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Abstract 

Calcium (Ca2+) signalling regulates many neuronal functions including neurotransmission, 
axonal growth and development. Neuronal calcium sensor-1 (NCS-1) has been shown to 
be involved in many of these processes. On Ca2+ binding, NCS-1 changes conformation 
and exposes a hydrophobic binding pocket. In yeast, NCS-1 binds to a PI4-kinase 
orthologue required for survival.  In mammalian cells, NCS-1 is localised to the Golgi and 
plasma membranes and has been linked to multiple target proteins that have roles in 
neuronal signalling. NCS-1 has been shown to regulate the P/Q Ca2+ channel subunit 
Cav2.1; although no direct binding interaction has been identified between the proteins.  
The Cav2.1 C-terminal tail contains two Ca2+-sensor binding regions, the IQ domain and 
the calmodulin (CaM) binding domain (CBD). The first part of this study investigated 
NCS-1 or CaM and Cav2.1 interactions using biochemical and biophysical interactions.  
Pull-down analysis found that NCS-1 binds to a Cav2.1 C-terminal peptide in a Ca2+-
dependent manner.  Use of nuclear magnetic resonance spectroscopy also showed that 
the IQ domain of Cav2.1 bound to NCS-1 in the presence of Ca2+, though the NCS-1 
region involved in this interaction could not be identified. The second part of this study 
investigated NCS-1 in the model organism C. elegans. In the worm, NCS-1 is expressed 
predominantly in sensory neurons. An ncs-1 null mutant worm strain (XA406) was 
previously shown to be defective in isothermal tracking and this was linked to a 
requirement for NCS-1 in memory and learning. To ensure this behaviour was not 
caused by a locomotion or neurotransmission phenotype, these behaviours were 
quantified and compared to the wild-type strain. No effect of the ncs-1 null mutation 
was found in a quantitative body-bend assay or in an assay of aldicarb resistance. The 
temperature-linked behaviour was further characterised using an acute assay for 
temperature-dependent locomotion (TDL). In this assay, the rate of locomotion of wild-
type worms decreased when the temperature was elevated from 20oC to 28oC. In 
contrast, the rate of locomotion of the ncs-1 null worm was significantly increased at the 
higher temperature. This distinct phenotype was exploited to quantify the rescue of the 
null strain by expression of wild-type NCS-1 and to identify potential mechanisms 
involved in NCS-1 function. It was established that NCS-1 regulated TDL when expressed 
in AIY neurons. Using information from previous studies, key structural elements of NCS-
1 were investigated by expressing NCS-1 with specific point mutations or deletions. N-
terminal myristoylation of NCS-1 was not functionally required. In contrast, the N- and C-
terminal clefts of the hydrophobic pocket of NCS-1 were shown to be physiologically 
important while the C-terminal tail was not essential for function in the TDL assay. These 
findings allowed discrimination between two potential modes of interaction of NCS-1 
with its target proteins in a physiological context. 
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1.1 Calcium Signalling Introduction 

Intracellular calcium signalling regulates cell growth, proliferation, cell death and 

also specialised cell functions (Berridge et al., 2000). In neurons, many specific 

activities are calcium-dependent including the stimulation of neurotransmission, 

neuronal development and neuroplasticity (Barclay et al., 2005, Berridge, 1998, 

Catterall and Few, 2008, Bito et al., 1997). Calcium acts as a messenger via changes 

in its free ion concentration and location inside the cell.   Ca2+ is a large positively 

charged metal ion and transduces intracellular signals by binding to specialised 

proteins. Ca2+ can be neither created or destroyed, so must be regulated by being 

moved, buffered or sequestered. Resting intracellular free Ca2+ concentration 

([Ca2+]i) is in the range 10–100 nM depending on the cell type and can be increased 

to 1000 nM or higher when cells are stimulated. Regulation of [Ca2+]i is essential for 

normal neuronal function.  Unregulated [Ca2+]i leads to cell damage and toxicity 

and it has been suggested that the dysregulation of [Ca2+]i in neurons may be linked 

to neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease 

(Mattson and Magnus, 2006, Berridge, 2010).  

 

Ca2+ signalling networks have been divided into four mechanisms (Berridge et al., 

2000) (Figure 1.1): 

1. Mobilisation of Ca2+. When cells are excited a stimulus allows Ca2+ to enter the 

cell cytoplasm through Ca2+ channels by either crossing the plasma membrane or by 

release from Ca2+ storage organelles such as the endoplasmic reticulum (ER).  

2. Activation of on-mechanisms. This allows the [Ca2+]i to rise to an active 

concentration.  Ca2+ binds to channels, allowing further Ca2+ to continue to enter 

the cytoplasm and remain there. 

3. Stimulation of Ca2+-dependent activities. Ca2+-binding proteins control the 

regulation of these functions.  

4. Activation of off-mechanisms. These lower [Ca2+]i to resting levels by the 

inactivation of Ca2+ channels  and the action of Ca2+ pumps and buffers. 
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Figure 1.1. Overview of the Ca
2+

 signalling network. A simple schematic showing the relationship 
between Ca

2+ 
signalling mechanisms. Blue shows Ca

2+
 mobillising signals/stimuli. Green shows       

on-mechanisms which increase Ca
2+ 

in the cytoplasm to active levels. Red shows Ca
2+

-sensitive 
processes which stimulate Ca

2+
-dependent function. Orange shows off-mechanisms which decrease 

the Ca
2+

 to resting levels. 

 

 

Together these mechanisms regulate changes in [Ca2+]i to allow cell functions to be 

modified, whilst at the same time, tightly controlling cytoplasm concentrations so 

that cell damage does not occur. [Ca2+]i is not uniform in the cell and can differ in 

distinct areas within the cytoplasm.  A Ca2+ signal has a distinct frequency, duration, 

amplitude and location. These signal properties determine the function it regulates 

and form complex Ca2+ signalling networks (Berridge et al., 2000, Laude and 

Simpson, 2009) (Figure 1.1).  
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1.2 Ca2+ Sensor Proteins 

Ca2+ sensor proteins can have several different roles in Ca2+ networks. They have a 

stimulatory role, regulating effector molecules, to switch Ca2+-sensitive processes 

on or off. For example, the Ca2+ sensor protein synaptotagmin-1 has specific       

Ca2+-binding domains. This binding to Ca2+ causes synaptotagamin-1 to coordinate 

interactions between soluble NSF attachment protein receptor (SNARE) proteins 

and membrane lipids involved in vesicle docking and membrane fusion, which is 

important for the regulation of neurotransmission. Ca2+ sensor proteins can have a 

Ca2+ signalling feedback role, modulating other proteins in Ca2+ signalling networks. 

For example, modulation of voltage gated Ca2+ channels, involved in both the on 

and off mechanisms, are regulated by several Ca2+ sensor proteins including 

calmodulin, Ca2+  binding protein-1 (CaBP-1) and visinin-like protein -2 (VILIP-2). 

This can have both a positive feedback effect, allowing Ca2+ into the cytoplasm or 

negative feedback effect by inhibiting the entry of Ca2+ into the cytoplasm 

(Nejatbakhsh and Feng, 2011). 

 

1.2.1 Calmodulin 

Calmodulin (CaM) is the most abundant Ca2+ sensor protein. CaM is found in all 

eukaryotic cells and its main role is to pass on Ca2+-dependent signals to target 

proteins. CaM is a small protein of approximately 150 amino acids long and is highly 

conserved across diverse species. CaM is dumbbell shaped with distinct N- and        

C-terminal globular lobes connected by a flexible linker region (Figure 1.2a). Each of 

these domains contains 2 EF-hand motifs (Sudhakar Babu et al., 1988). EF-hand 

motifs consist of two alpha helices at right angles to each other, joined by a flexible 

loop region (Kretsinger and Nockolds, 1973).  The 12 amino acid loop motif provides 

a site for cations, including Ca2+, to bind to proteins. The EF-hand motif contains a 

conserved amino acid sequence with six amino acids at positions 1, 3, 5, 7, 9 and 12 

that coordinate the cation. Atoms on the amino acid back bone and side chains of 

these particular amino acids provide interactions with the cation.   

 

 

http://en.wikipedia.org/wiki/N-ethylmaleimide_Sensitive_Factor_or_fusion_protein
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Figure 1.2. The structure of free CaM and a CaM/target peptide complex. Ribbon diagrams showing 
a) unbound CaM as a dumbbell shaped protein, with two globular lobes at the N- and C-terminals, 
connected by a flexible helical region. Each domain, containing two EF hands domains, binds Ca

2+
 

ions (Green) (PDB, 3CLN), b) CaM bound to Ca
2+

 and a calmodulin target peptide (residues 577-602) 
of myosin light chain - yellow ribbon) (PDB, 2BBM). The target peptide is enclosed by the 
hydrophobic pocket formed by the N- and C-lobes of CaM.  
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Aspartate, found at position 1 and aspartate or glutamate, found most often at 

position 12 of the motif, provide negatively charged oxygen for the electrostatic 

interactions between the protein and the cation. 

 

Different EF-hands within CaM and other Ca2+ sensor proteins have different 

affinities for Ca2+, this is thought have a role in the regulation of Ca2+ sensor protein 

function and activity at different physiological [Ca2+]i. When Ca2+ binds to CaM, this 

causes a conformational change exposing a hydrophobic region of the protein  that 

is important for mediating interactions with target proteins (Figure 1.2b) (Zhang et 

al., 1995). 

 

1.2.2 Ca2+ Sensor Proteins in Neurons 

Neurons contain a number of CaM related Ca2+ sensor proteins. Two families of 

these proteins are the neuronal Ca2+ sensor proteins (NCS) and the Ca2+ binding 

proteins (CaBP), which each contain 4 EF-hands motifs (Table 1.1). The CaBPs show 

sequence homology to CaM and have been found only in vertebrates (McCue et al., 

2010), whilst NCS proteins show approximately 20% homology with CaM and are 

found in early eukaryotes up to man. This array of Ca2+ sensing proteins may allow 

neurons to have greater versatility in Ca2+ signalling. 

 

There are 5 classes of NCS proteins. Class A proteins, which are comprised of NCS-1 

orthologs, are found in yeast cells onwards and are the most primitive of the NCS 

proteins. Class B proteins, which first appeared in nematodes, are comprised of 

hippocalcin, neurocalcin and visinin-like protein (VILIPs 1-3) and their functions 

include regulation of cell signalling, apoptosis and receptor trafficking. Both         

class C and D NCS proteins, which are comprised of recoverin and guanylyl     

cyclase-activating proteins 1-3 (GCAP1-3) are found in all vertebrate species and are 

expressed in the retina. Class E proteins first appeared in insects and are comprised 

of potassium channel interacting proteins 1-4 (KChIPs 1-4) and their functions 

include regulation of voltage gated potassium channels and repression of 

transcription.  
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Table 1.1 Summary of Mammalian NCS-1 and CaBP Protein Families 

Calcium Sensor 
Family  

 Sub-Group 

Class/Type Protein Name 
 

- - Calmodulin 

NCS A NCS-1 

 
B 

VILIP-1 

VILIP-2 

VILIP-3 

Hippocalcin 

Neurocalcin δ 

C Recoverin 

D GCAP-1 

GCAP-2 

GCAP-3 

E KChIP-1 

KChip-2 

KChip-3 

KChip-4 

CaBP Typical  
CaBPs 

CaBP-1 

CaBP-2 

CaBP-3 

CaBP-4 

CaBP-5 

CaBP-5 

Calneurons CaBP-6 

CaBP-7 

 

 

NCS proteins are globular shaped and contain a hydrophobic binding domain which 

is exposed after Ca2+ binding (Burgoyne, 2007). Many NCS proteins have a myristoyl 

or palmitoyl lipid group attached to the N-terminus. The lipid group enables 

localisation of the protein to plasma or organelle membranes. In some 

myristoylated NCS proteins the lipid group is only exposed when bound to Ca2+.  

This is known as the Ca2+-myristoyl switch and has a role in the regulation of 

membrane localisation of these NCS proteins (O'Callaghan et al., 2002). Other NCS 

proteins have a lipid group which is thought to be always exposed, allowing the 

protein to be constitutively associated with the membrane, even in the absence of 

Ca2+ binding.  
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The Ca2+-myristoyl switch mechanism allows Ca2+-dependent localisation of several 

NCS proteins. When not bound to Ca2+, the myristoyl group is located within the 

hydrophobic core of the protein, allowing the NCS protein to be free in the 

cytoplasm. When the protein is Ca2+ bound, its conformation changes, this exposes 

the myristoyl group and tethers the protein to organelles or the plasma membrane. 

How the NCS proteins, are localised to specific membranes is not yet known but the 

specific membrane localisation of  NCS proteins could allow them to have different 

regulatory roles in neurons and other cell types.  

 

1.3 Neuronal Ca2+ Sensor Protein 1 

Neuronal Ca2+ sensing protein 1 (NCS-1) is found in all eukaryotes, from yeast 

through to higher organisms including man. NCS-1 was first identified as frequenin 

in Drosophila  melanogaster (Pongs et al., 1993). In mammals it has been shown to 

have a role in synaptic transmission, neuronal outgrowth and memory and learning 

(Saab et al., 2009, Génin et al., 2001, Pongs et al., 1993). It is found in neuronal and 

neuroendocrine mammalian cells (Weiss and Burgoyne, 2001) and has been 

observed to be localised to presynaptic terminals in  both hippocampal and cerebral 

neurons (Jinno et al., 2002). Conservation of the NCS-1 sequence has been retained 

throughout the species.  Fission yeast Ncs-1 and budding yeast Frq-1 orthologues 

have 60% similarity to mammalian NCS-1 (Lim et al., 2011). Like CaM, NCS-1 has 

been shown to regulate a large array of proteins (Burgoyne, 2007, Haynes et al., 

2006). 

 

NCS-1 has been shown to interact with more than 20 potential target proteins 

(Burgoyne and Haynes, 2012). Many of these interactions are known, however, only 

from yeast 2-hybrid or pull-down experiments and have not been validated by 

other approaches or investigated in functional experiments. A smaller number of 

target proteins have been well characterised. The budding yeast orthologue of NCS-

1 (Frq1) binds to phosphatidylinositol-4-kinase 1 (Pik-1) (Hendricks et al., 1999). In 

mammals NCS-1 has been shown to interact with and activate the Pik-1 orthologue, 
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PI4K IIIin a Ca2+-dependent manner (Zhao et al., 2001, Haynes et al., 2005).  This 

enzyme is important in cell signaling as it regulates phosphoinositide levels.  PI4K 

III produces phosphatidylinositol 4-phosphate (PI4P) which is involved in the 

localisation of specific cytosolic proteins to the Golgi membrane (Downes et al., 

2005).  NCS-1 and ADP ribosylation factor 1 (ARF 1), a GTPase, have both been 

shown to co-localise with PI4K III in mammalian cells and are both involved in PI4K 

III regulation and membrane traffic from the Golgi complex  to the plasma 

membrane (Haynes et al., 2007, Haynes et al., 2005). 

 

NCS-1 also interacts with interleukin-receptor 1 accessory protein- like 1 (IL1RAPL1) 

(Bahi et al., 2003). IL1RAPL is a plasma membrane protein, found in the brain and 

like NCS-1 it has been linked to neuronal development and exocytosis. During a 

genetic study of families who have autistic spectrum disorders, a NCS-1 (R102Q) 

mutation was found in an individual and  mutations of IL1RAPL were found in a 

number of subjects (Piton et al., 2008).  Structural studies have shown this 

mutation in NCS-1 does not prevent IL1RAPL1 binding but does have structural and 

functional effects on NCS-1  (Handley et al., 2010). NCS-1 has also been shown to 

associate with dopamine receptor 2 (D2R)  and blocks the phosphorylation of the 

receptor by G-protein-coupled receptor kinase 2 (GRK-2) (Kabbani et al., 2002). This 

prevents the receptor being internalised and has been shown to promote memory 

and learning in mice (Saab et al., 2009).  

 

NCS-1 regulates inositol 1,4,5,trisphosphate receptors (IP3R), which are Ca2+ 

channels situated mainly on the ER and release Ca2+ to the cytoplasm. NCS-1 has 

been shown to bind directly to the IP3R and to enhance channel opening in the 

presence of IP3 (Schlecker et al., 2006). NCS-1 and IP3R interactions are thought to 

increase the frequency of Ca2+  oscillations in cardiac cells (Zhang et al., 2010, 

Nakamura et al., 2011).  There has been no evidence to show that NCS-1 regulates 

the IP3R in neurons. 
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1.3.1 NCS-1 Structure and Localisation 

NCS-1 is a small globular protein of 190 amino acids and a molecular mass of 

approximately 22 kDa.  It contains a core hydrophobic pocket which is exposed on 

binding to Ca2+ and forms a binding site for target proteins. Two tryptophan 

residues (W30 and W130 in human NCS-1) have been shown to move out of the 

core of the protein in the presence of Ca2+ (Aravind et al., 2008) and these may be 

essential amino acids for target protein interactions.  

 

NCS-1, like CaM, contains 4 EF-hands; however, only EF-hands 2, 3 and 4 bind Ca2+. 

The Ca2+ affinity of EF-hand 2  is 10.0 M  and for EF-hand 3 and 4 is 0.4 M  (Ames 

et al., 2000). It has been shown that EF-hands 2 and 3 bind Mg2+ at resting [Ca2+ ]i 

(Aravind et al., 2008).  NMR has revealed the structure of NCS-1 in the Mg2+ bound 

form has a different conformation than in the Apo-NCS-1 form, with the 

hydrophobic pocket tightly closed in the core. Mg2+ lowers the affinity of NCS-1 for 

Ca2+ and is thought to have a role in NCS-1 regulation, reducing non-specific binding 

of NCS-1 at resting Ca2+ levels (Aravind et al., 2008). The effects of Mg2+ on NCS-1 

and its interactions with target proteins are beginning to be investigated. Mg2+ may 

stabilise NCS-1 structure by binding to EF-hand 3. Mg2+ may also compete with Ca2+ 

for EF-hand 2 binding which may disrupt target protein binding and inactivate NCS-

1 at resting [Ca2+]i (Woll MP, 2011). 

 

NCS-1 is N-terminally myristoylated and is localised to the Golgi complex and the 

plasma membrane (O'Callaghan et al., 2002). It was thought that all NCS-1 proteins 

have a constitutively exposed myristoyl tail and are always localised to membranes.  

In contrast, a recent study looking at Ncs-1 in S. pombe, discovered that this 

orthologue has a Ca2+ dependent-myristoyl switch, as seen in other classes of NCS 

proteins such as recoverin, suggesting this NCS-1 orthologue is not always tethered 

to the membrane (Lim et al., 2011).  

 

To date the only fully characterised NCS-1 target protein complex structures are of 

yeast Frq1 and Ncs-1 with a Pik-1 peptide fragment (residues 121–174) (Figure 1.3). 

One region of Pik-1 binds to the N-terminal cleft of the binding pocket of Frq-1 
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while the second region binds to the C-terminal cleft, showing 1:1 stoichiometric 

ratio (Strahl et al., 2007, Lim et al., 2011). This binding is thought to change the 

conformation of the Pik-1 protein activating its catalytic site (Lim et al., 2011).  

 

Based on indirect data it has been suggested that  NCS-1 forms a homodimer when 

in complex with the D2R in either a 1D2R:2NCS-1 or 2D2R:2NCS-1 stoichiometric 

ratio (Woll MP, 2011, Lian et al., 2011). The interaction of NCS-1 and a C-terminal 

D2R peptide has, however, also been examined using NMR (Figure 1.3). It was 

suggested from these data that a single NCS-1 protein binds to two identical alpha 

helix regions, each of which are provided by two separate D2R (Lian et al., 2011). 

The receptors could form a homodimer on binding to NCS-1 in 2D2R:1NCS-1 

stoichiometry.  
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Figure 1.3. NMR derived structures for Frq1 and NCS-1 in target peptide complexes. Surface 
models of NCS-1 orthologues bound to Pik-1/D2R peptides, a) S. cerevisiae Frq-1 in complex with 
Pik-1 (yellow helix) (residues 121-175) (PDB, 2JU0) and b) Mammalian NCS-1 in complex with two 
identical peptides of D2R  (yellow helix), NCS-1 structure derived from (PBD, 1G8I).  Helical regions of 
the target peptide (yellow helix) bind to two distinct regions of the hydrophobic binding pocket, the 
N-terminal cleft (red arrows) and C-terminal cleft (green arrows). Red and blue shading represents 
positive and negative electrostatic regions of the protein surface respectively. Figures taken from 
Burgoyne and Haynes 2012 and adapted. 
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1.4 Voltage Gated Ca2+Channels  

Voltage gated Ca2+ channels (VGCC or Cav) are present in excitable cells. In neurons 

they are localised at the presynaptic terminals close to the SNARE complex 

machinery (Augustine et al., 2003). The Cav channels are the link between 

membrane depolarisation and neurotransmission. They open as the axon potential 

reaches the synapse and the membrane depolarises. Ca2+ enters the cell through 

the open  channel increasing the [Ca2+]i  (Catterall, 2000, Augustine et al., 2003).  

 

Cav channels are heteromeric proteins consisting of 4-5 subunits, which are 1, 

2,  and sometimes an additional subunit. The 1 subunit of the Cav channel 

consists of four transmembrane domains, I-IV, each consisting of six alpha helices. 

The domains span the plasma membrane and form the Ca2+ channel pore (Catterall, 

2000). Cytoplasmic loop regions between the four domains and a C-terminal tail 

provide sites for interaction with regulatory molecules and other channel subunits. 

There are 10 known genes for 1 channel subunits. These genes may  have 

different isoforms and splice variants, expressed in different cell types (Catterall, 

2000). The type of 1 subunit the channel determines which group it belongs to. 

The 5 major groups of Cav channels were originally determined by the type of Ca2+ 

current they carried. L-type (Cav1s) channels, carry long lasting Ca2+ currents, P/Q-

type, N-type and R-type (Cav2s) channels carry non-long lasting currents and T-type 

(Cav3s) channels carry transient currents (Catterall and Few, 2008).  

 

The auxiliary  subunit of the channel is an intracellular globular protein that 

regulates the channel function. The 1 I-II loop contains a motif called the  

interacting domain (AID), which binds to the subunit (Pragnell et al., 1994). This 

interaction is involved in voltage dependent inactivation of the channel. The 2 

heterodimer consists of the transmembrane 2 subunit and the extracellular 

subunit that are attached by disulphide bonds. This subunit also has a regulatory 

role. The function of a fifthsubunit, which is associated with some Cav channels, is 

not fully understood. 
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1.4.1 Cav 2.1 subunit of the P/Q channel 

The Cav 2.1 (aka 1A) is the 1 subunit of the P/Q-type Ca2+ channel and is found 

mainly in the central nervous system in mammals. It is located on the presynaptic 

terminal membrane in nanodomains that contain the exocytosis machinery 

essential for neurotransmission (Westenbroek et al., 1995, Taverna et al., 2004).  

The 1 subunit has orthologues in different organisms which include cacophony in 

D. melanogaster and UNC-2 in C. elegans. The protein was first identified as a 2262 

amino acid protein.  A further 4 isoforms have been identified in humans rangeing 

from approximately 2200 to 2500 amino acids. The  gene for the  protein, CACNA1A 

(aka CACNL1A4) is located at chromosome 19p13 (Ophoff et al., 1996).   

 

Mutations of CACNA1Ahave been linked to decreased Ca2+-dependent facilitation 

of channels in neurons (Adams et al., 2010) and have also been linked to disease. 

Mutations of the gene change Cav2.1 expression or function (Nejatbakhsh and Feng, 

2011).  Familial hemiplegic migraine type 1 (FHM-1, OMIM 141500) is a condition 

which causes classic migraines.  Recently a stroke patient with FHM-1 was shown to 

carry a CACNA1A mutation and treatment with a  Ca2+ channel inhibitor prevented 

further signs of stroke (Knierim et al., 2011). There are at least also 30 mutations of  

the CACNA1A4 isoform which are linked to Episodic ataxia type 2 (EA-2, OMIM 

108500) (Ophoff et al., 1996).  Severe uncoordinated movement is the primary 

symptom of this disorder and has been linked to epilepsy and migraine. Mutation 

R1820Stop, codes for a complete pore-forming region but does not have the            

C-terminal cytoplasmic tail and has been linked both to EA-2 and epilepsy 

(Jouvenceau et al., 2001). Cells expressing this mutated gene do not display a 

voltage-dependent current.  It is possible that the channel is expressed without the 

C-terminal region which is important in channel regulation. Alternatively the stop 

mutation may prevent the channel being expressed by the cell. Other mutations in 

CACNA1A are responsible for spinocerebellar ataxia 6 (SCA6, OMIM 183086) 

(Zhuchenko et al., 1997). This is a progressive degenerative disorder with symptoms 

including ataxia, involuntary eye movement and motor speech disorder. Many 

mutations cause abnormal splicing of the channel. The CACNA1A mutations include 

CAG repeats of varying length which have been shown to create abnormal splice 
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sites near the C-terminus.  Modulation of the Cav2.1 subunit of the P/Q channel by 

Ca2+ sensor proteins will be discussed and investigated in Chapter 3. 

 

1.5 Caenorhabditis elegans as a Model Organism 

In nature, Caenorhabditis elegans (C. elegans) is a non-pathogenic nematode worm 

found in decaying vegetation in soil in temperate regions of the world, (Kiontke and 

Sudhaus, 2006). It was established as a model organism by Sidney Brenner and used 

to study the genetic basis of behaviour (Brenner, 1974). It was the first multi-

cellular organism to have its whole genome sequenced (CSC, 1998). Many genes of 

interest from other species including humans have homologues in C. elegans 

leading to many laboratories using the worm to study biological functions and 

diseases (Kaletta and Hengartner, 2006).  In 2002, Brenner, Sulston and Horvitz won 

the Nobel Prize “for their discoveries concerning genetic regulation of organ 

development and programmed cell death'" which included work using the C. 

elegans model organism (Nobelprize.org., 2002, Sulston and Horvitz, 1977, Brenner, 

1974, Ellis and Horvitz, 1986). Other prominent discoveries that have been made 

using C. elegans include, the work of Fire and Mello who won a Nobel prize for the 

use of RNA interference in the worm to knockdown genes of interest 

(Nobelprize.org., 2006, Fire et al., 1998). Martin Chalfie won a Nobel prize for his 

part  in " the discovery and development of the green fluorescent protein, GFP" 

whereby he expressed GFP in specific cells within living C. elegans  (Nobelprize.org., 

2008, Chalfie et al., 1994). 

 

The worm is small (approximately 1 mm long), low cost, easy to manipulate, 

maintain and store long term. It is a multi-cellular organism which does not have 

the ethical and moral issues of using vertebrate organisms and provides a whole 

animal model to discover and test physiological mechanisms. C. elegans are 

transparent which enables live imaging of their internal structures. C. elegans has 

two sexes, hermaphrodites (XX) which give rise to genetically identical progeny and 

males (XO) which mate with the hermaphrodite and can be used to introduce 
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mutations into strains. The lineage of all 959 cells of the adult hermaphrodite worm 

have all been identified (Sulston and Horvitz, 1977).                

 

C. elegans lacks the major complex organs found in humans, but they share similar 

molecular mechanisms which can be exploited to understand human physiology 

and diseases. For example, despite having no organs comparable to the kidney,       

C. elegans have been used to investigate kidney function, development and 

polycystic kidney disease because genes and molecular pathways which are 

involved in male mating behaviour in the worm are homologous to those of the  

human kidney (Barr and Sternberg, 1999, Barr, 2005).  

 

C. elegans have a short reproduction and developmental cycle, giving rise to 

hundreds of adults in a few days. The complete life cycle of C. elegans from 

fertilisation to death is approximately 20-30 days (Olsen et al., 2006) making            

C. elegans ideal for high-throughput studies of not only developmental control 

mechanisms, which can take months in other models (Sulston et al., 1983), but also 

molecular pathways, disease models and drug targets. (Kaletta and Hengartner, 

2006).  

1.6 C. elegans Nervous Systems 

Hermaphrodite C. elegans have a simple nervous system which consists of 302 

neurons  compared to the complex nervous system in humans which contains 

billions of neurons (White et al., 1986).  The function of the C. elegans nervous 

system is to detect its environment, process information and adapt behaviour 

allowing the worm to find food and amiable habitat and to an avoid harmful 

conditions. A wiring diagram for chemical synaptic connections for every neuron in 

hermaphrodite worm has been created (White et al., 1986, Varshney et al., 2011). 

No wiring diagram exists for the gap junctions, which allow electrical signalling 

between the neurons or modulation of neurons by neuropeptides released from 

contains sensory, interneurons and motor neurons like the human nervous system 

(Figure 1.4)   
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Figure 1.4 C. elegans Neuronal Conectome. The current complete C. elegans wiring diagram, which 
has common features to the human neuronal system. Chemical synapses have been shown as 
connections between neurons.  The signal flow direction is mainly  from left top of the diagram to 
the bottom right, traveling from the sensory neurons (red), to the interneurons (blue) to the motor 
neurons (Diagram reprinted from (Varshney et al., 2011). 
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The nervous system of C. elegans contains genetic and molecular pathways similar 

to those in mammals and has been used to study many of the shared mechanisms 

including the SNARE complex machinery involved in neurotransmission  (Barclay et 

al., 2012). For example, UNC-18 is a protein which has a role in SNARE complex 

formation. Mouse Munc-18 (the murine orthologue of UNC-18) has been expressed 

in the worm unc-18 null mutant where it completely rescued the defective 

neurotransmission function in the mutant (Gengyo-Ando et al., 1996). C. elegans 

has also been used as a model for neurodegenerative diseases to screen for novel 

neuronal drug targets (Leung et al., 2008, Chen and Burgoyne, 2012, Johnson et al., 

2010).  

 

The worm nervous system is divided into two separate systems, the general 

nervous system which consists of 282 neurons and the pharyngeal nervous system 

which consists of 20 neurons and functions as a neuromuscular pump for feeding. 

(Altun et al., 2002-2012). The two nervous systems operate almost independently 

communicating  via the RIP interneuron pair (Altun et al., 2002-2012).  

 

The general nervous system is made up of four types of neuron, sensory neurons, 

interneurons, motor neurons and polygonal neurons which perform the functions 

of more than one type of neuron (Figure 1.4).  It consists of four major structures. 

The nerve ring (NR) in the head, the ventral nerve cord (VC), the dorsal cord (DC) 

and the tail nerve structures (Figure 1.5). There are approximately 200 neuronal 

processes from sensory neurons and interneurons which create the nerve ring 

around the pharynx in the head of the worm. Here the processes form synaptic 

connections with other neurons to transmit signals. The head and the tail of the 

worm contain sensory structures and ganglia consisting of neural cell bodies. The 

VC is made up of cell bodies and processes of motor neurons and interneurons 

(Figure 1.5). The DC runs parallel to the VC on the opposite side of the body. It is 

made mainly of motor neuron processes which extend from VC by lateral nerve 

tracts and a small number of interneuron processes from the nerve ring (Figure 

1.5).  
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Figure 1.5 Overview of the Hermaphrodite C. elegans’ General Nervous System. a) The Nerve ring 
(NR) is the major neuronal structure and runs around the pharynx. Sensory neurons (SN) in the head 
extend dendrites from the cell body to the nose tip. The two major nerves of the worm are the 
ventral cord (VC) and dorsal cord (DC), which run parallel to each other on opposite sides of the 
body from the head to the tail. Lateral nerves (L) form connections between the major nerves. The 
tail tip contains sensory structures and tail ganglia. All neurons of the nervous system labelled with 
GFP driven by the pan-neuronal rab3 promoter. b) Simplified anatomy of the hermaphrodite 
nervous system (Diagram reprinted from (Von Stetina et al., 2007) 
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1.6.1 Motor Neurons  

Motor neurons control the motility of the alimentary canal and locomotion of the 

organism.  After receiving a signal from the interneurons, three types of motor 

neurons in the VC and DC regulate the dorsal and ventral muscle wall cell function.  

Type A and B motor neurons are excitatory cholinergic neurons, which cause the 

muscle wall cell to contract (White et al., 1986). Type A neurons regulate backward 

motion and type B regulate forward motion (Chalfie et al., 1985). Type D motor 

neurons are inhibitory dorsal cord  neurons which cause the muscle wall cells to 

relax (White et al., 1986)  The characteristic rhythmic wave of C. elegans 

locomotion is regulated by the coordinated relaxation and contraction of muscle 

wall cells at opposite sides of the worm (McIntire et al., 1993). Motor neurons can 

change locomotion by modulating the body wall muscle in response to a stimulus 

upstream in the neuronal circuit, which can include touch or other sensory 

stimulus. Changes in locomotion can include forward or backward movement, 

acceleration or turns (Chalfie et al., 1985). 

 

 

1.6.2 Interneurons 

In humans interneurons are located predominately in the central nervous system. 

C. elegans  interneurons are located predominately in the nerve ring and VC (Altun 

et al., 2002-2012) and perform a similar role to those of humans, forming 

connections in the neuronal network; they also receive input from sensory neurons, 

process the signal, modulate a decision and relay an output to the motor neurons. 

 

 

1.6.3 Sensory Neurons 

There are approximately 40 classes of sensory neurons, many of which are ciliated 

(Altun et al., 2002-2012, Hope, 1999) and can form sensory structures called 

sensillia. Those within the head include the amphids, anterior deirids, the inner and 

outer labials and the cephalics and those in the tail include the phasmids and the 

posterior deirids. Isolated sensory neurons may also be located in the body, head or 
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tail tip. The cell bodies of sensory neurons of sensory structures, such as the 

amphids, may form ganglions in the head and tail. Dendrites project from the cell 

body of the neuron and extend to the tip of the nose or tail surface (Figure 1.5). In 

the head, the axons of  sensory neurons project from the cell body and  can enter 

the nerve ring where they communicate with other neurons and pass on the 

sensory input (Sasakura and Mori, 2012).  

 

1.6.4 Ciliated Sensory Neurons  

Cilia are organelles which form projections from the cell surfaces, and contain 

microtubules as their major component. There are two groups of cilia; motile cilia 

which are required for movement or flow and primary cilia (non-motile) which are 

present on most types of mammalian cells and appear to have a role in cell 

signalling regulating homeostasis and development (Lee and Gleeson, 2010). Some 

specialised sensory neurons in humans are ciliated, these include photoreceptors in 

the eye, cochlear hair cells in the inner ear and olfactory sensory neurons in the 

nose, which detect external signals of light, sound or smell from the outside world 

via the cilia to the nervous system (Lee and Gleeson, 2010, Jenkins et al., 2009).   

 

As with other types of sensory neurons, the majority of ciliated sensory neurons in 

C. elegans are in the head. The amphid contains three groups of ciliated neurons: - 

single or dual rod cilia, winged cilia and finger-like of which there is one class (Table 

1.2.). The tail of the worm also contains rod ciliated sensory neurons, in a sensory 

structure called the phasmid (Table 1.2). The cilia of the rod ciliated sensory 

neurons in the amphid and phasmid are exposed to the external environment, 

while the winged and finger-like ciliated neurons are surrounded by a stealth cell 

(Figure 1.6) (Perkins et al., 1986). Several amphid and phasmid ciliated neuronal 

pairs have been shown to express NCS-1 (Gomez et al., 2001). Other types of 

ciliated sensory neurons in the head also terminate at the tip of the head while the 

posterior deirids terminate at the surface of the tail near the anus.  
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Table 1.2 Amphid and Phasmid Ciliated Sensory Neurons 

Name Cilia Type External  
exposed 

Sensory Role 
(From Wormatlas, Individual Neuron Database 

http://www.wormatlas.org) 

 

ASE Single rod cilia Y Gustatory-chemosensory 

ASG Single rod cilia Y Gustatory-chemosensory 

ASH Single rod cilia Y Nociceptive osmo-, mechano-  

and odour  

ASI Single rod cilia Y Gustatory-chemosensory, thermosensory 

ASJ Single rod cilia Y Sensory 

ASK Single rod cilia Y Gustatory-chemosensory and pheromone sensory 

ADF Dual rod cilia Y Chemosensory and oxygen sensory 

ADL Dual rod cilia Y Chemosensory, odour sensory, pheromone sensory  

and nociceptive 

AWA Winged Cilia N Odour sensory 

AWB Winged Cilia N Odour sensory 

AWC Winged Cilia N Odour sensory and thermosensory 

AFD Finger-like N Thermo (thermal nociception and thermotaxis) C02 sensory 

PHA Single rod cilia Y Chemosensory 

PHB Single rod cilia Y Chemosensory 

 

http://www.wormatlas.org/
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Figure 1.6 Ciliated Sensory Neurons of the Amphid and Phasmid at C. elegans Head and Tail. 
Illustration of ciliated neurons (adapted from images shown in  (Perkins et al., 1986) a) single and b) 
dual rod ciliated neurons are exposed to the external environment but c) winged and d) finger-like 
ciliated sensory neurons are embedded in sheath cells.  

 

1.7 Thermosensation and Regulation 

In the wild, C. elegans live in moderate soil temperatures between 16oC -26oC. The 

worm has the ability to detect changes in temperature (Schafer, 2012). Thermotaxis 

and thermoavoidance (Schafer, 2012, Wittenburg and Baumeister, 1999, 

Hedgecock and Russell, 1975) are the two distinct types of thermosensation in       

C. elegans that have been studied. These behaviours are necessary for the worm to 

regulate its temperature for homeostasis, to seek food and favourable conditions 
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and to avoid noxious conditions i.e. extreme high or low temperatures. Three 

reviews give a complete picture of the complexity and controversy surrounding the 

thermosensation field including neuronal circuits and signalling pathways involved 

in isothermal tracking and memory (Sasakura and Mori, 2012), on the negative 

temperature bias (Ma and Shen, 2012) and on thermoavoidance (Liu et al., 2012).  

This section of the introduction will give a brief summary on these behaviours. 

 

 

1.7.1 Thermotaxis 

Thermotaxis behaviour of C. elegans was identified in 1975. During thermotaxis, the 

worm migrates towards its cultivation temperature (Hedgecock and Russell, 1975). 

Thermotaxis, along with other sensory-regulated locomotion behaviours such as 

chemotaxis, is regulated by two strategies:- the gradual steering strategy and the 

biased random walk strategy  (Sengupta and Samuel, 2009). The biased random 

walk strategy navigates the worm towards the favourable conditions it has 

detected which it does by increasing the length of its forward runs. If it encounters 

unfavourable conditions it will shorten a forward run by turning, thereby increasing 

the frequency of the turns until conditions are more favourable (Sengupta and 

Samuel, 2009). The gradual steering strategy works in tandem with the biased 

random walk and it enables the worm to travel up gradients and remain within 

favourable conditions (Sengupta and Samuel, 2009).  

 

Thermotaxis was assayed initially using two methods. Firstly, populations of worms 

were placed on a linear temperature gradient and the worms were allowed to 

migrate to their preferential temperature and the accumulations of worms at 

specific temperatures were recorded. The second assay measured isothermal 

tracking which is an example of the gradual steering strategy (Sengupta and 

Samuel, 2009). Isothermal tracking is the ability of the worm to identify, locate to 

and remain on track, within a specific temperature with a variation of 

approximately 3oC. To assay this behaviour, individual worms were placed on NGM 

agar plates which had a radial thermal gradient and the radial tracks left by the 

worm were recorded (Mori and Ohshima, 1995, Hedgecock and Russell, 1975).  
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In the wild-type C. elegans the thermotaxis behaviour was shown to  be modified by 

the cultivation temperature the worm had previously experienced, suggesting a 

function of memory and learning (Hedgecock and Russell, 1975). The worms display 

behavioural plasticity and are able to associate temperature with the availability of 

food. When cultivated at the standard temperature of 20oC, worms migrated 

towards 20oC and displayed isothermal tracking behaviour.  When cultivated at a 

lower temperature of 16oC they migrated and tracked to 16oC and had the same 

response when cultivated at the higher temperature of 25oC. C. elegans can also 

use this memory to avoid temperatures that it predicts it will not find food, hence 

displaying learning behaviours. Thermotaxis behaviour has been further 

characterised by video tracking which analysed run duration time, turn frequency 

and run speed and swimming locomotion (Ryu and Samuel, 2002, Tsalik and 

Hobert, 2003, Sasakura and Mori, 2012).  

 

Mutant worms display several thermotactic phenotypes. Thermophilic mutants that 

migrated towards higher temperatures retained the ability to be modulated by 

cultivation temperatures, and cryophilic mutants migrated to colder temperatures 

suggesting that positive thermotaxis (movement towards warmer than cultivation 

temperatures) and negative thermotaxis (movement towards colder than 

cultivation temperatures) are both required for wild-type thermotaxis. Cryophilic 

mutants were not affected by alterations of the cultivation temperatures nor were 

they able to perform isothermal tracking suggesting that positive thermotaxis, 

memory and isothermal tracking are linked (Hedgecock and Russell, 1975). Recent 

studies showed that the AIY interneuron signalling drove  positive thermotaxis and 

was involved in memory but not negative thermotaxis, while AIZ interneurons was 

responsible for negative thermotaxis and not positive thermotaxis (Mori and 

Ohshima, 1995, Mori et al., 2007). Other mutants and neuronal ablations show 

athermotaxis and do not favour a specific temperature (Hedgecock and Russell, 

1975, Mori and Ohshima, 1995, Sasakura and Mori, 2012).   
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1.7.2 Thermotaxis Neuronal Circuits 

Three pairs of sensory neurons are involved in the thermotaxis circuit, the AFD 

neurons are the major thermotaxis sensory neurons, the AWC neurons have been 

shown to be involved in signalling during temperature change (Figure 1,7) (Biron et 

al., 2008, Kuhara et al., 2008) and the ASI neurons have also been shown to be 

involved in negative thermotaxis (Beverly et al., 2011). Using thermotaxis 

behavioural assays and neuronal Ca2+ imaging in sensory neuronal ablated animals, 

different combinations of these thermosensing neurons pairs appear to have single 

or combined responses under specific temperature conditions, such as cultivation 

temperature and gradient temperature, which enables the worm have normal 

thermotaxis bias (Beverly et al., 2011).  

 

The molecular pathways in AWC, AFD, AIY, AIZ and RIA neurons have also been 

shown to be involved in isothermal tracking and memory (Sasakura and Mori, 2012, 

Mori et al., 2007, Kimata et al., 2012) (Figure 1.7). 

 

A recent review hypothesised that the ASI sends thermosensory signals to the AIA 

and AIB interneurons (Figure 1.8) (Ma and Shen, 2012).  ASI, AIA or AIB are not 

thought to be involved in isothermal tracking and memory as ablating the AIB 

neuron was shown to not affect isothermal tracking, while ablation of the AIY or the 

AIZ neurons did affect this behaviour (Mori and Ohshima, 1995, Ma and Shen, 

2012).  

 

AFD, AWC and ASI neurons are three different types of amphid sensory (finger-like, 

winged and single rod) ciliated neurons and also have been shown to have a role in 

other sensory responses. The AFD neurons sense CO2; the AWC neurons  sense 

odour and the ASI neurons  are gustatory chemosensory neurons (Bargmann and 

Horvitz, 1991) and together with AWC neurons are involved in the regulation of 

sexual attraction (White and Jorgensen, 2012).  
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Figure 1.7 Isothermal tracking and Memory Neuronal Circuit. The current wiring diagram of 
neurons involved in thermotaxis, isothermal tracking and memory (adapted from (Sasakura and 
Mori, 2012). Pathways in all of the sensory and interneurons in this circuit have shown behavioural 
plasticity. AWC and AFD sensory neurons detect temperature and store information.  Signals are 
transmitted to the AIY (thermophilic drive) and AIZ (cryophilic drive) interneurons which signal to 
the RIA interneuron and regulate locomotion in response to temperature.  
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Figure 1.8 The Hypothesised Negative Thermotaxis Neuronal Circuit. A wiring diagram showing 
proposed synaptic and gap junction neuronal conections. The diagram shows the excepted 
thermotaxis circuitry sensory and interneurons neurons AFD, AWC , AIY, AIZ and RIA.  The ASI 
sensory neuron recently linked to negative thermotaxis and AIA and AIB hypothesized to also be 
involved. (Figure taken from (Ma and Shen, 2012) 

 

 

1.7.3 Thermoavoidance 

Thermoavoidance is the detection and escape behaviour in response to harmful 

extreme high or low temperatures. The first neurons identified as being responsible 

for thermal nociception were the FLP neurons, phasmid PHC neurons and the PVC 

interneurons in the VC (Wittenburg and Baumeister, 1999) (Figure 1.9). Recently 

the amphid AFD neurons have also been recognised to detect noxious 

temperatures (Liu et al., 2012). During thermal nociception the AFD sends a signal 

to the AIB interneuron through a gap junction rather than to the AIY interneuron 
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which is signalled in thermotaxis by synaptic neurotransmission (Kimura et al., 

2004) (Figure 1.9). Thermoavoidance behaviour is not effected by altering 

cultivation temperature and shows no memory adaption (Wittenburg and 

Baumeister, 1999). 

 

1.7.4 Temperature-Dependent Locomotion 

Recently our group employed a temperature-dependent locomotion (TDL) assay for 

C. elegans to study the diacylglycerol (DAG) signalling pathway in SNARE complex 

formation and synaptic function. The assay is based on the hypothesis that the AFD 

sensory neuron can signal  to downstream neurons via synaptic neurotransmission 

(Mori and Ohshima, 1995, Edwards et al., 2012).  Rather than using the established 

thermotaxis methods such as isothermal tracking, linear gradients or neuronal Ca2+ 

imaging, this method involved comparing locomotion rates in a liquid medium at a 

standard cultivation temperature (20oC) and after elevation to a higher 

temperature of 28oC. Wild-type worms showed an approximate reduction of 70% of 

their locomotion rate at 28oC compared to 20oC. Various exocytosis mutants and 

rescue worms were also assayed. The results suggested that on detecting heat 

protein kinase C- 2 (PKC-2) is activated by DAG signalling and phosphorylates UNC-

18 at residue S322. The TDL assay proved to be a useful method for analysing the 

regulation of neurotransmission and its role in thermosensation. Data from 

previous studies on the AFD neuron and its role in thermosensation suggest it 

signals to the AIY neurons, the interneuron involved in thermophilic signaling, via 

neurotransmission.  The AFD neuron is unlikely to be signalling to the AIZ 

interneurons in this TDL assay as this connection is involved in cryophilic signalling 

at lower than cultivation temperatures. So far no studies have examined memory 

and adaption to cultivation temperature for this behaviour. 
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Figure 1.9 Thermoavoidance Neuronal Circuit. The current wiring diagram of head and tail neurons 
involved in thermoavoidance (adapted from (Liu et al., 2012). a) Detection of a noxious temperature 
in the head causes the worm to display backwards thermal avoidance locomotion. AFD sensory 
neuron sends information to the AIB interneuron via gap junction signalling. FLP sensory neuron 
signals to an unidentified interneuron. b) Detection of a noxious temperature in the tail causes the 
worm to display either forward or backward thermal avoidance movement. PHC sensory neuron 
signals to the DVA (driving backwards movement) or PVC (driving forwards movement), which 
regulates thermoavoidance behaviour.  
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1.8  C. elegans and Ca2+ Binding Proteins  

C. elegans have a large number of proteins involved in Ca2+ signalling. 

Computational analysis performed on the C. elegans genome predicted Ca2+ binding 

properties for 209 proteins of which 170 posses EF hand motif proteins including 

calmodulin, NCS and proteins which have other functions such as forming ion 

channels which also contain the EF hand motif. The other 39 proteins contained 

different Ca2+  binding motifs such as the C2 domain (Kumar et al., 2012). C. elegans 

have more than 100 candidate neuronal Ca2+ binding proteins, of which 65 contain 

EF hand motifs and no other functional domains (Hobert, 2013). They include the 

worm CaM orthologue (CMD-1) and eight other CaM related genes (Hobert, 2013).  

Previously three NCS proteins in the worm were identified  NCS-1,2 and 3 (Decastro 

et al., 1995, Rajaram et al., 2000). Recent reanalysis of the C. elegans genome has 

identified four additional potential NCS proteins (NCS-4 to NCS-7) (Hobert, 2013). 

The nomenclature of the C. elegans NCS proteins suggests they are all NCS-1 Class A 

orthologues of mammalian NCS-1, however, only NCS-1 and NCS-3 genes have 

orthologues with NCS-1 showing the highest sequence identity of 75% to human 

NCS-1 (Table 1.3). 

 

 

Table 1.3 C. elegans NCS Proteins  

# Orthologue and % Sequence Identity of Ce- NCS to Human NCS were calculated using NCBI.BLASTp. 
*Functional EF hand motifs were predicted using Interpro.EMBL sequence functional analysis 
software using the SMART.EMBL database.  
 

Ce NCS Human NCS 

# 

Sequence Identity 

Ce NCS to Human NCS  

# 

Class Position number of 

predicted functional EF 

hand motifs * 

NCS-1 NCS-1 75% A 2,3,4 

NCS-2 HCLP-1 51% B 2,3,4 

NCS-3 NCS-1 67% A 2,3,4 

NCS-4 KChIP1, 2, 3, 4? ~35%? E 2, 4 

NCS-5 - - - 4 

NCS-6 - - - 0 

NCS-7 KChIP1,2,3,4 ~40%? E 2,3,4 
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 A blast search of NCS-2 shows its closest human orthologue is NCS class B 

hippocalcin-like protein 1 (HCLP-1) showing 51% sequence identity.  NCS-4 and  

NCS-7 share sequence identity with the human class E proteins KChIPs 1-4 

(approximately 35% and 40% respectively). NCS-5 and NCS-6 do not appear to be 

orthologues of any class of human NCS proteins, although, they show a higher 

sequence identity to human KChIP2 than to any other human protein. As discussed 

early in this chapter, NCS proteins contain an inactive EF hand (motif 1), which is 

unable to bind Ca2+ and three functional EF hand motifs 2, 3, and 4. Analysis of all  

C. elegans NCS sequences (wormbase) using functional analysis software 

(Interpro.EMBL) predicted that only NCS-1, 2, 3 and 7 proteins contain all three 

functional Ca2+ binding sites. Therefore it is questionable whether NCS-4, 5, 6 are 

functional NCS proteins. It could be that these proteins form a different subclass of 

NCS protein with divergent structures and functions; however considerable work 

will be needed to establish this. 

 

Analysis of the worm ncs-3 null strain showed no obvious phenotype. It was only 

assessed, however,  for a kinked motion behaviour and other behaviours have not 

been characterized (Rajaram et al., 2000). It was surmised that ncs-3 null showed 

no phenotype because there is redundancy with other NCS proteins, in particular 

NCS-1 to which it shows 80% homology (Rajaram et al., 2000). In  worm Alzheimer’s 

disease model, in which amyloid aggregates build up in muscle cells and cause 

paralysis,  knockdown of ncs-3 was shown to suppress the toxicity (Lopez, 2010).  

This not only suggests that NCS-3 is expressed in muscle cells but also that NCS 

proteins might have a role in control of amyloid plaque formation in Alzheimer’s 

disease and other amyloid pathologies (Lopez, 2010). Although localisation and 

function of NCS-2 have not been established, it appears to have an essential role in 

the worm, as knockout is lethal. The location of expression and functions of the 

other NCS proteins is yet to be determined.  

 

NCS-1 has been shown to be expressed in C. elegans in 10 pairs of sensory neurons, 

two pairs of interneurons, one polymodal interneuron/motorneuron pair and a one 
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muscle cell type by GFP reporter gene and validated by immunostaining (Table 1.4) 

(De Castro, 1997, Gomez et al., 2001). 

 

 

Table 1.4. C. elegans Cell Types Expressing NCS-1 

 

Cell 

(De Castro, 1997, 

Gomez et al., 2001) 

 

Cell Type 

Taken from (Altun et al., 

2002-2012) 

 

Function 

Taken from  (Altun et al., 2002-2012) 

ASE L/R Amphid  Sensory Neuron Gustatory-chemosensory 

ASG L/R Amphid Sensory Neuron Gustatory-chemosensory 

ADF L/R Amphid Sensory Neuron Chemosensory and oxygen sensory 

AWA L/R Amphid  Sensory Neuron Odour sensory 

AWB L/R Amphid  Sensory Neuron Odour sensory 

AWC L/R Amphid Sensory Neuron Odour sensory and thermosensory-

(thermotaxis) 

AFD L/R Amphid Sensory Neuron Thermosensory- (thermal nociception  and 

thermotaxis)  and C02 sensory  

BAG L/R Head Ciliated Sensory Neuron 

(Not part of amphid) 

Nociception, C02  

and oxygen sensory 

PHA L/R Phasmid Sensory Neuron Chemosensory 

PHB L/R Phasmid Sensory Neuron Chemosensory 

AVK L/R Interneuron NR/VC Little known 

AIY L/R Interneuron Head Amphid interneuron receives and 

processes output from amphid neurons, 

involved in regulating gustatory and 

olfactory behaviour, thermotaxis, 

memory, lifespan and stress responses.  

RMG L/R Polymodal 

Interneuron/Motorneuron 

Head 

Receives and processes signals from 

sensory neurons, modules chemosensory 

responses. Involved in Pheromone and 

social behaviour. 

pm1 Pharyngeal Muscle Cell 1
st

 layer of pharynx muscle 
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Over-expression of NCS-1 driven by its endogenous promoter on a wild-type 

background showed improved memory compared to the wild-type worm based on 

the ability to associate the presence of food with a specific temperature, whereas 

the ncs-1 null (qa406) worm showed impaired memory formation (Gomez et al., 

2001). The regulation of memory by NCS-1 was shown to be Ca2+ dependent, as 

expression of the NCS-1 loss of function protein, in which all 3 functional EF hands 

motifs (EF 2,3, and 4) are muted and unable to bind Ca2+, failed to rescue memory 

in the null worm (Gomez et al., 2001).  

 

Using neuron-specific promoters to drive NCS-1 expression, the AIY neuron was 

shown to be the site where NCS-1 regulates memory and isothermal tracking 

(Gomez et al., 2001). Expression of NCS-1 in the AFD neuron failed to rescue this 

behaviour, suggesting that NCS-1 has an alternative role in this neuron (Gomez et 

al., 2001). AWC was not identified as being involved in temperature sensation at 

the time of this study; as a consequence the role of NCS-1 in this neuron was not 

investigated.  

 

The ncs-1 null strain showed no thermoavoidance or chemosensory phenotype 

even though NCS-1 is expressed in neurons involved in these behaviours suggesting 

NCS-1 has no role in these phenotypes (Gomez et al., 2001, Ghosh et al., 2012). To 

identify the full role of NCS-1 in every cell type in which it is expressed, further 

research is required, including phenotyping other behaviours regulated by the 

expressing cells. NCS-1 may share its function with other NCS proteins especially 

NCS-3 as it shows the highest sequence identity. It may be necessary to knockdown 

both proteins to establish and rescue NCS-1 in specific neurons to establish its role 

in all cell types to prevent interference due to the presence of NCS-3. A recent 

study has identified a new phenotype for the ncs-1 null strain. It was shown to have 

impaired alkalinity sensing and live Ca2+ imaging showed impaired Ca2+ signaling in 

the ASE sensory neurons suggesting that NCS-1 has a role in the regulation of [Ca2+]i 

in this neuron (Murayama et al., 2013).  
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In chapter 4 the ncs-1 null worm is used as a tool to characterise key features of 

NCS-1 structure identified in previous structural studies and relate them to the 

function of NCS-1 in C. elegans. 
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1.9 Aims and Objectives 

 

Up until now no direct interaction between P/Q channels and NCS-1 has been 

described. During the first part of this PhD study biochemical and biophysical 

techniques were used to address the following aims. 

 To identify whether the P/Q channel interacts directly  with NCS-1  

 

 To identify which domains of the P/Q channel interact with NCS-1  

 

To characterise the interaction using surface plasmon resonance and nuclear 

magnetic resonance, to identify which amino acids of the NCS-1 binding pocket are 

important for this interaction. 

 

Using C. elegans as a model organism, the objective of the second part of this study 

was to take the known structural and binding information for NCS-1 and apply it to 

a physiological system in order to address the following aims. 

 

 To investigate the behaviour of ncs-1 null strains expressing mutated NCS-1 

and evaluate the molecular significance for function of key characteristics of 

the NCS-1 protein identified in structural studies 

 

 To determine in which neurons NCS-1 functions in relation to the neuronal 

circuit for temperature-dependent locomotion.  

 

 To determine the identity of the NCS-1 target proteins in the temperature-

dependent locomotion pathway. 
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2.1 Materials and Methods for Characterisation of NCS-1 Protein and 

Analysis Target Peptide Binding 

 

2.1.1 Reagents  

All P/Q Cav 2.1 subunit fragments were derived from rat Rba-1 (NP037050.2) and 

other constructs from human CaM (CAA36839) or rat NCS-1 (NP077342.1). 

 

The pEYFPN1-NCS-1 plasmid encoding NCS-1 (O'Callaghan et al., 2002), pGex-6P1 

plasmid encoding GST-NCS-1 (Haynes et al., 2004) and  pET-m11 plasmid encoding 

His tagged NCS-1 (Handley et al., 2010) were described previously.  pGex-6P1 

plasmids (GE Healthcare) encoding a GST fusion tag containing human CaM or rat 

P/Q-L inserts and  pE-SUMOpro plasmids (LifeSensors) with a His-SUMO protein 

fusion tag  encoding P/Q-XL and P/Q-CBD were a gift from Dr Haynes, University of 

Liverpool. The pOPINS plasmid with a His-SUMO tag encoding P/Q-L and a modified 

pET15b plasmid encoding rat CaM gene insert and a deletion to remove the His-tag 

coding region were a gift from Sravan Pandalaneni, University of Liverpool. The rat 

P/Q-IQ  peptide defined in previous structural studies to contain the IQ domain 

(Kim et al., 2008), was synthesised and purified by HPLC (GenicBio Limited).  

 

All primers were synthesised by Sigma-Aldrich. Plasmid sequencing was performed 

by DNA Sequencing & Services (MRCPPU, College of Life Sciences, University of 

Dundee, Scotland, www.dnaseq.co.uk) using Applied Biosystems Big-Dye Ver 3.1 

chemistry on an Applied Biosystems model 3730 automated capillary DNA 

sequencer. PCR products were cleaned up using spin column PCR purification kits 

(NBS Biologicals Ltd).  All DNA fragments were run on a 1 % Agarose gel with 

Sybersafe DNA gel stain (Invitrogen) and Hyperladder I (Bioline) DNA molecular 

weight marker.  Extracted DNA bands were purified using a spin column DNA gel 

extraction kit (NBS Biologicals Ltd). All plasmids were amplified using a spin column 

DNA plasmid miniprep kits (NBS Biologicals Ltd) following the manufacturer's 

instructions. The PCR polymerase enzymes used were Phusion High Fidelity 

Polymerase (Finnzymes) or Pfu Turbo DNA polymerase (Stratagene). The restriction 

enzymes used were DpnI (Promega) and XbaI, BsmBI and XhoI (New England 
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Laboratories) and the ligase enzyme used was T4 DNA ligase (New England 

Laboratories).  

 

All recombinant proteins and peptides where analysed using SDS-PAGE 

electrophoresis using 15% polyacrylmide (v/v) gel and See Blue Plus 2 molecular 

mass markers (Invitrogen), all gels were stained with Coomassie blue to visualise 

the protein. 

 

2.1.2 Preparation of Plasmids for Protein Expression 

2.1.2.1 pE-SUMOpro-NCS-1 

To clone NCS-1 into the pE-SUMOpro plasmid, the NCS-1 sequence was amplified 

from pEYFPN1-NCS-1 (O'Callaghan et al., 2002). PCR was performed using Phusion 

High Fidelity Polymerase (Finnzymes) for amplification of rat cDNA and following 

the manufactures protocol. Briefly, 0.5g of each Primer (forward                             

5’-ATATCGTCTCAAGGTATGGGGAAATCCAACAGC-3 and reverse                                   

5’-ATATCTCGAGTCATACCAGCCCGTCGTAGAG-3’) and 0.5g of template DNA was 

required for PCR.  The annealing temperature used was 69oC and extension time 

was 15 seconds.  The NCS-1 PCR product was purified and digested with the 

restriction enzymes BsmBI and XhoI (NEB). pE-SUMOPro was digested with BsaI 

(which has a complementry overhang to BsmBI) and XhoI (NEB). The digested DNA 

was run on a gel and DNA bands were extracted. pE-SUMOPro and the NCS-1 insert 

were ligated using a 1:3 ratio, at room temperature for 20 minutes. 

 

2.1.2.2 His-SUMO-P/Q-N and His-SUMO-P/Q-N2 

To clone His-SUMO-P/Q-N and His-SUMO-P/Q-N2, the Stratagene QuikChange® 

Site-Directed Mutagenesis protocol was followed. The constructs were created by 

inserting a stop codon at the appropriate point in the longer His-SUMO-P/Q-XL 

template plasmid. Briefly, 0.5g of template plasmid and 125 ng of primers, for 

His-SUMO-P/Q-N (forward 5’-GGTCTCAAGGTAAGTCCACGGACCTGACATGGG-3’ and 

reverse 5’- CCCATGTCAGGTCCGTGGACTTACCTTGAGACC-3’) and for His-SUMO-P/Q-

N2 (forward 5’-GCCAAAACGCCCTAATCCACTCAGCTGGACCC-3’ and reverse               
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5’- GGGTCCAGCTGAGTGGTTAGGGAAGGGCGTTTGGC-3) were used for PCR, using 

Pfu Turbo DNA polymerase (Stratagene). An annealing temperature used was 55oC; 

with an extension time of 13 minutes (double recommended time) was used. 16 

cycles of PCR were required to insert the single stop codon by site directed 

mutagenesis.  To remove the template plasmid, the sample was incubated with 

DpnI (Promega) restriction enzyme. 

 

All cloned His-SUMO plasmids, were amplified using standard transformation 

protocols, into BIOBlue E. coli cells (Bioline) and grown in LB media (1 % w/v  

Tryptone, 0.5 % w/v yeast exact, 5.6 mM NaCl, pH 7.2), containing 30 g/ml of 

kanamycin. To ensure the insertion of the NCS-1 sequence into pE-SUMOpro, the 

amplified plasmid was digested with XbaI and XhoI (NEB). BsmBI could not be used 

as a diagnostic restriction enzyme as this site is removed from the pE-SUMOPro 

plasmid during cloning. The digested sample was analysed by DNA electrophoresis. 

All plasmids were amplified and purified using miniprep kits (NBS biologicals Ltd). 

All three newly cloned constructs were sent for DNA sequence verification           

(The sequencing service, Dundee). The resulting DNA sequences were translated to 

their amino acid sequence using ensembl software and aligned to the relevant 

protein sequences using Clustal W2 software (EMBL-EBI).  

 

 

2.1.3. Protein Expression and Purification of Unlabeled NCS-1, GST-CaM and P/Q 

peptides 

Standard transformation protocols were used to produce colonies of bacteria 

containing the relevant plasmid. Plasmids encoding for GST-CaM, GST-P/Q-L,        

His-SUMO-NCS-1, His-SUMO-P/Q-XL, His-SUMO-P/Q-N and His-SUMO-P/Q-L were 

transformed into BL21 (DE3) E. coli  cells (Bioline). The plasmid encoding for        

P/Q-CBD was transformed into both BL21 (DE3) and Rosetta 2 (DE3) pLysS E. coli 

cells (Novogen). Colonies were selected and  grown in super media (1.5% w/v 

tryptone, 2.5%  w/v yeast extract, 2.8 mM NaCl, pH 7.2) overnight at 37oC, 220rpm.   
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BL21 cells transformed with pGEX-6P1 plasmids were grown  media containing 100 

g/ml ampicillian. BL21 cells transformed with pOPINS or pE-SUMO plasmids were 

grown in media containing 30 g/ml kanamycin. Rosetta 2 (DE3) pLysS cells 

transfected with pE-SUMO plasmid was grown in media containing 30 g/ml 

kanamycin and 34 g/ml chloramphenicol. 

 

After overnight incubation, the starting culture was used to inoculate the growth 

media so that the starting optical density at wavelength of 600 nm (OD600) was less 

than 0.1.  Protein expression was induced when the OD600 reached 0.6-0.8 by 

adding 1mM IPTG (Merck) then incubated at 37oC, 220 rpm for 3 hours. 

 

 

2.1.4. Protein Purification 

Bacterial culture samples were centrifuged at 2500 x g for 15 minutes at 4oC. The 

pellets were resuspended in breaking buffer containing Complete Mini, cocktail 

protease inhibitor tablet (Roche). Cell expressing GST proteins were suspended in 

GST buffer (20 mM Tris.HCL, 50 mM NaCl, pH 7.4). Cells expressing His-SUMO-P/Q-L 

was suspended in Talon buffer (50 mM Na2HPO4, 300 mM NaCl, pH 7).  Cells 

expressing all other His-SUMO proteins were suspended in Histrap buffer (50 mM 

HEPES, 150 mM NaCl pH 7.5).  All resuspended pellets were frozen at -80oC 

overnight. Pellets were defrosted quickly and the cells lysed using a Cell Disrupter 

One Shot (Constant systems Ltd) at 27 kPsi.  250 g of DNaseI (Sigma) was added to 

the Rosetta 2 (DE3) pLysS cell lysate and incubated for 15 minutes on ice.  All 

protein preparations were ultracentrifuged at 100K x g for 1 hour at 4oC. 

 

GST fused recombinant proteins and peptides were purified by binding to pre-

washed glutathione cellulose resin (Bioline). Supernatant was incubated with the 

resin on a rotor for 1 hour at 4oC. The protein bound resin was then further washed 

with buffer. Protein was eluted using Glutathione elution buffer (50 mM Tris.HCl,   

10 mM reduced Glutathione, pH 8). 
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His-SUMO-P/Q-L was purified on cobalt affinity Talon resin (Clontech). The 

supernatant was incubated on the prewashed resin on a rotor for 1 hour at 4oC. The 

resin was then washed with Talon buffer and the recombinant protein eluted with 

Talon buffer containing 200 mM, 400 mM and 800 mM imidazole concentrations 

respectively. 

  

GST-NCS-1 and GST-CaM protein were dialysed overnight in buffer (50 mM Tris.HCl, 

150 mM NaCl, 1 mM EDTA and 1 mM DTT, pH 7). The protein was then bound to 

the glutathione cellulose resin. Precision protease, a gift from Dr Hannah McCue 

(University of Liverpool), was added to the resin and the sample incubated 

overnight at 4oC. The resin was centrifuged at 3000 xg for 5 minutes and the 

supernatant was retained as it contained the untagged recombinant protein. The 

cleaved GST remained on the resin along with the GST-tagged PreScission protease. 

 

His-SUMO-P/Q-XL, His-SUMO-P/Q-CBD, His-SUMO-NCS-1 and His-SUMO required 

for SPR were purified using an ATKA (GE Healthcare) chromatography system. The 

first purification step used a nickel affinity, Histrap FF 5ml column (GE Healthcare).  

After the supernatant was loaded on to the column, it was washed with 2 column 

volumes of Histrap running buffer. The recombinant protein was eluted from the 

column using Histrap elution buffer (0.5 M Imidazole, 50 mM HEPES, 150 mM NaCl, 

pH 7.4),  with a  0-100% elution gradient over 20 column volumes, the flow rate was 

5 ml/min and fraction size was 5ml. 

 

To remove the His-SUMO tag from His-SUMO-NCS-1, His-SUMO-P/Q-CBD, His-

SUMO-P/Q-XL and His-SUMO-P/Q-N samples were incubated with His-SUMO 

protease, ubiquitin-like protease-1 (ULP-1), a gift from Dr Herbert, University of 

Liverpool. The protein was simultaneously dialysed (Snakeskin molecular weight cut 

off (MWCO) 3 kDa) with Histrap buffer at 4oC to remove imidazole from the sample 

while cleavage was taking place. The untagged protein was manually run through a 

Histrap column using a syringe to remove the free His-SUMO tag and any uncleaved 

protein. The flow through containing the untagged peptide or protein was collected 

and retained. The tag was removed from the column using Histrap elution buffer. 
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Untagged NCS-1, untagged P/Q-CBD, His-SUMO-P/Q-XL and His-SUMO-P/Q-CBD 

samples were concentrated using Vivaspin 20 columns (GE Healthcare) with a 

MWCO  3 or 10 kDa as appropriate.  The samples were then diluted 1 in 6 with 

Mono Q buffer (20 mM HEPES, pH 7.0) to lower the concentration of salt from 

previous steps. The sample was then further concentrated to 2.5 ml. Untagged and 

tagged proteins where further purified using ion exchange chromatography.  The 

sample was injected on to a Mono Q 5/5 1 ml column (GE Healthcare) at a flow rate 

of 1 ml/min. Elution buffer (20 mM Hepes, 1 M NaCl, pH 7.0) was run through the 

column at 0-100% gradient over 25 column volumes.  His-SUMO-P/Q-CBD was 

concentrated and underwent a third purification step by Gel filtration. After 

concentrating, using a Vivaspin 20 (MWCO of 10 kDa), the sample was loaded on a 

to a HiLoad 26/60 Superdex 75 column 26/60 (GE Healthcare) for size exclusion 

chromatography. Running buffer (10 mM HEPES 150 mM NaCl, pH 7.4) was run 

though the column at a flow rate of 2ml/min and fractions were eluted at 5 ml 

volumes. 

 

 

2.1.5 Expression of Unlabeled CaM, 15N Labelled NCS-1 and CaM. 

pET-15b CaM or pET-m11 His-NCS-1 plasmids were transformed into BL21 (DE3) 

using standard protocols. Media for CaM expression contained 100 g/ml 

ampicillian and for NCS-1 expression contained 30 g/ml kanamycin. An LB starting 

culture of 5 ml was grown for 5 hours at 37 oC, with agitation at 220 rpm, then 

transferred to a starter culture of 2M9 minimal media  (20 mM 15N labelled 

ammonium chloride, 20 mM glucose, 55 mM KH2PO4, 88 mM Na2HPO4, 1 mM 

MgSO4, 136 M CaCl2 30 M) and incubated overnight at 37oC, 220 rpm. After 

overnight incubation, the starter culture was used to inoculate 2M9 minimal 

growth media then protein expression was induced as described above, the media 

for CaM was supplemented with 0.1 M Biotin to increase the expression. The 

cultures were incubated overnight at 18oC, 190 rpm. The cells were harvested and 

resuspended in buffer (50 mM Tris.HCl, 500 mM NaCl, 5 mM CaCl2 pH 7.5 and 
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Complete Mini EDTA free Protease inhibitor tablets (Roche)) and frozen at -20oC 

overnight. The cells were lysed using a cell disrupter as above and 250 g DNaseI 

(Sigma) added. The lysate was centrifuged at 50,000 xg for 30 minutes at 4oC. The 

CaM preparations underwent an additional purification step, the supernatant was 

removed and it was heated to 65oC for 3 minutes. This heat step denatures protein 

impurities in the sample, centrifugation was repeated at 50,000 x g for 30 minutes 

at 4oC, and supernatant retained. 

 

 

2.1.6 Purification by Hydrophobic Interaction and Size Exclusion Gel 

Chromatography  

Supernatants for both CaM and His-NCS-1 were filtered (0.2m acrodisc). The 

samples were loaded on a HiPrep 16/10 Phenyl FF High Sub column                         

(GE Healthcare), using a flow rate of 2 ml/min. Then loading buffer (50 mM Tris.HCl, 

500 mM NaCl, 5 mM CaCl, pH 7.5) was run over the column to saturate the column 

with the recombinant protein and remove unbound proteins.  Saturation was 

indicated by decline of the load peak on the chromatogram.  Wash buffer (50 mM 

Tris.HCl, 0.5 mM CaCl, pH 7.5) was ran over the column until the chromatogram UV 

units reached ~ 50 mUV to remove impurities. Elution buffer (50 mM Tris.HCl,         

10 mM EDTA, pH 7.5) was used to remove CaM from the column and distilled water 

was used to remove NCS-1 from the column. A flow rate of 2 ml/min was used and 

protein fractions were eluted at 5ml volumes.  

 

His-NCS-1 fractions were concentrated as above and buffer exchanged using a PD10 

column (GE Heathcare) into TEV cleavage buffer (50 mM Tris.HCl, 500 mM NaCl, 

and pH 7.4). The sample was then incubated with TEV protease, a gift from Sravan 

Pandalaneni, (University of Liverpool), overnight at 4oC to cleave the His tag from 

the protein. The untagged protein was manually run through a Histrap column 

using a syringe, as described above, to remove the His tag and any uncleaved 

protein. The flow through containing the untagged NCS-1 was collected and 

retained. After hydrophobic chromatography CaM fractions were buffer exchanged 

using a PD10 column (GE Heathcare) into gel filtration buffer (20 mM MES, 150 mM 
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NaCl, 5 mM CaCl2 ,pH 6.5). CaM and untagged NCS-1 samples were injected on to 

HiLoad 26/60 Superdex 75 column 26/60 (GE Healthcare) using the gel filtration 

buffer and conditions used above. Aliquots of fractions were flash frozen using 

liquid nitrogen and stored at – 80 oC.  

 

2.1.7 Mass spectrometry 

For identification, the untagged P/Q-CBD peptide band was extracted from an SDS 

PAGE gel stained with Coomassie blue. In-gel, tryptic digestion and mass 

spectrometry were performed by Mark Wilkinson and Mark Prescott, University of 

Liverpool as follows. Gel slices from SDS-PAGE were washed with 50% acetonitrile, 

0.2 M ammonium bicarbonate pH 8.9 and then dried in a rotary evaporator. The 

slices were re-swollen in 0.2 M ammonium bicarbonate pH 7.8 containing trypsin 

and incubated at 25ºC overnight. Peptides were extracted from the gel slices with 

60% acetonitrile, 0.1% TFA and then de-salted for MS using C18 ZipTips. MS analysis 

was performed on a MALDI-Tof instrument (Waters-Micromass). Peptides were 

mixed 1:1 with a saturated solution of alpha-cyano-4 hydroxycinnaminic acid in 50% 

acetonitrile/0.1% trifluoroacetic acid and analysed in the mass range 800 – 4000 Da 

 

2.1.8 Analysis of the P/Q-IQ peptide 

2.1.8.1 Helical Prediction 

The helical prediction software AGADIR was used to calculate the helical content of 

the 27 residue P/Q-IQ peptide from its amino acid sequence 

TVGKIYAAMMIMEYYRQSKAKKLQAMR.  

 

2.1.8.2 Circular Dichroism 

For Circular Dichroism (CD) spectroscopy the P/Q-IQ peptide was diluted to a 

concentration of 250 M in distilled water/2, 2, 2-trifluoroethanol (TFE), the TFE 

titrations were 0%, 15%, 30% and 50%. A Jasco-J810 spectrophotometer was used 

for CD measurements in the far-UV region from 190 to 260 nm for each titration.     

A rectangular cell with a path length of 0.1 cm was used and assays were run at 
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25oC. Seven scans were performed for the peptide at each TFE titration. The CD 

signal was averaged and corrected for the buffer.  

 

Measured ellipticity  (CD mdeg) at 222 nm was converted to mean residue molar 

ellipticity [222], using the following equation:- 

 

[222]= (100 x) /Cnl, 

 

Where C is the protein concentration, n is the number of residues in the peptide 

and l is the path length in cm.  

 

 Percentage helicity was calculated using the following formula  

 

([222]/[max
222]) x100=% helicity 

 

[max
222]= -40,000 [1 - (2.5/n)],  

 

Where -40,000 is the constant for infinite helicity at 0oC, 1 - (2.5/n) corrects for 

peptide length, n = number of amino acids in peptide. 

 

 

2.1.9 Pull-down Assay The analysis of the Ca2+-dependency of binding of            

GST-P/Q-L -NCS-1 

 

2.1.9.1 Binding Assay 

The concentrations of GST-P/Q-L and untagged NCS-1 was determined using 

densitometry by comparing the bands of recombinant protein to known BSA 

standards with Image J software. Samples were prepared in 25 mM Tris.HCl, 50 mM 

KCl, 5 mM EGTA, 5 mM NTA, 1 mM DDT,   2 mM Free Mg2+ pH 7.4. A titration of 

Ca2+ concentrations was performed adding CaCl2 to give 0, 0.1, 0.3, 0.6, 1, 3, 6 mM 

free Ca2+ in the buffers. Free Ca2+and Mg2+concentrations were calculated using the 

Chelate DOS program. Washed glutathione resin was placed in a microcentrifuge 
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tube and each of the following buffer conditions was run in duplicate.   GST-P/Q-L 

was added to a final concentration of 1 M to tubes containing the appropriate Ca2+ 

buffer 0-6 mM.  The tubes were incubated on a rocker on ice for 30 minutes. NCS-1 

was added to a final concentration of 1 M and incubated for 1 hour. The resins 

were washed three times with the appropriate Ca2+ buffer. The tubes were 

centrifuged to remove excess wash buffer and boiled with 30 l SDS loading buffer 

for 5 minutes. The resin was centrifuged again and the SDS loading buffer was 

analysed using SDS-PAGE and Western blotting.   

 

2.1.9.2 Western Blot of Pull-Down Assay 

For Western blot analysis, protein bands were transferred from the gel to a 

nitrocellulose membrane using electroblotting. The membrane was then blocked 

using 3% (w/v) milk in PBS to prevent non-specific binding of antibodies.  The 

membrane was then incubated with 1:1000 rabbit polyclonal  anti-human NCS-1 

antibody (McFerran et al., 1998) in 3% (w/v) milk PBS, overnight on a rocker at 4oC 

(McFerran et al., 1998) . After washing three times with PBS and 0.05% (v/v) tween 

20 (PBST) and rinsed, the membrane was then incubated with 1:400 dilution HRP 

conjugated goat anti-rabbit secondary antibody (Sigma) in 3 % (w/v) milk PBS, for 1 

hour. The membrane was further washed and incubated with equal volumes of ECL 

reagents. The blot was visualised using the ChemiDoc System (Bio-Rad), using 

Chemi-Hi sensitivity setting. The image was further analysed by measuring the 

density of the bands using ImageJ software. The density was plotted against Ca2+ 

concentration and fitted against a hyperbolic model using Origin8 software. 

 

2.1.10 Gel Filtration analysis 

The mixture of NCS-1 and P/Q-IQ peptide, at concentrations of 100 M and 350 M 

respectively, containing a putative complex was suspended in a buffer (20 mM MES, 

100 mM NaCl, and 5 mM CaCl2 buffer pH6.5), and analysed by size exclusion gel 

filtration. A volume of 500 l was injected on to an analytical Superdex 75 HR 

10/300 mm column. Separation buffer (50 mM Tris.HCl, 150 mM NaCl, pH 7.4) was 
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run through the column at a flow rate of 0.75 ml/ min and 0.5 ml eluted fractions 

were collected 

 

To calculate the partition coefficient (Kav) of the peak the following equation was 

used:- 

 

Kav= Ve-V0/Vc-V0, 

 

Where Ve is elution volume, V0 is void volume, Vc is the column volume.  

 

2.1.11 NMR Spectroscopy 

All NMR spectra were of samples with volumes of 500 l in Shigemi microtubes 

(Sigma) and were recorded on Bruker DRX 800 and 600 MHz spectrometers 

equipped with CryoProbes. The number of scans used to acquire data was 32 unless 

otherwise stated and the number of dummy scans performed before data 

collection was 8. To process the data a time domain size of 1024 data points was 

used. Data were collected and processed using the Bruker Software TopSpin version 

2.1 and analysed using the Collaborative Computing Project for NMR (CCPNmr) 

analysis software version 2.1.5 (Vranken et al., 2005). All experimental spectra were 

acquired at 308K. To increase the number of chemical shift peaks the NMR 

experiments were performed at pH 6.5 to minimise the rate of exchange of amine 

protons with the solvent.  

 

 

2.1.11.1 CaM and P/Q-IQ interactions 

Labeled 15N CaM (500 M) was prepared in buffer (20 mM MES, 100 mM NaCl, and 

5 mM CaCl2, pH 6.5).  NMR spectra were collected with temperature titrations of 

298K, 300K, 305K and 308K. Using previously assigned  1H15N HSQC spectra for CaM 

(Lian et al., 2007), assignments were transferred to peaks on spectra acquired at 

298K. These assignments were then transferred to the resonances of the 

temperature titrations.  The transfer of assigned residues was performed manually 
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viewing overlaid spectra using topspin. Synthetic P/Q-IQ peptide was prepared 

using the buffer above and was added at concentrations of 100 - 2000 M by 

titrating aliquots into the sample. For each P/Q-IQ titration, 1H15N HSQC spectra 

were collected at 308K. Using data collected by NMR in a previous study (Lian et al., 

2007), the P/Q-IQ titration spectra were analysed using CCPNmr analysis software 

to characterise the interaction of the CaM binding domain  to the P/Q-IQ peptide.  

 

 

 

2.1.11.2 NCS-1 and P/Q-IQ interactions 

Labelled 15N NCS-1 (100 M) was prepared in the MES buffer described above. 

1H15N HSQC spectra were acquired at increasing temperatures; 298K, 303K, 305K 

and 308K. Using CCPN software, the assignments of NCS-1 1H15N HSQC spectrum 

were transferred from that previously reported NCS-1 spectrum (Handley et al., 

2010) and assigned to each spectrum in the temperature titration series. 1H15N 

HSQC spectra were acquired for P/Q-IQ over the concentration range 0-350 M in a 

similar manner to those above. Spectra for final NCS-1 (100 M) and P/Q-IQ (350 

M) spectra were performed using 32, 64 and 544 scans to reduce background 

noise.  
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2.2 Materials and Methods –For analysis of NCS-1 function in               

C. elegans  

 

2.2.1 Reagents  

2.2.1.1 C. elegans Strains 

C. elegans strains used in this project were wild-type or contained various 

mutations and were obtained from several suppliers listed in Table 2.1 

 

Table 2.1  C. elegans Strains 

Strain Gene Allele Mutation Type Source 

N2 wild-type   Caenorhabditis 

Genetics Centre (CGC) 

(University of 

Minnesota, USA). 

XA406 ncs-1 qa406 Homozygous null allele and was created by 

transposon insertion and deletion of 2149 bp 

which contained exons 1- 5 and the ATG start 

codon of the C. elegans ncs-1 gene. 

CGC 

TM437 ncs-1 tm437 Homozygous for the allele which contains a 

618 bp deletion of bases 2994- 3611, 

inclusive, located in intron 1 of the C. elegans 

ncs-1 gene created by UV/TMP knockout. 

National Bioresource 

Project for the 

Experimental Animal 

(NBRP) (Tokyo  

Women’s Medical 

University,  Japan) 

RM956 ric-4 md1088 Contains the ric-4 gene with a deletion, size 

and location of the deletion site is yet to be 

identified; mutagenesis technique used to 

create this strain was not recorded on 

wormbase or CGC database. 

CGC 

FX2328 pifk-1 

(F35H12.4) 

tm2348 Homozygous for the null allele created by 

UV/TMP knockout. The allele contains a 

deletion of 502 bp and insertion of 4 bp 

11095/11096-TAAA-11595/11596  

Mori lab, Nagoya 

University, Japan 

Originally from NBRP 

OH161 ttx-3 ot22 Homozygous null allele created by EMS, 

premature stop codons inserted in place of  

amino acids Q275 and Q303 

CGC 
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2.2.1.2 Plasmids and C. elegans Sequences 

The plasmid pPD117.01 [Pmec-7::GFP] was obtained from the Fire Lab via Addgene and 

contains the GFP reporter protein gene driven by the C. elegans mec-7 promoter. 

Marker plasmid pRAB100 [Prab-3::GFP] was obtained from the Nonet Lab (Washington 

University of St Louis, USA) and., marker plasmid pG[Posm-6::GFP] was obtained from 

James Johnson, University of Liverpool. Both marker plasmids contained the GFP 

reporter protein gene which was driven by either the C. elegans rab-3 pan-neuronal 

or osm-6 pan-sensory neuronal promoter respectively. pBlueScript (Stratagene) is 

an empty cloning plasmid.  The PAIY::MCS plasmid was a gift from Hobert Lab 

(Columbia University Medical Center, N.Y.) and contains the promoter to drive the 

expression of transgenic proteins in the AIY neuron only. This promoter is situated 

within the introns and exons of the ttx-3 gene on chromosome X of the worm 

genome. 

 

The C. elegans ncs-1 genomic gene sequence, was derived from the C. elegans ncs-1 

gene (Wormbase gene sequence C44C1.3, Accession number CCD63971). The C. 

elegans ncs-1 gene  promoter sequence was defined as 3.5 kbp before the start 

sequence of the C. elegans ncs-1 gene as previously reported (Gomez et al., 2001). 

The WRM063AD10 fosmid was obtained from C. elegans Reverse Genetics Core 

Facility, Canada via Addgene. The fosmid contains a region of genomic X 

chromosome DNA and includes the unspliced wild-type sequence of the C. elegans 

ncs-1 gene and its promoter. Plasmids containing synthetic spliced wild-type and 

spliced mutated C. elegans ncs-1 genes, all without introns, were purchased from 

Geneart (Life technologies) (Table 2.2). 
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Table 2.2. Synthetic Spliced C. elegans ncs-1 Wild-Type and Mutated Gene Inserts 

Synthetic gene/variant Description 

ncs-1 wt  Wild-type  

ncs-1 G2A Single amino acid mutation 

ncs-1 W30A Single amino acid mutation 

ncs-1 L89A Single amino acid mutation 

ncs-1 W103A Single amino acid mutation 

ncs-1 V125A Single amino acid mutation 

ncs-1 W30A L89A Double amino acid mutation 

ncs-1 W30A W103A Double amino acid mutation 

ncs-1 W103A V125 Double amino acid mutation 

ncs-1 177-191 C terminal truncation 

ncs-1 174-191 C terminal truncation 

ncs-1 169-191 C terminal truncation 

 

 

2.2.1.3 Enzymes 

AscI, BamHI, and XhoI restriction enzymes and T4 DNA ligase were obtained from 

Promega.  Phusion High Fidelity Polymerase was purchased from New England 

Biolabs. Gateway BP and LR Clonase II enzyme mix kits were obtained from Life 

Technologies.  

 

 

2.2.2 C. elegans Husbandry 

C. elegans were grown and maintained on nematode growth media (NGM)  (50 mM NaCl, 1 

mM CaCl2, 1 mM MgSO4, 25 mM KH2PO4, 5 g/ml cholesterol,  0.25% w/v peptone, 2 % w/v 

agar) on 60 mm petri plates, following standard protocol as described previously (Brenner, 

1974) and kept at 20oC. The plates were seed with E. coli OP50 strain as the single food 

source. To maintain well-fed healthy adult strains, 5-10 young hermaphrodite worms were 

manually transferred using a sterile tungsten pick (World Precision Instruments), from old 

overgrown, but not starved plates to fresh seeded NMG plates, every generation. Worms 

were observed using a PZMIV dissecting binocular stereomicroscope (World Precision 

Instruments) and illuminated with either a halogen cold light source or for strains 



53 
 

expressing transgenic GFP an epifluorescent UV light, when either transferring worms or 

for visual assessment of behaviour.    

 

To age synchronise C. elegans strains 5-10 young healthy hermaphrodite adult 

worms were transferred as above to seeded plates, left for ~ 16 hour to lay eggs, 

then removed and the eggs and larva were incubated for ~36 hours, ~ 60 hours or 

~84 hours for progeny to hatch and mature to approximately stage 4 larval/Day 0, 

Day 1 or Day 2 adults respectively. 

 

 

 

2.2.3 Preparation of Plasmids for Microinjection. 

 

2.2.3.1 PCR and Restriction Digestion  

Plasmids containing C. elegans ncs-1 genes where created by molecular cloning 

techniques, those created by standard cloning techniques in this section are 

illustrated in Figure 2.1. To create plasmids containing [Pncs-1::ncs-1 unspliced] and       

[Pncs-1::] PCR was performed using Phusion High Fidelity Polymerase for amplification 

of C. elegans chromosomal cDNA. Briefly, 0.5g of each fwd and Rev Primer and 

0.5g of template DNA was required for PCR specific conditions are indicated in 

Table 2.3). 
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Table 2.3. PCR Conditions for Amplification of ncs-1 Promoter or Gene Inserts 

Insert 

Name 

Amplified 

From 

Construct 

Primer Sequences Annealing 

Temprature 

(
o
C) 

Extension 

Time 

(Seconds) 

ncs-1::ncs-

1 

(unspliced) 

WRM063AD10 
fosmid 

Pncs-1 forward 5’-
TCAAGGCGCGCCCTCTGAGTT 
CTTGCAATGCTTGG-3  
ncs-1 reverse 5’-TTGAGGATCCTCAAGAGAGA 
GACCCTCATACAATG-3’ 

 

70 

 

180 

Pncs-1 WRM063AD10 
fosmid 

Pncs-1 forward 5’-
TCAAGGCGCGCCCTCTGAGTT 
CTTGCAATGCTTGG -3’  
ncs-1 reverse 5’-TTGAGGATCCTCAAGAGGAG 
AGACCCTCATACAATG-3’ 

 

70 

 

105 

ncs-1 

(unspliced) 
WRM063AD10 
fosmid  

ncs-1 forward 5’- TTGTGGATCCGAAATGGGCA 
AAGGGAACAGCAAG-3’  
ncs-1 reverse 5’-TTGAGGATCCTCAAGAGGA 
GAGACCCTCATACAATG-3’ 

 

63 

 

90 

PAIY PAIY::MCS PAIY forward 5’-ATATGGCGCGCCAAGCTT 
TTTTGAAACGATCTTTG-3’  
PAIY reverse 5’-ATATGGATCCCATTTGACACC 
GAAGACAATTATTATG-3’ 

 

65 

 

15 

 

 

The PCR products were purified and digested along with pPD117.01 plasmid using 

the restriction enzymes AscI and BamHI (NEB). The digested DNA was run on an 

agarose gel and DNA bands were extracted using a gel extraction kit                      

(NBS Biologicals Ltd). pPD117.01 and the inserts were ligated using a 1:3 ratio, at 

room temperature for 20 minutes using T4 DNA ligase (Promega).  
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Figure 2.1 Creation of p[Pncs-1::ncs-1 unspliced] and p[Pncs-1::ncs-1 spliced] Plasmids. Standard PCR and 
restriction digest cloning techniques were used to replace the promoter and genes in the 
pPD117.01[Pmec-7::GFP] with the genomic ncs-1 and genomic unspliced or synthetic spliced ncs-1 genes 
and create * p[Pncs-1::ncs-1 unspliced] and wild-type or mutant p[Pncs-1::ncs-1 spliced] plasmids (* Indicates 
plasmids used for microinjection). 
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Geneart plasmids containing the synthetic spliced ncs-1 wild-type or mutant 

variants inserts were amplified in Bioblue E. coli cells using standard protocols and 

grown on LB/AMP plates overnight. A colony for each construct was selected for 

miniprep cultivation and purification following the manufactures instructions (NBS 

Biologicals Ltd). To create [Pncs-1::ncs-1 spliced] plasmids containing either ncs-1         

wild-type or mutant variants, the  Synthetic gene plasmid and the destination 

plasmid [Pncs-1::] were digested using BamHI and XhoI  (Table 2.2). The digested DNA 

was run on an agarose gel and the relevant bands extracted and ligation was 

performed using T4 ligase (Promega), as above. 

 

2.2.3.2. Gateway Cassette Cloning 

Both plasmids created using the Gateway cloning system are illustrated in Figure 

2.2. To create a plasmid pG[Posm-6::ncs-1(unspliced)], expressing unspliced ncs-1 under the 

pan sensory neuron osm-6 promoter, the genomic ncs-1 gene sequence was 

amplified from the WRM063AD10 fosmid. PCR amplification was performed as 

described above (see Table 2.3) specific conditions). The PCR product contained the 

gene and attB recombinase flanking sequences and was separated on an agarose 

gel, the band was extracted and the gene inserted into the Gateway donor plasmid 

pDONR221, containing the attP recombinase flanking sequences and cassette, using 

BP Clonase II recombinase following the manufacturer’s instructions. 

 

The pDONR221 plasmid was amplified in Bioblue E. coli and purified using the 

standard miniprep protocol as above. The donor vector also contained the attL 

flanking sequences which allowed the gene to be inserted into the destination 

plasmid pG[Posm-6::attR],  using LR Clonase II following the manufacturer’s 

instructions. The destination plasmid contained the gateway cassette and the attR 

sequences and was formed from the original pPD117.01 plasmid by James Johnson 

using standard recombinant cloning techniques.  
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Figure 2.2 Creation of pG[Posm-6::ncs-1 unspliced] and p[PAIY::ncs-1 spliced] Plasmids. Gateway, standard PCR 
and restriction digest techniques were used to replace the promoter and genes in the pG[Posm-6A] 
with the genomic osm-6 or AIY neuron promoters and the genomic unspliced ncs-1 gene and create 
pG[Posm-6::ncs-1 unspliced] and pG[PAIY::ncs-1 unspliced] plasmids (* Indicates plasmids used for microinjection). 
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Restriction cloning techniques were used to create plasmid pG[PAIY::ncs-1(unspliced)]. The 

sequence of the AIY neuron promoter was amplified by PCR using Phusion DNA 

polymerase from the PAIY::MCS plasmid, using techniques described previously (for 

specific details see Table 2.3). The PAIY PCR product and plasmid                       

pG[Posm-6::ncs-1(unspliced)] were cut with AscI and BamHI restriction enzymes and 

ligation was carried out  as before. 

 

2.2.4 Microinjection  

The transgenic lines created can be seen in Table 2.4.Larval stage 4 to Day 1 adult 

N2 or XA406 ncs-1 null worms were injected with extra-chromosomal genes into 

the germline cells of the dorsal, gonad. Using a micropipette needle the injection 

mixtures contained DNA concentrations of 100 ng/l DNA consisting of 10 ng/l 

ncs-1 expressing plasmid, 40 ng/l of GFP marker plasmid and 50 ng/l of empty 

pBluescript plasmid in injection buffer (20 mM KPO4, 3 mM Citrate, 2 % PEG 6000). 

Worms were immobilised on a 2% agarose pad on a glass coverslip and coated with 

halocarbon oil. The worms were visualised for injection using Nikon Eclipse Ti-S 

inverted microscope at 40x and a Eppendorf micromanipulator was used to position 

the needle. After injection the worms were rehydrated with M9 buffer and moved 

to a seed NGM plate. Injected plates were observed for GFP expression in progeny. 

F1 generation worms were isolated on to individual plates.  Expression of GFP in the 

F2 generation confirmed incorporation of the extra chromosomal plasmids in the 

worm. Three separate lines for each plasmid injection were generated and their 

phenotypes assessed.  
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Table  2.4. Transgenic Strains Created by Microinjection                                                 
(* Injections performed by Dr James Johnson, University of Liverpool) 

 

Strain 
Injected 

Plasmid Containing ncs-1 
Gene 

Neuronal 
Expression of 

Gene of Interest 

Plasmid 
Containing 

GFP Marker Gene 

Neuronal 
Expression of 
Marker GFP 

N2 - - p[Prab-3::GFP] All neurons 
 

N2
* 

p[Pncs-1::ncs-1 unspliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406 p[Pncs-1::ncs-1 unspliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406 p[Pncs-1::ncs-1 spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* p[Pncs-1::ncs-1  G2A spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* p[Pncs-1::ncs- -191 spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* p[Pncs-1::ncs- -191 spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* p[Pncs-1::ncs- -191 spliced] All NCS-1 
expressing 

neurons 

p[Posm-6::GFP] All ciliated 
sensory neurons  

XA406 p[Pncs-1::ncs-1 W30A spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* p[Pncs-1::ncs-1 L89A spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* p[Pncs-1::ncs-1 W30A L89A spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* p[Pncs-1::ncs-1 W103A spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* p[Pncs-1::ncs-1 V125A spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* p[Pncs-1::ncs-1 W103A V125A spliced] All NCS-1 
expressing 

neurons 

p[Prab-3::GFP] All neurons 

XA406* pG[Posm-6::ncs-1 unspliced] All ciliated 
sensory neurons 

p[Posm-6::GFP] All ciliated 
sensory neurons  

XA406* pG[PAIY::ncs-1 unspliced] Left and Right AIY 
interneurons 

p[Posm-6::GFP] All ciliated 
sensory neurons  
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2.2.5 Imaging 

Day 1 wild-type, null or transgenic worms were immobilised on a microscope slide in a 

droplet of mounting media (20% w/v PEG, 20% w/v glycerol PBS) and a coverslip placed on 

top. The worms were imaged using Nikon Eclipse Ti-S inverted microscope with x200 

magnification lens. Images were obtained using either differential interference contrast 

(DIC) or fluorescence illumination for the comparison of anatomy or for verification of 

expression of extra-chromosomal GFP marker genes by the transgenic animals, 

respectively. 

 

 

2.2.6 C. elegans Protein Extraction and Western Blotting. 

Recombinant C. elegans NCS-1 was separated by SDS page electrophoresis on a       

4-12% Bis-Tris polyacrylamide gel, run using MOPS SDS running buffer (50 mM 

MOPS, 50 mM Tris.Base, 0.1% SDS, 1 mM EDTA, pH 7.7) at 200 volts for 50 minutes. 

The protein bands were transferred to a nitrocellulose membrane by 

electroblotting. The membrane was then blocked using 3% milk in PBS to prevent 

non-specific binding of antibodies.  The membrane was then blocked and incubated 

with 1:1000 polyclonal rabbit anti-NCS-1 antibody (McFerran et al., 1998) or 1:1000 

monoclonal mouse anti-NCS-1 (Sigma) in 3% milk PBS, overnight on a rocker at 4oC. 

After washing, the membrane was incubated with 1:400 dilution HRP conjugated 

goat anti-rabbit secondary antibody (Sigma) in 3 % milk PBS, for 1 hour. After 0.05% 

tween PBS and 0.5 M NaCl PBS washes, the membrane was further was incubated 

with equal volumes of ECL reagents for imaging.  

 

To determine if the polyclonal anti-NCS-1 antibody was efficient at detecting 

recombinant C. elegans NCS-1, serial dilutions of recombinant mammalian and       

C. elegans NCS-1 of equal concentrations were run gels and probed by Western 

blotting as above using 1:1000 rabbit polyclonal anti-NCS-1 antibody. 

To extract proteins from the worms, thirty five whole animals were placed in 25 l 

4% SDS loading buffer for each strain and frozen at – 80 oC overnight, the sample 
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was heated to 100oC for 20 minutes. SDS page and Western blot analysis was 

performed as above using the polyclonal antibody.  

 

2.2.7 Behavioural Assays 

2.2.7.1 Crawling locomotion Assays 

Locomotion is an indicator of neuronal function and so crawling locomotion of the 

wild-type and NCS-1 null strain was assessed. To correct for environmental 

variations, the worms were measured alternating between control, mutant and 

transgenic strains, age synchronised worms were used at adult day 1 or day 2. To 

correct for behaviour variations caused by transferring the worm from its growth 

plate, individual worms were left for 10 minutes on the unseeded experimental 

NGM plates before crawling locomotion assessment at 20 oC. Quantification for the 

body bend assay was performed by counting each complete sinusoidal movement. 

For each assay n=20 of each strain was used. All results were expressed as means    

± S.E.M. 

 

 

2.2.7.2. Neurotransmission (Aldicarb Resistance) Assay  

To establish if NCS-1 had effect on neurotransmission the rate of acetylcholine 

(ACh) released at the release neuromuscular junction was indirectly assessed.  

Worms were treated with 1 mM Aldicarb, an ACh esterase inhibitor. Wild-type and 

mutant worms (n=40) were transferred to unseeded 1mM Aldicarb (Sigma) NGM 

plates at -5 minutes. Paralysis of worms was assessed by prodding the head and tail 

of each animal gently with a tungsten wire, at 10 minute intervals from 0 to 90 

minutes and the rate of paralysis recorded. All data were expressed as means ± 

S.E.M. 
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2.2.7.3 Temperature-Dependent Locomotion Assay  

The temperature-dependent locomotion (TDL) rate was assessed by measuring the 

swimming rate of the worms at 20 oC and 28 oC for wild-type and mutant strains. A 

Petri dish was placed on the centre of a Peltier effect thermoelectric plate and 200 

l of Dent’s solution (140 mM NaCl, 6 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM 

HEPES, pH 7.4 with bovine serum albumin at 0.1 mg/ml) was put in it. The 

temperature of the Dent’s solution was monitored by a thermocouple and the 

temperature was recorded in real time. A day 1 or day 2 adult worm was removed 

from a NGM plate and immersed in the Dent’s solution at 20oC ±0.3.  The worm was 

left to acclimatise for 10 minutes then the thrashes per minute were counted. A 

single thrash was defined as a complete change direction of bending of the mid 

body then back again to the original position.  

 

The droplet of Dent’s solution was then heated up to 28oC ±0.3, the worm was left 

for a further 10 minutes to acclimatise and the thrashing rate was recorded at the 

higher temperature. 15-100 worms were assayed were recorded for each of the 

strains. Where indicated, temperature-dependent locomotion rates from two or 

three separate lines were pooled.  All data were expressed as means ± S.E.M. 

Where indicated, the data was pooled and normalised to thrashes per minute 

against wild-type strain N2 at 20oC and significance to locomotion rates at 20oC and 

28oC was measured using the Mann–Whitney U test and for multiple comparisons, 

the error rate was controlled using the Bonferroni correction. 

 

 

2.2. 8 Predicted Models of C. elegans NCS-1 Protein Structure  

Based on the published solution NMR structure of human NCS-1 (PDB entry 2LCP) 

(Heidarsson et al., 2012) or the crystal structure (PDB entry 1B8I) (Bourne et al., 

2001), the structures were predicted  from the C. elegans NCS-1 amino acid 

sequence using the SWISS-MODEL server (Arnold et al., 2006). The three-

dimensional predicted models of the structures were rendered in PyMol (Delano 

Scientific). 
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Chapter 3: RESULTS 

Characterisation of NCS-1 and 

Calmodulin Interactions with the 

P/Q-type (Cav2.1) Calcium Channel 
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3.1 Introduction Modulation of Cav2.1 by Ca2+ Sensor Proteins 

Many mechanisms regulate Cav2.1; but here I will focus on regulation by activity-

dependent feedback.  This feedback allows the channel to respond to changes in 

[Ca2+]i via two Ca2+-dependent regulatory pathways. These are Ca2+-dependent 

facilitation (CDF) and Ca2+-dependent inactivation (CDI) (Findeisen and Minor Jr, 

2010). CDF enables the channel to remain open as [Ca2+]i  rises, whereas, CDI 

accelerates inactivation of the channel in response to high [Ca2+]i  (Figure 3.1). 

These modulations are caused by interactions between Cav2.1 C-terminal domains 

and Ca2+ sensor proteins. The exact mechanisms leading to CDF and CDI of the 

channel are not fully understood. 

 

 

 

 

 

Figure 3.1. A model for the modulation of the P/Q channel. The diagram shows P/Q modulation 
during a) CDF and b) CDI.  At low Ca

2+
 levels, a) the N-terminal lobe of CaM was shown to interact 

with the IQ domain and facilitate the channel opening. As the Ca
2+

 levels inside the neuron rise, b) 
the C-terminal lobe of CaM interacts with the CaM binding domain (CBD) to inactivate the channel. 
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3.1.1. Introduction- Modulation of the P/Q channel by CaM  

Activity dependent modulation of Cav2.1 by CaM has a role in short-term synaptic 

plasticity (Mochida et al., 2008).  Two distinct regions of the P/Q channel have been 

identified in CaM modulation. Voltage gated channels have an alpha helical domain 

which contains a conserved IQ motif. Confusingly, in Cav2.1 this motif contains IM 

rather than IQ residues (Demaria et al., 2001). Here it will be referred to, 

nevertheless, as the IQ domain. Further towards the  C-terminal of the protein is a 

CaM binding domain (CBD) (Lee et al., 1999). CaM was first discovered to bind to 

the CBD of Cav2.1,  in a Ca2+-dependent manner and cause CDI (Lee et al., 1999). 

Further study also showed the IM residues of the IQ domain are involved in CDF 

(Demaria et al., 2001).  

CaM binds to the Cav2.1 IQ domain when the channel is open (Figure 3. 4a) (Lee et 

al., 2003, Demaria et al., 2001). During this step the [Ca2+]i  is relatively low and only 

the high Ca2+ affinity EF-hands in the C-lobe of CaM are Ca2+ bound. As the channel 

remains open the [Ca2+]i increases causing the lower affinity N-lobe EF-hands of 

CaM also bind to Ca2+. The N-lobe of CaM interacts with the CBD of Cav2.1 and is 

involved in CDI (Demaria et al., 2001, Lee et al., 1999)  (Figure 3. 4b). Mutations of 

the C-terminal lobe  of CaM prevents facilitation of the channel (Lee et al., 2002, 

Demaria et al., 2001), while mutations at the N-terminal lobe prevent inactivation 

(Lee et al., 2003).  

Further studies have shown the modulation of the P/Q channel is more complicated 

than first proposed. The C-terminus of CaM binds to the IQ domain and is involved 

in CDF but there is also Ca2+-independent  binding by the N-lobe of CaM to stabilise 

this interaction  (Lee et al., 2003). Also the CaM N-terminal lobe binding to the CBD 

is involved in CDF as well as CDI (Lee et al., 2003).  It has been predicted that CaM is 

bound to the C-terminal tail of Cav2.1, at resting [Ca2+]i, at a pre-IQ domain  (Lee et 

al., 2003, Demaria et al., 2001). The  subunit also has a role in activity dependent 

regulation and P/Q channels containing the 2a  subunit have an increased response 

to CaM mediated CDF and CDI than those containing other  subunit isoforms (Lee 

et al., 2000).  
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Crystal structures showed that both N- and C-lobes of CaM interact with peptides 

derived from the IQ domain of Cav2.1 (Kim et al., 2008, Mori et al., 2008). Two 

studies have shown that CaM, wraps around the alpha helix of the target peptide. 

The structures derived from these two studies contradict each other due to 

differences in the observed orientation of the IQ domain in the CaM binding pocket 

(Figure 3.2). These studies also identified different IQ domain amino acids which 

interact with CaM (Figure 3.2), although, both studies agree that residues I (-6), M   

(-2) and S (+8) in the IQ domain bind to CaM (Figure 3.2). Mutations of IQ domain 

amino acids I (-6) and M (-2) caused a decrease in CDF but it is not clear whether 

the N- or C- terminal lobe of CaM is important for this (Kim et al., 2008). To date 

there has been no structure published of the CaM/Cav 2.1 CBD complex. 

 

 

 

 

 
Figure 3.2 Characterisation of Cav2.1 subunit IQ domain and CaM interactions. A diagram showing 
differences and similarities of two structural studies in which the interactions between CaM and IQ 
domain (VGKIYAAMMIMEYYRQSKA) were characterised.   Kim et al (2008) proposed an antiparallel 
complex between CaM (blue) and the IQ domain. Mori et al (2008) proposed a parallel complex 
conformation between CaM (Pink) and the IQ domain.  The Cav2.1 subunit IQ residues proposed to 
be involved in CaM interactions by Kim et al (2008)  are in coloured in green, while those proposed 
by the Mori et al (2008) group are coloured in red. Residues which both groups propose to be 
involved in complex formation are highlighted in yellow.  

 

 

Other Ca2+ sensor proteins are involved in regulation of the P/Q channel and add 

greater complexity to activity dependent modulation of the Cav2.1 subunit. CaBP-1 

binds to the CBD in a Ca2+-independent manner and causes faster CDI than CaM 

(Lee et al., 2002). No evidence has been found that CaBP-1 interacts with the IQ 

domain of Cav2.1 (Lee et al., 2002).  CaBP-1 also interacts with the L-type channel 

Cav1.2 subunit. CaBP-1 interacts with the IQ domain of Cav1.2 which inhibits CDI 
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and enhances CDF (Findeisen and Minor Jr, 2010). VILIP-2 modulates the P/Q 

channel in a Ca2+-dependent manner and this effect is greater in channels 

containing the 2a subunit (Lautermilch et al., 2005) . It is thought to bind to the 

CBD preventing CaM binding and slowing CDI.  VILIP-2 also binds to the IQ domain 

and  enhances CDF similarly to CaM (Lautermilch et al., 2005). 

 

NCS-1 has been shown to regulate P/Q channels in a voltage-independent manner 

(Weiss and Burgoyne, 2001). Cells expressing the NCS-1 EF-hand 3 mutant (E120Q), 

which is unable to bind Ca2+, were not able to display P/Q channel facilitation via a 

voltage-independent Src kinase pathway whereas cells expressing the wild-type 

protein were able to display facilitation. The Src kinase pathway facilitates Ca2+ 

channels rapidly, independently of the membrane potential (Diversé-Pierluissi et 

al., 1997).  NCS-1 has also been shown to be involved in activity dependent 

facilitation of P/Q channels in nerve terminals  (Tsujimoto et al., 2002). In addition, 

NCS-1 expression has been linked to decreased Cav2.1 Ca2+ currents with the effect 

dependent on  specific subunit interactions (Lautermilch et al., 2005).  

 

Both P/Q channels and NCS-1 cluster in presynaptic microdomains, although these 

microdomains appear to occupy different locations on the synaptic membrane  

(Taverna et al., 2007).  A recent study using a knockout of both NCS-1 orthologues 

(Frq1 and Frq2) in Drosophila, showed that the frequenins are involved in 

neurotransmitter regulation and nerve terminal growth (Dason et al., 2009). 

Cacophony (the Drosophila orthologue of Cav2.1) was shown to be essential for 

frequenin dependent nerve growth in larva (Dason et al., 2009). Genetic studies 

also indicated that frequenins interacts with the cacophony (P/Q channel 

orthologue) C-terminal region and regulates neurotransmission (Mori et al., 2008). 
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3.2 Results 

3.2.1 Recombinant protein expression and purification  

 

 

 

Figure 3.3. P/Q peptide fragments utilised in this study. Schematic of peptide fragments which 
contain either IQ, CaM binding domain (CBD) or both domains of Cav2.1 subunit of the P/Q channel 
used in this study. All P/Q fragments are recombinant peptides with the exception of the synthetic 
P/Q-IQ fragment 
 
 

The initial part of the study was aimed at expressing various constructs based on 

the C-terminus of the Cav2.1 subunit of the P/Q channel for use in subsequent 

biochemical and biophysical investigations. Figure 3.3 shows w the P/Q fragments 

used in this study contain either the IQ, the CBD or both domains. Figure 3.4 shows 

all of amino acid sequences of the different P/Q fragments utilised in this study. 

The recombinant proteins, GST, GST-NCS-1, GST-CaM and GST-P/Q-L in the pGex-

6P1 plasmid and His-SUMO-P/Q-L in the pOPINS plasmid, were successfully 

expressed in BL21 (DE3) E. coli.    

 
The molecular mass of GST is ~26 kDa and was expressed with relatively little 

contaminating proteins. GST-P/Q-L is a ~ 40.5 kDa product and it migrated as the 

top band on the gel (Figure 3.5a).  
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Figure 3.4 The amino acid sequences of the P/Q channel peptide fragments of the Cav2.1 subunit. 
IQ domain=Red, CDB=Blue.  
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Figure 3.5. Preparation of recombinant GST Proteins and His-SUMO-P/Q-L.  SDS PAGE gel 
recombinant proteins expressed are indicated with arrows. 

 

A high level of GST-CaM was expressed(Figure 3.5a) and ran at the expected 

position on the gel for its molecular mass of ~43 kDa. The molecular mass of GST-

NCS-1 is ~ 48 kDa and it ran at the expected size (Figure 3.5a). In the lanes for GST-

NCS-1 and GST-P/Q-L there are contaminating proteins bands which ran at the 

same molecular mass as the free GST tag. All the GST fusion proteins preparations 

contained varying levels of contaminating proteins, which were not removed during 

purification.   
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The molecular mass of His-SUMO-P/Q-L is ~26.5 kDa. The purified protein ran at 

~36 kDa (Figure 3.5a) and the sample also contained several contaminating proteins 

including a major band which ran at ~20 kDa. The GST-NCS-1 (Figure 3.5b) and GST-

CaM (Figure 3.5b) proteins, before cleavage to remove GST, ran at the expected 

molecular masses. After cleavage with PreScission Protease (GE Healthcare) and 

purification on glutathione resin, the unbound supernatants contained untagged 

NCS-1 (~22 kDa) (Figure 3.5b) and untagged CaM (~17 kDa) (Figure 3.5b) at the 

expected molecular masses as well as contaminating GST which had not been 

removed by the glutathione resin.  

 

 

 

 

 
 
Figure 3.6 pE-SUMOpro Cloning a) A DNA chromatogram of the mutated His-SUMO-P/Q-XL plasmid. 
The red box shows that the stop codon (TAA) has been inserted to create the His-SUMO-P/Q-N 
plasmid. Sequencing and chromatography was performed by The Sequencing Service, University of  
Dundee. b) Alignment of part of the amino acid sequence His-SUMO-P/Q-XL fragment (P/Q-XL) and 
His-SUMO-P/Q-N (P/Q-N). The red box shows that the stop codon has been inserted at position 
1950. The DNA sequence was translated into an amino acid sequence using ensembl and the 
alignment of the amino acid sequences was generated using Clustal W2. c) An agarose gel showing a 
restriction enzyme digest of His-SUMO-NCS-1 using BamHI and XbaI. The top arrow indicates the 
larger pE-SUMOpro plasmid backbone fragment and the bottom arrow indicates a smaller fragment 
containing the NCS-1 insert and a small region of plasmid backbone. 
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The pE-His-SUMO-P/Q-N plasmid was created by inserting a stop codon at the 

desired location in the pE-His-SUMO-P/Q-XL plasmid (Figure 3.6a and b). The 

translated amino acid sequence of His-SUMO-P/Q-N was aligned with His-SUMO-

P/Q-XL and showed that the stop codon has been inserted after the 1949 amino 

acid codon of the His-SUMO-P/Q-XL plasmid to produce His-SUMO-P/Q-N. Similarly 

for preparation of pE-SUMO-P/Q-N2, the stop codon was inserted after the 1959 

amino acid codon in the pE-SUMO-P/Q-XL plasmid. The pE-SUMO-NCS-1 plasmid 

was digested into two fragments, using XbaI and XhoI (Figure 3.6c). The higher band 

consists of the pE-SUMOPro pro backbone and which runs at ~5 kbp on the gel. The 

lower fragment runs at ~ 900 bp and consists of the NCS-1 insert  (573 bp) and part 

of the plasmid backbone (~350 bp). This indicates successful preparation of the pE-

His-SUMO-NCS-1 plasmid. 

 

Expression of His-SUMO-NCS-1 in BL21 cells was very low compared to His-SUMO-

P/Q-XL and His-SUMO-P/Q-CBD. No attempt was made to transfect the pE-SUMO-

P/Q-N2 plasmid in to recombinant protein expressing bacteria in this study, so the 

expression of His-SUMO-P/Q-N2 protein was not assessed in this system. When 

expressed in BL21 (DE3), the His-SUMO-P/Q-CBD band was a minor component of 

this sample (Fractions 24-30) (Figure 3.7a).  A ladder of smaller molecular mass 

proteins, which could potentially be truncated P/Q-CBD peptides, was also seen. 

When His-SUMO-P/Q-CBD was expressed in Rosetta 2 (DE3) pLysS cells, it was 

produced at a higher concentration and was the major component of the sample 

(fractions 26-30) (Figure 3.7b). The lower molecular mass fragments were a smaller 

component of this sample in comparison to the full-length His-SUMO-P/Q-CBD 

product. 

 

After His-SUMO protease cleavage, the P/Q-CBD sample was cloudy showing 

precipitation of the peptide. On an SDS-PAGE gel, untagged P/Q-CBD, which is 

predicted to be ~9.5 kDa, migrated to ~18 kDa (Figure 3. 7d). The P/Q-CBD sample 

was concentrated and after a second nickel affinity purification the untagged P/Q-

CBD peptide sample contained no contaminating protein bands (Figure 3.7d). The 

molecular mass of free SUMO should be ~12 kDa but it ran on the gel at ~ 20 kDa.  
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Figure 3.7 Preparation of recombinant P/Q fragments SDS-PAGE gels showing His-SUMO-P/Q-CBD 
purified using affinity chromatography using Histrap FF columns, a) produced in BL21 (DE3) E. coli 
and b) produced in Rosetta 2 (DE3) pLysS E. coli.  The red arrows (a and b) indicate the His-SUMO-
P/Q-CBD proteins.  a and b) Lane S represents the soluble proteins in the supernatant which was 
loaded on to the column, lane P represents insoluble protein  in the pellet after ultracentrifugation, 
lane W represents column washes,  a) lanes 24-30 and  b) lanes 26-30 column fractions containing 
His-SUMO-P/Q-CBD. c) A mass spectrogram of untagged P/Q-CBD peptide after In-Gel tryptic 
digestion. Peaks represent digested peptide fragments. Double peaks represent digested fragments 
and are 16 Daltons apart. Tryptic digest and mass spectrometry performed by Dr Mark Wilson and 
Mark Prescott (University of Liverpool). d) SDS-PAGE gel showing cleavage of His-SUMO-P/Q by His-
SUMO Protease ULP1. Lane E contains SUMO Protease, lane B contains uncleaved His-SUMO-P/Q-
CBD. Lane A contains a mixture of untagged P/Q-CBD and His-SUMO. Lane C is concentrated 
untagged P/Q-CBD and His-SUMO. Lanes labelled untagged-CBD contain the protein after His trap 
purification. Lanes labelled SUMO indicates 3 lanes containing His-SUMO and His tagged SUMO 
protease, eluted from the Histrap column. e) SDS-PAGE gel showing recombinant His-SUMO tagged 
P/Q peptides purified by affinity chromatography using a Histrap FF column.   
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The untagged P/Q-CBD peptide was sent for analysis by mass spectrometry.  A good 

coverage of the tryptic digested fragments of P/Q-CBD peptide was obtained, with 

all digested fragments, except 1987-1993, were identified (Figure 3.7c). This 

confirms that the full-length peptide was expressed. All fragment peaks, with the 

exception of fragment 1979-1986, appeared on the spectrogram as double peaks 

16 kDa apart. These double peaks are characteristic of oxidation of methionine 

residues in digested fragments.  

 

His-SUMO protease cleavage was also performed for His-SUMO-NCS-1 and cleavage 

was successful, however, cleavage was unsuccessful for His-SUMO-P/Q-XL (results 

not shown). His-SUMO tag cleavage was successful for the poorly expressed         

His-SUMO-P/Q-N protein, but all of the untagged peptide precipitated out of 

solution (results not shown). 

 

All of the expressed His-SUMO tagged P/Q peptides were analysed by SDS-PAGE 

and ran higher than their predicted molecular masses. His-SUMO-P/Q-CBD 

predicted molecular mass is 21 kDa and its band ran below the 36 kDa marker 

(Figure 3.7e), His-SUMO-P/Q-XL is predicted at 27 kDa but ran at 36 kDa (Figure 

3.7e) and His-SUMO-P/Q-N molecular mass is 18 kDa but runs above the 22 kDa 

marker. The expression of His-SUMO-P/Q-N was low (Figure 3.7e). 

 

From the protein expression studies it was found that preparation of sufficient 

yields of GST-NCS-1 and GST-CaM could be achieved as expected and the cleaved 

proteins prepared. In addition, GST-P/Q-L, His-SUMO-P/Q-CBD and                          

His-SUMO-NCS-1 were successfully expressed at levels that could be used for 

subsequent experiments. It was not possible to express sufficient amounts of the 

SUMO-P/Q-N. 
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3.2.2 Analysis of the Ca2+-dependency of binding of GST-P/Q-L to NCS-1 using a 

Pull-down Assay 

To initially investigate the possibility of direct Ca2+-dependent binding of NCS-1 to 

the P/Q channel, GST-P/Q-L and NCS-1 were used in a pull-down assay. GST-P/Q-L 

was immobilised on GST resin, then incubated with untagged NCS-1 in a series of 

concentrations of free Ca2+. Western blot analysis of the bound samples showed 

Ca2+-dependent binding of NCS-1 to GST-P/Q-L (Figure 3.8a). The binding data were 

fitted to a hyperbolic model, which indicated that GST-P/Q-L and NCS-1 binding, 

occurred with a free Ca2+ concentration dependency of 0.85 M (Figure 3.8b). 

These results indicated that NCS-1 can directly interact with C-terminal regions of 

the P/Q channel.  

 

 

Figure 3.8. Ca
2+

-dependent binding of GST-P/Q-L and NCS-1. Recombinant protein GST-P/Q-L 

(1mM) was immobilised on glutathione resin in buffer containing 0-6 M free Ca
2+

 concentration. 

NCS-1 protein (1 M) was added to the assay. a) The binding of NCS-1 to GST-P/Q-L was analysed by 
Western blotting using polyclonal anti-NCS-1 antibodies. b) The density of the bound NCS-1 band 
was determined using ImageJ software and plotted verses Ca

2+
 concentration.  
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3.2.3 Analysis of NCS-1 and P/Q peptide interactions by Surface Plasmon 

Resonance.  

In an attempt to further characterise interaction of NCS-1 with P/Q peptide and to 

measure the binding kinetics and affinity of the NCS-1 and P/Q peptide binding, 

surface plasmon resonance was used. SUMO-P/Q-XL or SUMO-P/Q-CBD were 

immobilised on to the chip surface. NCS-1 was passed over the peptide coated chip 

in the presence of Ca2+.  NCS-1 was found to interact non-specifically with the chip 

surface. The nonspecific interactions did not allow specific binding between NCS-1 

and the P/Q peptides to be detected using this assay. CaM has been shown to bind 

to the P/Q channel Cav2.1 subunit, so it was decided to use CaM as a control to 

determine the suitability of SPR as a method of analysis for calcium sensing protein 

interactions with the P/Q-IQ peptide. CaM was immobilised to the chip surface and 

the synthetic peptide P/Q-IQ passed across the protein coated surface in the 

presence of Ca2+. The P/Q-IQ peptide also interacted with the chip surface          

non-specifically, and therefore, because of the nonspecific interactions of both P/Q-

IQ and NCS-1 with the chip surface, it was decided not to pursue the use of SPR but 

instead to use NMR to investigate NCS-1 and P/Q peptide binding.  

 

3.2.4 Secondary structure characterization of the P/Q-IQ peptide 

Since it proved not to be possible to express recombinant proteins containing only 

the IQ domain a synthetic IQ peptide was prepared. To ensure the synthetic P/Q-IQ 

peptide contained the relevant alpha helical structure necessary for calcium sensor 

protein binding, it was characterised by two methods. The AGIDAR2s algorithm was 

used to calculate the secondary structure of the P/Q-IQ peptide. The algorithm 

software calculated that the P/Q-IQ peptide sequence had a total helical propensity 

of 8.3% (Figure 3.9a). Residues 6-14 (YAAMMIMEY) of this peptide had a helical 

propensity above 10% suggesting this region of the peptide forms an alpha helix. 

The other residues in the peptide were predicted to be below 10%. CD was used to 

measure the spectrum of the peptide in far UV light. TFE is thought to stabilise 

interactions between residue side chains and induce peptides to form native 

secondary structures. To measure peptide total helicity, the peptide was 

resuspended in a series of TFE concentrations and the spectrum was acquired.   



77 
 

 

 

 

Figure 3.9. Characterisation of the synthetic IQ peptide from the P/Q channel.  a) A prediction of 
the helical propensity was plotted for individual residues in the P/Q-IQ peptide sequence and total % 
helical propensity determined using AGIDAR2s algorithm software. b) A CD spectra of P/Q-IQ 
peptide in the absence or presence of TFE.  Elipticity was plotted against wavelength for samples 
assayed at different TFE concentrations  
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When the peptide was suspended in 0% TFE: 100% water, the spectrum is 

characteristic of a random coiled structure (Figure 3. 9b). In the presence of TFE the 

CD spectra for the peptide is characteristic of an alpha helical secondary structure, 

showing a decrease of optical rotation at wavelength 205-222 nm. [222] decreases 

from -1616 to – 2105 deg cm2 dmol as the concentration of TFE increases from 15% 

to 50%. The percentage peptide helicity in 0% TFE was 0.97% suggesting a random 

coil structure. As the TFE concentration increased the percentage peptide helicity 

increased from 4.5% in 15% TFE to 5.9 % in 50 % TFE, showing that the peptide 

contains a helical secondary structure. Higher concentrations of TFE induce more 

residues in the peptide to fold into a helical conformation. 

 

 

3.2.5 Gel filtration analysis of putative NCS-1 P/Q-IQ complex 

To determine if NCS-1 would form higher order complexes in the presence of the 

P/Q-IQ peptide, analytical gel filtration was performed on the NCS-1 and P/Q-IQ 

mixture.  The protein peak eluted at an elution volume of 12 ml (Figure 3.10). The 

Kav was 0.31 and when read from a standard curve for this analytical column 

indicates a molecular mass of ~20 kDa. The result suggests that NCS-1 is not 

forming a homodimer or higher complexes in the presence of the P/Q-IQ fragment 

and that the measured molecular mass is closer to that of free NCS-1 or a putative 

monomeric NCS-1 P/Q-IQ complex.  

 

 

 
Figure 3.10 Analysis of putative NCS-1 and P/Q-IQ peptide complex formation using analytical gel 
filtration. The putative NCS-1 and P/Q-IQ complex (at 3.5 : 1.0 P/Q-IQ : NCS-1 ratio) was loaded on 
to an analytical gel filtration column in the presence of 5 mM Ca

2+
. The chromatogram shows an 

elution peak volume of 12.06 ml 
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3.2.6 NMR Temperature Titration of NCS-1 and CaM 

To determine whether high quality NMR HSQC spectra could be obtained with the 

cleaved and purified samples of NCS-1 and CaM  experimental spectra of NCS-1 and 

CaM were acquired over a temperature titration for both proteins and spectra 

overlaid (Figure 3.11). As the temperature of acquisition increases, all the backbone 

and side chain peaks move to the left of the spectra for NCS-1 (Figure 3. 11a and b) 

and CaM (data not shown). For example NCS-1 Glu 74 and Lys 158 peaks increase in 

1H (ppm) on the spectra (Figure 3. 14b). The 15N 1H HSQC spectrum of NCS-1 (Figure 

3.11) and CaM (data not shown) were acquired in the presence of Ca2+, at 298K and 

residues were assigned by comparison to the reference spectrum (Lian et al., 2007, 

Handley et al., 2010) and transferred to spectra acquired 300K, 305K and 308K 

temperature titrations. 

2.2.7 NMR analysis of CaM and P/Q-IQ peptide interaction 

CaM was used as a control protein to analyse the interactions of the P/Q-IQ peptide 

in NMR experiments, as it has been shown previously to bind to the peptide. In the 

presence of Ca2+, the 15N 1H HSQC spectrum of CaM was acquired (without P/Q-IQ 

peptide present) (Figure 3.12, red peaks).  In a titration experiment, P/Q-IQ peptide 

was added incrementally until a final 4:1 ratio with CaM was achieved (Figure 3.12, 

black peaks). Spectra for each titration point were acquired.  The spectrum for CaM 

alone and the spectrum of CaM bound to the P/Q-IQ peptide were overlaid (Figure 

3.12). The presence of the P/Q-IQ peptide altered the chemical shift values of 

several residues on the 1H15N spectra (Figure 3.12a). 
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Figure 3.11. Two-dimensional NMR Analysis of NCS-1 with temperature titration. NMR was 
performed on an Avance Bruker 800 MHz spectrometer, in the presence of Ca

2+
, at pH 6.5. a) The 

complete overlaid 
1
H

 15
N HSQC spectra. The blue rectangle indicates the region to be enlarged.  b) 

The enlarged region of the overlaid spectra. The red, blue, green and magenta peaks represent 
residues of NCS-1 acquired at 298K, 303K, 305K and 308K respectively.  
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Figure 3.12 Two-dimensional NMR analysis of CaM alone and in complex with the P/Q-IQ. NMR 
was performed on an Avance Bruker 600 MHz spectrometer, in the presence of Ca

2+
, at 308K, pH 

6.5. a) The complete overlaid 
1
H

 15
N HSQC spectra. The blue rectangle indicates the region to be 

enlarged. b) The enlarged region of the overlaid spectra. Red peaks represent residues of CaM alone 
and black peaks represent residues of CaM in complex with P/Q-IQ peptide and were acquired using 
the final P/Q-IQ titration into the CaM sample at a 4:1 ratio.  
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Peaks that moved by 0.08 ppm or more on addition of the peptide suggested that 

the residues to which these peaks are assigned are involved in peptide binding. 

Eighteen N-lobe and thirteen C-lobe residues were affected (Table 1). The peaks of 

linker residues were not affected by the peptide. Twelve residues from both lobes 

have two peaks on the spectra, (Table 1, group 1), for example 57 Ala, 64 Asp, 130 

Ile, 137 Asn (Figure 3.12b).  The large peak represents a major conformation of the 

CaM and P/Q-IQ complex, while the small peak represents the minor conformation, 

and these double peaks show that these residues have a role in both conformations 

(Figure 3.12b).  

 

The spectrum of P/Q-IQ bound CaM was compared to previously recorded spectra 

of CaM bound to L-Type IQ peptide and CaM residues (Table 1).  Group 1 consists of 

the CaM residues which have double peaks on the spectrum when bound to P/Q-

IQ. The minor conformation peaks have a resonance similar to CaM when bound to 

L-type IQ peptide and major conformation peaks have a resonance different to CaM 

when bound to L-type IQ peptide. Group 2 (Table 1) consists of CaM residues which 

have a single peak on the spectrum when bound to P/Q-IQ, and have also been 

shown to bind to L-type IQ peptide. Group 3 consists of CaM residues which have a 

single peak on the spectrum when bound to P/Q-IQ and are not shown to be 

involved in to be involved in L-type IQ peptide complex formation. 

 

The data in table 1 was used to create ribbon diagram models of the minor and 

major conformations (Figure 3.13). Group 1 (Red) and Group 2 (blue) residues are 

highlighted in (Figure 3.13a) and show a predicted model of the minor 

conformation of the CaM and P/Q-IQ complex.  Group 1 residues (Red) are also 

shown to be involved in the major conformation of the CaM and P/Q-IQ (Figure 

3.13b) as well as the four Group 3 residues (Blue) not shown to bind to the L-type 

peptide. CaM residues involved in the minor and major conformations are located 

on both the N-lobe and the C-lobe (Figure 3.13a and b). 
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Table 3.1 Interpretation of NMR analysis of the CaM in complex with P/Q-IQ peptide. 

CaM 
Location 

Group 1 
Perturbed Residues with 
two peaks in minor and 
major conformations 

Group 2 
Perturbed residues with a 
signal peak like L-type IQ 
binding 

Group 3 
Perturbed residues with a 
single peak  unlike L-type 
IQ binding 

N Lobe  
 

Thr 26 Thr 5 Ser 17 

Ile 27 Glu 6 Leu 18 

Thr 29 Phe 16  

Gly 33 Gly 25  

Thr 44 Gly 40  

Ala 57 Val 55  

Ile 63 Gly 61  

Asp 64 Phe 65  

C-Lobe  Thr 117 Asp 95 Leu 105 

Ile 130 Gly 96 Leu 116 

Val 136 Ile 100  

Ala 137 Asp 102  

 Gly 132   

 Gly 134  

 Met 145  

 

 
 

 

 

Figure 3.13 Interpretation of NMR analysis of the CaM and P/Q-IQ peptide complex. Ribbon 
diagrams of Ca

2+
 bound CaM showing residues perturbed by PQ-IQ peptide binding in both a) minor 

and b) major conformations of the complex. Residues coloured red a and b) are involved in both 
minor and major conformations of the complex. a) Predicted minor conformation, residues coloured 
blue, have previously shown to be involved in the antiparallel conformation with the L-type IQ 
peptide. b) Predicted major conformation,  Residues coloured in blue are different to those 
previously shown to be involved in the antiparallel conformation with the L-type IQ peptide. 
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Figure 3.14 Interactions between NCS-1 and P/Q-IQ Peptide analysed using two-dimensional NMR 
spectroscopy. NMR was performed on an Avance Bruker 800 MHz spectrometer, in the presence of 
Ca

2+
, at 308K, pH 6.5. a) Shows the complete overlaid 

1
H

 15
N HSQC spectra. The blue rectangle 

indicates the region to be enlarged. b) The enlarged region of the overlaid spectra. Red peaks 
represent residues of NCS-1 alone and black peaks represent residues of NCS-1 in the presence of 
P/Q-IQ peptide and was acquired using the final P/Q-IQ titration into the NCS-1 sample at a 3.5 : 1.0  
ratio.  
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Figure 3.15 3D Interpretation of NMR analysis of NCS-1 interactions with the P/Q-IQ peptide. A 
protein surface model of Ca

2+
 bound NCS-1 in the presence of P/Q-IQ.  a) The face of NCS-1 showing 

the exposed hydrophobic binding cleft and b) the opposite face of the protein rotated 180
o
. 

Residues of NCS-1 perturbed by the presence of the P/Q-IQ peptide are coloured yellow and 
residues unaffected by the peptide are coloured green. NCS-1 structure derived from (PBD, 1G8I).   
 
 
 

3.2.8 NMR analysis of NCS-1 and P/Q-IQ peptide interaction 

To establish if NCS-1 also binds to the IQ domain of the Cav2.1 subunit of the P/Q 

channel and if so what residues of NCS-1 are involved in binding, NMR was also 

used to investigate NCS-1 interactions with P/Q-IQ peptide. The 15N 1H HSQC 

spectrum of NCS-1 alone was acquired in the presence of Ca2+. A titration of the 

P/Q-IQ peptide was performed until a final ratio of P/Q-IQ peptide : NCS-1 of 3.5 : 

1.0 was achieved.  The spectra for NCS-1 alone and in the presence of P/Q-IQ were 
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overlaid (Figure 3.14). Peaks, which moved by 0.08 ppm or more were identified as 

being perturbed by the addition of peptide to NCS-1. In the presence of the P/Q-IQ 

peptide, only 29 peaks remains at the same positions, whereas 151 peaks are 

perturbed (Figure 3.14). The peaks which change position represent backbone 

amide groups of residues distributed throughout the protein structure of NCS-1 

(Figure 3.15a and b, yellow residues). The peaks in the spectrum which had not 

moved significantly (<0.08 ppm) did not represent a localised area of the structure 

of NCS-1. Instead residues are distributed throughout NCS-1 with the largest 

number within the unstructured N-terminal region (Figure 3.15a and b, green 

residues). The 3D interpretation of Ca2+ bound form NCS-1 shows the residues 

perturbed by the presence of the P/Q-IQ peptide. 

 
 

In conclusion, the NMR data showed that CaM residues located N- and C- lobes 

regions previously involved in target peptide binding appear to interact with the 

P/Q-IQ peptide. In contrast, the results for NCS-1 interactions with the P/Q-IQ 

peptide were not as clear. Although the peptides presence has an effect on NCS-1 

conformation, the change was global rather than to a specific region of the protein, 

therefore, no defined binding site or residue-specific interactions could be 

identified using NMR.  
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3.3 Discussion 

It was found possible to express certain P/Q fragments in addition to NCS-1 and 

CaM for biochemical and biophysical analyses. The studies described here on the 

analysis of protein binding showed a direct Ca2+-dependent interaction between 

NCS-1 and a long P/Q fragment (GST-P/Q-L). Further characterisation of the binding 

could not be achieved by use SPR because of nonspecific interactions between the 

SPR chip surface and the NCS-1 protein or the P/Q-IQ peptide, potentially masking 

NCS-1 and P/Q fragment binding. Analysis by NMR was able to show discrete 

regions of interaction in the control experiments with CaM in the presence of the 

synthetic P/Q-IQ peptide but not with NCS-1. 

 

His-SUMO-NCS-1, His-SUMO-P/Q-N and His-SUMO-P/Q-N2 plasmids were created 

using cloning techniques. Tagged P/Q- peptides GST-P/Q-L, His-SUMO-P/Q-XL and 

His-SUMO-P/Q-CBD were successfully expressed and untagged P/Q-CBD produced 

after sumo cleavage. Untagged CaM and tagged NCS-1 proteins, GST-NCS-1, His-

NCS-1 and His-SUMO-NCS-1 were produced and untagged versions of these 

proteins were created after protease cleavage. The SUMO tag and SUMO fusion 

proteins ran on the SDS-PAGE gels higher than expected for their molecular mass.  

SUMO is an globular protein with extended N-terminal and C-terminal regions 

(Bayer et al., 1998). The extended regions give SUMO a larger hydrodynamic radius 

than a compact globular protein of the same molecular mass, therefore it migrates 

slower on the protein gel. This may also be the reason that the untagged P/Q-CBD 

peptide migrated slower than expected on the gel, because peptides are often 

unstructured and have higher hydrodynamic radii than globular proteins of the 

same molecular mass.  

 

When analysing the His-SUMO-P/Q-CBD recombinant protein after expression, a 

ladder of smaller molecular mass proteins, which did not increase over time, was 

observed. When expression was performed in Rosetta 2 (DE3) pLysS cells rather 

than BL21 (DE3) cells the expression of full length peptide increased significantly. 

The increase in expression may be due to Rosetta 2 (DE3) pLysS cells containing 

tRNA codons not usually found in E. coli and increasing expression of the full       
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P/Q-CBD peptide rather than smaller fragments. Another possibility is that the 

ladder of proteins were contaminating E. coli proteins of a small molecular mass 

expressed at higher levels in the BL21 cells and at a lower levels in the Rosetta 2 

(DE3) pLysS.  The expression of the other P/Q fragments His-SUMO-P/Q-N, His-

SUMO-P/Q-XL and GST-P/Q-L could possibly be increased by expression in the 

Rosetta 2 (DE3) pLysS cells. 

The GST-tagged recombinant proteins NCS-1, CaM and P/Q-L were successfully 

produced although free GST tag was the biggest component of the NCS-1 sample 

making this expression system less than ideal. GST cleavage from NCS-1 was not 

completely successful and uncleaved GST-NCS-1 was present in the untagged NCS-1 

sample. GST cleavage could be made more efficient by changing the composition of 

the cleavage buffer (Wang and Johnson, 2001). 

It was not possible to cleave the His-SUMO-tag from His-SUMO-P/Q-XL using 

conventional methods. A recent paper has shown it is possible to express proteins 

with a His-SUMO-tag which can auto-cleave by adjusting the pH of the buffer. 

When cleaving the His-SUMO tag from His-SUMO-P/Q-N the peptide precipitated. It 

may be possible to rescue this sample by pelleting the aggregated peptide and re-

dissolving it in solution. 

 

The pull-down assay carried out here showed that NCS-1 and GST-P/Q-L binding is 

direct and is Ca2+-dependent as it showed a clear Ca2+-dependent increase of 

untagged NCS-1 binding to the GST-P/Q-L (residues 1909-2035) fragment. Active 

[Ca2+]i in neurons varies at specific locations within the cytoplasm between 0.50-

1.00 M (Berridge, 1998). Binding of NCS-1 and GST-P/Q-L occurred half-maximally 

at a free Ca2+ concentration of 0.85 M which falls within the active range for 

neuronal Ca2+signaling. The NCS-1 used in this study was unmyristoylated and Mg2+ 

was present in the buffer, these conditions may have lowered the affinity of NCS-1 

for Ca2+ as previous studies have shown (Jeromin et al., 2004, Aravind et al., 2008). 

The PQ-L fragment used in this assay contains both the IQ domain (residues 1909-

1949)  and CBD (residues 1969-2035) and also a linker region (residues 1950-1968) 

between the two domains as defined previously (Lee et al., 2002).  It is not possible 
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to identify whether NCS-1 binds to one or both of the peptide domains. Two other 

P/Q fragments were generated with the aim of using them in further binding 

studies to identify which regions of the Cav 2.1 subunit interacted with NCS-1 but 

neither were used. One was an extended construct P/Q-XL (residues 1898-2035) 

which included the CBD domain and a larger IQ domain with an additional 11 amino 

acids compared to the P/Q-L fragment.  The second P/Q fragment contained only 

the CBD. 

Since it was not possible to express constructs containing the IQ domain without 

the CBD, a synthetic peptide, which contained an extended IQ domain, was used in 

binding assays. P/Q peptides containing the IQ domain used in other studies have 

been shown to have a helical structure. These peptides were either synthetic 

peptides, but of different length than that used in this study or were made as 

recombinant proteins. To ensure the synthetic peptide used in this study had a 

helical secondary structure two methods were used to characterise its structure. 

AGIDAR2s is a computer-based algorithm, which analyses peptide sequence. 

AGIDAR2s generates helical propensity for individual amino acids and the peptide 

as a whole. The second method, circular dichroism shows the percentage helicity 

for the total peptide. Both the measured and the predicted calculations of 

percentage showed the peptide has helical secondary structure, although helicity 

the values were low, ~ 5% from the CD at 50% TFE and ~8 % for the prediction. The 

predicted value for the individual residues showed that the region containing 

residues 6-14 (YAAMMIMEY) have the higher helical propensity. This region of the 

peptide has been shown to be involved in CaM interactions (Kim et al., 2008, Mori 

et al., 2008) and involved in both CDF and CDI of P/Q channel regulation. The 

analytical gel filtration results suggest that the NCS-1 protein in the presence of the 

P/Q-IQ peptide did not form higher order complexes indicating that the mixture 

would be suitable for use in NMR studies. 

A  previous NMR study has shown that the L-type IQ peptide binds to CaM in a 

parallel protein conformation (Lian et al., 2007). P/Q fragments containing the IQ 

domain have been shown to form complexes with CaM in either an antiparallel or 

parallel protein conformation in different crystallography studies (Kim et al., 2008, 
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Mori et al., 2008).  The NMR spectra collected in this study suggested that the CaM 

interacted with the P/Q-IQ peptide in two conformations. When bound to P/Q-IQ 

peptide the minor conformation of the double CaM peaks were similar to how CaM 

behaves when bound to the L-type IQ peptide (Lian et al., 2007). CaM forms a 

parallel complex with the L-type IQ peptide, suggesting that the minor 

conformation of the CaM and P/Q-IQ peptide complex is in the parallel 

conformation as reported previously (Mori et al., 2008). The major conformation of 

the double  CaM peaks  were in different positions in the spectra than those 

involved in L-type IQ peptide interactions, suggesting that the major conformation 

of the CaM and P/Q-IQ complex is in an antiparallel conformation supporting the 

finding of the Minor group (Kim et al., 2008). Four CaM residues (Ser17, Leu18, 

Leu105 and Leu 116) not previously seen in L-type IQ interactions were also 

interpreted as being involved in the major antiparallel conformation. Whilst this is 

interesting, the previous L-Type CaM binding analysis was performed under 

different conditions than those in this study including differences in temperature 

and pH. To investigate this further, the spectra would need to be acquired for both 

L-Type and P/Q-type IQ peptides in complex with CaM under identical conditions. 

The NMR spectra showed that the majority of residues in the NCS-1 protein were 

affected by the presence P/Q-IQ and so it was not possible to identify a specific 

location on NCS-1 for peptide binding. The NCS-1 amino acids affected are located 

in all regions of the NCS-1 protein, not just the hydrophobic binding pocket but also 

on the surface and all sides of the protein. This suggests a significant global change 

in the structure of NCS-1; this could be caused by dimerisation of NCS-1 when it 

interacts of the P/Q-IQ peptide (although this would not be supported by the gel 

filtration data) or that the P/Q-IQ peptide is able to bind non-specifically to many 

regions of NCS-1.  

X-ray crystallography has previously been used to determine CaM binding to IQ 

domain peptides and to solve the NCS-1 structure (Kim et al., 2008, Mori et al., 

2008, Pongs et al., 1993).   To move forward with this study, X-ray crystallography 

may be a better method than NMR to characterise the NCS-1 and P/Q-IQ peptide   

complex and to identify which amino acids in the NCS-1 binding pocket are 
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interacting with the P/Q peptide, because crystallography ‘visualises’ the complex 

formation using diffracted  X-rays rather than interpreting interactions indirectly 

using NMR.  
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4.1 INTRODUCTION 

The structural features of neuronal calcium sensor (NCS) proteins, including EF hand 

motifs, the hydrophobic binding pocket, the C-terminal tail and N-terminal 

myristoylation are implicated by structural studies to be important for several 

functions including activation, localisation, complex formation and protein 

conformation.  

 

The functional importance of the EF hand motifs has been well characterised for 

NCS-1 and other NCS proteins.  Notably, a study using the ncs-1 null C. elegans 

strain (qa406) used characteristics from EF structural studies and by using 

mutagenesis and behavioural analysis, showed a structural/functional relationship 

of the EF hand and Ca2+ binding in neuronal function (Gomez et al., 2001).  Less is 

known of the physiological relevance of the structural characteristics of N-terminal 

myristoylation, the C-terminal tail and the hydrophobic binding pocket. A model 

organism has yet to be utilised to investigate these features for NCS-1 orthologs. 

 

Residues in the hydrophobic pocket are conserved in many NCS proteins (Figure 

4.1a). The hydrophobic pocket of NCS-1 proteins is thought to be divided up into 

two clefts, the N-terminal cleft and the C-terminal cleft. There have been structural 

studies, characterising target peptide complex formation with several NCS 

proteins:- yeast NCS-1 orthologs Frq1 in budding yeast (Strahl et al., 2007) and    

Ncs-1 in fission yeast (Lim et al., 2011), which form complexes with a peptide from 

the PI4 kinase orthologue Pik1 ; human KChiP1 forms complexes with Kv4.3 (Pioletti 

et al., 2006, Wang et al., 2007) and  bovine recoverin forms a complex with a 

rhodopsin kinase peptide (Ames et al., 2006).  

 

These studies have implicated several residues in the N- and C-terminal regions of 

the hydrophobic pocket in complex formation and some of these residues, are 

involved all NCS peptide complexes (Figure 4.1).  Even though the NCS proteins 

have binding residues in common, there appear to be differences in modes of 

target peptide binding.  
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Figure 4.1 NCS Protein Target Peptide Sequence. Hydrophobic residues implicated in Frq1, Ncs1, 
KChip1 and recoverin binding to target peptides.   
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Figure 4.2 NCS Protein Target Peptide Binding to the Hydrophobic Cleft The regions of the binding 
cleft which are analogous to the N- and C- clefts of the NCS-1 orthologues are indicated. Cartoons of 
a) KChip1 protein and Kv4.3 peptide, b) recoverin protein and rhodopsin kinase peptide and c) NCS-1 
orthologues and Pik1 peptide complexes. All illustrations are based on information from structural 
study of the complexes (Ames et al., 2006, Heidarsson et al., 2012, Lim et al., 2011, Strahl et al., 
2007) 
 
 
 
 

The NCS-1 yeast orthologs bind two separate alpha helixes from the target peptide 

of Pik1 which fully occupy the N-terminal and the C-terminal binding clefts (Lim et 

al., 2011, Strahl et al., 2007) (Figure 4.2a). Recoverin binds its target peptide 

rhodopsin kinase to the N-terminal binding cleft only. The peptide appears to 

occupy the whole N- terminal cleft similar to that of Pik1 with the N-terminal 

binding cleft of NCS-1 orthologues, except that it binds in the opposite polarity 

(Ames et al., 2006) (Figure 4.2b).  The C-terminal cleft of recoverin appears not to 

be involved in target peptide complex formation as it is occupied by the C-terminal 

tail.  During NCS-1 and target peptide binding the C-terminus is thought to move 

out of the binding cleft and allow protein binding. KChiP1 binds its target peptide in 

a different mode; it appears to have a single binding cleft which spans all of the      
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N-terminal and part of the C-terminal binding cleft.  KChiP1 has structural 

differences to that of NCS-1 and recoverin, and has an extra N-terminal domain 

interaction with Kv4.3 which enables it to form a tetramer (Pioletti et al., 2006). 

These differences may be the reason the hydrophobic pocket of KChIP1 has a 

different 3D structure. The furthest region of the C-terminal binding cleft does not 

bind target protein as this region of the pocket also appear to be involved in the 

tetramer formation. A structure/function investigation of KChiP1 used structural 

information about the hydrophobic resides involved in Kv4.3 peptide binding 

(Pioletti et al., 2006). Mutagenesis and functional electrophysiological assays in 

Xenopus oocytes were used to understand the interactions of the complex (Wang 

et al., 2007). Myristoylation of some NCS proteins is also thought to be essential for 

protein function, localisation and for target protein interaction (Ames JB, 2011).  
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4.2 C. elegans  RESULTS 

 

4.2.1 Phenotyping the ncs-1 (qa406) strain 

To identify the functional role of ncs-1 in C. elegans the phenotype of the ncs-1 null 

strain was characterised further than had been done in previous studies. 

 

4.2.1.1 Comparison of the Basic Reproductive and Alimentary Anatomy of ncs-1 

Null and Wild-type C. elegans. 

It had been noted that there was a the difference in shape of the null worm to a 

wild-type and so the anatomy of the two strains were compared (De Castro, 1997).  

Day 1 hermaphrodite worms, when mounted on slides and viewed using the 

inverted microscope, showed no difference in the overall size and shape between 

the N2 wild-type and ncs-1 null worms (qa404) at the head, mid-body or tail (Figure. 

4.3). A comparison of the reproductive anatomy showed that the null strain had 

normal morphology, size, shape and development of each arm of the gonad. The 

null worms also showed wild-type anatomy of the digestive system including the 

pharynx, intestine and the anus (Figure. 4.3).  A general observation was that the 

ncs-1 null strain was wider at the mid-body when viewed using the 

stereomicroscope and freely moving on NGM agar or in Dent’s solution (data not 

shown) this was not validated during this anatomy study. 
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Figure 4.3 Comparison of the Basic Reproductive and Alimentary Anatomy of ncs-1 Null and     
Wild-type C. elegans. Live imaging of (a) Wild-type and b) ncs-1 null (qa406) strains at day one of 
adulthood. Reproductive anatomy: - V=Vulva, PG=Proximal gonad, DG= Distal gonad, E= Embryo 
O=Oocyte, G=Germline cells. Alimentary anatomy: - P=Pharynx, I=Intestine A=Anus/Rectum. Images 
were taken using Nikon Eclipse Ti-S inverted microscope using DIC at X200 magnification. 
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4.2.1.2. Comparison of the Crawling Locomotion of ncs-1 Null and Wild-Type         

C. elegans. 

NCS-1 is found in neurons and because locomotion is an indicator of neuronal 

function, the crawling locomotion rate of the null and wild-type strain was 

compared. The day 1 adult hermaphrodite ncs-1 null strain showed no significant 

difference in crawling locomotion with a mean body bend rate of 17 per minute 

compared to that of 15 per minute for the wild-type worm (Figure 4.4). 

 

 

 
 
 
 
 
Figure 4.4 Comparison of Crawling Locomotion of ncs-1 Null and Wild-type C. elegans .Crawling 
locomotion rate for wild-type and ncs-1 null (qa406) worms day one adult worms was quantified by 
counting body bends per minute on unseeded NGM solid agar at 20

o
C. For both strains n=20 worms. 

All results were expressed as means ± S.E.M. 
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4.2.1.3. Comparison of Cholinergic Neurotransmission of ncs-1 Null, Wild-Type 

and ric-4 Mutant Control C. elegans. 

The rate of paralysis caused by exposure to the drug aldicarb is measured to 

quantify the rate of acetylcholine release at the neuromuscular junction. The day 1 

adult hermaphrodite ncs-1 null strain had a sigmoidal paralysis curve with no 

significant difference in rate to the N2 wild-type strain (Figure. 4.5). RIC-4 a              

C. elegans ortholog of mammalian SNARE protein snap 25 which has a role in 

vesicle fusion during neurotransmission (Miller et al., 1996).   The ric-4 mutant 

control strain show an aldicarb resistant phenotype of a delayed paralysis rate with 

a curve which was to the right of the wild-type and the ncs-1 null strain (Figure. 

4.5). 

 

 

 

 

 

 
Figure 4.5 Comparison of Acetylcholine Neurotransmission of ncs-1 Null, Wild-Type and ric-4 
Mutant Control C. elegans. Day one adult strains were treated with 1mM aldicarb, an acetylcholine 
esterase inhibitor. Onset of paralysis was measured every ten minutes by mechanical stimulation at 
head and tail. For all strains n=40 worms. All data were expressed as means ± S.E.M. 
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4.2.1.4 Comparison of Temperature-Dependent Locomotion of ncs-1 Null and 

Wild-Type C. elegans. 

NCS-1 has been previously shown to be expressed in thermosensory circuit neurons 

(AWC and AFD) (Gomez et al., 2001) and the AFD neuron has been shown to 

regulate TDL (Edwards et al., 2012). To establish whether ncs-1 has a role in TDL, 

the change in locomotion of the wild-type strain between 20oC and 28oC was 

compared to that of the ncs-1 null strain. At 20oC both strains had a similar 

coordinated locomotion rate, although the null strain was slightly slower (Figure. 

4.6). After an acute rise of temperature to 28oC for 10 minutes the wild-type strain 

had a large and significant deceleration of locomotion. The locomotion rate of the 

ncs-1 null worm at 28oC did not decrease; in contrast, it had a small but significant 

acceleration in locomotion rate (Figure. 4.6).  

 

 

 

Figure 4.6 Comparison of Temperature-Dependent Locomotion of ncs-1 Null and Wild-Type C. 
elegans. Swimming locomotion of was quantified by counting thrashes per minute of the wild-type 
(N2) and ncs-1 null (qa406) animals in Dent’s Buffer at 20

o
C and after an elevation of temperature to 

28
o
C. For both strains n=100 worms. All data were expressed as means ± S.E.M. The statistical 

difference for the change in locomotion rate for each strain at 20
o
C and 28

o
C was determined using 

the Mann-Whitney U test (*=P<0.01).   
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4.2.2 Confirmation of Expression of Transgenic Genes by GFP Marker Expression 

To validate expression of the transgenic ncs-1 genes in the N2 and ncs-1 null 

transgenic animals, expression of transgenic GFP marker genes was confirmed. All 

transgenic animals created in this study expressed GFP in the correct expression 

pattern for either pan-neuronal rab-3a promoter (Figure 4.7a and b) or the pan-

ciliated sensory neuron osm-6 promoter (Figure 4.7c and d) 

 

 

 

 

 

 

Figure 4.7 GFP Expression in NCS-1 Transgenic Animals. GFP marker gene was expressed in 
transgenic animals as an indicator of extra-chromosomal ncs-1 expression. GFP expression was pan-
neuronal, driven by the rab-3a promoter, in all neurons including NR=the nerve ring, VN=Ventral 
nerve cord and DN=distal nerve cord in the a) XA406 [Prab3a::GFP Pncs-1::ncs-1 spliced] strain  or b) XA406 

[Prab3a::GFP Pncs-1::ncs-1 177-191] animals. GFP was expressed in all ciliated neurons, driven by the osm-6 

promoter. It was expressed in the XA406 [Posm-6::GFP Pncs-1 169-191] strain, including  a) AN=amphid 
neurons in the head, b) PDE L/R= PDE neuron pair in mid body  and PN=phasmid neurons in the tail. 
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Examples shown are XA406 [Prab3a::GFP, Pncs-1::ncs-1 spliced] strain (Figure 4.7a) and 

XA406 [Prab3a::GFP, Pncs-1::ncs-1177-191] strain (Figure 4.7b) which both express GFP 

driven by the rab3a promoter in the nerve ring in the head of the worms, along the 

ventricle and dorsal nerve cords and in the tail neurons. In the XA406 [Posm-6::GFP, 

Pncs-1 169-191] strain GFP can be seen in all the ciliated sensory neurons including the 

amphid neurons in the head (Figure 4.7c), the PDE pair in the mid-body (Figure. 

4.7d) and phasmid neurons in the tail (Figure 4.7d).  

 

4.2.3 Temperature-Dependent Locomotion of the ncs-1 null C. elegans Rescued by 

Transgenic Expression of Wild-Type ncs-1 Expression. 

 

4.2.3.1 Effect of Expression of Genomic Unspliced ncs-1 in the ncs-1 Null Strain on 

Temperature-Dependent Locomotion. 

To ensure that the acceleration of locomotion seen in the ncs-1 null strain at 28oC 

was due to the knockout of ncs-1 rather than other environmental or genetic 

factors, the null worm was transformed by injecting unspliced ncs-1 gene which 

contains all the genomic uncoding regions as explained in Chapter 2 (Figure 4.8).  

 

 

Figure 4.8 Temperature-Dependent Locomotion of the ncs-1 null C. elegans Rescued by Transgenic 
Expression of Unspliced ncs-1. Two separate lines of ncs-1 null transgenic worms expressing the 
genomic unspliced ncs-1 gene under the control of its endogenous promoter (Res1 and 2) were 
compared to that of the N2 wild-type and ncs-1 null (qa406).  Swimming locomotion of was 
quantified by counting thrashes per minute of the day one adult animals in Dent’s Buffer at 20

o
C and 

after an elevation of temperature to 28
o
C. (n=20 for all animals.) All data were expressed as means ± 

S.E.M. The statistical difference for the change in locomotion rate for each strain at 20
o
C and 28

o
C 

was determined using the Mann-Whitney U test (*=P<0.01).   
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Two transgenic rescue lines (Res 1 and Res2), each expressing identical genomic 

wild-type genes, whose expression was driven under its endogenous promoter 

showed a wild-type like rescue phenotype of deceleration of locomotion at 28oC in 

contrast to that of the ncs-1 null worm. (Figure 4.8). 

 

 

4.2.3.2 Effect of Expression of Synthetic Spliced ncs-1 in the ncs-1 Null Strain on 

Temperature-Dependent Locomotion. 

As transgenic ncs-1 null worms were to be generated to express mutated synthetic 

spliced ncs-1 genes later in this study, the rescue was repeated in the ncs-1 null 

worm but this time expressing the spliced synthetic wild-type ncs-1 gene driven by 

its endogenous promoter. Again three separate lines expressing the transgenic 

gene were assayed for TDL and all three were shown to also have a wild-type 

rescue phenotype of a decrease of locomotion at 28oC (Figure. 4.9a).  

 

From the same assay, data for the multiple lines of the transgenic spliced rescue 

strains were pooled and all the data normalised to the mean of the N2 at 20oC. The 

transgenic animal still showed a rescue of a deceleration of locomotion at 28oC 

(Figure. 4.9b). All data shown in subsequent figures was normalised in the same 

manner and data from transgenic lines expressing the same genetic constructs 

were pooled, unless otherwise stated.  
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Figure 4.9 Temperature-Dependent Locomotion of the ncs-1 Null C. elegans Rescued by Transgenic 
Expression of Spliced ncs-1. Swimming locomotion of was quantified by counting thrashes per 
minute of the day one adult animals in Dent’s Buffer at 20

o
C and after an elevation of temperature 

to 28
o
C. (For all strains n=20 worms) a) Three separate lines of ncs-1 null transgenic worms 

expressing the synthetic spliced ncs-1 gene under the control of its endogenous promoter (Res1-3) 
were compared to that of the N2 wild-type and ncs-1 null (qa406).  b) The data from the separate 
worm line (a) Res1-3 were pooled. The data for all strains at 20

o
C and 28

o
C were normalised to the 

mean locomotion rate of the N2 wild-type at 20
o
C. All data were expressed as means ± S.E.M. The 

statistical difference for the change in locomotion rate for each strain at 20
o
C and 28

o
C was 

determined using the Mann-Whitney U test (*=P<0.01).   
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4.2.4 Anti-Human NCS-1 Antibodies in Detection of Recombinant C. elegans NCS-1 

The monoclonal antibody used to probe the blot did not detect recombinant           

C. elegans NCS-1 protein band (Figure. 4.10a), in contrast, the polyclonal antibody 

did detect the band on an identical membrane (Figure. 4.10b). The polyclonal 

antibody was successful in detecting bands of serial dilutions of the recombinant    

C. elegans NCS-1 protein, (a gift from Dr Lee Haynes, University of Liverpool) up to a 

1/10K dilution, although, the bands for C. elegans NCS-1 were less intense than for 

mammalian NCS-1 protein of an equivalent concentration (Figure. 4.10c). 

 

 

 

 
Figure 4.10 Recombinant NCS-1 protein detection by Western Blotting A comparison of NCS-1 
antibodies in detecting recombinant Ce-NCS-1 protein using a) monoclonal anti-human NCS-1 
antibodies or b) polyclonal anti-human NCS-1 antibodies and probed by Western blotting. c) A 
comparison of polyclonal anti-human NCS-1 antibody detection of recombinant Ce-NCS-1 against 
recombinant mammalian NCS-1 protein. Recombinant mammalian and C. elegans NCS-1 protein of 
the same concentrations were diluted in magnitudes of 10 and probed by Western blotting.   
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4.2.5 Effect of Expression of Unspliced ncs-1 in the Wild-Type and ncs-1 Null Strain 

on Temperature-Dependent Locomotion. 

The effect of over-expression of ncs-1 in a wild-type background was compared to 

the ncs-1 null rescue. Over-expression of unspliced wild-type ncs-1 in both the wild-

type and ncs-1 null worms decreased the locomotion rates at 20oC compared to the 

control N2 wild-type and ncs-1 null (qa406) controls respectively (Figure. 4.11). 

Despite this, both types of transgenic animals displayed the wild-type TDL 

phenotype of deceleration of locomotion at 28oC compared to that of the null 

animal at 20oC.  

 

 

Figure 4.11 Temperature-Dependent Locomotion of the ncs-1 null C. elegans Rescue and N2 ncs-1 
Over Expression and Western Blot. a) Temperature-dependent locomotion rates of ncs-1 null and 
N2 wild-type worms expressing transgenic unspliced ncs-1 under its own promoter were compared 
to the N2 wild-type and ncs-1 null controls. Swimming locomotion of was quantified by counting 
thrashes per minute of the day one adult animals in Dent’s Buffer at 20

o
C and after an elevation of 

temperature to 28
o
C. (For N2 and ncs-1 null n=35 worms, for N2 ncs-1 over expression n=40 worms 

and ncs-1 rescue n=45 worms).  For transgenic animals the data from three separate lines were 
pooled. The data for all strains at 20

o
C and 28

o
C were normalised to the mean locomotion rate of 

the N2 wild-type at 20
o
C. All data were expressed as means ± S.E.M. The statistical difference for the 

change in locomotion rate for each strain at 20
o
C and 28

o
C was determined using the Mann-Whitney 

U test, with the use of the Bonferonni correction for multiple comparisons (*=P<0.01). b) Western 
blot of ncs-1 null, transgenic animals N2 wild-type over expressing unspliced ncs-1and ncs-1 null 
expressing spliced or unspliced ncs-1 all under the expression of the ncs-1 promoter.  The blot was 
probed using polyclonal anti-human NCS-1 antibodies. 
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4.2.6. Effect of Expression of ncs-1 mutants in the ncs-1 Null Strain  

4.2.6.1 Effect of Non-Myristoylated ncs-1 on Temperature-Dependent Locomotion 

As the myristoylation of NCS proteins has been shown to be important for 

localisation, the function of non-myristoylated mutant was investigated by 

expression of ncs-1 G2A under the control of its endogenous promoter in the ncs-1 

null worm. These also showed a wild-type rescue TDL phenotype with a decrease of 

locomotion at 20oC (Figure 4.12).  

 

 

 

 

 

 

 

 

Figure 4.12 Temperature-Dependent Locomotion of the ncs-1 Null Expressing the Non-
Myristolated ncs-1 Mutant.  Temperature-dependent locomotion rate of transgenic ncs-1 null 
(qa406) worm expressing non-myristolated ncs-1 G2A mutant under its own promoter was compare 
to that of to the N2 wild-type and ncs-1 null controls. Swimming locomotion of was quantified by 
counting thrashes per minute of the day one adult animals in Dent’s Buffer at 20

o
C and after an 

elevation of temperature to 28
o
C. (For N2 and qa406 n=10 worms, for G2A n=30 worms and ncs-1 

rescue n=45 worms).  For transgenic animal the data from three separate lines were pooled. The 
data for all strains at 20

o
C and 28

o
C were normalised to the mean locomotion rate of the N2         

wild-type at 20
o
C. All data were expressed as means ± S.E.M. The statistical difference for the 

change in locomotion rate for each strain at 20
o
C and 28

o
C was determined using the Mann-Whitney 

U test, with the use of the Bonferonni correction for multiple comparisons (*=P<0.01). 
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4.2.6.2 Effect of N- and C-Terminal Binding Cleft Mutations in the Binding Pocket 

of ncs-1 on Temperature-dependent Locomotion 

Two N- and two C-terminal binding cleft residues of the hydrophobic pocket of        

C. elegans NCS-1 were mutated in this study. These residues have been implicated 

in direct target peptide interactions in structural studies in NCS-1 orthologues Frq-1 

and Ncs-1 (Figure. 4.12a) (Lim et al., 2011, Strahl et al., 2007). The N-terminal 

binding cleft residue W30 has also been shown to be involved in binding to the NCS 

protein recoverin and while L89 has also been implicated both recoverin and 

KChiP1 binding (Pioletti et al., 2006, Wang et al., 2007).  While the C-terminal 

binding cleft residue W103 has been implicated in KChiP1 binding and V125 residue 

was not implicated in recoverin or KChiP1 target peptide interactions as discussed 

in section 4.1. These residues are fully conserved across human NCS-1, C. elegans 

NCS-1 and S. cerevisiae Frq1 (Figure. 4.13a). The predicted structures of C. elegans 

NCS-1 protein based on solution NMR structure shows the C-terminal tail fills the  

C-terminal binding cleft (Figure. 4.13c). In contrast the X-ray crystallography 

structure shows an open hydrophobic pocket due to bound polyethylene glycols 

(Figure. 4.13b). 

 

The N-terminal binding cleft mutant W30A showed significant wild-type rescue of 

TDL (Figure. 4.13a). The single N-terminal binding cleft mutation L89A failed to 

rescue (Figure. 4.13a), even though this mutant protein was shown to be expressed 

in the transgenic animals by Western blot analysis (Figure. 4.14b). Worms 

expressing the W30A/W103A double tryptophan mutations in both the N- terminal 

and C-terminal binding clefts also appeared to fail to rescue (Figure. 4.14a). The 

locomotion of the L89A and W30A/W103A transgenic animals at 20oC was reduced 

to that of 40% the N2 wild-type worm but a similar decrease in locomotion rate at 

20oC in wild-type and ncs-1 null transgenic strains expressing wild-type ncs-1 was 

previously seen and did not mask the reduction in locomotion due to the 

temperature elevation (Figure. 4.11a). The double mutation W30A/L69A has a 

locomotion rate 20% of that of the wild-type strain and potential rescue in this 

strain could not be determined (Figure 4.14a).  
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Figure 4.13 Comparison of NCS-1 orthologues and identification of N and C-terminal 
residues for targeted mutation.  a) Alignment of human, C elegans and S. cerevisiae NCS-1 

sequences. Conserved N- and C-terminal binding residues W30, L89, W103 and V125, highlighted in 
yellow were selected for mutation. Residues shown to interact target peptide in NCS complex 
structural studies are implicated by red circle=Frq1, green circle=KChiP1 or blue circle=recovern. 
Predicted C. elegans structures acquired using Swiss Model Software.  Mutated residues shown in 

red b)  Structure based on the human crystal structure (PDB 1G8I) showing that the 
hydrophobic groove is open. c) Structure based on the human NCS-1 NMR structure (PBD 2LCP). 
Residue V125 is inaccessible due to the C-terminal tail residues 177-191 occupying the C-
terminal binding cleft of the hydrophobic pocket. 
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Figure 4.14 Temperature-dependent Locomotion and Western Blots of Transgenic ncs-1 Null 
Animals, Expressing Mutant ncs-1 Single and Double Binding Cleft Mutations in the Hydrophobic 
Pocket a) Temperature-dependent locomotion rate of transgenic ncs-1 null worm expressing wild-
type or mutant spliced ncs-1 under its own promoter were determined and all were compared to 
that of to the N2 wild-type and ncs-1 null (qa406) controls. Swimming locomotion was quantified by 
counting thrashes per minute of the day one adult animals in Dent’s Buffer at 20

o
C and after an 

elevation of temperature to 28
o
C. (n=28-84 worms). For transgenic animal the data from three 

separate lines were pooled. The data for all strains at 20
o
C and 28

o
C were normalised to the mean 

locomotion rate of the N2 wild-type at 20
o
C. All data were expressed as means ± S.E.M. The 

statistical difference for the change in locomotion rate for each strain at 20
o
C and 28

o
C was 

determined using the Mann-Whitney U test, with the use of the Bonferonni correction for multiple 
comparisons (*=P<0.01).  Western blot analysis of ncs-1 null (qa406)  transgenic worms with 
expressing either wild-type ncs-1 or ncs-1 with b) single N terminal binding cleft mutations or c) 
single or double C-terminal binding cleft mutations, all driven by the ncs-1 promoter. The blot was 
probed using polyclonal anti-human NCS-1 antibodies. d) Temperature-dependent locomotion of 
transgenic ncs-1 null worms expressing ncs-1 with single and double mutations of the C terminal 
binding cleft of the hydrophobic pocket. Swimming locomotion of was quantified by counting 
thrashes per minute of the animals in Dent’s Buffer at 20

o
C and after an elevation of temperature to 

28
o
C. (For all strains n=15 worms). For transgenic animal the data from three separate lines were 

pooled. The data was not normalised but shown as raw data as all strains were assayed together on 
the same days. All data were expressed as means ± S.E.M. The statistical difference for the change in 
locomotion rate for each strain at 20

o
C and 28

o
C was determined using the Mann-Whitney U test, 

with the use of the Bonferonni correction for multiple comparisons (*=P<0.01).  
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The double C-terminal binding cleft ncs-1 mutation W103A/V125A did not show a 

decline in locomotion while also found to be expressed in the worm (Figure. 4.14c). 

Interestingly, the C-terminal binding cleft single mutants W103A and V125A did 

show a wild-type rescue TDL phenotype. Similar results were obtained when direct 

comparison of TDL the single and double C-terminal binding cleft assayed together, 

at the same time, verifying the single mutations rescued the phenotype in the ncs-1 

null background while the double C- terminal binding cleft mutation did not rescue 

(Figure. 4.14d).  

 

4.2.6.3 Effect C-Terminal Tail Truncations of NCS-1 Protein on Temperature-

dependent Locomotionin C. elegans 

A series of truncated C. elegans NCS-1 proteins were expressed the ncs-1 null worm 

to establish the role of the C-terminus in NCS-1 function. The NCS-1 177-191 

truncated protein contained a deletion of 14 amino acids of C-terminal loop up to 

the final  helix in the protein, which according to the predicted model, would have 

exposed part of the C-terminal binding cleft (Figure. 4.15a), including V125 residue, 

shown earlier to be involved in C-terminal binding cleft function. The two larger 

truncations 174-191 and 169-191 contained deletions of 17 and 24 amino acids, 

respectively, and not only contained a deletion of the C terminal loop but also 3 or 

10 amino acid residues from the proceeding  helix loop.  

 

Expression of ncs-1 177-191 and 174-191 under the control of its endogenous 

promoter in the ncs-1 null worm also showed a significant wild-type rescue TDL 

phenotype of a decrease of locomotion at 20oC (Figure 4.15b). Expression of ncs-1 

169-191 not only rescued the wild-type phenotype but also showed a gain of 

function as locomotion at the elevated temperature was more reduced than in the 

wild-type worms (Figure  4.15b).  
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Figure 4.16 Temperature-dependent Locomotion and Western Blots of Transgenic ncs-1 Null 
Animals Expressing Mutant ncs-1 with Deletions of its C-terminal Tail. (Full legend overleaf) 
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Figure 4.16 Temperature-dependent Locomotion and Western Blots of Transgenic ncs-1 Null 
Animals Expressing Mutant ncs-1 with Deletions of its C-terminal Tail. (Figure on previous page) a-
d) Model prediction of C. elegans NCS-1 protein structure (residues 95-189), using the human NCS-1 
structure which was derived using solution NMR (PBD 2LCP). The models show the NCS-1 wild-type 
and C-terminal deletions used for transgenic expression in this study. a) The wild-type figure shows 
NCS-1 C-terminal binding cleft of the hydrophobic pocket occupied by the C-terminal tail and is in 
close proximity to V125 shown in red. b-d) The amount of C-terminal tail occupying the C-terminal 

binding cleft is reduced as the length of the tail is reduced sequentially in ncs-1 b) -177-191, c) -

174-191 and d) -169-191 mutants. e) Temperature-dependent locomotion rate of transgenic ncs-1 
null worm expressing spliced wild-type or C-terminal truncations of ncs-1 under its own and all were 
compared to that of to the N2 wild-type and ncs-1 null (qa406) controls. Swimming locomotion of 
was quantified by counting thrashes per minute of the day one adult animals in Dent’s Buffer at 20

o
C 

and after an elevation of temperature to 28
o
C. (n=15-30 worms). For transgenic animal the data 

from three separate lines were pooled. The data for all strains at 20
o
C and 28

o
C were normalised to 

the mean locomotion rate of the N2 wild-type at 20
o
C. All data were expressed as means ± S.E.M. 

The statistical difference for the change in locomotion rate for each strain at 20
o
C and 28

o
C was 

determined using the Mann-Whitney U test, with the use of the Bonferonni correction for multiple 
comparisons (*=P<0.01).  

 
 

 

4.2.7 Effect ncs-1 expression in Sensory and AIY Neurons on Temperature-

dependent Locomotion 

NCS-1 has been shown to be expressed in three types of thermosensory circuit 

neurons, the AFD, AWC and AIY neuronal pairs (Figure  4.16a). To establish in which 

neurons NCS-1 protein is regulating the temperature-dependent locomotion 

unspliced wild-type ncs-1 was expressed in the ncs-1 null strain driven by three 

promoters. It was driven under its endogenous promoter and as seen previously 

(Figure  4.11), this strain displayed a ~40% lower locomotion rate than the N2 wild-

type strain at 20oC but still showed a wild-type rescue of a decrease of locomotion 

at 28oC. Expression of wild-type ncs-1 driven by the osm-6 promoter would express 

the protein in all ciliated sensory neurons including the AFD and AWC neurons and 

in a third thermosensory neuron, ASI, not shown to express ncs-1 endogenously 

(Figure  4.16a). This strain showed no rescue of the wild-type TDL phenotype in the 

null background at 28oC even though the protein was shown to be expressed in the 

transgenic strain (Figure  4.16c). In contrast, expression of the wild-type protein in 

the pair of AIY interneurons did rescue the wild-type TDL phenotype with a 

significant decrease in locomotion at the elevated temperature. 
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Interesting, over expression of the unspliced wild-type NCS-1 protein by the osm-6 

or the AIY neuron promoter did not cause a reduction in locomotion at 20oC (Figure 

4.14b) which was seen previously in the over expression driven by the endogenous 

promoter (Figure 4.11a).  

 

The ttx-3 null C. elegans strain (ot22) contains genetically ablated AIY neurons as 

the transcription factor TTX-3 is essential in the maturation of functioning AIY 

neurons (Hobert et al., 1997). The AIY ablated strain showed a gain of function of 

TDL at 28oC, as it was affected more severely than the wild-strain, with a complete 

inhibition of locomotion contrary to the increase in locomotion of the ncs-1 null 

strain (Figure 4.16d). 
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Figure 4.16 Identification of Neurons In Which the Temperature-dependent Locomotion Function 

of NCS-1 Occurs.(Full legend overleaf) 
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Figure 4.16 Identification of Neurons In Which the Temperature-dependent Locomotion Function 
of NCS-1 Occurs. (Figure on previous page) a) Temperature-dependent locomotion rate of 
transgenic ncs-1 null worm expressing unspliced ncs-1 under its own promoter for endogenous 
expression, under the osm-6 promoter for expression in all ciliated sensory neurons and under the 
AIY specific promoter for expression in the left and right AIY neurons and all were compared to that 
of to the N2 wild-type and ncs-1 null (qa406) controls. Swimming locomotion of was quantified by 
counting thrashes per minute of the day one adult animals in Dent’s Buffer at 20

o
C and after an 

elevation of temperature to 28
o
C. (For all animals, n=15 worms except PAIY where n=45 worms) For 

transgenic animal the data from three separate lines were pooled. The data for all strains at 20
o
C 

and 28
o
C were normalised to the mean locomotion rate of the N2 wild-type at 20

o
C. All data were 

expressed as means ± S.E.M. The statistical difference for the change in locomotion rate for each 
strain at 20

o
C and 28

o
C was determined using the Mann-Whitney U test, with the use of the 

Bonferonni correction for multiple comparisons (*=P<0.01). b)  Western blot of ncs-1 null, transgenic 
animals expressing  unspliced ncs-1 all under the expression of the ncs-1 promoter and the osm-6 
promoter. The blot was probed using polyclonal anti-human NCS-1 antibodies c) Diagram of the 
thermosensory neuronal network which are involved in  thermotaxis adapted from Nishida et al, 
2011  (Nishida et al., 2011) with additional neurons added to this pathway(Beverly et al., 2011).The 
neurons shaded in pink have been show to express NCS-1 (Gomez et al., 2001). The asterisk 
indicates the ciliated thermosensory neurons in this pathways in which genes can be expressed 
driven by the osm-6 promoter. d) Temperature-dependent locomotion rate of the AIY neuron 
ablated ttx-3 null strain (ott22) and was compared to N2 wild-type and ncs-1 null (qa406) controls. 
Swimming locomotion of was quantified by counting thrashes per minute of the day one adult 
animals in Dent’s Buffer at 20

o
C and after an elevation of temperature to 28

o
C. (For all animals n=20 

worms).  The data for all strains at 20
o
C and 28

o
C were normalised to the mean locomotion rate of 

the N2 wild-type at 20
o
C. All data were then expressed as means ± S.E.M.  The statistical difference 

for the change in locomotion rate for each strain at 20
o
C and 28

o
C was determined using the Mann-

Whitney U test, with the use of the Bonferonni correction for multiple comparisons (*=P<0.01). 
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4.2.8 Effect of Knockdown of PIFK-1 on temperature-dependent locomotion  

In order to begin to indentify the potential target for NCS-1 in the regulation of the 

TDL behaviour worm orthologues of known mammalian interacting proteins were 

investigated. One of these (pifk-1) is the worm orthologue of PI4kIII. The pifk-1 

null strain (tm2348) showed a TDL phenotype (Figure 4.17). There was a significant 

decrease in locomotion at 28oC, unlike the ncs-1 null strain but the reduction in the 

rate of locomotion was not as severe as with the wild-type worms. The locomotion 

rate at 28oC of the pifk-1 null strain was 73% of the locomotion rate at 20oC but the 

wild-type locomotion rate at 28oC was reduced to only 7%.  

 

 

 

Figure 4.17 Temperature-dependent Locomotion of pifk-1 null C. elegans Temperature-dependent 
locomotion rate of ncs-1 null worms (tm2348) was compared to that of to the N2 wild-type and   
ncs-1 null controls. Swimming locomotion was quantified by counting thrashes per minute of the day 
one adult animals in Dent’s Buffer at 20

o
C and after an elevation of temperature to 28

o
C. (For N2 

and qa406 n=10 worms, for G2A  n=30 worms and ncs-1 rescue n=45 worms).  The data for all 
strains at 20

o
C and 28

o
C were normalised to the mean locomotion rate of the N2 wild-type at 20

o
C. 

All data were expressed as means ± S.E.M. The statistical difference for the change in locomotion 
rate for each strain at 20

o
C and 28

o
C was determined using the Mann-Whitney U test, with the use 

of the Bonferonni correction for multiple comparisons (*=P<0.01). 
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4.3 DISCUSSION 

The C. elegans ncs-1 null worm was found to be a good model for investigation of 

structure/function relationships of NCS-1 using the TDL assay. The key residues in 

the hydrophobic pocket, identified in structural studies, were shown to be 

important for the function of NCS-1 in the regulation of temperature-dependent 

locomotion in the single pair of AIY interneurons in the C. elegans model. The          

C-terminal tail domain and myristoylation of NCS-1 were shown not to be involved 

functionally (or at last to be essential) in regulation of temperature-dependent 

locomotion in this study. 

 

NCS-1 has been shown to be essential in the regulation of temperature-dependent 

locomotion in C. elegans.  The ncs-1 null mutant (qa406) was shown to be defective 

in this behaviour, displaying a novel phenotype of an acceleration of locomotion 

rate after acute exposure to high temperature. This has not been seen previously.  

Phenotypes seen previously are a reduction in locomotion rate of to ~40% in the 

wild-type at 28oC compared to that at 20oC.  DAG signalling pathway mutants 

showed other defective phenotypes, with locomotion rates of between 0-100% at 

28oC when compared to the rate at 20oC (Edwards et al., 2012).   The increase in 

locomotion behaviour at 28oC was confirmed to be caused by the absence of NCS-1 

expression in the null worm after expression of wild-type NCS-1 protein, under its 

own promoter, using an extra-chromosomal rescued this behaviour giving a 

significant slowing of locomotion at the higher temperature.  

 

The physiological relevance of four residues in the N- and C- terminal clefts of 

hydrophobic pocket of NCS-1, were tested using the TDL assay. The hydrophobic 

residues were mutated to alanine as done previously in a NCS structure/function 

studies of hydrophobic resides and shown to effect the properties of the 

hydrophobic pocket and function (Wang et al., 2007). The L89 residue situated in 

the N-terminal binding cleft was shown to be important for the function of NCS-1 in 

the regulation of TDL. In the NCS structural studies this residue has been shown to 

be involved in complex formation with target peptides in vitro (Ames et al., 2006, 

Pioletti et al., 2006, Lim et al., 2011, Strahl et al., 2007).   



120 
 

 

The residue W30, also situated in the N-terminal binding cleft, has also been 

implicated to be important in complex formation in structural studies. This 

investigation could not identify if this residue was functionally significant in TDL 

regulation. Its function may have been masked in the W30A/L89A double mutation 

N-terminal binding cleft mutations due to an extensively reduced locomotion rate 

at 20oC. This reduction may have been cause by toxic effects of the mutated protein 

possible due to aggregation or off target signalling but this was not investigated 

during this project. 

 

It appears the whole C-terminal binding cleft must be involved in target interaction 

because mutations of the individual residues W103 and V125 are not sufficient to 

prevent rescue of TDL regulation by NCS-1 but when mutations of both residues are 

introduced into the protein it failed to rescue. Residue V125 has been implicated in 

Pik1 peptide complex formation in the Frq1 and Ncs-1 complex (Ames et al., 2006). 

This residue was not shown to be involved in KChiP1 and recoverin target complex 

structures as the C-terminal tails of these proteins makes the valine residue 

inaccessible to the target peptides for interaction (Strahl et al., 2007, Ames et al., 

2006). Biochemical and structural studies of these binding cleft mutations could be 

used to validate and further investigate the functions of these binding cleft resides. 

Cellular studies could be used to investigate further the functions of these residues 

in mammalian systems. 

 

In NCS-1 the C-terminal tail has been shown to occupy the C-terminal part of the 

hydrophobic pocket and on binding to target peptide the tail has been shown to 

move, fully exposing the binding groove, including the W103 and V125 residues 

(Strahl et al., 2007, Heidarsson et al., 2012). This suggests that the C-terminal tail is 

not required for target peptide binding modulation and supports the functional 

data found in this study where truncations of the C-terminal tail did not have a 

negative effect on NCS-1 function. In human NCS-1, a point mutation of R102Q, has 

been implicated to have a role in Autism (Piton et al., 2008). This residue is next to 

W103 and structural studies have shown that in the wild-type protein, R102 
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interacts with the C-terminal tail in a stable form. The Autism R102Q mutant 

protein has structural changes, leading to the 169-190 residues of the C-terminal 

tail being more dynamic and the protein having an increased affinity to target 

protein. To test the function of the R102 residue it may be possible to use the 

worm. Previous studies have shown it is possible to express human orthologues of 

C. elegans proteins in a null background and fully rescue function, for example 

expression of mammalian Munc-18 gene rescues the unc-18 null strain for wild-type 

locomotion and neuronal function (Gengyo-Ando et al., 1996). Human NCS-1 could 

be expressed in the C. elegans ncs-1 null strain to test if it rescues the TDL function. 

If this is the case, it would be interesting to repeat this with the human NCS-1 

R102Q mutated protein and establish if it affects the TDL pathway. It would also be 

interesting to compare biochemically and structurally the interactions of the wild-

type, 169-190, R102A and W103A/V125 mutations to further characterise the       

C-terminal binding cleft and C-terminal tail modulation of target peptide binding. 

 

The G2 residue is essential for myristolation of NCS-1 (O'Callaghan et al., 2002). The 

N-terminal myristoyl tail of NCS-1 is not essential for TDL regulation in the worm as 

expression of the non-myristlolated protein showed wild-type rescue. This result 

may be because the mutated protein is over expressed. Either way this result also 

suggests that NCS-1 may not have a role in recruitment of bound target proteins to 

membranes in C. elegans TDL as suggested in other studies (de Barry et al., 2006). 

In fission yeast  non-myristoylated Ncs1 appears to also be functionally active 

(Hendricks et al., 1999), although, the myristoyl tail does appear to function in 

repositioning Ncs1 from the cytoplasm to the plasma membrane via a the myristoyl 

switch mechanism. It is possible that NCS-1 in C. elegans has two distinct sites of 

function, one bound to the membrane and one free in the cytoplasm. 

 

 In an earlier study, NCS-1 was shown to be expressed in three pairs of 

thermosensory neurons, the AFD neurons, the AWC neurons and the AIY 

interneurons. Temperature-dependent locomotion was found to be regulated by 

the AFD sensory neuron (Edwards et al., 2012). This study has shown that NCS-1 

regulates TDL through the AIY interneuron and not the AFD thermosensory neuron 
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as expected. Western blotting confirmed the expression NCS-1 driven by the osm-6 

promoter, but did not confirm expression levels in individual neurons. It could be 

that in the AFD and AWC neurons that the protein is not expressed sufficient levels 

to regulate TDL in a wild-type manner, however this is unlikely because the 

Western blot did show that the overall levels of protein were much higher than 

endogenously expressed NCS-1. 

 

The absence of locomotion at 28oC of the AIY neuron ablated ttx-3 mutant strain is 

the opposite of what was expected considering that NCS-1 regulates TDL though 

the AIY neuron.  These results suggest that regulation of temperature-dependent 

locomotion is driven by a TDL stimulatory pathway in the AIY neurons in the wild-

type worm, which is dampened, but not completely inhibited by NCS-1 (Figure 

4.17).   

 

It is likely that this pathway is activated by a signal from the pre-synaptic AFD 

neurons (Figure 4.17), as it was shown to be involved in the TDL neuronal circuit 

previously (Edwards et al., 2012) and the AFD has also been shown to regulate the 

AIY in other temperature sensory pathways. In the ncs-1 null worm it appears that 

the TDL stimulatory pathway is unregulated leading to a increase in TDL and in the 

AIY ablated strain here is no stimulatory mechanism due to the absence of the AIY 

neuron leading to an absence of locomotion (Figure 4.17). NCS-1 may directly bind 

to and inhibit a target protein in the TDL stimulation pathway at the time of the 

acute rise in temperature. The benefit to the wild-type worm of the 

dampened/stimulation mechanism between NCS-1 and the TDL stimulatory 

pathway has not been investigated in this study, but it  may be necessary for 

physiological thermophilic behaviours as the AIY ablation strain is thermophilic 

(Hobert et al., 1997). Other unidentified pathways, possibly in the AFD and 

cryophilic AIZ neurons (Hobert et al., 1997), stops all locomotion at high 

temperatures.  
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Figure 4.18 The Predicted Neuronal Circuit and Molecular pathway of the Temperature-dependent 
Locomotion in C. elegans. Illustration of a potential mechanism of TDL in C. elegans based on the 
finding of this study and Edwards et al, 2012 (Edwards et al., 2012). After exposure to acute heat, a) 
NCS-1 dampens the TDL stimulatory pathway in AIY neuron in the wild-type worm. b) A lack of NCS-1 
in the AIY neuron in the ncs-1 null strain (qa406) shows an increase of TDL. c) There is no TDL 
stimulatory pathway because there is a loss of a functioning AIY neuron in the ttx-3 null worm (ot22) 
and the worms  

 

The ncs-1 null (qa406) has previously been shown to display a defect in the 

thermotaxis behaviour, isothermal tracking, where the wild-type worm learns to 

associate food with a specific temperature (Gomez et al., 2001), this behaviour was 

also found to be regulated by NCS-1 through AIY interneurons. The ncs-1 null strain 

has not been assessed for the other thermotaxis behaviour, the biased random 

walk; it would be interesting to see if the mutant strain had a defective phenotype 

for this behaviour.  The ncs-1 null animal has been assed for thermoavoidance 

phenotypes and no defect was found (Ghosh et al., 2012, Gomez et al., 2001). This 

is not surprising because as discussed in Chapter 1 thermoavoidance is controlled 
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by a different neuronal circuit network going through the AIB rather than the AIY 

interneurons compared with thermotaxis behaviours (Wittenburg and Baumeister, 

1999, Liu et al., 2012). As the regulation exerted by NCS-1 on both isothermal 

tracking and TDL pathways involves the AIY neuron it would be interesting to see if 

TDL was also regulated by other isothermal tracking regulatory proteins and 

pathways.  

 

As we have established that the AIY neuron is the site of NCS-1 TDL regulation, it 

would be interesting to express the NCS-1 mutants studied here in the AIY neurons 

only to validate that the mechanism is regulate by key elements of NCS-1 structure 

in this neuronal pair. The function of calcium binding was not investigated in this 

study. Calcium binding was shown to be involved in the function isothermal 

tracking of NCS-1 in C. elegans using EF hand mutants (Gomez et al., 2001). It has 

yet to be established if isothermal tracking and TDL are phenotypes related to the 

same or different temperature sensitive neuronal mechanisms within the worm. To 

establish this, the TDL assay could be performed on other mutant worms shown 

previously to be defective in isothermal tracking regulation. It is possible to detect 

changes in calcium signalling inside specific neurons by expression of fluorescent 

cameleon Ca2+ indicator proteins (Chung et al., 2013). This system has already been 

developed and used to measure calcium signalling changes in temperature sensing 

pathways in the AFD and the AIY neurons (Kuhara et al., 2011). It would be 

interesting to compare changes in calcium signalling in the these neurons in the 

wild-type, ncs-1 null, ncs-1 mutants and also any subsequent mutant strains found 

to interact with ncs-1 in the TDL pathway. 

 

The target protein for NCS-1 regulation of the TDL pathway was not identified in 

this study. The C. elegans PI4K orthologue, PIFK-1 is a potential target of NCS-1 as it 

displayed a TDL phenotype and structural studies of yeast orthologues have shown 

complex formation via the N- and C-terminal binding clefts. More work is required 

to establish if it is a target protein.  This would include expression of PIFK-1 in the 

pifk-1 null worm in the AIY neurons to see if it rescues the phenotype, and to also to 
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cross the ncs-1 and pifk-1 null strains to establish if they regulate TDL via the same 

or different pathways.   

 

This study has shown that the assay for temperature-dependent locomotion is 

robust, reproducible and is easy and quick to perform, taking approximately 30 

minutes to assay an individual animal at both temperatures. In the case of the ncs-1 

null worm this shows a distinct phenotype. To increase the numbers of animals 

assessed for this behaviour or to screen many strains at the same time it may be 

beneficial in the future to develop the technique, so a greater number of worms 

could be assayed at the 20oC or 28oC at the same time and/or record and use 

computer analysis to define the behaviour. This could be useful for screening 

strains containing mutants of potential target proteins for ncs-1. 

 

 

In conclusion, Inhibition of the TDL stimulatory pathway is a function of NCS-1 in     

C. elegans. NCS-1 inhibits a TDL stimulatory pathway specifically in the AIY neuron. 

NCS-1 expressed in other cell types including the thermosensory neurons AFD and 

AWC appears not to be involved in this behaviour. NCS-1 interacts with target 

proteins in the TDL stimulatory pathway via both the N-terminal and C-terminal 

binding clefts of the hydrophobic pocket. Neither the C-terminal tail nor 

myristoylation appear to have a role in the inhibition of the TDL stimulatory 

pathway.  
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Chapter 5: DISSCUSION 
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5.1 Discussion 

The understanding of Ca2+ signalling has moved forward rapidly in recent years with 

its role in normal physiology and in disease becoming clearer. There are many 

aspects, though, which are still not understood. Therefore, characterising the 

function of NCS proteins in more detail will give insight into the molecular basis of 

neuronal Ca2+ signalling and neuronal disorders and may provide targets for future 

drug discovery. By combining two very different disciplines, in vitro 

biochemical/biophysical analysis and physiological studies using C. elegans, the 

work described in this thesis aimed to characterise NCS-1 binding, structure and 

function and contribute towards an understanding of neuronal Ca2+ signalling. 

 

NCS-1 has been implicated to bind to multiple target proteins including  PI4KIII 

(Hendricks et al., 1999) IP3R (Zhang et al., 2010, Boehmerle et al., 2006)D2R (Lian 

et al., 2011) and IL1RAPL1 (Handley et al., 2010). The Cav2.1, a subunit of the P/Q 

Ca2+ channel, has also been revealed through reverse genetics as major target 

protein of NCS-1 (frequenin) in Drosophila (Dason et al., 2009). Physiological 

functions have been attributed to interactions between NCS-1 and Cav2.1 but no 

direct binding between the proteins has been demonstrated (Weiss and Burgoyne, 

2001, Tsujimoto et al., 2002). In contrast, CaM, CaBP-1 and VILIP-2 Ca2+ sensor 

proteins have been shown to bind to the IQ and/or the CBD domains on the            

C-terminal tail of the channel  (Lee et al., 2002, Lee et al., 1999, Lautermilch et al., 

2005, Findeisen and Minor Jr, 2010, Kim et al., 2008, Mori et al., 2008, Demaria et 

al., 2001).  

 

The first aim of this project was to establish direct NCS-1 and Cav2.1 binding. Using 

biochemical and biophysical methods, identify the region of the Ca2+ channel that 

binds to NCS-1, characterise the binding in detail and to identity of residues 

involved of the NCS-1 binding pocket. Using pull-down assays, it was established 

that a long peptide fragment of Cav2.1 containing both the IQ and CBD domains, 

interacted directly with NCS-1 in a Ca2+-dependent manner. Use of NMR showed an 

interaction of the NCS-1 protein with a peptide fragment of Cav2.1, which contained 

only the IQ domain, in the presence of Ca2+.  Further work characterising the 
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binding of NCS-1 and the peptide fragment of Cav2.1 containing the CBD domain, 

was put aside so that this study could then focus on the IQ domain. 

 

Protein binding analysis using SPR was unable to provide NCS-1 and IQ peptide 

binding kinetics or stoichiometry data due to the properties of NCS-1 in the assay. 

Isothermal titration calorimetry (ITC) is an alternative protein binding analysis 

technique which may be suitable to measure the characteristics of the NCS-1/IQ 

peptide complex. Once a system has been established to measure protein binding 

constants it may be possible to measure other features of NCS-1/IQ peptide 

association, for example, to establish the optimum Ca2+ concentration for complex 

formation and competition binding analysis with NCS-1 and CaM or CaBP-1 which 

also bind to the IQ peptide. 

 

It was not possible to identify a specific region of NCS-1 that the IQ peptide binds to 

using NMR, although, it would be logical to assume it binds to the hydrophobic 

pocket as this is the region of yeast NCS-1 that the peptide binds  (Strahl et al., 

2007). It has also been shown that the IQ peptide binds to in the hydrophobic 

binding sites of CaM (Kim et al., 2008). A major aim of this part of the study was to 

use NMR to identify which amino acids in the hydrophobic pocket of NCS-1 were 

responsible for the interaction with the IQ peptide. It was not possible to achieve 

this aim because the interaction caused an apparent massive conformational 

change in NCS-1.  The majority of NCS-1 amino acids protein were effected making 

it impossible to distinguish binding sites using this technique. X-ray crystallography 

is an alternative technique to analyse the structure of protein complexes at high 

resolution and may be suitable to generate a structure of the NCS-1/IQ peptide 

complex and identify which residues of the NCS-1 hydrophobic pocket interact with 

the peptide.   

 

The second part of this thesis validated NCS-1 structural features in a whole 

organism. The C. elegans worm has been used extensively as a neuronal model and 

previously has been used to characterise the function of NCS-1. NCS-1 was shown 

to be expressed predominantly in sensory neurons in the worm (Gomez et al., 
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2001). Its function in a single pair of AIY interneurons was linked to the 

thermosensory behaviour of isothermal tracking and memory (Gomez et al., 2001). 

The ncs-1 null strain was used to characterise the function of the EF-hand motif and 

it was established that NCS-1 regulates isothermal tracking and memory in a Ca2+ 

dependant manner (Gomez et al., 2001). In the current study the ncs-1 null strain 

was used as a physiological system to assess NCS-1 structural aspects implicated by 

other biophysical studies. It was established that NCS-1 is not essential for wild-type 

growth, anatomy, locomotion and neuronal transmission. It was, however, linked to 

TDL, which had previously been shown to be regulated in the AFD sensory neuron 

pair which play a major role in thermotaxis. NCS-1 was previously shown to play no 

role in isothermal tracking or memory regulation in the AFD sensory neurons 

(Gomez et al., 2001). In contrast, TDL was shown to be regulated by the AFD 

sensory neuron pair (Edwards et al., 2012). By expressing NCS-1 in a series of 

neurons, it was found during this study that NCS-1 did not regulate TDL in the AFD 

neurons but exerted its function in the AIY neurons.  

 

By expressing a series of mutated NCS-1 proteins in the ncs-1 null worm, the 

relevance of structural features to protein function were assessed. Expression of 

NCS-1 with the G2A mutation, which is unable to be myristoylated (O'Callaghan et 

al., 2002), was able to rescue wild-type TDL.  Other studies have suggested that 

non-myristoylated NCS-1 is functional but has a less efficient for physiological 

activity than the wild-type protein (Hendricks et al., 1999). It is possible that  NCS-1 

is involved in membrane targeting and aids the relocation of target protein with 

which it forms complexes. The current study showed that non-myristoylated NCS-1 

still functions in a wild-type manner and suggests that NCS-1 is not involved in 

target protein localisation or membrane translocation.  It may be that 

myristoylation of NCS-1 is required in other physiological pathways but is not 

required for TDL - this would need further investigation. 

 

Structural studies have suggested that the C-terminal tail of NCS-1 occupies the     

C-terminal binding cleft and moves out of the cleft so that this is free for target 

binding. The work done in the current study supported this mechanism since the  
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C-terminal tail was not required for the rescue of physiological function in TDL. As 

to why the C-terminal tail occupies the C-terminal binding cleft in the non-target 

bound form was not investigated in this study. It has been suggested that the          

C-terminal tail self regulates NCS-1 function by preventing off target binding when 

NCS-1 is in its active Ca2+ bound state. When appropriate, the C-terminal tail vacates 

the C-terminal cleft, fully exposing the hydrophobic groove for target protein 

interactions. (Heidarsson et al., 2012, Strahl et al., 2007). 

 

Several previous structural studies have identified amino acids in binding pocket of 

NCS proteins that interact with target proteins (Lim et al., 2011, Strahl et al., 2007, 

Pioletti et al., 2006, Wang et al., 2007, Ames et al., 2006) In these studies, the 

targets used were short peptides derived from the full-length target proteins. There 

was a possibility that these interactions identified in in vitro studies did not occur in 

physiological systems. The current study showed that a common residue in the N-

terminal binding cleft of the hydrophobic pocket involved target peptide binding 

with recoverin, KChIP-1 or NCS-1 have a physiological role in TDL suggesting that 

NCS proteins have a conserved binding mechanism. The study also showed that the 

whole C-terminal binding cleft of NCS-1 is involved in its TDL regulatory function. 

The C. elegans TDL assay will provide a system to allow validation of future NCS-1 

structural findings, including those of the complex of NCS-1 with the C-terminus of 

Cav2.1 if its structure can be solved. 

 

Mammalian proteins can be expressed in C. elegans. It would be interesting to see 

if human NCS-1 expression in the AIY neuron of the null strain would rescue the 

wild-type phenotype. This would be a useful tool to evaluate the role of human 

NCS-1 in neuronal Ca2+ signalling and could be use to establish what characteristics 

of human NCS-1 have a functional role.  For example, human NCS-1 R102A 

mutation has been linked to Autism (Piton et al., 2008), it may be possible using the 

C. elegans assay TDL to investigate the effect the mutation has on the worm 

behaviour when compared to the human wild-type protein. 
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The next direction to take this study would be the identification of the target 

protein NCS-1 responsible for NCS-1 function in TDL. The obvious candidate is the   

C. elegans PI4kinase IIIorthologue PIFK-1. During this study it has been shown 

that NCS-1 residues implicated in the interaction of yeast NCS-1 and PI4 kinase 

IIIare important physiologically in the wormThe pifk-1mutant showed a 

defective TDL phenotype, although not as severe as the ncs-1 null. Creating an ncs-1 

and pifk-1 double mutant strain would provide information using the TDL assay as 

to whether these two proteins are involved in the same pathway. It would also be 

interesting to see if the phenotype of the pifk-1 mutant could be rescued by 

expression of pifk-1 in AIY neurons that are the site of NCS-1 function. 

 

5.2 Conclusion 

In conclusion, work in this thesis has investigated the physiological significance of 

key structural elements of NCS-1. It has shown that both the N- and the C-terminal 

binding clefts of NCS-1 are important for function and thus involved in target 

protein binding. NCS-1 may not be involved in the membrane translocation of 

target proteins as it still functions in the absence of the N-myristoyl group. The        

C-terminal tail appears to have no physiological role in TDL, supporting previous 

suggestions that it is not likely to interact directly with target proteins but instead 

may have a self-inhibitory role.  This study has established that the TDL assay is able 

to be used to evaluate NCS-1 function in a neuronal system and has provided 

insights into the physiologically relevant target-binding mechanisms used by NCS-1.  
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