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Abstract 

 
Neuroblastoma (NBL) is a solid childhood malignancy associated with survival rate 

of <50%. The most frequently diagnosed extracranial tumour in the paediatric age 

group, NBL is widely renowned for its heterogeneity as the tumour exhibits a 

spectrum of clinical behaviour from chemotherapy resistance to spontaneous 

regression. In this thesis, firstly, clinical outcomes for NBL are reviewed at a leading 

UK Children’s Cancer and Leukaemia Group (Alder Hey Children’s Hospital, 

Liverpool) in the context of evolving therapies for this enigmatic disease. In the 

second part of this work, building on previous knowledge linking the transcription 

factor nuclear factor kappa B (NF-κB) with the development of chemoresistance in 

NBL, this thesis highlights a series of laboratory experiments where a selection of 

novel pharmacological compounds are screened for their effects on the NF-κB 

pathway and their ability to induce cell death in NBL cells. A potential synergistic 

interaction between an NF-κB inhibitor and conventional chemotherapeutic agent is 

also investigated.  

 

The past two decades have observed dramatic intensification of therapy for moderate 

to high-risk NBL. The clinical outcomes study has highlighted that 5-year survival 

for advanced stage 3 NBL patients has improved from 25 to 80% over two 

comparative treatment eras 1985-1994 and 1995-2005. Current opinion is widely 

divided in the international community over the role of aggressive surgery in high-

risk NBL. This study has shown that although we observed a trend towards improved 

clinical outcomes by achieving complete resection, the benefits were marginal.  

 

Experiments on NF-κB manipulation yielded the discovery that inhibition of NF-κB 

through various pharmacological compounds induced NBL cell death. A potentially 

synergistic interaction between cancer chemotherapy agent etoposide and an NF-κB 

inhibitor, H26(S), was observed. Further mechanistic investigations will be required 

to exploit the therapeutic potential herein described in this work. 
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Abbreviations 

 

AF  Auranofin 

AIDS  Acquired immune deficiency syndrome 

CsA  Cyclosporin A 

CsD  Cyclosporin D 

CT  Computed tomography 

DFOM  Deferoxamine mesylate 

DiGG  1, 2-di-galloyl-glucose 

DNA  Deoxyribonucleic acid 

ECACC European collection of cell cultures 

EG  Epigallocatechin gallate 

FasL  Fas ligand 

FISH  Fluorescent in-situ hybridisation 

FK506  Tacrolimus 

H25(R) 2-amino-3-cyano-4, 6-diarylpyridine, right isomer 

H26(S)  2-amino-3-cyano-4, 6-diarylpyridine, left isomer 

Igκ  Immunoglobulin kappa light chain 

IκBα  Inhibitor of NF-κB alpha 

IKK  IκB kinase 

IKK-ß  IκB kinase, ß sub-unit 

INPC  International neuroblastoma pathology classification 

INRG  International neuroblastoma risk group 
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INSS  International neuroblastoma staging system 

LPS  Lipopolysaccharide 

MDR-1 Multi-drug resistance 1 gene 

MKI  Mitotic-karyorrhexis index 

MRP  MDR-related protein 

MTT  3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NBL  Neuroblastoma 

NES  Nuclear export sequence 

NF-κB  Nuclear factor kappa beta 

NGF  Nerve growth factor 

NLS  Nuclear localisation sequence 

NSAID Non-steroidal anti-inflammatory drug 

PCD  Programmed cell death 

PGG  1, 2, 3, 4, 6-penta-O-galloyl-ß-D-glucose 

Pgp  P-glycoprotein 

PI  Propidium iodide 

ROS  Reactive oxygen species 

SAH  Sodium aurothiomalate hydrate 

TAD  Transactivation domain 

TNF-α  Tumour necrosis factor alpha 

TLCK  N-α-p-tosyl-L-lysine chloromethyl ketone 

TPCK  N-Tosyl-L-phenylalanine chloromethyl ketone 

TRAIL  TNF-related apoptosis-inducing ligand 

TRK  Tyrosine kinase 

w/v  Weight/volume 
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CHAPTER 1 

Introduction 

 

1.1 Neuroblastoma 

 

Neuroblastoma is a neuroendocrine tumour arising from the sympathetic chain of the 

neural crest. It is the commonest extracranial solid tumour in childhood and each 

year approximately 1500 new cases are diagnosed in Europe, representing 7% of 

malignancies in patients younger than 15 years, or 28% of malignancies in infants in 

Europe and the US (Ries LAG 1999; Spix, Pastore et al. 2006). The incidence of 

neuroblastoma is highest in the first year of life and significantly drops thereafter, 

and cases are rare beyond the age of 10. 

 

It is an enigmatic disease known for its remarkable spectrum of clinical behaviour. A 

subset of tumours will spontaneously regress whilst others are highly resistant 
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despite intensive multimodal therapy. Although there have been modest 

improvements in outcomes amongst certain subsets of patients, long-term survival in 

the high-risk group remains low at less than 40% (Matthay, Villablanca et al. 1999; 

De Bernardi, Nicolas et al. 2003). 

 

1.1.1 Embryology 

Neural development starts approximately at the beginning of the third week. As the 

neural folds develop, they turn inwards and form the neural tube. The lumen of the 

neural tube is lined by neuro-ectodermal cells, from which neurons develop. 

Detaching from the edges of the folds, these cells migrate laterally and become 

neural crest cells (Figure 1.1).  

 

Neural crest cells will differentiate into several different lineages, e.g. melanocytes, 

sympathetic ganglia, enteric ganglion cells, sensory neurons, etc. (Figure 1.2). The 

first signal which triggers this differentiation are the bone morphogenetic proteins 

(BMPs) (Huber, Combs et al. 2002). Other key transcription factors which 

coordinate the direction of differentiation into sympathetic neurons are: MASH1 

(hASH1), MYCN, HIF1α, HuD, PHOX2a, PHOX2b, and p73 (a family member of 

p53) (Nakagawara 2004). Correct regulation of these genes are essential for normal 

differentiation into sympathetic neurons. 
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Figure 1.1: Neural crest development between days 18 and 22 

By day 22, neural crest cells have migrated laterally and ready to differentiate to form various 
structures. Image taken from Embryology (Mitchell and Sharma 2005). 
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Figure 1.2: Pathways of neural crest differentiation 

The bone morphogenetic proteins (BMPs) are involved in early stage of differentiation. Other 
important transcription factors listed above may also be involved in determination of cell fate. Often, 
upregulation or amplication of these genes are associated with aggressive neuroblastomas. Terminal 
differentiation of sympathetic neurons involved the tyrosine kinase receptors, e.g. Ret, TrkB, TrkC, 
and TrkA. Upregulation of these genes are found in favourable neuroblastomas (Nakagawara 2004). 
Image adapted from Molecular and developmental biology of neuroblastoma (Nakagawara 2005). 
 

Development of neuroblastoma might be triggered by genetic events which lead to 

genomic aberrations such as amplification of MYCN gene, 1p and 11q chromosomal 

deletion, or unbalanced gain in chromosome 17q. Maris has postulated a genetic 

threshold for neuroblastoma development, in which malignant transformation might 

be a result of interactions between multiple common DNA variations or 

polymorphisms, i.e. excessive inheritance of “risk” variants increases an individual’s 

susceptibility to developing the disease, or on the other hand, a mutation in ALK or 

PHOX2b gene results in highly penetrant risk allele that exceeds the threshold for 

malignant transformation (Figure 1.3) (Maris 2010). 
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Figure 1.3: Genetic model of neuroblastoma susceptibility (Maris 2010) 

 

1.1.2 Epidemiology and risk factors 

Neuroblastoma is the most common malignancy amongst children under one year of 

age, with incidence rate approximately double that of leukaemia (Ries LAG 1999). 

Age plays a critical role in neuroblastoma as these perinatal tumours generally have a 

benign course and is associated with spontaneous regression (Evans, Gerson et al. 

1976). 

 

There have been several attempts to investigate the role of maternal lifestyles and 

reproductive history in the aetiology of neuroblastoma, although most of these 

studies lack statistical power to be able to conclude a definitive link. A possible 

association between maternal alcohol consumption and subsequent fetal alcohol 

syndrome has been described in several studies (Kinney, Faix et al. 1980; 

Schwartzbaum 1992). An elevated risk for the fertility drug Clomid was found 

amongst male offspring (Michalek, Buck et al. 1996; Olshan, Smith et al. 1999), 
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other maternal medications used during pregnancy which appeared to have an 

increased risk are amphetamines, antidepressants, phenytoin, diuretics, and 

antibiotics (Schwartzbaum 1992). 

 

Approximately 1 to 2% of patients have a family history of neuroblastoma, 

suggesting a dominant pattern with incomplete penetrance (Kushner, Gilbert et al. 

1986). Associations with other congenital abnormalities have been reported such as 

Hirschsprung’s disease and congenital central hypoventilation syndrome (Ondine’s 

curse) (Stovroff, Dykes et al. 1995), possibly linked by a shared mutation in the 

PHOX2b gene. Further connections with neurofibromatosis type 1 (von 

Recklinghausen’s disease) and hypomelanosis of Ito have also been reported 

(Kushner, Hajdu et al. 1985; Oguma, Aihara et al. 1996). 

 

1.1.3 Histopathology and genetic features 

Neuroblastoma tumour cells are small round blue cells with hyperchromatic nuclei 

and a scant amount of cytoplasm (La Quaglia and Rutigliano 2008). Neuritic 

processes and Homer-Wright pseudo rosettes are often seen. Other small round blue 

cell tumours which must be differentiated from neuroblastoma include Ewing’s 

sarcoma, lymphoma, and rhabdomyosarcoma. Within one tumour specimen, 

different stages of differentiation of neuroblastoma may be found, from 

undifferentiated neuroblastoma to mature ganglioneuroma. 

 

The new International Neuroblastoma Pathology Classification (INPC) system 

(Table 1.1) has been developed from the initial Shimada classification of 

neuroblastoma (Shimada, Chatten et al. 1984), taking into account the age of the 
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patient, the mitotic-karyorrhexis index (MKI), the amount of Schwann cells, and 

degree of cellular differentiation (Shimada, Umehara et al. 2001). The INPC system 

has been proven a useful prognostic indicator in recent years (Lau 2002; Sano, 

Bonadio et al. 2006). 

 

Table 1.1: Prognostic evaluation of neuroblastoma according to the INPC system 

(Shimada, Umehara et al. 2001) 

Age Pathology Prognostic group 

<1.5 years Poorly differentiated or differentiating 

Low or intermediate MKI 

Favourable 

1.5 – 5 years Differentiating 

Low MKI tumour 

Favourable 

<1.5 years Undifferentiated 

High MKI 

Unfavourable 

1.5 – 5 years Undifferentiated or poorly differentiated 

Intermediate or high MKI 

Unfavourable 

>5 years All tumours Unfavourable 

 

The association between certain biological features of neuroblastoma tumours and 

disease progression has been extensively studied. The discovery of MYCN oncogene, 

found on chromosome 2p, has led to its development to become the most important 

biological prognostic factor in neuroblastoma (Brodeur, Pritchard et al. 1993). It is 

amplified in 5-10% of infants and in 20-30% of childhood and adolescent cases and 
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it is strongly correlated to rapid disease progression and poor outcome in patients, 

regardless of age and stage (Conte, Parodi et al. 2006; Kaneko, Kobayashi et al. 

2006). It is postulated that overexpression of MYCN activates angiogenesis pathways 

and thereby increasing tumour growth and metastasis (Benard 1995). MYCN level 

can be detected by fluorescent in-situ hybridisation (FISH), where 10 or more copy 

numbers detected is generally accepted as genomic amplification (La Quaglia and 

Rutigliano 2008). Other methods to detect MYCN include polymerase chain reaction 

(PCR), Southern blot, and immunohistochemistry. 

 

The ratio of DNA amount found within the nucleus of a cell compared to the 

expected amount (DNA index/ploidy) can be measured by flow cytometry or 

cytogenic analysis. Hyperdiploidy (DNA index >1) has been associated with better 

prognosis, particularly in infant population, and conversely diploid tumour is 

associated with aggressive tumour behaviour and poorer outcome (Look, Hayes et al. 

1984). 

 

Nerve growth factor (NGF) and its receptor tyrosine kinase (TRK) have also been 

implicated in neuroblastoma disease progression. Three subtypes of TRK, a 

transmembrane protein, are present: TRK-A, TRK-B, and TRK-C. Expression of 

TRK-A and TRK-C are associated with favourable prognosis and no MYCN 

amplification (Brodeur, Nakagawara et al. 1997; Yamashiro, Liu et al. 1997). 

Conversely, lack of TRK-A is seen in MYCN amplified tumours and carries poor 

prognosis. The presence of TRK-B is associated with chromosomal aberrations such 

as gain of 17q and loss of heterozygosity for 14q, MYCN amplification, and overall 

poor outcome (Brodeur, Nakagawara et al. 1997). 
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Several chromosomal aberrations found in neuroblastoma tumours are associated 

with poor prognosis, including deletion of chromosome 1p, which occurs in 25-35% 

of cases, and gain on chromosome 17q, a region which contains the antiapoptotic 

gene Survivin (Bown, Lastowska et al. 2001; Lastowska, Cotterill et al. 2002; White, 

Thompson et al. 2005). Other chromosomal abnormalities linked with poor prognosis 

include loss of heterozygosity for 14q, allelic loss of 11q, bcl-e overexpression, ras 

expression, ret expression, and telomerase activity (Guo, White et al. 1999; La 

Quaglia and Rutigliano 2008). 

 

Some of these biological abnormalities have been incorporated in the most recent 

neuroblastoma staging system to enable a more accurate risk assessment and 

treatment strategy (Cohn, Pearson et al. 2009). 

 

1.1.4 Clinical presentation and diagnosis 

 

1.1.4.1 Clinical presentation 

Neuroblastoma tumours can develop anywhere along the sympathetic ganglia, giving 

rise to a spectrum of clinical presentations depending on tumour location. Most 

primary tumours occur in the abdomen, in particular the adrenal medulla (40%), 

other common sites are the neck, chest, and pelvis (Ries LAG 1999). 

 

Abdominal lesions might be detected incidentally, i.e. prenatal ultrasound, but most 

remain asymptomatic until significant enlargement of the tumour has occurred. 

These patients commonly present with abdominal pain and distension, and 
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examination will reveal palpable abdominal mass. 

 

Thoracic tumours might be detected incidentally, i.e. chest radiographs, or patients 

can present with persistent cough or difficulty breathing due to compression by 

tumour mass. Cervical masses are often associated with Horner’s syndrome (Figure 

1.4) (Cardesa-Salzmann, Mora-Graupera et al. 2004; Mahoney, Liu et al. 2006; 

Zafeiriou, Economou et al. 2006). Paravertebral tumours (5-15% patients) can invade 

the spinal canal causing symptoms of spinal cord compression including motor 

weakness, sphincter dysfunction, and sensory deficits (De Bernardi, Balwierz et al. 

2005; Gunes, Uysal et al. 2009). 

 

 

Figure 1.4: Horner’s syndrome in a child with neuroblastoma  

Source: Prof P D Losty. Photograph reproduced with parental permission. 
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Paraneoplastic syndromes, although rare, can be seen at initial presentation. 

Vasoactive intestinal peptide secretion by neuroblastoma cells leads to intractable 

watery diarrhoea, weight loss, and metabolic disorders. For these patients, surgery 

remains the first-line treatment (Bourdeaut, de Carli et al. 2009). Opsoclonus-

myoclonus syndrome (OMS), characterised by rapid eye movements and ataxia, 

affects 2-3% of patients with neuroblastoma. It occurs almost exclusively to patients 

in the low-risk group, and survival is nearly 100%. Nevertheless, many patients will 

have persistent neurological and developmental deficits (Rothenberg, Berdon et al. 

2009). Occasionally patients develop hypertension due to compromised renal 

vasculature or excess production of catecholamines. It is often severe and requires 

specific antihypertensive therapy, but resolves following tumour treatment, i.e. 

chemotherapy and/or surgical resection (Wolff, Bauch et al. 1993; Shinohara, Shitara 

et al. 2004; Madre, Orbach et al. 2006). 

 

Approximately half of patients present with metastatic disease. Widespread bone and 

bone marrow metastases would cause bone pain and limping. Orbital metastases 

commonly present with periorbital ecchymosis (panda eyes) and proptosis (Ahmed, 

Goel et al. 2006). Infiltration of the bone marrow by tumour cells can cause 

symptoms of bone marrow failure. 

 

1.1.4.2 Diagnosis 

 

A combination of radiological (including nuclear medicine), biochemical, 

histopathological, and molecular biology investigations are used to aid diagnosis.  
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1.1.4.2.1 Radiology 

Computed tomography (CT) is the preferred method for determining tumour 

consistency, location, and metastasis, in particular with lesions in the abdomen, 

pelvis, or mediastinum (Figure 1.5). Magnetic resonance imaging (MRI) is better for 

paravertebral lesions particularly in assessing spinal canal extension of tumour in 

patients presenting with cord compression. Specific assessment for metastatic disease 

is performed using 99mTc-diphosphonate scintigraphy (bone scan) or 

metaiodobenzylguanidine (MIBG) scintigraphy using 123I or 131I isotope. 

 

Figure 1.5: CT of an infant with neuroblastoma 

A: The tumour has extended throughout the retroperitoneum, classically engulfing the blood vessels 
and pushed them anteriorly. B: Coronal view, the tumour appeared to have arisen from the right 
suprarenal area and contained typical areas of calcification. The renal artery was stretched by the mass 
effect of the tumour. Image taken from The Surgery of Childhood Tumors (Hiorns 2008). 
 

 

1.1.4.2.2 Biochemistry 

Elevated levels of catecholamines and their metabolites including vanillylmandelic 

acid (VMA), homovanillic acid (HVA), dopamine, adrenaline, and noradrenaline are 

found in the plasma or urine of many neuroblastoma patients. In the 1980s, screening 
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programmes based on urinary catecholamines were designed in Japan. However, 

despite its apparent short-term success (Sawada, Kidowaki et al. 1984; Nishi, Miyake 

et al. 1987), prospective clinical trials in Germany and North America have shown 

that they do not improve overall survival as almost all tumours detected by screening 

had favourable biological features (Woods, Gao et al. 2002; Schilling, Spix et al. 

2003), and the screening programme is no longer practised nowadays. Screening 

programmes for neuroblastoma are discussed further in Section 1.1.6. 

 

Elevated levels of serum ferritin (Silber, Evans et al. 1991), lactate dehydrogenase 

(Joshi, Cantor et al. 1993), and neuron-specific enolase (NSE) (Berthold, Engelhardt-

Fahrner et al. 1991), although non-specific, are often seen in high-risk patients and 

associated with poor prognosis.  

 

1.1.4.2.3 Histopathology 

Histological assessment of tumour biopsy is crucial in risk stratification and adequate 

tissue biopsy at the time of diagnosis is strongly encouraged. Results from Canada 

have shown that a significantly higher proportion of patients who underwent image-

guided needle biopsy had insufficient tissue for complete histological and molecular 

assessment despite similar rate of procedural complications between needle and open 

biopsy (Gupta, Kumar et al. 2006). The current INPC system is used for tumour 

biopsy classification to enable evaluation of clinical behaviour and prognosis (Table 

1.1). 
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Bone marrow aspirate and/or biopsy looking at the presence of tumour cells should 

be investigated at the time of diagnosis, as well as during therapy to assess tumour 

responsiveness to treatment. 

 

1.1.4.2.4 Biological markers 

Routine diagnostic procedure should now include investigation of biological markers 

such as MYCN amplification, DNA ploidy, and chromosomal abnormalities which 

are correlated with clinical behaviour and disease progression of neuroblastoma 

tumours (Section 1.1.3).  

 

 

1.1.5 Staging 

Staging is crucial in predicting outcome as well as planning treatment modality. 

Standard methods of tumour staging such as the TNM method is largely not 

applicable in neuroblastoma due to its heterogeneity and in 1971, Evans and 

colleagues (Evans, D'Angio et al. 1971) proposed a practical staging system which 

takes into account tumour site, lymph node involvement, distant metastases, as well 

as bone marrow infiltration (Table 1.2). It also recognises the special IVs group of 

disease in which prognosis is good despite widespread metastases in liver, skin, or 

bone marrow. 
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Table 1.2: Evans staging system for neuroblastoma (Evans, D'Angio et al. 1971) 

 

 

In an effort to make results comparable throughout the world, the International 

Neuroblastoma Staging System (INSS) (Table 1.3) was established in 1988 and 

subsequently revised in 1993 (Brodeur, Pritchard et al. 1993), taking into account 

tumour resectability, which was deliberately omitted in the Evans staging system.  

 

Stage Description 

I Tumour confined to the organ or structure of origin  

II Tumour extends beyond organ of origin but not crossing the 

midline. Ipsilateral lymph nodes may be involved. 

III Tumour extends beyond the midline.  

Bilateral lymph nodes may be involved. 

IV Remote disease involving skeleton, organs, soft tissues, or 

distant lymph nodes. 

IVs Patients who would otherwise be stage I or II but with remote 

disease confined only to the liver, skin, or bone marrow 

(without bone metastasis).  
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Table 1.3: INSS staging system (Brodeur, Pritchard et al. 1993) 

Stage Description 

1 Localised tumour with complete gross excision, ipsilateral lymph 

nodes negative for tumour.  

2a Localised tumour with incomplete gross excision, ipsilateral 

lymph nodes negative for tumour. 

2b Localised tumour with or without complete gross excision, 

ipsilateral lymph nodes positive for tumour, contralateral lymph 

nodes negative.  

3 Unresectable unilateral tumour crossing the midline with or 

without regional lymph node involvement; or localised unilateral 

tumour with contralateral lymph node involvement; or midline 

tumour with bilateral extension by infiltration or by lymph node 

involvement. 

4 Dissemination to distant lymph nodes, bone, bone marrow, liver, 

skin, or other organs. 

4S Localised primary tumour in infants younger than 1 year (stage I, 

IIA, or IIB) with dissemination limited to liver, skin, or bone 

marrow. 
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Nevertheless, as surgical approaches differ between one institution and another, a 

working group representing the major paediatric groups around the world met in 

2005 to develop the International Neuroblastoma Risk Group (INRG) classification 

system, which takes into account radiological as well as molecular characteristics of 

the tumour (Table 1.4) (Ambros, Ambros et al. 2009; Cohn, Pearson et al. 2009). 

 

Table 1.4: INRG Pre-treatment classification system (Cohn, Pearson et al. 2009) 

 

Ploidy: diploid (DNA index = 1.0); hyperdiploid (DNA index > 1.0 and includes near-triploid and 
near-tetraploid tumors). Risk: very low risk (5-year EFS > 85%); low risk (5-year EFS > 75% to <= 
85%); intermediate risk (5-year EFS >= 50% to <= 75%); high risk (5-year EFS < 50%). Histology: 
GN, ganglioneuroma; GNB, ganglioneuroblastoma. MYCN: Amp, amplified; NA, not amplified. 
Stage: L1, localized tumor confined to one body compartment and with absence of image-defined risk 
factors (IDRFs); L2, locoregional tumor with presence of one or more IDRFs; M, distant metastatic 
disease (except stage MS); MS, metastatic disease confined to skin, liver and/or bone marrow in 
children < 18 months of age; EFS, event-free survival. 
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1.1.6 Spontaneous regression and screening programme 

A well-known feature of neuroblastoma is the ability of a small proportion of cases 

to undergo complete regression in the absence of therapeutic intervention (Evans, 

Gerson et al. 1976). This phenomenon is usually associated with infants in stage 4S 

and rarely occurs in patients over one year of age (D'Angio, Evans et al. 1971), 

thereby raising the possibility that epigenetic regulations and development of 

sympathetic neurons might be attributable to neuroblastoma regression (Nakagawara 

2005). During the perinatal period, a physiological neuronal programmed cell death 

occurs which results in a massive death of sympathetic neurons. This death 

mechanism has been observed in infant neuroblastomas, and correlated with their 

induction of spontaneous regression (Nakagawara 1998). 

 

Neuroblastoma possesses unique biochemical characteristics as the tumour is 

involved in catecholamine synthesis and metabolisms. This allows sensitive and 

convenient markers for neuroblastoma as two metabolites, homovanillic acid (HVA), 

the main metabolite of dopamine, and vanillylmandelic acid (VMA), the main 

metabolite of adrenaline and noradrenaline, are excreted in excess in a patient’s urine 

(Woods, Gao et al. 2002).  

 

The idea that childhood cancer can be detected pre-clinically by screening, coupled 

with the significantly better outcome for younger children and patients with localised 

disease, led researchers in Japan, Europe, and North America to conduct extensive 

screening programmes based on urinary HVA and VMA analysis (Sawada, 

Kidowaki et al. 1984; Nishi, Miyake et al. 1987; Schilling, Spix et al. 2002; Woods, 

Gao et al. 2002).  
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However, these studies reported marked increase in incidence of the disease with no 

reduction in its mortality due to the vast majority of tumours detected by screening 

have favourable clinical and biological features. It was demonstrated that screening 

did not reduce the prevalence of advanced disease over one year of age or the overall 

death rate (Schilling, Spix et al. 2003; Spix, Michaelis et al. 2003). Moreover, 

screening programmes were associated with long-term psychological anxiety among 

parents whose infants were referred to cancer centres because of elevated 

catecholamines but were found not to have neuroblastoma upon more thorough 

investigation (Woods 2005). Screening programme was eventually abandoned by 

2004. 

 

1.1.7 Treatment  

Localised tumours with favourable biology can be successfully treated with surgical 

resection alone. In a subset of cases, the tumours will spontaneously regress; they 

can be safely observed without needing any treatment. If residual tumour remains 

after surgical resection, assessment of biological parameters becomes important in 

predicting its behaviour as adjuvant therapy may not be indicated in cases with 

favourable biological features. The treatment of localised tumours with unfavourable 

biological features (MYCN amplification) remains controversial, some may need 

intensive adjuvant therapy but conversely a subset of cases could achieve long-term 

remission with surgery alone (Perez, Matthay et al. 2000). 

 

Stage 3 tumours with favourable biology have been treated with adjuvant therapy to 

aid subsequent surgical resection. Nevertheless, those with unfavourable biological 
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features often required intensive multimodal therapy. 

 

In metastatic disease (stage 4), initial surgery is aimed at obtaining adequate tissue 

biopsy for analysis. Chemotherapy aiming for tumour downstaging follows and in 

many cases allows complete surgical resection. High-dose chemotherapy with 

autologous stem cell rescue has been shown to improve event-free survival among 

high-risk cases, and the use of differentiating agents such as 13-cis-retinoic acid has 

been shown beneficial too (Matthay, Villablanca et al. 1999). 

 

Most patients with stage 4S disease fall into the low-risk group, however a small 

group will have unfavourable biology and they often present with rapidly progressive 

tumour similar to the classic stage 4 disease (Nakagawara, Sasazuki et al. 1990). 

Those who present before the age of 2 months are also more susceptible to 

respiratory compromise due to rapid progression of hepatomegaly. 

 

Surgical resection of neuroblastoma is technically challenging and due to its 

infiltrative nature, it is not always possible to acquire a microscopically negative 

resection margins, and therefore the term “gross total resection” is often used in 

literature (Figure 1.6). Complication is often associated with neuroblastoma 

resection, a Japanese report has discovered up to 15% occurrence of renal infarction 

and atrophy as a result of aggressive surgery for abdominal neuroblastoma (Kubota, 

Yagi et al. 2004). Kiely reported incidences of aortic injuries following a 

subadventitial approach of resection (Kiely 2007). 
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Figure 1.6: Surgical resection of retroperitoneal neuroblastoma 

Source: Prof P D Losty. Photograph reproduced with permission from patient. 
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Although surgery remains the mainstay treatment for localised tumour, current 

opinion is divided over the role of aggressive surgery for stage 3 and 4 

neuroblastoma. Several studies demonstrated that complete tumour resection is 

associated with significantly improved outcome (La Quaglia 2001; Tsuchida and 

Kaneko 2002), however others have shown that the radicality of surgery did not 

change the outcome (Losty, Quinn et al. 1993; Castel, Tovar et al. 2002; von 

Schweinitz, Hero et al. 2002). 

 

 

1.1.8 Drug resistance 

Despite intensive multi-modal treatment, the majority of high-risk neuroblastoma 

patients eventually progresses and to date, no salvage treatment regimen has been 

found curative (Maris 2010). The underlying mechanisms of tumour resistance are 

still poorly understood, however several ideas have been postulated including altered 

expression of drug resistance genes and the presence of cancer ‘stem cells’.  

 

The cancer stem cell hypothesis suggests the presence of stem cells which may 

escape cytotoxic agents through slower proliferation rate (Dick 2008). As a 

developmental malignancy, it is likely that the cell of origin is a stem cell, 

characterised by its self-renewal multipotent properties. Several markers for 

neuroblastoma stem cells have been developed including CD-133 and c-kit, Hnk1, 

and nestin (Tucker, Delarue et al. 1988; Thomas, Messam et al. 2004; Walton, 

Kattan et al. 2004). The presence of stem cells in neuroblastoma tumours is 

associated with worse prognosis (Ross and Spengler 2007).  
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Nevertheless, it appears that most high-risk neuroblastoma tumours were initially  

sensitive to chemotherapy at diagnosis, whereas relapsed tumours are highly 

resistant. A likely explanation for this phenomenon is alterations in expression of 

drug resistance genes, most notably involving the presence of p-glycoprotein (Pgp) 

and increased expression of its multi-drug resistance gene (MDR-1) and MDR-

related protein (MRP) (Norris, Bordow et al. 1996; Haber, Bordow et al. 1999; 

Blanc, Goldschneider et al. 2003). Other mechanisms include mutations in the p53 

gene affecting downstream effectors such as Bax and Caspase-8 resulting in 

decreased apoptotic activity (Keshelava, Zuo et al. 2001). 

 

Despite the introduction of newer agents and increasing number of patients whose 

survival after relapse is prolonged, this remains a sensitive and delicate issue and it is 

hoped that recent advances in the understanding of molecular biology of high-risk 

neuroblastoma will eventually lead to the discovery of novel therapeutic targets. One 

possible target is the transcription factor, nuclear factor kappa B (NF-κB). 

 
 

1.2 Nuclear Factor Kappa B (NF-κB) 

 

Nuclear Factor Kappa B (NF-κB) is a family of dimeric protein complexes which 

regulate DNA transcription. Found in virtually all animal cell types, NF-κB is 

implicated in cellular responses to stress, immune and inflammatory processes, and 

regulation of cell cycle, differentiation, and death. First described as a B-cell factor 

which interacts with the immunoglobulin kappa (Igκ) enhancer (Sen and Baltimore 

1986), it is now known that NF-κB plays a very important role in the control of life 

and death, and is one of the major molecular targets in cancer research. 
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1.2.1 Structure and family members of NF-κB 

The NF-κB family is composed of five proteins, all characterised by the presence of 

amino-terminal sequence known as the Rel homology domain (RHD) (Gilmore 

1999). The five family members are: p50/p105 (NF-κB1), p52/p100 (NF-κB2), c-

Rel, RelB, and p65 (RelA) (Ghosh, May et al. 1998). They can be further classified 

into two groups based on the C-terminal sequences in the RH domain. The first 

group (p105 and p100) has long C-terminal domain containing the inhibitor ankyrin. 

Through limited proteolysis or arrested translation, they become shorter, active 

DNA-binding proteins p50 and p52 respectively (Gilmore 1999). The 

transcriptionally active second group (c-Rel, RelB, and p65 (RelA)) contains variable 

transactivation domain (TAD) at the C-terminal (Siebenlist, Franzoso et al. 1994). 

 

NF-κB binds to 10 base pair DNA sites (5’-GGGRNYYYCC-3’), also called κB 

elements or κB sites, as either homo- or heterodimers (Chen and Ghosh 1999). NF-

κB generally refers to the p50-p65 (RelA) heterodimer, one of the major Rel 

complexes in most cells. 

 

 

1.2.2 Regulation of NF-κB 

In unstimulated cells, NF-κB is found in the cytoplasm in a latent, inactive form, 

bound to its inhibitor (IκB). Several IκB proteins have been identified (IκBα, IκBß, 

IκBε, IκBγ, IκBζ, and Bcl-3), all of which have different affinities for individual 

Rel/NF-κB complexes (Karin 1999). The most prevalent and best-studied IκB 
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protein is IκBα. The IκB proteins bind to NF-κB dimers and block the function of 

their nuclear localisation sequence (NLS), thereby retaining the complex in the 

cytoplasm. Stimulation by bacterial lipopolysaccharide (LPS) or proinflammatory 

cytokines tumour necrosis factor-α (TNF-α) and interleukin-1 (IL-1) will activate a 

high molecular weight complex containing a serine specific IκB kinase (IKK). 

Activated IKK phosphorylates IκB proteins at two serine residues located within the 

NH2-terminal region (Ghosh, May et al. 1998). Phosphorylation of the IκB proteins 

results in rapid ubiquitination and degradation by the 26S proteasome, which 

subsequently disrupts the NF-κB-IκB complex. This results in the liberation of NF-

κB, allowing it to translocate to the nucleus and activate expression of NF-κB target 

genes, one of which is IκBα. IκBα contains both NLS and nuclear export sequence 

(NES) and as such, newly synthesised IκBα entering the nucleus can abrogate this 

signal and remove NF-κB dimers from DNA to the cytoplasm (Figure 1.7) (Sachdev, 

Hoffmann et al. 1998). 
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Figure 1.7: Summary of NF-κB signalling pathway 

  

1.2.3 NF-κB activity and oncogenesis 

There is compelling evidence regarding NF-κB involvement in oncogenesis. It was 

first suggested following observation that v-Rel, a viral protein derived from the 

cellular gene c-Rel, caused aggressive lymphomas in infected young chickens 

(Gilmore 1999). Chromosomal translocation of the Bcl-3 gene was found in a subset 

of B-cell chronic lymphocytic leukaemias, this gene is also overexpressed in some 

B-cell neoplasms (McKeithan, Takimoto et al. 1997). IκBα mutations resulting in 

constitutively active NF-κB were observed in Hodgkin’s lymphoma, suggesting a 

tumour suppressor role for IκBα (Cabannes, Khan et al. 1999). Constitutively active 

NF-κB was also noted in other cancer types including liver, skin, breast, renal, and 

prostate cancers (Sovak, Bellas et al. 1997; Palayoor, Youmell et al. 1999; Tai, Tsai 

et al. 2000; Oya, Ohtsubo et al. 2001; Dhawan, Singh et al. 2002).  
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In many cases, NF-κB promotes up-regulation of several anti-apoptotic genes such 

as Bcl-2 homologues A1/Bfl-1 and Bcl-xL, and inhibition of NF-κB sensitises many 

tumour cells to death-inducing stimuli, for example by chemotherapeutic agents 

(Baldwin 2001). Moreover, it has been observed that NF-κB can antagonise p53, a 

key regulator of apoptosis, possibly through cross-competition for transcriptional co-

activators p300/CBP (Webster and Perkins 1999). 

 

In view of the fact that oncogenesis is closely associated with anti-apoptotic 

mechanisms, the following sections will discuss the mechanism of programmed cell 

death and how NF-κB might influence this process. 

 

1.2.3.1 Apoptosis 

Apoptosis, as opposed to necrosis, is a distinct mechanism of cell death that is tightly 

regulated with the aim to remove aged, damaged, or unwanted cells. The term 

apoptosis (Greek: ‘falling off’ from apo – ‘from’ + ptosis - ‘falling, a fall’) was first 

coined by Kerr et al. in 1972 to describe a programmed mechanism of cell deletion 

involving discrete structural changes, observed in various tissues and cell types 

(Kerr, Wyllie et al. 1972). Regulatory mechanisms controlling apoptosis are 

fundamental for normal homeostasis and disturbances in signalling cascades which 

regulate apoptosis can result in a wide variety of diseases (Rudin and Thompson 

1997). Failure of apoptosis induction is found in autoimmune diseases, systemic 

lupus erythematosus, and cancer. In contrast, increased apoptosis is observed in 

neurodegenerative disorders, acquired immune deficiency syndrome (AIDS), and 

some blood disorders characterised by low numbers of peripheral cells. In AIDS, 
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HIV virus proteins may activate CD4 on uninfected T-helper lymphocytes to induce 

apoptosis, which results in immunodepletion (Goepel 2004). 

 

Two distinguished apoptotic pathways, both of which lead to caspase activation, 

have been identified. The extrinsic pathway is initiated by ligation of transmembrane 

death receptors (e.g. CD95) which activates caspase-8 and -10, the activator 

caspases. These will in turn cleave and activate the effector caspase-3 and -7. In the 

intrinsic pathway, disruption of mitochondrial membrane releases mitochondrial 

proteins such as cytochrome c, which leads to the activation of caspase-9, thereby 

initiating the apoptotic caspase cascade (Green 2000). Cells will undergo stages of 

morphological changes, starting from nuclear shrinking (pyknosis) and 

fragmentation (karyorrhexis). The cells shrink and dissociate from surrounding cells, 

while retaining the organelles and an intact plasma membrane (Span, Pennings et al. 

2002). Alteration of plasma membrane rapidly induces phagocytosis, and cells not 

phagocytosed break into smaller fragments called apoptotic bodies. Another 

characteristic feature of apoptosis is cytoplasmic ‘boiling’ or blebbing (zeiosis) (Fig 

1.8) (Lane, Allan et al. 2005). In contrast, necrosis is a much faster process where 

swelling of the entire cytoplasm and mitochondrial matrix (oncosis) occurs shortly 

before the cell membrane ruptures. The differences between apoptosis and necrosis 

are summarised in Table 1.5 (Goepel 2004). 
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Figure 1.8: Structural changes of cells undergoing apoptosis and necrosis 
(Goodlett and Horn 2001) 
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Table 1.5: Differences between cell death by apoptosis and necrosis (Goepel 2004) 

Attribute Apoptosis Necrosis 

Induction Physiological or 

pathological stimuli 

Pathological injury 

Extent Single cells Cell groups 

Biochemical process ATP-dependent DNA 

fragmentation by 

endogenous nucleases 

Intact lysosomes 

Ion homeostasis cessation 

 

 

Leaky lysosomes 

Integrity of cell 

membrane 

Intact Damaged 

Morphology Cell shrinkage and 

fragmentation 

Cell swelling and lysis 

Inflammatory 

process 

Absent Present 

 

More recently, it has become apparent that the classic dichotomous model of 

apoptosis versus necrosis is an oversimplification of a highly complex process to 

guard an organism against unwanted and potentially harmful cells. Alternative 

models of programmed cell death (PCD) have been described that occur in the 

absence of caspases and do not fit conventional definition of apoptosis. Paraptosis 

occurs in the absence of caspase activation and typical nuclear changes and results in 

cytoplasmic vacuolation and mitochondrial swelling (Sperandio, de Belle et al. 
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2000). Another model, autophagy, is characterised by degradation by the cell’s own 

lysosomal system after sequestration of cytoplasm or organelles in autophagic 

vesicles (Gozuacik and Kimchi 2004). Other proposed mechanisms include mitotic 

catastrophe (King and Cidlowski 1995) and slow cell death (Blagosklonny 2000). 

These caspase-independent PCD mechanisms not only occur under physiological 

conditions but can also be induced by chemotherapeutic agents (Bröker, Kruyt et al. 

2005). 

 

Disruption in apoptotic pathways is a common feature of oncogenesis. As a regulator 

of cellular stress, p53 is a critical mediator of apoptosis and as such, p53 mutation is 

extremely common in many cancer cells. Moreover, mutation or altered expression 

in its downstream effectors (PTEN, Bax, Bak, and Apaf-1) or upstream regulators 

(ATM, Chk2, Mdm2) can also suppress apoptosis and accelerate tumour development 

in transgenic mice (Ryan, Phillips et al. 2001). Although less common, mutations in 

CD95 and the resulting inactivation of the death-receptor pathway have been linked 

to tumour growth and metastasis (Rosen, Li et al. 2000). Studies have correlated NF-

κB activation and suppression of cell death pathways via transcription of several 

anti-apoptotic proteins such as TRAF1 and 2 which block caspase-8 activation 

(Baldwin 2001). 

 

 

1.2.3.2 NF-κB: pro- or anti-apoptotic? 

While in previous sections NF-κB activation has been associated with expression of 

anti-apoptotic proteins, others have reported that a pro-apoptotic role of NF-κB. In a 

T-cell hybridoma cell line, glucocorticoid-induced apoptosis was facilitated by 



Neuroblastoma: Clinical Outcomes and Experimental Studies on Cell Signalling 
A Salim 

 

 39 

inhibition of NF-κB, whereas NF-κB activation was required for phorbol ester and 

ionomycin-induced apoptosis through up-regulation of the Fas ligand (FasL) (Lin, 

Williams-Skipp et al. 1999). This is supported by Kasibhatla et al. who reported that 

NF-κB induced proapoptotic FasL protein in response to etoposide or T-cell 

activation signals (Kasibhatla, Genestier et al. 1999). 

 

Moreover, it has been reported that selective inhibition of NF-κB in murine skin 

through overexpression of IκBα resulted in spontaneous development of squamous 

cell carcinomas, suggesting an oncogenic role of IκBα (Hogerlinden, Rozell et al. 

1999). 

 

Although previously it has been described that NF-κB actively competes against p53 

for their co-activator proteins (section 1.2.3) (Webster and Perkins 1999), Ryan et al. 

stated that induction of p53 via UV radiation caused NF-κB activation which 

enhanced the ability of p53 to induce apoptosis, and conversely inhibition of NF-κB 

abrogated p53-induced apoptosis (Ryan, Ernst et al. 2000). Furthermore, they 

suggested that inhibition of NF-κB in tumour cells which exhibit wild type p53 may 

diminish, rather than augment, response to chemotherapeutic agent. 

 

Therefore, given the pro- and antiapoptotic role of NF-κB, one might not always 

expect inhibition of NF-κB to increase the sensitivity of tumour cells to 

chemotherapy or other apoptosis-inducing stimuli. In fact, whether NF-κB prevents 

or promotes apoptosis is dependent upon stimulus, cell type, and context. 
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1.2.3.3 Clinical implementation of NF-κB inhibition 

In recent years, NF-κB has become the focus of many cancer researchers, 

particularly in certain cancer types such as Hodgkin’s lymphoma where NF-κB is 

constitutively active and NF-κB inhibition may have a therapeutic potential 

(Cabannes, Khan et al. 1999; Baldwin 2001). Aspirin and other non-steroidal anti-

inflammatory drugs (NSAIDs) have been utilised to block the initiation and/or 

progression of colorectal cancer. Yin et al. have reported that aspirin and sodium 

salicylate inhibit NF-κB activation by inhibiting ATP-binding to IKK-ß and thereby 

reducing IKK-ß-dependent phosphorylation of IκBα and subsequent degradation by 

proteasome (Yin, Yamamoto et al. 1998). More importantly, Pierce et al. have found 

that indomethacin, a non-salicylate cyclooxygenase (COX) inhibitor, had no effect 

on NF-κB pathway at concentrations that inhibit COX activity (Pierce, Read et al. 

1996). Therefore, it would appear that the ability of aspirin and sodium salicylate to 

inhibit NF-κB is independent of their COX inhibitory effects. 

 

Another approach to suppress NF-κB is by inhibiting ubiquitin-mediated degradation 

of IκBα by proteasome. Bortezomib (PS-341, Velcade) is a potent and selective 

proteasome inhibitor, shown to sensitise human colorectal cancer cell lines to 

camptothecin analogues CPT-11 and SN-38 (Cusack, Liu et al. 2001). Since then, 

bortezomib has been approved by the FDA for treatment of multiple myeloma. 

Nevertheless, since proteasome is also involved in other cellular factors such as 

cyclins, cyclin-dependent kinase inhibitor p21Waf1 and p27Kip1, and p53, its 

efficacy may not be solely due to inhibition of NF-κB pathway. 
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1.2.2 Correlating chemoresistance with NF-κB in neuroblastoma 

The mechanism of chemoresistance in neuroblastoma is still poorly understood, and 

the potential involvement of NF-κB pathway in this process has often resulted in 

conflicting conclusions. Constitutive activation of NF-κB pathway has been reported 

in S-type neuroblastoma cells (Bian, Opipari et al. 2002) and high-risk 

neuroblastoma samples (Brown, Tan et al. 2007) and linked to chemoresistance. 

Furthermore, inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC) and N-

tosyl-L-phenylalanine chloromethyl ketone (TPCK) induced an apoptotic response 

characterised by caspase-9 activation and apoptotic DNA changes in S-type 

neuroblastoma cells (Bian, Opipari et al. 2002). However, this view is opposed by 

Yang et al. who recently reported that NF-κB inhibition appeared to be protective for 

SH-EP cells (Yang, Wang et al. 2010). In contrast, Armstrong et al. reported that NF-

κB activation is required for doxorubicin and etoposide-induced cell death in N-type 

neuroblastoma cells (Armstrong, Bian et al. 2006). 

 

Commonly used chemotherapeutic agents such as etoposide and doxorubicin have 

been shown to induce NF-κB-dependent gene transcription in various neuroblastoma 

cell lines (Nelson, Ihekwaba et al. 2004; Ammann, Haag et al. 2009; Mullassery 

2010). Furthermore, inhibition of NF-κB in S-type neuroblastoma cells by either 

IκBα or a chemical inhibitor BMS-345541 has been shown to enhance apoptosis 

through mediation by TNF-related apoptosis-inducing ligand (TRAIL) (Ammann, 

Haag et al. 2009). 

 

Previous work in our laboratory has indicated that etoposide and doxorubicin 

induced NF-κB activation. Moreover, inhibition of NF-κB, either through over-
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expression of IκBα or by chemical inhibitor Bay 11 and BMS-345541, has been 

shown to induce cell death in both S- and N-type neuroblastoma cells. However, 

combining NF-κB inhibitor with chemotherapeutic agent did not appear to enhance 

cell death (Mullassery 2010). 

 

 

1.3 Aims and Objectives 

 

Recently, the biological properties of many naturally occurring and synthetic 

compounds have been characterised, and they appear to be able to manipulate the 

NF-κB pathway (Bratt, Belcher et al. 2000; Yang, Oz et al. 2001; Lo, Liang et al. 

2002; Tse, Wan et al. 2007).  

 

Therefore, building on our previous knowledge on NF-κB and development of 

chemoresistance in neuroblastoma, we proposed to screen a selection of chemical 

compounds for their effects on NF-κB pathway and induction of cell death in 

neuroblastoma cells. Furthermore, we aim to investigate a potential synergistic 

interaction between an NF-κB inhibitor and chemotherapeutic agent. 

 

Moreover, to review the current clinical status of neuroblastoma, a retrospective 

analysis of the outcomes of patients treated in Liverpool for neuroblastoma between 

1985-2005 was conducted. This approach will hopefully highlight the challenges of 

neuroblastoma management as well as contribute to current understanding of 

molecular mechanisms of this enigmatic disease. 
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CHAPTER 2 

Materials and Methods 

 
2.1 Neuroblastoma Clinical Outcomes 

 

2.1.1 Patients 

All consecutive patients who presented to Alder Hey Children’s Hospital, Liverpool 

between 1985 and 2005 with newly diagnosed neuroblastoma were included in the 

clinical study. Patient data were obtained from hospital case records, operative notes, 

and a dedicated oncology database. A cohort of 91 patients was identified. Patients 

diagnosed in the earlier period of study were staged according to the Evans 

classification (stage I-IVs) (Evans, D'Angio et al. 1971), those after 1993 were 

staged in accordance with the new International Neuroblastoma Staging System 

(INSS, stage 1-4S) (Brodeur, Pritchard et al. 1993). To minimise potential 

discrepancies between the two neuroblastoma classification systems, patients from 

the earlier study period were also retrospectively re-classified into the INSS 

classification. 
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2.1.2 Treatment 

All stage 1 patients (n=3) were diagnosed ante-natally with ultrasound imaging 

studies. Due to parental anxiety, complete surgical resection was performed in two of 

these young patients, the other infant was followed up by close observation/serial 

imaging. Treatment protocol for stage 2 disease included primary tumour resection 

or delayed resection after induction chemotherapy with alternating OPEC/OJEC 

(vincristine, etoposide, cyclophosphamide, and cisplatin/carboplatin). 

 

Delayed elective tumour resection was performed for patients with stage 3 disease 

following induction chemotherapy with alternating OPEC/OJEC (either at standard 

3-weekly intervals or rapid 10-day intervals). Radiotherapy to the primary tumour 

site was given in some cases for microscopic residual disease. 

 

Treatment protocol for patient with advanced staged metastatic neuroblastoma (stage 

4) consisted of chemotherapy following tumour biopsy, elective surgery with attempt 

at resection when possible, radiotherapy to primary site, followed by autologous 

bone marrow transplant. Since 1998, differentiation therapy with 13-cis-retinoic acid 

has been incorporated into our treatment protocol. 

 

Treatment for stage 4S disease, characterised by spontaneous regression in most 

instances, varied from observation only, primary tumour resection, to limited cycles 

of chemotherapy with vincristine and cyclophosphamide. 
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The aim of surgery in localised disease is complete resection whenever possible, 

while preserving adjacent vital structures (i.e. visceral arteries supplying the gut, 

nerves, and kidneys) which are frequently adherent to, or encased by the tumour. 

Due to the infiltrative nature of the tumour, it is not usually possible to get complete 

microscopically negative resection margins, therefore the extent of surgical resection 

was defined by the operating surgeon as “gross macroscopic/complete resection” 

(CR), partial resection (PR), or biopsy only (BX). 

 

 

2.1.3 Statistical analysis 

Survival time was defined as time from diagnosis to death or the latest follow-up 

date at the time of writing analysis. Event-free survival (EFS) was defined as the 

time from diagnosis to relapse, tumour progression, or death from any cause. The 

probabilities were estimated using the Kaplan-Meier method. The differences 

between levels within each covariate were tested using the log-rank test. The 

covariates analysed in Cox regression analysis were INSS stage, age at presentation, 

time period/eras, surgical treatment, MYCN status, site of primary tumour, and 

gender. Means comparisons were done using either Chi-square test or Fisher’s exact 

test with 95% confidence interval.  
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2.2 Cell Culture 

 

A number of commercially available neuroblastoma cell lines were used in this 

study. These cell lines have been derived from patients with metastatic or relapsed 

disease and selected for the study based on their varying phenotypic characteristics 

as outlined in Table 2.1. 

 

Table 2.1: Summary of cell lines and culture conditions 

Cell Line Source Culture Medium Characteristics 

SH-EP Gift from Professor 

Manfred Schwab, 

German Cancer Research 

Centre, Heidelberg, 

Germany  

RPMI 1640, 10% 

FCS, 1% L-

Glutamine, 1% 

NEAA 

S type (derived from 

SK-N-SH), bone 

marrow metastasis 

SH-SY5Y ECACC* MEM, 10% FCS, 

1% NEAA 

N type (derived from 

SK-N-SH), bone 

marrow metastasis 

Kelly ECACC* RPMI 1640, 10% 

FCS 

MYCN amplified, 

brain tissue 

*ECACC: European Collection of Cell Cultures. RPMI 1640 and Minimal Essential Medium (MEM) were purchased from 

Gibco (Invitrogen, UK). Non-essential amino acids (NEAA) and fetal calf serum (FCS) were purchased from Invitrogen. 
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Apart from commercially available cell lines, a number of primary tumour samples 

were obtained at elective surgical resections and primary tumour biopsies at 

diagnosis. Typically, tumour tissue was dissected with scalpel and treated with 0.5% 

trypsin/EDTA (Gibco, UK) before cultured in complete media (RPMI 1640, 20% 

FCS) at 37°C in a humidified atmosphere containing 5% CO2. 

 

 

2.2.1 Routine cell culture and long-term cryogenic storage of cells protocols 

Cells were typically cultured in 75 cm2 tissue culture flasks (Corning, UK) at 37°C in 

a humidified atmosphere containing 5% CO2. They were grown to 70-80% 

confluence at which point they would be sub-cultured, mostly every two or three 

days. Firstly, the medium was removed from the flask and cells were washed with 

serum free medium. Cells were then incubated at 37°C/5% CO2 for 5 minutes in the 

presence of 1ml of 0.05% trypsin/EDTA (Gibco, UK) to detach the monolayer from 

the flask. After 5 minutes, the trypsinisation process was inhibited through the 

addition of 9 ml growth medium. To remove traces of trypsin, the cells were 

transferred to a 25 ml universal tube, pelleted by centrifugation at 1,000 rpm for 5 

minutes, and the supernatant discarded. The cell pellet was re-suspended in growth 

medium. The cell count was determined using a particle counter (Beckman Coulter). 

Between 15-25% of the cells were returned to a new 75 cm2 tissue culture flask and 

the remaining cells were distributed to various cell culture vessels (Table 2.2) for use 

in other experiments. 
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Table 2.2: Typical plating density for SH-EP cell line 

Culture vessel Cell growth area (cm2)* Number of cells plated 

96-well 0.34 1.5 x 104 

35 mm dish 8 5 x 105 

60 mm dish 21 1.5 x 106 

*Cell growth area as per manufacturer’s information and may be smaller than surface area of the dish 

 

A working stock of cell lines was kept in liquid nitrogen for long-term storage. Cells 

were pelleted in the same manner as above. However, the final cell pellet was re-

suspended in freezing medium containing 90% FCS and 10% dimethylsulfoxide 

(DMSO). The resultant suspension was stored in cryovials containing 1 ml aliquots. 

These vials were frozen slowly at a rate of 1°C/min in freezing containers (Nalgene, 

UK) stored at -80°C overnight, before transferring them to liquid nitrogen. 

 

When needed, a frozen vial was taken from liquid nitrogen and placed in a 37°C 

water bath for one minute to defrost. The content of the cryovial was slowly mixed 

with 9 ml growth medium in a 25 ml universal container. The cells were pelleted by 

centrifugation at 1,000 rpm for 5 minutes and re-suspended in 15 ml growth medium. 

This suspension was then transferred to a 75 cm2 culture flask and incubated at 

37°C/5% CO2. 
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2.2.2 Transfection 

Cells were transfected using FuGENE6 transfection reagent as per manufacturer’s 

instructions. The optimal FuGENE (µl) to DNA (µg) ratios for SH-EP and SH-SY5Y 

cell lines are listed in Table 2.3. The amount of FuGENE and DNA required was 

adjusted depending upon the surface area of the culture vessel used (Table 2.2). 

 

Table 2.3: Optimal FuGENE (µl) to DNA (µg) ratios for 35 mm dish 

Cell line FuGENE (µl) DNA (µg) Total volume (µl) 

SH-EP 2 1 100 

SH-SY5Y 1 1 100 

 

 

2.3 Molecular Biology 

 

2.3.1 Transformation of chemically competent cells 

A suitable strain of competent E coli (e.g. DH5α) was used for propagation of 

plasmid DNA. 50 µl of competent cells were thawed on ice, 0.5 µg of plasmid DNA 

was added and incubated for 30 minutes in a 1.5 ml Eppendorf tube. The cells were 

then heat-shocked at 42°C for 1 minute and immediately returned to ice for 2 

minutes. 900 µl SOC medium was added and the tube was placed in a 37°C orbital 

incubator for 1 hour. 20 µl and 5 µl of the cell suspension were then plated onto LB-

agar plates containing the appropriate antibiotic (50 µg/ml ampicillin or kanamycin) 

and incubated overnight at 37°C. 
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2.3.2 Small and large scale amplification of plasmid DNA (Mini and Maxi Prep) 

E coli cells containing plasmid DNA were cultured in 5 ml LB broth containing the 

appropriate antibiotic for a minimum of 8 hours in a 37°C orbital incubator set at 200 

rpm. For Mini Prep, 2.5 ml of the culture was harvested by centrifugation at 4,000 x 

g for 10 minutes. DNA was extracted using the PureLinkTM HiPure Plasmid DNA 

Purification Kit (Invitrogen) according to the manufacturer’s instructions. Purified 

plasmid DNA was confirmed using spectrophotometry and a suitable restriction 

enzyme digest using gel electrophoresis. 

 

For Maxi Prep, a 1 L conical flask containing 250 ml LB broth with appropriate 

antibiotic was inoculated with 5 ml overnight culture of transformed E coli, and 

cultured overnight in a 37°C orbital incubator set at 200 rpm. The following day, the 

culture was harvested by centrifugation at 6,000 x g in a Sorvall GSA rotor for 15 

minutes at 4°C. DNA was extracted using the PureLinkTM HiPure Plasmid DNA 

Purification Kit (Invitrogen) according to the manufacturer’s instructions. The eluted 

DNA was concentrated using isopropanol precipitation. This solution was 

centrifuged at 12,000 x g for 30 minutes at 4°C. The supernatant was discarded and 

the pellet washed with 1.5 ml 70% ethanol and further centrifuged at 12,000 x g for 5 

minutes at 4°C. This step was repeated one more time, before leaving the DNA pellet 

to air dry for 10-30 minutes and dissolved in 200 µl TE buffer. The DNA plasmid 

concentration was determined using spectrophotometry and the final concentration 

was adjusted to 1 µg/µl, and stored as 10 µl aliquots.  
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2.3.3 Agarose gel electrophoresis and restriction enzyme digestion of plasmid 

DNA 

Appropriate restriction enzymes (New England Biolabs) (Figure 2.1) were used 

according to manufacturer’s instructions. DNA was incubated with restriction 

enzyme(s) and following digestion, the cleaved DNA fragments were analysed by 

horizontal agarose gel electrophoresis in 1x TAE buffer. The DNA fragments were 

loaded into the 1% agarose gel in 1x Orange G loading buffer and run at 100 V for 

~15 minutes, after which the fragments were visualised by UV illumination. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Restriction digest map of pNF-κB-Luc 
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2.3.4 Treatment of cells with chemotherapy agents and NF-κB inhibitors 

Cells were plated in 96-well culture plates for 24 hours before treatment with the 

pharmacological agent of interest, diluted to the desired concentrations in the same 

culture medium specific to the cell line. In all cases, culture medium was partially 

removed from the well and replaced with an equal volume of medium containing the 

pharmacological agent of interest. 

 

 

2.4 Bulk-cell Analysis 

 

2.4.1 Cell viability assay (MTT) 

Cell viability was measured by analysing changes in absorbance of MTT (3-(4,5-

dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) after reduction by 

mitochondrial reductase enzymes. After appropriate duration of treatment (i.e. 24 or 

48 hours), culture medium was removed from the plate and replaced with 50 µl of 

0.5 mg/ml MTT solution. After 60-90 minutes incubation at 37°C, the MTT solution 

was removed and the cells lysed with 50 µl of 0.04N hydrochloric acid/isopropanol. 

The plate was then placed in a shaking table for 10 minutes to mix the precipitate. 

The absorbance was read at 570 nm using EnVision (PerkinElmer, UK) or Multiskan 

Ascent (Thermoscientific, UK) plate reader. The results shown were adjusted by 

subtracting the ‘blank’ (medium and MTT reagent) from the initial readings. 

Readings from treated wells were compared to ‘control’, i.e. untreated cells grown in 

normal medium. The experiment was performed in replicate of three to six samples 

and each experiment was repeated at least three to six times. 



Neuroblastoma: Clinical Outcomes and Experimental Studies on Cell Signalling 
A Salim 

 

 53 

 

 

2.4.2 Luminometry – reporter gene assay using NF-Luc 

SH-EP cells stably transfected with NF-Luciferase reporter vector containing five 

repeats of NF-κB binding sites cloned upstream of the luciferase gene were used for 

luminometry assays. These cells were plated in white opaque 96-well plates for 24 

hours before treated with appropriate drug of interest. After the determined 

incubation period, the medium was removed and the cells lysed with 80 µl/well 

luminometry lysis buffer (0.025% (w/v) DTT, 1% (w/v) BSA, 1% Triton X 100, 15% 

(w/v) glycerol, 25 mM Tris-phosphate, 0.1 mM EDTA, and 8 mM MgCl2) at room 

temperature with gentle shaking for 20 minutes. Each sample was supplemented with 

ATP to a final concentration of 1 mM. The plate was then loaded into EnVision or 

VICTOR (PerkinElmer, UK) plate reader which has been programmed to inject 80 µl 

of 25 mM luciferin (buffered in 25 mM Tris-phosphate, pH 7.5) to a sample, take 

photon counts every 0.1 second for 5 seconds, then move to the next well. All 

measurements were exported and analysed using Microsoft Excel. The experiment 

was performed in replicate of three to six samples and each experiment was repeated 

at least three to six times. 

 

 

2.4.3 Western blotting 

Cells were cultured overnight in 60 mm or 90 mm dishes before given the 

appropriate treatment. Cell lysates were prepared on ice and kept at 4°C everytime. 

After removing culture medium, cells were washed with PBS before adding lysis 

buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 1 mM EGTA, 1% Triton X 100, 50 
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mM NaF, 5 mM sodium pyrophosphate, 10 mM sodium ß-glycerophosphate, 0.1 

mM PMSF). Cell lysates were collected using a cell scraper and stored in Eppendorf 

tubes. Cell debris was removed by centrifuging at 10,000 x g for 15 minutes at 4°C. 

The supernatant was transferred and stored in new Eppendorf tubes at -20°C. 

 

The amount of protein in each sample was determined using bicinchoninic acid assay 

(BCA assay). Afterwards, Laemmli buffer was added to an aliquot of each sample 

and the mixture was then boiled for 5 minutes. The same amount of protein from 

each sample, typically 40 µg, was loaded into each lane of the gel as well as 5 µl of 

pre-stained molecular weight marker (BioRad). The gel was run at 100 V for 60-90 

minutes in a BioRad PROTEAN II xi Cell. 

 

When the run was finished, the gel was transferred to a nitrocellulose membrane in a 

BioRad Trans-Blot Electrophoresis Transfer Cell run at 100 V for 1 hour with water 

cooling.  

 

At the end of transfer, the nitrocellulose membrane was blocked in 5% non-fat 

milk/TBS-Tween 0.1% for 1 hour at room temperature. The membrane was then 

washed in TBS-Tween 0.1% for 5 minutes before incubated in primary antibody 

solution overnight at 4°C with gentle rocking (Table 2.4). The membrane was then 

washed in TBS-Tween 0.1% three times for 5 minutes and incubated in appropriate 

secondary antibody solution for 1 hour at room temperature. The membrane was 

washed again in TBS-Tween 0.1% three times for 5 minutes.  

 

Signal was detected by enhanced chemiluminescent (ECL) and manual film 

development.  
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Table 2.4: Primary antibodies for Western blotting 

Primary antibody Source Dilution Type 

Phospho-NF-κB p65 

(Ser536) 

Cell Signaling 1:1000 Rabbit 

IκB-α Cell Signaling 1:1000 Rabbit 

Phospho-IκB-α 

(Ser32/36) 

Cell Signaling 1:1000 Mouse 

Phospho-IKKα 

(Ser180)/IKKß (Ser181) 

Cell Signaling 1:1000 Rabbit 

Cyclophilin A Cell Signaling 1:1000 Rabbit 

The secondary antibody used was Anti-rabbit IgG HRP-linked 1:1000 (Cell Signaling) and Anti-

mouse IgG (whole molecule) Alkaline Phosphatase 1:3000 (Sigma). 

 

 

2.5 Single-cell Imaging 

 

2.5.1 Confocal microscopy 

Confocal microscopy was conducted on cells plated in 35 mm glass bottom dishes 

(IWAKI, Japan), incubated throughout the experiment in a humidified CO2 incubator 

(37°C, 5% CO2). Either a Plan-Neofluar 63x phase-contrast oil immersion objective 

(1.3 NA) or a Plan-Neofluar 20x dry objective (0.5 NA) was used. Data capture and 

extraction were carried out with LSM510 version 3.5 or ZEN software (Zeiss, 

Germany). 
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2.5.2 Immunocytochemistry 

Cells were plated in 35 mm glass bottom dish (IWAKI, Japan) and incubated 

overnight to reach 70-80% confluency. The culture medium was removed and the 

cells were rinsed three times with PBS. Afterwards, the cells were fixed with 4% 

paraformaldehyde for 10 minutes at 4°C. The cells were rinsed three times for 5 

minutes with PBS to remove excess paraformaldehyde. The cells were then blocked 

for 30 minutes with blocking solution (1% BSA, 0.1% Triton X 100 in PBS). The 

blocking solution was removed and cells were incubated for one hour with primary 

antibody diluted as required in the blocking solution (Table 2.5). Afterwards, cells 

were washed three times for 5 minutes with the blocking solution and incubated for a 

further 30 minutes with appropriate secondary antibody (Table 2.5). The cells were 

then washed three times for 5 minutes with the blocking solution again before adding 

a small volume of PBS and stored at 4°C for microscopy. 

 

Table 2.5: Antibodies used for immunocytochemistry 

Primary antibody Source Dilution Type 

NB84 Novocastra 1:200 Mouse 

CD56 Novocastra 1:50 Mouse 

Secondary antibody Source Dilution  

Mouse-Cy3 Sigma 1:500  
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Microscopy was carried out with a 63x phase-contrast oil immersion objective (1.3 

NA). Excitation of Cy3 was performed using a Helium Neon laser (543 nm). The 

emitted light was reflected by a 545 nm dichroic mirror through a 560 nm long-pass 

filter. 

 

 

2.5.3 Mode of cell death using Annexin V/Propidium Iodide 

Analysis of cell death was performed using Annexin V FITC and Propidium Iodide 

(PI) (Sigma). Cells were plated in four-compartment CellViewTM 35 mm glass 

bottom dish (Greiner, Belgium). Annexin V and PI were added to each compartment 

immediately prior to imaging with a Plan-Neofluar 20x dry objective, to a final 

concentration of 1 µl/ml. Excitation of Annexin V FITC was performed using an 

Argon ion laser at 488 nm. The emitted light was reflected by a 545 nm dichroic 

mirror through a 505-550 nm band-pass filter. Excitation of PI was performed using 

a Helium Neon laser (543 nm). The emitted light was reflected by a 545 nm dichroic 

mirror through a 560 nm long-pass filter. Images were taken from 4 fields of view 

from each compartment, approximately every 6 minutes. 

 

The analysis was performed by counting the number of cells positive for Annexin V 

alone, PI alone, and both Annexin V and PI together, expressed as a percentage of 

the total number of cells at the beginning of each experiment, at different time 

intervals (Table 2.6) (van Engeland, Nieland et al. 1998). 
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Table 2.6: Possible outcomes from Annexin V/PI analysis 

Cell fate Annexin V PI 

Early apoptosis + - 

Late apoptosis + (first) + 

Necrosis - + 

 + + (first) 

Viable cells - - 
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CHAPTER 3 

Clinical Outcomes 

 

3.1 Introduction 

 

Neuroblastoma (NB) is the most common extracranial solid tumour diagnosed in 

childhood. During the last decades, the introduction of intensive multi-modal therapy 

for high-risk NB cases has led to improvement in the prognosis for this particular 

group of patients. This has prompted further debate on the role of aggressive surgery, 

notably efforts to achieve ‘complete tumour resection’ for stage 3 and stage 4 NB. 

 

Although complete tumour resection is still widely regarded as the mainstay of 

treatment for localised tumour (stage 1 and 2 NB), international expert opinion 

regarding the utility of aggressive surgery for stage 3 and 4 NB is subject to 

continuing debate. Several studies demonstrated that complete tumour resection may 
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well be associated with significantly improved clinical outcome (La Quaglia 2001; 

Tsuchida and Kaneko 2002), however others have shown that the radicality of 

surgery (i.e. the completeness of resection) did not change the outcome (Castel, 

Tovar et al. 2002; von Schweinitz, Hero et al. 2002).  

 

Taken against this background of varying international clinical evidence, the present 

study at Alder Hey was designed to evaluate how the role of surgery may have 

changed over the last two decades, particularly with the introduction of novel 

chemotherapy regimes and to seek to correlate these findings with overall survival 

rate (OS), event-free survival rate (EFS), and local recurrence. 

 

 

3.2 Results 

 

3.2.1 Patient characteristics 

The male to female ratio was 0.75:1. Older patients (>2 years) were more likely to 

present with more advanced disease, the median ages for stage 1-2 and stage 3-4 

were 1.32 and 2.68 years respectively (p=0.024). Full information regarding 

amplification of MYCN oncogene was available in a limited number of cases, 6 

(16%) stage 3-4 patients were MYCN amplified, and 13 (34%) cases were MYCN 

non-amplified (Table 3.1).  Abdominal pain in conjunction with palpable abdominal 

mass, constitutional symptoms, and bone pain were among the commonest 

presenting clinical features at diagnosis (Figure 3.1). 
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Table 3.1: Patient characteristics 

Characteristic No (%) 

INSS classification: 

•Stage 1 

•Stage 2 

•Stage 3 

•Stage 4 

•Stage 4S 

•Total 

 

3 (3.3) 

10 (11) 

13 (14.3) 

56 (61.5) 

9 (9.9) 

91 (100) 

Site of primary tumour: 

•Abdomen 

•Adrenal 

•Paravertebral 

•Other abdominal 

•Thorax 

•Pelvis 

•Unknown primary 

•Total 

 

 

66 (72.5) 

9 (9.9) 

1 (1.1) 

12 (13.2) 

1 (1.1) 

2(2.2) 

91 (100) 

MYCN* (1992-2005, stage 3-4S): 

•Non-amplified 

•Amplified 

•Undetermined 

•Total 

 

13 (34.2) 

6 (15.8) 

19 (50) 

38 (100) 

* MYCN status was only incorporated into hospital policy in 1992 and sample was analysed at an 
external site. Unfortunately biopsy procedures at times were performed as emergency, and as such 
delivery and other logistics problems resulted in undetermined/unequivocal results. 
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* Incidental findings include prenatal diagnosis (n=3), or incidental finding at 

GP/hospital of tumour mass whilst being investigated for another problem. 

Figure 3.1: Presenting symptoms at diagnosis 

 

3.2.2 Surgery 

In all surgery, attempts were always made to safely remove primary tumour. This 

was achieved in 53 patients, the majority (74%) being delayed resection after 

primary tumour biopsy and adjuvant chemotherapy (Table 3.2). In particular, 

improved tumour resectability was clearly observed in 30 (60%) stage 4 cases 

following induction chemotherapy, where initially tumour removal was considered 

unlikely to be feasible. No operations in a group of stage 3-4 cases was due to fully 

informed family decisions in view of very extensive disease precluding complete 
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resection (n=10), chemoresistant tumour (n=10), complete remission after 

chemotherapy (n=2), or early death (n=1).  

 

Table 3.2: Timing and extend of surgical resection 

Surgical resection of tumour was either performed as primary resection or delayed resection after 
induction chemotherapy. The extent of resection was defined by the operating surgeon as: gross 
macroscopic/complete resection (CR); partial resection (PR); or biopsy only. 
 

3.2.3 Morbidity 

Post-operative morbidity was noted in 13 patients (15.7%). There was no surgery-

related death. Nephrectomies were performed in 4 patients to aid complete tumour 

resection or as part of en-bloc excision, one of whom developed renal failure, 

currently managed by the nephrology team (latest GFR 50). Horner’s syndrome 

(miosis, ptosis, anhidrosis) was observed in 5 patients (41.7%) following resection of 

thoracic neuroblastomas, one of whom also suffered from phrenic nerve palsy. One 

 Primary resection Delayed resection Biopsy only 

 CR PR CR PR  

Stage 1 2 - - - - 

Stage 2 3 5 1 1 - 

Stage 3 1 2 4 3 3 

Stage 4 - - 16 14 20 

Stage 4S 1 - - - 7 

Total 7 7 21 18 30 
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patient experienced post-operative diarrhoea which resolved within 24 hours. 

Damage to the right renal vein during a difficult resection led to a massive intra-

operative haemorrhage in one patient, requiring 5-litre blood transfusion during the 

operation. One patient returned to theatre due to a wound dehiscence, while another 

patient suffered injury to the sympathetic nerve supply to the left leg, which led to a 

unilateral ‘sympathectomised’ peripheral extremity. 

 

 

3.2.4 Survival analysis 

The probability of survival at 5 years for the entire series is 0.37 and the EFS is 0.35. 

Overall survival and EFS according to tumour stage is shown in Figure 3.2. Survival 

for stage 3 disease had improved significantly from 25% to 80% (p=0.04) between 

the eras 1985-1994 and 1995-2005, similar trends were also observed in stage 4 

disease (18% to 22%, p=0.098) and stage 4S disease (40% to 75%, p=0.381) (Figure 

3.3).  Across tumour stages 1-4S, there was a clear trend towards improved survival 

(OS and EFS) by achieving complete resection, although the difference in survival 

rates between complete vs partial resection was not statistically significant (OS 60% 

vs 44%, p = 0.216; EFS 56% vs 40%, p = 0.121). Significant difference was only 

observed when compared to the ‘biopsy only’ group (5-year OS and EFS 16.7%, p 

<0.001). Median survival time for stage 4 patients who had biopsy only was 6.1 

months (95% CI 4.3-7.9) vs 35.4 months (95% CI 14.6-56.3) for those who had 

complete/partial surgical resection. 

 

Relapse of tumour occurred in 26 stage 3-4 patients: 4 local, 7 local and distant, and 

15 distant relapses. Relapse pattern was similar across the different resection groups 
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(Table 3.3). Younger age at presentation (<18 months) was associated with improved 

survival (Table 3.4) particularly in the groups who had tumour resection (complete 

or partial). Significant difference was observed when patients were analysed by their 

MYCN status, 5-year EFS for non-amplified patients was 58.8% vs 0 for amplified 

cases (p = 0.008). Advanced stage disease, older age at presentation, patients treated 

in the earlier era (1985-1994), unresected primary tumour, and MYCN amplification 

were all associated with poorer prognosis (Table 3.5). 
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Figure 3.2: OS and EFS curves by stage
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Figure 3.3: OS and EFS curves comparing the two treatment eras
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Table 3.3: 5-year survival rates, patterns of relapse, and extend of surgical 

resection of stage 3 and 4 patients 

Extend of 

resection 

5-Year N Relapse 

 OS (%) EFS (%)  Local 

only 

Distant 

only 

Both Total 

Complete 

resection 

47.6 42.9 21 2 6 3 11 

Partial 

resection 

31.6 26.3 19 1 8 3 12 

Biopsy only 4.3 4.3 23 1 1 1 3 

* p = 0.245 ☆ p = 0.126  p < 0.001 

 

 

Table 3.4: 5-year survival rates according to age at presentation 

Age 5-Year Overall Survival (%) 5-Year Event-free-survival (%) 

 Complete 

resection 

Partial 

resection 

Biopsy 

only 

Complete 

resection 

Partial 

resection 

Biopsy 

only 

<18m 87.5 63.6 33.3 87.5 63.6 33.3 

>18m 50.0 28.6 - 45.0 21.4 - 

P value 0.060 0.034 0.346 0.047 0.029 0.183 

 

* 
☆ 

** ** 
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Table 3.5: Univariate Cox regression analysis with overall survival as dependent 

variable 

Variable P value 

INSS stage 0.012 

Age at presentation 0.017 

Time period (85-94, 95-05) 0.014 

Tumour resection vs biopsy only <0.001 

MYCN amplification 0.011 

Site of primary tumour 0.087 

Gender 0.839 

 

Table 3.6: Overview of tumour resectability over the last two decades 

 

Extend of resection 1985-1994 1995-2005 

 No (%) % Alive No (%) % Alive 

Complete resection 10 (21.3) 40.0 18 (50.0) 61.1 

Partial resection 17 (36.2) 35.3 8 (22.2) 37.5 

Biopsy only 20 (42.5) 10.0 10 (27.8) 30.0 

Total 47 (100.0) 25.5 36 (100.0) 47.2 
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3.3 Discussion 

 

Treatment modalities for neuroblastoma are constantly evolving. Whilst surgery 

remains the mainstay treatment for localised tumours with favourable biology, the 

past two decades have observed dramatic intensification of therapy for moderate to 

high-risk neuroblastoma (Maris 2010). Accordingly, clinical outcomes of 

neuroblastoma patients have arguably improved, the biggest gain observed in the 

Alder Hey study was amongst stage 3 patients where 5-year survival rate has 

increased from 25% to 80% (Figure 3.3). In contrast, outcomes of stage 4 and 4S 

patients have shown only modest improvement. 

 

Following initial tumour biopsy, surgery for moderate to high-risk neuroblastoma 

was performed after six to ten courses of intensive induction chemotherapy. As a 

result, tumour resectability increased from 23.1% to 53.8% in stage 3 patients and 

from zero to 53.6% in stage 4 patients (Table 3.2). This observation concurred with 

findings from other comprehensive imaging studies (Cecchetto, Mosseri et al. 2005; 

Davidoff, Corey et al. 2005; Simon, Hero et al. 2008). Improvements in 

chemotherapy protocols and surgical techniques over the last two decades are also 

associated with an increased proportion of patients having successful tumour 

resection, from 57.4% to 72.7%. In addition, the number of patients achieving 

complete macroscopic tumour resection has also doubled between the eras 1985-

1994 and 1995-2005 respectively (Table 3.6). Despite these advances, however, we 

have only observed modest improvement in cure rates. 
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Current opinions are divided regarding the exact role of surgery in high-risk 

neuroblastoma. La Quaglia and colleagues at Memorial Sloan-Kettering Cancer 

Center have observed significant survival benefit associated with gross total 

resection (GTR) (La Quaglia, Kushner et al. 2004), but other neuroblastoma studies 

have failed to demonstrate a significant advantage for radical surgery in high-risk 

cases (Losty, Quinn et al. 1993; Castel, Tovar et al. 2002; von Schweinitz, Hero et al. 

2002; Adkins, Sawin et al. 2004). Castel had observed no significant association or 

advantage between the extent of surgical resection and clinical outcome in a multi-

centre Spanish study of stage 4 patients treated under a single protocol (Castel, Tovar 

et al. 2002). A recent long-term outcome study reported by Von Schweinitz, et al 

(von Schweinitz, Hero et al. 2002) noted that the correlation between surgical 

radicality and improved outcome was observed only in the earlier study periods but 

not in the later periods following the introduction of intensified chemotherapy 

regimens. Our findings strongly correlate with a published study by Adkins et al. 

(Adkins, Sawin et al. 2004) which reported a trend towards improved outcomes by 

achieving complete resection but the benefits in terms of overall survival were 

marginal. These findings hold true for both study eras in the Alder Hey series (1985-

1994 and 1995-2005). 

 

Surgery proved effective in local control of tumour progression and relapses were 

mainly metastatic. However, unlike findings reported by von Allmen, et al. (von 

Allmen, Grupp et al. 2005) and La Quaglia, et al. (La Quaglia, Kushner et al. 2004) 

which demonstrated good local control only in the GTR group, we observed similar 

clinical patterns in both complete and partial resection groups. 
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Being a highly infiltrative tumour, neuroblastoma resection presents a significant 

challenge to paediatric oncology surgeons. Kiely has proposed a novel subadventitial 

approach for resection, however this demanding technique has been associated with 

aortic injury and post-operative troublesome diarrhoea secondary to intestinal 

sympathetic denervation (Kiely 2007). Kubota, et al. from Japan have reported up to 

15% incidence of renal infarction and atrophy as a result of aggressive surgery 

devitalising renal blood flow (Kubota, Yagi et al. 2004). Our operative technique 

was associated with a low complication rate of 15.7% or 10.8% if one excludes the 

nephrectomies that were removed en bloc to achieve complete resection. 

 

In the current era of intensive chemotherapy, radiotherapy, stem cell transplantation, 

differentiation therapy, and now immunotherapy, the real benefits of surgery in 

achieving long-term cure rates in high-risk neuroblastoma remain uncertain. New 

induction chemotherapy regimens have clearly permitted better tumour response 

rates and in turn likely to improve tumour resectability. Further improvements in 

supportive care protocols and infection prophylaxis following stem cell transplant 

have also reduced treatment-related deaths (Fish and Grupp 2008). Correspondingly, 

can aggressive surgery, with the risk of damaging adjacent neurovascular structures, 

be truly justified? Further characterisation of tumour biology is being increasingly 

used to predict neuroblastoma behaviour and disease progression. New multi-

disciplinary approaches in the future will probably focus on targeted biological 

treatments based on personalised tumour profiles, perhaps obviating the need for 

aggressive surgery in advanced staged disease. 
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CHAPTER 4 

The effects of chemotherapy and 

NF-κB inhibitors on neuroblastoma 

cell fate 

 

4.1 Introduction 

 

Except in low risk cases where surgery alone is potentially curative, chemotherapy 

remains the most common treatment modality for neuroblastoma. Induction 

chemotherapy normally uses a combination of cisplatin or carboplatin, etoposide, 

cyclophosphamide, vincristine, and doxorubicin (Mullassery, Dominici et al. 2009). 

These anti-proliferative chemotherapy agents induce DNA damage and consequently 

initiate apoptosis.  

 



Neuroblastoma: Clinical Outcomes and Experimental Studies on Cell Signalling 
A Salim 

 

 74 

While low and intermediate-risk cases usually respond well to treatment, the 

majority of high-risk cases ultimately progress or recur despite initial positive 

response to treatment. Tumour recurrences most commonly appear within 2 years 

after bone marrow transplant (Matthay, Villablanca et al. 1999).  

 

Etoposide (Figure 4.1), derived from epipodophyllotoxin, delivers its cytotoxic 

activities through its action on topoisomerase II. Topoisomerase II enzyme is able to 

cleave DNA by generating transient double-stranded breaks in the DNA backbone. 

This process results in the formation of short-lived intermediary topoisomerase II-

cleaved DNA complex (the cleavage complex), which is tolerated by the cell. 

Etoposide acts primarily by inhibiting the ability of this enzyme to religate cleaved 

DNA molecules. A cell-cycle specific compound, etoposide is mainly active in the 

G2 phase, and to a lesser extent in the S phase (Pommier, Fesen et al. 1996). Rapidly 

proliferating cells have a high concentration of topoisomerase II and as such are 

prime targets for etoposide. 

 

 

Figure 4.1: Chemical structure of etoposide 
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However, a number of neuroblastoma cell lines obtained from patients after relapse 

indicated significant resistance to etoposide, although cell lines obtained at diagnosis 

from the same patients were sensitive (Matthay and Kushner 2005). Several ideas 

have been postulated for the underlying mechanisms of tumour resistance. The 

cancer stem cell hypothesis suggests the presence of stem cells which may escape 

cytotoxic agents through slower proliferation rate (Dick 2008). The presence of stem 

cells in neuroblastoma tumours is associated with worse prognosis (Ross and 

Spengler 2007). Acquired drug resistance may result from increased expression of 

cell surface drug transport proteins, most notably the p-glycoprotein-mediated multi-

drug resistance, altered DNA repair, or mutations in the p53 gene resulting in 

decreased apoptotic activity (Norris, Bordow et al. 1996; Haber, Bordow et al. 1999; 

Blanc, Goldschneider et al. 2003). 

 

This chapter will investigate the sensitivity of a number of neuroblastoma cell lines 

to etoposide treatment and whether this can be improved through manipulating the 

signalling pathway, NF-κB. 

 

 

4.2 Effect of etoposide on neuroblastoma cells 

 

Two neuroblastoma cell lines were selected for this study to represent the phenotypic 

variation of the tumour: SH-EP cell line as a representative of the stromal type (S-

type) cells and SH-SY5Y cell line as a representative of the neuronal type (N-type) 

cells. These cell lines were derived from post-treatment bone marrow aspiration of a 

4-year old female patient who presented with an aggressive thoracic tumour (Biedler, 
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Helson et al. 1973). 

 

4.2.1 Cell viability after etoposide treatment 

As one of the commonest chemotherapy agents for neuroblastoma, etoposide has 

been incorporated into a number of chemotherapy schedules with varying doses and 

intervals. Pharmacokinetic studies have demonstrated greater anti-tumour activity at 

plasma concentration 1-5 µg/ml (~1.7-8.5 µM) (Splinter, van der Gaast et al. 1992).  

 

The maximum tolerated dose (MTD), defined as the quantity that produced grade 4 

haematological toxicity, grade 3 mucositis, diarrhoea, or skin toxicity, and grade 2 

hepatic, renal, pulmonary, cardiac, or neurological toxicity in at least half of the 

patient population (National Cancer Institute 1999), was observed to be 8.59 µg/ml 

(~14.59 µM) (Gregianin, Brunetto et al. 2002).  

 

This information was taken into consideration when choosing the doses of etoposide 

for our cell viability assays. Cell viability of SH-EP and SH-SY5Y cells, measured 

after 24-hour exposure to etoposide, are shown in Figure 4.2. Moderate reduction in 

cell viability was observed in both cell lines following 24 hours of treatment with 

etoposide, suggesting a degree of resistance of the cell lines to etoposide-induced cell 

death.  
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Figure 4.2: Neuroblastoma cell viability after etoposide treatment 

Neuroblastoma cell lines (SH-EP and SH-SY5Y) plated in 96-well plate with cell density of 15,000 
cells/well, treated with 8 µM and 20 µM etoposide. Mean cell viability after 24 hours was calculated 
using MTT assay from 3 or more experiments, standard deviation was represented by the error bars. 
 
 

4.2.2 Effect of etoposide on NF-κB pathway 

The role of NF- κB as a significant signalling pathway involved in chemotherapy 

resistance has been reviewed extensively (Baldwin 2001; Johnstone, Ruefli et al. 

2002). The activation of NF-κB dependent gene transcription in several cell lines is 

associated with decreased apoptosis through the expression of antiapoptotic genes 

such as Bcl-xL, a member of the Bcl-2 family (Lee, Dadgostar et al. 1999; Chen, 

Edelstein et al. 2000). Moreover, it has been observed that exposure to some 

chemotherapy agents (including etoposide) leads to NF-κB activation in some cancer 

cells (Nelson, Ihekwaba et al. 2004; Nakanishi and Toi 2005).  

 

In view of this, we investigated whether resistance to etoposide as observed in the 

previous section is possibly linked to activation of the NF-κB pathway in these 

neuroblastoma cell lines. 
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NF-κB dependent gene transcription was investigated in luciferase reporter gene 

assay. To eliminate variability in transfection efficiency between experiments, all 

experiments were carried out using SH-EP cells stably transfected with NF-Luc 

(Figure 4.3). 

 

 

Figure 4.3: Etoposide-induced NF-κB gene transcription in SH-EP cells 

SH-EP cells stably transfected with NF-Luc were treated with 20 µM etoposide and 10 ng/ml TNF-
alpha. The relative luminescence was determined 16 hours after treatment as indicated in the y-axis as 
number of folds relative to untreated control samples. Data shown are the mean of 3-6 experiments, 
error bars indicate the standard deviation. 
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4.2.3 Discussion 

Chemotherapy agents exert their cytotoxic activity through induction of apoptosis. 

However, it has also been demonstrated that these agents, in this case etoposide, also 

activated the transcription factor NF-κB, which potentially dampened the apoptotic 

effect of chemotherapy. Furthermore, previous work in our laboratory has 

contributed more evidence of the link between NF-κB activation and chemotherapy 

resistance as it was demonstrated that NB cell lines which showed more resistance to 

etoposide showed higher NF-κB activation (Mullassery 2010). 

 

4.3 Screening of NF-κB inhibitors 

 

Data from the previous section has suggested a possible mechanism by which NF-κB 

can contribute to chemotherapy resistance. By extension, it also raised the possibility 

that certain types of NF-κB inhibition may synergistically improve response to 

chemotherapy.  

 

Therefore, working alongside an ongoing project in our laboratory which screened 

compounds for changes in NF-κB dynamics (i.e. nuclear-cytoplasmic translocation 

of NF-κB), we investigated these compounds for their effect on neuroblastoma cells. 

Each compound was assayed for its effects on NF-κB activation and cell viability. 
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4.3.1 N-Tosyl-L-phenylalanine chloromethyl ketone (TPCK) and related 

compounds 

N-Tosyl-L-phenylalanine chloromethyl ketone (TPCK) and N-α-p-tosyl-L-lysine 

chloromethyl ketone (TLCK) are serine protease inhibitors which have been reported 

in several studies to inhibit the activation of NF-κB by suppressing the degradation 

of the inhibitor of NF-κB, IκBα (Wu, Lee et al. 1996; Jeong, Kim et al. 1997; Ha, 

Byun et al. 2009).  
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Figure 4.4: TPCK and TLCK inhibit NF-κB dependent gene transcription 

SH-EP cells were treated with TPCK and TLCK at the indicated doses (µM). The relative 
luminescence was determined 16 hours after treatment as indicated in the y-axis as a percentage 
relative to untreated control samples. The experiment was repeated 3 times and standard deviation was 
indicated by the error bars. 
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Both TPCK and TLCK were able to inhibit NF-κB dependent gene transcription in a 

dose-dependent manner (Figure 4.4). Cells treated with 25 µM TPCK demonstrated a 

reduced level of NF-Luc transcription to 66% of the basal transcription observed in 

untreated cells. Similarly, treatment with 250 µM TLCK decreased NF-Luc 

transcription to 43%. 

 

Furthermore, we investigated whether this inhibition of NF-κB had any effect in S-

type neuroblastoma cells. Cell viability results shown in Figure 4.5 indicated that 

treatment with the NF-κB inhibitors TPCK or TLCK was associated with cell death 

response in S-type neuroblastoma cells (SH-EP). 

 

 

Figure 4.5: TPCK and TLCK killed S-type neuroblastoma cells (SH-EP) 

Cell viability determined by MTT assay 24 hours after treatment with TPCK and TLCK in the 
indicated doses (µM). Values represented as relative to untreated samples. The experiment was 
repeated 3-6 times and standard deviation was represented by the error bars. 
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4.3.2 Penta-Galloyl-Glucose (PGG) and related compounds 

1, 2, 3, 4, 6-penta-O-galloyl-ß-D-glucose (PGG), a natural polyphenolic compound 

found in many traditional prescriptions, exhibited a number of biological properties 

which is of interest to cancer research, one of which is its ability to suppress the 

activation of NF-κB through inhibition of IKK activity (Pan, Lin-Shiau et al. 2000; 

Oh, Pae et al. 2001). 

 

 

Figure 4.6: PGG suppressed TNF-induced NF-κB activation 

SH-EP cells were treated with PGG and DiGG at the indicated doses (µM) and incubated for 90 
minutes before stimulated with TNF-alpha (10 ng/ml). Cells were lysed 8 hours afterwards and 
luciferase activity recorded. Values in the y-axis represented the mean luciferase signal relative to 
untreated control samples taken from 3 experiments. Error bars indicated standard deviation. 
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cell, which in turn alter NF-κB activity. To separate these two effects, a structurally 

related compound that should have less impact on ROS, 1, 2-di-galloyl-glucose 

(DiGG) was synthesised. DiGG, however, did not affect NF-κB gene transcription 

(Figure 4.6). Nevertheless, treatment with 200 µM DiGG showed 52% reduction in 

cell viability (Figure 4.7), suggesting the effect of PGG on cell viability is not 

primarily due to its action on NF-κB, and other pathways must be involved. 
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Figure 4.7: PGG and DiGG killed S-type neuroblastoma cells 

Mean cell viability recorded 24 hours after treatment with PGG and DiGG at the indicated doses 
(µM), normalised to untreated samples. Error bars indicated standard deviation from 3-6 experiments. 
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4.3.3 Auranofin and related compounds 

Several studies have described anti-rheumatic gold containing compounds, auranofin 

(AF) and sodium aurothiomalate hydrate (SAH) to have inhibitory effects on NF-κB 

activity by suppressing IKK activity (Bratt, Belcher et al. 2000; Jeon, Byun et al. 

2003). 

 

Auranofin demonstrated a potent inhibitory effect on TNF-alpha-induced NF-κB 

gene transcription, a 50% decrease in luciferase signal was observed at a 

concentration of 1.8 µM. However, similar effect was not observed with SAH 

(Figure 4.8). 

 

Auranofin also indicated potent cytotoxicity on neuroblastoma cells, a 50% decrease 

in cell viability was observed at a concentration between 1-1.5 µM (Figure 4.9). 

Again, similar effect was not observed with SAH. 
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Figure 4.8: TNF-induced NF-κB activity was suppressed by AF but not SAH 

SH-EP cells were treated with AF and SAH for 90 minutes before stimulated with TNF-alpha (10 
ng/ml). Cells were lysed after 7 hours. Values in the y-axis represented the mean luciferase signal 
relative to untreated control samples taken from 5 experiments with standard deviation indicated by 
the error bars. 
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Figure 4.9: AF, but not SAH, demonstrated potent cytotoxicity in 

neuroblastoma cells 

Mean cell viability recorded 24 hours after treatment with AF and SAH at the indicated doses (µM), 
normalised to untreated samples. Error bars indicated standard deviation from 3-6 experiments. 
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4.3.4 Carnosol, magnolol, epigallocatechin gallate, and carmustine 

Carnosol, a natural antioxidant derived from rosemary; magnolol, a lignan isolated 

from Magnolia officinalis plant; and epigallocatechin gallate (EG), a major green tea 

polyphenol, have been described in various studies to modulate NF-κB activity 

(Yang, Oz et al. 2001; Lo, Liang et al. 2002; Tse, Wan et al. 2007). Carmustine is a 

DNA alkylating agent widely used in treatment of gliomas (Weaver, Yeyeodu et al. 

2003).  

 

The ability of these compounds to affect NF-κB pathway in neuroblastoma cells was 

investigated (Figure 4.10) and their effects on cell viability was assessed 

correspondingly (Figure 4.11). All four compounds demonstrated inhibitory effects 

on NF-κB activity and cytotoxicity against S-type neuroblastoma cells. 
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Figure 4.10: Carnosol, Magnolol, EG, and Carmustine demonstrated inhibitory effect on TNF-alpha induced NF-κB activity 

SH-EP cells were treated with these 4 compounds for 90 minutes before stimulated with TNF-alpha (10 ng/ml). Cells were lysed after 7 hours. Values in the y-axis 
represented the mean luciferase signal relative to untreated control samples taken from 6 experiments with standard deviation indicated by the error bars. 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

120.00 

140.00 

0 10 20 30 60 100 

R
el

at
iv

e 
lu

ci
fe

ra
se

 s
ig

na
l 

Carnosol concentration (µM) 

-20.00 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

120.00 

0 35 52.5 70 105 175 210 350 

R
el

at
iv

e 
lu

ci
fe

ra
se

 s
ig

na
l 

Magnolol concentration (µM) 

-20.00 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

120.00 

140.00 

0 1.5 15 30 45 90 150 

R
el

at
iv

e 
lu

ci
fe

ra
se

 s
ig

na
l 

Carmustine concentration (µM) 



Neuroblastoma: Clinical Outcomes and Experimental Studies on Cell Signalling 
A Salim 

 

 91 

0 

20 

40 

60 

80 

100 

120 

0 3.96 7.92 13.2 39.6 79.2 132 

%
 V

ia
bl

e 
ce

lls
 

EG concentration (µM) 

-20 

0 

20 

40 

60 

80 

100 

120 

0 15 30 45 90 150 

%
 V

ia
bl

e 
ce

lls
 

Carmustine concentration (µM) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11: Carnosol, Magnolol, EG, and Carmustine decreased cell viability of neuroblastoma cells 
Mean cell viability recorded 24 hours after SH-EP cells were treated with these 4 compounds at the indicated doses demonstrated a dose-dependent decrease. Values in the y-
axis were normalised to untreated samples and error bars indicated standard deviation from 6 experiments. 
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4.3.5 Deferoxamine mesylate and gabexate mesylate 

In a previous study by Li (Li and Frei 2006), iron chelator deferoxamine mesylate 

(DFOM) inhibited LPS-induced NF-κB activation in vivo. DFOM has been shown to 

have anti-proliferative properties by causing G1 arrest. Gabexate mesylate, a 

synthetic protease inhibitor, has been shown to inhibit phosphorylation of IκBα in 

several studies (Uchiba, Okajima et al. 2003; Yuksel, Okajima et al. 2003). 

 

However, neither of these compounds demonstrated inhibitory effect on TNF-

induced NF-κB activation in SH-EP cell line (Figure 4.12) nor cytotoxicity (Figure 

4.13). 

 

4.3.6 1α , 25-dihydroxyvitamin D3 and CP-55940 

1α, 25-dihydroxyvitamin D3, the active form of vitamin D3 has effects on cellular 

differentiation and proliferation. The ability of this compound as well as the 

cannabinoid receptor 1 agonist, CP-55940, to inhibit the NF-κB pathway and induce 

cell death was investigated (Figure 4.14 and Figure 4.15). 

 

 1α, 25-dihydroxyvitamin D3 did not demonstrate either inhibitory effects on the NF-

κB pathway nor cytotoxicity. CP-55940, however, was found to inhibit NF-κB 

activation at 24 and 48 µM, which also corresponded to a reduction of cell viability 

in SH-EP cells (Figure 4.15). 
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Figure 4.12: Neither DFOM nor gabexate mesylate demonstrated inhibitory effects on TNF-induced NF-κB activation 

SH-EP cells were treated with these compounds for 90 minutes before stimulated with TNF-alpha (10 ng/ml). Cells were lysed after 7 hours. Values in the y-axis represented 
the mean luciferase signal relative to untreated control samples taken from 3 experiments with standard deviation indicated by the error bars. 

Figure 4.13: Neither DFOM nor gabexate mesylate showed cytotoxicity towards S-type neuroblastoma cells 
Mean cell viability recorded 24 hours after SH-EP cells were treated with these compounds at the indicated doses demonstrated a dose-dependent decrease. Values in the y-
axis were normalised to untreated samples and error bars indicated standard deviation from 6 experiments. 
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Figure 4.14: CP-55940 caused prominent NF-κB inhibition, but only modest decrease in luciferase signal was observed with vitamin D3 

SH-EP cells were treated with these compounds for 90 minutes before stimulated with TNF-alpha (10 ng/ml). Cells were lysed after 7 hours. Values in the y-axis represented 
the mean luciferase signal relative to untreated control samples taken from 3-6 experiments with standard deviation indicated by the error bars. 

Figure 4.15: CP-55940 reduced neuroblastoma cell viability, however vitamin D3 was not found to be cytotoxic 
Mean cell viability recorded 24 hours after SH-EP cells were treated with these compounds at the indicated doses demonstrated a dose-dependent decrease. Values in the y-
axis were normalised to untreated samples and error bars indicated standard deviation from 3-6 experiments.
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4.3.7 Tacrolimus, cyclosporin D, and rapamycin 

The immunosuppressants tacrolimus (FK506) and cyclosporine D (CsD) inhibit 

calcineurin by binding to FKBP12 and cyclophilin respectively. Published studies 

investigating NF-κB inhibition have usually focused on FK506 and cyclosporine A 

(CsA) and little is known about CsD (Meyer, Kohler et al. 1997; Du, Hiramatsu et al. 

2009). Rapamycin binds with FKBP12 to inhibit mammalian target of rapamycin 

(mTOR) which results in G1 cell cycle arrest. It has been found to inhibit NF-κB 

activation by suppressing IKK activity (Romano, Avellino et al. 2004). 

 

In SH-EP cells, FK506 and CsD decreased TNF-alpha-induced NF-κB activation by 

40% at concentrations 40 and 36 µM respectively (Figure 4.16). At these 

concentrations, 51% and 36% cells were killed respectively (Figure 4.17). At 20 µM 

rapamycin caused 16% NF-κB inhibition and 30% cell death. 
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Figure 4.16: NF-κB gene transcription after treatment with FK506, CsD, and rapamycin 
SH-EP cells were treated with these compounds for 90 minutes before stimulated with TNF-alpha (10 ng/ml). Cells were lysed after 7 hours. Values in the y-axis represented 
the mean luciferase signal relative to untreated control samples taken from 3 experiments with standard deviation indicated by the error bars. 

Figure 4.17: Cell viability after treatment with FK506, CsD, and rapamycin 
Mean cell viability recorded 24 hours after SH-EP cells were treated with these compounds at the indicated doses demonstrated a dose-dependent decrease. Values in the y-
axis were normalised to untreated samples and error bars indicated standard deviation from 3-6 experiments.
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4.3.8 RO 106-9920 

RO 106-9920 has been described as a small molecule that selectively inhibits 

essential ubiquitination activity associated with TNF-induced IκBα degradation and 

subsequent NF-κB activation (Swinney, Xu et al. 2002). 

 

This compound was observed to reduce NF-κB gene expression by 68% at a 

concentration of 2.4 µM (Figure 4.18). At this concentration, 40% cytotoxicity was 

demonstrated (Figure 4.19). 
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Figure 4.18: Low doses of RO 106-9920 decreased NF-κB dependent gene expression 

SH-EP cells were treated with RO 106-9920 for 90 minutes before stimulated with TNF-alpha (10 
ng/ml). Cells were lysed after 7 hours. Values in the y-axis represented the mean luciferase signal 
relative to untreated control samples taken from 6 experiments with standard deviation indicated by 
the error bars. 
 

 
 

Figure 4.19: RO 106-9920 demonstrated cytotoxicity towards neuroblastoma cells 

Mean cell viability recorded 24 hours after SH-EP cells were treated with RO 106-9920 at the 
indicated doses demonstrated a dose-dependent decrease. Values in the y-axis were normalised to 
untreated samples and error bars indicated standard deviation from 6 experiments. 
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4.3.9 H25(R) and H26(S) 

The 2-amino-3-cyano-4, 6-diarylpyridine analogues, H25(R) and H26(S) (Figure 

4.20) have been described in a previous study to have an inhibitory effect on IκB 

kinase ß (IKK-ß) (Murata, Shimada et al. 2003). 

 
 
 

 
 
 

Figure 4.20: Chemical structure of H25 and H26 
The asterisk * marked the location of the right (H25) and left (H26) isomers 

 
 
Treatment with H26(S) at 320 µM caused 60% reduction of NF-κB gene expression 

(Figure 4.21) and 40% cell death (Figure 4.22). Interestingly, the same dose-

dependent response was not observed in H25(R) treated SH-EP cells.
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Figure 4.21: H26(S), but not H25(R), demonstrated inhibitory effects on NF-κB  
SH-EP cells were treated with H25(R) and H26(S) for 90 minutes before stimulated with TNF-alpha 
(10 ng/ml). Cells were lysed after 7 hours. Values in the y-axis represented the mean luciferase signal 
relative to untreated control samples taken from 6 experiments with standard deviation indicated by 
the error bars. 
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Figure 4.22: Cell viability after 24 hour treatment with H25(R) and H26(S) 

Mean cell viability recorded 24 hours after SH-EP cells were treated with H25(R) and H26(S) at the 
indicated doses. Values in the y-axis were normalised to untreated samples and error bars indicated 
standard deviation from 6 experiments. 
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4.4 Drug combination 
 

Each compound screened in the previous section had been selected as representative 

of structurally distinct NF-κB inhibitors. It has been observed that some of these NF-

κB inhibitors caused cell death in SH-EP cells. Several published studies have 

suggested the potential of utilising chemical NF-κB inhibition to sensitise certain 

types of cancer cells to chemotherapy (Nakanishi and Toi 2005; Li and Sethi 2010). 

To investigate this hypothesis, we combined several NF-κB inhibitors with etoposide 

and assessed whether this increased the extent of cell death. 

 

 

4.4.1 Principles of drug combination 

When two drugs, A and B, are combined, a number of outcomes can be observed: 

each constituent might contribute to the combined effect in accord to its individual 

potency (additive); or in some cases the combination may exaggerate (synergistic) or 

diminish (antagonistic) the individual potency of each drug (Tallarida 2001).  

 

A commonly used method for quantifying the effect of drug combination is by 

measuring the interaction index (γ) (Tallarida 2002). Doses of drug A (alone), drug B 

(alone), and doses of drug A and B in combination that produce the same intended 

effect level were determined experimentally. These doses are called isoboles and this 

method is also called the isobolar method. 
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The interaction index (γ) is defined as follows: 

 

(1) 

Where A is the concentration of drug A alone, B is the concentration of drug B alone, 

a is the concentration of drug A in combination, and b is the concentration of drug B 

in combination that produces the chosen effect level. The interaction is additive if γ = 

1, synergistic if γ < 1, and antagonistic if γ > 1. 

 

Another useful way to determine γ from equation (1) above is to use fixed 

proportions of drug A and B in experiments, so that the total dose (Zt) is: 

Zt = a + b 

The proportions of drug A and B respectively are: 

 

 

Therefore, a = pA . Zt and b = pB . Zt and equation (1) can be rewritten as follows: 

 

 

 

 

 

(2) 

 

! 

pA =
a
Zt

! 

pB =
b
Zt
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! 

Zt =
" # A# B

( pA + R# pB)B

Zt =
"A

pA + R# pB

! 

Zadd =
A

pA + R" pB

And if R is the ratio A/B, therefore A = B.R and equation (2) can be substituted as 

follows: 

 

 

 

(3) 

If the interaction is additive and γ = 1, then the total dose (Zadd) will be: 

 

(4) 

Combining equation (3) and (4) will be: 

 

 

 

In summary, this calculation demonstrates that the interaction index can be measured 

as the ratio between the total dose needed to give the desired effect in combination 

and the calculated total additive dose (Tallarida 2002). 

 

Another way of calculating drug synergism is by comparing means between 

treatments (single and combination therapy) using one-way ANOVA (calculated 

using statistical programme PASW 18.0). 

 

! 

Zt = " # Zadd

" =
Zt
Zadd
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4.4.2 Combining etoposide with NF-κB inhibitors 

Cell viability was investigated 24 hours after treatment with a combination of 

etoposide with either H26(S) or carnosol. Doses which corresponded to 40% cell 

death (IC40) in previous experiments were selected (Table 4.1).  

 

Table 4.1: Compounds selected for combination treatment 

Compound Dose (µM) % Viable cells 

Etoposide 20 61.27 

H26(S) 320 59.37 

Carnosol 60 58.57 

 

Combining etoposide with H26(S) resulted in increased cell death (Figure 4.23). 

Extrapolating from the graph, the combination dose that caused 40% cell death was 6 

and 95 µM for etoposide and H26(S) respectively, much lower than the individual 

doses of 20 and 320 µM. One-way ANOVA was significant (p = 0.002) and multiple 

comparison test using Bonferroni method found significant difference between single 

treatment groups (either etoposide or H26(S)) and combination treatment group (p = 

0.003). Increased cell death was also noted at a lower concentration, however no 

statistical test was performed because the doses investigated were not identical. The 

interaction index (γ) is calculated as follows: 

 

The interaction index (γ) is <1, indicating this combination is synergistic.! 

" =
Zt
Zadd

" =
94.9 + 5.93
160 +10

" = 0.593
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Figure 4.23: Significant increase in cell death when etoposide and H26(S) 

treatments are combined 

Mean cell viability assessed 24 hours after SH-EP cells were treated with etoposide, H26(S), or both. A: 
Cell viability decreased in a dose-dependent manner. Values in the x axis represent the log total dose of 
etoposide and H26(S). B: Bonferroni test confirmed that increased cell death was statistically significant 
(p = 0.003). C: Increased cell death was also observed at lower doses. 
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The same synergistic interaction was not observed when etoposide was combined with 

carnosol (Figure 4.24). One-way ANOVA and multiple comparison test found the 

difference in mean cell viability between treatments not significant (p > 0.05) and the 

interaction index (γ) was 2.03, indicating no synergy for this combination. 

 

Figure 4.24: No significant difference observed when etoposide was combined with carnosol 

Mean cell viability assessed 24 hours after SH-EP cells were treated with etoposide, carnosol, or both. A: 
Cell viability decreased in a dose-dependent manner. Values in the x axis represent the log total dose of 
etoposide and H26(S). B: No significant difference in cell viability between treatments (p > 0.05). 
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4.5 Discussion 

 

Results from this chapter indicate that neuroblastoma cell lines conferred a degree of 

resistance towards one of the commonest chemotherapy agents, etoposide (Section 

4.2). Etoposide also induced NF-κB activation in our cell lines, this is in agreement 

with other studies which suggested that chemotherapy induced NF-κB activation 

mediates chemoresistance through the transcription of many anti-apoptotic genes 

(Baldwin 2001; Nakanishi and Toi 2005; Li and Sethi 2010).  

 

This project, therefore, focused on manipulating the NF-κB pathway to assess its role 

in determining neuroblastoma cell fate. Previous work in our laboratory has 

confirmed that NF-κB inhibition achieved by over-expression of IκBα resulted in 

significant cell death (Mullassery 2010), prompting the question whether the same 

effect could be achieved chemically. A number of chemical compounds which have 

been described in literature as NF-κB inhibitors had been identified and it is hoped 

that this can lead to the identification of new compounds which can enhance cell 

death in neuroblastoma.  

 

Inhibition of TNF-α induced NF-κB activity in SH-EP cell line was achieved by 

several compounds (Table 4.2). However, for the majority of these compounds, the 

dose required to achieve a significant inhibition of NF-κB activity also caused a 

significant degree of cell death. Such similar dose-response curves for cell viability 

and NF-κB inhibition meant that some of the effect on cell viability was not due to 
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effects on NF-κB, and it would be difficult to assess synergy if these compounds 

were combined with etoposide. Moreover, many of the compounds are proteasome 

inhibitors and since proteasome is also involved in the degradation of other cellular 

factors (Kucharczak, Simmons et al.), it was decided that further investigations 

should focus on more specific NF-κB inhibitors.  

 
Table 4.2: Summary of NF-κB inhibitors 

Compounds which inhibit NF-κB Compounds which do not inhibit NF-κB 

TPCK DiGG 

TLCK Sodium aurothiomalate hydrate 

PGG Deferoxamine mesylate 

Auranofin Gabexate mesylate 

Carnosol 1α, 25-dihydroxyvitamin D3 

Magnolol Rapamycin 

Epigallocatechin gallate H25(R) 

Carmustine  

CP-55940  

Tacrolimus  

Cyclosporin D  

RO 106-9920  

H26(S)  
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Consequently, potential synergy with etoposide was investigated in only five 

compounds: H26(S), carnosol, magnolol, EG, and RO 106-9920 (data not shown for 

the last three compounds). In previous experiments, these compounds were able to 

strongly inhibit NF-κB whilst only causing moderate cell death. 

 

Enhanced cell death was only observed in the H26(S) and etoposide combination 

group (Figure 4.23). The interaction index for this combination was 0.593, indicating 

a synergistic interaction.  

 

The next step approach of investigation would be to assess the mechanism of action 

of H26(S) and how the compound induces cell death in neuroblastoma. In cancer 

therapy, compounds which are able to activate apoptotic pathways will be more 

relevant than those which induce cell death through necrosis, as this means the toxic 

effect is non-specific and these compounds might be toxic to normal cells too. 

 

The mechanism of action of H26(S) was assessed by Western blotting (data not 

shown). Initial results indicated that H26(S) treated samples showed a reduced 

degradation of IκBα compared to control samples, which would support Murata, et 

al. who described the compound as specifically inhibit IKK-ß (Murata, Shimada et 

al. 2003). Further experiments are required to confirm this, however it was not 

completed as new stock of H26(S) had to be synthesised and was not available 

before the end of the project. 

 

The mode of cell death induced by H26(S) was investigated by two methods: firstly 

by assessing the activation of caspase 3/7 pathway (Promega), and secondly by 
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investigating Annexin V/PI binding using confocal microscopy. Preliminary results 

suggested that H26(S) induced apoptosis in a non-caspase 3/7 dependent manner 

(data not shown). However, as these experiments were only run once, we must not 

reach a conclusion solely based on this. 

 

In summary, this work has identified the inhibition of IKK by H26(S) as a potential 

mechanism for increasing the effectiveness of etoposide-induced cell death. 

However, further investigation into the mechanism of induced cell death is warranted 

before such a method could be considered for use in a clinical setting. 
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CHAPTER 5 

Overview and concluding remarks 

 

A devastating childhood tumour, neuroblastoma continues to account for a 

significant proportion of paediatric oncology deaths. While recent advances have 

seen survival rates rise to >90% in other paediatric malignancies, most notably 

Wilms’ tumour, survival for high-risk neuroblastoma, which accounts for the 

majority of patients presenting with advanced disease, remains dismally low at 20-

30%. 

 

This work herein described firstly a clinical review of contemporary management of 

neuroblastoma in a leading UK cancer centre, linking evolved therapies over a 20-

year period and how they correlated with outcomes. Additionally, the study 

permitted comparison of institutional data with other international centres. 
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With deeper understanding of tumour biology, a number of molecular targets 

implicated in the development of chemoresistance in neuroblastoma have been 

identified. The second part of the research project explored the role of a key 

signalling pathway, NF-κB, in neuroblastoma cells. Building upon previous work in 

the Centre for Cell Imaging, this project screened a selection of pharmacological 

compounds for their effects on NF-κB pathway and induction of cell death in 

neuroblastoma cells. Furthermore, a potential synergistic interaction between an NF-

κB inhibitor and chemotherapeutic agent was also investigated. 

 

 

5.1 Key points 

 

The clinical study highlighted several important findings. We observed that in 

correlation with dramatic intensification of therapy over the past twenty years for 

moderate to high-risk neuroblastoma, clinical outcomes of patients have arguably 

improved. The biggest gains were achieved in locally advanced stage 3 patients 

where 5-year survival rate has improved from 25% to 80% (Chapter 3). Similar 

improvements were also noted in stage 4 and 4S patients. Refined chemotherapy 

protocols together with surgical techniques to achieve “total” macroscopic tumour 

resection where possible were also associated with increased proportion of children 

having successful tumour resection. It is noteworthy that a doubling of the total 

number of patients achieving complete macroscopic tumour resection was achieved 

from the era 1985-1994 to 1995-2005. Current international expert opinions 

regarding the defining role of ‘aggressive’ surgery in high-risk neuroblastoma are 

conflicting. Findings from our study concurred with published works by Adkins et al. 
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and Castel et al. where we observed a trend towards improved outcomes for children 

having complete resection while the benefits in terms of overall survival were 

marginal (Castel, Tovar et al. 2002; Adkins, Sawin et al. 2004). In the current era of 

intensive multi-modal therapies, the evidence for surgery achieving long-term cure in 

high-risk neuroblastoma remain uncertain. These results cannot be taken in isolation 

from other significant advances in treatment modalities (e.g. stem cell 

transplantation, differentiation therapies, and possibly immunotherapy). Deeper 

understanding of tumour biology and molecular signalling pathways may guide 

future directions of therapy, holding the potential for “personalised” treatments based 

on unique tumour profiles, obviating the need for aggressive surgery in high-risk 

neuroblastoma cases. 

 

One emerging candidate for molecular biology based study is the transcription factor 

NF-κB. Previous work in the laboratory reported that treatment with 

chemotherapeutic agents induced activation of NF-κB pathway in several 

neuroblastoma cell lines (Nelson, Ihekwaba et al. 2004; Mullassery 2010). 

Furthermore, inhibition of NF-κB through over-expression of its inhibitor IκBα 

resulted in increased cell death, thereby indicating that NF-κB is required for 

neuroblastoma cell survival. To explore whether NF-κB pathway is involved in the 

mechanism of drug resistance in neuroblastoma, a number of pharmacological 

compounds were screened for their effects on NF-κB pathway and induction of cell 

death in neuroblastoma cells. 
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Findings from my work highlighted a number of key observations. Many of the NF-

κB inhibitors screened induced neuroblastoma cell death, yet combining an NF-κB 

inhibitor with a chemotherapy agent (etoposide was used throughout this study) did 

not always result in additive or synergistic interaction for four of the five 

combinations tested. This finding suggests that there may be other pathways 

involved that led to the reduced overall effect on cell death. For instance, a few of the 

compounds screened were inhibitors of the proteasome. However, the proteasome is 

also involved in the degradation of many other cellular pathways such as cyclins, 

cyclin-dependent kinase inhibitors p21Waf1 and p27Kip1, and tumour suppressor 

p53 (Kucharczak, Simmons et al. 2003). Nevertheless, towards the end of this 

research project, a potentially synergistic interaction between etoposide and an NF-

κB inhibitor, H26(S) was noted. Only preliminary mechanistic investigations were 

conducted and therefore we must view this result with a grain of salt. 

 

Neuroblastoma tumours exhibit a variety of morphological properties (i.e. stromal or 

S-type, neuroblastic or N-type, and intermediate or I-type) and most commercial 

neuroblastoma cell lines were cloned to express only certain characteristics. This 

biological heterogeneity must be taken into account during experimental works and 

for this reason, a growing stock of primary neuroblastoma cells, harvested at elective 

surgical resections and primary tumour biopsies at Alder Hey Children’s Hospital are 

being characterised. It is hoped that these primary NB cells will resemble clinical 

behaviour of the tumour more closely. The potential contribution of these unique 

primary cultures to future research work cannot be underestimated. 
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5.2 Limitations of study 

 
The clinical study relied on retrospective analysis of hospital case notes with inherent 

limitations on the availability of data recorded. It was fortunate to have a dedicated 

Alder Hey oncology database to retrieve information. Future prospective studies will 

be beneficial to observe ongoing trends, whilst long-term outcome data on these 

vulnerable patients (e.g. tumour relapse and secondary malignancies) may be 

gathered for additional studies. It may be debated that reporting from a single UK 

paediatric centre limits the size of the neuroblastoma study population. Whilst recent 

international groups have included multi-centre data with large patients populations, 

it is noteworthy that key findings from our UK centre largely support observations 

from several groups worldwide (Castel, Tovar et al. 2002; Adkins, Sawin et al. 2004; 

La Quaglia, Kushner et al. 2004).  

 

As can be expected from an experimental work, screening pharmacological 

compounds for effect on NF-κB was not without its limitation. Optimisation of drug 

concentrations was time- and resource-consuming. Due to the large number of 

compounds available to our group, it was not always possible to test them in all the 

phenotypical variants of neuroblastoma cell lines or indeed in combination with a 

number of chemotherapeutic agents. My work focused on the SH-EP cells, an S-type 

neuroblastoma tumour and the chemotherapy agent etoposide, a topoisomerase-II. To 

eliminate variability in transfection efficiency, stable transfection was preferred over 

transient transfection, such that there were limitations in the choice of NBL cell 

lines. Utilising additional cell lines would undoubtedly add useful key findings to the 

conclusions. Time constraints within the twelve month research project precluded 

further work. 
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The techniques used in the experimental works all have their advantages and 

disadvantages. For this project, quantitative analysis was preferred whenever 

possible, e.g. cell death was assessed by MTT assay over a semi-qualitative manner 

utilising confocal microscopy, as this method was more time- and resource-efficient. 

However, this approach also required a larger sample amount, which proved 

restrictive at a number of times when compounds tested were not commercially 

available. 

 

Furthermore, luminometry assay measures photons of light produced when injected 

luciferin is oxidised in the presence of the enzyme luciferase. This process requires 

the cells to be viable, and as such there is a risk of confounding when the compounds 

used are highly toxic. 

 

 

5.3 Future directions and conclusions 

 

The therapeutic potential of NF-κB inhibition as an adjunct to neuroblastoma therapy 

is an exciting prospect. A variety of anti-inflammatory agents widely used in clinical 

practice exhibit NF-κB inhibition and some NF-κB inhibitors have recently been 

introduced in cancer treatment, e.g. colorectal cancer and multiple myeloma. 

However, questions have been raised regarding the specificity of these compounds, 

e.g. proteasome inhibitor bortezomib. The potential effects of prolonged NF-κB 

inhibition in humans has not been fully studied. Since NF-κB plays an important role 
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in a number of key cellular responses, pharmaceutical companies developing these 

agents and clinicians prescribing them should reflect on potential adverse outcomes. 

Nevertheless, it is envisaged that specific IKK inhibitors will likely play a future role 

in cancer treatment to enhance the efficacy of conventional chemotherapy agents. 

 

Neuroblastoma is a complex yet fascinating tumour which exhibits a spectrum of 

clinical behaviour. Cellular responses to chemotherapy are varied and likely to 

involve a number of key molecular/signalling pathways which interact as a network 

rather than individually. Manipulating NF-κB pathway represents an exciting 

therapeutic opportunity and further comprehensive studies are crucially required. 

Combining such observations with additional in vitro cell line work will provide key 

data for future laboratory-based studies on xenograft NBL models and the limited 

pool of primary neuroblastoma cultures harvested from these vulnerable models.
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APPENDIX A 

Summary of NF-κB inhibitors 



Compound Description M. Wt Amount 
sent (mg)

mmol Stock 
concentratio
n

Active 
concentratio
n

Solubility, 
Incubation 
time

Target Ref

Auranofin Inhibits IKB kinase (IKK) 
by modifying Cys-179 of 
the IKKβ subunit 5.

678.48 10 0.014738828 100 mM 10-30 µM 1/500 → 
1/1000

IKK-ß 
inhibitor

Clin.Exp.Imm
unol, 120, 
p79

Sodium 
aurothiomalate 
hydrate

390.08 
(anhydrous)

250 34.5 mg/ml 1/250 → 
1/500

Clin.Exp.Imm
unol, 120, 
p79

Deferoxamine 
mesylate

Iron chelator, cell arrest in G1 
phase, anti-proliferative 
effects on vascular smooth 
muscle cells in vitro and in 
vivo, induce p53. Antioxidant 
properties in some studies.

656.79 1000 1.522556677 140 mM (in 
H2O)

100 µM 70% 
inhibition

1/250 → 
1/500

J.Exp.Med.19
92, 175, 
p1181

Carnosol A phenolic diterpene with 
antioxidant and 
anticarcinogenic activities.

330.42 5 0.015132256 200 mM 10 µM 1/1000 → 
1/2000

Inhibits IκBα 
phosphorylati
on

Carcinogensis 
2002, 23, 
p983

Magnolol Bioactive plant component 
with antifungal, 
antibacterial, and 
antioxidant effects.

266.33 10 0.037547404 700 mM 15 µM, 
44.8% 
inhibition

1/1000 → 
1/2000

Downstream 
of MEKK-1

Planta Med. 
2005 Apr; 
71(4):338-43.

Carmustine DNA alkylating agent causing 
DNA interstrand crosslinks. In 
solid tumours e.g. glioma.

214.05 25 0.116795141 75 mg/ml 1/250 → 
1/500

Epigallocatechin 
gallate

Antioxidant polyphenol 
flavonoid that inhibits 
telomerase and DNA 
methyltransferase.Blocks the 
activation of EGF receptors 
and HER-2 receptors.

458.37 50 0.109082183 66 mM 100 mM, 
30% 
inhibition NF-
kB, MTT 25% 
killing 500 
mM

1/250 → 
1/500

J.Nutr.1998, 
128, p2334

Gabexate 
mesylate

Serine protease inhibitor. 417.48 5 0.011976622 500 mM (only 
14 µl!)

0.1 mM 1/250 → 
1/500 but use 
only 0.5 µl 
hence 1/500 
→ 1/1000

Inhibits 
phosphorylati
on of IκBα

Crit.Car.Med, 
2003, 31, 
p1147

CP-55940 Selective cannabinoid 
receptor agonist.

376.57 10 0.026555488 40 mM 2 µM 1/250 → 
1/500

Biochem.Phar
ma 64, p487

1a, 25-
dihydroxyvitami
n D3

Biologically active form of 
vitamin D3 in calcium 
absorption and deposition. 
Chemopreventive against 
prostate and colon ca, shows 
synergy with other anticancer 
compounds.

416.64 1 0.002400154 10 mM 0.2 µM 1/250 → 
1/500

Stimulates 
phosphorylati
on of serine 
residues of 
IκBα

Exper.Cell.Res
.2002, 272, 
p176



Tacrolimus (FK-
506 
monohydrate)

Potent immuno-
suppressant. Binds with 
FKBP12 to inhibit 
calcineurin and thus inhibit 
T lymphocyte signal 
transduction and IL-2 
transcription.

822.02 1.7 0.002068076 20 mM 10-50 µM? 1/250 → 
1/500

Cyclosporin D Weak immuno-suppressant. 
Binds to cyclophilin to inhibit 
calcineurin. Prevents 
mitochondrial permeability 
transition pore from opening, 
inhibiting cytochrome c 
release (apoptotic stimulation 
factor).

1216.67 8.5 0.006986282 18 mM CsA IC50 50 
µg/ml

1/200 → 
1/400

Inhibits IKK 
activation

FEBS Letters 
413 (1997) 
354-358 
(CsA)

Rapamycin 
(Sirolimus)

Potent immuno-
suppressant (inhibits 
response to IL-2, so 
blocking activation of T 
and B cells) and anticancer 
activity. Binds with FKBP12 
to inhibit mammalian 
target of rapamycin 
(mTOR) which results in 
cell cycle arrest at G1.

914.172 12.5 0.013673576 100 mg/ml 100 ng/ml 1/250 → 
1/500

Inhibits IKK 
activation

Eur.J.Cancer. 
40, (2004), 
2829-2836

RO 106-9920 Inhibits NF-κB via selective 
inhibition of LPS and TNF-α-
induced IκBα ubiquitination 
(IC50 = 3 µM). Blocks 
expression of NF-κB 
dependent cytokines: TNFα, 
IL-1β, and IL-6 in both cell 
culture (IC50 600-700 nM) 
and in vivo in animal models

245.2605 14.2 0.057897623 12 mg/ml IC50 = 3-10 
µM

1/250 → 
1/500

IKBα 
ubiquitination 
inhibitor

J.Biol.Chem. 
(2002), vol 
277, 26, 
23573-23581

HHA025 ® 454.1434 22.4 0.049323628 100 mM IC50 = 8 µM 1/250 → 
1/500, 1 hr 
before TNFα 
stimulation

IKK-ß 
inhibitor

Bioorg.Med.C
hem.Lett 13, 
(2003), 913-
918

HHA026 (S) 454.1434 20 0.044038953 160 mM IC50 = 8 µM 1/250 → 
1/500, 1 hr 
before TNFα 
stimulation

IKK-ß 
inhibitor

Bioorg.Med.C
hem.Lett 13, 
(2003), 913-
918
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APPENDIX B 

Poster submitted to Postgraduate 

Science and Medicine (PRISM) 

Conference, October 2009, 

Manchester 

Winner of Best Poster award 



Neuroblastoma
A neuroendocrine tumour rising from the neural crest.
The commonest childhood solid tumour, approximately 
1500 new cases in Europe per annum.1 
Known for its heterogeneity:

The majority is highly resistant despite intensive 
multi-modal therapy.
Long term survival for these cases remains poor, 
currently less than 40%.2

However, a subset of tumours will spontaneously 
regress.
This has lead scientists to focus research on 
“switching on” apoptosis in neuroblastoma cells.

Nuclear factor kappa B proteins (NF-κB) 
A family of dimeric transcription factors found in 
virtually all cell types.
Regulates cell survival, proliferation, as well as 
immune and inflammatory responses. 
NF-κB is activated by numerous different stimuli, 
causing oscillations in NF-κB localisation (Fig 1) 
required for neuroblastoma cell survival, as observed in 
live single cell microscopy (Fig 2).

To develop a new therapy for neuroblastoma based 
on NF-κB manipulation, we are screening 
compounds from a chemical library for NF-κB 
inhibitors capable of synergistically increasing cell 
death in combination with etoposide treatment.

 

Cell viability
MTT assays are used to assess whether chemicals 
from the LOPAC1280 library can increase the extent 
of etoposide-induced cell death in neuroblastoma cell 
lines. 

NF-κB activity
The ability of these compounds to regulate NF-κB 
activity is measured using an NF-Luc reporter in a 
luminometry assay. 

Mode of cell death
Compounds demonstrating synergistic effects will be 
further studied by caspase assay and qPCR to 
determine the NF-κB –regulated genes involved and 
the mode of cell death. 

Background

Screening NF-κB Inhibitors for Effects on 
Neuroblastoma Cell Fate

Adeline Salim,1,2 Catherine A Heyward,1 Dhanya Mullassery,1,2 Heather P McDowell,3 Edwin C Jesudason,2 Violaine Sée,1 Mike R H White,1 Paul D Losty.1,2
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Figure 1: The NF-κB pathway
NF-κB is activated by numerous different stimuli, a 
common one, for example, is TNF-α.
This leads to activation of IκB kinase (IKK) complex, and 
its substrate IκB, an inhibitor of NF-κB.
Degradation of IκB releases NF-κB.
Activation of NF-κB causes increased synthesis of IκB, 
which then binds nuclear NF-κB causing its return to the 
cytoplasm (oscillation in NF-κB localisation).
Activation of NF-κB has various consequences such as 
upregulation of genes involved in cell proliferation, cell 
invasion, and cell death (anti-apoptotic genes).

The frequency of oscillations has been shown to 
regulate gene expression.3

Previous work has shown that NF-κB inhibition by 
endogenous inhibitor IκB kills neuroblastoma cells, 
and similarly treatment with a well-known NF-κB 
inhibitor Bay-11 also achieves significant cell death 
(Fig 3). 
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Figure 2: SHEP cells stably transfected with 
p65dsRed show 100 minute oscillations in p65 
localisation. 

A. Time-lapse confocal images of SHEP cells stably 
transfected with p65dsRed showing nuclear:cytoplasmic 
oscillations in p65dsRed localisation following stimulation with 
10ng/ml TNFα. Scalebar 50μm, time in minutes.
B. Time-course of nuclear:cytoplasmic localisation of 
p65dsRed. Each line shows data for an individual cell.  

AimCurrent techniques

48hrs MTT

Figure 3: Comparison of cell viability following 48 
hours treatment with chemotherapy agents and 
NF-κB inhibitor Bay 11 as assessed by MTT assay.

The extent of cell death after treatment with Bay 11 was 
significantly more than that achieved by all three 
chemotherapy agents (means comparison by Bonferroni 
test, p<0.05) in S-type neuroblastoma cell line.
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NEUROBLASTOMA:  A 20-YEAR EXPERIENCE IN A UK REGIONAL CENTRE 

 
Adeline Salim(1), Dhanya Mullassery(2), Barry Pizer(3), Heather McDowell(3), Paul Losty(2) 

 
(1) University of Liverpool, Alder Hey Children's NHS Foundation Trust, Liverpool, United kingdom 

 

(2) University of Liverpool, Academic Paediatric Surgery, Liverpool, United kingdom 
 

(3) Alder Hey Children's NHS Foundation Trust, Paediatric Oncology, Liverpool, United kingdom 
 

Purpose: The role of surgery in the management of neuroblastoma yields conflicting reports. We 

report a 20-year experience from a UK centre that analyses trends in survival in the context of evolving 

cancer therapies for neuroblastoma. 

Method: Hospital records of 91 neuroblastoma patients from 1985-2005 were studied. Patient 

demographics, data from operating notes and tumour biology (MYCN status) where available were 

analysed. 

Results: Male:female ratio=0.75:1, median age at presentation 1.9years (newborn-14.9years).  Primary 

tumours were in the adrenal gland (71%), thorax (13%), paravertebral region (9%), pelvis (1%), and other 

sites (6%). Surgery consisted of primary resection or delayed operation following tumour 

biopsy/chemotherapy.  Overall survival (INSS classification) was 100% for stage 1(n=3),90% for stage 

2(n=10),46% for stage 3(n=13),13% for stage 4(n=55)and 56% for stage 4s disease(n=9). During the eras 

1985-1994 vs 1995-2005, survival for stage 3 lesions was 25% and 80%(p=0.04) with marginal benefits 

observed in stage 4 disease (6% vs 22%, p=0.156). Delayed tumour resection was not performed in 20 

(36%) stage 4 patients due to progressive disease. Their median survival was 

8.2months vs 44.5months for those who had surgery (p<0.001). Complete tumour resection was achieved 

in 62% of stage 3 and 4 patients during 1995-2005 compared to 38% in 1985-1994. The extent of surgical 

resection (complete vs partial) showed no significant differences in overall survival or relapse rates. 

Postoperative morbidity occurred in 22.4% of cases highlighting technical challenges in resection of 

neuroblastoma. No child with MYCN amplification survived vs 59% survival in non- amplified cases 

(p=0.012). 

 

Conclusion: 

Whilst complete tumour resection may be desirable in advanced neuroblastoma (stage 3 and 4), our findings 

suggest that the degree of resection is not significantly associated with better overall survival/relapse. 

Improved outcomes in the 1995-2005 era with stage 3 and 4 tumours complements the introduction of new 

high dose-intensive chemotherapy regimens and other adjuvant therapies for 

this enigmatic disease. 
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