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ABSTRACT 

The normal structure and function of the heart, the common pathological changes 

that cause abnormal function and the interventions proposed to improve or restore its 

function are fundamentally based on cardiac anatomy. Therefore in all these areas a 

detailed and accurate understanding of 3D structure is essential. However there is 

still disparity over some aspects of the form and function of the healthy heart. 

Furthermore, in heart failure (HF) the transition from compensated to decompensated 

HF is poorly understood, and details of ventricular, and particularly atrial, 

remodelling and their effects on cardiac function are yet to be fully elucidated. In 

addition little is known on how the 3D morphology of the cardiac conduction system 

is affected in disease, and further knowledge is required on the structural substrates 

for arrhythmogenesis associated with HF.  

Here we have developed contrast enhanced micro-CT for soft tissue imaging, 

allowing non-invasive high resolution (~5 µm attainable) differentiation of multiple 

soft tissue types including; muscle, connective tissue and fat. Micro-CT was 

optimised for imaging of whole intact mammalian hearts and from these data we 

reveal novel morphological and anatomical detail in healthy hearts and in hearts after 

experimental HF (volume and pressure overload). Remodelling of the myocardium in 

HF was dramatic with significant hypertrophy and dilatation observed in both atria 

and ventricles. The atria showed a 67% increase in myocardial volume, with the left 

atrium showing a 93% increase. The pectinate muscle: wall thickness ratio was 

significantly increased in both atria (p=<0.05), and total cavity volume of the atria 

was increased by 119% (p=<0.05). An 84% (p=<0.05) and 28% (p=<0.01) increase 

in myocardial volume was seen in the right and left ventricles (RV and LV) 

respectively. The LV cavity increased to 231% of control (p=<0.001). Regional 

remodelling occurred in the LV with the base and mid-wall of the heart undergoing 

eccentric hypertrophy and the apex undergoing mixed hypertrophy. Longitudinal in 

vivo analysis by echocardiography revealed progressive loss of function pre 

termination (41% reduction in fractional shortening, p=< 0.001). 

We have imaged the major regions of the cardiac conduction system (CCS) in single 

intact hearts and we present the data as high resolution 3D renderings. This is the 

first time that such data has been shown for any species. In HF all regions of the CCS 
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underwent dramatic morphological changes, with all regions undergoing hypertrophy 

and stretch. The sinoatrial node showed an 85% increase in volume (p=0.08) and 

51% increase in surface area (p=<0.05). The atrioventricular node increased in both 

volume (52% p=< 0.05) and 3D length (14% p=< 0.05). The free running Purkinje 

fibre network showed an 85% increase in volume (p=<0.05); 3D filament analysis 

revealed the free running length was increased by 62% (p=<0.05), and was strongly 

correlated with the increase in LV cavity volume.     

Applying a novel technique for the extraction of 3D fibre orientation from micro-CT 

data we showed that significant changes occur in HF. The technique was first 

validated in skeletal muscle and then applied to the heart. Fibre orientation in the 

ventricles was consistent with previous findings, and novel insight into the complex 

and heterogeneous fibre orientation of the atria and their accompanying muscle 

bands was obtained. In HF significant changes in fibre orientation were seen in 

regions of dilatation; in the LV fibres became more vertical at the endocardium and 

this coincided with a reduction in the transverse angle; in the transmural mid-wall of 

both the LV and interventricular septum the percentage of circumferential fibres was 

reduced, and fibres became more disordered. Based on changes in morphology and 

3D fibre orientation we present the idea of regional specific compensated and 

decompensated HF in the presence of volume and pressure overload. 

Data presented here provides new information on remodelling of the heart in HF, 

giving insight into the mechanisms underlying the contractile and electrical 

pathologies associated with HF. 
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1.1 Motivation for the project  

Heart failure (HF) is a clinical syndrome which is characterised by the inability of 

the heart to pump sufficient blood to meet the metabolic needs of the body 

(McDonagh et al., 2011, Leonard et al., 2012). Despite recent advances in our 

treatment of HF, the condition has a considerable morbidity, affecting over 900,000 

people in the UK (NHS, 2012), and has a mortality rate of 5 years (annual mortality 

rate 10-50%), which rivals most cancers (Stewart et al., 2001). In the western world, 

HF affects 1-2% of the population (Brown and Cleland, 1998), contributing to 5% of 

all hospital admissions, and complicating ~15% of all admissions (Khand et al., 

2000). The overall prevalence of clinically evident HF is around 5–20 cases/1,000 

population, however this figure rises to >100 cases/1,000 population in subjects aged 

>65 years (Heart Failure Society of America, 2006). The number of patients with 

heart failure is ever increasing (McDonagh et al., 2011). This is due to our ageing 

population and improved survival rates in patients.  

Cardiac arrhythmias are a common complication associated with HF, the most 

common being atrial fibrillation (AF). The prevalence of AF approximately doubles 

with each advancing decade of age, from 0.5% at age 50–59 years to almost 9% at 

age 80–89 years (National Collaborating Centre for Chronic Conditions, 2006). 

Radiofrequency catheter ablation is widely considered to be best practice, especially 

for patients resistant to pharmacological and electrical cardioversion (Brooks et al., 

2010). However, success rates are relatively poor; single procedure freedom from 

atrial arrhythmia at long-term follow-up is ~53%, ~54% in paroxysmal AF (Ganesan 

et al., 2013), and~28% for persistent AF even with one “optimally” combined 

ablation procedure (Brooks et al., 2010). Multiple procedures do improve these 

figures but treatment of arrhythmias is an increasing economic burden in health care; 

it costs ~£12,500 per catheter ablation procedure in Europe.   

The normal structure and function of the heart, the common pathological changes 

that cause abnormal function and the interventions proposed to improve or restore its 

function are fundamentally based on structure. Therefore in all these areas a detailed 

and accurate understanding of 3D cardiac anatomy is essential. However there is still 

disparity over the form and function of  mural architecture in the healthy heart 

(Anderson et al., 2008, Buckberg et al., 2008, Jouk et al., 2000, LeGrice et al., 1995, 
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Lunkenheimer et al., 2006a, Schmid et al., 2007, Torrent-Guasp et al., 2005). 

Furthermore, in HF the transition from compensated to decompensated HF is poorly 

understood, and details of ventricular, and particularly atrial, remodelling and their 

effects on cardiac function are yet to be elucidated. In addition little is known on how 

the 3D morphology of the cardiac conduction system is affected in disease, and 

further knowledge is required on the structural substrates for arrhythmogenesis 

associated with HF.  

Therefore, further insight into the detailed morphology and structure of the heart in 

health and disease will; a) aid our understanding of the aetiology of HF and its 

associated mechanical and electrical dysfunction; b) provide information on fibre 

orientation within heart, thus improving knowledge of cardiac contraction and 

pathways of conduction; c) inform the development of ‘virtual hearts’- anatomically 

and biophysically-detailed mathematical models of the heart for education, research, 

planning surgical treatments and drug discovery; d) inform cardiac ablation 

procedures; and e) guide the planning of implantation and reconstructive surgeries to 

avoid damage to structures integral to the form and function of the heart, thus 

reducing the need for pacemakers. 

A true grasp of this information is essential for targeted clinical and scientific 

research, which ultimately could contribute to the creation and improvement of 

therapeutic approaches.  

 

1.2 The heart structure and function  

In this section the gross anatomy of the heart is described in the context of its 

primary function. In Chapter 5 the detailed 3D anatomy of the heart including its 

fibre orientation is investigated using contrast enhanced micro-CT. 

1.2.1 Gross anatomy and function of the heart 

The heart is a muscular pump composed of myocardium (cardiac muscle) which 

functions to; (1) collect de-oxygenated blood from the tissues of the body and pump 

it to the lungs to be oxygenated; and (2) collect the oxygenated blood from the lungs 

and pump it to all the tissues of the body. The mammalian heart is made up of four 
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chambers; two upper chambers (atria) and two lower chambers (ventricles). The 

upper chambers are divided from one another by a wall of myocardium known as the 

interatrial septum (IAS). A similar structure divides the lower chambers and is 

known as the interventricular septum (IVS). The fibrous skeleton of the heart; a non-

myocardial structure made of connective tissue, acts to divide the upper and lower 

chambers (see below). Functionally the heart can be split into the left and right sides; 

the right atrium and ventricle collect blood from the body and pump it to the lungs, 

while the left atrium and ventricle collect blood from the lungs and distribute it to the 

body. The movement of blood through the heart is a 'one-way' flow, this is achieved 

and maintained by valves; the two atrioventricular valves (tricuspid and bicuspid) 

and the semilunar valves of the outflow tracts (pulmonary and aortic) (figure 1.1) 

(Iaizzo et al., 2009). The right and left heart pumps function in series, but contract 

simultaneously (Loushin et al., 2009). 

In life the heart lies in the thorax, protected by the overlying sternum and costal 

cartilages. The heart lies between the lungs in the middle mediastinum covered by a 

serous membrane- the pericardium, and its inferior border sits on the superior surface 

of the diaphragm (Levick, 2003, Drake et al., 2005) 

 

. 
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Figure 1.1 Schematic representation of a longitudinally sectioned heart. Showing the 

major anatomical landmarks, the 4 chambers (labelled red), and the regions of the ventricle 

(labelled blue). Blood flow through the heart is represented by arrows. LA- left atrium, LV- 

left ventricle, RA- right atrium, RV- right ventricle. (Modified from Iaizzo 2009) 

 

1.2.2 The right atrium 

There are anatomical features characteristic of both atria; each has an appendage, 

venous component, a vestibule, and the interatrial septum (IAS) separating them. The 

appendages are pouch-like extensions of the atria, and are characterised by the 

presence of pectinate muscles (PcMs) on their endocardial surface - numerous bands 

of muscle which run parallel with one another (figure 1.2). The right atrium (RA) is 

dominated by its appendage, this in contrast to the common belief that only the tip of 

the atrium constitutes the appendage. The appendage actually forms the majority of 

the free wall, since the PcMs characterising the appendage, are associated with the 

tricuspid valve vestibule throughout its course around the free wall. An immediate 

transition from the trabeculation of the PcMs to the smooth walled venous 

component occurs in the posterior right atrium (figure 1,2). This transition is 
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demarcated on the endocardium by the crista terminalis (CT) or terminal crest; a 

thick band of muscle running lateral to the opening of the superior vena cava (SVC 

or SCV figure 1.2), obliquely down, like a twisted 'C', to the opening of the inferior 

vena cava (IVC or ICV figure 1.2). Close to its origin the CT is joined by another 

thick muscle bundle - the septum spurium (SS), which extends anterolaterally into 

the appendage (Ho et al., 2002, Iaizzo et al., 2009). Both the CT and SS provide the 

origin for the PcMs.  

The venous component houses the majority of the named structures of the right 

atrium. The SVC and IVC open to the top and bottom of this region respectively. The 

coronary sinus (CS) also opens into the region, inferior and lateral to the IVC. The 

Thebesian and Eustachian valves occupy the CS and IVS respectively (figure 1.2), in 

human these structures vary from large to almost absent, and from membranous to 

muscular-like. Anteriorly the two valves come together to form the fibrous tendon of 

Todaro which eventually inserts into the membranous septum. The distal 

ramification of the CT with the coronary sinus is often referred to as the 'flutter 

isthmus', because of its arrhythmogenic properties. Medial to the CS and IVC 

openings is the fossa ovalis (FO) (figure 1.2), a remnant of the foramen ovale 

(crucial in embryonic circulation). It appears as a depression, occupied by the flap 

valve of the IAS, it is surrounded by extensive muscular rims, and is the major 

constituent of the IAS (Ho et al., 2002, Iaizzo et al., 2009).  

Internal features of the RA provide the landmarks for the triangle of Koch, which 

serves as a surgical guide for locating conducting tissues involved in atrioventricular 

conduction (Ho et al., 2002). In human, attitudinally, the Eustachian ridge containing 

the tendon of Todaro forms the posterior border, and the hinge point of the tricuspid 

valve leaflet forms the anterior border (Inoue and Becker, 1998). At the base of 

triangle is the CS, and the apex is formed at the point where the anterior and 

posterior borders meet (Figure 1.2).    
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Figure 1.2 Prosection showing the internal anatomy of the right atrial cavity in human. 

The free wall of the right atrium is reflected, red bracket represents the tendon of Todaro, 

yellow bracket represents the tricuspid valve., black dotted line indicates the boudaries of 

the triangle of Koch. SCV- superior vena cava.  (Modified from Anderson 2007) 

 

1.2.3 The right ventricle 

The ventricles are characterised by possessing an inlet, apical trabeculae and outlet 

components, but are incomplete when lacking an inlet, outlet or both (Anderson et 

al., 2011). The right ventricle (RV) receives blood from the RA and pumps it to the 

lungs via the outflow tract to the pulmonary trunk. The outflow tract or 

infundibulum, which carries the blood in a anterosuperior fashion out of the RV is 

smooth walled. In contrast, the majority of the endocardial surface is characterised 

by a complex arrangement of coarse muscle bundles called trabeculae carnae. These 

trabeculae are found in both ventricles and are analogous to the PcMs of the atria, the 

most prominent in the RV is the moderator band (figure 1.1). When the RV contracts 

(systole) blood is prevented from flowing back into the RA by closure of the 

tricuspid valve. The pressure increase within the RV opens the pulmonary valve and 

allows blood to leave the heart via the pulmonary artery (PA) (figure 1.1). The 

function of valves is reversed in diastole, with the tricuspid valve open and the 

pulmonary valve closed (Iaizzo et al., 2009). 
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1.2.4 The left atrium 

Like the RA, the LA has an appendage, venous component, vestibule, and IAS. The 

LA lacks a structure analogous to the CT, therefore there is no obvious demarcation 

between the appendage and the pulmonary venous component. The free wall and 

PcMs of the LA are thicker and more pronounced than in the RA, but the PcMs can 

still be seen associated with the vestibule of the bicuspid (mitral) valve throughout its 

course around the free wall (Ho et al., 2012). Posteriorly the venous component is 

void of PcMs and is dominated by the pulmonary veins (PVs). In human there are 

usually four PVs, but variation in their number is common in human and animals 

(figure 1.1) (Ho et al., 1999). The detailed morphology of the atria are considered in 

detail in Chapter 5, and changes in the failing heart are assessed in Chapter 8. 

1.2.5 The left ventricle 

Blood passes from the RA into the left ventricle (LV), where it is pumped from the 

ventricular cavity through the aorta to supply the tissues of the body. The wall of the 

LV is trabeculated but is much thicker than the RV and can thus produce a greater 

contractile force. The IVS appears continuous with the curvature of the LV and as a 

result bulges into the RV cavity, giving the RV its distinctive crescent shape and the 

LV its cone-like appearance. When the LV contracts, closure of the mitral valve 

prevents backflow into the LA, and the aortic valve opens to allow blood to leave the 

heart and enter the systemic circulation. The function of the valves is reversed in 

diastole, with the mitral valve open and the aortic valve closed. Like the pulmonary 

valve the aortic valve consists of three semilunar shaped cusps. During diastole, due 

to the increased pressure in the aorta, these cusps are occluded and act as upside 

down parachutes with their respective sinuses filling with blood residing in the aorta. 

Within two of the sinuses are ostia (openings) into the coronary arteries that supply 

the myocardium. Due to the great pressure difference blood flows through these 

vessels during diastole (Anderson et al., 2011, Iaizzo et al., 2009). 

1.2.6 The fibrous skeleton 

Passing through the transverse plane at the base of the heart is a dense framework of 

connective tissue known as the fibrous skeleton. The functions of this static scaffold 

are (1) anchor the valves of the heart, preventing overstretching of the valve 
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apparatus, and (2) electrically insulate the atria from the myocardium, preventing 

direct spread of the propagation wave to the ventricles from the atria. The fibrous 

skeleton is made up of four interconnecting rings, with two trigones and an inferior 

projection . The central ring supports the aortic valve, while the anterior ring 

supports the pulmonary valve. The two larger posterior rings support the bicuspid 

and mitral valves respectively. The strongest part of the skeleton is the central 

fibrous body or the right fibrous trigone, this triangle is formed at the junction 

between the aortic valve and the medial aspects of the atrioventricular valves. The 

central fibrous body is associated with the specialised atrioventricular conducting 

tissue (see below). The left fibrous trigone is smaller and lies at the junction of the 

aortic valve and the anterior cusp of the mitral valve. The inferior projection of the 

skeleton is called the membranous interventricular septum, a continuation of the 

central fibrous body forming an attachment with the muscular interventricular 

septum below. Medially the membranous septum provides attachment for the right 

coronary cusp of the aortic valve, and superiorly is continuous with the interatrial 

membranous septum (Iaizzo et al., 2009, Anderson et al., 1991). The true extent of 

the fibrous skeleton has been debated due to the difficulty in appreciating its 3D 

morphology using dissection or histology (as described by Anderson et al., 1991). 

1.2.7 The myocardial wall 

Transmurally the myocardial walls are made up of a number of layers. Superficially 

the heart is covered by the pericardium; its outermost layer is the dense and fibrous 

parietal pericardium, while the visceral layer of the pericardium adheres to the 

surface of the myocardium (epicardium) (figure 1.3). The pericardial cavity between 

these two layers is filled with serous fluid (secreted from mesothelial cells) allowing 

the visceral layer to smoothly glide over the outer parietal pericardium during cardiac 

contraction. The middle myocardium forms the muscular component of the wall, and 

itself is subdivided into the subepicardium, transmural mid-wall and 

subendocardium. However, the epicardium and subepicardium are sometimes 

collectively referred to as the epicardium, and the same can be said of the 

endocardium. Finally the endocardial surface is formed by a connective tissue and 

endothelial layer (figure 1.3) (Iaizzo et al., 2009).      
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Figure 1.3 Schematic representation of a transmural ventricular segment and its 

association with the pericardium. a-subepicardium, b-transmural mid-wall, c-

subendocardium. (Modified from Iaizzo 2009) Note: The orientation of the fibres making up 

the myocardium is not as simple as this figure suggests. The 3D arrangement of muscle 

fibres within the whole heart is explored in Chapter 5,7,8.  

 

1.2.8 The Myocyte  

The coordinated contraction is the basis of the hearts function; such contractions are 

produced by the muscle cells of the heart- the cardiac myocytes. Unlike other types 

of muscle cells, myocytes are branched and join together with neighbouring 

myocytes at complex junctions called intercalated discs. This arrangement creates the 

so-called functional syncytium of the heart. Unlike skeletal muscle, myocytes are not 

typically referred to as fibres, rather the term fibre refers to a row of multiple 

adjoining myocytes. The diameter of the roughly cylindrical myocyte can range from 

10-20µm, and lengths vary from 50-100µm (Barnett and Iaizzo, 2009, Levick, 2003). 

Although myocytes contain the organelles common to all muscle cells, their internal 

volume is predominantly made up of a cytoskeletal lattice of contractile proteins. 

This gives the cells a characteristic striated appearance when viewed under a 

microscope (Barnett and Iaizzo, 2009, Levick, 2003).   
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Intercalated discs contain adheren junctions that hold the cells together mechanically. 

These membrane bound proteins form structural associations between adjoining 

myocytes, and can be composed of various proteins (Colaco and Evans, 1981, 

Kaplan et al., 2004). Most crucially they allow force to be transmitted across the 

myocardium. At the intercalated discs gap junctions form electrical communications 

between cells (Beauchamp et al., 2006), allowing the synchronised flow of ions, and 

thus the transmission of electrical propagation that stimulates myocyte contraction. 

Gap junctions are usually formed by the assembly of 6 proteins called connexins 

(Cx), which collectively form a hemi-channel called a connexon. These channels are 

found on the sarcolemma of the myocyte and form complete gap junctions when they 

dock with the connexon of a neighbouring myocyte.  

The sarcolemma is also penetrated by membrane lined channels called transverse 

tubules (T-tubules). These channels are filled with extracellular fluid and invaginate 

into the sarcoplasm and run around the myofibrils. T-tubules form a diad with the 

organelle specialised to store and release calcium for cardiac contraction, the 

sarcoplasmic reticulum. This close association allows rapid transmission of the 

electrical impulse inside the cell and helps couple action potentials with the release 

of internal calcium stores and thus myocyte contraction (see below) (Bers, 2002, 

Levick, 2003). 

The arrangement of the contractile proteins within a myocyte is similar to that found 

in skeletal muscle, the contractile subunits are called myofibrils, and each myofibril 

is made up of multiple sarcomeres, the smallest functional unit of muscle (figure 

1.4). The myofibrils are mainly composed of the proteins actin and myosin. Primarily 

these form thin (actin) and thick (myosin) filaments, which overlap to some extent 

when the muscle is at rest. These filaments repeat along the length of the myofibril in 

sections known as sarcomeres. Although there has been some suggestion of long 

term cell turnover in cardiac muscle (Bergmann 2009), the nuclei of mammalian 

myofibres are entirely postmitotic and cannot replace themselves (Charge and 

Rudnicki, 2004, Ahunja 2007). However in certain conditions, for example increased 

load, the myocytes can increase cross sectional area and lay down more sarcomeres, 

a process called hypertrophy (Leonard 2012-Drazner 2012). In addition when 

myocytes are under abnormal tension they stretch, increasing their length (Gaasch 
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2011, Opie 2006, Leonard (Smaill) 2012-Ryan 2007). Both these responses are 

discussed in the setting of the failing heart below (section 1.4).     

Muscles contract by ATP-driven conformational changes in the myosin head, often 

referred to as the sliding filament mechanism. The sarcomere consists of central 

bidirectional thick filaments (myosin) flanked by six actin filaments, orientated in 

opposite directions (figure 1.4). Each actin subunit has multiple binding sites for the 

myosin head, which act as an actin-based molecular motor to convert chemical 

energy released from the hydrolysis of adenosine tri phosphate (ATP) into 

mechanical force (Barnett and Iaizzo, 2009). In diastole myosin ATPase binds ATP 

hydrolysing it and producing ADP and energy. However due to the inhibitory effects 

of tropomyosin-troponin complexes on actin filaments, the energy formed cannot be 

used, but is stored. During systole calcium floods into the sarcoplasm via numerous 

channel proteins (Bers, 2002), and the calcium binds to the troponin C present on the 

actin filaments (Gillis et al., 2007). The troponin then allosterically modulates the 

tropomyosin. Under normal circumstances, the tropomyosin obstructs the binding 

sites for myosin on the actin filament, but once calcium binds to the troponin C this 

causes an allosteric change in the troponin protein, unblocking the binding sites 

(Gillis et al., 2007).This allows the myosin head to bind to actin and form a 

crossbridge. Force and movement are generated by a change in angle of the myosin 

head facilitated by the stored energy. This advances the filament 5-10nm, the myosin 

head then disengages and this process repeats itself at a new actin site further along 

the filament. This process occurs at numerous myosin heads along the filament. The 

myosin and actin filaments therefore slide over one another, bringing the z-discs 

towards each other, shortening the I-band, H zone and overall sarcomere (A Band) 

length (figure 1.4). Therefore contractile performance is strongly linked to 

intracellular calcium concentration, and this depicted by the force-calcium 

relationship (Barnett and Iaizzo, 2009). 
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Figure 1.4 Diagrammatic representation of a sarcomere and the sliding filament Theory. 

Showing the sarcomeres conformational change from diastole (upper panel) to systole 

(lower panel). (Modified with the permission of Dr Andrew Fisher) 

 

1.2.9 Fibre orientation  

The arrangement of muscle fibres within the heart is much more complex than that 

observed in most skeletal muscles. Unlike the single cell fibres found in skeletal 

muscle, the cardiac mass is made up of short (50-100µm) axially coupled myocytes 

forming continuous 'fibres' which are embedded in a fibrous tissue matrix. In the 

heart, myocytes are often seen to branch at their extremities and give off lateral off 

shoots forming multiple connections with adjacent cells (Costa et al., 1999, LeGrice 

et al., 1995). The result is a detailed mesh of branching and anatomosing cells 

(Anderson et al., 2006). Any future reference to 'fibres' in the heart refers to these 

axially coupled aggregations of myocytes. The detailed study of Pettigrew 

(Pettigrew, 1864) showed that the long axis angulation of the myocytes changes 

across the ventricular wall relative to the equator (figure 1.5A). This so-called helical 
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arrangement came to prominence due to the histological investigations of Streeter 

(Streeter and Bassett, 1966, Streeter et al., 1969). The fibre angle rotates clockwise 

from ~-80° at the epicardium to ~+80° at the endocardium, with the mid-wall 

consisting of fibres primarily running circumferentially (Greenbaum et al., 1981, 

Streeter et al., 1969) (figure 1.5A). Globally a left-handed helical pattern is formed in 

epicardial regions of the left ventricle, and a reciprocal right-handed helical pattern 

dominates the endocardium (Nielsen et al., 2009, Smerup et al., 2009) (figure 1.5A). 

This helical fibre orientation is preserved in many different species (Costa et al., 

1999, Geerts et al., 2002, Greenbaum et al., 1981, Streeter and Bassett, 1966). 

However, the progressive depth-related change in helical angle does vary in different 

regions of the heart (Costa et al., 1999, Dorri et al., 2007, Schmid et al., 2007, 

Streeter et al., 1969). The 3D morphology of the helical arrangement cannot be fully 

appreciated using histology (Greenbaum et al., 1981, Streeter et al., 1969) or peeling 

(Dorri et al., 2007). But such studies have shown fibre orientation must be described 

in terms of both inclination (helical) and transverse (intrusion) angle (figure 1.5B), 

and should be considered as a anisotropic mesh of fibres which functions with the 

connective tissue network (Lunkenheimer et al., 2006b). This 3D arrangement of 

fibres has since been validated using diffusion tensor magnetic resonance imaging 

(DT-MRI- described below), albeit with poor spatial resolution (Nielsen et al., 2009, 

Rohmer et al., 2007, Helm et al., 2005a).  

The transverse angle was first described by Frank 1901 (Schmid et al., 2007). These 

fibres can be described as intruding, as their transverse angle represents the degree to 

which the fibre intrudes in a epicardial to endocardial direction (figure 1.5B). Many 

studies of cardiac contraction ignore such fibres, although their existence is well 

accepted (Geerts et al., 2002, Lunkenheimer et al., 2006a). Transverse angled fibres 

have been shown to have angles as great as 40° (Lunkenheimer et al., 2006a), with 

other studies suggesting up to 12% of their population exceed 45° (Schmid et al., 

2007). These fibres are thought to play important roles in; (1) effective torsional 

movements (see below) and force generation in both systole and diastole (Adhyapak 

and Parachuri, 2009, Lunkenheimer et al., 2004), (2) cyclic rearrangement of 

myoctes in three dimensions (3D) in diastole, (3) shape stabilization, (4) ventricular 

thickening (Anderson et al., 2006, Lunkenheimer et al., 2006a), (5) and antagonism 
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of constrictive forces, although previously refuted, has recently been revisited 

(Lunkenheimer et al., 2004).  

These traditional views have been challenged by other theories, particularly the idea 

that the myocardium is composed of distinct ‘bands’. The concept of a unique 

myocardial band has been proposed (Torrent-Guasp et al., 2005), and the view of 

‘‘nested pretzels’’ has been also been postulated (Jouk et al., 2000). However these 

ideologies have not been validated by anatomical, developmental or histological 

examinations of the whole ventricular mass (Smerup et al., 2009). 

 

The fibre orientation within the atria is not so well understood, but the muscle bands 

within the atria (discussed below), for example PcMs and CT, dictate fibre 

orientation due to the fact that fibres run predominantly in the longitudinal axis of 

these structures (Ho et al., 2002, Wang et al., 1995). Although some data exists on 

fibre orientation in the SAN (Chandler et al., 2011, Dobrzynski et al., 2005), most 

studies focus on the PVs due to their arrhymogenic properties (Hocini et al., 2002, 

Hocini et al., 1998, Zhao et al., 2012). The lack of investigation into global fibre 

orientation of the atria coincides with the lack of knowledge of how the atria 

contract. In Chapter 5 the complex global 3D fibre orientation of the atria is 

investigated and regional heterogeneities are highlighted.  

 

Figure 1.5 Fibre orientation in the ventricles. Simplified 3D representation of the helical 

arrangement of fibre across the ventricular wall (A) (modified from Anderson 2005). 

Schematic showing the angles recorded (inclination and transverse) to find the true 3D 

orientation of a fibre (B). (for further explanation see figures 2.1 and 2.2) 
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1.2.10 Laminar sheets 

The existence of laminar sheet structures within the ventricles was debated for some 

time, however 3D investigations of ventricular myocardium have confirmed their 

existence (Gilbert et al., 2009, LeGrice et al., 1995). The laminae are formed by 

stacks of myocytes (4-6 cells thick) arranged end to end on their long axis, and 

transmurally they showed branching and abrupt changes in organisation (LeGrice et 

al., 1995, Gilbert et al., 2012). The transmural extent of the clefts or planes formed 

by the laminae is still disputed (LeGrice et al., 1995, Lunkenheimer and Niederer, 

2012). The long axes of the myocytes within the sheets are arranged helically (as 

described above). However little is known regarding their contribution to ventricular 

contraction; it is thought myocytes contraction within the laminar sheets induces 

shearing forces (Smerup et al., 2013b), which allow laminae to slide over one 

another, contributing to myocardial thickening in systole (Costa et al., 1999). Within 

sheets, connective tissue surrounds individual fibres and forms branches between 

fibres, but a less dense network is present between sheets. This arrangement is 

thought to facilitate sheet shearing (Costa et al., 1999, LeGrice et al., 1995). In terms 

of conduction it has been postulated that they are involved in the spread of electrical 

propagation (Hooks et al., 2007), and also function to increase the safety factor of the 

myocardium by constraining passive current load locally (Smaill et al., 2013). The 

anatomy of the laminar sheets is investigated in Chapter 5 using non-invasive 

imaging techniques, and novel details regarding regional differences are revealed.  

1.2.11 Connective tissue 

Skeletal muscle is made up of many individual cells known as muscle fibres 

(myofibres), fibre orientation is usually uniform across the muscle and a fine layer of 

connective tissue called endomysium covers each individual fibre. Individual fibres 

are bundled together into fascicles, each surrounded by a layer of connective tissue 

called the perimysium. Many fascicles combined make up a muscle, and a 

connective sheath called the epimysium surrounds the entire muscle providing a 

pathway for blood vessels and nerves (Figure 1.6A) (Salmons, 1995). In Chapter 4 

we present a non-invasive method for 3D imaging of skeletal muscle in which the 

connective tissue can be discriminated from the muscle fibres.  
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Collagen is the major structural component of the extra cellular matrix in the 

myocardium, and like in skeletal muscle has been classified into three components 

(figure 1.6B) : the endomysium surrounds each myocyte providing it with the 

supportive frame work, coordinates the transmission of force and prevents slippage 

between adjacent cells; the perimysium a network of thicker connective tissue 

surrounds groups of myocytes (laminar sheets), its weave structure bears the shearing 

forces between groups of myocytes and its lateral strands prevent malalignment 

between sheets (Ho, 2009, Pope et al., 2008); and the epimysium surrounds the entire 

muscle (Ho, 2009). The connective tissue network has been shown to play important 

roles in ventricular contractions and transmural thickening (Lunkenheimer et al., 

2006b). Recent studies using 3D imaging techniques have shown transmural 

differences in the 3D distribution of connective tissue (Pope et al., 2008). It is 

postulated these differences have functional and morphological implications; Pope et 

al. showed laminar sheets were present throughout the subendocardium and midwall 

where perimysial collagen was present mainly in the form of extensive sheets. But 

Laminar sheets were not present in the subepicardium where perimysial collagen is 

mostly composed of regularly spaced cords (Pope et al., 2008). 

 

 

Figure 1.6 Schematic representations of the connective tissue arrangement in skeletal 

muscle and myocardium. Showing the hierarchy of connective tissue in skeletal muscle (A), 

and the myocardium (B). (B- Modified from Ho 2009) 
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1.2.12  Cardiac contraction   

Systolic contraction causes complex deformation of the LV, and is a combination of 

long axis shortening, circumferential constriction, wall thickening and long axis 

torsion (Anderson et al., 2005, Smerup et al., 2009). Myocyte contractions are 

constrained to a 14-16% shortening (Rodriguez et al., 1992, Lehto and Tirri, 1980), 

however systolic strains in the LV can greatly exceed this value (Arts et al., 1984, 

Arts et al., 1979). Fibre shortening only causes a 8% increase in myocyte diameter 

which does not explain the 40% radial wall thickening and ~60% ejection fraction in 

systole (Arts et al., 1979). This suggests the myocardial mesh (myocytes and 

connective tissue) is able to produce greater deformation than its active constituents. 

It is postulated that this is achieved by the dualistic function of ventricular torsion 

(angular difference in reciprocal twisting of apex and base), this intricate pattern of 

motion utilizes the complex fibre architecture of the heart creating tangential and 

radial forces (Greenbaum et al., 1981, Lunkenheimer et al., 2004, Smerup et al., 

2013b). This ‘wringing’ motion during myocardial contraction was first described by 

Lower 1669 (Ingels, 1997). Observed functional deformation shows an initial 

counter-clockwise twist globally (as seen looking from below the heart), with 

accompanied narrowing (isovolumic phase) prior to blood ejection. During ejection 

the counter-clockwise twisting continues at the apex, while clockwise twisting occurs 

at the base along with longitudinal shortening. Then the apex rotates rapidly in a 

clockwise manner (isovolumic untwisting), thus the ventricle lengthens and the 

cavity slightly widens, no blood enters or leaves the heart at this stage (Buckberg et 

al., 2008, Buckberg et al., 2006, Jung et al., 2006, Notomi et al., 2008). As 

untwisting continues there is a pressure decay (Notomi et al., 2008), and rapid filling 

occurs due to both suction and the created pressure gradient (Thomas and Popovic, 

2006, Notomi et al., 2008). The final phase is relaxation (diastole), where widening 

of the heart continues and filling is slowed. The cycle is reinitiated by atrial 

contraction in the next synchronised heartbeat. The mode of contraction is therefore 

determined by the orientation of the oblique running fibres at the epi and 

endocardium (Russel et al., 2009).  

As stated by Anderson et al., 2008 to fully explain transmural thickening of the 

ventricles, it is necessary to postulate rearrangement of the individual myocytes 

relative to each other (Anderson et al., 2008). It has been shown the myocytes do 
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realign themselves transmurally during systole, with up to 40% more myocytes 

packed transmurally than is seen in diastole (as described by Anderson et al., 2008). 

Also the work of Lunkenheimer et al., 2004 and 2006a suggests the functional 

contribution of transverse angled fibres to wall thickening should always be 

considered. It is also postulated wall thickening is produced by sliding of the 

Laminar sheets (as described above) (Costa et al., 1999, LeGrice et al., 1995). All 

these theories are believed to be supported by the morphology and mechanics of the 

connective tissue network (Ingels, 1997, Lunkenheimer et al., 2006b).         

The dualistic motion of the LV acts to equalise fibre stress and strain throughout the 

heart, and reduce transmural gradients of fibre work (Arts et al., 1979, Ingels, 1997). 

Furthermore the rapid untwisting during early diastole is believed to assist LV filling 

(Notomi et al., 2008, Rademakers et al., 1992), and torsion has been shown to 

generate realistic ejection fractions in modelling studies (Sallin, 1969, Smerup et al., 

2013b). However there is still disparity over the form and function of the ventricles 

(Anderson et al., 2008, Buckberg et al., 2008, Torrent-Guasp et al., 2005), and how 

the ventricles function in HF is yet to be elucidated. In Chapter 8 changes in fibre 

orientation in the failing heart are assessed and effects on contractile performance are 

discussed. 

Less is known about the contractions of the atria. Inferences regarding contraction 

have been made with reference to the atria’s muscular bands (described below); the 

PcMs are thought to play an important role in deformation of the atrial chamber 

during atrial systole (Ho et al., 2002, Ho and Sánchez-Quintana, 2009, Wang et al., 

1995). This lack of understanding is mostly due to the absence of high fidelity 3D 

geometries; 3D fibre orientation has not been described in the atria as it has in the 

ventricles. In Chapter 5 we investigate the global 3D fibre orientation within the 

atria, and make inferences regarding differential systolic deformation of the RA and 

LA. 

1.2.13 Action potentials of the working myocytes 

The electrical activation of myocytes is essential for the normal contractile function 

of the heart; this relationship is referred to as excitation-contraction coupling (Barnett 

and Iaizzo, 2009, Bers, 2002, Iaizzo et al., 2009). Myocytes create a charge gradient 
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through the action of various ion pumps and ion selective channels (Barnett and 

Iaizzo, 2009, Bers, 2002), the charge difference between the cell and extracellular 

space is known as the membrane potential. In the resting state the cell carries a 

negative charge relative to the outside, but the initiation of a cardiac action potential 

changes the cells’ permeability to sodium (Na
+
), calcium (Ca

2+
) and potassium ions 

(K
+
), causing the cell to depolarise (figure 1.7). Calcium ions are considered the most 

important in excitation-contraction coupling as Ca
2+

 is a direct activator of myocyte 

contraction (see above) (Bers, 2002). As a result Ca
2+ 

mishandling contributes to 

contractile and electrical dysfunction in pathophysiological conditions (Bers, 2002, 

Pogwizd et al., 2001). During the cardiac action potential, inward Ca
2+

 current (Ica) 

increases due to depolarization-activated Ca
2+ 

channels, this contributes to the action 

potential plateau (Figure 1.7). Ca
2+ 

entry and ryanodine receptor activation triggers 

Ca
2+ 

release from the sarcoplasmic reticulum (SR), in a process known as calcium 

induced calcium release. The combination of influx and release raises the free 

intracellular concentration, allowing Ca
2+ 

to bind to the myofilament protein troponin 

C, which then switches on the contractile machinery (see above) (figure 1.4 and 1.7). 

For relaxation, Ca
2+ 

is transported out of the cell by various pathways; SR Ca²+
-

ATPase, sarcolemmal Na
+
/ Ca²+

 exchange, sarcolemmal Ca²+
-ATPase or 

mitochondrial Ca²+
- uniport. This reduces ICa allowing Ca²+

 to dissociate from 

troponin (Barnett and Iaizzo, 2009, Bers, 2002, Levick, 2003).     
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Figure 1.7 Cardiac action potential of a working myocyte and the corresponding ionic 

currents. The inward Na current associated with the opening of the voltage-gated Na-

channels causes upstroke (phase 0). The closing of the Na-channels causes initial 

repolarization (phase 1). The depolarization of the cell causes opening of the voltage-gated 

Ca-channels and the voltage-gated K-channels, whose ionic currents are in balance during 

plateau (phase 2). The closing of the Ca-channels while the K-channels are still passing an 

outward current causes the repolarization (phase 3) and return to the resting membrane 

potential (phase 4). (Modified from Barnett 2009) 

 

1.3 The cardiac conduction system 

This section will cover the gross and micro anatomy of the cardiac conduction 

system (CCS), and highlight its function and dysfunction in health and disease. In 

Chapter 6 we present a technique that permits non-invasive imaging of the major 

regions of the CCS for the first time in a fully intact heart. Changes in the 3D 

morphology of the CCS with HF are investigated using the same technique in 

Chapter 7.  
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1.3.1 The anatomy of the cardiac conduction system 

Synchronised contraction of the atria and ventricles is regulated by the propagation 

of electrical impulses travelling through a complex network of modified myocytes, 

collectively called the CCS (Laske et al., 2009). These subpopulations of specialised 

myocytes are interposed within the working myocardium, and have the ability to 

spontaneously generate electrical impulses (pacemake). They act to preferentially 

conduct impulses throughout the heart in a rapid and coordinated fashion (Laske et 

al., 2009).  

The components and morphology of the CCS in humans is similar to that found in 

most commonly used lab animals, however interspecies and intraspecies variations 

have been described (Sanchez-Quintana and Yen Ho, 2003, Atkinson et al., 2011, 

Stephenson et al., 2012, Ho et al., 1995). The CCS is composed of; the sinoatrial 

node (SAN), the main pacemaker of the heart; the atrioventricular conduction axis 

(AVCA), forming the only functional connection between the atria and ventricles; 

and the Purkinje network, which allows fast and coordinated conduction to the 

ventricles (figure 1.8) (Boyett, 2009, Sanchez-Quintana and Yen Ho, 2003). 

However recently other regions of specialised tissues have been described, namely 

the atrioventricular ring tissues (Yanni et al., 2009a) and the ventricular outflow 

tracts (Monfredi et al., 2010) (figure 1.8). 

To be deemed a specialised conducting cell, myocytes need to match three criteria, 

first proposed by Aschoff and Monckeberg in 1910 (Anderson et al., 2013): (1) they 

should be histologically discrete from working myocardium; (2) should be traceable 

in serial sections; and (3) the cells should be insulated by fibrous tissue from the 

working myocardium. More recently molecular phenotyping of both the CCS and 

working myocardium has allowed further distinction of the specialised tissues 

(reviewed by Dobrzynski et al., 2013).    
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Figure 1.8 Schematic representation of the cardiac conduction system (CCS) in a 

longitudinally sectioned heart, with corresponding activation sequence and regional 

action potentials. Black dotted lines indicate inter-nodal and inter-atrial conduction. 

Activation time in milliseconds. (Modified from Laske 2009) 

 

1.3.1.1 The sinoatrial node 

The SAN serves as the natural pacemaker of the heart, and is thus responsible for 

generating normal cardiac rhythm (Laske et al., 2009). The SAN was first discovered 

in 1907 by Keith and Flack (Keith and Flack, 1907) who distinguished the node in 

many mammals including humans. The SAN is located in the subepicardial 

intercaval region of the heart, and in contrast to many textbook descriptions (figure 

1.8), runs from the opening of the SVC down alongside the CT extending towards 

the IVC (Anderson and Ho, 1998, Dobrzynski et al., 2005). The nodal myocytes are 

smaller than the working myocytes, and have no spatial order, few mitochondria, 

sparse myofilaments, and are embedded in a dense connective tissue network (Boyett 

et al., 2000, Christoffels et al., 2010, Sanchez-Quintana and Yen Ho, 2003). At the 

periphery of the node is the paranodal region, a region distinct from the SAN and 

working myocardium. Paranodal cells are embedded in fat not connective tissue 

(SAN), and are loosely packed not densely packed like the myocardium (Chandler et 
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al., 2009, Dobrzynski et al., 2013). However it does contain a mixture of atrial and 

nodal myocytes (Chandler et al., 2009), the precise function of the region is unknown 

but it is postulated that it plays an important role in normal atrial activation (Aslanidi 

et al., 2011, Chandler et al., 2009). The SAN therefore only satisfies two of the 

criteria established in 1910; histologically discrete and traceable in serial sections. 

1.3.1.2 Internodal conduction 

Controversy has long surrounded the issue of how the electrical impulse within the 

RA travels from the SAN to the atrioventricular node (AVN). Dual pathway 

physiology is generally accepted, with both anatomical and functional evidence 

supporting their existence (Hucker et al., 2008a, Zhang et al., 2001). The two 

pathways are classified as ‘slow’ and ‘fast’ (figure 1.8); the slow pathway normally 

passes the isthmus between the CS and vestibule to join the proximal aspect of the 

AVCA, and has a longer conduction time but a shorter effective refractory period 

than the fast; The fast pathway runs superiorly across to the IAS, before descending 

the IAS to meet the AVCA at the common node, and has a faster conduction rate, but 

a longer effective refractory period than the slow pathway (Laske et al., 2009). 

Therefore during normal conduction the fast pathway is preferential, however during 

higher heart rates or premature beats slow conduction occurs through the slow 

pathway.  

Some support the existence of specialised tracts (James, 1963), while others favour 

the idea that the arrangement of myocytes (fibres) is responsible for the fast 

preferential conduction between the nodes (Sanchez-Quintana et al., 1997). It is 

argued studies of specialised tracts ignore the criteria of 1910 (Anderson et al., 

1981). However some histological studies do describe insulated tracts containing 

both histologically definable Purkinje like cells and nerve cells, such tracts matching 

the anatomical positions of the slow and fast pathways have been described in rabbit 

and pig (Bojsen-Moller and Tranum-Jensen, 1971, Bojsen-Moller and Tranum-

Jensen, 1972, Paes De Carvaho et al., 1953). These are the left and right sino-atrial 

ring bundles (SARBs), they form a fine ring of tissue which encircles the smooth 

intercaval region. Inferiorly the right SARB runs through the eustachian and 

thebesian valves into the region of the AVCA. Superiorly the right SARB gives off 

branches to the PcMs, while the left SARB branches across to the IAS eventually 
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running inferiorly to, like the right SARB, join with the AVCA (Roberts, 1991, 

Bojsen-Moller and Tranum-Jensen, 1972). Studies of the tracts electrophysiology 

using micro electrodes suggest, like Purkinje cells, they have slow diastolic 

depolarisation (pacemaker potential) and a fast upstroke (Hiraoka and Sano, 1976, 

Paes De Carvalho et al., 1953). Paes de Carvalho et al., 1953 suggested the SARBs 

are the first to be excited by the SAN and offer the fastest route for internodal 

conduction, however more recent studies have questioned the role of the SARBs 

suggesting the CT is the first to be excited, and offers the route for preferential 

conduction due to its superior conduction velocity (Masuda and Paes de Carvalho, 

1975, Hiraoka and Sano, 1976). The existence of specialised internodal tracts is 

considered in Chapter 5; 3D anatomy, molecular expression and fibre orientations in 

the region are investigated.   

1.3.1.3 The atrioventricular conduction axis 

The principle function of the AVCA is to conduct action potentials from the atria to 

the ventricles. Conduction through the AVCA is slow allowing atrial systole to 

precede ventricular systole and thus permit ventricular filling. The AVCA was 

originally discovered by Tawara (Tawara, 2000), and has atrial, penetrating and 

ventricular components (Anderson et al., 2013, Tawara, 2000). The majority of the 

atrial component lies within the RA in the triangle of Koch (figure 1.2 and 1.9). The 

compact node (CN) lies at the apex of the triangle; proximally, the inferior nodal 

extension (INE) projects between the CS and tricuspid valve hinge (septal isthmus), 

and constitutes part of the slow pathway (Hucker et al., 2008b, Li et al., 2008). A 

transitional zone of cells surrounds the CN at the region where the fast pathway 

enters the conduction axis, and their presence may act to increase the safety factor in 

the region (Dobrzynski et al., 2013). The penetrating part of the AVCA is formed 

anterior to the CN when the axis becomes insulated from the atrial tissue by the 

fibrous skeleton (figure 1.9). Running within the central fibrous body this region is 

deemed the penetrating bundle. It is insulated for only a short distance before 

emerging anteriorly on the superior aspect of the IVS, first as a short non-branching 

bundle, before becoming the branching bundle giving rise to the right and left bundle 

branches  (Dobrzynski et al., 2013, Sanchez-Quintana and Yen Ho, 2003) (figure 

1.9).      



26 

 

 

Figure 1.9  Diagrammatic representation of the atrioventricular conduction axis and its 

association with surrounding structures. Blue arrows indicate the entry points of the fast 

and slow pathways into the axis. CS- coronary sinus, CN- compact node, FO- foramen ovale, 

IVC- inferior vena cava, IVS- interventricular septum, NBrB- non-branching bundle, BrB-

branching bundle, LBB and RBB- left and right bundle branches. (Modified from Mazgalev et 

al., 2002) 

 

1.3.1.4 The atrioventricular ring tissue 

Recently additional specialised tissues have been identified at the atrioventricular 

junctions. These histologically specialised rings take origin form the INE of the 

AVCA and encircle the orifices of the atrioventricular valves forming a figure-of-

eight (Yanni et al., 2009a). One ring projects leftwards to encircle the orifice of 

mitral valve, while the rightward projecting ring encircles the tricuspid valve. 

Anteriorly the right ring passes over the AVCA, and is therefore not associated with 

the central fibrous body, but joins with the left ring to form the retroaortic node. The 

retro aortic node is found posterior to the aortic root within the atrial wall (Yanni et 

al., 2009a). The ring tissues satisfy two of the three criteria for specialised tissues 
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(Aschoff and Monckeberg 1910), and are thus justified in been classified specialised. 

The function of the atrioventricular ring tissues is yet to be elucidated, however this 

tissue does have portential pacemaking capabilities (Dobrzynski et al., 2013), and is 

also thought to play a role in arrhythmogenesis in the adult heart (Boyett, 2009), 

making it an ablation target for patients with atrial tachycardia (Kistler et al., 2006).      

1.3.1.5 The Purkinje network 

There is an on-going debate over atrial conduction, however there is no doubt that 

insulated specialised conducting tissue distributes the cardiac impulse through the 

ventricles. Collections of insulated rapid conducting cells known as Purkinje fibres 

act as preferential conduction pathways, providing fast and coordinated excitation of 

the ventricles (Laske et al., 2009, Sanchez-Quintana and Yen Ho, 2003) (figure 1.8). 

The Purkinje fibres first described by Jan Evangelista Purkinje in sheep ventricles in 

1845 (Eliška, 2006), are continuous with the bundle branches of the branching 

bundle (figure 1.9). The right and left bundle branches (RBB,LBB) have asymmetric 

morphologies; the LBB is typically fan-like and divided into 3 fascicles, while the 

RBB is more cord like and projects anteriorly (Ansari et al., 1999, Atkinson et al., 

2011, Miquerol et al., 2004). The Purkinje fibres in both sides of the heart form 

complex subendocardial and free running networks which project towards the apex 

down the IVS, and form extensive connections with the papillary muscles of the 

valves and the ventricular free walls (Ansari et al., 1999, Atkinson et al., 2011, 

Miquerol et al., 2004). The SAN, INE and CN all have transitional cells at their 

junctions with the atrial myocardium (see above). Transitional cells have also been 

described at the Purkinje-LV wall junctions (Severs, 2000). Such cells are expected 

to facilitate smooth propagation of electrical impulses, thus reducing source-sink 

mismatch.  

1.3.1.6 The right ventricular outflow tract 

The right ventricular outflow tract is a muscular region which connects the working 

myocardium of the RV infundibulum and the pulmonary trunk. This region also 

gives attachment to the pulmonary valve leaflets (Monfredi et al., 2010). Recently it 

has been shown that the tract contains cells with a nodal-like phenotype (Monfredi et 

al., 2010, Yanni et al., 2009a) and pacemaker-like activity (Dobrzynski et al., 2013). 
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It is thought that the presence of these ‘nodal’ cells plays an important role in the 

high susceptibility of the region to arrhythmias(Yanni et al., 2009a).    

1.3.2 Propagation of the wave of depolarisation 

The electrical activation of nodal cells and myocytes is essential for the normal 

contractile function of the heart, this relationship is referred to as excitation-

contraction coupling (Bers, 2002, Iaizzo et al., 2009) (see above). The generation of 

action potentials is facilitated by the electrical permeability of various ion channels 

and the cell-cell communications created by gap junctions. This section will 

highlight how action potential morphology and propagation differs in the CCS and 

working myocardium. 

1.3.2.1 Action potentials- cardiac conduction system vs myocardium  

The principles behind the generation of action potentials are the same in both nodal 

and working myocytes, but the time course and morphology of the action potentials 

is considerably different (Iaizzo et al., 2009, Laske et al., 2009, Levick, 2003). Nodal 

cells are characterised by the ability to spontaneously depolarize to generate an 

action potential (pacemake). Nodal cells (SAN and AVN) can also be characterised 

by their action potential morphology (figure 1.10); in comparison to the working 

myocardium they have a slower initial upstroke, a lower amplitude overshoot, and 

usually lack an early phase of repolarization (phase 1), but do have a prominent 

plateau (phase 2). The repolarisation is slower, and as a result, the sinus node action 

potential is longer than that of the surrounding atrial muscle (Boyett et al., 1999, 

Laske et al., 2009).  

The Purkinje cells can also be characterised by automaticity and action potential 

morphology, but also by their rapid conduction; they have a rapid upstroke, a 

prominent early phase of rapid repolarization (phase 1), and a stable plateau and 

repolarisation phase. The working myocardium is also fast conducting, with an 

action potential morphology similar to that of the Purkinje cells (figure 1.10). 

However they do have a shorter action potential duration, which ensures that they are 

out of the refractory period before the onset of the next heart beat (Laske et al., 

2009).   
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Figure 1.10 Ventricular cell action potential vs Nodal cell action potential.  Top row shows 

typical action potential morphology of ventricular cell (left) and nodal cell (right), 0- 

upstroke (depolarisation), 1- initial repolarisation, 2- plateau, 3- repolarisation,4- resting 

potential. Bottom row shows corresponding ionic currents. ERP- effective refractory period, 

RRP- relative refractory period. (Modified from Laske 2009) 

  

1.3.3 Pathways for conduction  

The CCS 

The speed at which a wave of depolarisation propagates through tissue is termed- 

conduction velocity (CV). Different conduction velocities are observed in different 

tissue types and regions across the heart, and are related to ion channel and gap 

junction expression (see above), but are also dependent on myocyte size and 

organization. 

The cellular architecture of the different regions of the CCS contributes to their 

characteristic conduction velocities. In the SAN CV is considerable slower (a few 
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cm/s in the rabbit) than in the surrounding atrial muscle (~70 cm/s in the rabbit) 

(figure 1.10) (Boyett et al., 2000). This is in part due to the small cell size associated 

with the SAN, also cells within the node are sparse and heterogeneously arranged in 

dense connective tissue (Boyett et al., 2000, Dobrzynski et al., 2005), all factors 

which contribute to slow conduction. The AVN is predominantly slow-conducting 

(1-5 cm/s) with regional changes in CV. Proximal to the CN, cells are small (2-3 µm- 

around 10 times smaller than working myocytes) and arranged in spiralling fascicles 

surrounded by connective tissue. The CN cells are interwoven and the ‘tortuous’ 

pathways created are thought to be a major contributor to atrioventricular conduction 

delay (Laske et al., 2009, Levick, 2003). In the penetrating and non-branching and 

branching bundles cells are also arranged in fascicles but are generally larger with a 

greater population of spindle cells present (faster conducting). In contrast CV in the 

Purkinje cells is the fastest in the heart with a conduction velocity of 230 cm/s as 

compared to 75 cm/s in the ‘fast conducting’ ventricular muscle (Desplantez et al., 

2007). This is mostly due to fact that Purkinje cells are the widest cells in the heart 

(40-80 µm) and have strong cell-cell coupling (Laske et al., 2009, Levick, 2003). 

The ventricles 

In the fast conducting working myocardium, muscular contraction and electrical 

conduction is strongly dictated by myocardial architecture (Spach and Kootsey, 

1983, Dorri et al., 2010). The helical and transverse angled populations of the cells 

form a spiracle arrangement of fibres which coupled with the CCS allow for fast and 

synchronised conduction, facilitating the complex dualistic motion or torsion of the 

heart (see above).   

The atria 

Muscular bands and sleeves of varying prominence exist within the atria, and have 

been studied by dissection (Ho et al., 2002, Wang et al., 1995). These structures play 

a vital role in the preferential propagation of action potentials and effective muscular 

contraction of the atria. In the RA they include the CT, Eustachian ridge and the 

multiple ridges of myocardium associated with the FO (structures described above). 

Bands which are common in both atria include the PcMs, and the vestibules 

surrounding the atrioventricular valves (Ho et al., 2002, Ho and Sánchez-Quintana, 

2009).  
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Bands also exist on the epicardial surface of the RA; the intercaval bundle covers the 

surface of the venous sinus between the posterior interatrial groove and sulcus 

terminalis. Bachmann’s Bundle (BB) forms the most important ‘inter-atrial’ band; 

the CT gives rise to BB in the atrial roof anterior to the opening of the SVC. BB runs 

anteriorly on the surface of the inter-atrial groove as a prominent band of transverse 

running fibres. There are often further bands running inferiorly in the inter-atrial 

grove (Ho et al., 2002, Ho and Sánchez-Quintana, 2009). On the posterior wall there 

is an inter-atrial band, aptly named the posterior inter-atrial band which runs between 

the CS and LA (Chauvin et al., 2000, Ho and Sánchez-Quintana, 2009) (figure 1.11).  

The circumferential bands or bundles encircle the base of the RA and form the 

vestibule. The internal circumferential band commences anteriorly at the IAS and 

runs posteriorly around the right vestibule. The external circumferential band 

originates from the right side of the anterior inter-atrial bundle, and posteriorly is 

continuous with the intercaval bundle (Wang et al., 1995). The circumferential 

bundles of the LA are more prominent than in the RA, but also lie predominantly in 

the vestibule. The principle bundle is a leftward continuation of BB; as it reaches the 

appendage it gives off upper and lower branches which encircle the left atrial 

appendage. The upper branch gives off further branches to the LA free wall, while 

the lower branch courses the vestibule, both branches continue posteriorly and insert 

into the posterior inter-atrial groove. In the LA the septopulmonary bundle is 

analogous to the intercaval bundle of the RA. In the human heart it originates at the 

posterior inter-atrial groove and runs superiorly towards the anterior wall, here it 

gives off multiple bundles, the largest of which runs leftwards and intermingles with 

the BB (Wang et al., 1995) (figure 1.11).     

Located in the posterior wall or venous component of the LA (Which is larger than in 

RA) are the pulmonary vein sleeves, these short tubes of circumferentially running 

myofibres anchor the 2-4 pulmonary veins to the LA (Anderson and Cook, 2007, Ho 

et al., 2002) (figure 1.11). The junctions between the muscle sleeves and LA are 

complex with heterogeneous fibre orientation. It is believed that this anisotropic 

arrangement of myocytes contributes to the high prevalence of arrhythmias in this 

region in the setting of fibrosis and ageing (Hocini et al., 2002, Spach et al., 1982, 

Zhao et al., 2012). In Chapter 5 the 3D fibre orientation of these bands are 
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investigated, with emphasis placed on their junctions with the adjacent structures and 

atrial wall.    

        

 

Figure 1.11 Diagrammatic representation of the atrial muscle bands. Showing the major 

muscle bands and sleeves of the atria (red lines) from anterior (top) and posterior (bottom) 

views. LA- left atrium, LI,LS,RI,RS- left and right inferior and superior pulmonary veins, IVC- 

inferior vena cava, RA- atrium, SVC- superior vena cava.  

 

1.4 The failing heart 

Heart failure (HF) is a clinical syndrome which is characterised by inability of the 

heart to pump sufficient blood to meet the body’s metabolic needs (Leonard et al., 

2012). The overall prevalence of clinically evident HF is around 5–20 cases/1,000 

population, however this figure rises to >100 cases/1,000 population in subjects aged 
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>65 years (National Collaborating Centre for Chronic Conditions, 2006). This 

section will highlight morphological and functional changes in HF, including 

changes to fibre orientation and the CCS, with emphasis placed on the effects of 

volume and pressure overload. 

1.4.1 Causes and predispositions 

Many changes in morphology and physiology of the cardiovascular system can 

increase an individual’s risk of developing HF including: Increased preload (the end 

volumetric pressure acting of the heart), normally caused by volume overload due to 

insufficiency of the valves and increased venous and pulmonary pressures; increased 

afterload (described as the pressure the ventricle has to overcome to eject blood), 

normally attributed to pressure overload of the heart due to increased arterial 

pressure or hypertension due to vessel stenosis and occlusion; myocardial infarction, 

in this acute syndrome an area of the heart becomes starved of its blood supply 

normally due to blockage of a coronary artery, resulting in myocardial ischemia 

which causes hypoxia and if untreated necrosis of the myocardium. Risk factors for 

HF include; gender, age, ethnicity, genetic predisposition, and lifestyle risk factors 

such as obesity, smoking, alcoholism and sedentary existence (Jessup and Brozena, 

2003). 

1.4.2 Morphological changes disease 

Multifactorial morphological changes offer a basis for classifying HF, but 

classifications are often conflicting (Gaasch and Zile, 2011, Opie et al., 2006). For 

example; the idea of a common end-stage for all HF syndromes has recently been 

challenged (Leonard et al., 2012). However HF for the most part is a progressive 

process characterised by changes in the morphology and shape of the chamber due to 

dilatation and/or hypertrophy – a process referred to as ‘cardiac remodelling’ 

(Gaasch and Zile, 2011, Opie et al., 2006) (figure 1.12). Remodelling has been 

shown to be dependent on the type and severity of overload (volume or pressure) 

(Gaasch and Meyer, 2008), and can be compensated (improve function) or 

decompensated (cause dysfunction). The usual response in a chronic setting is for the 

heart to take on a compensated phenotype, but left untreated the progression to 
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decompensated HF is unavoidable, and currently this transition between states is 

poorly understood. 

 

 

Figure 1.12 Schematic representation of cardiac remodelling in response to overload. 

Showing the classic response to pressure overload (top row), volume overload (middle row) 

and myocardial infarction (bottom row). (Modified from Opie 2006) 

 

1.4.2.1 Response to volume overload 

The general response to volume overload is eccentric hypertrophy, in which 

increased preload causes myocyte stretching and addition of sarcomeres, thus 

causing chamber dilatation (Figure 1.12). This is usually accompanied by mild 

hypertrophy but a decrease in the relative wall thickness (RWT)- the ratio between 

wall thickness and chamber radius (Opie et al., 2006, Gaasch and Meyer, 2008). 
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1.4.2.2 Response to pressure overload 

The general response to pressure overload is concentric hypertrophy, increased 

afterload causes hypertrophy of the myocardium which is associated with an 

increased myocyte cross-sectional area due to addition of sarcomeres (figure 1.12) 

(Drazner, 2011). According to Linzbach (Gaasch and Zile, 2011) in concentric 

hypertrophy there is “no change in the size of the internal cavity”, however recently 

more detailed classifications of HF have been proposed, for example hypertrophy in 

the presence of dilatation and increased RWT is termed mixed hypertrophy (Gaasch 

and Zile, 2011) (figure 1.13).   

 

 

Figure 1.13 Flow chart for classification of cardiac remodelling. Detailed categorisation of 

cardiac remodelling using dilatation, hypertrophy and relative wall thickness as criteria. 

LVH- left ventricular hypertrophy, RWT- relative wall thickness. (Modified from Gaasch 

2011) 

 

1.4.2.3 Changes to the CCS in disease 

In contrast to the working myocardium, changes in the gross morphology of the CCS 

in disease are not well understood, however changes in cell structure and remodelling 
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at a molecular level in HF are much better represented. The CCS has been confirmed 

as plastic (Boyett, 2009), and has been shown to be more sensitive to change than 

myocardium (Chandler et al., 2009) (Yanni et al., unpublished).  

 

Histological studies have shown all regions of the CCS undergo hypertrophy (Harris 

et al., 2012, Okada and Fukuda, 1981)(Yanni et al., unpublished), and show an 

increased deposition of ECM in HF (Yanni et al., 2009b). Significant remodelling of 

ion channels, gap junctions and calcium handling proteins has been described in the 

CCS in HF. A downregulation of funny current (If) and slow delayed rectifying 

potassium current (IK,s) has been observed in the sinus node in rabbit (Verkerk et al., 

2003), and widespread remodelling of ion channels has been observed in the sinus 

node of  infarcted (Yanni et al., 2011) and pulmonary hypertensive rats (described in 

Dobrzynski et al., 2013). Studies of the AVCA electrophysiology in failure are 

limited, slowing of atrioventricular conduction has been shown in a study of isolated 

atrioventricular junction preparations, in a rabbit model of HF induced by myocardial 

infarction (Muir et al., 2005). In the Purkinje fibres significant downregulation of ion 

channels has been described in both rabbit (HF) and dog (ventricular tachy pacing) 

models: downregulation of funny channels (HCN4), Na+ channels (Nav1.5), Ca
2+

 

channels (Cav1.2, Cav1.3), K+ channels (Kir2.1), Ca
2+

-handling proteins (RYR2, 

SERCA2 and NCX1) and connexins (Cx40, Cx43) were common in both models 

(Maguy et al., 2009)(Yanni et al., unpublished data). However contrasting findings 

have been presented in a pressure overload model of HF in rat (Harris et al., 2012). 

In chapter 7 we investigate the effects of experimental HF on the major regions of 

the CCS. 

 

1.4.2.4 Changes in fibre orientation 

There is dispute as to the arrangement of the muscle fibres in the normal heart 

(Greenbaum et al., 1981, Jouk et al., 2000, Streeter et al., 1969, Torrent-Guasp et al., 

2005), as a result the effects of cardiac remodelling on fibre orientation is poorly 

understood, and conflicting results can be found in the literature. Pearlman et al. 

conducted a histological study looking at fibre orientation in various stages of heart 

disease, and concluded that the orientation of the myocardial strands was unaltered 

(Pearlman et al., 1981), this is consistent with the findings of Neilsen et al. using DT-
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MRI, but spatial resolution was poor (1.33mm³) (Nielsen et al., 2009). In contrast, 

subsequent studies suggest fibre orientation is altered in HF; histological studies of 

hypertrophic hearts suggest the proportion of longitudinal fibres is increased while 

circumferential fibres are reduced (Carew and Covell, 1979, Kuribayashi and 

Roberts, 1992). These findings are consistent with studies using DT-MRI to map 

fibre orientation in hypertrophic (Tseng et al., 2006) and dilated hearts (Eggen et al., 

2009). Studies have also highlighted the increased variability of fibre orientation in 

HF and show regional differences between the base and apex (Adhyapak and 

Parachuri, 2009, Eggen et al., 2009, Schmitt et al., 2009). However most studies only 

concentrate on changes in the helical angle, with few studies looking at changes in 

the transverse or intrusion angle. Lunkenheimer et al. suggests these intruding fibres 

will become more erect in response to hypertrophy (Lunkenheimer et al., 2006b), 

using using difussion tensor magnetic resonance imaging (DT-MRI) Schmitt et al. 

described an increase in the angle of intruding fibres in the LV free wall and IVS in 

hypertrophy (Schmitt et al., 2009).         

Changes to 3D fibre orientation in failed hearts is investigated in Chapter 8; areas of 

hypertrophy are examined, however few descriptions of changes in dilated 

myocardium exist in the literature, therefore emphasis is placed on regions of 

dilatation. 

 

1.4.3 Functional changes in heart disease 

Functional changes to the heart are usually assessed using echocardiography. 

Measures include stroke volume, ejection fraction and fractional shortening. Stroke 

Volume (SV) is defined as the volume ejected between the end of diastole and the 

end of systole. Ejection Fraction (EF) is a global index of LV fibre shortening and is 

generally considered as one of the most meaningful measures of the LV pump 

function. It is defined as the ratio of the SV to the end diastolic volume. Fractional 

shortening (FS) is the percentage change in LV cavity dimension with systolic 

contraction (Frangi et al., 2001).  
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1.4.3.1 Laws of the heart 

Starling’s law of the heart states that the force of contraction by the myocardium is 

proportionate to the length of the muscle fibre pre-contraction, therefore the more a 

myocyte is stretched the greater the force of the contraction it produces (figure 

1.14A). Starling’s law is therefore related to the length tension relationship (figure 

1.14C), and as a result excessive stress will eventually result in plateau and decline 

of contractility (figure 1.14A,C) (Levick, 2003, Loushin et al., 2009).  

Laplace’s law states that internal pressure is proportional to wall tension (wall stress 

x wall thickness) and inversely proportional to internal radius. Therefore as a 

chamber increases in size and the wall thins, stroke volume decreases (figure 1.14B). 

In Laplace’s law afterload is the ‘wall stress’ during ejection and depends on wall 

thickness and arterial pressure, and is therefore related to the after-load shortening 

relationship (figure 1.14D), which shows how excessive afterload can cause 

decreased contractility (Levick, 2003, Loushin et al., 2009).        
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Figure 1.14 Functional laws of the heart. Line graphs representing: Starling’s law (A), the 

effects of increased afterload (B), the length tension relationship (C) and the afterload 

shortening curve (D). (adapted from Levick 2003 and Sonnenblick 1962) 

 

1.4.3.2 Functional changes in heart failure 

Volume overload 

As mentioned above vast morphological changes occur in the presence of overload, 

with the severity and time-scale of overload dictating the level of remodelling. 

Usually the initial response to volume overload is compensated; dilatation acts to 

increase end diastolic pressure and preload is increased. As a result contractility and 

stroke volume are increased due to Starling’s law and the length-tension relationship 

(figure 1.14A,C) (Barnett and Iaizzo, 2009, Levick, 2003, Loushin et al., 2009). At 

this point a balance is maintained between Starling’s law and Laplace’s, however as 

HF is progressive the severity of symptoms, particularly dilatation, increase and the 



40 

 

heart becomes decompensated; Laplace’s law dominates and increases in chamber 

radius cause little/no increase in contractility. At this point Starling and length-

tension curves reach plateau (figure 1.14A,C), and the increase in ventricular radius 

reduces the systolic pressure generated through Laplace’s law and thus stroke 

volume declines (figure 1.14B,D) (Levick, 2003, Loushin et al., 2009).      

Pressure overload 

Loss of function in pressure overload is also seen to be progressive and dependent on 

severity. In pressure overload the heart is presented with increased afterload; to 

overcome this the heart must increase contractility, this is achieved by a hypertrophic 

response. Increasing wall thickness and reducing wall radius results in increased 

stroke volume due to Laplace’s law- the heart becomes compensated. However the 

heart becomes decompensated in excessive hypertrophy due to Starling’s law; the 

compliance of the myocardium is reduced so that the myocytes operate on the low 

tension part of the length-tension curve and the reduced cavity size means end-

diastolic pressure is reduced (figure 1.14A,C). In addition excessive afterload is 

associated with reduced stroke volume (figure 1.14B), and reduced muscle 

shortening (figure 1.14D) and shortening velocity (Levick, 2003, Sonnenblick, 

1962).  

Fibre orientation 

Changes in fibre orientation in HF are still not fully understood (see above), and how 

the fibre orientation contributes to contraction in the control heart is yet to be fully 

elucidated. However it is postulated that a reduction in circumferential fibres will 

reduce transmural thickening, and because these fibres make the greatest contribution 

to pressure generation stroke volume will be reduced (Buckberg et al., 2008). 

Furthermore in the biphasic motion of the heart the helical and transverse angled 

fibres work together but have specific role in producing torsion (Lunkenheimer et al., 

2004). Therefore it is thought deviation from the ‘normal’ orientation will contribute 

to a reduction in the ability to both constrict and dilate the ventricles (Buckberg et al., 

2008, Lunkenheimer et al., 2004). Models of cardiac mechanics which incorporate 

3D fibre orientation can be used to investigate how changes in fibre orientation affect 

cardiac function (Dorri et al., 2010). Dorri et al. 2010 showed cardiac function was 

robust in the presence of small changes in fibre orientation. But highlighted severe 
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loss of function at angle deviations of ~30°, and showed transverse angles exceeding 

45° cause mural contractions which counteract systolic thickening and reduces EF%. 

 

1.4.3.3 Electrical dysfunction in disease 

CCS dysfunction is present in HF, atrial fibrillation, aged hearts and possibly 

diabetes (Boyett, 2009). A considerable proportion of HF patients die of 

bradyarrhythmias, sinus bradycardia, prolonged AVCA conduction, left bundle 

branch block and complete heart block.  

 

The substantial morphological changes in HF can act as a substrate for electrical 

dysfunction. Stretch has been shown to cause changes in ion channel expression 

(Jeyaraj et al., 2007), and animal studies have demonstrated that atrial dilation, 

through various mechanisms, results in a shortened atrial refractory period and a 

prolonged atrial conduction time (Marin-Garcia, 2010). Also ventricular remodelling 

in humans is associated with electrical dysfunction such as ventricular tachycardia 

(VT) (Marin-Garcia, 2010).  

Impulse propagation across the heart depends on: physiology of individual 

cardiomyocytes, impulse transmission between adjacent cells, and the 3D 

arrangement of cells. Perturbation in the function of any of these factors can give rise 

to rhythm disturbances and re-entry activation (Smaill et al., 2013).  Re-entry occurs 

when an abnormal myocardial conduction pathway causes the wave of excitation to 

travel in a repetitive and continual circus (Levick, 2003). As a result myocytes 

emerging from their refractory period are instantly re-excited , re-entry is thought to 

contribute to tachycardia generation, maintenance of atrial fibrillation and triggering 

of afterdepolarisations (Levick, 2003, Smaill et al., 2013). 

Conduction in all regions of the heart is determined by the balance between current 

source and passive current load, known as source-sink matching (Smaill et al., 2013). 

Depolarised cells act as the source of current, which diffuses into surrounding 

polarised tissues- the sink (Nikolaidou et al., 2012). Abrupt changes in both wall 

thickness and fibre orientation have been shown to contribute to source sink 

mismatch (reviewed in Smaill et al., 2013). In addition abrupt tissue expansions 
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result in a change in; wave front curvature, conduction slowing and even conduction 

block (reviewed in Smaill et al., 2013). Furthermore, modelling studies have 

suggested increased fibrosis plays a significant role in electrical dysfunction and 

arrhythmogenesis (Zhao et al., 2013b). 

1.4.4 Models of heart failure 

The function and morphology of the heart in health and disease is often investigated 

using animal models. Numerous animal models exist in the literature and are 

extensively reviewed by Hasenfuss (Hasenfuss, 1998). It is clear that many studies 

have been conducted to investigate electrical dysfunction, and the effects of volume 

or pressure overload on the heart. However there are very few studies into the 

longitudinal, morphological and molecular changes to the heart when presented with 

both volume and pressure overload simultaneously. Here, with colleagues (Professor 

George Hart, Dr Antonio Corno, Dr Xue Cai, Dr Caroline Jones, Professor Jonathan 

Jarvis), we have developed a HF model in rabbit which encompasses both volume 

and pressure overload (methods 2.2). Longitudinal (in vivo), morphological and 

molecular changes were subsequently analysed.     

 

1.5 Imaging of muscle tissue 

The desire for true and accurate 3D representations of soft tissue structures has been 

ever present in the scientific community. Developmental, comparative and functional 

investigation of animal tissue morphology necessitates accurate visualisation and 

analysis of 3D tissue structure. In addition, modern genomic and mutational 

investigations into morphogenesis are equally dependent on 3D visualisation and 

interpretation of global morphological change. These all require 3D images that 

accurately preserve 3D relationships within samples. 

1.5.1 Invasive ex vivo imaging techniques 

Traditionally, knowledge on the gross morphology of muscle came from careful 

dissection (Pettigrew, 1864, Vesalius, 1544), with fine morphological knowledge 

coming from histological studies (Harman and Gwinn, 1949, Hoagland et al., 1944). 



43 

 

Both techniques are still frequently implemented in the investigation of muscle tissue 

but do have limitations. Histology is labour intensive, and only permits analysis of 

small sample preparations, meaning analysis of gross morphological changes in a 

large sample size is impractical. Dissection suffers, although to a lesser degree, from 

similar limitations, and the discrimination of different tissue types is difficult using 

dissection. Histology does allow for staining of specific structures, for example 

muscle fibre types (Tunell and Hart, 1977) and connective tissue networks (Dolber 

and Spach, 1987). 

Confocal microscopy (Semwogerere and Weeks, 2005) and scanning electron 

microscopy (SEM) (LeGrice et al., 1995) provide suitable data, but are hampered by 

the fact that a sample depth of only a few hundred microns is viable, and again 

sample preparations are small. To address some of the issues which hamper the 

aforementioned modalities, techniques such as episcopic microscopy (Mohun and 

Weninger, 2011, Weninger et al., 2006), extended volume confocal (Pope et al., 

2008, Sands et al., 2005) and surface imaging microscopy (Gerneke et al., 2007) 

have been developed. These techniques address the issue of registration of sections 

and poor z-plane depth, although access of specific stains to individual cells is 

problematic if samples are embedded. Further drawbacks include; long acquisition 

times, only small samples can be processed, and the destructive nature of the 

techniques mean artefacts due to tissue damage are inevitable.    

1.5.2 Clinical non-invasive in vivo imaging of the heart  

Non-invasive imaging describes a technique where the sample is intact, and not 

damaged during the acquisition process. As a result if resolution and safety permits, 

images of muscle can be obtained in vivo, and in some cases allowing analysis of 

function as well as morphology. In a clinical setting many imaging techniques are 

used in this way to image the heart, and are reiewed by Frangi et al., 2002: Two-

dimensional (2D) echocardiography uses ultrasound waves and allows the anatomy 

and motion of cardiac structures to be visualised noninvasively, and also allows 

quantification of heart morphology and function (SV, EF, FS). The use of Doppler in 

2-D echocardiography allows the direction and degree of blood flow to be 

investigated. 2D echocardiography and colour Doppler were used to make 

longitudinal morphological and functional measurements of our HF model-see 



44 

 

chapter 8. Cardiac MRI is another non-invasive imaging technique which can 

provide information on morphology and function of the cardiovascular system. 

Advantages of cardiac MRI include a wide topographical field of view, visualisation 

of multiple planes, and high soft-tissue contrast between the flowing blood and 

myocardium. MRI has been used to assess global and regional RV and LV form and 

function, SV, EF, LV mass, wall-thickening, myocardial motion, and circumferential 

shortening can all be measured. MRI tagging was introduced independently 

by Zerhouni and Axel, this allows tracking of material points in 2D and 3D, and 

subsequently strain analysis can be conducted.  

Many imaging techniques use the non-invasive properties of electromagnetic 

radiation. Angiocardiography involves the use of X-rays to image hearts following 

injection of a radio-opaque contrast medium. This technique provides 2-D images 

which can be used to delineate lesions, and assess EF and myocardial volumes. 

Isotope imaging (e.g single positron emission computed tomography-SPECT) can be 

used to investigate cardiac function (EF) and regional wall motion. SPECT is 

often used to study myocardial perfusion in cases of myocardial infarction, and to 

assess the viability of the affected region. Conventional computed tomography (CT) 

has ‘virtually no place in cardiovascular examinations’. However Spiral CT is 

commonly used for cardiac imaging, with image quality equalling that of MRI. DSR 

(Dynamic spatial reconstructor) uses multiple X-ray sources to produce “real 

time” cross sections with similar acquisition times to ultrafast CT but is not 

commercially available. Ultrafast CT is both relatively inexpensive and can provide 

3D images of cardiac cavities anatomy and function, and coronary calcium 

deposits (plaque). Data obtained from CT and MRI is more accurate than that 

derived from 2D techniques, where the calculations are based on the notion that the 

LV is ellipsoidal. Volume measurements by CT and MRI are independent of cavity 

shape, with the area or motion calculated from automatically aligned 

contiguous slices in quantifications.  

Similar techniques are often adopted in scientific research; high resolution echo is 

used to show regional strain (Notomi et al., 2008, Sengupta et al., 2006), and speckle 

tracking to look at torsion (Thomas and Popovic, 2006). 
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1.5.3 Non-invasive ex vivo imaging of muscle 

1.5.3.1 Current techniques 

Many non-invasive imaging techniques can be applied to ex vivo imaging of muscle, 

but when the goal is to obtain high resolution images non-invasively with high inter 

tissue contrast micro-MRI is considered most suited (Damon et al., 2011, Driehuys et 

al., 2008, Gilbert et al., 2012, Johnson et al., 2002). However recent studies into 

contrast enhancement in micro-CT imaging (Faraj et al., 2009, Metscher, 2009a) 

suggest that micro-CT, which has previously been disregarded due to its inferior soft 

tissue contrast, could become the superior method for soft tissue imaging. In addition 

micro-CT has many advantages over micro-MRI and these are discussed at length in 

Chapters 3 and 4.     

1.5.3.2 Micro-computed tomography 

Micro-computed tomography (micro-CT) is an imaging technique in which 

thousands of individual X-ray projections are acquired at small increments around 

the central axis of a sample. From this data, using a tomographic reconstruction 

algorithm, a 3D tomographic stack of multiple contiguous transaxial slices is 

generated (Ritman, 2011). These slices are made up of fully isometric voxels with 

spatial resolutions of ~5µm attainable. The system normally comprises an X-ray 

source (micro focus tube), sample gantry and an X-ray imaging array/detector 

(Ritman, 2011, Stauber and Mueller, 2008). These tomographic images are fully 3D, 

and although made up of multiple X-ray projections, do not suffer from the 

superimposition of overlying structures as in conventional radiography. Micro-CT 

was first developed in the early 1980s (Flannery et al., 1987, Elliott and Dover, 

1982), however the development of the cone-beam reconstruction algorithm by 

Feldkamp et al. (Feldkamp et al., 1984), which is used to magnify the X-ray beam, 

facilitated the development of high resolution lab-based and desk-top systems. 

Micro-CT non-invasively produces high resolution 3D data sets in a cost and time 

efficient manner. Furthermore sample size is limited by both chamber and detector 

size, therefore the development of larger bay systems with large flat panel detectors 

means samples as big a 20cm³ can be imaged at resolutions of ~100µm in a single 20 

minute scan. In addition multiple scans from the same sample can be concatenated, 

in this case sample size is only limited by the chamber size, and resolution only by 
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time and scanner geometry. As a result the use of micro-CT for both in vivo and in 

vitro imaging of biological samples continues to grow in biomedical research. The 

wide range of applications and developments of micro-CT are reviewed in the 

literature (Holdsworth and Thornton, 2002, Ritman, 2004, Ritman, 2011). Here using 

micro-CT we have developed a technique for high resolution soft tissue imaging in 

vitro. We apply this technique to image skeletal muscle in Chapters 3 and 4, and 

cardiac tissue (working myocardium and CCS) in Chapters 5,6,7,8.  

Geometry 

Scanner geometry describes the source to object distance (SOD) and object to 

detector distance (ODD), varying these distances ultimately affects image quality 

(independent of the X-ray source and detector technology).  

In short scanner geometries the sample is moved close to the X-ray source, therefore 

the ODD exceeds the SOD allowing the image to be projected onto the detector and 

thus magnified (figure 1.15). This hugely improves the spatial resolution of the scan, 

but also decreases the field of view at a proportional rate; as a result for high 

magnifications large detectors are required. The development of bay systems (as 

used in the present study) that can house large flat panel displays and allow for a 

high ODD solve this problem. Magnification penumbral blurring is amplified with 

increased magnification (figure 1.15), therefore in short geometries a micro-focus X-

ray tube should be used with a small focal spot size to ensure a narrow X-ray beam. 

Short geometries are used in the data presented here to allow for optimal spatial 

resolution. 

In long scanner geometries the SOD and ODD are roughly the same, long geometries 

are more often implemented in longitudinal in vivo studies as in this geometry the 

radiation dose can be reduced. However this is at the expense of spatial resolution 

(figure 1.15), and to gain sufficient contrast resolution a high flux or high exposure 

times must be used (Bartling et al., 2007).   
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Figure 1.15 Diagrammatic representations of different micro-computed tomography 

scanning geometries. Showing the effects of long geometry (left) and short geometry 

(middle) on magnification, and the importance of a small focal spot size (right).   

 

Rotating sample and rotating gantry systems     

Micro-CT scanners can be classified as rotating sample or rotating gantry 

(Holdsworth and Thornton, 2002). Rotating gantry systems are usually used for in 

vivo studies as the animal can be scanned unsedated without the introduction of 

motion artefacts from rotating a live sample (not an issue ex vivo. However in these 

systems the geometry is often fixed so that image magnification and resolution 

cannot be manipulated. In rotating sample systems the source is fixed and precisely 

aligned with the detector and central axis of the system, the detector and gantry 

however can moved allowing fine manipulation of the scanner geometry. A rotating 

sample system was used in the present study.  

X-ray source and target 

An X-ray source for micro-CT should have a small focal spot size (figure 1.15), emit 

high photon flux, and X-ray energies should be selectable (Bartling et al., 2007). 

Focal spot size should be as small as possible to reduce blur, however focal spot size 

is roughly inversely proportional to flux. High flux is desirable for high temporal 

resolution and short scan times, and to allow good low-contrast spatial resolution and 
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reduce image noise (Badea et al., 2004, Bartling et al., 2007). But having the ability 

to select the tube current and voltage to suit your specific sample partly solves this 

issue. Micro focus X-ray tubes used for micro-CT have small focal spot sizes (2-50 

µm) and have the advantage of permitting high isometric spatial resolutions of ~5-50 

µm in a FOV of 30-50 mm (Bartling et al., 2007, Wang and Vannier, 2001). The X-

ray spectrum (figure 1.17) produced by the tube is dependent on the energy of the 

incident electrons and also the atomic number of the target material (see below). 

X-ray interactions with matter-the generation of X-rays 

X-rays are electromagnetic radiation, and with ϒ-rays are the only forms of 

electromagnetic radiation that have the capability to liberate electrons from their 

atomic bonds . The energy of an X-ray is inversely proportionate to its wavelength, 

the wavelengths of X-rays range from a few picometers to nanometers (Hay and 

Hughes, 1983). X-rays with longer wavelengths are referred to as ‘soft’, and usually 

do not have sufficient energy to penetrate deep into tissues. Shorter wavelengths 

correspond to ‘hard’ X-rays which in some cases too easily penetrate the tissue and 

result in poor contrast resolution (Hay and Hughes, 1983). Therefore the use of a 

suitable X-ray energy and target for your sample is essential. The effect of different 

X-ray targets on soft tissue imaging is investigated in Chapter 3. 

In micro-CT -rays are produced using an X-ray tube; a heated cathode filament and 

an anode target are placed at opposite ends of the tube which is under vacuum. When 

current passes through the filament it sputters electrons off its surface. Due to the 

high charge difference these electrons travel at high speeds down the tube to 

bombard the anode target (normally tungsten). From these interactions two major 

types of X-rays are produced- Bremsstrahlung radiation and Characteristic X-rays 

(figure 1.16). 
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Figure 1.16 Diagrammatic representations of X-ray interactions with matter.  Showing the 

two major processes for generation of X-rays, Bremsstrahlung radiation (top) and 

characteristic radiation (bottom).   

 

Bremsstrahlung radiation 

The interaction of an incident electron with the nuclei of an atom produces 

Bremsstrahlung radiation. When the incident electron passes near an atoms nucleus 

the difference in charge between the negatively charged electron and positively 

charged nucleus causes deceleration of the electron, and the energy lost produces 

radiation (figure 1.16). The level of radiation is dictated by how close the electron is 

to the nucleus and also by the atomic number of the anode target and the incidence 

electrons energy (Hay and Hughes, 1983, Yin et al., 1987, Beutel et al., 2000). 
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Secondly Bremsstrahlung radiation can be produced when the incident electron 

directly interacts with the nucleus, causing the entire energy of the electron to be 

converted into radiation. This interaction therefore produces more energy than the 

aforementioned interaction and is responsible for the upper end of the X-ray energy 

spectrum, however this occurs rarely (figure 1.17).  

Characteristic X-rays 

Characteristic X-ray production involves the displacement of electrons orbiting the 

target atom’s nucleus by the incident electrons. Electrons occupy specific orbits 

(shells) around the nucleus of an atom, and the number of electrons and shells 

dictates the atom’s atomic number (figure 1.16). The innermost shell, the K shell, has 

the highest binding energy. When interacting with the target some incident electrons 

will collide with the orbiting electrons. If the electron is knocked out of its orbit, the 

atom is ionised and an X-ray photon is produced (figure 1.16). This is followed by an 

electron with a higher potential energy (lower shell binding energy) from an outer 

shell taking the place of ejected electron, this energy transfer creates another X-ray 

photon called characteristic radiation (figure 1.16). This process is then repeated for 

all subsequent shells until equilibrium is reached (figure 1.16) (Hay and Hughes, 

1983, Khandelwal, 1968).  

Each element of the periodic table has its own ‘characteristic’ shell binding energies 

(greater the atomic number the greater the binding energies), and thus the X-ray 

photons produced by each element are unique and have a specific X-ray spectrum 

(figure1.17). This can be utilised in the imaging process by using different target 

materials to suit a specific sample. For example the higher energy rays produced by 

tungsten (atomic number 74) are suitable for analysing tissues with high electron 

density like bone, but would produce too harder rays to provide good image quality 

for imaging soft tissue (Hay and Hughes, 1983, Khandelwal, 1968). The use of 

different X-ray targets for soft tissue imaging is investigated in Chapter 3.  

It should be noted excitation and ionization of outer shell electrons causes the 

incident electron to only lose a small amount of energy, as a result an X-ray photon is 

not produced, and the energy loss ultimately appears as heat (Hay and Hughes, 

1983).   
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Figure 1.17 Typical X-ray spectrum. Showing the high frequency of the lower energy X-ray 

photons production by Bremsstrahlung radiation, the interaction of an incident electron 

with the target atoms nucleus corresponds to the point of maximum photon energy. The 

two spikes represent the characteristic X-rays generated from the transfer of electrons 

from outer shells to inner shells. The increased energy generated by Kβ represents the 

movement of electrons with higher potential energies. 

 

X-rays interaction with matter- Attenuation  

The interactions of incident X-rays with a sample act to reduce the energy of the X-

rays as they transverse the tissue, this attenuates the X-ray beam by removing 

photons. Attenuation is dependent on the energy of the X-ray beam, the atomic 

number/s of the tissue and the sample thickness. Physically, X-ray CT is the 

measurement of the samples X-ray absorption along many straight lines (projections 

used in micro-CT in 360°: 1400-3500). For incident X-rays (I0), the effect of sample 

thickness (d) and attenuation coefficient (μ) on the number of photons (quanta) 

reaching the detector (I) is given by the exponential attenuation law (KachelrieiB et 

al., 2008). 

 

I = I0 e−μd. 

It is the level of attenuation by the sample that is the basis of differential contrast in 

micro-CT imaging. An electron dense tissue (high atomic number), such as bone, 

will have regular interactions with the incident X-rays and thus highly ‘attenuate’ the 
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X-rays. This will result in less photons been detected by the detector and thus the 

structure appears as bright white in the resultant grayscale data. In contrast, X-rays 

readily pass through soft tissues which have low atomic numbers, and these 

structures appear greyish. Space has little or no attenuating affect and appears black.          

X-ray interactions with matter-incident X-rays are absorbed or scattered by the 

sample 

The way generated X-rays interact with matter is somewhat energy dependent. In 

micro-CT, energies for soft tissue imaging range from ~10 Kev to ~150Kev, within 

this energy range X-rays interact via the photoelectric effect, Rayleigh scatter or 

Compton scatter.  

The photoelectric effect states: an electron can be ejected from its orbit if the energy 

of the incident electromagnetic radiation is equal or greater than the binding energy 

of the orbiting electron (Hay and Hughes, 1983, Yin et al., 1987). In this process the 

binding energy of the orbiting electron relates to the amount of energy absorbed or 

attenuated from the incident photon, but usually all of the photons energy is 

absorbed. As with the interaction of the incident electrons with the atoms of the 

target anode, the ejection of an electron will cause the movement of higher energy 

electrons from outer shells, thus creating characteristic X-rays. The probability of a 

photoelectric effect occurring is proportional to the cube of the atomic number, 

therefore small differences in atomic number can result in large differences in 

absorption of X-rays, and thus contribute to differential attenuation and inter tissue 

contrast.  

Rayleigh scatter occurs at low energies, here the incident photon lacks the energy to 

enable the photoelectric effect. In this process the photons are scattered (change in 

trajectory) broadening the X-ray beam, this is not desirable, but Rayleigh scatter can 

be reduced by using higher X-ray energies (Beutel et al., 2000).  

Compton scatter involves the interaction of incident photons with electrons on the 

outer shells of an atom, causing a decrease in the photons energy (increased 

wavelength) as it is scattered (Beutal et al., 2000). In these interactions, due to the 

relative low binding energy of the electron, the photon keeps a lot of its energy while 

the amount transferred to the electron is sufficient to eject it from its bond. The 
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scatter angle of the incident photon dictates the energy shift, with increased scatter 

causing an increase in wavelength and thus a decrease in energy. This process is 

repeated until all of the photon’s energy is lost or until the photon transverses the 

entire sample. Therefore, in contrast to the photoelectric effect the probability of this 

interaction depends on electron density of the whole sample, and because electron 

density does not vary much within soft tissues, Compton scatter offers very little 

contrast differentiation. However the addition of contrast agents with high atomic 

numbers (higher binding energies) for soft tissue imaging means the photo electric 

effect dominates.     

Spatial resolution 

Spatial resolution is the smallest distance between two objects at which they are still 

distinguishable as separate entities. Spatial resolution is an important parameter in 

any morphological study. In micro-CT it is dependent on scanner geometry 

(magnification) and focal spot size (penumbral blurring), but detector technology is 

also crucial as display size and single detector element size ultimately dictate 

acquired resolution (Bartling et al., 2007).  

Low contrast resolution 

For soft tissue imaging high spatial resolution is wasted if the scanner is unable to 

resolve small differences between structures. Contrast is dependent on differences in 

attenuation coefficients of different tissues (Wang and Vannier, 2001). Low-contrast 

detectability has been defined as the capability to distinguish fine variations in 

electron density of an object compared to background/space (Gupta et al., 2006). 

This is largely dependent on the quantum efficiency (amount of photons needed to 

detect a signal) and dynamic range (the range of photon flux detectable) of the 

detector, but also on the use of suitable X-ray energies, as sufficient flux is needed so 

that the signal from the incident photons exceeds noise (Bartling et al., 2007).     

Contrast agents 

Low contrast resolution can be enhanced by the presence of contrast agents; heavy 

element solutions with K-shell binding energies ideal for X-ray interactions. Contrast 

agents are particularly useful for soft tissue imaging, as biological soft tissues are 

composed of elements with low atomic numbers/electron densities (e.g. carbon and 
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oxygen), and as a result produce poor X-ray contrast. Contrast agents increase the 

atomic number of the tissues they reside in, thus allowing visualisation of internal 

soft tissue structures (Faraj et al., 2009, Metscher, 2009a). An ideal contrast agent; 1) 

has an ideal k-shell binding energy; 2) readily penetrates soft tissue allowing imaging 

of large samples; 3) can be removed allowing for post scan analysis; 4) is 

differentially taken up by different tissue types, enhancing contrast resolution 

between tissues and 5) once stained it is stable, remaining localised differentially 

within tissues and does not bleed into adjacent structures. Studies into the proficiency 

of various contrast agents for soft tissue imaging using micro-CT have been 

reviewed previously (Faraj et al., 2009, Metscher, 2009a, Pauwels et al., 2013). In 

Chapters 3,4,5 and 6 we assess the proficiency of an iodine based contrast agent for 

imaging various soft tissue types. 

There is also interest in targeted contrast enhancement, where antibodies labelled 

with radiopaque nanoparticles are targeted to specific aspects of cells. Such 

techniques have been applied to specifically detect lymph nodes, tumour cells, and 

different types of cancer cells (Bartlett et al., 2007, Bartling et al., 2007). Such 

approaches have great implication clinically and offer a basis for therapeutic 

approaches, in Chapter 6 we show a technique based on similar principles for 

targeted contrast enhancement of the CCS. 

Radiation 

Radiation dose should be considered even in ex vivo micro-CT, as one of the 

advantages of the technique is its non-invasive nature and thus the ability to post-

process tissue. Therefore radiation damage should be avoided. X-ray exposure can 

cause disruption of chemical bonds and also cause super radical production which 

can damage nearby molecules including DNA (Ritman, 2011). In micro-CT, image 

quality is related to radiation exposure; increased exposure time increases the 

signal:noise ratio but in turn increases radiation dose, and reducing exposure times 

by increasing flux also contributes to increased radiation dose. Therefore such factors 

should be considered if post processing (e.g. histology) or repeat scans are to be 

performed. The effect of radiation on gross morphology is investigated in Chapter 3.       
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1.5.4 Non-invasive investigations of 3D fibre orientation 

2D fibre orientation has previously been investigated using standard histology 

(Streeter et al., 1969), and more recently using micro-CT (Jeffery et al., 2011, 

Jorgensen et al., 1998b). Over recent years the diffusion tensor MRI (DT-MRI) has 

become the gold standard for the non-invasive analysis of 3D fibre orientation in 

biological tissues, including skeletal muscle (Damon et al., 2011, Lansdown et al., 

2007), cardiac muscle (Rohmer et al., 2007), and in the brain (Wedeen et al., 2012a). 

However DT-MRI is not a morphological method, in that it does not resolve physical 

structures. Rather, the preferential diffusion direction for water is calculated for each 

voxel. Since water will be less constrained to move in the long axis than in the short 

axis of a fibre, an indication of fibre direction is achieved (Le Bihan et al., 2001). 

From the probability density function obtained from each voxel, DT-MRI can 

produce streamlines representing the distribution of the direction of diffusibility. This 

is not visualisation of true cellular structure, and as a result controversy is currently 

playing out concerning the proposed arrangement of nerve fibres in the brain based 

on similar analysis (Wedeen et al., 2012b, Wedeen et al., 2012a, Catani et al., 2012). 

The virtual streamline structures produced by DT-MRI are usually of the order of 

400-1300 µm in diameter (Nielsen et al., 2009, Smerup et al., 2009). In order to 

derive sufficient signal to calculate diffusion vectors, MRI voxels are typically 

rectangles (non-isometric) rather than cubes, the longest axis of which can extend up 

to 1300 µm, and the acquisitions are repeated many times such that scan times can 

take several days (Gilbert et al., 2012).   

Contrast enhanced Micro-CT is potentially capable of producing an accurate 

representation 3D fibre orientation in the heart, as resolutions fine enough to resolve 

single muscle fibres and their surrounding connective tissue network have been 

described (Jeffery et al., 2011, Stephenson et al., 2012). Such data is inevitably more 

complex given its finer resolution than the equivalent DT MRI data, although 

scanning electron microscopy and extended volume confocal microscopy will 

continue to provide the greatest resolution, such techniques have many limitations 

(discussed above). We (in collaboration with colleagues at the University of 

Manchester UK and the University of Auckland NZ) have recently begun to extract 

3D fibre orientation maps from micro-CT scans by means of eigen analysis of the 3D 

structure tensor (Krause et al., 2010, Zhao et al., 2012). Such methods were 



56 

 

originally used to analyse the complex structure within sheets of paper or 

reconstituted wood products (Axelsson and Svensson, 2010), and have more recently 

been developed by our colleagues to extract fibre orientation of cardiac tissue from 

data generated by episcopic microscopy (Zhao et al., 2012) and micro-CT (Aslanidi 

et al., 2012). In this technique, an algorithm samples the space surrounding an 

individual voxel and searches for the direction in which the attenuation (gray values) 

changes the least. Therefore local fibre alignment is modelled as the orientation with 

the least signal variation, which corresponds to the eigenvector paired with the 

smallest eigenvalue. In this way each voxel of the original dataset is assigned a 

vector in 3D. These vectors are used to build up a representation of the direction of 

individual cardiomyocytes as they pass through the 3D matrix of voxels. While this 

technique is operating at the limit of resolution for whole hearts of small mammals, 

unlike DT-MRI it is based on attenuation data that is derived directly from the 

physical structure of the biological material. Extraction of 3D fibre orientation from 

micro-CT data using this method is validated in Chapter 4, and applied to the whole 

heart in Chapter 5, the CCS in Chapter 7, and the failing heart in Chapter 8. 
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1.6 Thesis aims 

The aim of this thesis was to develop an imaging technique capable of producing 

high resolution data of large muscle tissue samples in which morphological and 

functional information could be obtained, specifically; 

 Optimise contrast enhanced micro-CT for soft tissue imaging to allow the 

differentiation of multiple soft tissue types, for example; muscle, connective 

tissue and fat. 

 

 Apply the micro-CT technique to fully intact mammalian hearts fixed in a 

naturally inflated state to allow detailed morphological analysis, and 

differentiation of the specialised tissues of the CCS. 

 

 Investigate the longitudinal effects of experimental HF in rabbits, and 

subsequently, using micro-CT, assess changes to the working myocardium 

and CCS in HF. 

 

 Assess the validity of applying a novel technique for analysis of the 3D fibre 

orientation to high resolution micro-CT data. 

 

 Apply 3D fibre orientation analysis to the fully intact mammalian heart. 

Specifically investigate the detailed fibre orientation of the atria and the 

accompanying muscle bands, and investigate the incorporation of such data 

into biophysical mathematical models of the heart. 

 

 Investigate changes in 3D fibre orientation in the ventricles and CCS of the 

failing heart.    

 

 

 

 



58 

 

 

 

CHAPTER 2 

Materials and methods 
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2.1 Animal tissue preparation 

2.1.1 Rat heart preparation 

Adult wistar rats were terminated by exposure to increasing concentrations of CO₂ 

followed by cervical dislocation, as stated in Schedule 1 of the Animals (Scientific 

Procedures) Act 1986. The thoracic cavity was exposed and the hearts excised, 

keeping all major vessels intact, hearts were the transferred to vials and fixed in 

phosphate buffered formal saline (PBFS - formaldehyde dissolved as a 10% solution 

in phosphate buffered saline) for at least 48 hours.  This allows storage and fixation 

with limited tissue shrinkage. The PBFS solution was changed as necessary to avoid 

acidic conditions.   

2.1.2 Mouse tissue preparation 

Adult mice were terminated by exposure to increasing concentrations of CO₂ 

followed by cervical dislocation, as stated in Schedule 1 of the Animals (Scientific 

Procedures) Act 1986. Whole mice were subsequently fixed by perfusion fixation, 

see section 2.2.4 for methodology. Heart, liver, brain and limb tissues were excised 

then transferred to vials and fixed in phosphate buffered formal saline (PBFS - 

formaldehyde dissolved as a 10% solution in phosphate buffered saline) for at least 

48 hours. 

2.1.3 Pig embryonic tissue 

Fixed pig embryonic tissue with gestation ages ranging from ~10-120 days were 

obtained from Carolina Biological Supply, Wisconsin. Samples were stored in vials 

containing phosphate buffered formal saline (PBFS - formaldehyde dissolved as a 

10% solution in phosphate buffered saline).    

2.2 Experimental heart failure model in rabbit 

Experimental heart failure was induced in rabbit by the means of aortic valve 

disruption and subsequent aortic banding, enabling investigation of both 

morphological and function changes in hearts exposed to both volume and pressure 

overload. In all studies experimental subjects were adult rabbits weighing 3.1±0.2kg 

(pre-procedure). Longitudinal echocardiography was undertaken weekly when 



60 

 

possible, ~12 weeks after the first intervention subjects were culled, their hearts 

perfusion fixed and excised for further analysis. In line with ethical guidelines any 

subjects that reached end-stage heart failure prior to the 12 week deadline were 

culled, but still included in analysis. Sham control subjects underwent invasive 

surgery at the same time points as the procedure group, but were not subjected to 

valve damage or aortic banding. Surgery was conducted by Dr Antonio Corno and 

Dr Xue Cai.   

2.2.1 Aortic valve disruption 

All rabbits were anesthetized with ketamine (50mg/kg) and maintained with 2% 

isofluorane, after tracheal intubation and with self-ventilation.Through a longitudinal 

incision in the right side of the neck, the right carotid artery was dissected free, 

distally ligated and proximally controlled with a tie.  

Through a 1 mm incision on the anterior aspect of the right carotid artery, a sharp, 

bevel-tipped 1.22 mm catheter was introduced into the proximal right carotid artery, 

advanced retrogradely towards the ascending aorta, and connected to a pressure 

transducer whose output was monitored and recorded using ACODAS (Dataq 

Instruments, Akron, Ohio, USA). 

  

Control group.  

At this point for the animals in the Control group the catheter was removed from the 

right carotid artery, the proximal carotid artery was ligated, the tissues were closed in 

layers and the “sham” procedure terminated, with recovery of the animals from the 

general anesthesia. 

Heart Failure group 

In the animals in the Heart Failure group aortic valve regurgitation was obtained by 

disruption of ≥2 aortic leaflets by repeatedly moving the catheter across the aortic 

valve into the left ventricle, with continuous pressure recording. Fluoroscopy was not 

used. The degree of aortic valve regurgitation obtained was judged adequate when 

the on-line monitored pulse pressure (difference between systolic and diastolic 

pressure), measured through the same catheter when positioned in the ascending 

aorta, increased between 80 and 100% in comparison with the pre-procedure value. 

The maneuver was repeated until the desired degree of aortic valve regurgitation was 
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reached. At this point the catheter was withdrawn, the proximal carotid artery ligated, 

and the tissues were closed in layers. The animals were then allowed to recover from 

the general anesthesia. 

2.2.2 Aortic banding 

After an interval of 3 weeks, all animals underwent a second general anesthesia with 

tracheal intubation as described before. Through a longitudinal laparotomy the 

abdominal aorta and the renal arteries were identified, and the abdominal aorta was 

dissected free above the renal arteries.  

Control group.  

At this point for the animals in Control group the “sham” procedure was completed 

with the closure of the laparotomy incision in layers, and the animals were allowed to 

recover from the general anesthesia.  

 

Heart Failure group.  

In the Heart Failure group a pre-measured (2.44 mm) silver clip was positioned 

around the pre-renal abdominal aorta and occluded, inducing severe aortic narrowing 

with approximately 50% reduction of the aortic diameter. At this point the surgical 

procedure was completed with the closure of the laparotomy incision in layers, and 

these animals too were allowed to recover from the general anesthesia. 

2.2.3 In vivo echocardiography 

In vivo echocardiography was used to investigate longitudinal functional and 

morphological changes in procedure and sham control rabbit subjects. Transthoracic 

echocardiography was performed using a GE Vivid 3 ultrasound machine and a 5s 

transducer. Rabbits were held in a supine position and precordial fur was shaved, 2D 

images were obtained in the parasternal long axis view and Colour Doppler was used 

to assess aortic and mitral valve regurgitation. The M mode cursor was placed at the 

tip of the mitral valve leaflets, perpendicular to the IVS, images were stored and 

measurement of the left ventricular internal dimension and IVS and left ventricular 

posterior wall thickness were made in both diastole and systole. Left ventricular 

fractional shortening and ejection fraction was then calculated from these 
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measurements. Each measurement was recorded on 3 separate cardiac cycles and the 

mean taken.  

2.2.4 Terminal procedure and perfusion fixation 

Systemic heparin was administered prior to termination by intravenous injection 

under isoflurane aneshesia (2000 Units/kg). The rabbits were then terminated by 

overdose of sodium pentobarbitone. The thoracic cavity was exposed and the inferior 

vena cava and descending aorta cannulated.  In order to clear the heart of blood the 

chambers were flushed in situ via the inferior vena cava and aorta with heparinised 

saline (5000 Units/ml) until the expelled solution ran clear.  The heart was then fixed 

by a period of perfusion with PBFS by retrograde injection via the aorta.  In 

specimens in which the aortic valve was intact, blanching of the coronary arteries 

was achieved with no further intervention. In samples from rabbits whose aortic 

valve was damaged to create an experimental model of left heart failure, it was 

necessary to divert the flow into the coronary arteries by pressure applied to the 

ventricles, and sometimes to the head and neck vessels. Samples were then fixed by a 

period of perfusion with PBFS (approx 10 minutes) via the aorta and, if necessary, 

via the venae cavae to naturally inflate all of the heart chambers with PBFS, and all 

major vessels (IVC,SVC, Aorta, PA, PVs) were clamped using surgical vessel 

clamps. The partially fixed hearts were then removed to separate vials containing 

PBFS for further long-term fixation. The inflated state of the hearts was maintained 

by gentle agitation, and if required further injection of PBFS via the cannulated 

vessels, until all chambers were full of fixative and the hearts were floating freely 

without contact with the vial walls; particular care was taken over the thin-walled 

atria. Samples were considered fully fixed after 48 hours fixation. 

All procedures were carried out under the UK Home office regulations (Animal 

Scientific Procedures, Act 1986) 
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2.3 Ex-vivo Imaging techniques 

2.3.1 Back scattered scanning electron microscopy 

BSSEM was used to investigate the affinity and localisation of iodine in various 

biological soft tissues. Tissue samples were obtained from perfusion fixed (see above 

methodology) mouse, Rat and embryonic pig subjects. BSSEM was conducted in 

collaboration with Professor Alan Boyde (Queen Mary University of London).       

2.3.1.1 Tissue embedding 

Prior to scanning samples were embedded in polymethylmethacrylate (PMMA). In 

brief, fixed tissue samples were washed in 70% ethanol for 2 hours, and then stored 

in 100% ethanol for 24 hours, then transferred to Xylene for 24 hours, during which 

the xylene solution is changed twice, Samples are then added to the liquid monomer, 

Methylmethacrylate, for at least 24 hours, benzoyl peroxide is then added to catalyse 

cross linking and the formation of the polymer- PMMA. Samples are then baked at 

increasing temperatures (37, 45, 50°C) until a hard acrylic like state is achieved. 

PMMA blocks are then trimmed, and the block surfaces smoothed and diamond 

polished.     

2.3.1.2 Iodine Contrast enhancement 

A 7.5% solution of molecular iodine dissolved in potassium iodide (I₂KI) was 

applied neat by pipetting directly onto the prepared PMMA block surfaces, the 

solution was left in place for 2-3 minutes. The I₂KI was then washed off with 

distilled water and the block blotted dry. 

2.3.1.3 Scanning procedure 

Embedded and stained samples were imaged using 20 kV BSE in a Zeiss EVO 

MA10 SEM, uncoated, using a chamber vacuum of 49 Pa. Probe current ranged from 

1.0-1.5 nA and working distance ranged from 8-12 mm. 

2.3.2 Contrast enhanced micro computed tomography 

Contrast enhanced Micro-CT was used to rapidly and non-invasively obtained high 

resolution (6-50µm) tomographic data sets of soft tissue samples. Data sets are 3D 
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matrices made up of isometric voxels, whose grayscale value represents the X-ray 

attenuation at a point in space (dark = low attenuating, light = high attenuating).   

data was subsequently used for detailed morphological analysis. Training in the use 

of Micro-CT scanner was conducted under the supervision of Dr Nathan Jeffery (The 

University of Liverpool). 

2.3.2.1 Iodine Contrast enhancement and Imaging 

Samples were removed from PBFS, drained and blotted dry. Samples were then fully 

immersed in a solution of I₂KI contrast agent (iodine crystals (I2), potassium iodide 

(KI), added to PBFS) at various concentration (1.87, 3.75, 7.5 or 15%), for various 

durations (2-7 days). Each sample was removed from the staining solution, rinsed 

with PBFS to remove excess stain and to prevent surface saturation, drained and 

blotted. Therefore, any spaces within samples (e.g. ventricular cavities) were thus 

filled only with air. The samples were then triple-bagged (in compliance with local 

regulations for the use of the micro-CT scanner) and securely supported centrally in a 

plastic (radiotranslucent) tube by placing additional thin polythene bags.  This 

allowed alignment of the samples with the axes of the micro-CT scanner and to 

reduce the likelihood of rotational artefacts in the slice reconstructions.  All 

specimens were micro-CT imaged with the Metris X-Tec custom 320 kV bay system 

at the EPSRC-funded Henry Moseley X-Ray imaging Facility, Manchester 

University.  Imaging parameters were optimised for each specimen to maximise 

spatial and contrast resolution and to facilitate data handling. Scans were acquired 

using various targets (copper, silver, tungsten, or molybdenum) with X-ray energies 

ranging from 90-160 kV. 1440-3500 projections within the 360° rotation were 

recorded on a 2K x 2K Perkin Elmer 1621-16-bit amorphous silicon flat-panel 

detector with 200 µm pixel pitch, resulting in scan times of approximately 20-50 

minutes. All scans were reconstructed using Nikon Metrolasis CT-Pro software 

(Metris XT 1.6) at 50% or 100% of the obtained resolution, with post processing and 

analysis taken into consideration. Isometric resolutions ranged from 6-50 µm. 

2.3.3 Targeted contrast enhanced micro-CT 

TCE uses the same principles as whole mount immunohistochemistry, were an 

antigen of interest is targeted with a primary antibody specific to it, the primary 
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antibody is then bound with a secondary antibody that facilitates visualisation of the 

level of antigen expression within the tissue. In TCE the secondary antibody is 

conjugated with a heavy metal which acts to attenuate X-rays, and thus allows non-

invasive visualisation and quantification of a specific antigens expression within a 

tissue volume. In this case TCE was used to investigate the expression of 

neurofilament within full intact rabbit hearts.    

2.3.3.1 Whole mount immunostaining 

Samples are perfusion fixed at room temperature in glyoxal-based fixative (Shandon 

Glyo-Fixx, Thermo Scientific) (120-180 minutes) or in 10% PBFS (60 minutes), and 

then placed in 3% hydrogen peroxide in methanol (60 minutes), to purge any 

endogenous peroxidase activity. Samples were then washed in MABT (100mM 

maleic acid, 150mM Nacl, 1% Triton X-100) PH 7.4 (10 minutes), followed by 

MABT plus 0.5% saponin (10 minutes) to permeablise the tissue. Samples are then 

blocked in blocking solution (MABT, 0.5% saponin, 10% horse serum, 0.5% Roche 

Blocking Reagent (Roche applied sciences), 1% dimethylsulfoxide) (90 minutes),  

and incubated at room temperature overnight in mouse monoclonal anti-

neurofilament middle primary antibody (NF-M) (Hybridoma Bank, USA) prepared 

at a concentration of 1:50 in blocking solution (MABT, 0.5% saponin, 10% horse 

serum, 0.5% Roche Blocking Reagent, 1% dimethylsulfoxide). The sample was 

washed three times in PBS (10 min each wash), before application of Donkey anti-

mouse IgG HRP conjugated diluted 1:500 in blocking solution (MABT, 0.5% 

saponin, 10% horse serum, 0.5% Roche Blocking Reagent, 1% dimethylsulfoxide) 

(180 minutes). The sample was washed three times in PBS (Sigma) (10 minutes each 

wash), postfixed in 10% formalin in MABT (20 minutes), and washed three times in 

double distilled water (ddH₂0) (10 minutes each wash). 

 

2.3.3.2 Contrast molecular probes and Micro-CT imaging 

The metal deposition scheme of an enzyme metallography kit (Nanoprobes EnzMet 

6010, consisting of three proprietary solutions) from Nanoprobes, Inc. (Yaphank, 

NY) was used in place of a usual chromogen reaction. From the EnzMet kit, 7.5 ml 

of solution A was added to each sample and mixed gently (4 min), then 7.5 ml of 

Solution B was added and mixed gently (4 min), after which 7.5 ml of Solution C 
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was added and mixed. Samples were incubated at room temperature for 5–15 min 

and the staining monitored by eye. As the solution began to appear slightly gray 

(indicating nonspecific precipitation of silver), the samples were transferred to 1% 

sodium thiosulfate in 0.1% Triton (10 min) to stop the reaction and remove 

unreduced silver ions. For fixation and to allow long term storage, samples were 

washed in ddH₂0 (5 minues), transferred to 75% methanol followed by 100% 

methanol. For scanning each sample was removed from methanol, drained and 

blotted. Therefore, any spaces within samples (e.g. ventricular cavities) were thus 

filled only with air. The samples were then triple-bagged (in compliance with local 

regulations for the use of the micro-CT scanner) and securely supported centrally in a 

plastic (radiotranslucent) tube by placing additional thin polythene bags. All samples 

were micro-CT imaged with the Metris X-Tec custom 320 kV bay system at the 

EPSRC-funded Henry Moseley X-Ray imaging Facility, Manchester University.  

Imaging parameters were optimised for each specimen to maximise spatial and 

contrast resolution and to facilitate data handling. Scans were acquired using a 

copper or silver target with X-ray energies ranging from 40-90 kV. 1440-3500 

projections within the 360° rotation were recorded, resulting in scan times of 

approximately 20-50 minutes. All scans were reconstructed at 50% or 100% of the 

obtained resolution with post processing and analysis taken into consideration, 

isometric resolutions ranged from 18-50 µm. 

2.4 Sample analysis: Image analysis 

2.4.1 Image handling 

Micro-CT and BSSEM and data was viewed, manipulated and analysed using 

ImageJ 1.45i (http://rsbweb.nih.gov/ij/). Regions of interest (ROI) within micro-CT 

data sets were reconstructed in 3D using volume rendering (VRT) and semi-

automatic segmentation techniques in Amira 5.33 (see below). The resultant 3D 

meshes made up of the voxels attributed to the ROI could be manipulated and 

cropped in any orientation and their respective volumes, surface areas and 

dimensions quantified. 
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2.4.2 Data segmentation and visualisation 

Using Amira 5.33 ROI within micro-CT data sets were segmented using 2 Semi-

automatic segmentation techniques;  

I) In this approach, pixel values representing X-ray attenuation within the 

anatomically defined ROI are recorded. A masking window is then created that 

identifies further structures of the region, on the basis that they will have similar 

pixel values, and thus discriminates the ROI from the surrounding tissue. The ‘magic 

wand’ tool is then used at the defined window settings to segment the structure slice 

by slice, that is to identify contiguous blocks of pixels that correspond to the defined 

window of pixel values.  The 'magic wand' tool implements a recursive seed fill 

method of filling 2D graphic images; the selected seed is allowed to grow selecting 

adjacent pixels under the constraint of the masking window. The efficiency of the 

technique can be improved by the use of the interpolation function which anticipates 

the position of a structure over multiple slices between two reference planes.  Where 

there was an overlap of pixel values between ROI and the surrounding tissues the 

limit line function was implemented, to make an objective identification of pixels 

near to boundaries between one level of attenuation and another. 

II)  This approach uses two stages: a primary segmentation based on inclusion of the 

ROI with its immediately surrounding air volume, and a secondary segmentation 

based on differential attenuation. 

The regions of interest (ROI) are initially selected using an oversized 'brush' tool to 

incorporate both the ROI and a thin shell of empty space that just includes the 

outermost elements of the ROI. Using an large brush size that selects both ROI and 

surrounding regions of a significantly different set of pixel values (e.g space) allows 

for interpolations between large numbers of slices (10-200), and makes for a highly 

efficient method. The selection is then stored, and the range of pixel values within 

the anatomically defined ROI are recorded.Using the 'threshold' tool a masking 

window is then applied to the stored selection that identifies, and thus discriminates 

the ROI from the surrounding tissue or void space within the stored selection. The 

first selection is then removed leaving only the ROI pixels selected as the working 

volume.  Segmented ROI are then smoothed and any small islands are removed, 3D 
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isosurfaces are then generated which can be quantified and viewed and cropped in 

any orientation.   

Volume rendering: 

Micro-CT data can also be visualised using volume rendering. In this rapid automatic 

technique, an opacity curve is windowed to include voxel values of interest and a 3D 

colour map selected.  The resultant 3D volume is rendered using a VRT render mode 

in which voxels are assigned a level of opacity (0-100%) calculated from their CT 

attenuation value. The resultant 3D volume can be viewed and cropped in any 

orientation, but not quantified, thus both semi-automatic segmentation and volume 

rendering are used in data analysis.  

3D segmentation: 

In this method a 3D volume rendering is created, and ROI is then drawn around in 

3D using the pencil tool (Amira 5.4.0). All pixels (space and myocardium) within the 

drawn boundary plane are selected, these pixels are then stored as a material, and 

unwanted tissue is removed using further 3D segmentation. Once segmented a 

window reflecting the ROI pixel values is applied to the material. This technique 

therefore allows rapid segmentation of complex structures, eliminating the need for 

laborious serial segmentation. 

2.4.3 3D Filament analysis 

3D filament analysis (Amira 5.4.0) was used to investigate and quantify the Purkinje 

fibre networks and coronary circulation of the heart. Originally developed for use in 

analysis of nerve dendrites the Auto Skeleton tool  (Amira 5.4.0) traces connected 

regions according to a user-defined window level and converts the centerline of those 

regions into graphs composed of points, segments, nodes, and Loops. Individual and 

total segment length and widths can also be extracted. The Interactive Tracer tool 

enables semi-automatic tracing of specifc filaments based on their gray values using 

an innovative tracing algorithm developed by Visage Imaging. The user sets the 

starting and ending points of a segment and the Interactive Tracer finds the shortest 

line connecting the two points with respect to the user-defined data window.  
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2.4.4 Fibre orientation analysis 

In Amira 5.33 ROI are segmented from micro-CT data using semi-automatic 

segmentation technique II, the selections are saved as a series of .TIFF files, creating 

a mask for each CT slice that only includes the ROI. Using Matlab (R2009b) the 

created mask is applied to the micro-CT data and structure tensor and fibre tracking 

analysis performed. Training using Matlab (R2009b) for fibre orientation was 

conducted under the supervision of Dr Jichao Zhao (The University of Auckland).  

2.4.4.1 Structure tensor analysis 

Grayscale intensity gradient information from micro-CT data can correspond to 

detailed internal structure, in this case the long axis of myocytes. Using Matlab 

(R2009b) the structure tensor method, representing gradient information for 3D 

imaging problems (Zhao et al., 2012, Krause et al., 2010), was implemented. The 

structure tensor contains gradient information at each voxel in the 3D volume in the 

form of a matrix. The tensor field is smoothed by convolving it with a Gaussian 

kernel before an eigenvalue decomposition solver is applied to obtain the eigenvalues 

and eigenvectors of the tensor field. Local fibre alignment is modelled as the 

orientation with the least signal variation, which corresponds to the eigenvector 

paired with the smallest eigenvalue. At the final stage, the fibre field is further 

smoothed by averaging fibre orientations in the neighbourhood of each voxel. 

Inclination and transverse fibre angles (figures 2.1, 2.2) at each voxel are then 

extracted for statistical analysis. The inclination angle, α, is the projection of this 

vector onto a vertical plane parallel to the epicardial boundary (yellow box figure 

2.1). This angle is measured with respect to the horizontal and has values in the range 

from 0-1 (corresponding to 0°- 90°). The transverse angle, β, is the projection of the 

fibre vector onto the horizontal plane (blue box figure 2.1), with respect to the 

surface tangent plane defined as the epicardial boundary. The use of differing ranges 

for inclination and transverse angles allows simple differentiation between data sets 

during analysis. Conversion of extracted vectors to physical angles is possible during 

post processing. 

2.4.4.2 Fibre tracking 

State of the art reconstruction methods for fibre tracking using the structure tensor 

data have been developed previously (Zhao et al., 2012). We implemented a simple 
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line interpolation algorithm: the 3D trajectory propagates along a line starting from a 

seed point in a region of interest with a predefined sub-pixel size and varying vector 

orientation, and the vector orientation is continually updated by averaging eight 

neighbouring vectors in any new coordinate during propagation. Fibre tracks are then 

rendered in 3D using custom colour maps corresponding to either inclination or 

transverse angles.      

 

 

Figure 2.1 Schematic explanation of 3D fibre orientation: the inclination and transverse 

fibre angles. The inclination angle α is the projection of a fibre vector onto a vertical plane 

parallel to the epicardial boundary (yellow box). This angle is measured with respect to the 

horizontal (blue box) and has values in the range of 0-1 (0° to 90°). The transverse angle β is 

the projection of a fibre vector onto the horizontal plane (blue box), with respect to the 

surface tangent plane defined above (yellow box), values range from 0-3 (0° to 90°). 
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Figure 2.2 Schematic representations of the Inclination  and transverse angles of 

examplelocal myofibre vectors. The pink fibre indicates the myofibre orientation at a point 

in the horizontal X-Y plane.  A shows a vertically running fibre with high inclination angle of 

1, and low transverse angle of 0. B shows a fibre running circumferentially with low 

inclination angle of 0, and low transverse angle of 0. C represents a fibre with a inclination 

angle of 0.5 and a transverse angle of 1.5.   
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2.5 Sample analysis: Histological analysis 

To confirm morphology of structures identified in imaged data, contrast agent was 

leached out of previously scanned tissue by replacing the fixative with fresh PBFS at 

weekly intervals until yellow colouration in the fixative surrounding the sample 

ceased. Samples were then processed for histology using either frozen or paraffin 

sectioning techniques.  

2.5.1 Frozen sections 

Samples were mounted onto cork discs and immediately frozen in isopentane over 

liquid nitrogen, before being submerged in liquid nitrogen. Samples were then stored 

at -80°C for subsequent analysis. Serial sections, at 10µm were cut using a cryostat 

(Bright Instrument company, Ltd) and mounted onto subbed, glass slides. Slides of 

sectioned tissue were stored at -20°C for future analysis by histological staining. 

2.5.2 Paraffin sections 

Tissues were processed first through increasing grades of ethanol (70%, 90%, and 

100% (x4) – 1hr in each) to dehydrate the tissue. Once dehydrated, tissues were 

cleared using two changes of xylene (45 minutes in each) before being passed 

through two changes of paraffin wax (1hr in each). Processing was performed using 

a Leica TP1020 tissue processor (Leica, Germany). 

Following processing tissues were embedded in molten paraffin wax on a plastic 

chuck. Tissue blocks were then cooled until solidified, blocks were then sectioned 

using a Leica RM2245 semi-automated microtome (Leica, Germany). Sections were 

floated onto subbed glass slides and stored at room temperature. 

 

2.5.3 Haemotoxylin and Eosin staining for gross morphology 

Regressive haematoxylin and eosin staining was used to assess general morphology. 

With H & E staining muscle fibres appear pink and nuclei blue. Before staining, 

frozen sections were removed from the -20˚C freezer and left for 20-30 minutes to 

adjust to room temperature. Sections were then quickly dipped in tap water to 
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hydrate. Parrafin sections were deparaffinise in two changes of xylene (5 minutes) 

and hydrated through ethanol. In brief, the sections were stained with haematoxylin 

and eosin and then dehydrated through ascending grades of alcohol (50, 70, 90, 

100%), cleared in xylene and finally mounted in Di-N-Butyle phthalate in xylene 

(DPX) (BHD, UK). 

2.5.4 Sirius red staining for connective tissue distribution 

Sirius red staining was used to asses connective tissue distribution. With Sirius red 

staining collagen appears red, muscle yellow and nuclei blue/black. Before staining, 

frozen sections were removed from the -20˚C freezer and left for 20-30 minutes to 

adjust to room temperature. Sections were then quickly dipped in tap water to 

hydrate. Parrafin sections were deparaffinise in two changes of xylene (5 minutes) 

and hydrated through ethanol In brief, the sections were stained with haematoxylin 

and Sirius red and then dehydrated through ascending grades of alcohol (50, 70, 90, 

100%), cleared in xylene and finally mounted in Di-N-Butyle phthalate in xylene 

(DPX) (BHD, UK).  

2.2.5 Masson's Trichrome for CCS confirmation and morphology 

Masson's Trichrome staining was used to confirm the morphology of the CSS seen in 

micro-CT data. With Masson's trichrome staining muscle appears pink, CCS light 

pink, erthyrocytes red, collagen blue/green and nuclei blue/black. Before staining, 

frozen sections were removed from the -20˚C freezer and left for 20-30 minutes to 

adjust to room temperature. Sections were then quickly dipped in tap water to 

hydrate. Parrafin sections were deparaffinise in two changes of xylene (5 minutes) 

and hydrated through ethanol In brief, the sections were stained with haematoxylin, 

acid fuchsin, phosphomolybdic acid and methyl blue, and then dehydrated through 

ascending grades of alcohol (50, 70, 90, 100%), cleared in xylene and finally 

mounted in Di-N-Butyle phthalate in xylene (DPX) (BHD, UK).   
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2.6 Whole mount immunohistochemistry 

Whole mount immunohistochmeistry was used to investigate the distribution of 

neurofilament throughout the right atrium in rabbit, and was carried out in 

collaboration with Dr Halina Dobrzynski (The University of Manchester). Whole 

rabbit hearts where dissected to expose the endocardium of the right atrium, first the 

apex of the heart and left atrial appendage (LAA) were removed. Next an incision 

was made up the left ventricular free wall running from the apical opening to the 

orifice left by removal of the LAA, and the papillary muscles of the left ventricle 

(LV) removed. The heart was then positioned with the RA and RV uppermost and 

pinned out by reflecting the LV 'flaps' created by the previous incision. An incision 

was then made up the RV free wall running from the apical opening to the right atrial 

appendage (RAA), a further incision was made running from the apex of the RAA 

round the lower border of the RA to the posterior wall, up the right hand side of the 

crista terminalis (CT) to the top of the superior vena cava (SVC). A final incision is 

made up the anterior border of the pulmonary artery (PA), the heart was then pinned 

out flat by reflecting the free running borders created, exposing the entire RA 

endocardial surface and the basal portion of the RV endocardial surface. 

2.6.1 Whole mount immunostaining 

An established protocol for the VECTASTAIN Elite ABC Kit (Vector Laboratories) 

was used and all solutions made up according to the manufacturer’s instructions. The 

kit includes an appropriate normal serum, a biotinylated secondary antibody and a 

preformed avidin and biotinylated horseradish peroxidise macromolecular complex 

(ABC) reagent. Firstly the sample was fixed at room temperature in 10% PBFS (60 

min), then washed three times in PBS (Sigma) (10 min each wash), and placed in 3% 

hydrogen peroxide in methanol (30 minutes), to purge any endogenous peroxidase 

activity. Following a brief wash with ddH2O the sample was permeabilised by 

treatment with 0.5% Triton X-100 (in PBS) (30 min) followed by three PBS washes 

(10 min each wash). The sample was then blocked using the normal horse serum 

made up from the VECTASTAIN kit with PBS (60 min), then incubated with mouse 

monoclonal anti-neurofilament primary antibody (NF-M) (Hybridoma Bank, USA) 

prepared at a concentration of 1:50 in 1% bovine serum albumin (BSA) (Sigma) at 

room temperature overnight. The sample was then washed three times in PBS (10 



75 

 

min each wash) before application of the diluted biotinylated secondary antibody 

made up from the VECTASTAIN kit (120 min). The tissue was washed three times 

in PBS (10 min each wash). The ABC reagent from the kit was then applied (60 min) 

followed by three PBS washes (10 min each wash). To develop the signal, the DAB 

(3,3’-diaminobenzidine) Peroxidase Substrate Kit (Vector Laboratories) was applied 

until adequate development was achieved (1 to 3 min) and the reaction was stopped 

by immersion in ddH2O for 10 min. The tissue was viewed and images recorded 

using a Zeiss SteREO Discovery.V8 microscope (Carl Zeiss Microscopy) with 

Axiovision v4.7 software (Carl Zeiss Microscopy). 

2.7 Photomicrographs 

Photomicrography was performed with a Leitz Diaplan microscope and images were 

captured using a digital Nikon 4500 cameara.   

2.8 Statistical analysis 

Statistical analysis was conducted in Microsoft Excel 2010 and Apple Numbers 2009 

including; T-tests, F-tests, anovas and distribution and regression analysis.   
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3.1 Introduction 

The desire for true and accurate 3D representations of soft tissue structures has been 

ever present in the scientific community. Developmental, comparative and functional 

investigation of animal tissue morphology necessitates accurate visualisation and 

analysis of 3D tissue structure. In addition, modern genomic and mutational 

investigations into morphogenesis are equally dependent on 3D visualisation and 

interpretation of global morphological change. There are also many applications for 

3D data in teaching, medical demonstration and surgical planning. These all require 

3D images that accurately preserve 3D relationships within samples. Classical 

histology can offer high resolution images in a single plane, but is highly labour 

intensive and is plagued by registration issues (see below). Confocal microscopy 

provides suitable data, but is hampered by the fact that a sample depth of only a few 

hundred microns is viable. In block face techniques such as Episcopic microscopy, 

images are automatically aligned, but acquisition time is slow and the sample is 

destroyed in the process. Micro-CT imaging offers automatically aligned 

tomographic data sets with isometric resolutions of ~5µm attainable. The technique 

is non-invasive, fast, and economically viable for any laboratory. Micro-CT is based 

on X-ray interactions with the electrons of the sample (matter); therefore tissues with 

inherent high atomic numbers or electron-density can be easily visualised using 

micro-CT. As a result micro-CT has traditionally been used successfully for 

developmental and morphological analysis of calcified tissues.  

Biological soft tissues are composed of elements with low atomic numbers/electron 

densities (e.g. carbon and oxygen), and as a result produce poor X-ray contrast. 

Therefore most soft tissues present similar X-ray attenuation coefficients between 

which no internal detail is resolved. The introduction of heavy elements in the form 

of contrast agents, with K-shell binding energies ideal for X-ray interactions, have 

allowed visualisation of internal soft tissue detail. Osmium tetroxide with its suitable 

k-shell energy of 73.9 KeV, has been successfully used as a micro-CT contrast agent 

for soft tissue contrast enhancement. However it has been shown to work poorly on 

tissue stored in alcohol, its soft tissue penetration is limited, and it is a toxic and 

volatile substance which is both expensive to purchase and dispose of. Iodine based 

contrast agents have proved effective in clinical practice. Here we assess the use of 
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an iodine based contrast agent (I₂KI) for mammalian soft tissue contrast 

enhancement. We investigate how concentration and incubation time of the contrast 

agent affects image quality, and investigate the mechanism behind differential uptake 

of iodine by different tissue types. We also examine how sample preparation affects 

soft tissue morphology, and investigate the most suitable X-ray targets for micro-CT 

imaging of soft tissue. 

Some of the work in the following chapter has been published as:  

Jeffery NS, Stephenson RS, Gallagher JA, Jarvis JC, Cox PG (2011) Micro-

computed tomography with iodine staining resolves the arrangement of muscle 

fibres. Journal of Biomechanics 44: 503 189-192. 

Jarvis J, Stephenson RS (2013) Studying the microanatomy of the heart in 3 

dimensions: a practical update. Frontiers in Paediatric Cardiology, doi: 

10.3389/fped.2013.00026. 

The papers are appended. 

New insights include; investigation of the mechanism of iodine uptake by soft tissue, 

the effects of sample preparation on tissue morphology and how X-ray targets affect 

image quality.  

 

3.2 I₂KI as a contrast agent for micro-CT imaging 

Molecular iodine is a 'heavy' molecule and therefore has a high atomic number (53), 

this means iodine has an ideal K-shell binding energy (33.2 KeV) for the X-ray 

spectrum produced by micro-CT X-ray tubes. Molecular Iodine (I₂) is insoluble in 

water but the addition of potassium iodide (KI) allows the formation of a soluble 

potassium tri-iodide molecule (I₂KI). To investigate the potential use of I₂KI as a 

contrast agent, I₂ was solubilised in KI and 10% phosphate buffered formal saline 

(PBFS). A 15% stock solution (10% I₂, 5% KI) was made up from which further 

dilutions were made. Figure 3.1 shows transverse micro-CT sections through a 

mouse head before and after iodine staining, and highlights the advantage of using a 

contrast agent for micro-CT scanning. Without the use of contrast agent non-
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calcified tissue appeared as a homogenous structure, and no internal detail was 

resolved (figure 3.1A). However due to its inherent properties calcified tissue and its 

fine internal details were resolved (figure 3.1A). Figure 3.1B shows a mouse head 

stained by diffusion with 3.75% I₂KI for 7 days; iodine diffused into and was 

retained in the soft tissue structures, and thus increased their effective atomic 

number. The resulting differential attenuation is proportionate to the amount of 

iodine within a structure. Contrast enhancement allowed individual muscles and their 

complex internal detail to be resolved alongside the naturally high attenuating 

calcified tissue (figure 3.1B).  

 

Figure 3.1 Transverse micro-CT images of unstained and I₂KI stained adult mouse heads. 

Showing the improved visualisation of internal soft tissue structures in a mouse head 

stained with 3.75% I₂KI solution for 7 days (B), compared with an unstained sample (A). 

Image acquisition by Dr Nathan Jeffery.  

3.3 Optimisation of I₂KI contrast enhancement  

I₂KI has been shown to be a suitable contrast agent for soft tissue contrast 

enhancement in micro-CT scanning (figure 3.1). To optimise the staining technique, 

variables affecting the quality of contrast enhancement were investigated. To assess 

the effect of I₂KI concentration, fixed rat hearts were chosen as a specimen tissue in 

which to investigate differential contrast in various tissue types and were stained 

with varying concentrations (15, 7.5, 3.75 and 1.89%) for the same incubation time 
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(2 days). Figure 3.2 shows longitudinal micro-CT sections through the hearts at a 

point where 4 major tissue types were present (fat, myocardium, nodal tissue and 

connective tissue). It was evident that concentration is an important variable in 

achieving the best image quality possible. At all concentrations fat appeared as the 

highest attenuating structure (figure 3.2). However, differentiation of the other tissue 

types was concentration dependent. Over staining was apparent in samples stained 

with 15% I₂KI (figure 3.2A,E): differentiation between myocardium and nodal tissue 

was achieved, but considerable overlapping of pixel values was evident, and 

connective tissue could not be clearly differentiated (figure 3.2 A,E). These results 

are probably due to saturation of the tissue. Under staining was seen in samples 

stained with 1.89% I₂KI: although differentiation of tissue types was achieved, 

internal detail was poorly resolved, and areas of the endocardium were unstained 

(figure 3.2 D,H). This suggests that effective diffusion of the contrast agent in a 

practical time frame is dependent on the presence of sufficient iodine molecules. 

Staining with 7.5% (figure 3.2B,F) and 3.75% (figure 3.2C,G) I₂KI yielded the best 

image quality. Connective tissue, nodal tissue, myocardium and fat (figure 3.2G 1-4) 

could be easily differentiated from one another, showing increasing levels of 

attenuation (pixel values) respectively.  

To investigate the effect of both I₂KI concentration and incubation time on image 

quality, fixed mouse heads were stained with 7.5, 3.75 and 2.25% I₂KI for 1-7 days, 

and imaged using micro-CT (figure 3.3). Figure 3.3A shows a mouse head stained 

with 2.25% I₂KI for 7 days. Although this is long enough to although diffusion of the 

solution to the centre of the mouse head (~10mm), homogenous staining was not 

achieved. Figure 3.3B shows that increasing the concentration I₂KI to 3.75% 

provides consistent staining throughout the sample, and improved definition of 

internal structures. To show the staining process is not solely dependent on 

concentration, a sample was stained with a high concentration of I₂KI (7.5%) for 1 

day (figure 3.3C); high contrast and fine detail was resolved at the posterior portion 

of the head, due to open access for the I₂KI via the exposed neck. However in other 

regions the stain had not diffused much below the epidermis, so the majority of the 

internal structures remained unstained. This highlights the need for a sufficient 

incubation period as well as a suitable concentration when using I₂KI as a contrast 

agent for micro-CT imaging of soft tissue.      
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Figure 3.3 Transverse micro-CT images of adult mouse heads stained with I₂KI contrast 

agent. mouse heads stained with 2.25% I₂KI for 7 days (A),  3.75% I₂KI for 7 days (B) and  

7.5% I₂KI for 1 day (C). (Scale bar represents approximately 3 mm). Image acquisition by Dr 

Nathan Jeffery. 

 

3.4 Iodine interactions with soft tissue, and its affinity for glycogen and lipid 

complexes 

Based on classical experiments of iodine interactions with glycogen and lipids, we 

tested whether the differential uptake of I₂KI by different tissue types was based on 

the amount of glycogen and or lipid within them. Fixed pig embryonic tissue (~45 

days gestation) was stained with 3.75% I₂KI for 2 days and scanned using micro-CT. 

Figure 3.4A shows a sagittal section through the whole embryo. The liver, which is 

known to have a high glycogen content, appeared as a high attenuating (high pixel 

values) structure. This suggests iodine is preferentially residing in the organ over 

surrounding tissues. This was also clearly seen in transverse sections of the liver 

(figure 3.4C). The boundaries of organs appeared sharp, and there was little 

gradation at tissue edges, suggesting iodine accumulation is localised, and based on a 

tissues affinity for iodine. Areas where you would expect to see high attenuating 
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calcified tissue (eg vertebrae) appeared low attenuating structures. This is because at 

this stage of development endochondral ossification is yet to take place, indicating 

that cartilage does not readily take up iodine. Some nerve axons are sheathed by 

myelin, which acts to insulate axons, speeding up signal propagation and preventing 

electrical current from leaving the axon. The dry mass of myelin is ~80% lipid and 

~20% protein, and therefore iodine should readily reside within the high lipid 

component. In transverse micro-CT sections through the embryo, high attenuating 

structures were evident inside and at the periphery of the vertebral column (figure 

3.4B,C,D). Due to the lack of calcified vertebrae, it is likely that these structures 

represent the spinal cord and ventral root nerves respectively, with iodine 

preferentially residing in the lipid rich myelinated regions.                         

 

Figure 3.4 Micro-CT images of pig embryo stained with I₂KI contrast agent. Sagittal micro-

CT image of pig embryo (~45 days gestation) stained with 3.75% I₂KI for 2 days, showing the 

position of transverse sections B,C and D (A). Transverse micro-CT images through heart (B), 

liver (C) and intestine (D). (Scale bars represent 1 mm and 0.5 mm)   
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Although images with spatial resolutions as low as 5µm are attainable from micro-

CT, back scattered scanning electron microscopy (BSSEM) offers a spatial resolution 

of <1nm, and a depth of field of ~1000µm is achievable. To investigate the 

interaction of iodine with soft tissue at a sub µm level, various tissue types from 

mouse were processed for BSSEM (in collaboration with Professor Alan Boyde, 

Queen Mary University, London). This is a suitably comparative technique to micro-

CT as the signal is based on interactions of incident electrons with the sample 

(matter). K-shell interactions are proportionate to atomic number, and therefore areas 

of high atomic number produce a bright signal. Skeletal muscle, cardiac, brain and 

liver tissue were dissected from a perfusion fixed whole mouse. Prior to scanning, 

samples were dehydrated and embedded in polymethylmethacrylate (PMMA) 

(methods 2.3.1). PMMA blocks were then trimmed and the block faces smoothed 

and diamond polished. A 7.5% I₂KI solution in methanol was applied by pipetting 

directly onto the prepared PMMA block surfaces, the solution was left in place for 2-

3 minutes, then the I₂KI was washed off with distilled water and the block blotted 

dry. Embedded and stained samples were imaged using 20 kV BSE in a Zeiss EVO 

MA10 SEM, uncoated, using a chamber vacuum of 49 Pa. Probe current ranged from 

1.0-1.5 nA and working distance ranged from 8-12 mm (Queen Mary, University of 

London). Figure 3.5 shows BSSEM images from the liver which further indicates 

iodine’s affinity for glycogen. At low power, bright areas were evident around the 

portal regions, suggesting an increased level of iodine was residing in these regions 

(figure 3.5A). At high power iodine was seen residing in hepatocytes, and 

preferentially in hepatocytes surrounding the portal region (figure 3.5B). Portal 

regions are rich in glycogen as the portal veins carry blood rich in nutrients from the 

gastrointestinal tract to the liver to be processed.      
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Figure 3.5 Transverse BSSEM images of a mouse liver stained with 7.5% I₂KI. showing 

iodine accumulation around hepatic portal regions at low (A) and high power (B). (Scale 

bars represent 100 µm and 20 µm respectively)   

 

BSSEM images of skeletal muscle showed differential iodine uptake between (figure 

3.6A) and within (figure 3.6B) single muscle fibres. Figure 3.6A shows a 

longitudinal image of tibialis anterior (TA), a skeletal muscle responsible for 

dorsiflexion of the foot. Iodine appeared to reside more readily in some fibres than 

others, the apparent banding created suggests the glycogen rich slow twitch muscle 

fibres have taken on more stain than the fast twitch fibres which contain reduced 

levels of glycogen. Figure 3.6B shows a high power image of the extensor digitorum 

muscle (EDL), which is involved in extension of the foot. The banding in this image 

represents individual sarcomeres, the functional subunits of a muscle fibre. It 

appeared iodine preferentially accumulated (bright bands) in regions where actin and 

myosin filaments overlap, the A band. The thick dark bands running either side of 

the A band are likely to represent the I band, this region is not infiltrated by thick 

myosin filaments, and includes the z disk where actin filaments of adjacent 

sarcomeres anchor themselves. Fine dark bands were observed running down the 

centre of the A bands, which corresponds to the H zone, the central region of the 

sarcomere where only the tails of myosin filaments are present. Figure 3.6A and B 

therefore strongly suggests iodine resides preferentially in areas of high glycogen 

content on a subcellular scale. Figure 3.6C shows a BSSEM image through a 
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coronary artery surrounded by ventricular myocardium. Within the vessel lumen red 

blood cells produced a very high signal, suggesting a high iodine uptake, however 

some cells with a low signal were observed. This suggests the iodine was 

differentiating between glycogen rich and glycogen starved red blood cells.  

We have previously described the ability to differentiate between cardiac tissue and 

connective tissue using iodine contrast enhancement for micro-CT imaging 

(Stephenson et al., 2012). Using BSSEM this differentiation was seen at the level of 

a single Purkinje fibre (figure 3.6D); the Purkinje cells produced a considerably 

higher signal then the surrounding connective tissue.  
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Figure 3.6 BSSEM images of a mouse soft tissue samples stained with 7.5% I₂KI. 

longitudinal BSSEM image of tibialis anterior muscle (scale bar represents 100 µm), showing 

multiple muscle fibres (A), high power longitudinal BSSEM image of extensor digitorum 

longus muscle (scale bar represents 2 µm), showing sarcomere arrangement within a single 

fibre (B). BSSEM image through a coronary artery embedded within the myocardium, 

showing the arrangement of blood cells within the vessel lumen (scale bar represents 10 

µm) (C) and longitudinal BSSEM image through a free running Purkinje fibre (scale bar 

represents 10 µm) (D). 
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Samples of mouse cerebellum and cerebrum were processed for BSSEM to 

investigate the interaction of iodine with the lipid rich regions of the brain. White 

matter axons are insulated with lipid rich myelin, this gives it its pinkish white 

appearance in a freshly cut brain. Sagittal images through the cerebellum at 

increasing magnification are shown in figure 3.7A,B and C. The dashed yellow line 

in figure 3.7B corresponds to the plot profile of gray values in figure 3.8 (each voxel 

within the 3D volume is assigned a gray scale value based on its X-ray attenuation). 

The gray values (signal) of white matter (WM) were higher than those observed in 

the molecular layer (ML), which corresponds to grey matter (figures 3.7B and 3.8). 

Iodine is thus residing preferentially in the lipid rich white matter (figure 3.7). The 

highest gray values were seen in the granular layer (GL) and in the large Purkinje 

cells (PC) (figure 3.7 and 3.8). The granular layer is made up of densely packed 

granule cells and large golgi cells, in contrast the ML is more sparsely populated, and 

consists mostly of dendrites from PCs and parallel fibres from granule cells. PCs are 

some of the largest neurons in the brain, and have up to 200,000 parallel fibres 

running through them. The GL and PCs are an example of how high tissue density 

and large cell size can influence X-ray interactions. Another example of this effect is 

iodine’s interaction with nodal tissue (figure 3.2). Although the nodal cells are 

glycogen rich, they are small (compared to working myocytes) and sparsely arranged 

compared to the dense working myocardium, and thus nodal tissue appears as a low 

attenuating region (figure 3.2) (for further detail see Chapter 6). 
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Figure 3.8 Plot profile of gray values across BSSEM image of mouse cerebellum stained 

with 7.5% I₂KI. Yellow dotted line shown in figure 3.7B indicates plane used for plot profile. 

Increased gray values indicates increased signal intensity in BSSEM image and hence iodine 

accumulation. GL- granular layer, ML- molecular layer, PC- Purkinje cell, PM- pia mater, 

WM- white matter. 

 

3.5 The effects of perfusion fixation on the image quality of soft tissue imaged using 

contrast enhanced micro-CT 

Previously we have noted the negative affect residing blood can have on micro-CT 

image quality (Stephenson et al., 2012, Jarvis and Stephenson, 2013). To investigate 

how tissue preparation can enhance the image quality of cardiac tissue, a perfusion 

fixation methodology was developed in rabbit (methods 2.2.4 (Stephenson et al., 

2012, Jarvis and Stephenson, 2013)). Systemic heparin was administered prior to 

termination by intravenous injection under isoflurane aneshesia (2000 Units/kg). The 

rabbits were then terminated by overdose of sodium pentobarbitone. The thoracic 

cavity was exposed, the pericardium was removed, and the inferior vena cava and 

descending aorta cannulated.  In order to clear the heart of blood, the chambers were 

flushed in situ via the inferior vena cava and aorta with heparinised saline (5000 
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Units/ml) until the expelled solution ran clear. The heart was then fixed by a period 

of perfusion with PBFS (approx. 10 mins) by retrograde injection via the aorta, 

allowing perfusion of the coronaries. If necessary, further PBFS was passed through 

the heart via the inferior vena cava. All major vessels (IVC,SVC, Aorta, PA, PVs) 

were clamped using surgical vessel clamps to allow inflation of the heart chambers 

with PBFS. The partially fixed hearts were then removed to separate vials containing 

PBFS for further long-term fixation. The inflated state of the hearts was maintained 

by gentle agitation, and if required further injection of PBFS via the cannulated 

vessels, until all chambers were full of fixative and the hearts were floating freely 

without contact with the vial walls. Particular care was taken over the thin-walled 

atria. In situ heparinisation followed by perfusion fixation, accompanied with careful 

monitoring, produced naturally inflated hearts with no residing blood in the atrial or 

ventricular cavities (figure 3.9B). The level of inflation was validated by cross 

reference with in vivo echocardiography (see Chapter 8.6). Heparinisation and 

flushing prevented visual impairment of internal structure by residing blood, which 

otherwise would readily take up the iodine (as shown previously in figure 3.6C) and 

appear as a high attenuating structure. Figure 3.10 shows image data and volume 

renderings from a sample that has been immersion fixed (figure 3.9A,C,E), and a 

sample that has undergone perfusion fixation (figure 3.9B,D,F). Perfusion fixation 

removed all residing blood from the ventricular and atrial cavities, and naturally 

inflated the heart chambers (figure 3.9B). Figure 3.10C,E show volume renderings of 

the atrial and ventricular cavities from a immersion fixed heart, it was not possible to 

visualise internal details of the cavities or endocardial surfaces. In contrast, 

corresponding volume renderings from a perfusion fixed heart revealed the striking 

fine detail micro-CT can resolve (figure 3.9D,F), detail which would otherwise be 

hidden by residing blood. Ridding the hearts of blood also aided analysis and 

quantification of the cavities and internal structures. The detailed cardiac anatomy 

revealed here is discussed and analysed further in chapters 5, 6, 7 and 8.    
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Figure 3.9 Micro-CT images and volume renderings of immersion fixed and perfusion fixed 

rabbit hearts. Longitudinal micro-CT images of hearts immersion fixed (A) and perfusion 

fixed (B). Volume renderings of right atrial and left ventricular cavities of immersion fixed 

(C,E) and perfusion fixed (D,F) hearts. (scale bars represent 2000 µm) 

 

Perfusion fixation not only removed residing blood from the cavities, it also removed 

blood residing within blood vessels in the walls of the myocardium. Figure 3.11 

shows transverse micro-CT images from the ventricle in a sample that has been 
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immersion fixed (figure 3.10A,B), and a sample that has undergone perfusion 

fixation (figure 3.10C,D). Although internal transmural detail was observed in both 

samples, perfusion fixation allowed the detailed laminar sheet formation to be 

resolved throughout the ventricles (figure 3.10C,D). Without perfusion fixation the 

epicardium and mid wall regions appeared as a homogenous mass of tissue (figure 

3.10A,B). Perfusion fixation allowed for interpretation of the laminar sheet formation 

in 3D throughout the ventricles (see Chapter 5.8), and also allowed for novel analysis 

of 3D fibre orientation throughout the whole heart (see Chapter 5,6,7,8).       

 

 

Figure 3.10 Transverse micro-CT images from immersion fixed and perfusion fixed rabbit 

hearts. Showing images of the posterior left ventricular wall at the basal region (A,C), and 

images from the apical region (B,D), from immersion fixed (A,B) and perfusion fixed (C,D) 

hearts. High attenuating regions indicate iodine-lipid interaction. (scale bars represent 1 

mm) 
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3.6 The effects of X-ray targets used for contrast enhanced micro-CT imaging on soft 

tissue image quality 

X-rays are produced by electron interactions with matter, and can be generated by an 

X-ray tube. Within the X-ray tube is a cathode, which under high voltages produces 

electrons that are accelerated through a vacuum at high velocity. The high velocity 

electrons collide with a metal target, the anode, which generates the X-rays. The 

target (anode) material within an X-ray tube determines the X-ray spectrum the tube 

produces. The X-ray spectrum of any particular target is made up of a continuous 

Bremsstrahlung spectrum with numerous spikes created by characteristic interactions 

(Introduction 1.5.3.2). The wavelength of the characteristic spikes is inversely 

proportional to the atomic number of the target material. This suggests when using 

I₂KI as a contrast agent a target with an atomic number close but greater than iodine 

should produce the most photons with a suitable k-shell binding energy, and thus 

provide the best image contrast. However the accumulative effect of tissue depth on 

attenuation also needs to be considered. The standard target used in micro-CT 

imaging is tungsten (W). However, the Metris X-Tec custom 320 kV bay system at 

the EPSRC-funded Henry Moseley X-Ray imaging Facility (Manchester University) 

allows the target material to be changed easily, a process that would require 

specialist technical support in standard scanners. To investigate the effects of 

different X-ray targets on image quality, a fixed rabbit heart stained with 3.75% I₂KI 

for 5 days was scanned using a copper (Cu) target, and the I₂KI was subsequently 

removed from the heart using multiple PBFS washes. The same heart was then 

restained with 3.75% I₂KI for 5 days and scanned with silver (Ag), molybdenum 

(Mo) and W targets. All scans were optimised for X-ray transmission and image 

quality. Acquired scan data was manipulated into the same orientation, and from 

transverse sections at the same plane (see figure 3.11) plot profiles of the gray values 

across the left ventricular wall were plotted (figure 3.11 yellow dotted line) for each 

data set (figure 3.11). Surprisingly, there was negligible difference in image contrast 

when comparing the different X-ray targets. All targets showed clear contrast 

between myocardium and space, and internal transmural detail was resolved (figure 

3.11). With all targets the major tissue types; fat, myocardium, nodal tissue and 

connective tissue, could be differentiated with decreasing attenuation coefficients 

respectively. Of the targets used, the atomic number of Ag (47) was the closest to 
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that of iodine (53), yet there was no discernible improvement in image quality over 

the other targets. We did measure some subtle differences: the Mo target did provide 

the best transmural contrast, showing the biggest difference in gray values between 

laminar sheets and space (figure 3.11C). The Cu target provided the best transmural 

detail; the increased number of peaks within the plot profile suggests an increased 

number of laminar sheets have been resolved. Cu also produced the steepest curve at 

the myocardium-space boundary, suggesting a reduced signal averaging effect 

(figure 3.11A). To assess the effect of X-ray targets on the differentiation of different 

tissue types, plot profiles encompasses four different tissue types (fat, myocardium, 

nodal tissue and connective tissue) were plotted from image data of rabbit hearts 

scanned using Cu (figure 13.12A) and W (figure 13.12B) targets. The Cu target 

provided superior differential contrast between soft tissues, with larger differences in 

gray values observed between different tissue types (figure 13.12). Transitions at 

tissue boundaries were sharper in the Cu target images. In W target images smooth 

transitions, especially between nodal and myocardial tissue were observed, 

suggesting reduced contrast resolution (figure 13.12). These results influenced future 

scans, in that only Cu and Mo targets were used when imaging iodine stained soft 

tissue.    

 

3.7 The effects of rescanning, restaining and radiation on fixed soft tissue. 

During a micro-CT scan, samples are subjected to levels of electromagnetic radiation 

in the form of X-rays similar to those used in clinical imaging techniques. However, 

the increased exposure times used in micro-CT imaging mean samples are exposed 

to levels of radiation which would not be acceptable in a clinical setting. To assess 

the effects of radiation on gross soft tissue morphology a fixed rabbit heart stained 

with 3.75% I₂KI for 5 days was scanned as usual. The I₂KI was then removed from 

the heart using multiple PBFS washes. The same heart was then restained with 

3.75% I₂KI for 5 days and scanned a further 3 times under optimal conditions with 3 

different X-ray targets. All scan data was virtually manipulated into the same 

orientation and from four transverse planes, evenly spaced from based to apex, left 

ventricular free wall (LVFW) and left ventricular internal dimension (LVID) 

measurements were recorded (figure 3.11 yellow dotted lines). This also allowed 
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investigation of how restaining soft tissue affects morphology. ANOVA tests at each 

region showed, there was no difference in LVFW (p=<0.99) or LVID (p=<0.99) 

measurements (figure 3.13). This shows multi-scanning and hence radiation exposure 

during micro-CT scans does not affect gross tissue morphology of previously 

scanned tissue. This also suggests the removal of the I₂KI contrast agent and 

restaining of previously scanned samples is acceptable, as there was no significant 

change in tissue morphology after the first scan (Cu) (figure 3.13). To investigate the 

effects of micro-CT scanning on tissue morphology at a cellular level, contrast agent 

was removed from previously scanned tissue using multiple PBFS washes. Tissue 

preparations were then wax embedded and processed for histology. Inspection of cell 

structure and morphology from mounted histology sections showed cell structure and 

integrity was normal, and impressive correspondence with micro-CT data was 

achievable (figure 6.2). This confirms that both the gross and microscopic anatomy is 

preserved in micro-CT scanned soft tissue, thus validating any further experimental 

investigation of previously scanned tissue. 
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Figure 3.11 Micro-CT images and plot profiles of rabbit hearts scanned with different X-

ray targets. Transverse micro-CT image (acquired with copper target) of rabbit heart 

stained with 3.75% I₂KI for 5 days with corresponding plot profile of gray values across left 

ventricular free wall (LVFW) (small yellow dotted line) (A). B-D shows the same sample as 

shown in A, bled of iodine, restained (3.75% I₂KI for 5 days) and rescanned with silver, 

molybdenum and tungsten targets respectively, corresponding plot profiles are shown. 

Target values represent atomic number. Small yellow dotted line represents plane for plot 

profiles. Red line indicates values for myocardium, extremities represent space. Large 

yellow dotted line indicates example LVID measurement.    
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Figure 3.12 Comparison of different X-ray targets for micro-CT imaging of different tissue 

types. Longitudinal micro-CT images of rabbit intervetricular and interatrial septa stained 

with 3.75% I₂KI for 5 days, acquired with copper target (A), and Tungsten target (B). 

Corresponding plot profile of gray values across four major tissue types (yellow dotted line 

in A and B) using copper (Cu) and tungsten (W) targets (C). Target values represent atomic 

number. C- connective tissue, F- fat, M- working myocardium, N- nodal tissue.  
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Figure 3.13  Measurements of left ventricular dimensions in rabbit hearts restained and 

rescanned by micro-CT. LVFW width (A) and LVID measurements (B) recorded from 

transverse micro-CT sections at 4 evenly spaced intervals from base to apex. For scan using 

Cu target rabbit heart stained with 3.75% I₂KI for 5 days. For Ag, Mo, W targets the same 

rabbit heart was bled of iodine and restained with 3.75% I₂KI for 5 days. ANOVA tests 

showed there was no significant difference in LVFW (p=<0.99) or LVID (p=<0.99) 

measurements at the different sites. Cu- copper, Ag- silver, Mo- molybdenum, W- tungsten. 
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3.8 Discussion 

Here a methodology to implement micro-CT for soft tissue imaging has been 

successfully developed. We show the necessity for perfusion fixation of samples, the 

utility of I₂KI as a contrast agent, and the most suitable X-ray targets for contrast 

enhanced micro-CT. Data presented here will inform future applications of micro-CT 

for soft tissue imaging, and reveals the ability of the technique to non-invasively 

produce accurately aligned, high resolution, tomographic data sets in a time and cost 

effective manner. This chapter shows the suitability of micro-CT for a wide range of 

scientific applications including; developmental, comparative and functional 

investigation of animal tissue morphology. 

 

3.8.1 Traditional techniques for analysis of soft tissue  

Classical histology offers high resolution images in a single plane, but serial 

sectioning is highly labour intensive and 3D reconstructions are plagued with 

registration issues. Confocal microscopy provides high resolution 3D data, but is 

hampered by the fact that a sample depth of only a few hundred microns is viable 

(Semwogerere and Weeks, 2005). In block face techniques such as Episcopic 

microscopy (Mohun and Weninger, 2011) or extended volume confocal microscopy 

(Sands et al., 2005) images are automatically aligned, but acquisition time is slow 

and the sample is destroyed in the process. Micro MRI produces high resolution 

images non-invasively which are automatically aligned, and has been used in the 

imaging of soft tissue (Driehuys et al., 2008, Johnson et al., 2002, Li et al., 2005). 

However MRI does have drawbacks; a) acquisition times are often several hours (Li 

et al., 2005), with comparable scans achievable in ~20 minutes using micro-CT 

(Jeffery et al., 2011, Stephenson et al., 2012), b) spatial resolutions are almost an 

order of magnitude lower than that achievable with micro-CT, c) at high resolutions 

signal to noise diminishes more rapidly in MRI, and voxels are typically rectangles 

(non-isometric), with the longest axis extending up to 1000 µm. Micro-CT voxels are 

fully isometric cubes, thus image data has superior fidelity over micro-MRI (Jeffery 

et al., 2011). Recently phase-contrast X-ray micro tomography has been used for 

high resolution non-invasive soft tissue imaging (Hoshino et al., 2012). Although 

soft tissue contrast is achieved without the need for a contrast agent, the best results 
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have been achieved with a synchrotron source (Hoshino et al., 2012), which makes 

the technique logistically and economically difficult.   

  

3.8.2 Previous applications of micro-CT 

Tissues with inherent high atomic numbers or electron-density can be easily 

visualised using micro-CT. As a result, micro-CT has traditionally been used for 

developmental and morphological analysis of calcified tissues (Kinney et al., 1998, 

Wise et al., 2013). Micro-CT has also been used in multimodal imaging (Mouchess 

et al., 2006), in which the morphology of calcified tissues is acquired using micro-

CT, while soft tissue image data is acquired by other imaging modalities. Here we 

show iodine contrast enhancement allows calcified and soft tissue to be imaged 

simultaneously, allowing appreciation of the true 3D relationships between muscle 

and bone. We also show its ability to resolve and differentiate cartilaginous tissues, a 

principle which allowed us to develop a new surface staining methodology for 

BSSEM (Boyde, 2012). Recently the addition of X-ray contrast agents has allowed 

micro-CT imaging of soft tissues in embryos (Metscher, 2009b, Metscher, 2009a), 

muscle (Jeffery et al., 2011) and biomaterials (Faraj et al., 2009). Also ‘low’ 

resolution (~100- µm) in vivo images of soft tissues have been acquired in small 

animals (Almajdub et al., 2008, Badea et al., 2005, Badea et al., 2008). Here we have 

extended the application of micro-CT for soft tissue imaging to large samples, and 

shown the capability of the technique to allow differentiation of various tissue types. 

This is a desirable characteristic for any soft tissue visualisation and analysis, and is 

the major benefit attributed to traditional histology.   

 

3.8.3 The necessity for perfusion fixation in soft tissue imaging  

Here we show the influence tissue preparation has on soft tissue imaging. Image 

quality of micro-CT scan data was vastly improved by heparinisation and perfusion 

fixation of samples. Blood residing within cavities, lumens and the tissue itself 

reduces image quality. This is because iodine readily and preferentially resides in 

blood over soft tissue (figure 3.6C, 3.10), and hence blood appears as a highly 

attenuating structure. This prevents visualisation of blood contact surfaces, and 
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impairs image quality within soft tissue structures (figures 3.10 and 3.9). Perfusion 

fixation also preserves the true 3D relationships of adjacent structures, which for 

morphological studies is of great importance. Too many morphological studies are 

based on tissue fixed in a way that does not reflect the true in vivo state, this makes 

interpretation and dissemination of results difficult. However, soft tissue is plastic so 

care must be taken not to distort samples by over inflation or high pressure when 

using perfusion fixation. The use physiological isotonic fixatives, for example PBFS, 

is imperative to prevent cell damage.     

The relationship between sample preparation and image quality is well documented 

for traditional morphological analysis techniques such as histology or electron 

microscopy (Boyde, 2012, Wisse et al., 2010). However its influence on image 

quality in micro-CT has been overlooked. Rather emphasis has been placed on 

suitable contrast agents (Faraj et al., 2009, Metscher, 2009b, Pauwels et al., 2013). 

We show here how a seemingly ‘good’ contrast agent for soft tissue imaging can be 

made excellent by correct sample preparation. As a result initial studies into the 

effectiveness of contrast agents for micro-CT (Faraj et al., 2009, Metscher, 2009b, 

Pauwels et al., 2013), need to be repeated in larger perfusion fixed samples before 

contrast agents are disregarded or stated unsuitable. 

 

3.8.4 The principles of iodine contrast enhancement 

Here we introduce the principles of iodine contrast enhancement for micro-CT 

imaging, which will aid successful application of the technique in the future. I₂KI is 

an ideal contrast agent; a) it has an ideal k-shell binding energy, b) it readily 

penetrates soft tissue allowing imaging of large samples, c) it can be removed 

allowing for post scan analysis (e.g. histology), d) it is differentially taken up by 

different tissue types, e) and once stained iodine is stable. I₂KI remains localised 

differentially within tissues and does not bleed into adjacent structures; this reduces 

image artefacts and blurring at tissue boundaries. The proficiency of other heavy 

molecules to provide soft tissue contrast has been extensively explored (Metscher, 

2009b, Pauwels et al., 2013), but none match up to the numerous advantages we have 

found using I₂KI. Osmium tetroxide has a suitable k-shell energy and offers good 

soft tissue contrast. However it has been shown to work poorly on tissue stored in 



103 

 

alcohol, and like phosphotungstic acid its soft tissue penetration is limited (Metscher, 

2009b). I₂KI also benefits from low toxicity and is inexpensive. In contrast, Osmium 

tetroxide and Uranyl acetate are highly toxic and radioactive respectively, and are 

both volatile substances which are expensive to purchase and dispose of (Faraj et al., 

2009, Hayat, 1970). Drying has been shown to improve soft tissue contrast but this 

causes tissue shrinkage and inevitably leads to structural changes. Freeze drying and 

critical-point freezing can reduce such artefacts (Leroux et al., 2009, Zysk et al., 

2012), but these methods are time consuming and require devices to monitor sample 

temperature and pressure. In contrast, I₂KI staining is straight forward, and we have 

shown staining, scanning, restaining and rescanning does not distort the morphology 

of large soft tissue samples. In small samples however, there is evidence that high 

concentrations of iodine coupled with long incubation times can cause considerable 

tissue shrinkage and care needs to be taken in this context (Vickerton et al., 2013).     

Investigations into optimisation of contrast enhancement revealed staining with I₂KI 

is dependent on 3 factors; concentration, incubation time, and sample size. It was 

revealed that the correct combination of these factors is essential for the 

differentiation of different tissue types (fat, myocardium, nodal tissue and connective 

tissue), and the visualisation of soft tissue internal detail. The principles behind the 

differential uptake of iodine was assessed using micro-CT and BSSEM. It was clear 

that iodine preferentially resides in areas rich in glycogen such as skeletal muscle, 

red blood cells, hepatocytes and astrocytes. It is hypothesised that iodine ions 

becomes aligned and immobilised within the cavities of helical coils formed by 

glycogen complexes (Lecker et al., 1997, Saenger, 1984)- the basis of simple tests 

for polysaccharides. Iodine also showed a high affinity for lipid rich regions such as 

pericardial fat, and myelinated neurons. Iodine has been shown to readily bind with 

the hydrophilic groups of lipid complexes, which is attributed to charge-transfer 

complex formation (Bhowmik and Jendrasiak, 1967, Szundi, 1978). Yohe et al. 

showed iodine readily interacts with gangliosides (Yohe and Rosenberg, 1972), a 

type of glyolipid which is abundantly found in nervous tissues.   

Iodine accumulation and thus X-ray attenuation of soft tissues was also shown to be 

dependent on tissue density, with areas of tightly packed cells appearing as high 
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attenuating regions. This was to be expected as the relationship between iodine 

accumulation and optical density has long been established (Szundi, 1978).    

 

3.8.5 The effects of X-ray targets on soft tissue image quality 

The wavelength of the characteristic X-rays generated is inversely proportional to the 

target’s atomic number. This suggests a target with an atomic number close to iodine 

(53) should provide the best contrast for micro-CT using our I₂KI contrast agent. 

Therefore, of the targets tested. silver (Ag) target with an atomic number of 47 

should in theory produce the best contrast resolution. Analysis of the effects of 

different X-ray targets (Cu, Ag, Mo, W) on image quality revealed that targets with 

vastly different k-shell energies and thus X-ray spectra, still produce satisfactory 

results for imaging of soft tissue. With all targets the major tissue types; fat, 

myocardium, nodal tissue and connective tissue, could be differentiated. This is due 

to the fact that for all targets, the X-ray spectrum produced has a wide range of 

energies, some of which will be complimentary to the K-shell binding energy of 

iodine. However we conclude Cu and Mo are most suitable for imaging of soft tissue 

using micro-CT. The Mo target provided the best transmural contrast, showing the 

biggest difference in gray values between laminar sheets and space. The Cu target 

provided the best internal detail, and produced the steepest curve at the myocardium-

space boundary, suggesting a reduced signal averaging effect. This can be explained 

by the relationship between the k-shell binding energy of iodine and atomic numbers 

of Cu and Mo; the k-shell binding energy of iodine (33.2 KeV) does not correspond 

to its atomic number (53), therefore the atomic numbers of Cu (29) and Mo (42) 

means, as a target, they produce characteristic X-rays with an ideal energy for 

successful displacement of iodine electrons (Bearden and Burr, 1967). This also 

explains the observed superior contrast resolution when using a Cu target, as the 

spectrum produced will be sensitive to small differences in iodine concentrations 

between tissue types. Higher energy X-ray spectra, like those produced by W, which 

is often the default target for micro-CT systems, were not as sensitive to changes in 

iodine concentrations. This is because W has a high atomic number (74), and thus 

produces X-rays that readily generate photon events regardless of iodine 

concentration.   
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3.9 Summary 

A methodology to implement micro-CT for soft tissue imaging was developed. We 

show the necessity for perfusion fixation of samples, the utility of I₂KI as a contrast 

agent and the most suitable X-ray targets for contrast enhanced micro-CT. 

Investigations into optimisation of contrast enhancement revealed staining with I₂KI 

is dependent on 3 factors; concentration, incubation time, and sample size. It was 

revealed that the correct combination of these factors is essential for the 

differentiation of different tissue types and the visualisation of a tissues internal 

detail. 

The principles of differential uptake of iodine by different tissue types were assessed 

in various tissues using micro-CT and BSSEM. It was clear that iodine preferentially 

resides in areas rich in glycogen and lipids. Iodine accumulation was localised 

allowing clear discrimination of cell and tissue boundaries especially with BSSEM. 

Iodine accumulation and the attenuation of soft tissue was also shown to be 

dependent on tissue density, with areas of tightly packed cells appearing as high 

attenuating regions. 

Tissue preparation was shown to be vitally important in achieving the best image 

quality possible. Our perfusion fixation method ridded samples of residing blood 

which improved visualisation and analysis of sample cavities and internal tissue 

detail. We also showed that tissue preparation, staining and the scanning process 

itself does not negatively affect tissue morphology. Analysis of effects of different 

X-ray targets, and thus different X-ray spectra on image quality revealed most that 

X-ray targets produce satisfactory results, but we conclude that Cu and Mo are most 

suitable for imaging of soft tissue using micro-CT. 

The data presented here will inform future applications of micro-CT for soft tissue 

imaging, and reveals the ability of contrast enhanced micro-CT to non-invasively 

produce accurately aligned, high resolution, tomographic data sets in a time, and 

cost-effective manner. Micro-CT is therefore suitable for application in 

developmental, comparative and functional investigation of tissue morphology, as 

well as in genomic and mutational investigations were visualisation of global effects 

are desirable. 
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Detailed Morphology of Skeletal Muscle 
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4.1 Introduction 

The morphology of skeletal muscle and its associated connective tissue network is 

changed in response to a number of factors, including physical activity and disease. 

There has been a vast amount of research conducted to investigate the modification 

of muscle during and after; training, electrical stimulation and genetic modification. 

As well as biomechanical modelling of musculoskeletal function using techniques 

such as finite elements analysis. Therefore, information on the morphology and 

internal structure of muscle and connective tissue is important for numerous 

applications in basic and clinical research. The established methods for visualising 

and collecting morphological data from skeletal muscle are dissection and 

histological sectioning, which are both destructive and laborious. Low X-ray 

attenuation has formerly ruled out micro-CT as a modality to resolve internal 

structures of soft tissue. Incorporation of iodine, which has a high molecular weight, 

into soft tissues enhances the differential attenuation of X-rays, and has allowed 

visualisation of fine detail in embryos and skeletal muscle. Here we investigate the 

potential of iodine staining to generate high resolution micro-CT images of skeletal 

muscle tissue, and assess whether muscle and connective tissue can be discriminated. 

We show the ability of micro-CT to resolve single muscle fibres, and validate a novel 

method of extracting fibre orientation from micro-CT data.     

Some of the work in the following chapter has been published as:  

 

Jeffery NS, Stephenson RS, Gallagher JA, Jarvis JC, Cox PG (2011) Micro-

computed tomography with iodine staining resolves the arrangement of muscle 

fibres. Journal of Biomechanics 44: 503 189-192.  

 

The paper is appended 

 

New insights include; the visualisation of muscle bundle structure in whole intact 

samples, and the validation of 3D fibre orientation, extracted from micro-CT data 

using a novel methodology developed by our collaborator Dr Jichao Zhao (The 

University of Auckland).   
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4.2 Discrimination of skeletal muscle from connective tissue  

To assess the potential contrast enhancement of I₂KI staining for micro-CT imaging 

of skeletal muscle, samples of extensor digitorum longus (EDL) muscle were taken 

from commercially available fixed foetal pig material (110-115 days gestation age) 

(Carolina Biological Supply, Wisconsin). An 8mm x 8mm x 8mm block of tissue 

from the distal part of EDL was chosen because in this area tendons make their 

connections with skeletal muscle fibres, and so differentiation between muscle and 

connective tissue could be studied. Samples were stained with I₂KI (15 %, 2 days), 

micro-CT scanned, and subsequently processed for histology. Mouse heads were 

taken from adult WMT mice that had been previously fixed in PBFS, stained with 

I₂KI (7.5%, 7 days), and micro-CT scanned. Contrast enhanced micro-CT images of 

pig EDL indicate that muscle appears as a highly attenuating structure (bright 

grayscale values), and the accompanying connective tissue appears as low 

attenuating structures (dark grayscale values). Perimysial, and even endomysial 

connective tissue can be resolved and discriminated from tendinous connective tissue 

(figure 4.1). These findings were validated by processing the same sample for 

histology and staining with Sirius red, however, fine connective tissue tracts (red) are 

less defined than in micro-CT data, and tissue shrinkage is evident (figure 4.1).        

 

 

Figure 4.1 Discrimination of skeletal muscle and connective tissue using micro-CT and 

histology. Transverse micro-CT image of extensor digitorum longus muscle stained with 

15% I₂KI for 2 days showing low attenuating connective tissue tracts (A). Corresponding 

histological section stained with Sirius red. Clear arrows indicate perimysium, filled arrows 

indicate tendinous connective tissue. (Scale bar represents 0.1 mm) 
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We have shown that the I₂KI contrast agent is preferentially taken up by different 

tissue types (Chapter 3), here more iodine resides in muscle than connective tissue 

(figure 4.1). This was also seen to be the case when an intact mouse head was stained 

with I₂KI. Even with physical barriers such as fur, epidermis, subcutaneous fat and 

calcified tissue, iodine diffuses into and more readily resides in muscle than the 

surrounding connective tissue (figure 4.2). The mouse masseter muscle, for example, 

showed clear definition of low attenuating connective tissue septa, whose 

configuration suggested that the iodine stain was differentiating between muscle 

fibres and the epimysial connective tissue separating muscle components (e.g. deep 

and superficial layers of the masseter) and the perimysial connective tissue that 

delineates fascicles or parallel bundles of muscle fibres (figure 4.2). Bone due to its 

high atomic number and density appeared as the highest attenuating structure (figure 

4.2).     

 

Figure 4.2 Micro-CT images of adult mouse head stained with 3.75% I₂KI solution for 7 

days. (A) transverse image at 0.033 mm showing position of resliced images B and C; (B) 

coronal image at 0.033 mm showing various muscles; (C) coronal image at 0.010 mm 

resolution showing thick dark bands of epimysium (black arrow) separating the muscles and 

the narrower dark bands representing perimysium (clear arrows). AD, anterior digastric; 

ADM, deep masseter; ALT, anterior lateral temporal; AMT, anterior medial temporal; OB, 

occipital bone; EP, external pterygoid; GH, geniohyoid; M, masseter; MH, mylohyoid; MB, 

mandibular bone; ZM, zygomatico-mandibular muscle. Scan data acquired from and 

interpreted with Dr Nathan S. Jeffery. (Scale bars represent 3 mm) 
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4.3 Contrast enhanced micro-CT resolves the arrangement of single muscle fibres 

Muscle fibre architecture was investigated using high resolution scans of a intact 

fixed adult grey squirrel head,  adult WMT mouse head and fixed foetal pig EDL 

muscle (110-115 days gestation age) (Carolina Biological Supply, Wisconsin). Scan 

data confirmed that the arrangement of muscle fibre bundles (figure 4.4, 4.5) and 

single muscle fibres within these bundles (figure 4.3, 4.6, 4.7) can be resolved using 

contrast enhancement micro-CT. In scans of the EDL, it was clear that the 

delineation of connective tissue and skeletal muscle tissue extended to the 

endomysial level. The endomysium is the fine layer of connective tissue which 

surrounds individual muscle cells. Fig.4.3 shows that structures of approximately 30-

40 microns in width can be resolved, and these are individual muscle fibres. The CT 

scan is compared with the microscopic appearance of an unstained section in Figure 

4.3C. In this case, the iodine staining of the individual muscle fibres can be seen as a 

yellow/orange colour, validating structures seen in the micro-CT data.     
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Figure 4.3 Longitudinal micro-CT images of extensor digitorum longus with corresponding 

histology. Extensor digitorum longus micro-CT image (resolution 0.006 mm) stained with 

15% I₂KI for 2 days (A), and high power image (B). Corresponding histological section 

stained by residing iodine (C), validating micro-CT findings. (Scale bars represent 0.5 mm 

and 0.1 mm)  

 

Muscle bundle arrangement was resolved in whole intact mouse and squirrel heads 

(figure 4.4, 4.5). The best visualisation of muscle fibre direction was achieved by 

virtually reslicing the scan data to match the longitudinal axis of muscle fibres 

(figure 4.4B,C,E,F), in this plane discrete changes in muscle bundle orientation 

across a muscle are easily visualised. The inability to clearly visualise individual 

muscle fibres in larger samples, is due to both the inverse relationship between 

sample size and attainable resolution and down sampling of the data, but is not due to 

a limitation of the staining technique. Whole muscles (figure 4.5B) and their muscle 

bundles (figure 4.5C) can be segmented and quantified. In figure 4.5 the anterior 
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deep masseter of an adult squirrel has been segmented (by Dr Philip G. Cox) and its 

major muscle fibre bundles presented in 3D; volume, surface area, and 3D length can 

be calculated using Amira 5.4 tool kit.  

 

 

Figure 4.4 Micro-CT images of adult mouse head stained with 3.75% I₂KI solution for 7 

days. (A) transverse image showing position of resliced images B and C; sagittal images 

showing fibre orientation in temporalis muscle. (D) transverse image showing position of 

resliced images E and F; sagittal images showing fibre orientation in superior masseter 

muscle. SM- superior masseter, T- temporalis. Image resolution 0.033 mm, scan data 

acquired from Dr Nathan S. Jeffery. (scale bars represent 3 mm)        



113 

 

 

Figure 4.5  Transverse micro-CT image of squirrel head with corresponding volume 

renderings of anterior deep masseter muscle. Images illustrating how the geometry and 

internal architecture of a muscle, in this instance the anterior deep masseter muscle in the 

squirrel, could be defined: (A) transverse enhanced micro-CT image showing the outline 

and internal features of the muscle; (B) 3D reconstruction of the skull showing the external 

geometry of the muscle (red); (C) 3D reconstruction of the skull demonstrating the 

arrangement and length of fibre bundles in the muscle. Volumes, areas as well as fascicle 

length and orientation can be measured, using the Amira toolkit. Image resolution 0.040 

mm, scan data acquired from and analysed by Dr Phillip G. Cox.  

 

4.4 3D fibre orientation of skeletal muscle  

We have shown contrast enhanced micro-CT can non-invasively resolve the 

arrangement of single muscle fibres (figure 4.3). However, the nature of tomographic 

image data means the 3D morphology of fibres is not easily interpreted. 

Consequently, novel structure tensor and fibre tracking analysis was carried out on 

micro-CT data of foetal pig EDL muscle to visualise and quantify muscle fibre 

orientation in 3D. Using segmentation tools in Amira 5.4, a tissue mask was created 

that only encompassed the muscle tissue and excluded the connective tissue. Then 
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using Matlab (R2009b) a structure tensor method representing gradient information 

for 3D imaging problems (Krause et al., 2010; Zhao et al., 2012) was implemented 

on the micro-CT data using the previously created mask. The structure tensor 

contains gradient information at each voxel in the 3D volume. Eigen analysis of the 

3D structure tensor is then carried out. Local fibre alignment is modelled as the 

orientation with the least signal variation, which corresponds to the eigenvector 

paired with the smallest eigenvalue. Fibre angles at each voxel are then extracted for 

statistical analysis. State of the art reconstruction methods for fibre tracking using the 

structure tensor data have been developed previously (Zhao et al., 2012). We then 

implemented a simple line interpolation algorithm; the 3D trajectory propagates 

along a line starting from a seed point in a region of interest with a predefined pixel 

size (in this case 1) and varying vector orientation. The vector orientation is 

continually updated by averaging eight neighbouring vectors in any new coordinate 

during propagation. Fibre tracks are then rendered in 3D using custom colour maps 

corresponding to either inclination or transverse angles. 3D fibre angles, including 

both inclination and transverse angles (See methods 2.4.4 and figures 2.1 and 2.2) 

were successfully extracted from the micro-CT data, allowing visualisation of 3D 

fibre orientation in the muscle.  

To validate fibre orientation analysis a sub-region of the muscle (1.1 mm³; 6 µm 

isometric resolution) containing predominantly vertical fibres was analysed (figure 

4.6A,B), figure 4.6C,D shows the result of the fibre orientation analysis for the 

region. It was evident that the algorithm could successfully extract muscle fibre 

information from the micro-CT data, inclination angles confirmed, as expected, a 

predominant vertical fibre orientation across the tissue block. Fibre tracking clearly 

showed overlapping of fibres and branching between fibres in 3D, characteristics that 

cannot be easily identified when viewing the data in a tomographic format (figure 

4.6A). The large spaces evident within 3D fibre plots (figure 4.6C,D) correspond to 

the connective tissue tracts removed in the segmentation process. With the method 

validated for a regular muscle fibre pattern, the ability of the technique to plot areas 

of irregular fibre orientation was investigated. Figure 4.7A,B shows a longitudinal 

micro-CT slice taken from a sub-volume (1.6 mm³; 6 µm isometric resolution) of a 

foetal pig EDL data set, the region contains a 'kink' of muscle fibres likely to be an 

artefact of the fixation process. Fibre orientation analysis of the volume (figure 
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4.7C,D) clearly depicts the 'kink', and provides detailed quantification of the 

inclination angle of the individual fibres as they transverse the 'kink' region. A fibre 

with a complex orientation was observed (figure 4.7D- white arrow), the fibre 

appeared to turn back on itself and coil, not characteristic of muscle fibres. However, 

the structure is present in the micro-CT data and may represent an area of micro 

damage.  

 

Figure 4.6 Longitudinal micro-CT image of pig extensor digitorum longus muscle with 

corresponding volume rendering and 3D fibre orientation. Extensor digitorum longus 

micro-CT image (resolution 0.006 mm) stained with 15% I₂KI for 2 days (A), with 

corresponding volume rendering (B). C and D show 3D muscle fibre tracks extracted from 

micro-CT data shown in A and B. Anterior view (C) and laterally rotated view (D), showing 

predominantly vertical fibres and branches between fibres. Colour bar represents 

inclination angle. (Scale bar represents 0.1 mm)    
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Figure 4.7 Longitudinal micro-CT images of pig extensor digitorum longus muscle with 

corresponding 3D fibre orientation. Extensor digitorum longus micro-CT images (resolution 

0.006 mm) stained with 15% I₂KI for 2 days (A), high power image of complex 'kink' region 

(B). C and D show 3D muscle fibre tracks plotted from micro-CT data shown in A and B. 

Anterior view (C) and high power view of 'kink' region (D), showing predominately vertical 

fibres and accurate tracing of areas of complex fibre orientation. Arrow indicates area of 

fibre disarray. Colour bar represents inclination angle. (Scale bar represents 0.1 mm)    
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4.5 Discussion 

The potential use of contrast enhanced micro-CT to investigate the detailed 

morphology of skeletal muscle and the accompanying connective tissue networks 

was assessed. Our findings confirm that muscle structures down to the level of single 

muscle fibres can be resolved with contrast enhanced micro-CT. Various skeletal 

muscle samples including dissected preparations and whole intact animal heads were 

stained with an iodine based contrast agent (I₂KI) and subsequently scanned using 

micro-CT. Diffusion of iodine, which has a high molecular weight, into skeletal 

muscle enhances the differential attenuation of X-rays. This allowed visualisation of 

fine internal detail, and differentiation between muscle and the surrounding 

connective tissue. Further analysis using novel structure tensor and fibre tracking 

methods, allowed extraction of 3D fibre orientation from skeletal muscle. The 

methods and data presented here will help improve our understanding of the internal 

architecture muscles, and could have implications in a wide range of basic and 

clinical research fields. 

 

4.5.1 Skeletal muscle contrast enhancement  

The use I₂KI as a contrast agent allowed differentiation of muscle and connective 

tissue, single fibres were resolved along with the epimysium, perimysium and 

endomysium. Iodine preferentially resided in muscle over connective tissue, and thus 

muscle appeared as a high attenuating structure (brighter pixel values). The exact 

mechanism for the observed differential contrast enhancement is unknown. The 

attenuation of X-rays is dependent on the thickness, atomic density and the number 

of electrons per atom (atomic number, Z). Iodine has an atomic number of 53 

compared with ~7 for muscle (Spiers, 1946), it is soluble in water when mixed with 

potassium iodide forming the compound iodine potassium iodide (I₂KI). Once in 

aqueous solution, the iodine can passively diffuse into the tissues. Why the iodine 

then binds more readily to the muscle fibres than the connective tissues is unclear. It 

is hypothesised iodine becomes trapped within the complex double helical structure 

of glycogen and other polysaccharides (Lecker et al., 1997, Saenger, 1984, Yu et al., 

1996). It is thought that the I₂KI anion is attracted to the positively charged core of 

the glycogen helixes, the core is also hydrophobic which is complementary to iodine 
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accumulation (Immel, 1995). Glycogen is used for energy storage and is most 

abundant as granules in the cytoplasm of liver and muscle cells (Kerem et al., 1973), 

and is not found in connective tissues. Collagen is the major constituent of the 

connective tissue associated with muscle, and like glycogen, has a helical structure, 

albeit triple and right handed. Connective tissue is also a cation, and therefore carries 

a positive net charge that will act to attract I₂KI, which itself is a negatively charged 

anion. Both these characteristics could contribute to the observed uptake of iodine by 

connective tissue. However, collagen has a high water content and the core of its 

triple helix is hydrophilic, conditions which are not complementary to iodine and will 

reduce iodine uptake. In addition connective tissue is structurally less dense than 

muscle, previously we have shown increased tissue density corresponds to an 

increased X-ray attenuation and I₂KI uptake (Jeffery et al., 2011) (Chapter 3). 

Metscher's (Metscher, 2009a, Metscher, 2009b) earlier work on micro-CT imaging 

of embryos showed excellent penetration and stable contrast enhancement with 10% 

I₂KI solutions. Improved contrast was most obvious for the cranial nerves as well as 

the developing otic and optic regions. In contrast to our findings the author reports 

that the staining was not specific to any one type of tissue (Metscher, 2009b). 

Metscher (2009a) also demonstrates that vertebrate and invertebrate muscle can be 

visualised with phosphotungstic acid (PTA). This is a highly acidic substance which 

can cause decalcification of skeletal tissue, and been a much larger molecule takes 

longer to penetrate soft tissue, requiring approximately 12hrs for specimens 2-3mm 

thick. PTA would not be practical for the size or type (muscle and bone present) of 

specimens imaged in the present study. Indeed, findings for the squirrel head 

indicated that we have almost reached the size limit for passive diffusion of iodine. 

Larger specimens would require active perfusion of contrast agents to ensure 

homogenous staining throughout the sample and avoid surface saturation. In large 

excised samples or organs (e.g. heart) that lack physical barriers to diffusion, such as 

fur, epidermis and bone, means iodine penetration is not an issue. Nevertheless, we 

anticipate that there is a surface area to volume ratio below which passive perfusion 

can no longer be relied upon, and active perfusion of the contrast agent would 

become a necessity.  
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4.5.2 Existing techniques for analysis of muscle morphology 

Traditional techniques 

Traditionally knowledge on the gross morphology of muscle came from careful 

dissection (Vesalius, 1544), with fine morphological knowledge coming from 

histological studies (Harman and Gwinn, 1949, Hoagland et al., 1944). Both 

techniques are still frequently implemented, although we show the scope for a single 

micro-CT scan to provide sufficient detail for both gross and fine morphological 

analysis. Histology is notoriously labour intensive and only permits analysis of small 

sample preparations, meaning analysis of gross morphological changes in suitable n 

number is impractical. Dissection suffers from similar limitations. Non-invasive 

imaging techniques such as micro-CT and micro-MRI do not suffer from such 

limitations. High resolution global analysis of multiple muscle samples is not only 

possible but also time efficient, especially with the fast acquisition times attributed to 

micro-CT (Jeffery et al., 2011, Stephenson et al., 2012). These imaging techniques 

also produced automatically aligned tomographic data sets, allowing for detailed 3D 

analysis of muscle structure and function (Buckberg et al., 2006, Cox and Jeffery, 

2011, Galban et al., 2007, Gilbert et al., 2012, Jeffery et al., 2011). In contrast 

histology suffers from registration issues of serial sections and poor z-plane 

resolution, as a result segmentation is painstakingly slow. Additionally the cutting 

plane is fixed, meaning structures of interest can be 'hidden' by overlying structures, 

and this is also a common issue when using dissection. In contrast Micro-CT data is 

made up of a 3D matrix that can be virtually sectioned rapidly in multiple planes 

simultaneously. Histology does allow for staining of specific structures, for example 

muscle fibre types (Tunell and Hart, 1977) and connective tissue networks (Dolber 

and Spach, 1987). However we have recently shown the scope for differentiation of 

muscle fibre types using I₂KI staining (Chapter 3- figure 3.6), and revealed micro-

CT can differentiate connective tissue networks in 3D. I₂KI can also be removed 

from soft tissue post scan, and samples subsequently processed for histology with 

excellent correspondence and no apparent tissue damage is observed (Stephenson et 

al., 2012).  
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Modern techniques 

To address some of the issues which hamper traditional histology, techniques such as 

episcopic microscopy (Mohun and Weninger, 2011, Weninger et al., 2006), extended 

volume confocal (Pope et al., 2008, Sands et al., 2006) and surface imaging 

microscopy (Gerneke et al., 2007) have been developed. These techniques address 

the issue of registration of sections in the z-plane, and allow specific staining, 

although staining access is an issue as samples are embedded. Further drawbacks 

include; long acquisition times, currently only small samples can be processed, and 

the destructive nature of the techniques means tissue damage is unavoidable.   

Fibre orientation analysis  

Here we have shown a novel method for extraction of 3D fibre orientation from 

micro-CT image data. 2D fibre orientation has previously been investigated using 

standard histology (Streeter et al., 1969), and more recently using micro-CT 

(Jorgensen et al., 1998a, Jeffery et al., 2011). Over recent years the diffusion tensor 

MRI (DT-MRI) has become the gold standard for analysis of 3D fibre orientation in 

biological soft tissues, including skeletal muscle (Damon et al., 2011, Lansdown et 

al., 2007), cardiac muscle (Rohmer et al., 2007), and in the brain (Wedeen et al., 

2012a). The method presented here uses structure tensor analysis to extract 3D fibre 

orientation from Micro-CT data. Structure tensor analysis has features in common 

with DT-MRI and has previously been used to characterize fibre orientation from 

scan data of composite materials (Axelsson and Svensson, 2010). Micro-CT is 

superior to DT-MRI in terms of the fidelity of morphological information it 

produces. Unlike micro-CT which distinguishes individual muscle fibres based on 

their structural differences to surrounding tissues. DT-MRI is not a morphological 

method, in that it does not resolve physical structures. Rather, the preferential 

diffusion direction for water is calculated for each voxel. Since water will be less 

constrained to move in the long axis than in the short axis of a fibre, then an 

indication of fibre direction is achieved (Le Bihan et al., 2001). From the probability 

density function obtained from each voxel, DT-MRI can produce streamlines 

representing the distribution of direction of diffusibility. This is still not the same as 

visualising the cellular structure, and as a result controversy is currently playing out 

concerning the proposed arrangement of nerve fibres in the brain based on similar 
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analysis (Wedeen et al., 2012b, Wedeen et al., 2012a, Catani et al., 2012). Spatial 

resolutions attainable using Micro-CT are almost an order of magnitude greater than 

that achievable with MRI, the virtual fibre structures achieved by DT-MRI are 

usually of the order of 400-1500 µm in diameter (Nielsen et al., 2009). Also, In order 

to derive sufficient signal to calculate diffusion vectors, MRI voxels are typically 

rectangles rather than cubes, the longest axis of which can extend up to 1500 µm, and 

the acquisitions are repeated many times such that scan times can take many hours 

(72 hours- Gilbert et al., 2012). By comparison, micro-CT can generate isometric 

voxels in a matter of minutes, with vertices well within the size range of mammalian 

muscle fibres diameters; ~10-20 µm x 50-100 µm (Levick, 2003, Drake et al., 2005). 

We were able to achieve resolutions of 6 µm in 20-30 minute scans, whilst 

maintaining sufficient image quality to visualise individual muscle fibres. Surface 

imaging microscopy (Gerneke et al., 2007) and optical coherence tomography 

(Ambrosi et al., 2012, Fleming et al., 2008) have been used for analysis of fibre 

orientation in muscle. Both techniques have the advantage over DT-MRI that they 

map actual physical structures, but suffer from poor z-plane resolution and z-plane 

depth respectively.  

There are some potential limitations of structure tensor analysis of micro-CT data; a) 

connective tissue boundaries on the surface of blood vessels and within muscle may 

generate fibre artefacts. However segmentation to remove such regions is feasible. b) 

For analysis of large muscle samples, the inevitable increase in spatial resolution 

would mean myo-bundles rather than single muscle fibres would be resolved. 

However muscle fascicles do give an accurate representation of global fibre 

orientation in skeletal muscle. c) Possible limitations of the imaging method 

described here and by Metscher (2009a,b) for in vivo work are related to the 

exposure to high levels of ionising radiation. However, we have shown previously 

that this does not affect tissue morphology (chapter 3.7), and for work on ex vivo 

samples the method has several advantages over other non-invasive techniques, as 

mentioned above. 
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4.6 Summary  

The potential use of contrast enhanced micro-CT to investigate the detailed 

morphology of skeletal muscle and accompanying connective tissue network was 

assessed. Various skeletal muscle samples including dissected preparations and 

whole intact animal heads were stained with an iodine based contrast agent (I₂KI), 

and subsequently scanned using micro-CT. Diffusion of iodine, which has a high 

molecular weight, into skeletal muscle tissue enhances the differential attenuation of 

X-rays and allows visualisation of fine detail. The results showed that iodine diffuses 

differentially into different tissue types. In this case, iodine more readily accumulates 

in muscle tissue than surrounding connective tissue, thus muscle has a more 

attenuating affect to X-rays, and can be easily distinguished from the lower 

attenuating connective tissue.  

The high spatial resolution provided by micro-CT, and the delineation of connective 

tissue and skeletal muscle at a perimysial and endomysial level, allows visualisation 

of muscle fibre bundles and even single muscle fibres. A novel structure tensor and 

fibre tracking method for extraction of fibre orientation from micro-CT data was 

validated. This method provides an accurate representation of muscle fibres in 3D, 

quantification of fibre angulations at a µm scale, and shows scope for 

analysis/identification of muscle micro damage. 

Data obtained in this chapter confirms contrast enhanced micro-CT as an effective 

and efficient method for analysis of muscle morphology at a gross and cellular scale. 

It provides non-destructive, non-invasive and high resolution data rivalling any 

existing technique, and presents a novel method for fibre orientation extraction and 

quantification which will be useful and applicable in a wide range of scientific 

disciplines.         
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CHAPTER 5 

Detailed Anatomy of the Heart Revealed by 

Micro-computed Tomography 
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5.1 Introduction 

The normal structure and function of the heart, the common pathological changes 

that cause abnormal function, and the interventions proposed to improve or restore its 

function are fundamentally based on structure. Therefore in all these areas a detailed 

and accurate understanding of 3D cardiac anatomy is essential. Traditional 

understanding of cardiac anatomy from histological studies requires the 

interpretation of many serial 2D sections of a small tissue sample sectioned in a 

single plane. As a result histological sections are difficult to interpret for non-

specialists, and suffer from many drawbacks when concatenated into 3D. Contrast 

enhanced micro-CT offers a rapid, non-invasive, high resolution method to 

investigate cardiac anatomy in normal and pathological hearts. Here we present high 

resolution (19-40µm) scans of whole hearts, which reveal the detailed anatomy of the 

atria, ventricles, valves and cardiac vessels, unrivalled by traditional methods. These 

scans demonstrate the potential of micro-CT to reveal new anatomical detail, 

advance existing anatomical understanding and teaching, and improve the fidelity of 

morphological and developmental studies of the heart. With single myocyte 

resolution attainable, we assess the extraction of fibre orientation within the atria and 

ventricles. This will aid the characterisation of fibre orientation in normal and 

diseased hearts, and inform the development of ‘virtual hearts’- anatomically and 

biophysically-detailed mathematical models, which map the wave of depolarisation 

and/or contraction across the heart. In this chapter emphasis is placed on the detailed 

anatomy of the atria in rabbit, including novel insight into the 3D morphology and 

fibre orientation of the pectinate muscles and the so-called muscular bands. The atria 

are particularly prone to arrhythmogenesis, and their complex microstructure has 

been shown to provide a morphological substrate for electrical dysfunction. The 

detailed microstructure revealed here potentiates a step wise change to the 

understanding of atrial anatomy and function. 
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Some of the work in this chapter on fibre orientation in the atria has been published 

as:  

Robert S. Stephenson, 
 
Jichao Zhao, George Hart, 

 
Mark R. Boyett,

 
Antonio F. 

Corno,  Prem S. Venugopal,  Ram Dhannapuneni, Xue Cai, Philip J. Withers,
 

Henggui Zhang,
  
Bruce H. Smaill, Jonathan C. Jarvis. Detailed Study of 3D Atrial 

Myostructure using Contrast Enhanced Micro-CT. Featured section, Heart Rhythm 

Society conference, Denver, CO, USA, 2013 

Sample preparation and segmentation methodology has been published as: 

Jarvis J, Stephenson RS (2013) Studying the microanatomy of the heart in 3 

dimensions: a practical update. Frontiers in Paediatric Cardiology, doi: 

10.3389/fped.2013.00026. 

Papers are appended. 

 

5.2 Detailed anatomy of the four chambered mammalian heart 

To assess the potential of micro-CT imaging with iodine staining to resolve the 

detailed anatomy of cardiac tissue, perfusion fixed (methods 2.2.4) whole intact adult 

rabbit hearts (n= 8) were stained with I₂KI and micro-CT scanned. Isometric 

resolution of samples ranged from 18-24 µm. In situ heparinisation followed by 

perfusion fixation, accompanied with careful monitoring, produced naturally inflated 

hearts, with no residing blood in atrial or ventricular cavities (figure 5.1). The level 

of inflation was validated by cross reference with in vivo echocardiography (see 

Chapter 8.6). Heparinisation and flushing prevented visual impairment of internal 

structure by residing blood, which otherwise would readily take up the iodine and 

appear as a high attenuating structure. This facilitated visualisation and analysis of 

internal anatomy (figures 5.1-5.15).   

In human, the heart is orientated so that on exposure of the thoracic cavity the major 

portion of the right atrium (RA) free wall is facing anteriorly, as a result anatomists 

refer to this region as the anterior wall of the RA. In contrast the rabbit heart is 

orientated so that all four chambers of the heart are visible (figure 5.1A,E), therefore 
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in this chapter anatomical descriptions will refer to the heart as though the rabbit is 

stood in the anatomical position (on hind legs). All figures presented in this chapter 

are from rabbit unless otherwise stated.   

 

 

Figure 5.1 Gross anatomy of the rabbit heart shown by micro-CT. Volume rendering of 

whole rabbit heart stained with 7.5% I₂KI for 3 days, anterior view (above), posterior view 

(below) (Panel A), showing position of resliced images C,F and D,G. Central column; 

longitudinal, transverse atrial and transverse ventricular micro-CT images  (B,C,D 

respectively), volume renderings at corresponding planes (E,F,G). AO- aorta, IAS- interatrial 

septum, IVS- interventricular septum, LA- left atrium, LAA- left atrial appendage, LV- left 

ventricle, RVOT- right ventricular outflow tract, RA- right atrium, RAA- right atrial 

appendage, RV- right ventricle. (Scale bars represent 3 mm)  



127 

 

5.3 The detailed 3D anatomy of the Atria  

There are anatomical features characteristic of both atria, each has an appendage, 

venous component and a vestibule, and the respective atria are separated by an 

interatrial septum (IAS). The appendages, which are pouch-like extensions of the 

atria, could be differentiated based on morphological differences. The right atrial 

appendage (RAA) appeared more triangular than the left, and extended anteriorly 

and superiorly, coursing medially to lie on the aortic root (figure 5.1A). The left 

atrial appendage (LAA) was positioned more superiorly then the RAA. The larger 

and more pronounced LAA, projected anteriorly in the transverse plane to lie in 

relation with the right ventricular outflow tract (RVOT) (figure 5.1A,E).  

The appendages formed the anterior walls and majority of the lateral walls of both 

atria. Pectinate muscles (PcMs), and thus the appendages, ran all around the lateral 

borders of the vestibules until they met with the venous regions. This is best shown 

in figure 5.1C and F. The atria were seen to have extremely thin walls supported by a 

complex scaffold of strut-like PcMs. When inflated during perfusion, the wall 

spanning between PcMs appeared semi-transparent (Figure 5.1). The PcMs, which 

can be seen clearly in volume renderings such as in figure 5.2D,G, figure 5.3 and 

figure 5.15G,I, emerge from their respective vestibules, run superiorly up the atrial 

free wall, before arcing medially, forming the roof of the atrium. In most cases, 

superiorly PcMs branched like the primary branching of a tree, giving off both 

medial and lateral branches (figure 5.3), with the most complex branching observed 

in the left atrium (LA) (figure 5.3B). Differences in PcM size and morphology were 

evident when comparing right and left atria; in the RA PcMs are thinner and as a 

result are structurally weaker, however they do show increased periodicity (figure 5.1 

F, 5.2D, 5.3A). PcMs in the LA are much broader, and although are fewer in number, 

show increased branching superiorly (figure 5.1F, 5.2G, 5.3B). The complexity and 

differences are highlighted by 3D volume renderings of the endocardium and virtual 

casts of the cavity volumes (figure 5.2). It was clear that PcMs did not simply follow 

the contours of their respective atrial free walls, both atria showed PcMs with free 

running aspects. The PcMs were a 3D networks, with PcMs lying over one another, 

4-5 muscles deep in places, analogous to a forest of trees with roots spanning the 

atrial floor and branches running in the roof (figure 5.3). The thickness of the atrial 

walls varied regionally, but on the whole the left atrial wall was significantly thicker 
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than the right (see Chapter 8.3). The walls of both atria were thickest inferiorly, with 

the thinnest regions mid-way up the free walls.    

 

Figure 5.2 The detailed internal anatomy of the atria shown by micro-CT. Transverse 

Micro-CT image at the level of the atria in rabbit heart stained with 7.5% I₂KI for 3 days. 3D 

Isosurface of atrial cavities; anterior view (B), lateral view of right (C) and left atria (F). 

Internal volume renderings of right and left atrial appendages (D and G respectively), 

showing the detailed architecture of the pectinate muscles. Ao- aorta, PA- pulmonary 

artery, IAS- interatrial septum, LA- left atrium, LAA- left atrial appendage, PcM- pectinate 

muscle, RA- right atrium, RAA- right atrial appendage, V- vestibule. (Scale bar represents 3 

mm)   
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Figure 5.3 Endocardial volume renderings of right and left atrial appendages. Showing the 

detailed architecture of the pectinate muscles in the right (A) and left (B) atrial appendages, 

note their complex superior branching. Images derived from micro-CT data. PcM- pectinate 

muscle, V- vestibule. 
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Volume renderings of the posterior wall of the RA show the transition from 

trabeculation of the PcMs to the smooth walled venous component (intercaval 

region) (figure 5.4A). The transition is demarcated on  the endocardium by the crista 

terminalis (CT); a thick band of muscle running lateral to the opening of the superior 

vena cava, obliquely down, like a twisted 'C', to the opening of the inferior vena cava 

(figure 5.4A, 5.14B). The smooth wall of the intercaval region continues medially 

where it becomes continuous with the IAS (figure 5.4A). On the epicardial surface 

the CT, referred to as the sulcus terminalis, appears as a clear ridge of muscle, and 

was often an area of fat accumulation. Excess fat can be removed virtually using 

segmentation due to its high attenuation in comparison other tissues (as shown 

previously in Chapter 3).  Posteriorly PcMs were primarily seen to originate from the 

CT, with their orientation appearing as a continuation of the CT curvature (figure 

5.5A,B), although in some samples the CT also gave off PcMs perpendicular to its 

longitudinal axis. Generally most of the PcMs took their origin from the more 

anteriorly lying septum spurium, a finer muscle bundle which runs anterior to the 

CT. In most samples numerous PcMs projected at right angles from this muscle 

bundle (figure 5.5A,B). Further anteriorly, accessory bundles were evident giving 

rise to highly complex PcMs networks (figure 5.5A,B). In the LA the majority of 

PcMs originated from the superior and inferior branches of Bachmann's bundle (BB), 

a thick muscular band which is continuous with the CT and forms the major 

interatrial connection anteriorly. The major free running PcMs come from the 

inferior branch as it circles the vestibule, while the superior branch gives rise to 

numerous finer and highly branching PcMs (figure 5.5C). PcMs were also seen to 

radiate from the septopulmonary bundle in a circumferential fashion (figure 5.5C).  

In the RA, the distal ramification of the CT with the coronary sinus is often referred 

to as the 'flutter isthmus', because of its arrhythmogenic properties. In this region 

complex, interlacing muscle bundles were observed (figure 5.6). Fibres of the right 

vestibule were continuous with the region. Highly anisotropic muscle bundles were 

observed in the sub-Thebesian pouch; figure 5.6 shows this region giving branches to 

the IAS, Eustachian ridge and the inferior border of the atrium continuous with the 

triangle of Koch. The landmarks making up the triangle of Koch were resolved 

within the RA. In attitudinal orientation the Eustachian ridge which is continuous 

with the tendon of Todaro formed the medial border and the hinge line of the 
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tricuspid valve the lateral border. The apex is formed at the point where these borders 

meet anteriorly, and the base is formed by the orifice of the coronary sinus (figure 

5.4A). The fossa ovalis (FO) was found superior to the triangle (figure 5.4A, 5.7, 

5.14D). The ridges associated with the FO are mainly formed by infolding of the 

muscular atrial wall, and are believed to play an important role in cardiac conduction. 

In the RA the ridges were numerous and continuous with the vestibule anteriorly, 

and the CT and septum spurium superiorly (figure 5.7). Fibre orientation analysis of 

this region, in the same sample (figure 5.14D,I), reveals fibre orientation corresponds 

well with the folds identified in figure 5.7, meaning folds could be identified 

objectively from fibre orientation plots. Fibres within the folds predominantly ran in 

the longitudinal axis of the folds (figure 5.14I).     

The pulmonary vein sleeves are located in the posterior wall or venous component of 

the LA (Which is larger than in RA). These are short tubes of circumferentially 

running myofibres, which anchor the 2-4 pulmonary veins to the LA. Figure 5.4B 

shows the two inferior PV sleeves, and reveals a complex relationship between the 

PV sleeves and the posterior LA. At the superior and inferior borders, the 

circumferential fibres of the PV sleeves become continuous with the vertical fibres of 

the LA, initially appearing as defined ridges, before embedding into the myocardium. 

Fine connections exist between the superior and inferior regions of the two sleeves 

respectively, which run perpendicular to myocardium dividing the sleeves. The 

extracted fibre orientation of the right inferior PV sleeve is shown in figure 5.14E,J.           
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Figure 5.4 Endocardial volume renderings in the venous regions of the atria. The right 

atrial cavity (A): showing the transition from the PcMs of the right atrial appendage to the 

smooth venous region, and the anatomical landmarks for the triangle of Koch. The venous 

region of the left atrium (B); showing the complex relationship between the working 

myocardium and pulmonary sleeves (B). Images derived from micro-CT data. CT- crista 

terminalis, FO- Fossa ovalis, IAS- interatrial septum, IC- intercaval region, IVC- inferior vena 

cava, PcM- pectinate muscle, RIPV,LIPV- right and left inferior pulmonary vein, TT- tendon 

of Todaro, TV- Hinge of tricuspid valve, V- vestibule, *- opening of coronary sinus.  
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Figure 5.5 Volume renderings of the atrial cavities showing the origin of the pectinate 

muscles. Internal volume rendering of the atria, longitudinally resliced and viewed 

posteriorly (A), showing the major muscle bands (CT, SS, ABs) that give rise to the pectinate 

muscles (Scale bar represents 2mm). High power internal volume renderings viewed from 

inferior/posterior aspect of the right and left atria (B and C respectively). Images derived 

from micro-CT data. AB- accessory bundle, CT- crista terminalis, IB and SB- inferior and 

superior branches of Bachmann's bundle, LA- left atrium, RA- right atrium, SP- 

septopulmonary bundle, ss-septum spurium.        



134 

 

 

Figure 5.6 Volume rendering of the 'flutter isthmus'.  Endocardial view in the region of the 

'flutter isthmus' of the right atrium. Image derived from micro-CT data. CT- crista terminalis, 

CS- coronary sinus, ER- eustachian ridge, TP- sub Thebesian pouch, V- vestibule.  
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Figure 5.7 Volume rendering of interatrial septum from inside the right atrium. showing 

the anatomical ridges (yellow dotted lines) associated with the fossa ovalis and their 

relationship with surrounding structures. Image derived from micro-CT data. CT- crista 

terminalis, CS- coronary, FO- fossa ovalis, IAS- interatrial septum, PcM- pectinate muscle, 

SS- septum spurium, TT- tendon of Todaro. 

 

3.4 Anatomy of the Ventricles 

Similar differences were evident when analysing the internal anatomy of the 

ventricles, differences have been noted previously however surfaces generated here 

from micro-CT data offer a new visual appreciation. In mature hearts the RV had a 

thinner wall and smaller myocardial volume than the LV (602±63 mm³ vs. 1514±177 

mm³, mean±SE, n=7), but the RV cavity had a larger volume (1905±322 mm³ vs. 

1426±343 mm³, n=7) and surface area. The trabeculae carneae on the endocardial 

surface of the RV (figure 5.8B,C) appeared fine and complex, with many 

interconnecting elements. This is in contrast to the thick trabeculae carneae of the 

LV, which appeared more organised with few interconnections (figure 5.8F). 

Septomarginal trabeculae were resolved connecting the RV free wall to IVS, the 

most prominent being the moderator band (figure 5.8B). In contrast to the ventricular 
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free walls the IVS was smooth with very few trabeculae. The fibres of the IVS can be 

seen to radiate from the superoanterior region (figure 5.8E), where the bundle 

branches of the cardiac conduction system would be expected to arise as they course 

inferiorly from the branching bundle.  

In the LV papillary muscles, (PM) appeared as thick free running muscle bundles, 

strongly anchored inferiorly in the apical region, and thus spanned the majority of the 

LV cavity longitudinally (figure 5.8F). In contrast PMs of the RV appeared as short, 

fine muscle bundles, originating from mid-way down the IVS. PMs in the RV varied 

in number, with 2-4 muscles observed across samples. In contrast, there was no 

variation evident in the LV, with 2 PMs present in every sample. In micro-CT data 

the membranous septum was resolved as a low attenuating structure, and as a result 

could be differentiated from the muscular IVS (figure 5.8A). The 3D morphology of 

the membranous septum, and its division into atrioventricular and interventricular 

components could be appreciated (figure 5.12) .     
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Figure 5.8 The internal anatomy of the ventricles revealed by micro-CT.  Longitudinal 

Micro-CT image of rabbit heart stained with 7.5% I₂KI for 3 days (A), corresponding 

isosurface of right and left ventricular cavities (D). Volume renderings from the right 

ventricular cavity; anterior view (B) and right ventricular free wall (C). Volume renderings 

from left ventricular cavity; septal view (E) and left ventricular free wall (F). IAS- interatrial 

septum, IVS- interventricular septum, LA- left atrium, LV- left ventricle, MS- membranous 

septum, PM- papillary muscle, RA- right atrium, RV- right ventricle, ST- septomarginal 

trabeculae (moderator band), TC- trabeculae carneae. (Scale bars represent 3 mm)         

 

High resolution coupled with high signal: noise ratio allows imaging of very small 

samples while maintaining impressive image quality. This facilitates the 

investigation of embryonic development of the heart. Here images are presented 

from fixed embryonic pig samples of varying gestation age (~30-100 days), stained 

with I₂KI and micro-CT scanned. Vast morphological changes were evident; initially 

hearts appeared symmetrical with even wall thickness and two distinct ventricles, 

resulting in a heart with two apices (figure 5.9B,C). As development proceeds the 

RV wraps itself around the elongating LV (figure 5.9E,F), and a single apex is 
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formed. Close to full term the heart takes on an elongated appearance, the LV wall 

thickens and the dilatation of the RV cavity is coupled with thinning of the RV free 

wall (figure 5.9H,I). Analysis of the ventricular cavities revealed a morphological 

shift throughout the course of development, early in development the LV cavity 

volume is larger than the RV (figure 5.9B,C), and this relationship is maintained up 

until ~. 50 days gestation (figure 5.9E,F), after this point LV elongation and wall 

thickening causes the LV cavity to considerable decrease in relation to the dilating 

RV (figure 5.9H,I). The trabeculation on endocardial surface appears complex and 

disordered early in development (figure 5.9C), as development proceeds the 

trabeculae gradually become more ordered, and at term appear as well defined tracts 

(figure 5.9I).       
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Figure 5.9 Micro-CT images of the developing pig heart with corresponding isosurfaces of 

the ventricular cavities. Pig embryonic specimens at various stages of gestation (~30, 50, 

100 days respectively), rostral-caudal length (22, 49, 310mm respectively) (A,D,G). 

Longitudinal micro-CT sections from the corresponding hearts (B,E,H). Isosurfaces of 

ventricular cavities in longitudinal and transverse (apex-base) orientation (C,F,I). RV 

volumes- 0.64, 1.39, 65.49mm³ respectively, LV volumes- 1.01, 2.68, 40.42mm³ 

respectively. IVS- interventricular septum, LV- left ventricle, RV- right ventricle. (Scale bar 

represents 3 mm)      

 

5.5 The 3D anatomy of the cardiac valves  

Here the detailed anatomy and fine structure of the cardiac valves are revealed by 

contrast enhanced micro-CT. Valve leaflets are made up of fibrous tissue, and thus 

do not readily take up the iodine contrast (see Chapter 4.2). Therefore leaflets appear 

as low attenuating structures in comparison to the high attenuating myocardium and 

surrounding vessel walls. The atrioventricular valves permit flow of blood from the 

atria to the ventricles, and prevent regurgitation. The atrioventricular valvar complex 
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is made up of an annulus, valve leaflets, tendinous cords and papillary muscles. The 

annulus is part of the fibrous skeleton of the heart, and is where the valve leaflets 

hinge from. The attachments at the annuli appeared more substantial in the mitral 

valve (MV) (figure 5.10C,D) than in the tricuspid (TV) (figure 5.10A,B). The TV 

has two leaflets (lateral and septal) in rabbit and hence should be defined as bicuspid 

(figure 5.10B). The leaflets of the TV are seen to hang from their respective annuli, 

with the lateral cusp attaching to two-thirds of the annular circumference, while the 

septal leaflet attaches to the remaining one-third (figure 5.10B). The leaflets of the 

MV appeared to occupy even amounts of the annulus, and volume renderings 

allowed detailed appreciation of the relationship between the aortic leaflet of the MV 

and the leaflets of the aortic valve (figure 5.10D). The papillary muscles and chordae 

tendineae make up the sub-valvar apparatus, which functions to prevent prolapse 

back into the atria, aid ventricular ejections and moderate mural tensions in diastole. 

The papillary muscles morphology and there attachments were variable. The 

papillary muscles associated with TV were shorter, finer and less substantial than 

those in the LV, and their number ranged from 2-4. The MV consistently had two 

muscles supporting its leaflets. 3D volume renderings reveal the chordae tendineae 

run from the superior aspect of the papillary muscles to form extensive connections 

which run deep into the complex fibrous tissue mesh of the valve leaflets (figure 

5.10B,D). All categories of chordae tendineae; strut, basal and fan, were observed in 

both TVs and MVs, as shown in figure 5.5B,D. Strut cords can be distinguished by 

their size, and attach to the rough zones- the regions of leaflets between the free edge 

and annulus. Basal cords attach to the ventricular surface of the leaflets at the 

annulus, while fan cords support the free edges of the leaflets. So, all components of 

the atrioventricular valves are resolved in impressive detail using contrast enhanced 

micro-CT (figure 5.10).  
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Figure 5.10 Longitudinal micro-CT images of the atrioventricular valves with 

corresponding volume renderings. Tricuspid and mitral valve micro-CT images (A,C 

respectively), showing the valve leaflets' fine connections with the papillary muscles. 

Volume renderings looking from apex to base of tricuspid (B) and mitral valves (D), showing 

their 3D morphology. Arrows indicate chordae tendineae, stars indicate posterior papillary 

muscle, *- Strut cord, *- Basal cord, *- Fan cord. AL- aortic leaflet, AV- aortic valve, LV- left 

ventricle, MV- mitral valve, PM- papillary muscle, RV- right ventricle, SL- septal leaflet, TV- 

tricuspid valve. (Scale bar represents 1 mm)    

 

The semilunar valves are positioned at the base of both the pulmonary artery and the 

aorta, and function to prevent backflow of blood into the heart. Figure 5.11A,B,C 

show the 3 low attenuating valve cusps of the aortic valve are easily distinguished 

from the high attenuating walls of the aorta, longitudinal micro-CT images reveal the 

aortic sinus and nodule of each cusp (figure 5.11A). The left (LCC) and right (RCC) 

coronary cusps were identified as the two cusps from which the left and right 

coronaries could be seen emerging, you can see the right coronary artery emerging 
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from the RCC in figure 5.11B. The non-coronary cusp (NCC) lies posterior to the 

two anterior cusps (figure 5.11). The valve leaflets can be segmented and presented 

as 3D quantifiable isosurfaces (figure5.11D,E,F). The apposed state of the leaflets, as 

seen in figure 5.11, was not achieved in all samples, but this appearance shows that 

our perfusion fixation technique preserves the structural integrity of the valves. In 

this the apposed state the commissures of the valves can be appreciated, as they run 

from the periphery to the centre of the valve orifice at the point where adjacent cusps 

meet (figure 5.11C,D). The extension of the superior attachments high up the aortic 

root was evident in all samples (figure 5.11B,E,F and figure 5.12). The differential 

attenuation achieved between the myocardium, membranous septum, nodal tissue 

and the valve cusps allowed visualisation of the attachments of the cusps to the so-

called 'aortic annulus' and their 3D relationship with surrounding structures. 

Visualisation of relationships was aided by virtual removal and addition of the valve 

leaflets in real time based on their pixel values. The attachment of the cusps to both 

the fibrous skeleton and muscular IVS was clarified; The RCC and NCC took 

attachment at the central fibrous body, laterally the RCC anchored to the 

membranous septum (figure 5.12A), and posteriorly the NCC was seen to attach in 

the region of the right fibrous trigone, and had a fibrous attachment to the MV 

(figure 5.12A). Figure 5.12A nicely shows the 3D relationship of the RCC and NCC 

with the inferiorly lying atrioventricular conduction axis (see Chapter 6 for detailed 

description), which originates at the apex of the triangle of Koch  in the RA, before 

snaking anteriorly on top of the IVS embedded within the central fibrous body. The 

LCC was shown to have attachments to both the IVS and atrial myocardium (figure 

5.12B), and like the NCC was seen to have a fibrous continuity with the MV (figure 

5.12B). Volume renderings revealed low attenuating regions extending below the 

apex of the commissures, these areas correspond to regions of thin fibrous tissue, the 

interleaflet triangles, which form the anatomic ventriculoaortic junction.  
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Figure 5.11  Micro-CT images of the aortic valve with corresponding isosurfaces of the 

valve leaflets. Micro-CT images through the aorta showing the three cusps of the aortic 

valve; mid longitudinal plane (A), superior transverse plane (B) and inferior transverse plane 

(C). Open arrows represent nodules, stars represent aortic sinuses. Isosurface of segmented 

aortic valve, inferior view (D), posterior view (E) and lateral view (F). Aortic valve volume- 

12.8 mm³. Red dotted line represents valve commissures. Ao- aorta, LCC- left coronary 

cusp, NCC- non coronary cusp, RCC- right coronary cusp. (Scale bar represents 1 mm)      



144 

 

 

Figure 5.12 Volume renderings of the aortic valve and surrounding structures. Volume 

renderings longitudinally resliced and viewed anteriorly, showing the posteriorly lying non-

coronary cusp and the adjacent right coronary cusp (A), and the more anteriorly lying left 

coronary cusp of the aortic valve (B). Images derived from micro-CT data. Ao- aorta, AVCA- 

atrioventricular conduction axis, IVS- interventricular septum, LC- left coronary cusp, LV- 

left ventricles, MS- membranous septum, MV- mitral valve, NCC- non-coronary cusp, RC- 

right coronary cusp.  
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5.6 Morphology of the cardiac vessels  

Perfusion fixation blanches the myocardium by washing the residing blood from the 

coronary and venous circulation, this allows mapping of their complex course 

throughout the myocardium. The thick wall of the aorta appears as a high attenuating 

structure (figure 5.13A,B), however as the left and right coronary arteries (which 

emerge from the aorta) run into the ventricles their walls become low attenuating in 

comparison to the surrounding myocardium (figure 5.13A,B). In figure 5.13C,D the 

lumen of the left coronary artery has been semi-automatically segmented and 

presented in 3D and overlaid with semi-transparent myocardium of the whole heart. 

This allows appreciation of the vessels’ branching pattern, thickness and transmural 

position in 3D. Using filament analysis (methods 2.4.3) this data can then be 

quantified to show the vessels’ volume, length, and width variations; the number of 

segments, nodes and branching points can also be extracted (figure 5.13).         

 

Figure 5.13 The left coronary artery segmented from micro-CT data. Transverse micro-CT 

image of rabbit heart showing the early course of the left coronary artery (A), high power 

image (B). Arrows indicate artery walls. Segmented isosurface showing the 3D course of the 

left coronary artery (red), overlaid with semi-transparent cardiac mass (pink). LA- left 

atrium, LV- left ventricle, RA- right atrium, RV- right ventricle, MV- Mitral valve.  (Scale bar 

represents 3 mm)  
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5.7 Fibre orientation in the atria and the associated muscle bands 

Contrast enhanced micro-CT has been shown to non-invasively resolve the 

arrangement of single muscle fibres (Chapter 4.3). Consequently novel structure 

tensor and fibre tracking analysis was carried out on micro-CT data of 5 adult rabbit 

hearts, to visualise and quantify 3D myofibre orientation of the atria and ventricles. 

Methods for fibre orientation extraction are the same as those described in Chapter 4 

when the fibre orientation of skeletal muscle blocks was extracted. For full methods 

see methods 2.4.4 and Figures 2.1 and 2.2.  

The atria 

Fibre orientation in the atria was complex with dramatic shifts in fibre orientation 

transmurally and at structural junctions. Considerable regional heterogeneity was 

evident; sub regions such as CT, PcMs, Bachmann’s bundle (BB) appeared ordered 

(figure 5.14 A,B,F,G), whereas the intercaval region, IAS and LAA showed striking 

complex myofibre architectures (figure 5.14 C,D,H,I). In the PV sleeve (figure 

5.14E, J), fibres ran circumferentially at the point where the PV anchors into the 

posterior LA. However as the fibres become continuous with the surrounding 

myocardium of the LA, complex arrangements were observed, and in some regions 

fibre ran orthogonal to one another.  

The fibre orientation in the RA free wall was shown predominantly to consist of 

vertical fibres running parallel to the scores of slender PcMs (figure 5.15B,C,D,G.H). 

In contrast the LA free wall showed an abrupt transmural transition, from 

predominantly transverse fibres at the epicardium (figure 5.15B,E,F), to vertical 

fibres at the endocardium dictated by the large PcMs (figure 5.15I,J). The fibre 

orientation analysis reveals that inferiorly the PcMs of the RA and LA are strongly 

anchored into the lateral aspect of the tricuspid and bicuspid vestibules respectively, 

with many fibres radiating from the majority of the circumference of the PcMs base 

(Figure 5.15H, J). At this junction there is an abrupt change from vertical fibres to 

transverse circumferential fibres, and in some areas there was evidence of 

orthogonally running fibres (figure 5.14G,H,I,J). Superiorly their relationship with 

atrial wall is more disordered, with complex networks of overlying fibres branching 

into the atrial wall. The most complex relationships were observed in the LA (figure 

5.15I,J), this is partly due to the complex branching as discussed previously (figure 
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5.2.1). In the LA a complex intermingling of circumferential and longitudinal fibres 

in between PcMs was evident (figure 5.15J), this was in contrast to the 

predominantly vertical arrangement of fibres between PcMs in the thin RA wall 

(figure 5.15H). In both the RA and LA the atrial roof consisted of mostly transverse 

fibres, appearing as a continuation of the curvature of the PcMs fibres (figure 

5.14B,D,F).  
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Figure 5.15 Atrial volume renderings with corresponding fibre orientations extracted from 

micro-CT data. Volume renderings of the whole atria (A), right (C) and left (E) atria (lateral 

aspects), and right and left atrial appendages with isolated pectinate muscles (G and I 

respectively). Corresponding fibre orientations maps (B,D,F,H,J). Isometric resolution of 

micro-CT data ~20 µm.  Colour bar represents inclination angle. LA- left atrium, LAA- left 

atrial appendage, PcM- pectinate muscle, RA- right atrium, RAA- right atrial appendage. 

Fibre orientation extracted in collaboration with Dr Jichao Zhao, The University of Auckland, 

NZ. 
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The muscle bands 

Muscular bands and sleeves exist within the atria which are thought to play a vital 

role in the preferential propagation of action potentials and effective muscular 

contraction of the atria. 3D fibre orientation was conducted to reveal and clarify the 

arrangement of muscle fibres within these structures. These bands vary in size, shape 

and prominence, and include: the CT (figure 5.14B,G) and septum spurium, the 

Eustachian ridge and rims of the fossa ovalis (figure 5.14D,I), the PcMs and their 

associated vestibules (all discussed above) (figure 5.14A,F and 5.15I,J), and the 

circumferential muscle bands. Generally the fibre orientation in these structures was 

ordered and followed their longitudinal axis, which will assist in both fast 

propagation and efficient contraction in their long axis. An example of a sleeve 

structure is the muscular extensions of the PVs (figure 5.14E,J), the fibres of these 

sleeves were predominantly circumferential, but extremely complex interlacing 

fibres were observed at its integration with the venous region of the LA.  

The circumferential muscle bands of the RA are often categorised into internal and 

external bands. The internal circumferential bundle is made up of fibres running 

around the contour of the tricuspid vestibule (partly shown in figure 5.15G, H). The 

external bundle was identified running around the inferior aspect of the RAA (figure 

5.15 B,D), extending round posteriorly towards the interatrial groove- Waterson’s 

groove (figure 5.16C,D). Posteriorly the external circumferential bundle is almost 

continuous with the posterior interatrial bundle, which runs from the region of the 

coronary sinus across to embed into the venous component of the LA (figure 

5.16C,D). Superior to the origin of the posterior interatrial bundle, the transverse 

running fibres of the intercaval bundle could be appreciated as distinctive bands of 

circumferential running fibres (figure 5.16C,D). Running below the epicardium, the 

intercaval fibres originate from the rims of the fossa ovalis, and run laterally, 

coursing the venous region, to merge with the PcMs of the RA free wall. The 

circumferential bundles of the LA are stronger and more pronounced, the principal 

bundle was identified as a continuation of the anterior interatrial bundle, also known 

as Bachmann’s bundle (figure 5.16A,B). It forms superior and inferior bundles 

(figure 5.5A,C), both of which give branches to the PcMs. The lower bundle also 

gives a branch to the mitral vestibule (figure 5.5), eventually coursing round to 

Waterson’s groove posteriorly (figure 5.15J). The septopulmonary bundle was also 
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identified, originating posteriorly in Waterson’s groove, it coursed vertically to the 

superior anterior LA as a broad and ordered bundle (figure 5.16 C,D), before 

connecting with BB anteriorly and giving off branches to the anterior LA free wall 

(figures 5.16B and 5.15B). 

Figure 5.16  Volume renderings of the atrial muscle bands with corresponding fibre 

orientations extracted from micro-CT data. Volume renderings of the atria; anterior view 

(A), posterior view (B). fibre orientation maps (B,D) showing the fibre architecture of the 

atrial muscle bands. Colour bar represents inclination angle. White dotted lines indicate 

muscle bands, black dotted line indicates interatrial groove (Waterson’s groove). BB- 

Bachmann’s bundle, CS- coronary sinus, IB- intercaval bundle, LA- left atrium, PI- posterior 

interatrial bundle, RA- right atrium, SP- septopulmonary bundle. Isometric resolution of 

micro-CT data ~20 µm. Fibre orientation extracted in collaboration with Dr Jichao Zhao, The 

University of Auckland, NZ. 

 

5.8 Fibre orientation in the ventricles and the associated laminar sheets. 

The fibre orientation seen in the ventricles is less variable than in the atria, and this is 

in part due to the laminar sheet architecture seen in the ventricles. The laminae are 
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formed by blocks of myocytes (4-6 cells thick) arranged end to end on their long 

axis, although transmurally they show branching and abrupt changes in organisation 

(figure 5.18). It is thought these structures play functional roles in both contraction 

and electrical propagation (LeGrice et al., 1995, Smaill et al., 2013, Hooks et al., 

2007). Backscattered scanning electron microscopy (BSSEM) with iodine contrast 

enhancement (7.5% I₂KI) of PMMA embedded ventricular tissue (methods 2.3.1) 

allowed visualisation of the micro structure of the laminar sheets (figure 5.17). 

Transverse BSSEM images clearly showed how muscle fibres are arranged within a 

single sheet (figure 5.17 yellow dotted lines), and allowed appreciation of how the 

connective tissue (low signal) surrounds individual fibres and forms branches 

between fibres (yellow arrows figure 5.17). A less dense connective tissue network 

was seen between laminar sheets. Laminar sheet 3D structure was resolved in rabbit, 

pig, rat and mouse hearts using micro-CT, figure 5.18 shows the laminar sheet 

organisation in the adult rabbit LV. The laminae are well defined in the 

subendocardium, divided by low attenuating cleavage planes, but are not present in 

much of the epicardium. Laminar sheet organisation within the trabeculae carneae is 

highly variable, sheets can be seen running within and even forming divisions of 

trabeculae (figure 5.18G,H), but in some cases laminae are absent entirely (figure 

5.18F). Visualisation of serial transverse micro-CT images shows the 3D laminar 

sheet organisation creates concentric spiralling masses of tissue at the epicardium 

and endocardium which run in opposite directions. This arrangement is most obvious 

in the LV and IVS, and seems to anatomically distinguish them from the RV, which 

appears as an accessory structure wrapping around the LV. Analysis of transverse 

micro-CT images shows that laminar sheet organisation changes from base to apex; 

in basal regions laminae predominantly match the curvature of the LV wall (run 

circumferentially) and there is little evidence of orthotropy (figure 5.18B,F). Midway 

down the LV, laminae remain ordered in the mid-wall, but at the endocardium and 

subendocardium laminae run almost perpendicular to the epicardial surface and 

complex orthotropy and 'zig-zagging' of sheets is visible (figure 5.18C,G). The non-

uniform wall thickness of the apical region results in a complex spiralling laminae 

sheet arrangement, in some regions the laminae run parallel to the wall curvature 

(figure 5.18C,G), and in other regions perpendicular, with many orthogonal and ‘zig-

zagging’ sheets visible. (figure 5.18D,H,E).  
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Figure 5.17 Transverse BSSEM image of Laminar sheet organisation in the endocardium of 

mouse left ventricle. Showing the 4-6 cell stacked arrangement and connective tissue 

network of the laminar sheets. Tissue block stained with 7.5% I₂KI. Red asterix- myocyte, 

yellow arrows- connective tissue. Yellow dotted line indicates single laminar sheet. (Scale 

bar represents 10µm)   
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In figure 5.19 fibre orientation has been extracted from a sample (4mm x 3mm x 

5mm) of LV posterior wall at the level of the equator. Fibre orientation was then 

analysed by plotting transmural inclination and transverse fibre angles (figures 

5.19A) from a 1 voxel wide track from endocardium to epicardium through the 

centre of the volume (figure 5.19D,E). The data was then combined and presented as 

a 3D plot (figure 5.19F). All angle values are referenced to the epicardial surface 

which was used as the surface tangent plane (yellow box figure 5.19A). Myocytes 

generally had a helical organization, rotating through ~160° transmurally from 

endocardium to epicardium (figure 5.19C,D,E,F). There was a proportional 

relationship between inclination angle and transverse angle transmurally; as fibres 

became more vertically oriented their transverse angle increased (figure 5.19D,E,F). 

 Although the traditional helical transmural organization was identified, abrupt 

changes in fibre orientation were evident. In some regions the epicardium, mid-wall 

and endocardium appeared as 3 distinct regions (figure 5.19C,D,E), however within 

these regions small bundles of orthogonal fibres were evident (figure 5.19C,D,E). 

Suggesting fibres within the ventricular wall form a complex, anisotropic mesh. The 

blocks of vertical fibres seen at the lateral extremes of the tissue volume (figure 

5.19B,C), are due to an artefact generated by sub-pixel cropping. This can be avoided 

by creating a tissue mask that excludes the extreme boundaries of the cropping plane. 

The artefact is not generated at the pixel boundaries between tissue and space.  

Figure 5.19F shows a 3D plot which incorporates both inclination and transverse 

fibre angles, giving an accurate quantification and representation of the transmural 

fibre orientation in 3D. At the epicardial surface there was a small area of vertically 

orientated fibres running parallel to the long-axis of the heart (figure 5.19F). In the 

mid-wall fibres had low inclination and transverse angles, this constitutes 

circumferential running fibres (figure 5.19F). At the endocardium and 

subendocardium fibres are predominantly vertical with considerable intrusion 

(transverse angle), these are fibres that run almost perpendicular to the epicardial 

surface (surface tangent plane). It should be noted that the endocardial surface does 

present complex fibre orientation in areas of trabeculation; fibres predominantly run 

in the longitudinal axis of the trabeculae carnae (figure 5.19B,F). More detailed 

analysis of fibre orientation across the whole of the LV in normal and failing hearts 

can be found in Chapter 8.5.  
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Figure 5.19 3D transmural fibre orientation in the left ventricle extracted from micro-CT 

data.  Possible range of Inclination angle and transverse angle of local myofibre vector- The 

inclination angle α is the projection of a fibre vector onto a vertical plane parallel to the 

epicardial boundary (yellow box). This angle is measured with respect to the horizontal 

(blue box) and has values in the range of 0-1 (0° to 90°). The transverse angle β is the 

projection of a fibre vector onto the horizontal plane (blue box), with respect to the surface 

tangent plane defined above (yellow box) (A). Fibre orientation extracted from micro-CT 

data of left ventricular segment, showing endocardial surface (B) and transverse surface (C). 

Plotted  transmural inclination angle (D) and transverse angle (E), combined as a 3D plot (F). 

Isometric resolution of micro-CT data ~40 µm. Colour bars represent inclination angle.   
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5.9 The important role of fibre orientation in cardiac propagation 

Fibre orientation has long been shown to play an important role in the preferential 

propagation of electrical stimulus through the heart. The extraction of high resolution 

3D fibre orientation from micro-CT data can provide powerful functional 

information when incorporated into mathematical models of cardiac function. Here 

using structure tensor and fibre tracking analysis (methods 2.4.4 figure 2.1, 2.2), we 

extracted the 3D fibre orientation from a micro-CT data set of the rabbit atria 

(resolution ~22 µm). From this data the monodomain version of the reaction-

diffusion equation was solved on a voxel-based finite difference grid (as described in 

Zhao et al., 2013a). Electrical properties were assumed either to be isotropic (fibre 

orientation not considered) (figure 5.20C) or axially anisotropic (following fibre 

orientation) (figure 5.20D). For anisotropic modelling conductivity was set at 9.0 mS 

in the myofibre direction and 0.9 mS transverse to it, therefore preferential to fibre 

orientation. For isotropic modelling, conductivity was assumed equal in all 

directions. The seed point of electrical stimulation was from the centre of the 

sinoatrial node, which in life is the primary pacemaker of the heart. Modelling of 

propagation was conducted by Dr Jichao Zhao, The University of Auckland. Figure 

5.20 shows that incorporating fibre orientation into models of electrical propagation 

provides improved fidelity of results. When isotropy was assumed (figure 5.20C), 

conduction across the atria was predominantly uniform in all directions, this was 

particularly the case for the LA. However the high spatial resolution of the micro-CT 

data did provide some sources of preferential propagation in the RA, most obviously 

in the CT.  

In contrast, when anisotropy was assumed propagation preferentially ran in the 

muscle bands of the atria (described above). Conduction was faster across the CT 

(figure 5.20D- white asterix) and could be seen to follow Bachmann’s bundle as a 

preferential course for interatrial conduction (figure 5.20D- red arrowhead). Once 

propagation reached the LA via Bachmann’s bundle, propagation was fastest down 

the inferior branch, travelling anteriorly and towards the vestibule. Propagation could 

also be seen running across the roof of the LA to stimulate the PcMs (figure 5.20- 

black arrow head). Conduction through the septum spurium was evident (figure 5.20- 

black asterix), and its origin to many of the anteriorly lying PcMs could be 

appreciated. Interestingly when anisotropy was assumed conduction towards the 
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inferior border of the RA was slowed (figure 5.20- open arrow head), and more 

closely matched the activation time of the corresponding regions in the LA. This 

suggests the complex network of PcMs and their fibre orientation may play an 

important role in maintaining synchronous contraction of the atria.          

  

Figure 5.20 The role of fibre orientation on electrical propagation in the atria. Volume 

rendering of rabbit atria produced from micro-CT data (A), used as geometry for isotropic 

simulation (C). Fibre orientation plot extracted from micro-CT data (B), and used for 

anisotropic simulation (D). Isometric resolution of micro-CT data ~22 µm. For simulations 

the monodomain version of reaction-diffusion equation was solved on a voxel-based finite 

difference grid (Zhao et al., 2013a). For anisotropic modelling, conductivity was set at 9.0 

mS in the myofibre direction and 0.9 mS transverse. For isotropic modelling, conductivity 

was assumed equal in all directions. The seed point of electrical stimulation was from the 

centre of the sinoatrial node. Modelling was conducted by Dr Jichao Zhao, The University of 

Auckland. BB- Bachmann’s bundle, LA- left atrium, RA- right atrium. White asterix- cristae 

terminalis, Black asterix- septum spurium, Open arrowhead- anterior right atrium, Red 

arrow head- Bachmann’s bundle, Black arrowhead- pectinate muscles of left atrium.  
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5.10 Discussion 

The normal structure and function of the heart, common pathological changes that 

affect function, and the interventions proposed to improve or restore cardiac 

function, are all fundamentally based on structure. Therefore in all these areas a 

detailed and accurate understanding of 3D cardiac anatomy is essential. Here the 

potential of contrast enhanced micro-CT to resolve the detailed anatomy of the heart 

was assessed. Whole hearts from rabbit, rat, mouse and pig were prepared and 

stained with an iodine based contrast agent (I₂KI), and scanned using micro-CT. The 

high spatial resolution provided by micro-CT, and the delineation of various tissue 

types, allows detailed visualisation of cardiac anatomy. Fat, myocardium, nodal 

tissue, connective tissue, valves and vasculature can be differentiated from one 

another and resolved in impressive detail. 3D Fibre orientation throughout the entire 

heart can be plotted and quantified, allowing comprehensive analysis of the true 3D 

arrangement of myofibres. This holds great promise for a step change in the ability to 

model the precise progression of electrical depolarisation within the myocardium, 

and underpin the mechanics of cardiac contraction.       

5.10.1 The advantages of non-invasive 3D imaging   

Traditionally, knowledge on the gross anatomy of the heart came from careful 

dissection (Pettigrew, 1864), with fine anatomical knowledge coming from 

histological studies (Streeter et al., 1969). Both techniques are still frequently 

implemented, although here we show that a single micro-CT scan provides sufficient 

detail for both gross and fine morphological analysis. Dissection, like histology, 

suffers from been destructive and is intensely time consuming. Due to its destructive 

nature, advanced anatomical knowledge is required to avoid damage to structures of 

interest. Gross dissection makes differentiation of different tissue types difficult, 

especially specialised tissues, this is why dissection and histology are often used in 

combination for studies of anatomy (Anderson et al., 2011, Sanchez-Quintana et al., 

2013). Histology of the heart requires the interpretation of many serial 2D sections 

through small tissue samples sectioned in a single plane. As a result histological 

sections are difficult to interpret for non-specialists, and global anatomy cannot be 

appreciated. Drawbacks of traditional techniques are discussed in detail in chapters 3 

and 4. Contrast enhanced micro-CT offers a rapid, non-invasive, high resolution 
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imaging method, in which the resultant 3D tomographic data is automatically 

aligned. With the addition of I₂KI, we have shown its capability to allow 

differentiation of multiple tissue types, including specialised tissues (Jeffery et al., 

2011, Stephenson et al., 2012). Due to the development of high performance desktop 

computing and image analysis software (eg. Amira and ImageJ), visualisation of 

large 3D image data sets (like micro-CT data) has become feasible in the standard 

laboratory setting. Discussions of cardiac microanatomy are greatly facilitated by 

access to 3D views using software in which the virtual structure can be rotated, sliced 

and manipulated in any orientation instantaneously. Landmarks can be pinpointed 

within a few microns, and viewed in 2D orthogonal planes and in 3D volumes 

simultaneously. In addition using volume rendering techniques (VRT), overlapping 

structures can be viewed by making overlying structures appear semi-transparent. 

This reveals anatomical detail and relationships which cannot be appreciated using 

traditional techniques (Jarvis and Stephenson, 2013). Furthermore, when working 

with datasets that are fundamentally 3D, the information deriving from layers above 

or below a point of interest often give visual context. This enables the observer to 

detect structures difficult to recognise in a series of 2D histological slices from small 

sample preparations, or 2D schematics. We show here how high resolution, non-

invasive imaging can allow appreciation of the 'true' anatomy. Simplifications in 

most medical textbooks give inferior or even misleading representations of 

anatomical structure (Jarvis and Stephenson, 2013). In the case of the cardiac 

conduction system, for example, micro-CT reveals that traditional representations, 

which have gained credence by repetition in successive generations of text books, are 

inaccurate (Stephenson et al., 2012 and Chapter 6).  

Virtual data, such as micro-CT data is easy to disseminate. This is especially useful 

for investigations of human tissue; sending tissue across the world is confronted with 

numerous ethical issues, and concerns over safe transit of the sample. In contrast, a 

high resolution micro-CT scan can be sent to colleagues across the world via the 

internet within minutes of acquisition. 
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5.10.2 Do we need 'new' anatomy? 

One interpretation is that ‘all is known about gross anatomy’. Such an interpretation 

is far from true, much is still to be learnt about the anatomy in growth, development 

and disease of the heart, and its roles in cardiac function are still contested (Anderson 

et al., 2008, Buckberg et al., 2008, Torrent-Guasp et al., 2005). Today debates still 

exist over the anatomy of the heart (discussed below), and research continues to 

reveal ‘new’ anatomical detail (Ambrosi et al., 2012, Stephenson et al., 2012, 

Smerup et al., 2013a), and clarify areas of ambiguity related to structure, function 

and nomenclature. 

Improving and clarifying existing knowledge 

Micro-CT provides data which can clarify areas of anatomical ambiguity, and reveal 

new anatomical detail. Although the rabbit is used in many investigation of the heart 

(Dobrzynski et al., 2005, Gilson et al., 1990, Pogwizd, 1995, Gilbert et al., 2012), not 

a great deal of information exists in the literature on the detailed anatomy of the 

rabbit heart. This is not the case for other experimental species, with the pig, dog, 

sheep and human well represented (Hill and Iaizzo, 2009). It is wrong to assume that 

human anatomy can be simply applied to investigation in rabbit and vice versa (as 

stated by Nikolaidou et al., 2012).  

From our current investigations of rabbit cardiac anatomy we can highlight some 

major differences from the human heart. The wall of the LA in human is described to 

be relatively featureless and smooth, with heterogeneous muscle formation (Ho et al., 

2002), and PcMs less pronounced than those in the RA (Wang et al., 1995). This is 

not the case in rabbit, the LAA makes up the majority of the LA and is populated by 

large broad free running PcMs which have ordered fibre orientation, but complex 

branching superiorly makes the atrial wall highly trabeculated. In human, the PcMs 

of the RA have been described as lining the atrial wall, with a comb like arrangement 

(Ho et al., 2002). In rabbit, micro-CT reveals a forest-like hierarchy of PcMs (4-5 

deep in places), many of which are free running with complex integration into the 

superior aspect of the RA. The origin and branching of the PcMs in the atria seems to 

require clarification; it has long been stated that the PcMs of the RA take origin from 

the CT or terminal crest (Anderson and Cook, 2007). However, our data suggests, in 

most cases, the majority of PcMs originate from septum spurium. Although this 
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could be attributed to species variation, in descriptions of atrial anatomy in human 

the role of the septum spurium and the origin it gives to the PcMs is often ignored 

(Wang et al., 1995). The septum spurium, which is also known as the sagittal bundle 

or tenia sagittalis by arrhytmologists, is a muscle bundle that originates from the CT, 

running anterosuperiorly it is often described as the most prominant PcM (Loukas et 

al., 2008, Ueda et al., 2013). The existence of the septum spurium is appreciated by 

Loukas et al., 2008 using gross dissection of human hearts, they produced a 6 type 

classification system based on observed morphological variations of the bundle. 

Recently Ueda et al., 2013 described the variation in the distal ramifications of the 

septum spurium, again using gross dissection. However detailed investigations of the 

3D morphology, using techniques such as micro-CT, are required to reveal the true 

extent and possible functional implications of the septum spurium and its distal 

ramifications.       

Wang et al. 1995 also describe how the LA vestibule is not associated with the PcMs 

in human, this not the case in rabbit, the majority of PcMs branch superiorly from the 

inferiorly lying vestibule. Furthermore the morphology of the trabeculae carneae in 

rabbit appeared considerable different to the descriptions derived from dissections of 

human hearts. Trabeculation in the LV in human has been described as finer, with 

more criss cossing bundles than the in RV (Anderson et al., 2011). The opposite was 

observed in rabbit, with very complex and fine trabeculation observed in the RV, in 

comparison to the more ordered and substantial trabeculation seen in the LV. These 

findings highlight the difficulty to appreciate the 'true' anatomy using traditional 

techniques, and shows the advantages 3D imaging of hearts in a naturally inflated 

state (achieved by perfusion fixation) has on the study of 3D cardiac anatomy (Jarvis 

and Stephenson, 2013, Stephenson et al., 2012). The data also raises questions over 

the validity of current views on human cardiac anatomy, and highlights the need for 

high resolution 3D imaging of human hearts using the present technique.   

Conflicting anatomical descriptions 

Conflicts exist in relation to anatomical structures and their correct nomenclature. In 

traditional descriptions of rabbit anatomy there are discrepancies over the PVs, with 

some studies describing 3 PVs- 1 left and 2 right (Rowlatt, 1990), and others stating 

only two, a right and a left (McCracken et al., 2008), and in some cases just 1 PV is 
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described. Our study suggests the morphology of the PVs is variable in rabbit with 2-

4 PVs observed across samples. Rowlatt et al. 1990, also states the lack of a 

moderator band in the rabbit, this is conflicting with data presented here, and 

highlights the need for an appreciation of variation in certain regions of the heart. An 

extensive study by Loukas et al. 2010, highlights the variability and on some 

occasions absence of the moderator band in humans.  

Similar conflicts exist in human cardiac anatomy; the atrial appendages are regularly 

wrongly described as only encompassing the tip of the atrium, when in fact, in both 

atria, the appendages extend round the atrial wall and are continuous with the venous 

component. Another example is the idea of what constitutes the IAS, with Ho et al. 

1999 and Sweeney and Rosenquist 1979 (Sweeney and Rosenquist, 1979) presenting 

conflicting anatomical descriptions. Such debates and conflicts highlight the need for 

attititudinally appropriate nomenclature, as proposed by Anderson et al. 2007. But 

despite various consensus statements from the Cardiac Nomenclature Study Group 

(Anderson et al., 2000, Cosio et al., 1999, Racker, 2000), still incorrect and 

inappropriate terms are adopted in studies of the heart. One example is the LV 

portioning proposed by Cerqueirs et al. 2002, although recommended by the 

American Heart Association, it did not comply with anatomical rules, and did not 

refer to the heart in the correct anatomical position (Partridge and Anderson, 2009). 

Poor anatomical consensus also has clear implications in 'bench to bedside' success. 

Therefore the use of the same anatomical language is essential, be it for consensus of 

nomenclature for surgical intervention, or continuity in the interpretation of image 

data (Bateman et al., 2013, Partridge and Anderson, 2009). However, it can be 

argued that specialist nomenclature and complex anatomical terminology can 

alienate some researchers or non-specialists. We propose micro-CT data can improve 

the understanding of complex anatomies, and thus aid translational research. We 

have shown its potential to clarify existing ambiguities, and challenge commonly 

accepted anatomy. It also reveals new anatomical detail, and potentiates new insight 

into areas of variability in health and disease. Points discussed above strongly 

suggest detailed anatomical atlases of human and animal cardiac anatomies should be 

developed from high resolution isometric 3D image data, to gain consensus on 

anatomical structures and nomenclature.    
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5.10.3 Myocardial architecture revealed by micro-CT 

Muscular contraction and electrical conduction within the myocardium is strongly 

dictated by myocardial architecture (Irisawa, 1987, Roberts et al., 1979, Spach et al., 

1982). Here using micro-CT imaging we have resolved key myocardial structures in 

high resolution, presented them in 3D, and extracted their 3D fibre orientation. This 

data coupled with computer modelling promises to provide new insight into cardiac 

function.  

 

Fibre orientation in the atria 

The methodology used here for fibre orientation extraction has been validated by us 

(Chapter 4.4) and colleagues (Varela et al., 2013, Zhao et al., 2013a, Zhao et al., 

2012). The fibre orientation within the atria is not well understood, but multiple 

muscle bands within the atria have been described in studies using gross dissection 

(Ho et al., 2002, Wang et al., 1995). These bands dictate fibre orientation within the 

atria as fibres run predominantly in the longitudinal axis of these structures, and it is 

postulated they play important roles in preferential propagation and contraction in the 

atria (figure 5.20) (Ho et al., 2002, Wang et al., 1995). To our knowledge we are the 

first to map the global 3D fibre orientation of atria at high resolution from non-

invasive image data.  Globally fibre orientation in the atria appeared complex with 

dramatic shifts in fibre orientation transmurally and at structural junctions. 

Considerable regional heterogeneity was evident within the atria; the CT, PcMs and 

BB appeared ordered with smooth connections between one another, which our 

modelling data suggests forms pathways for fast preferential propagation. In contrast 

some regions had heterogeneous and ‘disordered’ fibre orientation. For example the 

intercaval region, which houses the sinoatrial node (the pacemaker of the heart), 

appeared complex with a high degree of anisotropy, it is postulated this will 

contribute to the sinoatrial nodes characteristic slow conduction velocity (Dobrzynski 

et al., 2013). The fibre orientation in this region of normal and failed hearts is 

investigated in Chapter 7.  

The fibre orientation in the RA free wall predominantly consisted of vertical fibres 

running parallel to the PcMs. In contrast the thick LA free wall showed an abrupt 
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transmural transition, from predominantly circumferential fibres at the epicardium to 

vertical fibres at the endocardium, this is consistent with previous dissection studies 

(Ho et al., 2002, Wang et al., 1995). In the LA a complex intermingling of 

circumferential and longitudinal fibres in between PcMs was evident, this was in 

contrast to the predominantly vertical arrangement of fibres between PcMs in the 

thin RA wall. This suggest the two atria contract quiet differently, it is expected the 

RA will contract predominantly in the longitudinal axis, with the numerous PcMs 

pulling the atrial roof down towards the vestibule. The LAs transmurual arrangement 

and increased heterogeneity of muscle fibres suggests contraction would occur in 

several planes and appear as a 'scrunching' motion with both circumferential and 

longitudinal strains. It is expected that the LA contraction would be more effective at 

pumping large volumes of blood into its underlying ventricle than the RA, thus 

facilitating a briefly increased cardiac output when required. However, increased 

muscle fibre complexity and heterogeneity have been shown to increase the risk of 

electrical dysfunction (Hocini et al., 2002, Narayan et al., 2012, Zhao et al., 2012), 

and this probably contributes to the increased incidence of arrhythmias in LA 

compared to RA (Letsas et al., 2011, Hanna et al., 2004, Yamazaki et al., 2012).  

 

The muscle bands and sleeves of the atria 

3D fibre orientation was conducted to reveal and clarify the muscle fibres 

arrangement within the muscle bands of the atria. Our findings are consistent with 

previous investigations of the bands using dissection (Ho et al., 2002, Ho and 

Sánchez-Quintana, 2009). However Wang et al. 1995 describe how some less 

prominent and weakly developed muscle bands cannot be identified with certainty 

using dissection. This is not the case for micro-CT data; fibre orientation patterns are 

easily appreciated and thus muscle bundle can be identified regardless of their 

prominence. Because these structures have previously been investigated using 

dissection (Ho et al., 2002, Ho and Sánchez-Quintana, 2009, Wang et al., 1995) the 

3D relationship of their fibres with the atrial wall and other structures was difficult to 

interpret. Here using micro-CT we show these junctions are often disordered, with 

complex networks of overlying fibres branching into the atrial wall. Fibre orientation 

analysis revealed inferiorly the PcMs of the RA and LA are strongly anchored into 
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the lateral aspect of their respective vestibules, with many fibres radiating from the 

majority of the circumference of the PcMs base. At these junctions abrupt changes 

from vertical to transverse circumferential fibres were seen, and in some areas there 

was evidence of orthogonally running fibres. Superiorly their relationship with atrial 

wall is more disordered, with complex networks of overlying fibres branching into 

the atrial wall. The most complex relationships were observed in the LA. We 

postulate these junctions and abrupt changes in fibre orientation will contribute to 

increased vulnerability of the region to electrical dysfunction (Smaill et al., 2013, 

Zhao et al., 2012). In addition fibres of the PV sleeves were predominantly 

circumferential, but extremely complex interlacing fibres were observed at their 

integration with the venous region of the LA. Using computer modelling based on 

high resolution fibre orientation, Zhao et al. 2012 showed the complex fibre 

orientations found in the region of the PV sleeves contribute to the regions 

vulnerability to arrhythmia (Zhao et al., 2012). 

 

The laminar sheets of the ventricles 

The existence of laminar sheet structures within the ventricles has been debated for 

some time (Anderson et al., 2008, LeGrice et al., 1995), however 3D investigations 

using SEM, histology and MRI has confirmed their existence (Gilbert et al., 2012, 

LeGrice et al., 1995, Hooks et al., 2007). Using micro-CT and contrast enhanced 

BSSEM we provide data on the anatomy of the laminar sheets consistent with 

previous studies, and provide new insight into their regional variability. The laminae 

were formed by blocks of myocytes (4-6 cells thick) arranged end to end on their 

long axis, and transmurally they showed branching and abrupt changes in 

organisation. Within sheets connective tissue was seen surrounding individual fibres, 

and forming branches between fibres. A less dense network was seen between 

laminar sheets, it is thought this arrangement aids shearing during contraction 

(LeGrice et al., 1995). The laminae were well defined in the subendocardium, 

divided by low attenuating cleavage planes, but were not visible in much of the 

epicardium.  

Micro-CT images showed laminar sheet organisation creates masses of tissue which 

spiral in opposite directions; the functional role of this morphologly is yet to be 
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elucidated, it is postulated they play important roles in producing shearing forces and 

mural thickening (LeGrice et al., 1995, Costa et al., 1999). Here laminar sheet 

organisation was shown to be regionally variable; in basal regions laminae 

predominatley matched the curvature of the LV wall and ran circumferentially. 

Midway down the LV, laminae remain ordered in the mid-wall, but at the 

endocardium and subendocardium laminae ran almost perpendicular to the epicardial 

surface and complex orthotropy of sheets was visible. At the apical region the 

laminae sheets had a complex spiralling arrangement, in some regions the laminae 

ran circumferential, and in other regions ran perpendicular to the epicardium with 

many orthogonal and ‘zig-zagging’ sheets. It is anticipated that these regional 

differences will have impact on mechanical and electrical function of the LV. In 

terms of conduction, it has been postulated that they function to increase the safety 

factor of the myocardium by constraining passive current load locally (Smaill et al., 

2013). This suggests the apex is less 'safe' than the base. With many ‘zig-zagging’ 

laminae and sheets intersecting and running orthogonal to one another, many abrupt 

changes in fibre orientation will exist. As a result in the apical region, laminae will 

be less proficient at constraining current locally and will be more prone to source-

sink mismatch, re-entry circuits and conduction block (Hocini et al., 2002, Klos et 

al., 2008, Smaill et al., 2013). 

 

The 3D fibre orientation of the ventricles 

Here we have shown a method for extracting 3D fibre orientation from micro-CT 

image data of the heart. 2D fibre orientation in the ventricles has previously been 

investigated using standard histology (Streeter et al., 1969), and more recently using 

micro-CT (Jorgensen et al., 1998a). Over recent years diffusion tensor MRI (DT-

MRI) has become the gold standard for analysis of 3D fibre orientation in the 

ventricles (Rohmer et al., 2007, Smerup et al., 2009). The method presented here 

uses structure tensor analysis to extract 3D fibre orientation from Micro-CT data 

(methods 2.4.4), advantages of the current method over traditional techniques, 

including DT-MRI, are discussed in Chapter 3 and 4.  

Our analysis showed myocytes generally had a helical organization; rotating through 

~160° transmurally from endocardium to epicardium, consistent with traditional  
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descriptions (Streeter et al., 1969). Our analysis extracts both the inclination angle, 

often referred to as the helical angle, and the transverse angle also called the 

intrusion angle. Comparing the two angles revealed a proportional relationship 

transmurally; as fibres became more vertically oriented, generally their transverse 

angle increased. 3D plots which incorporate both inclination and transverse fibre 

angles, give a more accurate quantification and representation of fibre orientation. As 

pointed out by Anderson et al. 2008 many studies of contractile function (eg. Sallin 

1969) erroneously ignore the transvere angle of fibres. This is severely reduces the 

fidelity of computer models as it has been postulated these transverse angled fibres 

play important roles in; equalisation of wall strains, shape maintenance, cardiac 

contraction and dilation, and possibly antagonistic forces towards contriction 

(Anderson et al., 2006, Lunkenheimer et al., 2004, Smerup et al., 2013b). As 

described previously (Cryer et al., 1997, Lunkenheimer et al., 1997a), we found the 

highest transverse angles exist at the endocardium and sub-endocardium.  

3D plots revealed that although the traditional helical transmural organization was 

identified, abrupt changes in fibre orientation exist, and fibres within the ventricular 

wall form a complex, anisotropic mesh. This is consistent with previous anatomical 

descriptions derived from histological study (Anderson et al., 2005, Lunkenheimer et 

al., 2006a). However this highlights the need to sample larger regions rather than a 

single 2D line (as done here) when comparing hearts. As the inherent anisotropy of 

the myocardium could give erroneous results if the sampled region is not 

representative. This is taken into consideration when the 3D fibre angles of normal 

and failed hearts are compared in Chapter 8.5. 

 

Improving the morphological fidelity of functional mathematical models of the heart 

At a cellular level there has been considerable focus on both transmembrane ion 

channels and their role in cellular excitability (Nattel et al., 2007), and the role of gap 

junctions in electrical transmission between cardiomyocytes (Severs et al., 2008). 

Wang 1995 highlighted the lack of attention paid to atrial musculature by cardiac 

morphologists since the studies of Keith and Flack 1907 and Papez 1920. But 

recently there has been an effort to gain high resolution 3D data of the heart using 

MRI (Helm et al., 2005b, Gilbert et al., 2012) and micro-CT (Aslanidi et al., 2012, 
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Stephenson et al., 2012-Papers appended). Computer models allow incorporation of 

experimental data from cellular investigations to be combined with 3D anatomy, 

offering a means of simulating cardiac function (Trayanova, 2011). However, 

typically electrical properties are assumed continuous (isotropic), morphology 

assumed homogenous, and the influences of fibre orientation and fibrosis are often 

ignored (Harrild and Henriquez, 2000). This makes many existing models of cardiac 

function inaccurate as myocardial morphology, fibre orientation and fibrosis have all 

been shown to be involved in cardiac function and dysfunction (Zhao et al., 2013b, 

Zhao et al., 2012, Rohr, 2012, Smaill et al., 2013, Spach and Kootsey, 1983).  

Recently detailed 3D fibre orientation and myocardial geometry obtained from a 

surface imaging technique have been incorporated into functional models (Zhao et 

al., 2012), and we have been involved in extracting 3D fibre orientation from high 

resolution micro-CT data (Aslanidi et al., 2012). Using micro-CT to extract this level 

of anatomical detail (morphology and fibre orientation), as we have here, in a time 

effective manner is a considerable step forward. Modelling studies normally 

concentrate on a single data set, however the method presented here makes the 

modelling of multiple samples feasible. This has obvious implications in the 

modelling of heart function and dysfunction in disease. The important role of both 

high resolution geometry and fibre orientation on electrical propagation is 

highlighted in figure 5.20. The incorporation of both high resolution geometry and 

fibre orientation gives a much more accurate representation of conduction in the 

heart than when morphology is assumed homogenous and conduction isotropic. The 

data highlights the potential use of micro-CT to provide high resolution myocardial 

geometry and 3D fibre orientation, missing from many current models (Harrild and 

Henriquez, 2000, Trayanova, 2011), which will hugely improve the fidelity of future 

models.  

Although fibrosis is not investigated in the current study, its influence of cardiac 

function and dysfunction is well described (Rohr, 2012, Schotten et al., 2011, Smaill 

et al., 2013), and its 3D distribution should be considered in cardiac models. The 

effects of fibrosis have been modelled from low resolution image data and using 

seeding methods (Zhao et al., 2013b- paper appended). However, accurate high 

resolution images of the 3D distribution are desirable to improve model fidelity. We 

have developed a technique for targeted contrast enhancement (TCE micro-CT) 
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(methods 2.3.3), which we have used to selectively image regions of the cardiac 

conduction system (see Chapter 6). It is anticipated that this technique could be 

adapted to obtain high resolution 3D images of fibrotic tissue in the heart.    

 

5.11 Summary 

The potential of contrast enhanced micro-CT to resolve the detailed anatomy of the 

heart was assessed. Whole hearts from rabbit and pig were prepared and stained with 

an iodine based contrast agent (I₂KI), and scanned using micro-CT. Diffusion of 

iodine into cardiac tissue enhances the differential attenuation of X-rays, allowing 

visualisation of fine detail. 

The high spatial resolution provided by micro-CT, and the delineation of various 

tissue types allowed detailed visualisation of cardiac anatomy. Data provided gives 

novel insight into the 3D morphology of the heart, and both clarifies and challenges 

existing anatomical ideologies. We show fibre orientation throughout the entire heart 

can be plotted and quantified from micro-CT data, allowing comprehensive analysis 

of the true 3D arrangement of myofibres. We also show the promise of this data to 

provide a stepwise change in the ability to model the precise progression of electrical 

depolarisation within the myocardium.       

Data presented confirms the capacity of micro-CT to reveal a detail of cardiac 

anatomy unrivalled by traditional methods, and to provide new insights into cardiac 

morphology. Such data can: 1) aid anatomical understanding, teaching and surgical 

guidance and planning; 2) Improve fidelity of morphological and developmental 

studies; 3) aid the characterisation of fibre orientation in specific disease states; 4) 

and inform the development of ‘virtual hearts’- anatomically and biophysically-

detailed mathematical models, which map the wave of depolarisation and or 

contraction across the heart.          
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CHAPTER 6 

Contrast Enhanced Micro-Computed 

Tomography Resolves the 3-Dimensional 

Morphology of the Cardiac Conduction System 
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6.1 Introduction 

The cardiac conduction system (CCS) is a collection of specialised cells within the 

heart, responsible for the initiation and coordination of the heart beat: the CCS 

initiates the cardiac action potential and conducts it throughout the heart. Although 

the general anatomy of the CCS has been known for over 100 years, its complex and 

irregular 3D geometry is not so well understood. This is largely because the 

conducting tissue is not distinct from the surrounding tissue by dissection.  The best 

descriptions of its anatomy come from studies based on serial sectioning of samples 

taken from the appropriate areas of the heart; the CCS can be distinguished 

histologically using both morphological stains and immunohistochemistry. Low X-

ray attenuation has formerly ruled out micro-CT as a modality to resolve internal 

structures of soft tissue, but incorporation of iodine, which has a high molecular 

weight, into those tissues enhances the differential attenuation of X-rays and allows 

visualisation of fine detail in soft tissue. Recently, high resolution micro-computed 

tomography (micro-CT) imaging using iodine as a contrast agent has been introduced 

for in vivo and ex vivo anatomical studies. Here, with the use of an iodine based 

contrast agent (I₂KI), we show that contrast enhanced micro-CT can reveal the 

detailed 3D morphology of the CCS in rat and rabbit. We attempt to resolve the three 

major subdivisions of the CCS from the surrounding contractile myocardium, 

including; the sinoatrial node (SAN); the atrioventricular conduction axis (AVCA): 

the inferior nodal extension, penetrating bundle and non branching and branching 

bundle; and the bundle branches and Purkinje network. We also investigate the 

morphology of preferential conducting pathways in the right atrium, whose existence 

and significance have been the subject of considerable controversy. Micro-CT 

findings are validated using traditional histology, whole mount 

immunohistochemistry and targeted contrast enhancement (TCE).  

Most of the work in this chapter has been published as:  

 

Stephenson RS, Boyett MR, Hart G, Nikolaidou T, Cai X, Corno AF, Alphonso N, 

Jeffery N, Jarvis JC. Contrast enhanced micro-computed tomography resolves the 3-

dimensional morphology of the cardiac conduction system in mammalian hearts. 

PLoS One. 2012; 7: e35299. The paper is appended. 
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New insights include; the development and use of a targeted contrast enhancement 

technique to investigate the distribution of specialised cells involved in electrical 

propagation non-invasively in 3D. Structures analysed include; the Purkinje network 

and internodal pathways. The relationship between the structure of morphologically 

identified pathways for conduction and fibre orientation is also investigated within 

the RA.       

 

6.2 Optimization for micro-CT imaging of the CCS    

The technique for contrast enhanced micro-CT imaging of the heart was refined 

using the rat heart. Longitudinal micro-CT Images from rat hearts stained for 48 

hours with a range of I₂KI concentrations are shown in figure 6.1. For all 

concentrations tested, there was differential X-ray attenuation between the contractile 

myocardium (high attenuation) and the CCS tissue (low attenuation). We were able 

to identify the AVCA including the penetrating bundle,  non-branching and 

branching bundle, the bundle branches themselves, and the Purkinje network. The 

lowest I₂KI concentration that allowed for high quality contrast enhancement was 

3.75% (figure 6.1C,G). It was possible to identify the CCS in a heart stained with 

1.87% I₂KI, but the ventricular endocardium was not stained homogeneously (figure 

6.1D,H). Data could then be segmented using semi-automatic segmentation 

techniques I and II and presented as 3D isosurfaces (methods 2.4.2), or analysed 

using volume rendering techniques (VRT) (methods 2.4.2) 

 

 

 

 

 

 

 



174 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi
gu

re
 6

.1
 L

o
n

gi
tu

d
in

al
 m

ic
ro

-C
T 

im
ag

es
 t

h
ro

u
gh

 4
 r

at
 h

ea
rt

s 
st

ai
n

ed
 w

it
h

 d
if

fe
re

n
t 

co
n

ce
n

tr
at

io
n

s 
o

f 
I 2

K
I 

fo
r 

2 
d

ay
s.

 H
ea

rt
s 

st
ai

n
ed

 w
it

h
 1

5,
 7

.5
, 

3
.7

5
 a

n
d

 1
.8

7
%

 I
₂K

I 
co

n
ce

n
tr

at
io

n
s 

re
sp

ec
ti

ve
ly

 (
A

-D
).

 C
o

rr
es

p
o

n
d

in
g 

h
ig

h
 p

o
w

er
 i

m
ag

es
 f

o
cu

si
n

g 
o

n
 t

h
e 

at
ri

o
ve

n
tr

ic
u

la
r 

co
n

d
u

ct
io

n
 a

xi
s 

(E
-H

).
 In

se
t 

3
D

 r
en

d
er

in
gs

 o
f 

ea
ch

 h
ea

rt
 s

h
o

w
 t

h
e 

as
so

ci
at

e
d

 p
la

n
es

 o
f 

in
te

re
st

. A
O

- 
ao

rt
a,

 IV
S-

 

in
te

r-
ve

n
tr

ic
u

la
r 

se
p

tu
m

, B
rB

- 
b

ra
n

ch
in

g 
b

u
n

d
le

, L
V

- 
le

ft
 v

en
tr

ic
le

, R
V

- 
ri

gh
t 

ve
n

tr
ic

le
. (

sc
al

e 
b

ar
 r

ep
re

se
n

ts
 1

 m
m

) 

 



175 

 

6.2 Visualisation and validation of CCS in rat    

To confirm the identity of the specialised structures, we attempted to make sections 

from frozen and paraffin-embedded blocks of the I₂KI stained tissue, but found that 

if I₂KI was not removed after micro-CT scanning, the tissue was brittle and it was 

not possible to obtain satisfactory tissue sections. Therefore, the I₂KI was leached 

from the hearts by immersion in PBFS for 2-5 weeks with weekly changes of PBFS. 

The time taken for complete leaching of I₂KI was dependent on I₂KI concentration, 

incubation time and specimen size. Leaching times ranged from two weeks for the 

lower concentrations to five weeks for the higher concentrations.  Leaching was 

noted to be much quicker from dissected heart tissue, in which cut myocardial 

surfaces were exposed to the leaching solution.  Figure 6.2A,B shows two micro-CT 

images virtually sectioned from the micro-CT data to match figure 6.2D,E showing 

sections from wax-embedded blocks, stained with Masson's trichrome- there is 

excellent correspondence, and the images demonstrate that the penetrating bundle,  

branching bundle and the bundle branches are distinguishable from the surrounding 

structures in the micro-CT images. Differential attenuation is also observed between 

the surrounding connective tissue and contractile myocardium. By thresholding the 

differential attenuation between contractile myocardium and the CCS tissue, it was 

possible to ‘segment’ the CCS tissue, isolating it from the surrounding tissues, and 

generate a 3D representation of the CCS tissue. 3D images of the AVCA in a normal 

rat heart are shown in anterior and lateral orientations in figure 6.2C,F. In figure 

6.2F, the penetrating bundle is identified (separate from the surrounding central 

fibrous body), it connects to the inferior nodal extension posteriorly (not shown), and 

to the non-branching bundle anteriorly  . The evident arching of the AVCA at its 

inferior border and the course of the bundle branches represents its close relationship 

with the IVS (figure 6.2).   

Preparation of the rat hearts (immersion fixation) was such that collapsing of the 

atrial walls and blood residing in the chambers was unavoidable (figure 6.1), making 

identification of the SAN and Purkinje network difficult. The remainder of the results 

presented here are from rabbit hearts prepared with an improved method (perfusion 

fixation) detailed in the methods section (methods 2.2.4). 
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Figure 6.2. Longitudinal micro-CT images of atrioventricular conduction axis in rat with 

corresponiding histology and 3D isosurfaces. Micro-CT images of the penetrating bundle 

and branching bundle in rat hearts stained with 7.5% (A) and 3.75% (B) I₂KI for 2 days. 

Corresponding histological sections stained with Masson Trichrome (D,E). Segmented 3D 

isosurfaces of atrioventricular conduction axis (C,F), showing the anteriorly positioned 

branching bundle (C) and its lateral aspect showing the penetrating bundle, and non-

branching and branching bundles (F). Distance between red dots- 0.6 mm, blue dots- 1.3 

mm, green dots- 2.4 mm. AO- aorta, BrB- branching bundle, IVS- interventricular septum, 

LBB- left bundle branch, LV- Left ventricle, NBrB- non-branching bundle, PB-penetrating 

bundle, RBB-right bundle branch. (Scale bar represents 0.5 mm) 

 

6.3 Sinoatrial node of the rabbit heart  

Analysis of the SAN confirms that it is not so much a localised compact node but an 

extended thin layer of conducting cells (figure 6.3, figure 6.4B,D). In the micro-CT 

images, the SAN was easily differentiated from the surrounding atrial myocardium 

as shown in figure. 6.3A. It was a region of low attenuation (appears darker, figure 

6.3A,B, figure 6.4B,D) in the intercaval region (between the superior and inferior 

venae cavae) in the posterior wall of the right atrium. It extends along the lateral 

aspect of the crista terminalis, which demarcates the boundary between the smooth 
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intercaval region and the pectinate muscles of the right atrial appendage (figure 6.3B, 

figure 6.4B,D). At the boundary of the intercaval region and crista terminalis, there 

was evidence of interdigitation of the SAN into the atrial muscle- the SAN tissue 

forks around the endocardial and epicardial surfaces of the crista terminalis (figure 

6.3A). All of these features of the rabbit SAN are consistent with those identified by 

immunolabelling of marker proteins in physical sections (figure 6.4 and Dobrzynki et 

al. 2005). Figure 6.3B and figure 6.4D shows the extent of the rendered SAN as 

viewed from the endocardial surface of the right atrium. Figure 6.3C shows the 

rendered SAN running alongside the sinus node artery. The volume of the rendered 

SAN was 1.01 mm
3
 in the rabbit heart shown. The attenuation data also contains 

evidence of a progressive increase in attenuation from the centre of the SAN towards 

its periphery, and continuing to increase towards the surrounding atrial myocardium. 

This suggests the change in morphology related to the paranodal or transitional 

region is distinguishable using micro-CT (see discussion).  

 

Figure 6.3 Transverse micro-CT image of posterior right atrium with corresponding 

volume rendering and segmentation of sinoatrial node. micro-CT image showing the 

sinoatrial node in a rabbit heart stained with 7.5% I₂KI for 3 days, with 3D rendering of the 

whole heart showing the associated plane of interest (A). Corresponding volume rendering 

(B) and Segmented 3D isosurface of sinoatrial node (C). Distance between red dots- 4.9 

mm, blue dots- 2.5 mm.  CT- crista terminalis, IVC- inferior vena cava, PM- pectinate 

muscle, RA- right atrium, SAN- sinoatrial node, SNA- sinus node artery, SVC- superior vena 

cava. (Scale bar represents 1 mm) 
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Figure 6.4 Comparison of existing and current 3D representations of the sinoatrial node. 

Existing model of the SAN in rabbit (modified from Dobrzynski et al. 2005) constructed from 

immunohistochemically stained sections (A,C), superimposed onto a schematic 

representation of the heart showing the SAN epicardial position (A), and its relationship 

with the myocardium on the endocardial surface (C). Volume rendering of the current 

model in rabbit of the SAN, showing its true position on the epicardial (B) and endocardial 

(D) surfaces. Ao- Aorta, CS- coronary sinus, CT- crista terminalis, IVC- inferior vena cava, PA- 

pulmonary artery, PM- pectinate muscle, PV- pulmonary veins, RA- right atrium, SAN- 

sinoatrial node, SANP- sinoatrial node periphery, SVC- superior vena cava.        
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6.4 Internodal pathways of the rabbit right atrium 

Here the anatomy and possible function of the sinoatrial ring bundles in the rabbit 

right atrium is assessed. The right and left sinoatrial ring bundles (RSARB, LSARB) 

were identified and analysed using whole mount immunohistochemistry, contrast 

enhanced micro-CT, and targeted contrast enhanced (TCE) micro-CT. The ring 

bundles appeared as fine protrusions/tracts of neuro-filament positive tissue running 

along the lateral and medial borders of the SAN on the endocardial surface (figure 

6.5B,C). The following findings are validated by whole mount 

immunohistochemistry and TCE micro-CT for specific expression of neurofilament 

middle (NF-M).  

Inferiorly the RSARB and LSARB run towards the floor of the atrium and become 

continuous with the INE (figure 6.5B,C). Here, the right and left SARBs run inferior 

and superior to the opening of the CS respectively, both bundles can be seen to fan 

out into a network of numerous NF-M+ fibres prior to entering the INE. As they 

enter the INE the larger fan of the RSARB overlaps with the smaller LSARB fan 

forming a complex mesh of NF-M+ fibres. Superiorly the LSARB runs across the 

superior aspect of the IAS in a posterior-anterior fashion, with free running aspects 

evident. On reaching the anterior of the IAS, the LSARB runs inferiorly towards the 

atrial floor, anterior to the fossa ovale, and runs into the anterior aspect of the INE, in 

the region of the CN (figure 6.5B). Superiorly the RSARB arcs towards the RA free 

wall, forming branches which run on the endocardial surface of PcMs, and between 

PcMs as free running fibres (figure 6.6). Figure 6.6C,D shows images from TCE 

micro-CT scans, and clearly shows the SARBs are free running, NF-M positive 

(bright signal), but also insulated with a NF-M negative connective tissue sheath. 

The path and position of the SARBs corresponds with schematics of the fast and 

slow pathways (see introduction) produced from electrophysiological and channel 

protein data (figure 6.5A)(Mazgalev et al., 2001). The slow and fast pathways can be 

identified structurally in the micro-CT data, which for the most part appear as low 

attenuating regions (figure 6.5C). Figure 6.5D shows the corresponding fibre 

orientation plot for figure 6.5C. In this case, the fast and slow pathways can be 

distinguished by their fibre orientation, which matches the path of propagation 

postulated from electrophysiological studies.   
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Whole mount immunohistochemistry for NF-M confirmed other areas specialized for 

electrical propagation within the right atrium, including; the SAN, INE and BB 

(figure 6.5B). Superiorly the SAN can be seen to give off a network of NF-M+ fibres 

which run medially into BB (figure 6.5B), eventually becoming continuous with the 

LSARB at the superior aspect of the IAS. Directly inferior to this network is a region 

more or less void of NF-M+ fibres, this region may correspond to the block zone. 

This region has been previously described in functional studies of activation spread 

from the SAN (reviewed in Boyett et al., 2000). The SAN also gives of branches of 

NF-M+ fibres to the RSARB. Fibres in the SAN periphery run in parallel with the 

RSARB as it runs down the SAN lateral border, with some fibres appearing to enter 

the ring bundle in this region. As the SAN narrows inferiorly some of its fibres 

appear coalesce with the RSARB, possibly contributing to the network of multiple 

fibres seen when the RSARB fans out prior to entering the INE.       
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Figure 6.5 Anatomy of the internodal pathways in the rabbit right atrium investigated by 

immunohistochemistry, micro-CT and fibre orientation analysis. Schematic produced from 

electrophysiological and channel protein data (modified from Mazgalev  et al., 2001), 

showing location of the fast and slow conduction pathways and their association with AV 

conduction axis (A). Whole mount immunohistochemistry for NF-M (brown indicates NF-

M+ tissue) (B), and volume rendering (C) of regions corresponding to A, white arrows depict 

slow and fast pathways. Fibre orientation extracted from micro-CT data used in C (minus 

SAN) showing the fibre orientation of the conduction pathways (black arrows). Colour bar 

represents inclination angle. *- represents free running aspect. CS-coronary sinus, CT- crista 

terminalis, FO- fossa ovale, INE- inferior nodal extension, IVC- inferior vena cava, LSARB- left 

sinoatrial ring bundle, RSARB- right sinoatrial ring bundle, SAN- sinoatrial node.  Fibre 

orientation analysis conducted together with Dr Jichao Zhao, whole mount 

Immunohistochemistry conducted together with Dr Halina Dobrzynski. (Scale bar 

represents 1 mm)     
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Figure 6.6 The anatomy of the right sinoatrial ring bundle in rabbit investigated by 

immunohistochemistry, micro-CT and TCE micro-CT. Whole mount immunohistochemistry 

for NF-M (A), Volume rendering (B) and targeted contrast enhanced micro-CT for NF-M 

(C,D), showing the 3D morphology of the right sinoatrial ring bundles (surface running 

bundles- black arrows, free running bundles- white arrows) in the roof of the right atrium 

(A,B), intercaval region (C) and the anterior portion of the right atrial appendage (D). CT- 

crista terminalis, PcM- pectinate muscle, SS- septum spurium, SVC- superior vena cava. 

Whole mount immunohistochemistry conducted together with Dr Halina Dobrzynski. (Scale 

bar represents 1 mm) 
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6.4 The Atrioventricular  conduction axis of the rabbit heart 

From the micro-CT data it was possible to identify the inferior nodal extension, 

penetrating bundle,  non-branching and branching bundles, and the bundle branches. 

Furthermore these tissues could be differentiated from the associated contractile 

myocardium and connective tissue (which have higher and lower attenuation 

coefficients respectively) (figure 6.7A,B,D,E, figure 6.8). When viewed in 

longitudinal sections of the IVS, the posteriorly lying inferior nodal extension 

appeared as a thin smear of cells lying on the right lateral aspect of the IVS within 

the RA cavity (figure 6.8C,F). The penetrating bundle was identified as a oval mass 

of nodal cells surrounded by a layer of low attenuating connective tissue (figure 

6.7A,D, figure 6.8B,E); this indicates the path of the AVCA through the central 

fibrous body. Anteriorly  the branching bundle appeared as a triangle shaped 

structure, with its base arching over the underlying IVS (figure 6.7B,E, figure 

6.8A,D). The 3D representation of the AVCA in the rabbit (figure 6.7C,F, figure 

6.8G,H) shows it to be similar to that in the rat (figure 6.2C,F). The arching of the 

structure represents its position on the IVS (figure 6.7C,F, figure 6.11,6.12). The 3D 

relationship of the AVCA with surrounding structures can be appreciated in the 

volume rendering shown in figure 6.8G,H. As the bundle branches are traced along 

the IVS it is evident that at their origin they appear as ribbon like structures (figure 

6.7F), which become thinner and more 'cord-like' as they give branches to the 

purkinje network (figures 6.11,6.12). When viewed in a transverse section, the 

AVCA can be seen to take origin in the expected location between the coronary sinus 

and the membranous septum at the base of the triangle of Koch and can be followed 

around the circumference of the aortic valve annulus (figure 6.8). 
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Figure 6.7 Longitudinal micro-CT images of atrioventricular conduction axis in rabbit with 

corresponding 3D isosurfaces. Showing the penetrating bundle (A,D) and branching bundle 

(B,E) in a rabbit heart stained with 7.5% I₂KI for 3 days. Segmented 3D isosurfaces of 

atrioventricular conduction axis, showing the anteriorly positioned branching bundle (C) 

and its lateral aspect showing the penetrating bundle, and non-branching and branching 

bundles (F). Distance between red dots- 1.1 mm, green dots- 7.8 mm.  AOV- aortic valve, 

BrB- branching bundle, IVS- interventricular septum, LBB- left bundle branch, LV- left 

ventricle, MV- mitral valve, NBrB- non-branching bundle, PB- penetrating bundle, RBB- right 

bundle branch. (Scale bar represents 1 mm) 
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Figure 6.8 Longitudinal micro-CT images of atrioventricular conduction axis in rabbit with 

corresponding volume renderings. micro-CT images of the branching bundle (A,B), 

penetrating bundle (C,D) and inferior nodal extension (E,F) in a rabbit heart stained with 

3.75% I₂KI for 5 days. Volume renderings showing the atrioventricular conduction axis and 

its relationship with surrounding structures (G,H). AO- aorta, AOV- aortic valve, AVCA- 

atrioventricular conduction axis, BrB- branching bundle, INE- inferior nodal extension, IVS- 

interventricular septum, LV- left ventricle, MS- membranous septum,  MV- mitral valve, PB- 

penetrating bundle, PM- papillary muscle, RA- right atrium, TV- tricuspid valve. (Scale bar 

represents 1 mm)  

 

6.5 Purkinje system of the rabbit heart 

Free running Purkinje fibres are difficult to interpret in any destructive sectioning 

technique because they are easily lost or damaged and are challenging to follow in 

thin serial sections. In contrast, they were easily identified in micro-CT images, 

because in the image data they were running in air, and thus appeared clearly as high 

attenuating structures against the low attenuating ventricular cavity (space). As a 
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result free running aspects were segmented using semi-automatic method II (methods 

2.4.2). However, fibres running on the endocardial surface of the ventricles were 

more difficult to discriminate from the contractile myocardium. It was possible to 

segment some fibres running on the endocardial surface, because they appeared as 

protrusions which were continuous with the free-running fibres. Because these 

protrusions are small structures with a relatively small differential attenuation to the 

myocardium, this aspect of the segmentation was largely a semi-automatic process 

(methods 2.4.2- semi-automatic segmentation I) and unlikely to be complete. 

However, in agreement with whole mount immunohistochemical studies, the rabbit 

does not seem to have a sub-endocardial Purkinje network (Atkinson et al., 2011). 

The ventricular Purkinje network is presented in three hearts from normal rabbits 

(figure 6.9). The least differentiated components of the Purkinje system are the right 

and left bundle branches (RBB, LBB) as they descend the IVS. This is because, in 

this area, the differential contrast between the (lower attenuating) conducting tissue 

and the (higher attenuating) working myocardium is smaller than in other areas of the 

CCS. Indeed, in some parts of the bundle branches, the conducting tissue had a 

higher attenuation than the surrounding working myocardium.  

In figures 6.11 and 6.12, the rendered AVCA and Purkinje system is shown with its 

relationship to the surrounding myocardium. This shows that the LBB emerged as a 

ribbon-like structure (~2 mm wide) that draped over the IVS, at its widest point 

spanning ~4.5 mm (e.g. figure 6.11, figure 6.7C,F). In contrast, the RBB emerged as 

a thin structure (~0.75 mm wide), but still with a ribbon-like appearance (e.g. figure 

6.12, figure 6.7C,F). The main branches can be traced down the IVS, with the LBB 

running vertically in the same plane as the  branching bundle; in contrast, the RBB 

projects anteriorly before taking a more vertical route down the IVS (figure 6.7F, 

figures 6.11,6.12). Figures 6.11, 6.12 and 6.9 show that the Purkinje network 

occupies the luminal cavity, with large portions of the network running from one side 

of the lumen to the other and, therefore, in life, running within the flowing blood. 

The networks have a web-like appearance, with many interconnecting segments, 

which in places form loops.  The data suggests that the Purkinje network in the left 

ventricle is more extensive than that in the right ventricle (figures 6.11,6.12). Finally, 

figure 6.9 shows that there is substantial variation in the Purkinje system between 

control hearts. There are surprising differences in fibre branching and thickness, and 
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in overall network volume (4.2mm³, 5.5mm³, 15.8mm³; figure 6.9).  However, there 

are similarities in terms of connections in all three samples (figure 6.9). For example, 

there are common branchings from the IVS to the ventricular free wall and from the 

IVS directly to the papillary muscles (PMs), branches to the PMs were extensive in 

most samples (figure 6.9).  

 

 

Figure 6.9 Volume renderings and corresponding 3D isosurfaces of Rabbit left ventricular 

Purkinje networks. 3 seperate rabbit hearts were stained with 7.5% I₂KI for 3 days (A-C) or 

3.75% I₂KI for 5 days (D-F and G-I) and micro-CT scanned. Volume renderings viewed from 

base to apex (A,D,G), with corresponding segmented 3D isosurfaces in transverse (B,E,H) 

and longitudinal orientation (C,F,I). Volumes of segmented data- 4.2 mm³, 5.5 mm³, 15.8 

mm³ respectively. Number of vertices in segmented data- 454, 370, 569 respectively. 

Coloured dots represent Purkinje network maximum widths- distance between green dots- 

13.5 mm, red dots- 17.1 mm, blue dots- 14.4 mm.  IVS- interventricular septum, PM- 

papillary muscle.  
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Figure 6.10 validates micro-CT findings which showed the Purkinje fibres as a 

complex network of many free running aspects. Whole mount 

immunohistochemistry and TCE micro-CT showed the Purkinje fibres to be NF-M 

positive confirming the networks potential to propagate the wave of depolarisation to 

the ventricular myocardium. TCE allowed for non-invasive visualisation of NF-M 

positive tissue in 3D, although the method suffered from background staining, this 

did not affect the free running Purkinje fibres, and allowed discrimination between 

the conducting tissue (high attenuation) and the surrounding connective tissue 

sheaths (low attenuating). The level of connective tissue surrounding individual 

fibres varied, with some regions heavily bound in connective tissue (figure 6.10). 

Quantification of the network in figure 6.10 revealed a mean segment radius of 

47µm, corresponding closely with values described previously in histological studies 

(Stankovicová et al., 2003). 
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Figure 6.10 The 3D morphology of the rabbit left ventricular Purkinje network 

investigated by immunohistochemistry and TCE micro-CT. Whole mount 

immunohistochemistry for NF-M (brown indicates NF-M+ tissue) (A), and targeted contrast 

enhanced (TCE) micro-CT for NF-M (high attenuation represents NF-M+ tissue) (B). 

Segmented 3D surface of Purkinje network (network volume= 5.2mm³, network length= 

238mm, mean segment radius 47µm) (C). IVS- interventricular septum, LVFW- left ventricle 

free wall. Whole mount immunohistochemistry conducted together with Dr Halina 

Dobrzynski. (Scale bar represents 1 mm) 

 

6.6 Variations of the CCS in rat and rabbit 

Although the major components of the CCS are associated with the same anatomical 

landmarks in both rat and rabbit, there is evident variation in their morphology. The  

branching bundle of the rat appears flattened and broader (figure 6.2) in comparison 

to the more narrow and elongated structure seen in rabbit (figure 6.7). The bundle 

branches and accompanying Purkinje networks are different in the two species;  both 

bundle branches in the rat appear as uniform ribbon-like structure with widths of 

~0.5 mm (figure 6.2C,F), in rabbit the morphology of the LBB is quite different; the 

LBB emerges as a ribbon-like structure (~2 mm wide) that drapes over the IVS, at its 
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widest point spanning ~4.5 mm (figure 6.7C,F, figures 6.11, 6.12) The RBB emerges 

as a thin structure (~0.75mm wide), but still has a ribbon like appearance (figure 

6.7C,F, figures 6.11, 6.12). The main branches can be traced down the IVS, with the 

LBB continuing distally in the same plane as the more proximal  branching bundle. 

In contrast, the RBB projects anteriorly before taken a more vertical route down the 

IVS. The left ventricular Purkinje network in rat is localised to the apical region, 

creating a scoop-like appearance, with evidence of trans-luminal fibres. Towards the 

base branches run on the endocardial surface with no cross luminal branching. In 

contrast the left ventricular Purkinje network of the rabbit appears as a web-like 

structure spanning the entire luminal cavity, with numerous branches traversing the 

cavity (figures 6.8, 6.10, 6.11,6.12).  

 

 

Figure 6.11 Segmented 3D surface of the three major components of the CCS in a failed 

rabbit heart. Showing the CCS isosurface (yellow) overlaid with the longitudinally cropped 

cardiac mass (pink). Decreasing levels of cardiac mass transparency (A-C) show the true in 

situ position of the CSS. BrB- branching bundle, IVS- interventricular septum, LA- left atrium, 

LBB- left bundle branch, LV- left ventricle, PB- penetrating bundle, PN- Purkinje network, 

RA- right atrium, RBB- right bundle branch, RV- right ventricle, SAN- sinoatrial node. 
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Figure 6.12 3D surface of the three major components of the CCS segemented in a failed 

rabbit heart. The CCS isosurface (yellow) (A) overlaid with cardiac mass (pink) at decreasing 

levels of transparency (B,C), showing the penetrating bundle emerging from the right 

atrium and transversing the IVS as non-branching bundle to become the branching bundle 

anteriorly (in true in situ position). BrB- branching bundle, LA- left atrium, LBB- left bundle 

branch, LV- left ventricle, PB- penetrating bundle, PN- Purkinje network, RA- right atrium, 

RBB- right bundle branch, RV- right ventricle, SAN- sinoatrial node, IVS- interventricular 

septum. 

 

6.7 Discussion 

This study has shown that contrast enhanced micro-CT offers a non-destructive 

method to obtain a high-resolution map of the 3D disposition of the CCS. High 

resolution, non-invasive imaging of the 3D morphology of the CCS will have several 

important benefits. It will: a) improve the understanding of CCS anatomy and 

function; b) inform the development of ‘virtual hearts’- anatomically and 

biophysically-detailed mathematical models of the heart for education, research, 

planning surgical treatments and drug discovery; c) provide information on 3D fibre 

orientation in regions known to be involved in the pathway of conduction; d) inform 

cardiac ablation procedures; e) provide better guidance for implantation of prosthetic 

aortic valves to avoid LBB block; and f) guide the planning of reconstructive surgery 

for congenital heart defects, to avoid damage to the CCS and reduce the need for 

pacemakers. The figures presented here provide confirmation of many previous 
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studies (Chandler et al., 2011, Dobrzynski et al., 2005, Ko et al., 2004, Li et al., 

2008), but are the first intrinsic 3D representations of the relationships between the 

conducting tissues and the surrounding cardiac anatomy, and are the first to show the 

three major components of the CCS within datasets captured from single intact 

hearts. 

 

6.7.1 Comparison of Micro-CT to other Techniques for CCS analysis 

 

During this study, hearts were carefully prepared by in situ perfusion to avoid the 

contrast degradation caused by the presence of luminal blood, and to provide uniform 

arterial fixation. During fixation, application of the contrast agent, and during 

preparation for scanning, care was taken to maintain the heart in an ‘inflated’ state. 

Without such care the atria are prone to collapse, and views from the inside of the 

atrial chambers are not possible (see 3.9 and 3.10 for images of a heart which has not 

undergone perfusion fixation). The micro-CT technique used in this study to identify 

and visualise the CCS has numerous advantages over alternative methods: (i) the 

technique is non-destructive and there is no distortion of the heart caused by 

dissection, embedding, freezing or cutting. (ii) The staining by the contrast agent is 

reversible, so that samples are preserved for any future studies such as light 

microscopy. (iii) The technique achieves automatically registered, high resolution, 

tomographic data sets which results in a more accurate representation of the CSS. In 

this study, the resolution was ~20 µm. In studies involving serial sectioning, the 

resolution is often 60–340 µm (Dobrzynski et al., 2005, Li et al., 2008). To achieve a 

similar level of a resolution by a sectioning-based technique would require a high 

level of technical expertise and resources. Furthermore, to obtain such a set of 

sections from a small mammalian heart in its natural blood-filled disposition would 

require fixation and embedding, and therefore filling, of a whole intact heart with 

wax or plastic. With atrial walls as thin as 0.2 mm, this would be a severe technical 

challenge. Although the resolution in this study is comparable to the resolution in a 

previous study involving high resolution MRI (Li et al., 2005), micro-CT offers 

inherent isometric resolutions while avoiding the issue of diminishing signal:noise 

ratio experienced with MRI at high resolutions. (iv) The technique is fast; in this 

study imaging of one sample ranged between ~20–50 minutes. In contrast, 

comparable serial sectioning work will take many weeks, and in the study of Li et al. 
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MRI was stated to have taken many hours (Li et al., 2005), but to obtain image 

quality comparable to micro-CT, scans as long as 72 hours are required (Gilbert et 

al., 2012). For a more comprehensive review of micro-CT advantage over MRI see 

Chapters 3 and 4. (V) Furthermore, existing techniques use small sample 

preparations removed from whole hearts by dissection, and therefore do not allow 

simple visualisation of the relationship between the CCS and the surrounding 

working myocardium and fibrous skeleton. Resultant 3D renderings from such 

preparations must subsequently be placed onto schematic diagrams of the whole 

heart somewhat subjectively (Dobrzynski et al., 2005, Li et al., 2008). This potential 

source of error is not a limitation of the current study. 

 

Contrast enhanced Micro-CT as a technique does have a disadvantage: the ability to 

discriminate between different tissues is limited compared to traditional sectioning 

and staining (although perhaps better than that of MRI). Traditional 

immunohistochemical techniques allow discrimination of specialised tissues based 

on their specific ion channel and connexin expression (Dobrzynski et al., 2013). 

However based on similar principles as immunohistochemistry, and on work 

conducted by Metscher and Muller (Metscher and Müller, 2011) on embryonic 

tissue, we have developed a technique called TCE micro-CT. This allows specific 

tagging of proteins of interest with a heavy metal, hence increasing X-ray attenuation 

in these regions. We have developed the technique for use on whole hearts, and 

although further optimization is required to reduce background and to resolve access 

issues, this technique has the potential to become the gold standard for non-invasive 

3D visualisation of the CCS.  

 

6.7.2 Contrast Enhancement 

 

The mode of contrast enhancement by iodine staining remains incompletely 

understood. Differential uptake of iodine by different tissue types allowed 

discrimination between; fat, myocardium, nodal tissue and connective tissue, with 

decreasing attenuation coefficients respectively (differences quantified in Chapter 3). 

One hypothesis is that the molecular iodine becomes immobilised within the 

structure of glycogen- the basis of simple tests for polysaccharides (Lecker et al., 

1997, Saenger, 1984). For more details on the principles of differential uptake of 
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iodine see Chapters 3 and 4. While this provides a rational basis for the greater 

attenuation of myocardium compared to fibrous tissue, it does not so obviously 

explain the lower attenuation that we have found generally for tissues of the CCS. 

The specialised myocytes of the CCS are reported to have high glycogen content, 

and the classic histological stain for glycogen known as Periodic Acid Schiff (PAS) 

is used to provide discrimination between the CCS and surrounding tissue (Airey et 

al., 2004, Myers and Fishman, 2003). This apparent anomaly may be explained by 

the presence of glycogen-rich compartments in myocytes of the CCS, but a lower 

average density over the sectional area encompassed by a group of voxels. Myocyte 

density and cell size can be lower in the CCS (especially in parts of the sinoatrial and 

atrioventricular nodes (Boyett et al., 2000, Christoffels et al., 2010) than in the 

tightly-packed contractile myocardium. We have shown previously low tissue 

density coincides with lower attenuation (Chapter 3). In addition we have also shown 

previously the low attenuating properties of connective tissue (Jeffery et al., 2011). 

Therefore, with the connective tissue network more extensive, but less dense in nodal 

tissue than working myocardium (Dobrzynski et al., 2013), this will also contribute 

to overall lower attenuation coefficients in the CCS.  

 

There is obvious potential for the current technique to be applied to the 

reconstruction of the CCS in larger hearts, including human hearts. Contrast 

enhancement of the CCS is achieved by the differential uptake of the contrast agent 

by different tissue types. In the present method the contrast agent is taken up by the 

tissue through the process of diffusion therefore this may be a limitation when 

preparing larger samples because contrast may be lost in more superficial areas (too 

much iodine), before sufficient contrast is obtained in deeper parts of the tissue. It 

may therefore be necessary to develop a perfusion-based technique in which the 

iodine contrast is delivered via the arterial system. 

 

6.7.3 Segmentation of the CCS 

 

The delineation of the CCS required use of various image analysis techniques. For 

the intra-ventricular Purkinje network, in which the structures run in air, an 

instantaneous volume rendering technique (VRT) can be used by windowing an 

opacity curve to include voxel values of interest and selecting a 3D colour map. The 
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resultant 3D volume is rendered using a VRT render mode in which voxels are 

assigned a level of opacity (0–100%) and colour calculated from their CT attenuation 

value. This complex procedure is versatile and time efficient and can easily combine 

characteristics of surface rendering and maximum intensity projection techniques, 

and offers improved definition of contours and semi-transparent displays over those 

techniques. For the SAN, a volume rendering that provided an image of the 

endocardial surface of the right atrium was most informative; use of VRT allowed an 

area to be identified that matched well with the landmarks of the crista terminalis and 

caval vein openings. Previously we described the difficulty to visualise the AVCA 

using VRT (Stephenson et al., 2012), subsequent optimisation has permitted 

visualisation of the AVCA using this technique, and allowed an appreciation of the 

AVCA's relationship with surrounding structures, and especially it course through 

the central fibrous body. Semi-automatic segmentation II (methods 2.4.2) was shown 

to be an ideal technique for segmentation of free running structures such as the 

LVFW or IVS (see chapter 8), and was used here to effectively and efficiently 

segment and quantify the Purkinje fibre networks. In the samples presented here, the 

attenuation differences between the CCS and the surrounding myocardium were 

higher in the rat than in the rabbit. Although the resolution attainable in rat is finer 

due to the smaller sample size, this may represent a real difference between the 

species at the cellular level.  

 

6.7.4 Variations of the Ventricular Conduction System in the Rat and Rabbit 

 

The branching bundle of the rat is flattened and broader than the more narrow and 

elongated structure seen in the rabbit. The bundle branches and accompanying 

Purkinje networks are also different in the two species. Both bundle branches in the 

rat are uniform ribbon-like structures with a width of ~0.5 mm. In the rabbit, the 

LBB was a ribbon-like structure ~2 mm wide that draped over the IVS, at its widest 

point spanning ~4.5 mm. However, the RBB was a relatively thin ribbon-like 

structure ~0.75 mm wide; this asymmetry between the bundle branches is consistent 

with the work of Miquerol et al. (Miquerol et al., 2004) and Atkinson et al. (Atkinson 

et al., 2011). The left ventricular Purkinje network in the rat was localised to the 

apical region, creating a scoop-like appearance, with the majority of branches 

running on the endocardial surface towards the base with few cross luminal branches. 
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In contrast, the left ventricular Purkinje network in the rabbit was a web-like 

structure spanning the entire luminal cavity, with numerous branches traversing the 

cavity. In addition there was clear variation between individuals in contrast to the 

conclusions of Atkinson et al. 2011. 

 

6.7.5 Comparison to Previous Studies 

 

The specialised AV ring tissues (Yanni et al., 2009a) and right ventricular outflow 

tract (Dobrzynski et al., 2013) were not analysed in the presented study. However 

results presented here suggest contrast enhanced micro-CT and/or TCE micro-CT 

will be capable of resolving these structures.  

 

The Sinoatrial node 

 

The shape and volume of the rendered SAN of the rabbit heart in this study are 

similar to those reported by Dobrzynski et al. 2005, who used a more time 

consuming and labour intensive serial sectioning technique. Whereas the volume of 

the rendered SAN was 1.01 mm
3
 in this study, it was 1.4 mm

3
 in the study of 

Dobrzynski et al. 2005. Analysis here shows the SAN in the rabbit heart to be an 

extensive structure, unlike the ‘textbook view’ of the SAN, which is normally 

portrayed as a small nodule at the junction of the superior vena cava and the right 

atrium (Boyett, 2009). In fact the leading pacemaker site in the rabbit can be located 

at any site along the length of the crista terminalis from the superior to the inferior 

vena cava (Boyett, 2009), and the extent of the SAN in the current study is consistent 

with this. The smear like appearence observed here in rabbit is consistent with 

histological studies of the SAN in rat (Atkinson et al., 2013), dog (Glukhov et al., 

2013) and human (Fedorov et al., 2010, Matsuyama et al., 2004). In some of our 

samples regions corresponding to the paranodal region, as described by Boyett et al. 

(2000) and Fedorov et al. (2009), were observed. Furthermore indigitations of the 

SAN into the surrounding working myocardium were evident, these were first 

described by Liu et al. 2007(Liu et al., 2007), and their function is still debated 

(Fedorov et al., 2009, Boyett et al., 2006).  
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The Internodal pathways 

 

Another controversial debate is the existence of distinct pathways responsible for 

internodal conduction within the RA. Data presented here and by collaborators is 

consistent with previous studies of the SARBs (Paes De Carvaho et al., 1953, 

Bojsen-Moller and Tranum-Jensen, 1972, Bojsen-Moller and Tranum-Jensen, 1971). 

They confirm that such pathways exist in the rabbit, although they have yet to be 

shown to extend directly from the sinus to the atrioventricular nodes. Whole mount 

immunohistochemistry and TCE micro-CT confirm the SARBs, which like the nodal 

cells have a primary myocardial lineage, are insulated from the myocardium and are 

NF-M positive; a cytoskeleton protein which is abundant in all regions of the CCS 

(Atkinson et al., 2011). In addition immunohistochemistry of serial sections confirms 

these tracts are also connexin 43 (Cx43) positive (Dobrzynski et al., 2005); Cx43 is 

fast conducting (60-100 picoseconds) and is strongly expressed in the fast conducting 

Purkinje network and working myocardium (Gourdie et al., 1993). Therefore these 

bundles are histologically discrete and are insulated from surrounding myocardium 

by connective tissue sheaths. In addition they are traceable from section to section 

(Dobrzynski et al., 2005). Thus the SARBs meet all the criteria set by the German 

Pathological Society (1910) for defining conducting tracts of the CCS, although as 

yet they have not been shown to extend directly from the sinus node to the 

atrioventricular node. 

 

These NF-M+ tracts create a network which we have shown follow the latter routes 

of both the fast and slow pathways, as well as giving branches which run on and 

between the PcMs. Fibre orientation analysis shows that fibres in the vicinity of the 

SARBs run longitudinally with the tracts, which is known to contribute to fast 

conduction (anisotropic conduction) (Spach and Kootsey, 1983). Studies of the 

SARBs electrophysiology in rabbit using micro electrodes suggest, like Purkinje 

cells, they have slow diastolic depolarisation (pacemaker potential) and a fast 

upstroke (Hiraoka and Sano, 1976, Paes De Carvalho et al., 1953). Paes de Carvalho 

et al., 1953 suggested the SARBs are the first to be excited by the SAN and offer the 

fastest route for internodal conduction. However more recent studies have discredited 

the role of the SARBs, showing the CT is the first to be excited and offers the route 
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for preferential conduction due to its superior conduction velocity (Masuda and Paes 

de Carvalho, 1975, Hiraoka and Sano, 1976).  

 

The suggested slow conduction velocity of the SARBs (Masuda and Paes de 

Carvalho) and their insulation from the myocardium suggests we cannot claim direct 

connections exist between the SARBs and the SAN, and thus cannot claim the 

SARBs are true internodal pathways. Further histological and electrophysiological 

evidence is required if the SARBs are to be accepted as the preferential pathways for 

internodal conduction in the rabbit.  

 

The atrioventricular conduction axis 

 

Consistent with Tawara’s original histological description of the AVCA (Tawara, 

2000), our 3D representation confirms that the AVCA originates in the expected 

location between the coronary sinus and the membranous septum at the base of the 

triangle of Koch and the axis can be followed around the circumference of the aortic 

valve annulus. The 3D rendering of the AVCA of the rabbit heart as shown here is 

qualitatively and quantitatively similar to the 3D rendering of the AVCA of the 

rabbit heart obtained from serial sectioning (Li et al., 2008). The 3D rendering in this 

study is superior in that it is higher resolution and shows the connections to the 

bundle branches (whereas that from Li et al., 2008 for example does not). However, 

the 3D rendering in this study fails to accurately differentiate the various sub-

compartments (inferior nodal extension, transitional zone, compact node, upper and 

lower tracts of the penetrating bundle) within the AVCA that are identified by Li et 

al. 2008 by appropriate staining and immunolabelling of marker proteins.  

 

ThePurkinje network 

 

The Purkinje network identified in this study is qualitatively similar to that described 

in previous studies (Atkinson et al., 2011, Bordas et al., 2011, Tawara, 2000). 

Although the Purkinje network identified here appears more complete than in studies 

using MRI (Bordas et al., 2011), it is not as complete as the Purkinje network 

identified by 2D immunolabelling (Atkinson et al., 2011). However it is revealed in 

its true 3D relationship with the intact cardiac chambers and the true extent of its free 
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running aspect can be appreciated. TCE micro-CT allowed the connective tissue 

sheaths surrounding individual Purkinje fibres to be resolved in 3D; the density of 

the sheaths varied throughout the network. Previously, Indian ink staining of 

Purkinje fibres in dissected ventricles suggested connective tissue sheath distribution 

may play a key role in coordinated contraction of the ventricles (Ansari et al., 1999, 

Tranum-Jensen et al., 1991). Using functional mathematical models (Berenfeld and 

Jalife, 1998, Vigmond and Clements, 2007, Bordas et al., 2011) incorporated with 

the data presented here using TCE micro-CT, there is a good prospect that the true 

functional relationship between the Purkinje network and working myocardium will 

be resolved.   

 

Here we present a technique by which the major regions of the CCS can be rapidly 

imaged non-invasively using reversible contrast enhancement for micro-CT in small 

mammalian hearts. Secondly we present a technique for targeted contrast 

enhancement, TCE micro-CT, which has great potential to provide morphological 

and functional information about the CCS in health and disease. The clear advantage 

over traditional methods of gross dissection, light microscopy and 

immunofluorescence staining for investigating the CCS is that high-resolution (µm) 

representations can be obtained with a non-destructive method while preserving 3D 

geometry and spatial relationships.  

 

There is a worldwide effort to develop a ‘virtual heart’, an anatomically and 

biophysically-detailed model that can be used to describe normal function and 

predict dysfunction and arrhythmogenesis with pathology or malformation (Boyett et 

al., 2005). Although there are excellent models of the working myocardium 

(Trayanova, 2011, Nielsen et al., 1991, Boyett et al., 2005), predictive models of the 

whole heart must include the CCS. Contrast-enhanced micro-CT offers an effective 

and efficient method to generate an accurate anatomical model of the heart including 

the CCS, which can be incorporated into functional models, and thus help answer 

disputes over conduction throughout the heart. 
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6.8 Summary 

Here we show contrast enhanced micro-CT can be used to non-invasively image the 

CCS efficiently (~20-50minutes) at high resolution (18-42µm). In figures 6.11 and 

6.12, the whole of the CCS is rendered in one intact rabbit heart and is shown 

superimposed on different views of the heart. This is the first time that such views 

have been shown for any species. 

The differential uptake of iodine by soft tissues, and the high spatial resolution 

provided by micro-CT allowed the three major tissue types; working myocardium, 

nodal tissue and connective tissue, to be delineated with decreasing levels of 

attenuation respectively. The SAN, AVCA and Purkinje system could be objectively 

identified, visualised in 3D and quantified. Internodal pathways were resolved, and 

controversially we revealed structures within right atrium continuous with the 

RSARB and LSARB analogous to the Purkinje fibres of the ventricles, these NF-M 

positive fibres are free running in part and could shed new light on the complex 

depolarisation of the atria. All findings were validated by histology, 

immunohistochemistry and TCE micro-CT.   

We present a technique by which the major regions of the CCS can be rapidly 

imaged non-invasively using reversible contrast enhancement for micro-CT in small 

mammalian hearts. The clear advantage over traditional methods of gross dissection, 

light microscopy and immunofluorescence staining for investigating the CCS is that 

high-resolution (m) representations can be obtained with a non-destructive method 

while preserving 3D geometry and spatial relationships. There is a worldwide effort 

to develop a ‘virtual heart’ model. Contrast-enhanced micro-CT offers an efficient 

method to generate an accurate anatomical geometry of the heart including the CCS, 

which can be incorporated into such models. 
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CHAPTER 7 
 

The Effects of Volume and Pressure Overload on 

the 3D Morphology of the Cardiac Conduction 

System in the Rabbit Heart  
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7.1 Introduction 

Heart failure (HF) is associated with structural and electrical remodelling of the 

working myocardium and cardiac conduction system (CCS). Such remodelling of the 

heart is a substrate for arrhythmogenic disorders such as atrial fibrillation, re-entry 

circuits and ventricular tachycardia (VT). Experimental studies have shown that 

structural remodelling is characterised by heterogeneous expression and down-

regulation of connexins (Cx), the proteins that form intercellular gap junctions and 

allow action potential propagation. Other structural changes include increased 

fibrosis and muscle fibre disorganisation. Electrical remodelling is often 

characterised by changes to regional action potential morphology, and changes in 

expression and function of ion channel and Calcium handling proteins. Although 

experimental data exists on the remodelling of the CCS in HF at a cellular and 

protein level, little is known on how the 3D morphology of these specialised tissues 

is affected. This deficit is well illustrated by current mathematical models of the 

cardiac function; multi cell models of electrical propagation offer highly detailed 

functional modelling, but model fidelity is confounded by low-resolution and often 

inaccurate morphological data. This is due to the fact that, until recently, knowledge 

regarding the true 3D anatomy of the CCS was poor. Using contrast enhanced micro-

CT we were the first to non-invasively image the major aspects of the CCS in a fully 

intact heart, and present their true relationship with the surrounding working 

myocardium. This is especially the case for the Purkinje fibre network, an 

appreciation of the extent of its free running aspect has only been achieved using 

non-invasive imaging such as micro-CT. Traditional histological analysis based on 

serial sections are hugely laborious and suffer from difficulties with resolution and 

registration, making analysis of groups large enough for statistical analysis 

unrealistic. Micro-CT is a fast, non-destructive and non-invasive imaging method, in 

which high resolution data (~5 µm attainable) is automatically aligned in 3D. 

Together with the recent advances in image analysis tools, the investigation of 

suitable n numbers to allow statistical comparison has become possible. In this 

chapter morphological changes to the sinoatrial node (SAN), atrioventricular 

conduction axis (AVCA) and the Purkinje fibre network are investigated in rabbits 

that have been subjected to experimental HF (volume and pressure overload) 

(methods 2.2). The effects of HF on fibre orientation in the SAN are assessed, and 
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filament analysis (methods 2.4.3) is conducted to investigate changes in complexity 

of the free running aspects of the Purkinje network. This data provides novel insights 

into morphological changes across all major regions of the CCS in HF, which in turn 

will improve the fidelity of mathematical models of cardiac function. Since 3D 

morphology is so closely related to the characteristics of electrical transmission, the 

data will allow inferences to be made regarding electrical dysfunction associated 

with HF.  

 

7.2 Morphological changes to the sinoatrial node in experimental heart failure  

Experimental HF was induced in adult rabbits by means of aortic valve disruption 

and subsequent aortic banding (2 weeks later), enabling investigation of 

morphological and functional changes in hearts exposed to both volume and pressure 

overload (see methods 2.2 for detailed method and see Chapter 8 for effects to the 

working myocardium). To assess morphological changes in control and HF animals, 

whole intact rabbit hearts were stained with I₂KI and scanned by micro-CT in 

optimal conditions. In situ heparinisation followed by perfusion fixation, 

accompanied with careful monitoring during the fixation process, produced naturally 

inflated hearts, with no residing blood in the atrial or ventricular cavities (methods 

2.2.4). Particular attention was paid to the thin walled atria (RA ~250 µm, LA ~350 

µm), however in some samples the intercaval region became folded during initial 

fixation (figure 7.3C), possibly due to the weight of the thick muscular crista 

terminalis. From whole heart scans atria and ventricles were reconstructed separately 

at 100% resolution, allowing fine details to be resolved in computationally 

manageable data sets. This section will concentrate on changes seen in the SAN in 

HF.  

7.2.1 Volumetric changes to the sinoatrial node in heart failure 

The SAN is the primary pacemaker of the heart and can be found in the intercaval 

region of the right atrium. To investigate morphological changes in the SAN, the 

right atrium (control n=4, HF n=5) was segmented from surrounding fat and fascia. 

Further segmentation was carried out to isolate the SAN from the posterior right 

atrium (see section 7.3.2 for segmentation details), then tissue volumes and surface 
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areas were calculated (Amira 5.4.0). Previous analysis of the SAN confirmed that it 

is not so much a localised compact node, but an extended thin layer of conducting 

cells (Chapter 6- figure 6.3, figure 6.4B,D and Stephenson et al., 2012). In the micro-

CT images, the SAN was easily differentiated from the surrounding high attenuating 

atrial myocardium (Chapter 6- Figure. 6.3A). It appeared as a region of very low 

attenuation (dark) within the intercaval region of the posterior wall of the right 

atrium. It extends along the lateral aspect of the crista terminalis, which demarcates 

the boundary between the smooth intercaval region and the pectinate muscles of the 

right atrial appendage. Analysis using volume rendering techniques (VRT) showed 

the SAN was surrounded by a slightly higher attenuating region; distinct from the 

working myocardium this region corresponds to the paranodal tissue. This region is 

included in analysis here. The mean volume of the SAN was increased by 85% in HF 

(7.29±0.49 mm³ vs 13.51±3.60 mm³) (p=0.081) (figure 7.1A), this was coupled with 

a significant 51% increase in surface area (120.27±4.65 mm² vs 181.52±28.18 mm²) 

(p=<0.05) (figure 7.1B). These results are consistent with the global morphological 

changes observed in the atria in HF (see Chapter 8.4). 

To investigate morphological changes to the SAN at a cellular level, SAN 

preparations from control and HF samples were processed for histology, and cell 

diameters were measured and means taken. Analysis showed an increase in cell 

diameter in HF (7.7± 0.4 µm vs 8.7± 0.3 µm). Histology was conducted by Dr Xue 

Cai, The University of Manchester.       
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Figure 7.1  Tissue volume and surface area of the sinoatrial node segmented from micro-

CT data of control and heart failure samples. Mean tissue volume (A) and mean surface 

area (B). (Control n=4, HF n= 5, **p=<0.05).  Error bars indicate standard error of the mean 

(SEM). (HF-heart failure) 

 

7.2.2 Fibre orientation in the sinoatrial node in control and heart failure 

Contrast enhanced micro-CT has been shown to non-invasively indicate the 

arrangement of single muscle fibres in skeletal muscle (Chapter 4.3). Consequently 

novel structure tensor and fibre tracking analysis was carried out on micro-CT data 

of adult rabbit hearts (methods 2.4.4), to visualise and quantify the 3D fibre 

orientation of the SAN in control (n=4) and HF (n=5). Using a simple selection 

cropping method (ImageJ), the atrial data sets were segmented into subsets which 
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encompassed the posterior right atrium. The subsets were manipulated so that the 

crista terminalis was orientated vertically, and the SAN was then segmented using 

3D segmentation (see methods 2.4.2). In this method a 3D volume rendering of the 

endocardial surface is created. The low attenuating area within the intercaval region 

(in this case corresponding to the SAN, periphery and paranodal region) is then 

drawn around in 3D using the pencil tool (Amira 5.4.0), and all pixels (space and 

myocardium) within the drawn boundary plane are selected. The selected pixels are 

then stored as a material, and unwanted tissue is removed using further 3D 

segmentation. Once segmented a window reflecting the SAN pixel values is applied 

to the material. This technique therefore allows rapid segmentation of subsets, 

eliminating the need for laborious serial segmentation. 3D segmentation was 

effective here because the SAN is not confounded by overlying structures, in 

addition the SAN is very thin and heterogeneous, and is therefore difficult to 

accurately segment using semi-automatic segmentation techniques.  

Inclination and transverse fibre angles (figures 2.1,2.2) within the SAN were 

extracted from 6 transverse sections at evenly spaced intervals (superior-inferior). At 

each interval, all values across the corresponding transverse section were used for 

analysis. The mean fibre angle was calculated at each transverse section, and 

standard deviation of the fibre angle was used as an estimation of fibre organization, 

with high values representing fibre disarray. Figure 7.2A shows the standard 

deviation was reduced at all intervals in HF, suggesting more organised running 

fibres. However, statistical analysis using f-tests showed differences were not 

statistically significant. Across all intervals the trend for standard deviation was 

similar in both control and HF (figure 7.2A). The peaks seen at interval 5 correspond 

to a region of complex fibre orientation: here the fibres run around the coronary sinus 

and inferior vena cava, and begin to radiate out towards the IAS (figure 7.2A). This 

region corresponds to the flutter isthmus (figure 5.6), so-called because of its 

arrhythmogenic properties. Mean inclination angle was generally increased in HF 

(figure 7.2B), however significant differences were only seen at intervals 2 and 5. 

The SAN morphology was very variable, and also dependent on the fixation of the 

atria, this is illustrated by the volume renderings in figure 7.3. This variability makes 

comparative analysis of the SAN difficult. Analysis revealed a very complex and 

regionally variable fibre orientation in the SAN (figure 7.3). However, there were 
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fibre patterns that repeated in all samples; (1) the lateral border which is adjacent to 

the crista terminalis was predominantly made up of vertically running fibres; (2) 

Superiorly the SAN had fibres running into and following the curvature of the 

superior vena cava; (3) and fibres radiating from the central region running 

transversely towards the IAS were observed (figure 7.3).  

 

Figure 7.2 Fibre orientation analysis of the sinoatrial nodes segmented from micro-CT 

data of control and heart failure samples. Mean inclination angle of fibres (A) and the 

corresponding standard deviations (B) plotted at 6 transverse intervals through the node. 

(Control n=4, HF n= 5, **p=<0.05).  HF-heart failure. Error bars indicate standard error of 

the mean (SEM).  
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Figure 7.3 Volume renderings and fibre orientation of the sinoatrial node in control and 

heart failure samples. Volume renderings from endocardial view of the node segmented 

from micro-CT data with corresponding fibre orientation plots from control (A-D) and HF (E-

H) animals. Isometric resolution of micro-CT data 18-24 µm. HF-heart failure. (Colour bar 

indicates inclination angles) Not to scale. 
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7.3 Morphological changes to the atrioventricular  conduction axis in heart failure 

The AVCA forms a structural connection between the atria and ventricles and is 

responsible for synchronised atrioventricular electrical conduction. To investigate 

morphological changes in the AVCA, image data was segmented in control (n=5) 

and HF (n=5) samples to isolate the AVCA (as previously described Stephenson et 

al., 2012). Selections included nodal cells and their surrounding extracellular matrix. 

Tissue volumes and 3D lengths were then calculated. 3D Lengths were calculated 

using the 3D measure tool (Amira 5.4.0). In this method, multiple line measurements 

following the length and curvature of a 3D isosurface representing the AVCA were 

recorded. This therefore offers an accurate 3D length, unlike multiplying the slice 

thickness by the number of slices in the z plane as done in histological studies. From 

micro-CT data it was possible to identify all major regions of the AVCA; the inferior 

nodal extension, penetrating bundle, and the  non-branching and branching bundles, 

and differentiate them from the associated contractile myocardium and connective 

tissue (Chapter 6- Figures 6.7 and 6.8). The working myocardium, nodal tissue and 

connective tissue showed decreasing levels of attenuation respectively (differences 

quantified in Chapter 3). When viewed in longitudinal micro-CT slices and 3D 

segmentations, the AVCA can be seen to take origin in the expected location; 

between the coronary sinus and the membranous septum at the apex of the triangle of 

Koch. The AVCA can be traced anteriorly to where it penetrates the central fibrous 

body, it then runs around the circumference of the aortic valve annulus, and 

culminates as the branching bundle where the bundle branches are given off. In the 

results presented here the bundle branches have been excluded from analysis. In HF 

the AVCA was seen to significantly increase in both volume (60% increase: 

0.90±0.16 mm³ vs 1.44±0.28 mm³) (p=<0.05), and 3D length (14% increase: 

7134±404 µm vs 8141±327 µm) (p=<0.05) (figure 7.4). Figure 7.5 shows scaled 3D 

isosurfaces from representative control and HF samples, with their corresponding 

volume and 3D length. The increase in both volume and 3D length can be visually 

appreciated, however, the figure also highlights the variation of the morphological 

changes observed in HF (figure 7.5D,E,F).  
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7.3.1 Do global changes to the heart in heart failure affect atrioventricular  

conduction axis morphology? 

Coefficient of determination (R²) analysis was conducted to investigate the 

relationship between 3D length and volume (figure 7.6A). Analysis showed a strong 

correlation in control samples (R²= 0.935), with increased 3D length proportional to 

an increase in volume (figure 7.6A). In HF samples a weak correlation was observed, 

it was apparent the volume increase was greater than the length increase, however 

change in morphology was varied; with some samples showing hypertrophy, some 

stretch and others a combined effect (figure 7.6A). To assess the effects of LV 

dilatation on AVCA length, 3D length was plotted against LV cavity volume (figure 

7.6B). In control samples coefficient of determination (R²) analysis showed there 

was a weak positive correlation between 3D length and LV cavity volume (figure 

7.6B). In HF samples a stronger correlation was observed; increased 3D length was 

more closely correlated with increased LV cavity volume, and the data suggests the 

AVCA is stretched in HF samples (figure 7.6B). To determine whether the increase 

in volume and 3D length observed in HF was due to Hypertrophy of cells, increased 

deposition of extracellular matrix (fibrosis) or simply stretching of the conduction 

axis due to the drastic morphological changes to the surrounding working 

myocardium (see Chapter 8). Control and HF AVCA preparations (compacted node 

to left branching bundle) were processed for histology, and cell diameters were 

measured and means taken. Analysis showed no significant increase in cell size, 

however cell length was not investigated and a significant increase in total AVCA 

length was observed. Histology was conducted by Dr Theodora Nikolaidou, The 

University of Manchester.       
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Figure 7.4 Tissue volume and 3D length of the atrioventricular conduction axis segmented 

from micro-CT data of control and heart failure samples. Mean tissue volume (A) and 3D 

length (B). (Control n=5, HF n= 5, **p=<0.05).  Error bars indicate standard error of the 

mean (SEM).   
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Figure 7.5 3D surfaces of the atrioventricular conduction axis in control and heart failure 

samples. Isosurfaces segmented from micro-CT data of control (A,B,C) and heart failure 

(D,E,F) samples. For each sample, anterior and right lateral views are shown, and tissue 

volumes and 3D lengths given.   
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Figure 7.6 Coefficient of determination (R²) analysis of the atrioventricular conduction 

axis in control and heart failure. Showing the morpholoigcal relationship between 3D 

length and tissue volume (A), and 3D length and left ventricular cavity volume (B). Cont- 

control, HF-heart failure, AVCA- atrioventricular conduction axis, LV-left ventricle.  
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7.4 Volumetric changes to the Purkinje network in heart failure 

The Purkinje network is continuous with the AVCA, and forms a web-like network 

of conducting fibres within the ventricles responsible for the synchronisation of 

ventricular contraction. To assess morphological changes to the free running Purkinje 

network in control and HF animals, whole intact rabbit hearts were stained with I₂KI 

and micro-CT scanned in optimal conditions. From whole heart scans of perfusion 

fixed samples, the ventricles were reconstructed separately at 100% resolution. This 

allows fine details to be resolved in computationally manageable data sets. Ventricle 

data (control n= 6, HF n=6) was segmented from surrounding fat and fascia, and 

semi-automatic segmentation II (methods 2.4.2) was carried out to isolate the free 

running LV Purkinje network. Fibres were deemed free running up until they made 

contact with the endocardium; fibres running on the endocardial surface as 

digitations were therefore excluded from analysis. As described previously sub-

endocardial Purkinje fibres were not identified in the micro-CT or whole mount 

immunohistochemical data of rabbit hearts (Chapter 6 and Stephenson et al., 2012, 

Atkinson et al., 2011). From the segmented data, volumes were then extracted 

(Amira 5.4.0). Figure 7.7 shows the mean Purkinje network volume was significantly 

increased in HF samples (85% increase: 7.29±0.49 mm³ vs 13.5 ±3.60 mm³) 

(p=<0.05). LV Purkinje fibre preparations from control and HF samples were 

processed for histology, and cell diameters were measured and means taken. 

Analysis showed a significant increase in cell diameter in HF samples (15.1± 0.7 µm 

vs 19.1± 0.9 µm) (p=<0.05). Histology was conducted by Dr Xue Cai, The 

University of Manchester.       
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Figure 7.7 Mean tissue volume of the free running Purkinje network segmented from 

micro-CT data of control and heart failure samples. (Control n=5, HF n= 6, **p=<0.05). HF-

heart failure. Error bars indicate standard error of the mean (SEM).  

 

7.4.1 Detailed morphological changes to the Purkinje network in heart failure 

To investigate the morphological changes accounting for the dramatic increase in 

total network volume, segmented data was analysed using 3D filament analysis 

(Amira 5.4.0) (methods 2.4.3). This technique allows quantification of volume, 

length, and width variations within a network, and the number of segments, nodes 

and branching points can also be extracted. In this method, segmented Purkinje 

networks were first binarized and then dilated two-fold (Image J 1.47a). Dilation was 

required as the algorithm for filament extraction could not accurately trace/detect the 

fine fibres in the high resolution micro-CT data. Without dilatation pre-analysis, the 

number of segments and nodes within a volume were unrealistic, often exceeding 

2000. Also the tracing results for flattened regions of the thickest fibres appeared as 

meshes made up of numerous nodes and segments, rather than a single fibre (see 

explanatory figure 7.1). Filament analysis results were then qualitatively compared 

with 3D isosurfaces of the respective segmented Purkinje networks. Excellent 

correspondence was observed between the two sets of data.  

Analysis showed the mean free running length of the Purkinje network was 

significantly increased in HF (221±24 mm vs 359±59 mm) (p=<0.05) (figure 7.8A). 
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The longest single segment within each network was recorded, and the means for 

each group calculated. The mean longest segment was seen to be ~2.5 mm longer in 

HF compared to control (5.78±0.43 mm vs 8.22±0.30 mm) (p=<0.001) (figure 7.8B). 

Coefficient of determination (R²) analysis analysis was carried out to investigate the 

correlation between free running Purkinje length and LV cavity volume (figure 7.9). 

Analysis showed in HF there was a strong positive correlation between the two 

variables (R²= 0.937), in contrast a weak correlation was observed in control samples 

(R²=0.174) (figure 7.9). This Suggests dilatation of the LV is a contributing factor to 

the increased free running length of the Purknje network in HF.          

 

 

Explanatory figure 7.1 The importance of dilation in Purkinje fibre filament analysis. The 

segmented network (A), without dilatation of the segmented network filament analysis 

produced unrealistic results, with thick fibres appearing as meshes with many nodes and 

segments (B). Filament analysis post dilatation produced a more accurate representation of 

the network (C). white lines indicate segments, yellow dots indicate nodes. 
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Figure 7.8 Free running length and mean longest segment of the free running Purkinje 

network segmented from micro-CT data of control and heart failure samples. Mean total 

free running length (A) and mean longest single segment (B). (Control n=6, HF n= 6, 

**p=<0.05, ****p=<0.001). Cont- control, HF-heart failure. Error bars indicate standard 

error of the mean (SEM).  
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Figure 7.6 Coefficient of determination (R²) analysis of the free running Purkinje network 

in control and heart failure. Showing the morpholoigcal relationship between free running 

length and left ventricular cavity volume. (Control n=6, HF n= 6). Cont- control, HF-heart 

failure, LV-left ventricle.   

 

From 3D filament analysis, information on individual segment widths can be 

extracted, this data was used as a measure for hypertrophy of the Purkinje network. 

As dilatation was conducted in the transverse plane, the quantification of segment 

widths was down sampled by a factor of two. Although increased in HF, the mean 

fibre radius across the whole network was not significantly different when comparing 

the two groups (control- 30.02±4.55 µm, HF- 34.6±3.28 µm) (figure 7.10). There 

was no difference when the mean minimum fibre radius was analysed (control- 

10.66±2.59 µm, HF- 10.12±2.55 µm). However, a significant increase in mean 

maximum fibre radius was observed in HF (31% increase- 49.89±4.07 µm vs 

65.17±6.17 µm) (p=<0.05) (figure 7.10). These results suggest some, but not all 

Purkinje cells have undergone hypertrophy in HF. The radius measurements are 

consistent with previous histological studies of Purkinje fibre morphology 

(Stankovicová et al., 2003), which validates the method of analysis used here. The 

mean number of segments and nodes both increased in HF samples, however 

statistical significance was only seen for segment number (p=<0.05). The number of 

loops within the networks was calculated. A loop is best defined as a 'roundabout' 
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within the free running network which consists of multiple exit lanes. Loop size 

varied considerably within networks. The mean number of loops in a network was 

similar in both control (14.7 ±1.8) and HF (16.0 ±3.3), however the size and 

circumference of the loops was increased in HF (Figure 7.11). Figure 7.11 shows 

scaled 3D isosurfaces of Purkinje networks from representative control and HF 

samples, their corresponding volumes and free running lengths are given. The 3D 

isosurfaces allow visualisation of the aforementioned morphological changes to the 

LV Purkinje network in HF. The increase in total network volume and regional 

hypertrophy is clear, and the correlation between increased LV dilatation and 

increased free running length and increased loop size can be appreciated. Figure 7.11 

also shows the variation of the morphological changes in HF, and the intra-species 

variation of the Purkinje network (as previously described in chapter 6 and 

Stephenson et al., 2012).   

 

 

Figure 7.10 Mean, minimum and maximum segment radius in the free running Purkinje 

network segmented from micro-CT data of control and heart failure samples. (Control 

n=6, HF n= 6, **p=<0.05). Cont- control, HF-heart failure. Error bars indicate standard error 

of the mean (SEM).  
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Figure 7.11  3D surfaces of the left ventricular free running Purkinje network in control 

and heart failure samples. Scaled 3D isosurfaces segmented from micro-CT data of control 

(A,B,C,D) and heart failure (E,F,G,H) samples. For each sample, anterior and superior views 

are shown, and tissue volumes and total network lengths given. 
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7.5 Discussion  

Previously we have used contrast enhanced micro-CT to non-invasively image the 

major regions of the CCS (Stephenson et al., 2012 and Chapter 6). Here using an 

experimental model of HF developed in rabbit, the effects of both volume and 

pressure overload on the morphology of the CCS were investigated. Contrast 

enhanced micro-CT was used to image whole, perfusion fixed hearts ex vivo. 

Subsequent image and histological analyses of the SAN, AVCA and Purkinje 

network were used to investigate morphological changes in HF. Analysis showed all 

major regions of the CCS underwent morphological changes in HF, the observed 

changes and their possible effects on function are discussed below.  

 

7.5.1 The advantages of Micro-CT for analysis of the CSS 

Comparison with Traditional techniques 

Much of our knowledge regarding the CCS and its responses to disease come from 

histological, immunohistochemical and quantitative PCR (Atkinson et al., 2011, 

Chandler et al., 2011, Li et al., 2008). Such studies have transformed our 

understanding of the anatomy and pathophysiology of the CCS (Boyett, 2009), 

however our knowledge of 3D morphological changes in disease is limited. Although 

3D reconstruction have been made of the SAN and AVN in healthy hearts from 

serial sections, their resolution is poor, particularly in the z-plane (~100-300 µm), 

and results from concatenation of sections into a 3D volume are subject to error. In 

contrast, Micro-CT data is made up fully isometric voxels which are automatically 

aligned. In comparison with micro-CT, histological analysis of the CCS is very time 

consuming and analysis of the free running Purkinje nework is almost impossible. 

Processing, sectioning, staining, segmentation and concatenation of a single 

preparation can take several weeks using histology. In contrast, using micro-CT a 

whole heart can be scanned at high resolution (20µm) in ~20 minutes, then 

segmented, presented in 3D and quantified in hours rather than weeks. This 

facilitates the analysis of a sample size of adequate number for statistical analysis. 

We were the first to non-invasively image the major regions of the CCS in whole 
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hearts (Stephenson et al., 2012), and to our knowledge are the first to analyse the 3D 

morphology of the major regions of the CSS in HF.  

 At present, micro-CT scans of whole hearts do not allow sufficient resolution to 

resolve single cells (as resolution is proportionate to sample size), therefore 

measurements, for example cell diameter, cannot be made. However we have shown 

single cell resolution is attainable in muscle preparations (Jeffery et al., 2011), and 

have shown previously scanned samples can be subsequently processed for standard 

histology (Stephenson et al., 2012).  

Inferences regarding CCS function and dysfunction are commonly made from 

immunohistochemisty and quantitative PCR analysis of connexin and ion channel 

expression (Dobrzynski et al., 2013). Although high resolution morphological data is 

obtained using micro-CT, in the method presented here it is not possible to detect 

changes in specific protein expression. However, we have worked on the 

development of TCE micro-CT for imaging the heart (presented and discussed in 

Chapter 6), a technique which has the potential to provide information on specific 

protein expression across the whole heart in 3D.             

High fidelity morphological data 

The I₂KI contrast agent is differentially taken up by different tissue types, this allows 

nodal tissue to be distinguished from the surrounding myocardium and connective 

tissue with contrast and spatial resolutions superior (Stephenson et al., 2012) to rival 

imaging techniques (discussed in Chapters 4 and 6). Furthermore perfusion fixation 

allows the appreciation of cardiac anatomy with the heart in a naturally inflated state, 

not confounded by folding of structures or accumulation of blood (Chapter 3.5) 

(Jarvis and Stephenson, 2013). This makes micro-CT data ideal for integration into 

mathematical models of the heart. Although experimental data exists on the 

remodelling of the CCS in HF at a cellular and protein level, little is known on how 

the 3D morphology of these specialised tissues is affected. This is well illustrated by 

current mathematical models of the cardiac function; multi cell models of electrical 

propagation offer highly detailed functional modelling, however model fidelity is 

confounded by low resolution and often inaccurate morphological data (Aslanidi et 

al., 2009, Aslanidi et al., 2011, Butters et al., 2010, Inada et al., 2009). This is due to 

the fact that until recently (Stephenson et al., 2012), data regarding the true 3D 
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anatomy of the CCS and its relationships with the surrounding myocardium was 

poor. Current models of cardiac function often integrate poor morphological data 

derived from histology (Aslanidi et al., 2009), and in some cases from multi species 

(Aslanidi et al., 2011, Butters et al., 2010). This highlights the advantage of the 

current study in which data from whole hearts is acquired. Furthermore, with the path 

and velocity of the cardiac impulse strongly dictated by fibre orientation, the ability 

to extract 3D fibre orientation in the CCS from micro-CT data promises to further 

improve the fidelity of cardiac modelling. Fibre orientation in regions of the CCS has 

been described previously (Chandler et al., 2011, Dobrzynski et al., 2005, Ambrosi et 

al., 2012, Ambrosi et al., 2009). Although it can be argue that resolution is finer in a 

2D plane using optical coherence tomography (5-15 µm), data is only presented in 

2D, z-plane depth and resolution is poor, and only small sample preparation can be 

analysed.        

 

7.5.2 Morphological changes to the CCS in heart failure 

The CCS has been confirmed as plastic (Boyett, 2009), and has been shown to be 

more sensitive to change than myocardium (Chandler et al., 2009). The data 

presented in this chapter provides novel insight into morphological changes across all 

major regions of the CCS in HF. Analysis showed all major regions of the CCS 

(SAN, AVN and Purkinje network) underwent morphological changes in HF.  

 

Impulse propagation across the heart depends on; the physiology of individual 

cardiomyocytes, impulse transmission between adjacent cells, and the 3D 

arrangement of cells (Smaill et al., 2013). Perturbation in the function of any of these 

factors can give rise to rhythm disturbances and reentry activation (Smaill et al., 

2013). Here we will discuss the morphological changes to the CCS in HF and how 

they may affect function. 

 

The sinoatrial node 

Previous analysis of the SAN in rabbit, by us and others, confirmed that it is not so 

much a localised compact node, but an extended thin layer of conducting cells, with 

a smear like appearance (Dobrzynski et al., 2005, Stephenson et al., 2012, Chapter 
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6.3). The volume of the SAN was increased in HF, and this corresponded with an 

increase in cell diameter. This hypertrophic response was accompanied by dilatation 

of the SAN; a significant increase in surface area was observed. In HF fibres had an 

increased verticality in the superior and inferior regions (p=<0.05), and there 

appeared to be a trend towards fibre orientation been more ordered in HF, but this 

observation did not reach conventional significance in the group size available. 

Analysis revealed very complex and regionally variable fibre orientation in the SAN 

consistent with other studies (Chandler et al., 2011, Dobrzynski et al., 2005, Ambrosi 

et al., 2012). However, some fibre patterns were repeated across all samples; the 

lateral border which is adjacent to the crista terminalis was predominantly made up 

of vertically running fibres. Superiorly the SAN had fibres running into and 

following the curvature of the SVC, and radiating from central regions fibres ran 

transversely towards the IAS. The reduced fibre disarray and increased verticality 

observed in HF may be attributed to longitudinal stretching of the fibres caused by 

the considerable global dilatation of the atria (see Chapter 8.3). Such a phenomenon 

has been described in the myofibrils of the Purkinje fibres which have undergone 

mechanical stretch (Thornell et al., 1976).  

 

Simulations of electrical activation demonstrate that ordered alignment of myocytes 

plays an important role in normal activation spread (Smaill et al., 2013), and that 

conduction velocity (CV) is strongly dependent on fibre orientation (Spach and 

Kootsey, 1983). The more ordered and vertically orientated fibres in the SAN in HF 

would suggest CV will be increased, however there is a suggestion that changes in 

ion channel remodelling compensates for these structural changes to slow 

propagation (Verkerk et al., 2003, Zicha et al., 2005). Models have shown that 

increased complexity of fibre orientation can increase the risk of arrhythmias (Zhao 

et al., 2012), thus the SAN maybe have a ‘safer’ structural phenotype in HF. 

However, tissue that has undergone dilatation is more prone to the generation of 

rotors associated with arrhythmogenic activity (Yamazaki et al., 2012). Furthermore, 

hypertrophy is also associated with conduction abnormalities in clinical practice 

(Mercadier, 2007) . 
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The atrioventricular  conduction axis 

The general anatomy of the AVCA is well described in the literature (Li et al., 2008, 

Tawara, 2000), and histological studies have been conducted to investigate changes 

to its morphology in disease at a cellular level (Okada and Fukuda, 1981, Harris et 

al., 2012). Using micro-CT it is possible to identify all major regions of the AVCA; 

the inferior nodal extension, penetrating bundle, and non-branching and branching 

bundles  (Stephenson et al., 2012). Tissue volume, cell size and 3D length were 

investigated. The methodology used here for measuring 3D length of micro-CT data 

offers increased accuracy over the method adopted in histology, in which the slice 

thickness is multiplied by slice number and thus the curvature of the AVCA is not 

considered. 

The AVCA was seen to significantly increase in both volume and 3D length in HF. 

Histological analysis suggested cell diameter was not increased however cell length 

was not investigated. Changes in cell size were greater in other regions of the CCS, it 

is postulated that stress, shown to induce hypertrophy in myocytes (Blaauw et al., 

2010, Ruwhof and van der Laarse, 2000), is reduced in the region of the AVCA 

because of its association with the rigid fibrous skeleton. Coefficient of 

determination (R²) analysis conducted here suggests varying morphological changes 

occur in HF, including hypertrophy, stretch and a combination of both. The observed 

increase in 3D length did not cause an increase in volume, but 3D length was more 

closely correlated with LV cavity volume, suggesting the AVCA is stretched in HF. 

It is expected stretch reduces cell coupling which can cause retrograde propagation 

(Rohr et al., 1998) and slow conduction which can support re-entry (Shaw and Rudy, 

1997). In addition it has been suggested increased size, particularly in the region of 

the INE, is associated with the increased prevalence of AVN re-entry tachycardia 

with age (Ko et al., 1992, Van Hare, 2008). 

Conduction in all regions of the heart is determined by the balance between current 

source and passive current load, known as source-sink matching (Smaill et al., 2013). 

Depolarised cells act as the source of current, which diffuses into surrounding 

polarised tissues- the sink (Nikolaidou et al., 2012). Abrupt changes in wall thickness 

and fibre orientation have been shown to contribute to source sink mismatch (Zhao et 

al., 2012, Hocini et al., 2002, Klos et al., 2008). In addition abrupt tissue expansions 
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result in a change in wave front curvature (Auerbach et al., 2011), conduction 

slowing (Cabo et al., 1994) and even conduction block (Auerbach et al., 2011). 

Reverse source-sink occurs at the proximal region of the AVCA; impulses from the 

myocardium (source) need to be funnelled into the narrow entrances to the AVCA 

(sink) (Nikolaidou et al., 2012). In this region safety is increased by the presence of a 

transitional zone of myocytes, which allows a smoother transition from the fast 

conducting myocardium into the slow conducting AVCA. This transitional zone is 

not present at the junction of the AVCA and Purkinje system; where the AVCA 

gives branches to the fine right and left bundle branches. Therefore it can be 

anticipated that the increased vulnerability to ventricular tachycardias (VT) described 

previously in this HF model (Pogwizd, 1995), may be associated with hypertrophy 

and stretch of the AVCA, acting to increase reverse source-sink mismatch and 

electrical dysfunction at the distal aspect of the AVCA. 

The Purkinje fibre network   

The free running aspect of the Purkinje network has previously been understated 

(Ansari et al., 1999, Drake et al., 2005, Atkinson et al., 2011), this is likely due to the 

destructive nature of traditional techniques (discussed above). Micro-CT has the 

ability to resolve these fine structures in 3D, allowing for detailed analysis of how 

they respond to HF. The mean Purkinje network volume was significantly increased 

in HF samples (85%). This was supported by histological analysis of cell diameters, 

which also showed a significant increase in HF (26%). The variation in the results of 

the two methods is likely due to the difficulty in selecting a representative fibre in 

histological analysis. However it also highlights the possibility that although 

hypertrophy is evident, the major increase in volume may be due to an increased 

deposition of extracellular matrix (fibrosis). We have shown TCE micro-CT allows 

differentiation of Purkinje cells from their surrounding connective tissue sheaths (see 

Chapter 6), this technique could therefore be employed to elucidate both the 

hypertrophic and fibrotic response of the Purkinje fibres to HF. 

Quantification of control samples using 3D filament analysis showed a mean fibre 

radius of 30 µm, this is consistent with previous histological studies of Purkinje fibre 

morphology (Stankovicová et al., 2003) and thus validates the technique. In HF the 

mean fibre radius across the whole network was increased, but did not reach 
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statistical significance. However a significant increase in mean maximum radius was 

observed in HF. These results suggest some, but not all Purkinje cells, have 

undergone hypertrophy in HF. The mean free running length of the Purkinje network 

was significantly increased, and the mean longest segment was ~2.5 mm longer in 

HF compared to control. Furthermore, in HF there was a strong correlation between 

free running length and LV cavity volume, suggesting dilatation of the LV is a 

contributing factor to the increased free running length of the Purkinje network. It is 

generally accepted that cardiomyocytes cannot divide, at least in the short term 

(Bergmann et al., 2009), therefore we hypothesise that free ruuning fibres are 

stretched and fibres normally running on the surface of the endocardium are 

stretched/pulled away from the wall to become free running. These longer and 

stretched free running networks will have slower CVs due to increased conduction 

distance and reduced cell coupling. Together these factors will increase the 

likelihood of slow conduction, re-entry, and conduction block in HF samples (Smaill 

et al., 2013).               

We have shown previously the Purkinje network in rabbit is a very complex web-like 

structure with many branches, connections and loops (Stephenson et al., 2012). It is 

anticipated the anatomy of the free running Purkinje network could act as a 

morphological substrate for re-entry, and changes in HF seem to only extenuate this 

problem. However, modelling of electrical propagation through cultures show 

repetitive tissue branching may contribute to slow stable conduction (Kucera et al., 

1998, Kucera and Rudy, 2001). This increased safety factor is thought to occur in 

two ways; 1) the multiple branches act as ‘sinks’ for the approaching wave of 

propagation; 2) once excited the branching provides a depolarisation current that 

supports downstream activation. However such studies did not consider loops in their 

models; loops in the Purkinje network are best described as roundabouts within the 

networks with multiple exits. These loops were numerous in both groups. In HF 

samples overall loop size was increased and the mean number of loops within the LV 

network was increased. It is expected if modelled these loops, especially in HF, 

would increase the chance of early depolarisation, conduction block and reduce 

safety factor (Zhao et al., 2009).  
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7.5.3 The vulnerability of heart failure samples to early after depolarisation (EAD)  

EADs trigger premature activation of cells, and are caused by reactivation of L-type 

calcium channels during APD prolongation (Smaill et al., 2013). APD has been 

shown to be prolonged in our model of HF (Jones et al unpublished data), but the 

structural changes to the CSS in HF also provide potential support to EADs. How the 

influx of calcium is synchronised across large areas to allow for sufficient current to 

trigger EADs has been studied by Xie et al (Xie et al., 2010). It was found that 2D 

structures were more prone to EADs than complex 3D myocardium. This is because 

the number of cells required to reach threshold was about 100 times lower in 2D 

structures. Therefore, the probability that unstable calcium handling will successfully 

reach threshold is greater in quasi-2D structures (Nikolaidou et al., 2012, Smaill et 

al., 2013) such as the SAN, AVN and Purkinje network. Reduced cell coupling as a 

result of dilatation and stretching, and marked spatial variation in the 3D 

arrangement of cells will further reduce these figures (Smaill et al., 2013, Xie et al., 

2010), and will prolong APD, making EADs even more probable in these structures 

in HF.  

 

7.5.4 The other conducting tissues 

The major regions of the CCS develop from the primary myocardium. Recently other 

vestiges of primary myocardium consisting of nodal-like cells have been discovered. 

These include the retroaortic node, right and left atrioventricular rings and the dead 

end tract (Yanni et al., 2009a). Although their role in normal conduction is yet to be 

elucidated, it is believed they play a role in cardiac dysfunction and 

arrhythmogenesis (Boyett, 2009, Kistler et al., 2006). These structures are not 

investigated here, but it is expected that such regions would undergo similar 

morphological changes as the other regions of the CCS in HF, and would also play a 

role in the pathophysiologies associated with HF.    

 

7.5.5 Variation of the CSS in health and disease  

From analysis conducted here it is clear that the morphology of the CCS is highly 

variable in both health and disease. Interspecies variation is well documented 
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(Dobrzynski et al., 2013, Nikolaidou et al., 2012), but intraspecies variation is less 

well known, especially in rabbit. This is due to the inability to distinguish the CCS 

using gross dissection, and the difficulty of investigating a representative number of 

samples histologically. We have previously shown the large degree of variation in 

control Purkinje fibre networks (Stephenson et al., 2012), with volume, branching, 

and free running length highly variable. Variation was considerably increased in HF 

compared to control, with all regions of the CCS showing increased coefficient of 

variance for measures of tissue volume, surface area, and length. Volume renderings 

revealed the SAN node as a heterogeneous structure, with highly variable 

interdigitations into the atrial myocardium. Analysis revealed a very complex and 

regionally variable fibre orientation exists in the SAN, and although some common 

patterns exist, fibre orientation was highly variable between samples. The AVN 

morphology was also highly variable; a range of 3D lengths and volumes were 

recorded, and the two measurements were weakly correlated, especially in HF. 3D 

Visualisation of the AVN revealed considerable variation in the curvature of the 

conduction axis as it passes through the central fibrous body, round the curvature of 

the aortic annulus, culminating anteriorly as the branching bundle. On some 

occasions the AVN appeared as an elongated ‘s’, and on others seemed to run almost 

straight. Such variation needs to be considered when producing mathematical models 

of cardiac function, and also in a clinical setting, for example in surgical planning.  

 

7.5.6 Clinical implications 

This data has many clinical implications; the novel findings regarding 3D 

morphology will improve the knowledge and understanding of structural and 

functional changes to the CSS in HF, which in turn could aid drug discovery and the 

accuracy of surgical procedures. The observed intra species variation highlights the 

need for patient specific interventions, and shows the importance of developing a 

technique for non-invasive imaging of the CCS in vivo. The application of the 

technique presented here could be used to analyse other disease states, and also non-

diseased states such as the electrophysiology of trained hearts (Boyett, 2009). As 

discussed previously high resolution 3D morphological data will also improve the 

fidelity of functional mathematical models of the heart (Chapter 4,5,6). Furthermore 
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combination of the data presented here (morphological and molecular) will allow 

highly accurate models of HF to be developed.    

 

7.6 Summary  

Using an experimental model of HF developed in rabbit, the combined effects of 

both volume and pressure overload on the morphology of the CCS were investigated. 

Contrast enhanced micro-CT was employed to image whole hearts ex vivo, and 

subsequent image and histological analysis of the SAN, AVN and Purkinje network 

was used to investigate morphological changes in HF. 

Here we present a method for 3D morphological analysis of the CCS, which has 

clear advantages over traditional methods. Contrast enhanced micro-CT is a fast, 

non-invasive technique, which produces automatically aligned tomographic data sets 

with isometric resolutions of ~5 µm attainable. This data allowed appreciation of the 

true 3D morphology of the CSS in HF, along with highly accurate quantification. To 

our knowledge this is the first time such analysis of the CCS has been conducted in 

experimental groups of adequate size for statistical analysis. 

All major regions of the CCS underwent morphological changes in HF. The SAN 

showed an increase in volume and surface area, confirming dilatation and 

hypertrophy in this model of HF. The SAN was shown to be a complex and 

heterogeneous structure. Intricate and disordered fibre orientation was observed 

within the node, although some regional similarities between samples were evident. 

The volume and 3D length of the AV conduction axis was increased in HF. 

However, varying morphological changes were observed, including hypertrophy, 

stretch and a combination of both. Dramatic changes to the free running Purkinje 

network were evident in HF, with changes strongly correlated to global changes in 

ventricular morphology (dilatation). Increase in total network volume and regional 

thickening was observed, along with an increase in total free running length. 

Suggesting both mechanical stress and tissue hypertrophy are contributing to the 

morphological changes seen in HF. Although dramatic changes to the CCS were 

observed clear intra species variation was apparent in all regions of CCS.        
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The data presented in this chapter provides novel insight into morphological changes 

across the major regions of the CCS in HF, and provides insight into possible causes 

for the vunerabilty of failing hearts to electrical dysfunction.   
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8.1 Introduction 

Heart failure (HF) is a syndrome characterised by the heart’s inability to pump 

sufficient blood to meet the metabolic requirements of the body. HF and the 

associated morphological and functional abnormalities are a major contributor to 

morbidity and mortality in the western world. HF is often categorised by how fast 

symptoms present themselves (chronic or acute), and the impact abnormalities have 

on the heart (volume or pressure overload). The morphological and functional effects 

of volume or pressure overload on the ventricles are well documented in the 

scientific literature. However, the effects that a combination of both volume and 

pressure overload have on the whole heart (atria and ventricles) is not so well 

understood. The majority of morphological studies focus on the ventricles, with the 

atria often overlooked. This is in part due to the atria’s morphological heterogeneity, 

structural instability, and the difficulty to maintain them in a naturally inflated state 

for examination. Gross structural modifications and alterations in gene expression in 

HF are well known, but how these changes affect fibre orientation in 3D is unclear. 

Existing data is often from small regions and based on serial 2D sections or low 

resolution imaging. The development of a high resolution non-invasive imaging 

technique, with the ability to improve current knowledge, and provide new insight 

into morphological and functional changes to the heart in disease, would be of 

considerable value. Contrast enhanced micro-CT is a non-destructive imaging 

technique that can resolve fine structures within soft tissue. We have recently shown 

the ability of micro-CT to provide high resolution images of cardiac tissue, and to 

allow visualisation of 3D fibre orientation, which in turn directly influences cardiac 

contraction and therefore pump function. Here using in vivo and ex vivo imaging, we 

investigate the global and regional effects of volume and pressure overload on the 

rabbit heart. We investigate the morphological and functional changes across the 

whole heart (atria and ventricles), and assess the validity of micro-CT to investigate 

cardiac morphology ex vivo. This chapter is made up of 3 sections: section 1 reviews 

the development of our experimental HF model using longitudinal in vivo 

echocardiography (performed in collaboration with Dr Caroline Jones). Section 2 

investigates changes in cardiac morphology ex vivo using contrast enhanced micro-

CT. Section 3 assesses the effects of HF on fibre orientation within the ventricles, 
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with emphasis placed on areas of dilatation (primarily in collaboration with Dr 

Jichao Zhao).      

Some of the work in the following chapter regarding atrial morphology has been 

published as:  

 

Inherent Vulnerability of Atrial Appendages to Atrial Fibrillation. Jichao 

Zhao, Robert S. Stephenson, George Hart, Mark R. Boyett, Jonathan C. 

Jarvis, Henggui Zhang, Bruce H. Smaill. Heart Rhythm Society conference 

proceedings, Denver, CO, USA, 2013 

 

8.2 Morphological and functional changes in experimental heart failure revealed by 

longitudinal in vivo echocardiography  

Experimental HF was induced in adult rabbits by the means of aortic valve disruption 

(figure 8.1C,D) and subsequent aortic banding (3 weeks later). This enabled us to 

investigate morphological and functional changes in hearts exposed to both volume 

and pressure overload (methods 2.2). In vivo echocardiography was performed 

weekly (for ~12 weeks) to investigate longitudinal functional and morphological 

changes in HF (n=24) and sham control (n=21) subjects. Transthoracic 

echocardiography was performed, and 2D images were obtained in the parasternal 

long axis view. The M mode cursor was placed at the tip of the mitral valve leaflets, 

perpendicular to the interventricular septum (IVS). Images were stored and 

measurements of the left ventricular internal dimension (LVID), IVS thickness, and 

left ventricular posterior wall thickness (LVPW) were made in both systole (s) and 

diastole (d) (figure 8.1A,B). Each measurement was recorded on 3 separate cardiac 

cycles and the mean taken. Left ventricular fractional shortening (FS) and ejection 

fraction (EF) were then calculated from these measurements. Colour Doppler was 

used to assess aortic and mitral valve regurgitation (figure 8.1E). Surgery was 

performed by Dr Antonio Corno, and Dr Xue Cai; echocardiography was performed 

by Dr Caroline Jones.  

Statistical analysis was performed in collaboration with Professor Stanley Salmons 

and Professor Jonathan Jarvis using T-tests and regression analysis (graphical 

https://www.researchgate.net/researcher/14215311_Jichao_Zhao/
https://www.researchgate.net/researcher/14215311_Jichao_Zhao/
https://www.researchgate.net/researcher/85431865_Robert_S_Stephenson/
https://www.researchgate.net/researcher/74574371_George_Hart/
https://www.researchgate.net/researcher/39799660_Mark_R_Boyett/
https://www.researchgate.net/researcher/36429903_Jonathan_C_Jarvis/
https://www.researchgate.net/researcher/36429903_Jonathan_C_Jarvis/
https://www.researchgate.net/researcher/38141838_Henggui_Zhang/
https://www.researchgate.net/researcher/15771525_Bruce_H_Smaill/
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presentations by Professor Salmons). All morphological and functional 

measurements from baseline (pre-intervention) to pre-termination (~12 weeks post 

intervention) were included in the analysis. For control animals, no loss of function 

was observed over the time course. Only LVIDs and LVIDd showed a significant 

increase (p=<0.05), however these changes did resemble natural growth, with a 

~0.5mm increase in both systole and diastole observed (see table 8.1). Comparing 

pre-termination measurements for both groups revealed LVID was increased in HF 

both in systole (80% increase: 9.08±0.37 mm vs 17.23±1.23 mm) and diastole (49% 

increase: 15.44±0.47 mm vs 22.94±0.96 mm) (p=<0.0001) (table 8.2). The high 

LVIDs observed in HF was reflected in a ~50% reduction in FS compared to control 

(41.28±1.23% vs 25.33±2.9%) (p=<0.0001). All wall measurements were increased 

in HF (except LVPWs), although IVSd was the only wall measurement to 

significantly increase (p=<0.001). Figure 8.1A,B shows an example of the LVIDd 

increase from baseline (panel A) to pre-termination (panel B) (~12 weeks post 

intervention) measured in M mode, LVIDd in this example increases from 15.6 mm 

to 22.5 mm. This morphological change is characteristic of volume overload brought 

about by regurgitation at the aortic valve (artificially induced here by surgical 

intervention). An example of a control (healthy) and surgically destructed aortic 

valve can be seen in figure 8.1C and D respectively. The technique damages and 

creates perforations in the valve leaflets preventing effective occlusion, thus 

simulating a ‘leaky’ valve. Figure 8.1E shows a colour Doppler image confirming 

the loss of aortic valve function post intervention, red indicates regurgitated blood.   
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Figure 8.1 Echocardiography, micro-CT and colour doppler to asses model of experimental 

heart failure. In vivo echocardiography was performed weekly (for ~12 weeks) to 

investigate longitudinal functional and morphological changes in HF (n=24) and sham 

control (n=21) rabbits. A and B shows parasternal long axis view of a HF animal pre-

intervention and pre-termination respectively. Volume renderings (micro-CT data) of the 

Aortic valve from sham control (C) and HF (surgical aortic valve disruption) (D) rabbits. 

Colour Doppler was used to assess aortic and mitral valve regurgitation (red indicates 

regurgitation) (E). AML- anterior mitral leaflet, AVD- aortic valve distance, IVS- 

interventricular septum, LA- left atrium, LV- left ventricle, LVPW- left ventricular posterior 

wall, PML- posterior mitral leaflet, RV- right ventricle.  
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Table 8.1 - Baseline and pre-termination echocardiographic parameters in sham and heart 
failure (HF) groups 
 

 

Values represent mean and 95% confidence intervals. (Control n=21, HF n= 24). IVSd and 

IVSs- interventricular septum in diastole and systole, LVIDd and LVIDs- left ventricular 

internal dimension in diastole and systole, LVPWd and LVPWs- left ventricular posterior 

wall thickness in diastole and systole, FS- fractional shortening.  
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Table 8.2- Pre-termination echocardiographic parameters in sham and heart failure (HF) 
groups 

 

 

Values represent mean and 95% confidence intervals. (Control n=21, HF n= 24). IVSd and 

IVSs- interventricular septum in diastole and systole, LVIDd and LVIDs- left ventricular 

internal dimension in diastole and systole, LVPWd and LVPWs- left ventricular posterior 

wall thickness in diastole and systole, FS- fractional shortening, EF- ejection fraction.  

 

 

This experimental model of heart failure is acute therefore symptoms can manifest 

quickly; as a result body weights were monitored daily to ensure animals remained 

healthy. Analysis of body weights throughout the entire study revealed there was no 

significant difference between HF and control animals, with all animals showing 

growth curves within the normal range (figure 8.2). Therefore normalising 

quantification for body weight was not required for echocardiography or micro-CT 

data. 
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Figure 8.2 Regression analysis of the effect of experimental heart failure on body weight. 

Showing no significant difference between HF and control animals, with all animals showing 

growth curves within the normal range. (Control n=21, HF n= 24).  AoV- aortic valve 

disruption.   

 

LVID was measured at aortic valve disruption, aortic banding and pre-termination. 

Increased dilatation of the LV was evident in HF animals at both, aortic banding and 

pre-termination in both systole and diastole (figure 8.3A,B). There was no difference 

in LVID between groups at aortic valve disruption, confirming dilatation occurred 

post-intervention (figure 8.3A,B). To illustrate the progressive nature of the 

dilatation in the LV in HF, LVPW was plotted as a fraction of LVID (relative wall 

thickness) in both diastole and systole against days post aortic valve disruption 

(figure 8.3C). Dilatation was progressive in both diastole and systole. The change 

was most dramatic in systole, representing the progressive inability of the 

myocardium to reduce the LV cavity, and produce the sufficient systolic myocardial 

bulking needed for a healthy stroke volume. The data did not show evidence of an 
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inflection at the time of aortic banding (~21 days), suggesting the model produces 

progressive morphological changes (figure 8.3C). 

 

Figure 8.3 Progressive dilatation of the left ventricle in experimental heart failure 

assessed by echocardiography. Left ventricular internal dimension at aortic valve 

disruption, aortic banding and pre-termination in diastole (A) and systole (B). There was no 

difference in LVID between groups at aortic valve disruption (A,B). Regression analysis 

showing dilatation was progressive in both diastole and systole in heart failure (C). (Control 

n=21, HF n= 24). AoV- aortic valve disruption, LVIDd and LVIDs- left ventricular internal 

dimension in diastole and systole, LVPW- left ventricular posterior wall thickness. Error bars 

indicate standard error of the mean (SEM). 
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To analyse functional changes throughout the study, FS and EF of the LV was 

calculated at every performed scan. At termination EF was significantly reduced in 

HF (79.72±0.60 % vs. 57.10±2.27 %) (p=<0.0001) (table 8.2, figure 8.4A). 22 of 24 

HF animals showed reduced FS over the study (baseline: 42.68±0.91 %, pre-

termination: 25.33±2.9 %) (p=<0.0001) (table 8.1, figure 8.4A). Reduced FS (loss of 

function) in the LV was evident in HF animals after both aortic banding and aortic 

valve disruption, confirming loss of function post-intervention (figure 8.4B). 

Investigating FS post aortic valve disruption and up to pre-termination, confirmed 

control animals showed no loss of LV function (figure 8.4C). HF animals showed a 

steady decline in FS after both interventions (figure 8.4C), although outliers were 

evident. Again FS data does not show evidence of an inflection at the time of aortic 

banding (~ 21 days), suggesting the model produces progressive loss of function. 

Regression Analysis showed there was little evidence of correlations between 

functional and morphological changes. There is a weak correlation (p=<0.1) between 

LVPW post interventions and FS. 
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Figure 8.4 Progressive loss of fractional shorterning in experimental heart failure assessed 

by echocardiography. Fractional shortening of left ventricle in individual heart failure 

rabbits measured at aortic valve disruption, aortic banding and pre-termination (n=24) (A). 

Data from (A) is pooled in (B) and mean values given (wide horizontal lines). There was no 

difference in ejection fraction between groups at aortic valve disruption (B). Regression 

analysis of progressve change in sham control and heart failure rabbits (C) (Control n=21, 

HF n= 24). AoV- aortic valve disruption, FS- fractional shortening, LV- left ventricle. Error 

bars indicate standard error of the mean (SEM). 
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8.3 The effects of experimental heart failure on the morphology of the atria, revealed 

by ex vivo contrast enhanced micro-CT 

To assess morphological changes in control and HF animals, whole intact rabbit 

hearts were stained with I₂KI and scanned for micro-CT in optimal conditions. In 

situ heparinisation followed by perfusion fixation, accompanied with careful 

monitoring during fixation (see methods 2.2.4), produced naturally inflated hearts, 

with no residing blood in the atrial or ventricular cavities. From whole heart scans 

atria and ventricles were reconstructed separately at 100% resolution, allowing fine 

details to be resolved in computationally manageable data sets. This section will 

concentrate on changes seen in the atria.  

 

8.3.1 Is the atrial myocardial volume changed in heart failure? 

Atria data (control n= 5, HF n=5) was segmented from surrounding fat and fascia, 

and the total atrial volumes calculated. To investigate regional changes, further 

segmentation (semi-automatic segmentation II- see methods 2.4.2) was conducted to 

isolate the RA, LA and IAS. Here the IAS is defined as the wall dividing the two 

atrial chambers as viewed in transverse sections. T-tests were used to analyse 

statistical significance of results. The overall atrial myocardial volume was increased 

in HF (67% increase: 648±32 mm³ vs 1085±239 mm³) (figure 8.5A). All sub regions 

showed a volume increase in HF (RA- 59%: 297±18 mm³ vs 472±109 mm³, LA- 

93%: 304±30 mm³ vs 587±159 mm³, IAS- 91%: 45±6 mm³ vs 86±30 mm³) (figure 

8.5A). The biggest increase was seen in the LA, which is to be expected in a model 

directly affecting the left side of the heart. Variation (standard error) was much 

higher in HF atria than in control data (figure 8.5A). Scaled volume renderings of a 

typical control and HF atria (figure 8.5B and C respectively) allows visualisation of 

the dramatic change in atrial morphology. RA preparations from control and HF 

samples were processed for histology, and cell diameters were measured and means 

taken. Analysis showed an increase in cell diameter in HF samples in the RA (60% 

increase: 12.7±0.5 µm vs 20.3±0.8 µm) (p=<0.05), the LA was not tested. Histology 

was conducted by Dr Xue Cai, The University of Manchester. 
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Figure 8.5 Changes in total and regional atrial tissue volume in experimental heart failure 

assessed by micro-CT.  Mean tissue volume of segmented atria, right atrium, left atrium 

and interatrial septum (A). Scaled volume renderings of atria (anterior view) from 

representative control (B) and HF (C) samples. (Control n=5, HF n= 5, *p=<0.1). Values in A 

represent times increase. Error bars indicate standard error of the mean (SEM). IAS- 

interatrial septum, LA- left atrium, RA- right atrium.    
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8.3.2 Is atrial hypertrophy uniform across the atria? 

To investigate how the observed hypertrophy of the atria (figure 8.5) affects wall and 

PcM thickness, atria (control n=5, HF n=5) were orientated on their respective valve 

vestibules so the PcMs were predominantly in a vertical orientation. Free wall and 

PcM width measurements (4 measurements for each) were made from transverse 

sections at 6 intervals (inferior-superior) through the atrial wall, resulting in a total of 

42 measurements per atrium. At each interval measurements were made at the 

anterior, posterior and free wall of the atria ensuring a representative measure of wall 

and PcM thickness across the entire atria. If a PcM cross section appeared ellipsoidal 

its short axis width was taken. 

The mean wall thickness in control and HF samples was not significantly different in 

the RA (245±34.4 µm vs 241±40.7 µm) or LA (330±29.1 µm vs 291±38.6 µm) 

(figure 8.6, figure 8.7), although a suggestion of wall thinning in regions of the LA 

was evident in HF (figure 8.6B). In contrast, an increase in mean PcM width was 

observed in HF in both the RA (379±29.5 µm vs 527±91.4 µm) (p=<0.1) and LA 

(607±26.8 µm vs 733±38.1 µm) (p=<0.05) (figure 8.6, 8.7). Distribution curves of 

control and HF PcM widths in both the RA and LA are shown in figure 8.9. In HF, a 

shift of the distribution to the right was observed in both the RA and LA, this was 

accompanied by an increased number of PcMs with widths exceeding the mode. This 

suggests the mean and maximum PcM widths are increased in HF. Figure 8.6 and 

figure 8.8 suggest the increased PcM width in HF is more considerable in the mid-

wall of the atria than the extreme inferior and superior intervals. This suggests that 

the free running portions of PcM are more prone to hypertrophy than their insertion 

points. The observed morphological changes to the PcMs can be appreciated in the 

volume renderings shown in figure 8.8. The PcM width to atrial wall width ratio 

(PcM:W) was calculated for all samples. PcM:W was increased in HF in both the RA 

(1.6 ±0.14 vs 2.3 ±0.25) (p=<0.05) and LA (1.9 ±0.15 vs 2.7 ±0.34) (p=<0.05) 

(figure 8.7), with the biggest increase seen the LA. The higher ratio seen in the LA in 

comparison to the RA in both groups is due to the inherent increased thickness of the 

LA PcMs as discussed in Chapter 5.2.  
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Figure 8.6 Regional changes in pectinate muscle and atrial free wall widths in 

experimental heart failure assessed by micro-CT.  Mean width of pectinate muscles and 

atrial free wall measured from transverse micro-CT images at 6 intervals through the right 

(A) and left (B) atria. (Control n=5, HF n= 5, **p=<0.05). Error bars indicate standard error of 

the mean (SEM). PcMs- pectinate muscles, FW- atrial free wall, Cont- control, HF- heart 

failure.   
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Figure 8.7 Changes in pectinate muscle and atrial free wall widths in experimental heart 

failure assessed by micro-CT. Raw data from figure 8.6 was pooled and total mean widths 

calculated for control and heart failure samples. Values above bars indicate pectinate 

muscle : atrial free wall ratios. (Control n=5, HF n= 5). Error bars indicate standard error of 

the mean (SEM). FW- atrial free wall, LA- left atrium, PcM- pectinate muscle, RA- right 

atrium. 
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Figure 8.8 Volume renderings of the pectinate muscle in a control and heart failure rabbit. 

Scaled volume renderings from endocardial view of PcMs in the free wall of right atrium 

(A,C) and left atrium (B,D) from control (A,B) and heart failure (C,D) samples. Dotted lines 

represent pectinate muscle widths: A= 554µm, B= 851µm, C= 674µm, D= 1672µm. Images 

derived from micro-CT data. PcM- pectinate muscle, V- vestibule.   
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Figure 8.9 Distribution of pectinate muscle widths in control and heart failure rabbit atria.  

Raw data from figure 8.6 was pooled and histograms plotted for the right atrium (A) and 

left atrium (B). In heart failure a shift of the distribution curve to the right was observed in 

both the RA (A) and LA (B), this was accompanied by an increased number of PcMs with 

widths exceeding the mode (A,B). (Control n=5, HF n= 5). Cont- control, HF- heart failure. 

 

8.3.3 Does heart failure cause dilatation? 

Atrial dilatation in HF was investigated in collaboration with Dr Jichao Zhao (the 

University of Auckland). Atrial cavities (space) of control and HF samples (n=4 

each) were segmented from the surrounding myocardium, the atrial appendages were 

then isolated, and the respective volumes extracted. Total atrial cavity volume more 

than doubled in HF (119% increase: 932±243 mm³vs 2040±1297 mm³) (p=<0.05). 
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However, morphological changes between the RA and LA were not uniform; in the 

RAA the tissue (113% increase: 79±16 mm³vs 169±59 mm³) and cavity (307% 

increase: 28±4 mm³ vs 114±32 mm³) (p=<0.05) volumes both increased in HF. The 

same trend was seen for the LAA, with both tissue (84% increase: 221±48 mm³ vs 

406±107 mm³) and cavity (233% increase: 189±64 mm³ vs 630±330 mm³) (p=<0.1) 

volumes increasing in HF. Therefore experimental HF induced a greater increase in 

dilatation than hypertrophy, with the greatest relative dilatation observed in the RA. 

 

8.4 The effects of experimental heart failure on the morphology of the ventricles, 

revealed by ex vivo contrast enhanced micro-CT 

To assess morphological changes in control and HF animals, whole intact rabbit 

hearts were stained with I₂KI and scanned for micro-CT in optimal conditions. In 

situ heparanisation followed by perfusion fixation produced naturally inflated hearts, 

with no residing blood in the ventricular cavities. From whole heart scans atria and 

ventricles were reconstructed separately at 100% resolution, allowing fine details to 

be resolved in computationally manageable data sets. This section will concentrate 

on changes seen in the ventricles. 

 

8.4.1 Do the ventricles undergo hypertrophy in heart failure? 

Ventricle data (control n= 7, HF n=7) was segmented from surrounding fat and 

fascia, and the total volumes calculated. Further segmentation (semi-automatic 

segmentation II- see methods) was conducted to isolate the RV, LV and IVS, to 

allow investigation of regional changes. T-tests were used to analyse the statistical 

significance of results. The total myocardial volume was increased in HF compared 

to control (28% increase: 3558±276 mm³ vs 4564±556 mm³) (p=<0.01) (figure 8.10). 

Regional analysis showed significant myocardial volume increase in the RV (84% 

increase: 603±63 mm³ vs 1115±132 mm³) (p=<0.05), IVS (62% increase: 1006±96 

mm³vs 1630±117 mm³) (p=<0.001) and LV (64% increase: 1514±178 mm³ vs 

2478±260 mm³) (p=<0.01) (figure 8.10). The volume increase in HF was relatively 

uniform (RV- 1.8x, IVS- 1.6x, LV- 1.6x), showing evidence of a compensated 

response across the ventricles, that is the ventricles followed the expected primary 
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response to HF by undergoing hypertrophy. Ventricle preparations from control and 

HF samples were processed for histology, and cell diameters were measured and 

means taken. Analysis showed an increase in cell diameter in HF samples in the RV 

(21 % increase: 15.6±0.7 µm vs 18.9±1.9µm) (p=<0.05) and LV (25% increase: 

16.7±0.8 µm vs 20.8±0.5 µm) (p=<0.05). Histology was conducted by Dr Xue Cai, 

The University of Manchester. 

 

 

 

Figure 8.10 Changes in total and regional ventricular tissue volume in experimental heart 

failure assessed by micro-CT.  Mean tissue volume of segmented ventricles, right ventricle, 

interventricular septum and left ventricle. (Control n=7, HF n= 7, **p=<0.05, ***p=<0.01, 

****p=<0.001). Error bars indicate standard error of the mean (SEM).  IVS- interventricular 

septum, LV- left ventricle, RV- right ventricle.  
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8.4.2 Are the ventricles dilated in heart failure, and does this affect ventricular 

shape? 

To investigate dilatation, ventricular cavities (space) of control and HF samples (n=7 

each) were segmented from the surrounding myocardium. In control hearts, as 

expected, the mean RV cavity volume exceeded that of the LV, however this 

relationship was dramatically reversed in HF (figure 8.11A). The LV cavity volume 

was significantly increased in HF compared to control (231% increase: 1426±344 

mm³ vs 4716±651 mm³) (p=<0.001). Although an increase in the RV cavity was 

observed in HF (1906±323 mm³ vs 2650±686 mm³), data was not statistically 

significant (figure 8.11A). Dramatic changes in ventricular cavities can affect the 

overall shape of the LV, therefore ventricular sphericity index (SI) was calculated 

(figure 8.11B). Data sets were resliced longitudinally and orientated on the apex of 

the ventricles, creating a four chamber view. At the midpoint of the valve plane a 

base-apex length was taken spanning from the midpoint of mitral valve to the tip of 

the apex. A second measurement was taken perpendicular to the midpoint of the 

base-apex measurement, spanning from the IVS to the LVFW, this length was then 

divided by the base-apex length to give the hearts SI. Small SI values correspond to 

an ellipsoidal LV, while values closer to 1 indicate a spherical LV. An increase in 

LV sphericity is a predictor of LV dysfunction and HF. There was no difference 

between control and HF, with mean values appearing almost identical (0.674 ±0.04 

mm³ vs 0.679±0.03 mm³) (figure 8.11B). This suggests that although hearts in HF 

have undergone considerable LV dilatation (non-compensated), compensated 

morphological changes have occurred to maintain an ellipsoidal LV.            
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Figure 8.11 Changes in cavity volume and sphericity of the ventricles in experimental 

heart failure assessed by micro-CT. Mean volume of segmented right ventricular and left 

ventricular cavites (A). Left ventricular sphericity index (see text for methodology) in control 

and heart failure rabbits (B). (Control n=7, HF n=7, ****p=<0.001). Error bars indicate 

standard error of the mean (SEM). Cont- control, HF- heart failure. 

 

Scaled 3D isosurfaces of the RV and LV cavity volumes allow a visual appreciation 

of the aforementioned morphological changes in HF (figure 8.12). Figure 8.12 shows 

scaled 3D isosurfaces of RV and LV cavities in 3 control and 3 HF hearts. The 

dramatic changes in cavity volumes are clearly shown, and the maintenance of a 

normal SI can be appreciated. The effect of HF on the endocardial trabeculation 

cannot be appreciated in statistical analysis, however, the 3D isosurfaces revealed a 
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reduction in the depth and complexity of endocardial trabeculae in the LV of HF 

samples (figure 8.12). This suggests dilatation of the ventricles in HF stretches and 

flattens the trabeculae carnae.      

  

 

Figure 8. 12  3D isosurfaces of the ventricular cavities in control and heart failure rabbits. 

Scaled 3D isosurfaces segmented from micro-CT data showing the right ventricle (blue) and 

left ventricle (red) cavity volumes. The 3D isosurfaces reveal a reduction in the depth and 

complexity of endocardial trabeculae in the LV of HF samples. Note there was no significant 

difference in the sphericity index of control and HF hearts. (Scale bar represents ~1 cm) 
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8.4.3 Are morphological changes uniform across the ventricles?  

To investigate regional changes in wall thickness throughout the ventricles, data sets 

were resliced longitudinally and orientated on the apex of the ventricles to two 

orthogonal planes. Then the mean wall thicknesses for the RV, IVS and LV regions 

were calculated from transverse sections at 8 evenly spaced intervals from base to 

apex. Interval 1 was anatomically defined as the first slice in which all 3 walls were 

visible. Interval 8 was defined as the final slice in which all 3 walls were still visible. 

Mean wall thickness for each regional interval was calculated by averaging 4 

measurements (anterior, posterior and 2 free wall), resulting in 32 measurements per 

region, per heart. Significant thickening of the RV wall was observed at all intervals 

in HF, with the greatest RV wall thickness seen at the base (figure 8.13A). In 

contrast, in HF the IVS showed thinning at the base, mid-wall and apical intervals, 

with significant thinning seen in the mid-wall (figure 8.13B). An interesting 

relationship was observed in the LV wall thickness of HF hearts. Thinning was 

observed in the base and mid-wall, followed by thickening of the wall towards and 

including the apex (figure 8.13C). This is a reverse of the relationship usually 

observed in control hearts (Ho 2009).  

To assess whether the anterior or posterior LV wall was more susceptible to change, 

in both groups the anterior and posterior mean wall thicknesses were compared at 

each interval using T-tests. There was no significant difference between anterior and 

posterior LV wall measurements within an interval in control or HF, apart from at 

interval 8 in control. Comparision of free wall meausremnts showed there was no 

significant difference between LV free wall measurements within an interval in 

control or HF. To assess whether the LV free wall was more susceptible to change, in 

both groups the anterior and posterior wall thicknesses were compared with the 2 

free-wall wall thicknesses at each interval using analysis of variance (anova). The 

only significant difference was seen in HF at interval 5. This shows the observed 

changes in response to experimental HF are uniform throughout the LV wall at each 

interval.         
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Explanatory figure 8.1 Anatomical classification of the ventricles. Schematic indicating 

regional (base, mid-wall, apex) and transmural anatomical classification of the ventricles, as 

used in volumetric, wall thickness and fibre orientation analysis.   
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Figure 8.13 Changes in regional wall thickness of the ventricles in experimental heart 

failure assessed by micro-CT. Mean width of the right ventricular (A) and left ventricular (C) 

free walls, and interventricular septum (B) measured from transverse micro-CT images at 8 

intervals through the ventricles (base-apex). (Control n=7, HF n= 7,*p=<0.1, **p=<0.05, 

***p=<0.01). Error bars indicate standard error of the mean (SEM). IVS- interventricular 

septum, LVFW- left ventricular free wall, RV- right ventricular free wall. 
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To investigate regional changes in cavity size throughout the ventricles, scan data 

was prepared as for wall thickness analysis, and cavity cross sectional areas for the 

RV and LV were recorded at the same 8 intervals (base-apex) used for wall thickness 

analysis. Figure 8.14A shows mean RV cavity cross sectional area was increased in 

HF from intervals 2-8 (base-apex), however, only interval 8 was statistically 

significant (p=<0.05). This suggests concentric remodelling of the RV in HF (figure 

8.13A and 8.14A). Significant increase in cavity cross sectional area was observed at 

all intervals of the LV in HF. The most dramatic changes occur at the base and mid-

wall (intervals 2-5) (figure 8.14B), corresponding to regions where LV wall thinning 

was observed (figure 8.13C). A decline in cavity cross sectional area was seen in the 

apical region (intervals 7,8) (figure 8.14B), corresponding to areas of LV wall 

thickening (figure 8.13C). This suggests regional specific morphological changes 

occur in the LV of HF samples. Consequently, data was analysed using the 

coefficient of determination (R²) to look for correlations between LV wall thickness 

and LV cavity cross sectional area (figure 8.15). Weak correlations for both control 

and HF samples were observed for whole heart analysis, and showed the dramatic 

dilatation observed in HF had little effect on wall thickness (figure 8.15A). The same 

trend was observed when the apical regions (intervals 6-8) were analysed (figure 

8.15B). However at the base (intervals 2-5), a negative correlation was observed in 

both control and HF, suggesting dilatation is causing LV wall thinning (figure 

8.15C). Figure 8.15 therefore further clarifies that regional specific morphological 

changes occur in HF.   
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Figure 8.14 Changes in regional cross sectional area of the ventricular cavities in 

experimental heart failure assessed by micro-CT. Mean cross sectional area of right 

ventricular (A) and left ventricular (B) cavities measured from transverse micro-CT images 

at 8 intervals through the ventricles (base-apex). (Control n=7, HF n= 7, **p=<0.05, 

***p=<0.01). Error bars indicate standard error of the mean (SEM). Cont- control, HF-heart 

failure, LV-left ventricle.     
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Figure 8.15  Regional coefficient of determination (R²) analysis of the left ventricular wall 

and cavity in control and heart failure. Showing the morpholoigcal relationship between 

left ventricular wall thickness (individual sample means from analysis in figure 8.13) and 

cavity cross sectional area (individual sample means from analysis in figure 8.14) in the 

whole heart (intervals 1-8) (A), apical region (intervals 6-8) (B) and basal region (intervals 2-

5) (C). (Control n=7, HF n= 7). Cont- control, HF-heart failure, LV-left ventricle.   
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8.5 The effects of experimental heart failure on fibre orientation within the 

ventricles.      

Contrast enhanced micro-CT has been shown to non-invasively resolve the 3D 

arrangement of single muscle fibres (Chapter 4.3, 5.5 and Jeffery et al., 2011). 

Consequently novel structure tensor and fibre tracking analysis was carried out on 

micro-CT data (methods 2.4.4) of adult rabbit hearts, to visualise and quantify 3D 

myofibre orientation of the ventricles in control (n=5) and HF (n=6). Data sets (18-

24 µm isometric resolution) were resliced longitudinally and orientated on the apex 

of the ventricles in two orthogonal planes, making the IVS vertical and ensuring each 

heart was in the same orientation. Inclination and transverse fibre angles (figures 

2.1,2.2) for LVFW, LVPW and IVS regions were then extracted (with the epicardial 

wall from each region forming the x plane) from 7 transverse sections at evenly 

spaced intervals (base-apex). Data was subsequently smoothed using coherence-

enhancing anisotropic diffusion to allow better appreciation of transmural trends. 

Interval 1 was anatomically defined as the first slice in which all 3 walls were 

visible. Interval 7 was defined as the final slice in which all 3 walls were still visible. 

Interval 1 was excluded from analysis due to the large variation in morphology at 

this region. In each region at every interval, a ~650µm (~30 voxels) wide transmural 

segment was taken for analysis, resulting in ~3000 readings (voxels) per transmural 

segment. The papillary muscles were excluded from analysis as they predominantly 

consist of vertically running fibres, which if included, would give a skewed 

representation of fibre orientation in the endocardium. All values corresponding to 

space were removed, and means and standard deviations for the whole transmural 

segment, and at each transmural plane (parallel to epicardial wall) within a segment, 

were calculated. Then transmural fibre orientation plots and histograms of fibre 

distribution were plotted. All samples were normalised for wall thickness. For 

explanatory figures of 3D fibre orientation see figures 2.1 and 2.2.  

8.5.1 The global changes to fibre orientation in heart failure  

The LVFW showed a gradual increase in inclination angle from base to apex in both 

groups (figure 8.16A). However, in HF the difference in mean inclination compared 

to control gradually increased from base to apex, with significant increase observed 

at interval 7 (figure 8.16A). The LVPW showed a gradual decrease in inclination 
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angle from base to apex in HF (figure 8.16B), this was in contrast to the gradual 

increase from base to apex seen in control (matching the trend seen in control 

LVFW) (figure 8.16B). A significant increase in mean inclination angle was seen in 

the base and mid-wall regions (intervals 2-4) of the LVPW in HF (figure 8.16B). No 

significant difference was observed in the apical region. There was no base to apex 

trend evident in fibre orientation of the IVS, although, like in the LVPW, a 

significant increase in mean inclination angle was seen in the basal region of the IVS 

in HF (figure 8.16C). The LVPW and IVS both showed a mean increase in 

inclination angle at the base and mid-wall, and in contrast to the LVFW, showed a 

shift to a mean decrease in inclination angle at the apex (figure 8.16B,C). The 

observed differences reveal that changes in fibre orientation are regional, with subtle 

changes in some regions but dramatic in others. This is probably a reflection of the 

acute nature of the HF model. It is expected that such changes would be exacerbated 

in a chronic model of HF.  
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Figure 8.16 Regional changes in inclination angle of fibres across the ventricles in control 

and heart failure. Mean Inclination angles from left ventricular free wall (A) and posterior 

wall (B), and interventricular septum (C) regions extracted from micro-CT data at 7 

transverse intervals base-apex (intervals 2-7 shown). In each region at every interval a 

~650µm (~30 voxels) wide transmural segment was taken for analysis, resulting in 

~3000 readings (voxels) per transmural segment. (Control n=5, HF n= 6, *p=<0.1, 

**p=<0.05, ***p=<0.01). Error bars indicate standard error of the mean (SEM). IVS- 

interventricular septum, LVFW- left ventricular free wall, LVPW- left ventricular posterior 

wall.    
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8.5.2 Regional transmural changes in fibre orientation  

Further analysis was carried out to investigate regional transmural changes in fibre 

orientation from intervals 2-6. Previously analysed LVFW and LVPW transmural 

segments were divided evenly into 3 regions, allowing the epicardium, transmural 

mid-wall and endocardium to be analysed separately (explanatory figure 8.1). The 

mid-wall of the IVS was also analysed; transmural segments were divided evenly 

into 4, the transmural mid-wall was deemed to be the 2 central regions (explanatory 

figure 8.1). For inclination angle percentage calculations, values ranging from 0.1-

0.3 were classified circumferential, and values 0.8-1.0 classified vertical.  

 

8.5.3 Regional transmural changes in fibre orientation in the left ventricular free wall 

In HF the LVFW endocardial mean inclination angle showed a small and gradual 

increase from base to apex (figure 8.17A). A considerable increase was observed at 

interval 3 (figure 8.17A), this corresponded with a significant increase in the 

percentage of vertical fibres at the same interval (figure 8.17C).  Analysis of the 

transmural mid-wall region revealed similar fibre orientation (predominantly 

circumferential) in both control and HF at the base and mid-wall (intervals 2-4) 

(figure 8.17B,D). However, at intervals 5 and 6 an increase in mean inclination was 

observed (figure 8.17B), coupled with a dramatic decrease in the percentage of 

circumferential fibres in the region (figure 8.17D). Further clarifying major changes 

in the LVFW are localised to the apex in HF. The lack of statistically significant 

change in the LVFW throughout the LV is illustrated in figure 8.18. Transmural plots 

(~650 µm segment) and colour maps of inclination angles from intervals 2-7 of two 

representative samples illustrate that the normal transmural helical arrangement was 

largely preserved in HF samples (figure 8.18).  
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Figure 8.17 Regional changes in inclination angle of fibres in the endocardium and 

transmural mid-wall of the left ventricular free wall in control and heart failure. Mean 

Inclination angles from the endocardium (inner ⅓ of wall) (A) and transmural mid-wall 

(middle ⅓ of wall) (B) extracted from micro-CT data at 7 transverse intervals base-apex 

(intervals 2-6 shown). Corresponding percentage of vertical (values 0.8-1.0) and 

circumferential (values 0.1-0.3) fibres in the endocardium and transmural mid-wall 

respectivley (C,D). In each region at every interval a ~650µm (~30 voxels) wide 

transmural segment was taken for analysis. (Control n=5, HF n= 6, *p=<0.1, **p=<0.05, 

***p=<0.01). Error bars indicate standard error of the mean (SEM).  
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Figure 8.18 Transmural plots and colour maps of fibre inclination angle in the left 

ventricular free wall in control and heart failure. Mean inclination angles from each 

transmural plane (parallel to epicardial wall) within a segment were extracted from 

micro-CT data at 7 transverse intervals base-apex (intervals 2-7 shown); a representative 

control (A-F) and heart failure (G-L) sample are shown. In each region at every interval a 

~650µm (~30 voxels) wide transmural segment was taken for analysis. (Colour bar 

indicates inclination angles). 
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8.5.4 Regional transmural changes in fibre orientation in the posterior wall of the left 

ventricle  

Regional transmural analysis of the LVPW, on the other hand, revealed considerable 

changes in fibre orientation in HF. The LVPW endocardial mean inclination angle 

increased at all intervals in HF, with significant increases observed at the base and 

mid-wall (intervals 2 and 4) (figure 8.19A). This was coupled with a dramatic 

increase in the percentage of vertical fibres in the endocardium (figure 8.19C). The 

same trend was seen in the transmural mid-wall of the LVPW. Mean inclination 

increased at all intervals in HF, with significant increase observed at the base and 

mid-wall (intervals 2 -4) (figure 8.19B). This was coupled with a striking decrease in 

the percentage of circumferential fibres in the transmural mid-wall (figure 8.19D), 

indicating more vertical fibres are present in HF. Transmural plots (~650µm wide 

segment) and colour maps of inclination angles from intervals 2-7 illustrate these 

findings in two representative samples (figure 8.20). Panels G,H and I in figure 8.20 

represent data from intervals 2-4 and clearly show an increase in vertical fibres at the 

endocardium and transmural mid-wall in HF.  
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Figure 8.19 Regional changes in inclination angle of fibres in the endocardium and 

transmural mid-wall of the left ventricular posterior wall in control and heart failure. 

Mean Inclination angles from the endocardium (inner ⅓ of wall) (A) and transmural mid-

wall (middle ⅓ of wall) (B) extracted from micro-CT data at 7 transverse intervals base-apex 

(intervals 2-6 shown). Corresponding percentage of vertical (values 0.8-1.0) and 

circumferential (values 0.1-0.3) fibres in the endocardium and transmural mid-wall 

respectivley (C,D). In each region at every interval a ~650µm (~30 voxels) wide 

transmural segment was taken for analysis. (Control n=5, HF n= 6, *p=<0.1, **p=<0.05, 

***p=<0.01). Error bars indicate standard error of the mean (SEM).  
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Figure 8.20 Transmural plots and colour maps of fibre inclination angle in the left 

ventricular posterior wall in control and heart failure. Mean inclination angles from each 

transmural plane (parallel to epicardial wall) within a segment were extracted from 

micro-CT data at 7 transverse intervals base-apex (intervals 2-7 shown); a representative 

control (A-F) and heart failure (G-L) sample are shown. In each region at every interval a 

~650µm (~30 voxels) wide transmural segment was taken for analysis. (Colour bar 

indicates inclination angles). 
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8.5.5 Regional transmural changes in fibre orientation in the interventricular septum 

As with the full transmural analysis, there was no base to apex trend evident in the 

IVS transmural mid-wall fibre orientation. In a healthy heart the transmural mid-wall 

should predominantly consist of circumferential running fibres. In HF the transmural 

mid-wall mean inclination increased at all intervals in HF (except interval 6), with 

significant increase observed at intervals 3 and 5 (figure 8.21A). The percentage of 

circumferential fibres in the transmural mid-wall was similar in both control and HF, 

the only significant decrease in HF was at the base (interval 3) (figure 8.21B). This 

suggests that although there is a similar percentage of fibres falling under the 

circumferential classification (0.1-0.3), fibres falling outside of this classification are 

more vertical in HF. To illustrate this point, histograms showing the distribution of 

inclination fibre angles at intervals (2-4) were plotted; two representative samples are 

shown in figure 8.22. There is a clear increase in the number of fibres with an 

inclination angle ranging from 0.4-0.7, and clear decrease in the number of 

circumferential fibres (0.1-0.3) in HF. Transmural plots (~650µm wide segment) and 

colour maps of inclination angles from intervals 2-7 illustrate the findings in two 

representative samples (figure 8.23). Colour maps indicate a reduced number of 

circumferential fibres (dark blue) within the transmural mid-wall in HF, and this is 

reflected as disordered inflections at the mid-wall and LV endocardial region in the 

transmural plots (figure 8.23). So, in HF the central band of circumferential running 

fibres within the transmural mid-wall became narrower, and fibres outside the central 

band became more vertical (figure 8.23).  
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Figure 8.21 Regional changes in inclination angle of fibres in the transmural mid-wall of 

the interventricular septum in control and heart failure. Mean Inclination angles from the 

transmural mid-wall (middle ²/4 of wall) (A) extracted from micro-CT data at 7 transverse 

intervals base-apex (intervals 2-6 shown). Corresponding percentage of circumferential 

(values 0.1-0.3) fibres in the transmural mid-wall (B). In each region at every interval a 

~650µm (~30 voxels) wide transmural segment was taken for analysis. (Control n=5, 

HF n= 6, *p=<0.1, **p=<0.05). Error bars indicate standard error of the mean (SEM).  
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Figure 8.22 Distribtion of inclination fibre angles in the interventricular septum in control 

and heart failure. Histograms showing the distribution of inclination fibre angles at the 

base and mid-wall (intervals 2-4) in two representative samples; control (A-C), heart failure 

(D-F).      
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Figure 8.23 Transmural plots and colour maps of fibre inclination angle in the 

interventricular septum in control and heart failure. Mean inclination angles from each 

transmural plane (parallel to endocardial wall) within a segment were extracted from 

micro-CT data at 7 transverse intervals base-apex (intervals 2-7 shown); a representative 

control (A-F) and heart failure (G-L) sample are shown. In each region at every interval a 

~650µm (~30 voxels) wide transmural segment was taken for analysis. (Colour bar 

indicates inclination angles). 
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8.5.6 Changes in fibre orientation at the base and  mid-wall in heart failure 

3D scatter graphs were plotted using both inclination and transverse angles, this 

allowed for a true impression of the 3D course of fibres transmurally. Inclination and 

transverse angles were extracted for each pixel from identical ~650µm wide 

transmural segments. The mean angles at each transmural plane within a segment 

were then calculated and plotted using 'excel 3D scatter plot' v.2.0 (excel 2007). 

Figure 8.24 shows 3D plots of data taken from the LVPW at the basal region 

(interval 3) of 3 control (figure 8.24 A,B,C) and 3 HF (figure 8.24 D,E,F) samples. 

3D fibre orientation in control samples appeared as expected; the classical transmural 

helical arrangement was observed, with small transmural deviation in the mean tilt 

(transverse angle) of fibres. In HF inclination angles at the endocardium, 

subendocardium and transmural mid-wall were increased considerably. In HF, the 

regions of increased inclination angle were accompanied by a reduction in transverse 

angle, particularly at the subendocardium and transmural mid-wall (figure 8.24 

D,E,F). This suggests the LVPW is prone to changes in fibre orientation in dilatated 

remodelling (seen at the base and mid-wall). Muscle fibres in dilated regions became 

more vertical in orientation accompanied by a reduction in tilt in relation to the 

longitudinal plane (figure 8.26 A,B). These changes in morphology are a possible 

cause of the observed loss of LV function seen in HF samples. 

Figure 8.25 shows 3D plots of data taken from the IVS at the basal region (interval 3) 

of 3 control (figure 8.25 A,B,C) and 3 HF samples (figure 8.25 D,E,F). 3D Fibre 

orientation in the IVS was less ordered in HF samples. Inclination angles at the 

transmural mid-wall were seen to be increased in HF, this was accompanied by 

irregular changes in corresponding transverse angles. These sharp changes in 

transverse angles at the transmural mid-wall were not observed in control samples. In 

control there was an apparent increase in transverse angle at the transmural mid-wall 

and subendocardium, transverse angles were smaller in these regions in HF (figure 

8.25). This suggests that the usually circumferential fibres of the transmural mid-wall 

have become more vertical and disordered, with a reduction in tilt in HF (figures 

8.25 D,E,F, 8.26 C,D). (Mean fibre angles and significance values for the regions 

investigated using 3D plots can be found in the appendix) 
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Figure 8.26 3-dimensional schematic representations of general changes in fibre 

orientation at the left ventricular posterior wall and interventricular septum in heart 

failure. General 3D fibre orientation at the base and mid-wall (intervals 2-4) in the 

subendocardium of the LVPW (A,B) and IVS transmural mid-wall (C,D) in control (A,C) and 

HF (B,D). IVS- interventricular septum, LVPW- left ventricular posterior wall.  

 

8.6 Validation of the use of contrast enhanced micro-CT to investigate cardiac 

morphology ex vivo.    

To assess the validity of using micro-CT to investigate morphological changes in 

cardiac tissue ex vivo, micro-CT data (n=9) was compared with corresponding pre-

termination echocardiography readings. Micro-CT data was manipulated into a 

position that reflected the parasternal long axis view used for echocardiography, and 

measurements were made corresponding to the LVID, IVS and LVPW echo 

readings. Micro-CT measurements were compared with both systolic (s) and 

diastolic (d) echo readings, and t-tests were used to analyse statistical significance of 
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results. In both control and HF hearts micro-CT LVID measurements closely 

resembled LVIDs (figure 8.27), and were significantly different from LVIDd 

(control- p=<0.05, HF- p=<0.005). However, wall thickness measurements (IVS, 

LVPW) revealed the myocardium was in a diastolic state (figure 8.27). 

Measurements were significantly different from IVSs (control- p=<0.01, HF- 

p=<0.05) and LVPWs (control- p=<0.001, HF- p=<0.05) echo readings. To assess 

the level of agreement between micro-CT and echocardiography measurements 

Bland Altman analysis was conducted (table 8.3); low bias values with small 

standard deviation (SD), and a small confidence interval indicates good 

reproducibilty. Low bias levels were observed when micro-CT IVS and IVSd, and 

micro-CT LVPW and LVPWd were compared (-0.02 and 0.02 respectively), this was 

accompanied by small confidence intervals (-0.09 to 0.04 and -0.13 to 0.017 

respectively). In contrast, a high level of bias (-0.64) and  large confidence interval (-

1.26 to -0.01) was seen when micro-CT LVID and LVIDd echo measurements were 

compared. This suggests, when scanned the hearts are in a relaxed state which is not 

over inflated.   
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Figure 8.27 Comparison of left ventricular cavity and wall widths obtained by 

echocardiography and micro-CT. To assess the validity of using micro-CT to investigate 

morphological changes in cardiac tissue ex vivo, pre-termination echocardiography readings 

from systole and diastole were compared with corresponding micro-CT measurements 

(n=9). (**p=<0.05, ***p=<0.01, +p=<0.005, ****p=<0.001). Error bars indicate standard 

error of the mean (SEM). LVID- left ventricular internal dimension, IVS- interventricular 

septum, LVPW- left vetricular posterior wall.  
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Table 8.3- Bland-Altman analysis investigating level of agreement between micro-
CT and echocardiographic morphological measurements. 
 

 
 
 

IVS-CT and IVSd- interventricular septum width from micro-CT and echo diastolic 
measurements, LVID-CT and LVIDd- left ventricular internal dimension from micro-CT and 
echo diastolic measurements, LVPW-CT and LVPWd- left ventricular posterior wall width 
from micro-CT and echo diastolic measurements. SD- standard deviation.  
 
 
 

8.7 Discussion  

HF and the associated morphological and functional abnormalities are a major 

contributor to morbidity and mortality in the western world (Leonard et al., 2012, 

McDonagh et al., 2011). The morphological and functional effects of volume or 

pressure overload on the ventricles are well documented in the scientific literature 

(Gaasch and Zile, 2011, Opie et al., 2006). However, the effects of a combination of 

both volume and pressure overload on the whole heart (atria and ventricles) is not so 

well documented (Hasenfuss, 1998). Here using in vivo and ex vivo imaging, we 

investigated the global and regional effects of volume and pressure overload on the 

whole rabbit heart (atria and ventricles).  

 

8.7.1 Is the gross morphology of the heart changed in heart failure?  

Changes in cardiac morphology due to overload usually involve chamber dilatation 

and/or hypertrophy; a process often referred to as cardiac remodelling (Hunt et al., 

2005, Opie et al., 2006). Pressure overload is traditionally characterised by 

myocardial hypertrophy with little chamber dilation, and is often categorised as 

concentric hypertrophy. In contrast, volume overload brings about myocyte 

stretching and only modest hypertrophy, causing dilatation of the ventricle cavity, 

and is categorised as eccentric hypertrophy (Opie et al., 2006). However studies have 

revealed cardiac remodelling is a complex process, which is progressive and unique 
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to the inciting overload (Grossman et al., 1975). As a result numerous attempts to 

better categorise cardiac remodelling have been presented (Opie et al., 2006). The 

effects of pressure and volume overload are often assessed as separate entities, with 

few investigating a combination effect (Gilson et al., 1990, Pogwizd, 1995, 

Hasenfuss, 1998). Furthermore, studies often ignore the remodelling effects of 

overload on the atria (Gilson et al., 1990, Pogwizd, 1995). Here we look at the 

morphological effects of both pressure and volume overload on the whole heart, and 

show the necessity to categorise the observed remodelling regionally.  

Atria- 

In the literature there are few detailed descriptions of the remodelling of atrial 

morphology in HF. This may be due to the fact that 3D high resolution 

morphological data of the whole atria is only achievable with ex vivo imaging 

techniques, and also requires the atria to be fixed in their naturally inflated state, 

which is technically difficult. We have previously shown a perfusion fixation 

technique which facilitates imaging of the detailed morphology of the atria (Chapter 

5) (Jarvis and Stephenson, 2013). Here we assess changes to atrial morphology in HF 

and present data that is consistent with clinical data (Corradi et al., 2011, Sallach et 

al., 2009, Tsang et al., 2002), and provide novel insight into atrial remodelling. All 

regions of the atria showed an increase in tissue volume in HF, the biggest increase 

was observed in the LA, this is to be expected in a model directly affecting the left 

side of the heart, and consistent with previous studies (Tsang et al., 2002, Corradi et 

al., 2011). Remodelling of the PcMs and the corresponding atrial wall in HF is 

poorly represented in the literature, here we show these structures are modified in 

HF, and reveal contrasting remodelling in the right and left atria. Wall thickness was 

not increased in HF, although there was a suggestion of wall thinning in regions of 

the LA. The lack of a hypertrophic response (in contrast to the ventricles) may be 

due to the atria’s inherent structural weakness compared to the ventricles (see 

Chapter 5) making them more susceptible to stretch, also the atrial wall has been 

shown to be more prone than the ventricles to apoptosis and myocyte death in HF 

(Hanna et al., 2004). In contrast, hypertrophy of the PcMs was observed in both the 

RA and LA in HF. Data suggests the mean and maximum PcM widths are increased 

in HF. Increased PcM width in HF was more considerable in the mid-wall of the atria 

than the extreme inferior and superior intervals. This suggests that the free running 
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portions of PcMs are more prone to hypertrophy than their insertion points, possible 

due to stretch induced hypertrophy (Blaauw et al., 2010, Ruwhof and van der Laarse, 

2000).  

Total atrial cavity volume more than doubled in HF, clearly showing dilatation. This 

is probably due to an increase in atrial pressure because of increased end systolic 

volume, and therefore congestion upstream, leading to increased wall tension which 

increases myocardial stretching (Corradi et al., 2011, Spotnitz, 2000). However, 

morphological changes between the RA and LA were not uniform. The RAA showed 

greater relative dilatation than the LAA. This could be attributed to the reduced 

structural integrity of the RAA compared to the LAA; the RAA has comparably thin 

walls, and thin PcMs which have weaker connections with the atrial free wall (see 

Chapter 5). Also an excessive increase in central venous pressure due to LV 

dysfunction could increase wall tension in the RA, enhancing myocardial stretch. 

LAA dilatation is probably due to the observed hypertrophy of the RV which will 

increase LA preload, thus increasing wall tension (Levick, 2003, Loushin et al., 

2009, Spotnitz, 2000). 

Ventricles- 

In vivo echocardiography showed all wall measurements were increased in HF 

(except LVPWs). Micro-CT data revealed the total myocardial volume was 

significantly increased in HF compared to control (28%). Regional analysis showed 

significant increases in the RV (84%), IVS (62%) and LV (64%). This level of 

hypertrophy is consistent with previous studies using a similar model of HF (Gilson 

et al., 1990, Pogwizd et al., 2001). Pre-termination measurements revealed LVID 

was significantly increased in HF in both systole and diastole. This morphological 

change is characteristic of volume overload brought about by regurgitation at the 

aortic valve (Gaasch and Zile, 2011, Opie et al., 2006). Increased dilatation of the LV 

was evident in HF at aortic banding and pre-termination in both systole and diastole. 

There was no inflection at aortic banding, therefore dilatation was progressive for 

both diastole and systole. The change was most dramatic in systole, representing the 

progressive inability of the myocardium to reduce the LV cavity, and produce the 

systolic myocardial bulking needed for a healthy stroke volume. This is supported by 

the progressive loss of function observed (progressive reduction in EF and FS) and 
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suggests that the acute nature of the model did not allow for a compensated response; 

rather changes resembled chronic decompensated HF (Opie et al., 2006). 

 

8.7.2 Do changes in cell morphology match gross changes in volume? 

The percentage increase in cell size in the RA (60%) in HF matched closely with the 

percentage increase in volume calculated from micro-CT data (59%). However in the 

ventricles the percentage increases in cell size were considerable different to the total 

volume increases (LV- 25% vs 64%, RV- 21% vs 84%). This suggests an increased 

deposition of extracellular matrix or fibrosis in the ventricles. Increased fibrosis is 

well documented in HF (Leonard et al., 2012), but histological analysis conducted by 

colleagues on samples from the same HF model suggests there is no increase in 

extracellular matrix in the atria or ventricles at post termination (Quigley et al., 

unpublished data). However, PCR analysis did show upregulation of markers for 

fibrosis (Quigley et al., unpublished data).  

 

8.7.3 Are there regional differences in cardiac remodelling in heart failure? 

Ventricles- 

Many studies of cardiac remodelling ignore regional changes in cardiac morphology 

(Gilson et al., 1990, Pogwizd, 1995). The results presented here highlight the need to 

assess changes across the whole heart. Although the observed scaled hypertrophy 

suggests a compensated response, this does not accurately represent the heart’s 

response to HF; further analysis revealed a region specific response. In HF the IVS 

showed thinning in the base, mid-wall and apical intervals, with significant thinning 

seen in the mid-wall. An interesting relationship was observed in the LV wall 

thickness in HF; thinning was observed in the base and mid-wall, followed by 

thickening of the wall towards and including the apex, this is a reverse of the 

relationship seen in normal hearts (Ho, 2009). There were no regional differences in 

wall thickness within a single interval (transverse plane), showing the observed 

changes in response to experimental HF are uniform throughout the LV wall at each 

interval. Significant increase in cavity cross sectional area was observed at all 
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intervals of the LV in HF. The most dramatic changes occur at the base and mid-

wall, which corresponded to regions where LV wall thinning was observed. A 

decline in cavity cross sectional area was seen in the apical region, which 

corresponded to areas of LV wall thickening. This clearly shows regional specific 

morphological changes occur in the LV in response to volume and pressure overload. 

This data suggests HF samples can be classified regionally, with the base and mid-

wall (majority of the heart) undergoing eccentric hypertrophy, and the apex 

undergoing mixed hypertrophy (Gaasch and Zile, 2011). Plastic dilatation (dilatation 

without hypertrophy) (Linzbach, 1960) was observed at intervals 5-6, which 

demarcates the transition from the mid-wall to apex. Data suggests the base and mid-

wall are more prone to stress, while the apex can produce a more compensated 

response. Remodelling at the base and mid-wall is an example of when maladaptive 

responses overpower adaptive responses (Meerson, 1962) (see section 8.7.7). 

 

8.7.4 How is the shape of the ventricles affected in heart failure? 

Volume overload has been shown to induce the heart to become more spherical, a 

morphological changed linked to dilatation and ventricular dysfunction (Kono et al., 

1992, Opie et al., 2006). Here there was no difference in sphericity between control 

and HF, with mean values appearing almost identical. This suggests that although HF 

hearts have undergone considerable LV dilatation, compensated shape changes have 

occurred to maintain a healthy ellipsoidal shaped heart. Although sphericity did not 

change in HF across the whole heart, regional LV cavity cross sectional area and 

coefficient of determination (R²) analysis suggests region specific changes in 

sphericity did occur. With the heart becoming more spherical at the base, while the 

apex remained within the normal range. Data from Donato et al 2006 shows the 

method implicated in the present study cannot identify regional changes, as a result 

apical conicity index (ACI) should be employed in future analysis (Di Donato et al., 

2006).  

The effect of HF on the endocardial trabeculation cannot be appreciated in statistical 

analysis presented here. However, 3D isosurfaces revealed a reduction in the depth 

and complexity of endocardial trabeculae in the LV of HF samples. This suggests 

dilatation of the ventricles in HF stretches and flattens the trabeculae carnae. Studies 
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into trabeculae morphology (Fernandez-Golfin et al., 2009) show hypertrophy takes 

place in disease, however these studies do not asses shape change. 

 

8.7.5 Variation in the degree of remodelling in heart failure 

The morphological changes observed among the HF samples were considerably 

variable. This is thought to be attributed to the aortic valve disruption procedure, as 

remodelling depends on severity and duration of overload (Gaasch and Meyer, 

2008), and the procedure is difficult to standardise. However, varying responses to 

volume and pressure overload have been previously documented (Pogwizd, 1995). 

8.7.6 What are the changes to the right side of the heart in left sided heart failure? 

In investigations of HF, the main focus is traditionally on the morphology and 

function of the left ventricle. Therefore, information on cardiac remodelling and the 

pathophysiology of the RV in left sided HF is limited in the current literature (Brieke 

and DeNofrio, 2005). It is suggested that the RV response to chronic pressure 

overload is similar to that of the LV; RV hypertrophy is observed in response to 

increased wall stress and eventually dilatation develops, and as afterload increases 

RV dysfunction and failure follow (Brieke and DeNofrio, 2005). In the present study 

the response of the RV was contrasting to the LV. In control hearts, as expected the 

mean RV cavity volume exceeded the LV, however this relationship was 

dramatically reversed in HF. An increase in the RV cavity volume was observed but 

data was not statistically significant. RV cavity cross sectional area was increased in 

HF from intervals 2-8 (base-apex), however, only interval 8 was statistically 

significant. However, significant thickening of the RV wall was observed at all 

intervals in HF, with the greatest wall thickness seen at the base. These results 

suggest concentric remodelling of the RV in HF. The lack of regional differences 

confirms concentric hypertrophy occurred across the whole of the RV. This is in 

contrast to the LV where substantial regional differences were observed (see above). 

This response is to be expected as LV dysfunction is linked with increased 

pulmonary pressure, which has been shown to induce RV hypertrophy due to 

increased afterload (Levick, 2003, Loushin et al., 2009, Spotnitz, 2000). The RV 

appears to produce a chronic compensated response in HF in contrast to the chronic 
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decompensated response generally seen in LV. This could be explained by the model 

having an acute effect on the left side of the heart, while the effect on the right side 

of the heart develops more slowly. 

 

8.7.7 What are the functional implications of the observed cardiac remodelling? 

Atria- 

Heart failure has a structural basis and causes substantial myocardial remodelling of 

the atria. It is well known that increased LA size (dilatation) is a major risk factor for 

various pathological conditions including; atrial fibrillation and death in subjects 

with dilated cardiomyopathy (Benjamin et al., 1995, Muller et al., 2003, Solti et al., 

1989, Corradi et al., 2011). LA size also increases in the presence of volume and 

pressure overload, and LV dysfunction (Abhayaratna et al., 2006). This supports our 

findings and suggests the changes in morphology seen in the HF samples make them 

more prone to pathology. Furthermore LA volume increase (hypertrophy) and 

dilatation have been shown as accurate markers for HF (Gottdiener et al., 2006).  

Global morphological changes to the myocardium are strongly linked to 

arrhythmogenesis and electrical dysfunction (Smaill et al., 2013), and the 

morphological changes observed here are likely to make the atria more prone to such 

electrical abnormalities. Tissue that has undergone dilatation has been shown to have 

increased vulnerability to the generation of rotors associated with arrhythmogenic 

activity (Yamazaki et al., 2012). In addition pressure overload which elicits 

hypertrophy is clinically associated with conduction abnormalities (Harris et al., 

2012). Furthermore it is expected that stretch reduces cell coupling which can cause 

retrograde propagation (Shaw and Rudy, 1997) and slow conduction which can 

support re-entry (Rohr et al., 1998). 

Changes in morphology on a small scale can also affect electrical function. 

Conduction in all regions of the heart is determined by the balance between current 

source and passive current load, known as source-sink matching (Smaill et al., 2013). 

Abrupt changes in wall thickness and fibre orientation has been shown to contribute 

to source sink mismatch and electrical dysfunction (Zhao et al., 2012, Auerbach et 

al., 2011, Cabo et al., 1994). Reverse source-sink has also been describe at the 
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proximal region of the AVN (Nikolaidou et al., 2012). However transitional tissues 

increase the safety factor in these regions (Dobrzynski et al., 2013). We postulate 

that reverse source sink mismatch is increased at the PcM-atrial wall interface in HF. 

The pectinate muscle width to atrial wall width ratio (PcM:W) was considerably 

increased in both the RA and LA in HF, meaning the difference between the thick 

PcMs and thin atrial walls increased. Therefore the atria in HF will be more prone to 

reverse source sink mismatch and thus electrical dysfunction and arrhythmias. The 

biggest increase in PcM:W was seen in the LA, suggesting the LA is more vulnerable 

to electrical dysfunction than the RA, and this notion is supported by clinical data 

(Letsas et al., 2011).  

Ventricles-  

Cardiac remodelling can be compensated or decompensated (Gaasch and Zile, 2011, 

Opie et al., 2006), but how alterations in structure truly affect function is an on-going 

discussion (Anderson et al., 2006, Anderson et al., 2008, Gaasch and Zile, 2011). 

Early stage remodelling to both pressure (Grossman et al., 1975, Gaasch and Zile, 

2011) and volume overload (Gaasch and Meyer, 2008, Opie et al., 2006) has been 

shown to be compensated, in that normal EF% is maintained. However such 

remodelling is usually due to the progressive nature of the overload presented (Lamb 

et al., 2002, Opie et al., 2006). Therefore the decompensated remodelling observed 

here is likely to be due to the acute nature of the model, and the fact that remodelling 

is associated with the severity and duration of overload (Grossman et al., 1975, 

Roeske et al., 1976). In the current study no compensated response was evident in the 

LV from in vivo echocardiography data. Reduced FS (~ 50% loss of function) in the 

LV was observed in HF.  

Our morphological data shows HF samples can be classified regionally, with the 

majority of the heart undergoing eccentric hypertrophy, which is strongly associated 

with a low EF% (Khouri et al., 2010), and thus decompensated HF. At termination 

EF was significantly reduced in HF (28% reduction). However, due to Starling’s law 

(see introduction 1.4.3.1) dilatation can act as a compensated response in HF 

(Levick, 2003, Spotnitz, 2000). But excessive preload in the absence of hypertrophy 

causes; overdistension due to increased wall stress, and loss of contractility due to 

the length tension relationship, ultimately causing a reduction in stroke volume. In 
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the current model excessive preload will be present in the LV due to both aortic 

regurgitation and increased pulmonary pressure. This offers an explanation for the 

observed dilatation, wall thinning and loss of function in HF samples. The idea of a 

compensated response occurring at the apex of the LV is supported by the presence 

of reduced dilatation and more importantly hypertrophy, this will increase 

contractility and in the presence of increased preload will bring stroke volume back 

towards the normal range. However it is postulated the overall loss of LV function is 

probably due to the majority of the heart (base and mid-wall) having a 

decompensated phenotype, which outweighs the compensated response at the apex. 

Laplace’s law (see introduction 1.4.3.1) therefore dominates the majority of the heart 

in HF samples. 

Afterload-velocity and afterload-shortening curves suggest contractility is reduced in 

the presence of excessive afterload (see introduction 1.4.3.1). Therefore, in the 

current model aortic banding will be a major contributor to the observed loss of 

function (Levick, 2003, Loushin et al., 2009). To supress the effect of increased 

afterload, the LV must increase its contractility through a hypertrophic response. 

This further supports the thought that a decompensated response has occurred at the 

base/mid-wall and a compensated response at the apex.  

 

8.7.8 Is fibre orientation changed in Heart failure?   

The detailed study of Pettigrew (Pettigrew, 1864) showed that the long axis of 

myocytes changes in angulation across the ventricular wall relative to the ventricular 

equator. This so-called helical arrangement came to prominence due to the 

investigations of Streeter (Streeter and Bassett, 1966, Streeter et al., 1969). The angle 

of fibres rotates clockwise from -80° at the epicardium to +80° at the endocardium, 

with the mid-wall consisting of fibre running primarily circumferentially 

(Greenbaum et al., 1981, Streeter et al., 1969). The 3D morphology of fibre 

orientation cannot be fully appreciated using histology (Greenbaum et al., 1981, 

Streeter et al., 1969) or peeling (Dorri et al., 2007) due to the inability to view the 

long axis of the myocytes in all their orthogonal planes. Fibre orientation must be 

described in terms of both inclination (helical) and transverse (intrusion) angle, and 

should be considered as an anisotropic mesh of fibres (Anderson et al., 2008, 
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Bovendeerd et al., 1994, Geerts et al., 2002, Smerup et al., 2009). Here we have 

extracted 3D fibre angles, including both helical and transverse angles, from the 

ventricles of control and experimental HF hearts. Our findings show consistencies 

with previous descriptions of fibre orientation in control hearts (Dorri et al., 2007, 

Geerts et al., 2002, Lunkenheimer et al., 1997a, Streeter et al., 1969), and provide 

novel insight into how fibre orientation is changed regionally in response to cardiac 

remodelling. Emphasis is placed on regions of dilatation.  

3D fibre orientation analysis showed that the regions which underwent the greatest 

amount of dilatation and wall thinning (the base and mid-wall), were the most prone 

to changes in fibre orientation. Fibres of LV and IVS in these regions became more 

vertically orientated, accompanied by a reduction in tilt (transverse angle). Findings 

show consistent patterens with other studies of fibre orientation in HF using 

histology and DT-MRI (Carew and Covell, 1979, Clayton et al., 2010, Eggen et al., 

2009, Kuribayashi and Roberts, 1992), but are conflicting with others {Schmitt, 2009 

#432}, and some studies report no difference (Nielsen et al., 2009, Pearlman et al., 

1981). Regional transmural analysis revealed significant changes at the base and 

mid-wall in the failing LVPW. The regions of increased inclination angle were 

accompanied by a reduction in transverse angle, particularly at the subendocardium 

and transmural mid-wall. In the IVS the fibres running within in the transmural mid-

wall changed significantly; in HF the central band of circumferential running fibres 

within the transmural mid-wall became narrower and disorganised, and fibres outside 

the central band became more vertical. These changes in HF could be a substrate for 

the observed loss of ventricular systolic function, but it is postulated they will also 

contribute to diastolic dysfunction (see below).  

Most studies of fibre orientation in pathological hearts concentrate on changes in the 

helical angle. The few studies that have looked at changes in the transverse or 

intrusion angle have looked at hypertrophic hearts; Lunkenheimer et al. suggests 

these intruding fibres become more erect in the LV in response to hypertrophy 

(Lunkenheimer et al., 2006b). Using DT-MRI Schmitt et al. 2009 described regional 

differences in hypertrophic hearts; an increase in intruding angle was observed at the 

base, mid-wall, and apex (Schmitt et al., 2009). It should be noted studies of 

hypertrophy often assume universal change to the myocardium, results presented 

here regarding regional remodelling suggest this may be erroneous.  
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Here we show the transverse angled fibres become less erect at the subendocardium 

in regions of dilatation (LVPW and IVS). To our knowledge this is first time changes 

in fibre orientation in response to both pressure and volume overload have been 

investigated, and the first time the change in transverse angle in response to 

dilatation has been described. 

8.7.9 The relationship between fibre orientation and structure in heart failure 

Interesting relationships are therefore revealed when changes in fibre orientation are 

compared to morphological changes. The biggest changes were seen in regions of 

dilatation and wall thinning (base and mid-wall). While in regions of hypertrophy 

and moderate dilatation (apex) changes were smaller. The change in fibre orientation 

in response to dilatation is poorly represented in the literature, with most studies 

concentrating on the effects of hypertrophy. Our data suggests dilated regions could 

be the main foci for contractile dysfunction in dilated cardiomyopathies and should a 

target for therapeutic interventions. 

 

8.7.10 What are the functional implications of the observed changes in fibre 

orientation?  

Systolic dysfunction-  

It is difficult to directly relate anatomy to function (Anderson et al., 2008), but the 

key to understanding true cardiac function in health and disease is in defining the 

underlying architecture responsible for the contractile mechanism- narrowing, 

shortening, lengthening, widening and twisting of the heart (Buckberg et al., 2008). 

In the present study we have observed changes in fibre orientation in HF, below we 

discuss how such changes may have contributed to the observed loss of function 

(reduced EF and FS). Due to its homogenous arrangement the functional 

implications of morphological changes in skeletal muscle are often assessed using 

the physiological cross sectional area principle (Campbell et al., 2013). This 

simplistic approach cannot be applied to cardiac muscle due to its heterogeneous 

structure and dualistic function (Lunkenheimer et al., 1997b, Lunkenheimer et al., 

2004). However, insights into cardiac function from traditional studies (Streeter et 

al., 1969, Lunkenheimer et al., 2006b, Lunkenheimer et al., 2004) and more recently 
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from high resolution echo to show regional strain (Notomi et al., 2008, Sengupta et 

al., 2006), speckle tracking to look at torsion (Thomas and Popovic, 2006) and DT-

MRI to assess fibre orientation (Geerts et al., 2002), means information is available 

that allows inferences to made from our data regarding the dilatation and contractile 

dysfunction of the LV. 

Mural thickening is essential to effective ejection, and is achieved in part by 

realignment of myocytes over one another (Spotnitz et al., 1966, Anderson et al., 

2008). We postulate that the increase in verticality and reduced tilt of fibres in HF 

may reduce their plane of movement in this fashion, and thus transmural thickening 

will be reduced. MRI tagging studies have highlighted the importance of 

circumferential radial shear in wall thickening (Young et al., 1994b, Young et al., 

1994a). Circumferential radial shear occurs due to increased rotation of the 

endocardium relative to the epicardium (Young et al., 1994b), a motion which will 

be reduced in HF due to the increased verticality of fibres in the endocardium. In 

addition, the reduction in circumferential fibres in the transmural mid-wall will also 

reduce transmural thickening and constriction, and because circumferential fibres 

make the greatest contribution to pressure generation, stroke volume will also be 

reduced (Buckberg et al., 2008). During the ejection phase, transverse 

circumferential fibres are thought to counteract outward forces generated by the 

oblique epi and endocardium fibres, preventing outward 'explosion' of the ventricle 

(Buckberg et al., 2008). The reduction in number and increase in verticality of 

circumferential fibres at the base in HF suggests outward forces will be increased, 

leading to contractile dysfunction and a vulnerability to dilatation. 

We also propose the changes in fibre orientation will have an affect on the 'wringing' 

or torsion of the heart (Ingels, 1997). Coordinated counter-clockwise and clockwise 

twisting of apex and base respectively occurs during ejection (Notomi et al., 2008), 

leading to efficient blood expulsion and stress equalisation (Arts et al., 1984, Arts et 

al., 1979). Increased torsion is associated with increased EF (Ahmed et al., 2012). 

But In vivo studies have shown torsion is reduced in a variety of pathologies 

including; dilated cardiomyopathy, eccentric hypertrophy and increased sphericity 

(Ennis et al., 2009, Kanzaki et al., 2006, van Dalen et al., 2009), all features observed 

here in the base and mid-wall in HF samples. We propose data presented here 

provides reasoning for the reduced function associated with dilated phenotypes. It is 



292 

 

postulated changes in fibre orientation in HF will reduce circumferential and radial 

shear in the LV, particularly at the base of the heart. Therefore the coordinated 

process of ventricular torsion will be disturbed (Schmitt et al., 2009, Buckberg et al., 

2008, Lunkenheimer et al., 2004) causing reduced EF (Ahmed et al., 2012). In 

addition stresses will be less equalised thus increasing the susceptibility of the LV 

base to dilatation.  

The complex motion of torsion requires two opposing forces which are produced by 

two separate populations of myocytes (Lunkenheimer et al., 2004). (1) The helical 

arrangement of myocytes acts to uniquely constrict the LV, (2) transverse angled or 

intruding fibres (often ignored in studies of cardiac dynamics and fibre orientation) 

equalise myocyte strains during systole, confine ventricular compliance, support both 

ventricular constriction and dilation, and can be functionally antagonistic to the 

helical fibres (Lunkenheimer et al., 2004, Smerup et al., 2013b). A mathematical 

model developed by Smerup et al. 2013 has shown the angle of intruding fibres is 

specific to their function; larger angles antagonise mural contriction, while smaller 

angles act to equalise strain and contribute to constriction (Smerup et al., 2013b). 

Therefore it can be postulated that the reduction in transverse angles observed at the 

base in HF would allow for increased mural constriction. However it is expected 

these changes will reduce the resistance of the region to compliance (Lunkenheimer 

et al., 2004), causing a succeptability to dilatation. In addition any increase in 

contractility in the region will be nullified by the reduction in circumferential strain 

(described above) and loss of contractility due to dramatic change in relative wall 

thickness (see section 8.7.7).  

As described above, models of cardiac mechanics can be used to investigate how 3D 

fibre orientation affects cardiac function (Dorri et al., 2010). Dorri et al. 2010 

showed cardiac function was robust in the presence of small changes in fibre 

orientation. But highlighted severe loss of function at angle deviations of ~30°, and 

showed transverse angles exceeding 45° cause mural contraction that counteracts 

systolic thickening and reduces EF%. This level of deviation in 3D fibre angle was 

observed in HF samples at the base and mid-wall in the LV and IVS, supporting the 

hypothesis that changes observed here have contributed to the observed loss of 

function. However other studies suggest changes of only ~5-10° can substantially 

affect ventricular torsion and performance (Sallin, 1969).       
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Diastolic dysfunction 

Originally HF was thought to be characterised by a loss of systolic function, 

however, recently increasing emphasis has been placed on the role of diastolic 

dysfunction in HF (Gaasch and Zile, 2004, Zile and Brutsaert, 2002a, Zile and 

Brutsaert, 2002b). The changes in fibre orientation we have observed in HF suggest 

diastolic function may also be affected. The dualistic ventricular function of the heart 

proposed by Brachet (Anderson et al., 2008), suggests a separate component of 

radially orientated myocytes exist to sustain ventricular dilation and diastolic 

reopening (Anderson et al., 2006). Therefore the reduction in the transverse angle of 

fibres observed in HF suggests sustained dilatation will be impaired, reducing 

ventricular filling and thus reducing stroke volume. Furthermore, elastic energy 

generated in systolic torsion is released during diastole through mechanical recoil, 

facilitating rapid filling (Rademakers et al., 1992, Ashikaga et al., 2004). Therefore 

with torsion expected to be reduced in HF, filling will be impaired due to reduced 

mechanical recoil.     

 

 

8.7.11 Limitations of fibre orientation analysis 

 

We recognize the limitations of the current study, in particulary the inability to 

distinguish between the positive and negative angle of fibres. In addition fibre angles 

were not normalised to the LV curvature in the longitudinal plane, but this can be 

rectified by using the epicardial tagent plane as a reference plane. It should also be 

noted that individual myocytes are not resolved, the term 'fibre' refers to aggregations 

of individual myocytes adjoined axially. Although there are technical limitations to 

the present study, the superior resolution over similar studies using MRI (20 µm vs 

1300 µm) (Nielsen et al., 2009, Smerup et al., 2009), shows the huge potential of the 

technique to elucidate the complex morphology and function of the heart in health 

and disease.     
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8.8 Summary 

The effects of both volume and pressure overload on the function and morphology of 

the heart were investigated using in vivo and ex vivo imaging. An experimental HF 

model was developed in rabbit. To assess longitudinal changes animals were imaged 

at various time points using in vivo echocardiography and functional and 

morphological measurements were made. To investigate changes ex vivo, perfusion 

fixed rabbit hearts were scanned using contrast enhanced micro-CT. Scan data was 

then used to investigate global and regional changes to cardiac morphology across 

the whole heart. 

In vivo echocardiography showed significant changes in morphology and function in 

HF. Significant and progressive dilatation of the LV was accompanied with 

hypertrophy in all regions of the ventricles. These dramatic changes in morphology 

corresponded with significant and progressive loss of LV function (~50% loss at 

termination), suggesting that this acute model of HF brings about dramatic 

progressive changes to the heart, and would be suitable for a wide range of scientific 

investigation into HF.  

Contrast enhanced micro-CT provided excellent high resolution images, which 

facilitated investigation of gross and regional changes in morphology, and also 

allowed extraction of 3D fibre orientation. Hypertrophy was observed in all regions 

of the atria (RA, IAS and LA) in HF. In depth analysis of hypertrophy revealed atrial 

wall thickness was unchanged but the PcMs showed significant hypertrophy. The 

normal morphology of the RA and LA seemed to influence their response to HF, in 

that the thin walled RA with its slender PcMs was more prone to dilatation. It is 

postulated that the changes to the atria in HF make them more vulnerable to 

electrical dysfunction. The ventricles showed hypertrophy in all regions (RV, IVS 

and LV), with significant dilatation of the LV observed in HF. Traditionally the RV 

cavity is greater than the thick walled LV but in HF this relationship was reversed. 

Regional analysis of the ventricular morphology reveal hypertrophy throughout the 

RV, accompanied with no significant dilatation. However regional changes were 

observed in the LV and IVS in HF, with thinning of the wall at basal and mid-wall 

regions, and wall thickening seen in the apical region. In the LV areas of wall 

thinning (base and mid-wall) corresponded to regions were the greatness degree of 
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dilatation was observed, and areas of wall thickening corresponded to the areas of 

low dilatation. This suggests for this model of HF, decompensated (eccentric) 

remodelling takes place at the base and mid-wall, while compensated (concentric) 

remodelling occurs at the apical region. 

Novel 3D fibre orientation analysis showed that in HF the regions which underwent 

the greatest amount of dilatation and wall thinning (the base and mid-wall), were the 

most prone to changes in fibre orientation. In HF fibres in the LV and IVS became 

more vertically orientated, accompanied by a reduction in tilt (transverse angle). The 

most significant changes were observed at the base and mid-wall of the LV and IVS. 

Regional transmural analysis revealed significant changes occurred at the 

endocardium and transmural mid-wall in the LV, while in the IVS the fibres running 

within in the transmural mid-wall changed significantly. These changes in HF could 

be a substrate for the observed loss of ventricular function, but could also contribute 

to diastolic dysfunction. 

Data presented here suggests morphological changes in HF are non-uniform 

throughout the whole heart, and highlights the important contribution of regional 

changes, and thus the need for regional assessment in the clinical setting. Novel 

information on 3D fibre orientation in the failing heart has been presented, which 

will aid the development of functional and mechanical models of the heart in health 

and disease.  
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