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Abstract

We present exact results for the β-functions for the soft-breaking parameters

in softly-broken N = 2 Chern-Simons matter theories in terms of the anomalous

dimension in the unbroken theory. We check our results explicitly up to the two

loop level. We then go on to present results for the planar contribution to the four-

loop anomalous dimension for a general N = 2 supersymmetric Chern-Simons theory

in three dimensions. These results should facilitate higher-order superconformality

checks for theories relevant for the AdS/CFT correspondence. We then go on to

discuss possible higher-loop corrections to superconformal invariance for a class of

N = 2 supersymmetric Chern-Simons theories including the ABJM model. We argue

that corrections are inevitable even for simple generalisations of the ABJMmodel; but

that it is likely that any corrections are of a particular “maximally transcendental”

form.
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1 Introduction

This thesis begins by looking at the Standard model of particle physics, one of great

achievements of science, giving a brief overview of the basics of theoretical physics such

as the various particle types such as the ones composing matter and those governing the

forces by which the matter particles interact, eg electromagnetism and the strong and weak

nuclear forces. Following on from this we look at the weaknesses of the standard model

and the requirement of new physics to expand it in order to correct things that are wrong

(eg massless neutrinos) or to add new particles and interactions for phenomena currently

considered beyond the standard model (eg gravity). After this there is an overview of some

of the most popular theories attempting to solve these problems including string theory

and supersymmetry, before a more in depth look at supersymmetry starting with the ex-

tension of the Poincaré algebra and how this leads to a symmetry between the fermions

and bosons. Following on from this we look at renormalisation discussing its motivation

and development, looking at dimensional regularization and dimensional reduction, before

moving on to the specific supersymmetric (SUSY) theories (softly broken N = 2 Chern-

Simons matter theories in three dimensions) which is the focus of this thesis, starting out

with the two-loop component calculation of the anomalous dimension and β-functions of

the soft-breaking parameters. After this we present the results of our planar four-loop

calculation of the anomalous dimension for a general N = 2 Chern-Simons theory where

we describe the diagrams using a novel labelling system. In the final chapter we use the

four-loop planar result to discuss the possible higher-loop corrections to superconformal in-

variance for a range of N = 2 supersymmetric Chern-Simons theories. We show that there

is a strong case to be made for the view that the majority of superconformal theories will

require a coupling redefinition beyond leading order in order to preserve superconformality.
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1.1 The Standard Model

One of the biggest events of twentieth century physics was the creation of the Stan-

dard Model. It was a great collaboration between experimentalists and theorists which

made several predictions (eg the top and bottom quarks) which were later confirmed. It

is a gauge theory with the gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y which combines all

of the leptons (electrons etc.) and quarks (up, down etc.) as well as the force mediating

particles (gauge bosons) into a framework that contained all of their interactions as well

as including particles that at the time were yet to be discovered such as the Higgs boson

(2012). While it has been one of the great successes of science it is not the final “theory of

everything” as it still leaves many questions unanswered. A comprehensive guide can be

found here [1].

1.1.1 Problems with the Standard Model

One of the main problems with the standard model is that it makes several assump-

tions or makes no mention at all of certain phenomena.

• Parameters: There are 19 free parameters in the standard model which needed to

be determined by experiments as these values cannot be calculated from the model.

This is the main reason that the standard model is considered an effective theory,

valid to a certain energy scale, but not a fundamental theory.

• Generations of Leptons and Quarks: The standard model cannot explain why there

are three generations of quarks and leptons.

• Massless neutrinos: the standard model assumes that neutrinos are massless, which

was the assumption when they were first postulated, however experiments have shown

that not to be the case and the more recent discovery of neutrino oscillation (where
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neutrinos spontaneously change from one flavour to another) would not be possible

with massless neutrinos.

• Gravity: one of the standard model’s problems is the exclusion of gravity. It does

not include the graviton or any mechanism for the inclusion of gravity.

• The Hierarchy Problem: The Hierarchy problem relates to the mass of the Higgs

boson, when the calculation to predict its mass is performed quadratic divergences

are produced which make very large contributions to its mass which give a very large

mass. This was originally a problem due to restrictions placed on the Higgs mass by

electroweak theory, although now the problem is that it has been discovered with a

mass of 125GeV [2] which is well below the mass predicted by the model.

• Unification of the gauge couplings: The three forces which are accounted for in the

standard are thought to unify at some very high energy scale and in the running of

the couplings of the standard model they do not meet at the same place.

• Dark Matter: Due to observations of our galaxy it has been theorized that a large

portion of matter that is responsible for the distribution of gravity throughout the

galaxy is invisible to us. It doesn’t seem to interact or at least its interactions

are so rare or weak that we cannot observe them. This has led to the proposal of

the existence of so called Dark Matter [3] (also called WIMPs, Weakly Interacting

Massive Particles) and there are no candidate particles in the standard model.

1.1.2 Extensions to the Standard Model

Just as there are problems with the standard model there have been many attempts

to extend it to address its problems, some examples are:

• Grand Unified Theories (GUTs): These theories attempt to unify all the forces into
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a single unified framework one of the most common is SU(5) which breaks to give

SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

• Supersymmetry: A symmetry between fermionic and bosonic degrees of freedom so

that every particle has a superpartner distinguished from itself by the new particle

having a different spin. One of the strengths of supersymmetry is that it can solve

the Hierarchy problem as well as provide candidate particles for dark matter.

• String Theory: This theory is an attempt at a truly fundamental theory built from the

starting assumption that all particles are tiny one dimensional strings, as opposed

to the point particles of QFT, that vibrate in different ways to form the different

particles. It also includes higher dimensional objects called D-branes and M-branes

Many models derived from string theory involve supersymmetry, although there are

theories such as bosonic string theory which do not require it. A notable feature of

string theory is its use of extra spatial dimensions, string theories are typically 10

dimensional (11 for M-theory) although bosonic string theory requires 26 dimensions

[4].

• Technicolour: A theory that replaces the Higgs mechanism for electro-weak symmetry

breaking with symmetry breaking by a composite of massless fermions which are

introduced into the Lagrangian [5].

Of the theories currently being looked at to extend the standard model the one being

tested most at CERN is supersymmetry. Although so far there is no evidence for it there

are many different models which will need much higher energies to test than the Large

Hadron Collider can generate.
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2 Supersymmetry (SUSY)

2.1 Motivation for Supersymmetry

Supersymmetry was first introduced by Gol’fund and Likhtman in 1971 as an exten-

sion to the Poincaré algebra [6] followed in 1973 by Volkov and Akulov [7] and then in 1974

Wess and Zumino formulated a basic field theory that possessed “Supergauge invariance”,

the Wess-Zumino model [8]. Although some of the main arguments for SUSY today are

naturalness and providing a solution to the Hierarchy problem (the quadratic divergences

are cancelled off by the additional terms generated by the superpartners) these were not

the original motivations and it is a testament to the power of the theory that despite its

origins as an attempt to extend the Poincaré algebra it has found uses in many branches

of theoretical physics.

2.2 The SUSY algebra

The starting point for any field theory is the Poincaré group. In 1967 [9] Coleman and

Mandula proved that any quantum field theory which has non-trivial interactions must be

the direct product of a symmetry Lie algebra with the Poincaré algebra if there is a mass gap

(the mass gap is the difference in energy between the vacuum and the next lowest energy

state). The Poincaré group is defined by its group algebra which describe translations and

Lorentz transformations (boosts and rotations). The generators of the group are the four

translation generators Pµ and the six generators of the Lorentz transformations Mµν . The

standard Poincaré algebra is as follows:

[Pµ, Pν ] = 0, (2.1)

[Mµν , Pρ] = i(ηµρPν − ηνρPµ), (2.2)
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[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ). (2.3)

Supersymmetry gets around the restriction of the Coleman-Mandula theorem by relaxing

one condition, that a Lie algebra can only consist of commutators. This method is known

as the Haag-Lopuszanski-Söhnius theorem [10] which involves generalizing the definition

of a Lie algebra to include algebras that are defined by relations between anticommutators

as well as commutators. These algebras are called graded Lie algebras or superalgebras.

In four dimensions the superalgebra (the N = 1 superalgebra) adds one pair of spinorial

generators to the Poincaré algebra with the following anticommutation relation:

{Qα, Qα̇} = 2(σµ)αα̇Pµ, (2.4)

{Qα, Qβ} = 0, (2.5)

{Qα̇, Qβ̇} = 0, (2.6)

with σµ = (1, σ1, σ2, σ3) where σi are the usual Pauli matrices and α, α̇ = 1, 2.

These spinorial generators commute with the Poincaré algebra to produce:

[Qα, Pµ] = 0, (2.7)

[Qα̇, Pµ] = 0, (2.8)

[Qα,Mµν ] =
1
2
(σµν)α

βQβ, (2.9)

[Qα̇,Mµν ] = −1
2
(σµν)α̇

β̇Qβ̇, (2.10)

with

σµν = 1
4
(σµσν − σνσµ), (2.11)

σµν = 1
4
(σµσν − σνσµ). (2.12)
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Further pairs of spinorial generators can be added to create extended supersymmetries.

Therefore the most general supersymmetry algera is:

[Pµ, Pν ] = 0, (2.13)

[Mµν , Pρ] = i(ηµρPν − ηνρPµ), (2.14)

[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ), (2.15)

[Qi
α, Pµ] = [Qi

α̇, Pµ] = 0, (2.16)

[Qi
α,Mµν ] =

1
2
(σµν)α

βQi
β, (2.17)

[Qi
α̇,Mµν ] = −1

2
Qi

β̇
(σµν)β̇ α̇, (2.18)

{Qα
i, Qα̇

j} = 2δij(σµ)αα̇Pµ, (2.19)

{Qi
α, Q

j
β} = 2ϵαβZ

ij, (2.20)

{Qα̇, Qβ̇} = 2ϵα̇β̇Z
ij, (2.21)

[Zij, anything] = 0, (2.22)

where α, α̇ = 1, 2 and i, j = 1, 2, ..., N and Zij are the central charges. There is a constraint

on the number of SUSY generators [11] which arises from the requirement for consistency

with the corresponding QFT. The maximum number of supersymmetries is connected to

the maximal spin of the particle in the multiplet such that

N ≤ 4S, (2.23)

with S being the maximal spin so for theories whose maximal spin is 1 such as Super Yang-

Mills [12] the maximum value for N is 4 whereas for SUSY theories incorporating gravity

(SUGRA [13]), which has the spin-2 graviton, the maximally supersymmetric theory is

N = 8.
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2.3 The Wess-Zumino model

The first (and simplest) supersymmetric model is the Wess-Zumino model [8] which

combines a massless complex scalar field ϕ with a massless spinor field ψ as well as an

auxiliary (non-propagating) scalar field F :

L = (∂µϕ)(∂
µϕ) + iψ/∂ψ + F ∗F. (2.24)

The Lagrangian is now invariant under the following transforms

δϕ = i[ξαQα, ϕ] =
√
2ξψ, (2.25)

δψ = i[ξαQα, ψ] =
√
2Fξ − i

√
2σµξ∂µϕ, (2.26)

δF = i[ξαQα, F ] = −i
√
2ξσµ∂µψ, (2.27)

where ξ and ξ are both anticommuting parameters. The reason for the addition of the

auxiliary field is that the degrees of freedom for the scalar and spinor fields are not equal.

On-shell a Majorana fermion has two degrees of freedom and four states. So on-shell

we need the propagating complex scalar field to match this. However we also need this

property to hold off-shell, where the spinor has four degrees of freedom, which means we

need to include the two non-propagating fields F and F ∗.

2.4 The Superfield Formulation of SUSY

While it is possible to formulate Supersymmetry in term of component fields (scalars,

spinors, etc.) it is often desirable to formulate it in a more compact formalism. The

starting point for what is called the Superspace formalism is Grassmann algebra.
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2.4.1 Grassmann Algebra

The primary feature of Grassmann numbers is that they anticommute. So for any two

such numbers θ and η,

θη = −ηθ. (2.28)

The obvious result of this is that

θ2 = 0, (2.29)

and this makes Taylor expansions much simpler. The most important thing needed is

to define integration over the Grassmann numbers. Since the product of two Grassmann

numbers (χη) will commute with any other Grassmann number, it seems reasonable for

the product of two Grassmann variables to be an ordinary number. Therefore the integral∫
dθθ is just an ordinary number which is 1. Grassmann integration is defined as:

∫
dθ = 0,

∫
dθθ = 1. (2.30)

The general integration of a function of an anticommuting variable is:

∫
dθf(θ) =

∫
dθ(A+Bθ) = B. (2.31)

Since θ2 = 0 the Taylor expansion for f(θ) is simply f(θ) = A+Bθ.

2.4.2 Superspace

In constructing supersymmetric models it is very useful to have a formalism where super-

symmetry is inherently manifest. To achieve this the superfield formalism was introduced

by Salam and Strathdee [14] which extends Minkowski space to superspace which consists

of the usual Minkowski space-time coordinates xµ with µ = 0, ..., 3 as well as four constant
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(space-time independent), anticommuting Grassmann numbers θα, θ
α̇
(α, α̇ = 1, 2), which

can be formulated in terms of the 2-component Weyl spinor formalism and are considered

to be independent of each other. The anticommutation relations of θ and θ are

{θα, θβ} = 0, (2.32)

{θα̇, θβ̇} = 0, (2.33)

{θα, θα̇} = 0, (2.34)

and a coordinate in superspace is given by (xµ, θα, θ
α̇
) . Note these are the rules for N = 1.

For N > 1 the θ’s get an additional index running from 1,...,N as each pair of spinorial

generators gets its own pair of superspace coordinates.

2.4.3 Superfields

Using the superspace formalism we can now define fields in terms of these new supercoor-

dinates. Just as a translational element of the Poincaré group may be written as

e−ix.P , (2.35)

a general superspace translation can be written

e−i(x.p−θQ−θQ). (2.36)

Using Q and Q and the Baker-Campbell-Hausdorff identity

eAeB = eA+B+
1
2
[A,B]+... (2.37)
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which if the higher order terms vanish reduces to

eAeB = eA+B+
1
2
[A,B]. (2.38)

When the higher order terms are zero it can be shown that the coordinates transform as

x′µ = xµ + iϵσµθ − iθσµϵ, (2.39)

θ′ = θ + ϵ, (2.40)

θ
′
= θ + ϵ. (2.41)

These transformations show that the SUSY generators can be expressed in terms of super-

space derivatives. So

Qα = i( ∂
∂θα

+ iσµ
αα̇θ

α̇
∂µ), (2.42)

Qα̇ = −i( ∂

∂θ
α̇ + iθασµ

αα̇∂µ). (2.43)

The most general expression for a superfield expanded in terms of the superspace coordi-

nates and general component fields which are only dependent on xµ is:

F (x, θ, θ) = f(x)+θϕ(x)+θχ(x)+θθm(x)+θθn(x)+θσµθv(x)+θθθλ(x)+θθθψ(x)+θθθθd(x),

(2.44)

since all higher powers of θ will disappear. In general superfield representations are highly

reducible. By applying constraints to the superfield we can extra component fields by

imposing covariant constraints.
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2.4.4 The Chiral Superfield

From the earlier definitions of Q and Q we can also define a pair of covariant deriva-

tives D and D. By starting with A(x, θ, θ)A(y, ξ, ξ) rather than A(y, ξ, ξ)A(x, θ, θ) we

get

Dα = ( ∂
∂θα

− iσµ
αα̇θ

α̇
∂µ), (2.45)

Dα̇ = −( ∂

∂θ
α̇ − iθασµ

αα̇∂µ), (2.46)

which implies that D and D obey the anticommutation relations

{Dα, Dα̇} = 2i(σµ)αα̇Pµ, (2.47)

{Dα, Dβ} = 0, (2.48)

{Dα̇, Dβ̇} = 0, (2.49)

and

{Dα, Qβ} = {Dα, Qα̇} = {Dα̇, Qα} = {Dα̇, Qβ̇} = 0. (2.50)

Using the covariant derivatives to impose a constraint on the field Φ we can define an

irreducible representation as

D
α̇
Φ = 0, (2.51)

which is the chiral superfield. And similarly an antichiral field is one that satisfies

DαΦ = 0. (2.52)
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After applying this constraint the superfield reduces to

Φ(x, θ, θ) = ϕ(x) +
√
2θψ(x) + θθF (x) + i∂µϕ(x)θσ

µθ +
i√
2
θθ∂µψ(x)σ

µθ +
1

4
θθθθ∂2ϕ(x),

(2.53)

These constraints are easier to solve in terms of a new coordinates system

yµ = xµ + iθσµθ, (2.54)

(these are known as chiral coordinates). When expressed in terms of these coordinates the

chiral superfield becomes

Φ(x, θ, θ) = ϕ(x) +
√
2θψ(x) + θθF (x). (2.55)

The same thing can be done for the antichiral superfield in terms of the coordinates

yµ = xµ − iθσµθ. (2.56)

Under SUSY transformations the fields all transform into each other

δϕ =
√
2ϵψ, (2.57)

δψ = i
√
2σµϵ∂µϕ+

√
2ϵF, (2.58)

δF = i
√
2ϵσµ∂µψ. (2.59)

Here we can see that the F field transforms as a total derivative, i.e. δF vanishes when

integrated over the spacetime. As can easily be seen from these definitions of Φ and Φ the

products of chiral (antichiral) superfields, Φ2, Φ3 etc. are also chiral (antichiral) superfields

as they still only depend on θ (θ). However the product Φ†Φ is a general superfield.
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2.4.5 The Vector Superfield

As well as the chiral superfield whose components contain scalar and spinor fields

which are used to represent the fermionic fields and their superpartners, we also need a

superfield which will allow us to construct gauge invariant interactions. The way to do this

is to define a real vector superfield i.e. a superfield defined by the constraint

V = V †. (2.60)

It is a general superfield (not chiral) and has the following expansion:

V (x, θ, θ) = C(x) + iθχ(x)− iθχ(x) +
i

2
θθ[M(x) + iN(x)]

− i

2
θθ[M(x)− iN(x)]− θσµθAµ(x)

+ iθθθ[λ(x) +
i

2
σµ∂µχ(x)]− iθθθ[λ(x) +

i

2
σµ∂µχ(x)]

+ iθθθθ[D(x) +
1

2
�C(x)]. (2.61)

Here χ, λ are spinors Aµ is a real vector and C,M,N and D are real scalars. Under the

abelian gauge transformation the V transforms in the following way:

V → V + Φ+ Φ†. (2.62)

Here Φ and Φ† are both chiral superfields. In components

C → C + ϕ+ ϕ∗, (2.63)

χ→ χ− i
√
2ψ, (2.64)

M + iN →M + iN − 2iF, (2.65)

Aµ → Aµ − i∂µ(ϕ− ϕ∗), (2.66)
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λ→ λ, (2.67)

D → D. (2.68)

The physical degrees of freedom for V are the gauge field Aµ and the Majorana spinor

field λ (commonly referred to as the gaugino). All of the other fields are unphysical and so

this representation is still reducible. This can be changed by using additional constraints

such as by using gauge-fixing where the unphysical fields can have their values set to zero. A

common gauge-fixing condition is the Wess-Zumino gauge [12], where C = χ =M = N = 0

which leaves the following expression for V

V = −θσµθAµ(x) + iθθθλ(x)− iθθθλ(x) + iθθθθD(x). (2.69)

This makes it very easy to calculate powers of V

V 2 = −θθθθAµ(x)A
µ(x), (2.70)

V n = 0, (2.71)

for n ≥ 3.

2.5 The Construction of SUSY Lagrangians

Using the superfield formalism we can construct supersymmetric Lagrangians out

of chiral and antichiral superfields which are invariant under SUSY transformations. A

general form of Lagrangian which only contains chiral and antichiral superfields is, when

written in superspace,

L =

∫
d4θ(

∑
i

Φ†
iΦi) + (

∫
d2θW (Φ) + h.c.)), (2.72)
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with

∫
d2θ =− 1

4

∫
dθαdθα, (2.73)∫

d2θ =− 1

4

∫
dθα̇dθ

α̇
, (2.74)∫

d4θ =− 1

4

∫
d2θd2θ, (2.75)

where W (Φ) is the superpotential and h.c. stands for hermitian conjugate which contain

the antichiral fields. The first term in the Lagrangian is the kinetic term and since the

product of a chiral superfield with an antichiral superfield is a general superfield such

products are not allowed in the superpotential because of the need for the superpotential

to be holomorphic.

A typical superpotential is

W (Φ) = gΦ +
1

2
mΦ2 +

1

3
λΦ3. (2.76)

When entered into the Lagrangian it is preceded by
∫
d2θ which projects out the highest

order components of the superpotential as these components always transform as a total

derivative and so makes the action manifestly supersymmetric. If we ignore the superpo-

tential and we expand in terms of the component fields we find

L = (∂µϕ)(∂
µϕ) + iψ/∂ψ + F ∗F, (2.77)

which is the Wess-Zumino model from before. The basic scalar Lagrangian is

L =

∫
d4θΦ†

iΦi +

∫
d2θ(giΦi +

1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk) + h.c. (2.78)
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To obtain the Lagrangian in terms of on-shell component fields we need to expand the

superfields in terms of their components and then eliminate the auxiliary fields using their

equations of motion.

For a more realistic theory we must also include terms involving gauge fields and their

superpartners. It needs gauge invariant interactions of the matter fields with the gauge

fields as well as the kinetic and self-interaction terms for the gauge fields. To do this

first we need a supersymmetric analog for the field strength tensor. For a general gauge

group the supersymmetric field strengths are defined in terms of the vector superfield in

the following way

Wα =− 1

4
D

2
(eVDαe

−V ), (2.79)

W α̇ =− 1

4
D2(eVDα̇e

−V ). (2.80)

Here D and D are the covariant derivatives and from the Grassmann algebra we can see

that the field strength tensorsWα andW α̇ are chiral and antichiral superfields respectively.

The field strength Wα transforms in the following way

Wα → W ′
α = e−iΛWαe

iΛ, (2.81)

where Λ is a chiral superfield. Just as before where the product Φ†Φ is used to generate

the kinetic terms for the scalar Lagrangian the products W αWα and W α̇W
α̇
are used to

generate the kinetic terms for the gauge fields. In the Wess-Zumino gauge we get

W αWα|θθ = −2iλσµDµλ− 1

2
FµνF

µν +
1

2
D2 + i

1

4
F µνF ρσϵµνρσ. (2.82)

Here Dµ = ∂µ + ig[Aµ, ] is the usual Lie colour group covariant derivative. Using these
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terms along with their hermitian conjugates we get

L =
1

4

∫
d2θW αWα +

1

4

∫
d2θW α̇W

α̇

=
1

2
D2 − 1

4
FµνF

µν − iλσµDµλ. (2.83)

To obtain a gauge invariant coupling with the chiral superfields we alter the chiral

antichiral product to include the gauge fields

Φ†
iΦi|θθθθ → Φ†

ie
gVΦi|θθθθ. (2.84)

So the full gauge invariant supersymmetric Lagrangian has the form

L =
1

4

∫
d2θW αWα +

1

4

∫
d2θW α̇W

α̇
+

∫
d4θΦ†

ie
gVΦi

+

∫
d2θ(

1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk) + h.c. (2.85)

The linear Φ term is not included as it is not gauge invariant. As we can see the form of a

supersymmetric Lagrangian is heavily restricted by all of the symmetry requirements. The

only real freedom is the field content, the values of the couplings and the masses. From the

way the superfields are defined all the components of a supermultiplet should have the same

masses. Therefore the superpartners should have the same masses as the standard particles,

however since this has not been observed supersymmetry must be a broken symmetry. The

three dimensional N = 2 theory is obtained from the four dimensional N = 1 theory using

dimensional reduction [15].
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3 Renormalisation

3.1 Motivation for Renormalisation

When a process is being calculated in Quantum Field Theory (QFT) there is a problem:

when trying to calculate an amplitude for a specific process there is often no way to find an

exact solution and so perturbation theory must be used. Unfortunately it was soon discov-

ered that when using perturbation theory in QFT one encounters divergent (infinite) results

which are nonsensical. The root of this problem is that when we calculate the amplitude

for a particular process we must sum all the possible ways in which the process can oc-

cur and integrate over all momenta for the intermediate (unobservable) particles involved.

Over a period of many years a procedure has been developed to systematically remove

these divergent results which is called renormalisation. Not all QFTs can be renormalised

however QFTs that have tried to incorporate gravity for example are non-renormalisable

which is one of the main reasons that no definitive fully experimentally tested quantum

theory of gravity has ever been formulated. One of the criteria for renormalisability is the

mass dimension of the couplings of the theory, if the lowest dimension coupling has a mass

dimension of 0 or higher then the theory may be renormalisable, if it has a mass dimension

which is lower than zero then the theory will be non-renormalisable.

3.2 Renormalisation Procedure

There are two ways that divergent results can be found when renormalising a theory: Infra-

red divergences which occur when the integral results in a momentum term of highest power

appearing in the denominator which, as the momentum tends to zero, sends the integrand

to infinity and ultraviolet divergences which result from having a higher momentum term

in the numerator which tends to infinity as the momentum tends to infinity. We have only

considered ultraviolet divergences in this work.
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Before renormalisation is performed we must first determine what the divergences are.

There are several different methods for determining divergences the most common of which

is dimensional regularisation.

3.2.1 Dimensional Regularisation

While the integrals may be divergent in four (or whatever number of spacetime dimensions

is being looked at) the integral will not be divergent in an arbitrary number of spacetime

dimensions and so this procedure looks at the integral in d dimensions and then once the

potentially divergent terms have been removed allows the number of spacetime dimensions

to tend toward the desired number of spacetime dimensions and so allows the result to

continue analytically back to the desired case.

Starting from the Lagrangian of the most basic interacting QFT, the scalar ϕ4 theory

we have

L =
1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 − 1

4!
λϕ4, (3.1)

where the ϕ4 term shows the scalar field interacting with λ the coupling constant. From

this equation we can calculate a set of rules for constructing Feynman diagrams. Feynman

diagrams are used to represent the terms that we get from the perturbative expansion

of the Lagrangian where each diagram represents an integral which can be determined

by the Feynman rules. The diagrams have three components, external lines denoting

physical, observable particles, internal lines denoting unobservable ’virtual particles’ whose

contribution to the amplitude is dictated by propagators, one for each internal line, and

vertices, which are determined by the interaction terms in the Lagrangian. As can easily

be seen for the ϕ4 theory we have only the one quartic self-interaction term and so all

interacting diagrams can only contain four point vertices for example.
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Initially the terms in the Lagrangian are assumed to be ’bare’ (i.e divergent) terms i.e

L =
1

2
∂µϕ0∂µϕ0 −

1

2
m2

0ϕ
2
0 −

1

4!
λ0ϕ

4
0, (3.2)

and after renormalisation they are thought of as physical quantities. The way that the two

are related is by the renormalisation constants (Z’s) which are chosen so that they rescale

the bare quantities to remove the divergences. So for the ϕ4 theory

ϕ0 = (Zϕ)
1
2ϕ, (3.3)

m0 = Zmm, (3.4)

λ0 = Zλλ. (3.5)

There are several ways to do this (known as schemes) one of which is to choose the Zs so

that only the divergent parts of the calculation are removed by leaving the finite parts alone.

This is called the “minimal subtraction scheme” (denoted by MS) [16]. Normally the pole

terms generated in perturbation theory are also accompanied by constant terms involv-

ing γ, the Euler-Mascheroni constant, and log(4π). Another scheme, called the “modified

minimal subtraction scheme”, (denoted by MS) eliminates these constant terms as well.

Another way to renormalise a theory is to calculate the counterterms as one is performing

a calculation diagram by diagram, which involves picking out divergent subdiagrams and

replacing those parts in the diagram with a counterterm. This is a faster process for per-

forming specific calculations as only counterterms specific to the calculation being carried

out are necessary.

As well as renormalising a theory so that it gives finite results certain quantities which

can describe various properties of the theory can also be calculated in terms of Feynman

diagrams. Two such quantities are the anomalous dimension, γ, and the β-function which
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show the dependence on the renormalisation scale µ of the field normalisation and the shift

in the coupling constant (every coupling constant has its own β-function) and are defined

by

γ =
1

2

µ

Z

∂Z

∂µ
=

1

2
µ
∂lnZ

∂µ
=

1

2

∂lnZ

∂lnµ
,

βλ = µ
∂λ

∂µ
. (3.6)

The β-function is very useful as it describes the behaviour of a running coupling constant

with respect to changes in the energy scale. If the β-function has a positive sign this

indicates that the strength of the coupling constant is greater at higher energies. If it has

a negative sign this indicates that the coupling constant gets weaker at higher energies.

This latter property has been observed in QCD making the theory “asymptotically free”

which consequently allows the use of perturbation theory at high energies [17], [18].

3.3 Superfield Perturbation Theory

A disadvantage of Dimension Regularisation (DREG) with respect to supersymmetric the-

ories is that it does not preserve the symmetry between the fermions and bosons. This

is due to the number of gauge fields being equal to the dimension of the integral, when

the integral is taken to have an arbitrary dimension so is the number of gauge fields. This

changes the bosonic degrees of freedom but not the fermionic degrees of freedom and thus

breaks the fermion boson symmetry. However another method of renormalisation exists

which is commonly used for supersymmetric theories which is called Dimensional Reduction

(DRED) [19] which does preserve supersymmetry via the use of supergraphs. DRED was

developed specifically by attempting to modify DREG so that it would be compatible with

supersymmetry and therefore preserve the boson/fermion symmetry. The essential differ-

ence between the two methods is that in DRED the continuation from 4 to d dimensions is
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made by dimensional reduction so that while the momentum integrals are d-dimensional,

just like in DREG, the number of field components is unchanged and so supersymmetry is

preserved.

3.3.1 Supergraphs

Supergraphs [20] are very similar to standard Feynman diagrams, the main difference being

that in a Feynman diagram each line represents one particular field; in a supergraph each

line represents a superfield and so represents several component fields at the same time thus

often dramatically reducing the number of diagrams that need to be calculated. However

as superfield propagators typically involve the covariant derivatives and the superspace

Lagrangian also includes superspace integrals there is a certain amount of algebra that

needs to be solved before the normal spacetime integral can be performed. So firstly all

the θ integrals are performed. This is achieved by moving the Ds and Ds around the

diagram (typically by using integration by parts to move them from one vertex to another)

and eliminating them using their anticommutation relations until there are only two D’s

and two D’s on each loop. They can also be moved from one end of the propagator to the

other using the formula

Dα(p, θ)δ
4(θ − θ′) = −δ4(θ − θ′)Dα(−p, θ). (3.7)

Once the required number of D’s has been obtained we can use the identities

δ4(θ − θ′)Xδ4(θ − θ′) = 0, (3.8)

for

X = 1, Dα, Dα̇, D
2, D

2
, D2Dα̇, D

2
Dα (3.9)
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and

δ4(θ − θ′)Xδ4(θ − θ′) = δ4(θ − θ′), (3.10)

if

X = D2D
2
, D

2
D2, DαD

2
Dα, Dα̇D

2D
α̇
, (3.11)

to solve all but one of the θ integrals, which leaves only a “normal” Feynman integral. If

there are fewer than two D or D terms then the diagram is zero. In four dimensions the

standard relations are:

[Dα, D
2
] = pαα̇D

α̇
, (3.12)

[Dα̇, D
2] = −pαα̇Dα, (3.13)

where pαα̇ = iσµ
αα̇∂µ. From these relations it is straightforward to derive the following

relations:

D2D
2
D2 = −∂µ∂µD2, (3.14)

DαD
2
Dα = Dα̇D

2D
α̇
, (3.15)

D2D
2
+D

2
D2 − 2DαD

2
Dα = −∂µ∂µ. (3.16)

3.4 Conventions in N = 2 Supersymmetric Chern-Simons

In N = 2 Supersymmetric Chern-Simons in three dimensions the following superspace and

supersymmetry conventions apply. We use a metric signature (+,−,−) so that a possible

choice of γ matrices is γ0 = σ2, γ
1 = iσ3, γ

2 = iσ1 with, for instance

(γ0)α
β = (σ2)α

β. (3.17)
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We then have

γµγν = ηµν − iϵµνργρ, (3.18)

where ϵµνρ is the antisymmetric tensor with ϵ012 = 1. We have [21] two complex two-spinors

θα and θ
α
with indices raised and lowered according to

θα = Cαβθβ, θα = θβCβα, (3.19)

with C12 = −C12 = i. We then have

θαθβ = Cβαθ
2, θαθβ = Cβαθ2, (3.20)

where

θ2 =
1

2
θαθα. (3.21)

The supercovariant derivatives are defined by

Dα = ∂α + i
2
θ
β
∂αβ, (3.22)

Dα = ∂α + i
2
θβ∂αβ, (3.23)

where

∂αβ = ∂µ(γ
µ)αβ, (3.24)

satisfying

{Dα, Dβ} = i∂αβ. (3.25)

We also define

d2θ =
1

2
dθαdθα, d2θ =

1

2
dθ

α
dθα, d4θ = d2θd2θ, (3.26)
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so that ∫
d2θθ2 =

∫
d2θθ

2
= −1. (3.27)

The vector superfield V (x, θ, θ) is expanded in Wess-Zumino gauge as

V = iθαθασ + θαθ
β
Aαβ − θ2θ

α
λα − θ

2
θαλα + θ2θ

2
D, (3.28)

and the chiral field is expanded as

Φ = ϕ(y) + θαψα(y)− θ2F (y), (3.29)

where

yµ = xµ + iθγµθ. (3.30)

Using the conventions from the N = 2 theory in three dimensions that we will be

looking at these relations are modified due to the chosen conventions eliminating the need

for dotted indices and so now

[Dα, D
2
] = pαβD

β
, (3.31)

[Dα, D
2] = −pαβDβ, (3.32)

{Dα, Dβ} = 2ipαβ, (3.33)

which if D and D have the same index means that {Dα, Dα} = 2ipαα = 0 since the Pauli

matrices are traceless. This property simplifies the D-algebra significantly.
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4 Two-Loop Renormalisation of N = 2 Softly Broken

Chern-Simons Matter Theories

4.1 Chern-Simons Theory

Chern-Simons gauge theories have attracted attention for a considerable time due to their

topological nature [22–24] (in the pure gauge case) and their possible relation to the quan-

tum Hall effect, fractional quantum Hall effect [25] and high-Tc superconductivity. Another

area of interest has been the “Anyon models” where instead of composite particles which

follow either Bose-Einstein or Fermi-Dirac statistics there are composite particles which

obey any intermediate statistics or “q-statistics”. In these models the gauge field from

which the Chern-Simons term is composed may be regarded as the q-statistics inducing

field. Another area where there has been substantial interest is in N = 2 supersymmet-

ric Chern-Simons matter theories in the context of the AdS/CFT correspondence (see

Refs. [15,21,26] for details and a comprehensive list of references). Most of the AdS/CFT

correspondence related theories are motivated from string theory where a 4-dimensional

N = 1 theory undergoes a process known as dimensional reduction which converts it from

a 4-dimensional N = 1 theory to a 3-dimensional N = 2 theory. The main two models

are the BLG (Bagger, Lambert, Gustavsson) model [27] and the ABJ/ABJM (Aharony,

Bergman, Jafferis, Maldacena) [28,29] models. The ABJ and ABJM models will be looked

at in more depth in chapter 6.

4.2 Two-Loop Renormalisation

It is already well-known that the β-functions for the soft-breaking parameters in softly-

broken N = 1 supersymmetric gauge theories in four dimensions may be expressed exactly

in terms of the anomalous dimensions and gauge β-function for the unbroken theory. (See
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Ref. [30] for a complete description of the most general case.) Moreover this leads [31]

to exact renormalisation group invariant solutions for the soft-breaking parameters–the

“anomaly-mediated supersymmetry-breaking” (AMSB) solutions [32,33]. Renormalisation

group invariant in this context meaning a solution for the soft couplings in terms of the

regular couplings and constant parameters which do not change under variations of the

scale µ. Here we show that similar results hold for N = 2 Chern-Simons matter theories

in three dimensions; indeed the results are simpler due to the absence of a gauge coupling

(which reflects the topological nature of the gauge part of the theory).

Our results are based on a set of rules devised by Yamada [34] for obtaining the β-

functions for the scalar soft-breaking couplings (in four dimensions) starting from the

anomalous dimension for the chiral superfields. We shall present here an abridged deriva-

tion based on Ref. [35]; see Ref. [30] for the complete version. Yamada’s rules are based

on the spurion formalism [36], which enables one to write the softly broken N = 2 theory

in terms of superfields. The Lagrangian for the theory can be written

L = LSUSY + LSB + LGF + LFP , (4.1)

where LSUSY is the usual N = 2 supersymmetric Lagrangian [37],

LSUSY =

∫
d4θ

(
2k

∫ 1

0

dtTr[D
α
(e−tVDαe

tV )] + Φj(eVARA)ijΦi

)
+

(∫
d2θW (Φ) + h.c.

)
, (4.2)

where V is the vector superfield, Φ the chiral matter superfield and where the superpotential

W (Φ) is given by

W (Φ) =
1

4!
Y ijklΦiΦjΦkΦl +

1

3!
ZijkΦiΦjΦk +

1

2!
µijΦiΦj. (4.3)

33



(We use the convention that Φi = (Φi)
∗.) We assume a simple gauge group; a gauge

group with a U(1) factor could also include a linear term in the superpotential. Gauge

invariance requires the gauge coupling k to be quantised, so that 2πk is an integer. The

vector superfield V is in the adjoint representation, V = VATA where TA are the generators

of the fundamental representation, satisfying

[TA, TB] = ifABCTC , (4.4)

Tr(TATB) = δAB. (4.5)

Note that this choice of convention differs from those used in Ref. [38] to make the con-

ventions consistent throughout this thesis. The chiral superfield can be in a general repre-

sentation, with gauge matrices denoted RA satisfying

[RA, RB] = ifABCRC , (4.6)

Tr(RARB) = T (R)δAB. (4.7)

In three dimensions the Yukawa couplings Y ijkl are dimensionless and the theory is renor-

malisable. The soft breaking part LSB may be written [39]

LSB =

∫
d2θη

(
1

4!
hijklΦiΦjΦkΦl +

1

3!
gijkΦiΦjΦk +

1

2!
bijΦiΦj + h.c.

)
−

∫
d4θη∗ηΦj(m2)ij(e

VARA)i
kΦk, (4.8)

where η = θ2 is the spurion external field. For convenience we set bij and gijk to zero.

Note that in three dimensions there is no soft term corresponding to the four-dimensional

gaugino mass term. The gauge-fixing and Fadeev-Popov terms are contained in LGF and

LFP respectively. It is convenient to introduce a generalised form γη of the anomalous
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dimension γ of the chiral supermultiplet, given by:

γη = γ + γ1η + γ†1η
∗ + γ2η

∗η. (4.9)

It was shown by Yamada [34] that (γη)
i
j could be obtained from (γ)ij by the following rules

(simpler in three than in four dimensions due to the absence of a running gauge coupling):

1. Replace Y lmno by Y lmno − hlmnoη. (Additional terms for b and g are omitted as we

set them to zero).

2. Insert δl
′
l + (m2)l

′
lη

∗η between contracted indices l and l′ in Y and Y ∗, respectively:

Y lmnoYlm′n′o′ → Y lmnoYlm′n′o′+Y
lmno(m2)l

′
lYl′m′n′o′η

∗η (where, here and subsequently,

Ylmno = (Y lmno)∗).

3. Replace a term T i
j in γ

i
j with no Yukawa couplings by T i

j − (m2)ikT
k
jη

∗η.

γ1 and γ2 may then be obtained by extracting the coefficients of η and η∗η respectively. In

the case of γ1, the above rules can be subsumed by the simple relation

(γ1)
i
j = Oγij, (4.10)

where

O = −hlmno ∂

∂Y lmno
. (4.11)

It is straightforward to show that

βijkl
h = γ(imh

jkl)m − 2γ
(i
1 mY

jkl)m. (4.12)

This result is similar in form to the standard result for βY which follows from the non-

renormalisation theorem [20] (which is valid for N = 2 supersymmetric theories in three
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dimensions [21]), namely

βijkl
Y = γ(imY

jkl)m. (4.13)

It also follows from Eqs. (4.8) and (4.9) that

(βm2)ij =
1

2
γik(m

2)kj +
1

2
(m2)ikγ

k
j + γi2j, (4.14)

which we may write using Yamada’s rules as

(βm2)ij =

[
2OO∗ + Ỹlmn

∂

∂Ylmn

+ Ỹ lmn ∂

∂Y lmn

]
γij, (4.15)

where

Ỹ ijkl = (m2)imY
mjkl + (m2)jmY

imkl + (m2)kmY
ijml + (m2)lmY

ijkm. (4.16)

The exact results Eqs. (4.12) and (4.15) for the β-functions lead to exact renormalisation

group invariant solutions for the soft-breaking couplings, namely

hijkl = −M0β
ijkl
Y , (4.17)

(m2)ij =
1

2
|M0|2µ

dγij
dµ

, (4.18)

where M0 is a constant mass. These results can be proved following the four-dimensional

discussion in Ref. [31] (though the terms with κ1,2 were given for the first time in Ref. [40]);

but once more the details are simpler due to the non-running of the gauge coupling. We note

that in the case of a gauge group with a U(1) factor and a linear term in the superpotential,

additional terms are expected [30] in the expressions for βg and βb (which for us are

zero), and thence corresponding extra terms in Eqs. (4.18); there should also be an exact

expression for the β-function corresponding to the linear soft coupling, and an exact RG-
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invariant solution for this coupling. There is also potentially an additional term [41] in the

solution for m2 corresponding to the possible Fayet-Iliopoulos term.

We now turn to our check of the results Eqs. (4.12) and (4.15) up to two loops using

the component formulation of the theory (there are no divergences at odd loop orders for

a theory in odd dimensions, so this is the simplest non-trivial check). The first ingredient

is the anomalous dimension of the chiral superfield, which is given at two loops by

64π2γ(2) =
1

3
Y2 − 2k−2C2(R)C2(R)− k−2T (R)C2(R) + k−2C2(G)C2(R), (4.19)

where

(Y2)
i
j = Y iklmYjklm, (4.20)

C2(R) = RARA, (4.21)

C2(G)δAB = fACDfBCD, (4.22)

and T (R) is defined in Eq. (4.7). This result may readily be obtained by N = 2 superfield

methods [21,26,39,42]; see the for the N = 2 superfield conventions.

An expression for the two-loop anomalous dimension for an N = 1 theory in three

dimensions (with no Yukawa coupling) is given in Ref. [43]. This does not agree with the

k−2 terms in Eq. (5.19) when specialised to the N = 2 case. Presumably this is because

the result is in general gauge-dependent and the N = 1 and N = 2 Feynman gauges are

not equivalent. Since N = 2 supersymmetry is not manifest in the N = 1 formalism, one

would not expect Eq. (4.13) to be valid using the anomalous dimension computed using the

N = 1 formalism. We have however checked explicitly via a component calculation that

the β function for the Yukawa coupling is indeed given by Eq. (4.13) with the anomalous

dimension of Eq. (5.19).
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We then find from Eq. (4.10) that

64π2(γ
(2)
1 )ij = −1

3
hilmnYjlmn (4.23)

and that therefore (using Eq. (4.12))

64π2β
ijkl(2)
h = [

1

3
Y2 − 2k−2C2(R)C2(R)− k−2T (R)C2(R) + k−2C2(G)C2(R)]

i
mh

mjkl

+
2

3
hilmnYplmnY

pjkl + cyclic perms. (4.24)

We also find from Eq. (4.15) that

64π2(βm2)ij =
2

3
hiklmhjklm +

1

3
(m2)ik(Y2)

k
j +

1

3
(Y2)

i
k(m

2)kj + 2Y iklm(m2)k
′
kYjk′lm.

It is straightforward to verify these results by a component calculation. The supersym-

metric Lagrangian is given in components by [44]

LSUSY = LCS + Lm, (4.25)

LCS = 2kTr[ϵµνρ(Aµ∂νAρ +
2i

3
AµAνAρ)− λλ+ 2Dσ], (4.26)

Lm = Dµϕ
iDµϕi + iψiγµDµψi + F iFi

− ϕiσ2ϕi + ϕiDϕi + iϕ†λψ − iψλϕ

+

(
1

3!
Y ijklϕiϕjϕkFl +

1

4
Y ijklϕiϕjψkψl + h.c.

)
, (4.27)

where λ and ψ are two-component Dirac spinors, λ = λ†γ0, Dµ = ∂µ + iAµ and we have

set µij = Zijk = 0 for simplicity, in order to focus on the dimensionless couplings. After
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eliminating the auxiliary fields D, σ we obtain

LCS = 2kTr[ϵµνρ(Aµ∂νAρ +
2i

3
AµAνAρ)], (4.28)

Lm = Dµϕ
iDµϕi + iψiγµDµψi − (ϕ†RAϕ)(ϕ

∗RBϕ)(ϕ
∗RARBϕ)

+ (ϕ∗RAϕ)(ψ
∗RAψ) + 2(ψ∗RAϕ)(ϕ

∗RAψ)

− 1

(3!)2
Y ijknYi′j′k′nϕiϕjϕkϕ

i′ϕj′ϕk′ + (
1

4
Y ijklϕiϕjψkψl + h.c.). (4.29)

The soft-breaking Lagrangian is given by

LSB = −
(
1

4!
hijklϕiϕjϕkϕl + h.c.

)
− (m2)ijϕiϕ

j, (4.30)

where we have set bij = gijk = 0.

The diagrams contributing to the anomalous dimension of the scalar component field

ϕ at two loops are depicted in Fig. 1, with scalar, fermion, gauge and ghost propagators

denoted by dashed, unbroken, wavy and dotted lines respectively. We work in a standard

Feynman gauge in components which gives us the following scalar, fermion and gauge

propagators

∆S =
1

k2
, ∆F =

kµγ
µ

k2
, ∆V =

iϵµνρkρ
k2

. (4.31)

The divergent contributions from the diagrams in Fig. 1 to ∂µϕ
∗∂µϕ are given by (using

dimensional regularisation and working in d = 3− ϵ dimensions)

LΓ
(2)
ϕ(a) =

1

3
Y2 +

1

6
k−2[4C2(R)− 2C2(G) + 5T (R)]C2(R), (4.32)

LΓ
(2)
ϕ(b) =

1

12
k−2[−4C2(R) + C2(G)]C2(R), (4.33)

LΓ
(2)
ϕ(c) = − 2

3
k−2T (R)C2(R), (4.34)

LΓ
(2)
ϕ(d) = − 2

3
k−2T (R)C2(R), (4.35)
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LΓ
(2)
ϕ(e) =

1

6
k−2C2(G)C2(R), (4.36)

LΓ
(2)
ϕ(f) = − 1

6
k−2C2(G)C2(R), (4.37)

LΓ
(2)
ϕ(g) =

2

3
k−2[−2C2(R) + C2(G)]C2(R), (4.38)

LΓ
(2)
ϕ(h) =

1

3
k−2C2(G)C2(R), (4.39)

where L = 64π2ϵ, leading to

γ
(2)
ϕ =

1

3
Y2 − k−2C2(R)C2(R)−

1

2
k−2T (R)C2(R) +

3

4
k−2C2(G)C2(R), (4.40)

which agrees (up to an overall factor of 4, whose origin we have not been able to identify)

with the component-field calculation in Ref. [43], when the relevant result is specialised to

the case of N = 2 supersymmetry. Note that since there are no simple poles at one loop,

there are no double poles at two loops and no need to consider diagrams with counterterm

insertions at this order. The list of diagrams contributing to βh and βm2 can be shortened

by noting that any logarithmically divergent diagram where an external scalar emerges

from a ϕ∗Aϕ vertex is zero by symmetry, due to the form of the gauge propagator (see

Eq. (4.31)). The diagrams contributing to the two-loop β functions for m2 and h are

shown in Figs. 2 and 3 respectively. They yield divergent contributions to the effective

action given by

LΓ
(2)

m2(a) ={Y iklm(m2)k
′
kYjk′lm +

1

2
k−2[4C2(R)− 2C2(G) + T (R)]C2(R)(m

2)ij}ϕiϕ
j

+ 2k−2tr[RARBm
2]ϕ∗RARBϕ, (4.41)

LΓ
(2)

m2(b) =− 1

4
k−2[4C2(R)− C2(G)]C2(R)ϕ

∗m2ϕ, (4.42)

LΓ
(2)

m2(c) =− 2k−2tr[RARBm
2]ϕ∗RARBϕ, (4.43)

LΓ
(2)

m2(d) =
1

3
hiklmhjklmϕiϕ

j, (4.44)
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and

LΓ
(2)
h(a) =

1

4
k−2[hijmn(RARB)

k
m(RARB)

l
n −

1

12
hijkm[C2(G)C2(R)]

l
m]ϕiϕjϕkϕl, (4.45)

LΓ
(2)
h(b) =

1

4
k−2[−2hijmn(RARB)

k
m(RARB)

l
n

+
1

6
hijkm{4C2(R)C2(R) + T (R)C2(R)}lm]ϕiϕjϕkϕl, (4.46)

LΓ
(2)
h(c) = {1

3
hilmnYplmnY

pjkl +
1

4
k−2hijmn(RARB)

k
m(RARB)

l
n

− 1

12
k−2hijkm[C2(R)C2(R)]

l
m}ϕiϕjϕkϕl. (4.47)

These add to

LΓ
(2)

m2 ={Y iklm(m2)k
′
kYjk′lm +

1

3
hiklmhjklm +

1

4
k−2[4C2(R)− 3C2(G)

+ 2T (R)]C2(R)(m
2)ij}ϕiϕ

j (4.48)

and

LΓ
(2)
h =

1

6
{1
3
hiqmnYpqmnY

pjkl − 1

8
k−2hijkm[2T (R)C2(R) + 4C2(R)C2(R)

− C2(G)C2(R)]
l
m}ϕiϕjϕkϕl. (4.49)

We expect from elementary renormalisation theory that the soft-breaking β-functions will

satisfy

2LΓ
(2)
h =

1

4!

(
β
ijkl(2)
h − 4(γ

(2)
ϕ )lmh

ijkm
)
ϕiϕjϕkϕl, (4.50)

2LΓ
(2)

m2 =(β
(2)

m2)
i
jϕ

jϕi − (γ
(2)
ϕ m2)ijϕ

jϕi − (m2γ
(2)
ϕ )ijϕ

jϕi, (4.51)

writing the results in this form to avoid cumbersome symmetrisations. We easily verify

these identities using Eqs. (4.25), (4.24), (4.48), (4.49), (4.40).
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4.3 Summary

We have presented the results for the anomalous dimension and β-functions in the com-

ponent formalism, for a softly broken version of N = 2 supersymmetric Chern-Simons

matter theory, to leading order (two-loops) and we have shown that the results obtained

from renormalisation in the component formalism are equivalent to those of the superfield

formalism. As we have seen the number of diagrams in the component formalism was more

than twice the number of superfield diagrams (although there is no fixed correspondence

between the number of diagrams in each formalism). This led us to determining the next

to leading order terms for the theory in terms of superfields so as to reduce the number of

diagrams we needed to evaluate.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1: Diagrams contributing to γ
(2)
ϕ .
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(a) (b) (c)

(d)

Figure 2: Diagrams contributing to β
(2)

m2 .
(The ⊗ symbol represents the (m2)ij vertex).

(a) (b) (c)

Figure 3: Diagrams contributing to β
(2)
h .
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5 4-Loop Renormalisation of a General N = 2 Super-

symmetric Chern-Simons Theory

We present results for the planar contribution to the four-loop anomalous dimension for

a general N = 2 supersymmetric Chern-Simons theory in three dimensions. These re-

sults should facilitate higher-order superconformality checks for theories relevant for the

AdS/CFT correspondence.

5.1 Introduction

There has been substantial interest in N = 2 supersymmetric Chern-Simons matter the-

ories in the context of the AdS/CFT correspondence and in particular, a wide range of

superconformal theories has been discovered [44, 45], starting with the BLG [27, 46] and

ABJ/ABJM [28,29] models. Although a more familiar formulation is in terms of “quiver”-

type gauge theories, many of them may be understood in terms of an underlying “3-algebra”

structure [27, 47, 48]. Explicit perturbative computations to corroborate the superconfor-

mal property have been carried out in Refs. [15, 21, 26] at lowest order (two loops for a

theory in three dimensions). Since the gauge coupling is unrenormalised for any Chern-

Simons theory due to the topological nature of the theory, it is only necessary to compute

the anomalous dimensions of the chiral fields in order to check for superconformality (in

view of the non-renormalisation theorem). Our purpose here is to provide results to enable

the extension of this check to the next (four-loop) order. As may readily be imagined,

this is a highly non-trivial undertaking. Consequently we envisage an abridged version of

the full task. Firstly, we have calculated only the planar diagrams, corresponding to the

leading N contributions. Even then, and even after discarding large classes of diagrams

which can be seen in advance not to contribute to the anomalous dimension, one is faced

with the order of a hundred distinct diagrams. The process of automation which has made
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it feasible to perform high-loop calculations in non-supersymmetric theories using packages

such as Mincer [49] is not available to us here; we are not aware of any available package

for performing superspace calculations. Secondly, therefore, we have confined ourselves to

computing the coefficients of only a subset (albeit a large one) of the invariants contribut-

ing to the anomalous dimension. Initially we suspected that it might be possible to derive

the remaining coefficients by assuming the superconformality of a small number of the

known examples of such theories. However as we shall see later this turns out not to be the

case. In any case, we have tried to facilitate an extension of the check to include further

invariants in the anomalous dimension, in the following sense: for the subset of invariants

on which we have focussed our attention, we have (of course) computed all the diagrams

which can contribute. Many of these diagrams also contribute to other invariants, and

in these cases we have listed the contributions to these other invariants so that they can

readily be combined with the contributions from the remaining diagrams at a later date.

5.2 N = 2 Chern-Simons theory in three dimensions

The action for the theory can be written

S = SSUSY + SGF , (5.1)

where SSUSY is the usual supersymmetric action [37]

SSUSY =

∫
d3x

∫
d4θ

(
k

∫ 1

0

dtTr[D
α
(e−tVDαe

tV )] + Φj(eVARA)ijΦi

)
+

(∫
d3x

∫
d2θW (Φ) + h.c.

)
. (5.2)
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Here V is the vector superfield, Φ the chiral matter superfield and the superpotential

(quartic for renormalisability in three dimensions) W (Φ) is given by

W (Φ) =
1

4!
Y ijklΦiΦjΦkΦl. (5.3)

(We use the convention that Φi = (Φi)
∗.) We assume a simple gauge group, though we

comment later on the extension to non-simple groups. Gauge invariance requires the gauge

coupling k to be quantised, so that 2πk is an integer. The vector superfield V is in the

adjoint representation, V = VATA where TA are the generators of the fundamental repre-

sentation, satisfying Eq. (4.5) and the chiral superfield can be in a general representation,

with gauge matrices denoted RA satisfying Eq.(4.7).

In three dimensions the Yukawa couplings Y ijkl are dimensionless and (as mentioned

earlier) the theory is renormalisable. In Eq. (5.1) the gauge-fixing term SGF is given by [21]

SGF =
k

2α

∫
d3xd2θtr[ff ]− k

2α

∫
d3xd2θtr[ff ] (5.4)

and we introduce into the functional integral a corresponding ghost term

∫
DfDf∆(V )∆−1(V ), (5.5)

with

∆(V ) =

∫
dΛdΛδ(F (V,Λ,Λ)− f)δ(F (V,Λ,Λ)− f), (5.6)

with F = D2V , F = D
2
V . With α = 0 this results in a gauge propagator

⟨V A(1)V B(2)⟩ = − 1

K

1

∂2
D

α
Dαδ

4(θ1 − θ2)δ
AB. (5.7)
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The gauge vertices are obtained by expanding SSUSY + SGF as given by Eqs. (5.2), (5.4):

SSUSY + SGF →− i

6
fABC

∫
d3xd4θD

α
V ADαV

BV C

− 1

24
fABEfCDE

∫
d3xd4θD

α
V AV BDαV

CV D + . . . . (5.8)

The ghost action resulting from Eq. (5.6) has the same form as in the four-dimensional

N = 1 case [50,51]

Sgh =

∫
d3xd4θtr{c′c− c′c+

1

2
(c+ c′)[V, c+ c] +

1

12
(c+ c′)[V, [V, c− c]] + . . .}, (5.9)

leading to ghost propagators

⟨c′(1)c(2)⟩ = −⟨c′(1)c(2)⟩ = − 1

∂2
δ4(θ1 − θ2) (5.10)

and cubic, quartic vertices which may easily be read off from Eq. (5.9). Finally the chiral

propagator and chiral-gauge vertices are readily obtained by expanding Eq.(5.2); the chiral

propagator is given by:

⟨Φi(1)Φj(2)⟩ = − 1

∂2
δ4(θ1 − θ2)δ

i
j. (5.11)

The regularisation of the theory is effected by replacing V , Φ, Y by the corresponding bare

quantities VB, ΦB, YB, with the bare and renormalised fields related by

VB = ZV V, ΦB = ZΦΦ. (5.12)

Since the Chern-Simons level k is expected to be unrenormalised for a generic Chern-Simons

theory due to the topological nature of the theory (so that kB = k), superconformality will

be determined purely by the vanishing of the β-functions for the superpotential coupling.
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These will be given according to the non-renormalisation theorem by

βijkl
Y = γ

(i
ΦmY

jkl)m, (5.13)

where the anomalous dimension γΦ is defined by

γΦ = µ
d

dµ
lnZΦ. (5.14)

Writing

ZΦ =
∑

L even,m=1...L
2

Z
(L,m)
Φ

ϵm
, (5.15)

where L is the number of loops. γΦ is determined by the simple poles in ZΦ according to

MS with DRED as

γ
(L)
Φ = LZ

(L,1)
Φ (5.16)

and the higher order poles in ZΦ are determined by consistency conditions, the one relevant

for our purposes being

Z
(4,2)
Φ = β

(2)
Y .

∂

∂Y
γ
(2)
Φ − 2

(
γ
(2)
Φ

)2

, (5.17)

where βY is given by Eq. (6.11) and

βY .
∂

∂Y
≡ βklmn

Y .
∂

∂Y klmn
. (5.18)

At lowest order (two loops) it was found that superconformality (i.e. the vanishing of βY )

was equivalent to the vanishing of γΦ in all the cases considered [21, 26] and it appears

likely that this will remain true at higher orders.

49



5.3 Perturbative Calculations

In this section we review the two-loop calculation and describe in detail our four-loop

results.

The anomalous dimension of the chiral superfield is given at two loops by [21,26]

(8π)2γ
(2)
Φ =

1

3
Y2 − 2k−2C2(R)C2(R)− k−2T (R)C2(R) + k−2C2(G)C2(R), (5.19)

where (Y2)
i
j, C2(R) and C2(G) are defined in Eqs. (4.21), (4.22) and (4.22) and T (R) is

defined in Eq. (4.7). This result may readily be obtained by N = 2 superfield methods

[21, 26, 39, 42]; see section 3.4 for our N = 2 superfield conventions. Henceforth we set

k = 1 for simplicity; it may easily be restored if desired. Two-loop results for general

Chern-Simons theories have also been obtained in Ref. [43] but are not directly comparable

since they were computed in the N = 1 framework.

As explained earlier, in this paper we confine ourselves to the contributions to the four-

loop anomalous dimension from planar diagrams. From a consideration of possible group

invariants, the four-loop anomalous dimension is expected to take the form

(8π)4γ
(4)
Φ = α1Z1 + α2Z2 + α3W1 + α4W2 + α5W3 + α6W4 + (α7X + α8C2(G))U1

+ (α9X + α10C2(G))U2 + α11C40 + α12C31 + α13C22 + α14C13 + α15F4

+ X (α16C30 + α17C21 + α18C12) +X2(α19C20 + α20C11) + α21X
3C2(R)

+ α22X2 + α23X4 + (α24X + α25C2(R) + α26C2(G))X1

+ α27X5C2(R) + (α28X + α29C2(G))X5 + α30X3

+ α31tr(C2(R){RA, RB}RC)RARBRC + α32X6 + α33dCDAdCDBRARB,

(5.20)
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where the invariants involving Yukawa couplings are given by

(Y3)
i
j = Y ikmn(Y2)

l
kYjlmn,

(Y4)
i
j = Y iklrYklmnY

mnpqYpqrj,

Z1 = Y2C2(R)C2(R),

(Z2)
i
j = Y iklmYjkln(C2(R)C2(R))

n
m,

(W1)
i
j = Y iklmYrknp(RA)

n
l(RB)

p
m(RARB)

r
j,

(W2)
i
j = Y iklmYpkln(RARB)

n
m(RBRA)

p
j,

(W3)
i
j = Y ikmpYjkln(RARB)

l
m(RARB)

n
p,

(W4)
i
j = Y iklmYpkln(RAC2(R))

n
m(RA)

p
j,

U1 = Y2C2(R),

(U2)
i
j = Y iklmYjkln(C2(R))

m
n, (5.21)

and the remaining ones are

Cmn = C2(R)
mC2(G)

n,

F4 = fEABfECDfHAFfHCGR
BRDRFRG,

X = T (R)− 1

2
C2(G),

X1 = tr(C2(R)RARB)RARB,

X2 = tr(RARBRCRD)RARBRCRD,

X3 = tr(C2(R)C2(R)RARB)RARB,

X4 = tr(Y2RARB)RARB,

X5 = DABCRARBRC ,

X6 = fEABDECDRARCRBRD, (5.22)
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(a) (b) (c)

Figure 4: The one-loop insertions contributing to X.

with

DABC =
1

2
tr({RA, RB}RC). (5.23)

The quantity X in Eq. (5.22) is produced by one-loop vector two-point insertions as de-

picted in Fig. 4. One can show using results from Ref. [52] that the structure X6 vanishes

for the case of the fundamental representation; but we have not been able to prove this in

general. We have decided to omit the computation of the coefficients α14, α15, α18, α20,

α26, α29 and α30 − α33, and therefore we shall leave out those diagrams which can only

contribute to these coefficients. Our rationale broadly speaking has been to avoid coeffi-

cients which derive contributions from large numbers of diagrams. This typically entails

avoiding invariants with factors of C2(G), since it is clear for instance from Table 1 that

invariants with more factors of C2(G) can arise from a larger number of diagrams. The

coefficients α12, α13, α17 are exceptions to this. We computed these since the corresponding

invariants C31, C22 and XC21 have non-zero double poles (see Eq. (5.27)), which we wished

to compute as a consistency check.

We are therefore concerned with the calculation of two-point diagrams. We have used

the package FeynArts [53] to assist in generating the full set of diagrams. This package

requires as an input the basic four-loop planar vacuum topologies, since only the topologies

up to three loops are contained in the standard package. The topologies which we have

used in FeynArts are depicted in Fig. 5 and also in Fig. 11; the remaining topologies consist

of insertions of loops on simple three-loop topologies and we have enumerated diagrams in
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5: Four-loop topologies.

these classes “by hand”.

Two large classes of diagrams may be immediately discarded as having no logarithmic

divergences and therefore no contribution to the anomalous dimension [39]. The first

consists of those diagrams in which the first (last) vertex encountered along the incoming

(outgoing) chiral line has a single gauge line. These are shown schematically in Fig. 6(a).

The second class consists of those diagrams which contain a one-loop subdiagram with

one gauge and one chiral line; depicted in Fig. 6(b). We were able to use the features of

FeynArts to discard such diagrams of the type in Fig. 6(a) automatically.
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(a) (b)

Figure 6: Classes of diagram which do not contribute.

Instead of displaying each of the divergent graphs pictorially, which would be very

laborious, we introduce a notation for various classes of diagram and illustrate it by means

of representative examples, depicted in Fig. 7. The main exception is the graphs with

Yukawa vertices, which we shall describe shortly. The majority of our graphs have no

Yukawa vertices and most can be described using a fairly uniform notation. We start with

graphs which have only a single chiral line, and only gauge/chiral vertices. The gauge-

chiral vertices along the chiral line are noted in order from left to right with the numbers

representing which vertices the vertex in question connects to. In Fig. 7(a) the bracket

containing 355 represents the first vertex connecting to the third vertex and then to the

fifth vertex twice. The 4 following the bracket represents the second vertex connecting to

the fourth vertex and then the 1 and the 2 following the represent the third and fourth

vertices connecting to the first and second vertices respectively. Lastly the (11) represents

the fifth vertex connecting to the first vertex twice.
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1
2

3
4

5

(a): (355)412(11)

1
2

3 4

(b): (34)41(12)X14

1 2

A B

C

(c): (AC)(CB)

1 2

a b

(d): (2a)(1b){(1b)(2a)}

1 2

A’ C’

D’

B’

(e): (2A’)(1C’){1D’2B’}

1 2
3

4

α

(f): (α3)(α4)1(2α)

A
B

(AB)

(g): [AB][][](AB)

Figure 7: Typical diagrams with their notation.
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Figure 8: The additional graph from Table 5.

The insertion of a one-loop gauge 2-point function on the propagator joining vertices

i and j is denoted by the addition of Xij; see Fig. 7(b). More complex chiral loops

(but without internal lines) are described by labelling the vertices on the loop by A, B,

alphabetically, following the direction of the chiral arrows, and listing their connections to

the vertices on the “main” chiral line as in the previous examples; in Fig. 7(c) the first

bracket containing AC represents the first vertex on the main chiral line connecting to the

A and C vertices on the chiral loop, the second bracket denotes the second vertex on the

main chiral line connecting to the C and B vertices on the chiral loop. Gauge loops are

described similarly, but with lower-case letters. If there are internal lines within the loop,

these are denoted by listing the connections alphabetically in the same way as the main

chiral line, but enclosed within brackets {}, as in Fig. 7(d) after the vertices on the main

chiral line have been denoted. Ghost loops are denoted by labelling their vertices with

primed letters, as in Fig. 7(e). Gauge vertices which do not lie within loops are denoted by

Greek letters and their connections with the main line or with loops denoted as usual, as

in Fig. 7(f). A single graph which does not fall into any of these categories is that shown

in Fig. 8 (the result for this graph will be given in Table 5).

Now we come to the graphs with Yukawa vertices. There are two graphs with four

Yukawa vertices (and no gauge lines). Their structure can easily be derived from the

corresponding group invariant (one for each graph). They will therefore simply be labelled

by their group structure (Y3 and Y4, as defined in Eq. (5.21)). The graphs with two

Yukawa vertices (connected to an external line) and two gauge lines are described using a

56



(b)(a)

Figure 9: The graphs of Table 9.

somewhat different notation to the above. The gauge matrices on chiral lines (represented

by square brackets) are labelled A, B, etc and the matrices on each chiral line in the chiral

loop are enclosed within square brackets [ ]. Two matrices labelled with the same letter

are connected by a gauge propagator. This is exemplified in Fig. 7(g) where the three

square brackets represent the three chiral lines connecting the two Yukawa vertices, the

AB in the first square bracket represents two gauge matrices connected to the chiral line

on two separate vertices and the regular bracket containing AB representing the two gauge

matrices connecting at a single vertex outside of the two Yukawa vertices. Finally, we have

found it simplest to depict the diagram explicitly for a small class of diagrams with two

Yukawa vertices, in Fig. 9.

Several diagrams clearly give no contribution by virtue of group theoretic considera-

tions. For each remaining diagram the D-algebra is performed using the conventions and

useful identities listed in section 3.4. A large number (almost all, in fact) of diagrams con-

taining 3-point gauge vertices yield vanishing contributions when the results of all possible

arrangements of the Ds and Ds are added together. Unfortunately we have not succeeded

in establishing a criterion to predict in advance which diagrams give non-vanishing results.

Our results for the non-vanishing divergences are listed diagram-by-diagram in Tables 3-13.

Note that the graph (3α)αα(1α) in Table 5 yields two distinct group structures which have

been listed separately, the second occurrence distinguished by a prime.

Let us now explain how the Tables have been constructed. The results have been

expressed in terms of a relatively small basis of momentum integrals [54, 55] which are
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depicted in Fig. 11 and whose divergences are also listed in Appendix C. Figs. 11(a)-(g)

depict I4, I4bbb, I22, I42bbc, I422qAbBd, J4 and J5, respectively. The results given later, and also

most of these conventions for labelling the diagrams, are taken from Refs. [54,55]. In Fig. 11

the arrows denote momenta in the numerator contracted as indicated and the small vertical

line denotes two propagators, one before and one after the line. These momentum integrals

multiply a variety of group structures, which appear in the final columns of Tables 3-13.

In Table 1 we give the decompositions of some of these group structures into the basis

of group invariants. The definitions of these group structures are not given explicitly as

they may easily be read off from the structure of the diagrams where they appear. Two

examples should suffice: for instance, to take the diagrams Fig. 7(a), (b) respectively

S4 = R(ARBRC)RDRARDR(BRC),

SX4 = XR(ARB)RCRAR(BRC). (5.24)

Finally the first columns of Tables 3-13 contain an overall symmetry factor. The resulting

contribution to the two-point function for each diagram is therefore obtained by adding the

momentum integrals with the coefficients listed in the appropriate row and multiplying the

resulting sum by the corresponding symmetry factor and group structure. For instance,

the fourth row of Table 3 denotes a contribution

(−1)(−2I4 + I4bbb)

(
W2 −

1

12
C2(G)U

)
. (5.25)

The combination of momentum integrals

1

4
I4 −

5

8
I22 − I4bbb + I42bbc − 2I422qAbBd, (5.26)

which one frequently observes in the tables, results from a momentum integral correspond-
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Figure 10: The non-planar graph.

ing to the topology Fig. 11(e), but with a trace over a product of “pαβ” around the perimeter

(constructed as in Eq. (3.24), where p is the momentum on one of the perimeter lines).

The first check on our results is provided by the consistency conditions Eq. (5.17) for

the double poles. These, with the aid of Eq. (5.19), give

(8π)4Z
(4,2)
Φ =

1

6
Y3 −

1

12
Z1 +

1

4
Z2 +

1

8

(
U2 −

1

3
U1

)(
X − 1

2
C2(G)

)
+

1

2
C40 −

1

4
C31 +

1

32
C22 +

1

2
XC30 −

1

8
XC21 +

1

8
X2C20. (5.27)

We have checked all these non-zero coefficients, and moreover we have verified that the

double poles for the remaining invariants whose coefficients we are computing vanish as

they should. Of course the double pole contributions can in principle come from non-planar

as well as planar diagrams. However, one can check that the only double-pole contribution

from a non-planar diagram to one of the group structures whose divergent contribution

we have computed is that from the diagram Fig. 10 (which contributes to α22). Indeed,

diagrams with three-point gauge vertices only have simple poles and the majority of non-

planar diagrams are of this type. Including this double-pole contribution along with those

from the planar diagrams in Table. 13, we find that the double pole proportional to X2 in

Eq. (5.22) is indeed cancelled. Of course the double poles corresponding to the invariants

with coefficients α14, α15, α18, α20, α26, α29 and α30 − α33 should also cancel, but this we

have not checked.

We note that the diagrams listed in Table 12 consist of insertions of a two-loop contribu-
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tion to the gauge two-point function. These would be relevant to a superspace calculation

of the corrections to the Chern-Simons level k; also required would be the similar contri-

butions to the ghost two-point function; and the two-loop corrections to the V ΦΦ vertex.

Such calculations have been performed in components [56], but there may be some interest

in corroborating them in the superspace context.

Our final result for the four-loop anomalous dimension is

(8π)4γ
(4)
Φ =

2

3
Y3 +

π2

4
Y4 −

4

3
Z1 +

(
4− 2

3
π2

)
(4W1 − Z2)

+

(
8− 5

3
π2

)
W2 −

1

3
π2W3 +

2

3
π2W4

+

[
2

(
1− 1

8
π2

)
X −

(
1− 1

4
π2

)
C2(G)

](
1

3
U1 − U2

)
− 4

(
6 + π2

)
C40 +

(
32 +

17

6
π2

)
C31 −

1

2

(
25 +

23

24
π2

)
C22

+ α14C13 + α15F4 +X

[
−(8 + 3π2)C30 +

(
2 +

19

6
π2

)
C21 + α18C12

]
+ X2[−(2 + π2)C20 + α20C11]−

1

8
π2X3C2(R) +

(
16− 7

3
π2

)
X2

− 2

3
X4 +

[
(8− 3π2)X − 2π2C2(R) + α26C2(G)

]
X1 +

16π2

3
X5C2(R)

+ (−π2X + α29C2(G))X5 + α30X3 + α31tr(C2(R){RA, RB}RC)RARBRC

+ α32X6 + α33dCDAdCDBRARB. (5.28)

As we explained in the introduction to this section, it is possible that the remaining

undetermined coefficients may be determined by comparison with a small number of the

known superconformal theories. We have therefore paused at this point in the explicit

calculation and in the next Section we shall see what we can deduce already about higher-

order superconformality and what are the prospects of using superconformality to efficiently

determine remaining coefficients.
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5.4 Summary

Of course further weight would be given to any superconformality checks by continuing the

computation of the remaining unknown coefficients in Eq. (5.28). This would be hugely

simplified if we could understand in advance which diagrams with 3-point gauge vertices will

yield a vanishing contribution. In any case the remainder of the computation is certainly

not insuperable, merely somewhat laborious. The extension to the non-planar diagrams

is also in principle feasible, though we do not at present have available a convenient basis

of momentum integrals already tabulated for this case. On the other hand, many of the

non-planar diagrams may not actually contribute since most of them will contain 3-point

gauge vertices.
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Figure 11: The basis of momentum integrals.
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C40 C31 C22 C13 F4

S1 1 −1
2

1
16

0 0

S2 1 −3
2

41
48

− 33
192

5
24

S3 1 −3
4

1
8

0 0

S4 1 −5
4

13
24

− 1
12

0

S5 1 −3
2

5
6

− 47
288

7
36

S6 1 −2 65
48

−29
96

5
12

S7 1 −5
2

33
16

−17
32

1

S8 1 −1 3
8

− 7
128

1
16

S9 1 −3
2

13
16

− 5
32

1
4

S10 1 −5
4

9
16

− 3
32

1
8

S11 1 −7
4

33
32

−13
64

1
4

S12 1 −3
2

3
4

−1
8

0

S13 1 −3
2

3
4

−1
8

1
16

S14 1 −7
4

1 − 3
16

1
8

S15 1 −21
12

103
96

− 43
192

7
24

S16 1 −2 21
16

− 9
32

1
4

S17 1 −9
4

27
16

−13
32

5
8

S18 0 1 −11
8

7
16

−1

S19 0 1 −7
8

3
16

0

S20 0 0 1 −3
8

2

S21 0 0 3
2

−5
8

1

S22 0 0 2 −1 2

S23 0 0 1
2

−1
4

2

S24 0 0 1 − 7
18

4
3

Table 1: Decompositions into group invariants for diagrams of type Fig. 7(a).
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C30 C21 C12

SX1 1 −3
4

1
6

SX2 1 − 7
12

5
48

SX3 1 −3
4

5
32

SX4 1 −1 1
4

SX5 1 −1
4

0

SX6 0 1 −3
8

Table 2: Decompositions into group invariants for diagrams of type Fig. 7(b).

I4 I22 I4bbb I42bbc I422qAbBd

Y3
1
12

1 0 0 0 0 Y3

Y4
1
8

0 0 1 0 0 Y4

[A][B][](AB) −1 −7
4

−5
8

1 1 −2 W1

[AB][](AB) −1 −2 0 1 0 0 W2 − 1
12
C2(G)U

[(AB)][](AB) 1
2

−2 0 0 0 0 W2 − 1
12
C2(G)U1

[(AB)(AB)][][] 1
4

−2 0 0 0 0 Z2 − 1
4
C2(G)U2

[(AB)][(AB)][] 1
4

0 0 −2 0 0 W3 − 1
4
C2(G)U2 +

1
12
C2(G)U1

[A][(AB)][B] −1
2

1
4

−5
8

−1 1 −2 1
2
W2 −W3 +W4 +

1
2
Z2

[(AB)][AB][] −1 1
4

−5
8

−1 1 −2 W3 − 1
4
C2(G)U2 +

1
12
C2(G)U1

[ABAB][][] 1
2

0 0 1 0 0 Z2 − 1
2
C2(G)U2

[ABA][B][] 1 −1
4

5
8

1 −1 2 −1
2
Z2 +

1
4
C2(G)U2 − 1

12
C2(G)U1

(AB)[][][](AB) 1
12

−2 0 0 0 0 Z1 − 1
4
C2(G)U1

[AA][][]XAA
1
2

1 0 −1
2

0 0 X
(
U1 − 1

2
U2

)
[A][A]XAA

1
2

0 1
2

0 0 0 XU2

[(AA)][][]XAA −1
2

0 1
2

0 0 0 XU2

Table 3: Results for diagrams of type Fig. 7(g).
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I4 I22 I4bbb I42bbc I422qAbBd

(44)(33)(22)(11) 1
4

4 0 0 0 0 S1

(233)(13)(112) −1
2

0 0 4 0 0 S5

(66)4523(11) 1
2

0 0 −2 0 0 S3

(355)412(11) −1 0 0 −2 0 0 S4

(24)(13)(24)(13) 1 0 0 −2 0 0 S8

(36)516(14) 1 0 0 0 −2 0 S9

(25)(14)52(13) −2 0 0 −1 0 0 S10

(35)4(15)2(13) −1 0 0 0 −2 0 S11

(46)6513(12) 2 −1
4

5
8

0 −1 2 S12

(34)(34)(12)(12) 1 0 0 −1 2 0 S13

(35)(45)12(12) −2 0 0 −1 2 0 S14

(223)(113)(12) −1 4 0 0 0 0 S5

(234)(14)1(12) 2 0 0 1 0 0 S15

(334)4(11)(12) 1 4 0 −2 0 0 S6

(345)511(12) −2 1
4

−5
8

0 1 −2 S6

(2233)(11)(11) −1
2

4 0 0 0 0 S2

(33)(44)(11)(22) 1
4

0 4 0 0 0 S7

(22)(1133)(22) −1
4

0 4 0 0 0 S2

(33)4(114)(23) 1 0 2 0 0 0 S6

(34)51(15)(24) −2 −2 1 1 0 0 S14

(23)(14)(14)(23) 1 −2 1 0 0 0 S13

(35)6161(24) 1 −5
2

9
4

2 −2 4 S16

(34)5(15)1(23) −1 −2 1 2 0 0 S17

(34)(55)11(22) −1 0 2 0 0 0 S7

(45)6611(23) 1 −2 1 2 0 0 S7

(3α)(4α)1(2α) 1 −3
4

−1
8

0 1 −2 S18

(5α)4α2(1α) −1 −1
8

5
16

1 −1 1 S19

Table 4: Results for diagrams of type Fig. 7(a),(f).
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I4 I22 I4bbb I42bbc I422qAbBd

(αα)(3α)(2α) 1
24

1 1
2

0 0 0 S20

(3αα)α(1α) 1
72

0 0 −1
2

0 0 S21

(3α)(αα)(1α) − 1
192

0 0 −4 −4 0 S20

(3α)αα(1α) 1
24

1
2

−5
4

−1 3 −4 S20

(3α)αα(1α)′ 1
8

−1
4

5
8

0 −1 2 F4

(ab)(ab)(ab) −1
4

5
8

− 9
16

−1 1
2

−1 S22

(αα)4α(2α) − 1
12

0 0 1
2

0 0 S23

(3αα)(1αα) 1
48

0 0 1 0 0 S24

Fig. 8 −1
8

−1 1
2

0 0 0 S20

Table 5: Results for graphs with 4-point gauge vertex and graphs of type Fig. 7(c),(d).

I4 I22 I4bbb I42bbc I422qAbBd

(3A)C(1B){132} 1 0 0 0 −1 0 X5C2(R) +
1
4
T (R)(C21 − 3

8
C12)

(3A)B(1C){123} 1 1
2

−5
4

−1 2 −4 X5C2(R)− 1
4
T (R)(C21 − 3

8
C12)

(3A′)C ′(1B′){132} 1
16

0 0 0 −1 0 C22 − 3
8
C13

(3A′)B′(1C ′){123} − 1
16

1
2

−5
4

−1 2 −4 C22 − 3
8
C13

(A3)A(B1){(12)3} −2 0 0 −1
2

0 0 X5C2(R)

(AB2)(C1){112} −2 −2 0 0 0 0 X5

(
C2(R)− 1

3
C2(G)

)
(AB2)(B1){1(12)} 2 −2 0 0 0 0 X5

(
C2(R)− 1

3
C2(G)

)
(AA2)(B1){(11)2} 1 0 0 −2 0 0 X5

(
C2(R)− 1

3
C2(G)

)
(3A)B(1A){(13)2} −1 0 0 0 −1 0 X5(C2(R)− 3

8
C2(G))

Table 6: Results for graphs contributing to X5C2(R), and similar topologies.
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I4 I22 I4bbb I42bbc

(222)(111)X12 −1 1 0 0 0 XSX1

(1122)(11)X11 −1 0 1 0 0 XSX2

(33)(22)(11)X22
1
2

0 1 0 0 XSX5

(233)1(11)X12 2 0 1
2

0 0 XSX1

(44)32(11)X23 −1 0 1
2

0 0 XSX5

(2a)(1a)Xaa
1
6

0 1 0 0 XC21

(23)(13)(12)X12 −4 1
2

−1
4

0 0 XSX3

(23)(13)(12)X13 −1 0 0 1 0 XSX3

(34)41(12)X14 1 0 0 1
2

0 XSX4

(34)41(12)X13 2 1 −1
2

−1
2

0 XSX4

(α3)α(α1)Xα2 −1
2

−1 1
2

1
2

−1
2

XSX6

Table 7: Results for diagrams of type Fig. 7(b).

I4 I22 I4bbb I42bbc J4 J5

(AB){(1B)(1A)}XAB −1
2

2 0 0 0 2 2 X(X1 − 1
4
C2(G)T (R)C2(R))

(AB){(1B)(1A)}X1A −1 2 0 0 0 0 0 X(X1 − 1
4
C2(G)T (R)C2(R))

(AC){(1B)A1}XAB 1 0 1 0 0 1 1 X(X1 − 1
4
C2(G)T (R)C2(R))

(AB){(1C)1A}XAC 1 0 1 0 0 1 1 X(X1 − 1
4
C2(G)T (R)C2(R))

(AD){1CB1}XBC −1 0 1 0 0 1 1 X(X1 − 1
2
C2(G)T (R)C2(R))

(AC){1D1B}XBD −1
2

−2 2 1 −2 0 0 X(X1 − 1
2
C2(G)T (R)C2(R))

(AC){1D1B}X1A −1 −2 0 1 0 0 0 X(X1 − 1
4
C2(G)T (R)C2(R))

(AC){1(BB)1}XBB 1 0 2 0 0 0 0 XX1

(AB){(1AA)1}XAA 1 0 −2 0 0 0 0 X(X1 − 1
2
C2(G)T (R)C2(R))

Table 8: Results for diagrams contributing to XX1.

I4 J4 I42bbc

Fig. 9(a) 1
12

2 −2 −2 X4C2(R)

Fig. 9(b) −1
6

1 −1 0 X4C2(R)

Table 9: Results for diagrams contributing to X4C2(R).
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I4 I22 I4bbb

(11)(11)X11X11 −1
8

0 1 0 X2(C20 − 1
6
C11)

(22)(11)X12X12
1
2

−1
2

1
4

0 X2(C20 − 1
4
C11)

(22)(11)(X2)12 1 0 0 −1
2

X2(C20 − 1
4
C11)

(11)(X3)11 −1
2

0 0 1
8

X3C2(R)

Table 10: Results for diagrams contributing to X2C2(R)
2 and X3C2(R).

I4 I22 I4bbb

(ABC)X1A 1 1 0 0 XX5

(ABB)X1B −1 1 0 0 XX5

(ABB)X1A −1
2

0 0 1 XX5

Table 11: Results for diagrams contributing to XX5.

I4 I4bbb

(2a)(1b){(1b)(2a)} 1
24

1 0 C22 − 1
4
C13

(2A′)(1B′){(1B′)(2A′)} 1
6

1 0 C22 − 1
4
C13

(2A′)(1C ′){1D′2B′} −1
8

1 −1
2

C22 − 1
4
C13

(2A′)(1α){1αα} −1
8

0 1 C22 − 1
4
C13

(2A)(1B){(1B)(2A)} −2 1 0 (X1 − 1
4
C2(G)T (R)C2(R))(C2(R)− 1

4
C2(G))

(2A)(1C){1D2B} 2 1 −1
2

(X1 − 1
4
C2(G)T (R)C2(R))(C2(R)− 1

4
C2(G))

(2A)(1α){1αα} 1 0 2 1
4
C2(G)T (R)

Table 12: Results for two-loop vector two-point insertion diagrams.

I4 I22 I4bbb I42bbc I422qAbBd

(AB)(CD) 1 −4 0 1 1 0 X2 − 1
16
T (R)C12 +

1
2
C2(G)X5

(AC)(BC) −1 −4 0 1 1 0 X2 − 3
32
T (R)C12 +

5
8
C2(G)X5 − 1

4
iX6

(AB)(BC) −1 −15
4

−5
8

1 2 −2 X2 − 3
32
T (R)C12 +

5
8
C2(G)X5 − 1

4
iX6

(AB)(AB) 1
2

−4 0 1 2 0 X2 − 3
32
T (R)C12 +

5
8
C2(G)X5 − 1

4
iX6

(AA)(BC) −1 −2 0 0 0 0 X2 − 1
16
T (R)C12 +

1
2
C2(G)X5

(AA)(AB) 1 −2 0 0 0 0 X2 − 3
32
T (R)C12 +

5
8
C2(G)X5 − 1

4
iX6

(ABCD) −1
4

1
4

−5
8

−1 1 −2 X2 − 3
32
T (R)C12 +

5
8
C2(G)X5 − 1

4
iX6

(AABB) −1
8

0 0 4 0 0 X2 − 3
32
T (R)C12 +

5
8
C2(G)X5 − 1

4
iX6

Table 13: Results for diagrams contributing to X2.
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6 Superconformal Chern-Simons theory in three di-

mensions beyond leading order

We discuss possible higher-loop corrections to superconformal invariance for a class of

N = 2 supersymmetric Chern-Simons theories including the ABJM model. We argue that

corrections are inevitable even for simple generalisations of the ABJM model; but that it

is likely that any corrections are of a particular “maximally transcendental” form.

6.1 Introduction

Since the gauge coupling is unrenormalised for any Chern-Simons theory due to the topo-

logical nature of the theory (and indeed is quantised at certain values–the Chern-Simons

“level”) it is only necessary to compute the anomalous dimensions of the chiral fields in

order to check for superconformality (in view of the non-renormalisation theorem). Our

purpose here is to attempt to extend the explicit check of superconformality beyond lowest

order. Many of the superconformal theories involve a simple choice of the superpotential

couplings in terms of the Chern-Simons level, and the simplest expectation would be that

this choice renders the theory finite at higher orders too. This would be analogous to the

case of N = 4 and N = 2 supersymmetric theories in four dimensions, where the finiteness

properties are manifest to all orders in the N = 1 superfield description once the field con-

tent and superpotential have been specified (assuming a supersymmetric regulator such as

DRED). However, an alternative possibility is that one might have to adjust the couplings

order by order so as to achieve finiteness [57,58]. This would be more analogous to the case

of finite N = 1 theories in four dimensions, where the finiteness is obtained through an

order-by-order adjustment of the couplings. We might certainly expect the theories where

superconformality is achieved by solving a somewhat non-trivial condition at lowest order
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to behave like this.

In odd spacetime dimensions, divergences only occur at even loop order, so to go be-

yond leading order we are driven to consider a four-loop calculation. The total number

of diagrams is colossal; so here we report on what can be learnt from the consideration

of a subset of the full set of diagrams, namely those which have at least one (in fact at

least two) Yukawa vertices. We were able to compute all the relevant diagrams with the

exception of a single non-planar diagram. Our conclusions are as follows: firstly, we note

that the contributions to the anomalous dimension at this order fall into two classes, pro-

portional respectively to F 4 and π2F 4, where F is the usual factor associated with loops

in dimensional regularisation, in 3 dimensions F = 1
8π
. The latter class has been called

“maximally transcendental” [54], and we shall call the former “rational”. We then show

that the maximally-transcendental contributions to the four-loop anomalous dimension

inevitably require a coupling redefinition to restore superconformality as soon as “multi-

trace deformations” are included; and in fact we shall argue that there is evidence that

maximally-transcendental redefinitions may be needed even in simpler cases such as the

ABJM and ABJ models. On the other hand, there is no such evidence that redefinitions

are needed for the rational contributions; and we shall show that (at least to leading order

in N , M , and probably to all orders) the ”rational” contributions to the four-loop anoma-

lous dimension adopt a universal form for a wide class of theories once the lowest-order

superconformality conditions are imposed; and thus, if a “rational” coupling redefinition

is unnecessary for the ABJ and ABJM models, it would also would be unnecessary for this

class of related models.

6.2 N = 2 Chern-Simons theory in three dimensions

We consider an N = 2 supersymmetric U(N) × U(M) Chern-Simons theory with vector

multiplets V , V̂ in the adjoint representations of U(N) and U(M) respectively, and we
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write

V b
a = V A(TA)

b
a, V̂ b̂

â = V̂ A(T̂A)
b̂
â, (6.1)

where TA, A = 1, . . . N2 and T̂A, A = 1, . . .M2 are the generators for the fundamental

representations of U(N), U(M) respectively.

The vector multiplets are coupled to chiral multiplets (Ai)aâ and (Bi)
â
a, i = 1, 2 in the

(N,M) and (N,M) representations of the gauge group, respectively. The gauge matrices

TA satisfy Eq. (4.5). The action for the theory can be written

S = SSUSY + SGF , (6.2)

where SSUSY is the usual supersymmetric action [37]

SSUSY =

∫
d3x

∫
d4θ

∫ 1

0

dt
{
K1 Tr[D

α
(e−tVDαe

tV )] +K2Tr[D
α
(e−tV̂Dαe

tV̂ )]
}

+

∫
d3x

∫
d4θTr

(
Aie

VAie−V̂ +B
i
eV̂Bie

−V
)

+

(∫
d3x

∫
d2θW (Ai, Bi) + h.c.

)
. (6.3)

Here the superpotential (quartic for renormalisability in three dimensions) W (Ai, Bi) is

given by

W (Ai, Bi) = Tr[h1(A
1B1)

2 + h2(A
2B2)

2 + h3A
1B1A

2B2 + h4A
2B1A

1B2]

+
1

2
H1[Tr(A

1B1)]
2 +H12 Tr(A

1B1) Tr(A
2B2) +

1

2
H2[Tr(A

2B2)]
2. (6.4)

Gauge invariance requires 2πK1 and 2πK2 to be integers.

A variety of interesting theories may be obtained by specialising the superpotential in

Eq. (6.4) and the gauge group and associated Chern-Simons levels in various ways.

Setting h1 = h2 = 0, h3 = −h4 = h, H1 = H2 = H12 = 0, K1 = −K2, we obtain the
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N = 2 ABJM/ABJ-like theories studied in Ref. [15]. In particular, for h = 1
K

one obtains

the N = 6 superconformal ABJ theory and for N =M the ABJM theory.

On the other hand, for

h1 = h2 =
1

2

(
1

K 1
+

1

K 2

)
, h3 =

1

K 1
, h4 =

1

K 2
, (6.5)

we obtain the N = 3 superconformal theory described in Ref. [59].

Additional, more general, superconformal theories may be found by solving the lowest

order finiteness conditions (see next section). Further superconformal theories may also be

obtained by adding flavour matter [21].

The details of gauge fixing and quantisation for our Chern-Simons theory are the same

as those used in Eqs. (5.4), (5.5) and (5.6) with the same procedure for each gauge sector.

With α = 0 this results in a gauge propagator for V of the form

⟨V A(1)V B(2)⟩ = − 1

K1

1

∂2
D

α
Dαδ

4(θ1 − θ2)δ
AB, (6.6)

with a similar propagator for V̂ . The gauge vertices are obtained by expanding SSUSY +SGF

as given by Eqs. (6.3), (5.4):

SSUSY + SGF →− i

6
K1f

ABC

∫
d3xd4θD

α
V ADαV

BV C

− i

6
K2f

ABC

∫
d3xd4θD

α
V̂ ADαV̂

BV̂ C + . . . . (6.7)

Again we obtain the same ghost action, Eq. (5.9), resulting from Eq. (5.6) leading to

ghost propagators

⟨c′(1)c(2)⟩ = −⟨c′(1)c(2)⟩ = − 1

∂2
δ4(θ1 − θ2), (6.8)

(together with similar expressions involving V̂ and its own ghosts), and cubic and higher-
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order vertices which may easily be read off from Eq. (5.9). Finally the chiral propagator

and chiral-gauge vertices are readily obtained by expanding Eq.(5.2); the chiral propagators

are given by:

⟨Aâ

i aA
jb

b̂⟩ = − 1

∂2
δ4(θ1 − θ2)δa

bδâb̂δ
j
i, (6.9)

with a similar expression for the B-propagator.

The regularisation of the theory is effected by replacing V , V̂ , A, B, hi, Hi (and the

various ghost fields) by corresponding bare quantities VB, V̂B, AB, BB, hBi, HBi (and

similarly for the ghost fields) with the bare and renormalised fields related by

VB = ZV V, (6.10)

etc. Since the Chern-Simons levels K1 and K2 are expected to be unrenormalised for a

generic Chern-Simons theory due to the topological nature of the theory (so thatKB1 = K1

and KB2 = K2), superconformality will be determined purely by the vanishing of the

β-functions for the superpotential couplings. These will be given according to the non-

renormalisation theorem in terms of the anomalous dimensions of the fields associated

with each coupling; for instance

βh3 = (γA1 + γB1 + γA2 + γB2)h3, (6.11)

where anomalous dimensions such as γA1 are defined in the same way as γΦ in Eq. (5.14).

Similarly ZA1 is defined in the same way as ZΦ in Eq. (5.15) and γA1 is determined from

ZA1 according to Eq. (5.16). The higher order poles in ZA1 are determined by consistency

conditions, the one relevant for our purposes being

Z
(4,2)

A1 =
∑
r

β
(2)
λr
.
∂

∂λr
γ
(2)

A1 − 2
(
γ
(2)

A1

)2

, (6.12)
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where {λr, r = 1, . . . , 14} = {hi, hi, Hi, H i, H12, H12} and βh3 is given by Eq. (6.11) with

similar expressions for the other superpotential couplings (and the β-function for a coupling

is the same as that for its conjugate). At lowest order (two loops) it was found that

superconformality (i.e. the vanishing of βλr) was equivalent to the vanishing of all the

corresponding anomalous dimensions (for the fields involved in the λr coupling) in all the

cases considered [21,26].

Finally we discuss what may be inferred about possible higher-order corrections from

previous work, in particular Ref. [54]. In Ref. [54], four-loop corrections were discussed to

the magnon dispersion relation for the ABJM model. These corrections were computed

in the planar limit, which corresponds for us to the O(N4,M4) terms at four loops; they

were found to be maximally transcendent, with no rational contribution. Now implicit in

Ref. [54] is the assumption that the ABJ model has the simple form discussed earlier. The

corrections required for the dispersion relation may therefore be assumed to include the

corrections needed to restore conformal invariance, in addition to corrections peculiar to

the dispersion relation itself. Barring any accidental cancellations, the absence of rational

corrections to the dispersion relation may be taken to imply that there is no need for

rational corrections to the couplings to maintain four-loop superconformal invariance for

the ABJ model. Conversely, given that transcendental corrections are required for the

dispersion relation, there is no a priori reason not to expect transcendental corrections to

the superconformality conditions.

6.3 Perturbative Calculations

In this section we review the two-loop calculation and describe in detail our four-loop

results.

The renormalisation constants of the chiral superfields A1, B1 are given at two loops
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(a) (b) (c)

Figure 12: Two-loop diagrams.

by [21,26]

F−2γ
(2)

A1 = ρA1 − ρk, (6.13)

(with similar expressions for A2, B1 and B2) where F = 1
8π

as defined before and

ρA1 = ρB1 = 4|h1|2(MN + 1) + (|h3|2 + |h4|2)MN + (h3h4 + h4h3)

+ MN(|H1|2 + |H12|2) + |H1|2,

ρA2 = ρB2 = 4|h2|2(MN + 1) + (|h3|2 + |h4|2)MN + (h3h4 + h4h3)

+ MN(|H2|2 + |H12|2) + |H2|2,

ρk = (k21 + k22)(2MN + 1) + 2(MN + 2)k1k2, (6.14)

with

k1 =
1

K1

, k2 =
1

K2

. (6.15)

This result may readily be obtained byN = 2 superfield methods [21,26,39,42] from the

two-loop two-point diagrams depicted in Fig. 12; see section 3.4 for our N = 2 superfield

conventions. Here and later we do not distinguish in the diagrams between the different

chiral or gauge fields, so that each diagram in Fig. 12 is a schematic representation of

several distinct Feynman diagrams. ρA1 etc correspond to Fig. 12(a) while it may easily

be checked that

ρk = ρb + ρc (6.16)
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(a) (b) (c)

Figure 13: One-loop insertion diagrams.

where the contributions ρb,c corresponding to Fig. 12(b,c) are given by

ρb =
1

2
(C1 + C2) =

1

2
[(N2 + 1)k21 + (M2 + 1)k22 + 4MNk1k2],

ρc =
1

2
[X1Nk

2
1 +X2Mk22 +X12k1k2], (6.17)

with

C1 = N2k21 +M2k22 + 2MNk1k2,

C2 = k21 + k22 + 2MNk1k2,

X1 = 4M − N2 − 1

N
,

X2 = 4N − M2 − 1

M
X2,

X12 = 8. (6.18)

C1,2 correspond to the two different symmetrisations of the gauge lines in Fig. 12(b), while

the X1, X2 and X12 correspond to the contributions from the “blob” in Fig. 12(c) which

represents the three one-loop diagrams depicted in Fig. 13 (the dashed line representing a

ghost propagator).

(We note here that the two-loop results for general Chern-Simons theories obtained in

Ref. [43] are not directly comparable since they were computed in the N = 1 framework.)

As mentioned in the Introduction, we shall consider two classes of model in some detail;
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the first without, and the second with, multitrace deformations. We therefore first consider

the caseH1 = H2 = H12 = 0 in Eq. (6.4), and in fact we start with the even simpler example

of

H1 = H2 = H12 = 0, h1 = h2 = 0, h3 + h4 = 0, (6.19)

with h3 = −h4 = h real. This is a class of theories considered in Ref. [59], which reduces

to the ABJ model on setting K1 = −K2 (or k1 = −k2) and to the ABJM model on further

setting M = N .

The four-loop diagrams contributing to the anomalous dimensions are depicted in

Figs. 14, 15.

The contributions to F−4Z
(4)

A1 from these diagrams are given by

Ga = 3ρ2hI4,

Gb = 2(MN3 +NM3 − 4M2 − 4N2 + 10MN − 4)h4I4bbb,

Gc = −3ρhρbI4,

Gd = 3ρhC2I4bbb,

Ge = −ρhρbI4,

Gf = 2ρhC2I5,

Gg = −T2I5,

Gh = −T2I4bbb,

Gi = −T1I5,

Gj = 4T2

(
I4 −

1

2
I4bbb

)
,

Gk = −2T2I4,

Gl = −2T1(−2I4 + 2I4bbb + I5),

Gm = −2ρhρc

(
I4 −

1

2
I4bbb

)
,
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(j) (k) (l)

(i)

(c)

(d)

(h)(g)

(f)(e)

(a) (b)

Figure 14: Four-loop diagrams.
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(m) (n) (o)

(q)(p) (r)

(s) (t) (u)

(v)

Figure 15: Four-loop diagrams (continued).
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Gn = 3ρhρcI22,

Go = −3ρhρcI22,

Gp = 2ρhT3(I4 − J4 − I42bbc),

Gq = −2ρhT3(I4 − J4),

Gr =
1

ϵ
h2T4(a+ bπ2) (6.20)

where

ρh = 2(MN − 1)h2 (6.21)

is the common value of ρA1,2 , ρB1,2 upon imposing Eq. (6.19) and

T1 = h2[(N2 − 2MN + 1)k21 + (M2 − 2MN + 1)k22

+ 2(M2N2 + 2MN −M2 −N2 − 1)k1k2],

T2 = h2[(N3M + 5MN − 3N2 − 3)k21 + (M3N + 5MN − 3M2 − 3)k22

+ 4(M2 +N2 − 3MN + 1)k1k2],

T3 = 4[(k21 + k22)MN + 2k1k2],

T4 = [(3MN −N2 − 2)k21 + (3MN −M2 − 2)k22 + 2(N2 +M2 − 3MN + 1)k1k2].

(6.22)

The results are expressed in terms of a basis of momentum integrals defined and computed

in Ref. [54]. The divergent contributions from these momentum integrals are listed in

Appendix E. The contributions from Fig. 15(s)-(u) are all finite or zero and therefore not

listed explicitly.

The full result obtained by summing the individual contributions in Eq. (6.20),

F−4Z
(4)

A1 = G(4),
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G(4) = Ga + . . .+Gr, (6.23)

may be divided into transcendental and rational contributions (according to whether the

contribution on the right-hand side of Eq. (C.6) contains a factor of π2 or not, respectively)

as

G(4) = Grat +Gtransπ
2. (6.24)

The transcendental contribution is given by

Gtrans =
1

ϵ

{
h4(MN3 +NM3 − 4M2 − 4N2 + 10MN − 4)

+
1

6
h2[k21(−11MN − 5N3M + 6M2N2 + 1 + 9N2)

+ k22(−11MN − 5M3N + 6M2N2 + 1 + 9M2)

+ k1k2(−8N2 − 8M2 + 4M2N2 + 32MN − 20)] + bh2T4

}
. (6.25)

We shall postpone comment on this until later, and focus on the rational contribution,

which is given by

Grat = 3ρ2hI4 − 2ρhρkI4 − 2ρhT3I42bbc +
a

ϵ
h2T4, (6.26)

where ρk is given by Eq. (6.14). We have used here the fact that I5 as defined in Eq. (C.6)

gives only a transcendental simple pole. Since T4 is O(N
2), the a term from the non-planar

graph Gr certainly gives no contribution at leading order O(N4); and based on experience

with non-planar graphs, we believe it is likely that a = 0. Upon imposing the one-loop

superconformality condition

ρh = ρk, (6.27)
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(using Eqs. (6.21), (6.14)), we find

Grat = ρ2kI4 − 2ρkT3I42bbc +
a

ϵ
h2cT4. (6.28)

The value of h = hc(k1, k2) in the 3rd term in Eq. (6.28) will be determined by solving

Eq. (6.27) and clearly depends on the particular form of the superpotential. However the

remaining terms in Eq. (6.28) are independent of h and thus (since we see from Eq. (6.22)

that the 3rd term is subleading in N , M) the form of Grat is independent of the form of

the superpotential to leading order. In fact, it is straightforward to see that this result is

more general and applies to any theory of the form Eq. (5.2) with a superpotential Eq.(6.4)

but without the multi-trace terms. Firstly, the I4 terms in Eq. (6.20) supply the double

pole contributions of the form h4 and h2k2; and this will remain the case for a general

theory. The h4 terms are given according to Eqs. (6.12), (6.14) and (6.13) by

4(ρA1 + ρB1)h
2
1(MN + 1)

+ 2(ρA1 + ρB1 + ρA2 + ρB2)[(|h3|2 + |h4|2)MN + h3h4 + h4h3]− 2ρ2A1 , (6.29)

which reduces to 6ρ2k upon imposing the two-loop superconformal invariance condition,

now from Eqs. (6.13)

ρA1,2 = ρB1,2 = ρk. (6.30)

This reproduces exactly the contribution of the first term in Eq. (6.26) to Eq. (6.28). The

h2k2 terms are given according to Eq. (6.12) by −4ρkρA1 which of course reduces to −4ρ2k

upon imposing ρA1 = ρk. This reproduces exactly the contribution of the second term in

Eq. (6.26) to Eq. (6.28). Furthermore, in the general case, the coefficient in Gp in Eq. (6.20)

becomes

2(ρA1 + ρA2 + ρB1 + ρB2)[(k
2
1 + k22)MN + 2k1k2], (6.31)
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which reduces to

8ρk[(k
2
1 + k22)MN + 2k1k2] = 2ρkT3 (6.32)

upon imposing Eq. (6.30); now reproducing the contribution of the third term in Eq. (6.26)

to Eq. (6.28). Finally, the contribution from the non-planar graph Gr is subleading in N ,

M for any theory with superpotential of the form Eq. (6.4) with H1 = H2 = H12 = 0;

in fact the only reason we have had to exclude multi-trace deformations from the present

discussion is that otherwise this is no longer true. Therefore the form ofGrat in Eq. (6.28) is

in general independent of the form of the potential at leading order inM , N upon imposing

the conformal invariance condition, as long as multi-trace deformations are excluded. Since

we believe it likely that a = 0, this result may well also hold at lower orders and in the

presence of multi-trace deformations.

The results from the remaining diagrams with no Yukawa couplings are of course also

independent of the form of the potential, and the rational contribution from these graphs

must take the form

−ρ2kI4 +
1

ϵ
δ(k1, k2), (6.33)

so that upon adding the rational results from all the graphs in Eqs. (6.28), (6.33) we obtain

F−4Z
(4)

ratA1 = −2ρkT3I42bbc +
a

ϵ
h2T4 +

1

ϵ
δ(k1, k2). (6.34)

In other words the double pole has cancelled, as it must due to the lower order supercon-

formal invariance, and we are left with a four-loop rational contribution to the anomalous

dimension

F−4γ
(4)

rat = −16ρkT3 + 4ah2T4 + 4δ(k1, k2). (6.35)

which is independent of the form of the superpotential at leading order in M , N , and (if

a = 0) at lower orders too. A fortiori, it has the same value for each field A1, A2, B1, B2.
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Therefore, upon imposing the superconformal invariance conditions at lowest order, either

the rational contribution to the four-loop anomalous dimension vanishes for any theory, or

else a universal non-vanishing result is obtained. If such a non-vanishing result is indeed

obtained, then a coupling redefinition is required to restore superconformal invariance.

Such redefinitions may not be unique when there are several couplings; but one simple

possibility is to redefine each coupling as

δrathi =
γ
(4)

rat
2ciρk

, (6.36)

where ci is the coefficient of h2i in the two-loop anomalous dimension–fortunately the same

coefficient in each anomalous dimension it appears, for each of h1...4. In Eq. (6.36), the hi

are chosen as solutions of Eq. (6.30). As we explained earlier, we believe there is strong

evidence that there is no N -leading rational correction at four loops for the ABJ model;

and our result therefore implies that no rational correction is expected at this order for

any theory in the class considered. In fact we believe that our result will also extend

to the superconformal theories with flavour matter discussed in Ref. [21]; and, if a = 0

in Gr in Eq. (6.20), to theories with multi-trace deformations as well. However, a slight

complication here is that the additional couplings in this case do not appear with the same

coefficient in each two-loop anomalous dimension, and moreover the flavour matter fields

would have different “ρk” from the A, B fields. The obvious extension of Eq. (6.36) to the

full set of couplings would therefore not be appropriate. In this case it is not clear how to

give a simple universal form for the required redefinition such as Eq. (6.36); nevertheless

the terms required to be cancelled by the redefinitions, analogous to Eq. (6.35), would still

be universal in the sense of being independent of the potential.

We shall not consider further here the transcendental contribution for this class of

models, since we can draw a stronger conclusion for the case of the second class of models;
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suffice it to say that the result given in Eq. (6.25) for the simplest example in this class,

Eq. (6.19) clearly gives a model-dependent result upon imposing two-loop superconformal-

ity, Eq. (6.27).

We therefore now turn to the second class of models, containing multi-trace deforma-

tions, considering the simplest example of such a model, taking in Eq. (6.4)

M = N, k1 = −k2 = k, h3 = −h4, H12 = H1 = H2. (6.37)

In this case the two-loop result in Eq. (6.13) reduces to

F−2γ
(2)

A1 = ρH − ρk, (6.38)

where

ρH = 2h2(N2 − 1) +H2(2N2 + 1), (6.39)

with ρk given according to Eq. (6.17) but with now in Eq.(6.18)

C1 = 0, C2 = −2(N2 − 1)k2, (6.40)

so that

ρb = −(N2 − 1)k2, ρc = 3(N2 − 1)k2,

ρk = 2(N2 − 1)k2. (6.41)

The results for the diagrams in Figs 14, 15 are now given by

G′
a =3ρ2H ,

G′
b =[4(N2 − 1)(N2 + 2)h4 + 36(N2 − 1)h2H2
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+ (2N2 + 1)(4N4 + 6N2 + 5)H4)I4bbb,

G′
c =− 3ρbρHI4,

G′
d =3C2ρHI4bbb,

G′
e =− ρbρHI4,

G′
f =2C2ρHI5,

G′
g =− T ′

2I5,

G′
h =− T ′

2I4bbb,

G′
i =− T ′

1I5,

G′
j =4T ′

2

(
I4 −

1

2
I4bbb

)
,

G′
k =− 2T ′

2I4,

G′
l =− 2T ′

1(−2I4 + 2I4bbb + I5),

G′
m =− 2ρHρc

(
I4 −

1

2
I4bbb

)
,

G′
n =3ρcρHI22,

G′
o =− 3ρcρHI22,

G′
p =2T ′

3(I4 − J4 − I42bbc),

G′
q =− 2T ′

3(I4 − J4),

G′
r =

2

ϵ
(N2 − 1)[3h2 − (N2 − 1)H2]k2(a+ bπ2), (6.42)

where

T ′
1 = −(N2 − 1)k2[2(N2 + 2)2h2 + 12H2],

T ′
2 = (N2 − 1)k2[2(N2 + 5)h2 − 4(2N2 − 5)H2],

T ′
3 = 8(N2 − 1)ρHk

2. (6.43)
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The case M = N and k1 = −k2 can be expressed in terms of 3-algebras [26]; this lends

itself to automation and the results in Eq. (6.42) were obtained using FORM [60].

For this class of models we shall start by discussing the transcendental contributions

to the anomalous dimension, since the results are more striking than for the rational case.

The transcendental contribution (from graphs with Yukawa couplings) is given by summing

G′
r together with the contributions involving I5 in Eq. (6.42)and using Eq. (C.6):

Gtrans =
1

2ϵ

{
4(N2 − 1)(N2 + 2)h4 + 36(N2 − 1)h2H2

+ (2N2 + 1)(4N4 + 6N2 + 5)H4

+ 2(N2 − 1)
[
−2

3
(N2 + 11)h2 + (2N2 − 3)H2

+ 3bh2 − (N2 − 1)bH2
]
k2
}
. (6.44)

To lowest order the vanishing of the anomalous dimensions now requires (using Eqs. (6.38),

(6.39), (6.41)) that the couplings h and H must be chosen to satisfy

2(N2 − 1)h2 + (2N2 + 1)H2 = 2(N2 − 1)k2. (6.45)

In order for Gtrans to adopt a universal form upon imposing two-loop superconformal

invariance as in Eq. (6.45), we would require Eq. (6.44) to adopt the form

Gtrans = f(2(N2 − 1)h2 + (2N2 + 1)H2). (6.46)

This is clearly not the case. We shall therefore consider the two cases H = 0 and H ̸= 0

separately, and find that they are very different. If H = 0 then the superconformal

invariance condition γ = 0 becomes to lowest order simply

h2 = k2 (6.47)
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and imposing Eq. (6.47), Eq. (6.44) reduces to

Gtrans =
1

ϵ
g(N) ≡ 1

ϵ
(N2 − 1)

[
2

3
(2N2 − 5) + 6b

]
k2. (6.48)

If the graphs we have not computed (i.e. those with no Yukawa couplings) are assumed to

give a transcendental contribution

1

ϵ
{(N2 − 1)[σ1 + σ2N

2]k2 − g(N)}, (6.49)

then using Eq. (5.16) the total transcendental contribution to the anomalous dimension at

this order is

F−4γ
(4)

trans = 4(N2 − 1)[σ1 + σ2N
2]k2 (6.50)

and so we need to make a redefinition

F−2δtransh = −2(σ1 + σ2N
2)hc (6.51)

to restore superconformal invariance at this order. The “superconformal” value for h is

(from Eq. (6.47)) simply hc = k. (The factor N2 − 1 in Eq. (6.49) may be inferred

from the fact that for K1 = −K2, all the contributions vanish identically in the abelian

case due to the “quiver” structure.) Note that in Eq. (6.51) we are still suppressing the

“transcendental” factor of π2.

Returning to the case of H ̸= 0, it is clear that the redefinition of Eq. (6.51) is not

enough, since it could not cancel the N6 terms in Eq. (6.44). In fact, we shall now require

the redefinition of Eq. (6.51) (where now hc is a solution of Eq. (6.45), together with a
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corresponding Hc), supplemented by a further redefinition of H, given by

F−2δtransH =− 1

96(N2 − 1)(2N2 + 1)
Hc[16(N

2 − 1)(8N4 + 23N2 − 22)

− 24(N2 − 1)(2N4 − 10N2 − 1)b)

+ 3H3
c (2N

2 + 1)(4N6 + 4N4 + 22N2 − 21]. (6.52)

This is easily derived by using Eq. (6.45) to substitute for h in terms of H in Eq. (6.44).

It will be noted that δtransH is higher order in N2 than δtransh owing to the N6 term in

Eq. (6.44). We therefore conclude that even in the best-case scenario where in Eq. (6.49),

σ1,2 = 0 so that δtransh = 0 in Eq. (6.51), and consequently no “transcendental” redefini-

tion is required in the ABJM model, a redefinition will nevertheless inevitably be required

as soon as multitrace deformations are included. Finally turning to the rational contri-

bution to the anomalous dimension for these models, the discussion would largely follow

that for the previous class of models. However as mentioned there, for H1, H2, H12 ̸= 0 we

would find a model-dependent contribution from G′
r upon imposing two-loop superconfor-

mal invariance, and this would require a model-dependent redefinition of H1, H2, H12 ̸= 0

akin to Eq. (6.52).

6.4 Summary

We have shown that on the one hand, superconformal invariance of Chern-Simons theories

requires transcendental corrections beyond leading order for fairly simple generalisations

of the ABJ model (namely those with “multi-trace deformations”); and on the other hand,

that at leading order (and likely beyond) in N , M , the rational corrections for a wide class

of theories have a universal form. We have also argued (based on the results of Ref. [54]

that it follows that there is in fact no rational correction required for any theory of the
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form discussed. Our conclusions could be extended beyond leading order in N by the

computation of the non-planar diagram in Fig. (15)(r). It would also be of considerable

interest to complete the calculation of the non-Yukawa diagrams, even if only at leading

order in N , M (which would avoid the need for further non-planar diagram calculations)

and only for the ABJ model. It now seems very likely that the majority of superconformal

theories will require a (“transcendental”) coupling redefinition beyond leading order in

order to retain the superconformal invariance. One might a priori entertain the possibility

that there might exist a special “superconformal” renormalisation scheme in which all

these theories were superconformal beyond leading order; analogous to the “holomorphic”

scheme in four dimensions in which the gauge β-function adopts the NSVZ form. In

this case, there would be expected to be a universal redefinition in terms of a general

superpotential which would effect the transformation to this scheme. However, we now

see that this redefinition is likely to depend in a highly non-trivial way on the form of

the superconformal theory, and will probably need to be computed independently for each

theory. This reduces considerably the constraints on the form of the four-loop anomalous

dimension which might follow from requiring superconformality. Regrettably we are forced

to conclude that there is no alternative to computing the full anomalous dimension if we

wish to pursue further checks on superconformality.
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7 Conclusions

Having calculated results for the anomalous dimension and β-functions at two loops for a

softly broken version of N = 2 Chern-Simons matter theories we showed that our results

were consistent with those obtained from the superfield formalism. We then considered

looking at possible extensions to the theory, for instance the maximal supersymmetric

Chern-Simons theory which for a theory with a single gauge group is N = 3. The com-

ponent formulation of this theory was presented in Ref. [61]. The quantum properties of

this theory were discussed in Ref. [62] based on the d = 3 N = 3 harmonic superspace

formalism developed in Ref. [63], and it was shown that this theory is all-orders finite. It

would be interesting to investigate whether the softly-broken version of this theory is also

finite. Theories with higher degrees of supersymmetry (up to N = 8) [27] may be obtained

in the case of direct product groups and matter in the bi-fundamental representation. A

rich variety of these theories [64, 65] are expected to be superconformal by virtue of the

AdS4/CFT3 correspondence, originally stated in Ref [29]. These theories can be expressed

in terms of N = 2 superfields and are obtained by a judicious choice of field content and

also a particular choice of Yukawa couplings (as a function of the gauge couplings). The

conformal properties of a range of these models was checked explicitly at the two-loop

level in Refs. [21,26]. It would be quite straightforward to extend our results to the case of

direct product gauge groups and thereby derive exact results for the softly broken versions

of these theories. One could then ask whether there were a choice of soft couplings which

would maintain finiteness. In the case of βh this would entail arranging for γ1 to vanish;

this is not guaranteed by the vanishing of γ, since the derivative in Eq. (4.11) would be

taken before specialising to the special form for the Yukawa couplings which guarantees

the extended supersymmetry. Nevertheless it was shown in the four-dimensional case [31]

that there was a choice of soft couplings which would guarantee γ1 = 0. However this
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relied on the existence of the gaugino mass as a soft coupling and a similar choice is not

possible here; there is therefore no obvious way to guarantee the vanishing of βh. The

same argument applied to Eq. (4.14) would imply that we could not render βm2 zero. The

softly-broken versions of these superconformal theories would therefore not be finite. Fi-

nally, it would be interesting to address the question of gauge groups with a U(1) factor,

where, as we have noted, there are additional technical subtleties.

However we decided to look at the next to leading order calculation for the general N =

2 supersymmetric Chern-Simons theory with the idea of exploiting the four loop results

in order to verify the superconformality properties of various superconformal theories, as

given explicitly either in terms of a “quiver” description or using 3-algebra structures.

We calculated a large portion of the four-loop calculation and presented the results

in exhaustive detail and although we were unable to finish it we gave many details that

any prospective parties who choose to continue the calculation could take advantage of

although not for the non-planar case. Our initial idea of exploiting the superconformality

constraints to determine the rest of the coefficients now seems very unlikely, in light of the

results we calculated relating to the superconformality of the Yukawa terms beyond leading

order. While it is true that the rational corrections did not require a coupling redefinition

to preserve superconformality the “transcendental” corrections did. This was to such a

degree for the ABJ model that it seems very likely that each theory would require its

own specific redefinition to the Yukawa terms. The most likely case for determining these

would require the completion of the four-loop calculation. This would be greatly simplified

if it were possible to determine the rule for the three point vertex diagrams canceling as

this would vastly reduce the number of planar diagrams to be calculated and could even

provide for the cancellation of many of the non-planar diagrams.
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A Useful Group Theory Identities

The table of group structures may be readily obtained using the following easily derived

but useful group identities:

RBRARB =

(
C2(R)−

1

2
C2(G)

)
RA,

fABEfCDERARCRBRD = 0,

RARBRCRARBRC = C30 −
3

2
C21 +

1

2
C12,

RARBRCRDRARBRCRD = C40 − 3C31 +
11

4
C22 −

3

4
C13 + F4,

RARBRCRARDRBRCRD = C40 −
5

2
C31 + 2C22 −

1

2
C13 + F4,

RARBRCRDRARCRBRD = C40 − 2C31 +
3

2
C22 −

3

8
C13 + F4,

fABCRARDRCRERDRBRE = −i
(
1

2
C31 −

3

4
C22 +

1

4
C13 − F4

)
,

fABFfCDFRARCRERDRBRE =
1

4
C22 −

1

8
C13 + F4,

fABFfCDFRARCRERBRDRE = F4,

fABCfDEFRARDRBRERCRF = −1

4
C22 +

1

8
C13 − F4 (A.1)
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B Useful formulae for Dimensional Regularisation

The following formulae where used in the component calculation

∫
ddk

(2π)d
1

(k2)m[(k − p)2]n
=

1

(4π)
d
2

Γ(m+ n− d
2
)

Γ(m)Γ(n)

Γ(d
2
− n)Γ(d

2
−m)

Γ(d−m− n)

1

(p2)(m+n− d
2
)

(B.1)

∫
ddk

(2π)d
kµ

(k2)m[(k − p)2]n
=

1

(4π)
d
2

Γ(m+ n− d
2
)

Γ(m)Γ(n)

Γ(d
2
− n)Γ(d

2
−m+ 1)

Γ(d−m− n+ 1)

pµ

(p2)(m+n− d
2
)

(B.2)

∫
ddk

(2π)d
kµkν

(k2)m[(k − p)2]n
=

1

(4π)
d
2

1

Γ(m)Γ(n)

1

Γ(d−m− n+ 2)

1

(p2)(m+n− d
2
)

× [
1

2
p2δµνΓ(m+ n− d

2
− 1)Γ(

d

2
−m+ 1)Γ(

d

2
− n+ 1)

+ pµpνΓ(m+ n− d

2
)Γ(

d

2
−m+ 2)Γ(

d

2
− n)] (B.3)
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C Momentum Integrals

Here is the list of results for the divergences of our basis of subtracted momentum integrals

[54,55]:

I4 =
1

(8π)4

(
− 1

2ϵ2
+

2

ϵ

)
(C.1)

I22 =− 1

(8π)4ϵ2
(C.2)

I4bbb =
1

(8π)4
π2

2ϵ
(C.3)

I42bbc =
1

(8π)4
2

ϵ
(C.4)

I422qAbBd =
1

(8π)4

[
1

4ϵ2
+

1

ϵ

(
5

4
− π2

12

)]
(C.5)

I5 =
1

4
I4 −

5

8
I22 − I4bbb + I42bbc − 2I422qAbBd (C.6)
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