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Chapter 1

Introduction

Global warming has received a considerable amount of attention in recent years, with

many studies presenting strong evidence for it’s existence (Hughes, 2000). There are

many impacted areas resulting from this phenomenon and many studies have been un-

dertaken to find out the causes and effects. A variety of reasons have been postulated

as to why this is happening, however what is inescapable is the fact that atmospheric

carbon levels are higher now, than in the last 26 million years (Long et al., 2004). This

increased level of carbon in the atmosphere fuels the greenhouse effect, underlying the

observed increases in average global temperatures in recent decades. This temperature

increase has a profound impact on ecosystems across the world (Levy et al., 2004).

Furthermore, studies have shown that carbon quotas in the atmosphere are increasing

at an alarming rate (Cox et al., 2000; Loarie et al., 2009). The main biological regu-

lator of atmospheric carbon is plant life, which synthesises energy from carbon dioxide

via photosynthesis, giving out oxygen. However, the rate of increase in carbon emis-

sions over the last couple of decades, combined with massive deforestation, threatens

to overwhelm the delicate regulatory balance of the global ecosystem. This is likely to

result in ‘permanently’ higher global temperatures, higher sea levels and floods, due

to melting ice shelves and disruption to ocean current circulations. Biologically and

economically, the results would be disastrous. For example, higher atmospheric carbon

levels have been shown to directly effect certain phytoplankton species mortality rates
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8 CHAPTER 1. INTRODUCTION

by increasing ocean acidity (Lewandowska et al., 2012). Planktonic ecosystems are

particularly vulnerable to damage and dislocation brought on by rising temperatures,

as their ocean environment will experience changes in salinity, viscosity, acidity and

oxygen content, as well as profound changes in its dynamics. The interactions that

govern the means by which a particular planktonic population flourishes in particular

regions of the ocean are complex and poorly understood. One of the aims of this thesis

will be to systematically investigate how the local fluid dynamics influence the biolog-

ical environment.

Phytoplankton make up the most abundant of plant forms on the planet, inhabit-

ing the world’s oceans in enormous populations. Most are confined to the upper ocean

mixed layer where sunlight for photosynthesis is relatively high (the euphotic zone).

Despite being primarily unicellular, they are responsible for supplying the world with

50% of its total oxygen and take in a huge amount of carbon dioxide and store the car-

bon in the deep ocean (McQuatters-Gollop et al., 2011). As one of the first residents

of the earth, starting life more than 2 billion years ago (Ratti et al., 2011), they have

evolved strategies to survive and flourish in many situations.

Observations from satellite data (Abbott and Zion, 1985; Álvarez-Molina et al., 2013;

Duggen et al., 2007) have given much insight into the mechanisms behind phytoplank-

ton blooms and the dynamics have been carefully studied for a considerable time. Many

mechanisms have been put forward to explain these vast, heterogeneous blooms. Phy-

toplankton blooms come in a range of sizes from the kilometre scale blooms which last

for a number of weeks, to millimetre scale aggregations, which last for very short peri-

ods (Alvain et al., 2008). One of the unanswered questions in this field is: can a unified

theory between the small scale patches and the large scale patches be established? An-

other curious behaviour about some phytoplankton blooms is that horizontally, they

can span kilometres, yet vertically, they are of the order of 1 metre in thickness, these

are referred to as thin layers (Cheriton et al., 2009; Durham and Stocker, 2012). Thin



9

layers have many proposed mechanisms, for example density stratification, whereby

the phytoplankton aggregate in small regions where they are neutrally buoyant (Rines

et al., 2010) and gyrotactic trapping, where bottom heavy swimming phytoplankton

swim upwards and encounter sharp gradients in shearing motion, where they start to

tumble and are no longer able to naturally swim upwards (Durham et al., 2011b; Lewis,

2003a; Thorn and Bearon, 2010). There is vortical trapping, where small scale vortices

in the flow literally trap small amounts of phytoplankton inside (Durham et al., 2011c),

which leads to a small scale ephemeral aggregation. Underestimations should not be

made to the impact of small scale processes on large scale structures (Lévy et al., 2012),

turbulence and it’s effect on large scale dynamics is a good example of this, which will

be discussed in chapter 2. Another aim of this thesis is to explore whether small scale

aggregations can initiate large scale blooms.

Although there are many processes which possibly enhance aggregations, predator-

prey interactions and the source of nutrients govern the underpinning mechanism be-

hind the spatial structure of phytoplankton. Mathematical modelling has developed

greatly in the last few decades with the popular Nutrient-Phytoplankton-Zooplankton

(NPZ) model (Franks et al., 1986; Roy et al., 2012). Zooplankton are tiny animals,

although usually a lot larger than phytoplankton. Zooplankton are generally clas-

sified in two subgroups, micro-zooplankton (10−5m - 10−4m) and macro-zooplankton

(10−4m - 10−3m), although there is no exact dichotomy. Together they form the next

rung of the oceanic food chain, founded on the phytoplankton. The key feature that

the zooplankton as a class share with phytoplankton is their relatively small size, which

means that they are highly dependant upon their local fluid environment when foraging

for prey, as the chaotic nature of a turbulent flow can make capturing a prey a difficult

proposition. In the ocean mixed layer, one often finds a predatory (zooplankton) - prey

(phytoplankton) cycle regulating the biology (Eiser and Hassett, 1994; Muylaert et al.,

2010). This oscillatory behaviour has been observed many times in experiments, when

species of phytoplankton and zooplankton are abundant for a certain amount of time
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before they vanish and then reappear, usually in the same place as before (Sommer

and Lewandowska, 2011). Nutrient sources, such as Nitrates and Phosphates, which

are brought up from deep waters into sunlit regions of the oceans (euphotic zones),

via ocean currents, are also instrumental to the phytoplankton temporal dynamics

(Williams, 2011). It is key that this network needs a large amount of consideration, to

really understand the spatial dynamics of the biology.

Large-scale models have long been used to examine the spatial structures of phyto-

plankton (Dubois, 1975; Denman and Platt, 1976; Powell and Okubo, 1994). Usually,

turbulence is modelled either by isotropic turbulence assumptions (Kolmogorov, 1941)

(i.e. the cascading property is based on the turbulent kinetic energy) or in two dimen-

sions (Kraichnan, 1976) (where the cascading model is based on enstrophy, which is

essentially a measure of the vorticity squared) (Martin, 2003). High resolution models

give insight into the role of smaller scale flows on larger scales, for instance, global

circulation models which resolve meso-scale eddies and how these dynamics add con-

sequence to primary production levels (Fouest et al., 2006; McGillicuddy et al., 1998;

Lewis, 2002). With the advent of community based models, such as the Nucleus for

European Modelling of the Ocean (NEMO) (Madec, 2008), which is a structured grid

model now being developed by a vast network of researchers. This gives the advantage

of testing out various ecosystem models which have been coupled, for example the Euro-

pean Regional Seas Ecosystem Model (ERSEM) (Baretta et al., 1995; Baretta-Bekker

et al., 1997), which is a complicated biogeochemical cycling model and the HADley

centre Ocean Carbon Cycle model (HadOCC) (Cox et al., 2000), which is a relatively

simple NPZD (Nutrient Phytoplankton Zooplankton Detritus) model developed by the

Met Office. Also, the advantage of NEMO is that it comes equipped with various turbu-

lence parametrisations, most notably, the General Ocean Turbulence Model (GOTM)

(Burchard et al., 1999). Although only 1-dimensional (vertical mixing) currently, it

carries with it a suite of turbulence parametrisations for testing against different sce-

narios in oceanic and ecosystem modelling. There are also unstructured grid software
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available which incorporate similar moduled components to that of NEMO, for exam-

ple the the unstructured grid Finite Volume Coastal Ocean Model (FVCOM) (Chen

et al., 2006), which can be used to increase resolution in selective regions of the domain

and includes various ecosystem models (Franks et al., 1986; Steele, 2006) with a pool

of biological variables to develop custom models.

Although advancements in macro-scale modelling have come a long way in recent years,

they are still nowhere near being able to predict spatial structures of biology, which was

shown quite elegantly in Abraham (1998), that the Fourier power spectra associated

with plankton distribution changes significantly when subjected to non-linear, submeso-

scale resolved flow. Although Abraham only gives a very simple inclusion of small-scale

advections (via the seeded-eddy model), it is still a powerful example of how small scale

dynamics play a fundamental role in the structure of biological concentrations in the

ubiquitously turbulent ocean. Many studies have also made comparisons between the

spectra of phytoplankton distribution and inert tracers such as temperature and salin-

ity (Seuront et al., 1996; Denman and Platt, 1976). This method however, does not

take into account the flow field itself being dependent upon temperature and salinity

distributions, as these effect density and convective currents (Lovejoy et al., 2001) (and

hence, not strictly passive). in other words, these “inert” tracers cannot necessarily be

used as a proxy for chlorophyll distribution (Mahadevan and Campbell, 2002). Vortic-

ity is another key factor proposed in the distribution, with spectra of vorticity being

closely linked to the spectra of phytoplankton and zooplankton, as plankton species

are more abundant in vorticity (Levy et al., 2004) and hence small scale eddies which

are not directly resolved will have impact on spatial distribution.

Small-scale modelling, particularly with the use of direct numerical simulation (DNS),

gives an insight into how small scale dynamics have a big effect on the spatial dis-

tribution of phytoplankton. Recent studies have shown how small scale turbulence

interacts heavily with biological distributions, in particular how vortices bias a motile,
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gyrotactic cell towards the centre of vorticity (Durham et al., 2011a, 2013). DNS can

also be used to test biological parameters, such as uptake rate in various turbulent flow

regimes (Taylor and Stocker, 2012), but this will not be the focus of this work. The fact

that eddies have been shown to effect biological distributions on small and large scales

makes it surprising that the investigation into intermediate scales (sub-meso and lower)

has not been looked into in great detail, with only a handful of papers investigating

biological dynamics on these scales (Lewis, 2005; Taylor and Ferrari, 2011). One of

the most prominent structures on this scale is the so-called Langmuir circulation, after

its discoverer (Langmuir, 1938). These Langmuir cells are vortical by nature and have

a readily observable consequence in the form of wind rows (these circulations will be

discussed in more detail in chapter 2). The motivation behind the investigation into

this scale stems from the lack of literature in this field, the advancements in computer

power allowing such scales to be resolved and the clear indication that eddies on all

scales have their own quality in the developmental phase of biological spatial structure.

For example, on sub-meso scales, strong upwellings, which are not apparent in large-

scale hydrostatic models, play a significant role in pumping nutrients from deep waters

to the euphotic zone (Lévy et al., 2001; Martin et al., 2002).

Studying the mechanisms, for this reason, is extremely important. The influence of

fluid dynamics on plankton populations and distributions has been a fertile area of re-

search for many decades. Many such studies involve laminar flows (Latz et al., 1994), as

laminar flow is a well understood field of fluid dynamics. However, little is understood

about bloom formation in turbulent flows, how these tiny plants overcome the strong

mixing mechanisms associated with turbulence and how they even manage to flour-

ish in such environments. Intuitively, one would expect that in turbulent flows, small

organisms would be dispersed by the flow and unable to aggregate at all. But it has

been observed in many settings that phytoplankton blooms are highly heterogeneous

in structure and densely aggregated in predominantly turbulent flows (Sanford, 1997;

Steinbuck et al., 2010). Many studies have coupled simple flow fields into the biological
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dynamics to capture possible reasons for the aggregation of phytoplankton, which is a

first step in really understanding the dynamics of this complex system (Doney et al.,

1996; Fennel et al., 2011; Franks, 2002; Sibert et al., 2011). The suspicion is that whilst

turbulent mixing is undoubtedly a means of breaking down planktonic aggregations,

some other inter-related property of the turbulent boundary layer actually acts to pro-

mote aggregation. For example, where turbulent mixing is less strong deeper in the

boundary layer and upwelling of flow (and hence nutrients) are prominent. A third aim

of this thesis will be to try and establish whether this supposition is correct.

In order to answer these questions, it is necessary to couple a working model of the

ocean boundary layer in combination with a type of generic NPZ model discussed

above. Up to now, the problem with this kind of combined model is that comput-

ers were simply not powerful enough to numerically integrate these types of systems

to the level of spatial accuracy needed over long enough time periods, for biological

concentrations to manifest themselves. However, modern computing resources are now

so extensive that it has become possible to employ a technique known as large-eddy

simulation (LES) to formulate a fully 3-dimensional model of the ocean boundary layer

which can combine with the NPZ model. Large-eddy simulation (LES) is a method

whereby large scale flow features can be solved exactly whilst small scale is modelled.

Incorporation of this flow field model into a standard generic type advection-diffusion

style NPZ model will be used to model the effects of phytoplankton behaviour, without

any enhancing effects, such as density stratification and cell swimming, to establish if

there are any general mechanisms behind the formation of blooms in typical boundary

layers.



14 CHAPTER 1. INTRODUCTION



Chapter 2

The Physical Model

The governing equations of fluid flow are called the Navier-Stokes equations, first for-

mulated by Navier (1827). These equations are derived from Newton’s second law of

motion (Force = mass × acceleration) and give us the various velocities and pressures

at prescribed points in space and time. This is fundamental to studying any biological

process which occurs in a fluid, particularly a turbulent fluid. The equations can be

stated as follows:
∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ Fi, (2.1)

where ui - velocity component, t - time, xi - displacement, ρ - density, p - hydrodynamic

pressure, ν - viscosity, F - body forces (gravity, buoyancy etc) and i is the dimension

(i = 1 : 3 for 3-dimensional space).

However, since there are 4 variables and only 3 equations, another equation is needed.

This equation is known as the continuity equation. This equation implies there is a

conservation of mass and can be given in the form (Happel and Brenner, 1965)

Dρ

Dt
= −ρ∂ui

∂xi
, (2.2)
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where D
Dt = ∂

∂t + uj
∂
∂xj

is the material derivative.

Fluids can be classed very broadly into two catagories, compressible and incompress-

ible, which describes how the volume of the fluid changes subject to an external force.

A property of an incompressible fluid is that when a fixed volume of the fluid is sub-

jected to a force, the volume of that fluid stays fixed. As a consequence, the density

remains constant for all space and time, so it follows from equation 2.2 that

∂ui
∂xi

= 0, (2.3)

where equation 2.3 is used to close the Navier-Stokes equations.

2.1 The Reynolds Number, Re

The Navier-Stokes equations are extremely complex and have no analytical solutions to

date. However, certain simplifications can be made for when a fluid has low Reynolds

number. The difference between a low energy flow (laminar) and a high energy flow

(turbulent) is associated with which physical process dominates. In a laminar flow the

linear viscous term dominates over the non-linear advection term, this is advantageous

as then the equations can be linearised and in some cases, analytically solved. In a

turbulent flow, however, the equations are non-linear and cannot be solved analytically

and so numerical techniques must be employed.

Non-dimensionalisation of the Navier-Stokes equations show which parameters are con-

ducive in determining the type of flow that can be expected (Stokes, 1851). Using the

dimensionless quantities x∗ = x
L , u∗ = u

U , t∗ = Ut
L , p∗ = U2p

ρ , where U and L are

velocity and length scales respectively (and removing the asterisk for brevity), the

Navier-Stokes equations become

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

+ Fi, (2.4)
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where Re = UL
ν is the Reynolds number.

Equation 2.4 encapsulates the importance of the Reynolds number. If viscosity is

high relative to the flow speed and size, the Reynolds number is low and the viscous

term dominates. Hence the advection terms can be neglected and the equations become

approximately linear. If the viscosity is low in respect to the flow speed and size , the

Reynolds number is high, the advection term dominates and the equations cannot be

linearised. It is this non-linearity that makes solutions of the Navier-Stokes equations

so difficult to obtain. At low Reynolds number, flows take on a stable and laminar flow

pattern i.e. instabilities are, for the most part, unnoticeable. However, as advection

dominates, disturbances in the laminar flow become apparent. Small disturbances are

actually part of any laminar flow, but if Re is large enough, these disturbances get

amplified leading to greater instabilities in the flow, and ultimately its breakdown (i.e.

behaviour becomes less predictable and more chaotic) and the onset of turbulence.

2.2 Some Basic Observations on Solutions to Laminar

Flow

There is a huge body of work done on solving the Navier-Stokes equations at low

Reynolds numbers (Happel and Brenner, 1965; Lamb, 1932; Oseen, 1910; Purcell, 1976).

In this work however we are not primarily interested in low Reynolds flow, but it is

useful to know some basic ideas on their solutions.

2.2.1 Stokes’ Equations

As can be seen from the non-dimensional Navier-Stokes equations, if Re�1 then

the inertia forces are dominated by the viscous term,

∣∣∣∣∂ui∂t
∣∣∣∣ ∼ ∣∣∣∣uj ∂ui∂xj

∣∣∣∣� 1

Re

∂2ui
∂xj∂xj

. (2.5)
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This observation allows the non-linear Navier-Stokes equations to be simplified to a

steady-state linear set of equations, known as the “Stokes’ equations” and can be

expressed as
∂p

∂xi
=

1

Re

∂2ui
∂xj∂xj

(2.6)

∂ui
∂xi

= 0. (2.7)

Taking the divergence of both sides of the equation and invoking the incompressibility

condition we see that equations 2.6 - 2.7 give rise to a simple Laplace equation for the

pressure field,
∂2p

∂xi∂xi
= 0, (2.8)

which is a starting point to generate solutions.

2.2.2 General Solutions for Laplace’s Equation

Reverting to vector notation, the simplest solution of Laplace’s equation , ∇2p = 0,

is of the functional form p = 1
r where r is a radial component. Using this as a starting

point it is easy to generate more general solutions in form

pn =
∂n

∂xi∂xj ...

(
1

r

)
, n = 0, 1, 2, ... (2.9)

as the Laplace operator is commutative with differentiation e.g.

∇2 ∂n

∂xi∂xj ...

(
1

r

)
=

∂n

∂xi∂xj ...
∇2

(
1

r

)
= 0.

These solutions are known as spherical solid harmonics. From now on it will be useful

to consider solutions to Laplace’s equation in standard spherical co-ordinates (r, θ, φ).

An observation that can be made from the solution pn in equation 2.9 is that

rn+1 ∂n

∂xi∂xj ...

(
1

r

)
= Sn(θ, φ),
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where Sn is known as a surface harmonic of order n (Jeffreys and Jeffreys, 1956). So

we write

pn =
1

rn+1
Sn(θ, φ), n = 0, 1, 2, ... (2.10)

However this solution only takes into account non-negative n. Consider the function

qn = rnSn(θ, φ). Substituting this into Laplace’s equation gives

∇2qn = ∇2 [rnSn] =

Sn
1

r2

∂

∂r

(
r2

(
∂rn

∂r

))
+ rn

[
1

r2sinθ

∂

∂θ

(
sinθ

∂Sn
∂θ

)
+

1

r2sin2θ

∂2Sn
∂φ2

]
.

Using the fact that ∇2pn = ∇2
[

1
rn+1Sn

]
= 0 it follows that

∇2qn = Snn(n+ 1)rn−2 − Snn(n+ 1)rn−2 = 0 for n = 0, 1, 2, ...

So this means we have two fundamental solutions to Laplace’s equation in 3-dimensions,

pn = 1
rn+1Sn for n = 0, 1, 2, ... and pn = rnSn for n = 0, 1, 2, .... More compactly these

can be written as

pn =

 rnSn for n ≥ 0, n ∈ Z,

rnS−n−1 for n < 0, n ∈ Z.
(2.11)

All solutions to Laplace’s equation can be written as a linear combination of these

solutions based on surface harmonics and so

p =
∞∑
−∞

cnpn, (2.12)

where cn depends on the boundary conditions which are imposed on the system. An-

alytical solutions of the flow can be derived using equations 2.6 and 2.53, however,

details will not be given in this work (see Lamb (1932) or Happel and Brenner (1965)

for details).

If Re is large, so that the non-linear term cannot be ignored, then one must con-
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sider the full Navier-Stokes equations without any simplifications. This is the situation

that pertains for turbulent flows. As our biological population dynamics takes place in

a turbulent boundary layer, the solution characteristics of the resulting flows are those

that directly impact on this study.

The study of turbulence presents vastly different problems, as the equations cannot

be simplified in this way and as of yet, no analytical solutions of the full Navier-Stokes

equations exist. This inevitably leads to numerical simulation of the equations, which

is computationally expensive and much of the modern advances in understanding the

characteristics of turbulent flows is due to the increases in processor speed.

2.3 Characteristics of Turbulent Dynamics

2.3.1 Eddies

In a laminar flow as described in section 2.2, the environment is relatively quies-

cent. However in turbulence, small scale perturbations and instabilities are common

throughout the flow. These instabilities allow individual fluid particles to travel in the

opposite direction to the main current on many scales, permitting vortical motions in

a range of sizes. This type of motion is very common in a turbulent flow and is known

as an eddy. The architecture of an eddy however is not so easy to define,

It is as if we fear that, as soon as we try to define an eddy, the entire

concept will melt away.

Peter Davidson, 2004

In general though an eddy is loosely defined as a region of vorticity acting as an over-

turning process in a fluid (Davidson, 2004).It can be thought of as a disturbance in

‘wavenumber space’, which will be analysed in greater detail in a subsequent section.

This process acts as a catalyst towards the strong mixing behaviour of turbulence.
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In a fluid subjected to wind forcing (i.e. a flow with wind acting on the surface of

the fluid) large eddies are generated due to the shear stress acting. This large vortical

motion can potentially act down to scales of about 10− 100 metres below the surface

(Carton et al., 2008), creating a region of eddy mixing known as the mixed layer. This

large vortical motion sets up a slightly smaller eddy inside itself, which in turn, gener-

ates even smaller eddies etc. This ‘eddy cascade’ process carries on until the size of the

eddies reaches a scale where viscous damping forces start to exceed the inertial driving

forces (i.e. Re = 1 on these scales). At which point the eddy cascade process ceases

and the small eddies are dampened out before they can become established.

Big whirls have little whirls, That feed on their velocity; And little whirls

have lesser whirls, And so on to viscosity.

Lewis Richardson, 1920

In reality this is a crude summary of what is actually a very complicated process,

however a relatively simple formulation of these ideas was postulated by Kolmogorov

(1941), which describes the energy transfer process of this eddy cascade.

2.3.2 The Kolmogorov Microscales

In a turbulent flow, different processes dominate on different scales. On the largest

scales advection is the prevalent physical process, where the driving force and the scale

of motion are the parameters which are most important, whereas on the smaller scales,

the parameters which determine how the flow will act are viscosity and how much

energy is dissipated via heat. Kolmogorov (1941) used this assertion to determine the

small scales of turbulence, otherwise known as the Kolmogorov microscales. Through

dimensional analysis it can be shown that length, time and velocity scales, based solely

on the parameters which govern the small scale motions, can be defined as,

ηK =

(
ν3

ε

) 1
4

,

τK =
(ν
ε

) 1
2
,
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vK = (νε)
1
4 ,

where ηK - Kolmogorov length scale, τK - Kolmogorov time scale, vK - Kolmogorov

velocity scale, ν - kinematic viscosity, ε - net energy dissipation rate. Note that these

scales are not independent of each other.

As such, these scales have not been derived through first principles but give a rea-

sonable indication of the scales at which a particular flow acts down to. For exam-

ple if a flow in water had a particular turbulent characteristic parameter set (ν, ε) =

(10−6 m2s−1, 10−6 m2s−3), then it would have a ηK value of 1mm. That is the turbulent

flow can not act on scales below 1mm and analogously any eddy cascade that is set

up will not be able to sustain vortical motions below this scale. This means organisms

smaller than 1mm would experience a quiescent life protected from turbulence in a

Kolmogorov length scale sized bubble.

2.3.3 Spectral Dynamics and the Eddy Cascade

In this section we will discuss how energy is transferred from large scales to small

scales. Through the efforts of Richardson and Kolmogorov it was found that the ki-

netic energy exchange, through an intermediate portion of length scales connecting

the large scales and the small scales (the inertial subrange), displays universal prop-

erties which was a discovery of some magnitude (Kolmogorov, 1941; Richardson, 1921),

The first assumption to be made is that turbulence is homogeneous, that is the turbu-

lent characteristics of the flow do not vary in space. To have an idea of how turbulence

effects the flow we take a velocity measure at two different points in space and estab-

lish the degree of correlation between them when the separation is increased. This

correlation tensor takes the form

Rij(r) = 〈ui(x, t)uj(x + r, t)〉 (2.13)
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Note that Rij is a function of r only, as the flow is assumed to be homogeneous. It

turns out that in order to express the universal behavior of the inertial subrange, it is

more convenient to study the situation in wave-number space. To do this we define the

spectrum tensor as the Fourier transform of the correlation tensor,

φij(k) =
1

(2π)3

∫ ∫ ∫
e−ik·rRij(r)dr, (2.14)

and the inverse Fourier transform is defined as

Rij(r) =

∫ ∫ ∫
eik·rφij(k)dk. (2.15)

One of the most important statistics taken from the spectrum tensor is

φii(k) = φ11(k) + φ22(k) + φ33(k) (2.16)

as it is proportional to the kinetic energy of the flow at a given wave-number. This is

apparent as ∫
k
φii(k)dk = Rii(0) =

〈
u2

1

〉
+
〈
u2

2

〉
+
〈
u2

3

〉
= 3u2. (2.17)

If we assume u1, u2 and u3 are of the same order of magnitude (this implies the

turbulence to be isotropic which is a good approximation at small scales, one of the

universal properties of turbulence), we can integrate φii over a spherical shell in wave-

number space, so that dk = k2sinθKdφKdθK, and prescribe

E(k) =
1

2

∫ π

0

∫ 2π

0
φii(k)k2sinθKdφKdθK, (2.18)

where E(k) is the turbulent kinetic energy spectrum, which gives an estimate of the

amount of energy associated with an eddy of wave-number between k and k+δk. So to

find the total kinetic energy of the system we simply integrate over all wave-numbers,

∫ ∞
0

E(k)dk =
1

2
〈uiui〉 =

3

2
u2. (2.19)
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We can examine some simple cases of E(k) by considering experimental results for

1-dimensional correlations, for example R11(r, 0, 0) and R22(r, 0, 0) which are known as

the longitudinal and transverse correlations respectively. They are defined as

R11(r, 0, 0) =

∫
eik1·rF11(k1)dk1 (2.20)

R22(r, 0, 0) =

∫
eik1·rF22(k1)dk1, (2.21)

where F11 and F22 are the longitudinal spectrum and transverse spectrum respectively.

As discussed in Tennekes and Lumley (1972), R11 is positive for all r, which implies

that F11 has a maximum at the origin and is symmetric around k = 0 as R11 is real.

By contrast R22 usually becomes negative at some large r. This implies that F22 is

symmetric but with a peak away from the origin k = 0.

It can be shown that if the flow is homogeneous and isotropic then the following rela-

tionships can be derived for E(k), F11(k) and F22(k) (Batchelor, 1953; Hinze, 1959).

E(k) = k3 d

dk

(
1

k

dF11

dk

)
(2.22)

d

dk
F22(k) = −k

2

d2

dk2
F11(k). (2.23)

From inspecting the characteristics of R11, we know that F11 is an even function with

a maximum at the origin. Assuming F11(k) takes a power law form, this implies

F11 = A − Bk2 + Ck4 + ... with A,B and C all positive. If we take F11 up to the

quartic term, then E(k) = 8Ck4 and hence E(k) ∝ k4 at small k values. Using this

and equation 2.18 we find φii ∝ k2 near k = 0. However, this observation of E(k) ∝ k4

is rarely exhibited in practice, since at large scales the assumption of isotropy and ho-

mogeneity breaks down. Nevertheless this is a theoretical observation with regard to

the behaviour of E(k).
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As we discussed in the previous section, an eddy is defined loosely as a disturbance in a

discrete band of wave-numbers around the region k. We note that energy is transferred

from the large scales to the small scales (although this is a simplified view). In fact

small scale eddies transfer energy to the larger too. However, the overall the transfer

from small to large is less than the transfer from large to small, so what we are inter-

ested in is the net transfer of energy from large eddies to small eddies.

The strain rate associated with an eddy of size k is given by

s(k) ∼ U

L
(2.24)

where U - velocity scale, L - integral length scale.

We can also find a relationship between the strain rate and E(k) as follows. By defini-

tion

U ∼ (kE(k))
1
2 ,

⇒ s(k) ∼ k

2π
[kE(k)]

1
2 ,

where L = 2π
〈k〉 . We can use this relation to find the strain rate around k = 0. As

E(〈k〉) ∼ k4, this gives

s(k) ∼ k
7
2 , (2.25)

which tells us, initially at least, that the strain rate is increasing. Assuming this strain

rate increase is valid for all k, we can introduce a time-scale T

T ∼ 1

s(k)
. (2.26)

We note that as the strain rate increases, T decreases. Kolmogorov termed this time

scale as the ‘return to isotropy’. We can deduce then that smaller eddies (k → ∞)
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return to isotropy faster than large eddies (k → 0) and so smaller eddies have a harder

time creating anisotropy in the flow. This realisation clarifies the fact that large scale

features exhibit distinct directional characteristics whereas small scale features tend to

be isotropic in character.

2.3.4 E(k) in the Inertial Subrange

It has been ascertained that large scales are anisotropic and small scales are isotropic.

However, the intermediate region between these scales has not been discussed. This

middle range is home to a set of mid-scale sized eddies who respond quickly to changes

in the mean flow but are in an approximate isotropic equilibrium. In this range the ed-

dies associated are not dependant on the boundary conditions governing the mean flow

(wind speed etc), but will only depend upon the dissipation rate ε (the rate at which

energy is converted into heat) and the viscosity of the fluid ν, that is E = E(k, ε, ν) in

this range. Using this we can form a non-dimensional quantity of the kinetic energy,

E(k)

ν
5
4 ε

1
4

=
E(k)

v2
KηK

= f(kηK), (2.27)

where ηK - Kolmogorov length scale, vK - Kolmogorov velocity scale and f is an unde-

termined non-dimensional function of a non-dimensional parameter kηK.

Now as the Reynolds number increases, ε increases and ηK → 0, so that at high

Reynolds numbers we require this scaling to hold as kηK → 0. At large scales, vis-

cosity is unimportant, rather the key parameter is the mean strain rate 〈s(k)〉 ∼ U
L

which is instrumental in the production of the turbulent (small scale) kinetic energy

via the term
〈
u
′
iu
′
j

〉
sij in the turbulent kinetic energy budget equation (see Tennekes

and Lumley (1972) pg 63-64). By this reasoning, the parameters most associated with

kinetic energy at large scales are 〈s(k)〉 and ε and so using dimensional arguments

again, one would expect ε ∼ U3

L . Using this result we can non-dimensionalise the
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kinetic energy in terms of large scale processes, that is,

E(k)

ε
3
2 〈s(k)〉

−5
2

∼ E(k)

U2L
= F (kL), (2.28)

where F is another non-dimensional function, this time of a non-dimensional parameter

kL. We also see that in an inviscid flow as Re = UL
ν → ∞ then L → ∞ and so we

require this scaling to hold as kL→∞. What Kolmogorov did was to use Re→∞ in

such a way that both kηK → 0 and kL→∞ hold simultaneously,

kηK = kL
(ηK
L

)
= kL

((
ν3

ε

) 1
4 1

L

)
∼ kLν

3
4

(
L

U3

) 1
4 1

L
= kL

(
1

Re

) 3
4

.

Now suppose that kL = Ren so that when one takes the limit Re→∞, one is effectively

taking the limit kL→∞ too. If kL = Ren then

kηK = Ren−
3
4 (2.29)

so provided n < 3
4 , taking the limit Re → ∞ is equivalent to taking kηK → 0, at the

same time as taking the limit kL→∞.

Matching up the large scale and small scale expressions (equations 2.27 and 2.28)

allows one to the determine the unknown functional forms f(kηK) and F (kL), i.e.

E(k) = U2LF (kL) = v2
KηKf(kηK)

⇒ U2L

v2
KηK

F (Ren) = f(Ren−
3
4 )

Using the definitions of vK, ηK and ε ∼ U3

L

⇒ Re
5
4F (Ren) = f(Ren−

3
4 ).
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If we assume F and f possess (to first order) some ‘power law behaviour’, then F (Ren) =

(Ren)a and f(Ren−
3
4 ) =

(
Ren−

3
4

)b
then

5

4
+ an = b(n− 3

4
)

⇒ 5

4
+

3

4
b = n(b− a).

For this equation to hold for all n ∈ (0, 3
4), there is only one possibility, namely that

a = b = −5
3 . Hence F (kL) ∼ (kL)−

5
3 and f(kηK) ∼ (kηK)−

5
3 so that

E(k) ∼ U2

L
2
3

k−
5
3 ∼ ε

2
3k−

5
3

and hence

E(k) = αε
2
3k−

5
3 (2.30)

where α - constant.

This remarkable prediction was made in the 1940’s, but it was only validated in the

1960’s thanks to many experimental measurements (Grant et al., 1962; Maurer et al.,

1994). It’s importance lies in its universality, the assumptions on which it lies applies

for any turbulent flow of sufficiently large Re. The wave-number range for which this

−5
3 law operates is called the inertial subrange, which is the middle ground between

small and large scales.

The irony is that back in the 1920’s Richardson’s experiments with dispersion (Richard-

son, 1921) had hinted that clouds spread according to a simple scaling law equivalent to

E(k) ∼ ε
2
3k−

5
3 . However, Richardson failed to predict that this behaviour is universal

to all turbulent flows, and consequently missed out one of the greatest discoveries in

the physical sciences.
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2.4 Langmuir Turbulence

An aspect which the Navier-Stokes equations do not capture is the result of wave

actions set up on the surface of the boundary layer, first noted in detail by Langmuir

(1938). This section sets out what influence wave actions have on the flow derived

from the Navier-Stokes equations, and how they can be modified to give a more precise

description of the fluid motion in a turbulent boundary layer.

2.4.1 Stokes Drift

In general, the geometry of the surface of the ocean is extremely complicated, and

cannot be readily formalised in an equation. It depends on wind speed and direction,

wave height, wave breaking plus a myriad of other factors, which are far too complicated

to be incorporated into any formalism. However, if the wind speed is moderate, so that

the sea surface conditions approximate a gentle swell, then it is possible to devise a

simple model of at least the first order effects brought about by the ocean waves on

the turbulent boundary layer (Phillips, 1977; Stokes, 1847). First, the sea surface is

assumed to conform to a simple travelling sinusoidal wave in the direction of wind (in

the x direction for convenience), which takes the form

γ(x, t) = acos(kx− σt), (2.31)

where γ - position of the free surface, a - wave amplitude, k - wave-number and σ -

wave frequency. These parameters are not independent as the wave frequency σ can

be written in terms of the wave-number via the relationship σ =
√
gk, where g is the

acceleration due to gravity.

Along with 2.31 an associated velocity potential φ needs to be found, for reasons that

will become apparent. Assuming the flow is irrotational (i.e. ∇ × u = 0) and incom-

pressible, the velocity field can be defined by u = ∇φ, note φ is a scalar quantity. Using

this fact and the incompressibility condition, Laplace’s equation for φ i.e. ∇2φ = 0 is
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satisfied, which is useful as Laplace’s equation has been studied in great detail due to

its applications in a wide variety of application (see section 2.2.1).

As 2.31 applies for waves propagating in the x direction only, one can assume that

the velocity potential is independent of y and hence φ = φ(x, z, t) = c(t)a(x)b(z) =

c(t)φ1(x, z), making the assumption that φ is separable. Substituting this expression

for φ1(x, z) into Laplace’s equation (as φ1 also satisfies Laplace equation, as the Laplace

operator is a spatial operator only) one obtains two second order ODE’s for a(x) and

b(z) respectively, that is,

a′′(x) + Ca(x) = 0

b′′(z)− Cb(z) = 0

where C is an arbitrary constant. Each equation gives general solutions of the form

a(x) = AcosCx+BsinCx

b(z) = De−Cz + EeCz,
(2.32)

where A,B,D and E are arbitrary constants. Assuming that 2.31 is representative of a

deep water wave and that b(z) is bounded for z → −∞, one can deduce D = 0. Also,

by definition, the z component of the velocity field at the surface is given by

∂φ

∂z

∣∣∣∣
z=0

=
dγ

dt
≈ ∂γ

∂t
,

for linear approximation. This can be used to yield a unique solution of φ, namely

φ =
σa

k
ekzsin(kx− σt). (2.33)

One is interested in seeing how a fluid particle near the surface is affected by the wave

motions brought about by 2.31 and 2.33. To describe the type of motion associated

with surface wave geometry, a Lagrangian framework is more appropriate, as we are

interested in the effect on a particular particle. A Lagrangian framework follows an
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individual particle pathway throughout the flow rather than analysing what the local

velocity is at a fixed frame of reference at one particular point in space. A Lagrangian

co-ordinate is therefore defined as a function of some fixed starting point in space and

in time, e.g.

ζ = ζ(a, t)

where ζ is the position of the fluid particle starting at position a = ζ(a, t0), for example.

This leads to a equivalence between Lagrangian and Eulerian co-ordinate frameworks,

specifically

x = a +

∫ t

0
uL(a, t′)dt′, (2.34)

where uL is the Lagrangian velocity component and is defined as

uL(a, t) =
∂ζ(a, t)

∂t
. (2.35)

By definition, the Lagrangian velocity component uL(a, t) is equal to that of the Eule-

rian velocity component at the same point in space i.e.

uL(a, t) = uE(x, t)|x=ζ(a,t) (2.36)

and hence

uL(a, t) = uE(a +

∫ t

0
uL(a, t′)dt′, t). (2.37)

This form is convenient as by using the Taylor expansion on the right hand side, we

can find the differences between the Lagrangian and Eulerian velocity fields, e.g.

uL(a, t) =

uE(a +
∫ t

0 uL(a, t′)dt′, t) =

uE(a, t) +
(∫ t

0 uL(a, t′)dt′
)
· ∇auE(a, t) + h.o.t.

(2.38)
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This relationship shows the divergence of the Eulerian and Lagrangian velocity com-

ponents as time increases. This difference, to second order, is known as the Stokes

drift named after it’s discoverer and fundamentally changes the velocity field descrip-

tion. Linearising the integral in the Stokes drift term we reach a form that can be

analytically formulated i.e.

Us = (us, vs, ws) =

(∫ t

0
uE(a, t′)dt′

)
· ∇auE(a, t) (2.39)

where Us is the Stokes drift vector and us, vs and ws are the associated components.

All that is left to do is formulate the Stokes drift into an analytical function based on

the results detailed so far. Firstly, we can write

uE(a, t) = ∇φ(x, t)|x=a = σaekz0


cos(kx0 − σt)

0

sin(kx0 − σt)

 , (2.40)

where a = (x0, y0, z0). Calculating each Stokes drift component separately, we find

Us =

aekz0

−sin(kx0 − σt) + sin(kx0)

0

cos(kx0 − σt)− cos(kx0)


 ·
aσkekz0


−sin(kx0 − σt)

0

cos(kx0 − σt)




(2.41)

which, in component form gives

us = a2σke2kz0(1− cos(σt)), (2.42)

vs = 0 and in a similar way we deduce

ws = a2σke2kz0(sin(σt)). (2.43)
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This gives the local drift velocity to first order, however, we are only interested in

the overall effect on a global frame and so the time averaged quantities are more

appropriate. As cos(σt) = sin(σt) = 0, we are left with

Us = (a2σke2kz0 , 0, 0) = (Use
2kz0 , 0, 0) (2.44)

where Us is the Stokes drift magnitude.

This drift effect not only has a non-uniform impact on particles in the flow, but it

also has an overturning effect on particle paths, which can be readily seen in figure

2.1. It is evident that the particles have a greater net drift over the time period nearer

Figure 2.1: A schematic of three particle paths starting at 3 different depths when the
boundary layer experiences surface waves. Surface water waves are propagating in the
direction of wind, shown by the arrow.

to the surface. This has a tilting effect on vortices which are vertical in the boundary

layer, overturning them to become horizontal.

The problem in calculating the Navier-Stokes equations with a propagating surface

wave built in lies in the numerics. It would involve an extremely fine resolution grid at
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the surface and would also need to be spatially dynamic, to include surface oscillations.

The cost of this numerical set-up is of many orders of magnitude larger than the set-up

without surface waves and just infeasible for simulation time particularly in biological

time scales. However, it is possible to incorporate the average effects encapsulated by

equation 2.44 into a fixed rectangular spatial domain.

2.4.2 Craik-Leibovich Equations

Craik and Leibovich (1976) were able to show that for a deep water wave (given

above) a resulting coupling of the ‘Stokes drift’ term ‘Usi ’ and the vertical vorticity ‘ωj ’

occurs into what is known as a vortex force term. This leads to a modified version of the

Navier-Stokes equations which includes wave action, particularly applicable for oceanic

boundary layer flows. These equations are called the Craik-Liebovich equations. This

means that vertical eddies are tilted and intensified in the direction (horizontally) per-

pendicular to the wave front propagation. The Craik-Leibovich equations are defined

as

∂ui
∂t

+ uj
∂ui
∂xj

+ εij3f (ui + Usi) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ εijkUsiωj + Fi (2.45)

where

εijk =


1 if (i, j, k) = (1, 2, 3), (3, 1, 2), (2, 3, 1)

−1 if (i, j, k) = (1, 3, 2), (3, 2, 1), (2, 1, 3)

0 or if i = j, j = k or i = k,

and f is the Coriolis frequency. The cross product involving f describes planetary

vorticity. f = 10−4s−1 will be used for all simulations in this work, which corresponds

to a latitude of 45 degrees north (a mid-latitude in the northern hemisphere).

This coupling of the vorticity, ω, and the Stokes drift creates a series of counter-rotating

vortices below the surface of the wave front, these are known as ‘Langmuir circulations’.

This can advect nutrient rich water from the deep ocean into the euphotic zone of the

water column. On the surface these ‘Langmuir cells’ manifest themselves in a series of
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windrows parallel to the direction of the wave propagation. These equations also take

into account the contribution of flow due to planetary rotation (the Coriolis force). A

curious behaviour of the flow field is that, due to planetary rotation, a depth depen-

dant directional mean flow is observed which is at an angle to the direction of wind,

known as Ekman transport (Ekman, 1905). This angle is dependent on both depth and

latitude and in this work; it will also be dependent upon the magnitude of the Stokes

drift (Lewis and Belcher, 2004). This deflection of flow can be observed in the wind

rows shown in section 2.4.3 where, without the Coriolis effect, the passive tracers would

simply go in the direction of wind, without any angular deflection. The influence this

has on plankton aggregations is not at all clear, so it will not be considered, but the

distribution of plankton concentrations will certainly be effected.

In the physical-biological model implemented in this work (see later), I will use the

Craik-Leibovich equations to generate the turbulent boundary layer flows in which my

biological investigations will take place.

2.4.3 Consequences of Langmuir Turbulence

In many models, such as popular weather prediction models (e.g. Lean et al.

(2008)), wave effects are not taken into account. We will explore the significance of

the extra vortex term in the Craik-Liebovich equations and how this effects boundary

layer simulations.

Wind rows

As was discussed, the motivation behind developing a model for the incorporation

of wave effects, was the observation that debris in the ocean collects in convergent

zones, perpendicular to the direction of wave propagation (Langmuir, 1938). These

are known as ‘wind rows’. This behaviour was tested in simulations when wave effects

were present and when they were not. We released a number of particles at the surface

and noted the dynamics, see figure 2.2. Figure 2.2(a) shows that without any surface

wave effects, all particles travel in the same directions and spread out very slightly.
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(a) No surface waves (b) Surface waves

Figure 2.2: A set of 60 particle paths all starting at X = −60 m at different y ∈ (0, 60).
The direction the particles are travelling is indicated by the arrow.

However, the dynamics of the passive tracers change dramatically when subjected to

wave forcing. As time goes on, we see a clustering of tracers (in convergent zones),

see figure 2.2(b). This convergence behaviour should not be ignored, particularly when

modelling such systems that include analysing the dynamics of spatial distributions,

such as planktonic and nutrient concentrations.

Next, we need to quantify the amount of energy in the system and how wave forc-

ing impacts upon this, as turbulent mixing is very important to the aim of this study.

Energy Dissipation Rate, ε

In a boundary layer, energy is usually lost through viscous effects and transferred

to heat energy. This amount of energy that is lost in the system is indicative of the

amount of energy in the system. The rate of energy lost to heat in the system is

known as the energy dissipation rate and is a small scale process, comparable to that

of the Kolmogorov length scale. This energy dissipation rate can be calculated via the

(statistically stationary) mean turbulent kinetic energy budget given by Lewis (2005),

ε = −∂ < u′2w >

∂z
− < u′w >

∂u

∂z
− 1

ρ0
− ∂ < p′w >

∂z
− < u′w >

∂us
∂z

(2.46)
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Figure 2.3 shows the differences in energy in the two boundary layers, particularly near

the surface. This energy difference is staggering considering wave effects are usually

neglected in a system and contribute vastly to the boundary layer. Although the energy

dissipation rate (small scale) is much larger in a Stokes-Ekman boundary layer than

the traditional Ekman boundary layer, it accounts for a smaller percentage of the total

kinetic energy (small scale + large scale) in the system (McWilliams et al., 1997) and

hence the Stokes-Ekman boundary layer is more accurate as large scale processes are

solved exactly in the model setup in this work, details of which will be given in the

next section.

Figure 2.3: Profile of the energy dissipation rate for a boundary layer with surface water
waves (Stokes-Ekman boundary layer), in the solid line, and a boundary layer without
surface waves (Ekman boundary layer), in the dashed line. These two simulations were
identical except for the stokes drift value, Us = 0.067 and Us = 0 respectively.

2.5 Large Eddy Simulation (LES)

To compute such a complex set of equations (such as the Navier-Stokes equations) is

obviously unfeasible due to the length scales involved (for reasons given in 2.5.1). So a

method must be utilised that can resolve the main features of the flow, but be simple
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enough to make simulations feasible. There are many techniques in the literature

to do this, for example, a popular model is the k − ε turbulence model (Jones and

Launder, 1972) which attempts to find solutions of a fully turbulent flow, which stems

from the Reynolds-Averaged-Navier-Stokes equations (RANS), which are essentially

a time averaged solution of the Navier-Stokes equations (Reynolds, 1895). However,

turbulent flows are very transient and there are no steady state solutions in a turbulent

flow. Therefore the model which will be utilised is one which will capture the dynamics

of the large scale motions, whilst sacrificing the small scale motion. This method is

known as large eddy simulation.

2.5.1 Resolution Scales

The Kolmogorov length scale ηK =
(
ν3

ε

) 1
4
, gives an indication to what scale viscos-

ity acts upon, i.e. the scale at which the Navier-Stokes equations become approximately

linear. If we solved the Navier-Stokes equations numerically (using a finite difference

scheme) and we had a very large amount of computing power, we would use this length

scale as resolution for our solution grid. The energy dissipation rate ε is essentially

a measure of how turbulent the fluid is; hence the higher the level of turbulence, the

lower ηK will be and the finer the resolution scale of the solution grid needs to be.

In order to generate an exact solution of the Navier-Stokes (or Craik-Liebovich) equa-

tions as a manifestation of an oceanic boundary layer, one must first resolve the flow

across all of its relevant constituent parts. The depth of an ocean boundary layer is

usually of the size of tens to hundreds of metres. The corresponding large scales that

drive the flow will be of a comparable size. Energy is then transferred by means of the

‘eddy cascade’ model describes in 2.3.3 down to the smallest Kolmogorov length scales

where it is dissipated as heat. So to give a complete and reliable numerical solution to

the Navier-Stokes (Craik-Liebovich) equations representative of an oceanic boundary

layer, one must resolve down through a hierachy of scales from say 102 metres down to

10−3 metres of the wave-number scale.
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As an indication of the computing power needed to do just that, for a turbulent flow

ηK ∼ 1×10−3m and for a 3 dimensional solution grid covering 100m × 100m × 30m we

would need to make 3× 1014 calculations, for just one moment in time, which is unfea-

sible even for the most powerful of computers. This highlights the most fundamental

difficulty in solving the Navier-Stokes equations over domains roughly equivalent in

size to an ocean boundary layer. Numerical approximations must therefore be made

to account for this shortcoming to reduce the resolution scale but at the same time

retaining the fundamental characteristics of a full boundary layer solution, which still

allows us to predict the evolution of the ocean dynamics over biologically significant

time periods.

2.5.2 Filtering

Large eddy simulation is an averaging technique used to permit a reasonable reso-

lution to be used (Sagaut, 2000). The idea is that the flow ‘u’ is split up into 2 parts,

Large scale flow ‘U’ and small scale flow ‘u
′
’ (the same routine is implemented for the

pressure term p = P + p
′
). For our model, we pick a grid spacing of approximately

1 m, so U would account for the flow above 1 metre and u′ would account for the flow

below this scale; this small scale is known as the sub-grid scale.

These substitutions are made into the Navier-Stokes equations to yield a mixture of

resolved and unresolved differential terms,

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

+ F + SGS (2.47)

where

SGS = −∂u
′
i

∂t
− u′j

∂u
′
i

∂xj
− 1

ρ

∂p
′

∂xi
+ ν

∂2u
′
i

∂xj∂xj
(2.48)

The LES method uses the assumption that linear small scale terms equate to zero

(although this is not the case). More formally, we apply a Fourier transform to our
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flow i.e.

u(k, t) =

∫
u(x, t)eik·xdx, (2.49)

where k - wave-number.

A cut-off wave-number (kc) is then introduced which is equivalent to 1
L0

, where L0

is the resolution of the solution grid. Using kc the flow can be filtered to remove the

small scale processes,

u(x, t) =

 1
(2π)3

∫
u(k, t)eik·xdk if k ≤ kc

0 otherwise.
(2.50)

Consequently, u′ = 0. This can be used to eliminate the linear terms in the sub-grid

scale. However this technique can not be used for the non-linear small SGS advection

term and a parametrisation need to be employed.

2.5.3 Smagorinsky Scheme

The problem with solving the Navier-Stokes equations with regards to splitting the

flow and filtering is we have an unresolved term left over,

∂uiuj
∂xj

which simply cannot be calculated directly or assumed to be negligible. The higher

the spatial resolution is, the less of a problem this non-linear term becomes, however,

the computer power at our disposal doesn’t permit going to a fine resolution. This is

known as the closure problem.

Large-Eddy simulation is a method which tries to ‘close’ this problem by modelling

the non-linear sub-grid processes in terms of large scale processes (which can then be

numerically solved). There are many ways which this has been attempted (Germano

et al., 1991; Schumann, 1975; Yakhot and Orszag, 1985), but we will use the method
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outlined in Smagorinsky (1963). Using dimensional arguments, Smagorinsky (1963) as-

sumes that small scale advection can be modelled proportional to large scale diffusion,

i.e.
∂uiuj
∂xj

= −νt(x)
∂2Ui
∂xj∂xj

(2.51)

where νt is known as the eddy viscosity (due to its units). The problem is then cal-

culating νt. It was postulated that νt should be a function of the amount of shear in

the flow and the size of the largest eddies as these govern how much work is being

done in the flow. The following relationship was put forward (again from dimensional

arguments),

νt(x) = CL2

√
SijSij

2
, (2.52)

where C = O(1) constant, L is the size (depth) of the boundary layer and Sij =

1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
is the rate of strain (which is a measure of shear of the resolved flow).

Then it is a matter of choosing appropriate values of L and C to satisfy surface bound-

ary conditions (Sullivan et al., 1994).

2.5.4 Numerical Techniques

The difficulty in solving the Navier-Stokes equations is finding the pressure term.

In this model, we take the divergence of the Navier-Stokes equations (similar to that

of section 2.2.1) and solve the Poisson equation for pressure, i.e.

∂2p

∂xi∂xi
=
∂Su
∂xi

(2.53)

where Su comprises the velocity dependant terms in the Navier-Stokes equations. Then

a Fourier transform is taken to simplify the problem. However the Fourier transform

will only be taken in the lateral domain due to the depth grid points being non-uniform.

We then define the pressure term to be

p =

∫ ∞
0

∫ ∞
0

ei(kxx+kyy)p̃dkxdky (2.54)
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where p̃ is the Fourier transform of p. Then taking the Fourier transform of equation

2.53, one yields the equation

d2p̃(kx, ky, z)

dz2
− (k2

x + k2
y)p̃ = G(kx, ky, z) (2.55)

where G is the (known) Fourier transform of the right hand side of equation 2.53. Then

discretising the z second derivative in equation 2.55, e.g.

d2 ˜p(kx, ky, z)

dz2
=
p̃(kx, ky, z + δz)− 2p̃(kx, ky, zn) + p̃(kx, ky, z − δz)

δz2
(2.56)

one can pose the solution of p̃(kx, ky, z) as an inverse problem in the form



−2
δz2
− k2

x − k2
y

1
δz2

0 . . . 0

1
δz2

−2
δz2
− k2

x − k2
y

1
δz2

. . . 0

0
. . .

. . .
. . . 0

0 0 . . . 1
δz2

−2
δz2
− k2

x − k2
y




p̃(z0)

p̃(z1)
...

p̃(zn)

 = G. (2.57)

It is then a straight forward case of finding the pressure term by taking an inverse

Fourier transform of p̃(kx, ky, z). Now that both the velocity field and the pressure

field are both known, we can advect forward in time using the discretisation of the

time derivative
∂U

∂t
=

U(x, y, z, t+ δt)−U(x, y, z, t)

δt
. (2.58)

It is now left to define the dynamic time-step δt. The dynamic time-step is prescribed

to be smaller if a more turbulent flow is detected and vice versa. This is to give more

accuracy, as this is needed with higher turbulence levels as the Kolmogorov length scale

is smaller. This is defined by

dt =

√∣∣∣ u
δx

∣∣∣2 +

∣∣∣∣ vδy
∣∣∣∣2 +

∣∣∣ w
δz

∣∣∣2 +
2ν

δx2 + δy2 + δz2

−1

(2.59)
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where the first term (the
√

term) characterises the level of advection and the second

term characterises the level of diffusion. If the magnitude of the velocity field is large,

then the time-step will decrease to account for the unpredictability inherent with a flow

that is more turbulent. Also, if the grid spacing is too large then this will have the

same effect as solutions are less reliable for a larger grid spacing. In other words, the

more unpredictable the solutions are, the finer the time resolution will be to account

for this.

2.6 Boundary Conditions

The main driving force of our boundary layer is a wind blowing over the surface of the

water. This is characterised by a shear force at the surface,

νt
∂u

∂z

∣∣∣∣
z=0

=
τ

ρw
= U2

∗ (2.60)

where τ is the wind stress, ρw is the density of water and U∗ is the friction velocity.

This friction velocity is an important parameter as it is related directly to the wind

speed above the surface. It enables us to prescribe the level of turbulence in a partic-

ular simulation. The shear force which this friction velocity produces gives rise to an

overturning eddy motion and is one possible mechanism behind plankton aggregation

(Birch et al., 2008).

Periodic lateral boundary conditions were imposed on the solution grid. These can

be given in the form

u(xmin, y, z) = u(xmax, y, z)

u(x, ymin, z) = u(x, ymax, z).
(2.61)

The solution grid was set up to have dimensions x× y× z = 120m × 120m × 33m and

resolutions δx = 3m, δy = 3m δz = 0.45m although the z grid spacing is staggered so

that there is more resolution at the surface, as this where turbulence is the most abun-

dant. With this choice of grid size and spacing, we can achieve solutions on biological
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time scales (weeks) and also maintain reasonable accuracy.

Now that the flow field has been set up, it will be fed into a biological model which

will govern the dynamics of plankton in a realistic flow field. The main interest in this

work is the levels of turbulence and how they effect planktonic aggregations. There-

fore, with regards to the physical model, the wind stress will be the key component in

analysing plankton formations as this is a measure for the amount of energy which is

being pumped into the system.



Chapter 3

The Biological Model

3.1 The Nutrient-Phytoplankton-Zooplankton (NPZ) Model

The NPZ model I will utilise is a three component ODE model given in the form

dΓi
dt

= fi(Γ1, Γ2 ,Γ3, ...,Γi ;x, t)Γi, i = 1, 2, 3 (3.1)

where Γ1 = N is the nutrient, Γ2 = P is the phytoplankton, Γ3 = Z is the zooplankton

and fi is an arbitrary function depending on the state, spatial and time variables. This

is a subset of a more general set of equations for i = 1...N components known as the

Kolmogorov system (Kolmogorov, 1936; Cropp and Norbury, 2009). More qualitatively,

the NPZ model will take the form

dN

dt
= ‘N recycled from P’− ‘N uptake by P’

dP

dt
= ‘P growth from N’− ‘P grazing loss from Z’

dZ

dt
= ‘Z growth from P’− ‘Z death’

(3.2)

This model is the most popular for studying the complex dynamics of planktonic pop-

ulations and is used in a variety of forms, from the simple three component model

45
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stated in equation 3.1 (Steele and Henderson, 1981; Franks et al., 1986; Roy et al.,

2012), to many compartments (Baird and Emsley, 1999; Banas et al., 2009). This

encourages the question, how simple is too simple? Most parameters that are added

to a model must be estimated either experimentally or probabilistically. Consequently

each of these parameter values contain an associated error, which has the potential to

influence the model’s predictive capabilities. Incorporating too many such parameters

will increase the range of the model’s output to such an extent that its predictive ca-

pability is rendered essentially meaningless. So a compromise between complexity and

generality must always be sought. The key is to identify the parameters which have a

really significant impact on a model’s output and thus should be modelled in detail,

from those which are essentially neutral and can either be ignored, or their effects in-

corporated in a much simpler form.

Common choices of functional forms for fi range from the simple linear e.g.

dP

dt
= aPN − bPZ,

to more complicated forms, which for instance, can encapsulate saturation behaviour,

dP

dt
=

a

c+N
P − bP

λ+ P
Z,

where a, b, c, λ are constant parameters (Franks, 2002).

A particular example where there are many elements to consider is the formulation

of the zooplankton predation rate. For example, the spatial range and density levels of

the prey, the foraging and capture capabilities of the predator, its perception capabili-

ties plus external factors such as temperature, light levels and background turbulence.

All these features can interact with one another to potentially produce an extremely

complicated picture of this crucial parameter in the population dynamics. In this the-

sis, I shall try to encapsulate the effects of as many of these features as possible, whilst
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at the same time attempting to keep the model’s complexity down to an acceptable

level.

This work is devoted to turbulence and so a parametrisation of the turbulent flow

must also be included in the biological model, as the flow plays a major role in preda-

tion and nutrient uptake which will be discussed in more detail in a subsequent section.

In this work the energy dissipation rate ε, a good measure which characterises how tur-

bulent the flow is, will be employed (Fasham, 1993; Gaylord et al., 2013).

I will discuss the terms which I have chosen for the model and explain the reason-

ing behind each choice. I will also show how the flow calculated using the LES method

can be incorporated into the NPZ model by means of an advection-diffusion system of

equations.

The reasons behind the adoption of a mechanistic approach to finding model parameters

over simply empirically fitting curves to experimental data, are rather subtle. Quan-

titatively both routes could arrive at the same outcome and give the same theoretical

predictions. Qualitatively however, a mechanistic approach can give information about

which biological characteristics affect the model and in what way. Arbitrarily changing

curve fitting parameters can bring about the same results, but does not highlight the

physical/biological basis of the findings. This is not to say finding estimates for overall

parameters based on raw data alone is not important, indeed this methodology is vital

in validating the mechanistic approach.

Of course the great advantage of choosing to parametrise a process probabilistically

and/or experimentally is the ease of doing so. Curve fitting software packages are

readily available and extremely easy to use and so even non-specialists can describe

a particular process with no great difficulty. This can be extremely useful, especially

to non-specialists (who don’t have knowledge of how to manually implement a curve
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fitting technique for instance), in particular when interest is only in what the process

is doing, rather than why it is doing it.

However, the question being asked in this work is essentially, ‘which biological pa-

rameters are most conducive to the formation of planktonic patches?’ so logically a

mechanised approach to parametrising the model is the most appropriate direction to

take (if possible). The following sections will be devoted to deriving all the parame-

ters necessary to describe the population dynamics of the generic phytoplankton and

zooplankton species.

3.2 Derivations of the Biological Terms

When modelling, there are a number of different approaches one can take. A heuristic

approach, where models are based on simple, intuitive functional forms, an empirical

approach, where formulae are based on experimental data only, a semi-empirical ap-

proach, where formulae are based on combined theoretical and experimental results or

mechanistic, where formulae are derived from theoretical considerations only (Baird

and Emsley, 1999). It is logical then that if knowledge of the theoretical considerations

is strong, then the latter is the best process to use.

As a side note, for the remainder of this section, we will be interested in the non-

dimensional quantities

P =
P ∗

P0
Z =

Z∗

Z0
N =

N∗

N0
(3.3)

where P , Z, N are non-dimensional quantities, P ∗, Z∗, N∗ are the actual concentra-

tion and P0, Z0, N0 are reference concentrations (taken to be an average background

concentration).
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3.2.1 Nutrient Uptake by Phytoplankton

Phytoplankton have evolved to obtain sustenance from the many chemical com-

pounds which reside in the ocean and seas. The main compounds which can be used

as nutrients include phosphates, ammonia, iron and the most abundant chemical com-

pound, nitrate. On top of this, dead phytoplankton cells also nourish the phytoplankton

population (Li et al., 2013; Weber and Deutsch, 2010). Other chemicals are negligi-

ble in comparison and so this group of compounds is usually the subject of nutrient

modelling (Fasham et al., 1990). Following the work of Baird and Emsley (1999), the

framework of this term will be based on a diffusive type model. Solutions can

Formulation

Solutions to the following can be found in many texts, e.g. Crank (1979). To derive

the formula for nutrient uptake, one must first examine the process of nutrient ab-

sorption by a typical phytoplankton cell in some detail in order to formulate a general

mechanism. For simplicity, it is assumed the phytoplankton is a spherical cell, of radius

RP , residing in a large volume V of solute. In this situation the absorption process is

primarily driven by diffusion, that is, nutrients outside of the cell wall will diffuse into

the cell in a similar process to that of osmosis (a process that will cease when the cell

is ‘full’).

The ambient concentration of nutrients outside the cell, N , assuming there is no fluid

flow, is governed by a simple diffusion equation of the form

∂N

∂t
= DN∇2N, (3.4)

where DN is the diffusion coefficient.

Let us assume that nutrient solute is absorbed into the phytoplankton cell at a rate of

Q particles per unit time, so the cell acts as a ‘sink’ of the surrounding solute. Suppose

the system is in dynamic equilibrium, i.e. at a steady state where ∂N
∂t = 0. In this case
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the system satisfies the following equations:

DN∇2N = 0, (3.5)

if the volume does not contain the cell and

DN∇2N = δ(r), (3.6)

if the volume in question encompasses the cell. It is assumed that the cell is centred at

the origin r = 0 and

δ(r) =

 ∞ |r| = RP ,

0 |r| 6= RP .
(3.7)

Equations 3.5 - 3.7 can also be written in the more compact form

∫ ∫ ∫
V
δ(r)dV =

 Q if volume contains cell,

0 otherwise.
(3.8)

Firstly, taking equation 3.5 and assuming spherical symmetry leaves us with solving

the relatively simple equation
d

dr

(
r2dN

dr

)
= 0,

which yields a general solution of the form

N =
A

r
+B,

where A and B are arbitrary constants to be determined. Assuming as r → ∞,

N → N0, where N0 is the average ambient nutrient concentration, this gives

N =
A

r
+N0.
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Taking equation 3.6 and integrating it over a volume which encompasses the cell gives

DN

∫ ∫ ∫
V
∇ · (∇N)dV =

∫ ∫ ∫
V
δ(r)dV = Q. (3.9)

Now by the divergence theorem,

DN

∫ ∫ ∫
V
∇ · (∇N)dV =

∫ ∫
S

(∇N) · ndS, (3.10)

where n is the outward normal directed from the surface S of the sphere. As r → RP

∇N =
d

dr

(
A

r
+N0

)∣∣∣∣
r=R

P

n = − A

R2
P

n,

ndS|r=R
P
≡ R2

P
sinθdθdφ,

and hence

DN

∫ π

0

∫ 2π

0

(
− A

R2
P

)
R2
P
sinθdθdφ = Q,

⇒ −4πDNA = Q,

⇒ A = − Q

4πDN
,

and so the concentration of nutrients is given by

N = − Q

4πDNr
+N0. (3.11)

At the cell wall, when r = RP , N = NW , hence the flux Q at the cell wall becomes

Q = 4πRPDN (N0 −NW ), (3.12)

draining steadily into a spherical cell of radius RP . (The case is studied in Baird and

Emsley (1999) for the cases of other cell geometries.)

This result is too simple because it neglects the possibility that the solute fluid could
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be in relative motion with respect to the cell wall. The effect of fluid motion outside

the cell (brought about by turbulence or cell swimming) is to advect more solute into

the vicinity of the cell wall and hence potentially increase the uptake rate. The details

of how this comes about are very complicated (Batchelor, 1980), too complicated to

be incorporated into an uptake model, which we propose to couple with an LES code.

So instead, the effects of fluid motion on the uptake rate will be encapsulated by the

relatively simple means of employing a ‘turbulent Sherwood number’ Sh. This non-

dimensional number Sh ≥ 1 is a measure of the ratio of the total nutrient flux into

the cell in the presence of relative fluid motion, to the flux obtained through diffusion

alone. Consequently the revised uptake rate in the presence of relative fluid motion is

defined by

Q = 4πRPDNSh(N0 −NW ), (3.13)

with Sh = 1 when there is no fluid motion.

The problem now is to determine the value of Sh from the boundary layer dynam-

ics generated by the LES code. This can be done indirectly by first noting that typical

values of Sh are themselves a function of another non-dimensional number, called the

Peclet number, denoted by Pe. The Pe number measures the relative strength of ad-

vective transport to diffusive transport over a certain length scale, which we can denote

by r. It is defined by

Pe =
advective transport

diffusive transport
=

Ur

DN
. (3.14)

Here U is a velocity scale characterising the relative speed of the fluid near the cell wall.

In a turbulent flow, this depends upon the average value < ε >, the energy dissipation

rate. In addition, in this application we are assuming that the phytoplankton cells are

small, in particular, the cell radius RP < ηK. Under these assumptions, Karp-Boss

et al. (1996), closely following Batchelor (1980), postulated that a suitable definition
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for a turbulent Peclet number would be

Pet =
RP vK
DN

, (3.15)

where vK =
(
<ε>
ν

) 1
2 is Kolmogorov velocity scale andRP is the radius of the phytoplank-

ton cell. In addition Karp-Boss et al. (1996) go on to postulate that the corresponding

turbulent Sherwood number can be calculated from equation 3.15, via the following

relations

Shturb =


1 + 0.29Pe

1
2
turb Pet ≤ 0.01

1
2

[
1.969 + 0.15Pe

1
2
turb + 0.344Pe

1
3
turb

]
0.01 < Pet < 100

0.55Pe
1
3
turb Pet ≥ 100.

(3.16)

So knowing < ε > as we do from the LES boundary layer dynamics, it is possible to

estimate Equation 3.16 using Equation 3.15 and hence quantify the effects of small

scale background turbulence on the nutrient uptake rate (equation 3.13) of a single

phytoplankton cell. It should be pointed out that the expression for Sh is based upon

theoretical predictions of nutrient uptake rates in pure shear (non-rotating) flows and

its extension to general turbulent flows is somewhat problematic and experiments in

the literature are scarce (Keshishian et al., 2013). However in this application typical

phytoplankton cells are of the order of RP ' 10−5m which implies that Pet(z) < 0.008

for all < ε(z) > values derived from the boundary layer dynamics, even in the most

turbulent simulations. Consequently Sh is never greater than about 1.08, meaning that

the uptake rate is only marginally above that generated by diffusion alone, for which

there is strong empirical evidence (Yao et al., 2011). Hence equation 3.13 and equation

3.16 should provide good estimates of the required uptake rate.

Equations 3.13 and 3.16 give the uptake rate as a prescribed by the physical fluid

dynamics in which the cell finds itself. However, it is important to recognise that the

physiological state of the cell also plays a key role in regulating the uptake rate. In
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particular if NW
N0

> 1 the cell is satiated with nutrient, in which case uptake will cease.

So the level of satiation as prescribed by the parameter NW
N0

is important. Unfortu-

nately estimating NW , the nutrient concentration at the cell wall, against the backdrop

of a turbulent flow is a difficult proposition. So instead, following the example of Baird

et al. (2001), we frame the question in a somewhat different way. The uptake rate

will obviously depend upon the nutrient reserve in the cell, which are already stored

at any one time. This level of reserves will be denoted by RN , the reserves available

assuming the local nutrient concentration is N . If RN is low, the cell will be ‘hungry’

for nutrients and consequently the nutrient uptake rate is likely to be large. Baird et al.

(2001) formulated the assumption that the level of RN was linearly related to the local

nutrient concentration and consequently the question of determining the level of NWN0
in

3.13, could be answered by establishing the level of the relative nutrient reserves RN
Rmax
N

currently within the cell (here Rmax
N is a measure of the maximum storage capacity of

an average cell).

To establish the level of nutrient reserves, Baird et al. (2001) then asked the ques-

tion, for what reason does the cell require to take up nutrients? The answer of course

is to promote cell growth, from which the authors postulated the idea that storage

reserves depend upon cell reproduction and that all things considered, a position of

equilibrium would eventually be reached, in which there is a mass balance between the

nutrients taken in and the nutrients used up to promote cell growth. This led them to

postulate the following equation (with NW
N0

replaced by
RN0
RmaxN

, where RN0 is the reserves

assuming the global average nutrient concentration is N = N0), linking the uptake rate

to cell reproduction,

4πRPShDN0

(
1− RN0

RmaxN

)
= µmaxP

RN0

RmaxN

(sN +RN0). (3.17)

Here µmaxP is the maximum phytoplankton growth rate and SN is a nutrient stoichiom-

etry coefficient, which quantifies the minimal amount of nutrient a cell needs to be
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viable. Cell reproduction can only take place if RmaxN > sN . The excess can be used in

the production of daughter cells. In this work RmaxN was assumed to equal three times

sN (Lewis, 2005). The assumption made by Baird et al. (2001) in formulating 3.17,

was that mass balance will occur in the absence of any relative fluid motion and it is

arguable that no such equilibrium could ever be attained in a situation of a rapidly

varying turbulent flow. It is our assumption that on small planktonic scales the fluid

motion is dominated by viscosity and consequently is relatively slow moving and hence

equation 3.17 is not too far from reality.

Equation 3.17 is essentially a quadratic equation for the unknown value RN0 and the

ratio
RN0
RmaxN

. However, even after solving equation 3.17 for RN0 we must still com-

pute the value of RN
RmaxN

at a general nutrient concentration level N (different from the

background concentration N0 due to the local flow field). Usually N will not differ

substantially from N0, so we choose to employ a linear relationship linking the general

ratio to the specific background level of the form,

RN (x, t)

RmaxN

=


RN0
RmaxN

×N provided this is ≤ 1

0 otherwise.
(3.18)

Substituting this result into 3.13 gives our final expression for the nutrient uptake rate,

Q(x, t) =

 4πRPSh(z)DNN
[
1− RN

RmaxN

]
0 ≤ RN

RmaxN
≤ 1

0 otherwise,
(3.19)

and hence

‘N uptake by P’ =

 P04πRPSh(z)DN

[
1− RN

RmaxN

]
PN 0 ≤ RN

RmaxN
≤ 1

0 otherwise,
(3.20)

at any position x and time t in the flow.
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3.2.2 Phytoplankton Growth

When modelling phytoplankton growth, there are certain things to take into ac-

count. Phytoplankton use photosynthesis as a way to take in energy and so part of

it’s growth must be attributed to light levels, which decrease with depth (we will as-

sume this decrease is exponential). There is also an efficiency to how much energy

phytoplankton can take out of the nutrients which are ingested, this efficiency will be

denoted by βE ∈ (0, 1) and there is a limit with regards to how satiated the cell is (as

described in the previous term). Hence, following Baird et al. (2001), phytoplankton

growth can be modelled in the following way,

‘P growth from N’ = βE min

[
RN
Rmax
N

, 1

]
eαzµmax

P P (3.21)

where µmax
P is the maximum growth rate of the phytoplankton and α is a light attenu-

ation co-efficient.

3.2.3 Nitrate Recycled from Phytoplankton

Again, analogous to the previous term, this term is proportional to the growth of

phytoplankton. Additionally, it takes into account that when the phytoplankton cell

dies, it is converted solely into nutrients. It also assumes that when the phytoplankton

cell dies, it has a nutrient reserve of that equal to the stoichiometry co-efficient (the

minimum amount of nutrients needed to survive). This term can be expressed as

‘N recycled from P’ = (1− βE) min

[
RN
Rmax
N

, 1

]
eαzµmax

P

sNP0

N0
P. (3.22)

3.2.4 Zooplankton Predation

Many studies have shown that enhanced levels of turbulent mixing can bring about

profound changes to the predation rate (Pécseli et al., 2012; Visser et al., 2009). Con-

sequently one needs a model of planktonic predation that provides robust predation

estimates in turbulent flows of the kind simulated in the LES boundary layer model
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discussed in Chapter 2. I will be using a term based on the formulation (and derivation)

of Rothschild and Osborn (1988) and Lewis and Pedley (2000, 2001).

Formulation

The basis of the formulation of zooplankton predation capabilities in turbulence

relies on certain simplifying characteristics of turbulence at small length scales (e.g.

between ηk - 10ηk) . These include isotropy, homogeneity and statistical stationarity.

All ocean boundary layer flows exhibit these characteristics at small scales. In addition,

it is assumed that predator and prey are sufficiently small that their presence creates no

significant disturbance to the flow itself, although in some cases, zooplankton generate

their own flow fields to entrain prey into their vicinity (Malkiel et al., 2003).

Zooplankton have particular sensory organs to detect prey chemically, hydrodynam-

ically and in the case of fish larvae, visually (Price, 1988). This means a sensory

perception field must be included. Experimental studies have shown zooplankton have

varying fields of perception, depending on the species and these take on a variety of

complex geometrical shapes (Lewis and Bala, 2006). Again, such complexity and vari-

ety is too difficult to attempt to incorporate in an LES code so in this work, zooplankton

predation will be based around the premise that the perception field is hemispherical.

That means if any prey comes within a distance ‘R’ of the zooplankton, at any orienta-

tion directed in front of the predator, it will be perceived and an attack sequence will

be initiated.

Most zooplankton are capable of swimming (Li et al., 2013) and any such motion

must be taken into account as this is how the zooplankton forage for prey. The back-

ground turbulent motion is also crucial, as the length scales on which the zooplankton

tend to perceive their prey lie in the inertial subrange, the characteristics of which are

fairly well understood. Rather than model the mechanism for predation in an Eulerian

framework, a Lagrangian framework is taken for convenience. To do this we first need

to define variables which describe the constituent velocity components which, when
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pieced together, comprise the relative velocity scale. These are vZ , vP and w, which

are the swimming velocities of the zooplankton and phytoplankton, and the local tur-

bulent velocity scale respectively. Now assuming the zooplankton and phytoplankton

are at distance r from each other, the velocity component of each of these can be

expressed as

VZ = vZ + w(x, t), (3.23)

VP = vP + w(x + r, t). (3.24)

Here VZ and VP are the velocities of each planktonic particle and we define the relative

velocity at a distance R (the contact radius of the zooplankton perception field) apart

by

U(x, R, t) = VZ (x, t)−VP (x +R, t). (3.25)

Now consider a frame of reference centred on the zooplankton predator moving at this

relative speed U (so the prey is stationary). Without loss of generality, one can assume

the predator is moving in a straight line along the z-axis for instance, see figure 3.1.

(the modifications necessary to account for an irregular foraging trajectory will be dis-

cussed later in the section). Mathematically, the structure of the predation rate term

takes the form;

Predation rate = Number of contacts encountered per unit time (Encounter rate) ×

probability of a contact being subsequently captured.

The encounter rate is a precondition for the predation rate (a prey must first be en-

countered before it can be captured) and will be derived first.

In words, the encounter rate can be formulated as follows;

Encounter rate (ER) =
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Figure 3.1: Schematic showing the relative swimming trajectory in the z direction, the
radius of R of the hemisphere and the relative velocity of the zooplankton U.

area of the perception field at r = R projected onto the x − y plane (perpendicu-

lar to the direction of swimming along the z-axis) ×

prey density (ρP - where P denotes phytoplankton) ×

relative velocity, U, on entering the sphere ×

probability of moving with that velocity.

As discussed, the shape of the volume in which zooplankton can perceive their prey

is assumed to be hemispherical. It is therefore convenient to work in spherical polar

co-ordinates. The zooplankton will register a contact the moment a prey particle en-

ters the shell of its contact hemisphere at a radial distance r = R, between polar and
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azimuthal angle intervals (χ, χ+δχ) and (φ, φ+δφ). It is also important to note that it

is not the resulting surface area that will be proportional to the amount of prey passing

into the contact hemisphere, but rather the surface area as a projection onto the ‘base’

of the hemisphere, see figure 3.2. In general the projected cross sectional area is based

(a) hemisphere (b) base of hemisphere

Figure 3.2: Diagram showing the surface element, where a prey particle can be po-
tentially detected and it’s elemental area as a projection on to the base of the contact
hemisphere.

on how good the predators sensory organs are i.e. for what range of (r, φ, χ) it can de-

tect chemical trails over or sense the presence of something edible hydro-mechanically.

For a hemispherical perception field, the elemental cross sectional area (shown in figure

3.2(b)) can be calculated in the form,

R2

2

{
sin2 (χ+ δχ)− sin2χ

}
δφ

=
R2

2
δ(sin2χ)δφ

=
R2

2
sin(2χ) δχδφ. (3.26)
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Now consider the relative velocity scale U and the probability that predator and prey

close in on one another at this velocity. The probability density function of travelling

with velocities between intervals (VP ,VP + δVP ) and (VZ ,VZ + δVZ) conditional of

being a distance R apart is given by

pP,Z (VZ ,VP |R)δVP δVZ . (3.27)

The form of this distribution will be discussed later. We can formulate the product

(relative velocity and the associated probability) needed for the encounter rate by,

U(R)pP,Z (VZ ,VP |R)δVP δVZ . (3.28)

Consequently in mathematical form, the number of prey first registered when entering

the elemental section of the ‘contact hemisphere’ in spherical polar co-ordinates is given

by

ρP
R2

4
sin(θ) U(R)pP,Z (VZ ,VP |R)dVPdVZdθdφ. (3.29)

where θ = 2χ. Here we assume ρP is a constant. Obviously ρP falls as the prey are

consumed, but usually the density of the prey is very much larger than the number of

predators, so these losses are negligible.

We now need to integrate over all angle and velocity variables to give the encounter

rate over the entire hemisphere

ρPR
2

2

∫
VP

∫
VZ

∫ π
2

0

∫ 2π

0
U(R)pP,Z (VZ ,VP |R)sin(2χR)dφRdχRdVP dVZ .

However, since the integrand contains the relative velocity variable U, it is easier to

compute this integral by means of the following change of variables:

U(x, r, t) = VZ (x, t)−VP (x + r, t),
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V(x, r, t) =
σ2
VZ

VP (x + r, t) + σ2
VP

VZ (x, t)

σ2
VZ

+ σ2
VP

, (3.30)

where σ2
Vi

is the variance of the velocity component Vi, i = Z,P and σ2
Vi

= 1
3(<

Vi ·Vi > − < Vi >< Vi >). Here < · > denotes a probability average and will be

used throughout this work. Equation 3.30 is completely general and applies for any

type of flow field and swimming distributions. However, it can be greatly simplified

if one makes certain assumptions about the characteristics governing the dynamics of

an encounter event. For example, the swimming speeds, vi (where i = P,Z) , of the

phytoplankton and zooplankton vary from individual to individual, about a certain

mean value. This type of behaviour is well summarised by assuming planktonic swim-

ming speeds are drawn from Gaussian distributions. Using an appropriate probability

distribution for Gaussian swimming, given by the normal (3 dimensional) distribution,

one can determine an average value for the swimming velocity variance, i.e.

< vi · vi >=

(
1√

2πσi

)3 ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|vi|2 exp

[
−(v2

ix
+ v2

iy
+ v2

iz
)

2σ2
i

]
dvixdviydviz ,

(3.31)

where σi is the standard deviation of vi. Then, transforming into spherical polar co-

ordinates, we arrive at the equation

< vi · vi >=
4π(√
2πσi

)3 ∫ ∞
0

v4
irexp

[
−v2

ir

2σ2
i

]
dvir = 3σ2

i , (3.32)

where vir =
√
v2
ix

+ v2
iy

+ v2
iz

. Also, in a similar way, we can derive and expression for

the average speed

vi =< |vi| >=
4π(√
2πσi

)3 ∫ ∞
0

v3
irexp

[
−v2

ir

2σ2
i

]
dvir =

√
8

π
σi, (3.33)



3.2. DERIVATIONS OF THE BIOLOGICAL TERMS 63

where vi is the average swimming speed (as distinct from the velocity). This result will

be used later in the derivation for the predation rate.

For the change of variables in equation 3.30, it can be shown that the Jacobian deter-

minant is given by, ∣∣∣∣∂(VZ ,VP )

∂(U,V)

∣∣∣∣ = 1,

so that that encounter rate can be rewritten in the form

ER =
ρPR

2

4

∫
U

∫
V

∫ π

0

∫ 2π

0
U(R)pU,V(U,V|R)sin(θR)dφRdθRdUdV

where θR = 2χR . This can be simplified slightly (by integrating over all angle com-

ponents), assuming U(R) = U(R) to an integral depending on velocity components

alone, i.e.

ER = ρP πR
2

∫
U

∫
V
U(R)pU,V(U,V|R)dUdV. (3.34)

In principle, if pU,V(U,V|R) is known, then it would be possible to calculate the con-

tact rate exactly. Unfortunately, there is only a rather incomplete knowledge pertaining

to pU,V(U,V|R) applicable to turbulent flows. Consequently we have to put forward

a model approximation for pU,V(U,V|R) which encapsulates the main features of the

flow. Lewis and Pedley (2000) argue that a suitable choice of distribution is the fol-

lowing binormal probability density function given by

pU,V(U,V|r) =
1[

2πσUσV (1− ς2)
1
2

]exp

[{
− 1

2(1− ς2)

}
{

(V− < V >)2

σ2
V

+
(U− < U >)2

σ2
U

− 2ς(U− < U >) · (V− < V >)

σUσV

}] (3.35)

where ς = U·V
3σ
U
σV

. Lewis and Pedley (2000) argue this distribution is a good approxi-

mation, partly because the distribution is exact when the separation r → 0 and r →∞.
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It is also convenient to employ, because the binormal distribution is readily integrated.

We will also make the assumption that zooplankton and phytoplankton display ‘Gaus-

sian swimming’ behaviour (discussed above). This means vP and vZ follow three di-

mensional isotropic Gaussian distributions with zero means and standard deviations

σP and σZ respectively. Applying this assumption means that both < U >=< V >= 0.

To compute the complicated integral, the following change of variables is employed

p =
U− < U >

σU
⇒ |σUp| = |U|

q =
1

(1− ς2)
3
2

(
V− < V >

σV
− ς(U− < U >)

σU

)
. (3.36)

The choice of variable becomes clear when looking at the term p2 + q2 as this is, except

for a factor, the argument in the exponential term in pU,V(U,V|r). The determinant

of the Jacobian is given by

∣∣∣∣ ∂(p,q)

∂(U,V)

∣∣∣∣ =
1

(σUσV )3(1− ς2)
3
2

and so the integral in equation 3.34 becomes

ρP πR
2

∫
q

∫
p

1

(2π)3
pσU (R)e−

1
2

(p2+q2)dpdq.

Expressing p and q in spherical polar co-ordinates (e.g. q = q(sinθqcosφq, sinθqsinφq, cosθq))

and finding Jacobian determinants of each i.e.

∣∣∣∣ ∂p

∂(p, θp, φp)

∣∣∣∣ = p2sinθp,

∣∣∣∣ ∂q

∂(q, θq, φq)

∣∣∣∣ = q2sinθq,
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equation 3.34 can be expressed as

ER =
ρP πR

2σU (R)

(2π)3

∫ ∞
0

p3e−
p2

2 dp×
∫ ∞

0
q2e−

q2

2 ×∫ π

0
sinθpdθp ×

∫ π

0
sinθqdθq ×

∫ 2π

0
dφp ×

∫ 2π

0
dφq.

(3.37)

This can finally be integrated relatively simply to give the encounter rate,

ER = 4ρPR
2

√
π

2
σU (R) (3.38)

We now need to find σU (R) explicitly in terms of R. This term will also give information

about the flow as the relative velocity U(R) is a function of the turbulent velocity

component. This term is essential in characterising the effect of which turbulence has

on planktonic competition. σU (R) is defined as

σ2
U

(R) =
< U ·U > − < U > · < U >

3
=
< U ·U >

3
(3.39)

assuming Gaussian swimming. Decomposing U(R) into it’s constituent parts (equa-

tions 3.23 - 3.25) we find that equation 3.39 includes many cross terms which equate to

zero because the turbulent velocity, zooplankton swimming and phytoplankton swim-

ming are independent. For example < vP · vZ >= 0. With these simplifications,

equation 3.39 becomes

< U ·U >

3
=
< vP · vP >

3
+
< vZ · vZ >

3
+

2 < w(x, t) ·w(x, t) >

3
− 2 < w(x, t) ·w(x +R, t) >

3

= σ2
vP

+ σ2
vZ

+
2

3

[
< w2

x > − < wxwx+R >
]

(3.40)
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Batchelor (1953) derived an exact formulation for the latter term in equation 3.40 in

the form,

[
< w2

x > − < wxwx+R >
]

= 2

∫ ∞
0

E(k, t)

[
1− sin(kR)

kR

]
dk, (3.41)

where E(k, t) is the turbulent kinetic energy spectrum of the flow in question, it depends

mainly upon at what depth one is at in the boundary layer. Now as the contact radius

lies within the inertial subrange, one typically only requires the contribution of that

part of E(k, t) relevant to that range. Usually, that mean E(k, t) ∝< ε >
2
3 k−

5
3 . The

integral can then be approximated by

4

3

∫ ∞
0

E(k)

(
1− sin(kR)

kR

)
dk = 2(< ε >)2/3

∫ 1
ηK

1
L

k
−5
3

(
1− sin(kR)

kR

)
dk (3.42)

where L is the large eddy size, ηK is the Kolmogorov length scale and the inertial

subrange is defined to lie between k ∈ ( 1
L ,

1
ηK

). Then let k∗ = kηK , equation 3.42

becomes

2(< ε >)2/3

∫ 1

ηK
L

(
k∗

ηK

)−5
3
(

1− sin(k∗R/ηK)

k∗R/ηK

)
dk∗ =

2(< ε >)2/3

∫ 1

0

(
k∗

ηK

)−5
3
(

1− sin(k∗R/ηK)

k∗R/ηK

)
dk∗

(3.43)

since ηK
L � 1. Now, let x = k∗R

ηK
, then equation 3.43 becomes

2 (< ε > R)2/3
∫ R

ηK

0
x
−5
3

(
1− sin(x)

x

)
dx ≈ (< ε > R)2/3 × 0.6 (3.44)
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where the integral has been calculated for R
ηK

= 2, a value that will be used later in

this work, and finally,

σ2
U (R) = σ2

P + σ2
Z + 0.6(< ε > R)2/3 =

π

8

(
v2
P + v2

Z +
8

π
0.6(< ε > R)2/3

)
=

π

8

(
v2
P + v2

Z + w2
T

)
,

(3.45)

where wt is the turbulent velocity scale. So finally, one obtains a relatively simple (but

quite accurate) approximation to the encounter rate, given by

ER = πρPR
2
[
w2
T + v2

P + v2
Z

] 1
2 . (3.46)

This relatively ‘simple’ formula has a crucial drawback in its formulation as we have

implicitly assumed that all the motion is linear, i.e. the relative trajectory of a predator

and its prey is a straight line. The vector U is assumed to correspond to the z-axis. In

reality, this is not so. Planktonic predators are observed to frequently change direction

whilst foraging (Bundy et al., 1998) and even if they did swim in straight lines, the ran-

dom nature of the turbulent flow would gradually cause the predators path to become

irregular (Yamazaki and Kamykowski, 1991). This observation means that formula

3.46 is actually an upper bound on the predators encounter rate and one should say,

more precisely, that

max(ER) = πρPR
2
[
w2
T + v2

P + v2
Z

] 1
2 . (3.47)

The reason equation 3.46 is an upper bound is that if the predator follows an irregular

trajectory, it must at some stage revisit a volume of the water column that it has al-
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ready visited. Hence its total search volume is reduced and consequently the effect is

most apparent if the predator changes swimming direction relatively rapidly, which is

in fact what is observed. Typically, copepods tend to re-orientate their search patterns

after only a few seconds (Bundy et al., 1998). Fish larvae forage using a ‘pause-travel’

type strategy (Galbraith et al., 2004). This involves swimming at a relatively low speed

in a certain direction for a few seconds, before pausing and scanning the local environ-

ment for any potential prey. If there is nothing to be found, they initiate a new ‘travel’

phase in a different direction.

Lewis and Pedley (2000, 2001) and Lewis (2003b) examined, in considerable detail,

the consequences of adopting these types of non-linear foraging strategies on the en-

counter rate. In the process, it was established that the actual encounter rate could be

estimated using the formula

ER = fv(U(R), R, n, τ)×max(ER), (3.48)

where fv(U(R), R, n, τ) ∈ (0, 1) is a volume fraction term. This encapsulated the ratio

of the volume mapped out by a predator following a non-linear trajectory to that of

a straight-line trajectory. It depends upon U(R) - the relative swimming speed, R

- the contact radius of the perception field, τ - the time spent foraging and n - the

number of direction changes (or ‘pause-travel’ sequences) the predator makes in a time

τ . The formulation of fv is quite complicated and its evaluation depends upon a series

of Monte-Carlo simulations. For this work, very accurate values are not necessary and

we note from the papers cited that typical values based upon parameters derived from

real planktonic predators suggest fv takes values in the range from 0.6 to 0.8. In this

work a value of 0.7 will be used throughout.

However, knowledge of the contact rate is not sufficient to fully encapsulate the plank-

tonic population dynamics. The interaction term linking the zooplankton (Z) to the
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phytoplankton (P ) populations is based on the predation rate of the zooplankton. In

other words, we want to estimate what proportion of the prey encountered by the

predator is actually captured and eaten. Experimental observations indicate this is

less than 50% for some predator-prey encounters (Jönsson et al., 2012). So the ques-

tion becomes, how can one utilise the ideas behind the formulation of the encounter

rate in equation 3.48, to derive a separate estimate of the predation rate, to be em-

ployed in the LES-NPZ model? This is difficult question. The major complication

inherent in any estimate of the predation rate is the fact that on encountering a po-

tential prey, predatory reactions are highly specific to the particular species in question.

Zooplankton, as a whole, have a plethora of mechanisms which aid in survival. Sacri-

fices must be made however, as feeding, survival, reproduction and growth cannot be

maximised simultaneously (Litchman et al., 2013). For a swimmer, encounters with

prey particles will be greatly increased, but will greatly increase their chance of being

perceived by a predator via being sensed through fluid disturbances (Kiørboe et al.,

2010; Tiselius et al., 1997). Diel vertical migration (DVM) is also a strategy used to

avoid predators, whereby they swim deeper in the daytime to avoid being perceived by

visual predators (Bianchi et al., 2013; Fiksen, 1997) and swim upwards of a night to

avoid non-visual predators (Ohman, 1990). In this study however, these effects will not

be attempted to be encapsulated as these are enhancing effects to phytoplankton thin

layering and patchiness and we are only interested in how the flow stimulates spatial

distribution.

To try and encapsulate all these different modes of predatory behaviour, for a myr-

iad of different zooplankton species, into the large scale LES-NPZ model is simply not

a feasible proposition due to computational restrictions. What is needed is a rela-

tively simple formalism of estimating predation rates from encounter rates, that can

be applied generically across a wide range of different species. It should also be able

to include the influence exerted by the small scale fluid motion encapsulated by the
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energy dissipation rate < ε >. In Lewis and Pedley (2001), such a formalism originally

derived specifically for predators with spherical perception fields, was proposed. This

was based on assigning a simple capture probability to each predator-prey encounter

event. Specifically, the probability of capture was given by

pcap(trm) =
< trm >2

< trm >2 +T 2
R

. (3.49)

Here, TR is a reaction time, specific to each predator, which roughly encapsulates how

long it needs to fixate and reduce the relative distance between itself and its prey, in

order to be able to capture it. It could also depend upon the prey’s escape capabil-

ities. Such a parameter would be relatively easy to estimate for any predator-prey

combination. The parameter < trm > is the average time a prey particle would take

to traverse the predators perception field moving at relative speed U , if the predator

chose to ignore the prey completely, Lewis and Pedley (2001) suggested that this time

frame is indicative of how long the predator would have to make its capture attempt.

If < trm >� TR then the prey would almost certainly escape, but if < trm >� TR

it should be easy for a predator to make a capture. In the formalism < trm > is not

calculated directly. Rather it is written as a function of rm, defined as the distance of

closest approach of the predator and prey under the assumption that neither reacts to

the presence of the other. This is important because it makes pcap(trm), essentially a

function of distance, and we can estimate the number of prey which approach to within

an exact distance rm, by employing an analogous method that used to estimate ER,

without going into all the details here, which are discussed in Lewis and Pedley (2001),

the predation rate can then be written in the form (c.f. equations 3.38 and 3.48)

b(z) = 4ρP

√
π

2

∫ R

0

∂

∂rm

[
fv(U(rm), rm, n, τ)r2

mσU (rm)
]
pcap(rm)drm, (3.50)

where b(z) is the predation rate. Note that the predation rate is only depth depen-

dant as the turbulent kinetic energy is assumed to be only depth dependant. The

partial derivative in this term is a difficult term to calculate but we can see that, when
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integrating over rm we can note the following relationship

∫ R

0

∂

∂rm

[
fv(U(rm), rm, n, τ)r2

mσU (rm)
]
pcap(rm)drm

= pcap(rm)fv(U(rm), rm, n, τ)r2
mσU (rm)

∣∣R
0
−

∫ R

0

dpcap

drm
fv(U(rm), rm, n, τ)r2

mσU (rm)drm

=

∫ R

0

−dpcap

drm
fv(U(rm), rm, n, τ)r2

mσU (rm)drm

(3.51)

This assumes that pcap(R) = 0, which is satisfied because if the prey’s closest approach

was R, then it would spend, by definition, no time in the perception field, and the

predator would have no chance to catch it. Now, as σU (rm) has only been calculated

for the limit rm = R so far, a simple interpolation will be used, so that in the limit

r → 0, there is no contribution from the turbulent flow. Monin and Yaglom (1975)

proposed that this should take the form

σ2
U (rm) =

C1r
2
m

1 + C2r
4
3
m

+ σ2
P + σ2

Z , (3.52)

where

C2 =
C1R

2/(w2
T − 1)

R
4
3

.

Monin and Yaglom (1975) estimate that C1 ≈ 1
9 .

All that remains is to specify the relative path by which the prey traverses the in-

terior of the perception field. Without going into detail, the assumptions are that prey

takes a circular arc path through the contact hemisphere and Lewis and Pedley (2001)
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derive the average amount of time the prey stays in the contact hemisphere by

< trm >=

√
2

π

∫ π
2

+cos−1(R+rm
2R )

π
2
−cos−1(R+rm

2R )

R

σU (rm(s))
ds, (3.53)

where rm(s) =
[
(R+ rm)2 +R2 − 2R(R+ rm)sin(s)

]1/2
and s is the path taken through

the contact hemisphere. This circular arc patch was adopted for the predation rate es-

timates employed in the LES-NPZ model.

Finally, using a simple interpolation for < fv > so that fv = 1 at rm = 0 (when

the predator won’t need to change direction to catch the prey), we can set < fv >=

1− 0.3 rmR , which gives the predation rate,

‘P grazing loss from Z’ = Z04

√
π

2

∫ R

0

−dpcap

drm

(
1− 0.3

rm
R

)
r2
mσU (rm)drmPZ. (3.54)

This is a straight-forward integral to evaluate numerically at all depths z. Note that the

depth dependence comes about through σU , which declines with depth because E(k, t)

is also declining with depth. Figure 3.3 shows the profile of the predation rate. It

shows that higher levels of turbulence (inherent in higher wind-stress regimes) increase

the predation rate, it also shows that for the highest wind-stress value, the high levels

of turbulence at the surface have a negative impact on the predation rate. This shows

that turbulence is beneficial for zooplankton as it drastically increases the amount of

predator-prey encounters, but too much turbulence can be a hindrance, as prey can

escape more easily (Pécseli et al., 2012).
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Figure 3.3: Graph showing the different predation rates one can expect to find in a
turbulent regime driven by different levels of wind stress. The dashed line indicates the
predation rate in a flow subjected to low wind stress (U∗ = 2× 10−3ms−1), the dotted
(fainter) line shows the predation rate for a moderate wind stress (U∗ = 3.5×10−3ms−1)
and the solid line, a high wind stress (U∗ = 5× 10−3ms−1).

3.2.5 Zooplankton Growth

Using the previous term derived, we can construct an analogous term for the growth

of Z, i.e.

‘Z growth from P’ =

min

[
µmax
Z , Y Z04ρP

√
π

2

∫ R

0

−dpcap

drm

(
1− 0.3

rm
R

)
r2
mσU (rm)drm

]
PZ

(3.55)

where µmax
Z is the maximum growth rate of the zooplankton and Y ∈ (0, 1) describes

how efficient the zooplankton are are extracting energy from the phytoplankton.

3.2.6 Zooplankton Death

As we are not including any organism higher up the food chain than zooplankton in

this model (due to computational restrictions), it only makes sense to model the death

rate as a simple linear function,

‘Z death’ = µdeath
Z Z (3.56)
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where µdeath
Z is the zooplankton death rate.

3.3 Nutrient Surges

In nature, nutrients can enter a system in many circumstances, from oceanic currents,

which carry nutrients from the ocean floor up to the surface waters (Traganza et al.,

1980), to a river estuary, which carries nutrients from mountains, volcanoes or land

into the seas (Frogner et al., 2001). The Galapagos Islands, for instance, consist of

newly formed volcanic rock which is rich with iron from the Earth’s core and is subject

to abrasion from the surrounding waters and so the surrounding ocean waters are iron

rich (Palacios, 2002) which is one of the reasons why this group of islands are a fertile

breeding ground for phytoplankton populations.

Many models in the literature which predict nutrient dynamics in the ocean must

take into account the oceanic currents (Lancelot et al., 2009; Palter et al., 2010; Tagli-

abue et al., 2010), which are very large scale processes, something which cannot be

incorporated into the LES model due to spatial restrictions. Nutrient waves can be

very diverse in form, from large scale currents pulling up ocean-bed nutrients (Ander-

son et al., 2009) to smaller (but significant) nutrient fluxes from rivers and estuaries

(Moore, 2010). The process, yet so diverse, is most notably on large scales and so a

first principles mechanistic derivation is not appropriate and a simple model is all that

is needed.

There will be two aspects to take into consideration when modelling the local concen-

tration of nutrients. The internal nutrient dynamics, for example, the replenishment

from the death and decay of phytoplankton cells which are already in the system, off-

setting the losses due to phytoplankton ingestion. Also, as would be expected, the

external nutrient influxes, which are arguably the most conducive to the formation of

phytoplankton blooms. This is because a nutrient surge is likely to promote a growth
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spurt in the local phytoplankton populations which rely principally on nutrient inges-

tion as a food resource. This in turn will provide additional resources for larger species

higher up in the planktonic food chain.

The nutrient boundary conditions imposed include zero flux at the surface, i.e.

∂N

∂z

∣∣∣∣
z=0

= 0 (3.57)

and a net positive flux from the base of the mixed layer e.g.

DN
∂N

∂z

∣∣∣∣
z=zml

=< wN >, (3.58)

where zml is the depth of the mixed layer.

Based on the work of Williams and Follows (1998), we employ a basic background

flux into the mixed layer of 2× 10−8 mol Nm−2 s−1, which is equivalent to < wN >=

2.8× 10−10 kg m−2 s−1 and so the boundary condition is given by

wN(x, y)|z=zml
= < wN >|z=zml

= 2.42× 10−5 kg m−2 days−1. (3.59)

This background boundary condition is taken at the base of the mixed layer as this is

where new nutrients will enter the system.

In terms of simulating a successful phytoplankton bloom, it is important to also incor-

porate some form of nutrient surge into these boundary conditions. In this instance,

we decided to impose the surge at the mixed layer base, but we equally well could have

employed it at the surface. In our case, the surge is modelled mathematically in the

form of a Gaussian distribution at z = zml with mean at the centre x = y = 0. This

means that this ‘Gaussian pump’ will be concentrated at the centre and small near

the horizontal boundaries (x, y ∈ [−60m, 60m]). The reason for this particular het-
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erogeneous construct is to encourage heterogeneity in the phytoplankton distribution.

Specifically this boundary condition will therefore take the form

wN(x, y) =< wN >|z=zml

[
1 +Qexp

(
−x2 − y2

σ2
xy

)]
. (3.60)

Here Q is a measure of the nutrient pump strength, (x,y) are the horizontal spatial

variables and σ2
xy > 0 is the variance of the Gaussian distribution associated with the

nutrient pump. This parametrisation is also very convenient as it will be easy to anal-

yse the effect of different nutrient pump strengths simply by augmenting the parameter

Q. Figure 3.4 shows this boundary condition for Q = 10 and σ2
xy = 50 and 200 respec-

tively. The main objective of this work is to find the link between turbulent mixing

and phytoplankton heterogeneity; therefore we don’t want to help aggregations too

much with nutrients. A way to make sure that the nutrient field is not playing a major

spatial role is to have a large constant flux of nutrients. This will ensure that the phy-

toplankton become satiated within a given time frame, which means they won’t feel

the spatial distribution of nutrients after this time. A value of Q = 130 (with realistic

biological parameters) ensures satiation happens after ≈ 7 days and hence forth will

be used for most simulations in this work. This of course is not biologically plausible,

but is key to removing the biological contribution towards patch formation (although

it is definitely needed initially to promote patchiness).

(a) σ2
xy = 50 (b) σ2

xy = 200

Figure 3.4: Nutrient concentrations at the base of the mixed layer, with pump strength,
Q = 10 with two different variances. These nutrient concentrations are also normalised
by the ambient nutrient flux < wN >|z=zml

.
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This concludes the formulation of the biological model that will be used, emphasis

now lies on each of the state variables and how the physical model will be coupled to

the biological model.

3.4 Coupling of the LES to the NPZ

Emphasis so far has been placed on how the flow has profound effect on the biological

dynamics. However, it is also of primary interest how the flow affects the spatial

variability of the biological fields and so a coupling of the physical and the biological

will be encapsulated by means of an advection-diffusion equation (such as Mirbagheri

et al. (2011); Pérez-Muñuzuri and Huhn (2010)) in the form

∂Γ

∂t
+ u · ∇Γ = DΓ∇2Γ + Biological dynamics, (3.61)

where Γ = N,P,Z and u is the flow calculated in the LES simulation. The most

important term here is the advection (or transport) term u · ∇Γ. This term describes

how the flow carries the biological fields Γ in space and is the main link in the model

between the fluid flow and the biology.

In the biological model alone, the driving parameters are only depth dependant, due to

dependence on the energy dissipation rate, < ε >, which is a depth dependant param-

eter. Therefore, if one wants to stimulate heterogeneity in the lateral domain, there is

a need for a 3-dimensional driver, namely the flow field. Not only is the flow needed

to make this model realistic, it is critical in initiating heterogeneity (even though it is

possible that it could also be the cause of dispersing dense aggregations). That being

said, it is apparent that for aggregations to manifest themselves, the level of mixing

needs to be such that,

(a) the level of turbulence is enough to initiate heterogeneity in the biological fields,

via upwellings
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(b) the level of turbulence is not too strong as to fully disperse aggregations.

Therefore, it follows that there will be some optimum level of vertical mixing (parametrised

by the level of wind stress, U∗) which will give ideal conditions for plankton aggrega-

tions to thrive.

The diffusion term in equation 3.61 is standard except for the diffusion rate parameter

DΓ itself. The problem lies in the fact that the flow is resolved down to a scale of about

1 metre. If the diffusion rate is of a certain size then it could give information about

the biology below that of the resolution scale which is prescribed in this model, which

is an unreasonable construct. The diffusion parameter can be considered by means of

the non-dimensional quantity, the Schmidt number Sc. This is given in the form,

Sc =
ν

D
, (3.62)

where ν is the viscosity of the water. This term can be thought of in the following way

ν

DΓ
=

level of physical diffusion

level of biological diffusion
.

Diffusion is a small scale process. Therefore, the ratio of these two parameters will

suggest the level of small scale spatial structure which the biology can achieve and sus-

tain. So, as the Schmidt number increases, the scale at which aggregations can feasibly

occur will decrease. A limit on this number will need to be imposed, dependant on the

spatial resolution prescribed to the solution grid. If the Schmidt number is too high

then we will have assumed there is small scale pattern formation below what will be

observable in the simulation. In fact, if Sc > 1 then this would imply there is more

structure in the biological fields than that of the velocity fields and so it makes sense

to limit Sc < 1 (Lewis, 2005).

Setting a limit on the biological diffusion co-efficient has implications. It means that

we could be prescribing a diffusion parameter which is lower than that in nature. It
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is possible in nature that this higher diffusion rate which acts on small scales (which

we won’t include) that can feed back into the large scales. However, over the time

scale we are looking at, it is arguable that this feedback would be negligible and so this

limitation is not detrimental to the results.

Sullivan et al. (1994) suggest that Sc should be based on the resolution scale alone,

they give this in the form

Sc =
ν

DΓ
=

1

1 + 2L0
∆

, (3.63)

where ∆3 = 3∆x
2

3∆y
2 ∆z and L0 is a resolution scale. In our simulations, ∆ ≈ 2 and

L0 = 1 giving Sc = 1
2 which satisfies the limit imposed. As we know ν we now have

our parameter DΓ and can finally solve the NPZ-LES model given by

∂N

∂t
+ u · ∇N = DN∇2N + ‘N recycled from P’− ‘N uptake by P’,

∂P

∂t
+ u · ∇P = DP∇2P + ‘P growth from N’− ‘P grazing loss from Z’,

∂Z

∂t
+ u · ∇Z = DZ∇2Z + ‘Z growth from P’− ‘Z death’.

(3.64)
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3.5 Table of Parameters

Parameter Description Numeric Values Units

P0 background P concentration 5 × 106 cells m−3

Z0 background Z concentration 2 × 104 cells m−3

N0 background N concentration 2.8 × 10−5 kg m−3

βE P growth efficiency 0.75

α light attenuation coefficient 0.04 m−1

µmax
P maximum P growth rate 1 - 10 days−1

sN N stoichiometry coefficient 2.7 × 10−14 kg cells−1

R Z contact radius 2 × 10−3 m

TR Z reaction time 5 s

µmax
Z maximum Z growth rate 0.86 days−1

µdeath
Z Z death rate 0.35 days−1

Y Z yield from P 0.003

Sources: Fasham et al. (1990); Muelbert et al. (1994); Lewis and Pedley (2000)

Lewis and Pedley (2001); Baird and Emsley (1999); Williams and Follows (1998)

Bissinger et al. (2008); Hansen (1997); Richmond et al. (2013); Straile (1997)



Chapter 4

Model Analysis

When dealing with such a complicated coupled model, one must first have a deep

understanding of the two models individually. This chapter will underline the key

components in each of the models (physical and biological) before pressing on some

ideas of the consequences of the coupling. This chapter will be devoted to validating

the model and using standard techniques to give a robust model setup.

4.1 Flow Statistics

Turbulence, as discussed in chapter 2, is a very unpredictable process. However, in a

scenario where a body of water is subjected to fixed boundary conditions, the flow pat-

terns generated often exhibit certain quasi-steady characteristics (McWilliams et al.,

1997; Sullivan and Patton, 2011b). This means that properties of the turbulent flow

can be summarised by the levels of key parameters which prescribe the boundary con-

ditions. In this work, the most important parameter controlling the physical boundary

conditions is the friction velocity, U∗, which is essentially a measure of the local wind

stress.

A fixed wind stress may not be a realistic construct in a wind-driven oceanic mixed

layer model. However, it is important to try to understand the long term behaviour

81
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of the model, subject to constant boundary conditions when the flow reaches a state

of quasi-equilibrium. In this work we are interested in trying to understand when the

physical conditions are conducive to the formation of planktonic patches. If the wind

stress is too large and the mixing too strong, biological heterogeneities will be smoothed

away (Huisman et al., 1999). But if the wind stress is weak, the level of mixing will

be too low to advect nutrients into the euphotic zone and little biological production

will be stimulated (Cloern, 1991; Peeters et al., 2013). Finding the right balance will

be key to deciding when planktonic aggregation can occur.

In this work, simulations of the LES model were run for a number of different val-

ues of U∗, e.g. in the range (0.5 - 6) × 10−3 ms−1. These values correspond to wind

speeds of about (0.5 - 5) ms−1, measured 10 metres above the surface (Brown and Wolf,

2009). It was established in Chapter 2 that turbulence in an oceanic boundary layer is

primarily depth dependant and so logically, analysing the depth dependence of the flow

statistics should enable us to quantify the mixing capabilities of the flow. Figure 4.1

shows horizontal averages of the velocity component fields (< u >,< v >,< w >), how

they vary with depth and with U∗. With increasing wind stress, the (< u >,< v >)

profiles increase in magnitude, which is as expected. < w > is negligible with depth,

due to the boundary condition prescribing no vertical velocity at the surface and base

of the mixed layer i.e.

< w >|z=0,ml = 0. (4.1)

Due to the fact that water is incompressible, the net flux of water at a particular depth

will be, by definition, zero (Sullivan and Patton, 2011a). This implies that the up-

wellings and downwellings of velocity must balance out at each given depth (averaged

over the x− y plane).

Variance statistics are important in the flow analysis as they give an indication of

the amount of energy in the boundary layer. The larger the variance, the more energy

the flow will contain (Denman and Platt, 1976; Rippeth et al., 2002). Figure 4.2 shows
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a selection of velocity variance profiles with depth including the sensitivity of velocity

variance,< u2 >, to wind stress. As the wind stress increases, two things are apparent.

When the wind stress is larger, the variance magnitude is, for the most part, larger.

Secondly, the profiles of < w2 > show there is a deeper penetration of the boundary

layer, which means there is more energy deeper in the boundary layer. Penetration in

this context refers to vertical circulation of fluid, if the boundary layer is fully pene-

trated, the fluid would circulate through all depths. The latter effect is more noticeable

in the < u2 > and < w2 > terms. In figure 4.2(c) a distinctive peak between the shal-

low and mid region of the water column is observed. This peak is pushed deeper as

the wind stress is increased. This means that the boundary layer is being penetrated

deeper by the mixing mechanisms associated with the large eddies which are being set

up, which is to be expected (Skyllingstad and Denbo, 1995; Smith, 1992). This vertical

mixing will be a key component in plankton bloom formations and will be discussed in

more detail later in this work.

The energy dissipation rate, ε, is a good measure of the extent of the turbulent charac-

teristics of the flow, as it shows how much kinetic energy is lost to heat energy (a more

turbulent flow would have more kinetic energy to convert). It is of primary interest

here for categorising those values of ε which are associated with a ‘strongly mixed’ tur-

bulent regime (relative to the perspective of plankton aggregation). With increasing

wind stress comes a bigger injection of energy into the flow, this can be observed via

the energy dissipation rate (figure 4.3). There is a vast amount of energy near the sur-

face waters in comparison to energy levels deeper in the boundary layer, so we would

not expect aggregations at the surface. When thinking about turbulent mixing, we are

primarily interested in < ε(z) >, as this gives an idea of the magnitude of turbulent

mixing in all directions. The vertical extent of this mixing is also of great interest,

as this will give insight into how the boundary layer is partitioned into turbulent and

laminar layers. We can use < w2(z) > to parametrise the vertical mixing component

(Hogan et al., 2009). The mixing components < ε(z) > and < w(z)2 > are quantified in
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the simulations relatively easily, however, quantifying their effects on the biology is not

so straight forward. This complex interaction will be studied in detail in subsequent

sections and in particular, a study of the intricate pairings of biological and physical

parameters which will allow phytoplankton to reside and flourish in a turbulent bound-

ary layer is the main focus of this work.

In general, if there is a numerical instability in the solutions, higher order statistics

will be more sensitive than lower order statistics, as the instability will be o(εn1 ), where

ε1 is an error term e.g. < ua >=< u > +ε1, < u2
a >=< u2 > +o(ε21) etc, where

ua is the actual solution and u is the approximate solution calculated in the model.

Therefore, careful analysis of the second order statistics will be carried out to check

for badly behaved solutions. This is important for two reasons. First, we have as-

sumed statistical stability in the derivation of the predation rate, second, the flow itself

subjected to static boundary conditions should reach statistical stability (as will be

discussed later). Therefore, if statistical stability is not observed, then it is solely due

to numerical errors building up and not a property of the flow field.

4.2 Statistical Stability

A convenient aspect of some boundary layers subjected to fixed boundary conditions is

the statistical stability associated (Lesieur et al., 1997; Su and Clemens, 2003; Yakhot

et al., 1988). This stability is observed in many theoretical models and in particular,

has been observed in confined channel flows (such as the model in this work) (Kim

et al., 1987; Moin and Kim, 1982). The importance of this is significant, as the depth

dependant profile of ε has to be calculated before being fed into the biological model.

By statistical stability, we mean that certain ensemble or spatial averages (under the

conditions of homogeneity and isotropy, these coalesce to the same measure (Servidio

et al., 2011)) denoted by < · >, will remain approximately constant provided the

boundary conditions driving the flow remain static (Eswaran and Pope, 1988). As
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resolving the flow is computationally expensive, calculating < ε(z) > at each time step

will be an unreasonable extra cost to the simulation. Fortunately, because the flow

spins up into a state of quasi-equilibrium, the profile of < ε(z) >, like those shown in

figure 4.3, should not change significantly with time. Hence, before each simulation one

can estimate a stationary profile of < ε(z) >, which can then be used to couple together

the biology into the flow dynamics. Essentially, that means that for flow statistics,

< ui(z, t) > ' < ui(z, t+ T ) >

< ui(z, t)uj(z, t) > ' < ui(z, t+ T )uj(z, t+ T ) >,
(4.2)

for all T > 0 provided t ≥ te, where te is a time at which the flow has incurred a period

of spin up and relaxation into statistical equilibrium.

The flow fields generated by the LES fall into two categories. First there are shear

turbulence boundary layers, in which the flow field is generated by the level of wind

stress alone. Second, there are the Langmuir turbulence (Stokes-Ekman) boundary

layers, generated by both the level of wind stress and wave forcing. Analysis of the

lower-order statistical moments of the flow will be carried out to check for stationarity

in each flow regime for increasing levels of wind stress. It is worth pointing out that

not much work has gone into analysing flow statistics on biological time scales (e.g. on

a scale of weeks) using LES, and so work done in this section will be difficult to find

comparisons from the current literature.

4.2.1 Shear Turbulence (Ekman boundary layers)

The LES code used in this work was developed for atmospheric applications whereby

the time-scales used were far smaller and the levels of turbulence were far greater. Test-

ing the statistical stability of different flow regimes under biological time-scales is there-

fore critical as it will put the dynamic time-stepping regime under rigorous diagnostics

to see if the turbulent regimes in this work are suitable for such dynamic time resolution.
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Figure 4.4 shows, for an Ekman boundary layer, first order statistics are relatively

well behaved for the most part. However, when second order statistics are analysed

(figure 4.5), it is clear that the system is not well behaved as the time-series should re-

main constant, this behaviour is accentuated for smaller values of U∗. When analysing

the statistics it was observed that all statistical moments at all depths diverge at the

same time, therefore it is reasonable to analyse just a select few second order statistical

moments for instability at a few different depths. All curves in figure 4.5 are scaled by

their own maximum for comparison i.e. the curves in figure 4.5 are of the form,

< u2(z, ti) >

maxi[< u2(z, ti) >]
.

This error in the model is due to the time stepping regime being based on the levels

of advection and diffusion (see Chapter 2). If higher levels of advection (and hence

turbulence) are detected, then the time step will be decreased to account for this and

at lower levels of turbulence, a larger time-step is permitted to enhance the efficiency of

the simulations. Due to the code being initially adapted for higher levels of turbulence

such as planetary boundary layers (atmospheric modelling), the time-stepping for low

turbulence levels has not been accounted for. Developing time-stepping dynamics to

account for low turbulence levels will not be worth investing time in as a simple time-

step cap can be implemented to stabilise solutions.

It is clear that all Ekman boundary layer simulations are unreliable with the current

time-stepping regime and so a decision needs to be made as to whether Ekman bound-

ary layers are worth investigating, when a maximum time-step needs to be implemented

to each simulation. When making this decision, we analysed the energy dissipation rate

with and without wave forcing. This will give an idea about the amount of turbulence

generated in each case. Figure 4.6 shows this comparison and highlights the order of

magnitude difference between the different regimes.
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(a) < u >

(b) < v >

(c) < w >

Figure 4.1: Graph of horizontally averaged velocity components, < u >, < v > and
< w > with depth. The dotted (fainter) line is the low wind stress (U∗ = 2×10−3 ms−1)
case, the dashed line is for a moderate wind stress (U∗ = 3.5×10−3 ms−1) and the solid
line is for a high wind stress (U∗ = 5×10−3 ms−1). All profiles are taken after the LES
has incurred a spin-up and relaxation period so that solutions of statistical moments of
the velocity components are statistically stable. These solutions were calculated from
a Langmuir turbulence regime (i.e. include wave forcing).
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(a)
< u2 >

U2
∗

(b)
< v2 >

U2
∗

(c)
< w2 >

U2
∗

Figure 4.2: Graph of horizontally averaged velocity variance components (normalised

by their respective wind stress value), <u2>
U2
∗

, <v2>
U2
∗

and <w2>
U2
∗

with depth. The dotted

(fainter) line is the low wind stress (U∗ = 2× 10−3 ms−1) case, the dashed line is for a
moderate wind stress (U∗ = 3.5×10−3 ms−1) and the solid line is for a high wind stress
(U∗ = 5 × 10−3 ms−1). These solutions were calculated from a Langmuir turbulence
regime.
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Figure 4.3: Depth profiles of the (horizontally averaged) energy dissipation rate, < ε >.
The dotted (fainter) line is the low wind stress (U∗ = 2× 10−3 ms−1) case, the dashed
line is for a moderate wind stress (U∗ = 3.5×10−3 ms−1) and the solid line is for a high
wind stress (U∗ = 5 × 10−3 ms−1). These solutions were calculated from a Langmuir
turbulence regime.
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(a) U∗ = 2× 10−3 ms−1

(b) U∗ = 3.5× 10−3 ms−1

(c) U∗ = 5× 10−3 ms−1

Figure 4.4: Graph of the average velocity, < u > and how it evolves in time to see if (first
order) statistical stationarity is maintained. The dashed line is the velocity measured
at 3 metres below the surface, the dotted (fainter) line is 17 metres below the surface
and the solid line, 31 metres below the surface. A comparison was made between a low
wind stress (U∗ = 2× 10−3 ms−1), a moderate wind stress (U∗ = 3.5× 10−3 ms−1) and
a high wind stress (U∗ = 5× 10−3 ms−1). These solutions were calculated from a shear
turbulence regime (no wave forcing present).
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(a) U∗ = 2× 10−3 ms−1

(b) U∗ = 3.5× 10−3 ms−1

(c) U∗ = 5× 10−3 ms−1

Figure 4.5: Graph of the average velocity variance, < u2(z, ti) > (normalised by its
maximum maxi

[
< u2(z, ti) >

]
) and how it evolves in time to test if (second order)

statistical stationarity is maintained. The dashed line is the velocity measured at 3
metres below the surface, the dotted (fainter) line is 17 metres below the surface and
the solid line, 31 metres below the surface. A comparison was made between a low
wind stress (U∗ = 2× 10−3 ms−1), a moderate wind stress (U∗ = 3.5× 10−3 ms−1) and
a high wind stress (U∗ = 5× 10−3 ms−1). These solutions were calculated from a shear
turbulence regime.
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Figure 4.6: Depth profiles of the (horizontally averaged) energy dissipation rate for
a fixed wind stress value of U∗ = 5 × 10−3 ms−1. This graph shows a comparison
between energy associated with a boundary layer with wave forcing (solid line) and
without (dotted line).
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4.2.2 Langmuir Turbulence (Stokes-Ekman boundary layers)

Stokes-Ekman boundary layers are more turbulent than their Ekman counterpart

and also penetrate in the boundary layer more effectively. This penetrating behaviour

is widely observable in the Oceans and Seas (Weller, 1982). Therefore the time-stepping

dynamics are more suited to these types of boundary layers as the LES is more suited

to higher turbulence levels.

First order statistics reflect the increased suitability of the dynamical time-step as they

all display a good level of stability, see figure 4.7. However, even with this increased

stability, not all second-order statistics remain stationary. Figure 4.8 shows that most

statistics are well behaved, but for the lower wind stress value (figure 4.8(a)), stability

breaks down towards the end of the time scale. This demonstrates the reliability of

this flow regime, but it also illustrates that it is not exempt from statistical instability

at the lower levels of turbulence. Further testing of this lower wind stress was investi-

gated with a time-step cap of dt = 1s being implemented. Figure 4.9 shows the second

order statistics of the flow with this increased time resolution. It displays a settling

down period which is greater than what has been previously observed, but stability

ensues in the simulation. This justifies the argument that the time-step alone is the

reason for instability. Subsequent simulations incorporated a maximum time step of

dt = 1.5s, a compromise value small enough to keep numerical instability to a minimum

over biological time scales, but large enough to allow simulations to be completed in a

reasonable time frame.
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(a) U∗ = 2× 10−3 ms−1

(b) U∗ = 3.5× 10−3 ms−1

(c) U∗ = 5× 10−3 ms−1

Figure 4.7: Graph of the average velocity, < u > and how it evolves in time to see if (first
order) statistical stationarity is maintained. The dashed line is the velocity measured
at 3 metres below the surface, the dotted (fainter) line is 17 metres below the surface
and the solid line, 31 metres below the surface. A comparison was made between a
low wind stress (U∗ = 2× 10−3 ms−1), a moderate wind stress (U∗ = 3.5× 10−3 ms−1)
and a high wind stress (U∗ = 5× 10−3 ms−1). These solutions were calculated from a
Langmuir turbulence regime (wave forcing present).
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(a) U∗ = 2× 10−3 ms−1

(b) U∗ = 3.5× 10−3 ms−1

(c) U∗ = 5× 10−3 ms−1

Figure 4.8: Graph of the average velocity variance, < u2(z, ti) > (normalised by its
maximum maxi

[
< u2(z, ti) >

]
) and how it evolves in time, to see if (second order)

statistical stationarity is maintained. The dashed line is the velocity measured at 3
metres below the surface, the dotted (fainter) line is 17 metres below the surface and
the solid line, 31 metres below the surface. A comparison was made between a low
wind stress (U∗ = 2 × 10−3 ms−1), a moderate wind stress (U∗ = 3.5 × 10−3 ms−1)
and a high wind stress (U∗ = 5× 10−3 ms−1). These solutions were calculated from a
Langmuir turbulence regime.
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Figure 4.9: Graph of the average velocity variance, < u2(z, ti) > (normalised by its
maximum maxi

[
< u2(z, ti) >

]
) and how it evolves in time to see if (second order)

statistical stationarity is maintained. The dashed line is the velocity measured at 3
metres below the surface, the dotted (fainter) line is 17 metres below the surface and
the solid line, 31 metres below the surface. This employs a timestep maximum of
dtmax = 1 s for the low wind stress case of U∗ = 2× 10−3 ms−1.
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4.3 Effect of Wind on the Mixed Layer

As discussed in chapter 2, when wind blows over the surface of water, surface waves

are produced. Naturally, water waves are complicated and so simplifications must be

made if one wants to make use of analytical models.

4.3.1 Relationship Between Stokes Drift and Wind Speed

In this work, finding a relationship between the friction velocity, U∗ and the stretch-

ing capabilities associated with the Stokes drift, Us, is a crucial component as it is an

integral part of the model and so previous work in the literature will be examined.

There are many aspects to finding the relationship between Us and U∗. For example,

how far from the shore the water in question is and how developed the waves are. Here,

we have a constant wind blowing over the surface with no deviation from this condition

and so it is a good assumption to say that the surface waves will be fully developed.

We also base our simulations out in the deep ocean, i.e. the distance to the shore will

not play a significant role. With this criteria in mind, Komen (1994) suggest that for

fully developed ocean waves, the relationship between the Stokes drift and the friction

velocity is linear, i.e.,

U∗ = A2Us, (4.3)

where A ≈ 0.21 (Komen, 1994). However, subsequent papers (McWilliams et al., 1997;

Li et al., 2005; Harcourt and D’Asaro, 2008; Sullivan et al., 2012) suggest A = 0.3 for

fully developed ocean waves. It is usual that A is defined to be the turbulent Langmuir

number, Lat and it is defined as

Lat =

√
U∗
Us
. (4.4)

The Langmuir number is variable however in a fixed turbulent regime it will be ap-

proximately fixed. Lat = 0.3 will be kept for all subsequent simulations. Now that a

relationship between Us and U∗ has been established, it is vital to explore the effect
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what effect the wind stress has on the boundary layer.

4.3.2 Wind Penetration

The mixed layer refers to the upper ocean where temperature and density are ho-

mogeneous (Sanford et al., 2011). Wind drives the mixed layer (Martinez et al., 2011),

so it is logical that a mixed layer depth would correspond to a certain wind speed and

so with a constant wind stress, we would expect to see no mixed layer deepening or

retreating. For this reason, a fixed mixed layer depth zML is employed. Without prior

knowledge to the relationship between U∗ and zML, we will simply choose a reasonable

fixed value of zML = 33 m for all U∗ (McWilliams et al., 1997). A fixed mixed layer

depth is reasonable as the model still allows for localised wind driven mixing near the

surface and laminar flow underneath, which is similar in construct to the partition be-

tween the mixed layer and the pycnocline (Jenkinson and Sun, 2011; Voropayeva and

Chernykh, 2010), although density and temperature remain constant in this model.

A series of simulations were carried out to quantify how vertical mixing levels de-

pend on local wind stress levels and to find how penetrative each wind regime is. By

penetration, we are referring to the range of depths in which vertical mixing are signif-

icant. It is difficult to quantify this vertical mixing, so a simple measurement will be

taken. This will analyse the average vertical velocity variance < w2 > as this gives an

approximate scale of the vertical mixing energy at each depth (Harcourt and D’Asaro,

2008). Finding the depth at which this energy is approximately half of the total energy

will give a rough idea of how the energy is distribution across the mixed layer. This

mid-energy depth ẑ can therefore be defined to satisfy

∫ 0

ẑ
< w2 > dz =

∫ ẑ

zML

< w2 > dz, (4.5)

and an approximate penetration depth zpen can be defined to be twice this mid-energy

depth i.e. zpen = 2ẑ. This penetration depth is based on the assumption that < w2 >

is unimodal and so this needs to be checked before zpen can be used. Figure 4.10 shows
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a typical vertical velocity variance distribution, all profiles are approximately unimodal

and skewed toward the surface as there is more energy near the surface and it is zero

at the boundaries due to the no slip boundary conditions imposed.

Simulations were taken for a mixed layer of 33 metres and figure 4.11 shows the pene-

tration depth and how it varies with wind stress. It was observed that for this value of

zML, the penetration stops deepening once U∗ ≈ 4× 10−3 ms−1. This indicates that at

this wind stress, the flow has become more of less fully developed. This means that ver-

tical mixing is such that full circulation of the boundary layer water will be permitted.

In the case where U∗ < 4× 10−3 ms−1, a partition between the turbulent upper layer

and the laminar lower layer will be more apparent. This partitioning behaviour will

be preferential for planktonic aggregation for two reasons. First, plankton are going

to be more likely to aggregate in regions where turbulent mixing is low as they will

not be dispersed by the flow. Second, for thinner distinct bands of laminar flow, thin

(depth-wise) layers of biological aggregations will be likely to manifest themselves.
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(a) U∗ = 2× 10−3 ms−1

(b) U∗ = 4× 10−3 ms−1

(c) U∗ = 6× 10−3 ms−1

Figure 4.10: Profile of the average vertical velocity variance < w2(z) > with depth
(normalised by its maximum max

[
< w2(z) >

]
). A comparison was made between a

low wind stress (U∗ = 2 × 10−3 ms−1), a moderate wind stress (U∗ = 4 × 10−3 ms−1)
and a high wind stress (U∗ = 6× 10−3 ms−1) to examine profiles for unimodality.
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Figure 4.11: Relationship between the levels of wind stress, U∗, subjected to the bound-
ary and the penetration depth, zpen, associated.
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4.4 Analysing the NPZ Equations

The LES-NPZ model proposed in this work is a robust model in that it captures the

fluid motion in the flow reasonably well. It also captures the turbulent effects on the

biology. Modelling with this amount of complexity however, does have its drawbacks.

The complicated set of equations that are being utilised do not (as of yet) yield any

analytical solutions and any (linear) stability analysis cannot be performed due to the

non-linear nature of the model. However, as in most analysis, if a solution cannot be

found, then one must strip layers of complexity from the model equations until analysis

can be carried out (with reasonable trepidation). This method can give insight, at least

on a qualitative level, to the nature of the more complex model. This technique of

simplification also has the advantage of being computationally inexpensive (and hence

less time for simulations to complete) for numerical solutions to be found and so can

make analysis of the LES-NPZ model much more efficient.

4.4.1 Reducing the LES-NPZ Model for Simple Analysis

When thinking about simplifying the LES-NPZ model, thought must go into the

obstacles that stand in the way of analysing the model. The first thing that is abun-

dantly clear is that stability analysis of the full Navier-Stokes equations will be fruitless

due to the non-linear behaviour of the system and so the first systematic approach will

be to remove the physical aspects of the flow i.e. u and ε. This process of elimination

removes the large, spatially dependant term u ·∇Γ and so analysing the diffusion term

(the small spatially dependant term) will be pointless in this analysis. This then leaves

a simple set of equations which vary only in time and so will be relatively simple to
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analyse. These equations are as follows,

dN

dt
= fP − gNP,

dP

dt
= aPN − bPZ,

dZ

dt
= cPZ − eZ,

(4.6)

where a - Phytoplankton growth from Nitrate, b - Grazing loss from Zooplankton, c

- Zooplankton growth from Phytoplankton, e - Zooplankton death rate, f - Nitrate

loss from Phytoplankton, g - Nitrate recycled from Phytoplankton. Note, although

in the model the equation for dN
dt has a quadratic dependence on N in the nitrate

recycled term, f and g are relatively small and so this simplification is reasonable and

will not change any results drastically, although the analysis for the quadratic case is

given in Lewis and Brereton (2013). These equations are now in a preferential form

for analysing their stability properties. This analysis will not give actual solutions to

the given problem, however it will give good approximations to the general dynamics.

As solutions take weeks to produce in the LES-NPZ model, parameter searches are

cumbersome and inefficient, whereas parameter searches in the simple model can be

completed in seconds. Although this system can be non-dimensionalised to yield a

more efficient scan of the parameter space, results from this exercise will be used for

qualitative purposes only and a small selection of parameters will be subject to analysis.

4.4.2 Stability Analysis

The following stability analysis is taken from the simple model analysis explored by

Lotka (1920) and Volterra (1926) and countless others (for example Harrison (1979);

Ikeda and Šiljak (1980); Sih (1987)). To analyse stability of a particular system, one

must first find points of equilibrium. These points will then be analysed to see if they

attract or repel solutions. An equilibrium point is defined as a solution that does not

change with time, this can be thought of simply as a system where all time derivatives
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are zero at the equilibrium value i.e.,

dΓ

dt

∣∣∣∣
Γ=Γ∗

= 0, (4.7)

where Γ∗ = (P ∗, Z∗, N∗) and (·)∗ indicates an equilibrium point. Finding equilibrium

values of the simple model is straight forward. The system in equilibrium satisfies the

(steady-state) set of equations,

aP ∗N∗ − bP ∗Z∗ = 0

cP ∗Z∗ − eZ∗ = 0

fP ∗ − gP ∗N∗ = 0,

(4.8)

which yields the following equilibrium points

Γ∗ce = (P ∗ce, Z
∗
ce, N

∗
ce) =

(
e

c
,
af

bg
,
f

g

)
(4.9)

and

Γ∗ex = (P ∗ex, Z
∗
ex, N

∗
ex) =

(
0, 0, N ∗̄

)
, (4.10)

where Γ∗ce is the co-existance equilibrium, and Γ∗ex in the extinction equilibrium. Now

that equilibrium points have been found, their stability properties can be analysed. To

do this, the Jacobian matrix of the system must be found (this matrix is a system of

first order partial derivatives which represent the first order (linear) terms of the Taylor

expansions), this is defined as Jij = ∂fi
∂Γj

where fi = dΓi
dt . This is explicitly represented

by

J(P,Z,N) =


aN − bZ −bP aP

cZ cP − e 0

f − gN 0 −gP

 . (4.11)
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We now need to use this to analyse each equilibrium point as it is possible that each

equilibrium point has an effect on the trajectories of the biological fields. For each

equilibrium point, we have associated Jacobian matrices

J∗ce (P ∗ce, Z
∗
ce, N

∗
ce) =


0 − be

c
ae
c

acf
bg 0 0

0 0 − eg
c

 (4.12)

and

J∗ex (P ∗ex, Z
∗
ex, N

∗
ex) =


aN∗ex 0 0

0 −e 0

f − gN∗ex 0 0

 . (4.13)

By solving the associated characteristic equation for each equilibrium state,

det(J∗ − λI) = 0

where λ is the eigenvalue of the system, we find the following eigenvalue solutions,

J∗ce : λ = −eg
c
,±i

√
aef

g
(4.14)

and

J∗ex : λ = 0,−e, aN∗ex. (4.15)

Taking into account that all parameters are positive, this implies that Γ∗ce is oscilla-

tory. One mode attenuates over a time period proportional to that of c
eg . The other

modes are oscillatory with angular frequency
√

aef
g . Γ∗ex is unstable. This not to say

that dynamics can be determined by examining the stability of each equilibrium point

separately, emphasis instead should lie on the fact that if the system is oscillatory, then

the trajectories have the possibility of going between each point and so an interplay

between the two stability regions may take place.
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This is a complex system and changing most parameters will have an effect on both

the equilibrium state and the stability and so making a choice about which parameters

should be explored in the system must come under careful consideration. For this work,

the trajectories of the phytoplankton field is of greatest interest and so the eigenvectors

for each equilibrium region must be examined. By solving

(J∗ce − λiI)v∗ce, i = 0 (4.16)

and

(J∗ex − λiI)v∗ex, i = 0, (4.17)

where vi is an eigenvector corresponding to λi for i = 1, 2, 3, we can generate linearised

trajectories around each equilibrium point (the algebra of finding each eigenvector

associated with P is omitted due to it being untidy, but see table below for approximate

parameter values).

Parameter Numeric Values Units

P0 = P (0) 0.5

Z0 = Z(0) 0.5

N0 = N(0) 1

a 0.51 days−1

b 1.2 days−1

c 0.9 days−1

e 0.34 days−1

f 0.008 days−1

g 0.016 days−1

m 0.19 days−1

Approximate values calculated from table 3.5
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Neglecting small parameter values, phytoplankton concentration trajectories are given

by

at : Γ∗ce P (t) = P ∗ce −
N0eg2

c2f
e−

egt
c +

[
(P0 − P ∗ce) + N0eg2

c2f

]
cos(mt)

+
[
be
cm

(
aN0
b − Z0

)]
sin(mt)

(4.18)

and

at Γ∗ex : P (t) = P0e
aN∗ext (4.19)

where P0, Z0 and N0 are initial conditions and m =
√

aef
g . Note that the “extinction”

equilibrium point is unstable and the phytoplankton population will always bounce

back. In the short term e−
egt
c ≈ cos(mt) ≈ 1, which reduces equation 4.18 to

at : Γ∗ce P (t) = P ∗ce + [P0 − P ∗ce] cos(mt) +
[
be
cm

(
aN0
b − Z0

)]
sin(mt). (4.20)

Equation 4.20 gives some insight into how the phytoplankton population will develop.

The magnitude of the fluctuations can be analysed by the factors in front of the sin

and cos terms. As we cannot feasibly analyse the full parameter space, we will pick a

select couple of parameters to examine which will give the most influence in the system.

Arguably, a and N (≈ N0 and N∗ex) will give the most interesting information as they

influence both of the equilibrium points. Analysis of the initial conditions will also be

carried out to find the sensitivity of the system to these.

To begin analysing the trajectories of the biological fields, a base case, using parame-

ters from experimental data will be used as a guide (approximated from the table of

parameters in section 3.5). Figure 4.12 shows the dynamics of all 3 biological fields.

The zooplankton field has a similar oscillation pattern as that of the phytoplankton

field but with an added time lag which is to be expected. The nutrient field declines

slowly in the time frame. This can give us some expectation as to what we might

expect in the LES-NPZ model dynamics.
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Figure 4.12: Dynamics of the simplified NPZ model using a base case parameter set in
the table of parameters above. The solid line shows the concentration of phytoplankton,
the dotted (fainter) line shows the zooplankton concentration and the dashed line shows
the nutrient concentration.

4.4.3 Near Extinction Behaviour

Near extinction behaviour in planktonic species is very common, for example the

north Atlantic spring bloom (Lancelot and Billen, 1984; Mahadevan et al., 2012; Song

et al., 2010) which lasts for around 1 month and then the population seemingly dies

and then re-emerges a year later to repeat the cycle. If we are to simulate reasonable

dynamics of a plankton bloom, then this (near) extinction behaviour should be ap-

parent. One of the limiting factors to picking up annual blooms in our model is time

constraints imposed due to limitations in computing power. Annual blooms can simply

not be modelled at the expense of the resolution of the flow field and so blooms will be

modelled on a time scale of weeks. Note, however, that the annual variability will not

be modelled in this work, as this is far too unrealistic to capture.

At a near extinction phase, the population falls to a minimum value Pnex > 0. Now as

a (or N0) increases, the amplitude of the oscillations increase which drives Pnex → 0

as a → ∞. At this time, the solutions are very close to the extinction equilibrium

point, in which case the analysis looked at earlier will apply. So we have seen that the
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P population recovers from Pnex following the equation P ≈ Pnexe
aP ∗ext. So now the

recovery phase is driven faster by larger values of a. It is the complex interaction of the

decay and recovery phases that determine how long the P population remains close to

zero. Numerical simulations, figures 4.13 and 4.14 show that the near extinction phase

is extended for large a and N0.

(a) µmaxP = 2.16 days−1 (b) µmaxP = 4.32 days−1

(c) µmaxP = 8.64 days−1 (d) µmaxP = 17.28 days−1

Figure 4.13: Dynamics of the (normalised) phytoplankton concentration (solid line)
in a time period of a month. The dotted line shows the phytoplankton co-existence
equilibrium value Pce. The dynamics where compared for maximum phytoplankton
growth rates of µmaxP = (2.16, 4.32, 8.64, 17.28) days−1.

Initial conditions in this system must be chosen carefully as we do not want to in-

fluence the system too much by choosing some unrealistic values which are far away

from equilibrium. The influence of P0 is shown in figure 4.15. As P0 is increasing,

extinction time is massively increasing, quickly rendering results useless in the time

frame. Therefore, the initial condition of the P concentration will be chosen such that

it is within 50% of P ∗ce. Therefore, a value of P0 = 0.5 will be chosen for all subsequent

simulations. Choosing a value close to equilibrium will also give an untarnished view
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(a) N(0) = 0.5 (b) N(0) = 1

(c) N(0) = 2 (d) N(0) = 4

Figure 4.14: Dynamics of the (normalised) phytoplankton concentration (solid line)
in a time period of a month. The dotted line shows the phytoplankton co-existence
equilibrium value Pce. The dynamics where compared for initial (normalised) nutrient
concentrations of N0 = (0.5, 1, 2, 4).

on how the biological parameters effect the system. P0 = 0.5 is also a realistic con-

centration as it is well within an order of magnitude of the background concentration

value, which was used to normalise P ∗ (i.e. P = 1 gives a reasonable background

concentration). The actual choice of the initial condition has no biological significance;

all that is required is regular oscillations with a frequency of at least 2 cycles within a

feasible simulation time (≈ 3 weeks).
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(a) P (0) = 0.5 (b) P (0) = 1

(c) P (0) = 2 (d) P (0) = 4

Figure 4.15: Dynamics of the (normalised) phytoplankton concentration (solid line) in a
time period of a month. The dotted line shows the phytoplankton co-existence equilib-
rium value Pce. The dynamics where compared for initial (normalised) phytoplankton
concentrations of P0 = (0.5, 1, 2, 4).
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4.5 Wind Stress Effect on Biology

Previously, we found that increasing wind stress results in an increase in energy dissipa-

tion, vertical mixing and deeper penetration of the boundary layer. How this increase

in energy into the flow effects biological concentrations is crucial in the understanding

of aggregate formations.

Turbulent mixing is a depth dependant process, so investigating how different lev-

els of turbulence effect the biological concentration in terms of depth will be the first

step in this analysis. The effect on biological concentrations can also aid in understand-

ing the fluid dynamics of the boundary layer, because the biological concentrations are

essentially passive tracers (discussed in this section).

4.5.1 Phase Locking

The biological concentrations used in this model are biologically active passive trac-

ers. This means they can grow (in-situ), but never move in space on their own accord

(except through slow diffusion). This is convenient for flow analysis, as it will give

information about the level of mixing. For example, if the average concentration of

phytoplankton was approximately the same as the phytoplankton concentration at all

other depths and stayed that way over the time period, then we could infer mixing

was strong as everything looks the same across all depths. This ‘phase locking’ is also

important as it will give an indication to levels of wind stress which will completely

mix biological concentrations, which will enable us to refine the parameter space for

wind stress, as we will know not to analyse wind stress values that are certain to fully

mix the biology.

Inferring that lateral aggregations cannot form when the biology is phase locked (depth-

wise) is a fair assumption, but one which will be pressed upon in the next chapter.

Figure 4.16 demonstrates the process of phase locking when levels of wind stress are
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increased. The sudden change from (depth-dependant) heterogeneity to homogeneity

indicates that there is a critical value of wind stress which causes this to happen. To

try to quantify this level heterogeneity, we will use the following metric,

Iz(U∗) =
1

MN

N∑
j=1

M∑
i=1

(
< P (zi, tj) > −P̄ (tj)

)2(
P̄ (tj)

)2 , (4.21)

where P̄ (tj) = 1
M

∑M
i=1 < P (zi, tj) >, <> denotes an average taken over the lateral

domain, tN is the total simulation time and zM = zML. This metric Iz, will give an

indication of the (normalised) variance between concentrations over all depths for a

given wind stress value. Although Iz may change with different biological parameters,

it is most likely to be primarily governed by the physical forcing. Figure 4.17 shows

that when the wind stress is increased, Iz plummets after a particular value between

U∗ = (3.5, 4)× 10−3 ms−1, which indicates that the boundary layer is being fully pen-

etrated between these value. This is consistent with the hypothesis that the boundary

layer is being penetrated when the penetration depth zpen (figure 4.11), stops decreas-

ing (significantly) and appears to approach a stationary value. As the wind stress is

increased, phytoplankton concentration appears to be averaged out across all depths,

i.e.
∑N

i=1 P (zi, t, U∗) is the same for all U∗ (note however that the dynamics will change

slightly as some biological parameters are directly related to U∗).

This is however only half of the argument as the lateral fields have not yet been anal-

ysed for heterogeneity, but it would be logical that if the boundary layer is being well

mixed throughout all depths, then it would also be well mixed throughout the lateral

domain. We will explore the dynamics of the lateral heterogeneity in the next chapter.

4.5.2 Thin Phytoplankton Layers

Phytoplankton aggregations have been observed and modelled for decades, how-

ever, in light of recent improvements in experimental apparatus, which can measure

fine scale features of phytoplankton blooms very accurately, it has come to light that
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a common characteristic of blooms is the small depth span. They can span a vast

distance (km’s) and yet their vertical extent may be O(10 cm) (Sullivan et al., 2010b).

They also appear deeper in the boundary layer, (< 5 m) (Cheriton et al., 2009).

For aggregations to be permitted, they must avoid the high levels of vertical mix-

ing near the surface, but there must be enough vertical mixing that nutrients can be

brought up to the region they are in (Hu et al., 2011; Cloern, 1991). This middle

ground seems a reasonable mechanism for thin layers of phytoplankton aggregations

to form and will be the main mechanism to be examined in this work. We have found

that there is a particular wind stress value which mixes the entire phytoplankton pop-

ulation in the model. Further to this, we will examine how wind stress values below

this critical wind stress impact the depth dependence of the biology. Figure 4.18 shows

how < P (z, t) > varies with depth at a select number of times. For U∗ = 2×10−3 ms−1

(figure 4.18(a)) phytoplankton concentrations are out of phase at most depths, with

only the top 5 metres in phase. For a moderate wind speed of U∗ = 3.5 × 10−3 ms−1

(figure 4.18(b)), the majority of depths are phase locked and biological concentrations

are only permitted to be out of phase at the bottom 10-15 metres. Figure 4.18(c)

indicates that for a wind stress above the critical value, the whole concentration field

is phase locked as all concentrations are the same at all depths. As a postulation, it

will be likely that in the phase locked regions of the boundary layer, biological concen-

trations will be well mixed and so no aggregations are likely to occur in these regions.

This means that aggregations will occur below the phase locked region and as the wind

stress is increased, aggregations will occur deeper in the boundary layer.

Thought now needs to be given in the quantification of these thin layers within the

model set-up. There are many definitions in the literature for thin layers, one for ex-

ample is that the average concentration in the layer should be 3 times the background

and the vertical extent must not exceed 5 metres (Durham and Stocker, 2012). Using

average < P > concentrations is tempting to feed into the criteria, however this should
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not be used for the following reasons. Firstly, thin layers are not likely to be a result

of the biology being out of phase, as thin layers usually reside at a fixed depth (Rines

et al., 2010) and an out of phase concentration will give thin layers over a number of

depths e.g. figure 4.18(a). Secondly, it doesn’t use the laterally heterogeneous distribu-

tions of phytoplankton, which will give a more detailed description of the aggregation

and how intense the aggregation is.

Average concentrations of phytoplankton give great insight into the aggregation mech-

anism, however more information is needed if one wants to give an accurate description

of the mechanics and dynamics of these aggregations. Next, we will examine how the

lateral domain of concentrations is affected with different levels of wind stress and how

this extra information can improve the picture of what is permitting phytoplankton to

aggregate.
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(a) U∗ = 2× 10−3 ms−1

(b) U∗ = 3.5× 10−3 ms−1

(c) U∗ = 5× 10−3 ms−1

Figure 4.16: Dynamics of the phytoplankton and zooplankton concentration calculated
from the LES-NPZ model at every depth. The solid lines shows the phytoplankton
concentrations at all depths and the dotted (fainter) lines show the zooplankton con-
centrations at all depths (note that zooplankton concentrations are the larger of the
two). A comparison was made between a low wind stress (U∗ = 2×10−3 ms−1), a mod-
erate wind stress (U∗ = 3.5×10−3 ms−1) and a high wind stress (U∗ = 5×10−3 ms−1),
which serves to illustrate the ‘phase locking effect. Parameter values are analogous to
those used generate figure 4.12.



4.5. WIND STRESS EFFECT ON BIOLOGY 117

Figure 4.17: Relationship between the levels of wind stress subjected to the boundary
layer and the levels of (normalised) variance between phytoplankton concentrations at
each depth, averaged over time (Iz).
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(a) U∗ = 2× 10−3 ms−1

(b) U∗ = 3.5× 10−3 ms−1

(c) U∗ = 5× 10−3 ms−1

Figure 4.18: Profiles of average phytoplankton concentrations over all depths. The
solid line shows the profile after 3 days, the dotted (fainter) line shows the profile at 13
days and the dashed line shows the profile at 19 days. A comparison was made between
a low wind stress (U∗ = 2×10−3 ms−1), a moderate wind stress (U∗ = 3.5×10−3 ms−1)
and a high wind stress (U∗ = 5× 10−3 ms−1).



Chapter 5

Aggregation Intensity Analysis

5.1 Plankton Aggregation Definitions

Plankton blooms are common place in the ocean (Pinckney et al., 1998). However, the

spatial distribution of a bloom is irregular and does not take a specific form. Quan-

tifying such patterns is therefore not such a simple task, so we will explore possible

measures quantifying aggregations currently in the literature and make a choice as to

which method may be most effective for this work. This chapter will contain the bulk

of the novel techniques and new results in this thesis.

5.1.1 Aggregation Measures

The type of boundary layer modelled in this work is driven by shear and so it is

likely that the type of aggregation that will be observed will be thin layer planktonic

aggregations (via straining). Thin layers usually have thickness of between a few cen-

timetres and a few metres. Certain criteria need to be met before a aggregation can

be classed as a thin layer (Durham and Stocker, 2012), these include;

1. The aggregation must be spatially and temporally persistent.

2. For a ‘thin’ layer, the vertical extent must not exceed a certain value.

3. The maximum concentration must exceed a threshold.

119
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This raises the question as to what constitutes a concentration threshold? There is no

consistent definition in the literature and so a plankton aggregation may be present

according to one author and not the other, therefore an alternative approach will be

sought.

In the field, thin layers have been found with ratios of maximum concentration to

background concentration much higher than 1 order of magnitude with one study find-

ing this ratio to be a maximum of 55 (Ryan et al., 2008). Maximum concentrations, as

a statistic however, are not very reliable and may be misleading. Results like this are

rare, but it’s an indicator that there are likely to be many other physical and biological

effects which can enhance aggregations over and beyond the effects of shear (which is

illustrated in figure 5.1(a)).

Figure 5.1 illustrates some other mechanisms that can lead to aggregations in thin

layers. Sensing and signalling capable organisms can swim towards high nutrient con-

centrations or light levels 5.1(b). The most observed case is that of diel vertical mi-

gration (DVM) in which zooplankton swim towards the surface of a night and deeper

during the day to avoid predation themselves (McManus et al., 2005; Sullivan et al.,

2010a). Cells can form at pycnoclines, where there is a sharp change in water density

(and usually temperature), known as density stratification (see figure 5.1(c) (Alldredge

et al., 2002; McManus et al., 2008). This happens because at the pycnocline, there

is a small depth interval with a huge range of water densities, which makes it more

likely that phytoplankton will be neutrally buoyant in this interval, if they are neu-

trally buoyant at this region then they will naturally be pulled towards the pycnocline.

Gryotactic trapping, in which motile, bottom heavy cells enter a region of high shear.

This level of shear is enough to rotate the cells enough that they start tumbling in

the (small) region of high shear (Figure 5.1(d)) (Pedley and Kessler, 1990). Enhanced

growth rates at mid-depth levels, where the nutrient stimulus from the base of the

mixed layer, coincides with adequate light levels giving a comfortable depth at which
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to feed and reproduce. Alternatively, this can happen when there is a locally high

concentration of nutrients, see figure 5.1(e) (Cullen and Eppley, 1981; Ryan et al.,

2008). Finally, intrusion, where phytoplankton are spread out at peaks in horizon-

tal velocity (occurring at small depth intervals) 5.1(f) (Ryan et al., 2010). All these

mechanisms have the potential to generate phytoplankton aggregations and high cor-

relations have been made to thin layers and each of these mechanisms in the literature.

Figure 5.1: Different mechanisms behind planktonic thin layers. Used with permission
from Durham and Stocker (2012).

The current work in the literature involving generation of thin layers via shear have

been previously done in 2D simulations e.g. Birch et al. (2008), which have demon-

strated very successfully that shearing promotes thin dense layers of passive tracers.

However, this is just the first part in studying this phenomenon via straining. It is
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important, particularly in turbulent flows, to assess the 3-dimensional aspect of this

shearing mechanism as turbulence is inherently 3-dimensional. This study will include

delving into three dimensions and assessing the role of Langmuir cells in these thin

aggregations and how this may enhance thin layer formation. Langmuir cells produce

convergent zones in the ocean and the enhancement this could have to phytoplankton

aggregations could be a crucial component not yet explored in great detail.

Experimental work using fluorescent imaging has advanced rapidly in the last cou-

ple of decades and detailed maps of phytoplankton aggregations can be extracted from

the ocean giving a very precise picture of thin layers (Cowles and Desiderio, 1993;

Benoit-Bird et al., 2010; Moline et al., 2010). These experiments include locating high

density chlorophyll concentrations and then analysing the aggregation formation. How-

ever, as this work is a mathematical study, certain constraints naturally form part of

the model. One large constraint is the horizontal span of the domain. If, for instance,

a thin patch occurs in the model, greater than 3 times the background concentration,

but spans a fraction of the horizontal domain, locating that patch via average data will

not prove effective, as the signal will be averaged out by the relatively large domain

size. In other words, the luxury of locating the aggregation first and then analysing

the horizontal span that it occurs in, is not at our disposal. This motivates the idea

that, what is needed is a quantitative measure of the horizontal heterogeneity.

As discussed in chapter 4, average phytoplankton dynamics only have high concen-

tration differentials with depth when they become completely out of phase (due to

varying growth rates with depth). These large differentials are short lived and usually

only occur on the way to a near extinction event or a rapid growth event (typically

from near extinction). If it was assumed that P did not vary with depth, then the

level of horizontal heterogeneity would be the indicator of where the aggregation was

occurring and how thick the layer was. For example, if the average concentration of

phytoplankton had a value of 1 at all depths, then the depths at which the phytoplank-
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ton were well mixed and homogeneous, would be 1 at all x− y points at those depths.

Now consider a small depth interval, where concentrations were not well mixed and

phytoplankton were aggregating in one third of the horizontal domain and nowhere

else, so that the concentration has a value of 3 in one third of that domain and 0

elsewhere. This would still give an average value of 1 at that depth, but would be

considered to be a thin layer only if those x − y points where concentrations are at

P = 3 were analysed in isolation. This is an illustration that average phytoplankton

concentration with depth should not be used to determine if there is a thin layer present.

Reigada et al. (2003) suggested that horizontal heterogeneity can be quantified by

the following statistic,

ΠP =
< P >2

< P 2 >
. (5.1)

This gives a value of ΠP = 1 when the horizontal field is perfectly homogeneous and

ΠP = 1
N2 when all concentrations are in one node on the grid (N represents the total

amount of lateral grid points). This attempts to encapsulate heterogeneity by the lower

the number is, the more heterogeneous the distribution is.

A novel solution to this problem, proposed by Fessler et al. (1994) and used in Durham

et al. (2011c), is to split the lateral domain up into boxes of a prescribed size and com-

pute the capacity of each box, relative to the capacity expected if the concentrations are

distributed randomly. Essentially this measure is a ratio between standard deviation

and mean concentration. This method has an extra complication of choosing a partic-

ular box size and so prior knowledge of the size of the aggregation expected must be

estimated. This is an ideal solution for measuring micro-scale type aggregations. This

method is also geared towards discrete data which does not apply for results derived

from the LES-NPZ model.

An alternative measure of quantitative heterogeneity was suggested by Lewis (2005),
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given by

I =
< (P− < P >)2 >

< P >2
, (5.2)

where I is the aggregation intensity. This is very similar to that of Reigada et al.

(2003) (in fact I = 1
ΠP
− 1) , and an analogous continuum form of the measure sug-

gested by Fessler et al. (1994). If the concentration is homogeneous, I = 0 and the

more heterogeneous the field is, the higher the value. To put some common perspective

to this statistic, if half of the concentration field was 3 times that of the other half of

the concentration field, then this statistic would give a value of 1
4 . Although there is

no discernible difference between I and ΠP , I increases with levels of heterogeneity

and perhaps gives a more intuitive meaning with regards to this study and so will be

utilised for the rest of this work.

It is important to understand that high levels of heterogeneity may not imply that

there is a phytoplankton bloom (e.g. where there is high heterogeneity but low concen-

tration relative to the rest of the biological field), instead it will indicate places where

the biology is able to overcome the turbulent mixing. Therefore the reader should note

the distinction between planktonic aggregations and planktonic blooms, with emphasis

on the former in this work.

5.2 Aggregation Intensity Dynamics

The aggregation intensity measure, I, is a robust measure of the heterogeneity of a

concentration field as the statistic is low order and hence will not be subjected to

sharp fluctuation. The next step is to analyse the evolution of I as the phytoplankton

population passes through a typical cycle of growth and decay. Figure 5.2 shows a

typical biology mean concentration evolving in time with its corresponding aggregation

intensity. During this phytoplankton cycle, we see a surge in aggregation intensity at the

very beginning of the cycle, followed by a slow decline to homogeneity, corresponding

approximately to the maximum of < P >. As < P > declines, there is a secondary
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Figure 5.2: Typical aggregation intensity dynamics during a phytoplankton life cycle
for µmaxP = 8.64 days−1. The dashed line shows the evolution of the mean phytoplank-
ton concentration (RHS scale) and the solid line shows the evolution of the aggregation
intensity, I (LHS scale). This was taken at z = 25.6m which was the optimum ag-
gregation depth for this simulation (see later for definition of optimum aggregation
depth).

surge in aggregation intensity. This behaviour is typical of the model at those boundary

layer depths at which I is appreciable. In order to shed light on this phenomenon, one

needs to examine the mathematical equations governing the evolution of I.

5.2.1 Aggregation Intensity Dynamical Decomposition

Firstly, to do any analysis on this heterogeneity measure, one must first simplify the

LES-NPZ model equations following similar procedures used for the stability analysis

of chapter 4 (we can take away depth dependence in the biological parameters as I

is depth independent). This gives one the following equation for P (note we are only

interested in the dynamics of the phytoplankton field and so analysis will only be on

the equation for the dynamics on P ),

∂P

∂t
+ u · ∇P = DP∇2P + aPN − bPZ (5.3)
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where again, a and b are growth and predation rates respectively. Following an analo-

gous method to deriving the equation for the energy dissipation rate, we split all the

variables into their mean and fluctuating parts, i.e.

u =< u > +u′

P =< P > +P ′

Z =< Z > +Z ′

N =< N > +N ′

where < · > denotes horizontal averaging and (·)′ denotes a fluctuation term around the

mean (at a particular depth). Substituting these terms into equation 5.3, multiplying

through by 2(< P > +P ′), averaging horizontally and throwing away small horizontal

gradients, we arrive at the equation

∂ < P ′2 >

∂t
+
∂ < P >2

∂t
+
∂ < w >< P >2

∂z
+ 2 < P >

∂ < P ′w′ >

∂z

+
∂ < w >< P ′2 >

∂z
+ 2 < P ′w′ >

∂ < P >

∂z
+
∂ < P ′2w′ >

∂z

= DP

(
∂2 < P >2

∂z2
+
∂2 < P ′2 >

∂z2
− 2

(
∂ < P >

∂z

)2

− 2

〈(
∂P ′

∂z

)2
〉)

+2a
(
< P >2< N > +2 < P >< P ′N ′ > + < P ′2 >< N > + < P ′2N ′ >

)
−2b

(
< P >2< Z > +2 < P >< P ′Z ′ > + < P ′2 >< Z > + < P ′2Z ′ >

)
.

(5.4)
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We also need to find the term ∂<P>2

∂t , which can be found more simply by averaging

equation 5.3 and multiplying by 2 < P > i.e.,

∂ < P >2

∂t
+
< P >2< w >

∂z
+ 2 < P >

∂ < w′P ′ >

∂z

= DP

(
∂2 < P >2

∂z2
− 2

(
∂ < P >

∂z

)2
)

+2a
(
< P >2< N > + < P >< P ′N ′ >

)
−2b

(
< P >2< Z > + < P >< P ′Z ′ >

)
.

(5.5)

These two equations essentially govern the evolution of the aggregation intensity, since

∂I

∂t
=

∂

∂t

(
< P ′2 >

< P >2

)
=

1

< P >2

(
∂ < P ′2 >

∂t
− I ∂ < P >2

∂t

)
. (5.6)

It is then a simple matter of taking a combination of equations 5.4 and 5.5 to arrive at

the final equation for the aggregation intensity dynamics,

∂I

∂t
+

1

< P >2

∂ < w′P ′2 >

∂z
+ 2

< w′P ′ >

< P >2

∂ < P >

∂z
− 2I

< P >

∂ < w′P ′ >

∂z

=
DP

< P >2

(
∂2 < P ′2 >

∂z2
− 2

〈(
∂P ′

∂z

)2
〉

+ I

(
2

(
∂ < P >

∂z

)2

− ∂2 < P >2

∂z2

))

+
2 (1− I)

< P >

(
a < P ′N ′ > −b < P ′Z ′ >

)

+
2

< P >2

(
a < P ′2N ′ > −b < P ′2Z ′ >

)
.

(5.7)

The first line in equation 5.7 (not including ∂I
∂t ) are the mixing and transport terms,

which will be referred to as the “flow terms”. The second line comprises the diffusion

terms. The third line is made up of biological covariances, which will be referred to
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as “biological doubles” and the fourth line will be referred to as the “biological triples”.

The equation derived for the aggregation intensity dynamics is very complex and needs

careful analysis as to the key features which stimulate heterogeneity in the concentra-

tion field. First of all, there is the interplay between the biological terms and the flow

terms. If the flow terms are larger than the biological terms, then any potential aggre-

gations stimulated by the biological growth, will be dissipated by the fluid dynamics

before their existence can manifest itself by a spike in the level of I. The intricate

interplay between these processes will be investigated in this section.

5.2.2 Biology vs. Flow

One of the problems associated with simplifying the model is that some important

complexity has been taken away. One of the main concerns is that the nutrient satiation

effect on P has been removed. The parameters used in the LES-NPZ model suggest

that a phytoplankton cell reaches a satiated state if it resides in a nitrate concentration

of N ≈ 3. In such a concentration, growth will reach its maximum efficiency. With the

nitrate flux condition set to Q = 130, the ambient nutrient concentration hits this con-

centration after 6-7 days. This means that any comparisons between the correlations

must be made in the first week of simulation time if one wants to use the aggregation

dynamic equation. When the < P > field is completely satiated with nutrients, the

phytoplankton will essentially see the entire nutrient field as homogeneous. However,

this does not mean that the correlations will be useless at these times. As the correla-

tions have the same period as the population cycles themselves, it will give historical

information about which quantities are stimulated by the aggregations, and so can be

used as a guide for what the mechanisms are behind the said aggregations.

The analysis of these correlation terms must be treated with a certain degree of caution

as data is only recorded at certain specific sampling times. Monitoring these correla-

tions continuously during a simulation would exceed computational storage capacity
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limits. The correlation statistics exhibit rapid fluctuations, on time scales much faster

than the sampling time. Consequently the sampled data gives a smoother impression

of the evolution of the correlation statistics than is actually the case. Therefore, we

can apply certain smoothing techniques to the correlation data to get a general view

of the dynamics of each term without any great loss of information. This smoothing

will be a 5-point moving average of the form,

fs
i =

1

5

i+2∑
j=i−2

fj

where fj is the data and fsi is the smoothed data, around t = ti.

When the mean phytoplankton concentration falls to a very low level i.e. < P >≈ 0,

the aggregation intensity measure behaves erratically. We are not interested in popula-

tion fluctuations about a very low background level, rather we are looking for evidence

of concentration aggregations against a backdrop of medium to high < P > levels.

Hence in this investigation we will focus on behaviour when < P >� 0. We can apply

a simple filter, which effectively disregards all the terms in equations (5.4 - 5.7) at

times when < P >≈ 0. For example, take the aggregation intensity, I, we can apply

the following

I = I ×min

(
1,

(
< P >

0.1

)2
)
, (5.8)

which means that if < P > goes below a value of 0.1, then the aggregation intensity will

be penalised. The same process will be applied to the biological doubles and triples, as

well as the flow terms.

Figure 5.3 shows the evolution of the aggregation intensity taken from three differ-

ent simulations associated with µmax
P = (4.32, 8.64, 17.28) days−1. Each simulation

was driven by the same wind stress value, U∗ = 3.5 × 10−3ms−1. One can see in fig-

ure 5.3 the same characteristic bimodal structure (for each period) to the aggregation
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intensity evolution, as highlighted in figure 5.2. The key question is, what is driving

these sudden surges in aggregation intensity during the growth and decay phases of the

mean concentration field < P >? From the analysis of equation 5.7, one would expect

aggregation intensity growth to be promoted when the biological doubles and triples

are large compared with the flow terms. This ratio between the biological terms and

the physical terms can be expressed by

Biology

Flow
=

∣∣∣∣∣∣∣∣
2 (1− I)

< P >
(a < P ′N ′ > −b < P ′Z ′ >) +

2

< P >2

(
a < P ′2N ′ > −b < P ′2Z ′ >

)
1

< P >2

∂ < w′P ′2 >

∂z
+ 2

< w′P ′ >

< P >2

∂ < P >

∂z
− 2I

< P >

∂ < w′P ′ >

∂z

∣∣∣∣∣∣∣∣ .
(5.9)

Figure 5.4 shows a plot of the evolution of the ratio of biological double and triple

terms to the flow terms (equation 5.9), taken at the initial few days of the simulation

to avoid analysing satiated < P > fields. This equation assumes there is no significant

contribution from biological diffusion, this is fair as diffusion is a very weak process rel-

atively and particularly within the time frame of the biological population cycles (≈ a

couple of days), will most likely yield negligible contribution towards spatial formation.

The filtering mechanism was also in operation so the P concentration was also taken

when < P >> 0.1. There is a distinct increase in the scale of ratio 5.9 with increasing

µmax
P , with the highest value of µmax

P giving a ratio an order of magnitude larger at

some times in figure 5.4(a) compared to figure 5.4(c). This suggests that with increas-

ing µmax
P , biological processes become more dominant, which is what might be expected.

The lower growth rate case (figure 5.4(a)), corresponds to a regime in which the biolog-

ical correlations are comparable in magnitude to the mixing terms associated with the

flow. So for growth rates at or above µmax
P ≥ 4.32 days−1, one would expect significant

fluctuations in the P field to become apparent. This is a very important aspect in

aggregation formation as it is quite obvious that once the physical mixing dominates,

the chance of a strong heterogeneous large scale patch being formed are small. It is

therefore an assertion that any maximum growth rates larger than µmax
P = 4.32 days−1
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are very likely to induce aggregations and anything below will not be strong enough

for aggregations to manifest themselves.

The ratios in this section are based on one particular wind stress value of 3.5 ×

10−3 ms−1, and the depth from which the statistics in figure 5.4 were derived is below

the penetration depth calculated in chapter 4. This was calculated from

∫ 0

ẑ
< w2 > dz =

∫ ẑ

zML

< w2 > dz, (5.10)

where the penetration depth zpen was defined to be twice the mid-energy depth ẑ,

i.e. zpen = 2ẑ (zML is the mixed layer depth). It seems highly likely that biological

aggregations will start to manifest themselves below the penetration depth provided

µmax
P > 4 days−1 and the mixed layer is not fully penetrated, which was the reason

for the choice of wind stress used in this section. The correlations between zpen and

optimum aggregation depth will be examined later in the chapter.
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(a) µmax
P = 4.32 days−1

(b) µmax
P = 8.64 days−1

(c) µmax
P = 17.28 days−1

Figure 5.3: Aggregation intensity vs. mean phytoplankton concentration for varying
µmax
P . The dashed line shows the evolution of the mean phytoplankton concentration

(RHS scale) and the solid line shows the evolution of the aggregation intensity, I (LHS
scale). This was taken at z ≈ 26m which was the optimum aggregation depth for this
simulation.
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(a) µmax
P = 4.32 days−1

(b) µmax
P = 8.64 days−1

(c) µmax
P = 17.28 days−1

Figure 5.4: Ratio of biological dependant correlations and flow dependant correlations
taken at a the first week in simulation time (before phytoplankton are satiated with
nutrient) with varying µmax

P . The dashed line shows the evolution of the mean phy-
toplankton concentration (RHS scale) and the solid line shows the evolution of the
aggregation intensity, I (LHS scale). This was taken at z ≈ 26m which was the opti-
mum aggregation depth for this simulation.
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5.2.3 Biological Correlations

Now that it has been established that physical mixing plays only a relatively small

role in comparison with the biological processes (at certain depths and wind stress

values), above a certain threshold of phytoplankton growth rate, analysis of the aggre-

gation intensity dynamics can be directed toward the biological terms alone. Each of

the biological correlations in equation 5.7 influences the dynamics of the aggregation

intensity. To understand this, consider the following thought experiment. Suppose we

have two regions (in the x − y domain at a given depth), region I, containing a small

but significant concentration of P , and region II, almost devoid of P . Now a growth

surge in the aggregation intensity will occur when the P concentration rises in region

I, but remains relatively small in region II. This would manifest itself as an increase in

magnitude (negative or positive) in the ‘doubles’ correlation terms. This is because if

there is already a small correlation (negative or positive), then as the concentration of

P in region I grows rapidly, the small correlation will become exaggerated. Therefore,

one could expect to see significant aggregation intensity value when the absolute value

of the combined biological doubles reaches a local maximum.

The biological triples play a different role. Consider the case when the < P > concen-

tration is ‘skewed’. A concentration field will be said to be ‘skewed’ if,

(a) the frequency of low concentration values (below the mean) significantly exceeds

the frequency of high concentrations (above the mean) (positive skewness),

(b) the frequency of high concentration values (above the mean) significantly exceeds

the frequency of low concentrations (below the mean) (negative skewness).

This skewness will manifest itself in the biological triples. The more skewed (negative

or positive) the phytoplankton concentration field is, the higher the aggregation inten-

sity will become. Therefore, the higher the absolute value of the combined biological

triples, the higher the aggregation intensity will be.
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It is observed in figure 5.5 that during the < P > population cycle, local peaks (and

troughs) in the biological triples occur at the same times as peaks in aggregation inten-

sity (see also figure 5.3(b)). This reinforces the point made earlier that when activity

in the biological correlations is at a local maximum, so is the intensity of aggregations.

It is important to note that there is no horizontally spatial dynamics in the biology

(our plankton fields cannot swim for instance) and so only the flow can instigate this

heterogeneity initially (regions in the x−y plane having the characteristics of regions I

and II), before the biological dynamics promotes further aggregations. This means the

flow is actually vital in instigating aggregations, even if their subsequent evolution is

driven by the biological dynamics. This is intuitively the case as, not only does the flow

bring up nutrients from the base of the boundary layer, but it does so in select regions,

as the lateral domain is split up into equal amount of downwelling and upwelling, where

the latter is nutrient rich in comparison to the former. This will then locally enhance

growth P growth rates and hence enhance heterogeneity.

There is a simple way to find which terms are promoting heterogeneity. Firstly, by

taking ratios of the two biological doubles to see which dominates and secondly, taking

the ratio of the two biological triples (we will only take µmax
P = (4.32, 17.28) days−1

for illustration and again within the first week of simulation time, see figure 5.6). It

is clear that there is rather a large difference between the correlations involving N

and the correlations involving Z with around 1 order of magnitude difference in favour

of the nitrate. This shows that in this system, the heterogeneity is being influenced

mainly by the nitrate concentration, which is being driven by the flow. This implies

that it is the flow which is stimulating heterogeneity and it is the biology which en-

hances it. Although the nitrate will soon become homogeneous from the perspective of

the phytoplankton due to satiation, it has brought the lateral biological concentrations

out of phase enough so that region I and region II are (dynamically) distinct from one

another. This means that if an extinction phase was to occur, then region I would

grow rapidly in the region of high nitrate concentration (irrespective of satiation due
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to periodicity). If the time phase of region I and II was such that < P > reaches a high

concentration in region I and still ≈ 0 in region II, then the concentration will appear

to be very aggregated in region I.

Now that we have established what biological processes are driving the biological het-

erogeneity (when physical conditions are right), attention must now turn to the effect

physical conditions have on phytoplankton aggregation and what is the ‘ideal’ level of

wind forcing for such aggregation to form?
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(a) a < P ′N ′ >

(b) b < P ′Z′ >

(c) a < P
′2N ′ >

(d) b < P
′2Z′ >

Figure 5.5: Biological doubles and triples for µmax
P = 8.64 days−1. The dashed line

shows the evolution of the mean phytoplankton concentration (RHS scale) and the
solid line shows the evolution of the individual biological doubles and triples (LHS
scale). This was taken at z ≈ 26m which was the optimum aggregation depth for this
simulation.
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(a)
a < P ′N ′ >

b < P ′Z′ >
, µmax

P = 4.32 days−1

(b)
a < P ′N ′ >

b < P ′Z′ >
, µmax

P = 17.28 days−1

(c)
a < P

′2N ′ >

b < P ′2Z′ >
, µmax

P = 4.32 days−1

(d)
a < P

′2N ′ >

b < P ′2Z′ >
, µmax

P = 17.28 days−1

Figure 5.6: Biological double ratios and biological triple ratios for different µmax
P . The

dashed line shows the evolution of the mean aggregation intensity (RHS scale) and
the solid line shows the evolution of ratios of the various biological doubles and triples
(LHS scale). This was taken at z ≈ 26m which was the optimum aggregation depth
for this simulation.
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5.3 Effect of Friction Velocity, U∗

The rest of this work will use the full LES-NPZ model, without simplifications. It has

been shown in chapter 4 that the levels of wind forcing have significant effects on the

boundary layer. In particular, at certain wind stresses, the boundary layer becomes

fully penetrated and high levels of mixing will be prominent at most depths. However,

it is not clear what effect this will have on lateral biological heterogeneity, and so in

this section we will explore the dependence of aggregation intensity on wind stress.

5.3.1 Aggregation Depth Dependence

To quantify how strong the level of aggregation is in a simulation, we first need to

focus in on the depths at which aggregations are most prominent. Therefore, we need

to define a depth for which aggregation is likely to reach its highest level. This will be

known as the optimum aggregation, zopt. It is tempting to define zopt as the depth at

which I reaches its maximum. However, as discussed previously, maximum intensity

is not a robust statistic and any definition of zopt based on such a maximum would

exhibit sharp fluctuations. It is much better to define zopt in terms of an averaged

aggregation intensity at each depth, as ephemeral aggregations will be smoothed out

with this statistic. A (potential) phytoplankton aggregation will then be defined at

the depth at which the average aggregation intensity, denoted by Iav(z), reaches its

maximum, i.e. at Iav(zopt). This leads to the following mathematical definition for zopt,

Maxj

[∑N
i=0 I(zj , ti)

tN

]
= Maxj [Iav(zj)] = Iav(zopt). (5.11)

where tN is the time-scale of the simulation. Graphically, this is shown in figure 5.7.

Figure 5.8 shows profiles of Iav of low, medium and high wind stresses, where high

wind stress characterises a regime in which the boundary layer is penetrated and low

wind stress characterises a regime in which Iav(z) profiles are not unimodal. It is ap-

parent that for low wind stress, profiles of average intensity are bimodal and there is no
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Figure 5.7: Profile of the average aggregation intensity, normalised by its own maximum
Iav(z)

max(Iav(z)) . zopt is displayed to show how the optimum aggregation depth is defined

graphically. This example was taken for a low wind stress value of U∗ = 1.5×10−3 ms−1.

unique depth at which Iav reaches a definite maximum (figure 5.11(a)) (Note however,

there is no physical reason why the distribution should be bi-modal, in fact the levels

of aggregation are very low (although not shown in these graphs) and so any inferences

can be disregarded), whereas for medium wind stresses it is evident that the profiles

are unimodal and have a distinct optimum aggregation depth (figure 5.11(b)). High

wind stresses also have a distinct optimum aggregation depth, however the profile is

beginning to show signs of spreading, where the thin peak, observed in the medium

wind stress case, is becoming less distinct as U∗ increases (figure 5.8(c)). This spreading

of average aggregation intensity as U∗ increases is indicative that the boundary layer

is starting to become extremely well mixed, across the whole of the boundary layer of

depth 33 m prescribed here. Further increases in U∗ beyond those shown here would

see a return to a completely uniformly mixed boundary layer in which no distinct zopt

value would be apparent. It can then be inferred that at over intermediate ranges

of wind stress, phytoplankton aggregations will tend to thrive close to one distinct

depth interval in the boundary layer and more importantly, this depth interval will be
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relatively small. That is, one would expect to see aggregations in thin layers, a phe-

nomena observed in many experimental trials (McManus et al., 2003; Menden-Deuer

and Grünbaum, 2006; Widder et al., 1999). This depth interval (or layer thickness)

will be analysed later in this chapter.

Analysing the behaviour of optimum aggregation depth, zopt, with increasing wind

stress, two things are apparent. Firstly, and most obviously, zopt deepens as the wind

stress increases. Secondly, for large wind stress, zopt stops deepening and remains con-

stant. This behaviour is almost identical to the penetration depth behaviour, as can

be seen in figure 5.9. One can see that the optimum aggregation depth is consistently

beneath the penetration depth, zpen. As U∗ increases, the transitional band of low Re

number, quasi-laminar flow, between the penetration depth and the mixed layer base,

becomes thinner, note that this laminar band is artificial, because it is established by

the prescribed mixed layer base. The laminar band is artificial in the sense that the

mixed layer depth is fixed in this model, with a no-slip boundary condition attached. If

the mixed layer depth was doubled, the higher levels of turbulent mixing would likely

stay at the same range of depths (down to 10-15m), but the band of laminar flow

would increase dramatically. This means that an appropriate choice of mixed layer

depth must be chosen and the pycnocline is an apt reference for this choice. The lam-

inar layer thinning promotes a smaller interval of depths at which the phytoplankton

are likely to flourish and hence form thin layers. This region of the boundary layer will

be termed laminar stratified. As was remarked on in section 4.3.2, at a particular wind

stress, the flow becomes more or less fully developed (i.e. active at all depths). This

is clear from the levels of heterogeneity in figure 4.11, when the mixing levels increase

to a level where phytoplankton concentrations are homogenised over the entire depth

of the boundary layer. Now since the amount of wind stress needed to fully penetrate

the boundary layer is reached at around U∗ = 4 × 10−3, adding more wind stress to

the surface would not significantly increase the penetration depth as penetration has

already been achieved (note, the penetration depth will never reach the bottom of



142 CHAPTER 5. AGGREGATION INTENSITY ANALYSIS

(a) low wind stress

(b) medium wind stress

(c) high wind stress

Figure 5.8: Average aggregation intensity profiles, Iav(z), normalised by their own
maximum, max [Iav(z)] ranging from low to high wind stress regimes.
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the boundary layer as this would imply a balance of < w2 > between the top half of

the boundary layer and the bottom half, a phenomenon which cannot happen due to

friction and energy dissipation). Hence, the start of a plateau in penetration depth

happens when U∗ hits a critical value (in this case U∗ = 4× 10−3), when the boundary

layer is fully penetrated.

Figure 5.9: Variation of optimum aggregation depth, zopt, a measure of the depth at
which lateral biological concentrations are most heterogeneous, with wind stress. The
variation of the penetration depth zpen is also shown.

The region of laminar stratification represents a transitional flow between laminar flow

and turbulent flow, where vertical currents are still prominent but lateral turbulent

mixing is not. If the penetration depth could be thought of as a pseudo mixed layer

depth, then planktonic aggregations brought on by means of laminar stratification,

would appear in a similar region to that of the pycnocline (i.e. below the mixed layer).

In this way, the stratified laminar layer has similar properties to that of the pycnocline,

in that turbulent mixing is not present, but vertical currents are (Fernando, 1991). As

the physics prescribing density variation is not present, only analogies to the pycnocline

can be made. In fact if there was a pycnocline present in the model, it would be likely
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that the thin layer aggregation would be enhanced due to the flow being even more

quiescent in the laminar layer than what is observed in this model setup.

5.3.2 Aggregation Intensity Magnitude

Now that zopt has been defined, we can explore the intensity of the aggregations for

each simulation. Figure 5.10 shows how the optimum aggregation intensity, Iav(zopt),

varies with wind stress. It is clear from figure 5.10, that there is an optimum wind stress

value, just below the level of wind stress required to fully penetrate the mixed layer

(note, the boundary layer was deemed fully penetrated for U∗ = 4.0 × 10−3. This is

Figure 5.10: Optimum aggregation intensity, Iav(zopt), taken for a range of wind stress
values.

an interesting observation as one would have expected aggregations to occur primarily

in boundary layers subjected to low wind stress, where there is less turbulent mixing

present. An explanation for this non-intuitive phenomenon may lie in the vertical mix-

ing component < w2 >. < w2 > governs the vertical mixing strength of the Langmuir

cells that are set up in the boundary layer. As discussed in chapter 2, Langmuir cells

are sets of vortical tubes that are set up as a result of the Stokes drift associated with

the surface waves. These Langmuir cells are observed at each depth in a pattern of
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elongated regions of upwellings and downwellings. However, for nutrients to converge

in the convergent zones between Langmuir cells (at upwellings), certain requirements

must be met. As the nutrient flux boundary condition is applied at the base of the

boundary layer, vertical currents (upwellings) must be strong enough to pull nutrients

up into convergent zones. Turbulent mixing should not be too prominent, as this in-

crease concentration mixing will act against biological aggregation. In other words, the

energy dissipation rate, < ε >, must be small.

The set of conditions outlined above help to make figure 5.10 more explicable. At

low wind stresses, vertical mixing is low near the base of the boundary layer and hence

the vertical currents are not strong enough to advect nutrients into the euphotic zone,

where biological growth will be most prominent. Hence, rapid biological growth, which

is a pre-requisite to the formation of aggregations, is unlikely to occur. At the high

wind stress values, the boundary layer is completely penetrated and biological concen-

trations are mixed (and homogenised) over all depths. But at intermediate wind stress

values, < w2 > is sufficiently strong to advect nutrients into the euphotic zone, whilst

(near zopt) < ε > is insufficient to smooth out the subsequent biological aggregations.

Hence, intermediate wind stresses seem to form part of a ‘goldilocks criteria’ necessary

for the formation of biological aggregations, at or around zopt in the laminar stratified

zone. Although it could be construed that the aggregations are developed by overlap-

ping light and nutrient contribution, stress must lie on the fact that aggregation in the

context of this work applies to variation in concentration in the x − y plane. As light

does not vary with x and y, the only factor which remains to bring about heterogeneous

distribution is the flow field and the nutrient distribution.

5.3.3 Effect of Mixed Layer Depth, zML

The idea that a fixed boundary layer depth can be used in this model is fair, as the

boundary layer splits itself into an oceanic upper mixed layer and a pycnocline (where

turbulent mixing is concerned). However, exploring different boundary layer depths for
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suitability may enhance modelling this effect. Note that the mixed layer depth is the

extent of the numerical domain and not defined by the properties of the flow field.

Taking two different sized boundary layers, zML = 20 m and zML = 50 m, we no-

tice the exact behaviour from before, that is, the optimum aggregation depth, zopt still

invariably stays below the penetration depth, zpen (see figure 5.11). However, when

(a) zML = 20m

(b) zML = 50m

Figure 5.11: Relationship between the optimum aggregation depth, zopt and wind stress,
U∗. Also included is the penetration depth, zpen and how that varies with wind stress.
This was taken for a shallow boundary layer, zML = 20m and a deep boundary layer,
zML = 50m.

it comes to the optimum intensity levels for each wind stress value, the behaviour is

not quite the same. Figure 5.12(a) shows the same goldilocks zone observed in figure
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5.10, for a boundary layer depth of 20 m, however the actual magnitude of optimum

intensity is far lower. This is possibly due to turbulent mixing being more prominent

(a) zML = 20m

(b) zML = 50m

Figure 5.12: Relationships between optimum aggregation intensity, Iav(zopt) and the
mixed layer depth. Taken for a shallow boundary layer and a deep boundary layer.

over a greater proportion of the boundary layer and so the physical forcing would find

it easier to mix the boundary layer. For a larger boundary layer depth of 50 m (figure

5.12(b)) the goldilocks behaviour is not apparent. This is probably due to the vertical

mixing struggling to reach the base of the mixed layer to pull nutrients up as wave

effects are not strong at these depths.

In shallow waters, high wind stress would try to increase the depth of the entire mixed
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layer, so high wind stress regimes may not be realisable in a fixed shallow boundary

layer. Similarly, the deeper boundary layer subjected to low wind stress may not be

realistic as the depth of the mixed layer would not be sustainable. With these results

in mind, it would be a good assumption that a middle ground between the shallow

and deep boundary layer depths would be suitable for this analysis and so we will use

zML = 33 m (although this value is arbitrary and is not an ‘optimum’ boundary layer

depth).

5.4 Effect of Biology on Aggregation Intensity

There are many biological parameters making up the LES-NPZ model and it is just not

possible to investigate the effect of each one on aggregation intensity, due to the large

number of simulations that would be necessary. So we need to be somewhat discerning

as to which biological parameters are most likely to have a big influence on Iav. We

have seen that the parameters which promote phytoplankton growth are the nutrient

concentration and phytoplankton maximum growth rate, µmaxP . We will use the nitrate

pump strength, Q, to parametrise the former (see section 3.3). One other parameter

which will also be investigated is the zooplankton predation rate. The decision to choose

investigating this over the zooplankton death rate is due to the non-linear nature of the

predation rate and the fact that the zooplankton death rate only becomes prominent

when the phytoplankton concentration is very low when it simply displays exponential

decay. The zooplankton predation rate will be parametrised by the contact radius,

R, of the zooplankton, which is the simplest parameter which prescribes zooplankton

predation.

5.4.1 Phytoplankton Growth Rate, µmaxP

As discussed in section 4.4.2, µmaxP makes considerable contribution to the growth

surge of < P >. It also exaggerates the length of time < P > stays in the near extinc-

tion phase. When analysing the level of aggregation intensity, we must take a couple

of things into account. First, the aggregation intensity measure will be averaged over
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the whole time period, therefore any heterogeneity which occurs during the extinction

phases will not be picked up, due to the filter operation imposed on I. Second, the

amount of time a single bloom actually lasts for is decreased when µmaxP is increased.

Despite these constraints to the aggregation intensity, the phytoplankton concentration

reaches a much higher level during a bloom for higher values of µmaxP .

Figure 5.13 shows the average intensity profile with depth for µmaxP = (2.16, 4.32, 8.64, 17.28).

With increasing µmaxP , the magnitude of Iav also increases. What is curious is that the

Figure 5.13: Profiles of the average aggregation intensity, Iav(z) with increasing phyto-
plankton maximum growth rate µmaxP . Although not shown the graph, magnitude in-
creases for increasing µmaxP . This was taken for µmaxP = (2.16, 4.32, 8.64, 17.28) days−1.
(U∗ = 3.5× 10−3 ms−1)

optimum depth of each value of µmaxP does not change, as shown in figure 5.14. This

would indicate that it is only the flow that zopt is dependent upon, although this hy-

pothesis will be investigated further for other biological parameters. The optimum

aggregation intensity, Iav(zopt), clearly increases with µmaxP (figure 5.15). The increase

is in Iav(zopt) is not as not as large as one might expect, but this is a consequence of

the longer periods of extinction and shorter blooms associated with larger µmaxP , which

means that the levels of heterogeneity at higher levels of µmaxP are a lot more impressive



150 CHAPTER 5. AGGREGATION INTENSITY ANALYSIS

Figure 5.14: Optimum aggregation depth, zopt, for a range of µmaxP . (U∗ = 3.5 ×
10−3 ms−1)

Figure 5.15: Optimum aggregation intensity, Iav(zopt), for a range of µmaxP . (U∗ =
3.5× 10−3 ms−1.)

than figure 5.15 shows. The difference in dynamics is much more apparent when com-

paring I(zopt, t) for a low and high value of µmaxP (figure 5.16). The µmaxP = 8.64 days−1

case shows large erratic fluctuations compared to the low µmaxP = 2.16 days−1 case,

where a steady (but low) level of I is maintained.
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Figure 5.16: Aggregation Intensity for two different µmaxP values at their respective
optimum aggregation depth, ≈ 26 m.

Not so surprisingly, there is a positive correlation between µmaxP and Iav. We will

use similar analysis to find out what effects other biological parameters have on the

system and if they change the depth dependence of the aggregation intensity.

5.4.2 Nutrient Pump Strength, Q

The stability analysis for the nitrate concentration is very similar to that of the

growth rate, so similar behaviour for intensity is not surprising (see figure 5.17). As

the wind stress parameter used here is U∗ = 3.5 × 10−3 ms−1, the place at which

aggregation occur most prominently is near the base of the boundary layer. The positive

correlation between aggregation intensity and nutrient pump strength is to be expected

as the nutrient surge is emanating from the base of the mixed layer. One would expect

that the lower wind stress cases lack the vertical mixing capabilities to pull nutrients

up from the base of the mixed layer, and so will not be investigated in this section.

The graph in figure 5.17 shows only a modest increase in Iav as the pump strength

is increased. The optimum aggregation depth is 7 metres from the base of the mixed

layer, as is shown in figure 5.18 (where again, optimum aggregation depth is unchanging
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Figure 5.17: Optimum aggregation intensity, Iav(zopt), for a range of nutrient flux
strengths Q. U∗ = 3.5× 10−3 ms−1

with the biological augmentations). A value of Q = 130 will be utilised in subsequent

simulations to enhance aggregation signatures.

Figure 5.18: Optimum aggregation depth, zopt, for a range of Q.
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5.4.3 Zooplankton Contact Radius, R

The dominant parameter which governs this is the zooplankton contact radius, R,

due to the predation rate increasing proportional to R
7
3 (see section 3.2.4).

The stability analysis (section 4.4.2) showed that the dominant effect of changing this

parameter was in the equilibrium concentration values, as increasing the predation

rate acts to increase Zce and decrease Pce. This in turn will increase grazing pressure

and limit the phytoplankton peak concentrations. With this in mind, it is surprising

that Iav(zopt) decreases by only a factor of one third, when the predation rate is in-

creased by a factor of ≈ 8
7
3 = 128 (figure 5.19). One might expect that high predation

pressure would markedly reduce the likelihood of any aggregation forming. This out-

lines the sensitive behaviour of these ecosystems. If the predation rate is strong, the

phytoplankton concentration is pushed to near extinction, thereby giving the phyto-

plankton a small time-frame for recovery. The longer the near extinction phase, the

more rapidly the phytoplankton will come back, unless the predation rate is so large

that the phytoplankton is kept almost permanently at near extinction levels. The op-

timum aggregation depth does vary slightly with contact radius, but only in a depth

interval of ≈ 3 m, as shown in figure 5.20. This is a better indicator that biology has

no significant role in the optimum aggregation depth due to the 2 orders of magnitude

increase in the predation rate having no profound effect on the optimum aggregation

depth.

In terms of aggregation intensity, high levels are found when the P concentration are

pushed to near extinction and is able to explode out of near extinction. However, if

the explosion only happens for a very short amount of time before it is pushed back to

near extinction (as would happen in the case of high predation), time averages would

deplete the large signal. It is this balance of dynamics which makes observations like

the one in figure 5.19 not so surprising. So even though the change in predation rate is

over a range of 2 orders of magnitude, the change in aggregation intensity only differs
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Figure 5.19: Optimum aggregation intensity, Iav(zopt), for a range of zooplankton con-
tact radius values R m.

by a fraction due to the nature of the system and the qualities of the metric. If it

was of interest to see the magnitude of the aggregation during a bloom phase, then an

average over the time frame would not be taken and a more suitable metric would be

used, but the persistence time of these aggregations are very important and as such

this weighting needs to be taken into account.

5.5 Aggregation Depth and Time Persistence

The criteria for a thin phytoplankton layer, given in section 5.1.1, specify that an

aggregation must span a range of depths below a certain threshold and that it must last

more than a prescribed amount of time. Although we are using aggregation intensity

to measure patches, compared with simple concentration ratios, we can still adapt to

the criteria in a similar way.
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Figure 5.20: Optimum aggregation depth, zopt, for a range of R.

5.5.1 Aggregation Thickness

To define an aggregation thickness in the context of (average) aggregation intensity,

Iav, we will first define an intensity level to be

Ix = x×max(Iav), (5.12)

where x ∈ [0, 1] e.g. I1 = Iav(zopt). Then, we define a length δx such that the distance

between the two depths which are closest to zopt, z1 and z2 , where z1 > zopt satisfies

Ix = Iav(z1) and z2 < zopt satisfies Ix = Iav(z2). This is shown graphically in figure

5.21. Then we can simply define our aggregation thickness to be

Bδ =
δ0.25 + δ0.5 + δ0.75

3
, (5.13)

where Bδ is the aggregation thickness of that particular simulation. In the literature

(e.g. Dekshenieks et al. (2001)), an analogous measure of δ0.5 is used to define ag-

gregation thickness. The data that is examined in this work is derived purely from
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Figure 5.21: Demonstration of how the aggregation thickness is measured. The solid
line is a profile of the averaged aggregation intensity, Iav, the dashed (vertical) line is the
distance metric, δx, for x = (0.25, 0.5, 0.75) and the dotted (horizontal) line indicates
the optimum aggregation depth, zopt.

simulations, and so doesn’t include any noise on any level. Therefore, it is more ap-

propriate in this work to use a slightly more robust measure such as that in equation

5.13, as measurements near the peak intensities are not as sensitive.

Examining the aggregation thickness, Bδ, for simulations of different phytoplankton

growth rates and wind stress values, it is observed that the biological parameter is

not making much impact as Bδ is distributed similarly for the range of different

growth rates (see figure 5.22). However, this is not true for the different levels of

wind stress. For low and intermediate wind stress values, aggregation thickness stays

roughly around the same value, but once the wind stress exceeds the critical wind

stress (U∗ ≈ 4 × 10−3ms−1), aggregation thickness increases dramatically, indicative

of vertical spreading of the phytoplankton concentration. In other words, the levels of

turbulence are high enough to break up the thin aggregation which has been formed

and inevitably smooths the concentration field out.
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(a) µmax
P = 4.32 days−1

(b) µmax
P = 8.64 days−1

(c) µmax
P = 17.28 days−1

Figure 5.22: Aggregation thickness, Bδ, for three different values of µmaxP , each mea-
sured for a range of wind stress values. (zML = 33m)
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The scales of the aggregation thickness, for simulations with low to medium wind stress

values are o(5m), which is of the same order of that outlined in the literature (Franks,

1995; Dekshenieks et al., 2001; Durham and Stocker, 2012). It must be highlighted that

this work neither includes cell swimming nor sharp density gradients which have been

proposed as mechanisms for thin layering. Also, due to aggregation thickness being

defined by averaged intensities over time, fine scale aggregations which may appear

over a range of depths will not be recognised and the depth interval that they appear

over will be the prominent signal. This means that the aggregation thickness which is

calculated will be very much an upper bound of the actual thickness of the aggregation.

Therefore, we can assume that aggregation thickness o(5m) can be regarded as ‘thin’

for the purpose of this work.

In a shallower boundary layer (zML = 20m), unsurprisingly, lower aggregation thickness

was observed, see figure 5.23. It was also noticed that at the higher end of the wind

Figure 5.23: Contour plot of the aggregation thickness for a shallow boundary layer,
zML = 20m, measured for a range of µmaxP and U∗ values.

stress spectrum, aggregation thickness drastically decreases, opposite to the behaviour

encountered for zML = 33m. However due to high wind stress not being realisable for
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such a shallow boundary layer, this will be ignored. For a relatively shallow boundary

layer, penetration is much easier to achieve and the small portion below where the

mixed layer is being penetrated results in a thinner band, where the biology is being

able to prevail over the physical forcing. Hence, patches are culminated in the thinner

band of laminar stratified fluid. Also, as the nutrient pump is of the same strength to

that of the deeper boundary layer, nutrients fill the water column faster and phyto-

plankton are able to overcome the physical mixing even when the mixed layer has been

fully penetrated.

For a much deeper boundary layer, zML = 50m, penetration is much more difficult

to achieve and hence the interval of depths to which the biology dominates becomes

larger, see figure 5.24. As for the zML = 33m case (figure 5.22), there is a band of wind

Figure 5.24: Contour plot of the aggregation thickness for a shallow boundary layer,
zML = 50m, measured for a range of µmaxP and U∗ values.

stress values (low to medium) for which the layer thickness stays roughly around the

same value. Once the wind stress exceeds the critical wind stress, U∗ ≈ 4× 10−3ms−1,

vertical spreading starts and as a result, aggregation thickness increases and the layer

breaks up.
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5.5.2 Aggregation Time Persistence

To define the aggregation time duration, we will use an analogous approach to that

used for the aggregation thickness. Prerequisites will be used before measuring the

time scale. For instance, we will use the aggregation optimum depth zopt for analysis

(this can be used with confidence as we have deduced that aggregations are spatially

persistent around this depth interval by analysing aggregation thickness). We will also

take an average time scale as follows. Consider the following function Fx(ti), defined

by

Fx(ti) =

 1 for I(zopt, ti) > (x× maxi [I(zopt, ti)])

0 otherwise.
(5.14)

We can then define the amount of time the aggregation intensity, I, stays above a

certain ratio value, x, to be

τx = dt

N∑
i=0

Fx(ti), (5.15)

where τx is the amount of time the intensity stays above a ratio value x ∈ [0, 1], N is

the amount of discrete time points taken (tN is the total simulation time) and dt is the

time-step, which is constant, for example, τ0 = tN . τx is shown graphically for different

values of x in figure 5.25. We can then take a similar average used in calculating the

aggregation thickness i.e.

Bτ =
τ0.25 + τ0.5 + τ0.75

3× tN
, (5.16)

where Bτ is the ratio of the average amount of time the aggregation persists to the

total simulation time.

Again, taking different phytoplankton growth rates and analysing Bτ for each growth

rate over a range of wind stresses we can gain insight to the persistence of the ag-

gregations, as shown in figure 5.26. Two trends can be discerned from these results.

Firstly, the aggregation duration ratio, Bτ , roughly increases with wind stress. This

may seem odd on first glance, however, as U∗ is increased, zopt decreases and so it is
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Figure 5.25: Demonstration of how the aggregation time is measured. The solid line
is a profile of the aggregation intensity, I, the dashed (horizontal) lines make up the
distance metrics, τx, for x = (0.25, 0.5, 0.75). The depth at which this will be taken
will be at the optimum aggregation depth, zopt.

likely that behaviour is more stable at the depths near to the base of the mixed layer.

It was also observed that with increasing growth rate, µmax
P , the persistence time is

decreasing slightly. This is not surprising as with higher growth rates comes longer,

more intense periods of near extinction followed by explosive growth phases. Hence the

relative duration of the growth phase is reduced and this leads to a fall off in persistence

time. Aggregations are active in these simulations for roughly between 5% and 20% of

the time for U∗ < 4× 10−3ms−1 which indicates that aggregations last for between 12

hours and 5 days over the 22 day period of these simulations.

For different boundary layer depths, similar behaviour was observed in that persis-

tence time duration roughly decreases with increasing µmax
P (figures 5.27 and 5.28).

There is a tendency for the shallower boundary layer aggregations to last more time in

the less wind driven regimes. This again is possibly due to stability in the less turbu-

lent waters. We also recall that a shallower boundary layer will have more nutrients

contained and there is more light in shallow waters, so growth rates will be larger and
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(a) µmax
P = 4.32 days−1

(b) µmax
P = 8.64 days−1

(c) µmax
P = 17.28 days−1

Figure 5.26: Aggregation duration ratio, Bτ , for three different values of µmaxP , each
measured for a range of wind stress values. (zML = 33m.)
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Figure 5.27: Contour plot of the aggregation time ratio, Bτ , for a shallow boundary
layer, zML = 20m, measured for a range of µmaxP and U∗ values.

Figure 5.28: Contour plot of the aggregation time ratio, Bτ , for a shallow boundary
layer, zML = 50m, measured for a range of µmaxP and U∗ values.

consequently, extinction phases will be prolonged, accounting for the lower overall time

persistence than the deeper boundary layer cases. This also serves as a reason for time

persistence to be larger in the deeper boundary layer (zML = 50 m).
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In general, it can be inferred that both Bδ and Bτ increase as zML is increased. This

indicates that, like with a lot of things, a compromising boundary layer depth is needed

to give a low value of Bδ while still keeping Bτ at a reasonable level. This again comes

down to threshold definitions, but examining the results, it clarifies that a boundary

layer depth somewhere between the shallow and deep boundary layer will suffice keep

a good contrast between aggregation thickness and aggregation time persistence.

5.6 Aggregation Distributions

Many simulations have been completed for this work and so a select few simulations

will be used to quantify what intensity means in terms of levels of heterogeneity. The

results shown here contain the highest levels of optimum aggregation intensity, Iav(zopt),

reasonably thin aggregations (< 10m) and temporal persistence (> 10%) for a boundary

layer of depth zML = 33m. Firstly, for optimum intensity, we examine the parameter

space over wind stress, U∗ and maximum phytoplankton growth rate, µmaxP , to find

conditions which permit high intensity (see figure 5.29). The top 4 intensity values

Figure 5.29: Contour plot of the optimum aggregation intensity, Iav(zopt), for a bound-
ary layer, zML = 33m, measured for a range of µmaxP and U∗ values.

here are at (U∗, µ
max
P ) = (2.5, 17.28) , (3.5, 4.32) , (3.5, 8.64) , (3.5, 17.28) , (4, 17.28)
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(note - (x, y) refers to (x × 10−3 ms−1, y days−1)). This shows that phytoplankton

clearly thrive when they have a higher growth rate. However, it is surprising that they

thrive so well with a relatively low growth rate when the physical forcing conditions

are ideal compared to lower wind stress cases with much higher growth rates. This

highlights the importance of the moderate levels of turbulence in the boundary layer,

which acts to enhance heterogeneity.

5.6.1 Physical and Biological Correlation

To have a better idea of the mechanisms in this system, we will analyse one simu-

lation, namely the case when (U∗, µ
max
P ) = (3.5, 4.32). In particular, we will examine

what happens in a primary and secondary surge in intensity during a phytoplankton

bloom (An example of a primary and secondary intensity surge is shown in figure 5.2).

For the primary surge in intensity (shown in figure 5.30), nutrients are being entrained

by upwellings (w > 0) (figures 5.30(c) and 5.30(d)). Phytoplankton are responding

to this by growing at high nutrient concentrations (and hence in upwelling regions),

which has a domino effect on the zooplankton to grow in high phytoplankton regions.

The secondary surge (figure 5.31) indicates that zooplankton have consumed the initial

high concentration of P , which is why there is a negative correlation between figures

5.31(b) and 5.31(a). Although the P concentration is already satiated in the primary

surge, this cycle still occurs because correlations are periodic, with the same period as

the biological cycles. This means that this behaviour was stimulated at the beginning

of the simulation and fixed itself in this laterally ‘out of phase’ dynamic.

The flow field governs how large or small a patch is, as the shape of the distribu-

tion is governed by the upwellings and downwellings. When the nutrient field reaches

satiation levels, it can have no further effect on intensifying heterogeneity. However, if

there was a small scale mechanism present to further enhance localised growth, then

this would enhance aggregation signals. This serves as a link between the small scales

and the large scales, as small scale enhancements, such as vortical trapping from gy-
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(a) P (b) Z

(c) N (d) w

Figure 5.30: Biological and physical distributions at the primary aggregation intensity
surge, at the optimum depth, zopt ≈ 26 m. In the biological fields, white indicates a
relatively high concentration and black a relatively low concentration. For the physical
field, namely w, white indicates an upwelling and black indicates a downwelling.

rotaxis (Durham et al., 2011c), would have the most prominent effect when biological

levels are near extinction. This small scale structure generated near extinction would

manifest in a large scale structure once the bloom takes place.

Now that mechanisms behind spatial structure of biological concentration have been

examined and how they change in time, we will next examine the extent to which the

phytoplankton can take advantage of the biological and physical distributions.

5.6.2 Phytoplankton Structures

For the four chosen simulations with largest intensity, we will analyse primary surges

(at and around the aggregation intensity peaks) at the optimum aggregation depth zopt.

To simplify things, we will assign a simulation number to each case from ‘simulation 1’

to ‘simulation 4’ with ‘simulation 1’ being the smallest optimum aggregation intensity
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(a) P (b) Z

(c) N (d) w

Figure 5.31: Biological and physical distributions at the secondary aggregation intensity
surge, at the optimum depth, zopt ≈ 26 m.

value and ‘simulation 4’ being the largest.

Simulation 1 - (U∗, µ
max
P ) = (3.5, 4.32)

Simulation 2 - (U∗, µ
max
P ) = (3.5, 8.64)

Simulation 3 - (U∗, µ
max
P ) = (3.5, 17.28)

Simulation 4 - (U∗, µ
max
P ) = (2.5, 17.28)

Simulation 1

This simulation shows that, while intensity is lower, on the whole, when compared

to the higher growth rate counterparts (simulations 2-4), intensity surges last for longer

periods of time. Analysing just two points in the primary aggregation intensity surge,

one point at a maximum and the other further in time at around half the intensity (but

at a higher mean < P > value) we can see that figure 5.32(b) is at a relatively low con-

centration but the maximum value is more than 3 times the minimum. Phytoplankton
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(a) aggregation intensity at zopt (b) First

(c) Second

Figure 5.32: Figure 5.32(a) indicates the times at which P distributions shown in figures
5.32(b) and 5.32(c) are taken at. Taken at the the optimum aggregation depth zopt:
Simulation 1.

concentrations then grow exponentially, keeping the same level of heterogeneity (i.e.

max P ≈ 3×min P ), as shown in figure 5.32(c).

Simulation 2

Here one observes a similar distribution to simulation 1 except with a greater differ-

ence from the minimum phytoplankton concentration to the maximum concentration

(figures 5.33(b) and 5.33(c)). We also see that the peak in intensity happens at a

much lower concentration of P which means heterogeneity has been able to manifest

itself more quickly, before zooplankton can take advantage, a consequence of higher

growth rates. This level of heterogeneity is able to sustain itself for longer giving a

large difference between minimum and maximum P concentrations.
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(a) aggregation intensity at zopt (b) First

(c) Second

Figure 5.33: Figure 5.33(a) indicates the times at which P distributions shown in figures
5.33(b) and 5.33(c) are taken at. Taken at the the optimum aggregation depth zopt:
Simulation 2.

Simulation 3

The distribution of these aggregations is a little different to those shown in the

previous simulations as the patches are slightly smaller, giving a larger intensity value

(figures 5.34(b) and 5.34(c)). As this growth rate is so large, the biological cycle

of high concentration is nearly completely decoupled from the biological cycle of the

low concentration. Decoupling in this sense means regions of low concentration are

still near extinction, about ready to move into an explosive growth phase. The high

concentration regions are ready to collapse, so the two regions of concentration are

effectively evolving independently to one another. It is this decoupling which is the

prominent mechanism behind high aggregation signals.
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(a) aggregation intensity at zopt (b) First

(c) Second

Figure 5.34: Figure 5.34(a) indicates the times at which P distributions shown in figures
5.34(b) and 5.34(c) are taken at. Taken at the the optimum aggregation depth zopt:
Simulation 3.

Simulation 4

In this case the wind stress is much lower than simulation 3. This change is appar-

ent in the distributions. As the aggregations are occurring higher in the mixed layer,

the flow is a more dominant feature of the environment and, due to the Stokes drift

being more prominent at higher depths, the biological concentrations are elongated out

at roughly 45 degrees to the direction of wind stress. As a result, patches are more

concentrated in smaller areas, which increases the aggregation intensity. As there is

a higher growth rate it was again observed that the high concentration patches are

decoupling, to some extent, from the low concentration surroundings which is yet to

break out of its near extinction phase.

In short, there are both biological and physical reasons for aggregations in the model.
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(a) aggregation intensity at zopt (b) First

(c) Second

Figure 5.35: Figure 5.35(a) indicates the times at which P distributions shown in figures
5.35(b) and 5.35(c) are taken at. Taken at the the optimum aggregation depth zopt:
Simulation 4.

Firstly, the flow field needs to have a certain level of activity to promote considerable

upwelling at the base of the boundary layer, as to pull nutrients up from the source.

Secondly, Langmuir cells help bias the biological fields laterally, principally into 2 re-

gions, high nutrient level upwelling and relatively low nutrient level downwelling. This

promotes biased levels of growth rates and hence stimulates lateral heterogeneity in the

plankton. This mechanism for aggregation can be further enhanced by increasing phy-

toplankton growth rates. This enhances aggregation because dynamics become more

erratic around equilibrium and spend time near extinction where dramatic population

increases follow and aggregations become much more prominent.
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Chapter 6

Summary

6.1 Discussion

When analysing a complex coupled bio-physical model, especially one associated with

3-dimensional turbulent flow field, one needs to understand the components of the

physical model and the biological model separately.

Exploration of the physical model in this study revealed that even advanced LES codes

are not exempt from numerical error. We found numerical errors built up in statistical

moments of the flow field owing to low levels of turbulence in the boundary layer. This

meant that the time-step was allowed to increase to a level that was too large for sta-

tistical stability to be sustained. However, this was remedied by putting a cap on how

large the maximum extent of the time-step. This was also treated, to a certain extent,

with the use of a Langmuir turbulent boundary in which wave forcing was permitted.

This extra energy from the wave forcing was an ideal solution to increase the levels of

turbulence, which made the time-stepping regime more suitable to simulations (but a

time-step cap was still needed for low wind stress simulations).

High turbulent mixing dissipates any concentration to homogeneity if that concen-

tration cannot overcome the turbulent flow in some way (which is true of zooplankton

173
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and phytoplankton). For heterogeneity to manifest itself in a turbulent boundary layer,

there must be areas of low turbulent mixing and furthermore heterogeneous structures

in the flow field which will instigate heterogeneity in the biology. It was found that as

turbulence was depth dependant, we would need turbulent mixing (characterised by

the energy dissipation rate < ε >) to be low and vertical mixing (characterised by the

vertical velocity variance < w2 >) to be at a reasonable level to pull up nutrients which

were emanating from the base of the boundary layer, but not too high as to fully mix

the entire boundary layer. We then established how the boundary layer was split up

into a turbulent layer near the surface and laminar layer near the base of the boundary

layer by defining a penetration depth, zpen, which was the depth of division between the

two layers. It was hypothesised that aggregations would form in the laminar layer (with

appropriate levels of vertical mixing) where turbulent mixing would not be prominent.

The biological model used in the LES-NPZ model was fairly complex as it included

the use of mechanistic approaches in the derivation of some parameters, some of which

were depth-dependant parameters. To make things simple however, we assumed all

parameters were constant so that we could use linear stability analysis. This is useful

for a number of reasons. It gives a good qualitative view of the dynamics of the bi-

ology, showing the general effects of certain parameters. In particular, we found that

increasing the phytoplankton growth rate and the nitrate concentration had the effect

of allowing the phytoplankton bloom to reach a higher concentration, decreasing the

amount of time the bloom lasted and increasing the amount of time phytoplankton

stayed near extinction, which we later found to be desirable for phytoplankton aggre-

gations. If a parameter search was undertaken in the LES-NPZ model, each simulation

would take around 2-3 weeks to complete to get any results, whereas the simple model

takes seconds to run. So the simple model gives an initial basis and parameter range

to start searching the parameter space in the LES-NPZ model.

To define heterogeneity, we used a statistic, I, used in (Lewis, 2005), which gave the
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level of heterogeneity without taking into account the level of concentration. Then,

observing how this statistic evolved in time revealed how the levels of heterogeneity

corresponded to the concentration field of P . To really understand what was driving

this heterogeneity, we decomposed the dynamics of I in an attempt to understand

which biological or physical processes were inducing or inhibiting heterogeneity. We

found that for a test case, at the optimum phytoplankton aggregation depth, zopt, it was

the biology which was dominating the effects from the flow field, most likely because

zopt is deeper in the boundary layer where the environment is quiescent. This gives an

indication that decomposing the dynamic statistics is a useful technique to find how

much effect the flow has on the aggregations in certain regions.

Going back to the physical model analysis, we used a parameter, zpen, to distinguish the

depth at which turbulent flow and laminar flow split up. To examine how the biology

fits in to this divided boundary layer, we defined an optimum aggregation depth, zopt,

at which phytoplankton reach a relatively high sustained level of heterogeneity. The

correlation between zopt and zpen was striking. We found

zpen > zopt > zML, (6.1)

where zML was the depth of the boundary layer. This implies that as zpen decreases

(from increasing wind stress) the optimum aggregation is pushed deeper towards the

nutrient source and is compressed in the vertical axis. In the upper level (above zpen)

turbulent mixing is high and hence this region is similar to the upper mixed layer in

the ocean. Whereas, the region below zpen is relatively quiescent with some levels of

vertical mixing, which is has similar properties to that of the pycnocline. The pycn-

ocline is a typical region for phytoplankton aggregations to be found, but the reason

given forward is density stratification of neutrally buoyant phytoplankton cells. This

coincidence may increase levels of heterogeneity beyond what is found in this model,

as variable density effects are not incorporated here.
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Levels of aggregation intensity increase dramatically when the phytoplankton popu-

lation recovers from a near extinction phase. This level of heterogeneity is apparent

when the population has a much larger growth rate (owing to species type and/or

nutrient levels). This is due to heterogeneity on the micro-scale being relatively large

(despite the very low concentration), when the growth spurt occurs, the heterogeneity

level stays the same but at a larger concentration, this makes the aggregation very dis-

tinctive. Furthermore, assuming the lateral phytoplankton concentration field is split

up into two regions (from heterogeneous nutrient upwellings), then for a high growth

rate, these two regions become very out of phase with each other. In other words, one

region goes through a phase of growth and decay, whilst the second region goes through

the same process, just a short time period later. This mechanism increases aggregation

intensity drastically as there will come some points in time when the first region is

at a high concentration and the second region still near extinction. For a thin layer

aggregation to form, phase decoupling between lateral phytoplankton concentrations

must happen on a small interval of depths, which will happen when physical conditions

are right.

In conclusion, large scale phytoplankton aggregations are very dependent upon the

properties of the flow field. Turbulent mixing is a very preferential process for the

culmination of thin phytoplankton aggregations in that it dampens aggregations in a

large interval of depths (near the surface), leaving a small interval of depths (near the

base of the boundary layer) to remain biologically active. A link has also been made to

the interaction between small scale processes and large scale processes via ‘explosion

from near extinction’. This implies that small scale processes are realisable when a

large surge in population takes place.
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6.2 Future Work

This work has opened up many new avenues for future research. For example

1. A study into the effect of the nutrient source. In this thesis, the nutrient pump has

been made Gaussian in the hope that it will stimulate heterogeneity, but does

this actually help? Investigation into the difference in spatial heterogeneity in

phytoplankton distribution stemming from a non-uniform and uniform nutrient

source will help clarify the mechanism behind the heterogeneous phytoplankton

distribution - the spatial extent of the nutrient surge itself, or the upwellings and

downwellings associated with the flow.

2. We have discovered that heterogeneity is most abundant when the dynamics of

the biology are more oscillatory (when near extinction phases are permitted).

Does this mean that non-oscillatory biological population dynamics must stay

homogeneous? Taking initial conditions at co-existence equilibriums, we can see

if patches are formed from the biology, or if they are formed from the physical

forcing alone.

3. When running simulations of a turbulent flow field, spatial and time resolutions

need to be set such that statistical stability holds. This means that simulations

run only slightly faster than real-time due to the amount of spatial and time

resolution needed for stable solutions. Investigations should therefore go towards

making computations more efficient. There is a plethora of spatial numerical

methods to choose from, so these should be implemented in order to increase

productivity. There is also the matter of the failing dynamical time stepping

regime when turbulence levels are low. A time stepping regime should be im-

plemented to account for low turbulence levels to further improve efficiency of

simulations.

4. Fixed wind forcing has been employed for these simulations to see the long term

effect of each flow regime on the biology. However, it is not realistic that wind
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would remain at a constant level. Incorporation of a variable wind stress in to

either look at simple behaviour such as a two-mode (high-low) wind stress regime

to account for generic changes in weather in the night and the day, or to use

experimental wind stress data.

5. An investigation into the enhancing mechanisms in the literature could be used

to see how much it helps bring out planktonic aggregations. The easiest to im-

plement is density stratification and incorporating buoyancy into the planktonic

dynamics to see how much of a role density stratification plays.

6. Finally, a parameter set has been found which gives ideal conditions for thin

phytoplankton aggregation to occur. Parallelisation of the LES-NPZ code could

be completed to investigate the dynamics of this parameter set. For example, a

larger horizontal domain, or a finer grid resolution could be used for comparison.
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Marina Lévy, Patrice Klein, and Anne-Marie Treguier. Impact of sub-mesoscale physics

on production and subduction of phytoplankton in an oligotrophic regime. Journal

of Marine Research, 59(4):535–565, 2001.

PE Levy, MGR Cannell, and AD Friend. Modelling the impact of future changes in

climate, CO2 concentration and land use on natural ecosystems and the terrestrial

carbon sink. Global Environmental Change, 14(1):21–30, 2004.

Aleksandra M. Lewandowska, Petra Breithaupt, Helmut Hillebrand, Hans-Georg

Hoppe, Klaus Jrgens, and Ulrich Sommer. Responses of primary productivity to

increased temperature and phytoplankton diversity. Journal of Sea Research, 72(0):

87 – 93, 2012.

DM Lewis. The orientation of gyrotactic spheroidal micro-organisms in a homoge-

neous isotropic turbulent flow. Proceedings of the Royal Society of London. Series

A: Mathematical, Physical and Engineering Sciences, 459(2033):1293–1323, 2003a.

DM Lewis. Planktonic encounter rates in homogeneous isotropic turbulence: the case

of predators with limited fields of sensory perception. Journal of theoretical biology,

222(1):73–97, 2003b.



BIBLIOGRAPHY 189

DM Lewis. A simple model of plankton population dynamics coupled with a les of the

surface mixed layer. Journal of theoretical biology, 234(4):565–591, 2005.

DM Lewis and SI Bala. Plankton predation rates in turbulence: A study of the limita-

tions imposed on a predator with a non-spherical field of sensory perception. Journal

of theoretical biology, 242(1):44–61, 2006.

DM Lewis and SE Belcher. Time-dependent, coupled, ekman boundary layer solutions

incorporating stokes drift. Dynamics of atmospheres and oceans, 37(4):313–351, 2004.

DM Lewis and AR Brereton. A mathematical study of the formation of spatial het-

erogeneities in the distribution of phytoplankton concentrations arising in a three

dimensional model of the wind driven surface mixed layer. Not yet submitted, 2013.

DM Lewis and TJ Pedley. Planktonic contact rates in homogeneous isotropic tur-

bulence: theoretical predictions and kinematic simulations. Journal of Theoretical

Biology, 205(3):377–408, 2000.

DM Lewis and TJ Pedley. The influence of turbulence on plankton predation strategies.

Journal of Theoretical Biology, 210(3):347–365, 2001.

Marlon R Lewis. Variability of plankton and plankton processes on the mesoscale. Phy-

toplankton ProductivityCarbon Assimilation in Marine and Freshwater Ecosystems,

pages 141–155, 2002.

Ming Li, Chris Garrett, and Eric Skyllingstad. A regime diagram for classifying tur-

bulent large eddies in the upper ocean. Deep Sea Research Part I: Oceanographic

Research Papers, 52(2):259–278, 2005.

Shunxing Li, Fengjiao Liu, Fengying Zheng, Yuegang Zuo, and Xuguang Huang. Effects

of nitrate addition and iron speciation on trace element transfer in coastal food webs

under phosphate and iron enrichment. Chemosphere, 2013.

Elena Litchman, Mark D Ohman, and Thomas Kiørboe. Trait-based approaches to

zooplankton communities. Journal of plankton research, 35(3):473–484, 2013.



190 BIBLIOGRAPHY

SR Loarie, PB Duffy, GP Asner, CB Field, H Hamilton, and DD Ackerly. The velocity

of climate change. Nature, 462(7276):1052–1055, 2009.

Stephen P Long, Elizabeth A Ainsworth, Alistair Rogers, and Donald R Ort. Rising

atmospheric carbon dioxide: plants face the future. Annu. Rev. Plant Biol., 55:

591–628, 2004.

Alfred J Lotka. Undamped oscillations derived from the law of mass action. Journal

of the american chemical society, 42(8):1595–1599, 1920.

S Lovejoy, WJS Currie, Y Tessier, MR Claereboudt, E Bourget, JC Roff, and

D Schertzer. Universal multifractals and ocean patchiness: phytoplankton, phys-

ical fields and coastal heterogeneity. Journal of plankton research, 23(2):117–141,

2001.

Gurvan Madec. Nemo ocean engine. ., 2008.

A Mahadevan and JW Campbell. Biogeochemical patchiness at the sea surface. Geo-

physical Research Letters, 29(19):1926, 2002.

Amala Mahadevan, Eric DAsaro, Craig Lee, and Mary Jane Perry. Eddy-driven strat-

ification initiates north atlantic spring phytoplankton blooms. Science, 337(6090):

54–58, 2012.

Edwin Malkiel, Jian Sheng, Joseph Katz, and J Rudi Strickler. The three-dimensional

flow field generated by a feeding calanoid copepod measured using digital holography.

Journal of Experimental Biology, 206(20):3657–3666, 2003.

Adrian P Martin, Kelvin J Richards, Annalisa Bracco, and Antonello Provenzale.

Patchy productivity in the open ocean. Global Biogeochemical Cycles, 16(2):9–1,

2002.

AP Martin. Phytoplankton patchiness: the role of lateral stirring and mixing. Progress

in Oceanography, 57(2):125–174, 2003.



BIBLIOGRAPHY 191

Elodie Martinez, David Antoine, and Dionysios Raitsos. Multi-decadal variability of

phytoplankton and related physical forcing in the north atlantic ocean. In Earth

Observation for Ocean-Atmosphere Interactions Science, 2011.

J Maurer, P Tabeling, and G Zocchi. Statistics of turbulence between two counter-

rotating disks in low-temperature helium gas. EPL (Europhysics Letters), 26(1):31,

1994.

DJ McGillicuddy, AR Robinson, DA Siegel, HW Jannasch, R Johnson, TD Dickey,

J McNeil, AF Michaels, and AH Knap. Influence of mesoscale eddies on new pro-

duction in the sargasso sea. Nature, 394(6690):263–266, 1998.

MA McManus, AL Alldredge, AH Barnard, Emmanuel Boss, JF Case, TJ Cowles,

PL Donaghay, LB Eisner, DJ Gifford, and CF Greenlaw. Characteristics, distribution

and persistence of thin layers over a 48 hour period. Marine Ecology-Progress Series,

261:1, 2003.

Margaret A McManus, Olivia M Cheriton, Patrick J Drake, DV Holliday, Curt D

Storlazzi, Percy L Donaghay, and Charles F Greenlaw. Effects of physical processes

on structure and transport of thin zooplankton layers in the coastal ocean. Marine

Ecology Progress Series, 301:199–215, 2005.

Margaret A McManus, Raphael M Kudela, Mary W Silver, Grieg F Steward, Percy L

Donaghay, and James M Sullivan. Cryptic blooms: Are thin layers the missing

connection? Estuaries and Coasts, 31(2):396–401, 2008.

Abigail McQuatters-Gollop, Philip C Reid, Martin Edwards, Peter H Burkill, Claudia

Castellani, Sonia Batten, Winfried Gieskes, Doug Beare, Robert R Bidigare, Erica

Head, Rod Johnson, Mati Kahru, J Anthony Koslow, and Angelica Pena. Is there a

decline in marine phytoplankton?. Nature, 472(7342):E6, 2011.

JAMES C McWilliams, Peter P Sullivan, and Chin-Hoh Moeng. Langmuir turbulence

in the ocean. Journal of Fluid Mechanics, 334(1):1–30, 1997.



192 BIBLIOGRAPHY
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V Pérez-Muñuzuri and F Huhn. The role of mesoscale eddies time and length scales on

phytoplankton production. Nonlinear Processes in Geophysics, 17(2):177–186, 2010.

Owen M Phillips. The dynamics of the upper ocean. Cambridge university press, 1977.

JL Pinckney, HW Paerl, MB Harrington, and KE Howe. Annual cycles of phyto-

plankton community-structure and bloom dynamics in the neuse river estuary, north

carolina. Marine Biology, 131(2):371–381, 1998.

Thomas M Powell and Akira Okubo. Turbulence, diffusion and patchiness in the

sea. Philosophical Transactions of the Royal Society of London. Series B: Biological

Sciences, 343(1303):11–18, 1994.



194 BIBLIOGRAPHY

Holly J Price. Feeding mechanisms in marine and freshwater zooplankton. Bulletin of

Marine Science, 43(3):327–343, 1988.

Edward M Purcell. Life at low reynolds number. In AIP Conference Proceedings,

volume 28, page 49, 1976.

S. Ratti, A. H. KNOLL, and M. GIORDANO. Did sulfate availability facilitate the

evolutionary expansion of chlorophyll a+c phytoplankton in the oceans? Geobiology,

9(4):301–312, 2011.

R. Reigada, R. M. Hillary, M. A. Bees, J. M. Sancho, and F. Sagus. Plankton blooms

induced by turbulent flows. Proceedings of the Royal Society of London. Series B:

Biological Sciences, 270(1517):875–880, 2003.

Osborne Reynolds. On the dynamical theory of incompressible viscous fluids and the

determination of the criterion. Philosophical Transactions of the Royal Society of

London. A, 186:123–164, 1895.

Lewis F Richardson. Some measurements of atmospheric turbulence. Philosophical

Transactions of the Royal Society of London. Series A, Containing Papers of a Math-

ematical or Physical Character, 221:1–28, 1921.

Courtney E Richmond, Kenneth A Rose, and Denise L Breitburg. Individual variability

and environmental conditions: effects on zooplankton cohort dynamics. MEPS, 486:

59–78, 2013.

JEB Rines, MN McFarland, PL Donaghay, and JM Sullivan. Thin layers and species-

specific characterization of the phytoplankton community in monterey bay, california,

usa. Continental Shelf Research, 30(1):66–80, 2010.

Tom P Rippeth, Eirwen Williams, and John H Simpson. Reynolds stress and turbulent

energy production in a tidal channel. Journal of Physical Oceanography, 32(4):1242–

1251, 2002.



BIBLIOGRAPHY 195

BJ Rothschild and TR Osborn. Small-scale turbulence and plankton contact rates.

Journal of Plankton Research, 10(3):465–474, 1988.

Shovonlal Roy, David S Broomhead, Trevor Platt, Shubha Sathyendranath, and Stefano

Ciavatta. Sequential variations of phytoplankton growth and mortality in an npz

model: A remote-sensing-based assessment. Journal of Marine Systems, 92(1):16–

29, 2012.

John P. Ryan, Margaret A. McManus, and James M. Sullivan. Interacting physical,

chemical and biological forcing of phytoplankton thin-layer variability in monterey

bay, california. Continental Shelf Research, 30(1):7 – 16, 2010.

JP Ryan, MA McManus, JD Paduan, and FP Chavez. Phytoplankton thin layers

caused by shear in frontal zones of a coastal upwelling system. Marine Ecology-

Progress Series, 354:21, 2008.

Pierre Sagaut. Large eddy simulation for incompressible flows, volume 3. Springer

Berlin, 2000.

Lawrence P Sanford. Turbulent mixing in experimental ecosystem studies. Marine

Ecology Progress Series, 161:265–293, 1997.

Thomas B Sanford, James F Price, and James B Girton. Upper-ocean response to

hurricane frances (2004) observed by profiling em-apex floats. Journal of Physical

Oceanography, 41(6):1041–1056, 2011.

U Schumann. Subgrid scale model for finite difference simulations of turbulent flows in

plane channels and annuli. Journal of computational physics, 18(4):376–404, 1975.

S Servidio, V Carbone, P Dmitruk, and WH Matthaeus. Time decorrelation in isotropic

magnetohydrodynamic turbulence. EPL (Europhysics Letters), 96(5):55003, 2011.

Laurent Seuront, François Schmitt, Yvan Lagadeuc, Daniel Schertzer, Shaun Lovejoy,

and Serge Frontier. Multifractal analysis of phytoplankton biomass and temperature

in the ocean. Geophysical Research Letters, 23(24):3591–3594, 1996.



196 BIBLIOGRAPHY

Virginie Sibert, Bruno Zakardjian, Michel Gosselin, Michel Starr, Simon Senneville,

and Yvonnick LeClainche. 3d bio-physical model of the sympagic and planktonic

productions in the hudson bay system. Journal of Marine Systems, 88(3):401–422,

2011.

Andrew Sih. Prey refuges and predator-prey stability. Theoretical Population Biology,

31(1):1–12, 1987.

Eric D Skyllingstad and Donald W Denbo. An ocean large-eddy simulation of lang-

muir circulations and convection in the surface mixed layer. Journal of Geophysical

Research: Oceans (1978–2012), 100(C5):8501–8522, 1995.

J Smagorinsky. General circulation experiments with the primitive equations. Mon.

Weath. Rev., 91(3):99–164, 1963.

Jerome A Smith. Observed growth of langmuir circulation. Journal of Geophysical

Research: Oceans (1978–2012), 97(C4):5651–5664, 1992.

Ulrich Sommer and Aleksandra Lewandowska. Climate change and the phytoplank-

ton spring bloom: warming and overwintering zooplankton have similar effects on

phytoplankton. Global Change Biology, 17(1):154–162, 2011.

Hongjun Song, Rubao Ji, Charles Stock, and Zongling Wang. Phenology of phyto-

plankton blooms in the nova scotian shelf–gulf of maine region: remote sensing and

modeling analysis. Journal of plankton research, 32(11):1485–1499, 2010.

J Hi Steele. Environmental control of photosynthesis in the sea. Limnology and

Oceanography, 7(2):137–150, 2006.

JH Steele and EW Henderson. A simple plankton model. American Naturalist, pages

676–691, 1981.

Jonah V Steinbuck, Amatzia Genin, Stephen G Monismith, Jeffrey R Koseff, Roi Holz-

man, and Rochelle G Labiosa. Turbulent mixing in fine-scale phytoplankton layers:



BIBLIOGRAPHY 197

Observations and inferences of layer dynamics. Continental Shelf Research, 30(5):

442–455, 2010.

George Gabriel Stokes. On the theory of oscillatory waves. Trans Cambridge Philos

Soc, 8:441–473, 1847.

George Gabriel Stokes. On the effect of the internal friction of fluids on the motion of

pendulums, volume 9. Pitt Press, 1851.

Dietmar Straile. Gross growth efficiencies of protozoan and metazoan zooplankton and

their dependence on food concentration, predator-prey weight ratio, and taxonomic

group. Limnology and Oceanography, 42(6):1375–1385, 1997.

Lester K. Su and Noel T. Clemens. The structure of fine-scale scalar mixing in gas-

phase planar turbulent jets. Journal of Fluid Mechanics, 488:1–29, 6 2003.

James M Sullivan, Percy L Donaghay, and Jan EB Rines. Coastal thin layer dynamics:

consequences to biology and optics. Continental Shelf Research, 30(1):50–65, 2010a.

James M Sullivan, Percy L Donaghay, and Jan EB Rines. Coastal thin layer dynamics:

consequences to biology and optics. Continental Shelf Research, 30(1):50–65, 2010b.

P. P. Sullivan, L. Romero, J. C. McWilliams, and W. K. Melville. Transient evolution of

langmuir turbulence in ocean boundary layers driven by hurricane winds and waves.

Journal of Physical Oceanography, 42(11):1959 – 1980, 2012.

Peter P Sullivan and Edward G Patton. The effect of mesh resolution on convective

boundary layer statistics and structures generated by large-eddy simulation. Journal

of the Atmospheric Sciences, 68(10):2395–2415, 2011a.

Peter P Sullivan, James C McWilliams, and Chin-Hoh Moeng. A subgrid-scale model

for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Mete-

orology, 71(3):247–276, 1994.



198 BIBLIOGRAPHY

P.P. Sullivan and E.G. Patton. The effect of mesh resolution on convective boundary

layer statistics and structures generated by large-eddy simulation. Journal of the

Atmospheric Sciences, 68(10):2395–2415, 2011b.

Alessandro Tagliabue, Laurent Bopp, Jean-Claude Dutay, Andrew R Bowie, Fanny

Chever, Philippe Jean-Baptiste, Eva Bucciarelli, Delphine Lannuzel, Tomas Re-
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