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Abstract

This thesis develops and investigates analytic function methods for nonparametric

analysis and design of robust control linear systems. Compared to the parametric

approaches, nonparametric approaches may enable the designer to directly use

the experimental plant data to design the controller. Nonparametric approaches

are potentially more accurate than parametric approaches since they do not need

to make signi�cant approximations due to parametric �ttings. Moreover, since

no parametric identi�cation is required, nonparametric approaches are able to

cope with time-delayed and di�erential di�erence systems. The design procedure

process may also require less human judgement and so may be quicker and more

readily automated. In this thesis, nonparametric approaches to control based on

H∞ analytic function theory is presented. It is the main purpose of this thesis

to investigate the use of analytic function methods in H∞ control problems. The

implementation of the analytic methods and their applications are both addressed

in the thesis.

In the H∞ control approach, the controller achieving the stability requirement

is synthesized to meet all the performance requirements in terms of an H∞ norm.

The H∞ control problem is one where the controller and is designable in a sys-

tem bounded by prescribed performances is generally viewed as a mathematical

optimization problem. The methods to solve this optimization problem are re-

quired to �nd an optimizing solution functions that is analytic and bounded in

the right-half complex plane. There are many existing control design approaches

to the parametric representation of the problem, however, only a few methods

exist for nonparametric H∞ control. In this thesis, the nonparametric approaches

based on the analytic function solutions to the H∞ control problem are analyzed.

The Disk Iteration method of Helton et al. [39], the Newton Iteration method

of Helton and Merino[46], and the Linear Programming method of Streit [86]

applied to control as suggested by Helton and Sideris [40] are implemented and

examined :

• Disk Iteration (DI) Method : The theory of the DI method is summarized

and an existing implementation due to Merino et al. [41] is translated
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in Matlab language. Two nonparametric spectral factorization methods are

also realized for the development of novel nonparametric control approaches

using the DI method.

• Newton Iteration (NI) Method : The derivation of the NI method is out-

lined. A new implementation of the NI method in Matlab code is also

presented for publication for the �rst time. In the NI method, the solution

to an operator equation is obtained in terms of matrix representations of

the operators. The di�erence between the performance of the DI method

and the NI method is discussed and examined in several examples.

• Linear Programming (LP) Method : The LP method of Streit's algorithm

[86] is implemented in Matlab for the �rst time. The interpolation method

is replaced by Q-parameterization method to meet the internal stability

requirement by a possibly nonparametric approach. An example is investi-

gated and this illustrates the e�ectiveness of the LP method.

An comparison of the implementation of the three methods is made in the appli-

cation to an engine control problem. The assessment of the resulting controllers

is presented in terms of the time and frequency performance. The three methods

are investigated in terms of the accuracy, computing power, and convergence.

In this thesis, it is concluded that, although the solution by the DI method is

in general sub-optimal to the general optimization problem, this method is very

e�ective and optimized for the circular form of optimization problems as well as

quasi-circular type problems. The investigation of the NI method with several

numerical examples indicates that not only are its solutions to the optimization

problem optimal but also the NI method has a higher convergence rate for vector

(i.e. multiple functions) cases. However, the NI method is very sensitive to the

initial conditions. The study on the LP method shows that the LP method can

be purely based on the measured frequency response data without the Fourier

coe�cient data but the method requires long computing time and large memory

storage. An application to an automotive engine control problem by the pro-

posed nonparametric analytic function methods is presented in this thesis and

shows the e�ectiveness of this approach as an engineering control system design

methodology.
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Chapter 1

Introduction

Conventionally, to calibrate an engineering control system, the parametric iden-

ti�cation of the system plant is needed in the �rst place in order to obtain its

mathematical representation in the form of a model with a restricted (low) num-

ber of parameters. Based on the mathematical model, the controller is then

designed or computed to meet the performance requirements speci�ed by the de-

signer. The controller is practically implemented in the real system generally as

a feedback system and the performance of the controlled system is then exam-

ined and validated. This controller design approach is generally known as the

Model-Based Control Method (MBC). However, the MBC method is, in practice,

sensitive to the accuracy of the parametric model in the �rst system identi�ca-

tion process. In addition, establishing a satisfactory model sometimes takes a

long time and requires a priori knowledge. Controller design methods to poten-

tially prevent a signi�cant mismatch between the model and the real system can

be achieved by what are known as the Nonparametric (NP) methods. They have

been developed on the basis of the input-output plant data in either the time or

frequency domain. Because NP methods are more directly based on the exper-

imental data, the controller has the potential to be more robust to the system

modelling errors. Moreover, most of the performance requirements, such as band-

width, and gain-phase margin in the frequency domain are able to be considered

in the frequency-based NP methods. NP approaches are therefore potentially

powerful for designing robust controllers in engineering systems. Nevetheless,

only a few NP control design methods are available to date, which accordingly

motivates the research work in this thesis to investigate and develop such NP

methods.

In the current industrial world, most complex systems are equiped with elec-

trical control systems. In the automotive �eld, the Engine Control Unit (ECU) is

a key component in an vehicle in terms of the engine performance. In a gasoline
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engine, the ECU determines not only the amount of fuel and air intake into the

engine chamber but also the spark timing to track the torque demand, the engine

speed requirement, and control the other variables such as the temperature, emis-

sions etc.. The control loops in the engine management system include those for

most of the air-fuel ratio control, ignition control, idle speed control and knock

control [35].

In this chapter, a literature review of feedback control theory is presented in

Section 1.1. The H∞ feedback theory is also outlined in details in this section.

An introduction to the control loops in the automotive ECU are outlined in

Section 1.2. Section 1.3 summarizes each chapter in the thesis. The contributions

of the research work in this thesis are addressed in Section 1.4.

1.1 H∞ Feedback Control

The controller design method formulated in terms of minimising the H∞ norm

is generally known as the H∞ control problem and addresses the issues of the

worst-case design for linear plants with unknown disturbances and unstructured

plant uncertainties. The H∞ space of functions represents the Hardy space of

all functions which are analytic and bounded in the right half plane. The H∞

controller design method was initially formulated by Zames [104] as a mathemat-

ical optimization problem in terms of the H∞ norm. In the 1980s, theoretical

work on approximation theory, functional analysis, operator theory and spectral

factorization facilitated the optimal or sub-optimal controller designed by the

H∞ method in the frequency domain. The H∞ control theory was reviewed and

related to state-space means by Francis in [24] for �nite-dimensional systems and

by Foias in [23] for in�nite-dimensional systems. The research in the time do-

main approach, which is based on the state-space representation of the system,

motivated the development of H∞ optimal control theory by means of Riccati

equation solutions [21]. Many results and work by researchers have promoted the

time domain H∞ approach to deal with more general control problem, e.g. the

time-variant control problem [6] and the nonlinear control problem[2].

Despite the fact that the state-space theory is relatively complete, theH∞ con-

trol theory in frequency domain has several advantanges. One of the advantages

of the frequency domain approach is that it can be deployed as a nonparamet-

ric H∞ controller design method directly based on the output from an e�cient

Fast-Fourier-Transform-based computation of the frequency responses from the

measured input-output data. Since the modelling inaccuracy may be less in the

nonparametric method, this o�ers a possibly more accurate solution to the design
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of a robust controller.

The frequency domain approach developed by Helton et al. [44, 47, 80] has

been used in a sup-optimal nonparametric H∞ controller design method for stable

plants in [106]. Helton et al's theory is based on �nding analytic function solu-

tions to the Nevanlinna-Pick interpolation problem [109] and the related operator

theory [5, 9, 77]. The sub-optimal nonparametric method was also successfully

applied to the engine fuelling control system problem in [107, 108]. In terms of

Helton et al's approach, the method aims to solve the mixed sensitivity control

problem using appropriate weighting functions. However, the method is restricted

to convex problems where the local optimum is the global optimum. Furthermore,

the interpolation to guarantee the internal stability requires the parametric iden-

ti�cation to allow computation of the Right-Half-Plane (RHP) poles and zeros.

Another nonparametric approach by means of parameterising the performance

constraints in H∞ norm was developed by Karimi and coworkers in [27] and

summarized in [26, 56]. Karimi's method limits the selection of performance

constraints in order to convexify the weighted sensitivity functions problem[56].

The application of his nonparametric method on a double-axis positioning system

was presented in [57].

The other frequency domain approach of the Quantitative Feedback Theory

(QFT) method was initiated by Horowitz [53]. This was adopted to a nonpara-

metric method and applied to the automotive throttle control problem by

A. Abass [1].

1.1.1 Feedback Control Theory

Two realizations of a Linear-Time-Invariant (LTI) physical system - the transfer

function (TF) model and the state-space (SS) model - are introduced. Mathe-

matically speaking, given the continuous input u(t) and output y(t), the transfer

function H(s) is de�ned as the relationship between the Laplace transform L{·}
of the input u(s) and the output y(s) with the complex variable s, as denoted

H(s) =
L{y (t)}
L {u (t)}

=
Y (s)

U (s)
(1.1)

The Laplace transform maps a function in the time domain (e.g. u (t) and

y (t)) to the complex frequency domain . Mathematically, the substitution s = jω

connects the Laplace transform to Fourier transform. The transfer function model

is possible to be estimated by using Fourier transform and is thereby commonly

used in the frequency-domain approach of classical control theory.

Another representation of a p× q LTI system is the state-space model, which
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describes the input-output relationship as a set of �rst order di�erential

equations : ẋ (t) = Ax (t) + Bu (t)

y (t) = Cx (t) + Du (t)
(1.2)

where u (t) ∈ Rp and y (t) ∈ Rq are the p inputs and q outputs respectively,

x (t) ∈ Rm are the m state variables and Am×m, Bm×p, Cq×m, Dq×p are the

system matrices.

The state-space model deals with functions in real time so the use of state

space is viewed as the time-domain approach in the control theory. In addition,

insight into the system (e.g. controllabilitiy, observability) is revealed by the state

space realization even if the state variables are not related to physical meanings.

The approach is also known to be numerically good for algorithms. As a result,

there has been great interests in the development of the state-space approaches in

recent years. Many applications in many control topics ( e.g. MIMO control prob-

lems, nonlinear control ) have been extensively used the state-space formulation

[44, 83].

It is known that the purpose of control is to apply the control input to the

plant to achieve desired output requirements. It is often straightforward to in-

verse the model that describes the dynamics of the plant system. In this case,

the inverse transfer function can be used as the controller in a form of 'open-

loop control ' as shown in Figure 1.1. The advantage of open-loop control is its

simplicity and low cost to implement in real systems. Nevertheless, there exists

several unavoidable issues with open-loop control, such as nonzero steady-state

errors, possible instability when distrubances are present, non-robustness to plant

parameter variations or errors, and the external disturbances [25]. As a result,

the alternative strategy of closed-loop control or feedback control can be used to

cope with the above problems.

Figure 1.1: Structure of general open-loop control systems

The bene�ts of both the open and closed loop con�gurations may be obtained

by the more general degree of freedom controller structure illustrated in

Figure 1.2 where the output signal y from the plant G equipped with the con-
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troller K is fed to calculate the di�erence e between the input signal u′ , which

is pre-processed by the pre-�lter F , and the output y′, which contains the distur-

bances d and the noise n. The closed-loop control not only solves the problems of

stability, robustness and reliability but also the capacity for more accurate track-

ing performance when disturbances are present. Nevertheless, compared to the

open loop control scheme, the closed loop control system may be more complex

and require more costs on additional sensors.

From Figure 1.2, the following variable relationships can be established in

frequency domain 

u′ = u · F

e = u′ − y

c = e ·K

c′ = c+ d

y′ = c′ ·G

y = y′ + n

(1.3)

and formulated in the compact form :

y′ = KGF [I +KG]−1 · u+ I [I +KG]−1 · n+G [I +KG]−1 d (1.4)

and

e = F [I +KG]−1 · u−G [I +KG]−1 · d− I [I +KG]−1 · n

c = KF [I +KG]−1 · u−KG [I +KG]−1 · d−K [I +KG]−1 · n
(1.5)

The unitary closed-loop control system can be obtained with a pre�lter F = 1.

In this case, it can be observed from Equation 1.4 and 1.5 that the four sensitivity

functions in the feedback control system are derived as



S = I [I +KG]−1 = [I + L]−1 Primary sensitivity function

T = KG [I +KG]−1 = L [I + L]−1 Complimentary sensitivity function

Q = K [I +KG]−1 = K [I + L]−1 Noise sensitivity function

V = G [I +KG]−1 = G [I + L]−1 Disturbance sensitivity function

(1.6)

where L = KG is called the open-loop transfer function.
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Figure 1.2: Standard structure of a two-degree-of-freedom feedback control
system
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These four sensitiviy functions are generally known as the Gang of Four [7],

and they dominantly describe the dynamic characteristics of a control system.

The primary sensitivity function S de�ned as the transfer function from u to

y′. The complimentary sensitivity function T de�ned as the function from the

system's output y to the input command u provides the information about the

tracking performance to the command u in the system.

It is worth noting that the equation

S + T = I (1.7)

is always true by the de�nitions of the functions S and T : S = I [I + L]−1 and

T = L [I + L]−1 1. It is important to notice that Equation 1.7 limits the design

of the controller naturally because, in Equation 1.7, a compromise between the

functions S and T is obviously required. In other words, attempting to seek

better tracking performance in T results in the less robustness to the noise n in

S. The phenomenon is illustrated in terms of the corresponding Bode diagram

of S and T in Figure 1.3.

Figure 1.3: Bode diagram of the primary sensitivity function S = 2s+3
2s2+5s+3

and

the complementary sensitivity function T = 2s2+3s
2s2+5s+3

1

REMARK In the multiple-input-multiple-output (MIMO) systems, the right hand side of
Equation 1.7 is the identity matrix I. It is easy to observe that, in the single-input-
single-output (SISO) systems, Equation 1.7 degenerates to the equation : S+T = 1.
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1.1.2 Stability

The stability of the controlled system is a very important criterion in the controller

synthesis since the unstable system may result in an unpredictable response. In

the TF representation, it is known in the control theory [25, 62, 109] that if a

linear continuous time-invariant system is to be stable, the roots of the closed-

loop characteristic function I + L (s) = 0 ( i.e. the poles of the closed-loop

system ) are all in the left half plane (L.H.P.). This is generally known as Routh-

Hurwitz stability criterion. In the state space representation, the poles are usually

computed as the roots of the characteristic equation det (sI − A) = 0 where s is

the Laplace variable and A is the matrix in Equation 1.2 [63].

In the feedback system shown in Figure 1.2, it is easy to derive from

Equation 1.4 and 1.5 that, if no pole or zero in the right half plane ( R.H.P. ) of

G cancels out the zero or pole of K in the R.H.P., the transfer functions S and

T in Equation 1.6 must be stable [101]. That is, the system is internally stable

if and only if the four sensitivity functions S, T , Q and V are all stable. This is

summarized in the theorem [109]:

Theorem 1. If there is no unstable pole-zero cancellation in KG , the closed-loop

system is internally stable if and only if one of the four sensitivity functions is

stable.

Simply speaking, the requirements for the internal stability conditions of a

LTI feedback control system are expressed as [47]

• The complimentary sensitivity transfer function T is in RH∞

• No R.H.P. pole of the plant G is cancelled by any R.H.P. zero of the con-

troller K.

• No R.H.P. zero of the plant G is cancelled by any R.H.P. pole of the con-

troller K.

where RH∞ here denotes the space of all rational transfer functions with real

coe�cients that have poles in L.H.P. ( i.e. stable )

1.1.3 Robustness

It is di�cult to obtain an exact mathematical model of a physical plant due

to the uncertainty in the system, the changes in plant dynamics, an error in

system measurements and other unavoidable factors. Therefore, the study of

modelling uncertainty is very important in control theories. Depending on dif-

ferent structure properties of the uncertainty, it is generally referred to either
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structured uncertainty or unstructured uncertainty. The structured uncertainty

is the representation of a known structure with some unknown perturbations

in the parameters themselves, e.g. a percentage tolerance. The unstructured

uncertainty, however, has less speci�c structure and is generally expressed as a

global multiplier or addition of the gain at each frequnecy. The unstructured

uncertainty is not accounted for in the system identi�cation stage, especially in

the high frequencies range. Details about representations of structured uncer-

tainty and unstructured certainty are referred to several books and publications

[20, 83, 109]. In this thesis, only unstructured uncertainty is considered.

Two common representations of the unstructured uncertainty are shown in

Figure 1.4.The additive uncertainty structure shown in Figure 1.4a leads to the

form of the perturbed plant G = G0 +4 , where G0 is the nominal plant and

∆ represents the di�erence between the real dynamics and the nominal model,

i.e. the unmodelled synamics. In Figure 1.4b, the multiplicative uncertainty

model is formulated in terms of G as G = G0 (I + ∆). Both of the unstructured

uncertainty models are commonly used and widely discussed in various papers

and books [20, 83, 109]. The relationship between the unstructured uncertainty

models and the conditions for the robustness is discussed in the following.

It is known that the stability condition of closed-loop systems is in�uenced

by the uncertainty. The Small Gain Theorem by Zames [103], which is based on

the feedback structure shown in Figure 1.5 where G1 and G2 are the LTI transfer

functions, implies that the system performance is constrained to some extent by

the uncertainty.

Theorem 2. In Figure 1.5, if G1 and G2 are stable, the system is stable if

‖G1G2‖∞ < 1 (1.8)

and

‖G2G1‖∞ < 1 (1.9)
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(a) Model structure of the additive uncertainty representation

(b) Model structure of the multiplicative uncertainty representation

Figure 1.4: Two typical representations of the uncertainty models
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Figure 1.5: Positive Feedback Control to explain Small Gain Theorem

Consider the structure of the feedback control system with the additive un-

certainty model in Figure 1.4a, we can easily derive the transfer function from

signal c to signal d as

Tcd = K [I +KG]−1

In other words, the uncertaint system in Figure 1.4a is equivalent to the sytem

in Figure 1.6.

Figure 1.6: Equivalent feedback control system for the Small Gain Theorem

Let G1 = 4, Tcd is viewed as G2 in Figure 1.5. By the Small Gain Theorem,

we then have

Theorem 3. For a stable uncertainty set 4, the closed loop system is stable if∥∥4 ·K [I +KG]−1
∥∥
∞ < 1 and

∥∥K [I +KG]−1 · 4
∥∥
∞ < 1

i.e.

∥∥K [I +KG]−1
∥∥
∞ <

1

‖4‖∞
(1.10)

Writing the formulation of the additive uncertainty as 4 = 4̄ ·W where 4̄
is the normalized norm of the perturbation ( i.e.

∥∥4̄∥∥∞ ≤ 1 ) and W is the
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weighting function on 4̄, we can reform Inequality 1.10 as

∥∥W ·K [I +KG]−1
∥∥
∞ = ‖W ·Q‖∞ <

1∥∥4̄∥∥∞ = 1 (1.11)

For the multiplicative uncertainty model, by the Small Gain Theorem, the

stability condition for the feedback control system becomes∥∥KG [I +KG]−1
∥∥
∞ <

1

‖4‖∞
(1.12)

i.e.

∥∥W ·KG [I +KG]−1
∥∥
∞ = ‖W · T‖∞ <

1∥∥4̄∥∥∞ = 1 (1.13)

The inequalities 1.11 and 1.13 are known as Robust Stability (RS) conditions.

Table 1.1.1 lists the Robust Stability (RS) conditions for di�erent types of un-

certainty models. The derivations of these types of uncertainty models are well

known in many texts e.g. [18]

Uncertainty Plant Gp Robust Stability (RS) conditions

Gp = G · [1 +4 ·W ]
∥∥W · KG

I+KG

∥∥
∞

= ‖W · T‖∞ ≤ 1

Gp = G+4 ·W
∥∥W · K

I+KG

∥∥
∞

= ‖W ·Q‖∞ ≤ 1

Gp = G · [I +4 ·W ·G]−1
∥∥W · G

I+KG

∥∥
∞

= ‖W · V ‖∞ ≤ 1

Gp = G · [1 +4 ·W ]−1
∥∥W · I

I+KG

∥∥
∞

= ‖W · S‖∞ ≤ 1

Table 1.1.1: The RS conditions for di�erent types of uncertainty

1.1.4 H∞ Control

The robustness is an important topic in the control system design. A well designed

control system often results in good command tracking performance despite the

unmodelled dynamics and the environmental disturbances. Robustness has been

a dominantly in�uential topic in system control theory in the 1960s and 1970s.

H∞ optimal control theory was then developed in the early 1980s when Zames

[104] considered a control problem as an optimization in terms of H∞ norm to

minimize the disturbance insensitivity in feedback systems. Since then, many

e�orts on developing the H∞ control theory were made by researchers. The

theory was soon recognized to deal with more constraints, such as robustness to

modelling errors and other performance requirements. TheH∞ method developed

by Helton et al. is systematic and extensible to more general control problems

with classical control theory [47]. The extension of the H∞ control theory to

nonlinear systems has also been an active research topic in optimal control theory
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in recent years. Several textbooks [24, 83, 109] introduce the theory of the H∞

method as well as their applications. In this section, the background of the H∞

optimal control theory is described.

In general, the guidelines to design a robust control system are described as

follows :

For the closed-loop system in Figure 1.7, in terms of the sensitivity functions

S, T, U , it is claimed that

• For the purpose of disturbance rejection, S to be small.

• For the purpose of noise attenuation, T to be small.

• For the purpose of reference tracking, T to be close to identity.

• For the purpose of control e�ort minimization, Q to be small.

• For the purpose of maintaining robust stability, Q to be small for the addi-

tive uncertainty model or T to be small for the multiplicative uncertainty

model.

It is observed that the requirements for disturbance rejection and noise attenu-

ation are in con�ict because Equation 1.7 : S + T = 1 must be satis�ed. This

requires a trade-o� which is fundamental to closed loop systems and the trade-

o� is generally achieved by making T small at high frequency and S small at

low frequency, as shown in Figure 1.3. Moreover, to accomplish the reduction

of the disturbances in terms of the sensitivity function S, the weighting function

W−1
S is selected to re�ects the desired shape of the function S. It is in general

required the function S is low at low frequencies as shown in Figure 1.8a. On

the other hand, since the complimentary sensitivity function T determines the

tracking performance and the robustness characteristic, the weighting function

W−1
T is chosen to shape the function T to keep it near unity at low frequencies

and as low as possible to reject the noise at high frequencies in Figure 1.8b. It is

therefore known that these requirements on S and T (and sometimes on Q) can

be viewed as the design speci�cations equivalent to the constraints of the design

boundary.

It is further discussed that, assuming that the multiplicative uncertainty

model represents the perturbation in the plant model G, the robust stability

condition leads to the �rst constraint

∥∥WT ·KG [I +KG]−1
∥∥
∞ = ‖WT · T‖∞ < 1 (1.14)
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Figure 1.7: Structure of a unitary feedback control system
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i.e.

‖T‖∞ < |WT |−1 ,∀ω (1.15)

Thus, it can be known that the peak value of the function T is bounded by

|WT |−1.

In addition, another important property of a closed loop system is the nominal

performance (NP) requirement of the sensitivity function S [83]

‖WS · S‖∞ < 1,∀ω (1.16)

i.e.

‖S‖∞ < |WS|−1 (1.17)

This implies that the magnitude of S is bounded by |WS|−1. Typical repre-

sentations of the two constraints (RS and NP) are plotted in Figure 1.8a and

Figure 1.8b respectively where the two weighting functionsWS andWT are viewed

as the upper bounds for S and T . The controlled system performance can thus

be tailored by properly choosing the weighting functions WT and WS so as to

achieve the desired performance.

The weight shaping problem is generally acknowledged as the key requirement

to success in the H∞ control problem. The requirements in Equation 1.14 and

1.16 may be expressed in the stacked form as the so-called mixed sensitivity

problem ∥∥∥∥∥
[
WSS

WTT

]∥∥∥∥∥
∞

< 1 (1.18)

The minimization of the H∞ norm of the mixed sensitivity problem is ad-

dressed :

By rewriting WS and WT as a function of γ,

γ = min
Stabilizing K

∥∥∥∥∥
[
WSS

WTT

]∥∥∥∥∥
∞

(1.19)

Moreover, not only the bounds WS and WT for S and T but also the bound WQ

for Q may be included. The problem 1.19 can thus be extended to
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(a) S and 1/Ws

(b) T and WT

Figure 1.8: Bode diagrams of the relationship between the two sensitivity func-
tions S and T and the weighting function WS and WT [83]
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γ = min
Stabilizing K

∥∥∥∥∥∥∥
 WSS

WTT

WQQ


∥∥∥∥∥∥∥
∞

(1.20)

This is generally known as the canonical form of the mixed sensitivity control

problem2. The derivation of Equation 1.19 is presented below.

Consider the system in Figure 1.9 and compare it with Figure 1.7, G is the

augmented plant model that consists of the nominal plant model and the uncer-

tainty model ∆, K is the controller, the exogenous output from the system is z,

and the exogenous input signals w includes the input command u, disturbance

signal d and the noise n .

Figure 1.9: General model structure to form H∞ control problem

2

REMARK For mathematical convenience, the stacked speci�cations provides an intuitive way

to combine all the requirements. However, the procedure in fact sacri�ces the accu-

racy of each speci�cation. For example, if the Euclidean norm is used in the mixed

sensitivity problem, we can rewrite Equation 1.18 as∥∥∥∥[ WS · S
WT · T

]∥∥∥∥
∞

= max

√
|Ws · S|2 + |WT · T |2 < 1

This is very similar to Equation 1.14 and 1.16. However, suppose |WS · S| =
|WT · T | in the worst case, we have |WS · S| ≤ 0.707 and |WT · T | ≤ 0.707. Com-

pared to the Equation 1.14 and 1.16, these two constraints are more stringent by a

factor of 1/
√
2. However, because the choice of the weighting functions is �exible,

this can be taken into account in selecting the weighting functions. Therefore, the

use of the Euclidean norm still useful in the H∞ control.
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In Figure 1.9, the control laws for such system are expressed as[
z

e

]
= G

[
w

c

]
=

[
G11 G12

G21 G22

][
w

c

]
and

c = Ke

The transmission function Fzw between the exogenous output signal z and the

the exogenous input signal w is derived as

z =
(
G11 +G12K (I −G22 ·K)−1G21

)
w = Fzww (1.21)

In terms of the system in Figure 1.10, Equation 1.21 becomes
zS

zT

zU

e

 =

[
G11 G12

G21 G22

][
u

c

]
(1.22)

where

G11 =

 WS

0

0

 , G12 =

 −WSG

WQ

WTG

 , G21 = I, G22 = −G

The transmission function Fzw is then derived as

Fzw = G11 +G12K (I −G22K)−1G21 =

 WS [I +GK]−1

WQK [I +GK]−1

WTGK [I +GK]−1

 =

 WSS

WQQ

WTT


(1.23)

The term in Equation 1.23 may then be used to formulate the standard H∞ mixed

sensitivity problem as

γ = min
Stabilizing K

‖Fzw‖∞ = min
Stabilizing K

∥∥∥∥∥∥∥
 WSS

WTT

WQQ


∥∥∥∥∥∥∥
∞

where γ is a positive real number.
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Figure 1.10: Standard structure of the H∞ mixed sensitivity problem
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The algorithm proposed by Doyle et al. [21] to solve the above problem is

summarized :

Theorem 4. In the standard form of a feedback control system in Figure 1.9, for

the plant G with the state space realization of
ẋ (t) = Ax (t) +B1w (t) +B2c (t)

z (t) = C1x (t) +D11w (t) +D12c (t)

e (t) = C2x (t) +D21w (t) +D22c (t)

i.e. the generalized plant is G =

 A B1 B2

C1 D11 D12

C2 D21 D22


with the following assumptions :

• (A,B2, C2)is stabilizable and detectable

• D12 and D21 have full rank

•

[
A− jωI B2

C1 D12

]
has full column rank for all ω

•

[
A− jωI B1

C2 D21

]
has full row rank for all ω

• D11 = 0 and D22 = 0
there exists a stabilizing controller K such that, for a given positive number γ,

‖Fzw‖∞ < γ

if and only if

1. the solution X∞ ≥ 0 to the algebraic Riccati equation

ATX∞ +X∞A+ CT
1 C1 +X∞

(
γ−2B1B

T
1 −B2B

T
2

)
X∞ = 0

is such that

Re
(
λi
[
A+

(
γ−2B1B

T
1 −B2B

T
2

)
X∞
])
< 0,∀i
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2. the solution Y∞ ≥ 0 to the algebraic Riccati equation

AY∞ + Y∞A
T +B1B

T
1 + Y∞

(
γ−2CT

1 C1 − CT
2 C2

)
Y∞ = 0

is such that

Re
(
λi
[
A+ Y∞

(
γ−2C1C

T
1 − C2C

T
2

)])
< 0,∀i

the spectral radius ρ (X∞Y∞) < γ2

The solution to the H∞ feedback controller is thus given by the solutions to

these two algebraic Riccati equations above by [83]

K (s) = −F∞ (sI − A∞)−1 Z∞L∞

where

F∞ = −BT
2 X∞

Z∞ =
(
I − γ−2Y∞X∞

)−1

L∞ = −Y∞CT
2

A∞ = A+ γ−2B1B
T
1 X∞ +B2F∞ + Z∞L∞C2

The program codes to implement the solution to the two Riccati equations are im-

plemented in MATLAB Robust Control Toolbox [8], which reliably and e�ciently

compute the solution to the Riccati equations for the H∞ controller.

In addition to the above H∞ approach based on solving the Riccati equations,

an alternative approach proposed by McFarlance and Glover [30, 66, 67] is known

as H∞ loop-shaping method, which is based on the H∞ robust stabilization by

the classical loop shaping technique and has the great advantage that weighting

functions do not need to be chosen. The design process of the H∞ loop-shaping

method is separated into two stages. Firstly, the open-loop plant Gol equipped

with a pre-compensatorW 1 and a post-compensatorW2 as shown in Figure 1.11a

is given by [83]

Gol = W1GW2

The robust stabilization problem which is then addressed is to �nd the stabilizing

H∞ controller such that
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(a) The H∞ loop shaping procedure-1

(b) The H∞ loop shaping procedure-2

Figure 1.11: Control structures in the H∞ loop shaping method
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∥∥∥∥∥
[

I

K∞

]
(I −GolK∞)−1M−1

∥∥∥∥∥
∞

≤ ε−1

where ε is selected such that ε ≤ εmax where εmax is de�ned as

ε−1
max , inf

∥∥∥∥∥
[

I

K∞

]
(I −GolK∞)−1M−1

∥∥∥∥∥
∞

and Gol = M−1N where M,N ∈ H∞ are the normalized co-prime factors of Gol

and satis�es the Bezout identity equation

M ·M∗ +N ·N∗ = I

Secondly, the implemented feedback controller K is then computed by combining

the two weighting functions W1 and W2 with K∞ as shown in Figure 1.11b by

K = W1K∞W2

In contrast to the above state-space approaches, Helton et al.[47] proposed

a systematic method to solve the H∞ control problem in the frequency domain.

The H∞ optimization problem in his approach mathematically views

Equation 1.20 as a minimax optimization problem. Such optimization problem

can be written as

min Γ (ω, f (jω)) = min
StabilizingK

∥∥∥∥∥∥∥
 WSS

WTT

WU · U


∥∥∥∥∥∥∥
∞

(1.24)

= min
StabilizingK

max
jω

(WSS,WTT,WUU) (1.25)

≤ γ∗ (1.26)

where Γ (ω, f (jω)) is the objective function which is dependant on the variables

f (jω) and ω , and f (jω) is any analytic function in the frequency domain (e.g.

S, T or Q).

Helton and Merino [47] proposed that the optimal solution to Equation 1.24

(the f term in Equation 1.24 is usually the primary sensitivity function T or

the noise sensitivity function Q) provides the solution of the stabilizing controller

(which can be computed byK = T [(I − T )G]−1 = Q [I −GQ]−1). The controller

may be identi�ed as a high-order rational transfer function. However, normally,

the rational function of the controller solution is required to be of low order to
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be implemented in the real system. This can be accomplished in the system

identi�cation process and by using model reduction techniques [29, 81].

Furthermore, the objective function Γ (ω, f (jω)) in Equation 1.24 is often

converted to the function Γ
(
ejθ, f

(
ejθ
))

on the unit circle. This is because the

optimization problem in the ejθ domain can be treated as a Nevanlinna-Pick

interpolation problem [71, 73] and solved by using the solution to the Nehari

problem [70]. For scalar cases, the solution to the Nehari problem is known to

be unique and available by [3, 4, 5]. For vector cases, the Nehari problem can

be solved by Nehari commutant lifting formula [47, 69, 77]. As a result, Helton

and Merino's method attempts to approximate the performance function Γ in

Equation 1.24 to the quadratic form using the solution update fk+1 = fk + th

given by

Γ
(
z, fk+1

)
= gk +

N∑
i=1

2 ·Re
(
aki h

k
i

)
+

N∑
i=1

δ
∣∣hki ∣∣2 (1.27)

where z is the set of sampling points on the unit circle, and gk = Γ
(
z, fk

)
,

ak = ∂
∂z

Γ
(
z, fk

)
, δ = ∂2

∂z∂z̄
Γ
(
z, fk

)
The function Γ in Equation 1.27 by iterating to the closest circular form is then

related to the Nehari problem. The solution to the H∞ optimization problem

is then possibly obtained. Then this sub-optimal solution is transformed to the

frequency domain to sythesize the rational function of the controller. The algo-

rithm and the approach for solving the H∞ problems is coded as a package in

Mathematica language and is available for academic use at [41].

Another algorithm proposed by Helton et al. [39] is based on the Newton

Iteration (NI) method to solve the operator equations for optimality conditions.

The solution is optimal to the original optimization problem and converges very

quickly. However, the method is found to be sensitive to the initial points and

may diverge as the iteration continues.

The two algorithms to solve the problem are therefore discussed respectively

in more details in Chapter 2 and 3.

To take advantage of the fact that frequency responses may be used almost

directly from the experimental data, Zhao et al [107] developed a sub-optimal

nonparametric H∞ approach based on Helton's approach [47] and applied this to

an automotive engine Peak-Pressure-Position ( P.P.P. ) control problem. In the

extension of Zhao et al's frequency approach to MIMO systems, a norm called

H∞ Frobenius norm in [92], de�ned as

sup
ω
‖G (jω)‖ = sup

ω
(trace(G (−jω) ·G (jω)))1/2 where G (jω) is the frequency

response function, is introduced. Although the NI method cannot be used to
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optimise MIMO systems using the maximum singular value norm, it can be

used for the H∞ Frobenius norm for MIMO systems which has itself certain

advantages[92]. The H∞ Frobenius norm optimization approach can be adapted

to solve a form of the mixed sensitivity control problem, which allows better

control over the elements of the closed loop transfer function matrices, such as

allowing decoupling[108]. In particular, Helton's method was extended by Zhao

[106] as sub-optimal nonparametric method to deal with M.I.M.O. control prob-

lems and also implementeed on the application of the Torque-λ decoupling control

in the Engine Control Unit (ECU) [108].

1.2 Automotive Engine Control

The engine is the key part to generate the power to accelerate automotive vehi-

cles. Nowadays, most vehicles are equipped with internal combustion (IC) engine

because its superior thermal e�ciency and compactness of the systems. In the

recent engine technology, gasoline and diesel engines are the most commonly used

types of internal combustion engine systems in terms of di�erent thermal cycles

and fuel properties. The gasoline engine is degisned by means of the Otto cycle,

which based on the four strokes : intake, compression, combustion and exhaust.

The fuel in the gasoline engine is pre-mixed in the intake manifold and ignited

by the spark plug in the combustion chamber. As a result, the gasoline engine

is also known as the spark ignition (SI) engine. The diesel engine, however, is

built according to Diesel cycle. The combustion in diesel engine is based on the

self-ignition of the fuel. There is no spark plug in diesel engine but the engine

itself has the same four strokes as the gasoline engine.

The power and torque generated by the IC engine is determined by many

factors such as the combination of the fuel and air, the ignition time, and the

propogation of the �ame in the combustion chamber. The general engine control

scheme is shown in Figure 1.12a. In the control perspective, the engine control

unit (ECU) collects the data from various sensors that monitor the conditions

of the intake air-fuel combination (e.g. fuel injection time, manifold air pressure

MAP) , spark time, and the exhaust gas properties, computes the system variables

of the related optimal combustion condition, transmits the control commands to

the corresponding acuators (e.g. the throttle position, ignition command), and

communicates the signals of exhaust gas property, engine speed, the brake torque,

and other signals with other control units. The control structure of the ECU is

complicated in reality. Nevetheless, to calibrate the ECU, the engine control

system is, in general, modelled as a closed-loop control system such as the block
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diagram of the system in Figure 1.12b.

In this section, four important control loops in the ECU are introduced in

more detail : Air-Fuel Ratio Control, Ignition Control, Idle Speed Control, and

Knock Control. In Chapter 6 of the thesis, to investigate the performances of

the controllers by using di�erent algorithms, one of the control loops, which

determines the optimal spark advance (SA) in terms of the peak pressure positions

(PPP) of the cylinders in order to generate the maximum brake torque (MBT)

[76, 75], is used as an example.

(a) General gasoline engine control scheme [22]

(b) Block diagram of the engine control system

Figure 1.12: Modelling of the engine control system
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1.2.1 Air-Fuel Ratio Control

Air-fuel ratio control is one of the most important tasks in automotive engine

control. It is known [59] that, for a Spark-Ignition (SI) engine, the stoichiometric

mixture of the air and fuel for the combustion is typically 14.7:1. The index λ

de�ned as the value of the air/fuel ratio over 14.7 determines the e�ciency of the

Three-Way-Catalytic (TWC) converter in removing hydrocarbon (HC), carbon

monoxide (CO), and nitrogen oxide (NOx) emissions ( i.e. the system meets the

emission regulations if λ ∼ 1 ) as well as the fuel economy and power generation.

With even small (5%) devidents, there exist signi�cant pollutants, such as HC,

CO, and NOx, in the exhaust gases. As a result, a good control strategy is

required to determine the angle of electronic throttle to �x the manifold absolute

pressure (MAP), and mass air �ow (MAF). In addition, the opening and closing

times of the fuel injector is also the key to achieving good emission control. As

a result, most modern vehicles are now equipped with the universal exhaust gas

oxygen sensors (UEGO) located in the air-fuel control path. The UEGO device

allows feedback control of λ and so greatly improves the performance of λ control.

Furthermore, TWC converters are commonly installed to reduce of the pollutants

by chemical deoxidation. Nevertheless, there exists a problem of the reduction

of the TWC converter's e�ciency below the working temperature, which results

in a high level of exhaust pollution. In summary, with the stringent regulations

on vehicle emissions, the role of the air-fuel ratio controller in the ECU is an

essential but a challenging problem for the automotive control engineers.

1.2.2 Ignition Control

The mixture of air and fuel in the engine combustion chamber requires to be

ignited for generating the power. The control of the combustion is based on

the timing of the ignition and the metering of the air and fuel. The ignition

timing has a signit�cant e�ect on the e�ciency of the energy from the fuel.

Conventionally, for a spark-ignition engine, the ideal ignition time is set before

the crank reaches the top dead centre (TDC). The angle before TDC is known

as the Spark Advance (SA). It is found in [51] that the peak pressure position

(PPP) of the crank is highly related to the optimal ignition timing. As a result,

the peak pressure position signal can be used to determine the optimal settings for

the spark advance. In the typical on-road vehicle, the ignition controller computes

the nominal ignition time in terms of the engine speed and other measured signals,

such as the manifold pressure and the knock detector [35].
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1.2.3 Idle Speed Control

In powertrain control systems, the idle speed controller is an important compo-

nent in the engine management system (EMS). A typical vehicle is known to

consume about 30 percent of the fuel at idle in cities [55]. Hence, the control of

the idle speed signi�cantly in�uences the overall fuel economy. It is estimated that

reducing 100 rpm at engine idle speed theoretically improves the fuel e�ciency

for one mile per gallon in the standard Constant Volume Sample calculation [54].

However, engine stall limits the achievable fuel economy by increasing the necces-

sary engine speed in idle speed conditions. Typically, the range of idle speed in

most engines is about 600 rpm to 1,000 rpm. In the idle speed control loop, the

amount of air and fuel is respectively determined by the opening of the electronic

throttle valve and the fuel injection time. To maintain the engine speed at idle,

the optimal ignition time is often calculated in terms of the maximum best torque

(MBT).

1.2.4 Knock Control

Knock phenomenon results from a self-ignition behaviour that produces very high

pressure and locally high temperatures in the engine. Knock sometimes leads to

catastrophic consequences, such as the damage of the cylinder and the rim of

the piston. As a result, it is important to adjust the control parameters to

prevent knock when it occurs. The knock control strategy is usually to retard the

spark advance or decrease the boost pressure of the turbocharger until the knock

phenomenon disappears and then to gradually advance the SA and increase the

boost pressure thereafter [82].

1.3 Overview of the Thesis

This thesis presents an analysis of the di�erent analytic function methods used

to solve nonparametric optimization problems in the H∞ method. The summary

of each chapter is outlined below.

Chapter 2 The chapter presents the review of the Disk Iteration (DI) method

proposed by Helton and Merino [46] and its implementation. The optimization

problem in the DI method is reviewed in Section 2.1 where the approximation

to the original H∞ optimization problem is summarized. The two nonparametric

spectral factorization methods in the DI method are studied in the beginning of

Section 2.2. The solution to Nehari problem related to the original optimization
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problem by using the Nehari-commutant-lifting formula is also discussed in this

section. The algorithm of the DI method and the implementation of the DI

method are presented in the latter part of Section 2.2.

Chapter 3 This chapter re-states the theory of the Newton Iteration (NI)

method proposed by Helton et al. [39] and proposes the Matlab implementa-

tion of the NI method. In Section 3.1, the optimality conditions of the H∞

optimization problem are presented. The operator equation in the NI method is

stated in the start of Section 3.2 where the solution to the operator equation is

re-produced from the results in [39]. In terms of the Newton iteration procedure,

the implementation of the Jacobian operator approaches the optimal analytic

solution to the H∞ optimization problem. Later in Section 3.2, the matrix im-

plementation of the two components as the Conjugate Toeplitz operator and the

Shifted Hankel operator is presented. The update increment function is found by

the inverse of the Jacobian operator in the NI method at the end of this chapter.

Chapter 4 The chapter shows three numerical examples to analyze the above

two analytic function methods. The formulation of each example is described in

the �rst three sections of this chapter. The discussion of the DI and NI methods

in terms of their convergence rate is addressed in Section 4.4. The �nding of the

NI method's property in the three examples is discussed in Section 4.5.

Chapter 5 This chapter studied a nonparametric method proposed by Helton

and Sideris [40] in terms of the HadamardH∞- Frobenius norm in the mixed sensi-

tivity control. The nonparametric methods for the internal stability requirement

are discussed at the begining of Section 5.2 where the Hadamard H∞- Frobenius
norm problem proposed by Diggelen and Glover [92] is also reformed for nonpara-

metric control. The algorithm of the LP method is given in the same section.

The linear programming optimization problem using Streit's algorithm [86] is re-

viewed in Section 5.3. An example problem due to Skogestad and Postlethwaite

[83] is used to investigate the nonparametric LP method in Section 5.4.

Chapter 6 This chapter presents an application of the nonparametric H∞ con-

troller design method on an automotive Pressure-Peak-Position control problem.

In Section 6.1, the formulation of the problem is addressed. The single sensitiv-

ity control problem is addressed using the proposed analytic function methods,

i.e. the DI, NI, and LP methods, and presented in Section 6.2. In Section 6.3,

the mixed sensitivity control problem is considered by means of the three ana-
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lytic function methods. The analysis and comparison of these analytic function

methods are summarized in Section 6.4.

Chapter 7 This chapter outlines the results presented in the previous chapters

and proposes the future research direction of the work in this thesis.

1.4 Contributions of the Thesis

The claims to novelty in the thesis are

• The Matlab implementation of the DI method originally proposed by Helton

et al. [46] is presented for the purpose of comparison and analysis with other

algorithms. The nonparametric spectral factorization methods by Wilson

[99] and Harris and Davis [36] are also coded in Matlab and incorporated

as part of the optimization code. Although the solution of the DI method

is not optimal to the general H∞ optimization problem, the optimization

problem can be approached by iterating to the closest circular form and

solved in terms of the Nehari problem. Thus, its sup-optimal solution is

still useful for nonparametric control and, in the problems with circular

performance function, an optimal solution is obtained. Since the original

programs that implement the DI method were coded in Mathematica [41],

for use in engineering applications, it is practically useful to integrate a

Matlab version of the DI method as part of a controller design toolbox.

• An alternative nonparametric method known as Q-parameterization or You-

la-Kucera parameterization of sensitivity functions by the sensitivity func-

tion Q can be used in order to meet the internal stability conditions in the

feedback H∞ problem and to replace the parametric interpolation method

proposed by Helton et al. [47, 106]. The interpolation method with the DI

method has previously been implemented on an automotive engine control

problem by using the Frobenius H∞ norm [108], however, this interpolation

method required the parametric identi�cation of the RHP pole and zero of

the plant. The Q-parameterization method skips this parametric identi�ca-

tion process and thereby allows the approach to become fully nonparamet-

ric method. In this thesis, the Q-parameterization method is successfully

applied to an automotive engine control problem with nonparametric opti-

mization algorithms.

• The implementation of the NI method originally proposed by Helton et

al.[39] is made and its e�ectness is investigated. Compared to the DI
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method, the NI method is capable of dealing with multiple function op-

timization with non-circular type objective functions. The solution by the

NI method is potentially optimal to the general optimization problem. Fur-

thermore, the NI method should in principle converge quickly to the optimal

solution due to its second order convergence rate. These properties of the

NI method potentially save cost in computing e�ort during the optimization

process as well as improving the accuracy of the solution. The NI method

is therefore more suitable for general nonparametric control problems. The

NI method is also implemented in Matlab in this thesis for the purpose

of analysis and practical use. This implementation is the �rst published

implementation of this important algorithm.

• The comparative analysis of the DI method and the NI method is presented.

This is the �rst independent comparison of these two methods. The analytic

solutions by both methods are investigated by applying to several numerical

examples.

• A nonparametric approach by Streit's [86] linear programming (LP) method

for H∞ control problems is proposed. Compared to that the DI method and

the NI method which are both based on the computation of the Fourier co-

e�cients of frequency response function, the LP method is formed by the

approximation of the analytic solution directly on the basis of the frequency

response itself. The central optimization approach originally studied by

Helton and Sideris [40] using Streit's method [86] is described in this the-

sis. The implementation of Streit's algorithm is also coded in Matlab for

practical use and for comparison purpose. An example of a SISO control

problem with multiplicative uncertainty by this nonparametric approach is

demonstrated.

• The nonparametric approach using the di�erent analytic function methods,

i.e. the DI method, the NI method and the LP method, is applied to an

automotive engine control problem. The analysis of the di�erent controllers

from the di�erent analytic function methods is presented.
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Chapter 2

Disk Iteration Method for H∞

Optimization

The standard H∞ control problem is often viewed as a mathematical optimization

problem. The optimization problem mentioned in Chapter 1 can be solved by the

Disk Iteration (DI) method proposed by Helton and Merino [46, 47]. Most parts

of this chapter are originated from the work of Helton and Merino[46, 47] and the

programs to implement the DI method are also available in [41]. However, the

Matlab implementation of the DI method is �rstly accomplished for the purpose

of comparison and practical use.

In this chapter, starting with the statement of the optimization problem and

the transformation from the OPTe problem to the OPTd problem in

Section 2.1, the underlying theory and the implementation of the Disk Iteration

(DI) algorithm are presented in more details in Section 2.2.

2.1 Optimization Problem

This section is the summary of the work on H∞ optimization in the frequency

domain by Helton et al in [37, 47] and in other related publications [38, 39, 40,

42, 43, 45, 46, 48]. In this section, the H∞ control problem in the frequency

domain approach is formulated by using Equation 1.24 . Equation 1.24 speci�es

a mathematical minimax problem :
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Given a continuous positive-valued function Γ in CN where N is the dimension

of the problem, and a set of all the stable functions on the jω axis ( denotes as

RH∞ , the space of all functions whose poles have negative parts. ), �nd the

optimal function f ∗ (jω) ∈ RH∞ such that

γ = inf
f∈RH∞

sup
ω

Γ (ω, f (jω)) (2.1)

where ω represents the frequency, and f (jω) is the frequency response function

This problem is known as the OPT problem in [48]. It can be translated into

an optimization problem that searches the stabilizing controller in terms of the

measure γ in the worst performance case.

In mathematical analysis, the functions are often treated on the unit disk

rather than in the complex plane because of the use of the Fourier Transform, the

ease of implementation in the computer codes and other properties in complex

analysis. The transformation from the imaginary axis to the unit circle ∂D is

possible via a Linear Fractional Transform (LFT). A LFT is a one-to-one, linear,

and bounded mapping in this case from the imaginary axis ( s = jω ) onto

the unit circle ∂D. It transforms the poles and zeros of the function in the left

half plane onto a point inside the unit cirle and maps the poles and zeros of

the function in the right half plane onto the point outside the unit circle. The

sampling points on the imaginary axis ( e.g.. jω ) are thus mapped to points on

the unit circle ∂D by the linear fractional transform, as illustrated in Figure 2.1.

Figure 2.1: Linear fractional transform

Thus by means of the linear fractional transform, the function f (jω) in RH∞

in the OPT problem is mapped to the function f
(
ejθ
)
in A, which is the subspace
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of all analytic functions f
(
ejθ
)
that are bounded and continuous in the unit disk

D. The OPT problem is therefore transformed to the so-called OPTe problem

given by

OPTe Given a continuous, real, positive valued function Γ in D, �nd the

optimal function f ∗
(
ejθ
)
such that

γ∗ = inf
f∗∈A

sup
ω

Γ
(
ejθ, f ∗

(
ejθ
))

= inf
f∗∈A

∥∥Γ
(
ejθ, f ∗

(
ejθ
))∥∥

∞ (2.2)

where ejθ are the points spaced around the unit circle, f
(
ejθ
)
is con-

tinuous in H∞ and ∗ denotes the function value at the optimum.

For simplicity, we will denote z = ejθ in the rest of the thesis. It is stated in

[45] that the OPTe problem is closely related to the sub-optimization problem

OPTc problem in terms of the sublevel set Sθ (c) = {Γ (z, f (z)) ≤ c, c ∈ R+}with
a prescribed performance function c ∈ R+ :

OPTc Find f ∗ (z) ∈ A with Γ (z, f (z)) ≤ c, ∀θ,and c ∈ R+such that

γ∗ = inf
f∗∈A
‖Γ (z, f ∗ (z))‖∞ = inf

f∗∈A
‖k (z)− f ∗ (z)‖2

∞ ≤ c (2.3)

where k (z) is any complex-valued function

It is also shown in [45] that the sublevel sets Sθ have the shape of disk and

their properties of boundness, simple connectness, smoothness and convexity are

closely related to the properties of solutions to the OPTe problem. Therefore,

the solution to the OPTc problem can be viewed as the solution to the OPT

problem.

Furthermore, in [46, 47], the generalization of the above OPTc problem for

N ≥ 1 is considered :

OPT d Given the positive continuous functions w (z) and k (z), �nd f (z) ∈
H∞N such that

γ = inf
f∈H∞N

sup
θ

Γ (z, f (z)) = inf
f∈H∞

sup
θ

N∑
i=1

wj (z) |ki (z)− fi (z)|2 (2.4)

Two examples to illustrate the relationship between the OPTd and the OPTc

problems are discussed in the following.
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Example1 [47] Given a scalar-valued function ( i.e. theOPTd problem forN = 1 )

Γ (z, f) = w (z) |k (z)− f (z)|2 (2.5)

= (2 + cos θ)

∣∣∣∣ 1

z + 0.5
− f

∣∣∣∣2 (2.6)

≤ γ

it is seen that the solution must lie in the disk centred at 1
z+0.5

with the radius√
γ/ (2 + cos θ). This can be related to the OPTc problem by observing that the

sublevel sets of the solutions f are

f =
{
f ∈ H∞; |k − f |2 ≤ r2, for r ∈ R+

}
where the centre function k = 1

z+0.5
and the radius function r =

√
γ/ (2 + cos θ).

Consequently, the equivalent OPTc problem for this objective function Γ (z, f)

can be reformed as

inf
f∈H∞

sup
θ

Γ (z, f) = inf
f∈H∞

sup
θ

(2 + cos θ)

∣∣∣∣ 1

z + 0.5
− f

∣∣∣∣2 (2.7)

= inf
f∈H∞

sup
θ

∣∣∣k − f̃ ∣∣∣2 (2.8)

where k =
(√

γ/ (2 + cos θ)
)−1/2

· 1
z+0.5

and f̃ =
(√

γ/ (2 + cos θ)
)−1/2

f

As the OPTc problem is solvable by solving the Nehari problem, we immedi-

ately have the solution to the optimization for this type of Γ (z, f).

Example2 [47] An objective function that has more than one term of the form :

Γ (z, f) = w1 |f |2 + w2 |1− f |2 ≤ γ (2.9)

it can be considered a quasi-circular problem. The sublevel sets of the function

Γ (z, f) are fomulated as the disks centred at w2

w1+w2
with the radius(

1
(w1+w2)

(
γ − w1w2

w1+w2

))1/2

. Furthermore, the problem can be written in terms of

f =

{
f ∈ H∞;

∣∣∣∣ w2

w1 + w2

− f
∣∣∣∣2 ≤ 1

(w1 + w2)

(
γ − w1w2

w1 + w2

)}
This implies that the problem can be viewed as a circular problem with the

centre function w2

w1+w2
and the radius function

(
1

(w1+w2)

(
γ − w1w2

w1+w2

))1/2

. There-
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fore, it is concluded that any function in the form of

Γ (z, f) =
N∑
i=1

wi (z) |ki (z)− fi (z)|2

is said to be a quasi-circular function, which is solvable by means of its equivalent

circular form.

In summary, whether the function is circular or quasi-circular, the OPTd

problem can be solved by solving the equivalent OPTc problem in terms of the

solution to the Nehari problem. To deal with other functions that are not of

circular or quasi-circular form, the approximation to the nearest circular function

is performed. In the ANOPT package [41], the approximation is coded in terms

of using an interpolation method. The interpolation method is discussed in depth

in Section 2.2.

2.2 Disk Iteration Method

This section describes the Disk Iteration method that is presented by Helton

and Merino in [46]. The Disk Iteration method was implemented for application

to several control problems [106, 108] in a very computationally e�ective way.

Computer code for the Disk Iteration method is available from the open source

program ANOPT package in Mathematica [41].

It is valueable to translate the ANOPT programs into the Matlab language.

Since most control engineering work is done in Matlab, a procedural version of

the ANOPT package was currently not available before the work in this thesis.

This section outlines the underlying algorithm in the ANOPT package. Start-

ing the OPTd problem in the previous Section 2.1 and the investigation of the

spectral factorization methods in Section 2.2.1, the solution to the OPTe prob-

lem is attainable by solving the Nehari problem in terms of the commutant lifting

theorem. The description of the solution to the Nehari problem is presented in

Section 2.2.2. The DI algorithm is then described in Section 2.2.3. The imple-

mentation of the algorithm is described in details in Section 2.2.4.
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2.2.1 Spectral Factorization

From the two examples in the previous Section 2.1, it is seen in Equation 2.10

Γi (z, f) = wi (z) |ki (z)− fi (z)|2 = σ (z)σ∗ (z) |ki (z)− fi (z)|2

= |σi (z)|2 |ki (z)− fi (z)|2 =
∣∣∣k̃i (z)− f̃i (z)

∣∣∣2 (2.10)

for i = 1, 2, 3, · · · , N where k̃i (z) and f̃i (z) are also inH∞ and k̃i (z) = ki (z)·σ (z)

, f̃i (z) = fj (z)·σ (z) and wi (z) = σ (z)σ∗ (z) where σ (z) is known as the spectral

factor of wi (z) whereas σ∗ (z) denotes the complex conjugate of σ (z) that the

function wi outside the absolute value bracket is moved into the bracket and the

objective function is re-formulated to the equivalent square form. It is important

to keep the analytic property of the solution function f̃i remain unchanged when

multiplying the function w
1/2
i . The method to factor wi is generally known as

'spectral factorization' method and speci�cally used in Equation 2.10.

Spectral factorization methods have been studied for many years and are

still an important topic in �ltering problems and linear control problems since

Wiener [95] worked on factoring the scalar spectrum of a random sequence as

well as the extension to matricial spectral factorization problems [96, 97]. Af-

ter Youla [100] developed a method to the spectral factorization problem e.g.

wi (z) = σ (z)σ∗ (z) both parametric approaches and non-parametric approaches

have been actively investigated in signal processing and optimal control [78]. An

overview of parametric methods can be found in [61]. In this section, two non-

parametric approaches by Wilson [98] and Harris [36] are presented below.

2.2.1.1 Wilson's method [98]

The method was presented by Wilson [98] for the scalar problems. Wilson's

spectral factorization method was derived on the basis of Bauer method [10, 11],

which is to approximate the coe�cients of the spectral factor by computing the

Cholesky decomposition of the associated Toeplitz matrix. More speci�cally,

given a matrix-valued function f ∈ CN×N de�ned almost everywhere in the in-

terval [−π, π], if f (θ) is Hermitian and nonnegative and f (−θ) = f (θ)T , we can

map the function onto the unit circle in terms of the Fourier series as

f (θ) =
∞∑

k=−∞

γk · ejkθ =
∞∑

k=−∞

γk · zk

where γk are the Fourier coe�cients given by γk = (1/2π)
´ π
−π f (θ) e−jkθdθ.
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It is known [99] that the following conditions hold if f (θ) is de�ned as above

1. f (θ) has full rank almost everywhere (denoted as a.e. afterwards)

2.
´ π
−π log det f (θ) dθ > −∞

3. f (θ) = σ (z)σ∗ (z) where σ (z) is the generating function which is in the

N ×N matrix form de�ned on the unit circle with the properties

(a) σ (z) has Fourier series expansion where all the negative coe�cients

vanish :

σ (z) =
∞∑
k=0

Akz
k

where

Ak =
1

2π

ˆ π

−π
σ (z) e−jkθdθ

(b) σ (z) is analytic in the unit disk, i.e.

{
σ (z) =

∞∑
k=0

Akz
k, |z| < 1

}
(c) σ (z) is optimal, i.e. detσ (z) 6= 0

Taking the logarithm on both sides of the above Condition 3, we have

log f (θ) = log σ (z) + log σ (z)∗

Because the functions f and α can be expanded by Fourier series as

log f (θ) =
∞∑

k=−∞

αkz
k

log σ (z) =
∞∑
k=0

βkz
k

this leads to

log σ (z) = [log f (θ)]+W

i.e.

σ (z) = exp [log f (θ)]+W

where [·]+W is de�ned as

Given g (θ) =
∞∑

k=−∞
Gkz

k,

[g (θ)]+W =
1

2
G0 +

∞∑
k=1

Gkz
k (2.11)

38



For N = 1, the computation of the spectral factor therefore becomes very

easy, which is coded in a procedural language in the following steps :

1. Take the logarithm of f (θ)

2. Calculate the Fourier coe�cients of the function log f (θ) in Step 1 by using

fast Fourier transform (FFT)

3. Compute the function [log f (θ)]+ by applying the inverse fast Fourier trans-

form (IFFT) to the coe�cient vector
[
· · · 0 β0

2
β1 β2 · · ·

]
calculated

in Step 2.

4. The spectral factor is then obtained : σ = exp [log f (θ)]+W

Wilson's spectral factorization method for a scalar function f (θ) is very e�ec-

tive and reliable. However, as reported in [99], this is not valid when f (θ) is a

matrix-valued function because there is no computable extension of logarithms

to matrices. As a result, Wilson made modi�cations in [99] to linearize the prob-

lem and presented an iterative solution in terms of Newton-Raphson method.

Therefore, the Wilson's method is also able to deal with matrix-valued functions.

Nevetheless, in the DI method, the matrix-valued function Γ (z, f (z)) in the H∞

optimization problem is often seperated in individual domain whose the disk-

shaped properties provide the existence of analytic solutions. The details will

be discussed in Section 2.2.2. Thus the matrix version of the spectral factoriza-

tion is not required in the DI method. The scalar Wilson's method is therefore

considered an e�ective algorithm for NP spectral factorization.

2.2.1.2 Harris and Davis' method [36]

Another nonparametric spectral factorization method was presented by Harris

and Davis[36]. Suppose we are given an N × N matrix-valued function H (z)

de�ned on the unit circle with the following properties in [36]

1. H (z) is Hermitian, i.e. H (z) = H (z̄)T

2. H (z) is positive de�nite, i.e. H (z) > 0

3. H (z) is bounded and can be approximated by the Fourier series, i.e.

H (z) =
∞∑

k=−∞

Hkz
k =

∞∑
k=−∞

Hke
jkθ
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It is then possible to derive from the result in [31] that

H (z) = σ (z) ·W · σ∗ (z)

where W is a positive de�nite matrix and

σ (z) =
∞∑
k=0

σkz
k =

∞∑
k=0

σke
jkθ

with σ0 = I.

The spectral factorization method is based on the results of [19], which is

given by the iteration

σn+1 (z) = W−1
n

[
σ∗n (z)−1H (z)σn (z)−1]+

H
σn (z)

for z = ejθ and θ ∈ [0, 2π]

where the projection [·]+ in this spectral factorization method of a function of

the form G (z) = σ∗n (z)−1H (z)σn (z)−1 =
∞∑

k=−∞
Gkz

k is de�ned as

[G (z)]+H =
∞∑
k=0

Gkz
k

and Wn is the mean value of the function σ∗n (z)−1H (z)σn (z)−1.

Furthermore, the projection [·]+H can be calculated by the formula [50] :

[G (z)]+H = 1
2

[Wn +G+ jH [G]] where H [G] is the Hilbert transform of the func-

tion G (z). This allows the use of the standard Matlab function hilbert in the

program to implement Harris' method.

2.2.1.3 Comparison

Both the Wilson and Harris-Davis methods are very e�ective for nonparametri-

cally factoring a scalar function. However, the Harris-Davis method requires more

computation e�orts due to the implicit iteration routine. On the other hand, the

Wilson's method only needs the computation of the logarithm. Therefore, it is

expected that the Wilson's method is faster than the Harris-Davis method. A

simple scalar-valued example is shown below to compare the two methods. The

two methods also work for matrix-valued functions. However, as previously dis-

cussed, in the DI method, only scalar spectral factorization technique is required.

Given the frequency response of a scalar-valued function R (z) =
∣∣∣ z+5

(z+1)2

∣∣∣, we
want to �nd the spectral factor σ as R = σ · σ∗. The frequency response is calcu-
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lated by choosing the sampling points zk = 1/ tan (k/N) for k = 1, 2, 3, · · · , N−1

where N is the number of sampling points. A comparison of the results of the

two methods is shown in Figure 2.2 and Table 2.2.1. It is observed that both

methods converge to the same solution (as shown in Figure 2.2) with the numer-

ical errors 4.5040E-8 and 2.945E-8 respectively. Nevertheless, the computation

by Wilson's method took 0.0022 seconds and the computing time was 0.0291 sec-

onds for Harris-Davis' method, which meets our expectation. As a result, in the

Matlab programs developed in this thesis for scalar applications, the spectral fac-

torization implements Wilson's method as the main solver and the Harris-Davis'

method as the alternative in case of the situation that Wilson's method fails to

converge within the tolerance.

Algorithm Computing Time
Errors

max |R− σσ∗|
Wilson 0.0022 sec 4.5040E-8
Harris 0.0291 sec 2.2945E-8

Table 2.2.1: Comparison of Wilson and Harris-Davis methods

Figure 2.2: Comparison of the spectral factors from Wilson's and Harris-Davis'
methods
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2.2.2 The Nehari Problem and Commutant Lifting

Theorem

In this section, the solution to the OPTc problem is presented. Most of the

contents in this section is from the collection of the work in [39, 47]. It is observed

that the OPTc problem can be solved by solving Nehari problem [39] :

Nehari Given a function k ∈ L∞N , there exists a function f ∗ ∈ H∞N such that

the distance between k to H∞ is

dist (k,H∞) = inf
f∈H∞

‖k − f‖L∞

It is observed that Nehari problem is in the same form of the OPTc problem if

Γ (z, f) = ‖k (z)− f‖2
N (2.12)

It is also known that the solution to the Nehari problem is determined by the

Hankel operator H : H2 → H2⊥ with the action H [f ] = PH2⊥ [kf ] where f, k ∈
LN∞ and the operator PH2⊥ [·] returns the function's Fourier coe�cients whose

indexes are negative. The norm of the Hankel operator H, which is constructed

from the negative Fourier coe�cients of K, equals the minimal distance as its

in�mum is attained. In other words, if there is a maximizing vector α such that

‖Hα‖ = ‖H‖ ‖α‖, the theory by Adamjan, Arov, and Krein[3, 4, 5, 77] gives that

the unique best H∞ approximation f ∗ to k is

f ∗ (z) = k (z)− Hα

α
(2.13)

In other words, Equation 2.13 can be arranged as

k (z)− f ∗ (z) =
H [α]

α
(2.14)

i.e.

H [α] = α (k (z)− f ∗ (z)) (2.15)

Suppose the adjoint of the operator H is denoted as H∗ then

H∗ [α] = α(k (z)− f ∗ (z))

and we have
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H∗ [H [α]] = γ2α (2.16)

where γ = inf
f∈H∞

‖k − f‖L∞ as de�ned in Problem OPTe ( i.e. Equation 2.2 ).

This is generally known as the Nehari-commutant lifting formula [3, 4, 5,

69, 77], which provides the solution to the OPTc problem. More details of the

derivations can be found in [46, 47, 49].

2.2.3 The Algorithm of the Disk Iteration Method

The section is the summary of the results in [39]. The algorithm for solving the

OPTd problem is presented in this section. Given a small perturbation function

h ∈ H∞, expand Γ (z, f + h) in Taylor series about f up to the second order, i.e.

Γ (z, f + h) = Γ (z, f) + 2<
(
∂

∂z
Γ (z, f)T h

)
(2.17)

+h̄T
∂2

∂z̄∂z
Γ (z, f)h+ <

(
hT

∂2

∂z2
Γ (z, f)h

)
+O3 (2.18)

the OPTd problem becomes

Given a continuous positive-valued function Γ in ∂D ,

the subspace A of the analytic functions on the unit circle, and a small function

h ∈ H∞, �nd the optimal function f ∗
(
ejθ
)
such that

γ∗ = inf
f∈A

sup
θ

{
Γ (z, f) + 2<

(
∂

∂z
Γ (z, f)T h

)
(2.19)

+h̄T
∂2

∂z̄∂z
Γ (z, f)h+ <

(
hT

∂2

∂z2
Γ (z, f)h

)
+O3

}
(2.20)

where z = ejθ are the points spaced on the unit circle, and f ∗ (z) is an analytic

function in H∞.
In [39], the algorithm is developed in the sense of the coordinate descent

method. The solution is iterated in terms of fk+1 = fk + th as described in the

following :
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(i) Find h ∈ H∞ that minimizes

sup
θ

Γ (z, f) + 2<
(
∂

∂z
Γ (z, f)T h

)
+Hh,h (2.21)

where Hh,h represents the collection of all the second order terms in

Equation 2.19

(ii) Find a positive real-valued function t ≥ 0 such that

γ = inf
f∈H∞

sup
θ
‖Γ (z, f + th)‖H∞ (2.22)

(iii) Update the current solution by fk+1 = fk + th. Stop the iteration if

the optimum is found

Step (i) calculates the descent direction in terms of the increment function h

and Step (ii) gives the step length in the update process. The next solution is

updated by adding the increment function th in Step (iii). The illustration of the

algorithm to update the solution is shown in Figure 2.3.

Figure 2.3: Disk Iteration method

In Equation 2.17, if the objective function Γ (z, f) is of the circular form, it

can be expressed as

44



Γ (z, f + h) = g + 2< (ah) +Hh,h (2.23)

= g + 2< (ah) + hTAh (2.24)

= g + 2< (ah) + w |h|2 (2.25)

where w is a real positive-valued function, g = Γ (z, f (z)), a = ∂
∂z

Γ (z, f (z)) and

A is a positive de�nite N ×N function.

Furthermore, the function Γ (z, f (z)) can be reformulated as

Γ (z, f (z)) ≈ g + 2< (ah) + w |h|2 + w
∣∣∣ a
w

+ h
∣∣∣2 (2.26)

−w
(∣∣∣ a
w

∣∣∣2 + 2<
( a
w
h
)

+ |h|2
)

(2.27)

= g + 2< (ah) + w |h|2 + w
∣∣∣ a
w

+ h
∣∣∣2 (2.28)

−|a|
2

w
− 2< (ah)− w |h|2 (2.29)

= g − |a|
2

w
+ w

∣∣∣ a
w

+ h
∣∣∣2 (2.30)

A choice of the function w as w = |a|2
g

leads to Γ (z, h) = w
∣∣ a
w

+ h
∣∣2 =

|a|2
g
·
∣∣ g
ā

+ h
∣∣2 (|a|2 = a · ā). This is the typical OPTc problem as discussed in

Section 2.1 and we can immediately obtain the solution by using the Nehari-

commutant lifting formula [47] to solve the related Nehari problem. Moreover,

for other functions where w 6= |a|2
g
, we consider

γ∗ = inf
f∈H∞

sup
θ

Γ (z, f) ≈ inf
h∈H∞

sup
θ

(
g − |a|

2

w
+ w

∣∣∣ a
w

+ h
∣∣∣2) (2.31)

and de�ne a non-negative index λ :

λ = inf
h∈H∞

sup
θ
w
∣∣∣ a
w

+ h
∣∣∣2 /(γ∗ − g +

|a|2

w

)
(2.32)

it is known that if the function Γ (z, f) is of circular form, i.e. w = |a|2
g
, the index

λ = 1. If Γ (z, f) is not a circular functions, Equation 2.32 can be re-arranged to

be
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λ = inf
h∈H∞

sup
θ

(
w

γ∗ − g + |a|2
w

)∣∣∣ a
w

+ h
∣∣∣2 (2.33)

= inf
h∈H∞

sup
θ
w
′
∣∣∣ a
w

+ h
∣∣∣2 (2.34)

where w
′
= w/

(
γ∗ − g + |a|2

w

)
.

It is observed from Equation 2.24 that if w = A is selected, we have

λ = inf
h∈H∞

sup
θ

(
A

γ∗ − g + |a|2
A

)∣∣∣ a
A

+ h
∣∣∣2 (2.35)

In the previous discussion, it is known that the problem can be solved di-

rectly by the Nehari-commutant lifting formula if λ = 1, which indicates that

the function Γ is in the circular form. If λ∗ 6= 1, we know that the function Γ is

not circular. Thus there is no solution to OPTd problem by the Disk Iteration

algorithm. The idea to deal with these functions is proposed in [46] by decreasing

γ if λ∗ < 1 and increasing γ if λ∗ > 1 in terms of choosing di�erent values of γ in

the line search scheme. The details of �nding the appropriate γ are described by

means of the program codes in the following.

2.2.4 Implementation of the Disk Iteration Method

The computer program to implement the DI method in the ANOPT package in

Mathematica [41] is translated to the equivalent Matlab programs in this thesis.

The structure of the Matlab programs is illustrated in Figure 2.4. Details of the

implementation are described in the following :

Suppose we are given a function Γ (z, f (z)) continuous on ∂D and its deriva-

tives are denoted as g = Γ (z, f (z)), a = ∂
∂z

Γ (z, f (z)), and let Hh,h be the

approximation of the second order terms in its Taylor series, the DI algorithm

follows the steps :

1. Find the descent directional function h

(a) Examine whether the problem is of circular form or not : an

index square , g − |a|
2

A
is used to de�ne the property of the function

Γ (z, f (z)). If square = 0, the function Γ (z, f (z)) is viewed as a

circular function and the Nehari-commutant-lifting formua is used to

�nd the descent directional function h. If square 6= 0, it is known that

the function Γ (z, f) is not of the circular form and an interpolation
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Figure 2.4: Program structure of the DI Method
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method is adopted to �nd an approximate function w so as to obtain

the closest circular form of Γ (z, f).

(b) Select γ∗ such that λ∗ = 1 with corresponding function w : For

those functions that result in square 6= 0, in this step, a function w

that approximates Γ (z, f) to the nearest circular form is calculated.

The procedure to choose the function w such that λ is close enough to

1 is illustrated in Figure 2.5 and follows the steps below :

i. Initialization : The minimal feasible value of γ is calculated to be

γmin = g − |a|
2

A
such that a non-negative index :

λmin = inf
h∈H∞

sup
θ

(
A

γmin − g + |a|2
A

)∣∣∣ a
A

+ h
∣∣∣2

and the two extreme values of γ by the maximum and minimum

of Γ (z, f (z)) as

γright = max (g)− |a|
2

A

γleft = min (g)− |a|
2

A

we arrive at two possible situations as shown in Figure 2.6, which

will be discussed in the next step.

(a) Situation 1 (b) Situation 2

Figure 2.6: Two possible situations

ii. Search feasible region : In Figure 2.6, when γleft lies on the right

hand side of γmin( see Figure 2.6a), it is known that the possible γ

such that λ = 1 appears between γleft and γright. However, when

γleft is smaller than γmin ( see Figure 2.6b), γleft results in the

corresponding λleft being negative, which is not admissible for the
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Figure 2.5: Procedure to choose γ∗ such that λ∗ = 1
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problem (of choosing γ∗ so that λ = 1). Therefore, in such cir-

cumstances, we shift γleft to the midpoint of γmin and γright , i.e.

γleft =
γmin+γright

2
, and then compute the corresponding λleft . Af-

ter that, re-setting γ
′

right = γleft and γ
′

left =
γmin+γleft

2
is performed

if this updated λleft < 1 as shown in Figure 2.7. It is seen that the

above procedure ensures γ∗( so that λ = 1 ) appears somewhere

between γleft and γright. The region de�ned in this step will be the

starting points of the next step. It is not di�cult to observe that

the above idea is in fact the same as the well-known line search

method.

Figure 2.7: Procedure to search the feasible interval γleft and γright

iii. Interpolation : At this point, from the previous results, we obtain

the range of the possible γs that may result in λ = 1. In this

step, we choose a second-order polynomial function to interpolate

the interior points between γleft and γright and then approach the

analytic optimal point (γ∗, λ = 1) by reducing the interval from

one side. The procedure is illustrated in Figure 2.8.

In Figure 2.8, the green dotted line represents the real distribution

of the function with the optimum at the green point of(γ∗, λ∗)and

the red dotted lines are the interpolation functions in terms of the

second-order polynomials. Given the two points (γleft, λleft) and

(γright, λright), the quadratic spline function is uniquely determined

by using the three points (γleft, λleft) , (γright, λright) and (γ∗, λ∗),

which is computed as
(
γleft+γright

2
,
λleft+λright

2

)
in the �rst iteration

or the solution point x to the equation below in other iterations :
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f (x) = λleft +
(λright − λleft)
(γright − γleft)

(x− λleft)

+
(λ∗ − λleft) (γright − γleft)− (λright − λleft) (γ∗ − γleft)

(γ∗ − γleft) (γ∗ − γright) (γright − γleft)
·

(x− γleft) (x− γright) (2.36)

= 1 (2.37)

( see Appendix C for the derivation ) where

λ∗ = inf
h∈H∞

sup
θ

(
A

x̂− g + |a|2
A

)∣∣∣ a
A

+ h
∣∣∣2

and x̂ is the solution to Equation 2.37 in the previous iteration. If

the value of λ∗ is found to be greater than 1 ( as shown at the left

of Figure 2.8 ), the new range is narrowed by shifting (γleft, λleft)

to the new point (γ∗, λ∗). On the other hand, if λ∗ < 1 ( as shown

at the right of Figure 2.8 ), the right point moves to the new point

(γ∗, λ∗). The iteration then stops when λ is close enough to 1, i.e.

|λ∗ − 1| < ε where ε is the pre-determined tolerance.

The descent directional function h is hereafter obtained at the

same time as �nding γ.

Figure 2.8: Interpolation of γ∗

(c) Solving the Nehari problem :

To apply the Nehari-commutant lifting fomula in order to solve the

OPTc problem by the DI method, there are two steps which are im-

plemented in the Matlab programs to compute the best approximation

to H∞.

i. Spectral factorization : As discussed in Section 2.2.1, because the

solution to the Nehari problem only exists for the OPTc problem,
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the objective function Γ (z, f) in the quasi-circular form requires

the spectral factorization on w (z) so that

Γ (z, f (z)) = w (z) |k (z)− f (z)|2

=

∣∣∣∣k (z)

σ (z)
− f (z)

σ (z)

∣∣∣∣2 (2.38)

where σ (z) is the spectral factor of w (z) such that

w (z) = σ (z) · σ∗ (z).

As the results, the function can be re-arranged in the circular form

Γ (z, f (z)) =
∣∣∣k̃ (z)− f̃ (z)

∣∣∣2 (2.39)

where k̃ (z) = k(z)
σ(z)

and f̃ = f(z)
σ(z)

.

The discussion in Section 2.2.1 gives more details about the NP

spectral factorization method.

ii. Solution to the Nehari Problem : It is known that the OPTc

problem can be solved by the Nehari-commutant lifting formula

in Section 2.2.2. The practical procedure for solving the Nehari

problem implemented in the computer code is derived in [39] as

the Nehari commutant-lifting formula :

PH2

[
k̄PH2⊥ [kα]

]
= τ 2α (2.40)

where α is a function such that the Hankel operator Hk : H2
1 →

H2⊥
N with action α→ PH2⊥

N
(kα) attains the norm

‖Hk‖ = dist (k,H∞N )

and

τ = dist (k,H∞N )

The solution to Equation 2.40 can be approached by updating of

the solution f̃ [47] by

αk+1 =
α+

‖α+‖∞

where

α+ = PH2

[
k̄PH2⊥ [kα]

]
and PH2 [α] is the projection operation onto H2 space, which elim-
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inates the negative Fourier coe�cients of the function α.

The above iteration stops when the optimal α∗ is reached as de-

termined by examining if the update increment is smaller than the

desired tolerance, i.e. ‖αk+1 − αk‖∞ < ε.

As a result, the best H∞ approximation in Equation 2.13 is com-

puted by

f̃ = k − PH2⊥ [α]

α

and

f (z) = σ (z) · f̃ (z)

2. Finding the step length t

Once the descent directional function h is computed, the next task in the

Disk Iteration method is to determine the step length t ∈ R+. The step

length t can be found by solving the optimization problem :

inf
f,h∈H∞

sup
θ

∥∥Γ
(
ejθ, f + th

)∥∥
H∞

by the Golden Section Search (GSS) method or by the Sequential Quadratic

Programming (SQP) method. They are discussed respectively in the fol-

lowing.

(a) Golden Section Search : The GSS method is coded in the original

Mathematica ANOPT program for searching the maximum ( or min-

imum ) of a concave ( or convex ) function in a determined interval.

The idea of the GSS method is in principle the same as the line search

method by reducing the feasible interval. The GSS method is described

in detail in Appendix D. In the Mathematica ANOPT and Matlab ver-

sion programs, �ve di�erent cases are considered in the pre-determined

search interval (default =[0, bound]), as shown in Figure 2.9. It is found

that not all of them need to adopt the GSS method for calculating the

step length. These �ve cases are discussed in the following :

Suppose the feasible search interval is initially de�ned as [0, bound]

and assume there is at most one minimal point in this interval, i.e. the

function is convex or concave,
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(a) Illustration of two situations (b) Illustration of three situations

Figure 2.9: Illustration of the di�erent situations in the Golden Section Search
method

i. Case 1 and Case 2 :

By comparing the function value f (x) at the lower bound x = 0

and the point x = tol where tol is a small enough distance ( default

= 0.01 ∗ bound ) to the lower bound, if f (x = tol) > f (x = 0),

we de�ne the �rst case if the function f (x = bound) at the upper

bound is larger than the value f (x = 0) at the lower bound. On

the other hand, it is de�ned as the second case if the function

f (x = bound) is smaller than f (x = 0). It is observed that the

function f (x) in both cases are increasing at the point of the lower

bound. This implies the consequence that the minimal point must

be at x = 0 in Case 1 and x = bound in Case 2. Therefore, in

Case 1 and Case 2, the GSS method will not be activated for

calculating the step length. Case 1 and Case 2 are shown in

Figure 2.9a.

ii. Case 3 and Case 4 :

If the function around the lower bound (x = 0) is decreasing,

i.e. f (x = tol) < f (x = 0), it is understood that there may be a

minimal point in the interval. In other words, either the function

value f (x = bound) at the upper boud is greater ( de�ned as Case

3 ) or smaller ( de�ned as Case 4 ) than the value f (x = 0) at the

lower bound. In the two cases, the GSS method will be adopted to

approach the minimum point. The exemption to Case 4 is when

its gradient is continuously decreasing to the upper bound, which

is de�ned as Case 5 in Figure 2.9. The three cases are illustrated

in Figure 2.9b. In Case 3 and Case 4, the GSS method is used to

�nd the local minimum in the interval [0, bound]. The algorithm

for the GSS method in the Matlab program is described in depth
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in Appendix D.

iii. Case 5 :

The situation when the gradient at the lower bound is negative

but there is no minimal point in the interval as shown in

Figure 2.9b. It is observed that the minimal point is the one at

the upper bound and, in this case, there is no need to use the GSS

method.

(b) Minimax problem : An alternative solution to the minimization prob-

lem of inf
f,h∈H∞

sup
θ

∥∥Γ
(
ejθ, f + th

)∥∥
H∞ in Step2 is available by using the

standard codes in Matlab function - fminimax. Because the minimiza-

tion problem is discretized at each sampling point, the problem can be

viewed as a standard minimax problem, i.e.

min
t≥0

max
θ

∥∥Γ
(
ejθ, f + th

)∥∥
Compared to the GSS method, the fminimax algorithm solves the

problem without constraining the search limit. However, it may require

more computing e�ort due to the complexity of Sequential Quadratic

Programming (SQP) [64] in the fminimax function.

3. Update the solution by fk+1 = fk + th

This is the �nal step in the DI method where the solution is updated in

terms of fk+1 = fk+th. If the optimality conditions for the OPTe problem

are met for the current solution fk or the maximum iteration is reached,

the DI algorithm is terminated and the code exports the �nal solution as

fk. Otherwise, the updated function fk+1 is entered as an input function

to Step1 to start the next iteration.

2.3 Conclusions

• The optimization problem for the disk iteration method, i.e. the OPTd

problem, in [46, 47] is described.

• For numerical and analytic purposes, the transformation from the frequency

domain onto the unit circle may be obtained by a linear fractional transform.

the OPT problem in the continuous frequency domain is transformed to the

OPTe problem on the unit circle. It can be observed in this chapter that

many advantages of this transformation to the unit circle become obvious.
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• The properties of the sublevel set Sθ are closely related to the properties of

solutions to the OPTe problem. The OPTc problem is then formulated.

• In order to apply the Nehari-commutant lifting formula to the solution to

the OPTd problem as a NP method , NP spectral factorization methods

are introduced. Wilson's method is used as the main spectral factorization

method in the program for its smaller computing e�ort. The Harris-Davis

method is also coded as an alternative spectral factorization method for use

in the case when the main method fails to converge.

• The Nehari commutant lifting theorem is applied for solving the Nehari

problem, which is proved to be equivalent to the OPTc problem. If the

objective function is of circular form in the OPTe problem, it immediately

relates to the standard OPTc problem, which is solvable by using the Ne-

hari commutant lifting formula. However, if it is not of circular form, the

approximation to the closest circular form is needed. The objective func-

tion Γ (z, f) is approximated to the circular form in terms of �nding the

corresponding function w in the OPTd problem such that the index λ = 1,

as shown in Equation 2.32. Searching such w is done by the interpolation

method that narrows the lower and upper bounds of the search region.

• The algorithm of the disk iteration method is described in details in three

steps. The �rst step is to �nd the largest descent directional function h. The

solution to the Nehari problem is used but not applicable to the optimization

problem if the objective function is not in the circular form. Therefore,

�nding the closest circular form of the objective function is essential. The

approximation of the objective function to the circular form is implemented

in terms of the quadratic spline interpolation method. The second step is to

determine the step length t by using the golden section line search method

or the standard code fminimax in Matlab. The �nal step is to update the

current solution function fk. The repetition of Step1 and Step2 continues

if, in the �nal step, the stopping criterion is not satis�ed.
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Chapter 3

Newton Iteration Method for H∞

Optimization

In the previous chapter, the OPT problem in the frequency domain is transformed

to the OPTe problem on the unit circle. The OPTe problem is further related

to the OPTc problem due to the relating properties of the sublevel sets

Sθ (c) = {Γ (z, f (z)) ≤ c, c ∈ R+} and the solutions f as discussed in Section

2.1. In this chapter, another method in the spirit of Newton iteration to solve

the OPTc problem is presented by using some techniques in functional operator

theory. The method is named as Newton Iteration (NI) method in the thesis.

The theoretical descriptions in this chapter are mostly originated from Hel-

ton's work in [39]. The chapter describes the implementation of the Helton-

Merino-Walker Newton iteration (NI) method for sup-norm optimisation over

analytic functions as described in [39]. In Section 3.1, the optimality conditions

to the H∞ optimization problem is presented. The derivation of the operator

equation for the sup-norm optimisation problem is also presented in Secion 3.2.1.

The algorithm for the NI method proposed in [41, 47] is also outlined in

Section 3.2.1. In Section 3.2.2, the matrix representation of the Jacobian operator

in the NI algorithm is described as required for the Matlab implementation. The

program code to implement the NI method is thus written in Matlab.

3.1 Optimality Conditions to the Optimization

Problem

In this section, the optimality conditions to the OPTc problem are presented.

The typical example of the OPTc problem is the Nehari problem [70] where the

objective function Γ (z, f ∗ (z)) is given as Γ (z, f ∗ (z)) = |k (z)− f ∗ (z)|2 with
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γ∗ = inf
f∗∈A

sup
ω

Γ (z, f ∗ (z)) and f ∗ (z) is viewed as the best H∞ approximation to

the function k (z). The optimality test for the Nehari problem was proposed by

Adamajan et al [3] and extened by Poreda [74] to be

Theorem 5. f ∗ (z) is the optimal solution to the Nehari problem if and only if

• if f ∗ (z) ∈ A, |k (z )− f ∗ (z )| is a constant for all z = ejθ

• the winding number of (k∗ (z)− f ∗ (z)) about 0 is negative

Furthermore, it is shown in [45] that the sublevel sets of the objective func-

tion Γ (z, f (z)): Sθ (c) = {Γ (z, f (z)) ≤ c, c ∈ R+} have the shape of disk and

their properties of boundness, simple connectness, smoothness and convexity are

closely related to the properties of solutions to the OPTe problem. This ad-

dressed the problem of dimension N = 1, i.e. f (z) ∈ C. For higher dimensions,
Helton [43] generalized Poreda's optimality conditions to the theorem for N > 1

[43] :

Theorem 6. Given the generic Γ (z, f (z)) and a continuous function f (z) ∈ A ,

if the gradient ∂Γ
∂z

(z, f (z)) is also continous and never vanishes [see Appendix A],

the solution f ∗ (z) is the strictly local directional optimizer to the OPTc problem

if and only if

• Γ (z, f ∗ (z)) is constant for all z = ejθ

• the winding number of ∂Γ
∂z

(z, f ∗ (z)) about 0 is positive

where the strictly local directional optimizer f ∗ (z), which is also the local opti-

mum, is de�ned for h (z) ∈ A and α ∈ R+ as

sup
θ

Γ (z, f ∗ (z)) < sup
θ

Γ (z, f ∗ (z) + αh (z)) (3.1)

Merino [68] then further proved that the winding number of ∂Γ
∂z

(z, f ∗ (z)) in

the theorem is one. More about the uniqueness, continuity and existence of the

solution to the OPTc problem for N = 1 can be found in [45]. However, the

above conditions do not hold for the matrix-valued cases ( i.e. N > 1 ) [38].

To extend the optimality conditions to more general case ( N ≥ 1 ), the

generalization of the Corona theorem proposed in [43] is required. From the ob-

servation in the dual extremal method [28], the extension of the second condition

given above was proved in [43] and further extended to general cases by Helton

et al. [48]. It is concluded in [48] that the neccessary and su�cient conditions

for the OPTe problem are
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Theorem 7. Given a function f (z) ∈ Ω where Ω denotes the set

Ω =
{
f ∈ AN :

´
〈f,G〉 dθ

2π
=
´ 2π

0
fT Ḡ dθ

2π
= c
}
and c ∈ C is a constant and a set

Ω0 =
{
f ∈ AN :

´ 2π

0
fT Ḡ dθ

2π
= 0
}
, assume that ∂Γ

∂z
(z, f (z)) does not vanish on

∂D and a continuous positive-valued function Γ (z, f (z)) is at least three times

di�erentiable on ∂D×CN , the function f ∗ is a directional solution to the OPTe

problem for which

• Γ (z, f ∗) = γ∗ where γ∗ ∈ R is a positive constant

• there exists a positive-valued measurable function λ∗ : ∂ → R+, functions

F ∗, G ∈ RH1
N and constants κ∗ ∈ R such that

∂Γ

∂z
(z, f ∗) = λ∗

(
ejθF ∗ +

∑
κ∗G

)
• If a subspace N =

{
h ∈ Ω0 : <

(
∂
∂z

Γ (·, f ∗)
)

= 0
}
,

sup
θ

{
h̄T

∂2

∂z∂z̄
Γ (·, f ∗)h+ <

(
hT

∂2

∂z2
Γ (·, f ∗)h

)}
≥ 0,∀h ∈ N� {0}

To study the solution to the OPTc problem, we �rst consider the related

problem in terms of the L1 norm [39] :

OPT1 Given a continuous positive valued function Γ in D,

and a set A of the analytic functions on the unit circle, �nd the opti-

mal function f ∗ (z) such that

γ = inf
f∗∈A

sup
θ
‖Γ (z, f ∗ (z))‖L1 = inf

f∗∈A
sup
θ

ˆ 2π

0

Γ (z, f ∗ (z)) · dθ
2π

(3.2)

where z are the points on the unit circle, and f ∗ (z) is a continuous

function in H∞.

The optimality conditions to the OPT1 problem proved in [39] are expressed by

the following theorem :

Theorem 8. Let Γ (z, f) ∈ CN and f ∗ ∈ H∞N be a local directional optimizer to

OPT1 problem such that ∂
∂z

Γ (z, f ∗ (z)) never vanishes on ∂D.

The following conditions hold :

I. There exists a function F ∈ H1
N such that

∂

∂z
Γ (z, f ∗) = ejθF (3.3)
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II. For every nonzero h ∈ H∞,

sup
θ

{
h̄t

∂2

∂z∂z̄
Γ (z, f ∗)h+ <

(
hT

∂2

∂z2
Γ (z, f ∗)h

)}
≥ 0 (3.4)

It is discussed in [39] that the second condition II is always true if the function

Γ (z, f (z)) is strongly convex. Therefore, for some cases, the conditions I is

su�cient to give the optimizer f ∗.

Moreover, the optimality conditions to the OPT∞ problem in [38] are

OPT∞ Let Γ (z, f (z)) ∈ CN and f ∗ ∈ H∞N be a local directional optimizer to

the OPTe problem such that ∂
∂z

Γ (z, f ∗ (z)) never vanishes on ∂D.

The following conditions hold :

I. Γ (z, f ∗) is constant on ∂D

II. There exists a function F ∈ H1
N and a positive and measurable

linear functional λ: ∂ → R+on ∂D such that

λ−1 ∂

∂z
Γ (z, f ∗) = ejθF

III. For every nonzero h ∈ H∞,

sup
θ

{
h̄t

∂2

∂z∂z̄
Γ (z, f ∗)h+ <

(
hT

∂2

∂z2
Γ (z, f ∗)h

)}
≥ 0

where z are the points spaced around the unit circle, and f ∗ (z) is a

continuous function in H∞

In observing the optimality conditions for the OPT1 problem and the OPT∞

problem, we see the similarity between the �rst condition for the OPT1 problem

and the second condition for the OPT∞ problem. The connection between the

solution to the OPT1 problem and the OPT∞ problem is obvious and proved in

[39]. In some cases, it allows the algorithm to solve the OPT∞ problem by solv-

ing OPT1 problem. Furthermore, if the function Γ (z, f ∗) is strongly convex, the

computer program can be accelerated [46] by simply meeting the �rst condition

for the OPT1 problem : ∂
∂z

Γ (z, f ∗) = ejθF . However, in the following deriva-

tion, we consider the optimality conditions for the OPT∞ problem for purpose of

generalization.

In summary, it is mentioned in [39] that the optimality conditions to the

OPT∞ problem are formulated as follows :
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Find the tuple (f ∗, λ∗, F ∗, γ∗) where f ∗ ∈ H∞N , γ∗ ∈ R, F ∗ ∈ H1
N and λ∗ : ∂ →

R+ measurable and nonzeros such that the two conditions

Γ (z, f ∗) = γ∗ (3.5)

λ−1 ∂

∂z
(z, f ∗) = χF ∗ (3.6)

are satis�ed.

3.2 Newton Iteration Method

3.2.1 Derivation and Solution of the Operator Equation

This section interprets the results in [39] for computer implementation by using

the operators. Fundamental details of the operators are described in [109]. The

operators used in the thesis are de�ned in terms of the function spaces on the

unit circle and unit disk. The following outlines the properties of these operators.

Let L2 (∂D) be the set of the matrix-valued functions F in Hilbert space on

the unit circle ∂D :

L2 (∂D) =

F :=
1

2π

2πˆ

0

Trace
(
F ∗
(
ejθ
)
F
(
ejθ
))
dθ <∞


and H2 be the subspace of L2 (∂D) with functions F̃ analytic in D :

H2 (∂D) =

F̃ ∈ L2 (∂D) :=
1

2π

2πˆ

0

F̃
(
ejθ
)
ejθdθ = 0,∀n > 0


We denote H2⊥ as the orthogonal space of H2. In other words, invoking the

Fourier transform, H2 space are the functions where their Fourier coe�cients

whose idexes are greater than zero. On the other hand, all the positive Fourier

coe�cients of the functions in H2⊥ will vanish. For example, let F ∈ L2 (∂D)

and the Fourier expansion of F be given as

F
(
ejθ
)
∼

∞∑
n=−∞

Fn · ejnθ
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then F ∈ H2 if and only if Fn = 0, ∀n < 0 and F ∈ H2⊥ if and only if Fn = 0,

∀n ≥ 0 .

By taking the orthogonal projection operator on both sides of Equation 3.5

and 3.6 respectively, since γ∗ is constant and F ∗ ∈ H1
N , the projections

PH2⊥
1

[γ∗] = 0 and PH2⊥
N

[F ∗] = 0. Further let H2⊥
N,0 , χH2⊥

N then the projection of

χF ∗ onto the space H2⊥
N,0 gives PH2⊥

N,0
[χF ∗] = 0. We therefore have

PH2⊥
1

[Γ (·, f ∗)] = 0 (3.7)

PH2⊥
N,0

[
λ−1 ∂

∂z
Γ (·, f ∗)

]
= 0 (3.8)

Let λ−1 be de�ned as λ−1 = 1 + 2< (χβ) where β is a scalar-valued analytic

function on ∂D, the Operator Equation is derived as

T

(
f ∗

β∗

)
,

(
PH2⊥

N,0

[
(1 + 2< (χβ)) ∂

∂z
Γ (·, f ∗)

]
PH2⊥

1
[Γ (·, f ∗)]

)
=

(
0

0

)
(3.9)

We now consider the solution of the operator equation. It is known that any

analytic function f (x) can be expanded by the Taylor series about xn as

f (xn + ∆x) = f (xn) + f ′ (xn) ∆x+
1

2
f ′′ (xn) ∆x2 + · · · (3.10)

The function f (xn + ∆x) approaches the critical point when the �rst derivative

is close to zero ( i.e. f ′ (x∗) = 0 ). Hence, by di�erentiating Equation 3.10, we

get f ′ (xn)+f ′′ (xn)4x = 0. As a result, the Newton-Iteration formula is derived

as

xn+1 = xn + ∆x = xn −
f ′ (xn)

f ′′ (xn)
(3.11)

If the two projected functions in Equation 3.7 and 3.8 are expanded up to second

order as

Γ (·, f + ε) = g + 2<
(
atε
)

+ ε̄TAε+ <
(
εTBε

)
+ · · · (3.12)

∂

∂z
Γ (·, f + ε) = a+ Aε̄+Bε+ · · · (3.13)

where g = Γ (·, f),a = ∂
∂z

Γ (·, f), A = ∂2

∂z∂z̄
Γ (·, f), B = ∂2

∂z2
Γ (·, f),

the operator equation is then reformulated as
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T

(
f + ε

β + δ

)
=

(
PH2⊥

N,0

[
(1 + 2< (χ(β + δ))) ∂

∂z
Γ (·, f + ε)

]
PH2⊥

1
[Γ (·, f + ε)]

)
(3.14)

By expanding T

(
f + ε

β + δ

)
in the Taylor series up to the �rst order,

Equation 3.14 becomes

T

(
f

β

)
+ T ′f,β

(
ε

δ

)
= 0 (3.15)

where T ′f,β denotes the Jacobian operator, which, in principle, is the derivative of

T with respect to (f, β)T .

This, therefore, allows the use of Equation 3.11 to update the solution f at the

k-th iteration by (
fk+1

βk+1

)
=

(
fk

βk

)
− T ′−1

f,β T

(
fk

βk

)
(3.16)

To this point, the next question is how to �nd out the Jacobian operator T ′f,β.

We start the derivation by rewriting Equation 3.15

T

(
f + ε

β + δ

)
= T

(
f

β

)
+ T ′f,β

(
ε

δ

)
(3.17)

and rearrange to

T ′f,β

(
ε

δ

)
= T

(
f + ε

β + δ

)
− T

(
f

β

)
(3.18)

Substituting Equation 3.9 and Equation 3.14 into Equation 3.18 and ignoring

all terms that are of high order (e.g. 2< (χδ) · Aε̄, ε̄tAε, ... etc), the Jacobian

operator is formulated as

T ′f,β

(
ε

δ

)
=

(
PH2⊥

N,0

[
(1 + 2< (χ(β + δ))) ∂

∂z
Γ (·, f + ε)

]
PH2⊥

1
[Γ (·, f + ε)]

)
(3.19)

−

(
PH2⊥

N,0

[
(1 + 2< (χβ)) ∂

∂z
Γ (·, f)

]
PH2⊥

1
[Γ (·, f)]

)
(3.20)

=

(
PH2⊥

N,0
[(1 + 2< (χβ)) (Aε̄+Bε) + 2a< (χδ)]

PH2⊥
1

[
2<aT ε

] )
(3.21)
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It is pointed out in [39] that Equation 3.21 can be further rearranged in the

compact form ( refer to Appendix B for more details )

T ′f,β =

(
IN 0

0 χ̄

)
CTM1 +

(
χIN 0

0 1

)
HM2 (3.22)

where

TM1 is the Toeplitz operator with symbol

M1 =

(
ωA χā

χ̄aT 0

)
(3.23)

HM2 is the Hankel operator with symbol

M2 =

(
χ̄ωB a

aT 0

)
(3.24)

and IN is the N ×N identity matrix, and ω = 1 + 2< (χβ).

3.2.2 Matrix Computation of the Jacobian T ′f,β

In this section, to allow the Matlab implementation of the algorithm, the matrix

representation of the operators in Equation 3.22 , which are used to compute the

Jacobian T ′f,β, are described.

Denote P+ : L2 (∂D) → H2 and P− : L2 (∂D) → H2⊥ as the respective

orthogonal projections onto H2 and H2⊥ in L2. For any function Gd ∈ L2 (∂D),

the Toeplitz operator and the Hankel operator applying on the function Gd are

de�ned as

TGd = P+Gd

and

HGd = P−Gd

In other words, the Toeplitz operator is the mapping from L2 (∂D) to H2 and

the Hankel operator is the mapping from L2 (∂D) to H2⊥. In terms of z-transfrom

and the frequency response of Gd (z) =
∞∑

n=−∞
Gn · zn , we then have a z-transform

transfer function and Gd

(
ejθ
)

= Gd (z), Gd

(
ejθ
)

=
∞∑

n=−∞
Gn · ejnθ in L2 (∂D).

Thus in L2 (∂D), for an input u
(
ejθ
)

=
∞∑

n=−∞
un · ejnθ and an output
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y
(
ejθ
)

=
∞∑

n=−∞
yn · ejnθ in H2, we have

y (z) = Gd (z)u (z)

that is

∞∑
n=−∞

yn · ejnθ =
∞∑

n=−∞

∞∑
m=−∞

Gn · um · ej(n+m)θ

In in�nite matrix form, this is given equivalently by either



...

...

y1

y0

−
y−1

y−2

...

...



=



. . .
...

...
... |

...
...

... . .
.

· · ·
. . .

...
... |

...
... . .

.
· · ·

· · · · · · G0 G1 | G2 G3 · · · · · ·
· · · · · · G−1 G0 | G1 G2 · · · · · ·
− − − − + − − − −
· · · · · · G−2 G−1 | G0 G1 · · · · · ·
· · · · · · G−3 G−2 | G−1 G0 · · · · · ·

· · · . .
. ...

... |
...

...
. . . · · ·

. .
. ...

...
... |

...
...

...
. . .





...

...

u1

u0

−
u−1

u−2

...

...


or by
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y0

y1
...
...

−
y−1

y−2
...
...



=



G0 G−1 · · · · · · | G1 G2 · · · · · ·
G1 G0 · · · · · · | G2 G3 · · · · · ·
...

...
. . . · · · |

...
...

. . . · · ·
...

...
...

. . . |
...

...
...

. . .

− − − − + − − − −
G−1 G−2 · · · · · · | G0 G1 · · · · · ·
G−2 G−3 · · · · · · | G−1 G0 · · · · · ·
...

...
. . . · · · |

...
...

. . . · · ·
...

...
...

. . . |
...

...
...

. . .





u0

u1
...
...

−
u−1

u−2
...
...



=

 T1 | H1

− + −
H2 | T2





u0

u1
...
...

−
u−1

u−2
...
...


The latter block matrix structure then has the form

y0

y1

...

...

−
y−1

y−2

...

...



=

 T1 | H1

− + −
H2 | T2





u0

u1

...

...

−
u−1

u−2

...

...


The matrices T1 and T2 are known as (block) Toeplitz matrices and H1 and

H2 are called (block) Hankel matrices. They are respectively the representation

of the Toeplitz operator and the Hankel operator. These matrix forms are used

to represent the Toeplitz and Hankel operators in the Matlab Newton Iteration

method computer program.

In summary, according to Equation 3.22, the Jacobian operator on the update

increment function is
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−T ′f,β

(
ε

δ

)
= T

(
f

β

)
which has the form of

((
IN 0

0 χ̄

)
CTM1 +

(
χIN 0

0 1

)
HM2

)[
−

(
ε

δ

)]
= T

(
f

β

)

Denoting the vector −

(
ε

δ

)
as h, and T

(
f

β

)
as Q, we can write((

IN 0

0 χ̄

)
CTM1 +

(
χIN 0

0 1

)
HM2

)
[h] = Q

and by de�ning component terms Q1 and Q2 of Q by

(
IN 0

0 χ̄

)
CTM1 [h] = Q1(

χIN 0

0 1

)
HM2 [h] = Q2

we have

Q = Q1 +Q2

In the following sections, we will use such relationships to construct the Jaco-

bian operator and compute its inverse in order to calculate the update increment

functions

(
ε

δ

)
.

In the Matlab computer implementation, �rstly the function vector Q is com-

puted from

Q = T

(
f

β

)
=

(
PH2⊥

N,0

[
(1 + 2< (χβ)) ∂

∂z
Γ (·, f)

]
PH2⊥

1
[Γ (·, f)]

)
(3.25)

which entails the elimination of all the positive index Fourier coe�cients of

(1 + 2< (χβ)) ∂
∂z

Γ (·, f) and all the non-negative Fourier coe�cients of Γ (·, f).

The inverse of T ′f,β is then found by matrix inversion, and the update function

vector h is then obtained from
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h = T ′−1
f,β [Q] =

((
IN 0

0 χ̄

)
CTM1 +

(
χIN 0

0 1

)
HM2

)−1

[Q] (3.26)

3.2.2.1 Matrix Representation of the Conjugate Toeplitz Operator

We may represent the operations with the Toeplitz operator of Equation 3.22 by

y = TM1h, which restricted to positive index Fourier coe�cients has the matrix

form 

y0

y1

y2

...

...


=



G0 G−1 G−2 · · · · · ·
G1 G0 G−1 · · · · · ·
G2 G1 G0 · · · · · ·
...

...
...

. . . · · ·
...

...
...

...
. . .





h0

h1

h2

...

...


where

y0

y1

y2

...

...


is a vector that contains the Fourier coe�cients of y

and



G0 G−1 G−2 · · · · · ·
G1 G0 G−1 · · · · · ·
G2 G1 G0 · · · · · ·
...

...
...

. . . · · ·
...

...
...

...
. . .


is a matrix whose elements are the Fourier

coe�cients corresponding to the term TM1 of Equation 3.22 whose term is known

as the Toeplitz operator with the symbol M1.

In Equation 3.23, we require M1 =

(
ωA χā

χ̄aT 0

)
so that TM1 then has the

corresponding block matrix representation
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TM1 =



[
G0,11 G0,12

G0,21 G0,22

] [
G−1,11 G−1,12

G−1,21 G−1,22

] [
G−2,11 G−2,12

G−2,21 G−2,22

]
· · · · · ·[

G1,11 G1,12

G1,21 G1,22

] [
G0,11 G0,12

G0,21 G0,22

] [
G−1,11 G−1,12

G−1,21 G−1,22

]
· · · · · ·[

G2,11 G2,12

G2,21 G2,22

] [
G1,11 G1,12

G1,21 G1,22

] [
G0,11 G0,12

G0,21 G0,22

]
· · · · · ·

...
...

...
. . . · · ·

...
...

...
...

. . .


where

G−1,11, G0,11, G1,11, · · · are the Fourier coe�cients of the function ωA in M1,

G−1,12, G0,12, G1,12, · · · are the Fourier coe�cients of the function χā in M1,

G−1,21, G0,21, G1,21, · · · are the Fourier coe�cients of the function χ̄a in M1,

and G−1,22, G0,22, G1,22, · · · are the ( all zero ) Fourier coe�cients of the function
0 in M1.

The above matrix representation is only for the Toeplitz operator restricted to

the positive index Fourier coe�cients, and therefore this requires to be extended

to include the negative index Fourier coe�cients. Now the function mapped by

the Toeplitz operator onto H2 space has only positive non-zero index coe�cients

since hi, ∀i ≥ 0, that is the Toeplitz matrix only acts on the positive index Fourier

coe�cients of the input. Therefore, to represent the full complement of Fourier

coe�cients, the full Toeplitz matrix equation, y = TM1h, is written thus

y0

y1

...

...

−
y−1

y−2

...

...



=
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[
G0,11 G0,12

G0,21 G0,22

] [
G−1,11 G−1,12

G−1,21 G−1,22

] [
G−2,11 G−2,12

G−2,21 G−2,22

]
· · · · · · | 0 0 · · ·[

G1,11 G1,12

G1,21 G1,22

] [
G0,11 G0,12

G0,21 G0,22

] [
G−1,11 G−1,12

G−1,21 G−1,22

]
· · · · · · | 0 0 · · ·[

G2,11 G2,12

G2,21 G2,22

] [
G1,11 G1,12

G1,21 G1,22

] [
G0,11 G0,12

G0,21 G0,22

]
· · · · · · | 0 0 · · ·

...
...

...
. . . · · · |

...
... · · ·

...
...

...
...

. . . |
...

...
. . .

− − − − − + − − −
0 0 0 · · · · · · | 0 0 · · ·
0 0 0 · · · · · · | 0 0 · · ·
...

...
...

...
. . . |

...
...

. . .


·
[
h0 h1 · · · | h−1 h−2 · · ·

]T
Next, the conjugate operator C acting on y must be determined. Observing

that for a function F represented by the Fourier coe�cients

{. . . , F−2, F−1, F0, F1, F2, . . .}, the Fourier coe�cients of the conjugate of the func-
tion F is obtained by taking the conjugate of {. . . , F−2, F−1, F0, F1, F2, . . .} and
reversing the order, to give

{
. . . , F 2, F 1, F 0, F -1, F−2, . . .

}
. Such an operation

applied to the Toeplitz matrix in ỹ = CTM1h results in the form of

y0

y1

...

...

−
y−1

y−2

...

...



=



[
G0,11 G0,12

G0,21 G0,22

] [
G−1,11 G−1,12

G−1,21 G−1,22

] [
G−2,11 G−2,12

G−2,21 G−2,22

]
· · · · · · | 0 0 · · ·

0 0 0 · · · · · · | 0 0 · · ·
0 0 0 · · · · · · | 0 0 · · ·
...

...
...

. . . · · · |
...

...
. . .

...
...

...
...

. . . |
...

...
...

− − − − − + − − −[
G1,11 G1,12

G1,21 G1,22

] [
G0,11 G0,12

G0,21 G0,22

] [
G−1,11 G−1,12

G−1,21 G−1,22

]
· · · · · · | 0 0 · · ·[

G2,11 G2,12

G2,21 G2,22

] [
G1,11 G1,12

G1,21 G1,22

] [
G0,11 G0,12

G0,21 G0,22

]
· · · · · · | 0 0 · · ·

...
...

...
...

. . . |
...

...
. . .


·
[
h0 h1 · · · | h−1 h−2 · · ·

]T
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The next operation to �nally compute the �rst term in Equation 3.22 is to

�nd the matrix representation of the term

(
IN 0

0 χ̄

)
and then use it to pre-

multiply CTM3 . This premultiplication term performs the operation of the left

shift operator χ̄ acting on the second row of the symbol

(
ωA χā

χ̄aT 0

)
and leaves

the elements of the �rst row in the same positions. Thus the �rst term Q1 of

Equation 3.22 can be �nally established in the matrix form



[
G0,11 G0,12

G1,21 G1,22

] [
G−1,11 G−1,12

G0,21 G0,22

] [
G−2,11 G−2,12

G−1,21 G−1,22

]
· · · · · · | 0 0 · · ·

0 0 0 · · · · · · | 0 0 · · ·
0 0 0 · · · · · · | 0 0 · · ·
...

...
...

. . . · · · |
...

...
. . .

...
...

...
...

. . . |
...

...
...

− − − − − + − − −[
G1,11 G1,12

G0,21 G0,22

] [
G0,11 G0,12

G−1,21 G−1,22

] [
G−1,11 G−1,12

G0,21 G0,22

]
· · · · · · | 0 0 · · ·[

G2,11 G2,12

G1,21 G1,22

] [
G1,11 G1,12

G0,21 G0,22

] [
G0,11 G0,12

G−1,21 G−1,22

]
· · · · · · | 0 0 · · ·

...
...

...
. . . · · · |

...
...

. . .


3.2.2.2 Matrix Representation of the Shifted Hankel Operator

To complete the matrix representation of Equation 3.22, we now require the

representation of the second term containing the Hankel operator. The in�nite

matrix representation of the Hankel operator acting only on the negative index

Fourier coe�cients in the Hankel operator equation x = HM2h is given by

x−1

x−2

x−3

...

...


=



G−1 G−2 G−3 · · · · · ·
G−2 G−3 G−4 · · · · · ·
G−3 G−4 G−5 · · · · · ·
...

...
...

. . . · · ·
...

...
...

...
. . .





h−1

h−2

h−3

...

...


where

x0

x1

x2

...

...


are the Fourier coe�cients of x,
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h0

h1

h2

...

...


are the Fourier coe�cients of h,

and



G−1 G−2 G−3 · · · · · ·
G−2 G−3 G−4 · · · · · ·
G−3 G−4 G−5 · · · · · ·
...

...
...

. . . · · ·
...

...
...

...
. . .


are the Fourier coe�cients of matrix repre-

sentation of what is termed the block shifted Hankel operator with symbol M2

Again, this is just a part of the full form of the Hankel operator. The full

representation of the Hankel operator equation x = HM2h which includes the

positive index Fourier coe�cients and with the symbol M2 =

(
χ̄ωB a

aT 0

)
has

the form

x0

x1

...

...

−
x−1

x−2

...

...



=



0 0 0 · · · · · · | 0 0 · · ·
0 0 0 · · · · · · | 0 0 · · ·
...

...
...

. . . · · · | 0 0 · · ·
− − − − − + − − −[

G−1,11 G−1,12

G−1,21 G−1,22

] [
G−2,11 G−2,12

G−2,21 G−2,22

] [
G−3,11 G−3,12

G−3,21 G−3,22

]
· · · · · · | 0 0 · · ·[

G−2,11 G−2,12

G−2,21 G−2,22

] [
G−3,11 G−3,12

G−3,21 G−3,22

] [
G−4,11 G−4,12

G−4,21 G−4,22

]
· · · · · · | 0 0 · · ·[

G−3,11 G−3,12

G−3,21 G−3,22

] [
G−4,11 G−4,12

G−4,21 G−4,22

] [
G−5,11 G−5,12

G−5,21 G−5,22

]
· · · · · · | 0 0 · · ·

...
...

...
. . . · · · |

...
...

. . .

...
...

...
...

. . . |
...

...
...


·
[
h0 h1 · · · | h−1 h−2 · · ·

]T
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where G−1,11, G−2,11, · · · are the negative Fourier coe�cients of the function χ̄ωB
in M2,

G−1,12, G−2,12, · · · are the negative Fourier coe�cients of the function a in M2,

G−1,21, G−2,21, · · · are the negative Fourier coe�cients of the function a in M2,

and G−1,22, G−2,22, · · · are the ( all zero ) negative Fourier coe�cients of the

function 0 in M2 .

The �nal version of the second term of Equation 3.22,

(
χIN 0

0 1

)
HM2 , is

now relatively easy to compute. The matrix

(
χIN 0

0 1

)
in front of the Hankel

operator is the operation that keeps the second row of M2 in the same positions

and shifts the �rst row of M2 to one position in the right direction. The second

term of Equation 3.22 is thus �nalised in the Hankel matrix equation Q2 =(
χIN 0

0 1

)
HM2h as

Q2,0

Q2,1

...

...

−
Q2,−1

Q2,−2

...

...



=



0 0 0 · · · · · · | 0 0 · · ·
0 0 0 · · · · · · | 0 0 · · ·
...

...
...

. . . · · · |
...

...
. . .

− − − − − + − − −[
G−2,11 G−2,12

G−1,21 G−1,22

] [
G−3,11 G−3,12

G−2,21 G−2,22

] [
G−4,11 G−4,12

G−3,21 G−3,22

]
· · · · · · | 0 0 · · ·[

G−3,11 G−3,12

G−2,21 G−2,22

] [
G−4,11 G−4,12

G−3,21 G−3,22

] [
G−5,11 G−5,12

G−4,21 G−4,22

]
· · · · · · | 0 0 · · ·[

G−4,11 G−4,12

G−3,21 G−3,22

] [
G−5,11 G−5,12

G−4,21 G−4,22

] [
G−6,11 G−6,12

G−5,21 G−5,22

]
· · · · · · | 0 0 · · ·

...
...

...
. . . · · · |

...
...

. . .

...
...

...
...

. . . |
...

...
...


·
[
h0 h1 · · · | h−1 h−2 · · ·

]T
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3.2.2.3 Inversion of the Conjugate Toeplitz plus Hankel operator

As shown in Equation 3.22, the update increment function is determined by the

inverse of the Jacobian matrix Tf,β. Although a speci�c algorithm to invert the

sum of conjugate Toeplitz plus Hankel matrix has been developed by A.H. Sayed

et. al. [39, 79], in this brief study to speed coding, a least square inversion method

is adopted using the standard Matlab function lsqr.

3.3 Conclusions

• In this chapter, the Newton Iteration method is summarized. The NI

method is based on the solution to the optimality conditions using op-

erators. Unlike the DI method, there is no approximation of the objective

function to a speci�c form in the NI method. Furthermore, the NI method

has a second order convergence rate in theory. Prior to this thesis, no imple-

mentation of the NI method was published in any programming language.

The chapter details with the computation of the operators so that the use

of the NI method is possible.

• In terms of the optimality conditions to the OPTe problem, the operator

equation derived by Helton et al. [39] is described for the implementation

of the NI method. The optimality conditions for the OPT1 problem and the

OPT∞ problem are also described. The similarity between the conditions

for the two problems is seen. This provides the possibility to accelerate the

algorithm to solve the OPT∞ problem.

• The Newton Iteration method formulated in Equation 3.11 updates the

solution in a full step length. To compute the update increment function

h, the Jacobian operator T ′f,β is required to compute. According to the

work by Helton et al. [39], T ′f,β can be written in Equation 3.22. This

chapter gives the matrix representation of T ′f,β which is described in terms

of the Toeplitz operator and the Hankel operator. The arrangement of the

Toeplitz operator and the Hankel operator with their symbols is discussed

by means of the corresponding Fourier coe�cients in the program code. The

matrix representation of the Jacobian operator is calculated by summing

up the Toeplitz operator and Hankel operator product. It is then possible

to compute the update increment function h by inverting the Jacobian

operator by a standard matrix inversion algorithm.
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Chapter 4

Comparison of Algorithms with

Numerical Examples

In this section, three examples are used to compare the results from the Matlab

Newton Iteration (NI) implementation and Matlab Disk Iteration ( DI ) imple-

mentation. The Matlab implementation of the DI method is coded by line-by-line

translation from the original ANOPT package in Mathematica [41]. The Matlab

code for the Newton iteration method are based on the matrix representation of

the operators outlined in the previous chapter.

4.1 Example 1

The example appears in the original Mathematica ANOPT codes [41] where the

objective function is the scalar function on the unit disk :

Γ (z, f) =

∥∥∥∥∥0.8 +

(
1

z
+ f

)2
∥∥∥∥∥

2

where f ∈ H∞ is the function to be optimized such that

γ = sup
z∈∂D

Γ (z, f)

attains its minimum at γ∗.

Table 4.1.1 and Figure 4.1 shows the solutions computed by the Matlab im-

plementations of the two algorithms.
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γ∗ Iterations
Optimality Test

Flatness Gradient alignment

DI method 1.0000 4 1.6301E-7 1.9939E-14
NI method 1.0000 4 9.2075E-7 1.9128E-14

Table 4.1.1: Results of Example 1 (256 points and the tolerance = 1E-6)

Figure 4.1: Comparison of the solutions by di�erent algorithms (Example1)

4.2 Example 2

This two-dimensionalN = 2 example appears in the original Mathematica ANOPT

codes [41] where the objective function is

Γ (z, f1, f2) = <
(

1

z
+ f1

)2

+ 4 · =
(

1

z
+ f1

)2

+<
(

1

z
+ f2

)2

+ 0.3 · =
(

1

z
+ f2

)2

where f1, f2 ∈ H∞ are the functions to be found and < and = represent the real

part and imaginary part respectively.
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Table 4.2.1 shows the results and Figure 4.2 shows the solutions by the Matlab

implementation of the two algorithms.

γ∗ Iterations
Optimality Test

Flatness Gradient alignment

DI method 2.1469 4 3.3785E-6 0.0086
NI method 2.1342 34 0.0096 0.1013

Table 4.2.1: Results of Example 2 (256 points and the tolerance = 1E-4)

4.3 Example 3

This example appears in [39] P.861 where the optimization problem is to �nd the

pair of optimal functions (f1, f2)

γ∗ = min
f1,f2∈H∞

sup
z∈∂D

Γ (z, f1, f2)

where

Γ (z, f1, f2) = ‖f1‖2 + ‖f2‖2 +

‖100 + z · f1 + 0.1 · (f1 + f2 + f1 · f2)‖2 +

‖100 + z · f1 + 0.1 · (f1 + f2 + f1 · f2)‖2

and f1, f2 ∈ H∞

Table 4.3.1 shows the results and Figure 4.3 shows the solutions computed by

the Matlab implementations of the two algorithms.

Method γ∗ Iterations Computing time
Optimality Test

Flatness Gradient alignment

DI 3800 11 379.8594 sec 1.9512E-9 8.6135E-6
NI 3800 8 32.1590 sec 4.3480E-12 1.0745E-5

Table 4.3.1: Results of Example 3 (256 points and the tolerance = 1E-6)
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Figure 4.2: Comparison of the solutions by di�erent algorithms (Example2)
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Figure 4.3: Comparison of the solutions by di�erent algorithms (Example3)
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4.4 Discussions

1. Example 1

The solutions obtained from applying the Matlab implementations of the

DI method and NI method are very close to each other. The solutions

both converge in 4 iterations. It can be observed that, as we decrease the

tolerance down to 10−8 in order to improve the accuracy, the NI method

requires the same number of iterations to converge within the tolerance, as

shown in Table 4.4.1.

γ∗ Iterations
Optimality Test

Flatness Gradient alignment

Disk iteration 1.0000 5 1.6710E-9 1.9249E-14
Newton iteration 1.0000 5 2.4387E-8 1.9276E-14

Table 4.4.1: Results of Example 1 (256 points and the tolerance = 1E-8)

It is concluded that the NI method implementation converges to the same

solution computed by the implementation of the DI method. In this di-

mension N = 1 problem, the two implementations appear to have similar

convergence properties.

2. Example 2

In Figure 4.2, the two solutions can be seen to be close to each other. Both

algorithms converge to the same solution. However, as shown in Table 4.2.1,

the NI implementation iterated 34 times to converge to the solution while

the DI implementation needed only 4 iterations. This may be because

of the improvement made in [46] for accelerating the NI method in such

optimization problem. Nevetheless, in examples where the variables are

more iteractive, it may be expected that the truncation of the second order

term in the DI method may then result in more iterations. This conjecture

is supported by the results found in Example 3.

3. Example 3

By using the given initial points at
(
29.6 + 0.1ejθ,−30.4− 0.0001ejθ + 0.001(ejθ)2

)
,

the optimal solution is algebraically calculated as (30,−30). The results

in Figure 4.3 show that the NI implementation converges in 8 iterations

whereas the DI method produces the optimal point (30,−30) in 11 iter-

ations. This supports the conclusion that the NI method has a higher (

quadratic ) convergence rate when the dimension is greater than 1 [39].
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Figure 4.4: Convergence rate of Example 3

Iteration Gamma / DI Gamma / NI

1 3801.108728 3800.8835835
2 3800.450219 3800.099895
3 3800.027523 3800.011241
4 3800.009851 3800.000971
5 3800.000366 3800.000061
6 3800.000178 3800.000003
7 3800.000138 3800.000001
8 3800.000019 3800.000000
9 3800.000009
10 3800.000004
11 3800.000003

Table 4.4.2: Numerical results in Example 3
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4.5 Sensitivity of Newton method to the initial

guess

The convergence of solutions by the NI implementation is experimentally found to

be very sensitive to the initial conditions of the optimisation problem. With initial

points away from the optimum, the NI implementation is found to converge to

other solutions or even diverge. The behaviour can also be found in the previous

three examples as shown in Figure 4.5, Figure 4.6 and Figure 4.7.

(a) Deviation of the solutions in EX1 with the starting points 0.5

(b) Deviation of the solutions in EX1 with the starting points 0.2

Figure 4.5: Deviation of the solutions in EX1 from di�erent starting points
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Figure 4.5 shows that in this example if the initial starting points are in the

optimal solution circle (e.g. Figure 4.5.b), the solutions are able to converge to

the same points. However, if the starting points are ouside the solution circle or

near the solution circle, the NI implementation becomes divergent (Figure 4.5.a).

It is also observed in Example 2 that the solutions are very sensitive to the

initial points. Figure 4.6.a shows the divergent solution from the point 0.1 and

Figure 4.6.b the convergence of the solution from the point 0.001.

In Figure 4.7, the NI implementation is seen to be very sensitive to the initial

points. The closeness of the initial points to the optimum determines not only

the number of iterations required but also the nature of convergence.

4.6 Conclusions

• The comparison of the results of the two algorithms are presented using

examples in this chapter. If the objective function contains only one vari-

able, it is found that similar performance in terms of the computing time

and the number of iterations used is observed in both methods. However,

if the objective function has more than one variable, due to the nature of

the second order convergence in the NI method, the NI method converges

faster than in the DI method.

• However, it is also experimentally found that the NI method is very sensitive

to the initial guess. If the initial points are not close to the optimum, the

solution may not be convergent.
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Chapter 5

Linear Programming Method for

H∞ Optimization

5.1 Introduction

In this chapter, an approach to solve the H∞ control problem in terms of Linear

Programming (LP) method by Streit's algorithm [86] is presented. In contrast to

the Disk Iteration (DI) method and Newton Iteration (NI) method discussed in

Chapter 2 and 3, it is stated [40] that the LP method is capable of dealing with

the contraints in both frequency domain and time domain. In Section 5.2, the

H∞ problem in terms of the Frobenius norm is solved by the LP method. The

linear programming problem in terms of Streit's algorithm [86] is summarized by

means of the program codes in Section 5.3. An example is illustrated in

Section 5.4 and the extension of the linear programming method to MIMO sys-

tems is also discussed in this chapter.

5.2 Mixed Sensitivity H∞-Frobenius Norm
Control Problem

5.2.1 Internal Stability

In this section, the internal stability requirement of the system is discussed. It is

known [109] that the closed-loop system shown in Figure 1.2 is internally stable

if the following requirements are satis�ed :

1. The complimentary sensitivity function T is stable. This implies that the

primary sensitivity function S is also stable.
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2. No unstable pole of the plant G is cancelled by any unstable zero of the

compensator K.

3. No unstable zero of the plant G is cancelled by any unstable pole of the

compensator K.

To ensure the satisfaction of the internal stability conditions, Helton [47] proposed

the interpolation method for T as

T (s) = A (s) +B (s) · T0 (s) (5.1)

where s represents the Laplace variable, T0 is any continuous function in H∞

and A, B are the interpolation functions to meet the interpolation conditions in

Equation 5.1 of the internal stability criterion :

A (px) = 1, A (zy) = 0, B (px) = 0, B (zy) = 0

where px is the x-th RHP pole and zy is the y-th RHP zero of the plant G

respectively.

This interpolation method for M.I.M.O. systems is also derived by Zhao [106]

as

T (s) = A (s) + α (s) · T0 (s) (5.2)

where T0 (s) ∈ RH∞ is a continuous matrix-valued function, α is the scalar inter-

polant funtion de�ned as α = (s−px)·(s−zy)

(s+px)m(s+zy)n
where px and zy for x = 1, · · · ,m and

y = 1, · · · , n are the RHP poles and zeros of the plant G, and A is the matrix-

valued interpolation function that meets the interpolation conditions : A (px) = I

and A (zy) = 0

In many engineering applications, plants are typically stable. The internal

stability requirements of a closed-loop control system in Figure 1.2 with a stable

plant depend on the stabilities of the sensitivity functions S, T , Q and V . It is

simply proved [106] that for a stable plant G, if the function Q = K [I +KG]−1

is stable, the complimentary sensitivity function T = KG [I +KG]−1 = GQ is

stable. We immediately know that the primary sensitivity function S = I − T is

also stable. In addition, the function V is stable due to G being stable. If all the

four sensitivity functions are stable, the controlled system is internally stable. As

a result, the stability of the sensitivity function Q is sometimes used for meeting

the stability requirements. This is the well-known Q-parameterization method

proposed by Zames [104]. In contrast to the interpolation method, this method

is used in the rest of the thesis to parameterize Q is potentially attractive for

nonparametric control because the computation of the poles and zeros of the

plant G is avoided.
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5.2.2 Mixed Sensitivity H∞ Control Problem

It is known [83] that the standard mixed sensitivity control problem is∥∥∥∥∥
[
WSS

WTT

]∥∥∥∥∥
∞

≤ 1 (5.3)

where WS and WT are the weighting functions for the sensitivity functions S and

T .

It is suggested [106] that, by means of the Frobenius norm, the Inequality 5.3

can also be approximated as

∥∥|WSS|2 + |WTT |2
∥∥
∞ ≤

1

2
(5.4)

The Inquality 5.4 is then relaxed by choosing the alternative weighting functions

WS and WT such that ∥∥∥∥∣∣∣W ′

SS
∣∣∣2 +

∣∣∣W ′

TT
∣∣∣2∥∥∥∥
∞
≤ 1 (5.5)

In summary, the optimization problem of the mixed sensitivity control problem

can be outlined as

γ∗ = min
ω

∥∥|WS (jω)S (jω)|2 + |WT (jω)T (jω)|2
∥∥
∞ ≤ 1 (5.6)

In other words, the H∞ mixed sensitivity problem is to �nd the analytic solutions

of the functions S and T in Inequality 5.6. Because the analytic property of

functions on the unit disk D is well known, as discussed in Chapter 2, the problem

in the Equality 5.6 may be converted from the jω-axis in the complex plane to

the unit disk D by a linear fractional transform to give

γ∗ = min
θ∈D

∥∥∥∣∣WS

(
ejθ
)
S
(
ejθ
)∣∣2 +

∣∣WT

(
ejθ
)
T
(
ejθ
)∣∣2∥∥∥

∞
≤ 1

Due to the relation between the function S and the function T , i.e. S + T = I,

this results in

γ∗ = min
θ∈D

∥∥∥∣∣WS

(
ejθ
) (
I − T

(
ejθ
))∣∣2 +

∣∣WT

(
ejθ
)
T
(
ejθ
)∣∣2∥∥∥

∞
≤ 1 (5.7)

or, due to T = GQ,

γ∗ = min
θ∈D

∥∥∥∣∣WS

(
ejθ
) (
I −G

(
ejθ
)
Q
(
ejθ
))∣∣2 +

∣∣WT

(
ejθ
)
G
(
ejθ
)
Q
(
ejθ
)∣∣2∥∥∥

∞
≤ 1

(5.8)
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It is mentioned in the previous chapter that if the system is internally stable,

all the four sensitivity functions must be stable. As a result, it is possible to

reformulate the original optimization problem in Equation 5.7 with the optimal

analytic solution T to the one in Equation 5.8 with the analytic function Q.

That is, for example, the optimization problem in Inequality 5.8 for SISO systems

degenerates to the min-max problem

γ∗ = min
θ∈D

max
(
|WS (1−GQ)|2 + |WT (GQ)|2

)
(5.9)

For MIMO systems, the optimization problem can be related to the Hadamard

weighted H∞-Frobenius norm problem introduced by van Diggelen and Glover

[92]. The signi�cant advantage of using Hadamard weighted H∞-Frobenius norm

in the mixed sensitivity control problem is that using this norm provides an intu-

itive and independent way to adjust the elements of the weighting function, which

is possible to be used in the decoupling control problem by the H∞ method. A

systematic controller design procedure based on the loop shaping design pro-

cedure [67] in terms of the Hadamard weighted H∞-Frobenius norm, de�ned as

sup
ω
‖F (jω)‖ = sup

ω
(trace(F (−jω) · F (jω)))1/2 where F (jω) is the frequency re-

sponse function, is also proposed in [91]. In this chapter, by using the Hadamard

weighted H∞-Frobenius norm, we develop a nonparametric frequency-response-

based approach only for stable plants. In summary, the optimization problem in

Inequality 5.8 for MIMO systems becomes

γ∗ = min
θ∈D

∥∥∥∣∣WS

(
ejθ
)
?
(
I −G

(
ejθ
)
Q
(
ejθ
))∣∣2 +

∣∣WT

(
ejθ
)
?
(
G
(
ejθ
)
Q
(
ejθ
))∣∣2∥∥∥

∞
(5.10)

where the Hadamard weighting ? denotes 'element-by-element weighting of a

transfer function' [91]. For a 2×2 M.I.M.O. system, for example, the optimization

problem can be written as

γ∗ = min
θ∈D

|WS,11 (1−G11Q11 −G12Q21)|2 + |WT,11 (G11Q11 +G12Q21)|2 +

|WS,12 (0−G12Q22 −G11Q12)|2 + |WT,12 (G12Q22 +G11Q12)|2 +

|WS,21 (0−G21Q11 −G22Q21)|2 + |WT,21 (G21Q11 +G22Q21)|2 +

|WS,22 (1−G22Q22 −G21Q12)|2 + |WT,22 (G22Q22 +G21Q12)|2(5.11)

(5.12)

Similar results can thus be obtained for higher dimension MIMO systems. As a

result, the optimal stabilizing controller K∗ is then calculated by
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K∗ = Q∗ [I −GQ∗]−1 (5.13)

It is noted that, at this point, the functions are in the form of the frequency

response. To implement the controller in reality, it is normally required to obtain

the parametric functions of the controller K∗. Finding the corresponding rational

function of K∗ can be accomplished by using Trefethen's Chebyshev approxima-

tion method [90] via Carathéodory-Fejér theorem [16], which is known as CF

approximation method [89].

5.2.3 Algorithm to Solve the Mixed Sensitivity Problem

Given a stable plant G, the controller design method in the Hadamard weighted

H∞-Frobenius mixed sensitivity norm problem by Streit's algorithm [86] is out-

lined in follow the steps:

1. Select the weighting functionsWS andWT that meet the performance spec-

i�cations

2. Transform the frequency responses of WS(jω) and WT (jω) to those of

WS

(
ejθ
)
and WT

(
ejθ
)
on the unit disk by a linear fractional transform

3. Calculate the sensitivity function Q by solving the Hadamard weighted

H∞-Frobenius norm optimization problem

γ∗ = min
θ∈D

∥∥∥∣∣WT

(
ejθ
)
?
(
G
(
ejθ
)
Q
(
ejθ
))∣∣2 +∣∣WT

(
ejθ
)
?
(
G
(
ejθ
)
Q
(
ejθ
))∣∣2∥∥∥

∞

4. Compute the controller by K = Q [1−GQ]−1

5. Calculate the rational function of the controller K by using CF approxima-

tion method [89] and map the function K from the unit circle domain to the

frequency domain by the inverse linear fractional transform to implement

the controller.
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5.3 Linear Programming Method

The Algorithm635 proposed by Streit [87] for solving the systems of complex

linear equations in terms of L∞ norm, which is summarized below.

Given a n×m matrix A ∈ C, a n× r matrix B ∈ C, and the vectors f ∈ Cm,
g ∈ Cr, a ∈ Cn, d ∈ Rn and c ∈ Rr, the optimization problem

min
z∈C
‖zA− f‖∞ (5.14)

subject to

|z − a| ≤ d

|zB − g| ≤ c (5.15)

where ‖·‖∞ denotes the L∞ norm, can be discretized to the problem

min
ε∈R,z∈Cn

ε (5.16)

subject to

|zAi − fi|D ≤ ε , i = 1, · · · ,m

|zBi − gi|D ≤ ci , i = 1, · · · , r (5.17)

|z − ai|D ≤ di , i = 1, · · · , n

where Ai and Bi are the i-th columns of the matrices A and B.

This algorithm solving the discretized problem is originally published in [86]

and implemented in the FORTRAN language in [87]. Several applications of

the Algorithm635 are also studied in [40, 72, 85, 88]. It is seen from the above

derivation that the algorithm is based on the extension of the solution to the

complex semi-in�nite program (SIP) formulation of the unconstrained problem

to the constrained optimization problem.

It is shown in [87] that the norm |u|∞ can be discretised as a p-th polygon

: |u|D = max
θ∈D

(
uR cos θ + uI sin θ

)
where D = {θ1, θ2, . . . , θp} is the subset of the

interval [0, 2π) and uR,uI are the real and imaginary parts of u respectively . The

discretised problem 5.16 can then be transformed to the standard constrained

linear programming problem [87] :
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min[
zR zI ε

]
∈R

[
zR zI ε

] [
0n 0n 1

]T
(5.18)

subject to ε ≥ 0 and for each θ ∈ [0, 2π]

[
zR zI ε

] AR cos θ + AI sin θ BR cos θ +BI sin θ I cos θ

AR sin θ − AI cos θ BR sin θ −BI cos θ I sin θ

−1m 0r 0n


≤
[
fR cos θ + f I sin θ c+ gR cos θ + gI sin θ d+ aR cos θ + aI sin θ

]
(5.19)

It is reported [15] that the linear programming problem is usually solved by

the simplex method. The simplex method, however, requires large memory ca-

pacity to store the huge matrices in this problem [87]. A revised simplex method

is presented by Streit [87] to reduce the memory storage for solving the corre-

sponding dual problem. In the Matlab programs to implement Streit's algorithm,

the interior point method is used by calling the standard code linprog [105] for

solving the large scale linear programming problem.

It is also noted in [87] that since the discretised problem is an approximation

to the original problem, there may be no feasible solution to the original problem

but we can still calculate a solution to the discrete problem. It is discussed in

[87] that this is because the region of the constraints in the Inequalities 5.17 is

larger than those in the Inequalities 5.15 . However, as the discretisation number

of p increases, the discrete problem grows closer to the original problem and the

false solution to the discrete problem can be excluded. In [87], the discretisation

number p is suggested to be 1024. However, it is known that increasing the

discretisation number p increases the computing e�orts dramatically as shown

in Figure 5.1. It is observed in the �gure that the computing time starts to

increase potentially from the point p = 16. In the experience of running many

similar Matlab programmes, if a feasible solution is found, the value of p is not

neccessary to be 1024 and p = 16 is enough to provide a satisfactorily accurate

solution.
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Figure 5.1: The in�uence of the discretisation number p to the computing time

• Application of the Linear Programming Method to the Mixed

Sensitivity Control Problem

To solve the mixed sensitivity problem in Equation 5.8, we restate the problem

to be a constrained optimization problem as

γ∗ = min
θ∈D
‖WS ? (1−GQ)‖∞ (5.20)

subject to

‖WT ? (GQ)‖∞ ≤ 1 (5.21)

We �rst focus on this relaxed mixed sensitivity problem for a SISO system as

follows and extend it to MIMO systems afterwards :

γ∗ = min
θ∈D
‖WS (1−GQ)‖∞ (5.22)

subject to

‖WT (GQ)‖∞ ≤ 1 (5.23)

Due to Q ∈ H∞, the power expasion of Q up to n-the order can be expressed in

the form
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Q
(
eiθ
)

= z0 + z1e
jθ + z2e

2jθ + · · ·+ zne
njθ (5.24)

=
[
z0 z1 z2 · · · zn

]
·
[
e0 ejθ e2jθ · · · enjθ

]T
(5.25)

= z ·A
(
ejθ
)

(5.26)

where z =
[
z0 z1 z2 · · · zn

]
and A =

[
e0 ejθ e2jθ · · · ejnθ

]T
.

Therefore, the mixed sensitivity optimization problem becomes

γ∗ = min
θ∈D

∥∥WS

(
ejθ
) (

1−G
(
ejθ
)
zA
(
ejθ
))∥∥

∞ (5.27)

subject to

∥∥WT

(
ejθ
) (
G
(
ejθ
)
· zA

(
ejθ
))∥∥

∞ ≤ 1 (5.28)

In the spirit of Streit's algorithm, the problem can then be discretized as

min
ε∈R,z∈Cn

ε

subject to

∣∣∣zÃk −WS,k

∣∣∣
D
≤ ε , k = 1, · · · , n∣∣∣zB̃k − 0

∣∣∣
D
≤ 1 , k = 1, · · · , n

where

Ãk = WS

(
ejkθ
)
G
(
ejkθ
)
A
(
ejkθ
)

WS,k = WS

(
ejkθ
)

B̃k = WT

(
ejkθ
)
G
(
ejkθ
)
A
(
ejkθ
)

and n ∈ Z+ is the number of discretizing points. Such problem is closely related

to the linear programming problem proposed by Streit [86] and is thus solvable

by the standard Matlab algorithm:linprog [105].

• Extension of the Linear Programming Method for MIMO Systems

The above derivation may also extend for the mixed sensitivity problem for MIMO

systems. For instance, for a 2 × 2 system, the optimization problem stated in

Inequality 5.11 may be re-formulated to the constrained optimization problem :
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γ∗ = min
θ∈D
‖WS,11 (1−G11Q11 −G12Q21)‖∞ (5.29)

subject to

‖WT,11 (G11Q11 +G12Q21)‖∞ ≤ 1 (5.30)

‖WS,12 (0−G12Q22 −G11Q12)‖∞ ≤ 1 (5.31)

‖WT,12 (G12Q22 +G11Q12)‖∞ ≤ 1 (5.32)

‖WS,21 (0−G21Q11 −G22Q21)‖∞ ≤ 1 (5.33)

‖WT,21 (G21Q11 +G22Q21)‖∞ ≤ 1 (5.34)

‖WS,22 (1−G22Q22 −G21Q12)‖∞ ≤ 1 (5.35)

‖WT,22 (G22Q22 +G21Q12)‖∞ ≤ 1 (5.36)

In principle, the problem is possibly solved by the LP method in the spirit of the

LP method for SISO systems. It may be solvable by other techniques of convex

optimization in [14, 15]. In the thesis, the software CVX [33, 34] providing the

solution to convex problems will be used in the next chapter to speed up the LP

method.

5.4 An Application for the Linear Programming

Method

In this section, the example in [83] P.274 is used to illustrate the proposed ap-

proach by the LP method. The system in the example has the structure of the

multiplicative uncertainty with the weighting functionW I as shown in Figure 5.2

where K is the controller to be calculated. The transfer function of the nominal

plant G and the weighting function on the uncertainty are given as

G =
1

s+ 1

WI =
0.125s+ 0.25

0.03125s+ 1
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Figure 5.2: System con�guration with multiplicative uncertainty where the
plantG = 1

s+1
, the weighting function WI = 0.125s+0.25

0.03125s+1
and the controller K

5.4.1 H∞ Controller Design using the Parametric Plant

The �rst illustration of the H∞ robust controller design method by linear pro-

gramming method is presented in terms of the given nominal plant G. The control

structure used in this section is illustrated in Figure 5.3.

Figure 5.3: Control system based in Figure 5.2 for the parametric controller
design method

The frequency responses of G are calculated in the selected frequency range

[0, 325.94] Hz with 1024 sampling points. The weighting functions for the func-

tions S and T are selected as

WT =
1.2s+ 1

0.001s+ 1.2
(5.37)

WS =
s+ 1.6

1.6s+ 0.01
(5.38)

The mixed sensitivity control problem is then formulated as
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γ∗ = min
s∈jω
|WS (1−GQ∗)|2 + |WT (GQ∗)|2 (5.39)

= min
s∈jω

(
s+ 1.6

1.6s+ 0.01

)2 ∣∣∣∣1− 1

s+ 1
Q∗1

∣∣∣∣2 + (5.40)(
1.2s+ 1

0.001s+ 1.2

)2 ∣∣∣∣ 1

s+ 1
Q∗1

∣∣∣∣2 ≤ 1 (5.41)

where Q∗1 is the optimal analytic solution, which can be expanded as

Q∗1
(
ejθ
)

= z0 + z1e
jθ + z2

(
ejθ
)2

+ · · · + zn−1

(
ejθ
)n−1

and n is the highest order

of the power expansion. In this example, n is chosen as 60.

The linear programming method is used to solve the optimization problem.

It is found that the optimal solution Q∗1 is computed as

Q∗1 =
0.0002885s5 + 0.02432s4 + 0.6827s3 + 11.51s2 + 12.45s+ 8.116

0.0004767s5 + 0.02964s4 + 0.7815s3 + 11.52s2 + 11.53s+ 8.131

and the other performance functions are calculated to be

T ∗1 =
0.0002885s5 + 0.02432s4 + 0.6827s3 + 11.51s2 + 12.45s+ 8.116

0.0004767s6 + 0.03012s5 + 0.8111s4 + 12.3s3 + 23.06s2 + 19.67s+ 8.131

S∗1 =
0.0004767s6 + 0.02983s5 + 0.7868s4 + 11.62s3 + 11.54s2 + 7.216s+ 0.01504

0.0004767s6 + 0.03012s5 + 0.8111s4 + 12.3s3 + 23.06s2 + 19.67s+ 8.131

V ∗1 =
5.323e− 06s10 + 0.0007357s9 + 0.04507s8 + 1.591s7 + 31.34s6 + · · ·

5.527e− 06s11 + 0.000723s10 + 0.04658s9 + 1.652s8 + 34.05s7 + 397s6 + · · ·
344.7s5 + 391.1s4 + 261.3s3 + 18.66s2 + 0.4688s+ 0.00253

1108s5 + 1409s4 + 981.7s3 + 335.9s2 + 20.82s+ 0.4511

Observing the four functions, we immediately know that the internal stability

requirements are met since the four functions are all stable (i.e. all the poles are

in the L.H.P.). The controller is then computed as a �fth-order rational function

K1 =
0.01159s5 + 0.784s4 + 28.45s3 + 35.28s2 + 2.427s+ 0.05548

0.01845s5 + 0.9948s4 + 28.72s3 + 2.211s2 + 0.05729s+ 0.0003117

In Figure 5.4, it is also seen that the primary sensitivity function S∗1 is bounded

by the inverse of the weighting function WS. The same observation can be found

in Figure 5.5 where the complementary sensitivity function T ∗1 is also bounded

by the inverse of the weighting function WT . It is concluded that the controlled
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system meets the desired requirement in terms of the functions S∗1 and T ∗1 .

Futhermore, the performance of the system in time domain can be simulated

by observing the step response, whish is illustrated in Figure 5.6. The settling

time of this response is about 3.5 seconds and there is no overshoot in the system

response.

Figure 5.4: Bode diagram of the primary sensitivity function S1 and the weighting
function 1/WS
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Figure 5.5: Bode diagram of the complementary sensitivity function T1 and the
weighting function 1/WT

Figure 5.6: Step response simulation of the system in terms of T1
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The above simulation results demonstrate the good performance of the con-

troller K1 by the H∞ controller design method. However, as there exists the

uncertainty in the system as shown in Figure 5.2, it is important to examine

whether the controller still has the same performance for the uncertain plant.

Figure 5.7 shows the comparison between the measured response for the uncer-

tain plant and the simulated response for the nominal plant G. It is observed

that the controller has the same performance as expected in the simulation. The

�gure also shows the controller K1 is robust to the plant uncertainty.

Figure 5.7: Comparison of the measured response (Blue) and the simulated re-
sponse (Red)

5.4.2 Nonparametric H∞ Controller Design

In Figure 5.2, there exists multiplicative uncertainties in the system, which nor-

mally results in the deviation between the frequency response of the given nominal

plant G and the measured frequency response from the input and output of the

plant model. Although the uncertainty in the plant model is often treated in

terms of the system robustness, in practice, the nominal plant G is usually un-

known. However, in the parametric controller design method, the plant model

is required to be identi�ed in the �rst place. This can be accomplished by us-

ing several common techniques to obtain the nominal model by using system
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identi�cation methods, e.g. disk approximation as shown in Figure 5.8, and the

measured frequency response (see [83] for details) etc..

Figure 5.8: The uncertainty disk of the frequency response G (jω)

In this section, the nonparametric controller design method is adopted in

terms of a set of frequency response functions identi�ed from the multiplicative

perturbed plant. As the nonparametric method does not require the system

identi�cation for the plant model, the method potentially gives more accurate

frequency response of the controller and may save much time on system calibra-

tion. The nonparametric method contains four steps shown in the following and

illustrated in Figure 5.9. The �rst step is to obtain the frequency response of the

plant by Fourier Transform. The second, third, and fourth steps are the same

procedure discussed in Section 5.2.3.

i) Compute the frequency response of the plant

In this example, the simulation to compute the frequency response of the plant

model based on the control system in Figure 5.2 is illustated in Figure 5.10. In

Figure 5.10, the frequency response is obtained by Fast Fourier Transform (FFT)

of the caculation of the output response over the random input signal. The

resulting frequency response (by taking the mean at each frequency) is shown in

Figure 5.11.
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Figure 5.9: The nonparametric controller design method

Figure 5.10: Computation of the frequency response of the uncertain plant
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Figure 5.11: Comparison of the measured frequency response (FRF) and the
average frequency response (FRF)

ii) Select the weighting functions WT and WS

The same weighting functions for the functions S and T used in Equation 5.37

and 5.38 are selected as

WT =
s+ 1

0.001s+ 1.8

WS =
s+ 1.3

1.8s+ 0.01

iii) Optimisation

Therefore, the H∞ mixed sensitivity control problem is formed as

γ∗ = min
s∈jω
|WS (1−GQ∗)|2 + |WT (GQ∗)|2 (5.42)

= min
s∈jω

(
s+ 1.3

1.8s+ 0.01

)2

|1− FRFP ·Q∗2|
2 +(

s+ 1

0.001s+ 1.8

)2

|FRFP ·Q∗2|
2 ≤ 1 (5.43)

103



where FRFP is the frequency response of the uncertain plant ( i.e. the nominal

plant model G equipped with the multiplicative uncertainty weighting function

WI )

The form of the identi�ed model is incorporated in Equation 5.43. In practice,

there is no need to parametrically identify the model because the problem can

be solved solely in terms of the frequency response. This, therefore, constitutes

a completely nonparametric method for the mixed sensitvity control problem.

The same settings for the LP algorithm are used in this uncertain system ex-

ample with the order of power expansion as 60. By using the linear programming

method, the optimal solution Q∗ is calculated as

Q∗2 =
0.0003859s5 + 0.1103s4 + 8.253s3 + 10.95s2 + 10.59s+ 3.292

0.008644s5 + 1.077s4 + 8.23s3 + 10.42s2 + 9.379s+ 2.889

The resulting sensitivity functions are then

T ∗2 =
−0.006067s6 − 1.692s5 − 117.9s4 + 714.3s3 + 1010s2 + 1086s+ 353.6

s6 + 125.6s5 + 1085s4 + 2219s3 + 2368s2 + 1490s+ 355.9

S∗2 =
1.006s6 + 127.3s5 + 1203s4 + 1505s3 + 1358s2 + 403.3s+ 2.304

s6 + 125.6s5 + 1085s4 + 2219s3 + 2368s2 + 1490s+ 355.9

and

V ∗2 =
0.04465s5 + 12.76s4 + 954.8s3 + 1267s2 + 1226s+ 380.8

s5 + 124.5s4 + 952.2s3 + 1205s2 + 1085s+ 334.3

It is also found that the internal stability is guaranteed due to the stability of

the four functions S∗2 , T
∗
2 , Q

∗
2 and V

∗
2 .

iv) Compute the controller function K

The controller is then calculated as

K2 =
0.04438s6 + 12.73s5 + 962.5s4 + 2270s3 + 2559s2 + 1676s+ 403

s6 + 126.5s5 + 1195s4 + 1495s3 + 1350s2 + 400.9s+ 2.29

In Figure 5.12, it can be seen that the primary sensitivity function S∗ is cor-

rectly bounded by the inverse of the weighting function WS. The complementary

sensitivity function T ∗ is also correctly bounded by the inverse of the weighting

function WT as shown in Figure 5.13. As shown in Figure 5.14, the step response
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of the control system equipped with the controller K2 has similar performance

as it of the control system equipped with the controller K1, which is computed

by using the parametric plant model given as G = 1
s+1

. It is seen in the graph

that the step response (blue dashed line) of the controller K1 reaches the steady

state in 4 seconds. At the same time at the fourth second, the step response of

the controller K2 also arrives its steady state. Furthermore, it is also observed

in this �gure that the two contorllers are robust to the uncertainty in the plant

model (as seen in Figure 5.2).

Figure 5.12: Comparison of Bode diagram of the primary sensitivity function S2

and the weighting function 1/WS
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Figure 5.13: Comparison of the complementary sensitivity function T2 and the
inverse of the weighting function WT

Figure 5.14: The system step responses with the controllers K1 and K2
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In summary, the nonparametric method skips the process of the system iden-

ti�cation. It is concluded that without knowing the transfer function of the plant

(or any analytic form of the plant model), the proposed nonparametric H∞ robust

controller design method �nds a controller which can be successfully implemented

in the closed loop control system and has similar performance as the controller

obtained by using the parametric method. The controller produced by the non-

parametric method is also robust since it keeps the desired performance even if

there is unmodelled dynamics in the plant or the external disturbances to the

system.

5.5 Conclusions

• The optimization problem in the mixed sensitivity control problem is in-

troduced. The mixed sensitivity problem is approximated as a root square

problem in Equality 5.8. A nonparametric H∞ controller design method in

terms of Streit's algorithm [87] is proposed.

• The internal stability requirement in the control problem is discussed.

• The algorithm to solve the optimization problem in the mixed sensitivity

control problem is summarized. Streit's algorithm [86] is implemented to

tackle the mixed sensentivity control problem.

• The example taken from [83] is used to demonstrate the nonparametric

method. We �rstly found the resulting controller K1 by using the given

nominal plant G. The nonparametric method is then used to calculate the

controller K2.

• It is concluded that the nonparametric method �nds the robust controller

within the desired requirements. In terms of the frequency response, it

does not need any system identi�cation techinque. Furthermore, all the

constraints are considered and the controller is found to be robust to the

unmodelled dynamics or the external disturbances.
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Chapter 6

An Application to the Engine

Control Problem

6.1 Introduction

The nonparametric H∞ control is formulated in Chapter 2 by means of the opti-

misation problem in Equation 2.1:

Given a continuous positive-valued function Γ in CN where N is the dimension

of the problem, and a set of all the stable functions on the jω axis ( denotes as

RH∞ , the space of all functions whose poles have negative parts. ), �nd the

optimal function f ∗ (jω) ∈ RH∞ such that

γ = inf
f∈RH∞

sup
ω

Γ (ω, f (jω)) (6.1)

where ω represents the frequency, and f (jω) is the frequency response function.

To solve the problem, the Disk Iteration (DI) method, Newton Iteration (NI)

method, and the Linear Programming (LP) method are presented in detail in

Chapter 2, 3, and 5 respectively. It is interesting to further investigate and com-

pare the di�erence between these three algorithms (i.e. the DI, NI, LP methods)

for nonparametric control. As presented in the previous chapters, the procedure

to design the controller by using the H∞ optimisation technique with di�erent

algorithms is used in this chapter.

Nevertheless, in this chapter, an example in [106] is used to analyze the DI, NI,

and LP methods for nonparametric control. The control problem is the Peak-

Pressure-Position (PPP) control problem in automotive engine control. Since

the peak pressure position can be used to determine the optimal spark timing in

order to generate the Maximum Brake Torque (MBT) [75, 76], the Engine Control
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Unit (ECU) requires a controller to regulate the PPP by the Spark Advance (SA)

demand. This is thus viewed as a command tracking problem. It is stated [17, 94]

that ARXmodelling is an e�ective linear identi�cation structure for such problem.

As a result, the transfer function of the plant identi�ed by Ward [94] is used in

this chapter :

G =
0.6729s− 20.41

s+ 20.6

It is noted that a RHP zero at s = 30.3314 exists in the plant's transfer func-

tion. To meet the internal stability requirement, in Helton's approach, the in-

terpolation conditions such that T (s) = A (s) +B (s)T0 (s) where A (30.3314) =

B (30.3314) = 0 and T0 ∈ H∞ are required to meet. As a result, the interpolants

A and B are chosen as A = B = s−30.3314
s+2

. This is a parametric interpolation

method used by Zhao [106]. However, a nonparametric (NP) identi�cation tech-

nique without computing the pole and zero of the plant is possible to replace

this parametric method and the frequency response is thus obtained by the NP

identi�cation method.

In this chapter, for comparison, the three proposed method, i.e. the DI

method, the NI method, and the LP method, to solve an H∞ control problem are

analyzed. Beginning with the single sensitivity control, we discuss the resulting

controller performances and the robustness of the system for this PPP control

problem in Section 6.2. In Section 6.3, the three methods are compared again in

terms of the mixed sensitivity control problem. The analysis of the methods are

presented and summarized in Section 6.4.

6.2 Single Sensitivity Control

In [106], the weighting function for the single sensitivity problem is chosen as

WS =
s+ 1.57

1.57s+ 0.01

This weighting function will be used in this section to regenerate the results for

analyzing the algorithms. 512 frequency points are chosen by using the mapping

ωi = b/ tan (πi/N)

where i = 1, 2, 3, · · · , N − 1 and the sample width b = 1.
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The H∞ single sensitivity control problem is thus formulated as

γ∗ = min
s∈jω
|WS (1− T ∗)|2 min

s∈jω

∣∣∣∣ s+ 1.57

1.57s+ 0.01

(
1− 0.6729s− 20.41

s+ 20.6
Q∗
)∣∣∣∣2 (6.2)

The three methods to solve this optimization problem in 6.2 produce similar

solutions as shown in Figure 6.1. The solutions of the DI, NI, and LP method are

very close to each other. This implies that the problem is a convex optimization

problem and all of them converge to the optimal solution.

Figure 6.1: Comparison of the solutions by di�erent analytic function methods

The resulting complementary sensitivity functions are then calculated as

TDI =
−0.0185s5 − 0.09221s4 + 13.86s3 + 180.8s2 + 9.349s+ 0.1697

0.3346s5 + 13.02s4 + 135.2s3 + 187.4s2 + 9.493s+ 0.1707

TNI =
−0.006624s5 − 0.2541s4 + 7.346s3 + 195.9s2 + 1.33s+ 0.03086

0.119s5 + 8.727s4 + 138.8s3 + 196.6s2 + 1.35s+ 0.0308

TLP =
−0.02995s5 + 0.04204s4 + 20.45s3 + 176.7s2 + 7.047s+ 0.165

0.5429s5 + 17.49s4 + 138.7s3 + 181.6s2 + 7.179s+ 0.1659

and the primary sensitivity functions are
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SDI =
0.3531s5 + 13.11s4 + 121.4s3 + 6.664s2 + 0.1444s+ 0.0009898

0.3346s5 + 13.02s4 + 135.2s3 + 187.4s2 + 9.493s+ 0.1707

SNI =
0.1256s5 + 8.981s4 + 131.5s3 + 0.7264s2 + 0.0194s− 0.00005823

0.119s5 + 8.727s4 + 138.8s3 + 196.6s2 + 1.35s+ 0.0308

SLP =
0.5728s5 + 17.45s4 + 118.3s3 + 4.906s2 + 0.1317s+ 0.000907

0.5429s5 + 17.49s4 + 138.7s3 + 181.6s2 + 7.179s+ 0.1659

Figure 6.2a shows the Bode diagrams of these complementary sensitivity func-

tions and Figure 6.2b illustrates the Bode diagram of these primary sensitivity

functions. It is observed that all of the sensitivity functions SDI , SNI , and SLP

are bounded by the inverse of the weighting function WS.

The controllers are then computed as

CDI =
−0.05045s4 − 3.426s3 − 77.37s2 − 581.9s− 14.2

s4 + 49.59s3 + 598.9s2 + 18.74s+ 0.1758

CNI =
−0.04944s4 − 3.074s3 − 64.42s2 − 455s− 10.93

s4 + 43.69s3 + 477.9s2 + 23.6s+ 0.3265

CLP =
−0.05049s4 − 3.504s3 − 80.48s2 − 613.2s− 15.51

s4 + 51.15s3 + 631s2 + 20.11s+ 0.1921

and the simulation of the corresponding step responses in Matlab/Simulink [65]

are shown in Figure 6.3. It is seen that the settling time of these responses are

all around 6 seconds and there are no overshoots in the transient response.
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(a) Bode diagram of the complementary sensitivity functions TDI , TNI , TLP in the
single sensitivity control problem

(b) Bode diagram of the primary sensitivity functions SDI , SNI , SLP in the single
sensitivity control problem

Figure 6.2: Comparison of the sensitivity function S and T in their Bode diagrams
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Figure 6.3: Step responses of the controllers CDI , CNI ,and CLP

6.3 Mixed Sensitivity Control

The mixed sensitivity control problem for the PPP control problem is formulated

as [106]

γ∗ = inf
Q∗∈H∞

sup
ω
|WS (1−GQ∗)|2 + |WT (GQ∗)|2

where WS and WT are the two weighting functions chosen as

WS =
s+ 1.57

1.57s+ 0.01

WT =
0.2s+ 1

0.01s+ 2

The same frequency points in the previous section are selected to be equally

spaced on the unit circle. That is, 1024 frequency points are chosen by the

equation

ωi = b/ tan (πi/N)

where i = 1, 2, 3, · · · , N − 1 and b = 1.

In Figure 6.4, it is seen that the three methods, i.e. the DI, NI and LP

methods, produce the similar solutions which are very close to each other. This

again implies the convexity of this control problem and the local optimum is the
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same as the global optimum no matter the analytic function method we use.

Figure 6.4: Comparison of the frequency respons of the analytic solutions Q∗ by
di�erent methods

The complementary sensitivity functions and the primary sensitivity functions

are then calculated as

TDI =
−0.0003611s5 − 0.02064s4 + 0.1945s3 + 16.6s2 + 199.1s+ 5.549

0.01109s5 + 0.6385s4 + 13.95s3 + 123.1s2 + 202.4s+ 5.572

TNI =
−0.0005278s5 − 0.02384s4 + 0.3749s3 + 19s2 + 191s+ 5.535

0.0146s5 + 0.7821s4 + 15.5s3 + 124.7s2 + 198.9s+ 5.682

TLP =
−0.01982s5 − 0.06931s4 + 14.53s3 + 175.8s2 + 13.53s+ 0.3128

0.3569s5 + 13.36s4 + 132.6s3 + 185.2s2 + 13.78s+ 0.3145

SDI =
0.01145s5 + 0.6592s4 + 13.75s3 + 106.5s2 + 3.286s+ 0.02362

0.01109s5 + 0.6385s4 + 13.95s3 + 123.1s2 + 202.4s+ 5.572

SNI =
0.01513s5 + 0.806s4 + 15.13s3 + 105.8s2 + 7.921s+ 0.147

0.0146s5 + 0.7821s4 + 15.5s3 + 124.7s2 + 198.9s+ 5.682
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SLP =
0.3767s5 + 13.43s4 + 118.1s3 + 9.417s2 + 0.2485s+ 0.001636

0.3569s5 + 13.36s4 + 132.6s3 + 185.2s2 + 13.78s+ 0.3145

Figure 6.5a shows the three resulting complementary sensitivity functions and

Figure 6.5b illustrates the three primary sensitivity functions. It is found in

the �gures that the complementary sensitivity functions TDI , TNI , and TLP are

bounded by the weighting function 1/WT . The primary sensitivity functions SDI ,

SNI , and SLP are also bounded by the inverse weighting function 1/WS.

Thus, the controllers are computed as

CDI =
−0.04687s5 − 5.066s4 − 183.6s3 − 2895s2 − 1.759e04s− 490.4

s5 + 57.57s4 + 1201s3 + 9303s2 + 287s+ 2.063

CNI =
−0.05185s5 − 4.983s4 − 162.6s3 − 2307s2 − 1.278e04s− 369.7

s5 + 53.28s4 + 1000s3 + 6991s2 + 523.6s+ 9.718

CLP =
−0.07818s5 − 4.256s4 − 77.42s3 − 474s2 − 36.34s− 0.8409

s5 + 35.64s4 + 313.5s3 + 25s2 + 0.6595s+ 0.004343

Figure 6.6 shows the simulated step responses of the controllers CDI , CNI ,

and CLP . It is observed from the plot that the step responses of the controller

CDI ,CNI and CLP are close to each other. All the three step responses reach

the steady state at around 4 seconds. Compared to the step responses in the

single sensitivity control problem in Figure 6.3, it is observed that the solution to

the mixed sensitivity problem may have better performance in the time domain.

Moreoever, since there is an additional constraint, e.g. WT , in the mixed sensitiv-

ity problem, more performance requirements can be included in the consideration

during the optimization process. The mixed sensitivity control is potential to deal

with more general engineering control problems than the single sensitivity control.
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(a) Bode diagrams of the complementary sensitivity functions TDI , TNI , TLP

(b) Bode diagrams of the complementary sensitivity functions SDI , SNI , SLP

Figure 6.5: Comparison of the sensitivity functions S and T in their Bode dia-
grams
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Figure 6.6: Step responses of the controllers CDI , CNI ,and CLP

6.4 Discussions

6.4.1 Selection of the initial guess for the NI method

It is pointed out in the previous chapters that NI method is very sensitive to the

initial points. The same conclusion can also be observed in this example. In the

single sensitivity control problem, the NI method converges to the same solution

as the others from the initial points at (0, 0). However, in the mixed sensitivity

control problem, the NI method only produces a similar solution compared with

the others when starting from around the points close to the optimal points.

Other points away from this point, e.g. larger than the distance of 0.02, will result

in divergent solutions by the NI method. This represents a signi�cant drawback if

using the current implementation of the NI method. The reason for its sensitivity

to the initial points is possibly from the inaccuracy of inverting the joint operator

in the Matlab implementation. Furthermore, if the optimization problem is not

convex, i.e. the local optimum is not neccessarily the global optimum, because

the three optimization methods, the NI, DI, and LP methods, are algorithms

to search for the local optimum, and so the global optimal solution may be lost

during the optimization process. When using these analytic function methods, it

is essential for the designer to examine the properties of the calculated solution

before accepting the resulting controller.
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6.4.2 Pros and cons of the LP method

The LP method is known to be superior in the sense of its capability to deal with

the contraints both in the frequency domain and the time domain [40]. It is also

mentioned in the results of [12] that the LP method requires more computational

e�ort than the other two iteration methods. However, it is still useful to adopt

the LP method because the LP method is in principle more accurate than the

other optimization methods. Moreover, as mentioned in [43], the LP method

is still valid when there exists any pole of the plant near the unit circle while

the DI and NI methods may fail in such cases. The disadvantage of using the

LP method is from the internal storage of the matrices. Normally, as in the LP

method the functions are expanded to high order series in the form of matrices,

this data preprocessing requires a huge amount of memory and results in higher

computing power. Sometimes the computation needs more than 8GB memory

and several hours of running on a personal computer with a dual core processor

to accomplish the job when the expansion order is up to 60 and the discretization

p = 1024.

Fortunately, the obstable of such long computing time for the LP method

is being reduced by the improvements in computer technology. Furthermore, in

Matlab, the codes for the interior point method has been optimized for solving

linear programming problems to achieve better accuracy and less computing time

in large sparse problems [32]. It is found in the examples that the computing time

are not signi�cantly long. In the experience of running the Matlab programs, the

elapsed time is mostly within 30 minutes with 512 sampling points.

In addition, although it is reported in [86] to require the discretization num-

ber p larger than 1024, it has been observed experimentally in the work for this

thesis that the solution to the linear programming problem only needs p = 32

for the satisfactory accuracy 10−4 with the analytic solution value γanalytic =

0.6673955751046930. Comparison of di�erent discretization numbers p for the

mixed sensitivity control problem in this chapter is shown in Table 6.4.1 by using

the expansion order n = 10. If a su�ciently large enough number of sampling

points are used, the discretization number does not require to be the recom-

mended number of 1024. For the optimization process in this automotive PPP

control, p = 32 is fairly enough for the required accuracy 10−4.
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The discretization number p The optimal value γ∗ Computing time (seconds) Accuracy (
∣∣∣ γ∗−γanalytic

γanalytic

∣∣∣)
4 0.6673056475992780 5.6068 0.000134744

8 0.6673056475920020 15.4236 0.000134744

16 0.667305647619287 40.0480 0.000134744

32 0.667359618216096 125.8325 0.0000538764

64 0.667371939973236 330.7124 0.000035414

128 0.667384748308564 764.9893 0.0000162225

256 0.667388190078782 4343.7941 0.0000110654

Table 6.4.1: Comparison of the di�erent discretization numbers p for the S.I.S.O.
mixed sentivity control problem

The other in�uencing factor in the LP method is the order of power expansion

of the function Q, i.e. the number n in Equation 5.24. It is expected that the

higher the order n that is used, the more accurate the solution will be. Never-

theless, the computing time and the acccuracy are to be traded o� to achieve

an acceptable time frame. For a �xed value of p = 16, the comparison of the

di�erent orders of the expansion series is shown in Table 6.4.2. As a result, it is

suggested to set the order n as 60 and p = 32 for similar mixed sensitivity control

problems with the accuracy of 10−5.
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p = 16

Expansion order n Optimal Value γ∗ Computing Time (seconds) Accuracy (
∣∣∣ γ∗−γanalytic

γanalytic

∣∣∣)
3 0.672414512919204 15.2204 0.0003887022464567

5 0.670549727441141 23.0906 0.0006234178891308

10 0.667305647619287 37.6418 0.0001347439041560

20 0.666158106139847 64.8095 0.0000160914639161

30 0.666043375297477 108.4114 0.0000158840520315

60 0.665869361604564 340.7438 0.0000011011161933

80 0.665839261753931 431.9747 0.0000000628141906

100 0.665833678127228 704.6933 0.0000000057071264

p = 32

Expansion order n Optimal Value γ∗ Computing Time (seconds) Accuracy (
∣∣∣ γ∗−γanalytic

γanalytic

∣∣∣)
3 0.672527986430957 61.4150 0.0002200125436547

5 0.670913079447928 73.4415 0.0000818838734037

10 0.667359618216096 117.0368 0.0000538764264228

20 0.666158106152579 180.2518 0.0000160914448039

30 0.666043375087611 244.5649 0.0000158843671201

60 0.665869361924706 783.1476 0.0000011006354057

80 0.665839261630026 944.8358 0.0000000630002790

100 0.665833677248884 1771.2715 0.0000000070262908

Table 6.4.2: Comparison of di�erent orders n for the SISO mixed sensitivity
control problem

6.4.3 Comparison of the methods

It can be observed from the above results that the solutions by the three analytic

function methods are close to each other. Therefore, a choice may come down to

the comparison on the computing power required for each method.

Table 6.4.3 shows the computing time for the single sensitivity problem and the

mixed sensitivity problem by each analytic function method. It is observed that

the NI method needs the least computing power but it requires a careful choice of

the initial guess. The DI method is e�ective but increased number of iterations

makes the computation longer in time. It is found that the LP method, as

expected, requires the longest computing time. However, the computation in the

linear programming algorithm may be improved by using third-party optimization

softwares, such as TomLab[52] or CVX [33, 34]. These softwares are employed

to speed up the process of optimization and may also improve the accuracy of

the solution. For example, by using CVX in the single sensitivity problem, the

computing time can be signi�cantly reduced from 381.5326 seconds to 2.3550

seconds, which makes use of the method more convenient.

In addition, the interpolation method proposed by Helton [47] requires the

computation of the unstable zero and pole of the plant. In the nonparametric ap-

proach, introducing the sensitivity function Q to guarantee the internal stability
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Optimization Algorithm
Single Sensitivity Problem Mixed Sensitivity Problem

Computing time (second) Computing time (second)

NI 105.9434 94.9621

DI 302.5748 314.3073

LP 381.5326 656.1859

LP by CVX 2.3550 7.3107

Table 6.4.3: Comparison of the computing times by DI, NI, and LP methods

does not need any parametric interpolation, which leads to a fully nonparametric

controller design method - a major outcome of this thesis.

6.5 Conclusions

• A control problem for powertrain engine PPP control problems is presented.

The application of the H∞ controller design method to the Peak-Pressure-

Position (PPP) control problem is addressed in this chapter. It is shown

in the results that, in the single sensitivity weighting method, the optimal

sensitivity function is correctly bounded by the inverse of the weighting

function and the resulting three optimal closed-loop step responses have a

good settling time around of 6 seconds. Moreover, in the mixed sensitivity

weighting method, the results demonstrate that all the sensitivity functions

are bounded by the inverses of the respective weighting functions. Com-

pared to the closed-loop step responses in the single sensitivity problem, the

step responses in the mixed sensitivity problem has an improved settling

time of 4 seconds.

• The accuracy of the solution is found to be relatively insensitive to the

discretization number p. Although it is suggested in [86] to use p = 1024 to

deal with most optimization problems, the error between the numerical and

analytic solutions is acceptable in the problems studied if p is selected as 32.

The order of expansion n, however, is more in�uential than the number p.

Considering the computing cost and the usage of memory storage, n = 60 is

suggested to be good enough for similar mixed sensitivity control problems.

• The three optimization algorithms are compared and analyzed. It is found

that the solutions by the analytic function methods are close to each other.

The DI method needs inner iterations to approximate the objective function

to the closest circular form. This rises the cost in computation for the DI

method. Although the NI method theoretically has a second convergence

rate, the convergence of the solutions is very sensitive to the initial points.
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However, this may be due to the Matlab implementation method such as

the method of inversion used. The LP method may require a higher amount

of memory to store the variable matrices, which also results in longer com-

puting time on a restricted memory computer. However, some third-party

optimization software for Matab can signi�cantly reduce the time of com-

putation in the LP method.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Several algorithms are investigated in the thesis for developing nonparametric

controller design methods. This chapter draws the conclusions and �ndings on

the implementations in the previous chapters, and suggests the directions for

future research work according to the content of the thesis. Matlab implementa-

tions of various analytic function optimization methods primarily due to Helton,

Merino, and Walker[38, 39, 46, 48] are implemented for the �rst time. The use of

these methods in application to real world and automotive control problems are

investigated. The primary conclusion of this thesis is that a fully nonparamet-

ric method for stable multivariable systems is proposed and demonstrated based

on analytic function optimization methods and this is successfully applied to the

mixed sensitivity control problem. The technique is also applied to an automotive

PPP control problem. In summary, the nonparametric control approach has the

advantage of skipping the approximating process of parametric system identi�-

cation and only relies on obtaining the Fourier coe�cients of the system impulse

response function from the plant input-output data. In the DI and NI method

and the frequency response itself in the LP method, the approach potentially

saves time and cost in the controller design stage. In addition, it is sometimes

neccessary to obtain highly accurate and reliable linear models for some complex

engineering systems in terms of their frequency responses. This is most directly

obtained via the Fourier coe�cients from a Blackman-Tukey analysis [13] of the

plant input-output data. Thus, the proposed nonparametric control approach

o�ers a path to design a robust controller directly using the data involved in

obtaining the frequency response from the measured data.

The speci�c conclusions from each chapter are

• In Chapter 1, fundamental H∞ feedback control theory is introduced. Gen-
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erally, the H∞ control method is a controller synthesis with guaranteed

performance and stability requirements. Such methods transform the con-

trol problem to a mathematical optimization problem and �nd the solution

to the optimization problem by using special-purposed optimization algo-

rithms. The overview on the development of the H∞ method is presented in

Section 1.1. The introduction to major automotive engine control problems

is outlined in Section 1.2. The overview to each chapter of this thesis is

given in Section 1.3. The contributions of the work in this thesis are then

presented in Section 1.4.

• In Chapter 2, the Helton-Merino Disk Iteration (DI) method is presented.

In Section 2.1, the optimization problem in the H∞ control scheme is re-

viewed. The DI method is based on the solution to the corresponding

Nehari problem. The spectral factorization technique is required in the DI

method. To make this approach nonparametric, the existing technique of

parametric spectral factorization must be replaced by nonparametric meth-

ods. Two nonparametric spectral factorization methods are reviewed in the

beginning of Section 2.2. The solution to the Nehari problem is provided

by using Nehari-commutant-lifting formula as discussed in Section 2.2.2.

However, the solution to the Nehari problem only exists if the objective

function is in the circular form. Therefore, it is essential to �nd the closest

circular form of the objective function. The inner iteration procedure to

approximate to the circular form is implemented in terms of a quadratic

spline interpolation method as proposed by Helton and Merino. This Mat-

lab implementation of the DI method is described in details in Section 2.2.

• In Chapter 3, the Helton-Merino-Walker Newton Iteration (NI) method is

presented and analysed. The optimality conditions for the H∞ optimization

problem are stated in Section 3.1. These conditions are the foundation of

the derivation of the NI method. The NI method is based on the solution

to the optimality conditions of the H∞ optimization problem by using the

Toeplitz-plus-Hankel operator. The theoretical study of the NI method

and the algorithm are given in Section 3.2. Unlike the DI method, the NI

method does not require any approximation to a speci�c form of objective

function. Furthermore, the NI method has a second order convergence rate

in theory. These imply that the NI method is potentially a better approach

than the DI method to solving the H∞ optimization problem. To investigate

this approach, a Matlab implementation of the NI method is presented at

the end of Section 3.2.
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• In Chapter 4, the above two algorithms are compared and analyzed with

three numerical examples. In Section 4.1, 4.2 and 4.3, the formulations of

the examples are presented. It is seen that if the objective function contains

only one variable, both methods (i.e. the DI and NI methods) have similar

performance in terms of the computing time and the number of iterations

used. However, if the objective function has more than one variable, it is

possible for the NI method to converge faster than the DI method due to

the NI method's second order convergence rate. This �nding is addressed

in Section 4.4. Unfortunately, it is also found experimentally that with the

Matlab implementation, the NI method is very sensitive to the initial guess.

If the initial points are not close to the optimum, the algorithm may not be

convergent. Some of the observations in the examples are shown in

Section 4.5.

• In Chapter 5, a linear programming nonparametric approach to the design

a robust controller in H∞ mixed sensitivity control scheme using Hadamard

H∞-Frobenius norm [92, 91] is presented. This approach has the signi�cant

advantage over conventional maximum singular value approaches to H∞

design in that the Hadamard weights allows each element of the closed-loop

transfer function to be weighted individually and thus gives the designers

direct control over each element allowing, for example, exact decoupling. In

Section 5.2, the mixed sensitivity control problem is reformulated in terms

of the H∞ norm as a linear optimization problem. To meet the internal

stability conditions of the controlled system, the interpolation proposed by

Helton [48] and the method to replace the complementary sensitivity func-

tion T by the sensitivity function Q are outlined in the beginning of the

same section. The nonparametric H∞ controller design method using the

replacement method for stable systems is also proposed in the same section.

The algorithm requires that the designer �rst selects the upper bounds of

the performance functions S and T as the corresponding weighting func-

tions WS and WT . By substituting the frequency responses of the functions

WS, WT , and the measured freequency response data from the plant G,

the designer can fully formulate the discrete version of the optimization

problem. By using the appropriate optimization algorithm, the frequency

responses of the optimal sensitivity function Q∗ can be found. The optimal

H∞ controller is then computed by K = Q [I −GQ]−1 and then �ltered in

a rational function format for digital controller implementation.

In Section 5.3, the optimization (LP) method based on Streit's algorithm

[86] originally investigated by Helton and Sideris [40] is described. The
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LP method may be considered a better optimization algorithm for the

H∞-Frobenius norm optimization problem because of its superior accuracy

and capability of integrating the time-domain and frequency-domain perfor-

mance requirements. However, the LP method signi�cantly requires more

computing time and memory storage compared to the other two methods.

Nevertheless, its problem of computing power may be reduced by using

third-party optimization softwares, e.g. TomLab [52] or CVX[33, 34]. An

example to demonstrate the LP method is shown in Section 5.4.

• In Chapter 6, the three optimization methods are applied to an automo-

tive control problem for comparison. In Section 6.1, this automotive control

problem is viewed as a command tracking problem since the Peak-Pressure-

Position (PPP) of the engine crank is correlated to the Spark Advance (SA).

To optimize the timing of combustion, the transfer function of the plant and

the weighting functions are used from [106]. The results in Section 6.2 show

that, as required, in the single sensitivity weighting problem, the optimal

sensitivity functions by the three proposed methods, i.e. the DI, NI, and

LP methods, are bounded by the inverse of the weighting function WS and

the three optimal step responses have settling times around 6 seconds. In

the mixed sensitivity weighting problem in Section 6.3, it is found that,

all the sensitivity functions are bounded as required by the inverses of the

corresponding weighting functions WS and WT . Compared to the step re-

sponses in the single sensitivity problem, the step responses in this mixed

sensitivity control have smaller settling time with a value around 4 seconds.

In investigating the three methods, the accuracy of the solutions is found

to be unrelated to the discretization number p. Although it is suggested in

[86] that p = 1024 is generally required for general optimization problems,

it is observed from the experiments that within the acceptable accuracy p

need only be selected as 32. The order of expansion n, however, is more

in�uential than the number p. Considering the computing power and the

memory usage, n = 60 is suggested to be enough for similar optimization

problems. The three optimization algorithms are thus compared and an-

alyzed in Section 6.4. The analytic solutions from the three methods are

shown to be similar to each other. It is understood that the DI method

needs multi-level iterations for approximating the objective function to the

closest circular form. Although the NI method has a second-order con-

vergence rate in theory, it is very sensitive to the initial points. The LP

method, on the other hand, requires larger amounts of memory to store

the matrices, which results in the longest computing time when used on a
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limited memory PC.

7.2 Perspectives of Future Work

• The nonparametric approach to the control problem has several advantages

for engineers in the design of robust controllers. More applications of this

approach may be investigated in the future to see if they can bene�t from

this approach including both SISO and MIMO control systems. Comparison

with the existing parametric methods would then be a point for future

research.

• The extension of the nonparametric approach to MIMO problems by using

the suggested nonparametric Youla-Kucera Q-parameterization method for

internal stability can be further developed. The applications of the method

may be employed for more general control problems in engineering.

• For the internal stability requirement, the nonparametric Youla-Kucera Q-

parameterization method used in this thesis only works on stable plants. To

cope with the unstable plants for control, the Youla-Kucera Q-parameteriza-

tion method [60, 102] can be implemented by considering the left coprime

factorization of the plant G : G = M−1N where M and N are the coprime

factors [93]. The parameterization of all stabilizing controllers in a feedback

control loop is then given as K = [Y −QN ]−1 [X +QM ] where X and Y

are stable matrices which satisfy the Bezout identity NX + MY = I and

Q is any stable function. In principle, the NI and LP method should allow

solution of the G = M−1N factorization and the stable X and Y in the

Bezout identity equation. A nonparametric coprime factorization method

would signi�cantly enhance the applicability of nonparametric control.

• The selection of appropriate weighting functions may be studied for further

investigation for powertrain control. We know that the weighting functions

represent the required performance requirements. It is also seen in the

thesis that the choice of weighting functions determines the availability of

an analytic solution. It is, therefore, important to establish the relationships

between the weighting functions and the performance requirements in the

frequency or time domain.

• It is possible to design two-degree-of-freedom controllers in the proposed

nonparametric approach. The two-degree-of-freedom control scheme as

shown in Figure 7.1 is known to be the best control strategy for achieving
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signi�cantly improved tracking performance. In other words, the tracking

errors in 2-degree-of-freedom control systems are generally signi�cantly less

than those of 1-degree-of-freedom systems. Therefore, the formulation of

the equivalent H∞ optimization problem for the 2-degree-of-freedom con-

trol could be further investigated and it may be possible for the NI and LP

optimization algorithms to be used to support the application.

Figure 7.1: Con�guration of a 2-degree-of-freedom control sytsm
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Appendix A. Proof of Nonvanishing

Gradient

This appendix is to prove the assumption of the optimality conditions in

Section 3.1, Chapter 3. The assumption excludes the trivial situation so that the

strict local directional optimizer can be well de�ned. The theorem is proved in

[84].

Theorem 9. If the gradient ( all the partial derivatives ) of a function f de�ned

in domain RN vanishes, then the function f is a constant in the whole domain.

Proof. Suppose ∇f = 0 in the domain D of RN , i.e. for N = 2, f
′
x (x, y) =

f
′
y (x, y) = 0, ∀ (x, y) ∈ D and there are two points P1 = (x1, y1), P2 = (x2, y2)

such that f (x1, y1) 6= f (x2, y2). Since the derivatives of f are continuous and are

zero in D, the distance between P1 and P2 with an interior point (a, b) on the

line P1P2 can be written by Mean-Value theorem as

f (x1, y1)− f (x2.y2) = f
′

x (a, b) (x1 − x2) + f
′

y (a, b) (y1 − y2)

The right side of the equation equals zero because f
′
x (x, y) = f

′
y (x, y) = 0

and contradicts the left side according to the assumption f (x1, y1) 6= f (x2, y2).

This proves the theorem.
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Appendix B. Derivation of

Equation 3.22 in the Newton

Iteration Method

In this appendix, we derive the Equation 3.22 as proposed in [39]. The operator

equation, i.e. Equation 3.21, is

T ′f,β

(
ε

δ

)
=

(
PH2⊥

N,0
[(1 + 2< (χβ)) (Aε̄+Bε) + 2a< (χδ)]

PH2⊥
1

[
2<aT ε

] )

where a = ∂
∂z

Γ (·, f), A = ∂2

∂z∂z̄
Γ (·, f), B = ∂2

∂z2
Γ (·, f) and A is assumed to be

real positive ( i.e. Ā = A ).

Note that in the following derivation, the complex rules will be used :

< (z) = 1
2

(z + z̄),
1
χ

= χ̄ for χ , ejθ,

¯̄χ = χ

as well as the transformations stated in [39] P.852 :

PH2⊥
N,0

[
M̄η̄
]

= CPH2
N

[Mη]

where C represents the complex conjugate operator C : f → f̄ , and

PH2⊥
N,0

[χMη] = χPH2⊥
N

[Mη]⇒ χ̄PH2⊥
N,0

[χMη] = PH2⊥
N

[Mη]

Introducing ω , 1 + 2< (χβ) where ω is assumed to be positive ( i.e. ω̄ = ω ),

we have

T ′f,β =

(
PH2⊥

N,0
[(1 + 2< (χβ)) (Aε̄+Bε) + 2a< (χδ)]

PH2⊥
1

[
2<aT ε

] )

=

(
PH2⊥

N,0
[ω (Aε̄+Bε) + 2a< (χδ)]

PH2⊥
1

[
2<aT ε

] )

The above equation can be further expressed in the following :
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T ′f,β =

 PH2⊥
N,0

[
ωAε̄+ ωBε+ 2aχδ+χδ

2

]
PH2⊥

1

[
2a

T ε+aT ε
2

] 
=

(
PH2⊥

N,0

[
ωAε̄+ ωBε+ aχ̄δ̄ + aχδ

]
PH2⊥

1

[
āT ε̄+ aT ε

] )

=

(
PH2⊥

N,0

[
ωAε̄+ aχ̄δ̄

]
PH2⊥

1

[
āT ε̄
] )

+

(
PH2⊥

N,0
[ωBε+ aχδ]

PH2⊥
1

[
aT ε
] )

=

(
CPH2

N

[(
ω̄Ā
)
ε
]

+ CPH2
N

[(χā) δ]

χ̄PH2⊥
1,0

[
χāT ε̄

]
= χ̄CPH2

1

[
χ̄aT ε

] )+

(
χPH2⊥

N
[χ̄ωBε] + χPH2⊥

N
[aδ]

PH2⊥
1

[
aT ε
] )

= CPH2
N

[(
ω̄Ā χā

χ̄χ̄aT 0

)(
ε

δ

)]
+ PH2⊥

N

[(
ωB χa

aT 0

)(
ε

δ

)]

= CPH2
N

[(
IN 0

0 χ̄

)(
ωA χā

χ̄aT 0

)(
ε

δ

)]

+PH2⊥
N

[(
χIN 0

0 1

)(
χ̄ωB a

aT 0

)(
ε

δ

)]

=

(
IN 0

0 χ̄

)
CT ωA χā

χ̄aT 0


[
ε

δ

]
+

(
χIN 0

0 1

)
H χ̄ωB a

aT 0


[
ε

δ

]

This is Equation 3.22 in Section 3.2.
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Appendix C. Quadratic Spline

Function

To derive the quadratic spline interpolation function, for three points are on the

spline function f (x) and that we have the interpolation conditions :

f (x1) = y1, f (x2) = y2, f (x3) = y3

Figure. 301: Quadratic spline function

By carefully choosing the representation of f (x) shown in Figure. 301 such that

f (x) = a (x− x1) (x− x3) + b (x− x1) + y1

and noting that

y1 = f (x1)

we require that

y2 = f (x2) = a (x2 − x1) (x2 − x3) + b (x2 − x1) + y1

y3 = f (x3) = b (x3 − x1) + y1

The neccessary value of the variable b can be immediately obtained :

b =
y3 − y1

x3 − x1
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and then the neccessary value of variable a can be obtained as

a =
1

(x2 − x1) (x2 − x3)
[y2 − y1 − b (x2 − x1)]

=
(y2 − y1) (x3 − x1)− (y3 − y1) (x3 − x1)

(x2 − x1) (x2 − x3) (x3 − x1)
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Appendix D. Golden Section Search

Method

The golden section search method proposed by Kiefer [58] is the technique of

�nding the local extremum in the unimodal maximization problem. That is, it is

the algorithm to solve the maximization problem : max f (x) subject to a ≤ x ≤ b

where only one maximum exists and f (x) is a smooth function.

The method is easily revised in order to solve the minimization problem. The

idea is to compute the function values of the interior points with the values at the

bounds, to reduce the interval until the extreme point remains in the su�ciently

small range.

First of all, suppose we are given a function f (x) in an interval [a, b] and its

extreme point (minimum) appears at a point x∗ ∈ [a, b], i.e. f (x∗) = min
[a,b]

f (x),

f (x) is a unimodal function if f (x) is strictly descreasing from a to x∗ and

strictly increasing from x∗ to b ( or reverse the monotonicity on each side of x∗ if

the extreme point is a maximum.)

Next, suppose we are given a unimodal function f (x) de�ned in the interval

[a, b] as shown in Figure. 401. We can pick two points, say x1 and x2, in the

interval and evaluate their function values as f1 and f2.

Figure. 401: A unimodal function f (x) in the interval [a, b]

With regard to the four function values fa, f1, f2 and fb, as shown in

Figure. 402, it is known that for the cases :
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1. f1 > f2

If f1 > f2, the optimum should be either on the right to f2

(Figure. 402 (a)) or between f1 and f2 (Figure. 402 (b)). In either case,

it is understood that the optimum must be between the interval [x1, b]. In

other words, the lower bound is shifted from a to x1.

2. f1 < f2

Another possible sitation is that if f1 < f2, the optimum should be either

on the left to f1 (Figure. 402 (c)) or between f1 and f2 (Figure. 402 (d)).

Again in either case, it is known that the optimum must be between the

interval [a, x2]. The upper bound is shifted from b to x2.

3. f1 = f2

If f1 = f2, we can immediately observe that the optimum must be in the

interval [f1, f2]. This situation which results in a big improvement in re-

ducint the interval is rare. Therefore, such case is arbitrarily considered as

being the �rst case f1 > f2 and the interval is updated from [a, b] to [x1, b].

(a) f1 > f2 > f∗ (b) f1 > f2 > f∗

(c) f2 > f1 > f∗ (d) f2 > f1 > f∗

Figure. 402: f1 and f2 in the interval [a, b]

The important issue in the GSS method is the selection of the interior points.

In Figure. 403, a and b are the left bound and right bound of current interval,

and c and x are an interior point in [a, b] such that δ = b−c
b−a and a new point in

the segment [c, b] for the next iteration. We then have the relations :

1− δ =
c− a
b− a
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δ =
b− c
b− a

z =
x− c
b− a

As a result, the next feasible interval may be [a, x] or [c, b] depending on the

function value f (x). To minimize the worst case possibility ( i.e. z < 0 or

z > δ ), we choose to make the size of [a, x] equal the size of [c, b], i.e.

1− δ + z = δ (401)

Note that the strategy of choosing the interior point is the same in the previous

iteration. Therefore, the fraction 1− δ should be the same as the fraction z
δ
, i.e.

1− δ =
z

δ
(402)

Substituting z in Equation 402 by Equation 401, we have

1− δ =
2δ − 1

δ

i.e.

δ2 + δ − 1 = 0 (403)

We can immediately have the solution to Equation 403 as δ = −1+
√

5
2
≈ 0.61803.

The value of δ is the negative value of the conjugate solution to the characteristic

equation of the well known Golden Ratio (1+
√

5
2

). In other words, we now choose

the optimized distances of (a, x2) and (x1, b) as
−1+

√
5

2
(a− b). Therefore, we have

x1 = b − δ (b− a) and x2 = a + δ (b− a), i.e. x1 = a + (1− δ) (b− a) and

x2 = a+ δ · (b− a).

Figure. 403: Selection of the interior point

In summary, the algorithm for �nding the minimum of a unimodal function

in the interval [a, b] is as follows :
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Algorithm.D. .1 Golden Section Search

1. De�ne the interval [a, b]

2. Select two interior points x1 and x2 by x1 = a+ (1− δ) (b− a) and

x2 = a+ δ (b− a) where δ = −1+
√

5
2

3. Evaluate f 1 = f (x1) and f2 = f (x2)

4. If f1 ≥ f2, reset the interval as [x1, b]. Otherwise, reset the interval as
[a, x2].

5. If the length of the interval is smaller than the tolerance, i.e. |a− b| < ε,
stop the program. Otherwise, repeat the computation from Step 2.
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