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Abstract

Excited states in ®”Ho and '%°Er extending to high spin have been populated
as part of two experiments performed at the ATLAS facility of Argonne National
Laboratory. In both experiments high-fold y-ray coincidence data were recorded in
a high-statistics experiment with the Gammasphere spectrometer.

In '28Ergs, weakly populated band structures have been established at low to
medium spins, following the 1'4Cd(**Ca,6ny) reaction at 215 MeV. Bands built on
the second 0% state and 2% (y-vibrational) states have been established. A large
staggering between the even- and odd-spin members of the y-vibrational band sug-
gests a y-soft nature of this nucleus. An additional band is discussed as being based
on a rotationally aligned vhg/,/ f7/2 structure, coexisting with the systematically ob-
served, more favourable (viy3/2)? alignment seen in this mass region. At high spin,
new transitions above the 427 terminating state have been observed, establishing
the presence of a further excited state, which is interpreted as the predicted termi-
nating 46% state built on a 7T(d5/2/g7/2 — dg/2) particle-hole excitation across the
Z = 64 shell gap.

New states in '22Hogg have been observed following the ?*Sn(3"Cl,6nv) reac-
tion at 180 MeV. At low spin, a positive-parity mg7/, rotational band, observed
for the first time in this nucleus, has been established up to (33/2%). The whyi)s
band has been extended to higher spins, and the large signature splitting it exhibits
interpreted as evidence of triaxiality at low spin. In addition, a positive-parity ro-
tational structure has been extended to I™ = 57/2~ and discussed as being based
on a v(i13/2hg/2) structure coupled to the hyy/o proton. B(M1)/B(E2) ratios of re-
duced transition probabilities have been calculated from observed branching ratios
for all three bands and compared with theoretical calculations for specific particle
configurations. Above spin ~ 59/2 the behaviour of the nucleus is discussed in the
context of band termination. An energetically favoured state at I™ = 79/2~ has
been established, which corresponds to valence-space band termination in '*°Ho.
Weak, high-energy core-breaking excitations feeding this state have been observed.
New states with I™ = (87/2%), (89/2%) are thought to be further predicted favoured
terminating states at oblate shape, built on m(ds/2/g7/2 — hi1/2) particle-hole ex-
citations across the Z = 64 shell gap. The newly observed high-spin states are
compared to Cranked Nilsson Strutinsky calculations, and presented in the context

of known band terminating states in the region.
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Chapter 1

Introduction

This thesis documents ~-ray spectroscopic studies of two nuclides: erbium-156
(188Frgs), and holmium-155 (*52Hogs). In two separate but similar experiments they
were produced in highly excited states following fusion-evaporation reactions. Dur-
ing the rapid decay to their stable ground states they occupied many discrete states
of decreasing energy and angular momentum, and the ~ rays emitted during this
process were detected using the Gammasphere spectrometer and subsequently anal-
ysed. In this way, the states the nuclei occupied during their decay were recreated
schematically in the form of level schemes. Information about the quite varied be-
haviour of the nuclides can be gleaned from these level schemes, of which Fig. 1.1 is
an example, from a previous study of *Ho [1]. Nuclear structure models and calcu-
lations inform this process of interpretation of the observed states, and in turn, the
new experimental information provides a test for these models. The development
over recent decades of large germanium detector arrays like the Gammasphere has
brought ever higher spin states, and other similarly weakly populated structures,
into the realm of experimental sensitivity [2].

The nuclide %°Er was already known to exhibit a large assortment of excitations,

which included: rotational alignments due to the breaking of nucleon pairs; several
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rotational bands built on various neutron configurations; a rotational band coupled
to the ~-vibration, established from spin 167 to 28%; a favoured 42" terminating
state, and several core-breaking excitations above it; and even evidence for octupole
collectivity [3]. The work presented here contributes even more modes of excitation
to this growing list [4]. A band built on the second 0T state, i.e. what is often referred
to as the -vibrational band, has been established up to spin (227). Previously, the
low spin levels of the y-vibrational band were not well known; both the even- and
odd- spin members of this band have now been been established. Their relative
energies suggest that the nucleus is ‘soft’ to axially asymmetric, or ‘triaxial’, shapes.
Another newly observed band is discussed as being based on a rotationally aligned
vhyss/ fr/2 structure not typically seen in this mass region.

States of spins the highest reported to date in »Ho and "°Er have been seen,
revealing aspects of their behaviour at valence-space band termination. The way in
which the atomic nucleus generates excited states and increasing angular momen-
tum represents a delicate interplay between single-particle and collective degrees of
freedom, and the phenomenon of band termination is a good example of this [5].
It is tempting to think of the generation of angular momentum through collective
rotation as separate from the behaviour of individual nucleons inhabiting specific
shells, that while a rotational band may be built on a particular orbital, the single
particle contribution to the total angular momentum is limited to the K contribu-
tion of the band-head. Band termination shows this not to be the case. Outside
the spherical core, a nucleus has a limited number of valence nucleons. The nuclides
being studied here, 1**Ho and '%°Er, have outside the *Gd core only nine and ten
valence nucleons, respectively. As the maximum spin achievable by filling specific
shell orbitals with these valence nucleons comes close to being reached, the ascent
to high spin is marked by an often abrupt loss in collectivity, culminating in termi-

nating states with the maximum allowed value of spin [6, 7]. Above the terminating
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FIGURE 1.1: Level scheme for »>Ho published by Hagemann et al. [1]

states particle-hole excitations of the spherical nuclear core can generate states of
higher angular momentum, but these core-excited configurations can be energeti-
cally expensive, characterized by high energy transitions (~1-2.5 MeV) feeding the
favoured terminating states. In heavy nuclei, evidence for band termination was
first seen in nuclei around »Ho and '"%Er [7-11] and in recent years high-energy
transitions feeding the terminating states in 16157158 Er have been reported [12, 13].
Similar transitions have been seen feeding the newly established 79/2~ terminating

state in **Ho.
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In addition to these terminating states and core-breaking excitations at high spin,
the rest of the 1*Ho level scheme has also been extended considerably. Two compet-
ing rotational bands built on single-proton configurations are seen, and evidence is
presented for these configurations of the nucleus having different shapes at low spin,
one being axially symmetric, the other favouring triaxial deformation. Other bands,
too, are discussed in terms of specific proton and neutron configurations. These
configurations are tested through the comparison of measured B(M1)/B(FE2) ratios
of reduced transition probabilities to geometric calculations [14].

In the next chapter an introduction is given to the physics concepts discussed
in this thesis. This is followed in Chapter 3 with a description of the experimental
techniques employed to gather the ~-ray coincidence data analysed in this work.
Also detailed in Chapter 3 are the methods used to build the level schemes and
determine the spins and parities of the deduced states. The two nuclei of interest,
136Er and '%°Ho, are then addressed in turn in Chapters 4 and 5. The analysis of
the y-ray data is discussed, as is the subsequent interpretation of the excited states
that have been established. Calculations and predictions based on various models
will be presented, and systematic trends in behaviour in this region of the nuclear

chart will be explored.
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Physics Background

In studying the ~-ray decays of states in °Er and %°Ho, new excited structures
have been revealed. It is the aim of this thesis to use this new information to better
understand the structure of these nuclides. The complexity of the nuclear system,
which can consist of hundreds of interacting particles (i.e. protons and neutrons)
means that mathematical models which simplify the problem usually form the basis
of any theoretical approach. A brief introduction to some of these models will be
given here, and the simple assumptions upon which they are based explained. No
single model describes all kinds of nuclear excitations. Even within an individual
nuclide, there can be seen several types on behaviour best described by multiple
models. Those relevant to this work concern collective excitations of the nucleus,
namely rotation and vibration, as well as single-particle behaviour, which is dis-

cussed in terms of shell models.

2.1 Shapes

Much of the discussion in this thesis, and in the field of nuclear structure studies in

general, concerns the shape of the atomic nucleus. Both nuclides studied in this work
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FIGURE 2.1: The Lund convention.

are discussed in terms of the prolate, oblate and triaxial shapes they are thought to
adopt at different excitation energies and spins. Accordingly, these terms will be
briefly explained and their geometric description given.

The shape of a nucleus can be described as a surface R(6, ¢) and expressed as a

sum over spherical harmonics, Y}, (6, ¢),

R(6,¢) = Clax)Ro |14+ D axYau(0,6)] - (2.1)

A=0 p=—X\

The distortion from a spherical shape of radius Ry is represented by the a coef-
ficients. In reality many nuclides are deformed, having a prolate, ‘rugby ball’, or
oblate, ‘discus’, shape. Given such a deformed but axially symmetric shape, lim-

ited to quadrupole and hexadecapole (A = 2,4) degrees of freedom with u = 0,
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the description of the nuclear shape can be simplified in terms of ) deformation

parameters. Eq. 2.1 then becomes

1+ \/%&Pz(cos ) + \/gﬁ4P4(cos 9)] : (2.2)

where the Py terms are Legendre polynomials, and the C' term satisfies the condition

R(0) = Clony) Ro

of conservation of volume.

Axially asymmetric or, more specifically, triaxial shapes are also considered in
this thesis. A triaxial shape has three principal axes; z, y, z, where x # y # z.
Prolate and oblate shapes can be thought of as special cases where xr = y < z and

x =1y > z, respectively. To account for triaxial shapes, Eq. 2.1 can be written as

R = C(ay,)Ro |1+ 16%&{3 cosy(3cos?0 — 1) + v/3sinysin 0 cos 20} |, (2.3)

where 5 is the deformation parameter, and v is a measure of the triaxiality of the

nucleus, determining the lengths along the three principal axes:

) 21
5Rr = EﬂQRQ COS(’Y — ?),
) 4
5Ry = E/BQRO COS(’Y - ?), (24)

OR, =1/ iBgRo cos(7).
4m

Prolate shapes have v = 0°, and v = 60° describes an oblate shape. Values of
v between these limits correspond to triaxiality. In the Lund convention [15] of
Fig. 2.1, the range of v values is extended to —120° <~ < 60°, and the value also
indicates about which axis the nucleus rotates; short, intermediate, or long. For
example, in the 0° < v < 60° regime, the nucleus rotates about the short axis, and

in the —60° < < 0° (or collective regime) it rotates about the intermediate axis.
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2.2 The shell model

In certain measurable properties of nuclei, sharp discontinuities are seen at par-
ticular numbers of protons, Z, and neutrons, N. By contrast, the semi-empirical
mass formula of the liquid drop model predicts that these properties should evolve
smoothly with increasing mass [16]. For example, nuclei with a ‘magic’ number of
protons or neutrons or both have higher binding energies than would otherwise be

expected. The magic numbers are
2, 8, 20, 28, 50 and 82,

and are understood to represent energy gaps between clusters, or shells, of discrete
energy levels. The idea is analogous to the closed shells of atomic theory, which
give rise to periodic trends in chemistry, such as the particularly stable noble gases.
In atomic theory, discrete orbitals, and closed shells, appear when each electron is
treated as moving, independently of the other electrons, in a Coulomb potential set
up by the positive charge of the nucleus.

For the nucleons themselves, the situation is complicated slightly by the fact that
the forces they experience are due to other nucleons. This problem is overcome by
ignoring the interactions between individual nucleons, and approximating the net
attractive force of the other nucleons as a mean field potential. The exact form this

potential takes will now be considered.

2.2.1 The Simple Harmonic Oscillator potential

As a starting point, a simple approximation of the mean field potential is the Har-

monic Oscillator potential, which is given by

Vose = smuwgr?, (2.5)
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FIGURE 2.2: Comparison between a Simple Harmonic Oscillator of the form V(r) =
~Vo[1—(r/Ro)?], a Woods-Saxon of the form given in Eq. 2.10, and a square well potential.
where r is the distance from the centre of the potential, m is mass, and wy is the
Harmonic Oscillator frequency. In order to calculate the energy levels produced by
this potential the Hamiltonian must be solved. After incorporating the oscillator
potential V,s.(r), the Hamiltonian becomes

hZ

1

where the first term is the kinetic energy of a single nucleon. The energy eigenvalues
are given by

Ey=(N+3)hw,, N<0 (2.7)

where NV is the oscillator quantum number. The energy levels are evenly spaced, and
each level consists of multiple eigenstates, i.e. they are degenerate. The degeneracy
is given by (N + 1)(N + 2). With respect to a reflection of spatial coordinates

through the origin, the wavefunctions of even-N solutions are symmetric, and odd-
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N solutions antisymmetric. In other words, the levels have alternating parity, given
by
= (-1 =(-1)" (2.8)

The principal quantum number, n, and the angular momentum quantum number,
¢, define the harmonic oscillator orbital, and their allowed values are governed by
the rules

2n—1)4¢=N, N>0, 0</<N. (2.9)

The levels for N = 1-6 are shown in Fig. 2.3, labelled with their constituent nf
degenerate orbitals.

Though the first three magic numbers, 2, 8, and 20 are reproduced by the Har-
monic Oscillator potential, it is not a good description of the actual nuclear poten-
tial, and fails to reproduce the higher magic numbers. A more realistic potential
lies somewhere between the square well and the harmonic oscillator. In nuclei much
larger than the range Ry of the nuclear force (~1 fm), a nucleon towards the centre
should experience no net force and as such, away from the surface of the nucleus,
the potential is expected to be flat. A central attraction will be felt at the boundary,
where the local distribution of nucleons is less symmetric.

In these terms, it is easy to see why the Woods-Saxon potential in Fig. 2.2 better

reproduces nuclear properties. The Woods-Saxon potential is defined as

(2.10)

where a represents the surface diffuseness. A Woods-Saxon potential is often used
in shell model calculations, and has been used in Chapter 5 of this thesis, as the
basis of cranked shell model calculations [17, 18]. Another common approach is to

apply modifications to the Harmonic Oscillator potential, namely the addition of 1-s

10
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and 12 terms to the potential [19, 20]. These modifications are described in the next

section.

2.2.2 The Modified Harmonic Oscillator potential

The Modified Harmonic Oscillator (MHO) potential represents an improvement to
the harmonic oscillator, introducing additional terms to make it more realistic, so
that

Virno = smwir? — khwo [21-s + p(® — (P)n)] . (2.11)

The x and p parameters are adjustable and determine the strength of the 1's (spin-
orbit) and 12 interactions. The exact values used are based on empirical observations,
and usually depend on the region of the nuclear chart being investigated. In this
work the A = 150 x and p parameters of Ref. [21] have been used. The oscillator

frequency, wy, is defined as

N—-Z

hwy = 41A71/3 (1 + ) MeV. (2.12)

The 12 term has the effect of modifying the shape of the potential to something
that resembles a Woods-Saxon potential, flattening it out. It lifts the degeneracy
of the N shells, with higher-¢ orbitals being affected more, and thus being lowered
more in energy.

Nucleons have an intrinsic angular momentum s of magnitude %, and can be
aligned or anti-aligned with 1. The two sum together to give the total angular
momentum 7, so that 7 = £ £+ s. The spin-orbit 1-s term is attractive but affects
Jj = €+% and j =/ —% differently, resulting in more tightly bound j = [+1 states. As
can be seen in Fig. 2.3 the 1-s term has the effect of breaking the degeneracy of each
nl orbital into their j = ¢ —l—% and j =/ —% components. The effect can be sufficiently

large for some orbitals to ‘intrude’ into the lower N shells, in the process giving rise

11
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FIGURE 2.3: Single-particle energies for a simple harmonic oscillator (SHO), a modified
harmonic oscillator with 12 term, and a realistic shell model potential with 12 and l-s
terms. N labels the oscillator shell. Adapted from Ref. [22].

12



CHAPTER 2

to new energy gaps, and the familiar, experimentally observed magic numbers. In
addition to the numbers listed previously, in Fig. 2.3 two extra magic numbers are
shown in parentheses, 40 and 64. In some cases, over limited ranges of N and Z, these
are weakly magic [22]. The shell gap that opens above the 1g7/5/1ds/, nlj orbitals
at a proton or neutron number of 64 is particularly important for this work, since
1%5Ho and Er have Z = 67 and Z = 68 respectively. Terminating configurations,
for example, are given relative to the ‘doubly magic’ §15Gdgs core. Furthermore,
having only ten valence nucleons outside the ‘doubly magic’ spherical core, SEr is

discussed as representing a ‘transitional’ nucleus where nuclear collectivity rapidly

changes from vibrational to rotational motion [22].

2.2.3 The Anisotropic Harmonic Oscillator potential

Although the MHO potential successfully reproduced the observed shell gaps seen
in nature, it does not take into account the effect of deformation. Away from shell
gaps, the usual shape for a nucleus, including those studied in this thesis, is not
spherical, but quadrupole deformed.

The short-range effects of nucleon pairing favour radial symmetry, but the long-
range component of the nucleon-nucleon residual interaction, namely the quadrupole-
quadrupole interaction, favours a deformed shape. At closed shells pairing dominates
— it is in the mid-shell regions that the long-range interaction becomes more im-
portant. The resulting nuclear shape is a result of competition between these two
effects. These long-range interactions are not considered in the potentials discussed
so far.

The Anisotropic Harmonic Oscillator (AHO) potential models the mean field

potential of an axially deformed (prolate or oblate) nucleus:

Vose = 2w (2% 4+ y°) + w22?). (2.13)

13
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A ‘stretched’ coordinate system [23] is used to parametrise the deformation,

- /mwx. - ;mwy‘ - /mwz.

where w, = wy, = w,. The p and 6; terms are then defined as

PP =+ 4+ % cosb, = (/p. (2.15)
The potential can now be expressed in terms of the deformation parameter, e [24],
Vose = %hwopQ [1 — %52P2(cos 9,5)} ) (2.16)

The deformation parameter, €9, is almost the same as the 55 quadrupole deformation
parameter, which was introduced earlier. For small deformations the two terms are

related by

3 5 1/2

When discussing deformation in general terms, the two are often used interchange-
ably and both parameters will be referred to in this thesis. Only quadrupole defor-
mation (A = 2) has been considered up to this point, though terms corresponding
to higher multipoles of deformation can be added to Eq. 2.17 and calculations pre-

sented here generally include small hexadecapole (A = 4) deformation, given by

=1

65%. The relation between the hexadecapole parameters are approximately

€4

9

1/2
Ey = — (—) 64 =~ —0.8564, (218)
4

and it should be noted that, while similar in magnitude, ¢4 is opposite in sign to
B4. The spin-orbit 1-s term of the MHO potential is also added to the potential. It

has already been shown how introducing the spin-orbit and 12 modifications to the

14
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harmonic oscillator potential lifts the degeneracy of the N, shells into separate ntj
orbitals (for example the N, = 3 splits into four orbitals; 1f5/2, 1f7/2, 2p1/2, 2p3/2)-
Introducing deformation to the potential has the effect of lifting the degeneracy even
further.

Another consequence of introducing deformation to the system is that the nfj
quantum numbers are no longer ‘good’ quantum numbers — they are not conserved
as deformation is varied. The solutions to the AHO potential are therefore labelled

by the Nilsson asymptotic quantum numbers as follows,

O [Nosen2 Al (2.19)

where 7 is parity and €2 the single-particle projection of the total angular momentum
on the symmetry axis. A related quantity to 2 is K, the projection of the total an-
gular momentum on the symmetry axis. Provided the rotation axis is perpendicular
to the symmetry axis, as is the case with a prolate rotating nucleus the two terms
can be used interchangeably [22]. Inside the brackets the three quantum numbers
are: N, the oscillator quantum number denoting the major shell; n,, the number
of oscillator quanta along the symmetry axis; and A, the single-particle orbital an-
gular momentum along the symmetry axis. As illustrated in Fig. 2.4, Q@ = A + X,
with ¥ being the single-particle spin angular momentum along the z-axis. It can be
seen that a high-) orbital will have a very different orientation with respect to the
nuclear symmetry system to a low-(2 orbital, and as such the two will have different
energies. In general, low-{) Nilsson orbitals prefer prolate deformation, and high-{2
orbitals prefer oblate deformation.

The potential in Eq. 2.13 is axially symmetric about the z-axis. However, it will

be seen there is reason to believe that the nuclides of interest here sometimes adopt

15
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FIGURE 2.4: Nilsson orbital quantum numbers. The nucleus has positive quadrupole
(prolate) deformation, z being the symmetry axis, and x the axis of rotation. Reprinted
from Ref. [34].

an axially asymmetric shape. The AHO model can be generalised, and orbitals

calculated as a function of v as well as (3, using the Lund convention of Fig. 2.1.

2.2.4 Cranked Shell Model

A further extension to the shell model can be made that introduces a further degree
of freedom, rotational frequency, hw. Cranking models take into the account the
response of nucleons to the rotation of the nuclear potential [25]. The cranking

Hamiltonian can be expressed as

H, = Hy — wi,. (2.20)

Hy is the static Hamiltonian in the laboratory system, for example the Anisotropic
Harmonic Oscillator Hamiltonian of the previous section, and wl, is the quantum
operator corresponding to the effects of the classical Coriolis and centrifugal forces.

The modifications made to the harmonic oscillator potential so far, first the
inclusion of an 12 and spin-orbit term term, then allowing the potential to assume

a radially asymmetric form, have seen successive degeneracies of the N,,. shells

16
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being lifted. The onset of rotation sees the final, two-fold, degeneracy of the Nilsson
orbitals being broken.

The two-fold degeneracy of each Nilsson orbital when stationary corresponds to
a pair of nucleons moving in symmetrical time reversed orbits. Once in a rotating
frame, the effect of the wl, depends on whether the nucleon is moving with or against
the collective rotation, and this symmetry is broken. The result is states of opposite
signature, a. The wl, term depends on the spatial orientation of the nucleon’s orbit
with the core so the behaviour of a nucleon under rotation is dependent on which
orbital it occupies. Unfavoured configurations at w = 0 can become competitive
with increasing rotational frequency.

The calculated energies are called Routhians, and are labelled by their parity
and signature, (7, «). Under rotation the nfj quantum numbers and Nilsson labels
are no longer ‘good’ quantum numbers, and a single (7, «) orbital will represent a
mix of Nilsson configurations. However, if an orbital is composed principally of a

particular Nilsson configuration, it often will be labelled as such.

2.2.5 Quasiparticles

Cranking calculations are presented in this thesis in the form of quasiparticle en-
ergies. Quasiparticles are mathematical constructions that describe excitations in
terms of linear combinations of particle and hole occupation probabilities. Using
the quasiparticle construct the particles can be replaced by non-interacting quasi-
particles whose energies are additive. For each single-particle level there are two
quasiparticle levels, one positive and one negative, reflections of each other about
the Fermi surface. The Hartree-Fock-Bogoliubov (HFB) formalism can be applied to
the cranking Hamiltonian to give quasiparticle excitations in the rotating frame [26].

Presented in Fig. 2.6 are the results of cranking calculations for °Er. The

Routhians plotted are for quasineutron levels. The AB crossing has been marked
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FIGURE 2.6: Quasineutron Routhians for "SEr, the result of cranking calculations using
a MHO potential [27, 28]. Deformation parameters o = 0.175, 84 = —0.13 [29] have been
used. The AB neutron crossing at hwap ~ 0.3 MeV is shown.

on the plot. The frequency wap indicates the critical frequency at which the Coriolis
force, acting in the opposite direction on a pair of neutrons in time-reversed orbits,

causes the pair to break and align along the rotation axis [27, 28]. Consequently, a

single particle contribution is added to the total angular momentum of the nucleus.

2.2.6 Potential energy surfaces and the Strutinsky method

Fig. 2.7 represents a plane in deformation space, using the Lund convention of
Fig. 2.1. It is possible to calculate the potential energy of a nucleus, at a given

spin, for a ‘mesh’ of points on the (e3,7) plane and plot the result as a potential
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ezcos(y+30°)'

FIGURE 2.7: A-H represent minima of potential energy surfaces for different nuclear
shapes. A is a spherical nucleus, B a normally deformed, prolate rotating nucleus, and
C' a non-collective oblate nucleus. D represents the potential energy minimum of a nu-
cleus with rigid triaxial deformation, and E a ~-soft nucleus described by a Wilets-Jean
type potential. F, G, and H are the minima for a superdeformed (SD) and two triaxial
superdeformed (TSD) shapes.

energy surface (PES). The minima on such a surface represent favoured shapes that
the nucleus is likely to adopt. Different minima and the shapes they represent are
shown in Fig. 2.7. While these are just examples, actual calculated PES plots for
156Er are presented in Chapter 4. Such PES calculations, described in Ref. [30] are
used in Cranked Nilsson Strutinsky (CNS) calculations. Configurations are specified
by the number of particles in different oscillator N-shells of signature o = 4+1/2 and
the minima that are found on the (e2,) mesh reveal favoured configurations, and
form the basis for further calculations [5]. Presented in Chapter 5 are the results

of Cranked Nilsson Strutinsky (CNS) calculations for terminating configurations in

155HO
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2.3 Collective rotation

A nucleus must be deformed to exhibit rotational behaviour since in spherical nuclei
rotational excitations are quantum mechanically forbidden. For this reason nuclei
tend to be rotational away from closed shells. For bands with intrinsic angular
momentum, K = 0, such as the ground-state band of even-even nuclei, the rotational

energy has the simple form [26]

2

B(I) = ;—jI([ +1), (2.21)

which is the expression obtained by quantizing the classical Hamiltonian for a sym-
metric rotating system. J is the effective moment of inertia. For good rotors,
deviations from (2.21) may be viewed as a dependence of the moment of inertia on
the rotational angular momentum. The ratios between the energies of excited states
that this relationship gives rise to can be good indicator of the rotational nature of

a nucleus.

= 3.33, = 7.00. (2.22)

2.3.1 Analysing rotational behaviour

Almost all the excited levels discussed in this thesis belong to rotational bands.
Indeed, it is often the deviations from the rotational behaviour characterized by
Eq. 2.21 which are instructive in deducing the underlying shell configuration of

band structures. Experimentally, for Al = 2 transitions, the rotational frequency is

(2.23)

dE(1 E
hw = ()’\*77,

dl, ~
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i.e. half the y-ray energy. Experimental alignments, I, can be used to investi-

gate the rotational properties of a nucleus. At a given spin I, the aligned spin is

I, = \/I(I +1) — K2 The additivity of the contributions of energy and aligned
spin contributions from individual orbitals is useful when analysing the data. At a
given frequency, the difference in alignment between rotational bands will be due to
the difference in the underlying particle configurations of the bands. To aid mea-
suring increases in alignment and the differences in alignment between bands, a
rotating reference based on Eq. 2.21 is subtracted from the aligned spin to give the

experimental alignment, i,:

iy(w) = L (w) — w(Jo + J1w?), (2.24)

where Jy and J; are Harris parameters that characterize the rotational reference,
and are chosen to give approximately zero experimental alignment for the ground-
state band at low rotational frequency [31].

When discussing the quasineutron Routhian calculations of Fig. 2.6 it was noted
that an AB neutron crossing should occur at a frequency of Aw ~ 0.3 MeV. Ex-
perimentally this is seen as an increase in aligned angular momentum, /., called a
backbend.

A similar technique to plotting aligned angular momentum as a function of fre-
quency is the use of rigid rotor plots. They can be useful to see which structures are
yrast at a given spin, and are particularly useful when investigating favoured oblate
band terminating states, which are discussed in more detail in Chapters 4 and 5.
Energy is plotted as a function of spin relative to a rigid-rotor, or rotating liquid
drop. Here, two different forms of the reference have been used. The first is given
by

Ef=C-1(1+1), (2.25)
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F1GURE 2.8: Low-lying levels of a spherical harmonic vibrator nucleus.

where the constant C scales with mass as A~%/® and is generally given the value
0.007 MeV for A = 158 [5, 32]. The second form is the rotating liquid drop reference
of Ref. [33] and is given by

R2I(I +1)

Er Zv 7-[7 % =L Z7 5y C1 a7 7\
ld( n é‘) ld( n,e ) + 2g7rig_(Z7n7€i)

(2.26)

where Fj4 is the static liquid drop energy, ¢; indicates the deformation parameters,
and Jg. is the rigid-body moment of inertia. This reference is preferable when
comparing high-spin states of different nucleus, since it takes into account the mass

excess of the nucleus and is not dependent on the shell energy of the ground state.

2.4 Vibrational modes of excitation

Another mode of collective excitation is vibration. A simple vibrational mode to
consider is quadrupole vibration of spherical even-even nuclei, due to harmonic oscil-
lations of the nuclear surface. The resulting low-lying energy levels, shown in Fig. 2.8
are evenly spaced, and characterised by phonon multiplets (07), (21), (0F,2%,4%),
(0F,2%,3%7,47,67) [22]. Each state is classified by quantum numbers ng, represent-
ing oscillations in [, and a phonon-like quantum number, A. The energies of the
states are determined by E(ng,A) = Ey + (2ng + A)hw, which results in the given

degeneracies [34].
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(a)

FIGURE 2.9: (a) 8 vibrations and (b) 7 vibrations of prolate deformed nuclei. The solid
lines depict the nuclear shape ‘at rest’ in directions perpendicular and parallel to the
symmetry axis. The dashed lines show the oscillations in shape due to the vibrational
modes. For (b) a y-vibration, axial symmetry is lost. Adapted from Ref. [26].

It has been noted that a prolate rotational nucleus will have a E(4])/E(2])

ratio of 3.33. Similarly, the equal spacing of the vibrational levels means that for

spherical vibrating nuclei the relation E(47)/E(2]) = 2 is expected.

2.4.1 [ and v vibrations

Two modes of vibrational excitations that are available to a nucleus with quadrupole
deformation, S-vibrations and ~v-vibrations, will now be considered. When dis-
cussing the concept of deformation, # and v were introduced as deformation param-
eters. Their definitions relate directly to the oscillations in nuclear shape that §- and
~v-vibrations represent. Vibrational excitations which preserve the axial symmetry
of the nucleus are known as [-vibrations, so called because they correspond to an
oscillation in the S-deformation of the nucleus. Similarly, a ~-vibration corresponds
to a change in y-deformation, causing a prolate nucleus to temporarily lose its axial
symmetry. The breaking of the axial symmetry of the nucleus is the reason why
~ vibrations are always associated with a projection of angular momentum along
the symmetry axis of K = 2. A comparison of # and ~ vibrational modes is shown

Fig. 2.9.
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2.4.2 Rotation Vibration Model

The Rotation Vibration Model (RVM) considers a well deformed, axially symmetric
even-even nucleus, allowing small dynamic fluctuations about the equilibrium shape.

The energies of the resulting levels are given as

E =eg[I(I+1)— K? +esng + eyn,, (2.27)

where e = h?/2J (see Eq. 2.21). The quantum numbers are constrained such that:

K =0,24..
[=0,2,4,.. for K=0

=K K+1,K+2, . for K#0 (2.28)
ng=0,1,2, ...

ny=K/2,K/24+2,K/2+4,...

The ground-state band is reproduced for K = ng = n, =0,

E=epl(I+1), (2.29)

with the familiar I = 0, 2,4, ... rotational levels. For ng = 1 and K = 0, a rotational

band built on a S-vibration is produced with energy levels

E= €3 + ERI(I + 1), (230)

again with I = 0,2,4, ... levels. Rotational bands built on the second 0" state are
often interpreted as 3 bands. A 7 vibration requires that K = 2 and n, = 1, which
forms the set of levels

E=e +epll(I+1)—4], (2.31)
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this time with even- and odd spin-members, I = 2, 3,4, ..., forming the v band.
The relative energies of the even- and odd-spin members of the ~-vibrational

band (signature splitting) give an insight into the nature of the triaxiality of the

nucleus. Two theoretical approaches are considered here, the y-rigid Asymmetric

Rotor Model [35], and the ~-soft, Wilets-Jean model [36].

2.4.3 Triaxiality and v bands

The Asymmetric Rotor Model (ARM) investigates rigid, or static triaxial nuclear
shapes (y # 0°) [35]. In this model, the relative level energies of the ground-state
and the ~-vibrational band are sensitive to the degree of triaxiality of the nucleus.
In particular, it makes predictions for the following relations between energy levels

in the ground-state band (E, ) and the v-vibrational band (E.):

Ey(37) = Eys.(27) + B (27)
(2.32)
B (5%) = 4, (27) + E,(27).

Whereas the predictions of the Asymmetric Rotor Model are for shapes with
definite, rigid triaxial deformation, another approach considers a y-soft shape [36].
The Wilets-Jean potential has a finite § deformation, but is completely flat with
respect to v and describes a dynamic triaxial deformation. Such a vy-soft nucleus
would oscillate uniformly between v = 0° (prolate) and v = 60° (oblate). The form
a rigid triaxial and 7-soft potential would take are illustrated in Fig. 2.7. Many of
the predictions of the two potentials yield similar results, provided their effective
average asymmetry is the same [22]. However, the relative energies of the even-
and odd-spin members of the v-vibrational band can provide a distinct signature
capable of distinguishing between v-soft and rigidly triaxial shapes. In the rigid

triaxial case, y-band levels appear in doublets as (27 —37), (4 —51), (67 —77).. .,
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FIGURE 2.10: Predicted y-band energy levels using (a) the v-rigid ARM model of Davy-
dov [35] and (b) a Wilets-Jean y-soft potential [36].

but the y-soft case results in a 2%, (37 —47F), (57 — 67)... pattern [37, 38]. The
predicted level structures are shown schematically [39] in Fig. 2.10 for the Davydov
and Wilets-Jean models. Since for the completely flat y-soft model the average ~y

deformation is 4 = 30°, a value of v = 30° has been used for the Davydov potential.

2.5 Selection Rules and Transition Strengths

The conservation of angular momentum imposes the following selection rule on the

multipolarities of v-ray transitions between two states, I; — I, such that,
LI <L<IL+I, (L#0) (2.33)

where L denotes the transition multipolarity. The electromagnetic interaction is

parity conserving, which imposes the additional selection rule,

Ty =T, (2.34)
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where 7; and 7 are the parities of the initial and final states. Whether a transition
is electric (F) or magnetic (M) in nature depends its multipolarity and the change

in parity it represents,
m(EL) = (-1,  w(ML)=(-1)&*+D, (2.35)

Considering only the lowest multipolarities, where the initial and final states have
the same parity, the transition will be M1 or E2 in nature, and where there is a
change in parity the transition will be an E'l or M2. Because transition probabilities
decrease rapidly with increasing multipolarity, and electric transitions are faster
than magnetic transitions of the same order, it is assumed that all the transitions
observed in this work are E'1, M1, or E2 in nature. When there are several allowed
multipolarities a transition can have ‘mixed’ nature, which means mixed M1/E2

transitions will also be considered.

2.5.1 Reduced Transition Probabilities

The reduced probability of a stretched E2 transition can be defined as [40],

B(E21 —1—2)— %é@@gimzouff(fw (eb?), (2.36)
T
where () is the quadrupole moment, which is related to the deformation. The term

in brackets is a Clebsch-Gordon coefficient. The reduced transition probability of a

stretched M1 transition is defined as [40],

3
BMLI—1-1)= E(QK — gr) K [(LEGIO0[T K ) (1), (2.37)

where g is the collective g-factor and g the single-particle g-factor, which depends

on the intrinsic shell configuration of the state. Again, the term in brackets is a
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Clebsch-Gordon coupling coefficient, and B(M1) values are given in units of the
nuclear magneton, py. The two equations, 2.36 and 2.37, form the basis for the

geometric model calculations of Dénau and Frauendorf [14], which are compared to

measured B(M1)/B(E2) ratios in Chapter 5.
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Methods

All of the data used in this work are detections of + rays emitted by excited nuclei
following heavy-ion fusion-evaporation reactions. Data from two experiments have
been analysed here, both performed at the ATLAS facility of Argonne National Lab-
oratory, using the Gammasphere v-ray spectrometer. Presented in Table 3.1 are
the details for both experiments. In this type of analysis the presence of excited
stated is inferred from the + rays emitted when the nucleus decays from one state
to another. This chapter outlines the techniques used to extract nuclear structure

information from the experimental data.

3.1 The reaction

Fusion evaporation reactions were used to populated states of high angular momen-
tum in the nuclides of interest. The time scale of compound-nucleus reactions (like
fusion-evaporation reactions) is around 10~'%s. This is shorter than the time scale
of y-ray transitions, which ranges from approximately 10~'5s to 10~%s [41]. For this

reason, y-ray spectroscopy is mostly concerned with the excited nuclei produced
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TABLE 3.1: Comparison of the two experiments.

1560, 155,
Experiment name GSFMA229 GSFMA269
Projectile nucleus BCa 3701
Beam energy 215 MeV 180 MeV
Target nucleus 14Cd 1248
Thickness 1.0 mg/cm? 1.1 mg/cm?

Target type Au backed, 13 mg/cm?  Self supporting

Reaction channel 6n 6n
Duration ~ 12 days ~ 6 days
Events collected ~ 4.8 x 1010 ~ 1.6 x 10*°
y-ray trigger 4 )

after the nuclear reaction processes induced by the strong interaction have taken
place.

In a fusion evaporation reaction, the projectile nucleus is accelerated to sufficient
energies to form a highly excited compound nucleus with the target. Because the
line of stability falls below the N — Z line, the composite nucleus formed during a
fusion evaporation reaction is normally located on the neutron-deficient side of the
N — Z plane. The compound nucleus subsequently loses excitation energy through
the evaporation of neutrons and, to a lesser extent, protons and « particles. The
particle evaporation tends to carry away much excitation energy but relatively little
angular momentum. In most cases the residual nucleus is left in an excited state,
which is below the threshold for further particle evaporation [42]. The residual
nucleus first de-excites by emitting statistical ~-rays until states near the yrast line
are reached. Decay to the ground state then occurs along, or near to, the yrast line

via generally spin-stretched transitions between discrete states. It is these transitions
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FIGURE 3.1: PACE cross-section calculations for the reaction used in the "»°Er experi-
ment, showing the results for the 4n—8n (1**Er—1%4Er) neutron-evaporation reaction chan-
nels.

which have been observed in this work and have been used to deduce the structure
of 1Er and '*Ho, and the changes in their behaviour with increasing spin and
excitation energy.

The yrast line, or competing yrast bands, in the low excitation region accumulate
most of the y-ray flow. This means that the branching ratio for the yrast transitions
at low spin approaches 100%, and they can be used to evaluate the total yield of
the residual nucleus.

The reaction channels are usually expressed in the form A(a,xn yp za...,7)B*,
where A is the target, a is the projectile and x, y and z are the number of evaporated
protons, neutrons and « particles evaporated to produce B*, the excited residual
nucleus. Both nuclides studied here were populated via the 6n evaporation channel.

In high-spin studies the aim is usually to produce residual nuclei of interest with
as much excitation energy and angular momentum as possible, that are sufficiently

populated to be within experimental observable limits. Statistical model calculations

of the fusion evaporation reactions [43] were performed before the experiments, and
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the results were used when deciding what the beam energies should be. Presented in
Fig. 3.1 are examples of cross-section calculations of this type, performed using the
program PACE, which is incorporated in the LISE package [44]. The calculations have
been performed for the "*Cd(*®Ca,xn)'%>~*Er reaction for a range of bombarding
energies.

A beam energy of 215 MeV was used in the "SEr experiment. To a varying
extent, the projectile nuclei are slowed slightly by the target, resulting in a 200-
215 MeV range of energies at impact with the target nuclei. At these energies
6Er (via the 6n evaporation channel) is predicted to be have the greatest cross
section. The primary aim of the experiment was to study ®"Er and '"®Er, and
a lower beam energy would have produced a greater yield of both. However, the
higher beam energy results in states of greater spin and excitation energy being
populated, including the superdeformed (SD), and triaxial superdeformed (TSD)
bands of interest. The result of this is that many states in the normally-deformed
level scheme of '*°Er nuclei were populated, and new structures have been observed.
Similarly, excited states in 1*>Ho were also produced via the 6n reaction channel and,
while they were not populated to as high spins as the 4n and 5n reaction channels
('®Ho and '*"Ho), enough data were collected for '»Ho that many new transitions

have been observed.

3.2 The Gammasphere

A large spherical array of up to 110 Compton suppressed high-purity germanium
(HPGe) detectors [45, 46], the Gammasphere detects the v rays emitted during the
decay process. The most important properties of the detectors are: high detection
efficiency, good (< 1 keV) energy resolution, high ratio of full-energy to partial-

energy events and high granularity. In the MeV range, the best combination of these
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FIGURE 3.2: Schematic of a HPGe detector in the Gammasphere array. The principle of
Compton suppression is also illustrated: The upper and lower gamma rays are scattered
out of the HPGe crystal, but are detected by the BGO suppression shields, meaning their
energies can be vetoed. Reprinted from Ref. [47].

properties is given by HPGe semiconductor detectors. The Compton suppression
shields are auxiliary detectors used to achieve a better peak-to-total ratio [2]. They
consist of Bismuth Germanate (BGO) crystals, chosen for their high efficiency, which
detect v rays scattered from the HPGe detectors. It is desirable to veto detections
corresponding to scattered = rays, since only a fraction of their total energy is
registered by the HPGe detector and will thus contribute to the background counts.
The HPGe detectors are categorised by their angle 6 with respect to the beam axis,

and in this way grouped into 17 ‘rings’, which are listed in Table 3.2. Before these

experiments, the detectors at 17.3° (ring 1) had been removed to allow access to the
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down-beam Fragment Mass Analyzer, which is often used in conjunction with the
Gammasphere in other experiments. In total, the 101 HPGe detectors used in these
experiments have a solid angle coverage of 42% of 4x [2]. Fig. 3.2 shows a cross

section through part of the Gammasphere array.

3.3 Coincidence data analysis

The short timescale of the de-excitation of the residual nuclei following a fusion
evaporation reaction means that as far as the detector system is concerned, the
decay to stable states is instantaneous. The chain of v rays emitted as part of a
decay will be seen, to adopt the usual nomenclature, in prompt time coincidence.
An obvious exception to this rule is when a state is particularly long lived. The time
window within which detected ~ rays are considered to be coincident and recorded
as belonging to the same event is ~70 ns. If an isomeric state has a lifetime much

longer than this, the y-rays below it will not be seen in coincidence with those above.

3.3.1 Matrices, cubes, and hypercubes

To facilitate analysis, coincidence data are sorted in formats that make it possible
to easily and quickly gate on a transition and see which other v rays are emitted at
the same time and, by implication, as part of the same decay chain. The simplest
example of this is a two dimensional histogram, or matrix. The full projection of
the matrix shows all the v rays detected as a function of energy, and setting a
gate (i.e. viewing a slice) of the matrix at a particular energy reveals the ~y-rays
that were detected in coincidence with that energy. For sets of many, high-fold
coincidence data, such as the two studied here, this practice is extended to three

and four dimensions to produce cubes and hypercubes, respectively. A hypercube
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was built for each data set making it possible to produce spectra of v rays seen in
simultaneous coincidence with three specified energies.

The favoured method of producing and analysing these multidimensional coinci-
dence matrices is to use the RADWARE graphical analysis package [48, 49]. Before fill-
ing the coincidence matrices or cubes, the raw Gammasphere data were ‘pre-sorted’
into Eurogam format [50], at which stage certain ~-ray detections are removed,
such as those outside of a given time window after the beam pulse. The RADWARE
programs used to produce gated spectra are ‘Levit8t” for cubes, and ‘4dg8r’ for
hypercubes. The programs also provide the tools to build the level scheme and,
for a given gating condition, produce a calculated spectrum based on the current
coincidence relations between transitions in the level scheme, and their relative in-
tensities. In this way, obvious discrepancies between the observed coincidences and
the proposed level scheme can be quickly recognized.

A calculated background spectrum is subtracted from every gated spectrum, us-
ing the methods of Ref. [51] and the resulting gated, background-subtracted spectra
are extremely clean. No techniques are used to isolate specific nuclei other than
~-ray coincidences so being able to set an extra 7-ray gate can often help distin-
guish between contaminant v rays and transitions that do belong to the nuclide of
interest.

Fig. 3.3 illustrates how the coincidence analysis can show where a transition
should be placed in a level scheme. Intensity arguments are also used to order ~ rays
in a level scheme, particularly in the case of bands of v rays with few links to other
structures. It is usually assumed that due to side feeding, the total intensity of the
transitions exiting a state is greater than the total intensity of the feeding transitions.
Examples of triple-gated quadruple-coincidence spectra used during the analysis of
155Ho are presented in Fig. 3.4. The spectra show the energies of transitions in

‘band 1’, a previously unobserved, weakly populated structure. The reduced level
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FiGUrE 3.3: Example level scheme. The transition marked with the asterisk should be
coincident with the thick-arrow transitions, and not the dashed-arrow transitions.

scheme of Fig. 3.4(e), which includes band 1 and some feeding transitions from other
bands, is included to illustrate how these gated spectra, and others like them, have

been used to build the level schemes for the nuclei of interest.

3.3.2 Multiple-fold sorting

An alternative method used to examine the data was to perform multiple-fold sorts
using the MTSort sorting language [52]. This has the benefit of producing spectra
quadruple-gated and above, while the hypercube is limited to triple-gated spectra.
The data to be sorted are essentially a list of events, with each event consisting of
a list of observed 7-ray energies that were detected within a 70 ns time window.
Each energy is also labelled by detector number. The sorting procedure takes as
its input a list of energy gates and if an event contains at least one energy that
lies inside a gate, then the sort program increments the energies of that event into
the single-gated (y!) spectrum. Likewise, if two energies pass the gating condition,
the energies in the event are added to the double-gated (7?) spectrum. The process
continues for higher numbers of coincidences [53]. With many high-fold data (which
is the case here) ~° spectra or higher can be produced for gatelists corresponding
to well populated structures. All detected energies are added to the 4%, non-gated

spectrum. Examples of the spectra produced by a multiple-fold sort are shown in
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FIGURE 3.4: Triple-gated quadruple-coincidence spectra for '°Ho band 1, and the re-
duced level scheme (e) for comparison.

Fig. 3.5. A gatelist containing all the "°Er yrast-band energies was used in the sort
and the resulting spectra proved useful in confirming previously observed transitions
at high spin [3]. These transitions, which are very weak, are marked on the y*-gated
spectrum. It will be shown that this way of sorting the data also proves useful when
performing angular-correlation analyses.

The spectra of Fig, 3.5 have not had a background subtracted from them. When
a background subtraction is required for a 4"-gated spectrum, the v*~! lower-fold
spectrum is often used, having been multiplied by a normalisation factor. The value
of the normalisation factor is chosen in order to achieve, on average, zero counts
between peaks in the background-subtracted spectrum. This method of background
subtraction is usually effective because the y"-gated spectrum has a similar shape to

the " 1-gated spectrum. The peaks that are stronger in the the y"-gated spectrum
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FIGURE 3.5: Multiple-fold gated spectra for the ground-state band of SEr. The black
dots above the 7* spectrum denote the five high-energy transitions that feed the 42+
terminating state; 1057 keV, 1342 keV, 1392 keV, 1621 keV and 2161 keV, reported in
Ref. [3] and confirmed here.

correspond to energies that are truly coincident with the gatelist energies, and are

accentuated following the subtraction.

3.3.3 Detector efficiency

When calculating the relative intensities of observed ~ rays, it is necessary to take
into account how the efficiency of the array varies with y-ray energy. For each
experiment, an efficiency calibration of the array was performed using well known
~v-ray decays of radioactive sources. In order to measure the efficiency over over a
broad range of energies, the sources *®Co, ¥2Ta, 23Am and *?Eu were used. Fig. 3.6

shows a fitted efficiency curve, e(E, ), for the »Ho experiment, using the empirical
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FIGURE 3.6: Fitted efficiency curve for the »Ho experiment. The lower graph shows the
efficiency measurements plotted relative to the fitted curve, i.e. the difference between the
two, with errors.

relationship
e(E,) = exp { [(A+ Bz + Cz*)™% 4+ (D + Ey + Fy2)’G} _I/G} , (3.1)

where = In(£,/100) and y = In(£,/1000) with E, in keV and the parameters

A-G are fitted to the source data [54].

3.4 Targets and Doppler correction

The targets used in the two experiments were not of the same type. In the *°Er ex-
periment a 1.0 mg/cm? cadmium foil was backed with a thick (13 mg/cm?) gold
foil. The primary aim of the experiment was to measure quadrupole moments
of strongly deformed bands in "1%8Er [55], using the Doppler shift attenuation

method [56]. This requires the highly excited residual nuclei to be slowed down
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by the target during the short decay times of the highly collective superdeformed
states (~ 107!s) [57]. This means that nuclei are stopped completely by the time
~ rays from the decay of the normally deformed level scheme are emitted. These
data therefore have the benefit of improved energy resolution resulting from the
elimination of the Doppler-broadening component of the photopeak width.

The °"Ho experiment, by contrast, was performed using only self supporting tin
foils, of total thickness 1.1 mg/cm?. The nuclei were not stopped by the target and,
during 7-ray emission, were travelling at an appreciable fraction (~ 2%) of c¢. The
energies detected in the forward direction were therefore Doppler shifted higher in
energy and those at the backward direction Doppler shifted to lower energies. The
Doppler shifted energy is given by

E, = E,(1+4 fcosf). (3.2)

where [ is the velocity of the recoiling nuclei v/c, 6 the angle with respect to
the beam direction, and E, the energy of the non-shifted ~-ray. It was therefore
required that the detected energies be corrected. Energy spectra were sorted for
the individual rings of the Gammasphere array, given in Table 3.2, and from the
observed shifts in energy at known angles 6, the speed ( of the recoiling nuclei was
determined, and using this value a correction applied to the detected y-ray energies.

The average speed of the recoiling nuclei in the '»Ho experiment was measured to

be 8 = 0.0206.

3.5 Angular-correlation analysis

In order to meaningfully interpret the deduced states of the extended level schemes in
terms of collective excitations and specific shell model configurations, it is imperative

that their spins and parities are known.
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TABLE 3.2: Detector angle 6 for the rings of the Gammasphere, 1-17, used in Doppler
corrections, and feg for the summed rings, 1-9, used in the angular-correlation analysis.

The percentage of the total efficiency each summed ring accounts for is also shown.

Ring number 0 () Ring number Oust (°) % of total
(original) (summed) eff detected ~y rays
1 17.3 1 17.3 0.0
2 31.7
3 374 2 34.5 8.0
4 50.1
5 £8.3 3 54.2 14.8
6 69.8 4 69.8 9.4
7 79.2
8 80.7
9 90.0 5 90 25.1
10 99.3
11 100.8
12 110.2 6 110.2 9.2
13 121.7
14 129.9 7 125.8 15.9
15 142.6
16 148 3 8 145.5 11.6
17 162.7 9 162.7 5.9
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The way this is achieved in this work is through an angular-correlation analysis.
Following the fusion-evaporation reaction, the residual nuclei that are produced are
highly excited and rapidly rotating. Furthermore, the angular momentum of the
nuclei is aligned perpendicular to the beam, which means that any preference in
direction of emission exhibited by a = ray can be readily identified. Usefully, this
preference is sensitive to the I™ values of the initial and final states of the transition.
The angular dependence of the intensity of a y-ray transition can be expressed in

terms of the angular distribution function,

W () =14 AyPs(cos ) + AyPy(cos ) (3.3)

where Pg(cosf) are Legendre polynomials, and 6 is the angle with respect to the
beam axis. The angular distribution coefficients, A%**, can be calculated from
theory, as described in Ref. [58]. A" corresponds to the A for a nucleus that
is maximally aligned perpendicular to the beam. In reality though, alignment is
incomplete and states are assumed to form a Gaussian distribution about the per-
fectly aligned state. The attenuation parameter, o, is introduced to take this into
account so that

AK = OJKA%MU, Qg 08, Qg ~ 0.5. (34)

The ai parameters may be determined experimentally, estimated empirically, or
evaluated on the basis of a specific model [58].

For a transition between states I; and I with competing multipolarities A and X’
of multipole mixing ratio d, the coefficient is given in terms of By and F functions,
values of which are tabulated in the literature [58, 59]. The relation can be expressed

in full as

Bk (I;)

Amaz —
K 1+ 62

[Fic(LANL) + 26 Fi (LAN'L) + 6° Fe (LNN'L)] (3.5)
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F1GURE 3.7: Angular distributions of typical dipole and quadrupole transitions. From
Ref. [58], angular-distribution coefficients of A7'** = —0.286 and AJ"** = 0 have been
used for the stretched F1 11~ — 10T transition, and for the stretched E2 127 — 10T
transition A5'** = 0.404 and A}'** = —0.161 have been used. The attenuation coefficients
are ao = 0.8 and ay = 0.5.

For a mixed M1/E2 transition, A = 1 and \' = 2. For pure F1 and E2 transitions,

A = )\, and the multipole mixing ratio ¢ vanishes. The expression for the angular

distribution coefficients can then be simplified to

AT — By (1) Fic (LA). (3.6)

Examples of the predicted angular distributions for two pure stretched transi-
tions, a dipole and a quadrupole, are shown in Fig. 3.7. They show that the angular
distribution of a ~-ray transition can provide a clear experimental signature of its
multipolarity. Stretched quadrupoles are most intense along the beam axis, and
stretched dipoles at 90° to the the beam axis.

The angular distribution coefficients, A, can be extracted from the experimental
data by fitting Eq. 3.3 to the intensity seen at different angles, §. Using the multiple-
fold sorting technique already described, gated spectra have been unfolded from the

data that correspond to specific rings of detectors in the Gammasphere at a fixed
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Ficure 3.8: Examples of angular distributions for transitions in and above band 6 of
155Ho. The curves are fits of the angular-distribution function W (#) to the experimental
data. As well as the As coefficient corresponding to the fit, the measured angular-intensity
ratio, R, is also given for comparison. The plots on the left are for stretched dipole,
I — I — 1, transitions, and those on the right are for stretched E2, I — I — 2 transitions.
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FiGURE 3.9: Comparison of spectra seen at forward and backward rings and at 90°.

angle 6 to the beam direction. The rings used are the nine ‘summed’ rings of
Table 3.2. Peak areas for the  ray of interest are measured for each ring, then
normalised to produce experimental W (f) values for each ring. To normalise the
peak-area measurements, the percentage of the total counts, over all energies, seen at
each ring is used. It has been verified that these percentages, shown in Table 3.2, are
a good approximation of the relative efficiency of each ring, and that the efficiency
of the rings have near identical energy dependence. Examples of measured W (0)
distributions, and the extracted A, values, are shown in Fig. 3.8. For the transitions
shown, the A, values were set to zero during the fitting process. This is because
the experimental uncertainties on the W () values are too large to reliably fit both
parameters, resulting in unphysically large A4 values regularly being shown to best
fit the data.

Rather than extracting the angular-distribution coefficient A5 in all cases, the
preferred method in this work has instead been to measure an angular-intensity
ratio, R, for all possible transitions. The spectra of the forward and backward rings
2, 8, and 9 are summed together, then for a particular energy peak the counts seen
in this spectrum are divided by the counts seen at ring 5, at § = 90°. It can be seen
from Table 3.2 that the efficiency of these two groups of detectors is approximately

equal, meaning no further normalization is required. The angular-intensity ratio is
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given by
Iv(rings 2, 8 and 9) I,Y[@ ~ 150°(30°)]

r= L, (ring 5) - L0 ~90°] (3.7)

Presented alongside the As coefficients in the angular distribution plots of Fig. 3.8
are the measured angular-intensity ratios, R, for each transition. It can be seen that
negative angular-distribution coefficients, As, generally correspond to ratios R less
than unity, and positive Ay values to R values greater than unity. Experimentally,
it is observed that the extracted angular-intensity ratios are typically ~0.7 for a
stretched dipole (A = 1) transition, and ~ 1.1 for a stretched quadrupole (Al = 2)
transition. angular-intensity ratio measurements are presented in Tables 4.1 and 5.1
in the following chapters.

The neat distinction between multipolarities implied by Fig. 3.7 is complicated
somewhat the by the presence of mixed transitions. The only mixed transitions of
concern in this work are M1/E2 transitions, which occur between two states of I and
I — 1 with the same parity. They typically have a mixing ratio ¢ approaching zero
and, in accordance with Eq. 3.5, have an angular distribution typical of a non-mixed
stretched dipole. In some circumstances though, the mixing ratio may be much
larger, resulting in a angular distribution more typical of a stretched quadrupole
transition. It is also possible to have a negative mixing ratio, which lowers the
negative value of the A, coefficient further and causes a more exaggerated preference
for ~-ray emission along the rotation axis, 90° to the beam. Non-stretched E1
transitions (I — I, with a change in parity), may also cause confusion, having a
distribution typical of a stretched quadrupole.

Presented in Fig. 3.9 are spectra for the groups of detectors at the forward and
backward positions (rings 2, 8 and 9) and at 90° (ring 5). The sort was performed
for transitions in a previously unreported structure in *°Er, band 9. The spectra

illustrate how the the angular distribution of transitions can be a good experimental
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signature for multipolarity. The 344, 452, 495 and 530 keV transitions all show near
equal intensity at the two positions, or a slightly lower intensity at 90°. This is typical
of quadrupole transitions with angular-intensity ratios of ~ 1.1. The 509 keV shows
a clear preference for emission 90° to the beam, typical of a stretched E1 transition,
(or mixed M 1/E2 transition with a small mixing ratio). The intensity of the 365 keV
is considerably more intense at 90° than along the beam axis, reflected in its angular-
intensity ratio of 0.27, which is much lower than expected for a pure dipole. It has

been interpreted as a mixed M1/FE2 transition with a large negative mixing ratio.
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156Er

Through the observation of y-ray transitions, many new levels in *°Er are reported
in this work, ranging in spin from the lowest to the highest seen in this nucleus.
Here, these new states will be interpreted in terms of specific excitations of the
156Er nucleus, in particular bands 2 and 8, which represent the ~-vibrational band
and shed light on the nature of the 7 deformation of this nucleus.

The nuclide *°Er, with only ten valence particles outside the 46Gd doubly magic
core, lies in a ‘transitional’ region where nuclear collectivity rapidly changes from
vibrational to rotational motion [60]. This is reflected in a sharp change in the
experimental F(47)/E(2") energy ratios between N = 86 and N = 96 nuclei for
isotopes with Z around 64, as shown in Fig. 4.1. E(4")/E(2") ratios of 2.00 and
3.33 are expected for pure vibrational and rotational behaviour, respectively. For
the erbium isotopes, *Er has an E(4%)/E(2") ratio that lies close to the vibra-
tional limit, while °Er, with only six more valence neutrons, already lies close to
the rotational limit. The intermediate "Er isotope has an E(47)/E(2") ratio ap-
proaching 2.50, the value expected for a ~-soft rotor [37], where vibrational modes

of excitation couple to rotation [61].
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FIGURE 4.1: E(4")/E(2%) energy-ratio systematics for even-even A ~ 160 nuclei as a
function of atomic number Z. The Er isotopes are denoted by open circles. The horizontal
dashed lines represent limits expected for pure vibrational (2.00), rotational (3.33), and
~v-soft (2.50) behaviour.

The primary aim of the present experiment was to measure quadrupole moments
of superdeformed bands at ultrahigh spin in *"'8Er [55], using the Doppler shift
attenuation method [56]. These measurements have been published by Wang et
al. [62], and have been used to investigate the triaxial nature of strongly deformed
bands [63]. Although '°Er nuclei were not excited to such ultrahigh spin states,
losing additional angular momentum through the evaporation of an extra neutron,
significant new information has also been found in °Er [4]. The use of a thick,
backed target has presented an opportunity to re-evaluate the low-lying *°Er level

scheme with the benefit of improved energy resolution resulting from the elimination

of the Doppler-broadening component of the photopeak width.
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The bulk of the new information has been at relatively low spins, revealing
weakly populated non-yrast structures. In particular, a band built on an excited 0
state has been established to (22h), while both even and odd signature components
of the ~-vibrational band have been identified to ~ 15h. The relative energies of
the even- and odd- spin states of the ~v-vibrational band determine the nature of
triaxiality in this nucleus [39], i.e., whether it is y-rigid or v-soft. An additional band
is discussed as being based on a vhg/,/ f7/2 rotational alignment, coexisting with the
systematically observed, more favourable vi;3/, alighment seen in this mass region.
These new low-spin, non-yrast structures are compared with those in neighbouring
isotones (N = 88) and isotopes (Z = 68). They complement a recent, comprehensive
high-spin study of '*°Er [3], the outcome of a previous, thin target experiment, also
performed using the Gammasphere spectrometer.

Also presented here are new transitions found in ?%Er at its highest reported
angular momentum, above the valence-space terminating state, I™ = 427. These
establish the presence of a new high-spin (46™) state, which is interpreted in terms

of particle-hole excitations involving the *6Gd core.
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FIGURE 4.2: All levels observed for '%6Er from the present work. Energies are labelled in
keV and the widths of the arrows are proportional to the transition intensities. The band
numbering convention is adopted from Ref. [3].
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4.1 Experimental Details and Results

The nucleus "SEr was studied at Argonne National Laboratory, using the Gamma-
sphere spectrometer equipped with 101 HPGe detectors. A “*®Ca beam of energy
215 MeV was delivered by the ATLAS facility and used to bombard a 1 mg/cm?
14Cd target, backed by a 13 mg/cm? layer of TAu, to produce "SEr via the 6n
evaporation channel. An additional 0.07 mg/cm? layer of 2" Al between the Cd and
Au was used to prevent the migration of the target material into the backing. The
use of the backed target maintained full v-ray energy resolution, particularly at low
spin, since the vast majority of transitions were emitted after the recoiling nuclei
had already stopped and hence were not susceptible to Doppler broadening of the
line shapes.

A total of approximately 10'° events was accumulated over 12 days of beam
time when at least four Compton-suppressed HPGe detectors fired in prompt time
coincidence. In the off-line analysis, ~ 10! quadruple-coincident events (y*) were
unfolded from the raw data and replayed into a RADWARE-format four-dimensional
hypercube [48, 49], for subsequent analysis. Transitions corresponding to the three
most strongly populated nuclei, *Er (6n), *"Er (5n), and ®Er (4n) were observed

in the hypercube at an approximate ratio of 0.5:1.0:1.0.

4.1.1 New non-yrast levels in "°Er at low to medium spins

The low-lying levels in '»Er are shown in the reduced level scheme, Fig. 4.3. The
band numbering convention is adopted from Ref. [3]. Four band structures, labelled
2,7, 8, and 9 have been established in *Er with maximum intensities around 0.5%
of the 344 keV 2T — 07 transition. Previously states up to 4 were seen in bands 2
and 7 from studies of the radioactive decay of *Tm; in addition, the 3% level of

band 8 was identified [64, 65], although subsequent work reassigned this level to 4
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FIGURE 4.3: Partial low-spin level scheme deduced for 1*6Er from the present work show-
ing new bands 2, 7, 8, and 9 in relation to known bands 1, 2a, and 4a [3]. Energies are
labelled in keV and the widths of the arrows are proportional to the transition intensities.
[66]. Band 2 has been extended to I™ = 141 and band 7 to I™ = (22%1). Both decay
into band 1, the ground-state band, via a series of Al = 2 and Al = 0 transitions.
The levels of band 9 are newly identified in the present study. The coincident v-ray
spectra of Fig. 4.4 show the new transitions in bands 8 and 9, respectively.

To assist in assigning spins and parities in the level scheme, y-ray multipolarities
were extracted from the data by conducting an angular-correlation analysis using
the methods described in Chapter 3. An angular-intensity ratio,

1,0 ~ 150°(30°)]

R pu—
L[6~90]

(4.1)
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FIGURE 4.4: Triple-gated spectra of quadruple v-ray events showing transitions in bands
8 and 9.

was evaluated for many of the new ~v-ray transitions. Typical angular-intensity
ratios extracted from this analysis were ~0.7 for a pure stretched dipole (Al = 1)
transition, and ~1.1 for a stretched quadrupole (Al = 2) transition. Results for the
transitions assigned to ®°Er reported in this work are listed in Table 4.1.

It has been possible to measure the angular-intensity ratio of most of the band 9
transitions and the 1038 keV transition linking band 8 with the ground-state band,
and these are presented in Table 4.1. Angular-intensity ratios of established transi-
tions have been included for reference and comparison. The 0.55 angular-intensity
ratio of the 1038 keV transitions strengthens the I = 5 assignment of the level at
1834 keV and, by extension, the odd o = 1 signature of band 8. The original 37
assignment to the level at 1350 keV [64] is therefore confirmed rather than the sub-
sequent 4% assignment [66]. This level decays to the 2% level of band 2 through
a 1006 keV transition, and possibly to the 4% level of band 1 through a tentative

553 keV transition.
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TABLE 4.1: Intensities, angular-intensity ratios, and spin and parity assignments for
transitions in bands 2, 2a, 7, 8 and 9. Results are also included for some known strong E2

and E1 transitions in °Er.

E, (keV) L, R Assignment
Known E2 transitions
344.2 =100 1.11(5) 27— 0
452.4 61 1.30(6) 4t — 2T
543.1 57 1.16(6) 67 — 47
617.9 54 1.17(9) 8t — 67
674.1 47 0.98(19) 100 — 8F
Known E'1 transitions
530.4 17 0.73(6) 9~ — 8
688.6 8.3 0.64(19) 7T — 67
Band 2 transitions
475.0 0.1 47— 2T
479.7 0.4 67 — 47
490.6 0.5 8t — 67
501.6 187 — 167
544.7 0.1 67 — 67
557.3 0.1 147 — 127
565.8 0.4 100 — 8T
585.5 0.1 2t — 2f
596.7 0.1 167 — 147
608.1 0.3 4* = 47T
645.2 0.1 127 — 107
684.3 0.1 127 — 107
692.1 0.1 14T — 127
870.4 14 — 127
930.4 27— 0f
1036.3 0.3 8T — 67
1060.0 0.1 47— 2T
1088.4 0.1 67 — 47
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TABLE 4.1 CONTINUED.

E, (keV) L, R Assignment
Band 7 transitions
289.5 2 —  0F
325.5 4 - 2T
422.9 0.6 1.18(12) 4+ — 2t
510.9 0.8 8t — 6T
521.8 0.1 8t — 8"
557.7 1.10(13) 187 — 16T
561.7 0.7 1.04(9) 100 — 8F
565.4 0.1 1.09(6) 167  — 14*
596.2 0.2 1.14(11) 147  — 12F
608.9 0.3 127 — 10"
628.6 0.3 0.79(20) 6t — 6T
686.5 1.29(24) 200 — 18"
748.7 0.2 0.65(23) 47— 47F
766.0 (22)" — 20"
875.4 2t —  2F
1139.7 0.2 8  — 6T
1172.1 1.1 1.08(43) 6t  — 4T
1201.2 1.0 0.94(26) 4+ - 2T
1219.4 2t —  0F
Band 8 transitions
420.6 0.2 3 —  2F
483.7 0.6 5V — 3F
533.5 0.6 (7t) — 57F
(553.4) 0.1 3t = 47F
592.7 0.5 9t — 7
638.0 0.3 (11t — 9
670.5 0.2 (13t — 117
697.6 0.1 (157 — 13%)
1006.0 0.4 3 — 2T
1027.8 (7*) — 5*
1038.0 1.4 0.55(9) 57— 4%
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TABLE 4.1 CONTINUED.

E, (keV)? LP Re Assignment
Band 9 transitions
237.2 0.1 1.31(24) 10t — 8"
364.6 0.6 0.27(3) 10" —  10*
302.4 0.3 R
495.6 0.3 1.12(14) 12t — 10
508.6 0.3 0.76(5) 100 — 97
593.9 0.3 1.28(12) 14+ - 12t
676.4 0.2 0.97(20) 16+ — 14*
731.4 0.8 1.01(14) 8 o T
758.3 (20%) — 18*
773.1 0.1 1.05(18) 18— 16*
873.8 (20%) — 18*

& The v-ray energies are estimated to be accurate to £0.3keV.

b Intensities quoted as a percentage of the 344 keV (2+ — 07)
~ ray. Errors are estimated to be less than 20% of the quoted
values.

¢ Angular intensity ratios, R. Pure stretched dipoles typically have
R = 0.7, while quadrupoles have R = 1.1.

The band 9 transitions of energies 496, 594, 676, and 773 keV all have angular-
intensity ratios of around 1.2, which suggests they are stretched quadrupole tran-
sitions. The same is true for the 237 keV transition with a ratio of 1.3 although a
non-stretched dipole cannot be ruled out. This implies the levels at energies of 2761
and 2998 keV are separated in spin by 0 or 2. The 365 keV transition, connecting
the 2998 keV level of band 9 to the yrast 10" state of band 1, has a particularly low
ratio of 0.27. This value is too low for a pure dipole (E1, AI = 0, 1) transition, so
the transition probably corresponds to an M1/E2 transition with a large negative
mixing ratio, using the sign convention of Ref. [58]. The state at 2998 keV in band 9
could then be assigned 97 or 10" or 117. The 117 assignment can be rejected since
band 9 would be too yrast and would have to decay to negative-parity band 4a
through hindered stretched M2 transitions. The 509 keV transition, feeding the

9~ level of band 4a, has an angular-intensity ratio consistent with a pure stretched
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FIGURE 4.5: (a) High-spin level scheme deduced for 1*Er from the present work, and (b)
previously known level scheme [3]. Energies are labelled in keV, and the level energies are
given relative to the 427 terminating state. The widths of the arrows are proportional to
the transition intensities.

(Al = 1) dipole and is hence assigned to have F1 character. This then fixes the
2998 keV state to have 10" and consequently the band-head of band 8 to have spin
and parity 8. The 731 keV transition which decays from the 8" band-head to the
7~ state of band 4a has a high angular-intensity ratio (1.01) but the large error bar

means that it is not inconsistent with a stretched E'1 assignment.

4.1.2 New high-spin information in ""Er

Four previously unreported transitions at high spin have been observed in SEr as
part of this work, of energy 331, 425, 757, and 1035 keV. A reduced level scheme
showing the high spin levels in Er observed in this work, including the 427% ter-
minating state at the top of band 3 and the excitations above it, is shown in
Fig. 4.5(a). For comparison, the previously known level scheme from Ref. [3] is
shown in Fig. 4.5(b). The newly observed 331 keV transition supports the previous
observation of a (45%) state 1951 keV above the 42% terminating state. Seen in
coincidence with the 331, 610, 1341, and 1620 keV transitions, there is a v ray of

energy 425 keV, indicating that there exists a further level at 2377 keV above the

59



CHAPTER 4

TABLE 4.2: Transitions near valence space band termination in '»®Er. Intensities are
normalized to the 554 keV (427 — 407) transition of band 3, which carries 2% of the
344 keV (27 — 07) transition.

E. (keV) IF— IF Relative Intensity (%)
Known transitions
507 (44) — 43 3.6(3)
554 42T — 407" =100
610 (45T) —  44* <1
1057 43 —  42* 7.2(5)
1341 44T = 42T 1.38(12)
1620 44— 42F 2.45(22)
2161 44— 427F <1
New transitions
331 (45T) —  44* 1.70(13)
425 (467) — (457) <1
756 (467) — 447 <1
1035 (467) —  44* <1

427 state, labelled (467). Spectra illustrating these coincidence relations are shown
in Fig. 4.6. The presence of the (46™) level is confirmed through the observation of
two v rays of energy 1035 keV and 757 keV, which are seen in coincidence with the
1321 keV and 1620 keV transition, respectively

These newly observed transitions are very weakly populated, with maximum in-
tensities ~ 1% of the 554 keV 4217 — 407 transition at the top of band 3, which
itself only carries around 2% of the intensity of the 344 keV 2T — 0T transition.
Although these transitions were too weak to perform an angular-correlation anal-
ysis, the decay of the new state into two 441 states — directly and via the (45T)
state — is consistent with a spin-parity assignment of I™ = (467). The proposed
(46™) assignment is partly based on an assumption that each v ray represents a
decay from a level of higher spin. However, it is possible that the new state is not
yrast and the reported transitions are non-stretched, representing decays from less
favoured structures of lower angular momentum. The previously observed high-spin

transitions were all confirmed here. The hypercube did not extend high enough in
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FIGURE 4.6: Triple-gated quadruple-coincidence spectra for '%°Er. In all three cases, a
list of transitions in bands 1 and 3 has been used as the gating condition on two axes
of the hypercube. On the third axis, a gate has been set at (a) 331 keV, (b) 610 keV,
and (c) 425 keV. The 331 keV + ray is coincident with 1620 keV, the 610 keV ~ ray with
1341 keV, and 425 keV is seen in coincidence with both. In each spectrum, the transitions
are labelled by their energies in keV.
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FIGURE 4.7: Triple-gated quadruple-coincidence spectra for SEr. In both cases, a list
of transitions in bands 1 and 3 has been used as the gating condition on two axes of the
hypercube. On the third axis, a gate has been set at (a) 1620 keV and (b) 1341 keV. The
transitions at the top of the the SSEr level scheme (see Fig. 4.5) can be seen. In each
spectrum, the transitions are labelled by their energies in keV.

energy for the 2161 keV transition to be observed, but it was seen in multiple-fold
sorted spectra, and is shown in the example presented in Chapter 3, Fig. 3.5. The
1056 keV, 1341 keV, 1392 keV, and 1620 keV transitions can also be seen in these

spectra.
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4.2 Discussion

The rotational model [26] that couples together both collective rotations and vibra-
tions [61] is appropriate for the description of Er. In addition, this nucleus has
been discussed [67] in the context of the interacting boson model (IBM) [68].

The E(4%)/E(27) ratio of 2.32 for '*Er (see Fig. 4.1) lies above the U(5) vibra-
tional limit of this model (2.00), but below the SU(3) rotational limit (3.33); the
ratio is in fact nearer to the O(6) limit for a y-soft rotor (2.50). The second 0" and
2" states are degenerate, at an excitation energy of 930 keV [65]. Moreover, they
lie close to the yrast 41 energy, as expected for a U(5) vibrator.

Recent theoretical work using the triaxial projected shell model [69] has also
focused on the theoretical description of vy-vibrational bands in the light erbium

isotopes, where they are predicted to become close to yrast at high spin.

4.2.1 Systematics of second 0' states

The lowest levels of band 7 were originally associated with a K™ = 0% S-vibrational
band [64]. However, due to the low excitation energy of the 0% band-head (930 keV),
such an interpretation has subsequently been questioned [70]. Other interpretations
have also been proposed for low-lying 07 levels, including pairing isomers [71] and a
second vacuum formed by particle-hole excitations [72, 73, 74]. Energy systematics
of the first excited 0 states in N = 88 isotones and Z = 68 isotopes [75] are shown
in Fig. 4.8, where F(05)/F(2]) ratios are plotted. The lowest-lying second 0T state
in these particular nuclei occurs in ?Gd, an isotope with a semi-magic Z = 64

protons. The largest ratio occurs in °Er with 98 neutrons.
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FIGURE 4.8: Energy ratios £(03)/F(2]) for (a) N = 88 isotones and (b) Z = 68 isotopes.

4.2.2 Systematics of v-vibrational states

In this work, bands 2 and 8 are interpreted as the two signature components of the
K™ = 2% ~-vibrational band in '*°Er. The low-lying ~-vibrational band energies are
plotted in Fig. 4.9 for N = 88 isotones and the erbium isotopes (Z = 68)[75, 77, 78],
together with the energies of the first 27, 47 and 6+ levels of the ground-state
band and the second 0 state. For the N = 88 isotones, Fig. 4.9(a), the second
0F state lies well below the 27 band-head, except for "°Er (Z = 68), where the
two become degenerate. Moreover, the second 07 state also falls below the 47 state
for Z = 62-66 (**°Sm, 52Gd and '**Dy). For the erbium isotopes, Fig. 4.9(b), the
second 07 state and the 27 levels remain close together for Z = 88-92 (156,158,160 )

before the second 0" state rapidly rises in energy. The second 0" energy peaks for

N=98 (166Er), which also has the lowest ~y-vibrational energies, before dropping
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FIGURE 4.9: Systematic energies of the lowest y-vibrational levels and 0] states in (a)
N = 88 isotones and (b) Z = 68 isotopes, relative to the nuclear ground state. The 27,
41“ and 6f levels of the ground-state band are also included. Note that the O;r and 2#
levels are degenerate in 1*SEr (Z = 68, N = 88), and also lie close to the 4] state.

for the heavier isotopes. This could indicate a change of intrinsic structure for the
second 0T state in these heavier isotopes, e.g., an intruder configuration [79]. The
second 0" state even falls below the 27 level for N = 102 (*"Er), but has not
been experimentally identified for N = 104 (!"Er). In '°Er, the degenerate 0"
state and 2j states also lie close to the yrast 4T state, as expected for a vibrational

nucleus [22].

4.2.3 Nature of the triaxiality

The energy staggering between the even- and odd-spin energies of levels in the
~-band can provide an insight into the nature of the nuclear triaxiality [39]. In par-
ticular, the energy staggering can distinguish between rigid and 7-soft and triaxial

shapes. Rigid triaxial nuclear shapes are described by the asymmetric-rotor model
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FIGURE 4.10: Comparison of the energy of the ground-state band (g.s.b.) and energy
staggering of (a) the experimental y-band proposed in this work, with schematic staggering
[39] predicted by (b) the y-rigid asymmetric-rotor model and (c) the y-soft rotor model.
(ARM) of Davydov and Filippov [35], in which the potential has a well-defined
minimum at a particular value of ~.

The other possibility, that there is not static triaxial deformation, but instead
dynamic oscillations in v, is described in its most extreme case by the Wilets-Jean
model [36]. As discussed in Chapter 2, this model considers complete 7-instability,
described by a nuclear potential that has a finite favoured ( value, but is completely
flat with respect to v; the nucleus in effect oscillates uniformly between v = 0°
(prolate) and v = 60° (oblate).

In the rigid triaxial case, y-band levels appear in doublets as (27 —37), (47 —57),
(65 —7F)..., but the y-soft case results in a 27, (37 —4F), (57 — 67)... pattern
[37, 80]. The predicted level structures are shown schematically in Fig. 4.10 for
the Davydov model at v = 30° and for the Wilets-Jean model with 4 = 30°. The

reduced experimental level scheme, Fig. 4.10(a), clearly has the energy staggering

predicted by the -soft model. A more quantitative approach involves measuring
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FIGURE 4.11: (a) Level energies of the ground-state band and ~-vibrational band in
156Er, plotted as a function of spin. (b) S(I) values of the v-vibrational band plotted as
a function of spin.

the staggering parameter [22] of the band, defined for spin I as

s(p) - B = BU =D [BU 1) BU =) o)

The ground-state band and v-vibrational band energies, together with the energy
staggering parameter S(I), are shown in Fig. 4.11. It can be seen that the energy
staggering persists up to the highest spins.

Systematics of the S(4) values are shown in Fig. 4.12. Rotation of a y-rigid

triaxial shape with v = 0°, i.e., an axially symmetric prolate nucleus, yields a value
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FIGURE 4.12: Measured S(4) values for (a) N = 88 isotones and (b) Z = 68 isotopes.

of S(4) = 0.33. However, a y-rigid rotor with -rigid rotor with v = 30° is predicted
to have an S(4) value of +1.67 while a y-soft rotor with 4 = 30° has an S(4) value
~ —1.0 [39].

It can be seen in Fig. 4.12 that the S(4) value for %°Er is very close to —1.0,
and is the lowest amongst these particular erbium isotopes and N = 88 isotones.
Thus Er is an ideal candidate for the archetypal v-soft rotor. Furthermore, the
heavier Er isotopes quickly approach the limit of S(4) = 0.33, expected for rigid-
~ behaviour. Taken with the energy systematics of Fig. 4.1, this shows that the
Er isotopes above '°Er rapidly change from rotation-vibration (y-soft) behaviour
to deformed rotational (prolate) behaviour. This can be explained by the neutron
Fermi surface moving into the deformation-driving vi;3/, subshell. The S(4) value
increases above 0.33 for '™Er (N = 102), indicating a lowering of the odd-spin
~v-vibrational band members relative to the even-spin members. Such a situation

suggests the onset of (rigid) triaxiality — see Fig. 4.10(b). It can also be seen in
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FIGURE 4.13: Calculated potential energy surfaces of °Er with (7, a) = (+,0) for spin
values I = 6, 18, 30, and 42. The contour lines are separated by 0.5 MeV, with darker
shades (blue) lower in energy than lighter shades (green-yellow). Reprinted from Ref. [3],
calculations performed by I. Ragnarsson [76].
Fig. 4.9(b) that the second 0" state becomes near degenerate with the 27 band-
head for this isotope.

The calculated potential energy surfaces of Fig. 4.13 show a prolate deformed
minimum at low spin, with €5 &~ 0.2. However, the potential is markedly flat with
respect to v in the 0° < v < 60° regime, supporting the vy-soft interpretation of

156Er

4.2.4 Alignment properties of the bands

The energy levels of the new band structures in *°Er are plotted in Fig. 4.14 as

a function of spin, where they are compared with those of the ground-state band

69



CHAPTER 4

w
o

E —0.0715 I[I+1] (MeV)
= N
© ©

Q
o

Spin, | ()

FIGURE 4.14: Energies of the low-spin bands in '°°Er, plotted as a function of spin,
relative to a rotating liquid-drop reference.
(band 1). A rigid body reference of C.I(I + 1) has been subtracted from the total
energy, using C' = 0.00715, the default value of C'= 0.007 MeV for A = 158 scaled
according to the rigid body moment of inertia, i.e. as A=>/3 [5]. The changes in
slope represent rotational alignment of specific quasiparticle pairs.

In order to investigate the rotational properties of the new bands in %°Er, the

experimental alignments [27],

ix(w) = L(w) — Ik yet(w), (4.3)

are shown in Fig. 4.15, plotted as a function of rotational frequency, w = E. /AL, ~

E,/2h. At a given spin I, the aligned spin is I, = /I(I +1) — K2, while the
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FIGURE 4.15: Experimental alignments, 7., as a function of rotational frequency, w, for
positive-parity bands in *°Er.

rotational reference, Iy ,ef, is given by
Ix,ref(w> = w(jo + jlWQ) - i(]- (44)

Harris parameters [31] J, = 32.1 2*MeV~" and J; = 34.0 h*MeV~3, obtained from
15THo [81], have been used together with a positive offset i = 4.4h in order to
ensure that the ground-state band of SEr has approximately zero alignment at low
rotational frequency [3]. For the v-vibrational bands (bands 2 and 8), K = 2 was
used and elsewhere K = 0.

Band 1 gains 10-11% of alignment at a rotational frequency of approximately 0.3
MeV /h. In addition bands 2 and 7 show a similar alignment gain at this frequency.
This alignment gain is due to breaking a pair of 13/ quasineutrons, as typically seen

in this mass region. Hence in *°Er, a rotationally aligned (vi13/2)* two-quasineutron
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configuration is seen coupled to three different intrinsic states, namely the 0% ground
state, and also the 0+5, and Qf; states.

Newly identified band 9 carries less alignment (~ 7.5%) than band 1 above the
rotational alignment of 413/, neutrons (w > 0.3 MeV/h). This could be explained if
band 9 instead corresponds to a rotationally aligned (vhg)a, f7/2)? configuration (the
negative-parity hg/, and f7/, orbitals are strongly mixed). Indeed, such an aligned
configuration has been identified in the N = 88 192W isotone [82], while competition
between (vii3/2)? and (vhg)2, f7/2)? rotational alignments has recently been observed

in N =89 163W [83] and N = 88 161Ta [84].

4.2.5 High spin behaviour of "Er

The increase in alignment of bands 1 and 2 at w ~0.4 MeV /I represents the onset of
a shape change from prolate to oblate in %°Er, culminating in band termination at
I™ = 42*. Calculated potential energy surfaces are shown in Fig. 4.13 for (7, a) =
(+,0) states in °Er. The energy surfaces suggest that a transition to noncollective
oblate states (7 = 60°) is expected above spin ~ 30%.

Fig. 4.16 shows the energies of high-spin, positive-parity levels in '*°Er, including
the previously unreported (46") state. This state appears very favoured, and it is
proposed that it is the 46" state which is predicted to be energetically favoured
in cranked Nilsson Strutinsky calculations [3]. States that are circled in Fig. 4.16
correspond to predicted oblate terminating configurations.

The I™ = 427 state represents the maximum spin achievable involving the 6
valence neutrons and 4 valence protons outside the 4°Gd core, and its full configu-

ration, relative to the 1%6Gd core, can be written as

m{(h11y2)16 116+ @ v{(i132) 32 (fr/2)5 (hoy2)3 Yo6+ (4.5)
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FIGURE 4.16: Energies of the high-spin positive-parity levels in SEr, plotted as a function
of spin, relative to a rotating reference.

The predicted 46 configuration involves a proton being excited across the Z = 64
shell gap from the 7ds/2/g7/2 to the ds/, subshell. Its configuration, relative to the

16Gd core, can be written in full as

T{(ds/2/gr/2)55(M1/2)16(dsj2)3 2 20+ @ v{ (i3 /2) o fr/2)5 (hoy2) oot (4.6)

The tilted Fermi-surface diagrams [15] of Fig. 4.17 illustrate the specific orbitals
that are occupied to form the fully aligned 42% and 46™ states.

A negative-parity terminating I = 46~ state is also expected, corresponding to
a m(dsj2/g72 — hi1/2) excitation. It is predicted to be very close in energy to the
467 state because, at the appropriate oblate deformation, the two m; = 3/2 orbitals
belonging to the hyy/2 and d3/; subshells become near degenerate. The fifth valence
proton in the I™ = 20% proton configurations lie in either of these orbitals, so the
the two configurations are expected to have nearly identical energy. For this reason,

it was hoped that both positive- and negative- states of SEr could be observed up
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FIGURE 4.17: Tilted Fermi-surface diagrams for (a) protons and (b) neutrons at oblate
shape, showing the configurations of the predicted yrast I™ = 42% and I™ = 46 termi-
nating states in '°°Ho, built from 161 and 20* proton configurations coupled to a 26T
neutron configuration.

to I = 46, as it would be helpful in fixing the position of the proton subshells around
Z = 64 in more detail [3]. Other 467 states built on different configurations are also
predicted, but these involve two protons being excited across the Z = 64 shell gap

and lie ~ 1 MeV higher in energy. The behaviour of °Er at band termination is

discussed in the next chapter in the context of its isotones, **Dy and '**Ho.

4.3 Conclusions

A high-statistics experiment with the Gammasphere spectrometer has unearthed
new non-yrast structures in *’Er at low spin. A band built on a low-lying second
0" state has been established to I™ = 22%. This 0% state possibly represents a
[-vibrational state [64], although, due to its low excitation energy, other modes of
excitation have been considered, such as pairing isomers [71] or a second vacuum
formed by particle-hole excitations [72]. In addition, both odd- and even-spin com-
ponents of the y-vibrational band have been identified, and the energy staggering
between them resembles that expected for a y-soft rotor. A band attributed to an

aligned (vhgs, f7/2)* configuration has been followed to I™ = (207). With this in-
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terpretation, "OEr is the first even-even nucleus in which competing (vhgs, f7/2)?
and (i3 /2)2 have been established. Finally, a further state above valence-space
band termination has been established. It is proposed this state represents a pre-
dicted 46" terminating configuration, involving a 7(ds/2/g7/2 — ds/2) particle-hole

excitation across the Z = 64 shell gap.
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155H0

5.1 Experimental Details and Results

The experiment was performed at the ATLAS facility of the Argonne National Labo-
ratory, using the Gammasphere spectrometer described in Chapter 3. A 37Cl beam
at 180 MeV was used to bombard two stacked thin self-supporting foils of 124Sn, of
total thickness 1.1 mg/cm?, to produce »*Ho through the **Sn(3"Cl,6n) reaction.
Events were recorded when at least five Compton-suppressed HPGe detectors fired
in prompt time coincidence, and over the course of six days of beam time a total
of approximately 10'° events was recorded. In the off-line analysis, approximately
10" quadruple-coincident events (v*) were unfolded from the raw data and replayed
into a RADWARE-format four-dimensional hypercube [48, 49] for subsequent anal-
ysis. The three most strongly populated nuclei were »"Ho (6n), '**Ho (5n), and
5"Ho (4n). In the hypercube they were measured to be populated in a ratio of
approximately 0.6:1.0:0.3. Some representative coincidence spectra of transitions in
155Ho seen in this work are shown in Figures 5.1-5.3.

To assist in assigning spins and parities to states in the level scheme, ~-ray

multipolarities were extracted from the data by conducting an angular-correlation
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FiGure 5.1: Triple-gated quadruple-coincidence spectra for positive-parity bands in
1%5Ho, showing transitions in (a) band 1 and (b) bands 3 and 5. In each case, a sum
of ‘clean’ gates was set on each axis of the hypercube. In each spectrum, the transitions
are labelled by their energies in keV.

7



CHAPTER 5

3 I~
= 155
® © (@) " "Ho band 2
@ 0
® g ¥ g
cC 27 S
= " o @
@) 0 & ©
O N <
o Nl ™
© 14 %n% % R'g o~
S 1, | Belen | 2lall T8 B
< (‘v\'gmvﬁ(‘\l Ol o
)
<
O :u : L

3 (40}
o)) I 155
| 0O
o | %8 (b) " "Ho band 6
N ™~ 2
2] m | @ © o
T 217 25 5
> ® (38
@) 9 8
<rO N~ T g
= 17|8 -
8 |3
~ P
~ o™ fo') o~
MW | 5 9 g &
— — i
O-NJ J: IA_JL__

02 04 06 08 10 12 14 16 1.8 2.0

E, (MeV)

FIGURE 5.2: Triple-gated quadruple-coincidence spectra for bands in %" Ho, showing
transitions in (a) band 2 at high spin, and (b) bands 2 and 6. To produce spectrum (b), a
gate of 906 keV was set on the first axis of the hypercube, 835 keV on the second, and a
gate-list of band 2 transitions on the third. It shows the previously unreported 341, 811,
902, 1034, and 1102 keV transitions of band 2. To produce spectrum (a), a sum of ‘clean’
gates, consisting of band 2 and 6 transitions was set on each axis of the hypercube. In
each spectrum, the transitions are labelled by their energies in keV.
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FIGURE 5.3: Triple-gated quadruple-coincidence spectra for 1°*Ho. To produce spectrum
(a) a 1883 keV gate was set on the first axis of the hypercube, and a gate-list of band 6
transitions on the second and third. It shows the 433, 997, 1143, and 1332 keV decays
from the negative parity 85/2 and 87/2 levels. Spectrum (b) was generated by setting a
685 keV gate on the first axis of the hypercube, and a gate-list of band 6 transitions on the
second and third. It shows the 259, 444, 620, 780, 1063, and 1160 keV transitions, which

belong to 7a and 7b. In each spectrum, the transitions are labelled by their energies in
keV.
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analysis, using the methods described in Chapter 3. It was possible to extract the

angular-intensity ratio,

(5.1)

for over half of the reported y-ray transitions. Typically, the angular-intensity ratios
extracted from this analysis were ~0.7 for a stretched dipole (Al = 1) transition,
and ~1.1 for a stretched quadrupole (A = 2) transition.

Using the techniques detailed here and in Chapter 3, a level scheme for **Ho
has been deduced (see Fig. 5.4). The band structures have been labelled 1-7 to
aid discussion. At times it has not been possible to say conclusively whether or
not a transition exists due to insufficient counts in the spectra or the presence of
contaminants from other reaction products in the spectra. In these cases the arrow
indicating the 7 ray is dashed, and the energy given in parentheses. By extension,
this can mean the existence of particular levels is uncertain, in which case the state
is indicated by a dashed line. Insufficient counts, or insufficiently clean spectra,
mean angular-correlation analysis is not possible for some transitions. For some
levels, multiple possible assignments are consistent with the available data; these
assignments are given in parentheses. The theoretical calculations presented in the
following section have informed the assignments made for some states. This is
especially the case for the levels above the 79/2~ terminating state of band 6.

All the ~-ray transitions corresponding to '®>Ho that have been observed in
these data are listed in Table 5.1 with their intensities, which are given relative
to the 377 keV transition, the strongest in *Ho. Also presented in Table 5.1
are the measured angular-intensity ratios of the transitions, their corresponding
multipolarities, the spin-parity assignments for initial and final states, and the bands

to which the transitions belong.
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FIGURE 5.4: Level scheme deduced for *°°?Ho from the present work showing all observed
transitions. Energies are labelled in keV and the widths of the arrows are proportional to
the transition intensities. Parenthesis indicate tentative assignments.
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5.1.1 New states in ""Ho, bands 1-5

For the coupled rotational bands, 1, 2 and 3, values for the branching ratio, A =
I,(AI = 1)/1,(AlI = 2), have been measured for many of the levels. This was
achieved by applying double- or triple-gates above the level of interest, producing ~-
ray spectra showing the competing dipole and quadrupole transitions depopulating
the level. The branching ratios are presented in Table 5.2. B(M1)/B(E2) ratios
of reduced transition probabilities have been determined using the branching ratio
measurements, and will be examined in more detail in the discussion section of this

chapter.

Band 1

In the positive-parity band 1, which decays to the I™ = 5/2% ground state, both the
7/27 and 9/27 levels at 110 and 344 keV have been previously reported [85]. With
the exception of the placement of a 473 keV transition, their ordering is corroborated
by this work, and the band is now established up to spins of (33/2%), or 29/27
excluding tentative transitions. The 472.5 keV transition reported by Foin et al. [86]
was thought to feed the 7/2" state, suggesting the existence of a (11/2%) state at
503 keV, linked to the 9/27 level via a 238 keV transition. The energy is consistent
with that of an observed 472.8 keV transition in this work. However, no 238 keV
transition has been found associated with this structure, and coincidence relations
show that the 473 keV transition feeds the 9/2% state. Its angular-intensity ratio
is typical of a stretched E2. The other v rays observed in band 1 are previously
unreported; the angular-intensity ratios it has been practicable to measure and
the coincidence relations are consistent with the interlinking signature partners of a
rotational band which decays to the 5/2% ground state. The levels in band 1 are less
favoured in energy than those in band 2 of similar spin, and are weakly populated

by comparison.
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Previous decay studies of 1*Er have shown a 31.8 keV M2 transition in **Ho
linking the 11/2~ band-head of band 2 with the 7/2" state of band 1 [85]. While
it is not possible to see this transition in the current experiment, new transitions
linking band 1 with band 3, and by extension the rest of the level scheme, show
that the separation in energy between the 11/27 and 7/2% states is 31.9 keV. This
consistency is further evidence that the proposed extensions to band 1 and the
positions of the transitions linking band 1 to the previously known level scheme are
correct. Fig. 5.1(a) is a sum of carefully chosen, ‘clean’ triple-gated spectra, using

transitions in band 1 as gates.

Band 2

At low spin, band 2 is the most strongly populated of the structures evident in **Ho.
Because it is relatively easy to populate compared to other structures examined here,
the majority of the levels of band 2 are well documented. As such, much of what
is presented here on band 2 is a confirmation of previous work. The band has,
however, been extended to higher spins, and levels up to I™ = 71/27,73/2~ have
been observed.

Band 2 is a rotational band consisting of both & = —1/2 and o = +1/2 signa-
ture components, though below ~ 17k the & = —1/2 components lie significantly
lower in energy. Due to this large staggering between the signature components,
some of the interlinking M1/E2 transitions were too low in energy to observe. The
multipolarities of many of the transitions have been confirmed, along with the coin-
cidence relations and subsequent ordering of the transitions. Interlinking transitions
between the signature components mean the transitions up to the highest spins are
ordered with certitude. Decays are observed from bands 1, 3 and 4 to levels in
band 2 below spin 29/2, and band 6 decays, in a rather fragmented manner, to

a = +1/2 levels in band 2 between spins 53/2 and 61/2.
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Many of the band 2 transitions can be seen in the spectrum of Fig. 5.2(a), which
is triple-gated using a list of transitions in bands 2 and 6. Fig. 5.2(b) is also a
triple-gated spectrum, using transitions between the o = +1/2 levels of band 2 as
gates. The spectrum was produced by setting a 835 keV gate on the first axis of
the hypercube, a 906 keV gate on the second, and a gate-list consisting of band 2
energies on the third. This spectrum shows the previously unreported 1102, 902,
and 811 keV transitions between ov = 41/2 levels in band 2, as well as the 1034 keV

transition in the @ = —1/2 signature band.

Band 3

The structure labelled band 3 decays to band 1 via four v rays, three of which have
angular-intensity ratios typical of I — I — 1 dipole transitions. The absence of
any quadrupole linking transitions suggests that those observed are electric dipole
(E'1) in character, and that this structure has positive parity. That it decays to
the positive-parity band 1 via quadrupole transitions confirms its positive-parity
assignment. Band 3 is observed between 23/2% and 57/2" and is yrast between
31/2% and 39/2F. It is fed by decays from band 5 and to a lesser extent, at its
lowest levels, band 4. The present analysis has confirmed previous assignments in

band 3, and also extended it to higher spin.

Band 4

A short cascade of E2 transitions is observed between spins 39/2" and 27/2%, and
has been labelled band 4. Fed by decays from bands 3 and 5, it also decays to band 3,
as well as band 2. The band has signature a« = —1/2, though a level tentatively

assigned spin-parity (29/27) at 2877 keV may belong to the signature partner of
band 4.

84



CHAPTER 5

Band 5

A further positive-parity structure, band 5, that is briefly yrast at spins 57/2% and
61/27" is also observed, and mainly decays to levels in band 3. The decays to the
positive-parity band 3 include stretched E2 transitions (the 786 keV and 903 keV
~ rays have angular-intensity ratios of 1.08(15) and 1.22(13), respectively), which
indicates that band 5 also has positive-parity. The angular-intensity ratios measured
for these linking transitions, as well as for transitions in band 5 itself, have made
it possible to confidently assign spin-parity values to levels in band 5 up to 71/2%.
While it has not been possible to make a measurement for the 870 keV transition
that feeds this 71/2" state, the level at 11160 keV can be labelled as (73/2%) through
selection rules, since it also appears to decay to a 69/2" state, though this does not
completely rule out a lower spin assignment. There are two further structures loosely
associated with band 5: one consists of two levels assigned as (41/27) and (45/27),
and decays into band 3 via a 1015 keV transition, and the other has levels of spin
61/2%,65/2%, and 69/2%. Band 6 decays to band 5 via two «y rays, of energy 520 keV

and 949 keV, which have angular-intensity ratios typical of stretched dipoles.

5.1.2 New levels at high spin: bands 6, 7, and above

Levels in band 6 have been seen previously [87], though not linked to the rest of the
level scheme. By extracting angular-correlation information for the more strongly
populated transitions in the band, it has been possible to assign spin values with
confidence up to the 79/27 level. The presence of a 638 keV doublet in band 6 made
it necessary to take care when selecting coincidence gates for the angular-correlation
measurements. It was possible to extract an angular-intensity ratio of 1.10(7) for
the higher-spin 638 keV transition, demonstrating that it is most likely a stretched

E2. The measured ratio for the more intense 67/2~ — 65/2~ 638 keV transition
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was 0.51(3). In Fig. 3.8 of Chapter 3 the angular-distribution function 3.3 has been
fitted for both 638 keV transitions.

Notable are the two high-energy (1883 keV and 1927 keV) transitions that
feed the 79/2~ level. With angular-intensity ratios typical of stretched E2 tran-
sitions, (1.23(9) and 1.12(8), respectively) these indicate the presence of two high
lying 83/2~ states. The 83/27 state at 13.557 MeV is in turn fed by four 7 rays.
angular-correlation analysis shows that the 433 keV transition is a dipole, whereas
the 997 keV and 1143 keV transitions are stretched FE2 transitions. Thus, the
highest-spin negative-parity levels reported in this work have spin 87/2, and lie at
14.554 MeV and 14.700 MeV above the ground state. The 433 keV transition indi-
cates the presence of an I = 85/2 state, confirmed by the observation of a 389 keV
dipole transition decaying to the other 83/2 state. The 1332 keV transition proved
to be too weakly populated to reliably extract angular-correlation information, and
as such the level at 14.888 MeV is labelled (87/27).

A cascade of v rays, labelled 6a, decays parallel to band 6. It has not been
possible to ascertain the spins of levels in 6a with confidence, and there is some
doubt over the ordering of the 744 and 1086 keV transitions. The angular-intensity
ratio measured for the 744 keV transition is indicative of a dipole, so the band is
assumed to be a cascade of E2 transitions, which decays to band 6 via this 744 keV
transition.

There are two further structures, labelled 7a and 7b, which lie higher in energy
than the 79/2~ state. The structure labelled 7a consists of a 270 keV and 893 keV
transition, and 7b consists of a cascade of three v rays of energy 259, 685, and
1063 keV. The two are linked by two ~y rays of energies 444 keV and 620 keV. Due to
them being relatively weakly populated, it has not been possible to extract angular-
intensity ratios for enough transitions to firmly establish the spin and parity of all

the ‘band’ 7 levels up to the highest spins. The proposed, tentative, assignments
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are consistent with these data, and are informed by the theoretical calculations
presented in the next section. It is suggested the two structures terminate at two
states of spin and parity (87/2%) and (89/2%). The angular-intensity ratios that
have been measured are consistent with a change in parity in the decay from 7a and
7b to band 6; both the 923 keV and 1160 keV transitions have ratios typical of a

stretched-E1 (I — I — 1) transition of 0.75(9) and 0.72(9), respectively.

Unplaced v rays

Some transitions have been observed in coincidence with structures in **Ho, and
have been included in Table 5.1, but it has not been possible to confidently place
them in the level scheme. These include a 362 keV v ray, which appears in coinci-
dence with many transitions in bands 2 and 6, and may represent a linking transition
between the two. There is also an 822 keV v ray that appears in strong coincidence
with band 2; it is also seen in coincidence with an unplaced 745 keV transition,

thought to be be distinct from the 744 keV transition of band 6.
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TABLE 5.1: Energies, intensities, angular-intensity ratios, and spin-parity assignments for
the observed ®Ho transitions. The band labels used in the final column correspond to
those in Fig. 5.4.

E, (keV)* L} R Multipolarity Assignment Band?
88.6 1.8 9/2=  — 11/2= 2
1101 9.9  0.53(7) M1/E2 7/2¢ = 5/2F 1
119.0 3.20 31/2=  —  29/2~ 2
1634 138 0.577(25)  MI1/E2 65/2~ — 63/2~ 6
1874 116 0.64(5) M1/E2 312+ —  29/2F 3
187.0  1.18 31/2  — (20/2%) 4
213.0 22 0.66(22)  MI/E2 612~ — 59/2 6
220.7 11/2  —  9/2+ 1
926.3  2.47 53/2t  —  51/2F 53
226.6  5.61 0.540(21)  MI1/E2 63/2~ — 61/2° 62
2270 53 0.61(5) M1/E2 35/2¢  —  33/2 3
233.0 2.7 (20/2%) —  27/2¢ 4
2340 24 0.82(9) M1/E2 9/2v = 7/2t 1
244.8 181 0.68(4) M1/E2 61/2~ — 59/2= 6
251.7 8.6  0.58(3) M1/E2 35/2-  —  33/27 2
252.1 1.1 0.94(11) M1/E2 13/2t  —  11/2* 1
92547 20.0 0.585(16)  MI/E2 37/2- = 35/27 2
255.4 7.4  0.686(19) M1/E2 63/2= — 61/2° 6
256.5 6.1 452t = (41/2%)  (5)
258.7 81/27) — (77/2%)  Tb
263.1 1.5 15/2t  — 13/2% 1
2655 254 0.62(22)  MI/E2 20/2+ — 27/2 3
269.6 2.0 091(23)  (M1/E2)  (87/2%) — (85/27) Ta
273.6  16.5 31/2F o 27/2 34
2741 3.1 43/2+ o 41/2F 34
275.3  24.9  0.72(5) El 27/2% = 25/27 32
281.5 17/2 = 15/2¢ 1
281.9 5.3 0.79(9) M1/E2 39/2t  —  37/2% 3
282.6 12,9  0.63(3) M1/E2 4127 = 39/27 2
285.3 15 19/2F  —  17/2+ 31
293.2
305.3 13.6  0.70(4) M1/E2 39/2= —  37/2° 2
3073 1.5 19/2¢  — 17/2¢ 1
307.6 8.8  1.00(8) E2 13/2= —  9/27 2
3234 6.9  0.55(9) M1/E2 412+ = 39/2¢ 4
3204 9.1  0.57(6) M1/E2 45/2- = 43/27 22
3348 6.0 0.78(10)  MI/E2  31/2t —  20/2F 43
335.0  33.2  1.12(9) E2 27/2t  —  23/2t 3
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TABLE 5.1 CONTINUED.

E, (keV)* L} R° Multipolarity Assignment Band?
335.6 2.7 53/2t  —  51/2F 3
330.0 227 0.70(9) M1/E2 45/2+  —  43/2+ 3
340.6 8.3 67/2- — 65/2 2
3441 12.2 0.66(3) M1/E2 43/2- = 41/2- 2
3441 1.2 9/2t  —  5/2F 1
3452 10.7  0.66(4) M1/E2 33/2  —  31/2° 3
3474 94 0.71(9) M1/E2 49/2t  —  47/2F 3
348.8 132 0.668(23)  MI1/E2 37/2t  —  35/2F 3
350.7  4.60 79/2-  — (75/27) 6
3549  3.28 0.57(10) El 63/2~ — 61/2F 65
362.0 ~
360.0  14.3 0.622(22)  MI1/E2 A1/2+ - 39/2F 3
3742 7.7 59/2-  —  57/2 2
376.7 100 0.983(21) B2 15/2= — 11/27 2
3795  14.1 47/2- = 45/2- 2
381.6 4.7 0.73(9) E2 49/2  —  (45/2%)  (5)
385.8 6.5 49/2-  —  47)2" 2
386.3 7.1 0.75(11) M1/E2 43/2t  —  41/2F 3
388.7 0.7 0.70(10) M1/E2 85/2 — 83/2° c
305.0 8.3  1.04(9) M1/E2 35/2¢  — 33/2F 43
306.2 23 0.91(3) M1/E2 13/2~  —  11/2- 2
4019 63 1.14(5) E2 61/2¢ — 57/2¢ 53
4089 2.7 0.76(6) M1/E2 63/2- — 61/2 2
409.0 4.7 512~ —  49/2- 2
418.8 12.3  1.04(17) E2 65/2= — 61/2° 6
4205 3.7 55/2~ —  53/2 2
4209 109  1.1(3) E2 31/2  —  27/2F 4
421.5 10.3 33/2=  —  31/2° 2
4322 48  0.69(16) M1/E2 53/2- — 51/2 2
432.8 0.7 0.80(9) M1/E2 85/2 — 83/2~ c
437 12 084(5)  (MI/E2)  (89/27) — (87/2%) Tb— Ta
448.7 284  1.17(3) E2 57/2%  —  53/2* 5
453.0 29.2  0.932(9) E2 31/2t  —  27/27 3
4545 106 27/2t 5 25/20 42
4547 1.8 1.01(15) E2 /20 —  7/2t 1
457.9 6.5 49/2% —  47/2% 5—3
459.8 45  0.94(8) E2 23/2 — 19/2* 31
4617 6.6 61/2- — 59/2° 2
4633 29.3 0.970(11) E2 17/2-  — 13/2- 2
464.5 6.9 0.51(10) El 29/2%  —  27/27 3—2
468.2 63/2¢ — 59/2 6
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TABLE 5.1 CONTINUED.

E, (keV)* L} R° Multipolarity Assignment Band?
472.8 3.0  1.02(9) E2 13/2F  —  9/2* 1
481.0 7.2 A1/24 = 39/2F 43
4824 89  1.10(5) E2 23/2t  — 19/2¢ 3
482.8 19.5 17/2= — 15/2 2
485.6 5.9 572~ —  55/20 2
487.0 (77/27) — (75/27) 6a
4955 8.0 A7/2 = 45)2+ 3
408.6 100  1.02(3) E2 19/2~ — 15/2= 2
506.2  18.0  1.17(7) E2 37/2- = 33/20 2
514.5 216 27/2 - 23/2F 43
515.2 6.0 0.82(17) E2 15/2t  — 11/2* 1
516.7  11.1  0.83(19) M1/E2 45/2F  —  43/2F 53
519.8 5.8  0.59(12) El 63/2= — 61/2% 6—5
524.1 3.5 23/2%  —  23/20 3—2
540.9  14.5 33/2- - 29/2- 2
5417 1.2 15/2t = 13/27 12
543.8 206 21/2= — 19/2- 2
544.6 1.0 1.11(9) E2 17/2¢ - 132+ 1
559.6 6.7 51/2%  —  49/2% 3
550.6 377 1.16(5) E2 21/ = 17/27 2
550.8 4.9 50/2-  —  57/27 62
550.9  12.3 39/2-  — 35/2- 2
561.2 1.2 15/2 — 15/20 1—2
566.9 12.4 19/2 — 15/2% 3 —1
568.1 204 0.618(17) El 23/2¢ = 21/27 32
569.6 (33/2%) — 20/2+ 1
272.3 48.2  1.09(6) E2 35/2%  —  31/27 3
575.8 9.5 37/2¢  —  33/2% 3
5811 227 0.67(4) M1/E2 67/2¢ — 65/2F 5
583.0 23.3 55/2  —  53/2* 3
584.2  26.6 0.72(14) M1/E2 25/2-  — 23/2- 2
5879 76 1.26(3) E2 23/2- = 19/2 2
587.9  19.6  1.13(3) E2 A1/2-= = 37/27 2
588.0 3.0 (75/27) — (71/27) 6
589.4 4.5 19/2t  — 15/2% 1
592.0  23.8 35/2  —  31/2 4
593.3 6.0 20/2- = 27/27 2
596.9  13.7 43/2F  —  39/2 34
600.3  26.2 31/2¢  —  27/2 43
611.1 3.6  1.23(6) E2 21/2t - 17/2¢ 1
611.5 9.0 (20/2)F —  27/20 42
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TABLE 5.1 CONTINUED.

E, (keV)* L} R° Multipolarity Assignment Band?
6135 336 1.25(7) E2 75/20 - T1/2" 6
620.0 (87/2%) — (85/2%) Ta—Tb
6209 156 30/2%  —  35/2° 4
622.4 123 1.53(13) E2 T1/2  —  67/2% 5
626.7  21.0  1.19(6) E2 43/2- = 39/2- 2
6277 6.0  1.19(6) E2 23/2F  —  19/2* 1
628.1 460 1.2(7) E2 95/2~  — 21/2- 2
6205 4.5 19/2 = 19/27 32
630.6  58.6 1.20(5) E2 39/2  —  35/2F 3
638.1 320 0.51(3) M1/E2 67/2~ —  65/2 6
638.3 180 1.10(7) E2 79/2° = 75/2 6
6384 9.1 (27/2%) —  23/2+ 1
6438 1.5 95/2F  —  21/2° 1
645.3 4.1 19/2F  —  17/2= 32
648.1 20/2+ —  25/2F 1
650.0 (45/2%) — (41/2%) (5)
6509 135 1.60(23) E2 41/2 = 37/2% 3
660.1 55.9  1.15(4) E2 27/2-  —  23/2° 2
669.7  23.5 20/2-  —  25/2 2
673.2 218 1.21(3) E2 35/2-  —  31/2 2
6734 19.9 45/27  —  41/2° 2
6754 347 L13(8) E2 53/2F  —  49/2F 5
648 22 1.17(11) E2 (85/2%) — (81/2%) b
708.9 154  0.98(11) E2 A7/2- = 43/2- 2
7125 382  1.14(4) E2 31/2-  —  27/2 2
7253 13.0  1.07(5) E2 45/2F o 41/2F 3
7437 6.0 0.70(10)  (M1/E2)  (67/27) — 65/2 6a—6
744.5 ~
746.8 6.9 1.08 (15) E2 69/2t —  65/27 5a
755.3  22.3  1.23(19) E2 43/2+ - 39/2F 3
765.3  17.2  1.12(5) E2 49/2- = 45/2- 2
7752 57 1.18(18) E2 61/2~ — 57/27 6 (2)
7761 26.2  0.99(7) E2 19/2F  —  45/2+ 5
779.7 3.0 (81/2%) — 79/2= Tb—6
785.9 106 1.07(15) E2 53/2  —  49/2F 53
791.2 124 1.15(16) E2 452+ = 41/2 54
7949 122 0.91(9) 2 512~ —  47/2- 2
801.8 54  1.07(16) E2 67/2° —  63/2° 6
8043 8.2 612 — 57/2 2 (2)
807.6 4.5 61/2~ — 57/27 62
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TABLE 5.1 CONTINUED.

E, (keV)* I} R¢ Multipolarity Assignment Band?
8108 5.3 (73/27) —  69/2" 2
820.0 3 59/2=  — (55/27) (6)
822.3 =
8347 20.0 0.95(5) E2 AT/2% s 43/2% 3
835.2 10.0  1.04(26) E2 61/2= — 57/2° 2
841.3 18.1  0.92(4) E2 53/2=  —  49/2~ 2
842.8  26.1 0.93(17) E2 49/2+  —  45/2+ 3
845.0 3 (55/27) — (51/27) (6) — (2
851.5 0.5 59/2~  — (55/27) 6 — (6)
852.7 160 1.10(11) E2 55/2- — 51/2 2
859.2  11.1 1.03(15) E2 59/2  —  55/2- 2
8649  18.0 1.18(11) E2 65/2F — 61/2° 5
867.7  11.3 0.99(22) E2 57/2% —  53/2* 3
869.7 6.5 (73/27) —  T1/2% 5
8707 7.0 63/2~ — 59/2" 2
8791  31.3 1.18(10) 2 /27 - 67/2 6
8925  10.8 1.03(23) E2 65/2F — 61/2° 5
8027 6.2 1.02(5) E2 (85/2%) —  81/2+ Ta
805.1  12.9 1.11(18) E2 53/2  —  49/2° 3
898.4 7.8 0.88(10) E2 69/2t —  65/27 da
000.1 4.3 (71/27) —  67/2" 2
0021 3.7 1.19(12) 2 69/2~ —  65/2" 2
9029 9.8 1.22(13) E2 45/2F o 41/2¢ 53
906.5 10.1 1.10(8) E2 57/2-  —  53/2 2
906.9  12.1 0.95(17) E2 512 —  47/2° 3
0185 116 1.5(4) E2 55/2+  —  51/2F 3
9229 7.2 0.75(9) El 81/2F  —  79/2°  Ta—6
9301 185 1.13(8) 2 61/2 — 57/2° 5
937.1 6.5 1.44(24) E2 57/27 o 53/27  (2) =2
048.8 6.1  0.51(9) El 59/2~  — 57/2F 65
082.2 3.4 (73/27) —  69/2* 5a
997.4 0.92(14) E2 §7/27 -  83/2" ¢
10154 2.0 051(4)  MI/E2  (41/2%) — 39/2t  (5) — 3
10339 58  1.5(3) E2 67/2~ —  63/2" 2
10418 24 (77/27) —  73/2" 2
10424 3.9 65/2¢ —  61/2F 5a
10571 88  0.97(3) E2 65/2 — 61/2°  5a—5
1063.4 0.1 (89/2%) — (85/2%) b
10862 5.0 1.28(16) E2 (71/27) — (67/27) 6
1095.1 6.2 1.16(4) E2 61/2t — 57/27F 5a — 5
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TABLE 5.1 CONTINUED.

E, (keV)* LY R¢ Multipolarity Assignment Band¢
11022 2.9  1.4(5) E2 65/2- — 61/2- 2
1142.9 0.8  1.6(4) E2 87/2~ — 83/2- ¢
1159.1 0.7 0.72(9) El T7/2F = T5/20 Th— 6
1208.8 3.5 1.20(12) E2 65/2% — 61/2% b5a—5
1287.5 87/27) — 83/2~ ¢
1331.5 87/27) — 83/2° ¢
1598.3 1.00(12) E2 85/2 — 81/2F ¢
1882.6 25 1.23(9) E2 83/2- — 79/2° c—6
1926.6 2.3 1.12(8) E2 83/2 = T79/2 c—6

* The ~-ray energies are estimated to be accurate to £0.3keV.

b Intensities quoted as a percentage of the 377 keV (15/2~ — 11/27) ~ ray.
Errors are estimated to be less than 5% of the quoted values for strong
transitions (Z, > 10) and less than 10% of the quoted values for the
weaker transitions. Intensities for the weakest transitions (I, < 1) are

not shown.

¢ angular-intensity ratios, R. Pure stretched dipoles typically have R =
0.7, while quadrupoles have R = 1.1.

4 Where a level does not clearly belong to a particular band structure, the
number of the band it is most closely associated with is given in paren-
theses. Levels thought to be built on core-breaking excitations above
the terminating / = 79/2~ state, which not belonging to 7a or 7b, are

labelled with the letter c.
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5.2 Discussion

It is useful to be aware which orbitals lie near the Fermi surface for both protons
and neutrons as it is these which are most likely to contribute to the underlying
configurations of the observed band structures. Using the plots of theoretical single
particle energies as a function of quadrupole deformation in Fig. 2.5, it can be seen
that for a prolate shape (g5 ~ 0.2) in '»Ho, the N = 88 Fermi level lies below the
first Nose = 6 (vi13/2) intruder orbital and above the first three Noge = 5 (v f7/2/hoj2)
orbitals. For an oblate shape (g5 ~ —0.2), the N = 88 Fermi level lies above the
first v f7/2, vhg2, and viy3/o orbitals. The relevant high-j orbitals near the Z = 67
Fermi surface arise from states in the middle of the N = 5 subshell (7hq; /2) and
from the states at the top of the Nog. = 4 subshell (7ds/2/g7/2 and 7ds)s).

The rotational bands in '**Ho may also be interpreted in terms of quasiparticle
configurations within the framework of Woods-Saxon cranking calculations. Quasi-
particle Routhians, ¢/, are displayed as a function of frequency in Figures 5.5 and
5.6 for v = 0° and v = —20°, respectively. The reason for performing the calcula-
tions twice using different values for the 7 deformation will become apparent when
discussing the staggering of band 2, and how the mwh;,/, proton can favour an axially
asymmetric shape. The labelling convention set out in Table 5.3 will be used for

quasiparticle configurations.
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FIGURE 5.5: Cranked Woods-Saxon Routhian diagrams for '**Ho, calculated using de-
formation parameters from Moller and Nix [29]. Axial symmetry (v = 0°) is assumed. (a)
Quasiprotons. (b) Quasineutrons.
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FIGURE 5.6: Cranked Woods-Saxon Routhian diagrams for '»*Ho, calculated using de-
formation parameters from Moller and Nix [29]. Slight triaxial deformation (y = —20°) is
assumed. (a) Quasiprotons. (b) Quasineutrons.
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FiGUuRE 5.7: Experimental alignments, i,, as a function of rotational frequency, w,
for the non-terminating bands 1-4. Harris parameters Jy = 32.1 h2MeV~! and J1 =
34.0 h*MeV 3 have been used.

5.2.1 Alignment properties of the bands

In order to investigate the rotational properties of the bands in *Ho, the experi-

mental alignments [27],

ix(w) = Ix(w) — Ly rer(w), (5.2)

are shown in Fig. 5.7, plotted as a function of rotational frequency, w = E, /A, ~

E,/2h. At a given spin I, the aligned spin is I, = /I(I +1) — K2, while the

rotational reference, Iy ,ef, is given by

L et (W) = w(Jo + J1w?). (5.3)

Harris parameters [31] Jy = 32.1 *MeV—! and J; = 34.0 A*MeV 3, obtained from

5"Ho [81], have been used.
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TABLE 5.2: Measured Branching ratios, A, and experimental B(M1)/B(E2) ratios of
reduced transition probabilities in %" Ho.

1 E,(I—-1-1) E,I—I-2) Branchingratio A\ B(M1)/B(E2)
(h) (keV) (keV) L,(M1)/1,(E2) (1w /eb)?
band 1
9/2+ 234 344 3.1(3) 0.81(8)
11/2+ 221 455 0.45(6) 0.56(7)
13/2* 252 473 0.27(3) 0.28(3)
15/27F 263 515 0.25(5) 0.35(7)
17/2+ 282 545 0.38(7) 0.57(10)
19/2+ 307 589 0.29(3) 0.49(5)
band 2
13/2- 396 308 6.6(15) 0.20(4)
17/2- 483 463 0.88(7) 0.116(9)
21/2- 544 560 0.59(7) 0.142(18)
25/2~ 584 628 0.32(5) 0.109(16)
27/2- 76 588 0.0067(6) 0.76(7)
29/2- 593 670 0.36(4) 0.162(18)
31/2- 119 713 0.0149(11) 1.14(8)
33/2" 421 541 1.29(22) 0.56(9)
35/2~ 252 673 0.24(3) 1.45(17)
39/2- 305 560 0.65(6) 0.88(9)
47/2- 380 709 0.56(9) 1.28(19)
19/2- 386 765 0.28(3) 0.90(9)
51/2- 409 795 0.25(5) 0.80(16)
53/2~ 432 841 0.238(25) 0.87(9)
55/2" 421 853 0.69(25) 2.3(7)
57/2" 486 906 0.260(25) 0.97(9)
61/2- 462 835 0.33(7) 0.95(21)
63/2" 409 871 0.69(5) 3.5(3)
band 3
31/2+ 187 453 0.110(9) 0.224(19)
35/2% 227 572 0.040(5) 0.146(19)
37/2+ 349 576 4.6(8) 4.9(9)
39/2+ 282 631 0.056(8) 0.174(24)
41/2+ 369 651 1.64(16) 2.7(3)
43/2+ 386 755 0.103(7) 0.308(22)
45/2+ 339 725 1.42(16) 5.1(6)
49/2+ 347 843 0.37(4) 2.6(3)
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5.2.2 B(M1)/B(E2) Ratios

For the rotational bands 1, 2, and 3, which include levels of both & = —1/2 and o =
+1/2 signature values, experimental B(M1)/B(FE2) cascade-to-crossover transition
strength ratios have been determined from the measured branching ratios, A =
IL(AI =1)/1,(AI =2). The B(M1;1 — I —1)/B(E2;1 — I — 2) ratio of reduced

transition probabilities was calculated using

B(M1) A [Ey(AI =2)

- )] 2
B(E2) 143 [B,(AT = ) /) (5.4)

with ~-ray energies in MeV. The Al = 1 transitions were assumed to be pure
stretched dipole in character, with an £2/M1 multipole mixing ratio § = 0. Al-
though for nonzero ¢ Eq. 5.4 should be modified by a factor of (1+ §2)~!, the effect
this has is small, since typically §° < 1. Indeed, the errors introduced by the ex-
perimental branching ratios A\ are significantly larger than the effect of neglecting
9. The experimental B(M1)/B(E2) ratios are presented in Table 5.2, together with
the measured branching ratios, and are plotted in Fig. 5.8. Also presented in Fig. 5.8
are B(M1)/B(E2) calculations performed using the geometric model of Dénau and

Frauendorf [14] for the proposed configuration of each structure.

5.2.3 Rotational structures: bands 1-4

Specific configurations have been proposed for the rotational bands 1 to 4 based on
their alignment properties and their relative energies. These are given in Table 5.4

in terms of quasiparticle configurations.

Band 1

The I™ = 5/2% ground state of »*Ho corresponds to the [402]5/2 proton orbital at

the top of the mds/, subshell [88]. As such, band 1 may be interpreted as a rotational
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FIGURE 5.8: Values of B(M1;1 — I —1)/B(E2;1 — I —2), calculated from measured
~-ray branching ratios for (a) positive-parity bands 1 and 3, and (b) the negative parity
band 2. The results are listed in Table 5.2. The lines show the results of calculations using
the geometric models of Donau and Frauendorf [14]. In plot (a) calculations have been
made for the [402]5/2% mds/ orbital (dotted line), the [404]7/2F g7/, orbital (dashed),
and the A, AFE quasiparticle configuration (solid.) In plot (b) the calculations are made for
the [523]7/2% why, /2 orbital (dotted line) including a signature-splitting term, and for the
same orbital plus an 4;3/o neutron alignment, this time with no signature splitting term.
Filled and empty symbols represent &« = +1/2 and o = —1/2 signatures, respectively.

100



CHAPTER 5

TABLE 5.3: Quasiparticle labelling scheme for **Ho.

Label  (m,a),  Main shell model

component

Quasineutrons
A (4121 digp651]3/2
B (+,-1/2) i13/2(651]3/2
C (+,+1/2), i13/2660]1/2
D (+,-1/2)2  i13[660]1/2
E (—,+1/2)1 hg/2[521]3/2
Foo(—=1/2) hopl521)3/2
X (=+1/2)2 hire[505]11/2
Y (-2 hl503]11)2

Quasiprotons
Ap (= —=1/2)1  hi12[523]7/2
Bp (—,+1/2)1 h11/2[523]7/2
Cp (—,—1/2) h11/2[532]5/2
Dp (—,+1/2), h11/2[532]5/2
Ep (+,—1/2), g7/2[404]7/2
Fp  (+,+1/2), G7/21404]7/2
Xp  (+,—1/2), ds/2[402]5/2

( ) [402]

band built on the [402]5/2 proton configuration, with the 7/2% level located at
110 keV representing the first rotational level. However, Foin et al. [86] proposed
that this state represents the [404]7/2 intrinsic state of the g7/, subshell, decaying
to the ground state via the 110 keV transition. The measured B(M1)/B(E2) ratios
for band 1, which are plotted alongside calculations for the two orbitals in Fig. 5.8,
appear to support this interpretation, the values being in better agreement with the
calculations for a g7/, proton than those for a ds/, proton. In Fig. 5.7 it can be
seen that at w ~ 0.3 MeV /A, band 1 experiences the beginnings of an upbend or
backbend. This is the frequency expected for the AB quasiparticle alignment of two

113/2 neutrons.
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FIGURE 5.9: Level energies in "Ho, plotted as a function of spin, relative to a rotating
reference.

Band 2

Band 2 is built on the why/, orbital [523]7/27 [86]. In Fig. 5.7 it can be seen that
band 2 experiences a backbend, resulting in a gain in alignment at w ~ 0.3 MeV /A
of ~ 10h. This is understood in terms of a rotational alignment of a pair of i3/
neutrons. In the nomenclature of Table 5.3, band 2 has a Ap and Bp quasiparticle
configuration below the backbend for its & = —1/2 and o = +1/2 signature com-
ponents, respectively. Above the backbend its quasiparticle configuration is ApAB
and BpAB.

Fig. 5.7 also shows what may be a second alignment corresponding to an up-

bend at w &~ 0.45 MeV /h. Since the Ap (Bp) quasiproton is already present in the
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a = —1/2 (o = +1/2) signature of band 2, an ApBp alignment of two Ay /5 protons
is blocked. The next allowed crossings are BpCp for the « = —1/2 levels, and ApDp
for the a = +1/2 levels. The cranked Woods-Saxon calculations of Figures 5.5(a)
and 5.6(a) show that both crossings are expected to occur at a frequency of approx-
imately 0.4 MeV/h. It was proposed by Radford et al. [89] that similar upturns
in aligned angular momentum at the top of the 7hy; /> band of **"Ho correspond to
such BpCp and ApDp crossings. Another possibility, given the erratic nature of the
increase in alignment, is that it may simply be another example of the breakdown
in rotational behaviour in this nucleus at spin ~ 30.

Due to the low energy of the « = —1/2 — « = +1/2 transitions, it has only
been possible to measure the B(M1)/B(FE2) ratios of the highest of the « = —1/2
levels, 27/27, 31/2~ and 35/27, before the backbend. Even so, the measured
B(M1)/B(FE2) ratios exhibit a strong signature dependence which disappears in
levels above the backbend. Calculations made using the geometric model of Donau
and Frauendorf reproduce signature dependence of this kind when a signature split-
ting term is introduced. Indeed, a notable feature of band 2 is the large signature-
splitting it exhibits at low spin, of order 0.25 MeV, which disappears above the
backbend at around spin 35/2. The calculations shown in Fig. 5.8 have been made
for the [523]7/2 mhyy)o orbital including a signature-splitting term, and for the
same orbital plus an 4,3/ neutron alignment, this time with no signature splitting
term.

In the quasiparticle level diagrams of Figures 5.5(a) and 5.6(a) it can be seen that
the lowest energy positive-parity configurations (Ep, Fp, Xp, Yp) and the lowest
energy negative-parity configurations (Ap, Bp) are very close in energy at hw = 0,
that is when the nucleus is not rotating. With increasing angular frequency, hw, Ap
and Bp quickly become the favoured configurations. Experimentally it is seen that

above the positive-parity mds/,; ground state, the negative-parity band 2 is yrast.
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The difference in steepness in the positive and negative-parity quasiparticle levels
manifests itself in the fact that band 2 has greater alignment, i, than band 1, with

Ai, ~ 2h, Ap/Bp having a gradient approximately twice that of Ep/Fp.

Band 3

The positive-parity band 3 passes through the AB crossing region without experi-
encing any increase in aligned angular momentum, which suggests the AB crossing
is blocked and its quasiparticle configuration already involves an i3/, neutron. Its
gain in alignment of ~ 8% relative to the band 2 7why;/, configuration is consistent
with a m(h11/2) @V (i13/2h11/2) configuration. Strangely, the measured B(M1)/B(E2)
values show a striking signature dependence; the « = —1/2 levels are strongly pop-
ulated from o = +1/2 decays, but the decays in the opposite direction are few
in comparison. By introducing a signature splitting term to the ApAFE geometric
model calculations, such signature dependence can be reproduced, but the splitting
must be approximately 0.2 MeV in magnitude, with e = +1/2 being the favoured
signature. In reality, while some splitting is observed, it is much smaller (less than
0.1 MeV) and there is a reversal in the favoured signature at I ~ 21, below which
a = —1/2 is favoured. Cranked shell model calculations put this three-quasiparticle
configuration at the lowest energy, lower in fact than the A pAB configuration, which
tallies with the fact that the band is yrast at spins 31/2 — 39/2, and makes other
interpretations of its structure unlikely. The effects of triaxiality on the signature

dependence of B(M1)/B(E2) ratios has been discussed in Ref. [90].

Band 4

Band 4 has @« = —1/2 and has a similar alignment to band 3. When the energies
of band 4 are plotted as a function of spin in Fig. 5.9, it can be seen that it is

higher in energy than band 3, lying at a similar energy to band 2 at the AB neutron
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TABLE 5.4: Proposed quasiparticle configurations of rotational bands in '**Ho.

Band (7, «) Configuration

1 (+7 _1/2) EP
(+,+1/2) Fp

2 (—,—1/2) Ap —)ApAB—)ApBPCPAB
(—,+1/2) Bp —)BpAB—)APBPDpAB

3 (+,+1/2) ApAE
(+,—1/2) BpAE

4 (+,—-1/2) ApAF

crossing. The ApAF three-quasiparticle configuration is predicted to be at a higher
energy than the ApAE configuration, and to be competitive with the ApAB con-
figuration. Relative to the hi1/2[523]7/27 proton, the ApAF configurations would
be expected to have a gain in alignment similar to that of the ApAE configuration,
which agrees with what is seen in Fig. 5.7. For these reasons, it is proposed that

band 4 corresponds to the ApAF three-quasiparticle configuration.

5.2.4 Signature splitting and total Routhian calculations

A staggering parameter, S(I), which characterizes the degree of splitting between
the energies of the @« = 1/2 and aw = —1/2 signature components of a band [91], has

been measured for the rotational bands 1-3 (see Fig. 5.10) and is defined as:
1
S(I)=E(I)—E(I—-1)— 5[E([+ 1)-E(I)+E(I—-1)—E(-2)]. (5.5)

While band 1 exhibits little staggering, there is a large signature splitting observed
in band 2, which disappears at I ~ 15 at the first 7,3/, neutron alignment. At the
highest spins in band 2, the staggering returns, perhaps reflecting a further change

in its structure. Band 3 exhibits some signature splitting, though not to the same
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FIGURE 5.10: Staggering parameter S(I) as a function of spin I for (a) positive parity
bands 1 and 3, and (b) negative parity band 2 in ®Ho. The solid and open symbols
represent &« = +1/2 and o = —1/2 signatures, respectively.

extent as band 2, with a signature inversion occurring at I = 21, below which the
a = —1/2 signature component is favoured.

The unusually large signature splitting observed in band 2 demands explanation
and, previously, it has been interpreted as evidence of triaxiality at low spin [1, 92].
Large staggering between the signature partners of a configuration corresponding to
a hy1/2 proton can be reproduced in cranked shell model calculations by allowing
the nucleus to adopt an axially asymmetric shape, expressed by a non-zero value for
the v deformation. Fig. 5.11 shows calculations for the total Routhians of different
quasiparticle configurations, calculated by summing the single-particle Routhians
from cranked shell model calculations using a Modified Harmonic Oscillator poten-

tial with a y-dependent reference [92]:

E'(w,7) =) u(w,7) + Blep(w. 7). (5.6)

m
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In this equation, €], are the single-particle energies calculated using the cranked shell

model, and FE o is the y-dependent reference, determined using

T

1 2 1
Bl p(w,y) = §VP0 cos(3y) — §w2 (Jo + §w2J1> cos® (7 + 30°), (5.7)

where Vpg is the prolate-oblate energy difference (—0.4 MeV has been used here)
and Jo; are the Harris parameters used in Fig. 5.7. An angular frequency of
w = 0.2 MeV /h has been used. The calculations show that the 7hy; /2 configuration
(Ap and Bp in Fig. 5.11(b)) has minimum energy at v ~ —22.5°. Moreover, at this
favoured deformation there is significant splitting between the A p and Bp configura-
tions, which represent the signature partners of the mwhyy/, configuration, o = —1/2
being the favoured signature. This agrees with experiment, as the o = —1/2 levels
of band 2 lie lower in energy than the a = +1/2 levels. The Woods-Saxon cranking
calculations of Fig. 5.6(a) also show that an axially asymmetric shape (y = —20°)
coincides with splitting of the Ap and Bp levels.

In contrast, very little splitting is predicted for the 7ds/2/g7/2 configurations.
Adding the AB i3/, neutron alignment to the hqq/o proton (ApAB and BpAB in
Fig. 5.11(b)) has the effect of quenching both the « deformation and the signa-
ture splitting. This is in accord with the large staggering observed at the bottom
of band 2, but not above the backbend. Similarly, The calculations for the con-
figurations corresponding to band 3, a hi1/2 proton coupled to the a v(iy3/2h11/2)
configuration (ApAE and BpAE in Fig. 5.11(a)) show quenching of the signature-
splitting and v deformation. The highest levels of band 2 have been interpreted as
a ApBpCpAB and ApBpDpAB configuration for the & = —1/2 and o = +1/2, re-
spectively. The total Routhian calculations for these configurations show a return of
signature splitting, in agreement with the staggering observed at the top of band 2,

and favour an axially symmetric shape (7 = 0°).
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(b) -t

~120 60 0 60
y (degrees)

F1GURE 5.11: Cranked shell model calculations made using a modified harmonic oscillator
potential. Total Routhians presented as function of « deformation for (a) positive-parity
configurations and, (b) negative-parity configurations. Solid lines signify o = +1/2 signa-
ture and dashed, o = 1/2 signature.
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In this light, the signature splitting observed at low spins can be seen as indirect
evidence of triaxiality in '®Ho, driven by the mhyi/s orbital. A complex picture
emerges of the shape evolution of ' Ho, in which competing triaxial and prolate
shapes, built on hq1/2 and ds/2/g7/2 protons respectively, coexist at low spin, with a
triaxial-prolate transition occurring in band 2 at the vi;3/, alignment.

Signature-splitting in why; /2 bands is observed in other nuclei in this region, and
has been interpreted similarly [93, 94, 95]. Fig. 5.12 shows the staggering of band 2
with that of mhy1/ bands of neighbouring N = 88 isotones [93, 96, 97] and holmium
isotopes [89, 94]. In all the nuclides shown staggering is observed at low spin, which
largely disappears at spin ~ 15h. While staggering of a similar magnitude is seen
for the N = 88 isotones, increasing the number of neutrons lessens the observed
signature splitting of the 7hq; /s band. As discussed in the previous chapter, '*Ho,
like '56Er, lies in a transitional region: between N = 88 and N = 92 there is a move
from ~-softness to prolate rotational behaviour.

Comparing the staggering of the 7hq; /5 band of '*Ho to that of the why; /2 band
of 1%"Ho in Fig. 5.12(b) reveals that the return of staggering at spin ~ 287 in band 2
of 1%Ho is also seen in "Ho. This similarity in behaviour supports the view that
155Ho experiences the same BpCp and ApDp crossings at the top of band 2 that

have been reported in "Ho [89)].
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FIGURE 5.12: Staggering parameter S(I) as a function of spin I for (a) N = 88 isotones
and (b) Z = 67 (holmium) isotopes. The solid and open symbols of °Ho represent
a = +1/2 and a = —1/2 signatures, respectively.
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5.2.5 Terminating structures
Cranked Nilsson Strutinsky calculations

To help interpret the high-spin behaviour of %*Ho, theoretical calculations have
been performed in the framework of the configuration-dependent cranked Nilsson-
Strutinsky (CNS) formalism [5, 32] by I. Ragnarsson [103]. For the x and u Nilsson
model parameters, which define the 1s and 12 strengths of the modified oscillator
potential, the A=150 parameters of Ref. [21] have been used. The calculations do
not take into account the effect of pairing, and as a result can only be considered
realistic at relatively high spin (I > 30Ah). In Fig. 5.14 energy calculations are shown
alongside the experimental energies of levels in bands 2, 6, 6a, 7a, and 7b, and levels

lying above the 79/2~ state of band 6.

Terminating structures in band 6 and above

When the energy levels of band 6 are drawn relative to a rotating reference, as
in Figures 5.9 and 5.14, the band slopes strongly downwards, and terminates at
a particularly favoured state at I = 79/2. Termination is expected at I = 79/2
since this is the highest spin that can be formed in **Ho from the nine valence
nucleons (three protons and six neutrons) outside the spherical 4Gd core. Studies
into the band terminating properties of other N = 88 isotones have shown there is a
terminating neutron configuration which generates a spin contribution of 26*. This
configuration can be written as v { (i13/2)%,(f7/2)2(ho/2)2 }, and is stable over a large Z
range, from 2Gd to "®Yb [98, 99, 100]. Coupled to this neutron contribution, three
unpaired protons in the hy;/5 subshell will result in a negative-parity terminating
state. For oblate deformation (negative e5) the highest possible spin is generated
by filling the 3 lowest orbitals of the hj;/o subshell, which have spin projections

m;=11/2, m;=9/2 and m;=7/2. This results in a spin-parity contribution from the
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FIGURE 5.13: Tilted Fermi-surface diagrams for (a) protons and (b) neutrons at oblate
shape, showing the configurations of the yrast I™ = 79/2~ and I™ = 89/2% terminating
states in '"°Ho, built from 27/2~ and 37/2% proton configurations coupled to a 26%
neutron configuration. The I™ = 65/2~ favoured state of band 6 is built from the 27/2~
proton configuration coupled to a 197 neutron configuration. Adapted from Ref. [3]

protons of 27/2%. Occupying any higher hy; /2 Or even dg/p orbitals would have the
effect of reducing the total angular momentum. To generate higher spins, protons
would need to be excited from the ds/2/g7/2 orbital, which would mean breaking the

146Gd core. This terminating configuration in *Ho, which results in a fully aligned

79/27 state, may be written in full as

m{(h11/2)57 2 27/2- @ v{(ia32)Ta(f7/2)5(hoy2)g Yo6+ - (5.8)

The filling of the valence orbitals in the fully aligned I = 79/2~ state is illustrated
in the tilted Fermi-surface diagram [15] of Fig. 5.13. In Chapter 4, it was noted
that in '°°Er, the favoured terminating state has I™ = 42%, which represents the
same configuration as above coupled to an extra proton in the m; = 5/2 orbital of
the hii/o subshell. It can be seen in Fig. 5.14(a) that CNS calculations for 155Ho
reproduce clearly the highly favoured 79/2~ terminating state.

The downward trend of band 6 in Fig. 5.14(b) is not completely smooth, there
is a particularly favoured I™ = 65/27 state, the only negative-parity, « = +1/2,

yrast state above spin ~ 30h. In addition the 67/2~ level is also somewhat lower
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in energy than a backward extrapolation from the 79/2~ state would suggest. It
is proposed that these states are formed at oblate shape with the spin vector of a
specific valence nucleon in the opposite direction to the total spin vector [101, 102].
Relative to the fully aligned 79/2~ state, an I™ = 65/2 state is achieved by shifting
one f7/2/hg2 neutron from an m; = 7/2 to an m; = —7/2 orbital. The configuration
of this 65/2~ state is given in Table 5.5. Likewise, the 67/2~ state can be formed
by shifting a f7/2/hg/» neutron from an m; = 5/2 to an m; = —7/2 orbital. In the
tilted Fermi-surface diagram (Fig. 5.13) it is shown how the I = 65/2~ state can
be produced in terms of the occupation of specific orbitals, i.e. from a 19" neutron
configuration coupled to the fully aligned 27/2~ proton configuration. The CNS
calculations of Fig. 5.14(a) agree with experiment, in that they predict favoured
65/2~ and 67/2~ states, though experimentally the 67/2~ appears less favoured
than in the calculations. A similar pattern of favoured angular momentum values is
observed in ®Er, including the corresponding configurations to the I = 65/2,67/2
levels in °Ho, 7h and 6% below the terminating I = 42 state, respectively.

The strong 638 keV transition which feeds the 65/2~ favoured state in " Ho is
notable for having a particularly low angular-distribution ratio of 0.51(3). Fitting
the angular-distribution function (Eq. 3.3) for this v ray yields Ay = —0.68(9),
which indicates that the M1/FE2 transition has a large, negative mixing ratio. In
7Er there is a 77/27 state which corresponds to the 65/2~ state in *Ho coupled
to an extra m; = 5/2 hy1/2 proton and an extra m; = 7/2 hg, neutron [104]. Tt
too is particularly favoured and is also fed by a M1/E2 transition with an unusual
angular-distribution coefficient of Ay = —0.875(15), indicating a large, negative
mixing ratio [105].

Band 6 is not the only structure evident at high spin; there are the positive
parity ‘bands’ labelled 7a and 7b, and a cluster of negative parity states that decay

to the 79/2~ terminating state via the 1883 keV and 1927 keV v rays. In terms
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FIGURE 5.14: (a) CNS energy calculations, plotted relative to a rotating reference. For
each of the four combinations of spin and parity only the one lowest in energy at high
spin is shown. The energies of levels in band 2, band 6, and levels above the 79/2~ band
termination are shown in (b), relative to a rotating reference. Positive parity is indicated
by circles and solid lines, and negative parity by triangles and dotted lines. Filled and
empty symbols represent &« = +1/2 and o = —1/2 signatures, respectively.
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TABLE 5.5: Observed terminating configurations in '*Ho and neighbouring nuclei.

Nucleus I~ Aligned configuration
155Ho  65/2~ ﬂ{(h11/2)‘;’7/2}27/27 @ 1’{(2‘13/2):{2(f7/2)£f5/2(h9/2)£1>/2}19+
"Ho  79/2~ m{(h112)37 0 }2r/2- @ v{(inz/2)ia(fry2)d(hoy2)3 as+
"Ho  87/2* W{(d5/2/g7/2);/12(h11/2)4116}35/2+ @ v{(i13/2)12(f7/2)5(hoy2)3 } 26+
"Ho  89/2% m{(ds/2/97/2)5 5 (ha1y2)leYsrjor ®  v{(ins/2)T2(fr/2)5(hoy2)3 a6+

Z = 67 holmium isotopes [106, 107, 89]
"Ho 41" m{(h11j2)37j0ter/2- @ v{(iss2)1a(fr/2)15 /0 (hos2)8 o5 /2
156Ho 42+ m{(h112)37 0 272~ ®  v{(inz/2)ia(fry2)d(ho2)3y o }o/2
15THo  87/2- W{(h11/2)§’7/2}27/27 ® V{(@13/2)%2(f7/2):f5/2(h9/2)§’1/2}3o+

N = 88 isotones [11, 99, 108]
YDy 367 m{(h1j2)iotior  ®  v{(iiz/2)ia(fry2)d(ho2)3 as+
%Dy 427 m{(ds/2/97/2)5 5 (h1/2)37 b6~ ®  v{(ins/2)T2(fr/2)5(hoy2)d a6+
YDy 48% m{(ds/2/97/2)5  (hja)istaa-  ©  v{(inj2)ia(fr/2)5(hos2)3 ass
150Er 427 m{(hj2)iehicr  ®  v{(iiz/2)ia(frs2)§(hoj2)3}as+
150Er 46 W{(d5/2/g7/2)5_/12(hll/z)ilﬁ(d3/2)§/2}2o+ @ v{(i13/2)12(fr/2)8(Po/2)3 } 26+

of rearranging protons, the simplest way of achieving greater angular momentum
than 79/2 is to excite a proton across the Z = 64 shell gap from a ds/2/g7/» orbital,
which lies closest to the Fermi surface, to a vacant orbital in the hy; /5 subshell. This
necessarily involves a change in parity, which is why it is suggested the structures
labelled 7a and 7b have positive-parity. The spin-parity assignments for the struc-
tures labelled 7a and 7b are tentative, some transitions being too weakly populated
to perform an angular-correlation analysis. However, the decay to band 6 and the
angular-distribution ratios that have been extracted are consistent with 7a and 7b
being positive parity, terminating at a (89/2%) state.

If the assignments are correct, then band 7 most likely represents a particle-hole
excitation across the Z = 64 shell gap, 7(ds/2/g7/2 — h11/2). When their energies are

plotted relative to a rotating reference, both 7a and 7b slope downward, terminating

115



CHAPTER 5

157

107

0.5¢

o] @Dy s

A, .

:j‘z-.-.A\.‘*.‘.A--v-k---A'""""’ﬁ:::A::ﬁﬁ:"_}'.'_'A”, ........ AR
1.0t ‘Z::A BAVANN
A

1 (0)%Ho

E—E, (MeV)

O
-0.51 *s
156 9
a0} (©) Er 42°° o468
20 25 30 35 40 25 50

Spin, | ()
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(b)1%Ho and (c)'CEr. Only selective states are shown for all three nuclei (i.e. states near
valence-space band termination).
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at favoured (87/2%) and (89/2%) states. The configuration of the terminating 89/2"
state is given in Table 5.5. Specifically, relative to the 79/2~ valence-space termi-
nating state, the 89/2" state represents a proton being excited from an m; = —5/2
d5/2/g7/2 state to the m; = 5/2 state of the hi1/2 subshell, and results in an addi-
tional spin contribution of 5. The resulting 37/2" proton configuration is shown
in the tilted Fermi-surface diagram, Fig. 5.13(a). The calculations of Fig. 5.14(a)
show particularly favoured terminating 87/2 and 89/2% states.

In the negative-parity level scheme, there are two at I™ = 83/27 states that
lie almost 2 MeV above the 79/2~ terminating state, decaying to the 79/2~ state
via the 1883 and 1927 keV v rays. Above the 83/2~ states there are at least two
87/2~ states, another of spin 85/2, and a fourth which has tentatively been as-
signed as (87/27). In the discussion of structures 7a and 7b, it was noted that the
easiest way to generate spins greater than 79/2 involves exciting a single proton
from the ds/, / g72 subshell to the lowest vacant hy/p orbital, necessarily involving
a change of parity. The negative parity states above the 79/2~ state, which lie
more than 500 keV higher in energy than their positive-parity counterparts, may
then correspond to less favoured excitations, such as two protons being excited from
the ds;2/g7/2 subshell to hq1/o orbitals, or a single proton being excited to the ds)-

subshell, or similarly energetically expensive rearrangements of the neutrons.

Possible favoured configurations in band 5

In "Ho, band 5 is also thought to represent a prolate-oblate shape transition,
culminating in a favoured 71/2% state. Above this is a less obviously favoured
(73/21) state. A proposed terminating configuration is the I™ = 27/2~ proton
configuration coupled to a negative-parity I™ = 22, 23~ neutron configuration, which
can be expressed as V{(hg/g/f7/2)gl/2733/2(2'13/2)%3/2}22723—. This corresponds to two

positive-parity [ = 71/2,73/2 terminating states. Coupled to an extra proton in the
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m; = 5/2 orbital of the hq; /2 subshell, these become the predicted negative-parity
I = 38,39 terminating states in ®Er, of which only the spin 38 state has been

experimentally verified [3].

Comparison to neighbouring N=88 isotones

In Fig. 5.15 the energies relative to a rotating reference of the highest spin negative-
parity 1®*Ho states are plotted alongside the positive-parity levels in **Dy and *Er
at valence-space band termination. The 79/2~ terminating state of ®Ho has been
indicated. For comparison, the favoured positive-parity terminating state in *°Er,
at I™ = 427 is also shown, which represents the same configuration coupled to an
extra proton in the m; = 5/2 orbital of the hyy/, subshell. Similarly, the 36" level in
14Dy has been indicated, which represents the 79/2~ ®Ho configuration with one
less m;=7/2 hi1/2 proton. The configurations of these states, relative to the doubly

magic 5Gd core, are given in full in Table 5.5.
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5.3 Conclusions

A high-statistics, high-spin experiment has been performed to study the level struc-
ture of the ¥~1°"Ho nuclei. Many previously unreported ~-ray transitions have
been established in Ho and a comprehensive level scheme has been built from
high-fold coincidence analysis. At low spin, a positive-parity mg;/» rotational band,
observed for the first time in this nucleus, has been established up to (33/2%). The
more favoured (and well established) mhy1 /2 band has been extended to I™ = 57/27.
A positive-parity rotational structure has been established to I™ = 57/2 and in-
terpreted as being based on a v(i13/2hg/2) structure coupled to the hyi/ proton.
B(M1)/B(E2) ratios of reduced transition probabilities have been calculated from
observed branching ratios for all three bands and compared to geometric model cal-
culations for specific particle configurations. While these are mostly in agreement,
the B(M1)/B(E2) ratios measured for the m(hi1/2) ® v(i13/2h9/2) band exhibit a
striking signature dependence, which cannot be fully explained by the observed
energy-splitting between the o = +1/2 and o« = —1/2 signature components.

The mhyy /2 configuration has been discussed as favouring a negative-vy triaxial
deformation, which gives rise to the considerable signature splitting in the band up
to spin ~ 15, at which point it is quenched by the (viy3/2)? alignment. Comparisons
to the staggering of 7hy;/, bands in neighbouring isotopes and isotones show that
this effect is common to many nuclei in this region, and that the effect is diminished
with increasing N.

Above spin ~ 59/2 band termination in »Ho has been investigated. Several
energetically favoured terminating states built on specific particle configurations
were identified, including a state at I™ = 79/2~, which corresponds to valence-space

band termination in **Ho. Relative to the *6Gd core the full configuration of this
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state can be written as

T{(Pa1y2)57 0 barja- ® v{(i13/2)32(f7/2) 5 (hos2)s tos+-

Positive-parity states of higher spin and excitation energy are thought to correspond
to further predicted favoured states at oblate deformation, with I™ = 87/2%,89/2%.
These are built on 7(ds/2/g7/2 — hi1/2) particle-hole excitations across the Z = 64

shell gap, and their full configurations are

T{(dsj2/97/2)5 .52 (hi1/2) 16 }25/2- 2172~ @ v{(13/2) 2 (fr/2)5 (hoy2)3 Yo+

The observed favoured states are in agreement with those predicted by the Cranked
Nilsson Strutinsky calculations.

Two negative-parity 83/2 states have been established almost 2 MeV above the
79/2~ terminating state, and decay to the 79/2~ state via two 1883 and 1927 keV
v rays. Above the 83/27 states there are at four further negative-parity states,
with spins as high as 87/2. It is proposed these negative-parity levels above the
79/2~ terminating state are generated by more energetically expensive excitations
than the positive-parity levels, such as two protons being excited from the ds/2/g7/2
subshell to hiy/, orbitals, a single proton being excited from the ds/; / g7/2 subshell
to the higher dz/, subshell, or similarly energetically expensive rearrangements of
the neutrons.

Up to this point, the y-soft behaviour exhibited by »Er (Chapter 4), and the
band termination seen in both nuclei have been treated quite separately. After all,
the theoretical approach to each is very different, relating to collective rotation-
vibration models in the first case and specific Nilsson orbitals of the shell model in
the second. The argument for y-softness in 1°°Er rested on the relative energies of the

low spin levels, while the evidence for band termination in '*°Er and '**Ho concerns
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levels of the highest observed spins in these nuclei. There are, however, similarities
between the two phenomena. Both vy-softness and the favoured band terminations
have been discussed here in terms of the few (nine or ten) valence nucleons outside
the 5Gd core. In Chapter 4, SEr was said to exist in a ‘transitional’ region where
nuclear collectivity changes from vibrational (near the spherical core) to rotational
(towards mid-shell regions). With band termination, the number of valence nucleons
determines the maximum spin that can be achieved without breaking the core. At
higher values of N and Z terminating states are predicted to become less favoured,
shell effects becoming less dominant.

It can be seen in the calculated potential energy surfaces of Fig. 4.13 how,
in Er, competition between oblate-favouring single-particle configurations and
prolate-favouring rotational structures can result in a potential markedly soft to
~-deformation. This accounts for the y-soft behaviour observed in *°Er at low spin
and, when a critical spin (~ 30) is reached, the transition from prolate-deformed
rotational behaviour to oblate-deformed single-particle behaviour at terminating

states in "%Er and ®Ho.
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