stop excessively high

count rates. The effect this has on low energy efficiency could account for

the discrepancies seen here.

4.5.1 Efficiency Losses

The SAGE spectrometer has a number of apertures between the target po-

sition and the silicon detector, through which electrons must pass. This is

illustrated in Figure 4.12. Table 4.1 details the volumes that electrons deposit

energy in.

Along with the narrowest of the apertures, the carbon foil unit, there is
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Figure 4.12: Simulation detailing the geometry near to the target position in
SAGE, visible are the carbon foil unit, target wheel, target, and the detector
chamber.

the target wheel, shown in Figure 4.12, that are the main volumes for ab-

sorbing electrons. The target also shows a very high number of interactions,

though it should be noted that these are generally of a very small energy and

most electrons that interact here will go on to deposit most of their energy

in either the target wheel, carbon foil unit, or detector. Inversely, the target

chamber, detector chamber, and high-voltage barrier all account for a very

small number of electrons.
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Volume Name Electron Interactions
Detector 81000
Carbon Foil Unit 105000
Target 908000
Target Wheel 326000
Target Chamber 2300
Detector Chamber 0
High-Voltage Barrier 7

Table 4.1: Number of electrons from one million generated at 100 keV inter-
acting with different parts of the geometry, rounded to the nearest thousand.
For the detector, only full energy deposits are considered, for all other vol-
umes any energy deposit is counted. Note that an electron can deposit energy
in multiple elements.

4.6 Sensitivity to delayed electron emission

One potentially interesting use for SAGE is the detection of delayed electron

emissions, an example of this is 177Au, which is believed to have have an

isomer with a lifetime less than 17 ns [Kon01]. In the time this isomer takes

to decay, the recoiling nucleus will have travelled a number of centimetres

downstream towards RITU. This makes the detection of γ rays difficult owing

to shadowing effect of the JUROGAM II array, whereby, any γ rays emitted

after the recoiling nucleus has left the target chamber would have to pass

through a significantly larger amount of material to be detected as they

would have to enter the germanium detectors side on.

Due to the magnetic field arrangement of SAGE however, conversion

electrons of transitions such as this could still be transported to the silicon

detector by the solenoid coils. Simulations suggest that not only could this

be possible but the higher magnetic field region downstream could improve

the focussing of the electrons and increase the detection efficiency in this
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case.

Figure 4.13: Detection efficiency as a function of distance downstream of the
target position for emission of electrons of energy 100 keV.

In Figure 4.13 the detection efficiency is shown as a function of the dis-

tance downstream of the target position that the electron is emitted. It can

be seen that the efficiency increases through to around 70 mm, and then tails

off as the distance increases. This effect opens up the exciting possibility

that short lived isomers (with lifetimes of a few ns) can be detected near to

the target position via the emitted electrons. This is especially fortunate as

transitions out of isomeric states often have high multipolarity and therefore

ought to be highly converted.
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Figure 4.14: Electrons detected as a function of emission angle.

4.7 Emission angle of electrons

Figure 4.14 shows the electrons detected as a function of their initial emis-

sion angle in the horizontal plane with 0◦ being emission directly forward.

The black line shows electrons detected for a solenoid current of 800A in

both upstream and downstream coils. The highest detection is for electrons

that are emitted with an angle of 180◦. It can also be seen that there are

secondary peaks at 35◦ and 325◦ these can be explained as electrons being

reflected by the downstream coil. Shown in red is the electrons detected for

a solenoid current of 800A in only the upstream coils. It is clear that without

the downstream coil there is no reflection of electrons and so only electrons

emitted at backwards angles are detected. It should also be noted that for

when using all the coils the number of electrons detected is approximately

168,000, whereas for only the upstream coils 77,000 electrons are detected.
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4.8 New data format for simulation of exper-

iments

GEANT4 has in-built methods of producing radioactive decays though there

are a number of problems with the methods. Firstly there have been incon-

sistencies with internal conversion electron emission. Secondly there is only

support for nuclei of Z<100. Finally, even for the nuclei that can currently

be simulated, if one were to change a decay in some way, for testing new

levels or altering level schemes for instance, this would require editing within

the source code of GEANT4.

Fortunately GEANT4 is highly versatile when it comes to generation of

particles, so it possible to write a class to generate decays by reading in the

relevant information from text files.

A new primary generator action was written that can more completely

simulate the radioactive decay of nuclei such as 255Lr. This primary generator

action requires three files to simulate the decay, these are a level scheme file,

an ICC file, and an intensity file. See Tables 4.2, 4.3 and 4.4 for examples.

The level scheme file follows the format of the ENDSF data format, with

the hopes of later expansion to allow more complex decays to be simulated.

Table 4.2 shows an example level file for a test nucleus. In this nucleus it

can be seen that there are 11 levels linked by 10 E2 transitions. Within this

file a number of relevant values are also read into the simulation. There is a

line at the start of the level scheme file that has the following structure;

L T K L1 L2 L3 M1 M2 M3 M4 M5 N O P Q. Where L and T refer to the

number of levels and transitions respectively and K through to Q are the

55



binding energies of the simulated nucleus.

The ICC file is created using BrIcc [Kib08], this includes the internal

conversion coefficients for K through to Q conversion and all their associated

subshells, a script then extracts the relevant numbers to a more readable

format shown in Table 4.3. Table 4.3 shows the conversion coefficients for

each shell up to Q and each subshell in the case of L and M. The reason

for including subshells for L and M conversion is that the energy difference

between these is larger than the resolution of SAGE and so, for example an L1

and an L3 electron, in 255Lr are separated by 7 keV and can be differentiated.

For N conversion or higher the differences are so small, <1 keV, that they

are indistinguishable.

The intensity file is generated from the conversion coefficients in the ICC

file and another file detailing the γ-ray intensities of the transitions.

To accurately reproduce the intensities of transitions within the simu-

lation, without knowing the initial populations of states is complex. The

chosen approach is to compare the intensities for the given transitions. By

comparison of the intensity of transitions into a state and out of a state, the

amount of decays starting at each level can be inferred.

In the case detailed in Table 4.4 it can be seen that the first excited state

has a total intensity of 1333, the next state has an intensity of 985, from

this, it can be inferred that if there were 1681 transitions in total, 985 of

them would begin in the second excited state and 348 would begin in the

first excited state. This would reproduce the given intensities of 1333 and

985 respectively.

The level scheme detailed in Figure 4.15 is for a rotational band where
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there is only one transition out of any given state. If there were to be two

or more transitions from a state, as is the case with the strongly coupled

rotational band simulated in Subsection 4.8.1, then based on the intensities

of the two given transitions and by comparison to a randomly generated

number, a transition is chosen. This process of choosing transitions will

continue until the level energy, read in from the Level file, reaches zero.

4.8.1 Test nucleus simulation

Excited nuclei can decay through a large number of states through many

different structures. Attempting to simulate any possible decay chain from

any nucleus is a massive undertaking. The first goal was to simulate the

individual structures, such as those seen in 255Lr, see Section 6.6.

Shown in Figure 4.15 is an ideal rotational band. For the purposes of

generating conversion coefficients, this nucleus has been set to have Z=103,

the same as lawrencium.

Figure 4.16 shows the γ-ray and electron spectra generated from 1 million

decays of this test nucleus. It is clear that even with this simple structure

the electron spectrum is complex. This is one of the great difficulties of

electron spectroscopy of superheavy elements. With lighter nuclei the spread

in the subshells is smaller. For a transition of 100 keV being emitted from a

nucleus of Z=50, the energy difference between an electron emitted from the

L1 subshell and the L3 subshell is 0.53 keV, whereas for the same energy in

Z=103 the difference is 7.73 keV. This leads to a larger number of resolvable

peaks in the electron spectrum compared to the γ-ray spectrum.

The second structure seen in 255Lr is a strongly coupled rotational band.
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Figure 4.15: An example rotational band to be simulated.

An idealised case of this kind of structure is shown in Figure 4.17, in this

the signature partner bands are well spaced and the differences in the γ-ray

energies are all resolvable, in real life this is unlikely to be the case.

An important indicator of the state that such a coupled band structure

is built on is the strength of the M1 transitions. For example in Figure 6.31

the difference in a strongly coupled band built on the 7/2+ [633] or the 7/2−

[514] states would look similar in the γ-ray spectrum but with the different

M1 strengths at the bottom of the band, would be distinguishable with the

use of SAGE.

This can been seen in Figures 4.18 and 4.19 where γ-ray spectra look
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Figure 4.16: Upper:γ-ray spectrum, lower:electron spectrum produced by
simulation of 1 million decays of level structure shown in Figure 4.15.

largely the same, and the differences are seen in the electrons. Here it can be

seen that there are significantly more counts in the case of high M1 intensity.

The L electrons of the transitions at 107 and 137keV are much stronger in

the case of high M1 intensity, but are still weak in the γ-ray spectrum.
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Figure 4.17: An example strongly coupled rotational band to be simulated.
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Figure 4.18: Upper γ-ray spectrum, lower electron spectrum produced by
simulation of 1 million decays of level structure shown in Figure 4.17 with
low intensity M1 transitions.

Figure 4.19: Upper γ-ray spectrum, lower electron spectrum produced by
simulation of 1 million decays of level structure shown in Figure 4.17 with
high intensity M1 transitions.
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Type Energy Multipolarity
L 0.0
L 40.0
G 40.0 E2
L 120.0
G 80.0 E2
L 240.0
G 120.0 E2
L 400.0
G 160.0 E2
L 600.0
G 200.0 E2
L 840.0
G 240.0 E2
L 1120.0
G 280.0 E2
L 1440.0
G 320.0 E2
L 1800.0
G 360.0 E2
L 2200.0
G 400.0 E2

Table 4.2: Example of level scheme file used for generation of radioactive
decays. L and G denote whether an entry is for a level or a γ ray, respectively.
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Subshell Coefficient Error
K 0
L1 4.110E+01 5.754E-01
L2 1.052E+03 1.473E+01
L3 8.067E+02 1.129E+01
L-tot 1.900E+03 2.660E+01
M1 1.395E+01 1.954E-01
M2 2.961E+02 4.145E+00
M3 2.400E+02 3.360E+00
M4 4.144E+00 5.802E-02
M5 1.885E+00 2.639E-02
M-tot 5.560E+02 7.785E+00
N-tot 1.607E+02 2.250E+00
O-tot 4.165E+01 5.831E-01
P-tot 6.723E+00 9.412E-02
Q-tot 1.818E-02 2.546E-04
Tot 2.665E+03 3.731E+01

Table 4.3: Example of one transition in an ICC file used for generation of
radioactive decays (E=40 keV, Z=103)

Energy Total intensity
40.0 1333.0
80.0 985.3
120.0 799.0
160.0 419.5
200.0 270.4
240.0 148.1
280.0 119.4
320.0 65.9
360.0 48.9
400.0 11.6

Table 4.4: Example of Intensity file used for generation of radioactive decays.
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4.9 Expansions to the current simulation

There are still a number of additions that could be made to the simulation

to increase its accuracy. These will be briefly detailed here.

Currently the SAGE silicon detector is modelled at 90 pixels of silicon

arranged as shown in Figure 3.3 with the inter-pixel inactive areas included.

The dead layers on the front face of the detector have not yet been included

into the simulation but will likely cause some slight change in the efficiency

of the detector. Along with this the printed circuit board the detector is

mounted on has not been simulated. With respect to the simulation of ex-

perimental data, the high flux of low energy delta electrons has not been

reproduced. There are a number of approaches possible here, delta electrons

can be generated by simulating the collision between a heavy ion and the

target material. This would be a highly time intensive method owing to the

large number of particles that would be generated and require subsequent

tracking. A simpler approach would be to generate a statistical distribution

of delta electrons that could then be added to any electron spectrum. Some

combination of these with electrons being generated by a statistical approach

and then tracked with GEANT4 would seem optimal, in terms of speed and

preservation of coincidences in the data. Another aspect that is still missing

from the simulated data are X-rays. A similar approach to that of delta

electrons is likely best, with a statistical distribution of X-rays being pro-

duced and then tracked by GEANT4, though a more complex analysis may
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be possible with the emitted electrons determining which X-rays are emit-

ted. The reproduction of more complicated structures is also a future goal,

following the relatively simple structures seen within 255Lr combining these

structures along with inter-band transitions, as detailed in Figure 6.28 would

be very useful in understanding experimental data. After this reproducing

more complex single-particle structures, such as those seen in 133Ba for in-

stance would be very useful in both better characterising the detector setup

and from this more complicated nuclei could be simulated for comparison to

experiment.

Finally there is another GEANT4 simulation for the detectors at the focal

plane, as detailed in Section 3.3. It would be a very useful tool if this could

be combined with the simulation detailed here. This would allow a much

fuller simulation of entire experiments performed at JYFL.
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Chapter 5

Analysis Techniques

The experiment to create and study 255Lr was performed at the University

of Jyväskylä in two parts, with a high intensity (110pnA) focal plane part

to study α and isomeric decay, and a lower intensity (10pnA) part to study

in-beam γ ray and conversion electron emission from excited states. The

reaction used was 209Bi(48Ca,2n)255Lr at a beam energy of 219(2) MeV. This

section will detail a number of techniques used in the analysis of this exper-

iment.

5.1 Calibration

Owing to the different sensitivities and energy ranges of the various detectors

mentioned in Chapter 3, a number of methods were employed to calibrate

these detectors. All calibrations were performed by fitting individual peaks in

the software program TV [The93] to obtain the raw channel numbers for the

centroid of the peaks. These centroids along with the given energies for the

electrons and γ rays from [Fir99], were used to calculate the gain coefficients
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using a gnuplot script.

5.1.1 Internal calibration of DSSD

Normally the DSSD would be calibrated using a triple-α source (239Pu,

241Am, 244Cm), the energies of the α particles from these three elements

are between 5-6 MeV, this is far away from the region of interest in this ex-

periment, 8-8.5 MeV. It should also be noted that using an external source

for calibration of the DSSD would result in a shifted energy spectrum, due

to the dead layer on the detector. Owing to this and also the interest in

studying the fine α structure it was decided that a calibration closer to the

region of interest was needed.

Over the course of the experiment three different reactions were used for

the purposes of calibration, these were, 164Dy(48Ca10+,5n)207Rn,

208Pb(48Ca10+,2n)254No, and 173Yb(48Ca10+,5n)216Th. Using these reactions

one side of the DSSD could be calibrated to be sensitive to α decays. The

other side of the DSSD was calibrated using a 133Ba source to be sensitive to

electrons of energies up several hundred keV.

5.1.2 Calibration of silicon & germanium detectors

Calibration data was taken both before and after the experiment by placing

the 152Eu and 133Ba sources of known intensity at both the target position

and focal plane. The sources were used to obtain the efficiency the SAGE

silicon detector and the JUROGAM II array.For the germanium detectors

a number of peaks were used for the calibration with energies ranging from
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Figure 5.1: Relative efficiency curve for the SAGE silicon detector as a func-
tion of electron energy.

81 keV to 1408 keV. For the SAGE silicon detector, the electron sensitive side

of the DSSD and the PIN diodes electron peaks between 75 keV and 350 keV

from Ba were used. Owing to the energy response of the planar being suited

to detection of lower energy γ rays, only the Ba source placed inside the

GREAT vacuum chamber was used with peaks over the range 80 keV to

383 keV.

Efit = exp[A+B(log(x/E0)+C(log(x/E0)
2 +D(log(x/E0)

3 +E(log(x/E0)
4]

(5.1)

Equation 5.1.2 was used to calculate the efficiency curve for the JUROGAM

II array along with the SAGE silicon detector, Figures 5.2 and 5.1 show this

curve fitted to data, with Table 5.1 detailing the coefficients in each case.

Figure 5.1 shows the efficiency response of the SAGE silicon detector as
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Figure 5.2: Absolute efficiency curve for the JUROGAM II array as a function
of γ-ray energy.

a function of electron energy. Figure 5.2 shows the efficiency response of the

JUROGAM II array as a function of γ-ray energy.

5.1.3 Doppler Correction

Recoiling nuclei are travelling at relatively high velocity. Due to this both γ

rays and electrons that are emitted will undergo a Doppler shift according

Coefficient JUROGAM II SAGE
A 1.866 1.273
B -0.627 -1.541
C -0.201 -0.943
D 0.246 -0.128
E -0.0779 0.00137
E0 320* 320*

Table 5.1: Coefficients used for the fitting of the efficiency curve shown in
Equation 5.1.2. Parameter denoted by * was held constant
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to their emission angle, as described by Equation 5.2 [Kan04],

E =
E ′ +m− βcosθ′

√
E ′2 + 2mE ′√

1− (v
c
)2

−m, (5.2)

where E is the energy of the particle when emitted in the rest frame of the

recoil, E ′ is the detected energy, m is the mass of the particle, v is the velocity

of the particle, c is the speed of light and θ is the angle of emission

For γ rays m = 0 and v = c, so Equation 5.2 simplifies to

Eγ = E(1 +
v

c
cosθ). (5.3)

For γ rays the emission angle is known from the detector angle, with the

detectors in the JUROGAM II array being arranged in rings at the angles

76◦, 105◦, 133.6◦ and 157.6◦ relative to the beam direction. This means the

detected energy, Eγ, can directly be converted to the unshifted energy, E,

using Equation 5.3. In this experiment the recoil velocity was calculated to

be 0.0186 c.

For electrons, this situation is more complicated. All information of emis-

sion angle is lost owing to being transported by the solenoidal magnetic field

to the detector. This means that the unshifted energy of electrons cannot be

calculated for every electron as is done for γ rays. An average emission angle

for detected electrons can be found using the SOLENOID code. This allows

an average Doppler shift correction to be applied to the electron energies.

For example a 320 keV electron would be shifted up in energy to 325.6 keV

by taking an average emission angle of 160◦.
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5.2 Data Acquisition

An efficient data acquisition with as little dead-time as possible is crucial

to the studies such as this. To this end the Total Data Readout (TDR)

triggerless data acquisition system has been developed [Laz01].

5.2.1 Total data readout

A major stumbling block for nuclear structure studies, especially those of

isomeric decay studies, is the long dead time caused by conventional recoil

decay tagging techniques because of long correlation times. TDR was devel-

oped to overcome the flaws of a common dead time data acquisition setup

as has been used in the past. The idea behind TDR is that every detector

channel is run independently and each data item is time stamped with a rate

of 100 MHz, meaning a 10 ns precision on each data item. Using this method,

events can then be reconstructed in software and the spatial and temporal

constraints of the specific setup can then be used to define correlation of

events.

5.2.2 GRAIN analysis system

To analyse the TDR data the GRAIN analysis system [Rah08] was developed.

GRAIN’s usefulness is threefold. Firstly it has the ability to form physically

meaningful events from the data stream. Secondly it provides a relatively

simple way for an “analysis code” to be applied to the data to extract results.

Finally it gives the user a way to visualise the data in one and two dimensional

histograms through its GUI.
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5.2.3 Use of TUPLES for sorting data

In many experiments the amount of useful data compared to the total data

is relatively low. This is especially true for experiments with lower cross

sections, such as this one. Whilst analysis is ongoing there are many time

consuming tasks, such as the optimisation of 1 and 2-dimensional gates. Of-

ten once a gate has been changed a subset of the data can be “resorted” to

determine whether this new gate is an improvement. This iterative process

is a time consuming one. In the case of low cross-section experiments, where

sorting of most, if not all, of the data is required to determine any improve-

ment, this can be an extremely time intensive process. This can be mitigated

by the use of increased computer power but this is not always feasible and

cannot be increased indefinitely.

Another possible approach is the use of TUPLES in the initial sorting of

the data. A TUPLE is essentially an n-dimensional hypercube. Within this

can be entered the various parameters often used for gating, such as time of

flight, energy loss in the gas detector, and recoil energy, alongside relevant

values such as energy deposited in JUROGAM II or SAGE on an event by

event basis.

Using this method, a single sort of the data can be performed with very

wide gates that only cut out noise but not relevant events. Then any gating

conditions can be applied to these data without the need for resorting.

This method can reduce the time taken in optimising gating conditions in

most situations. A secondary advantage of using this method is the rebinning

of data without the need to resort. This is especially useful in cases such as
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255Lr where isomeric and α decaying states have significantly different half-

lives.
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Chapter 6

255Lr Analysis Results and

Discussion

As mentioned previously 255Lr was produced in the fusion-evaporation re-

action 209Bi(48Ca, 2n)255Lr. The study was performed in two separate runs

in April 2011 and April 2012. The cross section for this reaction has been

calculated to be of the order 200 nb.

The 48Ca10+ ions were produced in the ECR ion source, then the ions

were transported to the K130 cyclotron where they were accelerated to form

a beam of energy 219(2) MeV. The target used for the first part of the ex-

periment was a 450µg/cm2 209Bi at 99.8% enrichment, sandwiched with

10µg/cm2 (upstream) and 40µg/cm2 (downstream) carbon foils. The targets

for the second part of the experiment were two self supporting 209Bi targets of

thickness 215µg/cm2 and 525µg/cm2, and a 300µg/cm2 209Bi with a carbon

backing.

For the first part of the experiment only RITU and GREAT were used.
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JYFL 2011 JYFL 2012
Beam Time (days) 14 10
Average Beam intensity (pnA) 105 10
Number of α decays 11800 1170
Number of recoil-gated γ rays - 7100
Number of recoil-gated conversion electrons - 5300
Number of 255Lr-tagged γ rays - 990
Number of 255Lr-tagged conversion electrons - 770

Table 6.1: Experiment details.

In the second part of the experiment, RITU and the GREAT spectrometer

were used in conjunction with the SAGE spectrometer. The high voltage

barrier within SAGE was set to -38kV.

Table 6.1 details experimental yields of α decays, γ rays and electrons for

both parts of the experiment.

6.1 Previous Work

Lawrencium was first observed in 1961 by Ghiorso et al. [Ghi61]. Lawrencium-

255, along with several other lawrencium isotopes were first studied by Es-

kola et al. [Esk71] in 1971, where they measured one α decay of energy

8.37(2) MeV with a half-life of 22(5) s. This α decay is likely to be the

8.365(2) MeV, 31.1(13) s one later seen in [Cha06]. Owing to the significantly

lower statistics and impurity in the first experiment, the other α decays would

not have been seen.

More recently 255Lr has been studied on a number of occasions, see

[Cha06, Ket09, Hau08, Jep09]. Alpha spectroscopy was performed by Chatil-

lon et al. [Cha06], isomeric decay studies were performed by Hauschild et

75



al. and Jeppesen et al. [Hau08, Jep09], whereas only Ketelhut et al. [Ket09]

studied prompt γ-ray data in-beam.

Figure 6.1: Level scheme taken from [Jep09].

Figure 6.1 shows a proposed level scheme from below the isomeric state

at (25/2+) denoted by a bold line. Note there is a second proposed isomeric

state at spin (15/2+).

Figure 6.2 shows a proposed α decay scheme from Chatillon et al. [Cha06],

here 4 α decays are shown from two states in 255Lr into 3 states in 251Md.

Figure 6.3 details the results of the only in-beam study to date. The

upper panel shows a recoil-gated γ-ray singles spectrum, the lower two panels

detail summed coincidence spectra gating transitions believed to be from a

rotational band and a second strongly coupled rotational band.
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Figure 6.2: Alpha decay scheme taken from Chatillon et al. [Cha06]

Figure 6.3: γ-ray spectra taken from Ketelhut et al. [Ket09], (a) Singles
spectrum in delayed coincidence with recoil implantation (b) γ−γ projection
in coincidence with the sum of the gates of the transitions marked by dotted
lines (c) same as (b) but for transitions marked with dashed lines.
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6.2 Decay Spectroscopy

As mentioned in Chapter 5, the experiment was performed in two parts, the

first part focussed solely on decay spectroscopy investigating the α decay and

also the isomeric decay.

6.2.1 Alpha Spectroscopy

There are two strong α decaying states in 255Lr, at energies of 8265(2) MeV

and 8420(10) MeV. These states have half-lives of 31.3(1.3) s and 2.53(13) s

and are from the ground state at spin 1/2− and the excited state with spin

7/2− [Cha06]. These can be seen in Figure 6.4 which shows, all events in

the DSSD that are anti-coincident with a signal in the MWPC which would

indicate an incoming recoil. Also visible is the α decay daughter of 255Lr,

251Md. There is also contamination from 255No, and 215Th left over from

calibration.

The α spectrum can be significantly cleaned by the use of recoil decay

tagging (RDT) whereby a recoil is required within the same pixel in the

DSSD as the α decay within a time window of 100 s before the α particle

gives the spectrum shown in Figure 6.5, alongside 255Lr and 251Md a small

amount of the contaminant 255No can be seen. This method can also be used

to associate γ rays and conversion electrons with a specific recoil and decay.

When a further subsequent α decay is required, with the initial search

time being 100 s and a larger time window of 900 s for a second α decay the
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Figure 6.4: An α spectrum of 255Lr, vetoed with the MWPC, visible are two
peaks from 255Lr, along with the α decay daughter, 251Md and contamination
from 255No.

Figure 6.5: A recoil-decay correlated α-decay spectrum of 255Lr, requiring
the detection of a recoil nucleus in the 100 s prior to the α detection. Peaks
from the daughter nucleus 251Md and contaminant 255No are also seen.
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Figure 6.6: Upper, recoil-α correlated spectrum of 255Lr with a correlation
time of 100 s, lower recoil-α-α correlated spectrum showing the daughter
251Md with a correlation time of 900 s.

Figure 6.7: Two recoil-α− α correlated spectra inset with gating conditions
on the α energy from the mother nucleus.

80



spectrum shown in the lower panel of Figure 6.6 is produced. Here 251Md is

the only peak in the spectrum.

By gating on the first α decay energy in recoil-α-α correlation, it can be

seen that gating on either of the strong α decay peaks in 255Lr that they are

both correlated to the 7550 keV α decay in 251Md, this is shown in Figure 6.7

where it can be seen that both 255Lr peaks are correlated with the ground

state α decay of 251Md [Cha06]. Unfortunately the statistics were not high

enough to perform α-γ correlations and gain any information about excited

states in 251Md.

6.2.2 Half-life measurement

Implementing the RDT method it is possible to calculate the half-life of 255Lr.

When a recoil is detected in the DSSD and is then followed by an α-decay in

the same pixel the time between these two events can be measured. Owing

to the relatively long correlation time required for measurement of half-lives

there is the problem of random correlation, due to a second recoil implanting

within the same pixel as a previous recoil before the latter has decayed.

To overcome this discrepancy a double exponential is fitted to the decay

curve with components τshort and τrandom, which can then be related to the

true lifetime by

τ−1true = τ−1short − τ
−1
random. (6.1)

The double exponential used for fitting is of the form

N(t) = Ae−λrandomt +Be−λshortt. (6.2)
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Figure 6.8: Decay curve for correlated α decays in 31 s half-life peak. Inset
shows the gating conditions with respect to α-particle energy.

The search time between recoil implantation and α-decay was set to 3 half-

lives [Cha06], 100 s, to ensure that all 255Lr nuclei were detected. It should be

noted that for the shorter half-life, 2.5 s, measurement a single exponential

was fitted to the data, this can be seen in Figure 6.9. For the longer half-life

decay, 32 s, a double exponential was used, as there is a significant proportion

of the shorter decay within the gate due to the low-energy tail of the shorter

decay this can be seen in Figure 6.8. The half-life for the two decays was

extracted from the fits and found to be t1/2 = 31.93(53) s for the longer decay,

and t1/2 = 2.577(50) s for the shorter decay. These values are consistent with

previously published values of t1/2 = 2.3(10) s and t1/2 = 31.1(13) s [Cha06].
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Figure 6.9: Decay curve for correlated α decays in 2.5 s peak. Inset shows
the gating conditions with respect to α-particle energy.

6.2.3 Isomeric decay

Using the RDT method detailed in Section 6.2.1, isomeric decays can also

be measured. Isomeric states can decay through a combination of γ-ray and

conversion-electron emission. The correlation time between recoil implanta-

tion and isomeric decay is limited at 10 ms, which should be sufficient to allow

all isomeric states to decay based on the known isomeric state with a half-

life of 1.7 ms [Jep09]. Approximately 5200 electron showers were detected in

the DSSD which are correlated with a recoil implantation within the afore-

mentioned time condition. Of these, approximately 92% have a half-life of

1.73(4)ms and the remaining 8% decay with a half-life of 118(7)µs. This first

isomeric decay has been seen and is consistent with published values [Jep09].

This shorter isomeric state is due to contamination from 206Pb created by

83



Figure 6.10: Decay curve for correlated isomeric decays, the short half-life
component is due to contamination from 206Pb.

transfer reactions in the target.

The decay of isomeric states within 255Lr is explored through observation

of a recoil implantation in the DSSD followed by an lower energy signal in

the same pixel indicating electrons generated in the isomeric decay. The

γ rays coincident with this can then be extracted. This is achieved using

the planar detector, the GREAT focal plane Clover and two further Clover

detectors. The planar detector has higher efficiencies at lower energies and

is more suited to detecting low energy γ-ray and X-rays. The three Clover

detectors are more efficient at higher energies.
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Figure 6.11: Recoil-electron tagged γ-ray spectrum from the focal plane
Clover detectors.
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Figure 6.12: Recoil-electron tagged γ-ray spectrum from the focal plane pla-
nar detector, peaks marked with an * are known lawrencium X-rays.

Jeppesen et al. This work
Beam time 5 days 14 days
Beam intensity 200 pnA 105 pnA
Number of α decays 2.2× 104 1.2× 104

Number of electron bursts 4.9× 103 5.2× 103

Table 6.2: Comparison of experimental details between Jeppesen et al. and
this work.

Figure 6.11 and Figure 6.12 show the recoil-electron γ-ray spectra. There

are a number of peaks visible that have been observed previously by [Jep09].

Table 6.2 compares some values relating to the study performed by Jeppe-

sen et al. and the one performed here. It can be seen that, the number

of α decays detected was significantly higher, whereas electron bursts were

comparable, though Jeppesen et al. saw less contamination from 208Pb, so

detected more 255Lr isomeric decays. Even with lower statistics, this experi-

ment should be more sensitive to γ rays with three Clover detectors compared
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to one in the previous study. Though the spectrum obtained is missing many

peaks, including the 387 keV transition out of the proposed short isomeric

state. The intensities of the 492 and 587 keV transitions are also completely

different to the 494 and 588 keV transitions seen previously. Finally no time

delay could be measured between the two states depopulating the higher iso-

meric state and those depopulating the lower isomeric state. Which was the

justification for the existence of this state by Jeppesen et al..

6.3 Discussion of Decay spectroscopy

Figure 6.2 shows a proposed α decay scheme for 255Lr to 251Md and subse-

quent decay to 247Es. Whilst it was possible to perform a recoil-α-α analysis,

see Section 6.2.1 the statistics were insufficient to differentiate the four pro-

posed α decays shown in Figure 6.2. Furthermore there were insufficient α-γ

coincidence data to distinguish the states being populated in 251Md.

It has been suggested by Chatillon et al. [Cha06] that the shorter half-life

α decaying state also decays into the ground state owing to an observed short

period increase in the α decay rate before the exponential decay. As can be

seen in Figure 6.13, this effect has not been observed here.

The presence of an isomeric state in 255Lr has been previously identified

[Hau08, Jep09]. Jeppesen et al. [Jep09] proposed the level scheme shown

in Figure 6.1 with two isomeric states of half-lives 1.70(3)ms and tens of

nanoseconds. Hauschild et al. [Hau08] alternatively proposed a half-life of

1.4(1)ms for a single isomer but an isomer with a half-life of tens of nanosec-

onds was not present.
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Figure 6.13: α decay curve for correlated α decay in longer lived peak, inset
shows gating conditions.

In this work an isomer of half-life, 1.73(4)ms has been measured, which

is in close agreement with the previously measured value [Jep09]. However,

where Jeppesen et al. detected a second shorter lived isomer there is no

evidence for it here. This second isomer was suggested owing to a time delay

seen between the emission of the γ rays at 244, and 301 keV compared to the

three transitions depopulating the isomer 387, 494 and 588 keV. This effect

cannot be seen here.

Unfortunately, the amount of γ-ray data collected here is lower than the

previous study [Jep09]. There was insufficient data to perform γ-γ coinci-
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dence analysis and using the RDT method where the decay of the isomeric

state is signified by an electron shower [But02] detected in the DSSD to

detect γ-rays from transitions below the isomeric states was not possible.

6.4 In-beam spectroscopy

The second, in-beam, part of the experiment employing the SAGE spectrom-

eter, consisting of the JUROGAM II array and the SAGE silicon detector,

placed around the target position to both prompt γ rays and conversion

electrons. Events at the focal plane are used to identify relevant radiation

at the target position. When there is a 255Lr recoil implantation event at

the focal plane, this means that a 255Lr nucleus was created ∼ 0.9µs earlier

at the target position. This correlation allows for the selection of γ ray and

electron emissions coincident with the creation of the 255Lr nucleus.

6.4.1 Gamma-ray spectroscopy

Owing to the low production cross-section of 255Lr and the large amount of

background, the γ-ray statistics are rather meagre and can do little to expand

upon the results already presented by Ketelhut et al. [Ket09].

Figure 6.14 shows the γ-ray data gained by requiring a recoil-like event in

delayed coincidence. The strongest features are the X-rays associated with

lawrencium and bismuth. Furthermore the rotational band and strongly

coupled band structures detailed by Ketelhut et al. [Ket09] are hard to

discern without prior knowledge. For simplicity the structures described by

Ketelhut et al. [Ket09] will be referred to as the rotational band, containing
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Figure 6.14: Recoil-gated γ-ray spectrum from the JUROGAM II array.
Black labels indicate transitions in rotational band, red and blue indicate
the two signature partner bands in the strongly coupled band.

the transitions 197,247, 296, 343, 386, and 430keV, and the strongly coupled

rotational band, or first and second signature partner bands, which contain

the transitions 189, 239, 288, 338, and 384keV and 215, 264, 314, and 359keV

respectively.

Figure 6.15 shows the γγ coincidence data generated by summing co-

incidences of gates on all known transitions in the structures suggested by

Ketelhut et al. [Ket09]. From these data alone there are no strong coin-

cidences and nothing further to be extracted about the level structure of
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Figure 6.15: Recoil-gated γγ coincidence spectra, gating on a) known γ rays
in the rotational band b) known γ rays in the first signature partner band c)
known γ rays in the second signature partner band.

255Lr.

6.4.2 Conversion-electron spectroscopy

For the first time, alongside the measurement of γ-ray data, conversion-

electron emission has been measured for 255Lr. This has potential to provide

a greater insight into the nuclear structure, as the combination and interplay

of these two probes of nuclear structure can offer a wealth of information.

Figure 6.16 shows the conversion-electron spectrum gained by requiring
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Figure 6.16: Recoil-gated conversion electron spectrum from the SAGE sili-
con detector, a number of prominent peaks are labelled, energies are uncor-
rected for binding energy.

a delayed coincidence with a recoil-like event.

There are a number of notable features in Figure 6.16. Firstly it should

again be noted that the high voltage barrier potential was set to -38kV for

the majority of the experiment, though it was altered between -35kV and

-40kV at times. This is responsible for the significant decrease in counts

for energies below ∼35 keV. Labelled are a number of potentially interesting

transitions.

Further requiring a 255Lr decay within the same pixel as a recoil nucleus
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Figure 6.17: Recoil-α-gated conversion electron spectrum from the SAGE
silicon detector, a number of prominent peaks are labelled, energies are un-
corrected for binding energy.

allows for a cleaner electron spectrum to be produced. This can be seen in

Figure 6.17, where additional peaks have been marked.

Figure 6.18 shows the recoil-gated γ-electron coincidence data summed

from all known transitions in the structures suggested by Ketelhut et al.

[Ket09].

As can be seen in Figures 6.19, 6.20, and 6.21, by gating on the elec-

tron peaks visible in Figures 6.16 and 6.17 in the γ-electron coincidences

there is little to strongly indicate which electrons are coincident with which
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Figure 6.18: Recoil-gated γ-electron coincidence spectra, gating on a) known
γ rays in the rotational band b) known γ rays in first signature partner band
c) known γ rays in second signature partner band.

band. Overlaid onto each spectrum are the previously known transitions

from Ketelhut et al. [Ket09].
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Figure 6.19: Recoil-gated γ-ray spectrum gating on electrons at (upper)
50 keV, (middle) 64 keV, and (lower) 112 keV transitions. Shown in black,
blue, and red, are the transitions in the rotational band, first signature part-
ner and second signature partner bands, respectively.
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Figure 6.20: Recoil-gated γ-ray spectrum gating on electrons at (upper)
76 keV, (middle) 104 keV, and (lower) 138 keV transitions Shown in black,
blue, and red, are the transitions in the rotational band, first signature part-
ner and second signature partner bands, respectively.
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Figure 6.21: Recoil-gated γ-ray spectrum gating on electrons at (upper)
156 keV, and (lower) 188 keV transitions Shown in black, blue, and red, are
the transitions in the rotational band, first signature partner and second
signature partner bands, respectively.
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6.5 Discussion of Recoil-Gated in-beam spec-

troscopy

The previously known states in 255Lr are detailed in Figure 6.22 [Ket09].

Further to this, there are expected to be a series of M1 transitions linking

the coupled bands built upon the [514] configuration. There are also expected

to be M1 transitions connected this band with the ground-state band built

upon the [521] configuration. Ketelhut et al. [Ket09] previously examined

the dynamical moment of inertia for comparison with 251Md and theoretical

values.

6.5.1 Spin assignment of 1/2- [521] band

It has previously been shown by Chatillon et al. [Cha06] that the ground

state of 255Lr is of spin and parity 1/2−. The rotational band structure

detailed in Section 6.4 has been tentatively assigned to be built on the 1/2−

ground state.

Figure 6.23 details the kinematic moment of inertia (J1) for different val-

ues of the spin of the lowest known state in the 1/2- band. In the superheavy

region, few nuclei have many, if any, excited states known. So it can be useful

to look at other, better known regions of the nuclear chart to find systematic

trends to inform the interpretation of results. In 255Lr much of the structure

is believed to be built upon the single particle states 1/2−[521] and 7/2−

[514] owing to the single unpaired proton. Potentially useful nuclei for com-
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Figure 6.22: Previously known bands from [Ket09].

parison are those with 103 neutrons, as a number of these have been studied

extensively. The two nuclei 179Os and 181Pt have 103 neutrons each, and have

structure built upon the same single particle states. Figure 6.24 shows the

comparison between different values for the lowest unknown spins in 255Lr

compared to the same structures in 179Os and 181Pt. The absolute values

differ, however the overall trend is the same.

It can be seen that, based on systematics, the assignment for the spin of

the lowest known state of 17/2− is the most likely. This would give three

transitions between the lowest known state in the 1/2−[521] band and the
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Figure 6.23: Kinematic moment of inertia for different values of spin of lowest
known level in 1/2− band.

ground state.

Figure 6.25 shows the J1 and J2 for both 255Lr and 179Os, note here a

lowest known state spin value of 17/2 has been used. It can be seen that

the relation between J1 and J2 follows the same trend in both cases, further

supporting this assignment.

6.5.2 Spin assignment of 7/2- [514] band

Figure 6.26 shows different J1 for different values of spin for the lowest known

state built upon the 7/2- state. Also included is J2 for comparison.
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Figure 6.24: Comparison of kinematic moment of inertia for different values
of spin of the lowest known level in the 1/2− band of 255Lr with 179Os and
181Pt.

As in the previous section, inspection of J1 and J2, and comparison to

another nucleus with 103 neutrons, 181Pt, shown in Figure 6.27 can be used to

find a probable value for the lowest known spin. It can be seen that the most

likely candidates for the spin of the lowest known state are 15/2− or 19/2−,

which would mean there are two or three unknown states at the bottom of

each of the coupled bands.
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Figure 6.25: Comparison of the kinematic and dynamic moments of inertia
for 255Lr and 179Os for excited states built upon the 1/2− state.

6.5.3 Expansion upon known levels

From the in-beam data, two potential new transitions can be seen in the

1/2− band, with energies of 91 and 140 keV. From analysis of the MoI in

Sections 6.5.1 and 6.5.2, the unseen low-spin transitions in the level scheme

can deduced by extrapolation.

Figure 6.28 shows a possible level scheme expanded to include all transi-

tions down to the ground state. Likely energies based upon the energy change

between known transitions have been chosen for the unseen low-energy tran-
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Figure 6.26: Kinematic moment of inertia for different values of spin of lowest
known level in the 7/2− band, also shown is the dynamic moment of inertia
for comparison purposes.

sitions. Also shown are expected M1 transitions between the coupled bands

and feeding into the ground state band. It should be noted that the spin

assignment for the lowest known state in the coupled bands has been taken

to be 15/2− in this case. But an additional two transitions would be a good

case for simulation and comparison in the future.

As has already been detailed in Section 6.4, the statistics in this ex-

periment were not sufficient to perform any kind of meaningful coincidence

analysis. The statistics were also so low that it is not possible to confidently
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Figure 6.27: Comparison of the kinematic and dynamic moments of inertia
for 255Lr and 181Pt for excited states built upon the 7/2− state.

assign any linking transitions between the structures built on top of the 1/2−

states and 7/2− states. It is also not possible to identify any inter-band M1

transitions between the strongly coupled bands.

Two relatively strong conversion electron transitions seen at 64 keV and

112 keV seen in Figure 6.16 correspond to γ-ray transitions of 91 keV and

140 keV respectively. It is possible that these are the two transitions at the

bottom of the rotational band of the same energy in Figure 6.28.
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Figure 6.28: Proposed additional transitions based upon in-beam data and
analysis of MoI, including expected M1 transitions. Unbracketed transitions
have previously been seen, transitions in brackets are new to this work, tran-
sitions in parentheses have not been seen but are expected.

6.6 Comparison to simulated data

In a low cross section experiments such as this any firm coincidences are

difficult to achieve, so any conclusions are hard to draw. Here the GEANT4

simulation detailed in Chapter 4 is useful. Possible level configurations can

be simulated with much higher statistics than are currently possible exper-

imentally. These different structures can then be compared to what is seen

experimentally and the likelihood of different level structures can be assessed.

The complicated level structure shown in Figure 6.28 cannot be simulated

fully though it is hoped that eventually it will be possible.

Currently the best approach available is to break this down into three
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Figure 6.29: Proposed level scheme for 255Lr broken down in the separate
sections to be simulated.

separate structures as detailed in Figure 6.29. Firstly the rotational band is

simulated, secondly the strongly coupled bands are simulated, finally the M1

transitions are simulated. Afterwards these can be combined. Unfortunately

this method breaks any kind of inter-band coincidence analysis though, that

ability is built into the code and intra-band coincidences can already be

achieved. Further to the lack of complete coincidence analysis, the intensities

of each of the three structures have to be tuned by hand, to match what

would be expected if the complete structure had been simulated. Both of

these shortcomings should be overcome in the future.

In such a structure as detailed in Figure 6.28, the M1 transitions from

the coupled bands to the ground state band would be strong and highly

converted. Inspection of the 255Lr electron spectrum in Figure 6.17 shows
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Figure 6.30: Level scheme of 255Lr to be simulated in GEANT4, including
all energies of M1 transitions, energies are in keV.

the strongest of the peaks at 50 keV, which would match the energy of and L

electron emitted from a converted transition of energy 80 keV. By inspection

of the energy differences between the levels in the ground-state band and the

strongly coupled bands, one possible configuration gives energies of 84, 82,

81, and 74 keV for the transitions as the energy is increased. For the intra-

band M1 transitions, there is less of a cue from the experimental evidence.

Though there are still unassigned transitions seen in the electrons at energies

of 104, 134, 168, 186, and 215 keV, it is not simple to assign these to the M1

transitions. One possible configuration which has transitions at 100, 141,

167, and 188 keV is shown in Figure 6.30. These of course do not completely

match with what is seen, but with low statistics comes a large margin for

error. Figure 6.31 shows three possible level structures built upon three

different states expected to be close to the Fermi surface in 255Lr: 1/2−

[521], 7/2− [514], and 7/2+ [633]. The 1/2− state is differentiable by the lack
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of a signature partner band. For the two 7/2 states it can be seen from the

transition rate ratios, T(M1)/T(E2), show that the band built upon the 7/2−

state would decay mainly through E2 transitions, whereas the band built

upon the 7/2+ state would be significantly stronger in the M1 transitions.

Taking the structures and simulating them separately allows for a clearer look

into their features. Figures 6.33 and 6.34 show γ-ray and electron spectra for

levels built upon the 7/2− and 7/2+ configurations, respectively. Figure 6.32

shows the γ-ray and electron spectra generated by decays of the rotational

band structure in 255Lr. As can be seen by comparing Figures 6.34 and 6.33,

if the levels were indeed built upon the 7/2+ configuration, the M1 transitions

would be of comparable intensity to the strongest E2 transitions in the γ-

ray spectrum. Referring back to Figure 6.14 this is not the case. Also in

the electron spectrum, the structure would be noticeably different with the

E2 transition conversion electrons being noticeably weaker, than potential

M1 transitions, which is not the case in Figure 6.17. This provides further

evidence that the structure is indeed built upon the 7/2− state. Different

amounts of decays through each of the structures can be combined, along with

a representative amount of the M1 transitions that connect them to get a first

estimation of a complete simulated spectrum. Taking the relative intensities

of the strongest transitions in the ground-state band and the strongly coupled

bands, 247 keV and 238 keV, respectively, gives a good first estimate to the

ratio between decays proceeding through the ground-state band and decays

proceeding through the coupled band is 3:2. It can also be assumed that

every decay that proceeds through the strongly coupled band must end in

one of the M1 transitions linking it to the ground state.
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Taking these rough assumptions and combining the relevant amounts of

each decay generates γ-ray and electron spectra given in Figure 6.35. Another

current shortfall is that once a decay has proceeded through the coupled

bands, the level at which it enters the ground-state band has not been taken

into consideration. So the intensity of the transitions at 42, 91, 140 and

197 keV are underestimated.

Figure 6.36 shows direct comparison between simulation and 255Lr-tagged

electron spectra. Although intensities are not accurately reproduced, for

reasons already detailed, there are still some conclusions that can be drawn.

It should be noted that for lower energies there is a slight discrepancy in

the energy between simulated and measured electron spectra, most notably

at 109 keV. In the simulation, there is a strong peak at 104 keV, which is

generated by the L-conversion of the 140 keV transition. The actual energy

of this peak should be around 109 keV. The reason for this is that energies

measured in the simulation are uncalibrated and are absolute detected ener-

gies. In the experimental data, any energy lost in geometries such as carbon

foils and dead layers will be cancelled out in calibration.

The peak at an energy of 50 keV in the experimental data spectrum is

reproduced in the simulation by the peak generated by the linking M1 tran-

sitions with energies between 74 and 82 keV. So it is possible that these are

roughly the energies of these inter-band M1 transitions.

Figure 6.37 shows a direct comparison between measured and simulated

γ-ray spectra. It can be seen that the γ rays coming from the linking M1

transitions lie at approximately the same energy as the X-rays coming from

bismuth and by inspection of the relative intensities these peaks would likely
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not be visible at this level of statistics.

Another interesting feature is the similarity in intensity between the tran-

sitions at 238 and 247 keV and the 288 and 296 keV. The former of these two

was used to tune the amounts of each structure that was used in the sim-

ulation, and so a similarity is to be expected. In the latter, the 296 keV

transition is significantly weaker than the simulation would suggest, which

hints at some discrepancy in the intensities. This highlights the sensitivity

within the simulation of the intensity of transitions and so much care will

need to be taken to ensure accuracy.

One feature missing from the measured data that the simulation would

suggest would be prominent is the transition at 140 keV, especially with a

contribution from the expected 139 keV transition in the strongly coupled

rotational band. Though this effect could be small depending on where the

strongly coupled rotational band depopulates to the ground-state rotational

band. Nevertheless, the absence of this transition in the γ-ray spectrum is

puzzling.

This comparison has focussed on only one possible level structure within

255Lr due to time constraints. Now however it is possible to simulate any

number of possible level structures for direct comparison to experimental

data.
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Figure 6.31: Possible structures built on various states in 251Md[Cha07].
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Figure 6.32: 1 million event simulation of rotational band built upon the
1/2− configuration from 255Lr.
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Figure 6.33: 1 million event simulation of coupled band from 255Lr taking
M1/E2 ratios for 7/2− configuration.
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Figure 6.34: 1 million event simulation of coupled band from 255Lr taking
M1/E2 ratios for 7/2+ configuration.
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Figure 6.35: Combined simulated spectra for decay of 255Lr.
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Figure 6.36: Comparison of simulated and measured 255Lr-tagged electron
spectra for 255Lr Left axis shows experimental values, right simulated.
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Figure 6.37: Comparison of simulated and measured electron spectra for
255Lr Left axis shows experimental values, right simulated.
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Chapter 7

Summary

7.1 Summary

The combination of the SAGE spectrometer with RITU and GREAT has

been used to further the spectroscopic study of 255Lr. The comprehensive

GEANT4 simulation that has been developed alongside this study, has al-

ready proven invaluable in improving both the understanding of the experi-

mental setup and directly improving the understanding of data from a num-

ber of experiments.

With respect to the focal plane component study of 255Lr, there is further

confirmation of an isomeric state previously seen. Unfortunately the statistics

acquired were not sufficient to allow γ − γ or α− γ coincidences that would

allow confirmation of the level scheme proposed in [Jep09].

The in-beam study of 255Lr for the first time combined both γ-ray and

conversion-electron spectroscopy on the heaviest odd-mass nuclei ever stud-

ied. This has led to two new transitions at the bottom of the ground-state
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band being tentatively assigned.

The GEANT4 simulation has proven to be a highly valuable tool in both

the running of an experiment and the subsequent analysis. This study has

shown its potential for use in subsequent experimental studies to take a

potential level scheme and generate a large sample of simulated data for

direct comparison to what is experimentally observed.

7.2 Outlook

255Lr remains a highly interesting nucleus to study. Being an odd-mass nu-

cleus it can be a highly sensitive probe for informing the next generation of

shell models. A higher statistic experimental campaign for this nucleus could

yield very interesting results that have as of yet only been hinted at.

The GEANT4 simulation package is now at a stage where it can be used

to inform future experiments and subsequent analyses.
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Appendix A

Nilsson Diagrams
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Figure A.1: Nilsson diagram for Z≥82, taken from [Fir99]
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Figure A.2: Nilsson diagram for N≥126, taken from [Fir99]
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[Sch13] M. Schädel and D. Shaughnessy, editors. The Chemistry of Super-

heavy Elements. Springer (2013)

[She99] S. L. Shepherd et al. ‘Measurements on a prototype segmented

Clover detector’. Nuclear Instruments and Methods in Physics Re-

search A, 434 (1999) 373

[Sto06] M. A. Stoyer. ‘Island ahoy!’ Nature, 442(August) (2006)

[The93] J. Theuerkauf et al. ‘TV’. Private Communication (1993)

[Wal99] P. M. Walker and G. D. Dracoulis. ‘Energy traps in atomic nuclei’.

Nature, 399 (1999) 35
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