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ABSTRACT 

The application of salt-marsh foraminifera to reconstruct historical sea-level trends was 

investigated for the Croatian coast of the Adriatic Sea using a transfer function approach. 

This technique, whilst well practised from north Atlantic sites along the shores of America 

and UK, has previously evaded any published study in the Mediterranean region. A total of 

70 surface samples were collected across separate transects established at two micro-tidal 

salt-marsh sites from the central Croatian coastline to establish a modern dataset of 

foraminifera. In addition, environmental variables were also investigated including salinity, 

pH, organic matter, particle size, distance (from open water) and altitude, relative to the 

Croatian national datum. Three sediment cores were sampled for fossil foraminifera and 

composite chronologies involving short-lived radionuclides, radiocarbon dating and pollution 

indicators from XRF. Age-depth models were created using classical and Bayesian 

approaches. Quantitative analysis of the foraminiferal assemblages revealed on average 

three faunal zones in which characteristic species occurred. This comprised a faunal zone 

composed almost exclusively of agglutinated species; J. macrescens, T. inflata and M. fusca 

extending between mean tidal level (MTL) and beyond MHWST (higher altitude). A second 

faunal zone was more variable and comprised of a mixed assemblage of agglutinated 

species described above in addition to calcareous species; Ammonia spp., Elphidium spp., 

Haynesina germanica and Quinqueloculina spp. This zone spanned a large vertical range 

above and below MTL. In a third faunal zone calcareous species dominated and was 

restricted to the lower altitudes of the salt-marsh environments. Further quantitative 

measures were employed to test the hypothesis that foraminiferal distributions were 

controlled by altitude. Partial ordination techniques revealed altitude as a statistically 

significant control confirming their suitability as proxies for sea-level in transfer function 

reconstructions. An analysis of species environment relationships revealed strong linear 

response suggesting the use of PLS regression models. Transfer functions were then 

developed for both site specific and a total combined dataset, where small r2 jack values 

largely reflected the short environmental gradients despite relatively low predictions errors 

(RMSEP jack = <0.11). The total combined dataset was chosen and screened to remove 

sample outliers improving model performance (r2 jack = 0.54 and RMSEP jack = 0.08). Finally, 

the transfer function model was applied to core sediments to reconstruct mean sea-level 

where an inflexion observed at AD 1940 showed acceleration comparable to other proxy 

reconstructions. Indeed this trend was similar to instrumental data from Trieste tide-gauge 

records. Similarly the transfer function reconstruction identifies the dramatic increases in 

MSL observed in both tide-gauge (Split and Trieste) and satellite observations since the 

early 1990s.  
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  CHAPTER 1 

 

INTRODUCTION AND AIMS 

 

1.1. BACKGROUND 

Measurements of global sea-level have shown significant increases in the rate of change 

during the 20th century in comparison to the 19th century and this trend is expected to 

accelerate through the 21st century in-line with human-induced climate change (Nicholls and 

Cazenave, 2010). Tide-gauge measurements have formed a significant contribution to this 

understanding, where the Permanent Service for Mean Sea Level (PSMSL) database 

contains monthly and annual observations from stations spanning most of the world’s 

coastline (Holgate et al., 2013). However, the temporal scale of these records is inconsistent 

and indeed there lies a geographic deficiency, with many longer records biased towards the 

northern hemisphere (Douglas, 1991) as shown figure in 1.1b. The past 20-30 years have 

witnessed the development of proxy sea-level records derived from salt-marsh sediments to 

provide complementary data with which to assess the timing of modern sea-level rise 

(Gehrels and Woodworth, 2013). A significant benefit of these records is that their temporal 

resolution often allows extrapolation beyond the instrumental period as far back in time as 

the sediments allow (e.g. Donnelly et al., 2004; Leorri et al., 2008; Kemp et al., 2009b). In 

this way salt-marshes can be regarded as ‘natural’ archives of sea-level change comparable 

to tide-gauge records (Barlow et al., 2013).  

 

 

 

Figure 1.1. Map showing (a) global distribution of tide-gauge stations included in the PSMSL 

database and (b) stations with records longer than 40 years (Holgate et al., 2013). 

a b 
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The many fields of sea-level rise comprise a major area of climate research (Cazenave and 

Llovel, 2010) which forms a significant component of the Intergovernmental Panel on 

Climate Change (IPCC) report (Bindoff et al., 2007). In an analysis of the few high quality 

long-term tide-gauge records available, the average rate of global sea-level rise throughout 

the twentieth century varied between 1-2 mm/yr as shown in figure 1.2 (Douglas, 1991; 

Church and White, 2006; Jevrejeva et al., 2006; Holgate, 2007) and is primarily associated 

with the thermal expansion of the oceans (Church et al., 2001). Whilst the magnitude of sea-

level rise was greatest during the 20th century, recent observations from satellite altimetry 

since the early 1990s have shown a further increase, with some areas experiencing up to 

ten times the global mean rate (Cazenave and Nerem, 2004; Cazenave and Llovel, 2010). 

The latest (AR5) IPCC report confirms this increase quoting global mean sea-level rise to 

vary from 2.8-3.6 mm/yr based on averaged altimeter values for the period 1993-2010 

(Church et al., 2013). 

 

 

Figure 1.2. Annual averages of global mean sea level taken from the latest IPCC report 

(Bindoff et al., 2007). The red curve showing reconstructed sea level fields since 1870 

(Church and White, 2006); the blue curve shows coastal tide-gauge measurements since 

1950 (Holgate and Woodworth, 2004) and the black curve showing satellite altimetry data 

from 1993 to 2001 (Leuliette et al., 2004). 

 

The utility of salt-marsh environments to contribute to these sea-level histories stems from a 

quantifiable relationship of microfossils (e.g. benthic foraminifera and diatoms) contained 

within salt-marsh sediments with elevation (Scott and Medioli, 1978; 1980). Quantitative 

studies using tidal-level transfer functions have applied this relationship to fossil samples 

that record past changes in salt-marsh altitude. When combined with chronological data (e.g. 
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radiocarbon dating) estimates of paleo-sea-level are produced, with tide-gauge data often 

used to validate the reconstruction before it is extended back through time (e.g. Gehrels et 

al., 2005). The application of microfossil assemblages in transfer function-based sea-level 

reconstructions is well established for sites from Atlantic coasts of north America and UK 

(Horton et al., 1999; Zong and Horton, 1999; Edwards and Horton, 2000; Gehrels, 2000; 

Edwards, 2001; Charman et al., 2002; Gehrels et al., 2002; Edwards et al., 2004; Gehrels et 

al., 2005; Horton and Edwards, 2005; Gehrels et al., 2006; Kemp et al., 2009a; Kemp et al., 

2011; Barlow et al., 2013). Similarly their vertical distribution and reconstructive potential is 

also well explored from sites across Indonesia, Australasia and the Pacific Ocean (e.g. 

Hayward et al., 1990; Scott et al., 1996; Haslett, 2001; Horton et al., 2005; Woodroffe et al., 

2005; Southall et al., 2006; Engelhart et al., 2007; Gehrels et al., 2008; Woodroffe, 2009; 

Callard et al., 2011; Grenfell et al., 2012).  

By comparison, the Mediterranean region has received less attention, with very little 

published on the use of microfossil assemblages from intertidal environments for the 

purpose of sea-level studies (e.g. Petrucci et al., 1983). Other studies have analysed the 

vertical zonation of benthic foraminifera from coastal habitats but this has primarily focused 

on using them as bioindicators for studying pollution and anthropogenic impacts in the 

Venice lagoon area, northern Adriatic Sea (e.g. Albani et al., 2007; Serandrei-Barbero et al., 

2011). Whilst foraminifera based transfer function reconstructions have also been widely 

applied, their attention has focused on reconstructing other environmental parameters such 

as paleo-bathymetry (Rossi and Horton, 2009; Milker et al., 2011), paleoclimate (Luz and 

Bernstein, 1976), sea-surface temperatures and salinities (Hayes et al., 2005; Penaud et al., 

2011). This distinct lack of research is perhaps surprising given the wealth and range of sea-

level information available. The Adriatic Sea in particular offers a number of tide-gauge 

records with observations greater than 50 years (Tsimplis et al., 2012). Indeed Trieste has 

one of the longest instrumental records in the world dating back to AD 1875 (Raicich, 2007). 

The Adriatic region also has a microtidal regime (Hydrographic Institute, 1955–2002). 

Transfer function studies based on microtidal salt-marshes are generally of good quality as 

vertical uncertainties associated with the technique are minimised (Edwards and Horton, 

2006; Callard et al., 2011; Barlow et al., 2013). The Adriatic Sea therefore offers an ideal 

location for a study of this type.  

 

1.2. RESEARCH AIMS 

The overriding aim of this thesis is to reconstruct relative sea-level change for the Croatian 

coast of the Adriatic by using a foraminiferal-based transfer function from micro-tidal salt-
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marsh environments. By achieving this aim it will contribute to our understanding of sea-level 

change for this region, allowing an extension of the record as far back in time as the 

sediments allow. By comparing the reconstruction with instrumental records, it may serve as 

an independent test of sea-level trends observed throughout the Adriatic Sea and much of 

the Mediterranean region. In particular the increased sea-level trends observed during the 

20th century and further increases after ~AD 1990. The ability of the reconstruction to identify 

reduced rates of change and perhaps even negative sea-level tendencies during the period 

1960-1990 will also be assessed (e.g. Marcos and Tsimplis, 2008). Further details regarding 

sea-level trends for this region are discussed in chapter 2.  

 

1.2.1.  Objectives 

To address the research aim outlined above, the objectives of this study are to: 

 

 Establish a contemporary dataset of salt-marsh foraminifera and assess their utility 

as proxy indicators for use in transfer function reconstructions of sea level in the 

Adriatic region by confirming elevation as a statistically significant control. 

 

 Investigate sediment cores for fossil foraminifera and establish chronologies to 

determine age constraints for the reconstruction and sedimentation rate changes.  

 

 Developed transfer functions to calibrate fossil samples and produce a record of 

relative sea-level change. 

 

 Provide an independent assessment of tide-gauge records by comparing the proxy 

reconstruction with instrumental data to assess the synchronicity in sea-level 

changes.  

 

1.3. OUTLINE OF THESIS 

This thesis is subdivided into eight chapters beginning with an introduction to the main 

research objectives and is structured as follows. Chapter 2 details the current understanding 

of Mediterranean sea-level change followed by an overview of salt-marsh environments and 

how microfossil indicators can serve as proxies for sea-level change in transfer functions 

reconstructions. Chapter 3 introduces the Mediterranean and Adriatic study area, before 

descriptions of the sample sites are provided. The methods used to address the research 
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aims are then described, including field, laboratory and statistical techniques. There are 

three results chapters which begin with a qualitative overview of the contemporary salt-

marsh environments, including analysed environmental variables and the distribution of 

foraminiferal assemblages in chapter 4. A more quantitative approach is then adopted to 

assess the foraminiferal data and their relationship with tidal levels and environmental 

variables. Chapter 5 provides the results of fossil salt-marsh data, including sediment 

stratigraphy, fossil foraminifera and chronologies established for salt-marsh cores. In chapter 

6 the data are used to construct transfer functions which are then applied to fossil samples 

to reconstruct palaeo-marsh altitude and changes in mean sea-level. Chapter 7 discuses the 

main findings of the thesis. In this chapter the transfer function reconstruction is critically 

examined and compared with previous work before a final independent assessment is made 

by comparing the reconstruction results with local tide-gauge records. Further avenues of 

research are also provided. Finally the thesis finishes with a summary of the research and 

the implications it has for sea-level studies in the Adriatic and Mediterranean regions.  
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CHAPTER 2 

 

RESEARCH CONTEXT  

 

2.1. INTRODUCTION  

The aim of this chapter is to provide an overview of the main research themes covered by 

this thesis, beginning with a summary of sea-level change within the Mediterranean and 

Adriatic region. This begins with detail regarding sea-level changes spanning the 

instrumental period as recorded by tide gauges and satellite altimetry, followed by the longer 

term rate of sea-level change provided by archaeological and geomorphological evidence. 

Consideration is also given to glacial isostatic adjustment (GIA) measurements. The utility of 

proxy sea-level records constructed from salt-marsh sediments is then reviewed, including 

details on the use of microfossils and their intrinsic link with the elevation within tidal frame. 

Finally reconstructing sea-level changes from these environments using the transfer function 

approach is discussed.  

 

2.2. MEDITERRANEAN SEA-LEVEL 

2.2.1. Instrumental Records of Sea-Level Change  

The Mediterranean Sea offers an excellent base for sea-level studies thanks to the 

numerous tide-gauge stations distributed along its coastline, the majority of which are 

focused around the northern shores (figure 2.1). Whilst interpreting sea-level change from 

these records might not be representative of the Mediterranean basin as a whole, due to 

their uneven spatial distribution (Tsimplis and Spencer, 1997) and limited availability from 

the African Mediterranean coastline (Woodworth, 2003), the records are of good quality with 

minimal gaps (1-6 %) (Marcos and Tsimplis, 2008). Indeed Trieste and Venice together 

present two of the longest and most detailed records available in the world.  

Sea-level trends in the Mediterranean, over the instrumental period, are not homogeneous in 

space or time. Observations from the longest tide-gauges record sea-level rise throughout 

the 20th century up to 1.1-1.3 mm/yr, within the lower boundary of estimated global sea-level 

rise for the same period (Tsimplis and Baker, 2000). However, between 1960-1990, an 

increase in atmospheric pressure over the region caused a negative sea-levels trend of up to 
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1.3 mm/yr (Tsimplis and Baker, 2000; Tsimplis and Josey, 2001; Marcos and Tsimplis, 2008; 

Tsimplis et al., 2012) whilst sea-level stations in the Atlantic and Black seas continued to 

rise, albeit at reduced rates of 1.0-1.2 mm/yr (Tsimplis and Baker, 2000). Whilst global sea-

level appears to have increased from the 1980s onwards (Holgate and Woodworth, 2004; 

Holgate, 2007), it wasn’t until the 1990s that similar trends were observed in the 

Mediterranean (Cazenave et al., 2001; Fenoglio-Marc, 2002).  

 

 

Figure 2.1. Tide-gauge stations in the Mediterranean with records longer than 35 years 

(black dots). Study area also shown (rectangle). After Marcos and Tsimplis (2008). 

 

During the period of 1992 to 2000 satellite observations and tide-gauge measurements 

revealed a linear sea-level change of 2.2 mm/yr over the entire basin (Fenoglio-Marc, 2002). 

However, substantial spatial variability was revealed between the western and eastern 

basins. Relatively small increases are recorded in the western Mediterranean Sea whilst in 

the eastern Mediterranean basin, sea levels have simultaneously recorded large increases 

and decreases (Cazenave et al., 2001; 2002; Fenoglio-Marc, 2002). Over a six-year period 

sea-level trends in the eastern basin showed increases of up to 30 mm/yr whilst negative 

trends of 15-20 mm/yr are recorded in the Ionian Sea (Cazenave et al., 2002). The altimetry 

data also revealed the strong correlation between the observed sea-level trends and sea-

surface temperatures (Cazenave et al., 2001; Fenoglio-Marc et al., 2012) suggesting recent 

change is primarily associated with a heating of surface layers (Cazenave et al., 2002) whilst 

the negative trends are probably more related to mass redistribution (Del Río Vera et al., 

2009).  

 

Strait of 

Otranto 
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Figure 2.2. Sea-level change from tide-gauges in the Adriatic Sea (Tsimplis et al., 2012).  

The Adriatic Sea contains seven tide-gauge stations which have been operational for over 

50 years (Tsimplis et al., 2012). The long-term RSL rise from these records during the 20th 

century varies between 0.5±0.2 and 1.2±0.1 mm/yr, with trends in excess of 2.5 mm/yr 

recorded in Venice (Marcos and Tsimplis, 2008). The latter, however, is related with local 

anthropogenic subsidence primarily associated with water abstraction and thus is often 

regarded unsuitable for regional or global studies (Woodworth, 2003). Between 1960-2000 

small rates of change have been recorded in the Adriatic, with values ranging from -0.4±0.4 

and 0.3±0.4 mm/yr (Marcos and Tsimplis, 2008; Tsimplis et al., 2012). The higher rates 

occurring towards the end of the 20th century (figure 2.2) are confirmed through satellite 

observations where TOPEX/Poseidon altimetry data revealed sea-level rise between 10 and 

15 mm/yr between 1993 and 1999 (Cazenave et al., 2001). However whilst the 

TOPEX/Poseidon and Jason-1 altimetry missions have provided high spatial resolution data 

(e.g. Cazenave et al., 2001; 2002; Fenoglio-Marc, 2002; García et al., 2007; Fenoglio-Marc 

et al., 2012), the relatively short period since its operation may not accurately reflect the 

longer-term rates of sea-level change in this region due to interannual and decadal 

variations such as water temperature, salinity and atmospheric pressure that can cause 

dramatic sea-level oscillations (Buble et al., 2010). 

2.2.2. Long-Term Recorders of Sea-Level Change 

While yearly fluctuations in sea-level can be related to climatic forcing (e.g. wind and 

atmospheric pressure) and/or steric variation (e.g. Tsimplis et al., 2008), longer-term 

millennial sea-level trends are attributed to differential GIA and tectonic movements (e.g. 
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Lambeck et al., 2004; Lambeck and Purcell, 2005; Antonioli et al., 2009; Stocchi and Spada, 

2009b; Stocchi et al., 2009; Furlani et al., 2011). Geological evidence can provide useful 

information to infer relative sea-level changes dating back to the last interglacial (e.g. 

Ferranti et al., 2006; 2008). The low tidal range in the Mediterranean region again offers an 

ideal environment for studying long-term sea-level changes as an abundance of 

archaeological evidence and geomorphological features, coupled with instrumental records, 

can be used to fill the gap in between the geological and instrumental data (Anzidei et al., 

2010). When combined with robust chronologies (usually acquired through radiocarbon and 

U-series dating, amongst other techniques), well preserved archaeological coastal structures 

such as ancient fish tanks, piers and harbour slipways have the potential to provide a wealth 

of information regarding late Holocene sea-level over the past two millennia because of their 

strong relationship with sea-level at the time of construction (e.g. Flemming and Webb, 

1986; Lambeck et al., 2004; Antonioli et al., 2007). Using archaeological evidence, Lambeck 

et al. (2004) showed sea-level was up to 1.35 (±0.07) m lower 2000 years ago in the central 

Mediterranean region attributing part of this change to ongoing glacio-hydro isostatic 

adjustment. Similarly an abundance of marine features such as tidal notches have provided 

evidence of former sea-level due to their relationship with mean sea-level whilst also 

highlighting regional variability in tectonic movements throughout the Mediterranean (e.g. 

Pirazzoli, 1986; 1996; Antonioli et al., 2004; 2007; Benac et al., 2008; Faivre et al., 2010a; 

2010b; Furlani et al., 2010).  

The effects of glacio- and hydro-isostatic readjustment of the Earth in response to the 

melting of Pleistocene ice sheets since the end of the last glacial period is an important 

mechanism driving long-term sea-level change. This process is not constant, however, and 

varies throughout the Mediterranean and indeed within the Adriatic itself. For example, a 

number of studies have shown land subsidence in the northern Adriatic region to vary. An 

uplift rate is observed in the area surrounding Trieste, whilst Venice reports a negative trend 

and Marina di Ravenna (north-east Adriatic) an even greater negative trend (Zerbini et al., 

1996; Orlić and Pasarić, 2000; Antonioli et al., 2009). Whilst vertical movements in the 

northern Adriatic are controlled by both natural and anthropogenic effects (Stocchi and 

Spada, 2009a), the contribution of GIA to sea-level rise in the Adriatic can also have 

implications for observed sea-level rates from tide-gauge records. For example, it has been 

suggested that the long time-series of Trieste may comprise a GIA induced sea-level 

component comprising ~30% of the observed rate (Stocchi and Spada, 2009b). A summary 

of recent and projected GIA movements for tide-gauges, including those near to the study 

presented in this thesis are included in section 3.2.2.3 using data provided by the PSMSL 

(Holgate et al., 2013) and Peltier (2004).  
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2.3. PROXY SEA-LEVEL RECONSTRUCTIONS 

2.3.1. Salt-Marsh Environments 

Salt-marshes are vegetated areas which develop in low energy environments of the coastal 

zone where wave energy is minimized (Bartholdy, 2012). They are located in the upper 

region of the intertidal zone and differ from bordering tidal mudflat and sandflat environments 

through colonization by halophytic grasses, herbs and shrubs that are subject to intermittent 

flooding from the tide (Adam, 1978; 1990). Indeed where the frequency and amplitude of 

tidal inundation is limited, trees such as Alder (Alnus), Willow (Salix) and Oak (Quercus) may 

also colonize (Ranwell, 1974). Most salt-marshes are flooded by the higher tides during a 

spring-neap tidal cycle. However some salt-marshes can sustain a level above the highest 

astronomical tide (HAT) where strong winds can amplify water level (Bartholdy, 2012). Salt-

marsh environments, which are replaced by mangrove communities in low latitude sub-

tropical regions, have significant ecological and economic value as they sustain a highly 

dynamic and variable habitat of floral and faunal species whilst also acting as a natural 

deference mechanism to coastal process by absorbing wave energy (Allen, 2000; Doody, 

2008). They characteristically have an inclined surface, declining in altitude in a seaward 

direction, and form through the accretion of fine-grained minerogenic sediment driven 

primarily from the marine environment, but also through additional organic deposits from 

above and below ground salt-marsh vegetation (Allen, 2000).  

With these characteristics in mind, salt-marsh environments provide an ideal settings for 

palaeo-sea-level investigations where ecological zones are created on the salt-marsh 

surface that can be linked to tidal inundation duration and frequency (Murray, 1971; 2006). In 

the northern hemisphere, salt-marsh deposits from the Atlantic coast of Northern America 

are distinctly more organic then their European counterparts where meters of highly organic 

peat deposits have accumulated during the past 3000 to 4000 years (Gehrels, 2000). In 

contrast, salt-marshes from European sites are typically more minerogenic, particularly 

during the late Holocene (Horton and Edwards, 2006) where tidally introduced sediments 

results in an organic component rarely exceeding 10% (dry weight) (Allen, 2000). With 

reference to sea-level studies from European salt-marsh sites, this has impeded studies of 

similar timescales due to the lack of material suitable for radiocarbon dating (Allen, 2000; 

Edwards, 2001).  
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2.3.2. Microfossil Indicators  

The utility of salt-marsh sediments to provide high-resolution sea-level records stems from 

their intrinsic relationship with the tidal frame where distinct microfossil assemblages occupy 

narrow vertical niches (Scott and Medioli, 1978; 1980). The frequency and duration of tidal 

inundation creates a vertical zonation of flora and fauna allowing sub-environments to be 

identified (Horton and Edwards, 2006) which is based on the tolerance or preference of 

individual species to limiting ecological parameters, such as frequency and duration of tidal 

flooding and consequently sub-aerial exposure, salinity, substrate composition and food 

availability (de Rijk, 1995; de Rijk and Troelstra, 1997; Berkeley et al., 2007). As a result, 

microfossil indicators (e.g. foraminifera, diatoms, testate amoebae and pollen) preserved 

within salt-marsh sediments have provided a wealth of information regarding Holocene RSL 

(Gehrels, 1994; Horton et al., 1999a; Zong and Horton, 1999; Edwards, 2001; Gehrels et al., 

2001; Edwards et al., 2004; Gehrels et al., 2005; Horton and Edwards, 2006; Gehrels et al., 

2008; Kemp et al., 2009a; Charman et al., 2010; Kemp et al., 2011).  

Of all microfossil groups contained within salt-marsh environments, it is foraminifera that 

have probably received the most widespread attention in palaeo-sea-level studies. Found 

solely in marine environments, all intertidal foraminifera are benthic, living either on the 

sediment surface (epifaunal) or just below it (infaunal) and are readily preserved in salt-

marsh sediments (Gehrels, 2002). They are single-celled organism (protists) of which there 

are around 900 modern genera and 10,000 modern species (Murray, 2006). They are 

formed of a single cell (which is not preserved), encased in a shell (test) that is composed of 

detrital sediment particles cemented together by organic material (agglutinated taxa) or of 

secreted calcium carbonate (calcareous taxa) (Murray, 1991). Salt-marsh foraminiferal 

assemblages are mostly composed of agglutinated taxa which, unlike calcareous species 

that can suffer from dissolution (e.g. Murray, 1989), are able to withstand the acidic 

conditions generally found in salt-marsh environments. The rise and fall of the tides results in 

low salt-marsh intertidal areas being more frequently submerged than upper intertidal areas 

where prolonged periods of subaerial exposure occur (Gehrels, 2002). The ability to which 

benthic foraminifera can withstand exposure and conversely tidal submergence results in a 

distinct zonation pattern throughout many salt-marshes around the world as they compete 

for space during tidal cycles (Scott and Medioli, 1980).  

Pheleger and Walton (1950) first observed a relationship between salt-marsh foraminiferal 

distributions and elevation, identifying four ecological zones. It was not however until the late 

1970s that Scott and Medioli (1978) first highlighted their use as potential proxies for RSL 

studies. They showed that monospecific assemblages of Trochammina macrescens were 
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vertically zoned high in the upper intertidal zone, just below mean high high water (MHHW), 

and close to the landward limit of the salt-marsh environment. The authors argued that 

former sea levels could be reconstructed to within ±0.05 m which has since been confirmed 

from other marsh environments (e.g. Southall et al., 2006; Kemp et al., 2009a). The relative 

proportion of different foraminiferal taxa can be used to distinguish faunal zones across the 

salt-marsh surface (figure 2.3). Additionally, a distinct advantage of using foraminifera from 

these environments is that while species abundance is high, species diversity is generally 

low (Gehrels, 2007). This phenomenon of foraminiferal zonation with respect to the tidal 

frame is central to the theme of palaeo-sea-level reconstructions using microfossil evidence 

from salt-marsh environments. With this in mind and due to their intrinsic link with the tidal 

frame, salt-marsh foraminifera have become a widely used as tool for reconstructing 

Holocene sea-level changes (Thomas and Varekamp, 1991; Gehrels, 1994; Horton, 1999; 

Horton et al., 1999b; Gehrels, 2000; Edwards, 2001; Gehrels et al., 2001; 2002; Edwards et 

al., 2004; Gehrels et al., 2005; Horton and Edwards, 2006; Southall et al., 2006; Leorri et al., 

2008; 2010; Callard et al., 2011; Kemp et al., 2011; Wright et al., 2011; Barlow et al., 2013; 

Mills et al., 2013).  

 

Figure 2.3. Schematic diagram to illustrate the distribution of foraminiferal assemblages 

across a salt-marsh environment. 

Sometimes the relationship between foraminiferal distributions and elevation as a controlling 

factor is not entirely clear. For example, de Rijk (1995) and de Rijk and Troelstra (1997) 

analysed foraminiferal distributions along surface transects from the Great Marshes, 

Massachusetts showing foraminiferal assemblages to vary with salinity, displaying no clear 

relationship with elevation above sea-level. In this instance, the authors conclude that whilst 

foraminiferal distributions may be used for paleoecological purposes, they are unsuitable as 

proxies for sea-level change. It is therefore paramount that a thorough understanding of 

contemporary surface distributions at each sample site is investigated prior to their 

application in palaeo-sea-level studies as a degree of variability to which other 
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environmental factors such as salinity, organic matter, pH, grain size and vegetation cover 

may affect foraminiferal distributions could exist (e.g. de Rijk and Troelstra, 1997; Woodroffe 

et al., 2005; Mills et al., 2013). 

Like foraminifera, diatoms have also commonly been used to study Holocene sea-level 

changes (e.g. Devoy, 1979; Plater and Shennan, 1992; Zong and Tooley, 1996; Zong, 1997; 

Zong and Horton, 1999; Plater et al., 2000; Hill et al., 2007; Horton et al., 2007; Barlow et al., 

2013). They are abundant in virtually all aquatic environments, both fresh and marine, and 

similarly have high presentation potential within intertidal sediments. Their application is 

similar to foraminifera, due to their ecological preferences with respect to the tidal frame. 

Analysis of diatom assemblages reveals that they can provide good evidence of changes in 

the marine influence through changes in the relative proportion of polyhalobus (fully marine), 

mesohalobus (brackish), oligohalobus (brackish-fresh) and halophobus (fresh) species 

within lithological sequences (Haslett, 2002). Whilst foraminiferal and diatom RSL 

reconstructions have undoubtedly dominated palaeo-sea-level investigations in recent years, 

other proxy indicators such as testate amoebae and pollen are available that offer additional 

benefits in sea-level research conducted in intertidal environments. Indeed a multi proxy 

approach incorporating some or all of the above proxy indicators has proved successful in 

improving the accuracy of quantitative sea-level reconstructions in comparison to a single 

micro-organism group (e.g. Gehrels et al., 2001; Kemp et al., 2009a).  

Testate amoebae, which flourish in a range of terrestrial and aquatic environments including 

peat bogs, lakes, soils and salt-marshes (Gehrels, 2007) show particular promise for sea-

level studies. Species diversity is a lot higher than foraminifera while similarly occurring in 

abundance with high preservation potential within salt-marsh sediments (Charman et al., 

1998; Charman et al., 2002; Roe et al., 2002; Charman et al., 2010). They have proven 

particularly useful due to their ability to extend beyond the highest limit reached by 

foraminifera but also thanks to the narrower vertical range testate amoebae assemblages 

occupy in comparison to other microfossil groups within high marsh zones (Charman et al., 

1998; Gehrels et al., 2001; 2006). As a result, quantitative analyses of modern testate 

amoebae assemblages reveal sea-level reconstructions possible to within an accuracy of 

±0.04 m when conducted under microtidal settings (Gehrels et al., 2006), thus highlighting 

their strong potential in sea-level studies.   

Other studies utilising pollen evidence have also long been applied in sea-level research 

(e.g. Godwin, 1940; Tooley, 1978; Shennan, 1982; Ellison, 1989; Roe and van de Plassche, 

2005; Engelhart et al., 2007) despite pollen not necessarily being produced in situ like other 

microfossil groups as they are transported by wind or water (Gehrels, 2007). This proxy 
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shows particular benefits when used in mangrove environments (e.g. Horton et al., 2005) 

where preservation issues of foraminifera can be affected by taphonomic processes 

(Debenay et al., 2002; 2004; Woodroffe et al., 2005) limiting their application in these 

environments. Pollen may however supply additional, very useful information in sea-level 

studies, by providing independently dated age markers when establishing chronologies for 

salt-marsh sediment cores (e.g. Gehrels et al., 2005; Marshall et al., 2007) (see section 3.7 

for further details on the utility of independent age markers).  

2.3.3. Reconstructing Sea Level 

Assessing changes in sea-level through an age-altitude trend requires plotting a series of 

sea-level index points (SLIPs) (Shennan, 1982) which contain information on location, age 

(e.g. radiocarbon dating), the height of original deposition (to a vertical datum e.g. OD) and 

the ‘indicative meaning’. This term is used to describe the vertical relationship between the 

height at which the sample accumulated in and a reference tidal level with an associated 

error range (Shennan, 1986; van de Plassche, 1986) . Until recently, sea-level studies were 

confined to the sedimentary boundary between transgressive and regressive contacts 

reflecting changes in terrestrial and marine sedimentation (Shennan, 1982; Tooley, 1982). 

Salt-marsh sediments record a transgressive trend when sea-level rise outpaces accretion 

and conversely a regression when accretion is faster than sea-level rise. Limitations in this 

approach however restricted its application to lithostratigraphic boundaries of changing 

marine and terrestrial sedimentation, providing no information about changes in sea-level 

between these points (Edwards, 2001). Other distinct disadvantages of using SLIPs from 

organic-minerogenic contacts is their spatial and temporal availability in late Holocene 

sediments (Edwards, 2001) and the long-term consolidation often associated with coastal 

deposits (e.g. Brain et al., 2011). In particular this process, referred to as ‘autocompaction’, 

leads to a lowering of SLIPs from their original height of deposition which, in turn, can lead to 

an overestimation of the rate of relative sea-level rise (Gehrels, 2007). In some extreme 

cases this process can lead to the displacement of coastal deposits by up to 1 m (Gehrels, 

1999).  

In addition to lithostratigraphic changes in coastal sedimentation, biostratigraphic indicators 

(e.g. foraminifera and diatoms) can provide further evidence of sea-level change (e.g. 

Thomas and Varekamp, 1991). A distinct advantage of using biological indicators is that they 

respond much more sensitively to sea-level change in comparison to their lithostratigraphic 

counterparts (Edwards, 2001). They also are not restricted to transgressive and regressive 

stratigraphic contacts but can be applied to a continuous core sequence. In this approach, 

more detailed, ‘higher resolution’ records of sea-level change can be obtained using transfer 
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functions that offer robustly quantification of the indicative meaning and its associated errors 

(Gehrels, 2007).  

2.3.4. Microfossil-Based Transfer Functions  

Imbrie and Kipp (1971) were first to utilize the transfer function methodology whereby deep-

sea foraminiferal assemblages were employed to reconstruct paleo-sea-surface 

temperatures from sediment cores. Its application in salt-marsh environments however did 

not occur until much later in the 1990s when Guilbault et al. (1995) used the approach to 

quantify the amount of subsidence during a late Holocene earthquake using fossil tidal salt-

marsh foraminifera from Vancouver Island, Canada. The term ‘transfer function’ is used to 

describe a set of regression equations that attempts to model the contemporary distribution 

of microfossil assemblages and their relationship with an associated environmental variable. 

Essentially the goal of a transfer function is to mathematically relate the species abundance 

of biological data as a function of an environmental variable, as illustrated in figure 2.4 

(Birks, 1995). Its success in quantifying microfossil assemblages and reconstructing 

palaeoenvironmental change has since spawned numerous papers investigating Holocene 

sea-level change to become the mainstay in quantitative sea-level reconstructions 

conducted in salt-marsh environments (Horton et al., 1999a; Zong and Horton, 1999; 

Gehrels, 2000; Edwards, 2001; Gehrels et al., 2001; Gehrels et al., 2002; Edwards et al., 

2004; Gehrels et al., 2005; Horton and Edwards, 2006; Kemp et al., 2009b; Leorri and 

Cearreta, 2009; Woodroffe, 2009; Woodroffe and Long, 2010; Callard et al., 2011).  

 

Figure 2.4. Principles of quantitative palaeoenvironmental reconstruction showing X0, the 

unknown environmental variable to be reconstructed from fossil assemblage Y0, and the role 

of a modern training set consisting of modern biological Y (foraminifera) and environmental 

data X (elevation). Modified after Birks (1995). 
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With reference to foraminifera-based transfer function reconstructions from salt-marsh 

environments, the method is centered around fossil foraminifera preserved in sediment 

cores that can be quantitatively related to their modern counterparts found on the 

contemporary salt-marsh surface (Gehrels et al., 2001). As the vertical zonation of 

contemporary foraminifera have been shown to be strongly influenced by tidal level, they can 

be used as ‘proxies’ for elevation in which the faunal data are converted into environmental 

data and applied to fossil analogues found in sediment cores to reconstruct relative sea-level 

changes when combined with chronostratigraphic techniques (e.g. radiocarbon dating) 

(Gehrels, 2000).  

A detailed investigation into the contemporary environment and the relationship between 

microfossil assemblages and environmental variables is therefore prerequisite in transfer 

function based sea-level reconstructions. The relationship between foraminiferal 

assemblages and elevation must first be investigated to confirm their suitably before they 

can be confidently used as ‘proxy’ indicators of sea-level change. The development of a 

transfer function begins with the compilation a modern dataset, commonly referred to as a 

‘training set’, that accurately depicts the modern environment which is reflected in the fossil 

sequence (Barlow et al., 2013). It contains information on the relative abundance of 

foraminiferal taxa and associated environmental data (e.g. elevation, pH, salinity etc). Whilst 

there are no strict guidelines as to an ideal size of a training set, it should be as large as 

possible since smaller training sets will be more susceptible to errors (Horton and Edwards, 

2006). More importantly however is that it should contain foraminiferal assemblages that are 

from the same environmental conditions repeated in the fossil sequence to be reconstructed 

(Horton and Edwards, 2006). With this in mind, the spatial scale from which a training set is 

derived, collectively termed ‘local’ or ‘regional’, can have a significant effect on transfer 

function performance (e.g. Woodroffe and Long, 2010; Watcham et al., 2013).  

Where a training set has been collected in close proximity to the fossil sequence (i.e. a local 

training set), assumptions are made in that the modern data is a true analogue for 

environmental conditions similar to that preserved in a sediment core. However where the 

depositional environment is not represented by the modern day environment or  has 

significantly changed through time, a local training set may be inadequate to account for the 

changes in palaeoenvironment and microfossil assemblages (Barlow et al., 2013). To 

compensate for such variations, regional training sets that are comprised of foraminiferal 

assemblages and associated environmental data from a wide range of sites may provide 

better analogues of environmental change permitting a more accurate reconstruction 

(Edwards and Horton, 2000; Gehrels, 2000; Edwards et al., 2004; Horton and Edwards, 
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2005; Leorri et al., 2008; Watcham et al., 2013). When regional training sets are used in 

transfer function reconstructions they are able to capture much wider spatial variability and 

are capable of achieving reliable results where modern environmental conditions differ from 

those in the past (Horton and Edwards, 2005). Merging datasets together to form a regional 

training set however necessitates the need for elevation to be standardized to a water level 

index (SWLI) to account for differences in tidal range between the sample sites (Horton, 

1999). An example of such procedure from Horton and Edwards (2006) is presented below 

where Altab is the altitude of sample a at site b (measured to vertical datum m OD); MLWSTb 

is the mean low water spring tide level at site b (m OD); and MHWSTb is the mean high 

water spring tide at site b (m OD). Whilst other tidal parameters are available (e.g. HAT) and 

are indeed employed by different authors (e.g. Woodroffe and Long, 2010), in this instance 

MHWST and MLWST were used as they improved correlations with tide levels from lower 

elevation environments (Horton and Edwards, 2006). Care must be taken when choosing 

tidal levels for this process however as transfer function performance can be impeded where 

tidal levels do not accurately standardize water levels in the tidal frame being reconstructed 

(Woodroffe and Long, 2010). 

      
            

               
  

 

Establishing a modern training set that is deemed suitable for palaeosea-level studies is 

followed by an analysis of the species response along the environmental gradient to derive  

‘ecological response functions’ (Horton and Edwards, 2006). As the transfer function models 

the relationship between microfossil assemblages and the environmental variable to be 

reconstructed (e.g. elevation), it is important to understand whether the modern species-

environment response is linear or unimodal so that the appropriate statistical technique can 

be applied (Birks, 1995; 2010). To achieve this, regression methods are applied to express 

the biological data as a function of elevation (the ‘classical’ approach) or elevation as a 

function of biological data (the ‘inverse’ approach) (Horton and Edwards, 2006). Detrended 

canonical correspondence analysis (DCCA) is used to quantify this relationship to provide a 

measure of gradient length which is measured in standard deviation (SD) units (ter Braak 

and Juggins, 1993; Birks, 1995). Assessment of this gradient length provides information 

concerning the species response (Telford and Birks, 2005). Generally, where the gradient 

length is greater than two SD units, the species data are regarded as unimodal where 

assemblages have their optima along the environmental gradient displaying a Gaussian 

distribution (Gauch and Whittaker, 1972). Standard deviations units less than two however 
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suggests several taxa increase or decrease with the environmental variable of interest and 

therefore the data are linear (figure 2.5) (ter Braak and Prentice, 1988; Birks, 1995; 2010).  

 

 

Figure 2.5. Taxon-environment response models showing (a) Gaussian unimodal 

distribution and (b) linear distribution between species abundance (y) and the environmental 

variable (x). u = optimum and t = tolerance (Horton and Edwards, 2006: ; modified after 

Birks, 1995). 

In most Holocene sea-level investigations however, species distributions are generally 

unimodal due the nature of foraminiferal assemblages displaying a Gaussian distribution in 

relation to the environmental variable of interest (Barlow et al., 2013). Indeed unimodal 

response models such as Weighted Averaging (WA) (Ter Braak and Barendregt, 1986) and 

Weighted Averaging Partial Least Squares (WA-PLS) (ter Braak and Juggins, 1993) are 

considered robust and reliable reconstruction techniques (ter Braak and Juggins, 1993; ter 

Braak et al., 1993; Birks, 1995; Telford et al., 2004; Telford and Birks, 2005) and are widely 

applied in salt-marsh microfossil based sea-level reconstructions (e.g. Edwards and Horton, 

2000; Edwards et al., 2004; Gehrels et al., 2005; Horton and Edwards, 2005; 2006; 

Woodroffe and Long, 2010; Leorri et al., 2011; Kemp et al., 2012; Barlow et al., 2013).  

Unimodal regression models such as WA consider the variance along a single 

environmental gradient where foraminiferal taxa are assigned an ecological optimal elevation 

and tolerance in which they may be observed (Horton and Edwards, 2006). However there 

are several disadvantages associated with this approach, for example WA considers each 

environmental variable separately and also disregards the residual correlations in the 

biological data when other variables affecting the data are not considered after fitting the 

environmental variable of interest (Birks, 1995). Whilst the environmental controls that 

govern contemporary foraminiferal distributions in salt-marsh environments show a strong 

correlation with elevation, other environmental factors such as salinity (e.g. de Rijk and 

Troelstra, 1997) can introduce ‘noise’ and disrupt the unimodal response of species data to 
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the environmental variable of interest (e.g. elevation) (Horton and Edwards, 2006). In WA, 

these correlations are not taken into account and as a result WA-PLS (ter Braak and 

Juggins, 1993; ter Braak et al., 1993), was developed to allow for such variability. WA-PLS is 

an extension of WA where the incorporation of partial least squares (PLS) considers the 

residual correlations in the biological data to improve estimation of the optima for the taxa 

(Birks, 1995) by considering the effect of other potentially influential environmental variables 

(ter Braak and Juggins, 1993). Indeed ter Braak and Juggins (1993) consider WA-PLS to be 

a simple and robust method and recommend its use until other more sophisticated methods 

are developed. Where the lengths of gradient fall between 2 and 3 SD units, suggesting 

species response is neither strongly linear or unimodal, Birks (1998) states WA-PLS will in 

most instances, outperform linear techniques due to the fewer components required by WA-

PLS to create an adequate model.  

Linear-based regressions models, including Imbrie and Kipp Factor Analysis (IKFA), 

principal components regression (PCR) and PLS, are suitable for use where data exhibit a 

linear distribution in relation to the tested environmental variable (i.e. less than 2 SD units as 

identified from DCCA). In PLS regression, developed by Wold et al. (1984), components are 

maximised to the covariance with the response variable and thus requires fewer components 

usually giving lower prediction errors in comparison to other linear methods such as PCR. 

More importantly however are the added benefits of cross-validation procedures available in 

PLS which are not possible with PCR (Birks, 1995). Using the same number of components 

a PLS model always improves on the coefficient of determination (r2) in comparison to PCR 

and is thus the preferred reconstruction technique (Birks, 1995). Linear-based regression 

and calibration models are comparatively rare in proxy sea-level studies due to the unimodal 

relationship commonly observed between foraminifera and elevation. It has however been 

successfully applied in regions where foraminiferal training sets are derived from short 

vertical ranges in relationship to the tidal frame (Barlow et al., 2013) such as Leorri et al. 

(2010) and Rossi et al. (2011).  

Following the construction of a transfer function, calibration is performed in which the 

developed regression linear or unimodal statistical models are applied to fossil counterparts 

found in sediment cores to reconstruct estimates of paleo-marsh surface (Birks, 1995; 

Horton and Edwards, 2006). When combined with detailed chronological information (e.g. 

Marshall et al., 2007), usually acquired through radiocarbon dating and/or short-lived 

radionuclides, changes in relative sea-level can then be investigated (Horton and Edwards, 

2006). Statistical parameters produced from the transfer function models allow an 

assessment of the reconstruction performance and predictive ability of the training set in 
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reconstructing past environmental change (further details regarding these parameters are 

provided in section 6.2). However, quantitative transfer function reconstructions will produce 

a result regardless of the data used and so the accuracy of the reconstruction should be 

tested (Birks, 1995). In microfossil-based sea-level reconstructions from salt-marsh 

environments a common goal of the transfer function technique is to reconstruct relative sea-

level over the history of deposition for a core sequence. 

As a validation tool and to assess the reconstruction performance it is useful to compare the 

reconstructed results with direct observations from local instrumental records (e.g. tide 

gauges). This has proved successful in a number of studies where rates of change are 

comparable to instrumental records, but provides the added ability of extrapolating the sea-

level record further back into the Holocene (Gehrels, 2000; Edwards, 2001; Gehrels et al., 

2002; Donnelly et al., 2004; Gehrels et al., 2005; Edwards and Horton, 2006; Kemp et al., 

2011). In this respect salt-marsh environments can be regarded as natural archives of sea-

level change comparable to tide-gauge records (e.g. Barlow et al., 2013) permitting sea-level 

observations as far back in time as the sediments allow. Significantly, the transfer function 

approach has the potential to bridge the crucial gap that exists between instrumental and 

geological records of sea-level change (Edwards and Horton, 2006).  
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CHAPTER 3 
 

 

STUDY AREA AND RESEARCH METHODS 

 

3.1. INTRODUCTION    

The aim of this chapter is to first introduce the study area and specific salt-marsh sites 

chosen for this study and, secondly, to provide an illustration of the research methods 

detailing the field, laboratory, chronological and statistical techniques applied. It begins with 

an introduction to the Mediterranean region and more specifically the Adriatic Sea, focusing 

on its oceanographic and tectonic setting, and including information regarding regional 

glacio-isostatic adjustment. The rationale for site selection and a detailed description of each 

study site is then provided before all methods employed in the research are presented. First, 

the field methodology, incorporating modern sampling strategy, stratigraphic and levelling 

surveys are outlined before the individual laboratory techniques are described, which include 

foraminiferal analyses (surface and core), analysis of tested environmental variables and the 

methods used to establish chronologies for ‘type’ cores. The chapter finishes with some 

detail on the multivariate statistical analyses applied to the modern foraminiferal datasets.  

3.2. STUDY AREA 

3.2.1. The Mediterranean Sea 

The Mediterranean Sea, situated between the continents of Europe and Africa, is a semi-

enclosed basin covering approximately 2.5x106 km2 with an average and maximum water 

depth of 1500 m and 5150 m, respectively (Lionello, 2012). The Mediterranean Sea can be 

divided into two nearly equal sized basins known simply as the eastern and western 

Mediterranean basins which are separated by the Strait of Sicily (figure 3.1) at a depth of 

330 m (Robinson et al., 2001). To the west, communication with the Atlantic Ocean occurs 

through the narrow 14.5 km-wide Strait of Gibraltar at an approximate depth of 345 m 

(Lionello et al., 2004) whilst to the east, communication with the Black Sea occurs through 

the Bosporus Strait. Both eastern and western basins are similarly sub-divided into a number 

of basins and seas as shown in figure 3.1. The western Mediterranean Sea is characterised 

by the Alboran Basin to the far west and the Tyrrhenian Basin towards the Italian coastline in 
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the east. The eastern Mediterranean Sea is separated into the Levantine and Ionian Basins 

and also the Aegean and Adriatic Seas.  

Four main water masses characterise the Mediterranean Sea. An inflow of surface Atlantic 

water (up to 200 m depth) circulates throughout the whole basin increasing in temperature 

and salinity from west to east, which is replaced by an intermediate layer known as the 

Levantine Intermediate Waters (LIW) between 300 – 800 m depth. This warm (15 – 16°C), 

salty intermediate layer is formed in the Levantine sub-basin of the eastern Mediterranean 

and similarly circulates throughout the whole of the Mediterranean (Lascaratos et al., 1999; 

Lionello, 2012). Below 800 m depth, cold, dense water masses are formed within selected 

areas of both the eastern and western Mediterranean basins (Rixen et al., 2005) where 

favourable oceanic conditions and interactions between the air and sea result in downward 

mixing deep into the water column (Lascaratos et al., 1999). As Atlantic waters move into the 

eastern Mediterranean through the Strait of Sicily, evaporation exceeds precipitation and 

runoff, creating more saline waters and a negative water balance (Tsimplis and Baker, 

2000), which is amplified to the east in the Black Sea (Millot and Taupier-Letage, 2005).  

The small tidal ranges that are experienced throughout the Mediterranean Sea are the direct 

result of its narrow connection with the Atlantic Ocean via the Strait of Gibraltar, limiting the 

inflow of strong oceanic tidal energy (Pugh, 1996). In the west, tides are influenced by the 

Atlantic tidal wave penetrating through the Strait of Gibraltar, resulting in a tidal component 

rarely exceeding 10 cm, namely in the northern Adriatic and Aegean Seas (Tsimplis et al., 

1995). In the east, the effects on tidal dynamics of the small openings through the Bosporus 

(N-E Aegean) and Suez (S-E Mediterranean) canals are negligible (Arabelos et al., 2011).  

 

Figure 3.1. Map showing sub-divisions of the eastern and western Mediterranean Sea 

including the study area (highlighted in the black box) within the Adriatic Sea. 
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3.2.2. The Adriatic Sea 

3.2.2.1. Oceanographic Setting  

Covering an approximate area of 160,000 km2, the Adriatic Sea is a relatively shallow 

(average depth 160 m) elongated basin, measuring roughly 800 km long by 200 km wide. 

Communication with the Mediterranean Sea occurs through the Strait of Otranto which is 

marked by a sill at 800 m water depth (Artegiani et al., 1997). The bathymetry of the basin 

(figure 3.2) is similarly subdivided into sub-basins comprising a shallow (35 m), gently 

sloping 300 km northern section before extending down to 270 m in the Mid Adriatic Pit (also 

known as the Jabuka Pit) before reaching a maximum water depth of 1200 m in the southern 

Adriatic Pit near to Dubrovnik (Ciabatti et al., 1987; Orlić et al., 1992).  

There are three main water masses that circulate within the Adriatic Sea, including the 

Adriatic Surface Water, the LIW, and Adriatic Deep Water, with each sub-basin having its 

own characteristic deep water system (Artegiani et al., 1997). The cold dense water masses 

of the Adriatic Sea form a significant component of the Mediterranean Deep Water 

transferring to the eastern Mediterranean through the Strait of Otranto. The formation of this 

water mass in the shallow northern shelf region occurs during winter months when 

meteorological conditions characterised by cold strong winds (known as Bora events) persist 

over the region (Orlic et al., 1992; Lascaratos et al., 1999). This dense water then 

propagates south along the western Adriatic coast where it is stored and mixed in the 

Jabuka Pit (Lascaratos et al., 1999). The formation of dense water in the southern Adriatic 

pit similarly occurs during cold winter months and the mixing of both dense water masses 

forms the Adriatic Deep Water (Manca et al., 2002). While the formation of each deep water 

mass is a distinct but linked process (Tsimplis et al., 2012) it is generally agreed that it is the 

southern Adriatic deep water mass that transfers through the Strait of Otranto to fill the 

deepest regions of Ionian and then the Levantine Basins respectively (Orlić et al., 1992; 

Lascaratos et al., 1999).  

The Adriatic experiences a general cyclonic circulation, flowing in a south-easterly direction 

along the western side which is strongly influenced by both seasonal fluctuations in climate 

(Franco et al., 1982) and discharge from a number of significant rivers, most notably the Po 

River in northern shelf region (figure 3.2) (Artegiani et al., 1997) with a mean annual runoff of 

1700 m3/s (Orlić et al., 1992). Seasonal and year-to-year changes in relative sea-level in the 

Adriatic Sea shows strong correlation with atmospheric pressure where sea-level 

fluctuations correspond with variations in air pressure (Orlić and Pasarić, 2000; Vilibić, 



Chapter 3  Study Area & Research Methods  

 

Page | 24 
 

2006b). A 1 mbar increase or decrease in atmospheric pressure causes the lowering or 

rising of sea-level of up to 2.0 cm (Orlić and Pasarić, 2000). 

  

Figure 3.2. Map of (a) Adriatic Sea showing location of tide-gauge stations, study site areas 

(square boxes) and (b) approximate location of bathymetry profile (dashed line) redrawn 

after Piva et al. (2008). 1= Trieste, 2= Rovinj, 3=Bakar, 4=Split (Harbour), 5= Split (Rt. 

Marjana), 6=Dubrovnik, 7=Ploče. 

In comparison with the rest of the Mediterranean Sea, where tides are weak, the Adriatic 

features moderate semi- and diurnal-tides (Tsimplis et al., 1995). Due to the decrease in 

water depth, an increasing trend in tidal amplitude propagating north along the eastern coast 

occurs with the highest amplitudes in the relatively shallow waters in the Gulf of Trieste 

(Cushman-Roisin and Naimie, 2002). Diurnal tidal amplitudes can vary from 18 cm in the 

Gulf of Trieste to just 5 cm in the south at Dubrovnik. The mean daily (diurnal) tidal range 
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from tide-gauge sites based on long-term sea-level measurements for the Croatian coast of 

the eastern Adriatic Sea is provided in table 3.1 below. Tidal levels in the Adriatic Sea are 

also able to be significantly raised due to meteorological forcing (known as a meteotsunami) 

associated with strong depressions over the region (Ferla et al., 2007) while peaks in 

extreme events (Vilibić, 2006a) also coincide with peaks in mean sea-level for the Adriatic 

Sea during months November and December (Crisciani et al., 1994). The threat of 

meteotsunamis also represents a significant hazard for the eastern Adriatic coast (Vilibić and 

Šepić, 2009), where sixteen tsunami-like sea-level oscillations have been documented 

between 1955-2010 alone, creating wave heights of up to 60 cm (Šepić et al., 2012).  

Table 3.1. 

Mean daily tidal range along Croatian coast of the Adriatic Sea (Hydrographic Institute, 

1955–2002). Location of tide-gauge stations are shown in figure 3.2. 

Tide-gauge site Tidal range (cm) 

(2) Rovinj 47 

(3) Bakar 30 

(4&5) Split 23 

(6) Dubrovnik 23 

 

3.2.2.2. Tectonic Setting 

The Mediterranean region is situated across a major tectonic boundary where deformation 

occurs as a result of the near head-on collision between the continental plates of Africa 

(Nubia) and Europe (Eurasia) (figure 3.3) (Anderson and Jackson, 1987; Battaglia et al., 

2004) with Nubia moving north towards Eurasia at a rate of 10 mm/yr (Barka and Reilinger, 

1997). Contained within this relatively simple system, however, is a more complex tectonic 

network of collisional mountain belts, oceanic lithosphere and rift basins, subduction zones 

and microplates (Weber et al., 2010). The existence of a microplate in the Adriatic region 

that moved independently of both Nubia and Eurasia in the Mediterranean was first 

proposed by McKenzie (1972). This microplate or lithosphere block, which can itself be 

subdivided into northern and southern microplates, includes areas of the Adriatic Sea, 

eastern part of Italy and the Apennines, the Po River valley and the area of western 

Dinarides and Hellenides along the eastern Adriatic coast (Marjanović et al., 2012). It is 

thought to have originated from a larger Paleozoic outcrop of the Nubia plate that collided 

with Eurasia during the Cretaceous, and subsequently fragmented into independent 

microplates during the Cenozoic period (Anderson and Jackson, 1987; Battaglia et al., 

2004). Deformation of the earth’s crust in this region is the direct result of the African plate 

being forced north into Eurasia (Marjanović et al., 2012) and this interaction varies 
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accordingly along the eastern Adriatic coastline (Buble et al., 2010). Continuous GPS 

measurements of coastal rocks show vertical motion to vary from -1.7±0.4 mm/yr in the 

southern Adriatic to 0.0±0.4 mm/yr in the northern Adriatic (Buble et al., 2010). 

 

Figure 3.3. Tectonic setting of the Mediterranean region (Morhange and Pirazzoli, 2005).  

 

3.2.2.3. Glacial-Isostatic Adjustment (GIA) 

The far-field location of the Adriatic Sea from former late Pleistocene ice sheets does not 

preclude this region from the effects of post-glacial rebound or associated meltwater loading 

(e.g. hydro-isostatic adjustment). Whilst it is beyond the scope of this thesis to precisely 

model the GIA component of sea-level change for the Croatian coast of the Adriatic, it is 

important to recognise this process and its potential effects on sea-level reconstructions from 

this area. An understanding this process will ultimately help further constrain the various 

components of sea-level change in order to identify a eustatic sea-level signal (Tamisiea and 

Mitrovica, 2011).  

Data provided by the Permanent Service for Mean Sea Level (PSMSL) (Holgate et al., 2013)  

were used to assess both the predicted rate of GIA induced sea-level change and vertical 

motion of the solid earth (mm/yr) for PSMSL tide-gauge sites located along the eastern 

Adriatic shoreline covering a time period spanning the last 250 years, the next 250 years and 

finally an average present-day rate (table 3.2). The ice-model used throughout, ICE-5G 

(VM2) version 1.3, is based on an elastic, compressible 90 km lithosphere (Peltier, 2004) 

and follows an extended theory of the sea-level equation by Farrell and Clark (1976). Model 

predictions show an increasing trend in the average rate of sea-level fall moving north up 

through the Adriatic Sea towards Rovinj (-0.13 mm/yr) and Trieste (-0.14 mm/yr). Rates of 
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GIA-induced change (land and sea) are very similar between tide-gauge stations at Split and 

Dubrovnik, implying an almost homogenous change over the past 250 years for the sample 

sites considered in this thesis.  

Table 3.2. ICE-5G (v.1.3) model predictions of GIA-induced sea-level change and vertical 

land motion (mm/yr) for PSMSL tide-gauge records >35 yr located along the eastern Adriatic 

shoreline for the past 250 years, next 250 years and average present-day rate. Location of 

tide-gauge stations are shown in figure 3.2. Av = Average. 

Name PMSL ref Lat Long 

Sea-Level Vertical Land Motion 

<250 yr > 250 yr Av < 250 yr > 250 yr Av 

(1) Trieste 270061 45.65 13.76 -0.14 -0.14 -0.14 -0.07 -0.06 -0.06 

(2) Rovinj 280006 45.08 13.63 -0.13 -0.12 -0.13 -0.09 -0.08 -0.09 

(3) Bakar 280011 45.30 14.53 -0.13 -0.12 -0.12 -0.08 -0.07 -0.08 

(4) Split I 280021 43.51 16.39 -0.06 -0.06 -0.06 -0.15 -0.14 -0.14 

(5) Split II 280031 43.51 16.44 -0.06 -0.06 -0.06 -0.14 -0.14 -0.14 

(6) Dubrovnik 280081 42.66 18.06 -0.06 -0.05 -0.06 -0.14 -0.13 -0.13 

(7) Ploče* 280075 43.05 17.42 -0.06 -0.06 -0.05 -0.14 -0.13 -0.14 

*Ploče included due to its close proximity to sample site at Blace.  

3.3. STUDY SITES 

3.3.1. Rationale for Site Selection 

Foraminiferal and other ecological sea-level reconstructions from intertidal environments 

have received widespread attention throughout Atlantic sites in northern Europe and 

America. However, the Mediterranean, and specifically the Adriatic Sea, has received little 

attention utilising this technique. Research in the Adriatic region has primarily been focused 

on the use of foraminifera as indicators of recent pollution histories (e.g. Coccioni, 2000; 

Albani et al., 2007; Frontalini and Coccioni, 2008; Frontalini et al., 2010; Frontalini and 

Coccioni, 2011; 2012) and palaeoenvironmental and climate change (e.g. Jorissen et al., 

1993; Rohling and Gieskens, 1993; Oldfield et al., 2003; Di Bella et al., 2008; Piva et al., 

2008; Di Bella and Casieri, 2011) covering the broader Holocene and Late Quaternary 

period. Whilst the distribution of benthic foraminifera in the Adriatic Sea has been well 

documented (e.g. Jorissen, 1987; 1988), their vertical zonation across intertidal 

environments for the purpose of sea-level studies is limited. This is perhaps surprising for a 

number of reasons. First, an almost unanimous conclusion from microfossil-based 

reconstructions is the improved accuracy of the transfer function when conducted under 

microtidal settings in reducing the error uncertainties involved in the technique (e.g. Horton 

and Edwards, 2006; Southall et al., 2006; Leorri and Cearreta, 2009; Callard et al., 2011; 

Barlow et al., 2013). In this respect, tidal ranges in the Adriatic Sea (as described above) are 

microtidal, ranging between 20 cm to approximately 50 cm moving north up through the 
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basin (table 3.1). Secondly, the plethora of information regarding temporal and spatial 

patterns of Holocene sea-level change available in the Mediterranean is perhaps unmatched 

worldwide, offering an ideal base for sea-level studies. Abundant geological, 

geomorphological and archaeological evidence is accompanied more recently by a dense 

network of tide-gauge stations, some of which offer the longest, most detailed records in the 

world. Indeed the eastern Adriatic coastline includes seven tide-gauge stations which have 

been operational for longer than 50 years, with Trieste extending back to the 19th Century 

(Marcos and Tsimplis, 2008). Tide-gauge data are often used in foraminiferal transfer 

function sea-level reconstructions as a validation tool allowing the accuracy of the sea-level 

reconstruction to be assessed before it is extended back beyond the instrumental period and 

as far back in time as the sediments allow. With this is mind, the eastern Adriatic coastline 

represents a perfect setting for a study of this type, where high resolution, long (>35 years) 

tide-gauge records exist within a relatively small geographical region (figure 3.2 and table 

3.3).   

Table 3.3.  

Details and period of relative sea-level trends (mm yr-1) for tide gauge stations along the 

eastern Adriatic coastline with records longer than 35 years (after Marcos and Tsimplis, 

2008). Location of tide-gauge stations are shown in figure 3.2.  

Name PMSL ref Lat Long Period Length (years) Relative Trend mm yr
-1 

(1) Trieste 270061 45.65 13.76 1905 - 2006 106 1.2 ± 0.1 

(2) Rovinj 280006 45.08 13.63 1955 - 2004 53.58 0.6 ± 0.2  

(3) Bakar 280011 45.30 14.53 1930 - 2004 79.00 1.1 ± 0.1 

(4) Split I 280021 43.51 16.39 1952 - 2004 56.67 0.7 ± 0.2 

(5) Split II 280031 43.51 16.44 1954 - 2004 54.83 0.5 ± 0.2 

(6) Dubrovnik 280081 42.66 18.06 1956 - 2004 53.00 0.9 ± 0.2 

 

3.3.2. Site Selection - The Croatian Coast 

The eastern Adriatic coastline is the second most indented coastline in Europe, of which 

Croatia hosts the longest part (Pikelj and Juračić, 2013). With a total length of approximately 

5800 km, the Croatian coastline is predominantly rocky and steep with numerous pockets of 

sand and gravel beaches and few alluvial zones (Baric et al., 2008). The coastal zone is 

generally very narrow (between 1 – 5 km) where high Dinaric mountain ranges often 

protrude straight out of the sea (Pikelj and Juračić, 2013). Population density is significantly 

higher in the coastal zone compared to the hinterland, housing 25.6 % of the total population 

(Baric et al., 2008). Ten relatively large rivers flow out into the Adriatic Sea along the 

Croatian coastline, the largest of which is the Neretva River in the Dubrovnik-Neretva 
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County, with an average discharge of 332 m3s-1 which peaks in December (Orlić et al., 

2006).  

As a result of the highly indented karstic nature of the coastline, vegetated coastal 

sedimentary environments are a rare habitat in this region, with only one large alluvial plain 

along the coastline at Neretva in the south. A limited amount of research exists on salt-

marsh environments in the Adriatic, with most studies focusing on the Italian and northern 

side due karstic nature of the eastern coastline. However, a review of salt-marsh vegetation 

by Pandža et al. (2007) identified eight ecologically important sites in central and south-

eastern Adriatic, and two of the sites, Jadrtovac and Blace (figure 3.4), are the focus of this 

research. Their selection is also based on the close proximity of Jadrtovac and Blace to tide 

gauge stations at Split, Ploće and Dubrovnik respectively (figure 3.4) where tidal ranges are 

of comparable amplitude as shown in table 3.1.  

 

 

Figure 3.4. Study area map showing relative locations of sample sites (a) Jadrtovac and (b) 

Blace along the Croatian coastline, eastern Adriatic Sea. 
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3.3.3. Jadrtovac  

The salt-marsh is located on the outskirts Jadrtovac (population 200) situated within Morinje 

Bay (43°40’48”N, 15°57’24”E), approximately 3 km south of Šibenik and 50 km north of Split, 

central Croatia (figure 3.4). Communication with the open Adriatic Sea occurs through a 

narrow (150-350 m), 2.5 km-long channel at a depth of 23 m, while at the entrance to the 

Bay the depth is reduced to 2 m (Šparica et al., 2005a). With a surface area of 3.5 km2 and a 

maximum water depth of 21 m, the bay can be divided into two sections, with a shallow 

northern region and a deeper southern channel (Mihelčič et al., 2006). A relatively high 

sedimentation rate of 1.0 m/ka has resulted in the accumulation of 4.5 m of organic-rich 

sediment which began approximately 4.5 ka BP as the Morinje depression was inundated 

during the latter stages of the Holocene transgression (Bačani et al., 2004; Šparica et al., 

2005a). The Morinje ecosystem is characterised by varying seawater temperatures (0-35°C) 

and fluctuating salinities (up to 42‰) as a result of seasonally enhanced evaporation, 

continuous freshwater supply from onshore and submarine springs and surface runoff 

events (Bačani et al., 2004; Šparica et al., 2005a). At present, there are no permanent 

inflows to the bay, and current activities in the surrounding environment are primarily 

associated with seasonal tourism and agriculture (Mihelčič et al., 2006).  

The Jadrtovac salt-marsh is located on the eastern side of the bay (figure 3.5) and is roughly 

130 m at its widest point before thinning out moving north around the bay. The mean daily 

tidal range at this site is approximately 23 cm, derived from values obtained at the nearby 

Split tide-gauge (Hydrographic Institute, 1955–2002). A table of tidal levels for this site is 

provided in table 3.4. The salt-marsh environment displays distinct zones of vegetation with 

Juncus spp., Halimione, Atriplex, Scirpus spp., Phragmites and occasional Suaeda spp. 

colonising higher elevations in the upper salt-marsh zone, whilst mid-to-low salt-marsh 

zones are dominated by Halimione spp., Salicornia spp. and again occasional Suaeda spp. 

The salt-marsh is intersected by a narrow (~2 m) man-made channel presumably for local 

fishing access within the bay. Two sample sites were established at Jadrtovac (JD1 and 

JD2), as shown in figure 3.5, where surface transects were established perpendicular to the 

coast incorporating all sub-environments from the high salt-marsh zone to the salt-

marsh/sea interface. The low salt-marsh/sea interface at JD1 is characterised by a small cliff 

edge (~10-20 cm). Details regarding the sampling at JD1 and JD2 are provided in table 3.6. 
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Figure 3.5. Study site map showing (a) location of salt-marsh environment within Morinje 

Bay with surface transects, random sampling area and core sites, (b) photo of JD1 sample 

site, and (c) photo of JD2 sample. 

Table 3.4.  

Tidal levels (relative to m HVRS71) derived from Split tide-gauge (Hydrographic Institute, 

1955–2002). 

Lowest 

astronomical 

tide 

Mean low 

water 

springs 

Mean 

low 

water 

neap 

Mean 

tidal-

level 

Mean 

high 

water 

neap 

Mean high 

water 

springs 

Highest 

astronomical 

tide 

- 0.203 -0.036 +0.034 + 0.128 +0.233 +0.256 + 0.284 

 

3.3.4. Blace  

Blace is situated approximately 120 km south of Jadrtovac (43°00’15”N, 17°28’27”E) and 

comprises a remote small pocket salt-marsh just north of a small fishing village (population 

200) approximately 10 km south of Ploče (figure 3.4). The salt-marsh is located south of the 

Neretva River Delta, the largest outflow along the Croatian coastline with a large, 12 000 

hectare alluvial plain, representing an important ecological and agricultural site (Romić et al., 

2008) and recognised by the Ramsar Convention since 1993. The river originates in Bosnia 

& Herzegovina and is approximately 255 km long within a catchment area covering over 

13000 km2 (Jurina et al., 2013). The lower course of the river however, which flows through 

the Republic of Croatia, is only 36 km long, flowing through Quaternary alluvial deposits 

(Orlić et al., 2006). Rising sea level is a particular risk to this region and, combined with 



Chapter 3  Study Area & Research Methods  

 

Page | 32 
 

surge-induced flooding, the intrusion of saline waters could have devastating effects on the 

agricultural practices that dominate this landscape (Baric et al., 2008).  

The salt-marsh is located approximately 3 km south of the river’s mouth in a sheltered 

embayment from the open Adriatic Sea and is roughly 40 m wide. The mean daily tidal range 

at this site is again 23 cm, as taken from values from the Ploće tide-gauge (Hydrographic 

Institute, 1955–2002). Indeed, analysis of admiralty tide-tables (Admiralty, 2010) for Ploće 

revealed an almost identical tidal regime to Split (table 3.4). Distinct zones of vegetation are 

again apparent at Blace, with Juncus spp., Halimione, Atriplex and Chenopodiaceae spp. 

dominating high-to-mid salt-marsh zones and Limonium spp. and Salicornia spp. dominating 

mid-to-low salt-marsh. Two sample sites were established at Blace (BL1 and BL2), as shown 

in figure 3.6, where surface transects were again established perpendicular to the coast 

incorporating all sub-environments from the high salt-marsh zone to the salt-marsh/sea 

interface. Specific details regarding the sampling at BL1 and BL2 are provided in table 3.6. 

 

 

Figure 3.6. Study site map showing (a) location of salt-marsh environment at Blace with 

surface transect and core sites, (b) photo of BL1 and (c) BL2 sample sites. 
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3.4. RESEARCH METHODS  

To reduce the potential effects of seasonality on surface foraminiferal distributions (i.e. 

seasonal blooms), as discussed by Horton and Edwards (2006), field work was conducted 

during winter months (January 2010), collecting all surface transect and ‘type’ core material. 

A second visit during December 2011 permitted the collection of a randomly sampled 

contemporary dataset from JD1, as discussed below. It is therefore considered that the 

presented foraminiferal datasets are representative of the salt-marsh environments at the 

time of sampling.  

3.5. FIELD METHODS 

3.5.1. Salt-Marsh Stratigraphy 

The majority of Quaternary coastal research employs a standardised sediment classification 

scheme (Troëls-Smith, 1955) for the semi-quantitative recording of sediment stratigraphy. 

This scheme provides a rapid and detailed analysis of sediment records, allowing direct 

comparisons to be made across the Holocene sea-level research community. The Troëls-

Smith (1955) classification system was therefore utilised to describe the underlying 

sediments at Jadrtovac and Blace to understand the pattern and history of deposition at the 

study sites. This procedure permitted ‘type’ cores to then be selected, and thus analysed, 

based on their sediment composition (i.e. typical of the stratigraphy found at the site in 

question) and location within the salt-marsh environment. Using a 25 mm diameter, 1 m-long 

Eijkelkamp hand gouge corer, overlapping sequences of sediment were analysed and 

described in detail, with all cores drilled to the underlying limestone bedrock. Whilst the 

sampling frequency varied between each site, sediment coring incorporated all sub-

environments from the high salt-marsh zone to the seaward edge. Transect locations are 

depicted on the study site maps for both Jadrtovac and Blace in figures 3.5 and 3.6, 

respectively. For clarity and ease of interpretation, a simplified form of the salt-marsh 

stratigraphy at both study sites in presented in chapter 5, while a full Troëls-Smith (1955) 

description for each core analysed is provided in Appendix A. Core locations were flagged, 

and subsequently surveyed relative to m HVRS71 as described below. 

3.5.2. Salt-Marsh Sampling 

Following the analysis of the salt-marsh stratigraphy, ‘type’ cores were then selected from 

within the upper salt-marsh zone. In addition to the analysis of fossil foraminifera, other 

analyses included organic matter, pH, particle size, sediment geochemistry and dating 
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(210Pb, 137Cs and AMS 14C) as outlined below. Details regarding the location of these cores 

are shown in figures 3.5 and 3.6 whilst the length and altitude of each core is provided in 

table 3.5. Using a large-diameter (50 mm), 1 m-long Eijkelkamp hand gouge corer, ‘type’ 

cores were again drilled to the underlying bedrock, with the outer surface of the core 

carefully cleaned to prevent contamination prior to sub-sampling of the undisturbed internal 

section at 1 cm intervals. Samples were placed in sealed sample bags and refrigerated at 

4°C until ready for analysis.  

Contemporary surface samples for foraminiferal analyses followed a similar strategy to that 

of transects established during the sediment stratigraphy survey. Although site-specific in 

terms of detail, this again incorporated all sub-environments of the salt-marsh environment 

from the high salt-marsh zone to the low salt-marsh-sea interface, but at a higher resolution 

focusing on distinct changes in topography and/or floral community, following Scott and 

Medioli (1980). The locations of these transects are displayed on study site maps in figures 

3.5 and 3.6 while the exact distance and altitudes between the sample stations are shown in 

the transect altitude profiles in chapter 4. At JD1, a random sampling approach was also 

performed, but again incorporating all sub-environments of the salt-marsh environment. A 

standardised sample volume of 10 cm3 (10 cm2 x 1 cm thick) was retrieved allowing for a 

direct comparison to previous research on foraminifera from other intertidal environments 

(Horton and Edwards, 2006). In some instances the salt-marsh surface was heavily root 

bound, thus a sharp serrated knife was used to extract the sample, keeping the blade firmly 

against the sample pot before placing into sealed sample bags containing buffered ethanol 

(95%) and protein stain Rose Bengal. This was used to help differentiate between live and 

dead foraminifera at the time of collection during the analysis stage (Walton, 1952). Whilst 

this technique has been scrutinised (Bernhard, 2000; Bernhard et al., 2006), it is widely 

adopted amongst the research community and still represents the most effective way of 

staining live foraminifera (Figueira et al., 2012). Finally, all sample stations were again 

flagged and surveyed relative to m HVRS71.  

This sampling procedure, in which the upper centimetre of sediment is collected, follows the 

commonly adopted sampling depth for studies analysing modern foraminiferal distributions 

from salt-marsh environments (e.g. Gehrels, 1994; Horton, 1999; Horton et al., 1999b; 

Gehrels et al., 2001; Edwards et al., 2004; Gehrels and Newman, 2004; Duchemin et al., 

2005; Tobin et al., 2005; Southall et al., 2006). This approach assumes that the modern 

training data set used is composed of intertidal foraminifera which are primarily epifaunal. 

Some studies however have highlighted the importance of infaunal populations and their 

potential implications for sea-level reconstructions (e.g. mixing of live foraminifera with fossil 
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assemblages). Indeed this has shown to be particularly evident from studies of Northern 

America saltmarshes where infaunal populations can be significant (Goldstein and Harben, 

1993; Ozarko et al., 1997; Goldstein and Watkins, 1998; Hippensteel et al., 2002; Duchemin 

et al., 2005; Tobin et al., 2005). In contrast to this, studies of modern foraminiferal 

distributions from European saltmarshes have found infaunal populations to be less 

significant, where foraminiferal assemblages are generally restricted to the upper few 

centimetres of sediment surface (Horton, 1997; Horton et al., 1999a; Alve and Murray, 2001; 

Horton and Edwards, 2006). The differences in these observations may in part reflect the 

organic nature of northern American salt-marsh environments compared to their more 

minerogenic European counterparts restricting the penetration of subsurface foraminifera 

(Horton et al., 1999a). Whilst the population of infaunal foraminifera may be variable and site 

specific, using a depth interval incorporating the upper 1 cm of the marsh sediment surface, 

provides an adequate model from which palaeoenvironmental reconstructions can be based 

(Culver and Horton, 2005; Horton and Edwards, 2006) and is thus adopted in this study. 

Immediately adjacent to samples retrieved for contemporary foraminiferal distributions, 30 

cm3 (30 cm2 x 1 cm thick) of surface sediment was retrieved for the analysis of tested 

environmental variables. These included salinity, pH, organic matter and particle size. 

Additional environmental variables recorded were altitude and distance from water’s edge. 

Distance was simply assessed using a 30 m tape, measuring each sample’s location relative 

to the water’s edge at the time of sampling (low tide). These variables are important as they 

were tested for their influence on the modern foraminiferal datasets, allowing an assessment 

to be made of the main controls governing foraminiferal distributions on the present-day 

marsh surface. The aim of this is to identify altitude (and hence tidal level) as an important 

control, permitting the contemporary foraminifera data to be used as a proxy for sea level.  

Table 3.5. Summary of sampling at study sites Jadrtovac and Blace. 

Site 

Name 

Transect 

length (m) 

Surface samples 

collected 

‘Type’ core 

length (m) 

‘Type’ core altitude  

(m HVRS71) 

JD1 122 22 0.42 0.165 

JD2 16.5 10 0.56 0.245 

JDR - 10 - - 

BL1 29.2 15 0.32 0.300 

BL2 46 9 - - 

JDR=Random sampling approach.  

3.5.3. RBR Temporary Tide-Gauges 

At both Jadrtovac and Blace, RBR submersible temporary tide-recorders were installed to 

acquire local tidal data. The autonomous instruments were kept horizontal and fully 
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submerged at all times to allow continuous tidal measurements, which are achieved by 

averaging pressure data. An in-built averaging function eliminates interference from localised 

wave action. This information could then be later used to assess the correspondence 

between the sample sites and high frequency tidal data obtained from nearby tide-gauge 

stations (e.g. Split) and to detect any local tidal distortion relative to the reference tide-gauge 

site. 

3.5.4. Levelling Survey 

To establish absolute altitudes for the stratigraphic transects, ‘type’ cores and surface 

sample stations, each location was surveyed relative to the vertical datum used in the 

Republic of Croatia (HVRS71). This was achieved using a Leica Na820 optical level and 

staff in conjunction with TopCon Hiper Pro Precision GPS+ positioning system. National 

geodetic benchmarks (figure 3.7), levelled to HVRS71, in close proximity to the field sites 

were surveyed back to temporary benchmarks established at each site, allowing the 

absolute altitude of each location to thus be calculated. The logistical problems caused by 

the remote location of Blace, meant that reference water levels (low-tide) were also recorded 

and later converted into absolute altitudes relative to HVRS71 using tidal levels provided by 

the Hydrographic Institute of the Republic of Croatia (Hydrographic Institute, 1955–2002) 

(table A12). Similar to the national vertical datum used in the UK (Ordnance Datum Newlyn), 

the national vertical datum used in the Republic of Croatia relates to mean sea-level over a 

known period of time from tide-gauge station(s). Previously, the old vertical datum used was 

defined by the mean sea-level at the Trieste tide-gauge for 1875. In comparison, HVRS71 is 

defined by the mean sea-level level from five tide gauge stations distributed along the 

Croatian coastline (Dubrovnik, Split, Bakar, Rovinj and Kopar) for 1971.5 over a 

measurement interval of 18.6 years (Rožić, 2001). 

Figure 3.7. Details and photos of the national geodetic benchmark used near to Jadrtovac. 

Benchmark ID Identification # Latitude Longitude Height (m HVRS71) 

58/705 2 008 897 43N 41’ 3.91’’ 15E 58’ 2.14’’ 9.6448 
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3.6. LABORATORY METHODS 

3.6.1. Foraminiferal Analyses (Fossil and Contemporary) 

Sample preparation followed that outlined by Scott and Medioli (1980) and de Rijk (1995), 

wet sieving 10 cm3 of sediment through 500 µm and 63 µm sieves before transferring the 

>63 µm fraction into a wet splitter (Scott and Hermelin, 1993) and allowing the sample to 

settle out of suspension. Using a pipette, known volumes (usually 1/8th) of the >63 µm 

fraction (live and dead) were placed onto a spiral counting tray and counted wet under a 

Leica S8APO Stereo microscope at a magnification of x63 until a minimum of 100 (dead) 

counts was achieved (Patterson and Fishbein, 1989; Fatela and Taborda, 2002). The >500 

µm fraction and supernatant was also checked for foraminifera before being discarded.  

Samples for foraminiferal analysis were stored in buffered ethanol with Rose Bengal added 

to aid in the identification of live specimens at the time of collection. As the protoplasm is 

stained bright red, it was assumed that any tests containing protoplasm were either alive or 

only recently dead at the time of collection (Murray, 1991). A continuing debate exists in 

modern foraminifera studies as to which assemblage best reflects a reliable model for the 

sampled environment. Several authors (Horton and Edwards, 2003; Leorri et al., 2010; Rossi 

et al., 2011) advise using dead assemblages for analogues of palaeoenvironmental change 

as they more accurately depict the modern environment in comparison with total or living 

assemblages which are more susceptible to seasonal (Murray, 1991) and/or post-

depositional changes (Horton and Edwards, 2006). The number of live specimens counted in 

each sample was significantly lower than the dead fraction, and the majority of surface 

samples analysed were void of any living foraminifera. Where present, numbers of live 

foraminifera were below statistically confident limits even when considering the low species 

diversity of the studied environments. This observation confirms previous findings by 

Cosovic et al. (2006) who analysed recent foraminifera along the Croatian Adriatic seacoast 

concluding that dead tests are substantially more common compared to  living assemblages, 

regardless of season when sampling took place. Similarly in a study of foraminiferal 

populations from the Gulf of Venice, dead foraminiferal assemblages were not only more 

diverse, but much more abundant in comparison to the living component (Serandrei-Barbero 

et al., 2003). As a result, only the ‘dead’ datasets were employed in the results and 

interpretation of the contemporary study as discussed in chapter 4. Raw counts of both 

surface (live and dead) and core foraminifera are provided Appendix B.  

Foraminiferal taxonomy was confirmed through comparison with primary resources (e.g. 

Murray, 1973; 1979; 1991) and the vast array of scanning-electron microscope (SEM) 
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images of intertidal foraminifera in the published literature (e.g. Horton and Edwards, 2006). 

The lack of previous research on salt-marsh foraminifera from the eastern Adriatic coastline 

limits comparisons, however comprehensive studies of benthic foraminifera in the Adriatic 

Sea were frequently referenced (e.g. Jorissen, 1987; 1988) to aid the identification of 

calcareous taxa. The various calcareous species of Ammonia, Elphidium and 

Quinqueloculina are grouped together at genus level as Ammonia spp., Elphidium spp. and 

Quinqueloculina spp., respectively, following Hayward et al. (2004) and Horton and Edwards 

(2006). Using a Hitachi TM3000 Tabletop microscope, high-resolution ‘SEM’ style images of 

the main foraminiferal taxa encountered were captured and are presented in Appendix E. 

3.6.2. Environmental Variable Analyses 

To explore the potential mechanisms influencing surface foraminifera distributions, sediment 

samples were sub-sampled and analysed for environmental variables so that their 

significance on the foraminiferal dataset could be determined through multivariate statistical 

analyses, as presented in chapter 4. Where applicable, the same procedures were repeated 

for both contemporary and core material (e.g. loss-on-ignition, laser granulometry). Results 

from surface environmental variables are presented in chapter 4 whilst down-core trends are 

presented in chapter 5. 

3.6.2.1. Salinity and pH 

Conductivity (as an indicator of salinity) and pH were analysed simultaneously after creating 

a 1:2 soil to water mixture comprising 35 ml of sediment and 70 ml double distilled water. 

The mixture was thoroughly stirred using a glass rod and allowed to settle for approximately 

one hour before measurements commenced. The solution was then measured and repeated 

three times before an average was taken for each sample station. Measurements of pH were 

performed using a HANNA HI-98115 pH meter while conductivity measurements were 

recorded using a HANNA HI-9033 multi-range conductivity probe. Calibration solutions were 

first used, and periodically thereafter, to ensure the correct measurement of pH and 

conductivity, using pH solutions 4.01 and 7.01 and conductivity solution 1413 µs/cm 

(H170031). As the probe measures conductivity, which is used as a direct indication of 

salinity levels at each sample station, the equation given below was used to express 

conductivity as a function of salinity, presented as parts per thousand (‰) following Gehrels 

and Newman (2004). To ensure consistent results, the temperature of the analysed solution 

was also readily recorded.  

                                        1          
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3.6.2.2. Organic Matter  

The organic matter of each sample was determined by loss-on-ignition (LOI) (Ball, 1964) 

whereby the organic content in each sample is combusted to ash and carbon dioxide. To 

remove hydroscopic moisture, approximately 5 g of sediment from each sample was left 

overnight (typically 12 hours) in a Sanyo Convection Oven at 105°C. The samples were then 

re-weighed before ignition at 450°C for approximately four hours in a pre-heated muffle 

furnace. Samples were allowed to cool in desiccators before weighing using a Mettler Toledo 

high-precision analytical balance allowing down-core and surface trends of LOI to be 

calculated using the following equation: 

       
             

     
      

where;  

LOI450 = Loss-on-ignition at 450°C expressed as a percentage. 

DW105 = Dry-weight (g) of the sample before ignition (after drying at 105°C). 

DW450 = Dry-weight (g) of the sample after ignition. 

 

3.6.2.3. Particle Size Analysis  

Substrate particle size distribution of both contemporary and core material was analysed 

using a Coulter laser diffraction granulometer (LS200). The variable organic content of salt-

marsh sediments, as identified from LOI results, resulted in samples being pre-treated to 

remove unwanted organic particulates that may contaminate the minerogenic particle size 

results (Allen and Thornley, 2004; Gray et al., 2010). This involved sub-samples of sediment 

(between 0.5g and 5g depending on organic content) first being sieved through 2 mm to 

remove larger rootlets and stems, before being heated gently on a hot plate in a solution of  

20% hydrogen peroxide (H2O2) and double distilled water. The reaction was continued until 

all organic material had been digested. Prior to inputting to the granulometer, clay-rich 

samples were disaggregated on a watch glass using Calgon. During the analysis, which 

measures particle size distributions between 4 and 2000 µm (0.004 and 2 mm), samples 

were sonicated to further aid even dispersion of the sediment. Finally, output data from the 

analyses were processed using the computer program GRADISTAT version 8 (Blott and 

Pye, 2001). For statistical analyses presented in chapter 4, the data were separated into the 

individual proportions of percentage sand, silt and clay using the size classes provided by 

GRADISTAT. 
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3.6.2.4. Dry Bulk Density 

Dry bulk density (DBD) analyses were performed to complement the analysis of short-lived 

radionuclides, providing information regarding changes in mass accumulation rate that may 

also be used to identify potential sediment compaction issues, often associated with 

minerogenic low-energy intertidal sediments (Brain et al., 2011). At a resolution of 1 cm 

throughout the core material, approximately 1 cm3 of sediment was carefully cut and its 

dimensions recorded before being weighed wet. Each sample was frozen and then placed in 

a freeze-drier to remove all water content. Finally the samples were re-weighed using a high-

precision analytical balance and the dry bulk density calculated using the following equation: 

          

Where; 

 DBD = Dry-bulk density (g/cm3) 

 DW = Dry-weight of the sample (g) 

 V = Volume of the sample (cm3) 

Where the volume of core samples was unable to be achieved through the above procedure, 

due to compression (either during transportation or storage), a volume by displacement 

method was used following the principal that 1 mL of water has a volume of 1 cm3. An initial 

water level was subtracted from the final water level allowing volume to be calculated.  

3.7. CORE CHRONOLOGY 

The construction of a reliable, high resolution chronology is pre-requisite in sediment-based 

sea-level reconstructions (e.g. Marshall et al., 2007). These are usually acquired through a 

multi-proxy dating approach involving radiocarbon dating (14C), short-lived radionuclides and 

independent markers of known age (e.g. pollen chronohorizons). The organic nature of salt-

marsh sediments has made 14C dating the most widely used technique in Quaternary 

palaeoenvironmental studies. However, limitations in the application of 14C for dating more 

recent or low organic sediments, often associated with UK and NW European salt-marshes, 

mean it is often used in conjunction with other sources of age data to construct composite 

chronologies which seek to link the chronological data together (Edwards, 2004).   

Age determinations by 14C have the ability to extend to 9 to 10 half-lives, which equates to 

approximately 50,000 years (Hua, 2009). Previously these estimations were based on 

measurements of radioactive decay by counting 14C atoms. This method, referred to as 
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‘conventional’ radiocarbon dating, required large amounts of carbon (~100g), which often 

corresponded to large sample intervals and long counting times. An alternative approach to 

radiocarbon age determinations is through accelerator mass spectrometry (AMS). This 

relatively new, improved method has considerable benefits over conventional dating by 

counting 14C atoms directly, relative to stable carbon isotopes 12C and 13C (Hua, 2009). 

Counting times are also significantly reduced, as are sample volumes of required carbon 

(0.1-10 mg) (Blaauw and Heegaard, 2012). Indeed developments in AMS have permitted the 

dating of samples containing as little as 10-20 µg of carbon (Hua et al., 2004) allowing new 

sources of material to be dated (e.g. pollen and foraminifera). With reference to salt-marsh 

environments, dating terrestrial plant macrofossils is preferable, especially those found in 

situ, to avoid contamination of ‘old carbon’ which is often associated with bulk date samples 

where carbon has been transferred into the sample from an unknown source, producing 

illogical age estimates (Edwards, 2004).  

Whilst the application of 14C dating is widespread, sediments deposited since AD ~1650 

represent a significant challenge for this technique due to variations in the production of 14C 

within the atmosphere, which have not been constant throughout time (Stuiver and 

Braziunas, 1998; Reimer et al., 2009). Natural fluctuations in atmospheric 14C caused by 

changes in the Earth’s magnetic field, solar activity and changes in the carbon cycle are 

further complicated by anthropogenic disturbances related to the combustion of fossil fuels 

and land-use changes (van der Plicht, 2007; Hua, 2009). More recently, atomic bomb 

explosions since the 1950s has created huge surges in atmospheric 14C concentration which 

is then followed by a gradual decline to pre-bomb levels in the past few decades (Hua and 

Barbetti, 2004). As a result, radiocarbon years are not the same as calendar years and so 

need to be converted from the former to the latter using a calibration curve (e.g. McCormac 

et al., 2007; Reimer et al., 2009). However variations in the concentration of atmospheric 

14C, creating ‘wiggles’ and ‘plateaus’, mean that simply intercepting the calibration curve to 

acquire a calendar year is often difficult because multiple dates are possible from a single 

sample (Reimer and Reimer, 2007). Despite recent advances in the application of 

radiocarbon dating for modern deposits in salt-marsh environments by calibrating ages 

relative to known ‘bomb spikes’ since the 1950s (e.g. Marshall et al., 2007; Hua, 2009), 

short-lived radionuclides such as lead-210 (210Pb) and caesium-137 (137Cs) provide an 

alternative method to 14C in dating sediments of more recent age (e.g. Allen et al., 1993; 

Plater et al., 1999; Gehrels et al., 2002; 2005; Plater and Appleby, 2004; Wang et al., 2005; 

Horton et al., 2006; Leorri and Cearreta, 2009; Kemp et al., 2009; 2012).  

Lead-210 is a naturally occurring radionuclide formed as a decay product of the 238U series. 

The proposal of 210Pb as a dating tool by Goldberg (1963), is based on measurements of the 
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vertical distribution of unsupported (excess) 210Pb activity which becomes integrated into 

sediments as a result of accumulation from atmospheric fallout. Estimations of sediment age 

are then calculated from measurements of the excess 210Pb activity as a result of its known 

decay rate of approximately 22.3 years (Appleby and Oldfield, 1992). Since its first 

application in dating lake (Krishnaswamy et al., 1971) and marine (Koide et al., 1973) 

sediments, 210Pb dating has become the most widely adopted technique for dating marine 

and lacustrine sediments deposited over the past 100-200 years (Cundy and Croudace, 

1995). To further constrain the ages provided by a 210Pb chronology, 137Cs (half-life 30 

years), an artificially produced radionuclide is often used. Its application is used to provide 

markers within the sediment record that can related to atmospheric fallout from peak nuclear 

weapons testing (1963), waste discharge from nuclear facilities and reactor accidents (e.g. 

Chernobyl 1986) (Haslett et al., 2003).  

To construct age-depth profiles using 210Pb various models have been developed. An initial 

Constant Flux, Constant Sedimentation  (CF-CS) model, developed by Krishnaswamy et al. 

(1971) and Robins (1978), was based on the assumption that there was a constant rate of 

210Pb deposition from the atmosphere and no-post depositional disturbances or redistribution 

had occurred. At sites where these assumptions were unfounded, more sophisticated 

models were developed, including the Constant Rate of Supply (CRS) model (Appleby and 

Oldfield, 1978; Appleby et al., 1979) and the Constant Initial Concentration (CIC) model 

(Appleby and Oldfield, 1978; Appleby, 2001). The former model, whilst still assuming a 

constant flux of 210Pb through time, was developed to compensate for changes in 

accumulation rate and has proved successful for environments which have obtained a 

steady supply of unsupported 210Pb from the atmosphere (Appleby, 2001). The CIC model 

however was developed for environments where atmospheric fall-out was not the main 

source of unsupported 210Pb. Like the CRS model, it too allows for variation in accumulation 

rate through time but assumes sediments to have an constant initial excess of 210Pb 

(Appleby, 2001).  

In addition to the above, independent age markers may provide further age constraints 

within the sediment record that can be related to documented evidence. These markers also 

possess the ability to extend the beyond the limits of 210Pb dating to bridge the crucial age 

gap covered by short-lived radionuclide and radiocarbon chronologies (Gehrels and 

Woodworth, 2013). Techniques often include pollen chronohorizons, geochemical or 

pollution indicators, stable Pb isotopes, spheroidal carbonaceous particles (SCPs) and/or 

tephra (volcanic) layers. Whilst these methods may be site-specific, their use in salt-marsh 

based sea-level reconstructions is potentially very useful as they can provide very precise 

dating markers in the sedimentary record if related to documented evidence of pollution 
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and/or land use change (e.g. Allen et al., 1993; Cundy and Croudace, 1995; Haslett et al., 

2003; Gehrels et al., 2002; Plater and Appleby, 2004; Gehrels et al., 2005; 2008; Marshall et 

al., 2007; Kemp et al., 2009). With reference to Croatia, the frequent application of 

agrichemicals is one of the major causes of trace metal accumulation in soils (Zovko and 

Romic, 2011) and the accumulation of Cu is often related to the long-term widespread use of 

copper-sulphate (Bordeaux mixture) and other copper-based fungicides in controlling 

vineyard mildew (Romic and Romic, 2003). The areas surrounding Adriatic Bays are 

influenced, to a varying extent, by human activity related to agricultural activities supplying 

various types of contaminants to bay environments (Miko et al., 2007). Changes in the 

geochemical stratigraphic record and elevated concentrations of trace elements associated 

with anthropogenic change (e.g. Pb, Cu and Zn) have become increasingly important as the 

use of peloid muds/sediments from these environments for medicinal and cosmetic purposes 

is currently unregulated (Mihelčič et al., 2006; Miko et al., 2007).  

The Morinje Bay environment, from where cores JD1 and JD2 were retrieved, has been the 

focus of a number of investigations focusing on the geochemical properties of the sediment 

in relation to the above issue. Šparica et al. (2005a) investigated aspects of the 

sediment/water interface in the Morinje Bay environment concluding increased but not 

anomalous concentrations of Pb and Cu are a result of regional atmospheric deposition and 

localised vineyard activity as sediment from the surrounding catchment is transported into 

the bay. Mihelčič et al. (2006) investigated the vertical distribution of trace metals in the 

Morinje Bay focusing on the history of anthropogenic emissions into the bay environment. 

Whilst their analysis focused on a 55 cm core from the middle of the bay, dated by 137Cs 

peaks, they also report concentrations in Cu, Pb and Zn from approximately the past 50 

years to be related to local anthropogenic activity within a fine-grained silt sediment. They 

conclude leaded gasoline to be the primary source of Pb enrichment increasing up to the 

1980s, and decreasing thereafter due to a reduction of traffic in the area after the 

construction of an alternative route in the early 1980s. The beginning of war in Croatia in 

1991 also isolated the area resulting in a marked reduction in traffic (Mihelčič et al., 2006). 

Unlike Western Europe, however, a decrease in Pb accumulation cannot be linked with the 

change to unleaded fuel as high levels of leaded fuel were only phased out in 2005 (Mihelčič 

et al., 2006). Maximum copper concentrations occur between a depth interval of 5 and 15 

cm. However, the authors were unable to differentiate the main source of Cu enrichment 

between an aeolian or rivulet supply of copper-based plant protection agents or copper-

based antifouling paints from numerous boats moored in the Morinje Bay. The main source 

of Zn to the bay is attributed to tourist activities and housing infrastructure (Mihelčič et al., 

2006). Similar results are also reported from Makirina Cove, approximately 7 km north of the 
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Morinje Bay, where elevated concentrations of Cu, Pb, Zn from sediment cores are 

attributed to traffic circulation and agricultural activity (Šparica et al., 2005b). Miko et al. 

(2007) also studied sediments from the Morinje and Makirina Bay enviromments. The 

authors analysed the influence of land-use changes on geochemical properties of peloid 

sediments focusing on surface deposits from the surrounding vineyards and sediment cores. 

Similar conclusions are drawn from the study highlighting an enrichment of Pb and Cu which 

are attributed to local road runoff (Pb) and vineyard activity.  

To accompany the fossil foraminiferal records presented in section 5.3, composite 

chronologies have been established involving an array of techniques including short-lived 

radionuclides, AMS 14C dating and X-ray fluorescence elemental concentrations as detailed 

below. Radiocarbon dating was restricted to core JD1 only and its combination with other 

age data in the construction of an age-depth model is discussed in section 3.7.4. 

3.7.1. Short-Lived Radionuclides 

Lightly disaggregated freeze-dried sediment samples from cores JD1, JD2 and BL were 

analysed for 210Pb, 226Ra, 137Cs and 241Am by direct gamma assay at the University of 

Liverpool Environmental Radioactivity Laboratory using Ortec HPGe GWL series well-type 

coaxial low background intrinsic germanium detectors (Appleby et al., 1986). Lead-210 was 

determined via its gamma emissions at 46.5 keV, and 226Ra by the 295 keV and 352 keV -

rays emitted by its daughter isotope 214Pb following three weeks storage in sealed containers 

to allow radioactive equilibration. Ceasium-137 and 241Am were measured by their emissions 

at 662 keV and 59.5 keV, respectively. The absolute efficiencies of the detectors were 

determined using calibrated sources and sediment samples of known activity.  Corrections 

were made for the effect of self-absorption of low energy -rays within the sample (Appleby 

et al., 1992) and 210Pb dates were calculated using the CRS model (Appleby and Oldfield, 

1978; Appleby et al., 1979) as described above. To further constrain ages obtained via 210Pb 

dating, 137Cs (half life of 30 years) is used as a chronological marker (Appleby, 2001).  

3.7.2. Radiocarbon Dating 

The age-limitations of short-lived radionuclides in dating sediments deposited longer than 

100 years or so (Smith, 2001) restricted the extent of a reliable and precise radiometric 

chronology to the upper section of the core material due to a known 210Pb half-life of 

approximately 22.3 years (Appleby and Oldfield, 1992). All cores were therefore investigated 

for suitable dating material with a goal of establishing ages for sediments below the limits of 

210Pb dating. When sampling for 14C dating, it was important to select terrestrial plant 
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macrofossils, rather than randomly selected detritus, as they obtain their carbon by sub-

aerial photosynthesis (Hatté and Jull, 2007). This would help minimise complications of 

reservoir effects and old carbon being incorporated into the sample, which could result in 

samples appearing older than contemporaneous terrestrial materials (Hua, 2009). However, 

this often proved difficult due to the inorganic nature that characterised sediments from the 

lower reaches of each core. Whilst organic matter is present, cores JD2 and BL were void of 

any ‘reliable’ material that could be dated confidently by 14C. Radiocarbon dating of suitable 

organic derived material was therefore investigated to extend the chronological history of 

JD1 core only, where a varying abundance of small, black seed-like material was 

encountered within an otherwise organic-deprived (<10%) clay-rich sediment. First, 

sediment samples were dried, sieved (at 500 µm) and carefully inspected before the material 

was carefully extracted and washed with double distilled water. They were then oven dried 

over-night at 50°C to obtain dry-weights. Using a binocular microscope, the material was 

identified as Scirpus holoschoenus seeds or fruits (figure 3.8), a common salt-marsh species 

along the eastern Adriatic coastline (Pandža et al., 2007) and found at higher elevations on 

the contemporary salt-marsh surface at Jadrtovac.  

 

Figure 3.8. Scirpus holoschoenus seeds analysed for 14C from JD1 core (26-27 cm).  

Following this, an application for radiocarbon dating support from the Natural Environment 

Research Council (NERC) was sourced and successfully received (April, 2013) for three 

high-precision 14C dates between depths of 25 cm and 30 cm (NERC Radiocarbon Analysis 

Allocation Number 1678.1012). Samples were prepared to graphite at the NERC 

Radiocarbon Facility, East Kilbride before analysis of 14C at the Scottish Universities 

Environmental Research Centre AMS Laboratory. Prior to analysis, samples were digested 

in 1M HCl (80°C for 30 minutes), washed free from mineral acid with deionised water and 
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then digested in 0.2M KOH (80°C, for a maximum of 20 minutes). The digestion process 

was repeated using deionised water until no further humics were extracted. The residue was 

then rinsed free of alkali, digested in 1M HCl (80°C for 1 hour) and then rinsed free of acid 

before being transferred to an Ag cup, dried and homogenised. Total carbon in the pre-

treated sample was recovered as CO2 by heating with CuO in a sealed quartz tube and gas 

converted to graphite by Fe/Zn reduction. Results are reported as conventional radiocarbon 

years BP (relative to AD 1950) and percentage modern 14C, both expressed at the ±1σ level 

for overall analytical confidence. The results were corrected to δ13CVPDB‰ -25 using the δ13C 

values. The δ13C value was measured on a dual inlet stable isotope mass spectrometer 

(Thermo Fisher Delta V) and is representative of δ13C in the original, pre-treated sample 

material. Details regarding the calibration of 14C dates to provide calendar ages (Reimer et 

al., 2009) are provided in section 5.5.3.1. The radiocarbon analytical dating report for core 

JD1 is provided in Appendix C. 

3.7.3. X-Ray Fluorescence (XRF)  

Down-core changes in elemental concentrations were investigated to identify pollution 

signals to provide further potential chronological constraints within the sediment records to 

accompany radiometric analyses described above. This procedure may also be used to 

explore potential dissolution issues associated with calcareous foraminifera, as identified 

from changes in calcium carbonate (CaCO3) from the geochemical record (e.g. Murray, 

1989). XRF analyses were performed using a BRUKER S2 Ranger energy dispersive X-ray 

fluorescence spectrometer to obtain information on the relative abundance of elements 

within the core material. Elemental concentrations are assessed by photoelectric 

fluorescence of secondary X-rays, which measures the characteristic X-ray photons given off 

by various elements (Boyle, 2002). The energy of secondary X-rays generated by a sample 

will correspond to the characteristics of certain elements and the rate of emission is a 

reflection of the elemental concentration. Sub-samples of all core material were first frozen 

and then freeze-dried until all moisture content was removed. Samples were then lightly 

disaggregated using a pestle and mortar and transferred into labelled sample holders lined 

with spectro-certified polypropylene film and gently compacted using a brass plunger. 

Freeze-drying samples is a popular method for drying sediments prior to chemical analysis 

because of the lower risk of losing volatile elements in marine sediments (Loring and 

Rantala, 1992). The spectrometer was calibrated before and during usage using copper 

standard discs and standard samples of known elemental concentrations from different 

sedimentary environments (e.g. river, stream and pond). Absolute geochemical 
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concentrations were subsequently determined using the PASCAL program DECONV (Boyle, 

2000).  

3.7.4. Age-Depth Modelling  

The purpose of constructing age-depth models is to present an interpolated chronological 

framework to provide calendar ages between a series of dated points that may be derived 

from a variety of sources (Blaauw, 2010). The model can then be used to give age estimates 

for both the dated levels and undated levels and extrapolated throughout a core sequence 

(Blaauw and Heegaard, 2012). A significant challenge, however, in constructing age-depth 

models for use in sea-level studies is the combination of different chronological methods in 

establishing ages for different sections of a core sequence. The analysis of short-lived 

radionuclides is usually utilised for establishing ages in the upper section of a core and 

limited to the past 100 years or so (Smith, 2001) whereas 14C dating is harnessed for 

sediments beyond this limit where organic matter that may return reliable 14C ages can still 

be found. The difficulty arises when combing the two chronologies together in an age-depth 

model as an offset (inflexion) between the two techniques is often observed (e.g. Gehrels et 

al., 2005; Kemp et al., 2009). Unfortunately this inflexion is often during a period crucial to 

the understanding of when recent sea-level rise occurred (Barlow et al., 2013). As a result, a 

change in sedimentation rate and/or sea-level rise will inherently be transferred into the 

resultant sea-level reconstruction when really it is simply an artefact of switching between 

sources of age data (Edwards, 2004). To constrain the crucial age gap between these 

radiometric chronologies, independently dated markers, such as a tephra layers or an 

historical pollen event can provide very useful information in age-depth models. In an ideal 

scenario, it is desirable to construct a chronological framework using multiple, overlapping 

techniques (Barlow et al., 2013) ideally incorporating intervals before and after an inflexion 

(Gehrels and Woodworth, 2013). Financial project constraints and the assumption that 

organic material exists within the desired stratigraphic intervals mean this is not always 

realistically achievable. However overlapping techniques offer some benefits in that they can 

act as a validation tool. For example the use of high precision bomb spike 14C dating since 

~AD 1950 can be used to assess the accuracy of a 210Pb and 137C chronology (e.g. Marshall 

et al., 2007; Kemp et al., 2009). 

A proposed alternative to age-depth modelling altogether is to date key points in the 

stratigraphic record (‘events’) which would ideally incorporate dates from directly above and 

below the ‘event’ horizon (Telford et al., 2004a). In the context of sea-level studies this would 

allow changes in sea-level to be assessed more directly rather than using interpolated points 

provided by age-depth models described above (Gehrels and Woodworth, 2013). Again, 
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however, the limited availability of organic material, where key changes in the stratigraphic 

record often occur within a silt/clay substrate, hinders the application of this approach with 

14C dating.  

Combining multiple sources of age data usually requires some form of modelling. In general, 

there are two main types, referred to as the classical or Bayesian approach (Hua et al., 

2012). The most common and basic approach uses linear interpolation or regression 

techniques between dated levels, where lines are used to connect individual age estimations 

with no a priori information. Gradients between these dated intervals are then used to 

estimate rates of accumulation and ages are calculated for the intermediate depths (Blaauw 

and Heegaard, 2012). While this approach can achieve realistic results (e.g. Bennett, 1994), 

it is based on the unrealistic assumption that abrupt changes in sedimentation rate occurred 

at exactly the same depths as the dated levels (Blaauw, 2010). Similarly these models, 

where the line has been drawn through single-age point estimations (e.g. mean or median), 

do not consider the full potential age distribution of a calibrated 14C date (Telford et al., 

2004b). Conveniently, ecological graphic software such as Tilia (Grimm, 2004) offers the 

ability to construct such models by drawing straight or curved (e.g. polynomials and splines) 

lines through age data. However, external age calibration is required and nor does it 

consider the full age distribution or multi-modal, asymmetrical nature of calibrated 14C dates. 

As 14C age estimates rarely follow symmetrical distributions, users often require a more 

sophisticated approach to age-depth modelling in which the full age distribution is 

considered along with other potential useful information (Blaauw and Heegaard, 2012). An 

alternative approach to age-depth modelling adopts a Bayesian approach (e.g. Blaauw and 

Christen, 2005; 2011; Bronk Ramsey, 2008) which uses more advanced and flexible 

numerical methods and is often the preferred choice for users requiring higher precision 

(Blaauw, 2010). This method allows the user to incorporate additional information such as 

stratigraphic and chronological ordering, referred to as a priori, to reach a posterior 

conclusion (Blaauw and Heegaard, 2012; Hua et al., 2012). 

To assess the accuracy in modelling accumulation rate through time, two models were 

created, adopting ‘classical’ (Clam; Blaauw, 2010) and Bayesian (OxCal; Bronk Ramsey, 

2009) approaches for core JD1 using data from the short-lived radionuclides and AMS 14C 

analyses. Further details and the results from both age-depth models are presented in 

section 5.5.3.  
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3.8. MULTIVARIATE STATISTICAL ANALYSES 

A primary aim of Quaternary palaeoecological studies is to reconstruct features of the past 

environment from fossil assemblages preserved in a variety of sedimentary environments 

(Birks, 1995). Expressing a biological indicator (e.g. foraminifera) as a function of an 

environmental variable (e.g. pH), known as a transfer function (Imbrie and Kipp, 1971), first 

requires an understanding of the contemporary environment and how the two are related. In 

essence the statistical methods applied to ecological data seeks to explore and quantify 

what environmental factors influence the distribution of contemporary organisms (Dale and 

Dale, 2002). In salt-marsh foraminiferal-based sea-level reconstructions, the relationship 

between modern assemblages and elevation within the tidal frame must first be quantified to 

assess the suitability of modern foraminiferal datasets before they are used as proxies of 

sea-level change from fossil assemblages (Gehrels, 2002).   

Prior to statistical analyses, the contemporary foraminiferal datasets were converted into 

percentages and screened to remove insignificant species and low counts, following Fatela 

and Taborda (2002). Usually, those species which do not contribute more than 5% of the 

total dataset are removed, however due to the low diversity of the studied salt-marsh 

environments, this was amended to 2% (following Horton et al., 2003; Edwards et al., 2004). 

Samples which contained less that 150 dead foraminiferal tests were excluded from the 

analyses, with exceptions made for samples containing dominant species that contributed 

more than 50% of the total count, following Patterson and Fishbein (1989) and Fatela and 

Taborda (2002).    

3.8.1. Zonation 

To quantify the nature of vertical distribution, two multivariate statistical techniques were 

employed to describe and classify the distribution of the contemporary foraminiferal 

datasets. First, unconstrained cluster analysis based on unweighted Euclidean distance, 

using no transformation or standardization, of the relative percentage ‘dead’ data was 

performed to identify faunal zones (clusters) grouping samples together based on similarities 

in the foraminiferal assemblages. Secondly, Detrended Correspondence Analysis (DCA) (Hill 

and Gauch, 1980) was utilized to represent those samples of similar characteristics close 

together in a multidimensional space. Conversely it would also identify those samples which 

are dissimilar by plotting them far apart and/or show potential outliers in the modern dataset. 

These techniques are considered complementary (Birks, 1986; 1992) as cluster analysis is 

useful in extracting faunal zones while DCA provides further information regarding the 

interaction within and between the faunal zones in a multidimensional space (Horton and 
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Edwards, 2006). While cluster analysis is useful in segregating samples and species into 

naturally occurring groups (Parker and Arnold, 2003), it is important that cluster analyses are 

unconstrained as this will identify ecological faunal zones based on similarities in the 

foraminiferal assemblages rather than constrained cluster analyses which will automatically 

be altitudinally constrained due to the nature of the data collection along a transect from 

high- to low-marsh. Unconstrained cluster analysis was performed using the program 

CONISS within Tilia View (Grimm, 2004) using the output from CONISS total sum of squares 

to identify faunal zones. DCA ordination was processed using CANOCO version 4.5.4 (ter 

Braak and Smilauer, 1997-2003). Using the zones identified from these techniques, 

elevation-dependent faunal zones were then created, represented through simple box plots 

of cluster order (faunal zone) by height relative to vertical datum (m HVRS71). 

3.8.2. Ordination 

To further explore the nature of foraminiferal distribution, with a focus on the controls 

governing vertical distributions as identified from the zonation process, constrained 

ordination was utilised to evaluate the potential effects of the tested environmental variables 

(pH, salinity, LOI, grain size, distance and altitude). The aim of this process was to confirm 

the suitability of the foraminifera as proxies for sea-level change by quantifying elevation as 

an important control. It is essential to select the appropriate statistical method by determining 

linear or unimodal regression models to best describe the distribution of foraminifera along 

the environmental gradient (Birks, 1995; Gehrels, 2002). Calculations of the gradient lengths 

for axis 1 derived from DCA results, which are measured in standard deviation (SD) units, 

gives an indication about the distribution of the foraminiferal datasets allowing the 

appropriate ordination technique to be selected. Birks (1995) stated that if ordination axis 

lengths are <2 SD units, the species are linear, whereas >2 units would indicate unimodal 

distributions. ter Braak (1995) also reported linear distributions with gradient lengths of <2 

SD units whilst unimodal distributions are associated with gradient lengths >4 SD units with 

SD units between 3 and 4 being ambiguous (Leps and Smilauer, 2005).  

Following this, constrained ordination Canonical Correspondence Analysis (CCA) and 

Redundancy Analysis (RDA) were selected accordingly, to test the hypothesis that 

contemporary foraminifera are related to elevation. CCA is an eigenvector ordination 

technique that relates species composition to known variations in the environment (ter 

Braak, 1986; 1987; ter Braak and Verdonschot, 1995) and is suitable for unimodal 

distributions. RDA however is more suitable for linear species-environment relationships, 

where the axes are linear combinations of the environmental variables (Leyer and Wesche, 

2007). For both procedures, data were processed using inter-species distances with biplot 
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scaling and no data transformation, and the canonical eigenvalues produced provide a 

measure of the total explained variance in the foraminiferal dataset by the tested 

environmental variables. Where DCA axis lengths varied between 2 and 3 SD units, both 

linear and unimodal ordination techniques were performed to assess their ability in 

explaining variation in the contemporary datasets. To quantify the relative importance of 

each environmental variable, partial CCAs/RDAs were performed following Borcard et al. 

(1992). This procedure would allow an assessment of the tested environmental variables 

outlined above in explaining the distribution of contemporary foraminifera. Following this, the 

statistical significance of each environmental variable in explaining variation in the datasets 

was then determined using Monte Carlo permutation tests (499 permutations under reduced 

model). All ordination techniques were performed using the software package CANOCO 

version 4.5.4 (ter Braak and Smilauer, 1997-2003).  

For clarity and ease of understanding, the statistical methods used in the transfer function 

development precede the sea-level reconstruction presented in chapter 6.  
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CHAPTER 4 
 

RESULTS I 

CONTEMPORARY SALT-MARSH DATA 

 

4.1. INTRODUCTION  

This chapter provides a detailed analysis of the contemporary salt-marsh environment at 

Jadrtovac and Blace focusing on the measured environmental variables (elevation, distance, 

pH, salinity, organic matter and grain size) and modern foraminiferal distributions. Through 

environmental graphs, correlations and assemblage diagrams the data are first explored in a 

qualitative manner, describing key trends and patterns, before a more statistical approach is 

adopted in order to identify vertical faunal zones and links between the modern foraminiferal 

assemblages and environmental parameters through clustering and multivariate statistical 

techniques. As the relationship between contemporary microfossil assemblages and the 

environmental variable to be reconstructed is fundamental to the transfer function 

methodology, their use as quantitative indicators of former elevation is then critically 

assessed in preparation for transfer function development in the sea-level reconstruction 

(chapter 6).  

4.2. ENVIRONMENTAL VARIABLES 

4.2.1. Jadrtovac Site 1 (JD1) 

Spanning a total length of 122 m, 22 sample stations were established across the transect at 

JD1 covering an altitudinal range of 0.44 m from the upper salt-marsh limit to the seaward 

edge (figure 4.1a). The uppermost two samples were beyond the clearly identifiable limits of 

tidal inundation (HAT; 0.284 m HVRS71) and indeed proved to be devoid of statistically 

sufficient counts to be included in the foraminiferal dataset, as discussed below. Increased 

sampling frequency was focused in the upper salt-marsh environment from sample station 1 

to 10 where an elevation change from 0.485m to 0.095m occurs over just 13 m. From this 

point a small altitudinal range is observed across the remainder of the transect, with sample 

stations 10 to 22 all situated below present MTL at Split (0.128 m HVRS71).  
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Salinity values show a clear increasing trend with distance towards the seaward edge, with 

the uppermost samples highlighting their position within and above the upper tidal range 

(<0.4‰) (figure 4.1b). Conversely organic matter concentrations (LOI) show an overall 

decreasing trend towards the low tide shoreline. Between sample stations 5 and 16, LOI 

values range from 65% to 21% 73 m along the transect before a steady but increasing trend 

is then observed to the low tide shoreline at sample station 22, 122 m along the transect 

(figure 4.1d). With a mean value of 7.3, pH levels are variable across the salt-marsh surface. 

From sample station 1 to 13 (43 m along the transect) pH decreases from 8.5 to 5.7 before 

rising to 7.4 towards the end of the transect at station 21 (figure 4.1c). The substrate of the 

salt-marsh surface is composed predominately of silt (70-82%) and clay (15-21%), as shown 

in figure 4.5a. A small increase in sand % is observed at sample station 4, corresponding to 

a brief increase in mean grain size to 15 µm, 3 m along the transect (figure 4.1e).  

Pearson’s correlation coefficients (r) were performed to quantify the strength of the 

relationship between the measured environmental variables. Significant correlations at the 

95% confidence limit (p=<0.05) are also used to highlight their strong co-variance. Inspection 

of table 4.1 shows significant relationships exist between a number of the measured 

variables and serve as confirmation of the qualitative descriptions given above. In particular, 

pH and salinity show a strong positive and negative relationship with elevation, respectively, 

whilst distance displays a strong relationship with elevation and salinity. Silt and clay show a 

strong negative relationship with sand while organic matter (LOI) shows no clear correlation 

with any of the variables except silt.  

Table 4.1. Pearson’s correlation coefficients (r) for environmental variables at JD1. 

 Elevation pH Salinity LOI Distance Sand Silt Clay 

Elevation 1        

pH 0.74936* 1       

Salinity -0.83622* 0.77224* 1      

LOI -0.1656 -0.33033 -0.11592 1     

Distance 0.61991* 0.32355 0.70892* 0.36449 1    

Sand 0.25468 0.56877* -0.3959 -0.41542 0.18213 1   

Silt -0.26017 -0.4765* 0.32837 0.46109* -0.12268 -0.90608* 1  

Clay -0.18828 0.54117* 0.3805 0.26474 -0.2078 -0.87262* 0.58402* 1 

*Bold denotes an r value with a significant correlation at the 0.05 level.  
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Figure 4.1. Measured environmental variables (altitude m HVRS71, salinity, pH, LOI and 

mean grain size) across JD1 transect. Sampling locations and tidal levels (Split) also shown. 
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4.2.2. Jadrtovac Site 2 (JD2) 

Covering an altitudinal range of 0.27 m, 10 sample stations were established across a 

smaller second transect at JD2 spanning a total length of 16.5 m (figure 4.2a). In contrast to 

JD1, a more transitional profile from the upper salt-marsh limit to the seaward edge is 

observed here. Sample stations 1 and 2 similarly appear above the limits of the highest 

astronomical tide (0.284 m HVRS71) while only sample station 10 lies below MTL (0.128 m 

HVRS71).  

Excluding sample station 4, where salinity values drop to 0.3‰, an overall increasing trend is 

observed across the transect (figure 4.2b). However values are slightly lower when in direct 

comparison to JD1. While a decreasing trend is observed in the pH values, they remain 

relatively constant across the transect, ranging from 8.1 to 7.4 (figure 4.2c). Likewise organic 

matter (LOI) and mean grain size appear relatively constant across the transect. LOI levels 

range from 36% to 19% and shows some variability towards the edge of the salt-marsh 

(figure 4.2d). With a mean grain size of 5.1 µm (figure 4.2e), the substrate here is again 

predominantly silt (74%-81%) and clay (17%-25%) in nature with a minor addition of sand 

(<2%), as shown in figure 4.5b. 

Pearson’s correlation coefficients (r) revealed the same strong relationship between pH, 

salinity and elevation as found at JD1 (table 4.2). Distance shows a strong positive 

relationship with elevation and pH while a negative relationship with salinity is observed. In 

comparison with JD1, only clay and silt appear highly correlated with a strong negative 

relationship between the other grain size classes. 

Table 4.2. Pearson’s correlation coefficients (r) for environmental variables at JD2. 

 Elevation pH Salinity LOI Distance Sand Silt Clay 

Elevation 1        

pH 0.73839* 1       

Salinity -0.70262* -0.95942* 1      

LOI -0.24749 -0.61744 0.63284* 1     

Distance 0.93961* 0.82185* -0.79235* -0.36988 1    

Sand 0.19137 0.49425 -0.55035 -0.56879 0.26466 1   

Silt 0.61223 0.23072 -0.38398 -0.06268 0.51735 -0.02776 1  

Clay -0.64638* -0.39297 0.55768 0.26052 -0.58264 -0.32764 -0.93534* 1 

*Bold denotes an r value with a significant correlation at the 0.05 level.  
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Figure 4.2. Measured environmental variables (altitude m HVRS71, salinity, pH, LOI and 

mean grain size) across JD2 transect. Sampling locations and tidal levels (Split) also shown. 
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4.2.3. Blace Transect 1 (BL1) 

A total of 15 sample stations were established across a 29.2 m transect at Blace 

incorporating all sub-environments from the high salt-marsh zone to the low salt-marsh/sea 

interface. Similar to JD2, a transitional profile to the lower salt-marsh limit is observed, 

covering an altitudinal range between 0.37 and -0.01 m HVRS71 (figure 4.3a).  

Unlike at Jadrtovac, an overall increasing trend is not observed in salinity values at Blace. 

Salinity rises from 2.7‰ at station 1 to 5.9‰ at station 6 (3.5 m along the transect) before 

decreasing towards the seaward edge, dropping to 2.3‰ at sample station 13 (figure 4.3b). 

With a mean value of 7.3, pH levels are again relatively constant across the transect. The 

lowest reading occurs 5.5 m along the transect at sample station 7 (6.4) before rising to 7.9 

in the lower salt-marsh environment at 29 m (figure 4.3c). A similar but more pronounced 

decreasing trend in organic content is observed at Blace in comparison to JD1. Figure 4.3d 

shows a clear distinction between upper and lower salt-marsh environments where LOI 

values in the upper 5 sample stations fall from >40% to <11% in the lower 4 stations. The 

upper 8 sample stations have a very similar substrate composition, with a mean grain size 

between 5-6 µm before rising to 25 µm 22.5 m along the transect at sample station 11 

(figure 4.3e). This is again highlighted by the substrate composition graphs in figure 4.5c 

where a dominant silt fraction corresponds to an increase in coarser grained material 

towards the end of the transect. 

The Blace data display a higher number of significant relationships between the 

environmental variables (table 4.3) when compared to the previous sites. However unlike at 

Jadrtovac, pH and salinity show no clear relationship with elevation. Distance and LOI show 

strong positive relationships with elevation, again confirming the descriptions above. Similar 

to JD1, silt and clay show a strong negative relationship with sand while silt and clay display 

a significant positive relationship with each other. The sediment size fractions also show a 

strong positive and negative correlation with organic matter across the transect. 

Table 4.3. Pearson’s correlation coefficients (r) for environmental variables at BL1. 

 Elevation pH Salinity LOI Distance Sand Silt Clay 

Elevation 1        

pH -0.37891 1       

Salinity 0.36522 -0.82856* 1      

LOI 0.84456* -0.41003 0.34917 1     

Distance 0.90154* -0.53109* 0.45616 0.95547* 1    

Sand -0.8535* 0.52946* 0.39042 -0.84859* -0.89481* 1   

Silt 0.82647* -0.512 0.37301 0.78309* 0.82649* -0.98494* 1  

Clay 0.82534* -0.51342 0.38808 0.90143* 0.94896* -0.93221* 0.85561* 1 

*Bold denotes an r value with a significant correlation at the 0.05 level. 
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Figure 4.3. Measured environmental variables (altitude m HVRS71, salinity, pH, LOI and 

mean grain size) across BL1 transect. Sampling locations and tidal levels (Split) also shown.  
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4.2.4. Blace Transect 2 (BL2) 

An additional 9 surface samples were retrieved across a separate transect adjacent to 

transect 1 spanning 46 m from the upper salt-marsh environment towards the low tide 

shoreline (figure 4.4a). However, this transect proved substantially different to BL1 covering 

a larger altitudinal range between 0.4 m and -0.16 m HVRS71.  

Unlike BL1, increasing trends in surface salinity values correspond to increases and 

decreases with distance and altitude. This is also highlighted by the significant negative and 

positive relationships observed in table 4.4. Relatively constant pH values are observed 

across the transect (figure 4.4c). With values ranging between 7.2 in the high salt-marsh 

zone (0.40 m HVRS71) to 8.0 at station 9 (-0.16 m HVRS71) pH is only correlated with 

distance showing a strong negative relationship. Unlike BL1, there is no clear divide between 

upper and lower salt-marsh environments based on the organic content which never exceed 

20% (figure 4.4d). Thus the relationship between LOI with distance and elevation remains 

insignificant (table 4.4). The mean grain size graph for this transect shows a substantial 

increase in coarser grained material at sample station 6, 23 m along the transect (420 µm) 

(figure 4.4e). Substrate composition results (figure 4.5d) show a clear dominant silt fraction 

in stations 1 to 5 before the increase at station 6 which is almost completely composed of 

sand. As a result of the above, significant negative correlations are observed between silt 

and clay with sand while silt and clay again display a strong positive relationship.  

Overall there are less significant correlations between the tested environmental variables in 

comparison to BL1 (table 4.3). There is a strong relationship between elevation and distance 

but unlike BL1, a strong negative relationship exists between elevation and salinity. Distance 

shows a strong negative correlation with pH and salinity.  

Table 4.4. Pearson’s correlation coefficients (r) for environmental variables at BL2. 

 Elevation pH Salinity LOI Distance Sand Silt Clay 

Elevation 1        

pH -0.53143 1       

Salinity -0.94662* 0.59315 1      

LOI 0.24178 0.05168 -0.25 1     

Distance 0.80734* -0.81811* -0.86628* 0.35329 1    

Sand -0.53595 0.02791 0.58759 -0.51616 -0.44836 1   

Silt 0.51847 0.02409 -0.56434 0.50031 0.40705 -0.99822* 1  

Clay 0.60182 -0.37183 -0.68729* 0.57292 0.68139* -0.91776* 0.89246* 1 

 *Bold denotes significant correlation at the 0.05 level.  
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Figure 4.4. Measured environmental variables (altitude m HVRS71, salinity, pH, LOI and 

mean grain size) across BL2 transect. Sampling locations and tidal levels (Split) also shown. 
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Figure 4.5. Substrate composition showing total sand, silt and clay percentage across 

transects (a) JD1, (b) JD2, (c) BL1 and (d) BL2. Sample locations also shown.  
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4.3. THE DISTRIBUTION OF CONTEMPORARY FORAMINIFERA  

A total of 14 species of foraminifera in 70 surface samples were identified from the four 

transects and random sample collection. The concentration of dead foraminiferal tests was 

generally quite high at both Jadrtovac and Blace, varying between 0 and 12,954 per 5 cm3. 

Whilst species diversity remained reasonably low, over 49,100 dead individuals were 

counted in total, with the most dominant taxa remaining similar throughout the samples. 

These included relatively high abundances of agglutinated species Jadammina macrescens, 

Miliammina fusca, and Trochammina inflata and calcareous species Ammonia spp., 

Elphidium spp. and Quinqueloculina spp. In most instances Trochammina inflata was the 

most commonly observed species. The concentration of ‘living’ foraminifera at the time of 

collection was significantly lower than that observed for dead assemblages. A description of 

their distribution is provided while raw counts for both ‘live’ and ‘dead’ populations are 

provided in Appendix B. The relative abundance (%) of dead foraminiferal assemblages is 

presented in figures 4.6 - 4.10 and described below.  

4.3.1. Jadrtovac Site 1 (JD1) 

Dead foraminifera: 

As described in section 4.2.1, 22 surface samples were collected over a 122 m transect with 

an elevation change of 0.44 m from high to low salt-marsh (figure 4.1). A total of 14 species 

were identified at this site; the most diverse of all studied transects. With a mean and 

maximum abundance of 2917 and 8820 individuals per 5 cm3 total concentration appears to 

increase at the end of the transect towards the low tide shoreline. The assemblages at this 

site are dominated by two agglutinated species, Jadammina macrescens and Trochammina 

inflata, and two calcareous species, Ammonia spp. and Quinqueloculina spp. (figure 4.6). 

Sample station 1, at an altitude of 0.485 m contained no foraminifera while sample station 2 

(0.44 m) contained fewer than 10 individuals. From station 3, 2 m along the transect, J. 

macrescens and T. inflata are present in every sample covering all of the sampled altitudinal 

range. The occurrence of Elphidium spp. in samples 3 (12%) and 4 (33%) at 2 and 3 m, 

respectively, is perhaps unusual, but also corresponds to a decrease in the relative 

abundance of J. macrescens. Likewise the appearance of calcareous taxa Ammonia spp. 

(29%) and Quinqueloculina spp. (25%) 13 m along at sample station 10 corresponds to a 

decrease in the relative abundance of the two dominant agglutinated species and also a fall 

in altitude below MSL (figure 4.1). T. inflata dominates from 2 to 11 m along the transect, 

between stations 3 and 9, exceeding 73% of the total count at station 9. Its relative 
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abundance then rapidly decreases a further 2 m along at sample station 10 to 7% and 

remains relatively low moving across the transect where J. macrescens becomes 

increasingly common, peaking at station 14 to 78% of the total count 53 m along. Whilst 

relatively low counts of Miliammina fusca were observed, its presence is limited to the upper 

23 m of the salt-marsh transect, reaching 14% of the total count in station 6 at an altitude of 

0.185 m. The reappearance of calcareous taxa (principally Quinqueloculina spp. and 

Ammonia spp.) at sample stations 16 and 17 coincides with a significant decrease in the 

relative abundance of J. macrescens 83 m along the transect. However, their presence is 

interrupted between stations 18 and 19 where an increase in T. inflata is observed, peaking 

at 75% of the total count 103 m along the transect. Calcareous  taxa then reappear at station 

20 where the highest abundance of Quinqueloculina spp. throughout the transect is 

observed (46%).  

Living foraminifera: 

The contemporary distribution of living foraminiferal assemblages at JD1 was significantly 

lower than those observed for the dead fraction as described above. A minimum count of 

150 tests was achieved in only two samples at 113 m (sample station 20) and 122 m 

(sample station 22) along the transect and only nine sample stations contained foraminiferal 

taxa totalling 50 or more. The upper two samples (station 1 and 2) contained no foraminifera. 

Stations 3 and 4 contained just 9 and 28 live specimens compared to 748 and 931 

specimens observed in the dead foraminiferal population. Species diversity was severely 

restricted in the living assemblage with J. macrescens, T. inflata and Quinqueloculina spp. 

being relatively common with very minor occurrences of other foraminiferal taxa (e.g. M. 

fusca and Spirillina vivipara). Raw counts of both live and dead foraminiferal assemblages 

for JD1 are provided in table A1.  
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Figure 4.6. Relative abundance (%) of ‘dead’ foraminifera and concentration (per 5 cm3) 

across JD1 transect. Altitude (m HVRS71) also shown.  
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4.3.2. Jadrtovac Site 2 (JD2) 

Dead foraminifera: 

Ten surface samples were collected over a small transect covering an altitudinal range of 

0.53 m over 16.5 m from the high salt-marsh zone to the seaward edge (figure 4.2). Overall, 

species abundance was higher than at JD1, with mean and maximum concentrations of 

4489 and 7850 individuals per 5 cm3, respectively. The lowest observed concentration 

occurred in the uppermost samples at stations 1 and 2 at altitudes of 0.355 m and 0.305 m, 

above the altitude of HAT. A total of 12 species were indentified at this site and are 

dominated by three agglutinated (J. macrescens, T. inflata and M. fusca) and three 

calcareous taxa (Ammonia spp., Elphidium spp. and Quinqueloculina spp.), as shown in 

figure 4.7. 

Similar to JD1, J. macrescens and T. inflata are found in abundance across the transect and 

span the entire sampled altitudinal range of this salt-marsh. J. macrescens dominates the 

upper two samples (82% and 69%), up to 2.5 m along, before decreasing to 14% of the total 

count at 5 m. This decrease corresponds to a relative increase of T. inflata, peaking at 59%. 

A similar trend to JD1 in the distribution of Elphidium spp. can be seen where a peak of 19% 

is observed at sample station 3, within a broadly similar altitude range (c. 0.20 – 0.30 m 

HVRS71). The presence of M. fusca is focused in the middle section of the transect, 

increasing to 45% of the total count at sample station 5, 10 m across the transect. Again its 

altitudinal range is comparable to the same specie at JD1 and appears confined to a narrow 

altitude window (0.185 – 0.205 m HVRS71). Moving towards the seaward edge of the 

transect, an increase in the relative abundance of calcareous taxa is observed where 

Quinqueloculina spp. increases to a peak of 38% of the total count 15.5 m across.  

Living foraminifera: 

Similar to the contemporary environment at JD1, living foraminiferal assemblages occur in 

much lower numbers in comparison to the dead fraction described above. A minimum of 150 

observations was achieved in only one sample at station 8, 15.5 m along the transect, with 

172 foraminiferal tests present. Sample station 3 contained just 7 living specimens (at the 

time of collection) in comparison to 1570 observations made for the dead assemblages. The 

most common species observed in the living assemblage repeated that observed at JD1 

with J. macrescens, T. inflata and Quinqueloculina spp. occurring in relative abundance with 

insignificant numbers for other foraminiferal taxa. Raw counts of both live and dead 

foraminiferal assemblages for JD2 are provided in table A2.  
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Figure 4.7. Relative abundance (%) of ‘dead’ foraminifera and concentration (per 5 cm3) 

across JD2 transect. Altitude (m HVRS71) also shown.  
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4.3.3. Jadrtovac Random Sampling (JDR) 

Dead foraminifera: 

Ten additional surface stations were established at Jadrtovac site 1 covering an altitudinal 

range of 0.20 m following a random sampling approach. As these were not collected across 

a transect, they are presented below in the form of a species diagram ordered from high (1) 

to low (10) elevation (figure 4.8). For clarity the original sample number is also displayed and 

is referred to in the text. A total of 11 species were identified throughout the samples and are 

comparable to those observed across transect JD1 (see section 4.3.1). Species abundance, 

which shows an overall decreasing trend according to altitude from high to low, was 

generally very high, with as much as 12,945 specimens observed per 5 cm3 in sample 9 

(0.185 m HVRS71).  

Agglutinated species are again found throughout the entire altitudinal range of the studied 

samples. Sample stations 10, 9, 2 and 3, found between altitudes 0.275 and 0.165 m, are 

characterised by an agglutinated-dominated assemblage, principally J. macrescens and T. 

inflata and minor occurrences of M. fusca. The increase in the relative abundance of 

calcareous taxa at stations 6, 7 and 5 occurs within a narrow altitude window between 0.115 

and 0.095 m, and indeed the peak observed in Quinqueloculina spp. at station 5 to 47% of 

the total count is of a comparable altitude range (0.095 – 0.115 m) to peaks observed in 

samples taken across the transect at this site (JD1). 

Living foraminifera: 

Similar to transects 1 and 2 at Jadrtovac, living foraminiferal populations were severely 

restricted from a random sampling approach compared to dead foraminiferal populations.  A 

minimum count of 150 was achieved in only 1 sample at station 5. Sample 10 contained no 

living specimens at the time of collection. Species diversity in the living population was again 

very limited with agglutinated taxa J. macrescens and T. inflata the most commonly 

observed species together with calcareous taxa and Quinqueloculina spp. and Ammonia 

spp. Raw counts of both live and dead foraminiferal assemblages for JDR are provided in 

table A3.  
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Figure 4.8. Relative abundance (%) of ‘dead’ foraminifera and concentration (per 5 cm3) 

from JDR ordered by elevation from high (1) to low (10). Original sample number also shown 

including altitude (m HVRS71).  
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4.3.4. Blace Transect 1 (BL1) 

Dead foraminifera: 

Fifteen surface samples were collected along a transect spanning 29.2 m, with an elevation 

change of 0.35 m from the high salt-marsh to the seaward edge (figure 4.3). A total of 11 

species were identified and are dominated by the agglutinated species J. macrescens, T. 

inflata and M. fusca and calcareous species Quinqueloculina spp., Ammonia spp., Elphidium 

spp., and Haynesina germanica (figure 4.9). Whilst species abundance remains high at this 

site, with a maximum concentration of 8210 individuals per 5 cm3 occurring at sample station 

11, in contrast to JD1, foraminiferal abundance decreases in the lowermost samples (<1000 

per 5 cm3).  

With the exception of the occurrence of Quinqueloculina spp. in the upper 3 samples (up to 

43% at 0 m), there appears to be a clear divide between the foraminiferal assemblages, 

where the transition to low salt-marsh corresponds with an increase in the relative 

abundance of calcareous taxa and reduction of agglutinated types. J. macrescens increases 

to a peak of 65% of the total count, 2.5 m along the transect, before gradually decreasing 

whilst the relative abundance of T. inflata increases to 66% (12.5 m across). Their 

dominance is then replaced by a more diverse calcareous assemblage where increases 

Ammonia spp., Elphidium spp., Quinqueloculina spp. and Spirillina vivipara are observed. 

The maximum occurrence of Quinqueloculina spp. occurs 22.5 m along the transect, 

peaking to 68% of the overall count at sample station 11. Whilst found in low abundance 

again, M. fusca appears confined to the upper reaches of the salt-marsh environment, 

peaking to 13% of the total count 3.5 m along the transect at an altitude of 0.29 m. The 

lowermost sample stations are characterised by an increase in calcareous species with 

Ammonia spp., rising to 66% of the total count at sample station 14 (29.1 m along the 

transect). 

Living foraminifera: 

A similar observation to the studied transects at Jadrtovac (section 4.3.1 and 4.3.2) is 

witnessed at BL1 where living foraminiferal populations are significantly smaller in 

comparison to dead assemblages. Across transect BL1 all analysed samples contained 

fewer than 100 living individuals. At station 1, 1478 specimens were observed in the dead 

fraction in comparison to just 31 living examples.  Species diversity is similarly restricted with 

the main foraminifera species observed again comprising J. macrescens, T. inflata and 

Quinqueloculina spp. Raw counts of both live and dead foraminiferal assemblages for BL1 

are provided in table A4.  
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Figure 4.9. Relative abundance (%) of ‘dead’ foraminifera and concentration (per 5 cm3) 

across BL1 transect. Altitude (m HVRS71) also shown. 
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4.3.5. Blace Transect 2 (BL2) 

Dead foraminifera: 

Nine surface samples were collected across a 46 m transect covering an altitudinal range of 

0.56 m (figure 4.4). Ten foraminiferal species were identified and show the same species 

dominating the assemblage as BL1, with a similarly good divide between the dominant 

agglutinated and calcareous taxa (figure 4.10). Total foraminiferal abundance across 

transect 2 shows a substantial reduction in samples near the seaward edge. Maximum 

abundance occurs at sample station 5 (26 m along), where up to 4630 individuals are 

observed per 5 cm3. Abundance decreased towards the sea-ward edge and sample station 9 

was devoid of foraminifera altogether. Again there was a substantial change in the substrate 

composition when analysing samples towards the sea-ward edge of the transect as 

highlighted in the grain size data in figure 4.5d.  

Similar to BL1, Quinqueloculina spp. constitutes 45% of the total count at station 1. Its 

abundance then gradually decreases to station 7 (3% of the total count), 31 m across the 

transect. J. macrescens increases to station 3, totalling 60% of the overall count before 

decreasing to just 5% at 28 m in sample 6. As the agglutinated species diminish, calcareous 

species Ammonia spp. and Elphidium spp. increase in relative abundance. The maximum 

occurrence of Ammonia spp. occurs at station 7 (31 m), reaching 71% of the total count.  

Living foraminifera: 

Only sample station 1 contained a foraminiferal population of 150 or more, with 167 tests 

observed. Similar to the dead foraminiferal populations, stations 7, 8, 9 and 10 contained 

almost no living specimens. Overall, living foraminiferal assemblages mirrored that of the 

dead fraction, albeit in much lower concentrations. The most common species observed 

included J. macrescens, T. inflata and Quinqueloculina spp. Raw counts of both live and 

dead foraminiferal assemblages for BL2 are provided in table A5.  
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Figure 4.10. Relative abundance (%) of ‘dead’ foraminifera and concentration (per 5 cm3) 

across BL2 transect. Altitude (m HVRS71) also shown.  
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4.4. THE VERTICAL DISTRIBUTION OF CONTEMPORARY SALT-

MARSH FORAMINIERA  

From the qualitative descriptions made above, there appears to be a notable elevation-

dependent zonation in which characteristic foraminiferal species are observed. To explore 

this relationship in more detail, the following section applies a statistical approach in order to 

quantify faunal zones and their associated elevational constraints before exploring how the 

contemporary surface distributions are influenced by the tested environmental variables in 

section 4.5. The analyses were applied to the ‘dead’ foraminiferal assemblages only due to 

the limited and sporadic nature of living populations across the studied salt-marsh 

environments. The data are first analysed individually (e.g. JD1) before collectively (e.g. JD1 

and JD2) to create local training sets for each site (JDT and BLT).  

Prior to the statistical analyses the data were screened, first to remove species groups which 

did not contribute more than 2% of the total species abundance (following Horton et al., 

2003; Edwards et al., 2004) and second to exclude those samples which did not exceed the 

150 minimum count required to be included in the dataset. An exception was made, 

however, for sample 13 at JD1 and sample 8 at BL2, where the assemblage is dominated by 

indicator species totalling 50% or more of the total count, according to Patterson and 

Fishbein (1989) and Fatela and Taborda (2002). Following these criteria, a number of 

insignificant species were removed and samples 1 and 2 from JD1 and samples 9 and 10 

from BL2 were excluded from the subsequent analysis. Specific details regarding samples 

and species excluded are provided for each site as described below. For reference, out of a 

total seventy analysed surface samples (table 4.5), only five stations returned statistically 

sufficient counts (i.e. 150 or more) from living foraminiferal assemblages. 

 An additional three surface samples were included in the dataset for BL1. These samples 

were collected from very similar location and altitudes to samples 1 to 4 from BL1. For clarity 

these are referred to as samples 16, 17 and 18. The relative abundance of ‘dead’ 

foraminifera for these samples is provided in Appendix B. A summary of the contemporary 

foraminiferal (dead) assemblages for each sample site is provided in table 4.5 with the 

modern training set for this study totalling 66 samples.  
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Table 4.5. Summary table of contemporary surface samples used in the modern training set.  

Name Samples Analysed Samples Removed   Total 

JD1 22 2   20 

JD2 10 -   10 

JDR 10 -   10 

BL1 15 + (3) -   18 

BL2 10 2   8 

 70 4   66 

 

4.4.1. Jadrtovac Site 1 (JD1) 

An initial dataset containing 22 samples was reduced to twenty following the removal of 

samples 1 and 2 on insufficient counts. Similarly species diversity was significantly reduced 

once taxa contributing less than 2% of the overall assemblage were removed. Foraminiferal 

taxa removed included agglutinated species Haplophragmoides wilberti, Balticammina 

pseudomacrescens and Siphtrochammina lobata and calcareous species Haynesina 

germanica, Brizalina spp. and Spirillina vivpara. Unconstrained cluster analysis based on 

unweighted Euclidean distance was used to identify three faunal zones (clusters) at JD1 

which are confirmed by through DCA results as shown in figure 4.11. 

 Zone JD1-A is characterised by an exclusively agglutinated-dominated assemblage with 

high abundances of J. macrescens (up to 77% in sample 14), T. inflata (up to 47%) and 

minor occurrences of M. fusca (figure 4.11a). Inspection of the DCA biplot confirms the 

strong relationship between this group of samples (figure 4.11b), which differs from the other 

zones through the relatively high abundances of J. macrescens, which exceeds 48% in all 

samples. The altitudinal range of this zone extends from below MTL at 0.085 m to 0.205 m, 

with a vertical range of 0.12 m (figure 4.11c). A clear decrease in the relative abundance of 

J. macrescens and increase in T. inflata (up to 78%) characterises zone JD1-B while the 

occurrence of calcareous taxa, Elphidium spp. and Quinqueloculina spp., and peaks of M. 

fusca are also observed. Again DCA shows the strong relationship between this group of 

samples as well as highlighting samples 3 and 4 as potential outliers in this faunal zone due 

to the occurrence of Elphidium spp. at high elevations. As a result the vertical range of this 

zone extends the whole of the sampled marsh environment between altitudes 0.045 m and 

0.275 m. Zone JD1-C, comprising four samples, is characterised by a clear increase in 

calcareous taxa (Ammonia spp. and Quinqueloculina spp.) and occupies altitudes below 

MTL between 0.065 m and 0.115 m with a narrow vertical range of 0.05 m. 
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Figure 4.11. (a) Unconstrained cluster analysis based on unweighted Euclidean distance 

identifying faunal zones, (b) detrended correspondence analysis displaying faunal zones, 

and (c) altitude of faunal zones (m HVRS71) based on relative percentages of ‘dead’ 

assemblages from JD1 with tidal levels superimposed.  
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4.4.2. Jadrtovac Site 2 (JD2)  

No samples were removed from in the dataset screening for JD2. However, insignificant 

species including B. pseudomacrescens, S. lobata and calcareous taxa Haynesina 

germanica, Brizalina spp. and Spirillina vivpara were removed from the following quantitative 

analyses. Similar to JD1, multivariate statistical analyses were used to indentify three faunal 

zones at JD2 as shown in figure 4.12.  

The first faunal zone, JD2-A, comprises 3 samples and is again characterised by an 

assemblage dominated by J. macrescens (>69%) and T. inflata with minor occurrences of 

calcareous taxa (figure 4.12a). DCA confirms the strong relationship between this group of 

samples (figure 4.12b) which occupy an altitudinal range stretching above MHWST between 

0.145 m to 0.355 m (range 0.21 m) (figure 4.12c). Zone JD2-B shows a reduction in J. 

macrescens (<19%) with increases in the relative abundance of M. fusca (up to 45%) and T. 

inflata (up to 38%) and slight increases in calcareous taxa. The similarity between the 

assemblages is confirmed through DCA which are found within a very narrow altitudinal 

window between of 0.175 m and 0.195 m, above MTL. Zone JD2-C incorporates four 

samples, showing an increase in the relative abundance of calcareous taxa (principally 

Quinqueloculina spp.) similar to that observed at JD1. While DCA shows a strong 

relationship between some of the samples in this zone, it shows sample station 3 as being 

distinct due to the high occurrence of T. inflata at this station (59%). Indeed the inclusion of 

this sample in this zone creates an altitudinal overlap between the three zones, stretching 

from below MTL at 0.085 m to just below MHWST at 0.235 m.  
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Figure 4.12. (a) Unconstrained cluster analysis based on unweighted Euclidean distance 

identifying faunal zones, (b) detrended correspondence analysis displaying faunal zones, 

and (c) altitude of faunal zones (m HVRS71) based on relative percentages of ‘dead’ 

assemblage from JD2 with tidal levels superimposed. 
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4.4.3. Jadrtovac Random Sampling (JDR) 

Similar to the transect datasets, unconstrained cluster analysis was used to identify three 

faunal zones from the random sampling collection at Jadrtovac (figure 4.13). No samples 

were removed during the data screening. However, insignificant counts of S. lobata, 

Brizalina spp. and Spirillina vivpara were excluded. Overall inspection shows the vertical 

zonation of foraminiferal assemblages appears weaker in comparison to foraminiferal 

assemblages taken along transects at Jadrtovac.  

Faunal zone JDR-A is characterised by very high abundances of T. inflata (up to 73%) 

accompanied by J. macrescens (<45%) (figure 4.13a) and covers a large altitudinal range of 

0.21 m between 0.065 m and 0.275 m above and below MTL (figure 4.13c) . DCA confirms 

the strong relationship between this group of samples (figure 4.13b). An increase in the 

relative abundances of J. macrescens, M. fusca and Quinqueloculina spp. characterise zone 

JDR-C. Inspection of DCA results confirms this but suggests sample 5 to have a weaker 

relationship with the assemblages found in samples 1, 6 and 9 due to the significant 

increase in Quinqueloculina spp. at this sample station. Zone JDR-C has an altitudinal range 

between 0.075 m and 0185 m.  
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Figure 4.13. (a) Unconstrained cluster analysis based on unweighted Euclidean distance 

identifying faunal zones, (b) detrended correspondence analysis displaying faunal zones, 

and (c) altitude of faunal zones (m HVRS71) based on relative percentages of ‘dead’ 

assemblage from JDR with tidal levels superimposed.  
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4.4.4. Blace Transect 1 (BL1) 

The altitudes and distance (from the upper marsh limit) of the three additional surface 

samples added to this dataset are provided in table 4.6 below whilst the relative abundance 

of ‘dead’ foraminifera for these samples is plotted in figure A1 (Appendix B). No samples 

were excluded from the statistical analyses at BL1, however insignificant populations of S. 

lobata and Brizalina spp were removed. Three faunal zones have again been interpreted 

from the multivariate analyses where the vertical zonation appears much clearer between 

the high- and low-salt-marsh assemblages (figure 4.14).  

Zone BL1-A (which could itself be separated into two faunal zones based on elevated 

frequencies of J. macrescens in samples 5, 6 and 7) is characterised by a high agglutinated 

component where high abundances of J. macrescens (up to 65%) and T. inflata (up to 65%) 

with minor occurrences of M. fusca are observed (figure 4.14a). DCA confirms the similar 

assemblages found throughout these samples (figure 4.14b) which have an altitudinal range 

covering 0.12 m above MHWST between 0.28 m and 0.40 m (figure 4.14c). Samples 14 and 

15 (zone BL1-B) have a much lower altitudinal range below MTL between -0.01 m and 0.05 

m and are dominated by calcareous species Ammonia spp. (up to 56%), Elphidium spp. (up 

to 16%), Haynesina germanica and Quinqueloculina spp. (up to 22%) with minimal 

frequencies of agglutinated species. Zone BL1-C is characterised by a more diverse 

assemblage of agglutinated and calcareous taxa. While there is a decrease in Ammonia spp. 

(< 21%), increases of Quinqueloculina spp. (up to 68%), Spirillina vivpara, J. macrescens 

and T. inflata are all observed. As a consequence, zone BL1-C occupies the largest vertical 

range between altitudes 0.17 m and 0.37 m, creating an altitudinal overlap between the 

zones due to the inclusion of samples 1 and 18 where relatively high abundances of 

Quinqueloculina spp. (43%) are observed at high altitudes (>0.29 m). The occurrence of 

Quinqueloculina spp. in these samples is similar to that observed from samples 2, 3 and 17 

from faunal zone BL1-A which are from a similar altitude. Removal of samples 1 and 18 from 

BL1-C would create a vertical zonation that is much more distinct. 

Table 4.6. Altitude and distance of samples 16, 17 and 18 added to the BL1 dataset.  

Sample station Altitude m HVRS71 Distance m 

16 0.40 0 

17 0.34 2 

18 0.29 4 
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Figure 4.14. (a) Unconstrained cluster analysis based on unweighted Euclidean distance 

identifying faunal zones, (b) detrended correspondence analysis displaying faunal zones, 

and (c) altitude of faunal zones (m HVRS71) based on relative percentages of ‘dead’ 

assemblage from BL1 with tidal levels superimposed.  
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4.4.5. Blace Transect 2 (BL2) 

Insufficient counts in samples 9 and 10 and foraminiferal taxa including M. fusca, 

Haplophragmoides wilberti, Brazilina spp. and Sprillina vivpara were excluded from following 

analyses. Unconstrained cluster analysis has revealed two faunal zones across transect 2 at 

Blace (figure 4.15).  

Faunal zone BL2-A is characterised by an almost exclusive calcareous-dominated 

assemblage where relatively high abundances of Ammonia spp. (up to 71%) and Elphidium 

spp. (up to 58%) are observed (figure 4.15a). Due to the high abundance of Elphidium spp. 

in sample 6 compared with samples 5, 7 and 8; DCA separates this out (figure 4.15b). The 

very narrow vertical range of zone BL2-A (0.02 m) (figure 4.15c) is comparable to the 

calcareous-dominated assemblage (BL1-B) observed in BL1 (figure 4.14c). Faunal zone 

BL2-B is characterised by an increased agglutinated component with high abundances of J. 

m acrescens (up to 60%) but also with the addition of Quinqueloculina spp. (up to 45%). 

Minor occurrences of T. inflata (<19%) are also observed. DCA confirms the strong 

relationship between sample stations 1 to 4 which cover a broad altitudinal range between -

0.01 m and 0.40 m from above MHWST to MLWST. The occurrence of relatively high 

abundances of Quinqueloculina spp. in this zone, occupying higher altitudes, is perhaps 

unusual but repeats the trend observed across the first transect at Blace (samples BL1-1, 2, 

3, 17 and 18). 
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Figure 4.15. (a) Unconstrained cluster analysis based on unweighted Euclidean distance 

identifying faunal zones, (b) detrended correspondence analysis displaying faunal zones, 

and (c) altitude of faunal zones (m HVRS71) based on relative percentages of ‘dead’ 

assemblage from BL2 with tidal levels superimposed.  
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4.4.6. Jadrtovac Transects 1 & 2 (JDT) 

Transects 1 and 2 from Jadrtovac were combined to create a transect only training set for 

Jadrtovac (JDT) totalling 30 surface samples as shown in figure 4.16. Following the 

screening of the data, statistically insignificant species were removed (<2%), including 

Haplophragmoides wilberti and Haynesina germanica. In combining transects JD1 and JD2 

together these multivariate analyses reveal five faunal zones (figure 4.16) as discussed 

below. 

Fauna zone JDT-A is dominated by a high agglutinated component where J. macrescens is 

found in abundance (>69%) (figure 4.16a) and DCA confirms the strong correspondence 

across this group of samples (found to the left of the biplot; figure 4.16b). JDT-A covers a 

large altitudinal range (0.30 m) extending above MHWST and below MTL between 0.055 m 

to 0.355 m (figure 4.16c). Zone JDT-B is characterised by a decrease and increase in the 

relative abundance of agglutinated species J. macrescens and T. inflata, respectively, 

occupying an altitude between 0.085 m and 0.205 m. A substantial increase in the relative 

abundance of calcareous taxa Quinqueloculina spp. and Ammonia spp. and decrease in J. 

macrescens characterises zone JDT-C. DCA also confirms the strong association across 

this group of samples which occupies a relatively narrow altitudinal window (predominately 

below MTL) between 0.065 m and 0.155 m. This again emphasizes the lower altitudinal 

range in which a calcareous-dominated assemblage is observed at Jadrtovac and similarly 

the higher altitude to which an agglutinated-dominated assemblage incorporating J. 

macrescens and T. inflata can extend to (e.g. faunal zone JDT-A and JDT-E). The relative 

abundance of J. macrescens and T. inflata remains similar in zone JDT-D compared with 

JDT-C, however it is differentiated by an increase in M. fusca (up to 45%) and decrease in 

calcareous taxa. The separation of this faunal zone is confirmed by DCA and occupies a 

very narrow altitude window between 0.165 m and 0.195 m above MTL.  

Faunal zone JDT-E is dominated by an agglutinated assemblage where T. inflata (up to 

75%) is the most dominant taxa. The relative increase in Elphidium spp. in samples JD1-3, 

JD1-4 and JD2-3 occur within a broadly similar altitudinal range between the two transects 

(0.235 m to 0.275 m). The zone again highlights that T. inflata is found in abundance across 

much of the salt-marsh environment at Jadrtovac, hence its large altitudinal range between 

0.045 m and 0.275 m creating an overlap between the faunal zones. 
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Figure 4.16. (a) Unconstrained cluster analysis based on unweighted Euclidean distance 

identifying faunal zones, (b) detrended correspondence analysis displaying faunal zones, 

and (c) altitude of faunal zones (m HVRS71) based on relative percentages of ‘dead’ 

assemblage from the combined transect dataset at Jadrtovac with tidal levels superimposed. 
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4.4.7. Blace Transects 1 & 2 (BLT) 

Transects 1 and 2 from Blace were combined to create a modern training set for this site 

containing a total of twenty six surface samples. Following the pre-treatment of the data 

before statistical analyses, species abundance was reduced to just five taxa after the 

exclusion of Elphidium spp., Haynesina germanica and Sprillina vivpara (<2%). Cluster 

analysis and DCA reveals three faunal zones when combining the datasets together where 

the zonation between the assemblages appears much stronger in comparison to Jadrtovac 

(figure 4.17).  

A mixed foraminiferal assemblage characterises zone BLT-A where the relative abundance 

of agglutinated (J. macrescens and T. inflata) and calcareous (Ammonia spp. and 

Quinqueloculina spp.) taxa are broadly similar throughout. This zone extends over a large 

altitudinal range (0.56 m) between -0.16 m and 0.40 m, covering all of the sampled salt-

marsh environment. Inspection of the elevation boxplot shows that while the majority of the 

samples included in this zone are well constrained attitudinally, an overlap is created due to 

the inclusion of sample BL2-4 (at 0.01 m) and sample BL2-6 (at -0.16 m). Zone BLT-B is 

dominated by a calcareous assemblage comprising high abundances of Ammonia spp. (up 

to 71%) and Quinqueloculina spp. (up to 23%) and low agglutinated types. The five samples 

are all taken from the lowest altitudes from their respective transects, as identified previously 

in figures 4.14 and 4.15. DCA again confirms the strong association across the samples 

which occupy an altitudinal range of 0.21 m between -0.16 m and 0.05 m. Zone BLT-C is 

attitudinally well–constrained, covering an elevation between 0.28 m and 0.40 m (range 0.12 

m). This assemblage is dominated by agglutinated species J. macrescens (up to 65%) and 

T. inflata (up to 72%). The occurrence of Quinqueloculina spp. (18%) in samples 1 and 17 

from BL1 is limited between 0.34 m and 0.37 m. DCA plots these samples to the left of the 

biplot and signifies the strong relationship between the agglutinated dominated 

assemblages. The slight separation of samples 5, 6 and 7 from the main group in this zone 

represents the minor increase in J. macrescens and M. fusca taxa in these samples.  
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Figure 4.17. (a) Unconstrained cluster analysis based on unweighted Euclidean distance 

identifying faunal zones, (b) detrended correspondence analysis displaying faunal zones, 

and (c) altitude of faunal zones (m HVRS71) based on relative percentages of ‘dead’ 

assemblage from the combined Blace dataset with tidal levels superimposed. 
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4.5. CONTROLS GOVERNING CONTEMPORARY SALT-MARSH 

FORAMINIFERAL DISTRIBUTIONS 

The vertical distribution of foraminifera from each site has revealed elevation-dependent 

zones in which characteristic assemblages occur in abundance. Despite variability between 

the study sites, unconstrained cluster analysis and DCA revealed on average three faunal 

zones from the studied transects which were broadly similar throughout. Results from DCA 

in section 4.4 provided a measure of gradient length (in SD units) allowing the appropriate 

constrained ordination technique to be applied based on the species’ linear or unimodal 

distribution. To understand the environmental controls influencing vertical zonation, further 

quantitative measures were employed to investigate the relationship between dead 

foraminiferal assemblages and analysed environmental variables (altitude, pH, salinity, 

organic matter, grain size composition and distance) presented in section 4.2. Distance was 

used as a separate variable due to the non-linear relationship between increasing salt-marsh 

altitude and distance from the seaward edge. The ultimate aim of this procedure was to test 

the hypothesis that altitude is a controlling factor influencing surface foraminiferal 

distributions, thus confirming their suitability in transfer function reconstructions of palaeo-

sea-level for the Croatian coast. For the following analyses the datasets are structured as 

follows; the individual transect were combined (e.g. JD1 and JD2) to create local training 

sets for each site (JDT and BLT). The datasets from both sites were then analysed 

collectively to create a regional training set (TCD). Results from the random sampling 

approach were not included; this is discussed further in section 4.6.  

In salt-marsh foraminiferal sea-level reconstructions, the relationship between the modern 

assemblages and elevation within the tidal frame must first be quantified to assess their 

suitability as proxies for sea-level change (Gehrels, 2002). Here, the term altitude has 

previously been used to describe the foraminiferal assemblage zones relative to tidal levels 

and the Croatian vertical datum (m HVRS71). Elevation is sea-level studies however is 

differentiated from altitude as it is often used to describe the height relative to a reference 

water level (e.g. MSL). The following analyses are therefore based on the height of the 

sample relative to MSL.   
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4.5.1. Jadrtovac Transects 1 & 2 (JDT) 

The results from DCA revealed gradient lengths of 1.708 SD (axis one) and 1.501 SD (axis 

two) indicating linear species distribution (table 4.7). RDA was therefore used to evaluate 

environmental controls on contemporary foraminiferal distributions for a combined transect 

dataset at Jadrtovac. Eigenvalues for RDA axis one (eigenvalue = 0.288) and axis two 

(eigenvalue = 0.079) explain 36.7% of the total variance in the species dataset and 86.3% of 

the species-environment relationship (table 4.8). The lengths and direction of the 

environmental arrows give an approximation of their relative importance in explaining 

variance in the foraminiferal data and correlation to ordination axes one and two. Similarly 

they also indicate any correlation between the tested environmental variables allowing 

foraminiferal species indicative of particular environmental conditions to be identified (Horton 

and Edwards, 2006). Figure 4.18 shows the relative importance of the tested environmental 

variables in explaining variance in the foraminiferal dataset, which account for 42.5% of the 

variation in the dataset for JDT (figure 4.18c). Intra-set correlations between the variables 

and RDA axes one and two indicate altitude, distance and salinity to be highly correlated 

with axis two whilst clay and sand are correlated with axis one. Silt, LOI and pH display a 

joint correlation between the axes (figure 4.18a). Partial RDAs show that the total explained 

variance is composed of 13% altitude, 4.1% salinity, 3.6% pH, 2.9% silt, 2.5% clay, 1.9% 

LOI, 1.6% distance and 0.7% sand. Inter-correlation between the variables accounts for 

69.7% (figure 4.18d). The associated Monte Carlo permutation tests, which assesses 

whether the p-value is significant or not, indicates that only altitude is statistically significant 

in explaining variance for a combined foraminiferal dataset at Jadrtovac (p = 0.014, 499 

permutations under reduced model).  

Table 4.7. Summary DCA results for dead foraminiferal assemblages for JDT. 

Axes 1 2 3 4 Total inertia 

Eigenvalues: 0.327 0.159 0.051 0.029 0.990 

Lengths of gradient: 1.708 1.501 1.639 1.769  

Cumulative percentage variance of species data: 33.0 49.1 54.3 57.2  

Sum of all Eigenvalues:     0.990 

 

Table 4.8. Summary RDA results from dead foraminiferal assemblages for JDT.  

Axes 1 2 3 4 Total Variance 

Eigenvalues 0.288 0.079 0.036 0.021 1.000 

Species-Environment correlations 0.700 0.636 0.479 0.728  

Cumulative percentage variance      

of species data: 28.8 36.7 40.3 42.3  

of species-environment relation: 67.7 86.3 94.7 99.6  

Sum of all Eigenvalues     1.000 

Sum of all canonical Eigenvalues     0.425 
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Figure 4.18. Redundancy Analysis biplots of (a) samples relative to environmental variables 

and (b) species relative to environmental variables from JDT. Pie charts showing (c) total 

explained and unexplained variance and (d) unique contributions of tested environmental 

variables as identified from pRDA. Species abbreviations: JM=Jadammina macrescens, 

TF=Trochammina inflata, MF=Miliammina fusca, AM=Ammonia spp., EP=Elphidium spp., 

QS=Quinqueloculina spp. Environmental abbreviation: LOI=Loss-on-ignition. 
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4.5.2. Blace Transects 1 & 2 (BLT) 

Detrended correspondence analysis illustrates the use of a unimodal response model for a 

combined transect dataset at Blace as reported by a gradient length of 2.376 SD (axis one) 

(table 4.9). Conical correspondence analysis was therefore used to investigate the 

relationship between foraminiferal assemblages and tested environmental variables. 

Eigenvalues for CCA axis one (eigenvalue = 0.513) and axis two (eigenvalue = 0.123) 

explain 63% of the species data and 93.7% of the species-environment data (table 4.10). 

Intra-set correlations between the environmental variables and CCA ordination axes show 

altitude, distance, silt, clay, sand and pH to be correlated with axis one while salinity is 

correlated with axis two. Organic matter (LOI) displays joint correlation between the axes 

(figure 4.19a). CCA axis one therefore reflects the major environmental gradient with 

agglutinated species J. macrescens and T. inflata, positioned to the left of the biplot related 

to higher altitude and distance (from open water) (figure 4.19b).  

The tested environmental variables account for 67% of the explained variance (figure 4.19c) 

and partial CCAs demonstrate that this is composed of 22.1% altitude, 11.2% LOI, 9.6% pH, 

6.7% clay, 5.5% sand, 4.9% silt, 3.4% distance and 3.1% salinity. Inter-correlation between 

the variables represents 33.5%, as shown in figure 4.20d. Monte Carlo permutation tests 

indicate that altitude is again the only environmental variable that is statistically significant in 

explaining variance for a combined foraminiferal dataset at Blace (p = 0.01, 499 

permutations under reduced model).  

Table 4.9. Summary DCA results for dead foraminiferal assemblages for BLT. 

Axes 1 2 3 4 Total inertia 

Eigenvalues: 0.596 0.106 0.023 0.011 1.010 

Lengths of gradient: 2.376 1.092 1.922 1.659  

Cumulative percentage variance of species data: 59.0 69.6 71.9 73.0  

Sum of all Eigenvalues:     1.010 

 

Table 4.10. Summary CCA results from dead foraminiferal assemblages for BLT. 

Axes 1 2 3 4 Total Variance 

Eigenvalues 0.513 0.123 0.037 0.005 1.010 

Species-Environment correlations 0.930 0.697 0.567 0.333  

Cumulative percentage variance      

of species data: 50.8 63.0 66.7 67.2  

of species-environment relation: 75.7 93.7 99.2 100.0  

Sum of all Eigenvalues     1.010 

Sum of all canonical Eigenvalues     0.679 
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Figure 4.19. Canonical correspondence analysis biplots of (a) samples relative to 

environmental variables and (b) species relative to environmental variables from BLT. Pie 

charts showing (c) total explained and unexplained variance and (d) unique contributions of 

tested environmental variables as identified from pCCA. Species abbreviations: 

JM=Jadammina macrescens, TF=Trochammina inflata, MF=Miliammina fusca, 

AM=Ammonia spp., QS=Quinqueloculina spp. Environmental abbreviation: LOI=Loss-on-

ignition. 
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4.5.3. Total Combined Dataset (TCD) 
 
The results from DCA for a total combined dataset (TCD) reveals gradient lengths of 2.861 

SD (axis one) and 2.051 SD (axis two) (table 4.11). A unimodal response model was 

therefore again used to explain variance in the foraminiferal data that can be accounted for 

by the analysed environmental variables. CCA axis one (eigenvalue = 0.430) and axis two 

(eigenvalue = 0.126) explains 41.1% of the species data and 85.3% of species-environment 

relationship (table 4.12). Inspection of ordination biplots shows altitude, LOI and clay to be 

highly correlated with axis one while salinity is well correlated with axis two. Sand, pH, silt 

and distance show joint correlation between the axes (figure 4.20a). CCA axis one reflects 

the major environmental gradient with agglutinated species J. macrescens, T. inflata and M. 

fusca positioned to the left of the biplot related to higher altitude and distance (from open 

water) (figure 4.20b).   

Of the explained variance, the environmental variables account for 48.2% (figure 4.20c) and 

partial CCAs demonstrate that this is composed of 13.5% altitude, 5% pH, 3% LOI, 2% 

distance, 1.6% salinity, 1.5% clay, 1.2% sand and 1% silt. Inter-correlation between the 

environmental variables again remains very high and accounts for 71.8% (figure 4.20d). 

When assessing the significance of the environmental variables, Monte Carlo permutation 

tests indicates that only altitude and pH are statistically significant in explaining variance in a 

combined Jadrtovac and Blace transect dataset (p value= 0.002 - 0.04, 499 permutations 

under reduced model). 

Table 4.11. Summary DCA results for dead foraminiferal assemblages for TCD 

Axes 1 2 3 4 Total inertia 

Eigenvalues: 0.520 0.199 0.105 0.043 1.351 

Lengths of gradient: 2.861 2.051 1.769 1.711  

Cumulative percentage variance of species data: 38.5 53.2 61.0 64.2  

Sum of all Eigenvalues:     1.351 

 

Table 4.12. Summary CCA results for dead foraminiferal assemblages for TCD. 

Axes 1 2 3 4 Total Variance 

Eigenvalues 0.430 0.126 0.053 0.024 1.351 

Species-Environment correlations 0.913 0.739 0.498 0.350  

Cumulative percentage variance      

of species data: 31.8 41.1 45.1 46.8  

of species-environment relation: 65.9 85.3 93.5 97.1  

Sum of all Eigenvalues     1.351 

Sum of all canonical Eigenvalues     0.652 
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Figure 4.20. Canonical correspondence analysis biplots of (a) samples relative to 

environmental variables and (b) species relative to environmental variables from a total 

combined transect dataset. Pie charts showing (c) total explained and unexplained variance 

and (d) unique contributions of tested environmental variables as identified from pCCA. 

Species abbreviations: JM=Jadammina macrescens, TF=Trochammina inflata, 

MF=Miliammina fusca, EP=Elphidium spp., AM=Ammonia spp., QS=Quinqueloculina spp. 

Environmental abbreviation: LOI=Loss-on-ignition.  
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4.6. SUMMARY OF CONTEMPORAY SALT-MARSH DATA 

This chapter has provided an overview of the studied salt-marsh environments at Jadrtovac 

and Blace in an attempt to establish a modern training set suitable for use in foraminiferal 

based transfer function sea-level reconstructions. A total of 70 surface samples were 

collected across four transects and from a random sampling approach from two salt-marsh 

sites, Jadrtovac and Blace (table 4.5). These samples were analysed for both ‘live’ and 

‘dead’ foraminiferal assemblages together with environmental variables including pH, 

salinity, organic matter (LOI) and grain size characteristics. The altitude of each sample 

relative to vertical datum (m HVRS71) and distance from open water was also documented. 

The concentration of foraminiferal tests was generally very high despite the relatively low 

species diversity. The main foraminiferal taxa encountered included agglutinated species J. 

macrescens, T. inflata, M. fusca, and calcareous species Elphidium spp., Ammonia spp., 

Haynesina germanica and Quinqueloculina spp. Similarly the concentration of dead 

foraminiferal tests was significantly higher in comparison to living specimens and all 

subsequent analyses focused on dead assemblages only. Following the initial pre-treatment 

of data, a number of insignificant species were removed (<2% of the total) including samples 

where insufficient counts were obtained. The remaining modern training set comprised 66 

samples.   

Unconstrained cluster analysis and DCA reveal that the individual transect datasets can be 

divided into a maximum of three faunal zones. The altitudinal extent of these zones differs 

between Jadrtovac and Blace, however the foraminiferal assemblages observed are broadly 

similar throughout. The sequence of vertical zonation from a random sampling approach is 

however much less defined, and also when datasets are combined to create local training 

sets for each site, an altitudinal overlap occurs between the faunal zones identified. Despite 

this, an overall pattern of intertidal vertical zonation is observed, supporting their potential as 

proxies in paleo sea-level reconstructions.    

Both transect datasets at Jadrtovac and Blace can be divided into agglutinated-dominated 

assemblages, which extend to a higher altitude on the salt-marsh environment, and a 

calcareous-dominated assemblage which is observed at a lower altitudinal level towards the 

salt-marsh sea interface. Excluding BL2, a third zone also exists where a mixed agglutinated 

and calcareous assemblage occupies a vertical range creating an altitudinal overlap 

between the other faunal zones. The vertical zonation of surface foraminifera at Blace is 

much easier to differentiate when compared to modern assemblages at Jadrtovac. Faunal 

zone 1 (BL1-A) shows that an agglutinated dominated assemblage, comprised of relatively 

high abundances of J. macrescens, T. inflata and M. fusca, occupies the highest vertical 
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level reaching above MHSWT from 0.28 m to 0.40 m. In contrast, faunal zone 2 at this site 

(BL1-B) shows that a calcareous dominated assemblage, where increases in the relative 

abundance of Ammonia spp. and Elphidium spp. are observed, occupies a much lower 

altitudinal level below MTL between -0.01 m and 0.05 m. The mixed foraminiferal 

assemblage observed at this site, faunal zone BL1-C, covers a larger altitudinal range (0.20 

m) compared to BL1-A and BL1-B. The vertical overlap can be explained due to the 

inclusion of surface samples 1 and 18 in this zone which are above MHWST (at altitudes of 

0.29 m and 0.37 m, respectively) where the relative increase of Quinqueloculina spp. and 

thus associated fall in agglutinated taxa is observed. The occurrence of this taxon found at 

high altitudes is similar to samples 2 and 17 from zone BL1-A. Indeed, if samples 1 and 18 

were removed from zone BL1-C, the altitudinal overlap ceases to exist and the vertical 

zonation becomes even more defined (figure 4.14c).  

A broadly similar trend is observed from the second transect at Blace where two faunal 

zones are identified (figure 4.15). Faunal zone BL2-A is comparable to faunal zone BL1-B at 

this site where a calcareous dominated assemblage, comprised of Ammonia spp., Elphidium 

spp., Haynesina germanica and Quinqueloculina spp. occupies a much lower altitude below 

MTL. Faunal zone BL2-B is also comparable to faunal zone BL1-C where a mixed 

assemblage covers a larger vertical range. Whilst this site is lacking a solely agglutinated 

dominated assemblage as observed at BL1, it is useful in confirming the higher altitude in 

which increased relative abundances of agglutinated taxa J. macrescens and T. inflata are 

observed. The reduced number of faunal zones identified across BL2 in comparison to BL1 

is perhaps related to the limited number and altitudinal position of the surface samples 

analysed. The inclusion of surface sample 4 in BL2-B creates the large vertical range 

observed for this faunal zone. 

Analysis of the transect datasets from Jadrtovac shows less defined vertical niches of the 

assemblage zones again illustrating that agglutinated and calcareous species are found 

across the entire vertical range of the marsh environment. Comparisons can however be 

made to BL1. Three faunal zones are again identified at JD1 which are also comparable in 

terms of their species composition (figure 4.11). Faunal zone JD1-A shows an agglutinated 

dominated assemblage where relatively high abundances of J. macrescens and T. inflata 

are observed within a vertical range spanning 0.12 m. While this agglutinated assemblage is 

similar to that observed in BL1, it is found at a lower altitude at Jadrtovac between 0.085 m 

and 0.205 m HVRS71. Similar to the mixed foraminiferal assemblage observed at BL1 

(faunal zone BL1-C), a reduction in J. macrescens and relative increase in T. inflata and 

calcareous taxa (Elphidium spp. and Quinqueloculina spp.) characterises faunal zone JD1-

B. This mixed zone again has the largest vertical range (0.23 m) creating a large altitudinal 
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overlap. An increase in the relative abundance of calcareous taxa (Ammonia spp. and 

Quinqueloculina spp.) and reduction in agglutinated species J. macrescens and T. inflata 

characterises faunal zone JD1-C and is similar to the calcareous dominated assemblage 

observed at BL1 (BL1-B). At Jadrtovac, this faunal zone occupies a similarly narrow (0.06 m) 

and low vertical window between 0.055 m and 0.115 m below MTL. Despite the larger 

altitudinal overlaps between the faunal zones identified at JD1 compared to Blace datasets, 

it confirms the higher vertical extent to which an agglutinated-dominated assemblage is 

found (e.g. between MTL and MHWST) and conversely the lower altitudinal range in which 

calcareous species dominate (e.g. below MTL). 

The vertical extent of the faunal zones identified at JD2 (figure 4.12) illustrates intra-site 

variability between the sampled transects at Jadrtovac. The transect established at JD2 

covered 16.5 m over an altitudinal change of 0.27 m compared to JD1 which spans 122 m 

with an altitudinal change of 0.23 m. Faunal zone JD2-A again highlights the upper vertical 

extent to which an agglutinated assemblage, which is primarily dominated by J. macrescens, 

extends too (above MTL). The inclusion of sample station 9 in this faunal zone, which is due 

to the relatively high abundances of J. macrescens observed at lower altitudes, causes JD2-

A to cover a larger altitudinal range (0.21 m) between 0.145 m and 0.355 m when compared 

to the similar faunal zone at JD1 (JD1-A). Faunal zone JD2-B is differentiated by the 

occurrence of M. fusca in abundance and decrease in J. macrescens creating a very narrow 

vertical window between 0.175 m and 0.195 m HVRS71.  

Transect datasets from Jadrtovac and Blace were combined to create local training sets for 

each site (JDT and BLT) before combining all transect samples together to form a total 

combined training set (TCD). Constrained ordination techniques were used to assess the 

degree to which the environmental variables could explain variance in the modern training 

sets after exploring their unimodal or linear distribution so that the appropriate statistical 

technique could be applied. Gradient lengths varied between 1.7 and 2.8 SD units 

suggesting the use of both unimodal and linear ordination techniques were suitable. The 

explained variance ranged from 42.5% to 67% for JDT and BLT and 48% for a total 

combined dataset.  

Partial ordination (pCCA and pRDA) was performed to test the hypothesis that foraminifera 

show a statistically significant relationship with altitude. The extent explained by altitude 

again varied between datasets ranging from 13% to 22.1% (of the explained variance) and 

Monte Carlo permutation tests suggested it was statistically significant in explaining variance 

in the species data (p = <0.05). Whilst other the environmental variables did not appear 

significant in explaining variance in the foraminiferal assemblages (p = >0.05), altitude 
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cannot be considered totally independent of the other environmental variables due to the 

large intercorrelations observed (up to 71%). Despite this, the amount of explained variance 

and that explained by altitude observed in this study is comparable to previous studies (see 

table 7.1) and confirms their suitability as proxies for sea-level change in transfer function 

reconstructions.  
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CHAPTER 5 
 

RESULTS II 

FOSSIL SALT-MARSH DATA AND 

CHRONOLOGY 

 

5.1. INTRODUCTION 

The sedimentary history of Jadrtovac and Blace was investigated using a variety of 

lithological, biostratigraphic, geochemical and chronological techniques. First an overview of 

the salt-marsh stratigraphy is provided through detailed descriptions and simplified diagrams 

to illustrate the nature of sediment deposition across the studied salt-marsh environments. 

The results from the fossil foraminiferal record for the ‘type’ cores selected for analysis are 

followed by analysed environmental variables: organic matter, dry bulk-density and particle 

size. Core chronologies are established using a variety of methods including short-lived 

radionuclides, radiocarbon dating and potential geochemical pollution markers provided by 

XRF. Radiocarbon dating is restricted to core JD1 where three AMS 14C dates were 

obtained. The results of this are used in the construction of age-depth models adopting both 

classical and Bayesian approaches.   

5.2. SEDIMENT STRATIGRAPHY 

The sediment stratigraphy of the Jadrtovac and Blace salt-marshes was investigated to 

explore their accumulation history. This approach is essential in sea-level studies as a 

consistent record of sediment deposition throughout a salt-marsh environment is preferable 

when conducting sea-level reconstructions (Horton and Edwards, 2006). It is also important 

to understand the sedimentary nature of the investigated cores, especially in the context of 

quantifying former sea level due to the associated problems of autocompaction, i.e. thick 

sequences of organic sediments, in the lowering of sea-level index points from their original 

depositional altitude (Allen, 2000; Brain et al., 2011). Based on their lithological composition, 

‘type’ cores were then sampled for further analysis (e.g. biostratigraphy). A simplified form of 

the salt-marsh stratigraphy at Jadrtovac and Blace is presented in figures 5.1 and 5.3 below, 

while full Troëls-Smith (1955) descriptions are provided in Appendix A.  
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5.2.1. Jadrtovac Site 1 (JD1) 

Twelve sediment cores were analysed across a transect spanning 110 m at JD1; following a 

similar strategy to the contemporary surface transect incorporating all sub-environments 

from high to low salt-marsh. All cores were drilled to the underlying bedrock, in which 

sediment depth generally increased with distance towards the open sea. Although variable, 

five stratigraphic units were identified, as shown in figure 5.1, where sediment accumulation 

appears to have been fairly uniform across the site. An unrecoverable/saturated unit was 

found between cores 8 and 12, 40 to 110 m along the transect. Overlying this, approximately 

70 m along the transect and extending to the open sea, was a dark coarse silt with abundant 

(broken and whole) shell fragments. This unit is then overlain by variable silty clay and 

clayey silt units, which are occasionally mottled and become increasingly saturated with 

depth. Above this, a grey/brown organic clay unit which extends to the surface 20 m along 

and to the end of the transect is then observed. A highly organic peat layer was restricted to 

the landward 20 m of the transect and varied in thickness between 8–11 cm. Following the 

survey, a 42 cm ‘type’ core (JD1) was collected from the upper salt-marsh at an altitude of 

0.165 m (figure 5.2). A full description of JD1 core 4 is provided in table 5.1, which 

comprised a silty clay bottom section overlain by an increasingly organic clay and a 10 cm-

thick humified peat deposit towards the surface. 

 

Figure 5.1. Simplified sediment stratigraphy at JD1, plotted relative to altitude (m HVRS71) 

from high (1) to low (12) marsh. ‘Type’ core JD1 also highlighted (4). 



Chapter 5  RESULTS II - Fossil Salt-Marsh Data & Chronology  

 

Page | 101  

 

 

Figure 5.2. Photograph of JD1 42 cm ‘type’ core illustrating the up-core transition of basal 

minerogenic silts and clays (right) to highly organic peat sediments (left) towards the surface. 

 

Table 5.1. Lithology of JD1 ‘type’ core following the Troëls-Smith (1955) classification.  

Depth 

(cm) 

Altitude m 

HVRS71 

Sediment description  

(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 

Sup 

0-11 0.165 – 

0.055 

Dark brown peat with abundant roots. 

Th
0
3, Sh1, As+, Th

2
+.   

3+ 0 0 2+ - 

11-20 0.055 –  

 -0.035 

Grey brown peaty clay with abundant 

roots. As2, Th
1
2, Sh+. 

3 0 0 2+ 0 

20-42 -0.035 –  

-0.255 

Blue grey slightly mottled silty clay with 

some rootlets. As2+, Ag1, Th
1
++, Lf+, 

Sh+. 

2 0 0 2 0 

42 -0.255 Bedrock. - - - - - 

 

5.2.2. Jadrtovac Site 2 (JD2) 

An additional ‘type’ core was retrieved at Jadrtovac (JD2) near to the second contemporary 

transect established at this site (figure 3.5). A 56 cm core was sampled at an altitude of 

0.245 m and was again drilled to bedrock. Five stratigraphic units were identified in this core, 

which similar to JD1, briefly comprised variable lower minerogenic sediments characterised 

by high silt and clay content, becoming increasingly more organic moving up through the 

core. A full Troëls-Smith (1955) description of JD2 core is provided in table 5.2 below.  

Table 5.2. Lithology of JD2 ‘type’ core following Troëls-Smith (1955) classification. 

Depth 

(cm) 

Altitude m 

HVRS71 

Sediment description  

(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 

Sup 

0-6 0.245 – 

0.185 

Dark brown, organic clay with abundant 

modern roots. As2, Sh1+, Th
0
1. 

3+ 0 0 2+ - 

6-19 0.185 –  

0.055 

Brown, light grey clay with abundant roots 

and organic detritus. As3, Th
0
1, Sh+, Dh+. 

2+ 0 0 2+ 0 

19-56 0.055 –  

-0.315 

Mottled grey orange brown clay with trace 

of silt and rootlets (slightly less rootlets 

and organic than above unit). As4, Ag+, 

Lf+, Th
1
++. 

2+ 0 0 2+ 0 

56 -0.315 Bedrock. - - - - - 
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5.2.3. Blace (BL) 

Similar to the location of the surface sediment transect BL1 at this site (figure 3.6), seven 

cores were drilled across a 20 m transect, extending from the high to low salt-marsh. All 

cores were again drilled to the underlying bedrock, and similarly increased in depth with 

distance towards the open sea with four main stratigraphic units identified (figure 5.3). 

Sediment accumulation was observed to be consistent across the salt-marsh at BL. The 

overall pattern of sedimentation is similar to JD1, where basal minerogenic silts and clays 

are overlain by increasingly organic sediments with humified peat-like deposits restricted to 

the upper salt-marsh. Between cores 5 and 7 (10–20 m along the transect) a basal coarse 

silt was again observed, which becomes saturated with depth, containing variable amounts 

of broken and whole shell fragments. Following the survey, a 32 cm ‘type’ core (BL) was 

collected from the upper salt-marsh environment at an altitude of 0.30 m (figure 5.4). A full 

description of BL core 2 is provided in table 5.3, comprising an organic silty clay bottom 

section overlain by a dark brown 9 cm-thick humified peat deposit towards the surface. 

 

Figure 5.3. Simplified sediment stratigraphy at BL, plotted relative to altitude (m HVRS71) 

from high (1) to low (7) salt-marsh. ‘Type’ core BL also highlighted (2). 

  

 

Figure 5.4. Photograph of BL 32 cm ‘type’ core. 
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Table 5.3. Lithology of BL ‘type’ core following Troëls-Smith (1955) classification. 

Depth 

(cm) 

Altitude m 

HVRS71 

Sediment description  

(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 

Sup 

0-9 0.30-0.21 Dark brown peat with abundant rootlets 

and some clay. Th
1
3, As1, Sh+. 

3+ 0 0 3 - 

9-28 0.21-0.02 Grey brown organic silty clay with 

abundant rootlets and occasional 

mottles. As2, Ag2, Th
1
++, Sh+, Lf+. 

2+ 0 0 3 0 

28-32 0.02-    

-0.02 

Dark brown organic peaty clay with 

abundant detrital stems and rootlets. 

Th
2
1, As1, Dh1, Ag1, Sh+. 

3 0 0 2+ 0 

32 -0.02 Bedrock - - - - - 

 

5.3. FOSSIL FORAMINIFERA 

5.3.1. Jadrtovac Site 1 (JD1) 

Foraminifera are preserved throughout the entire 42 cm core at JD1, showing similar 

assemblages dominating the core sediments as those observed on the contemporary salt-

marsh surface (figure 5.5). The major exception to this is the almost complete absence of 

Quinqueloculina spp. from the fossil record, which is found in abundance at the surface 

(figure 4.6). In total 15,733 individuals were counted and eleven species identified. The fossil 

foraminiferal record shows a clear up-core transition from a calcareous-dominated 

assemblage in the lower half of the core becoming replaced by agglutinated types at 

approximately 27 cm depth where a change from basal minerogenic clays and silts to 

increasingly organic sediments is observed. With a mean and maximum abundance of 1310 

and 5510 individuals per 5 cm3, total concentration is significantly higher in the upper half of 

the core, with the lowest abundance occurring between depths 29 cm and 22 cm. A 

minimum count of 150 tests was achieved in all samples in this zone, apart from depths of 

24-25 cm, 26-27 cm and 27-28 cm. The increase in foraminiferal abundance also 

corresponds to an increase in organic matter at a broadly similar depth, as illustrated by LOI 

values (see figure 5.8a).  

Between depths 42 cm and 28 cm high abundances of Ammonia spp., Elphidium spp. and 

Haynesina germanica are observed before agglutinated types J. macrescens and M. fusca 

increase in relative abundance. The transition to agglutinated dominated assemblages at 27 

cm is characterised by an increase in the relative abundance of J. macrescens to 76% and 

significant reduction in calcareous species Ammonia spp. and Haynesina germanica to 2% 

and 12%, respectively. Moving up through the core, agglutinated species dominate the 

remainder of the record. An increase in the relative abundance of M. fusca to 70% at 19 cm 
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corresponds to a decrease in J. macrescens (7%). Above this, an increase in T. inflata and 

J. macrescens towards the present-day surface is observed within an organic peat deposit. 

Indeed the present-day environment from which the core was retrieved shows similar 

species dominating the record (see figure 4.6).  

 

Figure 5.5. Fossil foraminiferal stratigraphy from core JD1 expressed as a percentage, 

ordered by depth (cm) and altitude (m HVRS71). Simplified sediment stratigraphy, 

foraminiferal abundance (per 5 cm3) and LOI450°C
 are also displayed. 

5.3.2. Jadrtovac Site 2 (JD2)  

Preservation of foraminifera extends the whole length (56 cm) of core JD2. Similar to JD1 

core, species diversity was relatively low but again reflected that observed from the 

contemporary environment at Jadrtovac. The biostratigraphic record shows a very similar 

trend to JD1, with a change from calcareous types dominating the lower core sediments to 

agglutinated types moving up through the core, between approximately ~44 cm and ~25 cm, 

as shown in figure 5.6. Excluding the upper 1 cm, Quinqueloculina spp. is again absent from 

the fossil record, which again is common in the contemporary surface samples at this site 

(figure 4.7). In total, 38,823 individuals were counted, with 10 species identified. With a 

mean foraminiferal abundance of 2313 per 5 cm3, higher numbers were observed in the 

upper 30 cm of the record, peaking at 10,560 individuals per 5 cm3 at 5-6 cm depth. Below 

30 cm the relative abundance decreases, with a mean abundance of 448 per 5 cm3. The 

lowest count observed was at 42-43 cm with 146 individuals per 5 cm3. The sample is 
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however included due to indicator species (Ammonia spp.) totalling more than 50% of the 

total count (63%).  

Between 56 cm and 44 cm, the fossil record is composed almost entirely of calcareous 

species Ammonia spp., Elphidium spp. and Haynesina germanica within a basal silty/clay 

stratigraphic unit. A mixed foraminiferal assemblage between depths of 44 cm and 25 cm is 

observed where the relative increase in agglutinated species (J. macrescens, M. fusca and 

T. inflata) corresponds to a decrease in calcareous taxa (Ammonia spp., Elphidium spp. and 

Haynesina germanica). Above 25 cm, T. inflata dominates the record, peaking at 76% at 13-

14 cm depth. M. fusca becomes increasingly common above 11 cm, increasing to 51 % of 

the overall count also corresponding to increasing LOI values.  

 

Figure 5.6. Fossil foraminiferal stratigraphy from core JD2 expressed as a percentage, 

ordered by depth (cm) and altitude (m HVRS71). Simplified sediment stratigraphy, 

foraminiferal abundance (per 5 cm3) and LOI450°C
 are also displayed. 

5.3.3. Blace (BL) 

Foraminifera were also well preserved throughout the 32 cm core at Blace where a total of 

17,127 individuals were counted, with ten species identified (figure 5.7). Similar to JD1 and 

JD2, Quinqueloculina spp. is restricted to the upper 1 cm of the core. With a mean 

foraminiferal abundance of 1878 per 5 cm3, abundance is greater in the upper 12 cm of the 

core, peaking at 6315 per 5 cm3 at 6-7 cm depth. A minimum count was achieved in all 
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samples, except 26-27 cm where only 116 tests were observed. However no individual 

species totalled 50% or more, potentially making this sample obsolete in the sea-level 

reconstruction. This is unfortunate considering the key location of this depth in foraminiferal 

changes observed in the core. Calcareous foraminifera dominate the lower 4 cm of the core 

where Ammonia spp. is found in abundance, reaching 79% of the total count at 28-29 cm 

depth. The transition to agglutinated types (J. macrescens, M. fusca and T. inflata) occurs 

between 29 cm and 27 cm within silty clay stratigraphic unit. Above 26 cm agglutinated 

foraminifera dominate the record to the surface. M. fusca appears in abundance between 28 

cm and 5 cm, peaking to 86 % of the total count at 18 cm. T. inflata shows a steady increase 

up-core, reaching 59% of the total count at 3-4 cm and 5-6 cm depth. J. macrescens is also 

found in abundance towards the top of the core, reaching 76% of the overall count at 2-3 cm 

depth also corresponding with elevated LOI values. 

 

Figure 5.7.  Fossil foraminiferal stratigraphy from core BL expressed as a percentage, 

ordered by depth (cm) and altitude (m HVRS71). Simplified sediment stratigraphy, 

foraminiferal abundance (per 5 cm3) and LOI450°C
 are also displayed. 
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A clear increasing up-core trend in LOI is observed in core JD1 (figure 5.8a). The organic 
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rarely exceeding 8%. Between 19 cm and 12 cm LOI values then increase, peaking at 29% 

at a depth of 15 cm before rapidly increasing to 81% at 6 cm. The organic content then 

remains high to the top of the core, varying between 67% and 72%. A similar increasing up-

core trend in organic matter is observed in core JD2 (figure 5.8b), albeit at lower values at 

depths compared to core JD1 and thus illustrating intra-site variability at Jadrtovac. Moving 

up through the core, organic content remains very similar up to a depth of 20 cm varying 

between 6% and 8%. A very minor increase in LOI values to 14% between 20 cm to 11 cm 

is then observed before values increase to the top of the core, varying between 37% and 

42%. The organic content of the BL core again shows an increasing up-core trend as shown 

in figure 5.8c. From the base of the core, LOI values remain low (<10%) up to a depth of ~10 

cm, despite a minor increase at 23 cm where the organic content rises to 22%. This ‘event’ 

in the record is also repeated in the down-core changes in particle size characteristics (figure 

5.10c). Above 10 cm, LOI values then increase to the top of the core, ranging between 30% 

and 55%.  

Figure 5.8. Down-core trends of LOI (%) for cores (a) JD1, (b) JD2 and (c) BL. 
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correspond to depths where a displacement method was used to achieve volume weights 

(see section 3.6). Excluding these depths, DBD varies between 1.7 g/cm3 and 1.2 g/cm3 

(between 56 cm and 34 cm). Above 34 cm, a decreasing trend continues to approximately 

11 cm (1.2-0.9 g/cm3) where DBD drops below 0.5 g/cm3. An overall up-core decreasing 

trend is also observed in core BL, as shown in figure 5.9c. The decreases in DBD at depths 

of 14, 18 and 23 cm and increases at 16, 19 and 27 cm are again an artefact of the 

displacement method used to achieve volumes. Excluding these samples, DBD is relatively 

uniform, ranging from 2.0 to 1.3 g/cm3 (between 32 and 10 cm). Above 10 cm DBD 

decreases to below 1.0 g/cm3 towards the top of the core (0.17 g/cm3 at 1 cm). All cores 

show the onset of decreasing DBD values that broadly correspond with notable increases in 

organic matter, as shown in figure 5.8.  

Figure 5.9. Down-core trends of DBD (g/cm3) for cores (a) JD1, (b) JD2 and (c) BL. 
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grain size for the core varies between 3 and 5 µm (very fine-fine silt). Both cores at 

Jadrtovac display symmetrical distributions which are poorly sorted. A notable feature of the 

particle size characteristics for core BL (figure 5.10c) is that whilst silt is again the overall 

dominant grain size fraction, the mean grain size is greater in comparison to cores JD1 and 

JD2. It also shows two distinct periods in the record in which the depositional environmental 

is interrupted by distinct increases in sand content. At depths 21 cm and 18 cm, sand 

content increases to 38% and 29%, corresponding to an increase in mean grain size for the 

core to 27 µm and 25 µm respectively. Clay content throughout the core varies between 8% 

and 19%. The more variable grain size fractions observed in core BL results in very poorly 

sorted and symmetrical to finely–skewed distributions.  

 

Figure 5.10. Down-core particle size data for cores (a) JD1, (b) JD2 and (c) BL showing 

percentage sand, silt, clay, mean grain size (µm), sorting (ɸ), skewness and kurtosis.  
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5.5. CORE CHRONOLOGY 

To establish sediment chronologies for the analysed salt-marsh cores, a multi-proxy 

approach was employed to establish an age-depth relationship in sedimentation rate 

including short-lived radionuclides (210Pb, 137Cs and 241Am), high-precision AMS 14C dating 

(JD1) and potential pollution signals from geochemical evidence (XRF).    

5.5.1. Short-lived Radionuclides 

Figure 5.11 and table 5.4 show the results of the radiometric analyses for core JD1 where 

total 210Pb activity reaches equilibrium with the supporting 226Ra at a depth of approximately 

20 cm. Unsupported 210Pb concentrations, calculated by subtracting 226Ra concentrations 

from the total 210Pb concentrations, shows a declining trend with depth and records a 

discontinuity of some kind between 10-13 cm. Below 13 cm, concentrations decline more or 

less exponentially with depth, suggesting relatively uniform accumulation in the deeper 

sections of the core. The down-core profile of 137Cs activity (figure 5.11c) shows a relatively 

well-defined maximum, peaking at 69.9 Bq kg-1 between 9-12 cm, that would appear to 

record the 1963 fallout peak from the atmospheric testing of nuclear weapons. Its presence 

as a double peak appears to be the consequence of the same event that affected the 210Pb 

concentrations in this part of the core. As a result, the 137Cs/210Pb activity ratio (figure 5.11d) 

is sometimes a better guide (e.g. Plater and Appleby, 2004) to the fallout record where a 

clear defined peak between 10-12 cm is observed. A second, more recent 137Cs peak of 

57.1 Bq kg-1 at 5-6 cm is interpreted as fallout from the 1986 Chernobyl accident. Peaks in 

137Cs broadly correspond to those found from previous research in the Morinje Bay 

environment by Mihelčič et al. (2006) where maximum 137Cs activity occurs within the upper 

20 cm, albeit in lower concentrations.  

Figure 5.12 and table 5.5 show the results of the radiometric analyses for core JD2 where 

total 210Pb activity appears to reach equilibrium with the supporting 226Ra at a depth of 7-8 

cm, which was significantly shallower compared to JD1. An abrupt decline in unsupported 

210Pb concentrations below 5 cm (figure 5.12b) suggests a possible hiatus in the sediment 

record where concentrations fall below the level of detection in all sediments below 8 cm. 

Down-core profile of 137Cs activity (figure 5.12c) shows a relatively well defined maximum to 

81.9 Bq kg-1 between 5-6 cm that again presumably records the 1963 fallout peak from the 

atmospheric testing of nuclear weapons. Unlike JD1, a second peak recording fallout from 

the 1986 Chernobyl accident is not obvious, apart from perhaps occurring between 2-5 cm 

where 137Cs activities remain high (57-63 Bq kg-1).  
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Figure 5.13 and table 5.6 show the results of the radiometric analyses for core BL where 

total 210Pb activity appears to reach equilibrium with the supporting 226Ra at a depth of 

around 13 cm. Activities of unsupported 210Pb decline more or less exponentially with depth 

and indicate a relatively uniform sedimentation rate over the past 100 years or so. The 

down-core profile of 137Cs activity (figure 5.13c) shows a relatively well-defined maximum 

value of 109.5 Bq kg-1 at 6-7 cm depth. This also corresponds to a similar but smaller peak in 

241Am activities (4.7 Bq kg-1) at the same depth, which almost certainly records the 1963 

fallout peak from weapons testing. A smaller and more recent 137Cs peak (94.0 Bq kg-1) at 4-

5 cm is again interpreted as fallout from the 1986 Chernobyl accident. 

 

 

Figure 5.11. Fallout radionuclides of the JD1 core showing (a) total 210Pb, (b) unsupported 

210Pb, (c) 137Cs concentrations and (d) 137Cs/210Pb activity ratio versus depth. 
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Table 5.4. Fallout radionuclide activities of the JD1 core. 

    
210

Pb     

Depth Total Unsupported Supported 
137

Cs 

cm g cm
-2

 Bq kg
-1

 ± Bq kg
-1

 ± Bq kg
-1

 ± Bq kg
-1

 ± 

0.5 0.06 296.7 28.4 244.6 29.5 52.0 7.8 5.9 4.6 

1.5 0.18 522.5 20.7 487.4 21.1 35.1 4.1 8.0 2.6 

2.5 0.27 415.2 18.7 392.3 19.0 22.9 3.4 10.8 2.3 

3.5 0.48 432.5 18.0 401.2 18.3 31.3 3.6 12.2 2.5 

4.5 0.70 383.6 18.9 353.7 19.3 29.9 3.7 21.2 2.5 

5.5 0.80 219.2 18.4 190.3 18.9 28.9 4.4 57.1 3.6 

6.5 0.92 169.8 15.6 147.3 16.0 22.5 3.4 13.2 2.4 

7.5 1.06 166.4 16.4 130.3 16.9 36.1 4.0 33.7 3.6 

8.5 1.20 139.8 13.9 99.0 14.3 40.7 3.5 59.8 2.8 

9.5 1.49 153.2 16.2 109.8 16.6 43.5 3.8 66.4 3.2 

10.5 1.99 64.7 5.4 28.4 5.5 36.3 1.2 57.8 1.3 

11.5 2.41 76.0 6.6 39.0 6.8 37.0 1.6 69.9 1.6 

12.5 2.66 84.1 6.4 52.8 6.5 31.2 1.3 50.1 1.5 

13.5 3.21 90.7 7.2 56.7 7.3 34.1 1.5 31.5 1.3 

14.5 3.77 86.2 9.3 48.2 9.6 38.0 2.4 13.3 1.6 

15.5 4.16 85.9 9.5 45.9 9.8 40.0 2.3 10.6 1.5 

16.5 4.70 64.3 8.2 34.3 8.4 30.0 1.8 6.2 1.1 

17.5 5.02 57.0 8.0 19.1 8.2 37.9 1.8 5.0 1.1 

18.5 5.34 50.7 6.2 14.4 6.3 36.3 1.5 6.4 0.9 

19.5 5.96 39.3 5.3 1.4 5.5 38.0 1.3 3.7 0.9 

20.5 6.81 31.1 4.7 -1.4 4.8 32.5 0.8 2.2 0.6 

 

 

Figure 5.12. Fallout radionuclides of the JD2 core showing (a) total 210Pb, (b) unsupported 

210Pb and (c) 137Cs concentrations versus depth. 
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Table 5.5. Fallout radionuclide activities of the JD2 core. 

    
210

Pb     

Depth Total Unsupported Supported 
137

Cs 

cm g cm
-2

 Bq kg
-1

 ± Bq kg
-1

 ± Bq kg
-1

 ± Bq kg
-1

 ± 

0.5 0.05 448.2 30.8 409.0 31.5 39.2 6.6 14.7 4.4 

2.5 0.42 196.2 19.2 158.2 19.7 37.9 4.5 57.7 3.8 

3.5 0.69 245.8 17.6 211.7 18.0 34.1 3.5 60.4 3.2 

4.5 0.89 150.2 11.2 129.9 11.4 20.3 2.0 63.6 2.5 

5.5 1.13 63.1 9.1 39.5 9.4 23.6 2.1 81.9 2.4 

6.5 1.41 77.1 7.7 49.5 7.9 27.6 1.8 56.9 1.8 

8.5 2.13 32.0 3.7 1.1 3.9 30.9 1.1 25.8 0.9 

10.5 3.14 29.2 5.5 5.0 5.7 24.1 1.3 9.2 0.9 

12.5 5.14 27.2 3.8 -1.7 3.9 28.9 1.0 3.4 0.6 

14.5 7.28 18.7 4.9 -2.9 5.0 21.6 1.1 2.8 0.9 

16.5 9.17 33.2 3.6 8.0 3.7 25.2 0.8 1.2 0.5 

20.5 13.25 22.2 3.4 -1.9 3.5 24.2 0.8 0.2 0.4 

 

 

 

Figure 5.13. Fallout radionuclides of the BL core showing (a) total 210Pb, (b) unsupported 

210Pb, (c) 137Cs and (d) 241AMS concentrations versus depth. 
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Table 5.6. Fallout radionuclide activities of the BL core. 

    
210

Pb       

Depth Total Unsupported Supported 
137

Cs 
241

Am
 

cm g cm
-2

 Bq kg
-1

 ± Bq kg
-1

 ± Bq kg
-1

 ± Bq kg
-1

 ± Bq kg
-1

 ± 

0.5 0.1 618.1 24.1 579.1 24.5 39.0 4.4 8.7 2.5 0.0 0.0 

1.5 0.3 539.5 29.3 525.3 29.9 14.2 6.0 7.7 3.6 0.0 0.0 

2.5 0.5 399.5 17.6 360.8 18.0 38.7 3.7 19.2 2.6 0.0 0.0 

3.5 0.9 385.1 22.1 350.5 22.4 34.6 3.7 73.5 3.9 0.0 0.0 

4.5 1.4 274.5 9.4 237.9 9.5 36.5 1.5 94.0 2.1 1.3 0.8 

5.5 2.1 200.1 11.0 162.7 11.2 37.3 2.2 88.6 2.6 1.7 1.1 

6.5 3.0 171.4 9.5 133.3 9.7 38.0 2.0 109.5 2.4 4.7 0.9 

7.5 3.9 93.7 10.3 62.5 10.5 31.2 2.0 52.1 2.1 0.0 0.0 

8.5 5.0 70.2 5.2 35.9 5.4 34.3 1.2 12.4 0.8 0.0 0.0 

9.5 6.3 63.3 7.4 14.6 7.6 48.7 1.8 9.5 1.1 0.0 0.0 

10.5 7.8 61.4 6.0 17.2 6.2 44.1 1.4 4.5 0.8 0.0 0.0 

12.5 10.7 56.9 6.4 8.3 6.6 48.6 1.6 2.9 0.8 0.0 0.0 

14.5 13.6 42.6 6.1 -4.6 6.3 47.2 1.7 2.5 0.8 0.0 0.0 

16.5 17.0 45.7 5.4 -14.5 5.6 60.2 1.5 2.7 0.7 0.0 0.0 

20.5 24.0 47.9 5.1 7.4 5.2 40.5 1.2 2.5 0.8 0.0 0.0 

 

5.5.2. X-ray fluorescence (XRF)  

Down-core changes in element concentrations were investigated to identify pollution signals 

from which to provide further potential chronological constraints within the sediment records. 

Figure 5.14 shows down-core profiles of heavy metal concentrations (Cu, Pb and Zn) for 

cores JD1, JD2 and BL as a comparison to previous work investigating anthropogenic 

signals in the geochemical record. Section 3.7 discussed the use agrichemicals and in 

particular copper sulphate in reducing vineyard mildew. Moving up through the core, an 

increasing trend in Cu concentrations is observed in JD1 (figure 5.14a), peaking to 94 ppm 

at 12 cm. Indeed elevated levels of Cu occur between approximately 5 cm and 15 cm and is 

similar to that observed by Mihelčič et al. (2006). JD2 also shows an up-core increasing 

trend in Cu (figure 5.14b), increasing from approximately 20 cm to a peak of 118 ppm at 5 

cm. The elevated and sustained concentrations of Cu to the surface, compared to JD1, 

probably reflect this site’s close proximity to vineyards in the northern part of the region 

which are extremely close to the edge of the salt-marsh environment.  

The record at BL (figure 5.14c) shows a very uniform accumulation of Cu with no distinct 

peak observed. No agricultural activities are practised in the immediate vicinity to Blace and 

the lack of available documented history surrounding the sample site limits the utility of XRF 

in providing independent age markers. Background levels of Cu are very similar throughout 

all the studied cores, suggesting the increased but not especially high levels of Cu in cores 

JD1 and JD2 reflect localised vineyard activity.A decrease in Pb is observed towards the 
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surface of all cores, reflecting a trend observed by Mihelčič et al. (2006) and Šparica et al. 

(2005a: b) who attributed the decrease to anthropogenic influences. Whilst concentrations in 

Cu might reflect agricultural activity in the surrounding environment, similar to that observed 

by Šparica et al. (2005a: b), Mihelčič et al. (2006) and Miko et al. (2007), no specific date is 

provided by the authors from documented evidence of land-use change. Based on their 

137Cs profile, Mihelčič et al. (2006) date a decrease in Pb concentration to approximately 

1980 whilst no satisfactory evidence was found to describe a peak in Cu concentration other 

than it is simply a reflection of localised anthropogenic land-use activity over the past 50 

years.  

 

 

Figure 5.14. Cu, Pb and Zn profiles for (a) JD1, (b) JD2 and (c) BL cores. 
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5.5.3. Jadrtovac Site (JD1) Chronology 

Figure 5.15 and table 5.7 shows the chronology for core JD1 based on the radiometric 

analyses presented in section 5.5.1. Lead-210 dates calculated using the CRS dating model 

(Appleby and Oldfield, 1978) place 1963 at a depth of 11.5 cm and 1986 at a depth of 5.5 

cm, evidently in good agreement with the depths suggested by the 137Cs record. With a 

mean volumetric accumulation rate of 0.25 cm y-1, post-1960 sedimentation is fairly uniform, 

showing a mean dry mass sedimentation rate of around 0.032 g cm-2 y-1. The reduction in 

the 210Pb and 137Cs concentrations between 10-12 cm is attributed to a brief episode of 

increased sedimentation dated to the mid- to late 1960s, possibly caused by the 

remobilisation and deposition of a layer of older material. Prior to 1960, dates become more 

problematic. An increase in dry bulk density below 19 cm (figure 5.9a) in combination with 

the disappearance of unsupported 210Pb (figure 5.11b) suggests a hiatus in the sediment 

record. Calculations of the mean pre-1960 accumulation using the gradient of the 

unsupported 210Pb activity versus depth profile between 13-19 cm date this interruption to 

the late 19th century. Pre-1960 dates were calculated using this and the 1963 137Cs date as 

reference points (Appleby, 2002). The results are relatively unambiguous down to a depth of 

16 cm, dated to 1920. The uncertainty of age estimates increases below this depth and are 

regarded with caution unless supported by other evidence. 

 

Figure 5.15. Radiometric chronology for JD1 showing CRS model 210Pb dates, 

sedimentation rate (g cm-2 y-1) and the 1963 and 1986 depths suggested by 137Cs record. 
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Table 5.7. Combined 210Pb (CRS) and 137Cs chronology of the JD1 core. 

Depth Chronology
 

Sedimentation rate 

 Date Age    

Cm g cm
-2

 AD y ± g cm
-2

 cm y
-1

 ± (%) 

0.0 0.00 2010 0 0    

0.5 0.06 2009 1 1 0.066 0.38 12.5 

1.5 0.18 2006 4 2 0.031 0.40 5.6 

2.5 0.27 2004 6 2 0.035 0.22 6.1 

3.5 0.48 1997 13 2 0.028 0.13 6.3 

4.5 0.70 1988 22 2 0.024 0.17 7.6 

5.5 0.80 1985 25 2 0.040 0.33 11.4 

6.5 0.92 1982 28 2 0.048 0.33 12.4 

7.5 1.06 1979 31 2 0.049 0.40 14.5 

8.5 1.20 1977 33 2 0.060 0.25 16.0 

9.5 1.49 1971 39 2 0.046 0.17 16.7 

10.5 1.99 1965 45 3 0.143 0.20 21.1 

11.5 2.41 1961 49 3 0.093 0.29 19.6 

12.5 2.66 1958 52 3 0.062 0.15 15.7 

13.5 3.21 1947 63 4 0.041 0.09  

14.5 3.77 1934 76 5 0.041 0.09  

15.5 4.16 1924 86 7 0.041 0.09  

16.5 4.70 1911 99 8 0.041 0.09  

17.5 5.02 1903 107 14 0.041 0.09  

18.5 5.34 1895 115 15 0.041 0.09  

 

5.5.3.1. Radiocarbon Dating  

Between depths 18 cm and 33 cm, a varying abundance of Scirpus holoschoenus seeds 

(figure 3.8), a common salt-marsh plant of the eastern Adriatic coast (Pandža et al., 2007), 

was found in core JD1. Depths and dry weights of these seeds are shown in table 5.8. 

These intervals, whilst not extending the full 42 cm length of the core, would potentially 

provide ages for sediments beyond the limits of the current radiometric chronology which 

was restricted to the upper ~20 cm as described above. As radiocarbon years are generally 

longer than calendar years, due to variations in the production of atmospheric 14C, reported 

conventional 14C dates need to be calibrated using a calibration curve (e.g. McCormac et al., 

2007; Reimer et al., 2009). Differences in the natural concentration of 14C between the 

northern and southern hemispheres, referred to as inter-hemispheric 14C offsets, mean 

different calibration curves are available depending on the site’s location (Hua, 2009). The 

current internationally accepted calibration curve for the southern hemisphere is SHCal04 

(McCormac et al., 2007) whilst in the northern hemisphere, IntCal09 (Reimer et al., 2009) is 

used. The IntCal09 calibration curve is based on a large-number of 14C dates obtained from 

dendro-dated tree rings and is used for age determinations over the past 12,550 cal BP 

(Blaauw and Heegaard, 2012).  
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Table 5.8.  

Depths and dry weights (mg) at which Scirpus holoschoenus seeds were found in core JD1. 

Depth (cm) Material to date Dry weight (mg) 

18-19 cm Scirpus holoschoenus seeds 0.2 

21-22 cm Scirpus holoschoenus seeds 0.8 

25-26 cm Scirpus holoschoenus seeds 4.1 

26-27 cm Scirpus holoschoenus seeds 10.5 

27-28 cm Scirpus holoschoenus seeds 1 

28-29 cm Scirpus holoschoenus seeds 1.2 

29-30 cm Scirpus holoschoenus seeds 3.8 

30-31 cm Scirpus holoschoenus seeds 0.8 

31-32 cm Scirpus holoschoenus seeds 0.1 

32-33 cm Scirpus holoschoenus seeds 0.3 

*Bold font denotes depth intervals dated by AMS 
14

C. Samples between 28-30 cm were combined to 
achieve sufficient dry weight needed for analysis.  

 

Fluctuations (i.e. wiggles) in the concentration of atmospheric 14C between AD 1650 to AD 

1950 hinder the application of 14C dating for the recent past as several calendar age ranges 

are theoretically plausible for a single 14C age. In this case, using the ‘intercept method’ to 

simply interpret the radiocarbon age is therefore not recommended (Telford et al., 2004b). If 

however, dates are acquired from a sequence of sediments spaced close together, we can 

adopt a Bayesian approach (e.g. Buck. et al., 1991; Buck et al., 1992; Bronk Ramsey, 2001; 

Blaauw and Christen, 2005) and use additional information such as chronological and 

stratigraphic ordering (referred to as a priori knowledge) and assume the logical principal 

that the lowermost sample to have been deposited first, thus producing the oldest age 

(Reimer and Reimer, 2007; Bronk Ramsey, 2008). Following Stuiver and Polach (1977) 

conventional radiocarbon ages are first reported in uncalibrated form and shown in table 5.9 

below.  

 

Table 5.9. AMS 14C results for core JD1 (NERC allocation number 1678.1012).  

Publication 

no. 

Sample 

Identifier 

(depth cm) 

14
C Enrichment (% 

modern +/- 1σ) 

Conventional  
14

C Age (years 

BP+/- 1σ)  

δ
13 

CVPDB‰           

± 0.1 

  

SUERC45020 (1) JD1 25-26 96.86 ± 0.44 256 ± 37 -25.3   

SUERC45021 (2) JD1 26-27 97.38 ± 0.45 213 ± 37 -26.2   

SUERC45022 (3) JD1 28-30 98.61 ± 0.45 112 ± 37 -26.8   

 

Sample 1 (JD1 25-26) has a reported (uncalibrated) 14C age of 256 (±37) years BP, whilst 

sample 2 (JD1 26-27) and 3 (JD1 28-30) have reported (uncalibrated) 14C ages of 213 (±37) 

and 112 (±37) years BP, respectively. At first glance, it would appear the results obtained 

from AMS 14C dating to be counterintuitive, with the oldest age reported for the uppermost 

(theoretically youngest) sample. However, using a priori knowledge of stratigraphic position 
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and chronological ordering, we would assume date 3 to be older than date 2, and date 2 to 

older than date 1. It can also be assumed that all dates reported probably originate from 

before the period ~AD 1900 as the sediments analysed should pre-date the limits of the 

210Pb and 137Cs chronology, which extends to a depth of approximately 20 cm (see section 

5.5.3).  

Due to the non-linear relationship between radiocarbon and calendar years, the above 

results highlight the importance of conventional radiocarbon age calibration (Reimer et al., 

2009). This is especially true where the data are to be incorporated into an age-depth model, 

as uncalibrated (raw) 14C ages will often result in multi-peaked calendar age uncertainties 

(Telford et al., 2004a; Blaauw, 2010; Blaauw and Heegaard, 2012). Calibration can be 

performed using an array of dedicated calibration packages as well as being integrated into 

many age-depth modelling software (e.g. Clam; Blaauw, 2010). In this instance, 

conventional radiocarbon dates are calibrated using OxCal version 4.2 (Bronk Ramsey, 

2009a) using the IntCal09 calibration curve (Reimer et al., 2009). OxCal offers a Bayesian 

approach to deposition models in which a priori information (e.g. stratigraphic position) can 

be utilized to constrain the ages of 14C dates (Bronk Ramsey, 2008). Using a priori 

knowledge of chronological and stratigraphic ordering, calibrated 14C age distributions now 

appear in correct chronological order as shown in figure 5.16 below.  

While it is often desirable to reduce calibrated 14C ages to single calibrated year point 

estimates, especially in the context micropalaeontological studies, the asymmetric nature of 

calibrated 14C distributions means reducing them to single-ages poses significant risks 

(Telford et al., 2004b). Indeed this is amplified when drawing a curve through single year 

point estimates in age-depth models because it does not consider the full potential of the 

calibrated 14C age distribution. Following Blaauw (2010), calibrated 14C ages are therefore 

reported as age distributions to 2 standard deviations (σ) (c. 95% probability) rather than 1σ 

(68% probability), as the probability of the ‘true’ calendar date falling outside 1σ range (c. 

32%) cannot be overlooked. As 14C dates were acquired from a stratigraphic position below 

the limits of an independently dated (210Pb) layer at 20 cm (~AD 1900), interceptions with the 

calibration curve post ~AD 1900 can safely be neglected. Calibrated distributions of 14C date 

SUERC45020 (JD1 25-26; 256±37) shows highest posterior density ranges between cal. AD 

1764-1805 (95.4% probability). Calibrated distributions of 14C date SUERC45021 (JD1 26-

27; 213±37) shows highest posterior density ranges between cal. AD 1742-1800 (95.4% 

probability) while calibrated distributions of 14C date SUERC45022 (JD1 28-30; 112±37) 

ranges between cal. AD 1692-1784 (95.4% probability). Median dates are also provided for 

reference (see figure 5.16). Reported agreement level indexes are all above the accepted 
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limit of 60% (Bronk Ramsey, 2008) necessitating the need for outlier analysis (e.g. Bronk 

Ramsey, 2009b).  

 

Figure 5.16. OxCal (Bronk Ramsey, 2009a) calibration of 14C ages showing (a) 14C ages 

intercepting IntCal 09 calibration curve (Reimer et al., 2009) and (b, c and d) individual 

calibration plots displaying Gaussian distribution of uncalibrated 14C ages (red curve), IntCal 

09 calibration curve (blue curve) (Reimer et al., 2009) and highest posterior density ranges 

(2σ c. 95% probability) of calibrated ages (dark grey curve). Median age (AD) and 

agreement level indexes are also provided. 

 

Following the above, age-depth models were created combining the short-lived radionuclide 

data with calibrated 14C age distributions to further extend the record at JD1. The purpose of 

constructing age-depth models is to present an interpolated chronological framework to 

provide ages between a series of dated points that may be derived from a variety of sources 

(Blaauw, 2010). The model can then be used to give age estimates for both the dated levels 

and undated levels and extrapolated throughout a core sequence (Blaauw and Heegaard, 

2012). To assess the accuracy in modelling accumulation rate through time, two models 

were created, adopting ‘classical’ and Bayesian approaches. The use of geochemical 

markers is not included due to their inability to provide accurate independently dated depths.  
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5.5.3.2. Clam Age-Depth Model 

Clam (version 2.1; Blaauw, 2010) is an open source environmental statistics package used 

within the R framework (R Development Core Team, 2013). It offers a rapid, non-Bayesian 

‘classical’ approach to age-depth modelling and is useful before Bayesian techniques are 

explored (e.g. Hua et al., 2012). Prior to modelling, calibration of single 14C dates within the 

software using the IntCal09 calibration curve (Reimer et al., 2009) are performed in a similar 

way to that offered by OxCal (Bronk Ramsey, 2009a) (e.g. 2σ c. 95% probability) presented 

above. Clam offers the user various different modelling approaches to estimate the ages of 

non-dated points. These are selected based on the user’s requirements and type 

depositional environment and include linear interpolation, linear or polynomial regression 

and various types of spline approaches (e.g. smooth or locally weighted). Monte Carlo 

sampling selects ages from each of the calibrated age distributions to produce an age-depth 

model through the sampled dates (Blaauw, 2010). An adjustable ‘smoothing’ parameter 

allows further adaptations in the rigidity/flexibility of the age model. Other features such as 

the top of a core sequence (e.g. year of sampling) can provide an additional anchor points 

(Blaauw, 2010). 

 Following the above, various age-depth models were created and their performance was 

assessed in constructing an accurate model through the dated levels. The output from Clam 

provides the user with various information about the model runs including model settings, 

age estimations and graphs. Of particular interest though is the “goodness-of-fit” value which 

provides a measure of the probabilities of the modelled ages of the dated depths and in 

general, the lower this value, the better the age-model performance (Blaauw, 2010). Figure 

5.17 shows the results of the smooth spline age-depth model with a ‘smoothing’ of 0.6. This 

type of model assumes relatively stable accumulation rates throughout the depositional 

history of a core sequence. Extrapolation beyond the dated levels has not been performed, 

following Blaauw (2010), and is restricted to the upper 28 cm of the core. Calendar 14C age 

distributions are shown in blue and the 210Pb and 137Cs chronology in green. The solid black 

line depicts the ‘best’ age-depth model within a 2σ age uncertainty range (shaded grey area) 

and calendar age estimations are provided for all depths (to 2σ) based on weighted average 

of all depth curves. The smooth spline model returns a “goodness-of-fit” value of 22.97. A 

calculated mean sedimentation rate of 0.13 cm yr-1 is reported for the core (to 28 cm). 

Moving up through the core, sedimentation rates are relatively stable between depths 28 cm 

and 14 cm, ranging from 0.06 to 0.09 cm yr-1. Above 13 cm (~1950), sedimentation rates 

begin to increase to a maximum of 0.27 cm yr-1 at 7 cm before decreasing slightly to 0.21 cm 

yr-1 at 3 cm.  
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Figure 5.17. Smooth spline (smoothing=0.6) age-depth model produced by Clam (Blaauw, 

2010) for core JD1 combining 210Pb and 137Cs analyses and calibrated 14C age distributions. 

5.5.3.3. OxCal Age-Depth Model 

OxCal (version 4.2; Bronk Ramsey, 2009a) adopts a Bayesian approach to age-depth 

modelling and allows for a priori information to be utilized, such as stratigraphic and 

chronostratigraphic ordering. In a similar way to Clam, it offers various depositional models 

(known as ‘sequences’) based on the accumulation history of the investigated environment. 

For example, if the age intervals between a series of points are precisely known, as is the 

case for tree rings or varved sediments, then a D_Sequence age-model would be 

appropriate for selection (Bronk Ramsey, 2008). Figure 5.18 shows the results of a 

P_Seqeunce (Poisson) model (Bronk Ramsey, 2008) constructed in OxCal (Bronk Ramsey, 

2009a) which allows for variations in the rate of sediment accumulation (Poisson process) 

and is suitable for fine-grained sediments (Bronk Ramsey, 2008). An adjustable k parameter 

within the model allows for variation in the size of the deposition events and gives the 

number of accumulation events per unit depth. A high k value (small increments) reduces 

flexibility in the model whereas a low k value (large increments) provides more flexibility 

(Hua et al., 2012). A variety of models were therefore run, each with a differing k parameter 

value to assess the age-depth models performance. Following this trial and error procedure, 

a k parameter value of 0.5 mm-1 was selected which provided sufficient flexibility in the age-

depth model to incorporate all calibrated age distributions. Figure 5.18 shows calendar age 
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distributions in grey within a blue curve which represents the model uncertainty to 2σ. The 

overall agreement level index for the age-depth model (A
model)

 was excellent at 123.1% and 

well above the accepted limit of 60% (Bronk Ramsey, 2008). The agreement level index 

reported for all 210Pb and 137Cs (C_Date) dates was similarly high (>97%) as were the 

returned index levels for the three 14C dates (R_Date) (>65%). The modelling data suggest 

median dates for R_Date SUERC45020 (JD1 25-26) and R_Date SUERC45021 (JD1 26-27) 

of AD 1790 and AD 1784, respectively. The median date reported for the lowermost dated 

sample (R_Date SUERC45022; JD1 28-30) is AD 1751. Extrapolation beyond the dated 

levels has not been performed. The model calculates a mean sedimentation rate of 0.136 

cm yr-1 for the core from 28 cm. Moving up through the core, sedimentation rates are stable 

between depths 28 and 14 cm, ranging from 0.05 to 0.10 cm yr-1. A substantial increase in 

sedimentation rate is then observed above 13 cm (~1950), increasing to a maximum of 0.33 

cm yr-1 at 7 cm before decreasing slightly to 0.20 cm yr-1 above 3 cm. 

 

Figure 5.18. P_Sequence age-depth model with k = 0.5 mm-1 produced by OxCal (Bronk 

Ramsey, 2009a) for core JD1 combining 210Pb and 137Cs analyses and calibrated 14C age 

distributions to 2σ (95% confidence level). Agreement indexes [A: #] and median ages also 

highlighted (crosshair).  
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5.5.4. Jadrtovac Site 2 (JD2) Chronology 

The chronology for core JD2 is based on 210Pb and 137Cs analyses only and is presented in 

figure 5.19 and table 5.10. The 210Pb dates, calculated using the CRS dating model (Appleby 

and Oldfield, 1978) places 1963 at a depth of 4.4 cm. Unlike at JD1, this is significantly 

above the depth as suggested by the 137Cs record shown in figure 5.12. The most likely 

cause of this discrepancy would appear to be loss of part of the 210Pb due to a hiatus at 8 

cm. Revised CRS model dates calculated using the 1963 137Cs date as a reference point 

(Appleby, 2002) dates the hiatus to the mid-1950s. The results of these calculations plotted 

in figure 5.19 and given in detail in table 5.10, place 1986 at a depth of 3 cm, supporting the 

suggestion that the high 137Cs activity ‘shoulder’ between 2-5 cm records fallout from the 

1986 Chernobyl accident. Sedimentation rates following the hiatus appear to have been 

relatively uniform, with a mean value of 0.025 ± 0.003 g cm-2 y-1 (0.12 cm y-1) apart from a 

brief episode of more rapid accumulation in the mid-1960s. The chronology based on 210Pb 

and 137Cs analyses alone limits the sea-level reconstruction for this core to the mid-1950s to 

a depth of ~9 cm. 

5.5.5. Blace (BL) Chronology 

The chronology for core BL is also based on 210Pb and 137Cs analyses only and presented in 

figure 5.20 and table 5.11. The record shows a coherent record to the reliable limits of the 

dating technique (e.g. ~100 years). The 210Pb dates calculated using the CRS dating model 

(Appleby and Oldfield, 1978) place 1963 at a depth of 6.5 cm and 1986 at a depth of 4.5 cm, 

which is in good agreement with the depths suggested by the 137Cs activities. The results of 

the 210Pb calculations imply a relatively uniform dry mass sedimentation rate over the past 

century; the mean value during this period was calculated to be 0.065 ± 0.008 g cm-2 y-1.  

Due to compaction accumulation rate declines from 0.30 cm y-1 in the most recent sediments 

to 0.05 cm y-1 in the deeper parts of the core.  This chronology extends to a depth of 

approximately 11 cm, dated to the late 19th century, equating to a potential sea-level 

reconstruction for core BL spanning the past 100 years or so.  
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Figure 5.19. Radiometric chronology of the JD2 core showing the 1963 and possible 1986 

depths suggested by the 137Cs stratigraphy and also the CRS model 210Pb dates and 

sedimentation rates calculated using the 1963 137Cs date as a reference point. 

 

 

Figure 5.20. Radiometric chronology of the BL core showing CRS model 210Pb dates, 

sedimentation rate (g cm-2 y-1) and the 1963 and 1986 depths suggested by the 137Cs 

stratigraphy. 
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Table 5.10. Revised 210Pb chronology of the JD2 core. 

Depth Chronology
 

Sedimentation rate 

 Date Age    

cm g cm
-2

 AD y ± g cm
-2

 cm y
-1

 ± (%) 

0.0 0.00 2010 0 0    

0.5 0.05 2007 3 2 0.020 0.15 9.5 

2.5 0.42 1993 17 2 0.033 0.12 14.2 

3.5 0.69 1982 28 3 0.018 0.09 12.3 

4.5 0.89 1971 39 4 0.020 0.11 14.9 

5.5 1.13 1963 47 5 0.052 0.13 28.0 

6.5 1.41 1956 54 6 0.034 0.38 24.5 

8.5 21.3 1955 55 8 0.594 0.12 38.8 

 

Table 5.11. Combined 210Pb (CRS) and 137Cs chronology of the BL core. 

Depth Chronology
 

Sedimentation rate 

 Date Age    

cm g cm
-2

 AD Y ± g cm
-2

 cm y
-1

 ± (%) 

0.0 0.00 2010 0 0    

0.5 0.09 2008 2 2 0.054 0.30 6.2 

1.5 0.28 2005 5 2 0.053 0.29 7.5 

2.5 0.52 2001 9 2 0.068 0.20 7.5 

3.5 0.87 1995 15 2 0.059 0.13 9.0 

4.5 1.41 1986 24 2 0.066 0.10 9.0 

5.5 2.13 1975 35 3 0.065 0.08 12.2 

6.5 2.97 1962 48 4 0.065 0.07 12.2 

7.5 3.95 1947 63 7 0.065 0.06 12.2 

8.5 5.01 1931 79 11 0.065 0.06 12.2 

9.5 6.29 1911 99 16 0.065 0.05 12.2 

10.5 7.80 1888 122 21 0.065 0.04 12.2 

  

5.6. SUMMARY OF FOSSIL SALT-MARSH DATA  

This chapter has provided an overview of the fossil environments at Jadrtovac and Blace 

through a combination of litho-, bio- and chronostratigraphic data. An investigation into the 

sediment stratigraphy revealed a relatively uniform pattern of sedimentation throughout the 

study sites where basal minerogenic silts and clays were overlain by increasingly organic 

deposits. A humified peat horizon was limited to the upper reaches of both environments and 

was variable in depth. Following this survey, ‘type’ cores were selected based on their 

stratigraphic characteristics incorporating the transition from highly organic peat deposits to 

basal silts and clays. These cores formed the basis from which all subsequent analyses 

were applied.  

The ‘Type’ cores were collected, dissected and analysed for fossil foraminiferal and 

environmental data at a 1 cm resolution. Analysis of foraminiferal assemblage’s revealed 
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good preservation and similarly low biodiversity, generally reflecting that observed in the 

contemporary environment. A relatively uniform pattern of change was observed in all cores 

showing a transition from calcareous taxa, principally comprising high abundances of 

Ammonia spp., Elphidium spp. and Haynesina germanica dominating the lower organic 

deprived (<10%) minerogenic sediments to agglutinated species moving up through the 

core. The main agglutinated taxa encountered were J. macrescens, T. inflata and M. fusca. 

Analysis of environmental data (LOI and DBD) reflected the stratigraphic survey, highlighting 

the change from basal minerogenic sediments to increasingly organic deposits moving up 

through the cores. Particle size characterises revealed minor changes in grain size within 

each core which were composed primarily of silts and clays.   

An array of techniques was used to establish a chronology (210Pb and 137Cs, XRF, AMS 14C 

dating). Clear peaks in 137Cs in core JD1 were assigned to peak weapons testing (1963) and 

Chernobyl reactor accident (1986). Using the CRS model, cores JD1 and BL provided 

favourable results, allowing the extension of the record almost to the limits of the technique 

(e.g. 100 years or so). For core JD2 however, a hiatus in the record restricted its application 

to the upper 9 cm of the core extending back to AD 1955. To further extend the 

chronologies, three levels in JD1 were selected for dating between 25 cm and 30 cm. The 

lowermost sample (JD1 28-30) suggested a reconstruction possible dating back to AD 1751 

(±2σ). The dates obtained by 14C were then combined with ages produced by short-lived 

radionuclides and incorporated into an age-depth model using classical and Bayesian 

approaches. This allowed estimations of age (and uncertainty) for both the dated and 

undated levels. Modelled sedimentation rates using Clam suggested relative stable rates of 

0.06 – 0.09 cm yr-1 between 29 and 14 cm. Mean sedimentation rate for the core was 0.13 

cm yr-1. Above 13 cm (~ 1950) sedimentation increases to a maximum of 0.27 cm yr-1 before 

decreasing slightly to 0.21 cm yr-1 at 3 cm depth. Modelled sedimentation rates using 

Bayesian approach (OxCal) also suggested a mean sedimentation rate 0.13 cm yr-1 and 

stable rates in the lower section of the dated core ranging from 0.05 – 0.1 cm yr-1. An 

increase from 13 cm is again observed albeit at slightly higher rate peaking at 7 cm to 0.33 

cm yr-1 before decreasing to 0.20 cm yr-1 above 3 cm. Both models appear to capture the 

increase sedimentation rates observed above ~13 cm. 
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  CHAPTER 6 
  

RESULTS III 

TRANSFER FUNCTION ANALYSIS AND 

SEA-LEVEL RECONSTRUCTION 

 

6.1. INTRODUCTION 

The analysis of contemporary foraminiferal data demonstrated altitude as having a 

statistically significant control on their distribution and confirmed their suitability as proxy 

indicators of tidal level for use in a transfer function-based reconstruction of sea level. This 

chapter begins with an overview of the statistical methods involved in developing transfer 

function models, particularly an analysis of the species’ unimodal or linear distribution in 

relation to altitude. Following this, the various transfer function models are outlined before 

details regarding how their performance is assessed are provided. In a similar structure to 

section 4.5, transfer functions are first developed for the dead foraminiferal assemblages for 

training sets established at Jadrtovac (JDT) and Blace (BLT) before collating them together 

in a total combined training set (TCD). The reconstructive ability of these models in 

reconstructing sea level is assessed before a final model is chosen for further screenings.  

The second iteration transfer function is then applied to calibrate fossil samples to produce 

estimates of palaeo-marsh altitude for cores JD1, JD2 and BL. Results produced by PLS 

and WA-PLS models are compared with ‘Maximum Likelihood’ results as an independent 

assessment of model performance. Following this, fossil samples which display a poor 

relationship with samples in the modern training set are explored using the modern analogue 

technique to highlight levels where reconstructed values may be considered unreliable. 

Finally sea-level trends are created where the data are converted and plotted against core 

depth (cm) and then modelled sample age.  

 

 

 



Chapter 6  RESULTS III – Transfer Function & Sea-Level Reconstruction  

 

Page | 129  

 

6.2. TRANSFER FUNCTION METHODOLOGY  

6.2.1. Species-Environment Response Model 

After compiling a modern training set, the next stage in developing a transfer function 

requires an understanding of the species response (i.e. distribution) in relationship to the 

environmental variable of interest (Birks, 1995; Leps and Smilauer, 2005) so to derive 

‘ecological response functions’ (Horton and Edwards, 2006). Determining this allows the 

selection of the most appropriate regression model based on the modern training sets linear 

or unimodal distribution along the environmental gradient. Foraminiferal taxa that respond in 

unimodal fashion suggest taxa peak in abundance at an optimal elevation and display a 

Gaussian distribution (Gauch and Whittaker, 1972). Foraminifera taxa that are linear in 

relationship with the environmental gradient however suggest abundance increases or 

decreases in line with the environmental variable (e.g. altitude) (Birks, 1995; Horton and 

Edwards, 2006). To determine this, detrended canonical correspondence analysis (DCCA) 

(ter Braak, 1986), an extension of DCA presented in chapter 4, was performed using altitude 

(m HVSR71) as the only constraining variable. Detrending by segments and with non-linear 

rescaling, gradient lengths were assessed using CANOCO (version 4.5; ter Braak and 

Smilauer, 1997-2003; Leps and Smilauer, 2005) providing a measure in SD units. The 

analysis was performed for both the local (JDT and BLT) and regional (total combined) 

training sets, as shown in tables 6.2 to 6.4, so that the appropriate regression model could 

be selected. In general, where the lengths of gradient are short, reporting 2 SD units or less, 

linear regression and calibration models are most appropriate (ter Braak and Juggins, 1993). 

Where gradient lengths are greater than 2 SD units however, the use of unimodal methods 

may be more suitable to express the species data as a function of an environmental variable 

(ter Braak and Prentice, 1988; Birks, 1995; 2010). Table 6.1 shows the number of surface 

samples included for each training set used in developing first iteration transfer functions.  

Table 6.1. Summary of the number of surface samples included in each training set. 

Training Set Name (abbreviation)   Total 

Jadrtovac Transects 1 & 2 (JDT)   30 

Blace Transects 1 & 2 (BLT)   26 

Total Combined Dataset (TCD)   56 

 

6.2.2. Model Selection  

Following the analysis of a modern training sets’ species-response along the environmental 

gradient, various transfer function models are available to express an environmental variable 
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(e.g. altitude) as a function of biological data (e.g. foraminifera). Where the statistical 

analyses indicate strong unimodal distributions, regression and calibration techniques such 

as Weighted Averaging (WA) and Weighted Averaging-Partial Least Squares (WA-PLS) are 

suitable and should be applied. If the foraminiferal data, however, display linear distributions 

with respect to elevation, regression and calibration methods such as PLS are more 

appropriate. Further detail regarding these transfer function models was provided in section 

2.3.4. Whilst unimodal methods are undoubtedly more common in paleo-sea-level 

reconstructions from salt-marsh environments and are considered robust and reliable 

reconstruction techniques (ter Braak and Juggins, 1993; Telford et al., 2004; Telford and 

Birks, 2005), linear regression and calibration methods have also been successfully applied, 

particularly where foraminiferal assemblages are derived from short vertical ranges (e.g. 

Leorri et al., 2010; Rossi et al., 2011).  

Despite the short gradient lengths indicated by DCCA for both local and regional training 

sets (tables 6.2 to 6.4), the transfer function methods utilized in this study included linear 

PLS, unimodal WA-PLS and the Maximum Likelihood (ML) approach. The analogue-based 

method, MAT (modern analogue technique), was also applied as described below. Transfer 

function regression and calibration procedures were processed using the programme C2 

(version 1.7.4; Juggins, 2003-2011), which provides a tool for developing and applying 

palaeoecological transfer functions (Juggins, 2007). All analyses were based on relative 

percentage species data, following Leorri et al. (2010) who observed insignificant differences 

when using concentration data on transfer function model performance. Output from the 

statistical models was compared and assessed using the statistical parameters described 

below. 

6.2.3. Assessing Model Performance  

Quantitative reconstructions will produce a result regardless of the data used. Whilst there is 

no simple way to directly evaluate transfer function performance (Imbrie and Webb, 1981), 

statistical parameters produced from the model output provide a measure of the training sets 

predictive ability and associated error. This is useful not only as a comparative tool between 

the various regression techniques applied, allowing the selection of the best model, but 

permits comparisons with other published work. The regression statistics provided by the 

software include the coefficient of determination (r2), the standard error or root mean square 

error (RMSE) and the maximum bias. The RMSE measures the predictive ability of the 

training set assessing prediction errors while r2 measures the strength of the relationship 

between observed and predicted values (Birks, 1995). The maximum bias provides a 

measure of the mean difference between observed and predicted values (Birks, 1998). 
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Whilst these parameters are useful for comparing transfer function models they are 

‘apparent’ measures which use the whole training set to test transfer function performance 

(Edwards and Horton, 2000; Horton and Edwards, 2006). Birks (1995) notes however that 

RMSE and r2 are consistently underestimated and overestimated, respectively, when based 

on the training set alone and so more realistic and reliable estimates of prediction error and 

ability are needed through split-sampling or cross-validation processes (ter Braak and 

Juggins, 1993). 

A simple cross-validation approach commonly practised in quantitative paleoecological 

studies is known as jack-knifing, commonly referred to as or “leave-one-out” (ter Braak and 

Juggins, 1993). In this procedure, the prediction errors form a “jack-knifed” root mean square 

error of prediction (RMSEP jack) where the reconstruction is applied n times using a training 

set (n -1) (Birks, 1995). RMSEP is calculated when each sample is, in turn, eliminated from 

the training set, and computations are then made on the remaining samples. This process 

produces a predicted value and by subtracting this from the observed value, a prediction 

error for the sample is formed (RMSEP jack) (Birks, 1995). In comparison to RMSE, jack-

knifed RMSEP, and additionally r2 
jack measures, offer a more robust and reliable assessment 

of the training sets predictive ability and error (Gehrels, 2000) and so are used to assess 

model performance in this study. The cross-validation method jack-knifing does not however 

provide errors for the individual fossil samples from within the core as the observed errors 

here are not known (Birks, 1995). Thus, in addition to the procedures described above, 

another cross-validation technique termed ‘bootstrapping’ was also used to also provide an 

assessment of the modern training set (r2 
boot and RMSEP boot) and also sample-specific root 

mean squared errors of prediction (SE pred) for individual fossil samples (Birks et al., 1990; 

Birks, 1995).  

6.2.4. Data Screening 

Due to the influence of additional environmental variables (e.g. salinity) exerting a control to 

contemporary foraminiferal distributions, inevitably some samples (and similarly species) 

within the dataset may show a weaker relationship with elevation, displaying a high residual 

distance from the first ordination axis constrained by the environmental variable of interest 

(e.g. altitude) (Birks, 1995; Horton and Edwards, 2006). Ultimately these may degrade the 

transfer function reconstruction so it is often useful to re-assess the modern training set prior 

to calibration (Birks et al., 1990). Some studies attempt to improve model performance by 

removing training set samples that are from low elevations or those that fall below a 

standardized water level index due to the weaker relationship with elevation that exists here 

(e.g. Edwards and Horton, 2000; Hamilton and Shennan, 2005; Kemp et al., 2009a; Leorri et 
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al., 2011). These samples may contain an allochthonous component where species are 

transported into the lower salt-marsh tidal-flat environment (Horton and Edwards, 2006). 

Whilst these taxa usually appear in low concentrations, and are therefore removed from the 

training set during the initial data treatment process (e.g. Fatela and Taborda, 2002), they 

can impact upon the reconstructive ability of a training set. Horton and Edwards (2006) 

approach to this issue is to group a number of in-washed species together into an ‘exotics’ 

species component which ultimately improve their transfer function performance. Mills et al. 

(2013) also highlight the potential benefits in screening modern training sets in which an 

assessment of an ‘agglutinates only’ transfer function reveals an improvement in statistical 

parameters r2 
jack from 0.52 to 0.79 and RMSEP jack from 0.24 m to 0.13 m. However, in doing 

so this screening impacted on the proportion explained by elevation and overall explained 

variance, so caution is required when adopting this approach.  

To assess whether improvements in reconstruction performance and their associated errors 

could be enhanced, the TCD training set was ‘screened’ to remove sample outliers that have 

a detrimental effect in order to increase the overall model performance (e.g. Gasse et al., 

1997). There are various procedures from which sample outliers are removed from modern 

training set data. Alternatively however it can be argued that all sample data should be 

included because this most accurately represents the modern sampling environment (e.g. 

Callard et al., 2011; Barlow et al., 2013). The approach adopted in this study involved the 

removal of surface samples with an absolute residual (observed minus predicted) greater 

than the standard deviation (SD) of the environmental gradient (e.g. altitude) following Jones 

and Juggins (1995); Edwards et al. (2004); Gehrels et al. (2005); Horton and Edwards 

(2006); Leorri et al. (2008).  

6.2.5. Component Selection 

Each regression model produces multiple components and choosing the appropriate one is 

based on their predictive ability and associated errors. Selecting the best component, 

however, is an important decision as it has consequences for the elevation reconstruction 

and its associated error (Barlow et al., 2013). Simply assessing the model performance 

based on the RMSEP alone is not recommended and other statistical parameters should be 

considered before selecting the final component from which to base the reconstruction 

(Telford et al., 2004). Therefore the choice of component followed the ‘principle of 

parsimony’ (Horton et al., 2003) where the lowest component that gave acceptable results 

based on statistical parameters displaying low RMSEP under cross-validation and high r2 

values (following Birks, 1995) was chosen. If possible an independent control should also be 

used to assess the reconstructive ability of the transfer function. 
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As is the goal of many foraminiferal-based studies from salt-marsh environments, 

instrumental records from nearby tide-gauge stations provide a validation tool from which the 

transfer function reconstructed model can be compared with (e.g. Gehrels, 2000; Donnelly et 

al., 2004; Gehrels et al., 2005). In this study, instrumental data from tide-gauge observations 

at Split, Croatia are similarly used to assess the accuracy of the transfer function-based sea-

level reconstruction. This is discussed further in chapter 7.   

6.2.6. Modern Analogue Technique  

The purpose of the MAT is to quantitatively compare differences and similarities of the 

biological taxa from a fossil core sample with the biological taxa that comprise the modern 

training set together with their associated environmental data (Birks, 1995). Essentially it 

assesses whether or not fossil samples have good modern analogies in the contemporary 

training set. Non-analogue situations may arise if within a fossil sequence an environment is 

not sampled in the assemblages that comprise the modern training set. The MAT looks for 

closest ‘modern’ analogues from a contemporary training set in fossil assemblages by 

calculating dissimilarity coefficients (Birks, 1998). Predictions of past sea-level will perform 

best when they are inferred from fossil samples similar in composition to modern 

assemblages that comprise the modern training set (Edwards et al., 2004). The MAT is 

differentiated from the above regression models (e.g. WA-PLS) as it is not based on a 

species-response model (Birks, 1995). It has, however, been criticised for the over-optimistic 

estimations it produces (Telford and Birks, 2005). Whilst the technique can be used to infer 

palaeo-sea-levels, in this instance the MAT was adopted to assess the reliability of the 

reconstruction by identifying fossil samples in the core sequences which did not possess 

modern equivalents, following Edwards and Horton (2000). In this way it provides an 

independent assessment of the regression models (PLS and WA-PLS) applied.  

Similarities and dissimilarities between the fossil core samples and assemblages in the 

modern training set are quantified using a squared chord dissimilarity measure (Prentice, 

1980; Overpeck et al., 1985; Birks, 1995). Statistical parameters from the MAT provide a 

minimum dissimilarity coefficient (minDC) for each fossil sample based on the modern 

training set. A minDC value of zero would indicate perfect similarity whilst increasing minDC 

values indicate increasing dissimilarity (Jackson and Williams, 2004). Percentiles produced 

by the dissimilarity coefficient are used to determine which fossil samples have “good” or 

“poor” modern analogues. However selecting the appropriate value can be an arbitrary 

process and indeed varies between authors. For example Woodroffe (2009) used the largest 

dissimilarity coefficient calculated between the modern training set as a threshold to 

determine “good” or “poor” analogues. Other authors use a more constrained approach such 
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as the fifth percentile to determine “good” modern analogues (e.g. Barlow et al., 2013; 

Watcham et al., 2013). Here the approach of Horton and Edwards (2006) and Kemp et al. 

(2009a) was followed by assigning core samples below the tenth percentile to have good 

matching analogues, therefore providing a reliable reconstruction (Birks et al., 1990). 

Samples below the twentieth percentile, however, are deemed poor or have no matching 

analogues and so reconstructions from these samples are considered unreliable. Those 

samples that fall between these cut-off points are considered fair or “close”. The number of 

possible modern analogues was limited to 5 following Southall et al. (2006), who suggest 

using a lower number of analogues for smaller training sets due to the increased likelihood 

of estimates appearing similar when a larger number of analogues are used (e.g. 10). 

Statistical parameters for MAT were calculated using the final screened transfer function and 

applied to cores JD1, JD2 and BL using the programme C2 (version 1.7.4; Juggins, 2003-

2011).  

6.2.7. Transfer Function Application 

Following the construction of the transfer function model and identifying fossil samples with 

poor modern analogues, calibration was then performed where the ecological response 

functions were applied to fossil samples to produce estimates of palaeo-marsh altitude 

(PMA) relative to MSL. Standard errors of prediction (SE pred) were calculated for all fossil 

samples using the cross-validation procedure bootstrapping, to assess errors for all 

reconstructed values (Birks et al., 1990). As an additional test of reliability, a second transfer 

function was created using ML approach. Following the same methodology described for 

PLS and WA-PLS, the ML transfer function was used to demonstrate that the statistical 

technique used does not significantly affect the outcome of the reconstruction following 

Horton and Edwards (2006). All calibration procedures were processed using C2 (version 

1.7.4; Juggins, 2003-2011). 

After establishing heights of palaeo-marsh altitude, RSL changes can then be inferred when 

combined with chronostratigraphic data (Horton and Edwards, 2006). Sea-level trends were 

created by plotting a series of sea-level index points (SLIPs) on a time-altitude diagram 

including both fossil sample prediction errors (SE pred) and chronological errors (cal. AD) 

described in chapter 5. Inferring sea-level changes was restricted to the extent of the 

chronologies beyond which no age control exists. However the reconstructions were applied 

to the whole length of each core sequence. In this study mean sea-level (MSL) will be 

reconstructed (following Hill et al., 2007; Kemp et al., 2011) and its former position 

calculated using following equation: 
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MSL= (SD – PMA) 

where SD is the fossil sample depth (m HVRS71), PMA is the estimated palaeo-marsh 

altitude.  

6.3. TRANSFER FUNCTION RESULTS 

The following analyses are based on unscreened training sets including all samples and 

foraminiferal taxa after the removal of insignificant species following the same procedure 

outlined in chapter 4. The results of model performance for unscreened training sets are 

summarised in tables 6.3, 6.5 and 6.7 and figures 6.1 to 6.3. The potential improvements to 

transfer function model performance through data screening processes are explored further 

in section 6.3.5. 

6.3.1. Jadrtovac Transects 1 & 2 (JDT) 

Detrended canonical correspondence analysis (DCCA) reveals a gradient length of 0.775 

SD units for axis 1 when using altitude as the only constraining environmental variable (table 

6.2). Whilst the lengths of gradient are greater for axes 2, 3 and 4, only axis 1 is canonical as 

only one independent constraint can be formed from the environmental variable. The results 

therefore suggest the modern training set is strongly linear and, thus, the use of a linear-

based PLS regression and calibration model for the 30 samples and 6 species that comprise 

the JDT training set.  

Table 6.2. Summary DCCA results for JDT training set. Length of gradient is in SD units. 

Axes 1 2 3 4 Total inertia 

Eigenvalues: 0.077 0.233 0.051 0.038 0.990 

Lengths of gradient: 0.775 1.664 1.869 1.899  

Sum of all Eigenvalues:     0.990 

Sum of all Canonical Eigenvalues:     0.077 

 

Table 6.3 and figure 6.1 show the results of apparent measures and cross-validation 

statistical parameters using PLS regression for the JDT training set. The transfer function 

produces five components, which become progressively more complex (number 5 being the 

most complex). Apparent measures (r2
 and RMSE) are often prone to over- and under-

estimations (Birks, 1995) and so jack-knifed parameters are used to provide an better 

assessment of model performance. Overall, all components of the PLS model reveal 

relatively weak correlations between observed and predicted values, with highest values 

observed in components two, four and five (r2
 jack = 0.11). In this instance, RMSEP may 

provide a better guide to model performance as the low r2
 jack values are strongly dependent 
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on the very short gradient length shown in table 6.2; axis one (Gehrels et al., 2001; Leorri et 

al., 2010). These values provide a measure of the precision (or error) of the regression 

model and therefore indicate precise reconstructions of former sea-level are possible where 

RMSEP jack values range from 0.07 m for components two and three to 0.09 m for 

component one. Cross-validation results from bootstrapping also produce similar prediction 

errors ranging from 0.08 to 0.11 m (RMSEP boot). Maximum bias values remain very similar 

for all components ranging from 0.26 to 0.21. Following the assessment criteria described 

above (i.e. principle of parsimony; high r2
 jack and low RMSEP jack), component two was 

selected as this illustrated precise reconstructions of former sea-level are possible (RMSEP 

jack = 0.07 m) despite the weak correlation (r2
 jack = 0.11). Inspection of scatter plots for 

observed versus predicted altitude and residuals (for component two) in figure 6.1 also 

highlight this relatively weak relationship in the JDT training set. These plots indicate the 

potential benefits of a data screening process to improve model performance by removing 

outliers in the dataset as described in section 6.3.5 below. 

  

Table 6.3. Statistical summary of PLS transfer function performance from modern dead 

foraminiferal assemblages using the JDT training set. C = Component.  

TF Model Statistical Parameter C1 C2 C3 C4 C5 

PLS r
2
 0.22 0.28 0.30 0.33 0.34 

 RMSE (m) 0.06 0.06 0.06 0.06 0.06 

 Max_bias 0.19 0.20 0.18 0.17 0.17 

 r
2 

jack 0.02 0.11 0.08 0.11 0.11 

 RMSEP jack (m) 0.09 0.07 0.07 0.08 0.08 

 Max_bias jack  0.26 0.22 0.22 0.21 0.21 

 r
2 

boot 0.01 0.08 0.12 0.14 0.13 

 RMSEP boot (m) 0.08 0.08 0.08 0.10 0.11 

 Max_bias boot  0.25 0.22 0.22 0.21 0.21 
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Figure 6.1. Transfer function (PLS) observed versus predicted altitude (m HVRS71) and 

residual values for JDT training set (component 2; jack-knife measures). 

   

6.3.2. Blace Transects 1 & 2 (BLT) 

Using altitude as the only constraining environmental variable, DCCA again indicates linear 

species distribution as revealed by a length of gradient for axis one of 1.536 SD units (table 

6.4). Again only axis one can only be used to infer species-response as this is the only 

canonical axis. Whilst greater in comparison to JDT, DCCA also indicates a relatively strong 

linear relationship with altitude and suggests the use of linear-based regression models (e.g. 

PLS) for the 26 samples and 5 species in the BLT training set. In this instance, however, 

unimodal WA-PLS was also performed as a comparative tool to assess reconstructive ability 

between the two regression models.  

 

Table 6.4. Summary DCCA results for BLT training set. Length of gradient is in SD units. 

Axes 1 2 3 4 Total inertia 

Eigenvalues: 0.443 0.149 0.088 0.039 1.010 

Lengths of gradient: 1.536 1.683 1.746 2.364  

Sum of all Eigenvalues:     1.010 

Sum of all Canonical Eigenvalues:     0.443 

 

A statistical summary of PLS and WA-PLS transfer function models is shown in table 6.5 and 

figure 6.2. Analysis of model performance parameter r2
 jack reveals much stronger 

correlations between observed and predicted altitude in comparison to the training set at 

Jadrtovac. When comparing results from the two regression models, PLS marginally 
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outperforms WA-PLS, which only produces 4 components. However, given the short 

gradient length (table 6.4), this is expected. The strength of relationship was strongest for 

component two (r2
 jack = 0.71) and weakest for component five (r2

 jack = 0.56) for the PLS 

model, demonstrating robust transfer function performance. Inspection of prediction errors 

for the training set (RMSEP jack) shows very similar values for all model components. 

However, component two also produced the most favourable results, suggesting precise 

sea-level reconstructions are possible (RMSEP jack = 0.09 m). Boot-strapped performance (r2 

boot) and prediction errors (RMSEP boot) are again very of similar magnitude to jack-knifed 

cross-validation. The relationship between observed versus predicted foraminiferal altitude 

shown in figure 6.2 for component two demonstrates the stronger relationship observed in 

the BLT training in comparison to JDT. However, it also highlights the potential sample 

outliers that exist in the training set which are potentially detrimental to the overall transfer 

function model performance. Similarly the BLT training set would therefore benefit from data 

screening processes.  

 

Table 6.5. Statistical summary of PLS and WA-PLS transfer function performance for dead 

foraminiferal assemblages using the BLT training set. C = Component.   

TF Model Statistical Parameter C1 C2 C3 C4 C5 

PLS r
2
 0.73 0.78 0.81 0.84 0.84 

 RMSE (m) 0.09 0.08 0.07 0.07 0.07 

 Max_bias 0.11 0.13 0.10 0.10 0.10 

 r
2 

jack 0.68 0.71 0.69 0.64 0.56 

 RMSEP jack (m) 0.10 0.09 0.10 0.11 0.12 

 Max_bias jack  0.12 0.16 0.12 0.13 0.15 

 r
2 

boot 0.66 0.70 0.69 0.63 0.57 

 RMSEP boot (m) 0.11 0.11 0.11 0.13 0.15 

 Max_bias boot  0.14 0.18 0.16 0.15 0.16 

WA-PLS r
2
 0.72 0.73 0.73 0.73 - 

 RMSE (m) 0.09 0.09 0.09 0.09 - 

 Max_bias 0.10 0.10 0.10 0.10 - 

 r
2 

jack 0.68 0.67 0.68 0.67 - 

 RMSEP jack (m) 0.10 0.10 0.10 0.10 - 

 Max_bias jack  0.12 0.12 0.12 0.12 - 

 r
2 

boot 0.68 0.67 0.66 0.66  

 RMSEP boot (m) 0.11 0.12 0.12 0.12  

 Max_bias boot  0.12 0.14 0.14 0.14  
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Figure 6.2. Transfer function (PLS) observed versus predicted altitude (m HVRS71) and 

residual values for BLT training set (component 2; jack-knife measures). 

 

6.3.3. Total Combined Dataset (TCD) 

Inspection of table 6.6 again shows a short gradient length for axis one (1.173 SD units) as 

revealed by DCCA (table 6.6). This also illustrates linear-species response in relation to 

altitude, suggesting linear-based PLS is again most appropriate for a total combined training 

set comprising 56 samples and 6 species. As a comparison, WA-PLS was again performed 

to assess transfer function model performance.  

Table 6.6. Summary DCCA results for TCD training set. Length of gradient is in SD units. 

Axes 1 2 3 4 Total inertia 

Eigenvalues: 0.198 0.307 0.128 0.093 1.351 

Lengths of gradient: 1.173 2.134 1.831 1.571  

Sum of all Eigenvalues:     1.351 

Sum of all Canonical Eigenvalues:     0.198 

Table 6.7 and figure 6.3 provide a statistical summary of PLS and WA-PLS transfer function 

performance for dead foraminiferal assemblages in the total combined training set. Linear 

(PLS) and unimodal (WA-PLS) regression models revealed five components. Overall PLS 

appears to marginally outperform WA-PLS although the results are very similar for both 

regression models. Inspection of model performance parameter r2
 jack reveals components 

two and three to demonstrate robust transfer function performance (r2
 jack = 0.32). Analysis of 

prediction errors are similar for all components displayed where RMSEP jack ranges from 

0.11 to 0.12 m suggesting precise sea-level reconstructions are possible using a total 
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training set which is comparable to that of previous studies (table 7.2). Figure 6.3 shows the 

relationship between observed and foraminiferal estimated altitude using component 2 and 

illustrates strong performance but a bias towards the upper part of the altitudinal gradient. 

Sample outliers in the dataset are also observed which would benefit from data screening. 

 

Table 6.7. Statistical summary of PLS and WA-PLS transfer function performance for dead 

foraminiferal assemblages using a total combined transect training set. C = Component.  

TF Model Statistical Parameter C1 C2 C3 C4 C5 

PLS r
2
 0.37 0.44 0.44 0.45 0.45 

 RMSE (m) 0.11 0.10 0.10 0.10 0.10 

 Max_bias 0.16 0.14 0.14 0.14 0.14 

 r
2 

jack 0.27 0.32 0.32 0.28 0.25 

 RMSEP jack (m) 0.12 0.11 0.11 0.12 0.12 

 Max_bias jack 0.17 0.16 0.16 0.16 0.16 

 r
2 

boot 0.26 0.30 0.29 0.25 0.20 

 RMSEP boot (m) 0.12 0.12 0.12 0.13 0.14 

 Max_bias boot  0.18 0.16 0.16 0.17 0.17 

WA-PLS r
2
 0.41 0.44 0.44 0.44 0.44 

 RMSE (m) 0.10 0.10 0.10 0.10 0.10 

 Max_bias 0.16 0.15 0.15 0.15 0.15 

 r
2 

jack 0.33 0.29 0.25 0.25 0.25 

 RMSEP jack (m) 0.11 0.11 0.12 0.12 0.12 

 Max_bias jack 0.16 0.16 0.16 0.16 0.16 

 r
2 

boot 0.33 0.30 0.26 0.25 0.25 

 RMSEP boot (m) 0.11 0.12 0.13 0.13 0.13 

 Max_bias boot  0.16 0.16 0.16 0.16 0.16 

 

 

Figure 6.3. Transfer function (PLS) observed versus predicted altitude (m HVRS71) and 

residual values for TCD training set (component 2; jack-knife measures).   
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6.3.4. Local Versus Regional Training Set 

The spatial scale from which foraminiferal training sets are derived can have important 

consequences for transfer function performance (e.g. Watcham et al., 2013). Local training 

sets may be collected from sites within close proximity to the fossil core (e.g. Woodroffe and 

Long, 2010) whilst regional datasets may comprise multiple training sets spanning multiple 

countries (e.g. Horton and Edwards, 2006). A problem arises where the contemporary 

training set is limited or does not capture the full range of environments recorded in the fossil 

sequence. Small training sets are inherently under-representative of the modern 

environment containing fewer modern analogues and, therefore, are more prone to errors 

(Horton and Edwards, 2006). The trainings sets from Jadrtovac and Blace showed site-

specific transfer function performance varied from r2 jack 0.11 and RMSEP jack 0.07 m for JDT 

to r2 jack 0.71 and RMSEP jack 0.09 m for BLT. The number of surface samples included for 

each training set was limited to between 26 and 30 surface samples (table 6.1). Indeed even 

the total transect training set was relatively small but comparable to previous studies 

comprising 56 (unscreened) surface samples (table 6.8). Given the strong similarity in the 

tidal regimes at Jadrtovac and Blace, a combined training in this instance may still be 

considered as being ‘local’. The statistical analyses gave a strength of relationship of r2 jack = 

0.32 with a reconstruction error of RMSEP jack= 0.11 m for an unscreened total training 

dataset transfer function. In an attempt to improve model performance, the combined 

training set was explored further through data screening, as described below. By using the 

TCD training set, more modern analogues are available from which the fossil samples can 

be compared with. 

 

Table 6.8. Comparison of training set size and salt-marshes studied with published literature 

Location Training Set Size Salt-Marshes Studied Reference 

Central Croatia 56 (unscreened) 2 This study 

UK (multiple sites) 88 6 Zong and Horton (1999) 

UK (multiple sites) 200 13 Edwards and Horton (2006) 

Pounawea, New Zealand 31 1 Southall et al. (2006) 

Sulawesi, Indonesia 63 3 Engelhart et al. (2007) 

North Carolina, USA 47 3 Horton and Culver (2008) 

Bay of Biscay, Spain 46 4 Leorri et al. (2008) 

North Carolina, USA 184 10 Kemp et al. (2009b) 

Oregon, USA 85 5 Hawkes et al. (2010) 

West Greenland 64 3 Woodroffe and Long (2010) 

Tasmania, Australia 43 2 Callard et al. (2011) 

Brittany, France 36 2 Rossi et al. (2011) 

New Jersey, USA 62 3 Kemp et al. (2012) 

Liverpool, UK 80 2 Mills et al. (2013) 
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6.3.5. Training Set Screening 

The TCD training set was examined to remove sample outliers that degrade the overall 

predictive ability of the training set. Following this, a second iteration of a screened total 

combined training set was constructed and the results are given in table 6.11 and figure 6.4 

below. The standard deviation for altitude was 0.141 m and the screening processes 

removed all surface samples with an absolute residual (observed minus predicted) greater 

than this value. This resulted in the exclusion of 13 surface samples, including seven from 

Jadrtovac and six from Blace, as summarised in table 6.9 below. The final transfer function 

model is based on the remaining 43 surface samples and in comparison to previous studies; 

is still an acceptable and statistically robust number (table 6.8). The removal of these 

samples is due to their poor relationship with altitude, and failing to do so only decreases the 

overall ability of the transfer function model (Jones and Juggins, 1995; Gasse et al., 1997).  

Table 6.9. Summary of surface samples removed through screening process. The standard 

deviation of altitude for unscreened TCD training set was 0.141.  

Site  Surface sample number Absolute residual (observed versus predicted) 

Jadrtovac  JD1-13 0.150 

 JD1-18 0.176 

 JD1-19 0.222 

 JD1-20 0.187 

 JD1-22 0.219 

 JD2-1 -0.225 

 JD2-2 -0.154 

Blace  BL1-16 -0.163 

 BL2-1 -0.204 

 BL2-2 -0.144 

 BL2-4 0.165 

 BL2-5 0.164 

 BL2-6 0.262 

 

Detrended canonical correspondence analysis was performed on the new training set so that 

the appropriate statistical model could again be applied. Axis one revealed a longer gradient 

length of 1.594 SD units (table 6.10). As this value was closer to 2, following Callard et al. 

(2011) both linear PLS and unimodal WA-PLS regression models were applied so that the 

statistical parameters between the two techniques could be compared. The performance of 

the initial unscreened PLS regression model was moderate (r2 jack = 0.32) but suggested 

precise sea-level reconstructions were possible (RMSEP jack = 0.11 m). Updated transfer 

function statistical parameters from the screening training set and shown in table 6.11 results 

in a significant improvement to model performance as described below.  
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Table 6.10. Summary DCCA results for a screened TCD training set.  

Axes 1 2 3 4 Total inertia 

Eigenvalues: 0.264 0.315 0.107 0.045 1.280 

Lengths of gradient: 1.594 2.220 1.635 1.790  

Sum of all Eigenvalues:     1.280 

Sum of all Canonical Eigenvalues:     0.264 

 

Inspection of statistical parameters reveals a screened transfer function considerably 

improves model performance for r2 jack from 0.32 to 0.56 and RMSEP jack from 0.11 m to 0.07 

m for component three using linear PLS regression (table 6.11). Alternatively, it can be 

argued that removing outliers, limits the number of modern analogues that accurately reflect 

the modern environment. Results produced using unimodal regression (WA-PLS) show 

almost identical performance (for component two) compared to linear regression (PLS), with 

an r2 jack value of 0.55 and prediction error of 0.08 m (RMSEP jack). The maximum bias in 

jack-knifed residuals also remains very similar for both models (max_bias jack; 0.10–0.11 m). 

This would suggest that despite the short gradient lengths provided by DCCA (1.594; axis 

one) both regression models are capable of robust and precise sea-level reconstructions. 

Weighted average results from MAT were also used to assess the performance of the 

modern training set, displaying comparable quantitative performance. The utility of MAT 

output helps to assess the modern training sets reconstructive potential. It is also a useful 

procedure as it provides percentile values which are used as thresholds to identify ‘good’ or 

‘poor’ fossil samples in relationship to the modern training set (see section 6.3.6 below). It is 

difficult to justify the use of unimodal regression and calibration procedures due to the short-

environmental gradients involved. However, both methods produced almost identical 

relationship coefficients (r2
 jack) and prediction errors (RMSEP jack) and as a result both 

methods will be explored further in estimating palaeo-marsh altitude following Callard et al. 

(2011). Inspection of figure 6.4 shows that both models over-estimate most sample altitudes 

in the lower section of the height gradient and under-estimate altitudes of many samples in 

the higher upper salt-marsh environment. It is also clear that the training set is biased 

towards samples from the upper envelope of the height gradient with a limited number of 

samples below 0.0 m HVRS71.  

As a comparison to the results produced by screening the training set an additional transfer 

function was created incorporating all surface samples in the training set (see section 6.3.8).  
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Table 6.11. Statistical summary of transfer function performance for screened dead 

foraminiferal assemblages from a total combined training set. C = component.  

TF Model Statistical Parameter C1 C2 C3 C4 C5 

PLS r
2
 0.56 0.62 0.63 0.63 0.63 

 RMSE (m) 0.08 0.07 0.07 0.07 0.07 

 Max_bias 0.10 0.09 0.09 0.10 0.09 

 r
2 

jack 0.47 0.54 0.56 0.55 0.54 

 RMSEP jack (m) 0.08 0.08 0.07 0.08 0.08 

 Max_bias jack 0.11 0.10 0.10 0.10 0.12 

 r
2 

boot 0.47 0.54 0.55 0.54 0.54 

 RMSEP boot (m) 0.09 0.08 0.08 0.08 0.08 

 Max_bias boot  0.13 0.10 0.10 0.10 0.10 

WA-PLS r
2
 0.55 0.62 0.62 0.62 0.62 

 RMSE (m) 0.08 0.07 0.07 0.07 0.07 

 Max_bias 0.11 0.10 0.10 0.10 0.10 

 r
2 

jack 0.49 0.55 0.54 0.54 0.54 

 RMSEP jack (m) 0.08 0.08 0.08 0.08 0.08 

 Max_bias jack 0.12 0.11 0.11 0.11 0.11 

 r
2 

boot 0.50 0.54 0.54 0.53 0.53 

 RMSEP boot (m) 0.08 0.08 0.08 0.08 0.08 

 Max_bias boot  0.12 0.11 0.11 0.11 0.11 

MAT r
2
 0.34 - - - - 

 RMSE (m) 0.10 - - - - 

 Max_bias 0.25 - - - - 

WMAT r
2
 0.52 - - - - 

 RMSE (m) 0.08 - - - - 

 Max_bias 0.13 - - - - 
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Figure 6.4. Transfer function PLS (component 2) and WA-PLS (component 2) observed 

versus predicted altitude (m HVRS71) and residual values for the screened TCD training set. 

 

Following Edwards and Horton (2000); Mills et al. (2013) additional regression models (PLS 

and WA-PLS) were also constructed using an “agglutinated species only” training set. 

However, output from the analyses suggests excluding calcareous taxa (Quinqueloculina 

spp., Ammonia spp. and Elphidium spp.) does not significantly improve model performance, 

producing very similar coefficient (r2 
jack) values and prediction errors (RMSEP 

jack) for 

component three (PLS) and component two (WA-PLS) respectively (table 6.12 and figure 

6.5). The preference here is, therefore, to include all agglutinated and calcareous species in 

the transfer function model to provide a more accurate representation of the modern 
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environment and similarly more modern analogues from which the fossil samples can be 

compared with.  

Table 6.12. Statistical summary of PLS and WA-PLS transfer function performance for 

screened dead agglutinated species only foraminiferal assemblages from a total combined 

transect training set. C = component. 

TF Model Statistical Parameter C1 C2 C3 C4 C5 

PLS  r
2
 0.56 0.62 0.63 0.63 0.63 

 RMSE (m) 0.08 0.07 0.07 0.07 0.07 

 Max_bias 0.10 0.09 0.09 0.10 0.09 

 r
2 

jack 0.47 0.54 0.55 0.55 0.54 

 RMSEP jack (m) 0.08 0.08 0.08 0.08 0.08 

 Max_bias jack 0.11 0.10 0.10 0.10 0.12 

 r
2 

boot 0.29 0.31 0.31 - - 

 RMSEP boot (m) 0.10 0.10 0.10 - - 

 Max_bias boot  0.23 0.20 0.20 - - 

WA-PLS r
2
 0.55 0.62 0.62 0.62 0.62 

 RMSE (m) 0.07 0.07 0.07 0.07 0.07 

 Max_bias 0.11 0.10 0.10 0.10 0.10 

 r
2 

jack 0.49 0.54 0.54 0.54 0.54 

 RMSEP jack (m) 0.08 0.08 0.08 0.08 0.08 

 Max_bias jack 0.12 0.11 0.11 0.11 0.11 

 r
2 

boot 0.02 0.02 - - - 

 RMSEP boot (m) 0.11 0.11 - - - 

 Max_bias boot  0.36 0.36 - - - 
 

 

 

Figure 6.5. Transfer function (PLS) observed versus predicted altitude (m HVRS71) and 

residual values for agglutinated only TCD training set (component 2; jack-knife measures).  
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6.3.6. Modern Analogues 

The next stage assessed the degree to which fossil samples possessed reliable modern 

analogues (Birks et al., 1990; Birks, 1995). Table 6.13 provides a summary of the percentiles 

produced by dissimilarities in the TCD training set using MAT. In this study the tenth and 

twentieth percentiles were used (following Horton and Edwards, 2006) as thresholds to 

distinguish between “good”, “poor” and “close” analogues for those that fell between these 

thresholds. Using this information, the MAT was applied to fossil samples from each core 

and the results displayed in figure 6.6. Raw values of minDC are provided in Appendix D. 

Table 6.13. Summary of MAT percentiles using dissimilarities in the TCD training set.  

Percentile Value 

1
st
 2.80863 

2
nd

 4.39595 

5
th
 7.96043 

10
th 

14.7963 

20
th
 26.4921 

 

Based on the percentile thresholds above, the TCD training set identifies a number of 

samples within all cores that have good, close and poor modern analogues. In core JD1 

(figure 6.6a), the lower 21 cm contains only two fossil samples (at 25 cm and 27 cm) with 

‘close’ modern analogues whilst all other samples display a poor relationship as indicated by 

minDC values exceeding the 20th percentile (26.4921). Indeed this is particularly pronounced 

for fossil samples towards the bottom of the sequence, suggesting that any palaeo-marsh 

altitude reconstruction from this section of the core may be unreliable. In the upper 21 cm of 

the core, however, all fossil samples fall below the 20th percentile, suggesting they have 

good or close modern analogues. Fourteen fossil samples display a strong similarity with 

samples from the modern environment as reported by minDC values all below the 10th 

percentile (<14.7963). Reconstructions for this section of the core may therefore be 

considered statistically robust and reliable.   

Core JD2 (figure 6.6b) shows a strong analogy with fossil samples from the lower 12 cm of 

the core where 9 samples fall below the 10th percentile between 56 cm and 44 cm. Moving 

up through the sequence, the relationship between fossil samples and modern analogues in 

the training set dramatically decreases, with 18 fossil samples reporting minDC values 

above the 20th percentile between 43 and 27 cm. This would suggest reconstruction values 

based on fossil samples from this section of the core may be unreliable. Above 25 cm, 

however, all fossil samples suggest a strong similarity with the modern training set, with 

minDC values all below the 10th percentile illustrating reliable palaeo-marsh altitude 

reconstructions are possible from this part of the core.    
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Figure 6.6. Summary MAT results showing ‘good’, ‘close’ and ‘poor’ analogues in cores (a) 

JD1, (b) JD2 and (c) BL. See table 6.13 for threshold values for 10th and 20th percentiles.   
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Inspection of minDC values for core BL (figure 6.6c) shows much fewer fossil samples that 

are without modern analogues in comparison to fossil samples in cores JD1 and JD2. The 

lowermost samples between 32 cm and 29 cm have good modern analogues in the TCD 

training set, as shown by minDC values below the 10th percentile. In total, six fossil samples 

in core BL have poor modern analogues, with minDC values above the 20th percentile, 

primarily between 25 and 18 cm. Moving up through the core sequence, reliable 

reconstructions are possible in all samples above 17 cm where 13 fossil samples have good 

analogues (below 10th percentile) and 3 close analogues (between 10th and 20th percentile).  

 

6.3.7. Palaeo-Marsh Altitude Reconstruction 

The screened TCD transfer function was used to calibrate fossil assemblages in cores JD1, 

JD2 and BL to provide estimates of palaeo-marsh altitude (PMA). Results for both PLS and 

WA-PLS calibrations are plotted against core depth (cm) and displayed in figures 6.7, 6.8 

and 6.9, whilst raw values of bootstrapped predictions and standard deviation errors (SE pred) 

are provided in Appendix D. Fossil analogues that do not possess modern equivalents, as 

indentified by the MAT presented above, are also highlighted since inferring reconstructions 

from these horizons is considered unreliable. To assess the reliability of the transfer function 

and to determine if model selection has an important consequence for the reconstruction, 

transfer functions using the ML approach were also constructed and plotted as a 

comparative tool. Table 6.14 displays statistical parameters produced using ML and shows a 

comparable statistical relationship (r2 jack = 0.52) and prediction error (RMSEP jack = 0.10 m) 

to PLS and WA-PLS regression.  

 

Table 6.14. Statistical summary of ML transfer function performance for screened dead 

foraminiferal assemblages from a total combined training set. C = component.  

TF Model Statistical Parameter Performance 

ML r
2
 0.57 

 RMSE (m) 0.09 

 Max_bias 0.11 

 r
2 

jack 0.52 

 RMSEP jack (m) 0.10 

 Max_bias jack 0.13 

 r
2 

boot 0.52 

 RMSEP boot (m) 0.10 

 Max_bias boot  0.13 
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Figure 6.7 shows reconstructed PMAs for PLS (component 3) and WA-PLS (component 2) 

transfer functions for core JD1. Estimated PMAs by PLS transfer functions range from 0.359 

to 0.036 m (mean = 0.204 m). The average error for each fossil sample (SE pred) is 0.085 m 

(table 6.15). In comparison, estimated PMAs by WA-PLS range from 0.263 m to -0.127 m 

(mean = 0.095 m). The average error for each fossil sample (SE pred) using unimodal 

calibration is similar at 0.085 m. Both transfer function models show an overall increasing 

trend in PMA towards the modern surface. Between 42 cm and 28 cm, both models are 

consistent, suggesting PMA remained relatively stable (although it is must be noted that no 

modern analogues exist in this section). Above 28 cm, PMA begins to increase to the top of 

the core, displaying a period of decreasing PMA between 14 cm and 10 cm. Whilst the 

trends and prediction errors produced by both transfer function models are similar, PMAs 

predicted by WA-PLS are lower in altitude in comparison to PLS transfer function 

estimations.  Overall the results from ML regression and calibration show a similar trend in 

PMA when compared with PLS and WA-PLS results. An increasing trend towards the 

surface is again observed and estimates produced fall within the boundaries of both linear 

and unimodal calibrations. Towards the bottom of the core, however, prediction errors 

produced by ML increase dramatically, highlighting the absence or poor quality of modern 

analogues that exist here due to limitations in the sampled altitude range of the modern 

training set.  

 

Figure 6.7. Palaeo-marsh altitude (m HVRS71) estimated using PLS (component 3), WA-

PLS (component 2) and ML transfer functions for core JD1 including sample specific errors 

estimated by bootstrapping. Good/close and poor modern analogues also displayed.  
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Table 6.15. Summary of palaeo-marsh altitude and average errors for core JD1.  

Model  Value 

PLS (C3) Maximum PMA (m HVRS71) 0.359 

 Minimum PMA (m HVRS71) 0.036 

 Range of PMA (m) 0.322 

 Average PMA (m HVRS71) 0.204 

 Average error (m) 0.0850 

WA-PLS (C2) Maximum PMA (m HVRS71) 0.263 

 Minimum PMA (m HVRS71) -0.127 

 Range of PMA (m) 0.390 

 Average PMA (m HVRS71) 0.0957 

 Average error (m) 0.0848 

ML Maximum PMA (m HVRS71) 0.338 

 Minimum PMA (m HVRS71) -0.046 

 Range of PMA (m) 0.384 

 Average PMA (m HVRS71) 0.143 

 Average error (m) 0.167 

 

 

Figure 6.8 shows reconstructed PMAs for PLS (component 3) and WA-PLS (component 2) 

transfer functions for core JD2. Linear calibration PLS shows estimated PMAs range from 

0.380 m to -0.109 m (mean = 0.145 m) with an average error (SE pred) of 0.091 m (table 

6.16). The reconstructed values by WA-PLS transfer functions are again lower in 

comparison to PLS. Estimated PMAs range from 0.279 m to -0.183 m. The average error 

(SE pred) for each fossil sample is slightly lower at 0.090 m. Both transfer functions produce 

similar trends, with stable PMAs observed between 56 and 44 cm above which poor 

analogues suggest fluctuating increases in PME. Between 25 and 12 cm PMA continues to 

rise before a period of decreasing PMA to approximately 4 cm and then gradually increasing 

again to the modern surface. In comparison to calibration by ML, prediction of PMA displays 

a similar increasing trend with the similar fluctuations observed between 43 and 27 cm, 

where poor analogues exist. Again larger prediction errors are observed towards the bottom 

of the core (also at 30 cm) reflecting the limitations of the modern training set in accurately 

predicting heights for these levels which are composed predominately of calcareous taxa.  

Figure 6.9 shows reconstructed PMAs for PLS (component 3) and WA-PLS (component 2) 

transfer functions for core BL. Estimated PMA by PLS range from 0.328m to -0.06 m (mean 

= 0.221 m) with an average error of 0.086 m (table 6.17). Estimates of PMA by WA-PLS are 

again lower in magnitude ranging from 0.262 m to -0.124 m (mean = 0.168 m). The average 

error for WA-PLS is 0.088 m. Between 32 and 28 cm both transfer function indicate a 

decrease in PMA before rapidly increasing to 26 cm. Despite the lack of modern analogues 

in the fossil samples between 25 and 22 cm, the record shows a gradually increasing trend 

in PMA to 4 cm. A slight decrease in PMA is then observed up to 3 cm before rising towards 
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the modern surface. Maximum Likelihood predictions are again comparable to PLS and WA-

PLS, mirroring the increasing trend towards the modern surface. Larger errors are again 

associated with assemblages at the bottom of the core where calcareous taxa are found in 

abundance.  

 

Figure 6.8. Palaeo-marsh altitude (m HVRS71) estimated using PLS (component 3), WA-

PLS (component 2) and ML transfer functions for core JD2 including sample specific errors 

estimated by bootstrapping. Good/close and poor modern analogues also displayed. 

 

Table 6.16. Summary of palaeo-marsh altitude and average errors for core JD2.  

Model   

PLS (C3) Maximum PMA (m HVRS71) 0.380 

 Minimum PMA (m HVRS71) -0.109 

 Range of PMA (m) 0.489 

 Average PMA (m HVRS71) 0.145 

 Average error (m) 0.0905 

WA-PLS (C2) Maximum PMA (m HVRS71) 0.279 

 Minimum PMA (m HVRS71) -0.183 

 Range of PMA (m) 0.462 

 Average PMA (m HVRS71) 0.0652 

 Average error (m) 0.0898 

ML Maximum PMA (m HVRS71) 0.336 

 Minimum PMA (m HVRS71) -0.071 

 Range of PMA (m) 0.407 

 Average PMA (m HVRS71) 0.122 

 Average error (m) 0.186 
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Figure 6.9. Palaeo-marsh altitude (m HVRS71) estimated using PLS (component 3), WA-

PLS (component 2) and ML transfer functions for core BL including sample specific errors 

estimated by bootstrapping. Good/close and poor modern analogues also displayed. 

Table 6.17. Summary of palaeo-marsh altitude and average errors for core BL.  

Model  Value 

PLS (C3) Maximum PMA (m HVRS71) 0.328 

 Minimum PMA (m HVRS71) -0.06 

 Range of PMA (m) 0.394 

 Average PMA (m HVRS71) 0.221 

 Average error (m) 0.0859 

WA-PLS (C2) Maximum PMA (m HVRS71) 0.262 

 Minimum PMA (m HVRS71) -0.124 

 Range of PMA (m) 0.386 

 Average PMA (m HVRS71) 0.168 

 Average error (m) 0.0883 

ML Maximum PMA (m HVRS71) 0.255 

 Minimum PMA (m HVRS71) -0.607 

 Range of PMA (m) 0.316 

 Average PMA (m HVRS71) 0.180 

 Average error (m) 0.127 

 

6.3.8. Unscreened total dataset comparison 

Screening ecological trainings sets to remove modern samples in order to improve the 

predictive ability of the transfer function is well practised in ecological sea-level studies (e.g. 

Edwards et al. 2004a; Gehrels et al. 2005). However an alternative approach is to include all 
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environment (e.g. Barlow et al. 2013). As a comparison to the training set screening 

presented in section 6.3.5, below are the results of a new transfer function created whereby 

all samples are included, including those from JDR, increasing the modern training set size 

to 66. Inspection of PLS model parameters in table 6.18 below reveals components two and 

three to demonstrate weaker transfer function performance when compared to the screened 

dataset presented in table 6.12 (r2
 jack = 0.28; component 2). Prediction errors produced 

through jack-knifing (RMSEP jack) are also slightly larger ranging from 0.11 to 0.12m.  

Table 6.18. Statistical summary of PLS transfer function performance for an unscreened 

total training set including samples from JDR. C = component.  

TF Model Statistical Parameter C1 C2 C3 C4 C5 

PLS r
2 

 0.31 0.39 0.40 0.40 0.40 

 RMSEP (m) 0.10 0.10 0.10 0.10 0.10 

 Max_bias  0.17 0.15 0.16 0.16 0.16 

 r
2 

jack 0.22 0.28 0.28 0.24 0.20 

 RMSEP jack (m) 0.11 0.11 0.11 0.11 0.12 

 Max_bias jack  0.19 0.17 0.17 0.17 0.17 

 

The unscreened total transfer function was then applied to calibrate fossil samples to provide 

estimates of palaeo-marsh altitude allowing a direct comparison with the results presented in 

section 6.3.7 above. Fossil analogues that did not possess modern equivalents as identified 

by the MAT in section 6.3.6 were again highlighted.  

 

 

Figure 6.10. Palaeo-marsh altitude (m HVRS71) for cores (a) JD1, (b) JD2 and (c) BL 

estimated using PLS (C2), including sample specific errors estimated by bootstrapping. 
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Figure 6.10 shows reconstructed palaeo-marsh altitudes for PLS (component 2) transfer 

functions for cores JD1, JD2 and BL using an unscreened transfer function. Whilst the trends 

and prediction errors produced by transfer function models are similar, PMAs predicted for 

JD1 core are marginally lower when compared to PMAs using the screened TCD training set 

(figure 6.7), however still overestimating surface altitude. Reconstructed values for cores 

JD2 and BL however remain very similar throughout.  

Whilst the unscreened transfer function revealed a weaker strength of relationship and 

marginally higher prediction errors when compared to the screened transfer function, when 

applied to calibrate fossil samples and produce estimates of PMA, the reconstructed values 

and trends remain very similar throughout all cores. This process is useful to identify 

possible issues in removing modern samples from training sets simply based on threshold 

values produced by the C2 software. Ultimately this procedure identified that using a 

screened transfer function had no adverse effect when compared to a transfer function 

incorporating all modern surface samples in the training set.  

6.4. SEA-LEVEL RECONSTRUCTION 

Transfer function-based palaeo-marsh altitude reconstructions for cores JD1, JD2 and BL 

were converted to MSL and plotted against the established chronologies presented in 

chapter 5. Since this was restricted to the upper sections of each core, reconstructed values 

of MSL were also applied to the entire fossil sequences and plotted against depth. Whilst 

inferring sea-level changes from sections that cannot be chronological constrained is 

unreliable, the procedure was useful to explore the nature of MSL change over the full 

depositional history of the core sequence. Fossil samples that displayed poor modern 

analogues are again highlighted since reconstructions based on these horizons are also 

considered unreliable. Estimates of palaeo-marsh altitude demonstrated WA-PLS transfer 

function models produced estimations that were comparable to PLS, albeit at lower altitudes. 

The reconstruction estimates, including ML approach, fell within the error margins of each 

technique and suggested that the selection of transfer function model did not significantly 

impact on the reconstructed trends. However, it is again difficult to justify the application of 

unimodal regression and calibration given the strong linear relationship of the training set as 

demonstrated by gradient lengths shorter than 2 SD units. As a result, the following sea-level 

reconstructions are constructed using the PLS (component 2) TCD screened transfer 

function to analyse fossil samples and produce estimates of palaeo-MSL as described 

below. This is also justified by the slightly improved statistical performance of PLS compared 

to WA-PLS in the regression stage of transfer function development (table 6.11).  
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6.4.1. Jadrtovac Site 1 (JD1) 

Figure 6.11a shows reconstructed MSL for core JD1 plotted against depth (cm) and shows 

an overall increasing trend in MSL to the surface. However, inferring MSL changes from 

sediments below 28 cm is considered unreliable due to fossil samples displaying a poor 

relationship with modern analogues in the TCD training set. Thus, the sharp drop in MSL 

witnessed between 28-27 cm is very poorly constrained and indeed corresponds to a section 

of the core where insufficient counts were observed (<150; figure 5.5). Moving up through 

the core, MSL fluctuates to 14 cm depth but again estimates from this section of the core 

contain a number of poor modern analogues. By comparison, the record produced from 

‘good’ fossil analogues appears much more stable and consistent. Above 14 cm, the sea-

level reconstruction suggests a pronounced increase in MSL up to 10 cm where MSL then 

fluctuates towards the modern salt-marsh surface. 

Figure 6.11b shows reconstructed MSL against the OxCal age-depth model (chapter 5). The 

extent of dating for core JD1 limits the sea-level reconstruction to the upper 28 cm of the 

core extending back to c. AD 1751±43 (median age) and incorporating the transition stage 

between agglutinated and calcareous taxa (figure 5.5). This transition also includes 6 fossil 

samples above 28 cm which display a poor relationship with assemblages in the modern 

training set. Nonetheless, the record contains useful information in resolving sea-level trends 

for the past 250 years or so. Disregarding the poor fossil samples, the record from AD 1765 

suggests of a relatively stable MSL trend up until the early 20th century were a small 

decrease is observed before MSL begins to rise notably from approximately AD 1940 (± 13 

yrs) onwards. Mean sea-level continues to rise up to AD 1968 before a period of decreasing 

MSL is observed to AD 1987. An increase in MSL is then observed before MSL decreases 

towards the surface (figure 6.10b). 

 

6.4.2. Jadrtovac Site 2 (JD2) 

Reconstructed MSL for core JD2 plotted against depth shows a more variable record in 

comparison to core JD1, as shown in figure 6.12a. The lowermost samples between 56 and 

44 cm suggest an increasing trend in MSL before large fluctuations in the record are 

observed to 27 cm. Again this section of the core contains a number of fossil samples which 

display a poor relationship with the contemporary data and represents part of the up-core 

transition between agglutinated and calcareous taxa (figure 5.6). Above 24 cm, fossil 

samples with good modern analogues suggest an overall increase in MSL, which is 

amplified above 14 cm towards the present surface. Unfortunately, a hiatus in the record 

limited the confidence in the chronology established for core JD2 to the upper 8 cm of the 
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record, dating back to approximately AD 1955 (± 8 yrs). The reconstruction is therefore 

limited to sparse data points during the past 60 years or so (figure 6.12b) and shows an 

increase in MSL from AD 1955 to AD 1971. Reconstructed MSL then stabilises, displaying 

little change towards the surface (AD 2010).  

 

6.4.3. Blace (BL) 

Figure 6.13a plots the reconstruction of MSL against depth for core BL. It shows an 

increasing trend in MSL for the lowermost samples between 32 and 29 cm. These samples 

are composed almost exclusively of calcareous taxa (principally Ammonia spp. figure 5.7) 

and so it would appear the transfer function is over-estimating their altitude. Disregarding the 

fossil samples which display a poor relationship with modern assemblages, an overall 

increasing trend in MSL is observed from 26 cm depth upwards. A distinct increase in MSL 

occurs at 4 cm, corresponding to an increase in the relative abundance of J. macrescens 

(figure 5.7). Using the short-lived radionuclide chronology established for this core, the 

reconstruction is limited to the upper 11 cm of the core permitting sea-level inferences to be 

made with confidence back to AD 1888, as shown in figure 6.13b. The record shows an 

increase in MSL to AD 1911 (± 16 years) after which MSL appears relatively stable. The 

reconstruction suggests an increase in MSL from 1962 (± 4 years) at 6 cm depth before a 

more distinct rise is observed at 4 cm (AD 1986 ± 2 years). 
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Figure 6.11. PLS transfer function reconstruction of MSL using the TCD screened training 

set plotted against (a) core depth (cm) and (b) OxCal age-depth model (AD) for core JD1 

including bootstrap prediction errors (m) and model uncertainties (2σ). Good/close and poor 

modern analogues also displayed.   
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Figure 6.12. PLS transfer function reconstruction of MSL using the TCD screened training 

set plotted against (a) core depth (cm) and (b) chronology (AD) for core JD2 including 

bootstrap prediction errors (m) and age uncertainties (AD). Good/close and poor modern 

analogues also displayed. 
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Figure 6.13. PLS transfer function reconstruction of MSL using the TCD screened training 

set plotted against (a) core depth (cm) and (b) chronology (AD) for core BL including 

bootstrap prediction errors (m) and age uncertainties (AD). Good/close and poor modern 

analogues also displayed. 
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6.5. SUMMARY OF TRANSFER FUNCTION RECONSTRUCTION 

This chapter has presented the methods used in developing transfer function models for 

three training sets comprising site specific assemblages (JDT and BLT) and a total 

combined dataset (TCD). The results from unscreened analyses were variable and largely 

reflected the short environmental gradients of each training set. Detrended canonical 

correspondence analysis was used to assess the relationship between the foraminiferal 

assemblages in the training sets and altitude. This showed a strongly linear response along 

the environmental gradient with gradient lengths varying between 0.775 and 1.536 SD units. 

As a result linear regression models (PLS) were developed to assess the individual training 

sets reconstructive ability. In addition, unimodal regression (WA-PLS) was also investigated 

as a comparative tool for the BLT and TCD training sets which displayed longer gradient 

lengths in comparison to JDT.  

The performance of each regression model was assessed using cross-validation results 

produced by jack-knifing the data. These statistical measures provided an evaluation of 

strength of relationship between observed and predicted values (r2 jack) and associated errors 

of prediction (RMSEP jack). Again results were variable, with small r2 jack values reflecting the 

short environmental gradients, especially for JDT (r2 jack = 0.11), despite prediction errors 

remaining small (RMSEP jack = 0.07). The low strengths of relationship at this site perhaps 

reflect the influence of other environmental variables effecting the distribution of foraminiferal 

assemblages. Indeed inter-correlations between the variables were high for the JDT training 

set (69.7%), as shown in chapter 4. In comparison, inter-correlation between the variables 

for BLT training set was significantly lower (33.5%) which is reflected in a higher strength of 

relationship for this training set (r2 jack = 0.71). Prediction errors remained relatively low for 

the BLT training set (RMSEP jack = 0.09). When combining both training sets to create a total 

combined dataset (comprising 56 samples), the strength of relationship deteriorated and 

prediction errors increased (r2 jack = 0.32; RMSEP jack = 0.11).  

The TCD training set was further investigated to remove sample outliers with a goal of 

improving model performance. This was achieved by removing all surface samples with an 

absolute residual greater than the standard deviation of altitude (0.141 SD units).  Statistical 

parameters showed this procedure was useful in improving model performance with an 

increased strength of relationship (r2 jack = 0.54) and lower prediction errors (RMSEP jack = 

0.08) for component three using linear regression (table 6.11). Unimodal regression (WA-

PLS) showed similar performance. Component two was chosen to calibrate fossil samples 

as it performed better than components one and two but degraded thereafter. Similarly PLS 
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regression and calibration was selected as it was difficult to justify the use of unimodal 

techniques given the short-gradient lengths involved. 

The MAT was used to assess similarities and dissimilarities of fossil samples in cores JD1, 

JD2 and BL with assemblages from the modern environment. Percentiles produced by 

dissimilarity measures in the TCD training set were used to define thresholds allowing to 

distinguish between good, close and poor modern analogues. The number of fossil samples 

with poor modern analogues varied between the cores and largely reflected the limited 

number of modern analogues in the contemporary training set which was biased towards the 

upper part of the environmental gradient. Clearly the range of environments observed in the 

fossil sequences was greater than that sampled in the modern environment with many lower 

core fossil samples lacking modern equivalents.  

Changes in palaeo-marsh altitude were investigated highlighting those levels where 

reconstructed values were considered unreliable. Overall the cores showed a variable, but 

increasing trend in palaeo-marsh altitude towards the surface. To determine if the selection 

of transfer function model had a significant impact on the reconstruction, an additional 

transfer function using the ML approach was developed. Results were comparable where 

reconstructed values fell within the error margins of each technique. However it also 

highlighted the uncertainty of reconstruction for fossil samples which contained an almost 

exclusive calcareous component towards the bottom of each core.  

Reconstructed palaeo-marsh altitudes were converted to produce estimates of MSL, first 

plotted against depth and then age. A high-resolution record is observed for core JD1 where 

age-depth modelling suggests a record dating back to AD 1751. The record here suggests 

relatively stable MSL observations up until the early 20th century where fossil samples with 

good modern analogues suggest a sharp increase in MSL around AD 1940. Mean sea-level 

continues to rise up to AD 1968 and then a fall to AD 1987. A fluctuating record is then 

observed to the present day. In contrast, core JD2 demonstrates a relatively poor resolution 

record when plotted against age due to the limited number of samples included in the 

reconstruction which dates back to AD 1955. Nonetheless the record is based on fossil 

samples which display a good relationship with modern assemblages and suggests an 

increase in MSL up until AD 1971 with stable observations of MSL recorded thereafter.  

Reconstructed MSL for core BL allows sea-level inferences to be made dating back to AD 

1888. The record indicates increasing trends in MSL to AD 1911 after which MSL stabilises 

up until AD 1962. An increasing trend in MSL is observed thereafter before faster rates of 

MSL rise are observed from 4 cm depth (AD 1986).  
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CHAPTER 7 

 

INTERPRETATIONS AND DISCUSSION  

 

7.1. INTRODUCTION  

The following chapter brings the findings of the preceding results chapters together to first 

interpret and then consider the significance of the main outcomes of the research. First the 

fossil environments at Jadrtovac and Blace are discussed, focusing on site evolution through 

an interpretation of the sediment stratigraphy and fossil foraminiferal record. Following this, 

an assessment of the contemporary foraminiferal distributions is provided, including their 

utility as proxies for sea level using a transfer function approach. The developed PLS 

transfer function model is then critically examined in comparison to previous work where 

reconstructions have been performed in microtidal environmental and from short 

environmental gradients. As a final assessment of the sea-level reconstruction, tide-gauge 

data are used to validate the salt-marsh records by comparing them with instrumental data 

from Split and Trieste. The observed trends are discussed and compared before 

extrapolation over the period prior to the instrumental record is explored. Finally the 

limitations of the study are addressed with recommendations for further work.  

 

7.2. FOSSIL ENVIRONMENTS AND SITE EVOLUTION 

The investigation into the sediment stratigraphy at Jadrtovac and Blace salt-marshes 

presented in chapter 5 revealed an overall pattern of sedimentation that was broadly similar 

throughout. Both sites showed a variable thickness of minerogenic clays and silts above 

limestone bedrock, the depths of which generally increased towards the open sea (figures 

5.1 and 5.3). Within these units there was also a variable abundance of broken and whole 

shell fragments. Up-core transitions show an increase in the proportion of organic matter to 

the present day surface where a more humified peat-like layer was restricted to the upper 

reaches of the salt-marsh environments. Indeed, sediment cores were much shallower here 

in comparison to those from the lower salt-marsh environment.   
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It would appear that the salt-marsh environments have undergone a transition stage, as 

interpreted from a change in sedimentation from deposits more characteristic of subtidal and 

lower intertidal mudflat conditions (e.g. fine silts and clays with low organics) to increasingly 

organic sediments more characteristic of vegetated, upper intertidal to supratidal 

environments. The deposition of sediments over time has raised the surface of the salt-

marsh environments within the tidal frame which, in turn, has decreased tidal inundation 

frequency and duration (hydroperiod). A direct result of this sedimentation decrease has 

allowed halophytic vegetation to develop further to colonise much of the salt-marsh 

environment (e.g. Pethick, 1981). Fluctuating trends in mean sea level and also tidal range 

impact on salt-marsh environments by creating (or similarly removing) accommodation 

space which has a direct impact on vertical sedimentation rates(Allen, 2000). As silt and clay 

deposits are often difficult to interpret based solely on their appearance and grain size, 

further environmental parameters in combination with microfossil analyses provide 

supplementary evidence from which to interpret changes in the depositional environment 

(Allen, 2000).  

Particle size characteristics (figure 5.10) revealed minor changes in grain size and 

composition within each core, where silts and clays dominate the record. The mean grain 

size for cores JD1 and JD2 were very similar (~5 µm). By comparison, the mean grain size 

for core BL was slightly larger at ~10 µm, with a notably increase in sand content. This may 

reflect the locations of the study sites in relation to the open sea, where Blace lies directly 

adjacent to the Adriatic Sea while the salt-marshes at Jadrtovac are situated at the end of a 

narrow 2.5 km-long channel (section 3.3). The up-core transition from sub- and intertidal 

mudflat sediments to an upper intertidal environment is confirmed through the analysis of 

environmental variables LOI and DBD (section 5.4). Analyses show an up-core transition 

from basal minerogenic sediments to increasingly organic deposits matched by increasing 

and decreasing measurements of LOI and DBD, respectively (figures 5.8 and 5.9).  

Further to this are changes in the biostratigraphic record that also show a change in the 

depositional environment through the up-core transition from foraminiferal taxa more 

characteristic of open marine and subtidal environments to foraminiferal taxa more indicative 

of an environment above or around MSL (section 5.3). Interestingly it would appear that 

changes in biostratigraphic record have responded faster in comparison to their lithogenic 

counterparts. This transitional zone typically shows calcareous foraminifera (Ammonia spp., 

Elphidium spp. and Haynesina germanica) replaced by agglutinated types (J. macrescens, 

T. inflata and M. fusca) moving up through the core, pre-dating the onset of increasing 

organic matter levels (e.g. core JD1; figure 5.5). 
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Inspection of the biostratigraphy shows similar species colonising the present-day 

environment to those observed in the fossil sequences, suggesting that the depositional 

environments preserved in fossil samples are largely similar to that observed today. An 

exception to this was the almost complete omission of Quinqueloculina spp. from the lower 

section of the fossil records where other calcareous taxa flourish. Indeed Quinqueloculina 

spp. were found in abundance on the contemporary salt-marsh surface at both sites, in 

conjunction with the other main calcareous taxa. Therefore, it seems odd that only this 

species is absent from the fossil record. Calcareous foraminifera are notoriously susceptible 

to post-depositional dissolution processes where the test linings are destroyed (e.g. Murray, 

1989). In a study of core material from Poole Harbour, southern England, (Edwards and 

Horton, 2000) observed a significant destruction of calcareous tests due to post-depositional 

dissolution. The absence of Quinqueloculina spp. does not appear to be site-specific, as its 

exclusion from the fossil record is repeated in all analysed cores.  

 

7.3. CONTEMPORARY FORAMINIFERAL DISTRIBUTIONS  

7.3.1. Foraminiferal assemblages 

In foraminiferal-based transfer function sea-level reconstructions, the relationships between 

modern assemblages and environmental controls are often varied. The dynamic 

environments that characterise salt-marshes mean that a global model for 

palaeoenvironmental reconstructions is not applicable and thus the transfer functions are 

generally site specific. Differences in tidal range create faunal zones in which characteristic 

species occur which are altitudinally constrained in relation to tidal level. Indeed 

environmental conditions that effect foraminiferal distributions at one site may be negligible 

at another. Despite this, there is much consistency regarding the vertical zonation of 

intertidal foraminifera with respect to the tidal level from salt-marsh and mangrove 

environments around the world (Scott and Medioli, 1978).  

Typically agglutinated forms are usually found in abundance within upper intertidal vegetated 

high salt-marsh elevations whereas calcareous tests tend to dominate lower intertidal and 

subtidal unvegetated levels (Berkeley et al., 2007). The most common agglutinated species, 

J. macrescens and T. inflata, are consistently found in abundance to dominate areas around 

MHWST in salt-marsh environments (Horton et al., 1999b; de Rijk and Troelstra, 1997; 

Edwards et al., 2004b). Whilst other agglutinated taxa such as M. fusca are typically more 

constrained in mid salt-marsh settings between MTL and MHWST (de Rijk and Troelstra, 

1997; Edwards et al., 2004b). Calcareous foraminifera such as Ammonia spp., Elphidium 
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spp and Quinqueloculina spp. on the other hand are more indicative of low vegetated 

elevations in low salt-marsh and mudflat environments (Woodroffe et al., 2005; de Rijk and 

Troelstra, 1997; Horton et al., 1999b).  

The analysis of contemporary foraminiferal distributions in this study has shown that whilst 

agglutinated and calcareous species are found throughout the entire sampled range, solely 

agglutinated or calcareous assemblages are altitudinally constrained and support the theory 

of vertical foraminiferal zonation. Indeed, the observations made are comparable with other 

studies of foraminifera within intertidal salt-marsh and mangrove environments. Despite 

inter-site variability, multivariate analyses revealed a broadly similar faunal zonation between 

the Jadrtovac and Blace datasets. This consisted of a faunal zone dominated by an 

agglutinated assemblages, where high abundances of J. macrescens and T. inflata were 

observed with minimal calcareous taxa. This faunal zone typically extended from around 

MTL to above MHWST. A second faunal zone was also observed which was characterised 

by high abundances of J. macrescens and T. inflata with increased calcareous numbers. 

This mixed assemblage zone spanned the largest large vertical range ranging from around 

MHWST to below MTL. A third faunal zone was also observed, where calcareous taxa were 

substantially more abundant. Whilst agglutinated forms are often present, they typically are 

in low abundance. This faunal zone was also altitudinally constrained below MTL.  

The lack of comparable studies concerning the vertical zonation of foraminifera for sea-level 

studies along the eastern Adriatic coastline hinders comparisons with more localised work. 

However, similarities with studies in the northern Adriatic and other temperate salt-marshes 

are possible, displaying similar characteristics to the assemblages observed in this study. 

For example, in an investigation of foraminiferal distributions from a mangrove environment 

in the Great Barrier Reef, Horton et al. (2003) observed an abundance of agglutinated taxa, 

with high occurrences of T. inflata (up to 46%) to dominate the zone between MSL and 

MHWST. This is comparable contemporary distributions at Jadrtovac and Blace where T. 

inflata is found in abundance between MTL and MHWST. Similarly high occurrences of T. 

inflata have also been reported from studies in the northern Adriatic region, where 

foraminiferal distributions have been used to identify biotopes that characterise the different 

environments of the Venice Lagoon (e.g. Serandrei-Barbero et al., 1999; Albani et al., 2007; 

Serandrei-Barbero et al., 2011). In these studies, the genus Trochammina characterises two 

altimetric zones between MSL and mean high water level (MHWL) (Petrucci et al., 1983; 

Serandrei-Barbero et al., 1997; Serandrei-Barbero et al., 1999) and also the zone above 

MHWL (Albani et al., 1984). Indeed Petrucci et al. (1983) showed a T. inflata dominated 

assemblage to indicate a ground height of about 15 cm above the local MSL in the Venice 

Lagoon area. This is comparable to heights observed in this study where an agglutinated 
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assemblage with high abundances of T. inflata extends up to and above >0.30 m HVRS71 

(MSL is 0.131 m). In a study utilising foraminiferal distributions as ecological indicators, 

Albani et al. (2007) also observed a foraminiferal assemblage composed of T. inflata with an 

abundance greater than 60% that was typical of an environment above MSL. The authors 

also demonstrate high abundances of calcareous species Ammonia spp. and Haynesina 

germanica characterising the inner areas of the lagoon environment which are affected more 

marine waters.  

7.3.2. Dead versus Living Assemblages 

The quantitative analyses presented in this study focused on dead foraminiferal 

assemblages only. The selection of the most appropriate foraminiferal assemblage can have 

important effects on the transfer function performance and the choice to which assemblage 

should be used (e.g. Jorissen and Wittling, 1999) remains a discussion topic in foraminiferal 

based sea-level reconstructions from salt-marsh environments. The studied environments of 

Jadrtovac and Blace salt-marshes displayed considerably fewer living populations in 

comparison to dead, with only five out of the seventy analysed surface samples sustaining 

statistically sufficient counts of 150 or more. Many of the surface samples were void of living 

foraminifera altogether. The stark contrast between the concentration of living and dead 

foraminiferal assemblages at Jadrtovac and Blace is a common feature characterising low 

sedimentation environments (Murray, 1976) and this observation confirms previous studies 

analysing foraminiferal assemblages along the Adriatic coast of Croatia. Cosovic et al. 

(2006) collected sediments from several stations along a transect extending from the coast 

out towards the open sea down to a depth of 55 m. Analysis of modern assemblages 

revealed dead foraminiferal tests to be much more abundant compared to living 

assemblages regardless of the sampling season. Other studies near the Gulf of Venice, 

northern Adriatic have also shown dead populations to be more abundant but also more 

diverse (Serandrei-Barbero et al., 2003).  

Several authors have argued that total (i.e. living and dead) assemblages are an accurate 

representation of the modern environment and so offer a more reliable model in 

palaeoenvironmental reconstructions (e.g. Scott and Medioli, 1980; Gehrels, 1994; Hayward 

et al., 1999; Tobin et al., 2005). However, incorporating living assemblages into a training set 

includes foraminifera which are suited to the environmental conditions at the time of 

sampling (Callard et al., 2011). As this will fluctuate in line with seasonal changes, species 

diversity and abundance can change over time (Murray, 1991; 2000; Horton et al., 1999a). 

Murray (1991) also states that a total assemblage including living populations does not 

consider the post-mortem changes that have yet to take place.  
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In a comprehensive study of foraminiferal assemblages from Cowpen Marsh, Great Britain, 

Horton (1999) concluded dead foraminiferal populations are a better analogue for sub-

surface samples in sea-level reconstructions. Using dead foraminiferal assemblages takes 

into account both live and dead populations over a greater time-average and so species 

diversity is generally greater (Murray, 1982; 2003). Dead foraminiferal assemblages also do 

not suffer from seasonal fluctuations observed in living populations (Horton and Edwards, 

2006) and where living populations are spatially variable, including them into a total 

assemblage dataset may even degrade the quality of data from the dead assemblage 

(Horton and Murray, 2006). As a result and due to their sparse distribution at Jadrtovac and 

Blace, only dead foraminiferal populations were employed in the statistical analyses 

(following Horton, 1999; Gehrels et al., 2001; Horton and Edwards, 2003; Leorri et al., 2010; 

Rossi et al., 2011; Kemp et al., 2013). 

7.3.3. Foraminifera and Environmental Controls  

Whilst the relationship between foraminiferal assemblages and height within the tidal frame 

is well documented around the world, the significance of elevation (acting as a proxy for tidal 

flooding) in explaining this relationship is less clear and much more spatially variable. 

Quantifying elevation as an important control governing contemporary distributions is 

fundamentally prerequisite in transfer function-based sea-level reconstructions using 

microfossils. In order to justify the reconstruction, one has to demonstrate elevation as a 

statistically significant control in explaining variance in the modern dataset. Indeed, one of 

the main assumptions with the transfer function technique is that the environmental variable 

of interest (e.g. elevation), has remained an important control over the entire depositional 

history of the sediment sequence (Birks, 1995). Therefore, collecting various other 

environmental variables, such as salinity, pH and organic matter for example, offers some 

sort of independent assessment of this hypothesis.  

Many investigations have observed elevation explaining a statically significant proportion of 

the explained variance within species data distributions (e.g. Horton et al., 1999b; Hill et al., 

2007; Horton and Culver, 2008; Hawkes et al., 2010). One notable example by Horton and 

Edwards (2006) showed elevation that explains 42% of the explained variance when 

compared with other environmental variables, using foraminiferal data from sites around the 

UK (table 7.1). In comparison, other environmental parameters can often exert a greater 

control. For example, in a study of foraminiferal distributions from the Great Marshes in 

Massachusetts, de Rijk and Troelstra (1997) demonstrated that elevation was in part only 

equal or inferior to other environmental controls where salinity was more influential. The 

underlying response of foraminiferal distributions in relation to the environmental gradient is 
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important as it provides a foundation from which transfer function models are based. 

Selection of the appropriate statistical technique is underpinned by the species’ linear or 

unimodal distribution (Birks, 1995).  

Kemp et al. (2012a) present an alternative method to quantity the distribution of foraminiferal 

assemblages using partitioning around mediods (PAM) in combination with linear 

discriminant functions (LDFs). In this approach, the underlying distributions and response of 

foraminiferal distributions is not as fundamental by comparison to transfer function 

technique, providing probability estimates of fossil core samples based on similarities 

between the modern and fossil assemblages. The authors show that whilst transfer functions 

provide smaller error terms and have the ability to reconstruct smaller changes in sea-level, 

LDFs provide a robust alternative approach. In this way, it offers an additional approach to 

reconstructing sea-level changes but also as an independent assessment between the 

techniques. LDFs, however, are more suited to larger scale changes in sea-level using a 

varied modern assemblage. Whilst this may not be suitable for the datasets presented in this 

thesis, due to the low diversity observed, it is acknowledged that it may provide additional 

support to the reconstructions constructed in chapter 6. 

Ordination and partial ordination techniques were used to investigate the relationship 

between foraminiferal assemblages and environmental variables for datasets at Jadrtovac 

(JDT), Blace (BLT) and a total combined dataset. One notable feature of the constrained 

ordination approach in analysing foraminiferal and associated environmental datasets is the 

often large unexplained variance that cannot be accounted for with the included 

environmental data. The unexplained proportion observed in this study ranged from 33% to 

58% (table 7.1). This may reflect other environmental conditions or factors not recorded at 

the time of sampling such as seasonal fluctuations (Horton and Edwards, 2003), 

temperature, dissolved oxygen and microtopography. The explained percentage observed in 

this study is comparable to studies utilising intertidal microfossil for sea-level studies ranging 

from 42% to 67%. When analysing the individual contributions of the tested environmental 

variables, a weaker relationship with elevation is relatively common in microfossil-based 

transfer function reconstructions where multiple datasets are investigated (e.g. Sawai et al., 

2004; Horton and Culver, 2008). However, the analysis of foraminiferal distributions and 

associated environmental controls in this thesis suggested altitude was still significant in 

explaining variance in combined foraminiferal datasets ranging from 13% to 22% and is 

comparable to other studies as shown in table 7.1. Indeed Monte Carlo permutation tests 

further confirmed this relationship (p = <0.05), illustrating statistically robust transfer 

functions could be developed. 
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Table 7.1. Summary table highlighting the amount *height accounts for in the explained 

variance for microfossil distributions from salt-marsh environments. 

Microfossil  Study/Reference Explained (%) Unexplained (%) *Height (%) 

Foraminifera JDT 42 58 13 

 BLT 67 33 22.1 

 Total Combined Dataset 48 52 13.5 

 Horton and Edwards (2005) 52 48 23 

 Horton and Edwards (2006) 76 24 42 

 Horton and Culver (2008) 57 43 16 

 Hawkes et al. (2010)  78 22 39 

 Mills et al. (2013) 52 48 4 

Diatoms Zong and Horton (1999) 22 78 23 

 Sawai et al. (2004) 20 80 15 

 Hill et al. (2007) 25 75 27 

Pollen Engelhart et al. (2007) 26 74 14 

 *e.g. Elevation/SWLI/Altitude 

Inter-correlation between the environmental variables examined on Jadrtovac and Blace 

salt-marshes was large, ranging from 33% to 71%. This may suggest that altitude cannot be 

considered independent of the other variables. Additionally it must also be assumed that the 

joint correlation observed in the modern datasets also applies to fossil samples in sediment 

cores (Birks, 1995). The joint correlation can be anticipated due to other environmental 

variables (e.g. salinity) also being highly correlated with tidal flooding duration and frequency 

(Horton and Edwards, 2006). High inter-correlations between environmental variables is a 

common feature of most quantitative studies using microfossil assemblages from intertidal 

environments. In a study of foraminiferal distributions on the Outer Banks, North Carolina, 

Horton and Culver (2008) show inter-correlations to be greatest contributor to the explained 

variance of 37%. Similarly in a study of foraminifera to reconstruct past subsidence in 

Oregon, USA, Hawkes et al. (2010) illustrates 29% of the variability in the explained variance 

is due to inter-correlations between the variables. Using mangrove pollen as sea-level 

indicators in Indonesia, Engelhart et al. (2007) also report large inter-correlations, up to 59% 

of the explained variance.  

Whilst altitude remains a statistically significant control, and in some instances the only 

significant control, the observed intercorrelations between the environmental variables may 

in part reflect the limited tidal range at the study sites. A distinct advantage of developing 

transfer function models from microtidal environments is that the vertical errors associated 

with the technique are minimised and in theory transfer functions from these environments 

should produce the most precise sea-level reconstructions (Southall et al., 2006; Callard et 

al., 2011; Barlow et al., 2013). Theoretically the errors associated with reconstructions from 

micro-tidal salt-marshes should be proportional to the tidal range (as discussed below). 

Indeed Kemp et al. (2009a) observed small vertical errors (RMSEP jack) of just 0.04 to 0.05 m 
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in a study using foraminifera and diatoms from microtidal salt-marshes in Northern Carolina 

where the difference between MLLW and MHHW was around 0.4 m. Decreasing microtidal 

regimes, however, can have important and significant consequences in limiting the vertical 

zonation of foraminiferal species and changes in other environmental parameters, such as 

salinity, can become more important in comparison to macro- or meso-tidal sites (Barlow et 

al., 2013). The effect of other individual environmental variables (e.g. salinity and LOI) 

observed in this study was limited with permutation tests confirming their insignificant 

contribution. However, collectively they contribute a significant proportion of the explained 

variance in the training sets used to develop transfer functions. The mean tidal range at 

study sites Jadrtovac and Blace was just ~23 cm. Nonetheless, altitude was still found to be 

a significant environmental component dictating foraminiferal distributions (up to 22%) and 

confirmed their suitability as proxy indicators of sea-level for use in transfer function 

reconstructions.  

 

7.4. TRANSFER FUNCTION PERFORMANCE 

Using altitude as the only constraining environmental variable, DCCA revealed gradient 

lengths that indicated strongly linear species distributions along the environmental gradient 

ranging from between 0.775 and 1.536 SD units for site specific training sets JDT and BLT. 

In combining datasets together (TCD), the gradient length was still strongly linear at 1.173 

SD units. As a result, PLS linear regression models suggested the strength of relationship (r2 

jack) was relatively weak for an unscreened training set (0.32; component 3). Whilst this may 

appear poor, it is directly related to the short environmental gradient of the contemporary 

training set. Indeed, in combining local training sets to create a single combined training set, 

the strength of correlation between foraminiferal assemblages and the environmental 

variable (e.g. elevation) is reduced. Whilst this may seem counterintuitive to do so, a 

regional combined dataset provides an increased range of modern environments from which 

the fossil assemblages can be compared with, as discussed below (Gehrels et al., 2001).  

The sampled vertical range of the contemporary training set has a strong impact on model 

predictive ability (Barlow et al., 2013). The small r2 
jack values in this study therefore reflect 

the bias in sampling towards in the upper part of the elevational gradient. In such cases, 

RMSEP jack may offer a more realistic assessment of the model performance (Gehrels et al., 

2001; Leorri et al., 2010). This suggested model predictions of sea-level to within 0.11 m for 

an unscreened training set. In order to improve model performance, sample outliers in 

modern training sets are often excluded on the basis of their poor relationship with elevation 

(Edwards et al., 2004a; Gehrels et al., 2005; Horton and Edwards, 2006; Leorri et al., 2008; 
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Rossi et al., 2011). The performance of transfer function models are sensitive to such 

‘tuning’ processes (Woodroffe, 2009). However, tuning helps by improving the predictive 

ability of the training set whilst increasing the strength of relationship. In this study, by 

removing all samples with an absolute residual (observed minus predicted) greater than the 

standard deviation of altitude, the strength of relationship improved to r2 jack = 0.54 whilst 

prediction errors (RMSEP jack) decreased to 0.08 m.  

Linear regression and calibration methods are less common in quantitative sea-level 

reconstructions due to the often observed unimodal distribution of species in response to 

elevation. However, the results of this study are comparable to other research where PLS 

transfer functions have been applied. For example, in a study of foraminiferal distributions 

from Brittany, France, Rossi et al. (2011) also observed short environmental gradients (0.67 

SD units). Based on a modern training set comprising 36 samples, the authors demonstrated 

robust transfer function performance (r2 jack = 0.70 ; RMSEP jack = 0.07 m) and applied the 

model to reconstruct relative sea-level changes back to AD 1850 showing comparable rates 

of change to direct observations from the  Brest tide-gauge. Callard et al. (2011) also used 

PLS regression to construct a transfer model for sea-level studies in Tasmania. Their results 

showed that whilst PLS produced good statistical parameters, comparable to unimodal 

regression WA-PLS, when the model was applied to core sediments but was unreliable 

when used for predictions due to estimates larger than the modern sampling range and also 

exceeding the tidal range.  

As discussed, the strength of relationship of foraminiferal assemblages from microtidal 

environments is typically weaker by comparison to macrotidal settings and can be directly 

related to the small vertical range of the samples studied (Horton and Edwards, 2006). 

Counter to this however are the small vertical prediction errors associated with microtidal 

settings. As such, microtidal environments are regarded as ideal settings for quantitative 

sea-level reconstructions based on microfossils (Callard et al., 2011). In a theoretical 

scenario, a tidal range of 20 cm should provide prediction errors of approximately 10% of the 

tidal range (i.e. 2 cm) (Barlow et al., 2013). Whilst this is achievable (e.g. Kemp et al., 

2009a), if the vertical relationship between foraminiferal assemblages and elevation is less 

defined, a microtidal environment may offer little benefit in terms of prediction errors. 

Inspection of model prediction errors for a screened TCD training set in this study revealed 

precise sea-level reconstructions were possible to within 0.07 m. At first, while these results 

may seem promising, when taken as a percentage of the mean tidal range, prediction errors 

are actually greater by comparison to those studies conducted in larger tidal ranges (table 

7.2). In this study the mean tidal range at the samples sites was 0.23 m equating to 

prediction error of almost a third of the mean tidal range (30%). Nonetheless the data can 
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still be used to interpret trends of past sea level providing the record is independently 

assessed (i.e. tide gauge records).   

 

Table 7.2. Comparison table of microfossil transfer function prediction errors (RMSEP jack) 

and as a percentage of the tidal range with published studies.  

Location Model RMESP (m) RMESP (m)  

% tidal range 

Reference 

Central Croatia PLS 0.07 30 This study 

New Zealand WA-Tol 0.05 3.3 Southall et al. (2006) 

Maine, USA WA-PLS 0.25 8 Gehrels (2000) 

Western Denmark WA-Tol 0.16 10.7 Gehrels and Newman (2004) 

Nova Scotia, Canada WA-Tol 0.06 3.7 Gehrels et al. (2005) 

Biscay, Spain WA-PLS 0.19 7.6 Leorri et al. (2008) 

Tasmania WA-PLS 0.10 16.7 Callard et al. (2011) 

Brittany, France PLS 0.07 2.3 Rossi et al. (2011) 

Southern Portugal PLS 0.10 4.8 Leorri et al. (2010) 

Brittany, France PLS 0.13 4.9 Leorri et al. (2010) 

North Carolina, USA WA-PLS 0.04 14.8 Kemp et al. (2009b) 

Hokkaido, Japan WA-PLS 0.29 27.6 Sawai et al. (2004) 

North Carolina, USA WA-PLS 0.08 22.9 Horton et al. (2006) 

 

 

7.5. COMPARISON WITH INSTRUMENTAL RECORDS  

As a final independent assessment of the transfer function sea-level reconstructions 

presented in chapter 6, instrumental tide gauge records were used assess the validity of the 

reconstructed sea-level trends (following Gehrels et al., 2005; Kemp et al., 2009a; Rossi et 

al., 2011). Annual averaged MSL data with benchmark datum history were extracted from 

the PSMSL database (Holgate et al., 2013) for the Split tide gauge. This provides the longest 

time-series along the Croatian coast of the Adriatic Sea and is in close proximity to the study 

sites presented. To provide a longer time-series, annual MSL values were also extracted 

from Trieste tide gauge in northern Adriatic. A summary for both tide gauges is presented in 

table 7.3 below whilst annual mean sea-level trends for Split and Trieste are plotted in 

figures 7.1 and 7.2, respectively. In order to construct a time-series for each tide-gauge 

station, the PSMSL converts raw metric data from each station to a common global datum 

referred to as the revised local reference (RLR). This datum is defined to be approximately 

7000 mm below mean sea-level at each station. To allow direct comparison of trends, the 

RLR data were converted to plot directly with the reconstructed values of mean sea-level. 

This was achieved by ‘tuning’ the RLR data to match the reconstruction centred around the 

year AD 2010 (time of sampling).  
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Table 7.2. Summary information for Split and Trieste tide-gauge stations (Holgate et al., 

2013). 

Name PSMSL Station ID Latitude Longitude  Time span Data Coverage (%) 

Split 352 43.5067 16.4417 1954-2011 100 

Trieste 154 45.6473 13.7584 1875-2012 86 

 

 

Figure 7.1. Yearly average mean sea-level from Split tide-gauge (Holgate et al., 2013). 

 

Figure 7.2. Yearly average mean sea-level from Trieste tide-gauge (Holgate et al., 2013). 

Age (AD)

1870 1890 1910 1930 1950 1970 1990 20101880 1900 1920 1940 1960 1980 2000

R
L

R
 a

n
n

u
a

l 
m

e
a

n
 s

e
a

-l
e

v
e

l 
(m

m
)

6700

6800

6900

7000

7100

7200 Annual Mean Sea-Level Trieste

Age (AD)

1955 1965 1975 1985 1995 20051950 1960 1970 1980 1990 2000 2010

R
L

R
 a

n
n

u
a

l 
m

e
a

n
 s

e
a

-l
e

v
e

l 
(m

m
)

7000

7050

7100

7150

7200 Annual Mean Sea-Level Split  

Age (AD)

1870 1890 1910 1930 1950 1970 1990 20101880 1900 1920 1940 1960 1980 2000

R
L

R
 a

n
n

u
a

l 
m

e
a

n
 s

e
a
-l
e

v
e

l 
(m

m
)

6700

6800

6900

7000

7100

7200 Annual Mean Sea-Level Trieste

Annual Mean Sea-Level Split



Chapter 7  Interpretations & Discussion 

 

Page | 175  

 

 

 

Figure 7.3 Transfer function reconstruction of MSL for core JD1 compared with (a) Split tide-

gauge data from AD 1955 and (b) extrapolated back through time including bootstrap 

prediction errors (m) and model uncertainties (2σ). Good/close and poor modern analogues 

also displayed.  

Figure 7.3a shows the transfer function reconstruction of MSL for core JD1 plotted with 

mean sea-level records from the Split tide gauge dating back to AD 1955. Figure 7.3b shows 

the same data, but the record has been extended beyond the instrumental record using the 

developed age-depth model for core JD1. Tide gauge data are offset from the reconstruction 
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due to the low altitude of the sample core at JD1. Indeed this salt-marsh surface altitude was 

significantly low compared with the cores from JD2 and BL (table 3.5). Palaeo marsh 

altitudes however suggested similar altitude predictions for core JD1 compared with JD2 and 

BL further supporting the core altitude for JD1 is anomalous. To allow a more direct 

comparison of sea-level trends, an estimated 14 cm was added to the altitude of each fossil 

sample enabling direct correspondence with the instrumental record as shown in figures 

7.6a and b. Nonetheless, the reconstruction shows some striking similarities with the tide-

gauge record. Most notably the minor, but constant, sea-level drop between ~AD 1970 and 

1985 after which both records similarly record an increase in MSL. When extended back in 

time, the reconstructed MSL trend fluctuates between 1765 and 1908 (although this section 

of the record also contains a number of poor analogues). Sea-level rise from AD 1940 

suggests an increase of 2 mm/yr. Between AD 1913 and 1940, the reconstruction suggests 

a fall in mean sea-level of up to 1 mm/yr. After AD 1940, the record shows a substantial 

increase in the rate of MSL, peaking at 8 mm-yr between AD 1959 and 1973. A drop in MSL 

is observed between AD 1973 and 1987 before rapidly rising by up to 7 mm/yr to AD 1993. 

The instrumental record shows a substantial increase in MSL in more recent times which is 

not repeated in the fossil record.  

 

Figure 7.4. Transfer function reconstruction of MSL for core JD2 compared with Split tide-

gauge data from AD 1955 including bootstrap prediction errors (m) and age uncertainties.  

Figure 7.4 shows the transfer function estimates of mean sea-level for core JD2 plotted with 

MSL records from the Split tide gauge dating back to AD 1955. Extending the record beyond 
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this depth is not possible since the chronology coincidently is also restricted to ~AD 1955. By 

comparison, core JD2 shows little resemblance to the trends observed in core JD1 or the 

tide-gauge data.  From AD 1970 to the present, MSL shows insignificant changes. The lack 

of trend may in part reflect the relatively low resolution of this record which contains a limited 

number of fossil samples (8).  

 

 

Figure 7.5 Transfer function reconstruction of MSL for core BL compared with (a) Split tide-

gauge data from AD 1955 and (b) extrapolated back through time including bootstrap 

prediction errors (m) and model uncertainties (AD). Good modern analogues also shown. 
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Figure 7.5a shows the transfer function estimates of MSL for core BL plotted with MSL 

records from the Split tide gauge dating back to AD 1955 while figure 7.3b shows the same 

data, but extended beyond the instrumental record, i.e. back to AD 1888, using the 

chronology developed for core BL. In comparison to core JD2, the record from Blace shows 

significant similarities with trends observed in the tide-gauge data. The reconstruction shows 

a significant increase in MSL (3.6 mm/yr) between AD 1975 and 1986 before a brief period 

of decreasing MSL to 1995. This trend is also observed in the tide-gauge record. Similarly 

the substantial increase after AD 1995 is matched by both records. The transfer function 

sea-level reconstruction suggests an increase of up to 16 mm/yr between 1995 and 2001.  

 

Figure 7.6 Transfer function reconstruction of MSL for core JD1. Altitudes of fossil samples 

were increased in line with tide-gauge where the altitude was raised 14 cm. 
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Further to the reconstructions above, tide-gauge data from Trieste were used to provide a 

longer comparative time-series. Figure 7.7 shows the transfer function reconstruction of MSL 

during the twentieth century to be very similar to that observed in the instrumental record. 

Both record a rise in MSL during the 20th Century, most notably around the period AD 1940. 

The records also show similar periods of decreasing MSL changes (~AD 1980). 

 

 

Figure 7.7. Transfer function reconstruction of MSL for core JD1 compared with (a) Trieste 

tide-gauge data from AD 1875 and (b) extrapolated back through time including bootstrap 

prediction errors (m) and model uncertainties (2σ). Good/close and poor modern analogues 

also displayed.  
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Figure 7.8 also plots instrumental records from the Trieste tide-gauge against the transfer 

function reconstruction for BL. The records are remarkably similar, showing an increase in 

MSL throughout the 20th century and again highlighting the increased rates observed from 

AD 1990 onwards demonstrating a substantial increase in MSL towards the end of the 20th 

Century.  

 

Figure 7.8 Transfer function reconstruction of MSL for core BL compared with Trieste tide-

gauge data from AD 1875 including bootstrap prediction errors (m) and model uncertainties 

(AD). Good/close and poor modern analogues also displayed.  

Sea-level trends, as observed from the longest records in the Mediterranean, have shown 

sea-level increases of around 1.1-1.3 mm/yr during the 20th century (Tsimplis and Baker, 

2000; Raicich, 2007; Marcos et al., 2011). In the Adriatic Sea, the long-term RSL rise from 

these records varies from 0.5±0.2 to 1.2±0.1 mm/yr (Marcos and Tsimplis, 2008). Between 

AD 1960-2000 however, a period of decreasing sea-level is observed. Rates of change 

during this period vary with values ranging from -0.4±0.4 to 0.3±0.4 mm/yr (Marcos and 

Tsimplis, 2008; Tsimplis et al., 2012). The fall in sea-level has been attributed to an increase 

in the average atmospheric pressure over the basin (Tsimplis and Baker, 2000; Tsimplis and 

Josey, 2001). When analysing sea-level trends for the Adriatic, there is good consistency 

between the records (see figure 2.2) (Tsimplis et al., 2012). Indeed all records show a 

notable increase in RSL rise at approximately AD 1990. These observations are also 

confirmed through satellite altimetry measurements which show increases in RSL towards 

the end of the 20th century with sea-level increasing at a rate of 10 to 15 mm/yr between 

1993 and 1999 (Cazenave et al., 2001).  
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These observations appear to have been readily recorded in the biostratigraphic record 

where transfer function reconstructions display comparable trends. Core JD1 shows a subtle 

but noticeable decrease in MSL at around AD 1967. This trend continues to decrease in line 

with tide gauge measurements up to approximately AD 1987 before rising, also in sync with 

instrumental observations (figure 7.3a). This trend is not repeated in the record for core JD2 

however. Reconstructed values for the core are of comparatively low resolution. Indeed the 

record shows little variation in MSL after ~AD 1970 (figure 7.4). Core BL shows a subtle 

decrease in MSL at around 1986 (figure 7.5a). After this period however, the record at Blace 

is excellent, almost offering a mirror image of the tide-gauge trends for both Split (figure 

7.6a) and Trieste (figure 7.8). Prior to this period, it would appear that the salt-marsh at 

Blace has recorded a steady increase in MSL rise for most of the 20th century. By 

comparison, core JD1 clearly shows an inflexion in the record centred around AD 1940 

±13.5 with MSL showing a distinct increase. The onset of modern sea-level rise shown by 

proxy reconstructions is not globally consistent. Gehrels and Woodworth (2013) conclude 

that modern sea-level around the world began to display an increased rate above 

background Holocene trends for the year centred around 1925 (± 20 years). The 

reconstruction for core JD1 fits this claim, suggesting modern sea-level rise in the Adriatic to 

have increased around the same period. Further increases in sea-level during the later 

stages of the 20th century, as recorded in cores JD1 and BL are similar to other proxy 

reconstructions. For example, Rossi et al. (2011) (who also used PLS transfer function), 

showed a substantial increases in RSL from 1.6 mm/yr between AD 1890 to 1980 rising to 

4.7 mm/yr from AD 1980 to 2004. The increased rates of change observed since the 1990s 

have also been confirmed through satellite altimetry observations (e.g. Cazenave and 

Nerem, 2004; Cazenave and Llovel, 2010) further implying the proxy reconstruction is 

reflecting real changes in sea-level over the past two decades or so. Indeed the 

reconstructions for cores JD1 and BL show strong relationships with trends observed in the 

tide-gauge data. Extrapolation beyond the limit of tide-gauge records is therefore possible. 

However this is limited to the extent of a reliable chronology. Further improving and 

extending this would allow sea-level inferences over much greater timescales.   
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7.6. FURTHER WORK  

7.6.1. Improving Chronological Constraints 

Robust chronologies comprise a significant component of transfer function studies to 

accurately depict changes in sedimentation that  may reflect sea-level trends (e.g. Marshall 

et al., 2007). The chronologies established for cores in this study were restricted in terms of 

their depth due to limitations in dating techniques and the lack of organic material suitable for 

radiocarbon dating. The reconstruction for Blace could only be chronologically constrained to 

AD 1888 which equated to the upper 11 cm of the core. Whilst radiocarbon dates were 

obtained for core JD1, this too was restricted to the upper 30 cm of the core. As a result, the 

dates obtained do not capture the full biostratigraphic record, including the calcareous to 

agglutinated up-core transition. The lack of organic material that can be reliably dated by C14 

is common in most European salt-marshes in comparison to north Atlantic sites along the 

coast of America (Edwards, 2004). The salt-marsh cores typically displayed increasingly low 

LOI values (<10%) moving down through the cores. Whilst 137Cs peaks were relatively well 

defined in the upper sections of the cores, an independent age source was also sought to 

using pollution peaks identified through XRF analysis. However this proved unsuccessful as 

increased concentrations in Cu and decreased levels of Pb could not be assigned to specific 

ages through documentary evidence or published work. 

An alternative approach to improve and extend the chronology would involve the use of 

stable Pb isotopes (e.g. Kemp et al., 2012b). Stable Pb isotopes can extend chronologies 

developed via 210Pb and 137Cs and also provide a chronological marker between these 

radionuclides and 14C dating. Bridging this gap may help constrain the often observed 

inflexions observed in sea-level studies that may reflect dating limitations rather than actual 

sea-level trends. In addition, where the lack of organic material within minerogenic sections 

limits the application of 14C dating, luminescence dating may provide an alternative means of 

establishing ages for these coastal sediments (Edwards, 2004). However there are problems 

associated with this technique, especially in the context of marine water-lain environments 

where sample grains are poorly bleached (Edwards, 2004) 

7.6.2. Increasing Modern Analogues 

Transfer function performance is ultimately based on the modern training set and the 

sampled environmental range (Barlow et al., 2013). It is preferable therefore to capture as 

much of the modern environment as possible. More importantly however is the need to 

sample environmental conditions similar to that observed in fossil sequences (Horton and 
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Edwards, 2006). Doing so allows for more modern equivalents from which the fossil samples 

will be compared with resulting in fewer poor modern analogues. The number of fossil 

samples with a poor analogy with the TCD training set varied between the sediment cores. 

Typically they were constrained to the lower section of the fossil sequences where 

calcareous foraminifera (Ammonia spp., Elphidium spp. and Haynesina germanica) flourish. 

These levels were clearly below the limits of the sampled environmental gradient. Also whilst  

screening modern training sets to remove sample outliers often results in improved 

correlations and predictions, it reduces the number of modern analogues from which the 

fossil samples are compared with. A screened transfer function in this study contained 43 

samples.  

 

To circumvent this problem, increasing the training set size and similarly sampling a greater 

range of the modern environmental conditions may help to improve both the strength of 

relationship observed, by increasing the range of the environmental gradient, but also the 

number of modern analogues. The eastern Adriatic however is notoriously sparse of 

vegetated intertidal environments due to the karstic nature of the coastline. Pandža et al. 

(2007) identified eight ecologically important sites in central and south-eastern Adriatic, and 

two of the sites presented, Jadrtovac and Blace, were the focus of this study. Further afield 

sites should be investigated to complement the training sets already established here. 

Indeed the limited tidal range in the whole of the Mediterranean would allow a wide sampling 

environment whilst maintaining small prediction errors associated with transfer function 

reconstructions from these settings.  
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  CHAPTER 8 
 

CONCLUSIONS  

 

This study has analysed contemporary foraminiferal distributions from two microtidal salt-

marsh sites along the Croatian coastline in an attempt to reconstruct historical sea-level 

trends for the Adriatic Sea. In total 70 surface samples were analysed together with 

environmental data including salinity, pH, LOI and grain size. The altitude and distance from 

open water were also recorded. The analysis of contemporary foraminiferal distributions 

showed agglutinated and calcareous species are found throughout the entire sampled range 

of the salt-marsh environments. Unconstrained cluster analyses were used to classify the 

modern assemblages into faunal zones revealing on average three faunal zones that were 

broadly similar throughout. Occupying the level between MTL and MHWST were high 

abundances of J. macrescens and T. inflata with minimal calcareous taxa. A second faunal 

zone was also observed which was characterised by high abundances of J. macrescens and 

T. inflata together with an increased calcareous component. This mixed assemblage zone 

spanned the largest large vertical range ranging from around MHWST to below MTL often 

creating an altitudinal overlap. A third faunal zone was also observed, where calcareous taxa 

were substantially more abundant with agglutinated forms low in abundance. This faunal 

zone was also altitudinally constrained below MTL.  

Transect datasets were combined to create site specific training sets (JDT and BLT) and a 

total combined dataset (TCD). Further quantitative measures were employed to test for the 

significance of environmental variables governing modern foraminiferal distributions. 

Ordination and partial ordination techniques demonstrated altitude to be significant in 

explaining variance in all training sets ranging from 13% to 22% of the explained variance. 

Monte-Carlo permutation tests further confirmed this relationship (p = <0.05), suggesting 

statistically robust transfer functions could be developed. However inter-correlation between 

the environmental variables was high, ranging from 33% to 71%, implying that altitude 

cannot not be considered independent of the other variables.  

Transfer functions were created for the training sets to assess their reconstructive ability. 

Using altitude as the only constraining environmental variable, DCCA revealed gradient 

lengths that indicated strongly linear species distributions. Gradient lengths ranged from 

between 0.775 and 1.536 SD units for site specific training sets JDT and BLT to 1.173 SD 
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units for a total combined dataset. As a result, linear regression models (PLS) were 

developed. These suggested the strength of relationship (r2 jack) between the foraminiferal 

assemblages and altitude was relatively weak for an unscreened training set (0.32; 

component 2). However the poor relationships observed were representative of the short 

environmental gradients of the contemporary training set. In such cases prediction errors 

may provide a better estimate of model performance. This suggested model predictions of 

sea-level to within 0.11 m for an unscreened training set. In order to improve model 

performance, sample outliers were removed. This resulted in an improved strength of 

relationship to r2 jack = 0.54 whilst prediction errors (RMSEP jack) decreased to 0.08 m (PLS; 

component 2). Whilst these results were promising, when considering the microtidal regime, 

prediction errors were actually large by comparison to other research (30%).  

The TCD screened transfer function was applied to fossil samples from three sediment cores 

to produce estimates of palaeo-marsh altitude and finally reconstruct MSL. Prior to this, the 

MAT was used to assess the degree to which fossil samples showed a strong analogy with 

modern assemblages. This resulted in a number of levels within each core that 

contaminated no modern equivalent. This again reflected the short environmental gradients 

observed in this study. Increasing the sampling range incorporating more modern analogues 

may circumvent this issue. Estimates of palaeo-marsh altitude revealed an overall increasing 

trend moving up through the core. To produce estimates of palaeo MSL, the data were 

converted and plotted against chronology. Ages were established using short-lived 

radionuclides and radiocarbon dating. Combing this data through age-depth modelling 

showed a high-resolution record for core JD1 suggesting a sea-level reconstruction possible 

to AD 1751. Core BL extended to ~AD 1888 whilst core JD2 was restricted to the past 50 

years or so due to a hiatus in the record.  

Core JD1 suggested relatively stable MSL observations up until the early 20th century where 

fossil samples with good modern analogues suggest a sharp increase in MSL around AD 

1940. Mean sea-level continues to rise up to AD 1968 and then a fall to AD 1987. A 

fluctuating record is then observed to the present day. In contrast, core JD2 demonstrated a 

relatively low resolution record when plotted against age. Nonetheless the record showed an 

increase in MSL up until AD 1971 with stable observations of MSL recorded thereafter.  

Reconstructed MSL for core BL indicated increasing trends in MSL to AD 1911 after which 

MSL stabilised up until AD 1962. An increasing trend in MSL is observed thereafter before 

faster rates of MSL rise are observed from 4 cm depth (AD 1986).  

As a final assessment to the reconstruction, the transfer function was compared with 

instrumental records using tide-gauge data from Split, central Croatia. To provide a longer 
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time-series, the data were also compared with Trieste. The reconstructions showed 

comparable trends which were in parts, very similar. The record from core JD1 shows an 

inflexion around the period AD 1940 where the rate of sea-level dramatically increases. This 

timing compares well with other proxy records of sea-level change from around the world. 

Similarly a more recent acceleration from approximately AD 1990 shows further increases in 

the rate of MSL. This again confirms other observations by both tide-gauge records and 

satellite altimetry measurements. Ultimately this study has demonstrated the utility of 

foraminiferal transfer functions in reconstructing sea-level change for the Adriatic Sea.  
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APPENDICIES 
 

 

 

APPENDIX A. TROELS-SMITH CORE DESCRIPTIONS  

Jadrtovac Site 1 

Core 1. GPS: 43°40.803’N 15°57.426’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-13 Dark brown grey very organic clay with abundant roots, 
occasional sand and gravel. As2, Sh1, Th

0
1, Ga+, 

Ggmin+. 

3 0 0 2+ - 

13 Bedrock      

 

Core 2. GPS: 43°40.806’N 15°57.425’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-11 Dark brown peat with abundant roots. Th
0
3, Sh1, 

As+. 
3+ 0 0 2+ - 

11-18 Grey brown peaty clay with abundant roots. As2, 
Th

1
2, Sh+.  

3 0 0 2+ 0 

18 Bedrock      

 

Core 3. GPS: 43°40'48.21"N  15°57'24.33"E. 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-11 Dark brown peat with abundant roots. Th
0
3, Sh1, 

As+. 
3+ 0 0 2+ - 

11-19 Grey brown peaty clay with abundant roots. As2, 
Th

1
2, Sh+.  

3 0 0 2+ 0 

19 Bedrock      

 

Core 4 . GPS: 43°40.804’N 15°57.423’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-11 Dark brown peat with abundant roots. Th
0
3, Sh1, 

As+, Th
2
+.   

3+ 0 0 2+ - 

11-20 Grey brown peaty clay with abundant roots. As2, 
Th

1
2, Sh+. 

3 0 0 2+ 0 

20-42 Blue grey slightly mottled silty clay with some rootlets. 
As2+, Ag1, Th

1
++, Lf+, Sh+. 

2 0 0 2 0 

42 Bedrock      
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Core 5. GPS: 43°40.805’N 15°57.420’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-10 Dark brown peat with abundant rootlets. Th
0
3, Sh1, 

As+, Th
2
+.  

3+ 0 0 2+ - 

10-17 Grey brown peaty clay with abundant rootlets. As2, 
Th

1
2, Sh+.  

3 0 0 2+ 0 

17-54 Blue grey slightly mottled silty clay with some rootlets. 
As2

+
, Ag1, Th

1
++, Lf+, Sh+. 

2 0 0 2 0 

54 Bedrock      

 

Core 6. GPS: 43°40.806’N 15°57.416’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-8 Grey brown very peaty clay with abundant rootlets. As2, 
Th

0
2, Sh+.  

3 0 0 2 - 

8-30 Mottled grey brown silty clay with abundant rootlets. 
Orange and black mottles and occasional shells. As3, 
Ag1, Th

1
++, Lf+, Dg+, Tm+. 

3 0 0 2 0 

30-70 Blue grey clayey silt with rootlets, stems and shells. 
Ag3, As1, Th

1
++, Tm++.  

2 0 0 2 0 

70 Bedrock      

 

Core 7. GPS: 43°40.809’N 15°57.408’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-8 Dark brown clayey peat. As2, Th
0
2, Sh+.  3 0 0 2+ - 

8-35 Light grey silty clay with orange brown mottles, 
rootlets and stems. As3, Ag1, Lf+, Th

1
++.  

2+ 0 0 2+ 0 

35-90 Blue grey clayey silt with rootlets and occasional 
stems and shells. Ag3, As1, Th

2
++, Tm+, Ptm+.  

2 0 0 2+ 0 

90 Bedrock      

 

Core 8. GPS: 43°40.810’N 15°57.403’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-8 Dark brown clayey peat with abundant rootlets. As2, 
Th

0
1+, Sh++.  

3 0 0 2+ - 

8-40 Mottled grey silty clay with occasional rootlets and 
abundant shells. As3, Ag1, Th

1
++, Lf+, Tm+.  

2 0 0 2+ 0 

40-98 Blue grey clayey silt with occasional rootlets and stems 
and abundant shells and fragments. Ag3, As1, Th

1
+, 

Tm+, Ptm+, Ggmaj+.  

2 0 0 2+ 0 

98 Bedrock      

 

Core 9. GPS: 43°40.813’N 15°57.391’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-8 Dark brown clayey peat. As1, Th
0
3, Sh++. 3 0 0 2+ - 

8-42 Orange brown mottled grey silty clay with rootlets and 
stems. As3, Ag1, Th

1
++, Lf+, Ptm+. 

2 0 0 2+ 0 

42-100 Blue grey clayey silt with occasional rootlets and stems. 
Very abundant shells and fragments of a variety of 
types. Ag3, As1, Th

1
+, Tm++, Ptm++.  

2 0 0 2+ 0 
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100-
168 

Unrecoverable (presumed similar to unit above).      

168 Bedrock      

 

Core 10. GPS: 43°40.816’N 15°57.379’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-14 Grey brown peaty clay. As2, Th
0
2.  3 0 0 2+ - 

14-28 Grey silty clay with occasional orange/brown to black 
mottles. Abundant rootlets and stems. As2, Ag2, Th

1
++, 

Lf+, Sh+. 

2+ 0 0 2+ 0 

28-100 Blue grey clay silt with occasional rootlets and stems 
and shell fragments. Ag3, As1, Th

1
+, Ptm++, Tm+. 

2 0 0 2+ 0 

100-176 Unrecoverable (presumed similar to unit above).      

176 Bedrock      

 

Core 11. GPS: 43°40.820’N 15°57.366’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-10 Brown clayey peat with very abundant rootlets. As1, 
Sh1,Th

0
2.  

3 0 0 2 - 

10-40 Grey silty clay with orange/brown to black mottles and 
woody detritus, rootlets and stems. As3, Ag1+, Th

1
++, 

Lf+, Sh+, DL+. 

2+ 0 0 2+ 0 

40-89 Blue grey clay silt with occasional rootlets, stems and 
abundant shells. Woody detritus. Ag3, As1, Th

1
+, 

Ptm++, Tm+, DL+. 

2 0 0 2+ 1 

89-100 Shelly silty clay. Ag4, Ptm++, As+, Th
1
+. 2 0 0 2+ 0 

100-205 Unrecoverable (presumed similar to unit above).      

205 Bedrock      

 

Core 12. GPS: 43°40.823’N 15°57.352’E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-10 Grey brown peaty clay with abundant rootlets. As2, 
Sh++,Th

0
2.  

3 0 0 2+ - 

10-38 Grey silty clay with orange/brown to black mottles with 
abundant rootlets and stems. As2, Ag+, Th

1
++.  

2+ 0 0 2+ 0 

38-78 Blue grey clay silt with occasional rootlets, stems and 
phragmites. Abundant shells. Ag3, As1, Th

1
+, 

Thphrag+, Ptm++, Tm++.  

2 0 0 2+ 0 

78-141 Medium grey shelly silt with occasional rootlets. Ag3, 
Ptm1, As+, Th

2
+, Tm+. 

2 0 0 2+ 0 

141-223 Unrecoverable (presumed similar to unit above).      

223 Bedrock      
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Blace Transect 1 

Core 1. GPS 43°00.263’ N 017°28.466’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-22 Dark brown very organic clay with abundant rootlets. 
As3, Th

1
1, Ag+, Sh++.  

3+ 0 0 3 - 

22 Bedrock      

 

Core 2. GPS 43°00.263’ N 017°28.465’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-9 Dark brown peat with abundant rootlets and some 
clay. Th

1
3, As1, Sh+.  

3+ 0 0 3 - 

9-28 Grey brown organic silty clay with abundant rootlets 
and occasional mottles. As2, Ag2, Th

1
++, Sh+, Lf+. 

2+ 0 0 3 0 

28-30 Dark brown organic peaty clay with abundant detrital 
stems and rootlets. Th

2
1, As1, Dh1, Ag1, Sh+.  

3 0 0 2+ 0 

30 Bedrock      

 

Core 3. GPS 43°00.264’ N 017°28.464’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-10 Dark brown clayey peat with abundant rootlets. Th
1
3, 

As1, Sh+.  
3 0 0 2 - 

10-30 Grey brown organic silty clay with abundant rootlets and 
detrital stems. Fragments of burnt wood/charcoal. As2, 
Ag1, Th

1
1+, Dh++, Dg+, Anth++.  

3 0 0 2+ 0 

30 Bedrock      

 

Core 4. GPS 43°00.264’ N 017°28.463’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-11 Grey-brown peaty clay with abundant rootlets. Th
1
2, 

As2, Ag+.  
3 0 0 2 - 

11-30 Grey-brown silty clay with abundant rootlets and detrital 
organics. Occasional small shells and wood fragments. 
Whole hydrobia shell. As2, Ag1, Th

1
1, Dh++, Dl+, Th+. 

2++ 0 0 3 0 

30-38 Blue grey very organic silt (micaceous). Ag2, Dh2, Th
2
+, 

Dl+, Sb+.  
2++ 0 0 3 0 

38 Bedrock      

 

Core 5. GPS 43°00.265’ N 017°28.461’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-26 Grey brown organic clay with abundant rootlets. As2, 
Th

1
2.  

3 0 0 2+ - 

26-37 Grey silty clay with rootlets and detrital organics. As2, 
Ag1+, Th

1
1, Dh+.  

2+ 0 0 2+ 0 

37-45 Blue-grey silt (micaceous), with rootlets and detrital 
organics. Possibly some lamination. Ag4, Th

2
++, Dh+, 

As+, Sb+.  

2 0 0 2+ 0 

45-70 Grey brown organic silt with rootlets plus ‘nut’. Ag3, 
Dh1, Th

2
++, Sh++, As+, Dl+.  

2++ 0 0 2+ 0 
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70 Bedrock      

 

Core 6. GPS 43°00.265’ N 017°28.456’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-16 Grey brown peaty clay with rootlets. As3, Th
0
1, Dh+, 

Lf+.  
2++ 0 0 2+ - 

16-100 Slightly laminated medium to dark grey (micaceous) silt 
with occasional rootlets, organic detritus and shells. 
Ag3, As1, Th

2
+, Dh+, Tm+, Sb+.  

3 1+ 0 2+ 0 

100-
126 

Medium to dark gray saturated coarse shelly silt. Ag3, 
Ptm1, Tm+, As+, Dh+. 

3 0 0 1+ 0 

126 Bedrock      

 

Core 7. GPS 43°00.266’ N 017°28.452’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-12 Grey silty clay with abundant rootlets and some detrital 
organics. As,2, Ag1, Th

1
++, Dh+, Sh+. 

2++ 0 0 2 - 

12-95 Medium to dark grey slightly laminated silt with organic 
detritus, shells and mica. Ag4, Th

2
++, Dh++, As2, 

Ptm+, Dl+, Sb+. 

3 1 0 2+ 0 

95-134 Medium grey saturated silt with occasional organic 
detritus and shells. Ag4, Tm+, Dh+, Dl+. 

3 0 0 1+ 0 

134 Bedrock      

 

Core 8. GPS 43°00.273’ N 017°28.457’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-13 Medium brown clayey peat with abundant rootlets. 
As1+, Sh1, Th

1
2+.  

3 0 0 2+ - 

13-42 Grey brown organic clay with abundant rootlets. As2, 
Ag1, Th

1
1+.  

2+ 0 0 2+ 0 

42-53 Medium blue grey silt with rootlets, detrital organics 
and shell fragments. As+, Ag3, Dh1, Dg+, Ptm+, Th

2
+.  

3 0 0 2+ 0 

53-76 Grey brown detrital organics with silt. Ag2, Dh1, Dl1, 
Th

2
+.  

3 0 0 2+ 0 

76 Bedrock      

 

Core 9. GPS 43°00.291’ N 017°28.462’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-9 Medium brown peat with abundant rootlets and clay. 
Th

0
3, As1+, Sh+.  

3 0 0 2+ - 

9-23 Brown grey mottled organic silty clay with rootlets and 
orange staining. As3, Ag1, Th

1
++, Lf+.  

2+ 0 0 2+ 0 

23-30 Grey brown silt with abundant detrital organics. Ag3, 
Dl1, Dh++, Sh+, Sb+.  

3 0 0 3 0 

30-43 Medium grey clayey silt with occasional organic 
detritus, rootlets and shells. Ag2, As1, Th+, Ptm++, 
Dh+, Th

2
++.  

2++ 0 0 2+ 0 

43-87 Grey and brown very organic silt saturated towards the 
base. Ag2, Dg1, Th

2
1, Dh+, Dl++. 

3+ 0 0 2 0 

87 Bedrock      
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Core 10. GPS 43°00.272’ N 017°28.457’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-14 Brown grey mottled silty clay with abundant rootlets. 
As2, Ag1, Th

1
1, Lf+.  

2+ 0 0 2+ - 

14-50 Grey brown clayey silt with rootlets, detrital stems and 
occasional small shells (hydrobia). Mica. Ag2, As2, 
Th

2
++, Dh+, Tm+, Sb+.  

2 0 0 2+ 0 

50-78 Brown grey silt with lots of detrital organics and some 
shells. Fragments of charcoal. Ag2, Dg1, Dl1, Th

2
++, 

Tm+, Ptm+, Anth+.  

3 0 0 2+ 0 

78-108 Medium grey shelly silt with occasional rootlets and 
organic detritus. Ag4, As+, Th

2
+, Dg+, Tm++, Ptm++.  

2+ 0 0 2 0 

108 Bedrock      

 

Core 11. GPS 43°00.269’ N 017°28.455’ E 

Depth 
(cm) 

Sediment description  
(after Troels-smith, 1955) 

Nig Strf Elas Sicc Lim 
Sup 

0-11 Grey brown organic clay with abundant rootlets. As3, 
Th

1
1, Ag+. 

2++ 0 0 2 - 

11-30 Medium brown grey very silty clay with occasional 
rootlets and detrital organics. As2, Ag2, Th

2
++, Sh+, 

Dg+.  

2++ 0 0 2 0 

30-87 Medium to dark grey silt with occasional shell 
fragments, organic detritus and shells. Ag4, Th

2
+, Dl+. 

3 0 0 2+ 0 

87-120 Very organic grey brown silt. Ag2, Dg2, Th
2
+, Dl+.  3 0 0 2+ 0 

120-158 Medium to dark grey saturated shelly silt. Ag4, Ptm+, 
Tm++, Dg+, As+. 

3 0 0 1+ 0 

158 Bedrock      

 

 

 

 

 

 

 

 

 



  Appendices 

 

Page | 217 
 

APPENDIX B. RAW FORAMINIFERA COUNTS (SURFACE AND CORE) 
 

Table A1. Jadrtovac Site 1 Surface foraminifera dead and live counts.  

Foraminifera taxa 
Sample Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Balti. pseudomacrescens  
 

0 
0 

0 
0 

3 
0 

0 
0 

2 
0 

9 
0 

1 
0 

5 
0 

1 
0 

0 
0 

1 
0 

4 
0 

0 
0 

8 
0 

0 
0 

3 
0 

8 
0 

16 
0 

0 
0 

0 
0 

1 
0 

8 
0 

Haplophragmoides wilberti           
 

0 
0 

0 
0 

5 
0 

0 
0 

0 
0 

1 
0 

1 
0 

2 
0 

2 
0 

2 
0 

7 
0 

1 
0 

0 
0 

0 
0 

7 
0 

3 
0 

31 
0 

6 
0 

1 
1 

4 
0 

12 
0 

13 
0 

Miliammina fusca 
 

0 
0 

0 
0 

34 
0 

0 
0 

10 
0 

69 
0 

34 
0 

16 
1 

13 
2 

12 
0 

8 
0 

5 
0 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

1 
1 

4 
0 

0 
0 

8 
0 

Jadammina macrescens 
 

0 
0 

7 
0 

83 
0 

90 
0 

91 
0 

108 
4 

113 
0 

323 
13 

184 
11 

240 
16 

214 
4 

143 
4 

95 
0 

277 
53 

265 
4 

90 
2 

59 
5 

162 
1 

160 
8 

144 
8 

199 
19 

243 
8 

Reophax moniliformis 
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

12 
0 

30 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

2 
0 

0 
0 

0 
0 

Siphotrochammina lobata 
 

0 
0 

0 
0 

0 
0 

2 
0 

0 
0 

0 
0 

13 
0 

7 
0 

2 
0 

0 
0 

0 
0 

5 
0 

0 
0 

0 
0 

2 
0 

0 
0 

2 
0 

1 
0 

0 
0 

0 
0 

3 
0 

0 
0 

Trochammina inflata 
 

0 
0 

2 
0 

519 
9 

515 
28 

63 
0 

312 
1 

232 
6 

316 
36 

548 
67 

60 
11 

58 
7 

16 
1 

28 
1 

69 
15 

105 
10 

235 
34 

250 
37 

319 
10 

570 
52 

431 
64 

335 
35 

1050 
121 

Ammonia spp. 
 

0 
0 

0 
0 

0 
0 

4 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

231 
25 

0 
0 

0 
0 

0 
0 

2 
0 

1 
0 

67 
11 

59 
6 

3 
0 

1 
3 

58 
3 

15 
1 

23 
0 

Brazalina spp.  
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

3 
0 

2 
0 

0 
0 

0 
0 

2 
0 

2 
0 

0 
0 

0 
0 

8 
0 

2 
0 

0 
0 

7 
0 

10 
1 

Elphidium spp.  
 

0 
0 

0 
0 

90 
0 

312 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

5 
2 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

12 
5 

17 
3 

0 
0 

3 
3 

19 
6 

7 
0 

14 
1 

Haynesia germanica 
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

35 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

11 
0 

21 
0 

0 
0 

0 
0 

10 
0 

3 
0 

4 
0 

Quinqueloculina spp. 
 

0 
0 

0 
0 

14 
0 

8 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

193 
50 

10 
0 

0 
0 

0 
0 

0 
0 

3 
1 

334 
87 

314 
47 

1 
2 

19 
26 

598 
74 

63 
10 

384 
137 

Spirillina vivipara 
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

4 
0 

0 
0 

1 
0 

0 
0 

0 
0 

1 
0 

19 
7 

3 
3 

0 
0 

0 
0 

6 
2 

1 
2 

7 
0 

Total Dead 0 9 748 931 166 499 394 669 750 785 312 205 124 358 386 774 765 517 757 1280 646 1764 

Total Live 0 0 9 28 0 5 6 50 80 104 11 5 1 68 15 146 101 13 94 157 67 265 

Altitude m  HVRS71 0.48 0.44 0.27 0.22 0.20 0.18 0.19 0.15 0.14 0.09 0.06 0.08 0.05 0.08 0.08 0.11 0.10 0.06 0.05 0.06 0.10 0.04 
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Table A2. Jadrtovac Site 2 Surface foraminifera dead and live counts. 

Foraminifera taxa 
Sample number 

1 2 3 4 5 6 7 8 9 10 

Balticammina  pseudomacrescens  
 

0 
0 

1 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

1 
0 

Haplophragmoides wilberti  
 

12 
7 

12 
0 

20 
0 

6 
1 

12 
0 

9 
0 

8 
0 

8 
0 

7 
1 

6 
0 

Miliammina fusca 
 

9 
0 

9 
0 

14 
0 

402 
39 

355 
21 

264 
19 

65 
1 

18 
3 

4 
0 

10 
0 

Jadammina macrescens 
 

215 
96 

293 
29 

226 
7 

167 
10 

104 
2 

197 
5 

443 
32 

211 
23 

615 
80 

299 
36 

Reophax moniliformis 
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Siphotrochammina lobata 
 

0 
0 

2 
0 

2 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Trochammina inflata 
 

12 
3 

61 
42 

926 
0 

291 
49 

253 
15 

419 
14 

369 
24 

440 
36 

82 
8 

110 
29 

Ammonia spp. 
 

0 
0 

0 
0 

3 
0 

5 
1 

18 
0 

84 
3 

72 
0 

86 
14 

33 
2 

37 
5 

Brazalina spp.  
 

0 
0 

0 
0 

0 
0 

7 
0 

1 
0 

3 
0 

6 
3 

0 
0 

0 
0 

3 
0 

Elphidium spp.  
 

10 
0 

33 
11 

297 
0 

147 
20 

30 
4 

5 
1 

5 
0 

7 
4 

0 
0 

4 
0 

Haynesia germanica 
 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

16 
0 

21 
0 

17 
0 

7 
0 

10 
0 

Quinqueloculina spp. 
 

2 
0 

10 
1 

80 
0 

12 
0 

14 
0 

96 
13 

147 
6 

484 
92 

79 
12 

74 
31 

Spirillina vivipara 
 

0 
0 

0 
0 

2 
0 

15 
9 

0 
0 

0 
1 

3 
1 

0 
0 

0 
0 

1 
0 

Total Dead 260 421 1570 1053 788 1093 1139 1272 827 555 

Total Live 106 83 7 129 42 56 67 172 103 101 

Altitude m  HVRS71 0.35 0.30 0.23 0.19 0.19 0.17 0.16 0.15 0.14 0.08 

 

 

 

 

 

 

 

 

 



  Appendices 

 

Page | 219 
 

Table A3. Jadrtovac Site 1 Random Surface foraminifera dead and live counts. 

Foraminifera taxa 
Sample number 

1 2 3 4 5 6 7 8 9 10 

Balticammina  pseudomacrescens  
 

0 
0 

1 
0 

0 
0 

0 
0. 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Haplophragmoides wilberti  
 

3 
0 

12 
1 

6 
0 

14 
0 

3 
0 

0 
0 

1 
0 

9 
0 

45 
2 

12 
0 

Miliammina fusca 
 

294 
1 

68 
0 

21 
0 

4 
0 

3 
0 

287 
0 

9 
0 

2 
0 

43 
0 

0 
0 

Jadammina macrescens 
 

285 
7 

228 
22 

74 
3 

117 
11 

110 
33 

778 
9 

600 
28 

126 
3 

2043 
32 

200 
0 

Reophax moniliformis 
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Siphotrochammina lobata 
 

3 
0 

7 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Trochammina inflata 
 

245 
35 

474 
53 

278 
23 

308 
74 

230 
110 

520 
20 

640 
14 

284 
17 

438 
0 

377 
0 

Ammonia spp. 
 

6 
8 

0 
0 

0 
0 

0 
29 

163 
45 

20 
6 

91 
37 

1 
6 

3 
1 

13 
0 

Brazalina spp.  
 

3 
0 

10 
0 

0 
0 

0 
0 

7 
0 

0 
0 

4 
1 

0 
0 

0 
0 

0 
0 

Elphidium spp.  
 

8 
3 

3 
3 

0 
0 

0 
1 

105 
30 

22 
11 

32 
20 

0 
0 

9 
0 

36 
0 

Haynesia germanica 
 

0 
0 

0 
0 

0 
0 

0 
0 

78 
0 

5 
0 

29 
0 

0 
0 

0 
0 

0 
0 

Quinqueloculina spp. 
 

40 
11 

98 
24 

0 
0 

4 
4 

638 
135 

259 
15 

79 
22 

0 
0 

8 
0 

2 
0 

Spirillina vivipara 
 

0 
0 

12 
2 

0 
0 

0 
0 

4 
0 

6 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Total Dead 887 913 379 447 1341 1897 1485 422 2589 640 

Total Live 65 105 26 119 353 61 122 26 35 0 

Altitude m  HVRS71 0.07 0.16 0.16 0.06 0.09 0.14 0.11 0.09 0.18 0.27 

 

 

 

 

 

 

 

 

 



  Appendices 

 

Page | 220 
 

Table A4. Blace Transect 1 Surface foraminifera dead and live counts.  

Foraminifera taxa 
Sample Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Balticammina  pseudomacrescens  
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Haplophragmoides wilberti  
 

5 
0 

17 
0 

17 
1 

4 
2 

22 
0 

7 
0 

0 
0 

5 
0 

9 
0 

3 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

1 
0 

1 
0 

Miliammina fusca 
 

45 
0 

10 
0 

5 
0 

3 
0 

38 
0 

70 
0 

34 
0 

7 
0 

42 
0 

0 
0 

17 
0 

0 
0 

0 
0 

2 
0 

1 
0 

30 
0 

0 
0 

1 
0 

Jadammina macrescens 
 

78 
1 

295 
3 

200 
2 

90 
1 

488 
12 

289 
19 

507 
18 

240 
11 

280 
10 

140 
21 

79 
16 

25 
13 

23 
22 

5 
0 

4 
0 

101 
4 

170 
10 

240 
12 

Reophax moniliformis 
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Siphotrochammina lobata 
 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

2 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

Trochammina inflata 
 

695 
30 

450 
9 

400 
35 

139 
3 

200 
10 

145 
9 

303 
9 

285 
12 

638 
10 

245 
20 

95 
13 

41 
15 

24 
13 

17 
1 

7 
0 

343 
15 

650 
16 

720 
33 

Ammonia spp. 
 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

87 
0 

103 
1 

58 
0 

35 
15 

98 
13 

78 
13 

0 
0 

25 
1 

74 
4 

Brazalina spp.  
 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

1 
0 

0 
0 

2 
0 

0 
0 

3 
0 

5 
0 

3 
0 

4 
1 

4 
2 

0 
0 

0 
0 

0 
0 

Elphidium spp.  
 

1 
0 

0 
1 

1 
2 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

5 
2 

16 
2 

30 
15 

6 
0 

7 
0 

29 
0 

0 
0 

0 
0 

0 
0 

Haynesia germanica 
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

33 
0 

42 
0 

12 
0 

16 
0 

17 
0 

8 
0 

0 
0 

4 
0 

13 
0 

Quinqueloculina spp. 
 

643 
0 

178 
19 

50 
4 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

240 
34 

1117 
14 

95 
36 

68 
45 

21 
19 

39 
25 

1 
0 

197 
9 

510 
30 

Spirillina vivipara 
 

10 
0 

3 
2 

1 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

31 
7 

170 
0 

8 
0 

4 
0 

3 
0 

5 
1 

0 
0 

13 
7 

5 
0 

Total Dead 1478 953 674 237 749 511 847 537 971 784 1642 274 181 174 175 475 1061 1564 

Total Live 31 34 45 6 22 28 27 23 20 84 46 79 95 34 41 19 43 83 

Altitude m  HVRS71 0.37 0.37 0.36 0.34 0.32 0.29 0.28 0.29 0.3 0.26 0.2 0.17 0.18 0.05 0.01 0.4 0.34 0.29 

Note - Samples 16, 17 and 18 – high marsh samples taken adjacent to samples 1, 2 and 3. 
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Table A5. Blace Transect 2 Surface foraminifera dead and live counts.  

Foraminifera taxa 
Sample Number 

1 2 3 4 5 6 7 8 9 10 

Balticammina  pseudomacrescens 
 

2 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Haplophragmoides wilberti 
 

15 
5 

16 
0 

8 
0 

11 
2 

1 
1 

3 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Miliammina fusca 
 

2 
0 

1 
0 

0 
0 

3 
0 

21 
0 

1 
0 

0 
0 

0 
0 

0 
0 

1 
0 

Jadammina macrescens 
 

128 
44 

155 
10 

258 
71 

215 
50 

69 
12 

9 
5 

0 
0 

1 
0 

0 
0 

0 
0 

Reophax moniliformis 
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Siphotrochammina lobata 
 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Trochammina inflata 
 

71 
18 

27 
2 

26 
7 

105 
25 

89 
9 

14 
7 

0 
1 

1 
1 

0 
0 

0 
0 

Ammonia spp. 
 

15 
4 

3 
0 

8 
0 

84 
2 

387 
18 

16 
2 

108 
0 

49 
0 

0 
0 

7 
1 

Brazalina spp. 
 

0 
0 

1 
0 

0 
0 

0 
0 

6 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Elphidium spp. 
 

6 
6 

2 
1 

0 
1 

2 
5 

42 
7 

102 
43 

12 
0 

12 
0 

0 
0 

0 
0 

Haynesia germanica 
 

0 
0 

0 
0 

0 
0 

11 
0 

86 
0 

4 
0 

27 
0 

10 
0 

0 
0 

0 
0 

Quinqueloculina spp. 
 

201 
89 

164 
15 

127 
47 

143 
37 

217 
18 

24 
3 

4 
0 

0 
0 

0 
0 

1 
0 

Spirillina vivipara 
 

0 
1 

0 
1 

0 
0 

0 
0 

8 
0 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Total Dead 440 369 427 574 926 174 151 73 0 9 

Total Live 167 29 126 121 65 58 1 1 0 1 

Altitude m  HVRS71 0.4 0.34 0.26 -0.01 -0.14 -0.16 -0.16 -0.15 -0.16 -0.07 
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Table A6. Jadrtovac Site 1 Core fossil foraminifera dead counts.  

Foraminifera taxa 
Sample Depth (cm) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Balticammina  pseudomacrescens 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Haplophragmoides wilberti 0 12 4 2 4 0 0 0 0 5 0 0 0 1 0 8 2 5 1 19 1 0 
Miliammina fusca 20 8 24 94 34 19 39 103 178 347 100 180 236 117 248 210 191 355 414 156 115 87 
Jadammina macrescens 42 127 195 158 214 56 77 95 178 172 113 177 218 196 283 61 35 59 43 60 57 65 
Reophax moniliformis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Siphotrochammina lobata 1 4 1 11 0 0 0 0 0 2 0 0 0 1 0 14 4 6 12 1 0 0 
Trochammina inflata 146 272 215 186 334 62 87 85 107 102 71 240 199 529 571 175 133 81 114 28 56 4 
Ammonia spp. 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 1 15 
Brazalina spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Elphidium spp. 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Haynesia germanica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Quinqueloculina spp. 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 
Spirillina vivipara 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 209 424 446 453 586 137 203 283 463 628 284 614 655 844 1102 471 366 509 584 264 233 171 

 

 

Table A6. Jadrtovac Site 1 Core fossil foraminifera dead counts continued. 

Foraminifera taxa 
Sample Depth (cm) 

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 

Balticammina  pseudomacrescens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Haplophragmoides wilberti 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
Miliammina fusca 34 35 52 27 11 11 3 14 14 8 2 4 1 6 8 6 0 0 0 0 
Jadammina macrescens 98 84 99 89 130 37 21 57 28 7 1 1 0 2 0 1 0 0 0 0 
Reophax moniliformis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Siphotrochammina lobata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Trochammina inflata 4 8 20 2 1 6 2 4 3 1 0 0 0 0 2 0 0 1 0 0 
Ammonia spp. 16 7 5 3 4 74 33 59 63 61 77 101 89 110 168 149 148 68 98 130 
Brazalina spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Elphidium spp. 0 0 0 0 2 4 10 15 2 8 53 34 30 23 58 96 75 16 57 41 
Haynesia germanica 0 12 15 11 22 14 92 55 77 183 250 223 195 172 275 359 358 136 172 273 
Quinqueloculina spp. 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 3 0 
Spirillina vivipara 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 153 146 191 132 170 146 161 206 188 268 383 363 316 313 511 611 581 221 330 444 

 

 

 



  Appendices 

 

Page | 223 
 

Table A7. Jadrtovac Site 2 Core fossil foraminifera counts.  

Foraminifera taxa 
Sample Depth (cm) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Balticammina pseudomacrescens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Haplophragmoides wilberti 5 1 17 32 25 53 26 11 55 27 11 11 21 12 4 15 7 7 4 22 18 14 
Miliammina fusca 144 315 399 686 998 925 833 730 1326 545 242 21 45 76 263 64 60 28 46 262 80 141 
Jadammina macrescens 115 147 114 462 318 186 122 115 271 140 131 112 108 115 321 157 77 98 128 257 160 91 
Reophax moniliformis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Siphotrochammina lobata 2 0 0 0 0 27 10 15 21 7 3 18 0 11 0 17 6 3 6 0 2 0 
Trochammina inflata 220 290 318 417 679 915 628 636 869 750 535 419 517 720 633 628 342 368 397 345 405 372 
Ammonia spp. 9 0 0 0 1 6 4 0 7 14 13 2 5 1 2 3 4 2 2 5 9 24 
Brazalina spp. 0 0 0 0 0 0 0 0 0 0 5 0 0 1 0 0 0 0 0 0 0 0 
Elphidium spp. 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 
Haynesia germanica 0 1 0 0 0 0 0 0 6 3 3 0 1 0 0 1 2 0 1 0 4 4 
Qunqueloculina spp. 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Spirillina vivipara 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 523 754 848 1597 2021 2112 1623 1507 2555 1486 943 583 697 936 1223 882 498 506 584 891 679 648 

 

Table A7. Jadrtovac Site 2 Core fossil foraminifera counts continued. 

Foraminifera taxa 
Sample Depth (cm) 

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

Balticammina  pseudomacrescens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Haplophragmoides wilberti 11 8 0 0 6 4 1 0 2 2 2 0 4 3 2 1 2 0 0 0 0 0 
Miliammina fusca 130 99 29 89 55 79 80 9 43 41 84 75 141 45 55 84 81 36 79 18 23 6 
Jadammina macrescens 171 68 44 132 23 32 24 5 137 116 80 33 68 68 43 53 41 15 17 3 11 5 
Reophax moniliformis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Siphotrochammina lobata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Trochammina inflata 515 200 85 97 65 92 55 15 85 56 121 55 117 42 25 34 21 12 54 14 8 10 
Ammonia spp. 30 29 47 30 65 95 163 232 262 382 185 111 192 158 495 401 416 307 72 154 92 155 
Brazalina spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Elphidium spp. 0 6 1 0 0 1 5 4 27 18 20 6 0 3 17 5 6 27 0 1 1 3 
Haynesia germanica 8 13 10 4 3 12 22 61 24 27 21 10 22 18 23 22 11 22 7 10 11 16 
Quinqueloculina spp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Spirillina vivipara 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 865 424 216 352 217 315 350 326 581 644 514 290 549 337 661 601 578 419 229 200 149 195 
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Table A7. Jadrtovac Site 2 Core fossil foraminifera counts continued.  

Foraminifera taxa 
Sample Depth (cm) 

45 46 47 48 49 50 51 52 53 54 55 56 

Balticammina  pseudomacrescens 0 0 0 0 0 0 0 0 0 0 0 0 
Haplophragmoides wilberti 0 0 0 0 0 0 0 0 0 0 0 0 
Miliammina fusca 2 0 0 0 0 0 0 0 0 0 2 4 
Jadammina macrescens 0 0 0 0 0 0 0 0 0 0 0 0 
Reophax moniliformis 0 0 0 0 0 0 0 0 0 0 0 0 
Siphotrochammina lobata 0 0 0 0 0 0 0 0 0 0 0 0 
Trochammina inflata 2 1 0 0 0 1 0 0 0 0 3 1 
Ammonia spp. 237 157 375 638 487 490 490 485 434 442 380 232 
Brazalina spp. 0 0 0 0 0 0 0 0 0 0 0 0 
Elphidium spp. 6 41 80 122 105 25 52 32 28 13 7 13 
Haynesia germanica 19 21 32 31 18 4 31 23 37 58 30 27 
Quinqueloculina spp. 0 0 0 0 0 0 0 0 0 0 0 0 
Spirillina vivipara 0 0 0 0 0 0 0 0 0 0 0 0 

Total 266 220 487 791 610 520 573 540 499 513 422 277 

 

Table A8. Blace Core fossil foraminifera counts.  

Foraminifera taxa 
Sample Depth (cm) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Balticammina  pseudomacrescens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Haplophragmoides wilberti 8 10 5 2 12 0 1 11 10 9 3 3 0 0 8 7 0 0 3 8 0 1 
Miliammina fusca 37 10 5 169 244 406 587 307 300 419 212 155 250 267 704 420 442 233 255 852 145 139 
Jadammina macrescens 207 715 595 137 120 49 23 87 34 35 25 14 21 12 17 26 25 2 21 33 30 15 
Reophax moniliformis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Siphotrochammina lobata 0 15 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Trochammina inflata 132 240 165 450 315 655 652 456 255 192 165 120 185 111 240 160 118 34 48 220 36 13 
Ammonia spp. 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
Brazalina spp. 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Elphidium spp. 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
Haynesia germanica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Quinqueloculina spp. 9 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
Spirillina vivipara 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 399 990 773 758 692 1110 1263 861 599 659 407 292 456 390 969 613 585 269 327 1113 211 168 
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Table A8. Blace Core fossil foraminifera counts continued. 

Foraminifera taxa 
Sample Depth (cm) 

23 24 25 26 27 28 29 30 31 32 

Balticammina  pseudomacrescens 0 0 0 0 0 0 0 0 0 0 
Haplophragmoides wilberti 1 0 0 0 0 0 0 0 0 0 
Miliammina fusca 236 210 323 61 35 54 1 2 3 17 
Jadammina macrescens 27 52 117 82 30 9 6 3 3 17 
Reophax moniliformis 0 0 0 0 0 0 0 0 0 0 
Siphotrochammina lobata 0 0 0 0 0 0 0 0 0 0 
Trochammina inflata 131 19 28 31 26 30 14 24 19 40 
Ammonia spp. 0 1 1 2 22 55 193 332 217 397 
Brazalina spp. 0 0 0 0 0 0 2 9 4 7 
Elphidium spp. 0 0 0 1 0 3 24 110 74 142 
Haynesia germanica 0 0 0 2 2 3 2 15 17 48 
Quinqueloculina spp. 0 0 0 1 0 0 0 3 1 0 
Spirillina vivipara 0 0 0 0 0 0 0 0 0 0 

Total 277 282 469 179 116 154 242 498 338 668 
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Figure A1. Relative abundance (%) of ‘dead’ foraminifera and concentration (per 5 cm3) for 

samples 16, 17 and 18 from BL1. Altitude (m hvrs71) also shown. 
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APPENDIX C. RADIOCARBON ANALYSTICAL REPORT 
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APPENDIX D. TRANSFER FUNCTION RESULTS 

 

Table A9. Palaeo-marsh altitude, standard prediction errors (bootstrap) and minimum 

dissimilarity coefficient (minDC) values for JD1 core fossil samples.  

Core depth (cm) PMA (PLS) SE pred PMA (WA-PLS) SE pred minDC Analogue 

1 0.358778 0.090741 0.263176 0.08216 1.23841 good 

2 0.344818 0.090248 0.252516 0.082088 0.99712 good 

3 0.310159 0.087927 0.220104 0.081293 1.38563 good 

4 0.29547 0.08571 0.214406 0.08093 8.78385 good 

5 0.330031 0.088866 0.235825 0.081338 1.52705 good 

6 0.304887 0.086863 0.215969 0.080965 5.14176 good 

7 0.300016 0.086149 0.214007 0.080925 7.53881 good 

8 0.273068 0.084305 0.197569 0.082063 16.1939 close 

9 0.257936 0.084261 0.184913 0.082855 15.7353 close 

10 0.243874 0.083694 0.180769 0.085269 19.0732 close 

11 0.261852 0.084443 0.18697 0.082482 12.5937 good 

12 0.294182 0.084854 0.213821 0.081094 13.5495 good 

13 0.272764 0.084312 0.197143 0.081997 16.4316 close 

14 0.343316 0.089006 0.250812 0.081419 0.055834 good 

15 0.320063 0.086724 0.233483 0.080928 3.41987 good 

16 0.288327 0.084202 0.221394 0.082663 8.24073 good 

17 0.287847 0.084187 0.220249 0.083536 9.23383 good 

18 0.243959 0.083776 0.188922 0.087899 18.7446 close 

19 0.252128 0.083851 0.196472 0.087763 18.3511 close 

20 0.230369 0.083594 0.175167 0.087059 23.1114 close 

21 0.259821 0.08358 0.192816 0.083672 11.0545 good 

22 0.183181 0.084402 0.123738 0.086225 47.4925 poor 

23 0.175624 0.08699 0.104124 0.085182 29.1564 poor 

24 0.19978 0.086061 0.128719 0.084991 31.3089 poor 

25 0.218555 0.085305 0.148398 0.084142 23.4001 close 

26 0.199307 0.087623 0.126465 0.086554 29.0673 poor 

27 0.193946 0.089382 0.115606 0.087839 24.8083 close 

28 0.036663 0.085892 -0.03803 0.083722 46.657 poor 

29 0.119837 0.082934 -0.0225 0.083672 97.897 poor 

30 0.099394 0.084035 0.006114 0.083156 63.7405 poor 

31 0.085202 0.083742 -0.03961 0.083797 77.6329 poor 

32 0.110558 0.082727 -0.09381 0.085932 103.439 poor 

33 0.110435 0.082367 -0.06901 0.089461 93.4881 poor 

34 0.088624 0.082908 -0.10591 0.088085 82.8369 poor 

35 0.087759 0.082932 -0.11003 0.088285 82.8558 poor 

36 0.066762 0.083512 -0.12013 0.087723 71.9788 poor 

37 0.072319 0.083251 -0.10116 0.087988 69.955 poor 

38 0.095749 0.082579 -0.07166 0.089201 82.0323 poor 

39 0.093634 0.082713 -0.09322 0.089147 83.5163 poor 

40 0.081204 0.083219 -0.1269 0.088402 80.4443 poor 

41 0.079216 0.0829 -0.07778 0.088826 70.258  poor 

42 0.083675 0.083049 -0.11902 0.088649 81.1039 poor 
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Table A10. Palaeo-marsh altitude, standard prediction errors (bootstrap) and minimum 

dissimilarity coefficient (minDC) values for JD2 core fossil samples. 

Core depth (cm) PMA (PLS) SE pred PMA (WA-PLS) SE pred minDC Analogue  

1 0.221685 0.082879 0.300908 0.084755 6.20393 good 

2 0.220666 0.08397 0.291817 0.084388 9.90959 good 

3 0.223808 0.08474 0.289033 0.084285 8.33166 good 

4 0.198412 0.084231 0.263299 0.083855 14.4097 good 

5 0.216505 0.084951 0.280068 0.083936 8.17863 good 

6 0.234674 0.084631 0.301078 0.085039 9.70352 good 

7 0.228312 0.085509 0.290713 0.084518 9.80396 good 

8 0.233781 0.085101 0.299734 0.084915 10.8506 good 

9 0.220188 0.085566 0.279732 0.083999 8.21891 good 

10 0.241017 0.084005 0.315734 0.08609 11.9169 good 

11 0.245188 0.083493 0.329016 0.087158 7.21574 good 

12 0.269271 0.084861 0.367171 0.090628 1.65503 good 

13 0.271731 0.084785 0.371463 0.091174 5.5504 good 

14 0.279333 0.084935 0.379792 0.091883 5.65838 good 

15 0.234084 0.083103 0.322324 0.08629 3.28848 good 

16 0.26778 0.084511 0.365861 0.090369 3.43907 good 

17 0.263584 0.084137 0.358475 0.089762 2.64522 good 

18 0.267439 0.084641 0.369532 0.090697 2.75941 good 

19 0.259403 0.084178 0.358834 0.089529 2.10402 good 

20 0.213979 0.083131 0.290568 0.084728 12.7978 good 

21 0.244057 0.083575 0.335982 0.08785 2.37469 good 

22 0.237147 0.083432 0.322652 0.087446 8.23437 good 

23 0.237409 0.083482 0.328952 0.087856 4.60104 good 

24 0.209234 0.083082 0.287421 0.085844 13.4305 good 

25 0.138093 0.083877 0.221746 0.086138 23.3591 close 

26 0.162978 0.083267 0.239345 0.084571 16.9749 close 

27 0.099935 0.08528 0.173346 0.085782 26.7812 poor 

28 0.097231 0.085326 0.170489 0.085752 29.4098 poor 

29 0.012089 0.088682 0.08436 0.087225 43.1596 poor 

30 -0.13963 0.0995 -0.02382 0.093002 35.1797 poor 

31 0.005716 0.087297 0.08493 0.087313 39.2343 poor 

32 -0.05304 0.091176 0.02613 0.089723 31.2172 poor 

33 0.059692 0.085496 0.135571 0.086131 39.1494 poor 

34 0.050485 0.08653 0.119144 0.085891 41.727 poor 

35 0.065328 0.08626 0.136771 0.08561 36.6537 poor 

36 -0.00133 0.088343 0.076876 0.087244 43.8563 poor 

37 -0.11048 0.096068 -0.03615 0.093311 26.8176 poor 

38 -0.07614 0.09371 -0.0036 0.091023 33.7032 poor 

39 -0.09345 0.095027 -0.02535 0.092241 33.1523 poor 

40 -0.11163 0.09549 -0.03668 0.093048 19.991 close 

41 0.088207 0.086229 0.153809 0.085243 36.4766 poor 

42 -0.11206 0.097428 -0.03422 0.094239 29.9816 poor 

43 -0.07034 0.093425 0.007521 0.090158 38.2574 poor 

44 -0.1369 0.099123 -0.04809 0.095088 26.3731 close 

45 -0.17716 0.102574 -0.0901 0.097872 16.3934 close 

46 -0.13206 0.095408 -0.04742 0.093385 11.6421 good 

47 -0.14286 0.096571 -0.06444 0.094787 9.98769 good 

48 -0.14704 0.097117 -0.07502 0.095753 7.93063 good 
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Table A10 continued. 

Core depth (cm) PMA (PLS) SE pred PMA (WA-PLS) SE pred minDC Analogue  

49 -0.14244 0.096518 -0.07371 0.095569 6.80811 good 

50 -0.17668 0.101898 -0.10918 0.099458 7.49407 good 

51 -0.16469  0.099738 -0.08569 0.096978 9.3805 good 

52 -0.17399  0.101316 -0.09681 0.098158 9.27652 good 

53 -0.17434  0.101378 -0.08784 0.097331 11.9724 good 

54 -0.1831  0.102984 -0.08324 0.097049 18.1091 good 

55 -0.18025  0.103042 -0.09277 0.098156 17.1832 close 

56 -0.16873  0.10105 -0.07613 0.096329 16.0025 close 

 

Table A11. Palaeo-marsh altitude, standard prediction errors (bootstrap) and minimum 

dissimilarity coefficient (minDC) values for BL core fossil samples. 

Core depth (cm) PMA (PLS) SE pred PMA (WA-PLS) SE pred minDC Analogue  

1 0.26901 0.086587 0.196317 0.082591 4.36298 Good 

2 0.247447 0.08877 0.171931 0.085033 2.30708 Good 

3 0.241351 0.089367 0.165254 0.08561 1.31219 Good 

4 0.327125 0.089116 0.253375 0.082762 2.38762 Good 

5 0.298611 0.085676 0.236734 0.08361 11.9415 Good 

6 0.328409 0.088518 0.261712 0.084676 21.0714 Close 

7 0.313751 0.086683 0.253942 0.086114 21.0573 Close 

8 0.314931 0.087081 0.250975 0.084092 14.485 Good 

9 0.294334 0.085036 0.240554 0.08656 12.5983 Good 

10 0.26588 0.08394 0.221519 0.089806 12.9449 Good 

11 0.291207 0.08473 0.237593 0.086845 10.8826 Good 

12 0.29166 0.084848 0.238879 0.087163 13.5541 Good 

13 0.290935 0.084791 0.237808 0.087431 13.9574 Good 

14 0.26656 0.084133 0.223196 0.091049 19.2097 Close 

15 0.258991 0.084228 0.219557 0.0926 24.0457 Close 

16 0.261251 0.084037 0.219744 0.091267 17.9357 Close 

17 0.249554 0.084396 0.211718 0.093313 22.8673 Close 

18 0.234757 0.085542 0.204323 0.097463 40.5856 Poor 

19 0.237815 0.084742 0.203361 0.094417 25.5143 Close 

20 0.248696 0.084455 0.212226 0.093874 25.4418 Close 

21 0.241835 0.084194 0.201178 0.091002 17.434 Close 

22 0.223464 0.085685 0.192652 0.096172 34.71 Poor 

23 0.217236 0.086261 0.188162 0.097106 41.1833 Poor 

24 0.219036 0.085401 0.183755 0.093135 31.6722 Poor 

25 0.217051 0.085397 0.179026 0.091465 33.8405 Poor 

26 0.233188 0.084895 0.1757 0.08413 15.2901 Close 

27 0.18584 0.084002 0.128729 0.082903 19.7006 Close 

28 0.121311 0.084624 0.070375 0.084233 40.9109 Poor 

29 -0.06601 0.090554 -0.12408 0.085268 6.98337 Good 

30 -0.03241 0.087593 -0.09828 0.084786 7.06731 Good 

31 -0.02298 0.087287 -0.09178 0.084691 9.74278 Good 

32 -0.00641 0.086546 -0.07846 0.0844 14.0654 Good 
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APPENDIX E. SCANNING ELECTRON MICROSCOPE IMAGES 

 

 

 

 

Key: 

 

1. Jadammina macrescens (spiral view, scale = 300µm). 

2. Haplophragmoides spp. (side view, scale = 300µm). 

3. Miliammina fusca (side view, scale = 200µm). 

4. Reophax moniliformis (side view, scale = 300µm). 

5. Siphtrochammina inflata (spiral view, scale = 300µm). 

6. Trochammina inflata (spiral view, scale = 400µm). 

1.  2.  

3.  4.  

5.  6.  
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Key: 

 

7. Trochammina inflata (umbilical view, scale = 400µm). 

8. Trochammina inflata (umbilical view showing ‘feeding arm’, scale = 400µm). 

9. Quinqueloculina spp. (side view, scale = 300µm). 

10. Haynesina germanica (spiral view, scale = 300µm). 

11. Ammonia spp. (spiral view, scale = 400µm). 

12. Ammonia spp. (umbilical view, scale = 400µm). 

 

7.  8.  

9.  10.  

11.  12.  
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Key: 

 

13. Elphidium spp. (spiral view, scale 300= µm). 

14. Elphidium spp. (umbilical view, scale = 300µm). 

 

 

APPENDIX F. TIDAL LEVELS 

Table A12. Details of water level tidal heights recorded and converted into altitude by the 

Hydrographic Institute, Croatia (Hydrographic Institute, 1955–2002).  

Date Time Altitude m HVRS71 

18/01/2010 12:50 -0.08 
19/01/2010 15:00 -0.04 
21/01/2010 13:20 +0.02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13.  14.  


