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Abstract 

 

Turning operation is a very popular process in producing round parts. 

Vibration and chatter noise are major issues during turning operation and also 

for other machining processes. Some of the effects of vibration and chatter are 

short tool life span, tool damage, inaccurate dimension, poor surface finish and 

unacceptable noise. The basic dynamic model of turning operation should 

include a rotating work piece excited by a force that moves in the longitudinal 

direction. Dynamic interaction between a rotating work piece and moving 

cutting forces can excite vibration and chatter noise under certain conditions. 

This is a very complicated dynamic problem. Vibration and chatter in machining 

is one example of moving load problems as the cutter travels along the rotating 

work-piece. These moving cutting forces depend on a number of factors and 

regenerative chatter is the widely accepted mechanism and model of cutting 

forces which then introduce time delays in a dynamic model.  

 

In this investigation, the work piece is modelled as a rotating Rayleigh 

beam and the cutting force as a moving load with time delay based on the 

regenerative mechanism. The mathematical model developed considers work 

piece and cutting tools both as a flexible. Without doubt, this dynamic model of 

vibration of work piece in turning operation is more realistic than previous ones 

as the dynamic model has multiple-degrees-of-freedom and considers the 

vibration of the cutter with regenerative chatter. It is found that the cutting force 

model of regenerative chatter which introduces time delay in a dynamic model 

leads to interesting dynamic behaviour in the vibration of rotating beams and a 

sufficient number of modes must be included to sufficiently represent the 



ii 
 

dynamic behaviour. The effects of depth of cut, cutting speed and rotational 

speed on the vibration and chatter occurrence are obtained and examined. 

Simulated numerical examples are presented. These three different parameters 

are vital and definitely influence the dynamic response of deflection in the y and 

z directions. The depth of cut is seen to be the most influential on the magnitude 

of the deflection. In addition, higher cutting speed combined with high depth of 

cut promotes chatter and produces a beating phenomenon whereas rotational 

speeds have a moderate influence on the dynamic response. Furthermore, 

several turning experiments are conducted that demonstrate vibration and chatter 

in the machining operations. There is fairly good qualitative agreement between 

the numerical results and the experimental ones.  
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Chapter 1 

 

Introduction 

 

1.1 Introduction 

 

This chapter contains a general introduction of the research (Section 1.1), 

motivations for the work (Section 1.2), research aim (Section 1.3) and scope of 

the thesis (Section 1.4). Section 1.5 describes the organisation of the thesis. 

 

There are many different ways in which a product can be manufactured. 

Conventional techniques encompass processes such as machining, metal 

forming, injection moulding, die casting, stamping and many others. Machining 

is one of the basic and most widely used operations necessary to cut things to 

size and to finish off edges, dimensions and other aspect of a finished assembly 

part. Machining is a term that covers a large collection of manufacturing 

processes designed to remove unwanted material, usually in the form of chips, 

from a work piece. Machining is also used to convert basic geometrical shapes 

or shapes manufactured using different technologies (castings, forgings) into 

desired shapes, with size and finish specified to fulfil design requirements. A 

blank work piece is converted into a final product by cutting extra material away 

by turning, milling, drilling, boring or grinding operation. Generally, it can be 

said that most of manufactured product has components that require machining. 
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Therefore, this collection of processes is one of the most important among the 

basic manufacturing processes because of the value added to the final product.  

 

In general, work pieces used in machining are made of metals due to 

their popular physical and mechanical properties in most engineering 

applications. In automotive industry for example, most of the parts are made 

from metals and their alloys. In cars, steel can crumple to absorb different 

impacts and hence are used to create the underlying chassis or cage beneath the 

body that forms the skeleton of the vehicle, door beams, roofs, and other parts. 

A large number of manufacturers these days are gradually trying to substitute 

metals due to their shortcomings such as weight, and corrosion (for some 

metals) if not painted or coated. Plastic materials especially composites become 

prominent to avoid these drawbacks. 

 

Over the years, manufacturers begin to explore other materials that cost 

less and perform better, being lighter, for instance or more corrosion resistant.  

Metals have been steadily incorporated with composite materials as they offer 

special advantages mentioned earlier. Although composite parts may be 

produced by other fabrication techniques like near net shape forming and 

modified casting, they still require further subsequent machining to facilitate 

precise dimensions to the part. Composites, unlike metals, are not isotropic and 

consist of both unique resins and fibres. Therefore machining composites in any 

post processing operation to get to the final part is indeed different. 

 

Machining of composite has become an exciting subject in recent years 

since the use of composite materials has increased tremendously in various areas 

in science and technology. With regard to the increase use of composites in 

many industries such as aerospace sector, the need to machine composite 

materials adequately has increased enormously. Typically composites are 

layered construction unite a resin matrix with normally discrete layers of brittle 

fibre reinforcement. In comparison to metals, composite react very differently 

and not so predictably during machining. The tool encounters continuously 

alternate fibres and matrix, which response differently. In composite, the 

material behaviour is not only inhomogeneous, but also depends on diverse fibre 
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and matrix properties, fibre orientation at the point of contact, and the relative 

volumes of fibre and matrix (Basavarajappa et al., 2006) 

 

 

1.2 Motivations 

 

One of the most-known machining processes is turning. Turning 

operation is one of the oldest and most versatile conventional ways to produce 

round parts by means of a single point cutting tool. Typical products made 

include parts as small as miniature screws for eyeglass frame hinges and as large 

as rolls for rolling mills, cylinders, gun barrels and turbine shafts for 

hydroelectric power plants. Normally turning is performed on a lathe machine 

where one end of the work piece is fixed to the spindle and the other end pin 

mounted to the tails stock. The tool is fed either linearly in the direction parallel 

or perpendicular to the axis of rotation of the work piece. The work piece will 

experience a rotary motion whereas the cutting tool will experience a linear 

translation.  

 

Work piece and cutting tool come in contact with each other during 

turning operation. This dynamic interaction between a rotating work piece and 

moving cutting forces will suppress vibration and occasionally under certain 

conditions it will excite chatter noise. The growing vibrations increase the 

cutting forces and may chip the tool and produce a poor surface finish. Harder 

regulations in terms of the noise levels also affected the operator environment. 

This is a very complicated dynamic problem. Vibration and chatter noise are 

major issues not just for turning operation but for any other machining 

processes. Short tool life span, tool damage, inaccurate dimension, poor surface 

finish are some distinctive adverse effects of vibration during machining. In 

addition, noise is a nuisance and unacceptable noise to the well-being of the 

operator. Manufactured products or components should have a good surface 

finish for better quality, reliability, excellent performance and meet customer 

requirements. In most cases poor surface finish contributes to irregularities in 

the surface and may form nucleation sites of cracks or corrosion.  
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There are two groups of researchers who study on vibration and chatter 

noise in turning operation which are the structural dynamicists and manufacture 

engineers. The structural dynamicists studied on vibration of a shaft spinning 

about its longitudinal axis subjected to moving load (Ouyang, 2011). Vibration 

and chatter noise in turning operation is one example of the moving load 

problems as the cutter travels along the rotating work piece and this generate 

three directional moving cutting forces. The rotating work piece (usually treated 

as a beam or shaft) can be modelled in more than one beam theory. In general 

there are four beam theories used which are Euler-Bernoulli, Rayleigh, shear 

and Timoshenko. The more sophisticated beam theories employed into the 

dynamic model of the turned work piece, the more accurate is the model. On the 

other hand, it is time consuming during computational work since sophisticated 

theories consider numerous interactions between several known variables. From 

the established dynamic model, vibration of the work piece during turning 

operation can be simulated. 

 

The second group is from manufacturing engineers. Most of the 

manufacture engineers use simplified dynamic models for the work piece and do 

not treat it as well as structural dynamicists. The cutting tools often modelled as 

a lumped mass having one or two degrees of freedom (for describing motions of 

the cutting tool in the main cutting force direction). On the other hand, the 

manufacture engineer‟s cutting forces models are more realistic as they usually 

model the cutting tool as a single degree of freedom (SDOF) or two degree of 

freedom (TDOF) with regenerative chatter mechanism. Mode coupling and 

regeneration of chatter are two common chatter mechanisms occur during 

machining. Moving cutting forces in turning operation depend on a number of 

factors and regenerative chatter is the widely accepted mechanism which then 

introduces time delays in the established dynamic model. The length of this 

delay in turning operation is the time period for one revolution of the work 

piece. 

 

A substantial amount of research on dynamic model of vibration for 

turned metal had been investigated over the years but unfortunately there has 

been less research on this area especially in turning of composites. The dynamic 
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models developed in this study assumed a straightforward and common 

behaviour which captures some basic features of a turning operation in 

machining, in which a cutting tool is moved in the axial direction against a work 

piece that is rotating rapidly. This dynamic model should work well for both of 

the work piece, metal and composite. In the past, most studies of dynamic model 

of turning operation have generally assumed the work piece to be rigid and have, 

therefore, ignored work piece deformation. However, in practice, the work piece 

undergoes deformation as a result of an external force by the cutting tool. This 

deformation affects and changes the chip thickness. In this thesis, the main 

contribution is to combine both dynamic models concept from those two groups; 

structural dynamicists and manufacturing engineers and develop a new 

mathematical model considering the work piece and cutting tools as a flexible 

work piece and flexible cutting tools. In addition the effect of the deflection-

dependence of the moving cutting forces with regenerative chatter on the 

dynamic behaviour of the system at various travelling cutting speeds is also 

investigated.  

 

 

1.3 Research Aim  

 

The reliability of the developed dynamic model of turning operation is 

required to be simulated first for metal work piece. This has to be done right 

before considering simulating the composite material into the established 

dynamic model. There are two boundary conditions simulated in the developed 

dynamics model for metal work piece; clamp pinned and elastic boundary 

(chuck-tail stock) boundary. Each boundary condition was simulated to 

determine the work piece natural frequency and mode shapes. The results from 

the simulation are needed to be validated with the experimental results to realize 

the reliability of the dynamics model. In the beginning, the dynamic responses 

are set to be measured by laser sensor but unfortunately the laser is not sensitive 

enough. From the initial results, it is found that they had big differences 

compared to the numerical results (The details of the result were discussed in 

Chapter 4). Due to lack of the equipment in measuring the deflection of the 
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work piece and the moving cutting forces, the produced data could not be used. 

Instead, a collaboration data from a collaborator in China had to be used. 

However, there has not been a reduced quality of the research. In addition, the 

dynamic model developed is originally aimed to be used for work pieces made 

from composite materials but since enough original work on metal work pieces 

has been done, the thesis is focused on metals. Composites are studied only 

during the preliminary stage of this research. Previous works on composites and 

their characteristics are also discussed in the literature review in the context of 

vibration and chatter noise during turning of composite as they can be useful in 

future. 

 

Due to several encountered problems mentioned earlier, the focus of the 

research had to be changed slightly to the development of mathematical aspect 

of coding and numerical simulation after consultation with the supervisor. Thus, 

the main aim of this study is to develop a dynamic model for turning metal work 

pieces which considers flexible work piece and flexible cutting tool with the 

regenerative chatter effects. This can be achieved by pursuing several tasks: (1) 

to understand what affect the vibration and chatter noise during turning in a 

quantitative manner and then find ways of alleviating this problem by 

parametric studies, (2) to develop the mathematical model which is then will be 

validated against experimental results from a collaborator from China due to 

lack of equipment and technical support within the student‟s own school. The 

validated model will be used to simulate structural modifications in order to 

identify means of design improvements and vibration reduction. The developed 

models permit a full analysis and discussion of the interaction between the work 

piece and the tool. 
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1.4 Scope of the thesis  

 

The scope of the research covers several key areas which are given as 

follows: 

 

i. Identify the main factors that influence vibration and chatter noise 

of turned metal and composite work pieces 

 

One step towards a solution to the vibration and chatter noise problems is 

to investigate what kind of vibration that is present during turning 

operation. Thus, it is vital to investigate and identify several factors that 

will influence this vibration and chatter noise of turned metals and 

composites. 

 

ii. Literatures review on dynamic model of turned metal with 

regenerative chatter  

 

The next scope is to provide a brief but comprehensive survey on the 

currently available dynamic models of turned metal and composite. 

 

iii. Develop a dynamic model for the vibration of rotating Rayleigh 

beam subjected to three directional moving cutting forces with 

regenerative chatter and flexible cutting tool and code it in 

MATLAB software 

 

Develop a mathematical model for the behaviour of turning operation 

and validate the realistic dynamic model through experiments. The work 

piece is modelled as a rotating shaft (Rayleigh beam) subjected to a three 

directional moving cutting forces with regenerative chatter. The dynamic 

response of a rotating shaft is based on two boundary conditions which 

are the clamped pinned and elastic boundaries. This dynamic model of 

vibration of work piece in turning operation is more realistic as the 

dynamic model has multiple degrees of freedom and considers the 
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vibration of the cutter with regenerative chatter mechanism. It will 

involve great effort since the dynamic model for turning is very 

complicated in mathematics.  Simulation is then needed to imitate the 

dynamic behaviour of the turning process subjected to moving cutting 

forces with regenerative chatter mechanism prior to actual machining 

and numerical examples are analysed accordingly. 

 

iv. Numerical simulation of reducing vibration by parametric studies of 

machining parameters  

 

One has to predict and visualize the effect of several cutting and machine 

parameters to the turned metal parts so that a good finished product can 

be achieved. It is known that several machining parameters such as 

cutting speed, depth of cut, feed rate and rotational speed affect the 

surface finish of turned work piece. By means of the dynamic model 

established above, these machining parameters and work piece 

characteristics are simulated to observe how they influence surface finish 

and vibration of turned work piece. The effects of depth of cut, the 

rotational speed and cutting speed of the cutter on the vibration and 

chatter occurrence are examined. Unfortunately due to the lack of 

equipment, most of the work is done in the form of numerical simulation 

and the validation of the developed dynamic model is made by using and 

comparing the data from the collaborate group in China. Only modal 

testing of metal and composite work pieces has been conducted. Ideally, 

experiments will be performed to test the machinability of metal 

according to the recommended cutting and machining parameters and 

validate the established dynamic model.  
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1.5 Organization of the thesis 

 

 The thesis consists of seven chapters describing all the works done in the 

research. These chapters are structured as follows:  

 

Chapter 1 described the introduction and background of the research. 

The motivation behind the research was also stressed out in this chapter. In 

addition, the aim of the research was also laid out. The scopes of the research as 

well were also highlighted as a framework of the research.  

 

Chapter 2 presents a brief literature review on the background of metal 

cutting especially turning operation and machining of composite. The influence 

factors contributing to the surface finish of the turned metals and composites 

were also explained. The introduction to vibration and chatter noise in 

machining and what would contribute to the occurrence of chatter noise in 

turning of metals or composites are also presented. Two different mechanisms of 

chatter noise usually occurred in machining process were also discussed. The 

basic vibration/chatter theory of 1-2 degree of freedom (DOF) used by most 

manufacturing people is discussed. The classical beam theories used in this 

research were also explained. Lastly, the methods to suppress vibration and 

chatter noise in turning operation by means of active and passive controlled 

were also reviewed in this chapter.  

 

Chapter 3 presents the theory and development details of dynamic model 

employed in turning operation. The classical beam theories used in this research 

were also explained. A number of regenerative chatter models developed were 

also presented. This chapter also introduces the dynamic models of a rotating 

shaft subjected to three directional moving cutting forces with regenerative 

chatter mechanism. The sequence of improved mathematical formulation 

developed was also presented and discussed.  

 

Chapter 4 explains the experimental modal analysis and discuss several 

experiments done to determine the natural frequency and mode shapes for the 
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work piece. Some cutting tests were also carried out on metals to identify the 

cutting force coefficient and cutting parameter effects. 

 

Chapter 5 describes the numerical simulation works done and discuss the 

outcomes of the simulation which includes the parametric studies done to 

evaluate the effect of different cutting parameters on vibration. 

 

Chapter 6 explained the detail analysis and discussion on the results from 

the parametric studies. Explanation on how the dynamic model developed is 

validated is also stated. 

 

Chapter 7 concludes the research on numerical studies of vibration in 

turning operation. In addition, the contribution of the research are summarised 

and future research directions are proposed. Published journal and conference 

proceeding papers are also listed. 
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Chapter 2 

 

Literatures Review and Theory 

 

The organisation of this literature review is as follows; Section 2.2 

presents the fundamental knowledge of turning operation cutting parameters 

such as cutting speed, depth of cut and feed rate. Section 2.3 describes the 

vibration in turning operation and Section 2.4 explains the phenomena of chatter 

noise in turning operation. Two different chatter mechanisms are described and 

discussed. Section 2.5 discusses the mechanism of regenerative chatter and some 

of the equations involved. In the meantime, Section 2.6 introduces some 

fundamental concepts of moving load dynamics problem. A number of dynamic 

responses of a rotating shaft subjected to moving load are reviewed in Section 

2.7 with references for readers to explore at their own time. Several factors that 

influence the vibration and surface finish of turned metal are discussed in 

section 2.8. In Section 2.9, machining of composite will be discussed briefly and 

some factors contributing to the vibration and surface finish of turned 

composites is explained in Section 10. Last but not least in section 2.11, various 

chatter suppression methods in turning operation are discussed. Lastly, section 

2.12 draws conclusions and presents an outlook of this research. 
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2.1 Introduction 

 

Most machining today is carried out to shape metals and alloys. Many 

composites and plastic products are also machined. As regards to size, 

components from watch parts to aircraft wing parts are machined. In the 

engineering industry, the term machining is used to cover chip forming 

operations. Machining is an operation in which a thin layer of metal is removed 

by a wedge shaped tool from a larger body (Trent and Wright, 2000). It includes 

various processes in which a piece of raw material is cut into a desired final 

shape and size by a controlled material removal process. Machining also is one 

of the most widely used methods of producing the final shape of the 

manufactured products.  

 

 

2.2 Turning Operation 

 

There are three principals of machining process which are turning, 

drilling and milling. Other operations fall into miscellaneous categories such as 

shaping, planning, boring, broaching and sawing. The focus of this thesis is on 

turning operation. Turning operation is one of the oldest and most versatile 

conventional ways of producing parts that are basically in round shape. Turning 

means that the work piece is rotating while it is being machined. The starting 

material is usually a work piece that has been made by other processes such as 

casting, forging or extrusion.  

 

A conventional lathe which normally turning is performed is illustrated 

in Figure 2.1. One end of the work piece is fixed to the spindle by chuck and the 

other end is pin mounted to the tails stock as can be seen in Figure 2.1. The 

machine consists of a headstock which is mounted on the lathe bed. The 

headstock contains the spindle that rotates the cylindrical work piece that is held 

in the chuck. The single point cutting tool is placed at the tool holder that is 

mounted on the cross slide. The cross slide is in turn mounted on the carriage. 
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Figure 2.1: Conventional lathe machine at University of Liverpool 

 

On a lathe, the tool is held rigidly in a tool post and moved at a constant 

rate along the axis of the work piece, cutting away a layer of metal to form a 

cylinder as shown in Figure 2.2. The tool is fed either linearly in the direction 

parallel or perpendicular to the axis of rotation of the work piece. The work 

piece will experience a rotary motion whereas the cutting tool will experience a 

linear translation. The three components of the cutting force acting on the rake 

face of the tool are also depicted in Figure 2.2. Normal to the cutting edge is 

called the tangential force, Py. This usually is the largest of the three components 

and acts in the direction of cutting velocity. The force component acting on the 

tool, parallel with the direction of feed, is referred to as feed force, Px. This force 

acts in the normal direction to the main cutting forces Py. The third component, 

Pz , tend to push the tool away from the work in the radial direction, is the 

smallest of the force components in simple turning operation. 

 

Figure 2.2 also shows the cutting parameters involved in turning 

operation such as depth of cut, feed rate and cutting speed. A thorough 
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knowledge of the variable factors of cutting speeds, feed rate and depth of cut 

must be understood (Trent and Wright, 2000) and below are the definitions for 

each of the turning process parameters. 

 

The cutting speed (V) is the rate at which the uncut surface of the work 

passes the cutting edge of the tool, usually expressed in units of m/min
 
or ft/min. 

The cutting speed of a tool is the speed at which the metal is removed by the 

tool from the work piece. Cutting speed is usually between 3 and 200 m/min
 
(10 

and 600 ft/min) (Trent and Wright, 2000). The cutting speed can be calculated 

using the equation 2.1 below: 

  

𝑉 =
𝑁  𝑑

1000
                                         (2.1) 

 

 

where V is the cutting speed (m/min), N is the spindle speed (rev/min) 

and d is the work piece diameter. Since 𝜋𝑑 is constant, thus the cutting speed 

depends on the spindle speed in which it is usually being determined first before 

actual turning operation according to Trent and Wright (2000). 

 

The feed rate (f) is the distance moved by the tool in an axial direction at 

each revolution of the work piece.  The feed rate may be as low as 0.0125 mm 

(0.0005 in) per revolution and with very heavy cutting, it can go up to 2.5 mm 

(0.1 in) per revolution as mentioned by Trent and Wright (2000). Equation 2.2 is 

normally used to calculate the feed rate; 

 

𝐹𝑒𝑒𝑑 𝑅𝑎𝑡𝑒 = 𝑓𝑒𝑒𝑑 x 𝑁                                  (2.2) 

 

where N is the spindle speed (rev/min), feed is in mm/rev and the unit of feed 

rate is in mm/min. 

 

The depth of cut (w) is the thickness of the metal removed from the work 

piece, measured in radial direction. A depth of cut is the perpendicular distance 

measured from the machined surface to the uncut surface of the work piece. A 
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depth of cut may vary from zero to over 25 mm (1 in). Equation 2.3 is 

sometimes used to define a depth of cut; 

 

𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑐𝑢𝑡 =
𝑑1−𝑑2

2
                                     (2.3) 

 

where 𝑑1 is diameter of the work surface before cutting and 𝑑2 is the diameter 

of the machined surface. The unit of a depth of cut is in mm. 

 

The rotational speed () or sometimes called speed of revolution is the 

number of complete rotations, revolutions, cycles, or turns per time unit. It is a 

cyclic frequency, measured in radians per second or in hertz or in revolutions 

per minute (rev/min or min
-1

) or revolutions per second in everyday life. 

Equation 2.4 is used to define a rotational speed; 

𝜔 =  
𝑣

𝑟
                                                   (2.4) 

where v is a tangential speed and r is a radial distance.  

 

 

Figure 2.2: Schematic illustration of a turning operation  

http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Radians_per_second
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Revolutions_per_minute
http://en.wikipedia.org/wiki/Revolutions_per_minute
http://en.wikipedia.org/wiki/Revolutions_per_minute
http://en.wikipedia.org/wiki/Revolutions_per_second
http://en.wikipedia.org/wiki/Speed#Tangential_speed
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2.3 Vibration in Machining  

 

Vibrations in machining are complex phenomena. During machining, 

work pieces are being cut and remove in discrete chunks. Each time the cutting 

tool takes a bite, it exerts a force on the work piece that was not there an instant 

ago. The work piece responds to this force by deflecting or by molecules 

compressing closer together, and generate mechanical stress. This mechanical 

stress travels through the work piece as a whole and the work piece acts like a 

spring to deflect and then return into shape. This explains vibration phenomenon 

during machining process.  

 

Vibration is defined as any motion that repeats itself after interval of 

time and can be classified in several ways (Rao, 1995). There are two type of 

vibrations occurred during machining; forced and self-excited vibration. Forced 

vibration is generally caused by some periodic applied force present in the 

machine tool, such as that from gear drives, imbalance of the machine tool 

components, misalignment, and motors and pumps (Altintas, 2000). The basic 

solution to forced vibration is to isolate or remove the forcing element. If the 

forcing frequency is at or near the natural frequency of a component of a 

machine tool system, one of the frequencies may be raised or lowered. The 

amplitude of vibration can be reduced by increasing the stiffness or by 

employing a damping system.  

 

The force acting on a vibrating system is usually external to the system 

and independent of the motion. However, there are systems for which the 

exciting force is a function of the motion parameters of the system, such as 

displacement, velocity or acceleration. Such systems are called self-excited 

vibrating systems, since the motion itself produces the exciting force (Rao, 

1995). In machining, self excited vibration comes from the dynamic interaction 

of dynamics of chip removal process and structural dynamics of machine tool. 

Chatter is one of the examples of self excited vibrations that feeds on itself as 

the cutting tool moves across the work piece and generate distinctive loud and 
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unwanted noise. This unwanted noise is known in machining world as chatter 

noise.  

 

 

2.4 Chatter Noise in Turning Operation 

 

Chatter noise in machining is complex phenomena too similar to the 

vibration in machining. Chatter is an abnormal tool behaviour which it is one of 

the most critical problems in machining process and must be avoided to improve 

the dimensional accuracy and surface quality of the product. Chatter is a 

harmonic imbalance that occurs between the tool and the work piece because 

they are bouncing against each other. Chatter can be caused by the tool bouncing 

in or out of the work piece or the work piece bouncing against the tool, or both. 

It is not always easy to determine why chatter is happening.  

 

Chatter needs to be taken into account during machining as it causes 

serious problems in machining instability. One of the most detrimental 

phenomena to productivity in machining is unstable cutting or chatter. To ensure 

stable cutting operations, cutting parameters must be chosen in such a way that 

they lie within the stable regions. Ideally, cutting conditions are chosen such that 

material removal is performed in stable manner. However, sometimes chatter is 

unavoidable because of the geometry of the cutting tool and work piece. Unless 

avoided, chatter marks leaves unacceptable vibration mark on the cut surface 

finish and may damage the cutting tool as can be seen in Figure 2.3 (a). A 

clearer picture of the chatter mark on turned metal work piece is illustrated in 

Figure 2.3 (b).  
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Figure 2.3 (a): Chatter mark (Budak and Wiercigroch, 2001) 

 

 

 

Figure 2.3 (b): Chatter mark on turned work piece (Tlusty, 2000) 

 

 

According to Tlusty (2000), chatter can easily be recognized by the noise 

associated with self-excited vibrations. It also can be seen from the appearance 

of the chips as depicted in Figure 2.4 (a) and Figure 2.4 (b). Clearly from Figure 

2.4 (a), the chip is short and segmented and it is caused by the chatter amplitude 

and the average chip thickness which will set different chip forms. With high 

amplitudes and a small average chip thickness, the chip will be broken.  

Meanwhile in Figure 2.4 (b) shows the chip is discontinuous with varied 

thickness. 
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Figure 2.4 (a): Segmented chips (Tlusty, 2000) 

 

 

 

Figure 2.4 (b): Discontinuous chips (Birhan, 2008) 

 

 

Machine tool chatter has long been studied as interesting phenomenon. 

Chatter is self excited vibration that occurs in metal cutting if the chip width is 

too large with respect to the dynamic stiffness of the system (Altintas, 2000). 

Meanwhile, dynamic stiffness is defined as the ratio of the amplitude of the 

force applied to the amplitude of the vibration (Rao, 1995). A machine tool has 

different stiffness values at different frequencies and changing cutting 

parameters can affect chatter. Under such conditions the vibration starts and 

quickly grows. The cutting force becomes periodically variable, reaching 

considerable amplitudes and when the magnitude of this vibration keeps 
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increasing, the machine tool system becomes unstable. The machined surface 

becomes undulated, and the chip thickness varies in the extreme so much that it 

becomes dissected. In general, self excited vibrations can be controlled by 

increasing the dynamic stiffness of the system and damping (Birhan, 2008). 

Almost 100 years ago, Taylor (1907) described machine tool chatter or chatter 

as the most obscure and delicate of all problems faced by the machinist. Chatter 

significantly affects work piece surface finish, dimensional accuracy, and 

cutting tool life (Stephenson and Agapiou, 1996). In an attempt to achieve high 

material removal rates, aggressive cutting strategy is often employed in industry. 

This practice may cause chatter to occur more often in a competitive production 

environment, and makes chatter research imperative. 

 

Such phenomena of chatter occurs during machining is due to material 

removal process in turning operation, both cutting tool and work piece are in 

contact with each other. Vibration and chatter noise are suppressed under certain 

conditions by this dynamic interaction between a rotating work piece and 

moving cutting forces from the tool. The cutting tool is subjected to a dynamic 

excitation due to the deformation of the work piece during cutting. The relative 

dynamic motion between the cutting tool and the work piece produce vibration 

and chatter thus affect the surface finish. Poor surface finish and dimensional 

accuracy of the work piece, possible damage to the cutting tool and irritating 

noise from excessive vibration are the results of uncontrolled vibration and 

chatter. Thus vibration related problems are of great interest in turning 

operations. 

 

Furthermore, machine tool chatter is thought to occur for a variety of 

reasons. Mode coupling and regenerative chatter are two basic mechanisms that 

cause machine tool chatter and will be explained in the following sections. 

Tobias (1965) and Tlusty (2000) had documented much of the pioneering work 

in the field. In addition, Tobias and Fishwick (1958) were the first to identify the 

mechanisms known as regeneration chatter. On the other hand, mode coupling 

was studied by Koeingsburger (1970) and Tlusty (2000).  
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Another factor that should be considered in machining is machine 

stiffness. Machine stiffness is recognized as one of the important parameter 

during machining since low machine stiffness affects the magnitude of vibration 

during machining (milling, turning, drilling etc). It can have adverse effects on 

product surface finish where surface finish is directly affected by a dynamic 

displacement (vibration) between cutting tool and work piece according to Rao, 

(1995). 

 

 

2.4.1 Mode Coupling 

 

Mode coupling is recognized as one of the causes of chatter which is 

often called primary chatter. Mode coupling is a mechanism of self excitation 

that can only be associated with situations where the relative vibration between 

the tool and the work piece can exist simultaneously in at least two directions in 

the plane of the cut. Usually mode coupling occurs without any interaction 

between the vibration of the system and undulated surface of work piece. It acts 

only within vibratory systems with at least two degrees of freedom, which is due 

to the fact that the system mass vibrates simultaneously in the directions of the 

degrees of freedom of the system, with different amplitudes and phase.  

 

Mode coupling is very complex and is inherently related to the dynamics 

of the cutting process. It may arise from different physical causes such as the 

dynamical effects of the geometry of the cutting tool on the cutting process. 

According to Huang and Wang (2009), the rotation direction of chatter vibration 

is an important feature to determine whether mode coupling chatter occurs or 

not.  

 

 

2.4.2 Regenerative Chatter 

 

Regenerative chatter is renowned as a secondary chatter and it is a self 

excited vibration. It is caused by the regeneration of waviness of the surface of 
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the work piece or by the oscillating cutter running over the wavy surface 

produced from the previous cut. It occurs whenever cuts overlap and the cut 

produced at time leaves small waves in the material that are regenerated with 

each subsequent pass of the tool on the previous cut surface (Kashyzadeh and 

Ostad-Ahmad-Ghorabi, 2012).  

 

The tool in the next pass encounters a wavy surface and removes a chip 

periodically. The chip thickness produced varies after each successive cut. This 

will produce vibration and depending on conditions derived further on, these 

vibrations may be at least as large as in the preceding pass. Thus, the cutting 

force, which is a function of the chip thickness, depends not only on the current 

position of the tool and work piece but also on the delayed value of the work 

piece displacement.  The newly created surface is again wavy in this way the 

waviness is continually regenerated.  

 

Regenerative chatter is considered to be the dominant mechanism of 

chatter in turning operations. If regenerative tool vibrations become large 

enough that the tool looses contact with the work piece, then a type of chatter 

known as multiple regenerative chatter occurs. This mechanism has been the 

subject of study by Shi and Tobias (1984).  

 

The occurrence and mechanism of chatter in machining has been first 

investigated by Tobias (1958) and Tlusty (1963). They found that the 

regenerative chatter is caused by instability of the system.  Meanwhile chatter 

prediction models have a long history that began with work by Tobias (1958) 

and Tlusty (1963, 1971). These early efforts recognized that the regenerative 

effect was the main cause of instability, which leads to the development of 

chatter. Tlusty and Polacek (1963) and Merrit (1965) had discovered that the 

main sources of chatter come from stability condition of cutter, investigated 

conditions of stability for the cutter, structural dynamics of machines and 

feedback of subsequent cuts on the surface of the work piece as the main sources 

of chatter. 
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Several theories have been proposed to explain the occurrence of chatter 

instability for optimizing certain combination of process parameters such as feed 

rate, depth of cut, rotational speed, variation of chip thickness and variation of 

cutting force. In the work by Tobias and Fishwick (1958), the dynamics of the 

cutting process were modelled and effects such as process damping were 

included in their stability model. Tlusty and Polacek (1963) created a stability 

condition in which stability limits can be calculated based upon the system 

dynamics for orthogonal machining. Several dynamic models for regenerative 

chatter have been put forward, for example in the studies of Altintas (2000) and 

Tlusty (2000). Early stability lobe diagrams were created by Merrit (1965) based 

upon feedback control theory to model regenerative chatter. These early studies 

provided insight into the elementary chatter mechanisms.  

 

In the past, by choosing the appropriate combination of cutting 

parameters for example, the feed rate, depth of cut, rotational speed, different 

chip thickness and variation of cutting force to prevent the occurrence of chatter 

during turning operation.  

 

 

2.5 Regenerative Chatter Mechanism in Turning 

Operation 

 

Regenerative chatter is a principal mechanism of chatter in turning 

operations. Tobias (1965) developed a regenerative machine tool chatter theory 

where the cutting force is considered to be a function of both the current and 

previous cuts. The theory is widely accepted as the most appropriate to describe 

the regenerative type chattering phenomenon, and it has become a foundation of 

many theoretical and experimental researches regarding cutting processes.  

 

 In this section the underlying mechanism of regenerative chatter in 

turning operation is explained. This regenerative chatter mechanism has been 

the subject of studies by Tobias (1965), Shi and Tobias (1984), and Stepan and 

Nagy (1997). Tobias (1965), Tlusty (2000), Budak (2006) and Altintas (2000) 
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are among the first to study regenerative chatter in turning operation. Figure 2.5 

can be used to illustrate one degree of freedom of regenerative chatter in turning 

operation.  

 

The work piece is supported at one end by chuck and the other end by 

tailstock on lathe machine. The chuck is often represented with linear spring. 

During turning process, the work piece will rotate as it is being machined. The 

cutting tool movement is parallel to the longitudinal axes of the work piece and 

depending on the depth of cut. When the cutting tool makes contact with the 

work piece, it will deflect. As the cutting tool moves along its direction, there 

will be a variation in the magnitude and the direction of cutting forces because 

the previous cut leaves a wavy surface finish due to structural vibrations. The 

developing vibrations will lead to the increase of cutting force thus, resulting 

poor surface finish (Altintas, 2000). 

 

 

 

Figure 2.5: Regenerative chatter mechanism (Altintas, 2000) 

Py(t) = Ky f 
qy 

h(t) 



25 
 

The work piece is free to move in the feed direction and the feed cutting 

force, Py applied causes the work piece to vibrate. Presume a single point cutter 

is fed perpendicular to the axis of cylindrical shaft. During the first revolution, 

the surface of the work piece is smooth which is without waves but due to the 

bending vibration of the work piece it will initially leave a wavy surface in the 

feed cutting force, Py direction. As a second revolution takes place, the previous 

surface now has two waves at the inside and outside surface of the work piece. 

The inside surface denoted as y(t) is originated from the cut made by the tool 

whereas the outside surface indicated by 𝑦(𝑡 − 𝜏) is the effect of the vibrations 

during the previous revolution of cutting. The wavy surface leads to variable 

chip thickness, cutting force and vibration. This regeneration of chatter 

mechanism can be represented in the mathematical form below; 

 

ℎ 𝑡 =  ℎ𝑜 −  𝑦 𝑡 − 𝑦 𝑡 −                                          (2.5) 

 

where h(t) is instantaneous chip thickness, ho is the intended cut,  𝑦 𝑡 −

𝑦 𝑡 −     is the dynamic of chip thickness and  is a rotation speed of the shaft 

(rev/s). The associated time delay is the time period  of one revolution of the 

work piece  

 

𝜏 =  
2 𝜋 

𝜔
                                              (2.6) 

 

By assuming the work piece is a one single degree of freedom in the radial 

direction which consists of mass and spring system, the corresponding equation 

of motion can be written as below;  

 

𝑚𝑦𝑦  𝑡 +  𝑐𝑦𝑦  𝑡 + 𝑘𝑦𝑦 𝑡 =  𝐹𝑓(𝑡)                                 (2.7) 

 

The magnitude of tangential cutting force Py(t) is proportional to the 

instantaneous chip thickness h(t). 

 

𝑃𝑦  𝑡 =  𝐾𝑦𝑓𝑞𝑦 ℎ 𝑡                                            (2.8) 
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where Ky is the cutting force coefficient, f is feed rate (m/rev) and qy is the 

exponents determined from Han et al. (2010) and h is the instantaneous depth of 

cut. This tangential cutting force not only depends upon the present cut y(t), but 

also on a delayed value of displacement of the previous cut of the tool 𝑦(𝑡 − 𝜏).  

 

 

2.5.1 Chatter Modelling Theory 

 

To set up a system of dynamic equations for studying chatter onset 

conditions, a reliable cutting force model, a mechanistic chatter model, and an 

accurate work piece deformation model are required. Depending on the relative 

flexibility of the work piece and the cutting tool, different chatter models may be 

developed. If the flexibility of the tool structure is predominant, the work piece 

may be considered rigid. Rigid is meant by the work piece is properly tightened 

at the chuck and deflection is assumed to be zero for simplification of the 

results. Flexible tool is defined as the ability to deflect in the main cutting force 

direction or in both directions. This happen due to the tool shank is only tighten 

by screw at the tool post (deflection is inevitable).  

 

A large body of work has been published in chatter modelling over the 

last fifty years. Traditional models of the turning process consider a rigid work 

piece and vibration of the machine tool structure are studied by a few early 

researcher such as Tobias and Fischwick (1948), Nathan (1959), Merrit (1965), 

and Marui (1983). Numerous researchers investigated single degree of freedom 

regenerative tool models such as Tobias (1965), Hanna and Tobias (1974), Shi 

and Tobias (1984), Fofana (1993), Johnson (1996), Nayfeh et al. (1998), 

Kalmar-Nagy et al. (2001), Stepan (2001), Kalmar-Nagy (2002), Stone and 

Campbell (2002) and Stepan et al. (2003). 

 

Basically, the turning cutting tools are often modelled as a lumped 

vibration system having one or two degrees of freedom according to Merrit 

(1965), Marui (1983) and Lin (1990) for describing motions of the cutting tool 

in the main cutting force direction or in both radial and main cutting force 
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directions working over rigid work piece. These chatter models developed on 

the basis of rigid work piece assumption are generally valid for cutting tools 

having a long tool shank in turning operations.  

 

Chiou and Liang (1997) established a dynamic turning model for cutting 

rigid work piece with a flexible cutting tool. A comprehensive expression of the 

equation of motion for the dynamic cutting system incorporating the effects of 

cutting and contact forces is established. Machining experiments were 

conducted on a conventional lathe with the use of a specially designed flexible 

tool which can only vibrate parallel to the feed and perpendicular to the cutting 

velocity direction. The work piece is cut so as to observe the mechanism of the 

cutting tool chatter stability corresponding to the continuous variation of width 

of cut and cutting speed. The chatter stability was observed in verification of the 

analytical solutions over a range of cutting velocities and width of cuts. Among 

these cutting conditions, flank wear has been shown to have a significant effect 

on the chatter stability. 

 

The simplest model that models the tool as a one degree of freedom is 

underdamped linear oscillator excited by the variation in undeformed chip 

thickness from one revolution to another  (Tobias and Fishwick, 1948). The vast 

majority of these investigations employ a single degree of freedom (SDOF), 

representing the lumped mass behaviour of the cutting tool at the cutting zone. 

Equation (2.9) describes the motion during cutting for a SDOF cutting tool and a 

rigid work piece, given as 

 

𝑚𝑦𝑦  𝑡 +  𝑐𝑦𝑦  𝑡 + 𝑘𝑦𝑦 𝑡 =  𝐹𝑓 𝑡                                  (2.9) 

 

where y is the displacement, Ff (t) is a time varying dynamic force due to cutting 

process, my  is the mass, cy is the damping and ky is the stiffness of the cutting 

tool. Typically, the work piece is assumed to be rigid and the cutting tool to be 

vibrates.  

 

On the other hand, if the work piece flexibility is predominant, the tool 

structure may be considered rigid. The work piece is considered flexible since 
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the tool will exert force on the work piece, there will be wok piece deflection 

and the chip thickness will be changed. In addition, most of the work pieces 

used are long and slender having a smaller ratio of diameter over length, d/l 

(ratio is equal to less than 1). Due to this, deflection is likely to occur during 

cutting even though one side of the end is supported by tailstock as weight factor 

contributes to the deflection.  

 

Chen and Tsao (2006) considered flexible work piece in his model and 

discussed a stability analysis of regenerative chatter for turning a cantilever 

beam. In the past studies, the work piece was assumed to be rigid, and only the 

tool vibration was considered. The research is focus on the regenerative chatter 

where a flexible work piece is considered rather than a rigid assumption. Such 

flexibility will affect the cutting force due to work piece deflection and will 

result in a smaller real chip thickness and larger critical chip width. Two models 

are used for the work piece and the tool, which correspond to a second order 

partial differential equation and a second order ordinary differential equation, 

respectively. The interaction between the work piece and the tool can be 

discussed and analysed based on these models. The effect of the critical chip 

width under different spindle speed is also discussed. By considering the 

deformation of the work piece under different conditions, the results show that 

the critical chip width of the deformed case is always larger than the rigid body 

case. Under the same natural frequency, both the work piece deflection and the 

critical chip width will become larger. Under the same work piece deflection, 

the smaller the natural frequency, the larger the critical chip width 

 

Chen and Tsao (2006) as well presented a dynamic model of cutting tool 

with and without tailstock supported work piece using beam theory. Here, the 

effects of work piece parameters are studied on the dynamic stability of turning 

process by treating the work piece as a continuous system. In contrast to the 

most of the previous studies which considered the work piece to be a rigid body, 

the current stability analysis focuses on the regenerative chatter generated during 

the cutting of a flexible work piece supported with a tailstock. To provide a full 

description of the vibration behaviour, this study had developed two models; one 

for the work piece and one for the tool. These two models are in the form of a 
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second order partial differential equation and a second order ordinary 

differential equation, respectively. The developed models permit a full analysis 

and discussion of the interaction between the work piece and the tool. The 

results have shown that the deflection of the work piece affects the cutting force. 

It has also been shown that the larger the work piece deflection, the larger the 

critical chip width. In addition for a constant work piece deflection, the smaller 

the natural frequency, the larger the critical chip width. When the slenderness 

ratio of the work piece and the spindle speed are not excessive, work piece 

deformation considerations can be ignored without affecting the stability 

analysis significantly. However, the smaller slenderness ratio of work pieces and 

higher spindle speeds associated with many modern precision machining 

processes lead to significant deformation of the work piece. Hence, the stability 

analysis of turning processes should take deformation effects into consideration. 

Studies of chatter based on the rigid tool assumption and the flexible work piece 

modelled as the Euler–Bernoulli beams include those of Lu and Klamecki 

(1990), Kato and Marui (1974), Jen and Magrab (1996), and Shawky and 

Elbestawi (1998).  

 

Moreover, a two-degree of freedom (TDOF) is defined by a system that 

requires two independent coordinates to describe their motion.  In chatter model, 

the tool and work piece are modelled as two separate single degree of freedom 

spring mass damper systems. They are generally in the form of coupled 

differential equations that is each equation involves all the coordinates. If a 

harmonic solution is assumed for each coordinate, the equations of motion lead 

to a frequency equation that gives two natural frequencies of the system. If 

suitable initial excitation is applied, the system vibrates at one of these natural 

frequencies. During free vibration at one of the natural frequencies, the 

amplitudes of the two degrees of freedom (coordinates) are related in a specified 

manner and the configuration is called a normal mode, principle mode, or 

natural mode of vibration. Thus a two degree of freedom system has two normal 

modes of vibration corresponding to two natural frequencies (Kashyzadeh and 

Ostad-Ahmad-Ghorabi, 2012). There are some investigations reported 

previously employing two degree of freedom (SDOF) model of cutting tool to 
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represent the dynamics of chatter. Chandiramani and Pothala (2006) depicted 

dynamics of chatter with two degrees of freedom model of cutting tool.  

 

Sekar et al. (2009) proposed an analytical scheme for stability analysis in 

turning process by considering the motion of tailstock supported work piece 

using a compliance model of tool and work. A dynamic cutting force model 

based on relative motion between the cutting tool and work piece is developed 

to study the chatter stability. Linear stability analysis is carried out in the 

frequency domain and the stability charts are obtained with and without 

considering work piece flexibility. The research proposed a compliant two 

degrees of freedom dynamic cutting force model by considering the relative 

motion of work piece with cutting tool. Tool and work piece were modelled as 

two separate single degree of freedom spring-mass-damper systems. The model 

allows selection of different operating conditions with and without a tailstock 

support by accounting the fundamental natural frequency of the work piece. 

Effect of cutting position, work piece dimensions, cutter flexibility, and cutter 

damping on the dynamic stability have been presented with the proposed 

dynamic model. 

 

Dassanayake (2008) investigated different stages of stability of the work 

piece and tool by simulating three dimensional (3D) models of work piece cutter 

deflections in response to a nonlinear regenerative force with a method of rotor 

dynamics. Tool chatter in turning process is addressed with a new perspective. 

Turning dynamics is investigated using a 3D model that allows for simultaneous 

work piece tool deflections in response to the exertion of nonlinear regenerative 

force. The work piece is modelled as a system of three rotors, namely, 

unmachined, being machined and machined, connected by a flexible shaft. Such 

a configuration enables the work piece motion relative to the tool and tool 

motion relative to the machining surface to be three dimensionally established as 

functions of spindle speed, instantaneous depth of cut, material removal rate and 

whirling. The equations of motion for the model are coupled through the 

nonlinear cutting force. The model is explored along with its one-dimensional 

(1D) counterpart, which considers only tool motions and disregards work piece 

vibrations. Different stages of stability for the work piece and the tool subject to 
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the same cutting conditions are studied. Numerical simulations reveal diverse, 

oftentimes inconsistent, tool behaviours described by the two models. Most 

notably, observations made with regard to the inconsistency in describing 

machining stability limits raise the concern for using 1D models to obtain 

stability charts. 

 

 

2.6 Introduction to Moving Loads Problem 

 

The moving loads problem is a fundamental problem in structural 

dynamics. Engineers have been investigating the potential hazard produced by 

the moving loads on structures for many years. The dynamic response of 

structures carrying moving masses is a problem of widespread practical 

significance. For instance, a lot of hard works have been accounted during the 

last ten decades relating with the dynamic response of railway bridges and later 

on highway bridges under the effect of moving loads.  

 

 Moving loads dynamic problems are very common in engineering and 

daily life. The peculiar features of moving loads are they are variable in both 

space and time. The majority of the engineering structures are subjected to time 

and space varying loads. Any structures or machines subjected to loads which 

move in space and excite the structures or machines into vibration are such 

problems (Ouyang, 2010). The dynamic effect of moving loads was not known 

until mid-nineteenth century. When the Stephenson‟s bridge across river Dee 

Chester in England in 1847 collapsed, it motivates the engineers for research of 

moving loads problem. Moving loads have a great effect on the bodies or 

structures over which it travels. It causes them to vibrate intensively, especially 

at high velocities. Moving loads have substantial effects on the dynamic 

behaviour of the engineering structures. The simplest case of a moving load 

investigation is the case of a simple beam over which a concentrated load is 

moving, that is represented with a Fourth order partial differential equation.  
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2.6.1 Moving Loads with Regenerative Chatter in 

Turning Operation 

 

Vibration problem in turning operation can be modelled as a beam 

subjected to moving loads and these moving loads come from the cutting tool. 

Treating vibration in turning operation as moving loads problem involves more 

sophisticated mathematics and exhausting computational woks. 

 

Generally, turning operation has two moving components; a cutter and a 

work piece that is fixed to the spindle and pin-mounted at the tailstock. The 

work piece spins about its longitudinal axis while the cutter moves axially along 

the work piece. The moving loads from the cutter is considered as a concentrated 

load which has three normal components and travels in the axial direction on the 

surface of the work piece, as shown in Figure 2.6. As the equilibrium of a beam 

is established on the neutral axis, the loads acting on the beam surface have to be 

translated to the neutral axis (also the longitudinal spinning axis in this 

example). When axial force Px is translated to the neutral axis x, a bending 

moment, Mz must be added as shown in Figure 2.7 and is generated as 

 

𝑀𝑧 = −𝑃𝑥𝑟                                                 (2.10) 

 

When Pz is translated to the neutral axis x, a torque, T must be added, also 

shown in Figure 2.7. On the other hand, Py can be translated to the neutral axis x 

without adding anything. s(t) is the variable length from the spindle end to the 

location of the cutter. The virtual work done by components of the cutting force 

Py and Pz and the moment Mz are 

 

δ𝑊 = −𝑃𝑦δ𝑣 𝑠, 𝑡 − 𝑃𝑧δ𝑤 𝑠, 𝑡 + 𝑀𝑧
 ∂δ𝑣

∂𝑥
 
𝑥=𝑠(𝑡)

              (2.11) 
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Figure 2.6: Rotating shaft subjected to a moving load with three perpendicular 

forces (Ouyang and Wang, 2007) 

 

 

 

Figure 2.7: Torque and bending moment generated from Px and Pz force 

components translated to the neutral axis (Ouyang and Wang, 2007) 

 

 

2.7 Dynamic Model of Rotating Beam Subjected to 

Moving Load   

 

Generally, a dynamic model is used to express and model the behaviour 

of a system over time. In the study of machining dynamics, it is vital to model 

the dynamics of cutting forces and machining system vibrations such as the 

vibrations of the tool and work assemblies. The machining dynamics model can 
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be used for the prediction of the machining system vibration and chatter, the 

simulation of machining process, the prediction of the machine surface 

roughness and waviness, the prediction of the machining accuracy, and the 

optimization of the machining process for a maximum production rate.  

 

 

2.7.1 Introduction to Beam Theories 

 

Beam is an important structural and fundamental component in 

mechanical engineering. Members that are slender and support loadings that are 

applied to their longitudinal axis are called beams. In general, beams are long, 

straight bars having a constant cross sectional area. Often they are classified as 

to how they are supported. For example, a simply supported beam is pinned at 

one end and roller supported at the other, a cantilever beam is fixed at one end 

and free at the other, and an overhanging beam has one or both of its ends freely 

extended over the supports.  

 

Free-free, pinned-pinned, fixed-fixed, fixed-free, fixed-pinned and 

pinned-free are the most common boundary conditions for beam. It was 

recognized by the early researchers that the bending effect is the single most 

important factor in a transversely vibrating beam. There are four models for 

transversely vibrating uniform beam which are Euler-Bernoulli, shear, Rayleigh 

and Timoshenko. The model of the beam in this research is considered a 

Rayleigh beam and it is assumed that its boundary condition is a clamped-

pinned.  

 

 

2.7.1.1 Euler-Bernoulli Beam 

 

The Euler-Bernoulli beam theory, sometimes called the classical beam 

theory, Euler beam theory, Bernoulli beam theory, is the most commonly used 

because it is simple and provides reasonable engineering approximations for 

many problems. The Euler-Bernoulli model includes strain energy due to the 
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bending and kinetic energy due to the lateral displacement. The Euler-Bernoulli 

model dates back to the 18th century. Jacob Bernoulli (1604 – 1705) first 

discovered that the curvature of an elastic beam at any point is proportional to 

the bending moment at that point. Daniel Bernoulli (1700 – 1782) nephew of 

Jacob, was the first one who formulated the differential equation of motion of a 

vibrating beam. Later, Jacob Bernoulli's theory was accepted by Euler in his 

investigation of the shape of elastic beams under various loading conditions. 

Many advances on the elastic curves were made by Euler (1750).  

 

 

2.7.1.2 Rayleigh Beam 

 

Rayleigh came up with a method of solving complex oscillations for 

mass spring system based on the fact during an oscillation the maximum kinetic 

energy of the oscillating mass is equal to the maximum strain (spring) energy. 

Rayleigh method is based on finding the fundamental natural frequency of 

vibration using the principle of conservation of energy. The Rayleigh beam 

theory provides a marginal improvement on the Euler-Bernoulli theory by 

including the effect of rotation of the cross-section. It particularly adds the 

rotary inertia effects to the Euler-Bernoulli beam describing the flexural and 

longitudinal vibrations of beams by showing the importance of this correction 

(Rayleigh, 2003). As a result, it partially corrects the overestimation of natural 

frequencies in the Euler-Bernoulli model. The resulting equation is found to be 

more accurate in representing the propagation of elastic waves in beam 

(Shabana, 1996). The equation of transverse motion for Rayleigh beam is a 

fourth order partial differential in space and second order in time (Bottega, 

2006). 

 

 

2.7.1.3 Timoshenko Beam 

 

 Timoshenko's theory of beams constitutes an improvement over the 

Euler-Bernoulli theory and Rayleigh theory. The Timoshenko‟s beam theory is 
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an extension of the Euler-Bernoulli beam theory which allows for the effect of 

transverse shear deformation. In addition, the theory adds the effect of shear as 

well as the effect of rotation to the Euler-Bernoulli beam (Timoshenko, 1921 - 

1922). In other words, the model takes into account of shear deformation and 

rotational inertia effects, making it suitable for describing the behaviour of short 

beams, sandwich composite beams or beams subject to high-frequency 

excitation when the wavelength approaches the thickness of the beam. The 

resulting equation is of 4th order, but unlike ordinary beam theory (Euler–

Bernoulli beam theory) there is also a second order spatial derivative present. 

The latter effect is more noticeable for higher frequencies as the wavelength 

becomes shorter, and thus the distance between opposing shear forces decreases. 

The model is a major improvement for non-slender beams and for high-

frequency responses where shear or rotary effects are not negligible. If the shear 

modulus of the beam material approaches infinity, and thus the beam becomes 

rigid in shear, and if rotational inertia effects are neglected, Timoshenko beam 

theory converges towards ordinary beam theory. More recently, the Timoshenko 

beam theory accounting for the transverse shear effect was used by Erturka et al. 

(2006) in chatter studies. 

 

 

2.7.2 Previous Dynamic Model of a Rotating Beam/Shaft 

 

A substantial amount of researches has been made over the past decades 

in modelling the vibration in machining including turning operation. There is a 

number of turning operation dynamic models developed in recent years. The 

basic dynamic model of turning operation should include a rotating work piece 

excited by a force that moves in the longitudinal direction. Among the first 

dynamic model of rotating beam or shaft subjected to an axially moving load are 

established by Lee et al. (1987) and Katz et al. (1988). In general, there are three 

beam theories employed to model vibration of rotating beams or shafts as 

mentioned earlier. They are Euler, Rayleigh and Timoshenko beam theories 

 

http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Inertia
http://en.wikipedia.org/wiki/Sandwich_structured_composite
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory
http://en.wikipedia.org/wiki/Euler%E2%80%93Bernoulli_beam_theory
http://en.wikipedia.org/wiki/Shear_modulus
http://en.wikipedia.org/wiki/Shear_modulus
http://en.wikipedia.org/wiki/Beam_theory
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Lee et al. (1987) and Katz et al. (1988) are the first researchers to 

establish such a model and studied the vibration of a rotating shaft as a beam 

based on Euler, Rayleigh and Timoshenko beam theories under a constant 

transverse load, moving at constant velocity. Lee et al. (1987) used modal 

analysis technique is used to investigate force response analysis of an undamped 

distributed parameter rotating shaft. The shaft model includes rotary inertia and 

gyroscopic effects, and various boundary conditions (not only the simply 

supported case). In addition to the modal analysis, Galerkin's method is also 

used to analyse the forced response of an undamped distributed parameter 

rotating shaft. Both methods (modal analysis and Galerkin‟s) are illustrated in a 

numerical example and the calculations of the shaft response to a moving load in 

the plane of the moving load and in the perpendicular plane, are in a very good 

agreement. 

 

Meanwhile, Katz et al. (1988) studied the dynamic behaviour of a 

rotating shaft subject to a constant moving load. The Euler-Bernoulli, Rayleigh 

(which includes rotary inertia effects) and Timoshenko (which includes rotary 

inertia and shear deformation effects) beam theories are used to model the 

rotating shaft. The shaft, which is simply supported, rotates at a constant 

rotational speed and is subject to a constant velocity moving load. The influence 

of parameters such as load speed, rotational speed of the shaft, the axial velocity 

of the load and the dimensions of the shaft are included and discussed for each 

shaft model. It is found that the maximum deflections of the shaft under the 

moving loads are dependent on the values of the load speed parameter. Later the 

results were also compared with the available solutions of a non-rotating beam 

subject to a moving load. 

 

Katz et al. (1988) as well had introduced a dynamic cutting force model 

for turning of slender work pieces. The model is based on a flexible work piece 

and rigid machine tool, and a work piece displacement dependent cutting force. 

The model is described and studied theoretically as well as experimentally. The 

model is used to predict expected changes in the work piece natural frequencies 

during cutting. In the cutting experiments, only one typical natural frequency 

was consistently measured. This frequency was lower than the natural frequency 
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of the work piece without cutting. The experimental studies utilise both cutting 

force and work piece vibration measurements in two orthogonal directions. This 

data is obtained for both cutting and non cutting conditions, and analysed in the 

frequency domain. The experimental procedure represents a new method for 

determining the cutting process damping ratio, based on differences in the 

measured work piece natural frequencies with and without cutting. 

 

Huang and Chen (1990) studied the dynamic response of a rotating 

orthotropic beam subjected to a moving harmonic load using an Euler-beam 

model. The individual and combined effects of rotation, moving load, and 

harmonic frequency on the system response are examined, emphasizing the 

resonant conditions. The influence of the orthotropic properties of the beam 

cross section on the dynamic response is also considered. In addition, Argento 

and Morano (1995) are the first who used deflection-dependent forces of Katz et 

al. (1987) for the moving load considered a random force according to work 

done by Zibdeh and Juma (1999). As mentioned by Zibdeh and Juma (1999), the 

problem of transverse vibrations of homogeneous isotropic rotating beams due 

to the passage of different types of loads is of considerable practical interest. 

Using analytical and numerical methods, this paper investigates the stochastic 

dynamic response of a rotating simply supported beam subjected to a random 

force with constant mean value moving with a constant speed along the beam. 

The beam is modelled by Euler-Bernoulli, Rayleigh, and Timoshenko beam 

models. The problem is formulated by means of partial differential equations. 

Closed form solutions for the mean and variance of the response for the three 

models are obtained. The effects of load speed, rotational speed of the beam and 

the Rayleigh beam coefficient on the dynamic coefficient are studied. The 

results show the effect of load speed, beam rotating speed, and geometrical size 

of the beam on the random response of the beam represented by some random 

dynamic coefficients. Comparisons with known solutions of random loads 

moving with uniform velocity are made. 

 

Argento and Scott (1982) investigated the dynamic response of a rotating 

beam subjected to an axially distributed load acting normally to the top surface. 

The load has constant magnitude and accelerates axially along the beam surface. 



39 
 

The beam is pinned and rotates with constant angular velocity. The beam model 

used is based on the Timoshenko theory as this model includes the displacement 

component transverse to the load direction, which is gyroscopically induced by 

interaction between the displacement in the direction of the load and the beam 

rotation. A general method has been developed to treat an accelerating fixed 

direction distributed surface force on a rotating, pinned Timoshenko beam. 

Comparisons are made between the beam response to a constant velocity load 

and its response to a load which accelerates to the same velocity. The results 

show that the effect of varying speed load on the beam maximum displacement 

under the load is highly dependent on the asymptotic speed being approached by 

the load. In general, the transverse displacement has been found to be effected 

more than the displacement in the direction of the load. The varying speed load 

function used here usually leads to smaller overall peak displacements under the 

load 

 

In the meantime, Han and Zu (1992) also examined a rotating 

Timoshenko beam subjected to moving loads with general boundary conditions. 

The dynamics of a simply supported, spinning Timoshenko beam subjected to a 

moving load is solved analytically using a modal analysis technique. In addition 

to obtaining the system transient response, this method also yields 

eigenquantities such as natural frequencies and mode shapes. Unlike the 

spinning Euler-Bernoulli and the simply supported spinning Rayleigh beams 

which have only one pair of natural frequencies corresponding to each mode 

shape, simply supported spinning Timoshenko beams possess two pairs of 

natural ,frequencies. It is also shown that the coupled differential equations are 

of the eighth-order which .for most cases, can be reduced to a set of uncoupled, 

fourth-order equations without introducing any significant errors. Closed-form 

expressions for natural frequencies and the system transient response are 

presented using this simplified theory. A linearized expression for the 

computation of natural frequencies, which retains the essential features of the 

Timoshenko beam theory, is also proposed here. 

  

According to Lee (1994), the dynamic response of a rotating shaft 

subject to axial force and moving loads is analysed by using Timoshenko beam 
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theory and the assumed mode method. The deformations of the shaft are 

expressed in terms of an inertial reference frame. The kinetic and potential 

energy are then expressed in matrix form by using the assumed mode method. 

The influences of the rotational speed of the shaft, the axial speed of the loads, 

and the Rayleigh coefficient are investigated and compared with the available 

reported results. The effects of compressive axial forces and perturbation of the 

axial velocity of the moving loads are also included in the analysis. Results of 

numerical simulations have been presented for various combinations of constant 

and non constant axial speeds of the moving load and axial forces. An increase 

in the rotational speed of the shaft is found to have minimal effect on the 

deflection in the direction of the applied load.  However, the deflection in the 

orthogonal direction of the applied load is found to increase steadily with 

increased rotational speed. 

 

El-Saeidy (2000) introduced bending moments and pioneered the study 

of rotating members subjected to moving loads using the finite element method. 

He presented finite element formulation for the dynamic analysis of a rotating or 

non rotating beam with or without nonlinear boundary conditions subject to a 

moving load. The formulation handles classical boundary conditions as well, 

namely, simply supported, clamped-clamped, cantilevered, and clamped-pin. 

The nonlinear end conditions arise from nonlinear rolling bearings (both the 

nonlinear stiffness and clearance(s) are accounted for) supporting a rotating 

shaft. The shaft finite element model includes shear deformation, rotary inertia, 

elastic bending moment, and gyroscopic effect. The analyses are implemented in 

the finite-element program „DAMRO 1‟. The results of the simulation of a 

simply supported non rotating shaft under a moving force are in excellent 

agreement with the exact solution and other formulations reported in the 

literature and thus validate the formulation for non rotating beams. However, for 

a simply supported rotating shaft, the first natural frequency in bending 

dominates the response spectrum 

 

Recently, the dynamic response of a rotating Rayleigh beam with mass 

eccentricity under a moving stationary load was investigated by Sheu and Yang 

(2005). The bending moment produced from the axial surface force component 
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had a significant influence on dynamic response of the beam according to 

Ouyang and Wang (2007) who developed a dynamic model for vibration of a 

Rayleigh beam subjected to a three directional moving load. They had studied 

the vibration of a rotating Rayleigh beam subjected to a three directional moving 

load acting on the surface of the beam and moving in the axial direction. The 

model takes into account the axial movement of the axial force component and 

bending moment produced by this force component is included in the model. 

Lagrange‟s equations of motion for the modal coordinates are derived based on 

the assumed mode method and then solved by a fourth-order Runge-Kutta 

algorithm. It is found that the bending moment induced by the axial force 

component has a significant influence on the dynamic response of the shaft, 

even when the axial force and speed are low and, hence, must be considered in 

such problems as turning operations. When the axial force induced moving 

moment is included, the deflection of the beam may increases by a large amount 

under compression and the contributions from the higher frequency components 

become significant. In comparison small realistic values of axial force and speed 

are used, there is no moving load effect if the moment is ignored and there can 

be considerable moving load effect if the moment is considered 

 

Ouyang and Wang (2010) as well investigated the vibration of a rotating 

Timoshenko beam subjected to a three directional load moving in the axial 

direction. A dynamic model for a rotating Timoshenko beam subjected to a 

moving surface load of three force components (two transverse and one axial) is 

established. The axial force component acting on the surface of the beam must 

be translated to the longitudinal axis of the beam and as a result a bending 

moment is generated and included in the dynamic model. The two transverse 

force components of the moving load are modelled as of constant magnitude or 

a linear function of the local deflection of the beam. The effects of the axial 

force component and its induced bending moment, and the deflection 

dependence of the moving forces on the dynamic behaviour of the system at 

various travelling speeds are investigated. The constant and non moving axial 

force had a significant effect on the magnitude of the dynamic response and it 

has been established and included by Lee et al. (1987).   
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Huang and Hsu (1990) developed a modal expansion technique and used 

this approach to investigate the dynamic response of a rotating cylindrical shell, 

with a predominant axial length, subjected to an axially moving harmonic load. 

A modal expansion method in which in plane membrane effects are neglected is 

adopted to solve for, analytically, the forced response of the shell to harmonic 

travelling loading. The closed form solution can be use to simulate a dynamic 

problem in machining, where the tool provides a moving load with an amplitude 

varying harmonically or periodically and the work piece rotates at a constant 

speed. The dynamic response of the shell is affected by three parameters: 

coupling of rotation, moving load speed and harmonic frequency and effects 

upon the resonant conditions of the shell.  

 

 In this thesis, Rayleigh beam theory has been adopted to develop the 

mathematical model of turning process with regenerative chatter mechanism. 

Rayleigh method has been employed due to it is more robust and accurate as 

mentioned by Shabana, 1996 in which the method particularly adds the rotary 

inertia and gyroscopic effects to the Euler-Bernoulli beam describing the 

flexural and longitudinal vibrations of beams. It is found to be more accurate in 

representing the propagation of elastic waves in beams. It partially corrects the 

overestimation of natural frequencies in the previous method (Euler-Bernoulli 

model). Rayleigh method is based on finding the fundamental of natural 

frequency of vibration using the principle of conservation of energy which has 

been mentioned earlier. 

 

 

2.8 Factors Influencing Surface Finish of Turned 

Metals 

 

Machining is often the manufacturing process that determines the final 

geometry and dimensions of the part. It also determines the part‟s surface 

texture. In general, machining will produce a smoother surface texture and a 

hand finishing process is no longer needed, and thus save time and improve the 

quality and therefore it is widely used.  
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The quality of machined surface is characterized by the accuracy of its 

manufacture with respect to the dimensions specified by the designer. Every 

machining operation leaves characteristic evidence on the machined surface. 

This evidence in the form of finely spaced micro irregularities left by the cutting 

tool. Each type of cutting tool leaves its own individual pattern which therefore 

can be identified. This pattern is known as surface finish or surface roughness 

(Figure 2.8).  

 

 

 

Figure 2.8: Elements of surface machine surface texture (Azouzi and Guillot, 

1997) 

 

Surface finish is defined as the characteristics of a surface. Surface finish 

of a machined surface depends on: (a) geometrical factors (b) work material 

factors and (c) vibrations and machine tool factors. Surface finish is also a 

widely used index of product quality and in most cases a technical requirement 

for mechanical products (Azouzi and Guillot, 1997). In machining, the 

interaction of the cutting edges and the microstructure of the material being cut 

both contribute to the final surface finish. Achieving the desired surface quality 

is of great importance for the functional behaviour of a part as it has formulated 
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an important design feature in many situations such as parts subject to fatigue 

loads and precision fits.  

 

As competition grows fiercer, customers now make higher demands on 

quality, making surface finish become one of the most competitive aspects in 

today‟s manufacturing industry. The demand for high quality and fully 

automated production focuses on the surface condition of the product, especially 

the roughness of the machined surface, because of its effect on product 

appearance, function, and reliability. For these reasons it is important to 

maintain consistent tolerances and surface finish. It also reflects aesthetical 

value of the product besides its functionality. Also, the quality of the machined 

surface is useful in diagnosing the stability of the machining process, where a 

deteriorating surface finish may indicate work piece material non-homogeneity, 

progressive tool wear, cutting tool chatter and others. Greater surface finish also 

affects fatigue strength as mentioned by Nishitani and Imai (1983). The majority 

of engineering failures are caused by fatigue failure. Fatigue failure is defined as 

tendency of a material to fracture by means of progressive brittle cracking under 

repeated alternating or cyclic stresses. 

 

Surface finish has received serious attention for many years. It has 

formulated an important design feature in many situations such as parts subject 

to fatigue loads, precision fits, fastener holes, and aesthetic requirements. In 

addition to tolerances, surface finish imposes one of the most critical constraints 

for the selection of machines and cutting parameters in process planning. A 

considerable number of studies had investigated the general effect of the cutting 

speed, feed rate, depth of cut, nose radius and other major factors on the surface 

finish of turned metal.  

 

Lambert and Taraman (1974) described that a mathematical model for 

the surface finish in a turning operation was developed in terms of the cutting 

speed, feed and depth of cut. The model was used to generate contours of 

surface finish in planes containing the cutting speed and feed at different levels 

of depth of cut. The surface finish contours were used to select the machining 

conditions at which an increase in the rate of metal removal was achieved 
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without sacrifice in surface finish. Petropoulos (1974) had studied the process 

variability with respect to surface finish as measured by Rα and -Rmax values in 

single point oblique finish turning of carbon steel. The effect of tool wear on 

surface finish is considered. Furthermore, cumulative distributions of Rα and -

Rmax values are presented to illustrate how well the observed data fits the 

theoretical.  

 

Beside, Sundaram and Lambert (1981) outlined the experimental 

development of mathematical models for predicting the surface finish of AISI 

4140 steel in fine turning operation using TiC coated tungsten carbide throw 

away tools. In their research, the variables included in the model are: cutting 

speed, feed, depth of cut and time of cut of the tool. Meanwhile, Miller et al. 

(1973) had conducted a statistical designed experiment for both wet and dry 

turning of 380 and 390 aluminium casting alloys with sharp and dull carbide and 

polycrystalline diamond cutting tools. Surface finish data for each alloy, tool 

material and coolant condition were mathematically related to cutting speed, 

feed rate and depth of cut.
 
 

 

Azouzi and Guillot (1997) examined the feasibility for an intelligent 

sensor fusion technique to estimate on-line surface finish (Ra) and dimensional 

deviations (DD) during machining. In the case studied, it appeared that the 

cutting feed, depth of cut and two components of the cutting force (the feed and 

radial force components) provided the best combination to build a fusion model 

for on-line estimation of Ra and DD in turning process. Meanwhile, Risbood et 

al. (2003) in his work found that using neural network; surface finish can be 

predicted within a reasonable degree of accuracy by taking the acceleration of 

radial vibration of tool holder as a feedback. It is also possible to utilise the 

fitted network for predicting the surface finish in turning with a tool of same 

material but different geometry provided coolant situation is the same. It was 

observed that while turning the steel rod with TiN coated carbide tool, surface 

finish improves with increasing feed up to some feed where from it starts 

deteriorating with further increase of feed.  

 

http://www.sciencedirect.com/science/article/pii/S0890695597000138
http://www.sciencedirect.com/science/article/pii/S0890695597000138
http://www.sciencedirect.com/science/article/pii/S0924013602009202
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In addition, Mital and Mehta (1988) developed the surface finish 

prediction models, as a function of cutting speed, feed, and tool nose radius. A 

general purpose surface finish prediction model is also proposed for ductile cast 

iron, medium carbon leaded steel, and alloy steel. Statistical analysis of 

experimental data indicated that surface finish is strongly influenced by the type 

of metal, speed and feed of cut, and tool nose radius. While the effects of feed 

and tool nose radius on surface finish were generally consistent for all materials, 

the effect of cutting speed was not. 

 

Furthermore, Xavior
 
and Adithan (2009) had determined the influence of 

cutting fluids on tool wear and surface finish during turning of AISI 304 with 

carbide tool. Further attempt has been made to identify the influence of coconut 

oil in reducing the tool wear and surface finish during turning process. 

According to Ozel and Karpat (2005), there are various machining parameters 

that influence the surface roughness, but those effects have not been adequately 

quantified. In order for manufacturers to maximize their gains from utilising 

finish hard turning, accurate predictive models for surface roughness and tool 

wear must be constructed. Decrease in the feed rate resulted in better surface 

finish but slightly faster tool wear development, and increasing cutting speed 

resulted in significant increase in tool wear development but resulted in better 

surface finish. Increase in the work piece hardness resulted in better surface 

finish but higher tool wear. Overall, CBN inserts with honed edge geometry 

performed better both in terms of surface roughness and tool wear development.  

 

In the meantime, Singh and Rao (2007) had conducted an experiment to 

determine the effects of cutting conditions and tool geometry on the surface 

finish in the finish hard turning of the bearing steel (AISI 52100). The study 

revealed that the feed is the dominant factor determining the surface finish 

followed by nose radius and cutting velocity. Though, the effect of the effective 

rake angle on the surface finish is less, the interaction effects of nose radius and 

effective rake angle are considerably significant. Mathematical models for the 

surface finish were developed by using the response surface methodology.  

 

 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(MITAL%2C+ANIL)
http://www.sciencedirect.com/science/article/pii/S0924013608002094
http://www.sciencedirect.com/science/article/pii/S0924013608002094
http://www.sciencedirect.com/science/article/pii/S0890695504002299
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A representative summary of these studies is shown in Table 2.1. 
 

 

Table 2.1: Factors affecting surface finish and their major investigators 

 

Investigators Major Factors Material studied 

Lambert and 

Taraman (1974) 

 

Speed, feed, depth of cut Steel SAE 1018 

Petropoulos (1974) Tool wear, surface finish 

distribution 

 

Steel 

Sundaram and 

Lambert (1981) 

Speed, feed, nose radius, 

depth of cut 

 

Steel 4140 

Miller et al. (1983) Speed, feed, tool condition, 

cutting fluid 

 

Alloy, cast iron 

Azouzi and Guillot 

(1997) 

Feed, depth of cut, feed and 

radial force components 

 

Low carbon steel 

Risbood et al. 

(2003) 

Feed 

 

Steel rod 

Mital and Mehta  

(1998) 

Cutting speed, feed, and tool 

nose radius 

Aluminium alloy 390, 

ductile cast iron, medium 

carbon leaded steel 10L45, 

medium carbon alloy steel 

4130 and inconel 718 

 

Xavior
 
and Adithan 

(2009) 

Cutting fluids Hardened AISI 304 steel 

Ozel and Karpat 

(2005) 

Cutting speed, feed rate, 

work piece hardness 

Hardened AISI 52100 steel 

Singh and Rao 

(2007) 

Feed, nose radius and speed Bearing steel 

 

 

It is obvious to conclude from the table that the most factors contributing 

to surface finish are cutting parameters such as cutting speed, depth of cut and 

feed rate. 

 

http://www.sciencedirect.com/science/article/pii/S0924013602009202
http://www.sciencedirect.com/science/article/pii/S0924013602009202
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(MITAL%2C+ANIL)
http://www.sciencedirect.com/science/article/pii/S0890695504002299
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Generally in machining, by changing the cutting parameters, one should 

be more careful and consider the cutting condition used is within recommended 

range to prevent unstable cutting condition. This is true according to Stephenson 

and Agapiou (1996) where in an attempt to achieve high material removal rates; 

aggressive cutting strategy (without considering recommended cutting 

condition) is often employed in industry. This practice may cause chatter to 

occur more often in a competitive production environment. Chatter significantly 

affects work piece surface finish, dimensional accuracy and cutting tool life.  

 

In addition, according to Faassen et al. (2003), for the efficiency of the 

milling process (high-speed milling is widely used in the manufacturing 

industry) high demands on the material removal rate and the surface generation 

rate are posed. The process parameters, determining these two rates, are 

restricted by the occurrence of regenerative chatter. During the milling process, 

chatter can occur at certain combinations of axial depth of cut and spindle speed. 

This is an undesired phenomenon, since the surface of the work piece becomes 

non-smooth as a result of heavy vibrations of the cutter. Moreover, the cutting 

tool and machine wear out rapidly and a lot of noise is produced when chatter 

occurs. Chatter is an undesired instability phenomenon, which causes both a 

reduced product quality and rapid tool wear. 

 

Furthermore, according to Lacerda and Lima (2004) in milling, one of 

the machine tool work piece system structural modes is initially excited by 

cutting forces. The waved surface left by a previous tooth is removed during the 

succeeding revolution, which also leaves a wavy surface due to structural 

vibrations. The cutting forces become oscillatory whose magnitude depends on 

the instantaneous chip dynamic thickness, which is a function of the phase shift 

between inner and outer chip surface. The cutting forces can grow until the 

system becomes unstable and the chatter vibrations increase to a point when the 

cutter jumps out of the cut or cracks due the excessive forces involved. These 

vibrations produce poor surface finishing, noise and reduce the life of the cutter. 

In order to avoid these undesirable effects, the feed rate and the depth of cut are 

chosen at conservative values, reducing the productivity. They concluded that 

the depth of cut is the main parameter relative to chatter vibrations: selecting a 
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spindle speed and increasing the depth of cut, a limit is found when these 

vibrations start with the characteristic sound and work piece surface marks. The 

feed rate modifies only the chip thickness static component, which is removed 

from the equations, because it does not contribute to the dynamic chip load 

regeneration mechanism, origin of chatter vibrations. 

 

According to Budak (2005), chatter is one of the most common 

limitations for productivity and part quality in milling operations. Poor surface 

finish with reduced productivity and decreased tool life are the usual results of 

chatter. Additional operations, mostly manual, are required to clean the chatter 

marks left on the surface (low surface finish). Thus, chatter vibrations result in 

reduced productivity, increased cost and inconsistent product quality. Rivin 

(1995) also mentioned that the cutting of metals is frequently accompanied by 

violent vibration of work piece and cutting tool which is known as machine tool 

chatter. Chatter is a self excited vibration which is induced and maintained by 

forces generated by the cutting process. It is highly detrimental to tool life and 

surface finish, and is usually accompanied by considerable noise. Chatter 

adversely affects the rate of production since, in many cases its elimination can 

be achieved only by reducing the rate of metal removal. 

 

Tlusty and Polacek (1963) and Merrit (1965) had discovered that the 

main sources of chatter come from stability condition of cutter, investigated 

conditions of stability for the cutter, structural dynamics of machines and 

feedback of subsequent cuts on the surface of the work piece as the main sources 

of chatter. In the past, by choosing the appropriate combination of cutting 

parameters for example, the feed rate, depth of cut, rotational speed, different 

chip thickness and variation of cutting force to prevent the occurrence of chatter 

noise during turning. 

 

Besides, a machine tool has different stiffness at different frequencies 

and changing cutting parameters can affect chatter. Under such conditions these 

vibration start and quickly grow. The cutting force becomes periodically 

variable, reaching considerable amplitudes and when the magnitude of this 

vibration keeps increasing, the machine tool system becomes unstable. The 
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machine surface becomes undulated, and the chip thickness varies in the 

extreme so much that it becomes dissected. In general, self excited vibrations 

can be controlled by increasing the dynamic stiffness of the system and damping 

as mentioned by Frangoudis et al. (2013). 

 

Chatter not only limits productivity of cutting processes but also causes 

poor surface finish and reduced dimensional accuracy, increases the rate of tool 

wear, results in a noisy workplace and reduces the life of a machine tool. Chatter 

can be avoided by keeping a low depth of cut; however this leads to low 

productivity. Over the years, various methods have been developed to avoid 

regenerative chatter without reducing the depth of cut. The basic principle of 

these techniques is to prevent the dynamic of the machining process from 

locking on the most favorable phase for chatter (Al-Regib et al., 2003). 

 

In addition, during material removal process in turning operation, both 

cutting tool and work piece are in contact with each other. Vibration and chatter 

noise are suppress under certain conditions by this dynamic interaction between 

a rotating work piece and moving cutting forces from the tool. The cutting tool 

is subjected to a dynamic excitation due to the deformation of the work piece 

during cutting. The relative dynamic motion between the cutting tool and the 

work piece produce vibration and chatter thus affect the surface finish. Poor 

surface finish and dimensional accuracy of the work piece, possible damage to 

the cutting tool and irritating noise from excessive vibration are the results of 

uncontrolled vibration and chatter. Thus vibration related problems are of great 

interest in turning operations.  

 

 

2.9 Chatter Suppression in Turning Operation 

 

A great deal of research has been carried out since the late 1950s to solve 

the chatter problems. Researchers have studied how to detect, identify, avoid, 

prevent, reduce, control or suppress regenerative chatter. Analysis and 

suppression of chatter has received great attention during the past two decades. 
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The aim is to suppress chatter instability by reducing the relative displacements 

between the tool and work piece. Methods can involve active, semi-active or 

passive control. Active control systems do not require external assistance. They 

depend essentially upon a source of power to drive „active device‟ which may be 

electro mechanical, electro hydraulic or electro pneumatic actuators. In contrast, 

passive vibration control involves modification of the stiffness, mass and 

damping of vibrating system to make the system less responsive to its vibratory 

environment. Passive control, compared to active control, exhibit the advantages 

of easy implementation, low cost and no need for external energy. 

 

There are a number of chatter suppression methods established for 

turning operation such as those reported by Tarng et al. (2000) and Al Regib et 

al. (2003) who discovered that selecting suitable spindle speeds certainly 

eliminated regenerative chatter. Online chatter recognition and cutting speed 

control principles were introduced by Tlusty (1965). These systems detect the 

occurrence of chatter via sound or vibration sensor, and then automatically 

choose a new speed for cutting which is less chatter prone. Changes in system 

damping are one of the effects of different spindle speeds, which are found by 

Ganguli et al. (2007). They proposed active damping with velocity feedback as a 

chatter control strategy.  

 

An alternative, modern way to reduce chatter is by actively detecting and 

suppressing the unwanted vibration with a control algorithm and an actuator 

which uses active materials. Active materials are materials that exhibit a 

coupling between two or more of their physical properties. Piezoelectrics, for 

example, experience an elastic strain when exposed to an electric field and are 

excellent candidates for vibration control because they can be driven at high 

frequencies with high force by electrical signals. Mounting a piezoelectric 

inertia actuator on the cutting tool as a vibration absorber was another method of 

chatter suppression recommended by Tarng et al. (2000). Furthermore, an 

analytical tuning method with vibration absorbers to suppress regenerative 

chatter was established by Sims (2007). Another method of using a magnetic 

bearing connected with cutter was suggested by Chen and Knopse (2007) to 

prevent the onset of chatter. Wang and Fei (1999) proposed a method based on 
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variable stiffness in boring bars to suppress chatter. This is based on the 

principle of avoidance of self excited vibrations by continuously varying the 

natural frequency of a structure over a range. 

 

Slavicek (1965) and Vanherck (1967) proposed the use of milling cutters 

with non-uniform tooth pitch and Stone (1970) used end mills with alternating 

helix. Effectiveness of these methods in chatter suppression has been verified by 

simulation and experiments (Doolan et al., 1975, Fu et al., 1984 and Tlusty et 

al., 1983). These techniques can be applied to the design of a non-uniform pitch 

cutter for a specific cutting condition, but cannot be applied to single point 

machining. By the way, Weck et al. (1975) utilised an on-line generated stability 

lobes to select a spindle speed, and thus maximized the depth-of-cut limit. Later, 

Smith and Tlusty (1992), Delio et al. (1992) and Tarng et al. (1996) avoided the 

need for the knowledge of the stability lobes and proposed that the best tooth 

passing frequency be made equal to the chatter frequency. This minimizes the 

phase between the inner and outer modulations. This approach is adaptive in the 

sense that the spindle speed is changed based on feedback measurement of the 

chatter frequency. This method is practical for high spindle speed machining 

when the stability lobes are well separated.  

 

Another technique to suppress regenerative chatter is by sinusoidal 

spindle speed variation (S
3
V) around the mean speed to disturb the regenerative 

mechanism. Since this technique was introduced by Stoferle and Grab (1972), 

there have been many research efforts to verify its effectiveness on machining 

stability by numerical simulation and experiments in turning (Hoshi et al., 1977, 

Inamura and Sata, 1974, Sexton and Stone, 1978-1980, Takemura et al., 1974 

and Zhang, 1996) and in milling (Altintas and Chan, 1992, Inamura and Sata, 

1974, Lee and Liu, 1991). Despite the above research efforts, this technique has 

not been implemented widely in industry because there is no systematic way to 

select the proper amplitude and frequency of the sinusoidal forcing signal. The 

selection of these parameters depends on the dynamics of the machining system 

and is constrained by the spindle-drive system response and its ability to track 

the forcing speed signal.  
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In addition, variable speed machining can result in an adverse effect and 

may even cause chatter in an otherwise stable process (Engelhardt et al., 1989, 

Lin et al., 1990, Sexton and Stone, 1978 and Soliman and Ismail, 1997). This 

usually occurs when this method is applied to high speed machining. Recently, 

Soliman and Ismail (1997) proposed using fuzzy logic to select on-line the 

amplitude and frequency of the forcing speed signal. Yilmaz et al. (1999) 

generalized sinusoidal spindle speed variation technique by introducing multi-

level random spindle speed variation, where the spindle speed is varied in 

random fashion within the maximum amplitude ratio allowed by the spindle-

drive  

  

 

2.10 Machining of Composites 

 

By definition, a composite is a structural material that consists of two or 

more combined constituents that are combined at a macroscopic level and are 

not soluble in each other. Composites have been seen as early as 1940s where 

glass reinforced resin matrix composites were first introduced. Composite 

materials have gained popularity in high performance products that need to be 

lightweight, yet strong enough to take harsh loading conditions such as 

aerospace component (tails, wings, and propellers), boats and scull hulls, bicycle 

frames and racing car bodies. Other uses include fishing rods and storage tanks. 

Carbon composites are a key material in today‟s vehicles and spacecraft. Owing 

to increasing use of composites in engineering, machining of composites 

becomes a new research topic and novel research may be done.  Machining of 

composites is briefly reviewed in this chapter since it is in very interesting and it 

will be the research topic of the student in near future. 

 

Since then, the use of composites like glass fibre reinforced polymer 

(GFRP) composites are increased in its applications including aerospace, 

aircraft, automobile engineering, sporting goods, off-shore drilling platforms, 

appliances. With regards to the increasing use of composites in the aeronautical, 
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aerospace, nuclear, biomedical and automotive industries, the need to machine 

composite materials adequately increases.  

 

Machining of composites predominantly uses milling, turning or drilling 

operations have become an exciting subject in recent years since the use of 

composites has increased tremendously in various areas of science and 

technology. It differs significantly in many aspects from machining of 

conventional metals and their alloys due to their special mechanical and physical 

properties such as good corrosive resistance and high specific strength and 

stiffness. Composite also has been considered as an advanced material in which 

they are characterized by a combination of light weight, very high specific 

strength, high modulus and a high stiffness.  

 

Besides, it is an engineered material made from two or more constituent 

materials with significantly different physical or chemical properties and which 

remain separate and distinct on a macroscopic level within the finished structure. 

Composites have replaced conventional materials in various fields of 

applications such as aeronautical, aerospace, automotive, biomechanical and 

mechanical engineering, as well as in other industries. In composites, the 

material behaviour is not only inhomogeneous, but also depends on diverse fibre 

and matrix properties, fibre orientation, and the relative volumes of fibre and 

matrix. The tool encounters continuously alternate fibres and matrix, which 

response differently to machining.   

 

Several attempts have been made to eliminate machining of composite 

by fabrication techniques like near net shape forming and modified casting, but 

the scope of these techniques is limited by Basavarajappa et al., (2006). 

Although composite parts may be produced by these fabrication techniques, they 

require further subsequent machining to facilitate precise dimensions to the part. 

Hence the need for accurate machining of composites has increased enormously. 

The mechanism behind machining of composite is different from metals. 

According to Ramkumar et al. (2004), machining of composites can be different 

to metals as it is anisotropic, inhomogeneous, and mostly it is prepared in 

laminate form before going through the machining process.  
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In addition, machinability of composites is influenced by fibre and 

matrix properties, fibre orientation and the type of weave. On top of that, 

machining of composites will bring more undesirable results, such as rapid tool 

wear, rough surface finish of finished product, and a defective sub-surface layer 

with cracks and delamination (Palanikumar and Karthikeyan, 2006).  

 

 

2.11 Factors Influencing Surface Finish of Turned 

Composites 

 

There are much fewer investigations into turning of composites than 

turning of metals. According to El-Sonbaty et al. (2004), increasing the volume 

fibre fraction, Vf of GFREC can improve the surface finish but in the same time 

cutting speed and feed have a vice versa effect. Wang and Zhang (2003) had 

investigated unidirectional fibre reinforced polymer (FRP) composite and the 

result shown the surface finish is greatly influenced by the fibre orientation. 

Takeyama and Lijima (1988) had examined the surface finish on machining of 

GFRP composites and found that the higher the cutting speed, the rougher and 

the more damaged the machined surface is. Ramulu et al. (1994) also achieved 

better surface finish at high velocity whereas Birhan (2008) discovered that 

surface finish will decrease of increase of cutting speed and increased with the 

increase of feed rate. He also discovered that the surface finish decreased with 

the increase of tool nose radius. In addition, Spur and Wunsch (1988) realized 

that during turning of GFRP composites, surface finish increased with the 

increase of feed rate but it was not dependent on the cutting velocity.  
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Table 2.2: Factors affecting surface roughness and major investigators 

 

Major Factors Investigators Material Studied 

A) Inhomogeneous and 

anisotropic material     

 

    

1. Fibre orientation angle 1. Bhatnagar et al. (1995) FRP Composite 

  2. Jahanmir et al. (1997) FRP Composite 

  3. Sakuma and Seto (1983) GFRP Composite 

  4. Wang and Zhang (2003) FRP Composite 

      

2. Fibre volume raction, Vf 

1. Palanikumar and    

    Karthikeyan (2006) Al/SiC-MMC Composite 

  2. El-Sonbaty et al. (2004) GFR/epoxy Composite 

 
    

3. Manufacturing technique     

    i) Hand Lay Up 1. Davim and Mata (2005) FRP Composite 

  2. Palanikumar et al. (2006) FRP Composite 

      

    ii) Filament Winding 1. Davim and Mata (2005) FRP Composite 

  2. Palanikumar et al. (2006) FRP Composite 

      

4. Type of Fibre 1. Jahanmir et al. (1998) FRP Composite 

      

B) Cutting Parameter     

      

1. Feed Rate 1. Birhan (2008) GFRP Composite 

  2. Hocheng et al. (1997) 

Graphite/Aluminium 

Composite 

  
3. Palanikumar and  

    Karthikeyan (2006) Al/SiC-MMC Composite 

  4. Palanikumar et al. (2006) FRP Composite 

  5. El-Sonbaty et al. (2004) GFR/epoxy Composite 

  6. Spur and Wunsch (1988) GFRP Composite 

      

2. Cutting Speed 1. Birhan (2008) GFRP Composite 

  2. Hocheng et al. (1997) 

Graphite/Aluminium 

Composite 

  
3. Palanikumar and  

    Karthikeyan (2006) Al/SiC-MMC Composite 

  4. Palanikumar et al. (2006) FRP Composite 

  5. El-Sonbaty et al. (2004) GFR/epoxy Composite 

  6. Spur and Wunsch (1988) GFRP Composite 
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C) Tool     

      

1. Tool Wear 1. Birhan (2008) GFRP Composite 

  2. Bhatnagar et al. (1995) FRP Composite 

  3. Sakuma and Seto (1983) GFRP Composite 

      

2. Built up Edge 

1. Palanikumar and  

    Karthikeyan (2006) FRP Composite 

      

 

*1 -*4 sequence of most importance factor influence surface finish 

 

A good surface finish is required for improving the physical properties, 

fatigue strength, corrosion resistance and aesthetic appeal of the product. It is 

vital to find out the factors that will influence surface finish. From the literatures 

survey that has been carried out, the major factors influencing surface finish 

during turning of composites are feed rate, fibre orientation, hand layup 

technique and tool wear.  

 

The feed rate is the cutting parameter that has the highest influence on 

surface finish. An increase in feed rate will increase the heat generation and 

hence, tool wears which results in higher surface finish. Tool wear will decrease 

the cutting tool life and subsequently increase the cost of machining of the 

turned parts. In the mean time surface finish will fluctuate for different angle of 

fibre orientation. The higher the orientation angle, the rougher the surface finish 

will be generated whereas for the manufacturing technique, hand layup process 

is proven to be producing better surface finish than the filament winding process 

in machining of composites. 

 

 

2.12 Chapter Summary 

 

The early and latest researches on dynamic model of rotating beam/shaft 

have been reviewed including regenerative chatter modelling in turning 

operation. Some of the limitation of previous chatter models (manufacturing 

engineer models) are none of them consider moving loads in their dynamics 
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model. Moving loads should be considered because they are variable in both 

space and time as the cutter moves along the work piece and majority of the 

engineering structures are subjected to time and space varying loads. 

 

In addition, in the past studies, most studies of dynamic model of turning 

operation have generally assumed the work piece to be rigid and no deformation 

was considered. In those studies, the stability of the cutting process was 

analysed by merely the dynamic equation of tools. The turning tool usually is 

represented with a single or two degree of freedom for spring mass system 

working over a rigid work piece. Real cutting tools have multiple degrees of 

freedom and in addition to horizontal and vertical displacements, tools can twist 

and bend. 

 

However, in practice the work piece does have deformation when there 

is an external force exerting on it. Such deformation will change the chip 

thickness and have an effect on the critical chip thickness of stability. Although 

work piece vibrations impact both cutting instability and product quality 

including surface finishing, most models developed for investigating surface 

roughness do not consider work piece vibrations at all.  

 

In this project, the research is focussed on developing a new 

mathematical model considering both the work piece and cutting tools as 

flexible. The mathematical model as well will consider moving loads with 

regenerative chatter for the development of dynamic model in turning operation. 

The development on this dynamic model will be discussed in detail later in 

chapter 3. Furthermore, the effect of the deflection dependence of the moving 

cutting forces with regenerative chatter on the dynamic behaviour of the system 

at various travelling speeds will also be investigated.  

 

Besides, it is also concluded the most factors contributing to the surface 

finish quality are the cutting parameters which is the cutting speed, depth of cut 

and feed rate. Generally in machining, by changing the cutting parameters, one 

should be more careful and consider the cutting condition used is within 

recommended range to prevent unstable cutting condition. 
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Chapter 3 

 

Dynamic Model of Turning Operation  

 

3.1 Introduction  

 

A dynamic model is defined as a time varying process but rather that the 

state of the process at some time to is dependent on the evolution on the state of 

the process over the time interval [0, to] (Enders et al., 1999). It is also used to 

express and model the behaviour of the system over time. In this research, a new 

mathematical model for turning metal work pieces which consider the work 

piece as a flexible work piece and cutting tools as a flexible cutting tool with the 

regenerative chatter effects is developed by combining concept of both dynamic 

models from two main groups of researchers; structural dynamicists and 

manufacturing engineers. Previously, most studies of dynamic models of turning 

operation generally assumed the work piece to be rigid and have therefore, 

ignored work piece deformation. However, in practice, the work piece 

undergoes deformation as a result of an external force by the cutting tool. This 

deformation affects and changes the chip thickness. There are no dynamic 

models found previously that considered the work piece and cutting tools as 

flexible and therefore there is a need to do this research. The details of the 

development of mathematical formulation of this dynamic model are thoroughly 

discussed and explained in the following topics.  
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3.2  Development of Mathematical Formulation of 

Rotating Beam Subjected to Three Directional 

Moving Loads with Regenerative Chatter   

 

The turned work piece is modelled as a circular beam which is subjected 

to three directional forces moving along x axis and is rotating about its 

longitudinal axis, x as shown earlier in Figure 2.6. During turning, as the cutter 

travels along the work piece, the deformations produced in the y and z directions 

by the moving cutting forces are denoted by v and w. The three directional 

moving cutting forces are acting on the surface of the beam and they have been 

translated to the neutral axis of the beam as shown in Figure 2.6. 

 

 

3.2.1 Boundary Conditions 

 

 Boundary condition is a value of constant integration which is 

determined by evaluating the functions for shear, moment, slope or displacement 

at a particular point on the beam and usually the value of the function is known. 

Several possible boundary conditions that are often used to solve beam (or shaft) 

deflection problems are listed in Table 3.1. For example, if the beam is 

supported by a roller or pin (refer to Table 3.1 - 1, 2, 3, 4), then it is required to 

set the displacement to zero at these points. Furthermore, if these supports are 

located at the ends of the beam (refer to Table 3.1 - 1, 2), the internal moment in 

the beam must also be zero. Besides, at a fixed support (refer to Table 3.1 – 5), 

the slope and displacement are both zero, whereas the free-ended beam has both 

zero moment and zero shear force. Lastly, if two segments of a beam are 

connected by an internal pin or hinge, the moment must be zero at this 

connection. 
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Table 3.1: Possible boundary conditions (Hibbeler, 2011) 

 

 

 

 

 On lathe, the work piece is clamped to a chuck at one end and is 

supported at the tailstock on the other end. Thus, the clamped end mimics the 

fixed support while the tailstock simply represents pin support. The value of v 

and w will depends not only on time, t but also the position along the work 

piece, x. It is assumed that the deflections of the work piece are 

 

𝑣 𝑥, 𝑡 =   
𝑖
 𝑥 𝑖(𝑡)𝑛

𝑖=1 =   T                                    (3.1) 

 

𝑤 𝑥, 𝑡 =   
𝑖
 𝑥 

𝑖
(𝑡)𝑛

𝑖=1 =   T                                    (3.2) 
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where T =   
1

,
2
… . .

n
  is a spatial function that satisfies the clamped-

pinned boundary conditions of the work piece and ith mode is for the stationary 

beam and T =   1 ,2 … . .n  and 
T =   

1
,

2
… . . 

n
  with 𝑖 𝑡 and 


𝑖
 𝑡  is the corresponding modal coordinate. Different boundary conditions 

mentioned previously are reflected by 
𝑖
 𝑥 . The biggest deformations produced 

by the moving cutting force on the work piece are denoted by v (in y direction) 

and only included inside the dynamic model developed. The derivation of 

deflection equation (3.3) is denoted as (3.4) and (3.5) respectively.  

 

𝑣 𝑥, 𝑡 =  T 𝑥  𝑡                                              (3.3) 

 

Taking partial differentiation with respect to time, t and distance along the work 

piece give rise to  

 

  𝑣

 𝑡
= T 𝑥   𝑡                                                (3.4) 

 

and taking partial differentiation with respect to distance along the work piece, x 

by one and two times gives 

 

 𝑣

  𝑥
= ′ T 𝑥  𝑡                                               (3.5) 

 


  2𝑣

  𝑥2
= ′′ T 𝑥  𝑡                                              (3.6) 

 

and by multiplying equation (3.4) and (3.5) give rise to 

 


  2𝑣

  𝑥  𝑡
= ′ T 𝑥   𝑡                                                (3.7) 

 

The second largest deflection, w is in z direction and can be written as 

 

𝑤 𝑥, 𝑡 =  T 𝑥  𝑡                                                  (3.8) 
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Taking partial differentiation with respect to time, t and distance along the work 

piece give rise to  

 

 𝑤

 𝑡
= T 𝑥   𝑡                                                   (3.9) 

 

and taking partial differentiation with respect to distance along the work piece, x 

by one and two times gives 

 

 𝑤

 𝑥
= ′ T 𝑥  𝑡                                               (3.10) 

 

 2𝑤

 𝑥2
= ′′ T 𝑥  𝑡                                              (3.11) 

 

and by multiplying equation (3.9) and (3.10) give rise to 

 

 2𝑤

 𝑥  𝑡
= ′ T 𝑥   𝑡                                           (3.12) 

 

 

3.2.2 Energy Method 

 

In general, the energy of a vibrating system is partly potential and partly 

kinetic. The kinetic and potential energies of beam are established based on the 

following assumptions. Beam has homogeneous and isotropic material 

properties, the elastic and centroid axes in the cross section of a beam coincide, 

thus the effects due to eccentricity are not considered. The work performed by 

the external loads during this displacement is equated to internal work. Based on 

Rayleigh beam theory, the kinetic energy of the beam can be written as (adapted 

from Chen and Ku (1997)) 

 

 

 



64 
 

𝑇 =  
1

2
  𝜌𝐴   

 𝑣

 𝑡
 

2

+  
 𝑤

 𝑡
 

2

   
𝑙

0

 

 + 𝜌𝐼    
  2𝑣

  𝑥 𝑡
 

2

+  
 2𝑤

 𝑥 𝑡
 

2

  +  2 
  2𝑣

  𝑥 𝑡

 𝑤

 𝑥
 −  

 2𝑤

 𝑥 𝑡
 
 𝑣

  𝑥
 + 2 2   

(3.13) 

 

By substituting equations (3.4), (3.5), (3.7), (3.9), (3.10) and (3.12) into equation 

(3.13); 

 

𝑇 =  
𝜌𝐴

2
   𝑇 𝑡     𝑥  x 𝑇 𝑥  𝑑𝑥

𝑙

0

   𝑡  +  
 𝑇

 𝑡    𝑥  x T 𝑥  𝑑𝑥   𝑡  
𝑙

0

  

+ 
𝜌𝐼

2
   𝑇 𝑡   ′ 𝑥  x

𝑙

0

 ′ T 𝑥  𝑑𝑥   𝑡  +  
 𝑇

 𝑡  ′ 𝑥  x
𝑙

0

 ′ T 𝑥  𝑑𝑥   𝑡    

+ 𝜌𝐼    𝑇 𝑡  ′ 𝑥  x
𝑙

0

 ′ T 𝑥  𝑑𝑥  𝑡 −  
 𝑇

 𝑡  ′ 𝑥  x
𝑙

0

 ′ T 𝑥  𝑑𝑥  𝑡       

 

Based on Chen and Ku (1997), the kinetic energy of the beam used can be 

obtained as below; 

 

𝑇 =  
𝜌𝐴

2
  𝑇 𝑡  𝐀   𝑡  +  

 𝑇
 𝑡  𝐀   𝑡   +

𝜌𝐼

2
  𝑇 𝑡  𝐁   𝑡  +  

 𝑇
 𝑡  𝐁   𝑡    

+ 𝜌𝐼    𝑇 𝑡  𝐁  𝑡  −  
 𝑇

 𝑡  𝐁  𝑡                      (3.14) 

 

where 

 

𝐀 =     𝑥  T 𝑥  𝑑𝑥  ,
𝑙

0

    𝐁 =   ′  𝑥 ′ T 𝑥  𝑑𝑥
𝑙

0

 

 

and 𝜌 is mass density, A is the cross sectional area, 𝐼 =
𝜋𝑟 4

4
 for a circular cross-

section, and   is the rotational speed of the work piece. 

 

The strain energy of the beam, V is the same as the work done in deforming the 

beam. The strain energy of the Rayleigh beam theory is adapted from Chen and 

Ku (1997) and is presented in equation (3.15). 
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𝑉 =  
1

2
 𝐸𝐼   

 2𝑣

 𝑥  2 
2

+  
 2𝑤

 𝑥  2 
2

  
𝑙

0
𝑑𝑥 −

1

2
 𝑃𝑥

𝑙

𝑠
  

 𝑣

 𝑥   
2

+  
 𝑤

 𝑥   
2

  𝑑𝑥 (3.15) 

 

By substituting equations (3.5), (3.6), (3.10) and (3.11) into equation (3.15), the 

strain energy of the beam can then be formed as below 

 

𝑉 =  
𝐸𝐼

2
 𝑇 𝑡  𝐂  𝑡 +  𝑇 𝑡  𝐂  𝑡  − 

𝑃𝑥

2
 𝑇 𝑡  𝐁l 𝑡   𝑡 +  𝑇 𝑡  𝐁l 𝑡   𝑡  𝑑𝑥  (3.16) 

 

where 𝐸 is Young‟s modulus of the beam and 𝑃𝑥  is the axial force and  

 

𝐂 =   ′′  𝑥  x  ′′ T 𝑥  𝑑𝑥  ,
𝑙

0

    𝐁1 𝑡 =   ′  𝑥  x  ′ T 𝑥  𝑑𝑥
𝑙

𝑠

   

 

Note 𝐁l 𝑡  is time varying matrices. In equation (3.14) and (3.16), the dot and 

dash represent derivatives with respect to t and x respectively. 

 

 

3.2.3 Lagrange’s Equation 

 

In order to derive the equation of motion of vibration of a rotating work 

piece in turning operations by using Lagrange‟s equations, the first step is to 

establish the kinetic and potential energy equations as mentioned in section 

3.2.2.  

 

Lagrange‟s equations for n degree of freedom system, can be stated as 

 

𝑑

𝑑𝑡
 
 𝑇

 𝑞 𝑗
  −

  𝑇

 𝑞𝑗
+

 𝑉

 𝑞𝑗
= 𝑄𝑗

(𝑛)
,       𝑗 = 1,2 … . , 𝑛                  (3.17) 

 

where 𝑞 𝑗
 =  𝑞𝑗

 / 𝑡 is the generalized velocity and 𝑄𝑗
(𝑛)

 is the non-conservative 

generalized force or external force corresponding to the generalized 
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coordinate 𝑞𝑗
 . By using this formula into the problem, q can be replaced by α 

and the formula can be rewritten as follow; 

 
 

𝑑

𝑑𝑡
 
 𝑇

  
 −

  𝑇

 
+

 𝑉


= 𝑄                                  (3.18) 

 

From the kinetic energy of the beam derived in equation (3.14); 

 

𝑇 =  
𝜌𝐴

2
  𝑇 𝑡  𝐀   𝑡  +  

 𝑇
 𝑡  𝐀   𝑡   +

𝜌𝐼

2
  𝑇 𝑡  𝐁   𝑡  +  

 𝑇
 𝑡  𝐁   𝑡    

+ 𝜌𝐼    𝑇 𝑡  𝐁  𝑡  −  
 𝑇

 𝑡  𝐁  𝑡    

 

The partial derivative of T with respect to   give 

 

 𝑇

  
= (𝜌𝐴𝐀 + 𝜌𝐼𝐁)                                      (3.19) 

 

and by differentiating T with respect to    

 

𝑑

𝑑𝑡

 𝑇

  
= (𝜌𝐴𝐀 + 𝜌𝐼𝐁)𝜶                                    (3.20) 

 

The partial derivative of T with respect to   give 

 

 𝑇

 𝛼
=  −2𝜌𝐼𝐁                                          (3.21) 

 

From the strain energy of the beam (equation (3.16)); 

 

𝑉 =  
𝐸𝐼

2
 𝑇 𝑡  𝐂  𝑡 +  𝑇 𝑡  𝐂  𝑡  − 

𝑃𝑥

2
 𝑇 𝑡  𝐁l 𝑡   𝑡 +  𝑇 𝑡  𝐁l 𝑡   𝑡  𝑑𝑥  
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and differentiating V with respect to  gives 

 

 𝑉


= (𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡 )                                   (3.22) 

 

while Q is the generalize cutting force component in y direction 

 

𝑄 = 𝑃𝑦𝛗 𝑠 − 𝑃𝑥𝑟𝛗′                                          (3.23) 

 

Lagrange‟s equations give rise to the following equation of motion. 

 

𝜌 𝐴𝐀 + 𝐼𝐁 𝜶  + 2𝜌Ω𝐼𝐁𝜷  +   𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡  𝜶 =  𝑃𝑦𝛗 𝑠 − 𝑃𝑥𝑟𝛗′ 𝑠  (3.24) 

 

Lagrange‟s equations is also being used in which q is replaced with β for 

developing equation of motion in z direction and it can be rewritten as below; 

 

𝑑

𝑑𝑡
 
 𝑇

 𝛽 
 −

  𝑇

 
+

 𝑉

 
= 𝑄                                   (3.25) 

 

From the kinetic energy of the beam derived in equation (3.14); 

 

𝑇 =  
𝜌𝐴

2
  𝑇 𝑡  𝐀   𝑡  +  

 𝑇
 𝑡  𝐀   𝑡   +

𝜌𝐼

2
  𝑇 𝑡  𝐁   𝑡  +  

 𝑇
 𝑡  𝐁   𝑡    

+ 𝜌𝐼    𝑇 𝑡  𝐁  𝑡  −  
 𝑇

 𝑡  𝐁  𝑡    

 

The partial derivative of T with respect to   give 

 

 𝑇

 𝛽 
= (𝜌𝐴𝐀 + 𝜌𝐼𝐁)𝜷                                     (3.26) 

 

and by differentiating T with respect to 𝛽  

 

𝑑

𝑑𝑡

 𝑇

 𝛽 
= (𝜌𝐴𝐀 + 𝜌𝐼𝐁)𝜷                                   (3.27) 
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The partial derivative of T with respect to β, give 

 

 𝑇

 𝛽
=  2𝜌𝐼𝐁𝜶                                         (3.28) 

 

From the kinetic energy of the beam; 

 

𝑉 =  
𝐸𝐼

2
 𝑇 𝑡  𝐂  𝑡 +  𝑇 𝑡  𝐂  𝑡  − 

𝑃𝑥

2
 𝑇 𝑡  𝐁l 𝑡   𝑡 +  𝑇 𝑡  𝐁l 𝑡   𝑡  𝑑𝑥 

 

and differentiating V  with respect to α, gives 

 

 𝑉

 𝛽
= (𝐸𝐼𝐂 − 𝑃𝑥𝐁1 t )𝜷                                 (3.29) 

 

while Q is the generalize cutting force component in z direction 

 

𝑄 =  𝑃𝑧𝛗 𝑠                                             (3.30) 

 

Lagrange‟s equations give rise to the following equation of motion. 

 

𝜌 𝐴𝐀 + 𝐼𝐁 𝜷  −  2𝜌Ω𝐼𝐁𝜶  +   𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡  𝜷 =  𝑃𝑧𝛗 𝑠         (3.31) 

 

Equation (3.22) and (3.23) are governing differential equations derived for such 

turning operation mechanism and takes form of a delay differential equation 

(DDE) and this will be discussed in section 3.3.2.2.  By assembling equation 

(3.24) and (3.31) in a matrix form leads to 

 

 
𝜌 𝐴𝐀 + 𝐼𝐁 0

0 𝜌 𝐴𝐀 + 𝐼𝐁 
   

𝜶  
𝜷  

 +   
0 2𝜌Ω𝐼𝐁

−2𝜌Ω𝐼𝐁 0
   

𝜶 
𝜷 

 + 

 

 
 𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡  0

0  𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡  
   

𝜶
𝜷 =   

𝑃𝑦𝛗 𝑠 − 𝑃𝑥𝑟𝛗′(𝑠)

𝑃𝑧𝛗(𝑠)
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α and β are column vector. Note that mass, stiffness and damping matrix in 

equation (3.24) and (3.31) are all time dependant and therefore the time 

integration is complicated and difficult to solve. 

 

 

3.2.4 Three Directional Moving Cutting Forces with 

Regenerative Chatter Mechanism 

 

The diagram of a typical cylindrical turning process is shown in Figure 

2.2. The cutting tool moves parallel to the spindle and removes a skin from the 

blank, hence reducing the diameter of the work piece. Note that from Figure 2.2, 

for a semi orthogonal cutting operation in lathe turning, the force component can 

be measured in three directions and the force relationships are relatively simple. 

The component of the force acting on the rake face of the tool, normal to the 

cutting edge is called the main cutting force, Py. This usually is the largest of the 

three components and acts in the direction of cutting velocity. The force 

component acting on the tool which parallel to the direction of feed, is referred 

to as a feed force, Px. This force acts tangential to the main cutting forces, Py. 

The third force component tend to push the tool away from the work in a radial 

direction, is the smallest of the force components in simple turning and it is 

usually ignored. 

 

 The turning cutting force, P has three components, Px which determines 

the direct load on the feed direction, the radial component Pz, which is decisive 

for the deflections affecting the accuracy of the machined surface and the 

tangential force Py which has the direction of the cutting speed. It is tangential to 

the cut surface. The cutting or tangential force acts downward on the tool tip 

allowing deflection of the work piece upward. It supplies the energy required for 

the cutting operation. Meanwhile, the axial or feed force acts in the longitudinal 

direction. It is also called the feed force because it is in the feed direction of the 

tool. This force tends to push the tool away from the chuck. The radial or thrust 

force acts in the radial direction. In the development of this dynamic model of 

turning process, the regenerative mechanism is included inside the three 
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directional moving cutting forces equation. If the regenerative chatter 

mechanism is to be modelled accurately, then the vibrations of the tool should 

also be included in the time delay. In turning process, the time delay is basically 

determined by the rotation of the work piece but it is also affected by the current 

and the delayed position of the tool. The cutting forces with regenerative chatter 

are derived from experimental data obtained during turning of several work 

pieces and take the form of 

 

                      𝑃𝑥 = 𝐾𝑥𝑓𝑞𝑥 ℎ                                              (3.32)   

 

𝑃𝑦 = 𝐾𝑦𝑓𝑞𝑦 ℎ                                                   (3.33) 

 

𝑃𝑧 = 𝐾𝑧𝑓
𝑞𝑦 ℎ                                              (3.34) 

 
 

where Kx, Ky and Kz, are the cutting force coefficients, f is feed rate (m/rev), qx, 

qy and qz are the exponents determined from Han et al. (2012) and h is the 

instantaneous depth of cut which can be expressed as  

 

ℎ =  ℎ𝑜 − 𝑣 𝑡 + 𝑣(𝑡 − 𝜏)                                     (3.35) 

 

The moving cutting force in turning operation not only depends upon the present 

tool position, v(t) but also delayed position of the tool, 𝑣(𝑡 − 𝜏). Substituting 

equation (3.1) into equation (3.35) leads to 

 

ℎ =  ℎ𝑜 − 𝛗T𝑠(𝑡)𝛂(𝑡) +  𝛗T𝑠(𝑡 − 𝜏)𝛂(𝑡 − 𝜏)                    (3.36) 

 

and the corresponding cutting force components with instantaneous depth of cut 

are shown below in equations (3.37), (3.38) and (3.39). 

 

𝑃𝑥 = 𝐾𝑥  𝑓𝑞𝑥 [ℎ𝑜 − 𝛗T𝑠 𝑡 𝛂 𝑡 +  𝛗T𝑠 𝑡 − 𝜏 𝛂 𝑡 − 𝜏 ]             (3.37) 

 

𝑃𝑦 = 𝐾𝑦𝑓𝑞𝑦 [ℎ𝑜 − 𝛗T𝑠 𝑡 𝛂 𝑡 + 𝛗T𝑠 𝑡 − 𝜏 𝛂 𝑡 − 𝜏 ]             (3.38) 

 

𝑃𝑧 = 𝐾𝑧  𝑓𝑞𝑧 [ℎ𝑜 − 𝛗T𝑠 𝑡 𝛂 𝑡 +  𝛗T𝑠 𝑡 − 𝜏 𝛂 𝑡 − 𝜏 ]             (3.39)   
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Later, section 3.3.2.2 explains how to solve a simple tutorial of delay differential 

equation and by employing this method of steps technique for solving the three 

directional moving cutting force equations with regenerative chatter mechanism. 

 

From equation (3.24); 

 

𝜌 𝐴𝐀 + 𝐼𝐁 𝜶  + 2𝜌Ω𝐼𝐁𝜷  +  𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡  𝜶 =  𝑃𝑦𝛗 𝑠 − 𝑃𝑥𝑟𝛗′(𝑠) 

 

and we have 

 

𝑃𝑌𝛗 𝑠 − 𝑃𝑋𝑟𝛗′ 𝑠 =   ℎ𝑜  𝐾𝑦𝑓𝑞𝑦 𝛗 𝑠 𝑡  −  𝐾𝑥𝑓𝑞𝑥 𝑟𝛗′  𝑠 𝑡    

   +𝛗T 𝑠 𝑡  𝜶 𝑡  − 𝐾𝑦𝑓𝑞𝑦 𝛗 𝑠 𝑡  + 𝐾𝑥𝑓𝑞𝑥 𝑟𝛗′  𝑠 𝑡            

+𝛗T 𝑠 𝑡 − 𝜏  𝜶 𝑡 − 𝜏   𝐾𝑦𝑓𝑞𝑦 𝛗 𝑠 𝑡  − 𝐾𝑥𝑓𝑞𝑥 𝑟𝛗′ 𝑠 𝑡    (3.40) 

 

Substituting equation (3.24) into equation (3.40) leads to  

 

𝜌 𝐴𝐀 + 𝐼𝐁 𝜶   𝑡 =  −2𝜌Ω𝐼𝐁𝜷   𝑡 + 𝜶 𝑡  − 𝐾𝑦𝑓𝑞𝑦 𝛗 𝑠 𝑡  𝛗T 𝑠 𝑡  +

  𝐾𝑥𝑓𝑞𝑥 𝑟𝛗′  𝑠 𝑡   𝛗T 𝑠 𝑡  −  𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡 ) +

           𝜶 𝑡 − 𝜏   𝐾𝑦𝑓𝑞𝑦 𝛗 𝑠 𝑡  𝛗T 𝑠 𝑡 − 𝜏  −

                          𝐾𝑥𝑓𝑞𝑥 𝑟𝛗′  𝑠 𝑡  𝛗T 𝑠 𝑡 − 𝜏   + ℎ𝑜  𝐾𝑦𝑓𝑞𝑦 𝛗 𝑠 𝑡  −

                                        𝐾𝑥𝑓𝑞𝑥 𝑟𝛗′  𝑠 𝑡                                                           (3.41) 

 

with 

 

𝐃 =  inv (𝜌 𝐴𝐀 + 𝐼𝐁 ) 

𝐔𝟏 = − 𝐾𝑦𝑓𝑞𝑦 𝛗 𝑠 𝑡  𝛗T 𝑠 𝑡  + 𝐾𝑥𝑓𝑞𝑥 𝑟𝛗′  𝑠 𝑡  𝛗T 𝑠 𝑡   −  𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡   

𝐔𝟐 =  −2𝜌Ω𝐼𝐁 

𝐔𝟑 =   𝐾𝑦𝑓𝑞𝑦 𝛗 𝑠 𝑡  𝛗T 𝑠 𝑡 − 𝜏  − 𝐾𝑥𝑓𝑞𝑥 𝑟𝛗′  𝑠 𝑡  𝛗T 𝑠 𝑡 − 𝜏   

𝐔𝟒 =   ℎ𝑜  𝐾𝑦𝑓𝑞𝑦 𝛗 𝑠 𝑡  −  𝐾𝑥𝑓𝑞𝑥𝑟𝛗′  𝑠 𝑡    

 

Note that U1 and U3 are all time varying matrices and later will be computed in 

the Matlab software as shown in Appendix A2. α and β are column vector. 
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From equation (3.31); 

 

𝜌 𝐴𝐀 + 𝐼𝐁 𝜷  − 2𝜌Ω𝐼𝐁𝜶  +   𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡  𝜷 =  𝑃𝑧𝛗 𝑠  

 

Substituting equation (3.33) into equation (3.41) leads to 

 

𝜌 𝐴𝐀 + 𝐼𝐁 𝜷   𝑡 = 2𝜌Ω𝐼𝐁𝜶   𝑡  − 𝐾𝑧  𝑓𝑞𝑧𝛗[𝑠(𝑡)]𝛗T𝑠 𝑡 𝛂 𝑡  

− 𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡  𝜷 𝑡 +  𝐾𝑧  𝑓𝑞𝑧𝛗[𝑠(𝑡)]𝛗T𝑠 𝑡 − 𝜏 𝛂 𝑡 − 𝜏 +

  𝐾𝑧  𝑓𝑞𝑧ℎ𝑜𝛗[𝑠(𝑡)]                                           (3.42) 

 

with 

 

𝐃 =  inv (𝜌 𝐴𝐀 + 𝐼𝐁 ) 

𝐕𝟏 =  −𝐾𝑧  𝑓𝑞𝑧
𝛗[𝑠(𝑡)]𝛗T𝑠 𝑡  

𝐕𝟐 =  2𝜌Ω𝐼𝐁 

𝐕𝟑 =  𝐾𝑧  𝑓𝑞𝑧
𝛗[𝑠(𝑡)]𝛗T𝑠 𝑡 − 𝜏  

𝐕𝟒 =    𝐾𝑧  𝑓𝑞𝑧ℎ𝑜𝛗[𝑠(𝑡)] 

𝐕𝟓 =   − 𝐸𝐼𝐂 − 𝑃𝑥𝐁l 𝑡   

 

V1 , V3 and V5 are all time varying matrices and later will be computed as well in 

the Matlab software as shown in Appendix A2. α and β are column vector. The 

system above can be represented in the matrix form as: 

 

 
 
 
 
 
𝛼  (𝑡)
𝛼  (𝑡)

𝛽  (𝑡)

𝛽  (𝑡) 
 
 
 
 

=   

 0  𝐈              0
 𝐔𝟐 ∗ 𝐃  0           0

   
             0

             𝐔𝟒 ∗ 𝐃
0 0 𝐈
0       𝐕𝟒 ∗ 𝐃   𝐕𝟐 ∗ 𝐃

   
    0
  0

 

 
 
 
 
𝛼(𝑡)
𝛼  (𝑡)
𝛽(𝑡)

𝛽  (𝑡) 
 
 
 

 + 

 

0 0         0
 𝐔𝟑 ∗ 𝐃  0         0

   
        0
        0

    0      0          0
   0   0         𝐕𝟑 ∗ 𝐃

   
    0 
   0

 

 
 
 
 
𝛼 𝑡 − 𝜏 

𝛼   𝑡 − 𝜏 

𝛽 𝑡 − 𝜏 

𝛽   𝑡 − 𝜏  
 
 
 

+   

0
𝐔𝟏 ∗ 𝐃

0
𝐕𝟏 ∗ 𝐃
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3.2.5 Improved Dynamic Model by Adapting Insperger’s 

Cutting Force Model 

 

Insperger (2008) studied the regenerative delay in turning operation and 

the model developed considered work piece as rigid and the cutting tool as 

flexible. The Insperger‟s cutting force model is being adopted in current 

dynamic model because of the cutting tool is assumed to be flexible. In practice, 

cutting tools have multiple degrees of freedom and in addition to horizontal and 

vertical displacements, tools can twist and bend. The cutting tool is assumed to 

experience bending motion in directions x and y, while the work piece is 

assumed to be rigid. The cutting forces are given in the form of 

 

𝐹𝑥 = 𝐾𝑥𝑤ℎ𝑞                                               (3.43) 

 

𝐹𝑦 = 𝐾𝑦𝑤ℎ𝑞                                               (3.44) 

 

𝐹𝑧 = 𝐾𝑧𝑤ℎ𝑞                                               (3.45) 

 

where 𝐾𝑥 , 𝐾𝑦  and 𝐾𝑧  are the cutting force coefficients, w is the depth of cut, q is 

an exponent (q = 0.75 is a typical empirical value for this parameter) and h is the 

chip thickness which can be given as  

 

ℎ =  𝑓. 𝑓. 𝑠 ∗ 𝜏 − 𝑋 𝑡 + 𝑋 𝑡 − 𝜏                             (3.46) 

 

and f. f. s is the speed of the feed and 𝜏 is the time delay. The moving cutting 

force in turning operation not only depends on the present cut X(t), but also 

relies on the previous cut of the tool, 𝑋 𝑡 − 𝜏 . Figure 3.1 depicted the 

difference of coordinate system between the current dynamic model with 

Insperger‟s coordinate system.  
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(a)                                                                (b) 

 

Figure 3.1: Comparison between current dynamic model coordinate system and 

Insperger‟s coordinate system (a) current dynamic model coordinate system (b) 

Insperger‟s coordinate system 

 

The generalization between current dynamic model coordinate system and 

Insperger‟s coordinate system is done by matching Insperger‟s cutting forces to 

the current cutting forces used as depicted in Table 3.2 below; 

 

Table 3.2: Matching table for both coordinate systems 

 

Current cutting forces Insperger‟s cutting forces 

Px Fz 

Py Fx 

Pz Fy 

 

 

The new corresponding cutting force equations with instantaneous depth of cut 

are shown below in equations (3.47), (3.48) and (3.49)  

 

𝑃𝑥 = 𝐾𝑦𝑤 𝑓. 𝑓. 𝑠 ∗ 𝜏 + 𝑋(𝑡 − 𝜏) − 𝑋(𝑡) 𝑞                        (3.47) 

 

𝑃𝑦 = 𝐾𝑧𝑤 𝑓. 𝑓. 𝑠 ∗ 𝜏 + 𝑋(𝑡 − 𝜏) − 𝑋(𝑡) 𝑞                        (3.48) 

 

𝑃𝑧 = 𝐾𝑥𝑤 𝑓. 𝑓. 𝑠 ∗ 𝜏 + 𝑋(𝑡 − 𝜏) − 𝑋(𝑡) 𝑞                        (3.49)         
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So now 

 

𝑃𝑌𝛗 𝑠 − 𝑃𝑋𝑟𝛗′ 𝑠 =   𝑤 ∗ 𝑓. 𝑓. 𝑠 ∗ 𝜏   𝐾𝑧𝛗 𝑠 𝑡  −  𝐾𝑦𝑟𝛗′  𝑠 𝑡    

                   + 𝑤 ∗ 𝑋 𝑡  − 𝐾𝑧𝛗 𝑠 𝑡  + 𝐾𝑦𝑟𝛗′ 𝑠 𝑡   +  𝑤 ∗ 𝑋 𝑡 − 𝜏   𝐾𝑧𝛗 𝑠 𝑡  −

𝐾𝑦𝑟𝛗′𝑠𝑡                                                                  (3.50) 

 

From equation (3.24), 

  

𝜌 𝐴𝐀 + 𝐼𝐁 𝜶  + 2𝜌Ω𝐼𝐁𝜷  +   𝐸𝐼𝐂 − 𝑃𝑥𝐁l t  𝜶 =  𝑃𝑦𝛗 𝑠 − 𝑃𝑥𝑟𝛗′(𝑠) 

 

where axial load, 𝑃𝑥𝐁l t  is negligible.  

 

By comparing and adopting Insperger‟s cutting force model (Insperger, 2008) 

into the current dynamic model of a rotating beam subjected to three directional 

moving cutting forces with regenerative chatter model, the new improved 

equation of motion of the beam in y direction can be derived as below: 

 

𝜌 𝐴𝐀 + 𝐼𝐁 𝜶  + 2𝜌Ω𝐼𝐁𝜷  +  𝐸𝐼𝐂𝜶 =  𝑤 ∗ 𝑓. 𝑓. 𝑠 ∗ 𝜏   𝐾𝑧𝛗 𝑠 𝑡  −  𝐾𝑦𝑟𝛗′  𝑠 𝑡   +  

𝑤 ∗ 𝑋 𝑡  − 𝐾𝑧𝛗 𝑠 𝑡  + 𝐾𝑦𝑟𝛗′ 𝑠 𝑡   +  𝑤 ∗ 𝑋 𝑡 − 𝜏   𝐾𝑧𝛗 𝑠 𝑡  −  𝐾𝑦𝑟𝛗′ 𝑠 𝑡     

(3.51) 

 

with 

 

𝐃 =  inv (𝜌 𝐴𝐀 + 𝐼𝐁 ) 

𝐔𝟏 = – 𝐸𝐼𝐂 

𝐔𝟐 =  −2𝜌Ω𝐼𝐁 

𝐔𝟑 =  𝑤 ∗  − 𝐾𝑧𝛗 𝑠 𝑡  + 𝐾𝑦𝑟𝛗′ 𝑠 𝑡    

𝐔𝟒 =   𝑤 ∗   𝐾𝑧𝛗 𝑠 𝑡  − 𝐾𝑦𝑟𝛗′ 𝑠 𝑡    

𝐔𝟓 =   𝑤 ∗ 𝑓. 𝑓. 𝑠 ∗ 𝜏   𝐾𝑧𝛗 𝑠 𝑡  −  𝐾𝑦𝑟𝛗′  𝑠 𝑡    

 

Note that all matrices are later computed in the Matlab software as shown in 

Appendix A2. 
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From equation (3.31), the new improved equation of motion of beam in z 

direction can be derived as below; 

  

𝜌 𝐴𝐀 + 𝐼𝐁 𝜷  + 2𝜌Ω𝐼𝐁𝜶  +   𝐸𝐼𝐂 − 𝑃𝑥𝐁l t  𝜷 =  𝑃𝑧𝜑 𝑠  

 

where axial load, 𝑃𝑥𝐁l t  is negligible and yields 

 

𝜌 𝐴𝐀 + 𝐼𝐁 𝜷  + 2𝜌Ω𝐼𝐁𝜶  +  𝐸𝐼𝐂 − 𝑃𝑥𝐁l t  𝜷 = 𝑤 ∗ 𝑓. 𝑓. 𝑠 ∗ 𝜏   𝐾𝑥𝛗 𝑠 𝑡     

−  𝑤 ∗ 𝑋 𝑡   𝐾𝑥𝛗 𝑠 𝑡    + 𝑤 ∗ 𝑋 𝑡 − 𝜏   𝐾𝑥𝛗 𝑠 𝑡                  (3.52) 

 

with 

 

𝐃 =  inv (𝜌 𝐴𝐀 + 𝐼𝐁 ) 

𝐕𝟏 = – 𝐸𝐼𝐂 = 𝐔𝟏 

𝐕𝟐 =  2𝜌Ω𝐼𝐁 = −𝐔𝟐 

𝐕𝟑 = − 𝑤 ∗ 𝐾𝑥𝛗 𝑠 𝑡   

𝐕𝟒 =  𝑤 ∗ 𝐾𝑥𝛗 𝑠 𝑡   

𝐕𝟓 =   𝑤 ∗ 𝑓. 𝑓. 𝑠 ∗ 𝜏   𝐾𝑥𝛗 𝑠 𝑡     

 

All matrices are later computed in the Matlab software and shown in Appendix 

A2. 

 

 

3.2.6 Cutting Tool Equation of Motions 

 

The vibrations of the tool should also be included in the developed 

dynamic model to ensure the model accuracy. The cutting tools are often 

modelled as a lumped vibration system having one or two degrees of freedom 

for describing motions of the cutting tool where the cutting force is described as 

a function of relative vibrations during the current and previous passes. 
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Equation of motion of cutting tool in x direction can be derived as 

 

𝑚𝐗  𝑡 +  𝐶𝑋𝐗  𝑡 + 𝐾𝑋𝐗 𝑡 =  𝑃𝑋                                        (3.53) 

 

Substituting equation (3.47) into equation (3.53) gives rise to 

 

𝑚𝐗  𝑡 +  𝐶𝑋𝐗  𝑡 + 𝐾𝑋𝐗 𝑡 = 𝐾𝑦𝑤 𝑓. 𝑓. 𝑠 ∗ 𝜏 + 𝑋(𝑡 − 𝜏) − 𝑋(𝑡) 𝑞  

 

and  

 

𝐗  𝑡 =    − 𝐶𝑋𝐗  𝑡 +  𝐗 𝑡   −𝐾𝑦𝑤 − 𝐾𝑋 +  𝐾𝑦𝑤𝑋 𝑡 − 𝜏 + 𝐾𝑦𝑤 ∗ 𝑓. 𝑓. 𝑠 ∗ 𝜏  /𝑚 

(3.54) 

 

with 

 

𝐖𝟏 = – 𝐶𝑋/𝑚 

𝐖𝟐 = (– 𝐾𝑦𝑤 − 𝐾𝑋)/𝑚 

𝐖𝟑 =  𝐾𝑦𝑤/𝑚 

𝐖𝟒 =  (𝐾𝑦𝑤 ∗ 𝑓. 𝑓. 𝑠 ∗ 𝜏)/𝑚  

 

Equation of motion of cutting tool in z direction is 

 

𝑚𝐙  𝑡 + 𝐶𝑍𝐙  𝑡 + 𝐾𝑍𝐙 𝑡 =  𝑃𝑍                                       (3.55) 

 

Substituting equation (3.47) into equation (3.55) leads to 

 

𝑚𝐙  𝑡 +  𝐶𝑍𝐙  𝑡 + 𝐾𝑍𝐙 𝑡 = 𝐾𝑥𝑤 𝑓. 𝑓. 𝑠 ∗ 𝜏 + 𝑋(𝑡 − 𝜏) − 𝑋(𝑡) 𝑞  

and 

 

𝐙  𝑡 =   − 𝐶𝑍𝐙  𝑡 +  𝑋 𝑡   −𝐾𝑥𝑤 + 𝐾𝑥𝑤𝑋 𝑡 − 𝜏 − 𝐾𝑍𝐙 𝑡 + 𝐾𝑥𝑤 ∗ 𝑓. 𝑓. 𝑠 ∗ 𝜏  /𝑚 

(3.56) 

with 
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𝐏𝟏 = – 𝐶𝑍/𝑚 

𝐏𝟐 = – 𝐾𝑥𝑤/𝑚 

𝐏𝟑 =  𝐾𝑥𝑤/𝑚  = −𝐏𝟐   

𝐏𝟒 = −𝐾𝑍/𝑚 

𝐏𝟓 =  𝐾𝑥𝑤 ∗ 𝑓. 𝑓. 𝑠 ∗ 𝜏/𝑚  

 

By assembling equations (3.51), (3.52), (3.54) and (3.56), it can be represented 

in a matrix form as below; 

 

 
 
 
 
 
 
 
 
 
 
𝛼 (𝑡)
𝛼 (𝑡)

𝛽 (𝑡)

𝛽 (𝑡)

𝑋 (𝑡)

𝑋 (𝑡)

𝑍 (𝑡)

𝑍 (𝑡) 
 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 0
𝐔𝟏 ∗ 𝐃

0
0
0
0
0
0

  

𝐈
0
0

𝐕𝟐 ∗ 𝐃
0
0
0
0

   

0
0
0

𝐕𝟏 ∗ 𝐃
0
0
0
0

   

0
𝐔𝟐 ∗ 𝐃

𝐈
0
0
0
0
0

   

0
𝐔𝟑 ∗ 𝐃

0
𝐕𝟑 ∗ 𝐃

0
𝐖𝟐 ∗ 𝐅

0
𝐏𝟐 ∗ 𝐅

  

0
0
0
0
𝐈

𝐖𝟏 ∗ 𝐅
0
0

  

0
0
0
0
0
0
0

𝐏𝟒 ∗ 𝐅

  

0
0
0
0
0
0
𝐈

𝐏𝟏 ∗ 𝐅 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝛼(𝑡)
𝛼 (𝑡)

𝛽(𝑡)

𝛽 (𝑡)
𝑋(𝑡)

𝑋 (𝑡)

𝑍(𝑡)

𝑍 (𝑡) 
 
 
 
 
 
 
 
 

+

 
 
 
 
 
 
 
 0
0
0
0
0
0
0
0

  

0
0
0
0
0
0
0
0

   

0
0
0
0
0
0
0
0

   

0
0
0
0
0
0
0
0

   

0
𝐔𝟒

0
𝐕𝟒

0
𝐖𝟑

0
𝐏𝟑

  

0
0
0
0
0
0
0
0

  

0
0
0
0
0
0
0
0

  

0
0
0
0
0
0
0
0 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝛼(𝑡 − 𝜏)
𝛼 (𝑡 − 𝜏)
𝛽(𝑡 − 𝜏)

𝛽 (𝑡 − 𝜏)
𝑋(𝑡 − 𝜏)

𝑋 (𝑡 − 𝜏)
𝑍(𝑡 − 𝜏)

𝑍 (𝑡 − 𝜏) 
 
 
 
 
 
 
 
 

+

 
 
 
 
 
 
 
 

0
𝐔𝟓

0
𝐕𝟓

0
𝐖𝟒

0
𝐏𝟓  

 
 
 
 
 
 
 

 

 

 

3.3 Elastic Boundary Condition 

 

 The usual first step in performing a dynamic analysis is determining the 

natural frequencies and mode shapes of the structure. These results characterize 

the basic dynamic behaviour of the structure and are an indication of how the 

structure will respond to dynamic loading. The natural frequencies of a structure 

are the frequencies at which the structure naturally tends to vibrate if it is 

subjected to a disturbance. The deformed shape of the structure at a specific 

natural frequency of vibration is termed its mode shape. Each mode shape is 

associated with a specific natural frequency. 
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 Natural frequencies and mode shapes are functions of the structural 

property and boundary conditions. A cantilever beam has a set of natural 

frequencies and associated mode shapes. If the structural properties change, the 

natural frequencies change, but the mode shapes may not necessarily change. 

For example, if the elastic modulus of cantilever beam is changed, the natural 

frequencies change but the mode shapes remain the same. If the boundary 

conditions change, then the natural frequencies and mode shapes both change. 

 

 For a cantilever beam, the free vibration solution can be found using the 

method of separation of variables as 𝑤 𝑥, 𝑡 = 𝑊 𝑥 𝑇(𝑡) and the solution of 

W(x) is assumed to be 

 

𝑊 𝑥 =  𝐶𝑒𝑠𝑥                                                      (3.57) 

 

The function W(x) is known as the normal mode or characteristic function of the 

beam, where C and s are constants. The auxiliary equation is 

 

𝑠4 − 𝛽4 = 0                                                       (3.58) 

 

The roots of this equation are 

 

𝑠1,2 =   𝛽,  𝑠3,4 =   𝑖𝛽                                           (3.59)                                                                                                         

 

Hence the solution of equation 
𝑑4𝑊(𝑥)

𝑑𝑥 4 − 𝛽4𝑊 𝑥 =  0 becomes 

 

𝑊 𝑥 =  𝐶1𝑒𝛽𝑥 + 𝐶2𝑒−𝛽𝑥 + 𝐶3𝑒𝑖𝛽𝑥 + 𝐶4𝑒−𝑖𝛽𝑥                           (3.60) 

 

Equation (3.60) can also be expressed as 

  

𝑊 𝑥𝑛 =  𝐶1 cos(𝛽𝑥𝑛 ) +  𝐶2 sin 𝛽𝑥𝑛 ) + 𝐶3 cosh 𝛽𝑥𝑛) + 𝐶4 sinh(𝛽𝑥𝑛)  (3.61) 
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where C1, C2, C3, and C4 are different constants. The value of 𝛽 can be found 

from any beam boundary conditions. 𝜔𝑛  is the nth natural frequency of the beam 

and is given by  

 

𝜔𝑛 =  𝛽𝑛 𝑙 2 
𝐸𝐼

𝜌𝐴𝑙 4                                          (3.62) 

 

For any beams, there will be an infinite number of normal modes with 

one natural frequency associated with each normal mode. The other collaborator 

group from Dalian University of Technology (DUT) in China has done the 

modal testing for boundary work piece in lathe in order to determine its natural 

frequencies and mode shapes. Table 3.3 below shows the measured mode shapes 

Z, measured frequencies 𝜔𝑛 , and 𝛽𝑛  can be calculated from equation (3.62) with 

known length, l = 0.55 m, radius r = 18.5 mm, Young‟s Modulus E = 2.07 x 

10
11

 Pa, and density, 𝝆 = 7817.4 kg/m
3
. 

 

Table 3.3: Tabulated measured mode shapes, frequencies and 𝛽𝑛  

 

Measured  

mode shapes, Z 

ω 

(Hz) 

ω 

(rad/s) βn 

1Z 243 1526.81403 5.661339609 

2Z 253 1589.645883 5.77665368 

3Z 318 1998.052928 6.476339858 

4Z 336 2111.150263 6.657109641 

5Z 1.31E+03 8230.972752 13.14473148 

6Z 1.42E+03 8922.123136 13.68548658 

7Z 1.74E+03 10932.74243 15.14923474 

8Z 1.86E+03 11686.72467 15.66291327 

9Z 2.72E+03 17090.26404 18.94089616 

10Z 2.92E+03 18346.9011 19.624902 

11Z 3.07E+03 19289.37889 20.12265396 

12Z 3.35E+03 21048.67078 21.02027893 

13Z 4.59E+03 28839.82056 24.60494586 

14Z 4.73E+03 29719.4665 24.97736621 

 

 

These four values of   𝛽𝑛  (5.77665368, 6.657109641, 13.14473148 and 

13.68548658) are corresponding to its measured mode shapes at 2Z, 4Z, 5Z and 
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6Z. These values are chosen as it is depicted the first, second, third and fourth 

bending mode shape of the beam. Figure 3.2 illustrates one of the chosen values 

of  𝛽𝑛 , 5.77665368 which show the beam first bending mode shape.  

 

 

 

Figure 3.2: Example of one value of 𝛽𝑛  showing the beam first bending mode 

shape 

 

 

Later, 𝛽2, 𝛽4, 𝛽5 and 𝛽6 are substituted into equation (3.61) to calculate their 

corresponding C1, C2, C3, and C4. Curve fitting is employed in order to 

determine the value of C1, C2, C3 and C4 from the experimental data provided. 

Curve fitting is a process of constructing a curve that has the best fit to a series 

of data points. Experimental data provided the values for one or more measured 

quantities for specific values of set quantities. The linear regression formula is 

shown in Equation (3.63) below 

 

𝜍2 =
1

𝑁
 [𝑦𝑛 − 𝑓(𝑥𝑛)]2𝑁

1                                 (3.63) 

 

𝜍 is the root mean square which is the distance between the experiment mode 

shape and new fitted mode shape and it should be minimised 
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𝑓 𝑥𝑛 = 𝐶1 cos(𝛽𝑥𝑛 ) +  𝐶2 sin 𝛽𝑥𝑛 ) + 𝐶3 cosh 𝛽𝑥𝑛) + 𝐶4 sinh(𝛽𝑥𝑛)  (3.64) 

 

Substitute equation (3.64) into equation (3.63) leads to  

 

𝜍2 =
1

𝑁
  𝑦𝑛 − 𝐶1 cos(𝛽𝑥𝑛 − 𝐶2 sin 𝛽𝑥𝑛) − 𝐶3 cosh 𝛽𝑥𝑛 ) − 𝐶4 sinh(𝛽𝑥𝑛 )]2𝑁

1   

(3.65) 

 

Taking partial differentiation about  𝜍2 in respect of each of the constant C1, C2, 

C3 and C4 gives 

 

𝜕(𝜍2)

𝜕𝐶1
=

2

𝑁
 [cos(𝛽𝑥𝑛 )] 𝑦𝑛 − 𝐶1 cos(𝛽𝑥𝑛 − 𝐶2 sin(𝛽𝑥𝑛 )

𝑁

1

− 𝐶3 cosh(𝛽𝑥𝑛 ) − 𝐶4 sinh(𝛽𝑥𝑛 )]2 

 

𝜕(𝜍2)

𝜕𝐶2
=

2

𝑁
 [sin(𝛽𝑥𝑛 )] 𝑦𝑛 − 𝐶1 cos(𝛽𝑥𝑛 − 𝐶2 sin 𝛽𝑥𝑛 )

𝑁

1

− 𝐶3 cosh 𝛽𝑥𝑛) − 𝐶4 sinh(𝛽𝑥𝑛)]2 

 

𝜕(𝜍2)

𝜕𝐶2
=

2

𝑁
 [sin(𝛽𝑥𝑛 )] 𝑦𝑛 − 𝐶1 cos(𝛽𝑥𝑛 − 𝐶2 sin 𝛽𝑥𝑛 )

𝑁

1

− 𝐶3 cosh 𝛽𝑥𝑛) − 𝐶4 sinh(𝛽𝑥𝑛)]2 

 

𝜕(𝜍2)

𝜕𝐶3

=
2

𝑁
 [cosh(𝛽𝑥𝑛)] 𝑦𝑛 − 𝐶1 cos(𝛽𝑥𝑛 − 𝐶2 sin(𝛽𝑥𝑛)

𝑁

1

− 𝐶3 cosh(𝛽𝑥𝑛) −𝐶4 sinh(𝛽𝑥𝑛)]2 

 

𝜕(𝜍2)

𝜕𝐶4

=
2

𝑁
 [sinh(𝛽𝑥𝑛)] 𝑦𝑛 − 𝐶1 cos(𝛽𝑥𝑛 − 𝐶2 sin(𝛽𝑥𝑛)

𝑁

1

− 𝐶3 cosh(𝛽𝑥𝑛) − 𝐶4 sinh(𝛽𝑥𝑛)]2 
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and in the matrix form and it can be expressed as 

 

2

𝑁
 

 
 
 
 

 

(cos⁡(𝛽𝑥𝑛))2

cos⁡(𝛽𝑥𝑛 )sin⁡(𝛽𝑥𝑛 )

cos⁡(𝛽𝑥𝑛)cosh⁡(𝛽𝑥𝑛 )
cos⁡(𝛽𝑥𝑛 )sinh⁡(𝛽𝑥𝑛 )

   

sin⁡(𝛽𝑥𝑛 )cos⁡(𝛽𝑥𝑛 )

(sin⁡(𝛽𝑥𝑛 ))2

sin⁡(𝛽𝑥𝑛 )cosh⁡(𝛽𝑥𝑛 )
sin⁡(𝛽𝑥𝑛 )sinh⁡(𝛽𝑥𝑛 )

   

cosh⁡(𝛽𝑥𝑛 )cos⁡(𝛽𝑥𝑛 )

cosh⁡(𝛽𝑥𝑛 )sin⁡(𝛽𝑥𝑛 )

(cosh(𝛽𝑥𝑛 ))2

cosh⁡(𝛽𝑥𝑛 )sinh⁡(𝛽𝑥𝑛 )

   

sinh⁡(𝛽𝑥𝑛 )cos⁡(𝛽𝑥𝑛 )

sinh⁡(𝛽𝑥𝑛 )sin⁡(𝛽𝑥𝑛 )

sinh⁡(𝛽𝑥𝑛 )cosh(𝛽𝑥𝑛 )

(sinh(𝛽𝑥𝑛))2  
 
 
 𝑁

1

   

𝐶1

𝐶2

𝐶3

𝐶4

 

=  
2

𝑁
(𝑦𝑛 )   

cos⁡(𝛽𝑥𝑛 )

sin⁡(𝛽𝑥𝑛 )
cosh⁡(𝛽𝑥𝑛)

sinh⁡(𝛽𝑥𝑛 )

 

𝑁

1

 

 

The matrix is then computed in Matlab software. The details of the computation 

programme generated in Matlab software is shown in Appendix A13 - Calculation 

of C1, C2, C3 and C4 variables. 

 

The new fitted mode shape can be calculated by substituting C1, C2, C3, C4 and  

𝛽𝑛, respectively into the equation (3.61). These new C1, C2, C3, and C4 are 

constant and will also be used for the chuck-tailstock numerical simulation. 

Table 3.4 below shows the example calculation for fitting the mode shape of 2Z. 

 

 

Table 3.4: Example calculation for fitting the mode shape of 2Z 

 

xa βn xa β1 Ca 

C1 cos xa  

β1 

C2 sin xa  

β1 

C3 cosh xa  

β1 

C4 sinh xa  

β1 1xa 

0 5.777 2.88 12.28 -11.89 10.01 83.22 -65.79 21.52 

0.05   2.59 40.01 -10.52 20.63 62.49 -49.16 30.64 

0.10   2.31 9.23 -8.28 29.54 47.019 -36.67 38.47 

0.15   2.02 -7.34 -5.35 36.00 35.49 -27.25 44.17 

0.20 

 

1.73 

 

-1.98 39.48 26.94 -20.13 47.17 

0.25 

 

1.44 

 

1.55 39.69 20.66 -14.70 47.20 

0.30 

 

1.15 

 

4.95 36.60 16.11 -10.50 44.31 

  0.35 

 

0.86 

 

7.95 30.49 12.92 -7.19 38.88 

0.40 

 

0.57 

 

10.29 21.85 10.82 -4.48 31.61 

0.45 

 

0.28 

 

11.77 11.39 9.62 -2.15 23.44 

0.50 

 

0 

 

12.28 0 9.23 0 15.56 
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where xa is the length of the work piece and υ1xa is the new fitted mode shape. 

The new fitted theoretical (marked by red) and measured (marked by blue) mode 

shapes for the chuck-tailstock is shown in Figure (3.3) below 

 

 

 

Figure 3.3: Graph of new fitted theoretical (marked by red) and measured 

(marked by blue) mode shapes for the chuck-tailstock 

 

 

3.4 Methodology for Chatter Analysis / Numerical 

Integration Methods in Vibration Analysis 

 

 When the differential equation of motion of a vibrating system cannot be 

integrated in a closed form, a numerical approach must be used. Several 

numerical methods are available for the vibration problems such as (1) Runge-

Kutta method, (2) Houbolt method, (3) Wilson method, and (4) Newmark 

method. In Runge-Kutta methods, the current displacement is expressed in terms 

of the previously determined values of displacement, velocity and the resulting 

equations are solved to find the current displacement. 

 

Meanwhile, the most general approach for the solution of the dynamic 

response of structural systems is the direct numerical integration of the dynamic 
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equilibrium equations. This involves, after the solution is defined at time zero, 

the attempt to satisfy dynamic equilibrium at discrete points in time. Most 

methods use equal time intervals at Δt, 2Δt, 3Δt........NΔt. Many different 

numerical techniques have previously been presented; however, all approaches 

can fundamentally be classified as either explicit or implicit integration 

methods. Explicit methods do not involve the solution of a set of linear 

equations at each step. Basically, these methods use the differential equation at 

time “t” to predict a solution at time “t + Δt”. For most real structures, which 

contain stiff elements, a very small time step is required in order to obtain a 

stable solution. Therefore, all explicit methods are conditionally stable with 

respect to the size of the time step. Implicit methods attempt to satisfy the 

differential equation at time “t” after the solution at time “t - Δt” is found. These 

methods require the solution of a set of linear equations at each time step; 

however, larger time steps may be used. Implicit methods can be conditionally 

or unconditionally stable. 

 

Numerical methods such as Runge-Kutta and delay differential methods 

require the use of a time step. The accuracy of the solution always depends on 

the size of the time step. Numerical integration methods have two fundamental 

characteristics. First is to satisfy the governing differential equation at all time, t 

but only at discrete time intervals ∆t apart. Second, a suitable type of variation 

of the displacement 𝑥, velocity 𝑥 , and acceleration 𝑥  are assumed within each 

time interval ∆t. The values of x and 𝑥  are known to be 𝑥0 and 𝑥 0, respectively 

at time t = 0 and the solution of the problem is required from t = 0 to t = T. 

 

 There are two most common analyses used in numerical integration for 

vibrating system which are frequency response analysis and time domain 

analysis. Each of this analysis will be explained in section 3.4.1 and 3.4.2. 
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3.4.1 Frequency Response Analysis  

 

Frequency response analysis is the response characteristics of the system 

when subjected to sinusoidal inputs. The input frequency is varied, and the 

output characteristics are computed or represented as a function of the 

frequency. Frequency response analysis provides useful insights into the 

stability and performance characteristics of the dynamic system.  

 

Estimating the frequency response for a physical system generally 

involves exciting the system with an input signal, measuring both input and 

output time histories, and comparing the two through a process such as the Fast 

Fourier Transform (FFT). The important aspect of this analysis is that the 

frequency content of the input signal must cover the frequency range of interest 

or the results will not be valid for the portion of the frequency range not covered 

 

Representation of a frequency response for a dynamic system using the 

transfer function is very useful in control theory as well as in vibration testing 

for measuring the dynamic response and for system identification. For example, 

for a system whose parameters such as mass (m), damping constant (c) and 

spring stiffness (k) are unknown, the transfer function can be determined 

experimentally by measuring the response or output due to a known input. Once 

the transfer function is determined, it provides a complete description of the 

dynamic characteristics of the system. 

 

In vibration testing, the measured vibration response (due to a known 

input or forcing function) could be the displacement, velocity or more 

commonly the acceleration. The transfer function corresponding to the 

acceleration response can be defined as the ratio of  
𝑠2𝑋 𝑠 

𝐹 𝑠 
 where F(s) is the 

Laplace‟s Transform of the input and s
2
X(s) is the Laplace‟s Transform of the 

acceleration. 
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3.4.2 Transient Response Analysis 

 

Transient response analysis is the most general method for computing 

forced dynamic response. The purpose of a transient response analysis is to 

compute the behaviour of a structure subjected to time varying excitation/load. 

The transient excitation is explicitly defined in the time domain. All of the 

forces applied to the structure are known at each instant in time. Forces can be in 

the form of applied forces and/or enforced motions. The important results 

obtained from transient analysis are typically displacements, velocities, and 

acceleration of grid points, and forces and stresses in elements. 

 

Depending upon the structure and the nature of loading, two different 

numerical methods can be used for dynamic transient analysis; direct and modal. 

The direct method performs a numerical integration on the complete coupled 

equation of motion. The modal method utilizes the mode shapes of the structure 

to reduce and uncouple the equation of motion; the solution is then obtained 

through the summation of the individual modal responses. In transient response, 

structural response is computed by solving a set of couple equations using direct 

numerical integration. Initial displacement or/and velocities in direct transient 

response need to be imposed. 

 

Introduction of Runge-Kutta method and delay differential equations are 

given in the following section. In the beginning, the current model developed 

employs a Runge-Kutta method. In Runge-Kutta method, the matrix equation of 

motion is used to express acceleration vector. This method requires initial 

conditions such as a displacement or velocity and it is a time domain analysis. 

 

 

3.4.2.1 Runge-Kutta Method 

 

Runge-Kutta method is by far the most commonly used methods in most 

engineering applications today. They were developed around 100 years ago 

(relatively new in terms of math history since Newton was in the 17th century 
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and Euler was in the early of 18th century), and are an extension of the same 

math Euler developed. In Euler's work, he seemed to favour employing Taylor 

series to all sorts of different. It is a first order of Taylor polynomial expansion, 

so its accuracy is limited, and if the derivatives of the function are not good it 

will lead to some serious error.  

 

Runge-Kutta method includes an additional calculation of slope in the 

middle of each time step, and takes a weighted average of the values to evaluate 

the function. This helps reduce the error as it goes from time step to time step, 

and can result in some very accurate results. These methods are named RK2 (2 

terms model) and it is very basic, and equivalent to the Midpoint MATLAB's 

ODE45 routine switches between an RK4 and RK5 based on which is providing 

a better result, hence the name ODE45. Runge-Kutta method works by several 

evaluations of an ODE at different points, then averaging those values: 

 

𝑘1,𝑛 = ℎ ∗ 𝑓 𝑡𝑛 , 𝑦𝑛                                      (3.51) 

 

𝑘2,𝑛 = ℎ ∗ 𝑓  𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1,𝑛

2
                           (3.52) 

 

𝑦𝑛+1 = 𝑦𝑛 +  
𝑘1+𝑘2

2
                                    (3.53) 

 

k1 and k2 are Euler's Method and by evaluating the function at the midpoint, 

using previous calculation of y in k1. Then, average these values to get (more 

accurate) estimation for yn+1. The RK4 works exactly like the RK2 except for 

two points, there are more k terms, and the average is weighted traditionally in 

the middle. Here is the iterative function in general: 

 

𝑘1 = ℎ ∗ 𝑓 𝑡𝑛 , 𝑦𝑛  

 

𝑘2 = ℎ ∗ 𝑓  𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
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𝑘3 = ℎ ∗ 𝑓  𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2

2
  

 

𝑘4 = ℎ ∗ 𝑓 𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3  

 

𝑦𝑛+1 = 𝑦𝑛 +  
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6
  

 

Notice that the first two terms are exactly the same as RK2. The third 

term k3 is calculated exactly the same way as k2, but with k2 as y-value instead of 

k1. This is just a refinement method for k2's value. k4 evaluates y at (t + h) using 

k3's approximation for y, and then the weighted average is taken where the 

middle values are more weighted than the ends. 

 

 Runge-Kutta method is self starting and stable for multi-degree of 

freedom systems. But it needs a value of displacement, x (t = 0) or velocity, 

𝑥 (𝑡 = 0) to calculate the time step. In contrast, using a Delay Differential 

Equation (DDE) will automatically recognize the time step since it is a self 

generated algorithm and have smaller time steps. Runge-Kutta method always 

depends on the initial conditions. Hence, it is much easier and quicker in terms 

of programming to adopt DDE methods. 

 

 

3.4.2.2 Delay Differential Equations (DDE)  

 

In a system of ordinary differential equations (ODEs)  𝑦 ′ 𝑡 =

 𝑓(𝑡, 𝑦 𝑡 ), the derivative of the solution depends on the solution at the present 

time, t. In a system of delay differential equations (DDEs), the derivative also 

depends on the solution at earlier times. 

 

𝑦 ′ 𝑡 =  𝑓 𝑡, 𝑦 𝑡  , 𝑓 𝑡, 𝑦 𝑡 − 𝜏1  , 𝑓 𝑡, 𝑦 𝑡 − 𝜏2  … … , 𝑓 𝑡, 𝑦 𝑡 − 𝜏𝑘  (3.54) 

 

where the delays, 𝜏𝑗  are positive constants. In evaluating the DDEs of equation   

(3.54), 𝑦 𝑡 − 𝜏𝑘  may represent values of the solution at points prior to the 
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initial point. In particular, when evaluating DDEs at point t = a, we must have a 

value of y (a- 𝜏).The given initial data must include not only y(a) but also a 

„history‟: the values y(t) for all t in the interval [a- 𝜏,a]. 

 

The method of steps is a technique for solving DDEs by reducing them 

to a sequence of ODEs. The detailed procedure of how the method work for 

 𝑦 ′ 𝑡 =  𝑦(𝑡 − 1) in the first two steps with history S(t) = 1 for 0≤ t ≤ 1 is 

shown in Table 3.5.  

 

Table 3.5: A technique of solving DDEs by reducing to a sequence of ODEs. 

 

  T t-1 𝑦(𝑡 − 1) 𝑦 ′ 𝑡 = 𝑦(𝑡 − 1) 𝑦(𝑡) 

 

0≤ t ≤ 1 
 

-1≤ t ≤ 0 

 
1 

 

𝑦 ′ 𝑡 = 1 

 

 𝑦′ =  1 𝑑𝑡 

 
𝑦 𝑡 =  𝑡 + 𝑐 

 

Initial value y(0) = 1 

 

𝑦 0 = 𝑐 = 1 
𝑦 𝑡 =  𝑡 + 1 

𝑦 1 =  2 
 

 

1≤ t ≤ 2 

 

0≤ t ≤ 1 

 

𝑦 𝑡 =  𝑡 + 1 
𝑦 𝑡 − 1 =  𝑡 

 

 

𝑦 ′ 𝑡 = 𝑡 

 

 𝑦′ =  𝑡 𝑑𝑡 

 

𝑦 𝑡 =  
𝑡

2

2

+ 𝑐 

 

Initial value y(1) = 2 

 

𝑦 1 = 𝑐 + 
1

2
= 4 

 

𝑐 =
3

2
 

 

𝑦 𝑡 =  
𝑡2 + 3

2
 

 

𝑦 2 =  
7

2
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To show how it goes and to illustrate the propagation of discontinuities, 

 𝑦 ′ 𝑡 =  𝑦(𝑡 − 1) with history S(t) = 1 equation is solved for 0≤ t. On the 

interval, 0≤ t ≤ 1, the function =  𝑦(𝑡 − 1) in  𝑦 ′ 𝑡 =  𝑦(𝑡 − 1) has the known 

value S(t-1) = 1 because  t-1≤ 0. The DDE on this interval reduces to the ODE 

 𝑦 ′ 𝑡 = 1 with initial value y(0) = S(0) = 1 to obtain y(t) = t+1 for 0≤ t ≤ 1. The 

solution of DDE exhibits typical discontinuity in its first derivative at t = 0 

because it is 0 to the left origin and 1 to the right. Now that solution t ≤ 1 has 

been obtained, DDE on the interval 1≤ t ≤ 2 can be reduced to ODE  𝑦 ′ =

 𝑡 − 1 + 1 = 𝑡 with initial value y(1) = 2 and solving this Initial Value 

Problem finds 𝑦 t = 0.5t2 + 1.5. The first derivative is continuous at t = 1, but 

there is a discontinuity in the second derivative. The subsequent steps are similar 

to those in the above table but are not given as they become increasingly tedious 

though not very difficult to do in theory. Therefore, numerical methods are 

usually used to solve the delay differential equations.  

 

 

3.5 Chapter Summary 

 

A new mathematical model for turning metal work pieces which 

consider both work piece and cutting tools as flexible with its moving load 

cutting force and regenerative chatter effects is developed. In the past, most 

studies of dynamic model of turning operation generally assumed the work piece 

to be rigid and ignored the work piece deformation. It only considers cutting tool 

deflection but practically, the work piece also suffers from deformation as a 

result of an external force by the cutting tool which affects and changes the chip 

thickness. No dynamic models established before that considered the work piece 

and cutting tools as flexible. Hence, the development of such mathematical 

formulation was initiated and thoroughly explained. 

 

 The development of the dynamic models starts by identifying suitable 

boundary conditions. Since the work piece is clamped to a chuck and is 

supported at the tailstock on the other end, a clamp-pinned boundary condition 

has been assumed for the work piece. The energy method is then employed as 
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the energy of a vibrating system of a turning process is partly potential and 

partly kinetic. The equation of motion of vibration of a rotating work piece in 

turning operations is then derived using Lagrange‟s equations. Three directional 

moving cutting forces with regenerative chatter mechanism is next included in 

the dynamic model developed. The improved dynamic model is later generated 

by adopting Insperger‟s cutting force model. Lastly, the cutting tool equation of 

motions for new improved dynamic model is also established and computed in 

Matlab software. 

 

A method to analyse the chatter is then performed by utilizing a 

frequency response analysis and transient response analysis. In order to perform 

these analyses, a Runge-Kutta method has been used initially. But, since a 

Runge-Kutta needs a value of displacement, x (t = 0) or velocity, 𝑥 (𝑡 = 0) to 

calculate the time step and always depends on the initial conditions, a more 

suitable method should be used. A Delay Differential equation has been selected 

to replace a Runge-Kutta method since it is a self generated algorithm where the 

time step will be automatically recognized. By considering this, a quicker and 

efficient dynamic model could be generated.                                                         
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Chapter 4  

 

Experimental Modal Analysis 

 

4.1 Introduction 

  

Generally there are three major objectives of this experimental 

observation in the field of structural dynamics, especially for: 

(1) measurement of essential material properties under dynamic loading 

(2) determining the nature and extent of vibration response levels in operation 

(3) verifying theoretical models and predictions of various dynamic 

phenomena 

The third objective mentioned above can be accomplished by performing 

experimental modal analysis (EMA). EMA is a process of measuring (often out 

of normal service environment) and analysing dynamic properties of structures 

under a known vibrational excitation. It is also known as Modal Testing. In this 

chapter, an introductory overview of experimental modal analysis is described. 

Brief explanation on the basic system of vibration measurement is also included. 

Since the aim is to understand the dynamics of turned metal, a cylindrical metal 

work piece is employed and described. Modal testing results carried out by the 

student and her collaborators on work pieces are presented and discussed. 
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Modal testing is defined as the study of the dynamic characteristics of a 

mechanical structure. Another definition of modal testing is a technique used to 

determine a structure‟s vibration characteristics such as natural frequencies, 

mode shapes and mode participation factors. Some of the benefits of modal 

analysis are allowing the design to avoid resonance vibration or to vibrate as a 

specified frequency, giving an engineer an idea of how the design will respond 

to different types of dynamic loads and helping in calculating solution control 

(time-step etc.) for other dynamic analysis. It is employed to create a 

mathematical model of a physical structure based on measured vibration data. 

These vibration data are not only response levels but also the excitations on the 

structure measured, thus permitting a relationship to be defined between them. 

These measured responses and excitations are usually presented in time domain 

before being transformed into frequency domain to reveal frequency response 

functions (FRFs) or impulse response functions (IRFs). The response model can 

also be obtained theoretically by direct analysis, as explained in the following. 

 

The theoretical route to vibration analysis is shown in Figure 4.1. This 

illustrates the three stages through which a typical theoretical vibration analysis 

progresses (Ewins, 2000); spatial model, modal model and response model. 

Generally, a mathematical model is constructed to describe the structure‟s 

physical characteristics, usually in terms of its mass, stiffness and damping 

properties and this is referred to as the spatial model. Then, a theoretical modal 

analysis of the spatial model is performed which leads to a description of 

structure‟s behaviour as a set of vibration modes in the form of its modal 

properties (natural frequencies, modal damping factors and mode shapes) called 

model modal. The modal model always describes the normal modes of the 

structure, in which the structure vibrates naturally without any external 

excitations. The third stage (response model) is then executed to describe how 

the structure will respond under given excitation conditions by constructing a set 

of FRFs within the applicable range of frequency. 

 

In the mean time, the experimental route to vibration analysis is 

commenced in the reverse direction of the theoretical route in which the FRFs 

are measured to create the response model, and the modal model consisting of 
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natural frequencies, modal damping and mode shapes can then be defined. 

Lastly, the spatial model can be obtained providing enough measurements to 

characterise the physical structure. Therefore it is essential to include enough 

degrees of freedom (DOFs) in the measurement and also to cover most of the 

vibration modes within a specified frequency range.  

 

 

Figure 4.1: Route to vibration analysis 

 

 

Generally, there are four essential steps or phases in a modal test. The 

first step is a test planning phase. It is important to ensure that the correct 

equipment is used for the various transductions, signal processing and analysis 

tasks. Another very important requirement of a modal test is to ensure that all 

the necessary parameters are measured. This means ensuring that all those 

quantities which are required for the eventual application are included in the list 

of quantities to be measured and, likewise, that unnecessary data are excluded 

from the list. Another aspect of test planning concerns the choice of response 

measurement locations. This choice is governed by the eventual application and 

it should be noted that the set of degrees of freedoms (DOFs) required for a clear 

visual interpretation of animated mode shape displays is not necessarily the 

optimum set for a more quantitative application such as model validation, 

updating or modification.  
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Following planning, the next phase is concerned with the preparation of 

the structure for test and the acquisition of the raw data that will be used to 

construct the model of the structure's dynamics. It must be emphasized here that 

the second most important feature of these measured data (after ensuring their 

completeness, i.e. that the correct ones are measured) is their accuracy. The 

main concern in this respect is to guard against the incursion of systematic 

errors, such as those caused by incorrect use of the equipment or installation of 

the transducers. These errors are much more difficult to detect and to eradicate 

than are those of a more random nature, such as arise due to noise, and once 

embedded in the data will seriously degrade the effectiveness of the model 

constructed. 

 

Next is the measurement phase. The essential feature of the measurement 

phase in a modal test is that a controlled excitation forcing must be applied and 

measured together with the resulting responses at as many points as are 

necessary. The ensuing measured data will be presented in the form of response 

functions which are a series of ratios between responses and excitations, either 

characterized by functions which describe the responses to an arbitrary harmonic 

excitation (FRFs) or to an impulsive excitation (IRFs). The properties of the 

Fourier transform enable converting raw data from any of these excitation 

patterns into the required format of FRF or IRF by suitable signal processing. 

 

Immediately following the data acquisition and processing phase, comes 

the interpretation or analysis-of-response-functions task. Here, the measured 

data are subjected to a process which seeks to determine the specific parameters 

of a generic mathematical model which makes this particular model exhibit the 

same dynamic behaviour as that measured in the test. The model in question is 

usually a modal model so that the analysis task is one of determining the modal 

properties of the system which most closely described the dynamic behaviour 

observed in the tests. This analysis is often achieved using a curve-fitting 

approach in which the coefficients in a specified polynomial function are 

established by requiring a minimum difference between the measured curve(s) 

and the curve(s) regenerated using the polynomial expression. This is not the 

only means of deriving the modal model but is by far the most common. 
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The final phase in the modal testing process is referred to as modeling. In 

the modeling phase a number of steps are taken. First, when the modal analysis 

has been carried out in a one-function-at-a-time way, users are confronted with a 

set of modal parameters which will most likely contain some inconsistencies. 

These inconsistencies will be manifested by the fact that there are many 

duplicate estimates for the natural frequency and damping factor for most of the 

modes. A different value for each from each individual FRF and these multiple 

values are not compatible with the type of multiple degree of freedoms (MDOF) 

linear system which forms the basis of modal model. Thus, it is necessary to 

extract from these multiple estimates a single value for the natural frequency and 

damping factor for each mode. Such a process is done automatically in the 

course of the global type of modal analysis (in which all FRFs are analysed in a 

single step, rather than individually, as is the case with other analysis strategies). 

While it is a simple matter to compute an average value from several different 

estimates, this should only be accepted as a reasonable value if the variance of 

the individual estimates is small and their differences are random in nature. 

Otherwise, the significance of the variation should not be ignored. It probably 

indicates a non-trivial error or problem with the original data set or with their 

modal analyses. There are other checks which must be undertaken on the 

resulting model, such as verification that the modes are suitably real, and not 

complex, except in the specific conditions where modal complexity can be 

justified. There are a number of checks that can be applied to the measured data 

and to their extracted models to test the statistical and physical reliability of the 

final results and these checks should be routinely applied to ensure that the 

appropriate quality is maintained throughout all the stages of the test. 

 

 

 

4.2 Basic Components of Experimental Modal Analysis 

(EMA) 

 

The basic components of EMA are described in this section. A typical 

layout for measurement system used for single-point excitation is illustrated in 

Figure 4.2, which includes the three main elements of EMA; excitation of 
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structure, mechanism of sensing and  data acquisition and processing 

mechanisms. 

 

 

 

Figure 4.2: General layout of EMA 

 

 

4.2.1 Excitation of Structure 

 

There are numerous types of mechanisms available for excitation of a 

structure, which can be classified into contacting and non-contacting types. The 

first type involves connecting an exciter (such as electromagnetic or electro-

hydraulic shaker) that remains attached to the structure during the modal test. 

Such a system causes some constraining and mass loading effects of the 

structure. The connecting excitation mechanism, also known as the shaker, is 

established by a system that applies the excitation, generally in the form of a 

driving force f (t), at a given coordinate of the test structure. The excitation 

signals can be any of the wide variety of signal forms including harmonic, 

impulsive, random, transient, periodic and others. It must be chosen to match the 

requirements of the test. In addition, a power amplifier and signal generator are 

required to provide a large enough input for the measurement. The excitation is 

usually measured by a force transducer located at the connection between the 

shaker and the structure under investigation.  
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The second type consists of excitation devices that are either in contact 

for a short period (i.e. an impact hammer) or have no contact at all (i.e. an 

electromagnetic device) with the test structure while the excitation is being 

applied. The impact hammer is a complete excitation mechanism by which a 

force transducer attached to its head. By using this type of technique, a 

connection between the excitation device and the test structure is unnecessary 

thus mass loading effects can be avoided. Furthermore, the device does not 

require a signal generator and a power amplifier. The impact hammer as shown 

in Figure 4.3 is used to hit the structure in order to excite a wide range of 

frequencies, which depends on the properties of the hammer tip. The magnitude 

of impact is determined by the mass of the hammer head and the velocity of the 

impact introduced by the operator. In addition, the frequency range is defined by 

the stiffness of the contacting surfaces and the mass of the hammer head. The 

stiffer the materials, the higher the effective frequency range and vice versa. 

That is why the impact hammer normally comes with a set of different tips and 

heads that are interchangeable to manage appropriate impact magnitudes and 

frequency ranges. Although the impact hammer is simple and does not add mass 

loading to the structure, it is often incapable of transforming sufficient energy to 

the structure to obtain adequate response signals in the frequency range of 

interest. Nonetheless, impact hammer remains a popular and useful excitation 

device, as it generally is much faster to use than shakers. 
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Figure 4.3: Impact Hammer 

 

 

4.2.2 Mechanism of Sensing 

  

 Mechanism of sensing or transduction is used for measurement of force 

excitation (by means of force transducers) or acceleration response (by means of 

accelerometers as depicted in Figure 4.4) in modal testing. These transducers 

generate electric signals that are proportional to the physical parameters to be 

measured such as force or accelerations. It is very important that each set of 

transducer or accelerometer is properly calibrated in terms of both magnitude 

and phase over the frequency range of interest. If the signals are weak, 

amplifiers may be needed to boost the signals into a signal strong enough to be 

measured by the analyser. There are two main factors to be considered when 

attaching and locating the accelerometer on the test structure. Firstly, there are 

various methods to attach the accelerometers to the surface of a structure under 

test includes using a stud, magnet, a layer of wax and even hand-held. The use 

of wax is the simplest and easiest way, thus is widely applied in modal testing. 

Secondly, it is important to correctly position the accelerometers so that they are 

not located too close to a node of vibration modes. Besides, the location of the 
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measurement points must be selected properly in order to capture the actual 

mode shapes of the test structure. 

 

 

 

Figure 4.4: Accelerometer 

 

 

4.2.3 Data Acquisition and Processing Mechanism 

 

The purpose of a data acquisition and processing system is to measure 

the excitation and response signals transmitted by the excitation and sensing 

mechanisms using sophisticated devices called analysers. A spectrum analyser 

which is also known as Fast Fourier Transform (FFT) analyser is commonly 

used in modal testing because it can directly provide measurement of the FRFs. 

This is done by converting the analogue time domain signals developed by the 

transducers into digital frequency domain information that can afterwards be 

processed by digital computers.  

 

 

4.3 Experimental Modal Analysis of Metal and 

Composite Work piece  

 

Modal testing was performed by conducting the main aspects of 

experimental modal analysis, including excitation of the structure, measurement 

of the response as well as data acquisition and processing on the work piece. 
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The experiments were carried out using a LMS Test Lab package in which an 

impact hammer was used to excite the work piece and several accelerometers 

were employed to measure the vibration response at multiple locations. The 

experimental setups are described and the measured data is given in the 

following subsections 

 

 

4.3.1 Free-free Boundary 

 

Modal testing with free-free boundary condition was conducted for metal 

and composite work piece as a long cylindrical as illustrated in Figure 4.5. The 

free-free boundary condition is achieved by using a pair of strings to hang the 

cylindrical work piece during testing. A PCB impact hammer (Figure 4.6 (a)) 

and two Kistler accelerometers (Figure 4.6 (b)) were used in the test. The 

cylindrical work piece is tested using one hammer point and two measurement 

points as depicted in Figure 4.5. The locations of the hammer and measurement 

points were carefully chosen so that they are not near any nodal points. The 

responses were measured using a 12-channels LMS system (Figure 4.6 (c)) and 

were extracted using a LMS PolyMAX curve-fitting procedure.  

 

 

 

Figure 4.5: Experimental set up for the cylindrical metal work piece of free-free 

boundary 
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(a)                                      (b)                                  (c)  

 

Figure 4.6: Apparatus used for modal testing (a) PCB impact hammer (b) Kistler 

accelerometer (c) 12-channels LMS system 

 

 

The cylindrical metal work piece used is cut into 500 mm length with 

diameter of 50 mm and the distance between measurement points of each 

equally space node is 12 mm as illustrated in Figure 4.7. Its nominal material 

properties are given in Table 4.1.  

 

 

 

Figure 4.7: A cylindrical metal work piece with its five measured locations 

 

 

 

 

 

 
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Table 4.1: Nominal material properties of cylindrical metal work piece 

 

Properties Value 

Young‟s Modulus, E 210 GPa 

Mass density, ρ 7850 kg/m
3
 

 

 

The three measured natural frequencies are shown in Table 4.2 and their mode 

shapes respectively are depicted in Figure 4.8. The theoretical frequency, n can 

be calculated by using equation 4.1 below where I is the moment of inertia, ρ is 

a mass density, l is a length, A is the cross-sectional area of the work piece and 

𝛽1l = 4.730041, 𝛽2l = 7.853205, 𝛽3l = 10.995608 (Rao, 1995). 

 

𝜔𝑛 =  𝛽𝑛 𝑙 2 
𝐸𝐼

𝜌𝐴𝑙 4                                   (4.1) 

 

It was found that from the modal test results shown in Table 4.2, the results were 

as expected in which the tested frequencies were quite close to the theoretical 

frequencies. It is also observed that from the resultant measured mode shapes, it 

appeared following the same classical beam mode shapes for free-free boundary 

as predicted.  

 

Table 4.2: The three measured natural frequencies of the cylindrical metal work 

piece 

 

Order of Fundamental 

Frequency 

Tested Frequency  

(Hz) 

Theoretical Frequency 

(Hz) 

1 896.01 917.54 

2 2368.04 2529.25 

3 4400.17 4958.34 
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(a) Mode 1 

 

 

 

(b) Mode 2 
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(c) Mode 3 

 

Figure 4.8: The experimental mode shapes of the cylindrical metal work piece 

for free-free boundary 

 

As for composite work piece, it is cut with the length of 500 mm similar 

to the metal work piece length but with slightly smaller diameter of 38 mm. The 

distance between measurement points of each node is 12 mm as depicted in 

Figure 4.7. Its nominal material properties are given in Table 4.3.  

 

Table 4.3: Nominal material properties of cylindrical composite work piece 

 

Properties Value 

Young‟s Modulus, E 36.75 GPa 

Mass density, ρ 882 kg/m
3
 

 

 

The three measured natural frequencies are shown in Table 4.4 and their mode 

shapes respectively are depicted in Figure 4.9. It was found that from the modal 

test results shown in Table 4.4, the results were as expected where the tested 

frequencies were quite close to the theoretical frequencies. The resultant 
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measured mode shapes were not following the classical beam mode shapes for 

free-free boundary. 

 

Table 4.4: The three measured natural frequencies of the cylindrical composite 

work piece 

 

Order of Fundamental 

frequency 

Tested frequency  

(Hz) 

Theoretical 

frequency (Hz) 

1 618.40 602.00 

2 1630.02 1549.35 

3 3017.91 2988.20 
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(b) Mode 2 

 

 

(c) Mode 3 

 

Figure 4.9: The experimental mode shapes of the cylindrical composite 

work piece for free-free boundary 
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4.3.2 Clamped Pinned Boundary 

 

Turning operation is performed on a lathe machine in which one end of 

the work piece is fixed to the spindle by a chuck and the other end pin mounted 

to the tails stock as shown in Figure 4.10. Due to this arrangement, the boundary 

condition of the work piece on a lathe machine is considered as a clamped-

pinned. In this modal test, two methods of sensing mechanisms have been 

employed using Kistler accelerometers and Micro-epsilon laser sensor (Figure 

4.11) to determine the natural frequencies and mode shapes of the round metal 

work piece. The accelerometers used in the experiments can be difficult to 

mount on different locations of the work piece being tested during turning. Laser 

displacement sensor is more practical to mount in measuring the vibration of the 

work piece during turning operation.  

 

 

 

Figure 4.10: Modal test setup for cylindrical work piece in clamped-pinned 

boundary condition (in Dynamics laboratory in the University of Liverpool) 
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Figure 4.11: Kistler accelerometer and Micro-epsilon laser sensor (in Dynamics 

laboratory in the University of Liverpool) 

 

The three measured natural frequencies for clamped-pinned boundary are 

shown in Table 4.5 and their mode shapes are depicted in Figure 4.12. It was 

found that from the modal test results shown in Table 4.5, the results were not as 

expected in which the tested frequencies from both sensing mechanisms were 

lower than the theoretical frequencies. It is also observed that the resultant 

measured mode shapes were not symmetrical and not following the classical 

beam mode shapes for clamped-pinned boundary as envisaged. 

 

Table 4.5: The three measured clamped-pinned natural frequencies of the 

cylindrical metal work piece 

 

Order of 

Frequency 

Tested Frequency 

(Accelerometer) 

(Hz) 

Tested Frequency 

(Laser Sensor) 

(Hz) 

Theoretical 

Frequency 

(Hz) 

1 176.45 206.4 634.39 

2 423.63 440.9 2055.82 

3 842.83 716.5 4289.31 
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(a) Mode 1 

 

 

 

(b) Mode 2 
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(c) Mode 3 

 

Figure 4.12: The experimental mode shapes of the cylindrical metal work piece 

for clamp-pinned boundary 

 

 

Hence, several runs of modal test have been conducted to redo the test in 

order to acquire the expected frequencies (closer to theoretical frequencies). But 

the outcomes are still the same. Due to this problem, the modal test for clamped-

pinned boundary for composite work piece as well could not be carried out. 

 

The large difference of these two frequencies might be due to the 

clamped-pinned boundary condition considered earlier. This is because the work 

piece that is held at chuck was not fixed enough thus allowing some movements. 

Another boundary condition should be considered to correct this discrepancy. A 

suitable boundary should be an elastic boundary condition where the rotational 

and vertical springs are considered at the clamped end. On the other hand, the 

work piece that is pin mounted at tails stock is considered as one vertical spring 

only. 
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In addition, it is also noticed that both sensing mechanisms worked 

successfully but the responses from the laser sensor were too noisy to be 

captured hence the expected natural frequencies and mode shapes could not be 

determined accurately. These were shown in Figure 4.13 below. Only readings 

from accelerometers were taken into account. 

 

 

 

Figure 4.13: Responses from laser sensor showing the noise 

 

 

To overcome these huge discrepancies between the two sets of 

frequencies, another modal test has been performed with better data acquisition 

and processing mechanism. It was done in collaboration with Dalian University 

of Technology (DUT) in China. The modal test is only done on the metal work 

piece. The results of the modal test done are described in the next subsection. 

The material and geometric properties of the cylindrical work piece used during 

the modal test are shown in the Table 4.6 below. 
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Table 4.6: Properties of the cylindrical metal work piece used in the DUT test 

 

Properties Values 

Size Length = 549.95, diameter = 37.03 mm 

Material Quenched and tempered steel 45 

Weight About 4.63 kg 

Density of mass 7817.4 kg/m
3
 

Young‟s Modulus 210 GPa 

 

  

The modal test for both free-free and clamped-pinned boundary 

condition was conducted for the metal work piece. The steps of performing the 

free-free boundary modal test are similar as the previous test. The three 

measured free-free boundary natural frequencies of the metal work piece are 

tabulated in Table 4.7 below. From the results, it shows that the tested 

frequencies were as expected where the values are close enough to the 

theoretical frequencies. 

 

Table 4.7: Free-free boundary condition for cylindrical metal work piece 

 

Order of Fundamental 

frequency 

Tested frequency 

(Hz) 

Theoretical frequency 

(Hz) 

1 558 559.7 

2 1506 1542.8 

3 2872 3024.5 

 

 

 On the other hand, the clamped-pinned boundary modal test is also 

performed and the modal test setup is depicted in Figure 4.14. This test is 

essential to replace the clamped-pinned modal test done previously. The four 

measured clamped-pinned boundary natural frequencies of the metal work piece 

in y direction are illustrated in Table 4.8 below. It was found that the resultant 

tested frequencies were close enough with the theoretical frequencies as 

expected.  
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Figure 4.14: Modal test setup for clamped-pinned boundary in y and z direction 

(in the Institute of Moulds, Dalian University of Technology) 

 

 

Table 4.8: Clamped-pinned boundary condition for metal work piece 

 (y direction)  

Order of Fundamental 

frequency 

Tested frequency 

(Hz) 

Theoretical frequency 

(Hz) 

1 336 385.7 

2 1310 1249.9 

3 2720 2607.9 

4 4590 4459.6 

 

 

The clamped-pinned boundary modal test is also conducted in z direction 

as shown in Figure 4.14. The four measured clamped-pinned boundary natural 

frequencies of the metal work piece in z direction are shown in Table 4.9 below. 

It was found that the resultant tested frequencies were close enough to the 

theoretical frequencies as expected.  
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Table 4.9: Clamped-pinned boundary condition for metal work piece 

(z direction) 

 

Order of Fundamental 

frequency 

Tested frequency 

(Hz) 

Theoretical frequency 

(Hz) 

1 337 385.7 

2 1280 1249.9 

3 2740 2607.9 

4 4740 4459.6 

 

  

4.4 Experimental Modal Analysis During Machining of 

Cylindrical Metal Work piece at DUT 

 

This section explains the experimental setup and the procedures behind 

the vibration test of the turned metal work piece. This vibration test is done to 

monitor the occurrence of chatter and to determine the effect of varying some 

cutting parameters on chatter occurrence. 

 

The schematic of the experimental setup is depicted in Figure 4.15 and 

the real lathe with the work piece under testing is pictured in Figure 4.16. The 

type of the metal work piece used is AISI 1045 steel with hardness of HB190. It 

is supported at one end by chuck on the lathe machine (CA6140) and the other 

end by a tailstock. A dry turning operation was done to determine the cutting 

forces and vibration. The tool holder used in the experiment is PSSNR2525M12 

and the cutting tool employed is P10 quadrangle carbide inserts coated with 

optimal combination of MT-TiCN, Al2O3, TiN and SNMG120404-PM with 0.4 

mm nose radius. The cutting tool has a side cutting edge angle of cs = 45
o
, 

inclination angle of ia = 0
o
, and normal rake angle of n = 10

o
.  

 

A data acquisition system (Bruel & Kjaer‟s PULSE-Type 3560E) which 

is equipped with 16 channels is adopted to measure the cutting force and 

vibration of the metal work piece. Two eddy-current transducers were used to 

measure the vibration of the shaft near the being-machined cross-section in the y 

direction and z direction. These two eddy-current transducers (3300 XL 8 mm 
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Proximity Transducer System) which are made by Bently Nevada are fixed on 

the tool carriage that is connected with a fixation apparatus. It is kept at a 

distance within 2 mm between the end of the eddy-current transducers and the 

machined surface of the work piece in the y and z directions. Meanwhile, the 

distance between the end eddy-current transducers and the tool tip in x direction 

is kept within 10 mm.  

 

The dynamometer (YDX-III9702) which is made by the Institute of 

Sensing and Control at Dalian University of Technology is used to measure the 

dynamic cutting force. The dynamometer assembly is specifically designed and 

made to fit under the tool post. The cutter is synchronously driven with the 

dynamometer and the eddy-current transducers from the right-hand side of the 

work piece to the chuck. The sampling frequency is set to be 8 kHz.  

 

 

 

 

Figure 4.15: Schematic illustration of the vibration test set-up 
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Figure 4.16: Two views of the experimental rig (Han et al., 2012) 

 

 

The cutting conditions used are shown in Table 4.10. The rotating speed, 

feed rate and depth of cut are carefully chosen in different values consistent with 

the previous numerical simulations under different cutting conditions. 

 

Table 4.10: Cutting parameters and work piece characteristics 

 

Experiment 

Number 

Rotary speed, 

 (rev/min) 

Depth of Cut, d 

(mm) 

Feed Rate, f 

(mm/rev) 

Diameter, D 

(mm) 

1 1250 1.5 0.3 36.5 

2 1000 3.0 0.2 35.0 

  

 

Vibration of the work piece is due to the cutting force and its travel along 

the longitudinal direction and (relatively) in the circumferential direction in the 

turning operations. These two factors together affect vibration of work piece.  

Moreover, regenerative chatter may also occur. Suitable cutting condition and 

dimension of the shaft were used in the experiment. 
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The dynamometer was used to measure the dynamic cutting forces. Two 

eddy-current transducers measure the vibration of the shaft near the being-

machined cross-section in the y and z direction. All sensors move 

simultaneously along longitudinal axis of the work piece with the tool carriage. 

Thus, the being-machined section of the shaft is tracked and its deflections are 

measured. During machining, the vibration response signal may not solely come 

from moving loads or the cutting forces. Other factors may contribute such as 

the vibration of the spindle of the lathe due to power transmitted via the gear and 

the tool carriage moving on its adjustable horizontal metal rail with clearance, 

and vibration of the tool holder may contributed to the vibration signal measured 

and sever to contaminate the true work piece vibration signal. 

   

Therefore, a pre-test is performed with the shaft rotating and the cutter 

making one complete travel without cutting before each formal test of vibration 

in turning operation is conducted. The vibration signal of the pre-test is 

measured to analyze the effect of these variations on the measured signals. 

During turning operation, vibrations of the shaft subjected to three moving 

dynamic cutting forces were recorded at different cutting conditions. Two tests 

were performed in different cutting conditions as described in Table 4.10 in the 

dry run. The five channels of the 3560-E were simultaneously used for data 

acquisition which three channels for measuring the cutting force signals and 

another two channels for collecting vibration signals during each cut. 

 

The dynamic response of the shaft in y and z direction is measured at the 

being machined position during the turning. The carriage moves the tool in a 

direction that is only nearly parallel to the longitudinal direction due to the 

deformation of the guide way. Thus, the deflection curves are dealt with 

according to the tested data from an empty turning before the formal turning 

process. All the results in this experiment are explained in the next chapter. 
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4.5 Chapter Summary 

 

In this chapter, experimental modal analysis has been explained, and the 

theoretical and experimental routes of vibration analysis are described. Brief 

explanations of the three main aspects of the basic measurement system used in 

vibration analysis (i.e. excitation, transduction and data analysers) have also 

been included. It is important to have a good understanding of the concept of 

EMA before performing the modal test, as presented in the remainder of the 

chapter.  

 

A cylindrical metal and composite work pieces have been utilised to be 

investigated in this research and their description have been included in this 

chapter. Modal testing has been conducted on each of the work piece in order to 

determine the natural frequencies and the mode shapes of each work piece. Two 

types of boundary conditions; free-free and clamp-pinned have been considered 

and results for the metal and composites work pieces for free-free boundary are 

encouraging. The tested frequencies for both work pieces were quite close to the 

theoretical frequencies and the resultant measured mode shapes appeared in line 

with the classical beam mode shapes as predicted.  

 

In contrast, the results for the clamp-pinned boundary for metal work 

piece were not as expected. The tested frequencies were lower than the 

theoretical frequencies and the resultant measured mode shapes were not 

symmetrical and not following the classical beam mode shapes. Several attempts 

have been conducted to redo the test but similar results were produced. Hence, 

the modal test could not be carried out for composite work piece. The main 

problems encountered led to these discrepancies in metal work piece natural 

frequencies and mode shapes are due to the clamped pinned boundary condition 

considered earlier. The assumed boundary condition is not entirely correct as 

both supports (chuck and tailstock) are actually flexible. A suitable boundary 

should be considered (an elastic boundary condition) in the developed dynamic 

model (Chapter 3) and the simulated numerical results in Chapter 5 will be 

based on this boundary condition. In addition, the responses from the laser 
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sensor were too noisy to be captured thus the expected natural frequencies and 

mode shapes could not be determined. 

 

To overcome these problems, another modal test has been performed 

with better data acquisition and processing mechanism with a collaboration from 

Dalian University of Technology (DUT) in China. The modal test is only done 

on the metal work piece for clamped-pinned boundary condition only. The 

results are promising where the tested frequencies were as expected (close 

enough to the theoretical) frequencies. The experimental data from this modal 

test will be employed in the dynamic model for numerical simulation purposes. 

It is done to ensure the accuracy of the numerical simulation and minimise the 

error respectively.  
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Chapter 5 

 

Numerical Simulation Results  

 

5.1 Overview 

 

The aim of this chapter is to present the results for numerical simulation 

of the dynamic model developed in Chapter 3. Traditional design phases that 

include building and testing product prototypes are no longer practical and 

economical to be employed today due to demands of a reduced time-to-market 

among product manufacturers. In order to meet the demands, increasing use of 

the numerical analysis especially in the field of structural analysis should be 

attempted. Therefore, many efforts are given to the development of accurate 

analytical models for the prediction of the system‟s response to various 

excitations, boundary conditions and parameter changes. Consequently, 

development of numerical models for structural dynamics prediction has 

become more and more significant especially with the growing capabilities of 

computing facilities. 
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5.2 Parametric Studies 

 

Cutting speed, depth of cut, and rotational speed are known to be the 

cutting parameters that influence the surface finish of turned work pieces 

(explained earlier in Chapter 2). From the dynamic model established, the effect 

of these cutting parameters is simulated to observe their influences on vibration 

and chatter occurrence of turned work piece. In this study, the effect of varying 

these main cutting parameters is investigated and the outcome from the 

simulation will be analyzed accordingly. 

 

 

5.2.1 Clamped Pinned (Metal work piece) 

 

5.2.1.1 Convergence Test 

 

To start with, some preliminary simulation work has been done for 

clamped pinned boundary condition of metal work pieces. The convergence test 

has been performed to monitor the occurrence of chatter (up to five modes) and 

to determine the appropriate number of modes included in the simulation. As a 

result, four modes of the shaft are found to produce satisfactory results and 

hence used for the simulation. The geometric and material properties of the shaft 

(cylindrical metal work piece) used in this convergence test are length, l = 0.5 

m, radius r = 25 mm, Young‟s Modulus E = 2.07 x 10
11

 Pa, and density, 𝝆 = 

7850 kg/m
3
 while the cutting parameters used are 0.2228 m/s for cutting speed, 

3.00 mm for the depth of cut, 1250 rev/min for rotational speed and 0.3 mm/rev 

for the feed rate. By considering the clamped pinned boundary first, its modes 

are 

 

𝜑𝑛 𝑥 = cosh  
𝜆𝑛

𝑙
𝑥 − cos  

𝜆𝑛

𝑙
𝑥 − 𝜍𝑛  sinh  

𝜆𝑛

𝑙
𝑥 − sin  

𝜆𝑛

𝑙
𝑥    (5.1) 
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where λ = [3.9266, 7.0686, 10.2102, 13.3518, 16.4934] and σ = [1.000777304, 

1.000001445, 1.0000000000].  𝜔𝑛 = (𝜆𝑛)2 𝐸𝐼/𝜌𝐴 / 2𝜋𝑙2 (n = 1, 2, 3...) in 

rad/s is the natural frequency of the stationary shaft. 

 

The numerical results of the dynamic responses of deflection, v and w at 

the moving cutter location (in the y and z direction respectively) are depicted in 

Figure 5.1 and Figure 5.2. Meanwhile the moving cutter starts from the pinned 

support and finishes at the clamped support. It is found that as the higher modes 

are included in the simulation, higher oscillation (chatter) starts to appear on top 

of the deflection (dynamic response) curve in both v (y) and w (z) direction as 

depicted in Figure 5.1 (c) and Figure 5.2 (c).  

 

It is also observed that four modes of the shaft are sufficient and hence 

used during numerical simulation.  It is necessary to include higher modes as 

they represent high frequency oscillation. The accuracy of the dynamic model 

also increases since at a certain mode, it starts to converge which can be seen 

from four modes. The more modes considered, the more accurate the results; but 

at certain points it is not necessary to include more than four modes. With four 

modes, there is high frequency oscillation on top of the static deflection. 
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(a) One mode                                                 (b)  Two modes 

 

 

 

 

 

 

 

 

 

(c) Three modes                                           (d)  Four modes 

 

 

 

 

 

 

 

 

 

(e) Five modes 

 

Figure 5.1: Dynamic response of deflection, v (y direction) with (a) one mode 

(b) two modes (c) three modes (d) four modes (e) five modes. Note that the 

unit for x axis is time, t (s) and y axis is the dynamic response, m. 
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(a) One mode                                            (b)    Two modes 

 

 

 

 

 

 

 

 

 

              (c)    Three modes                                         (d)    Four modes 

 

 

 

 

 

 

 

 

 

 

(e) Five modes 

 

Figure 5.2: Dynamic response of deflection, w (z direction) with (a) one mode 

(b) two modes (c) three modes (d) four modes (e) five modes. Note that the unit 

for x axis is time, t (s) and y axis is the dynamic response, m. 
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    Further numerical simulation work is done on the model established to 

observe the effect of these main cutting parameters which are (i) the depth of cut 

- the thickness of the metal removed from the work piece, (ii) the cutting speed – 

the tangential velocity of the surface of work piece, and (iii) the rotational speed 

– the number of complete rotations or revolutions per time unit. Rotational 

speed is a cyclic frequency measured in hertz (rotations per second). These three 

parameters have been computed in dynamic model to investigate its influence on 

dynamic response and regenerative chatter. The numerical results of the 

dynamic response under these cutting parameters are shown in Figures 5.3 to 

5.23. The effect of axial force, Px (equation 3.31) is negligible and hence it is 

ignored during simulation of the dynamic model. The deflection, w in the z 

direction has a very similar pattern for different depth of cut, cutting speed and 

rotational speed with one mode and two modes only since there is no 

consideration of deflection, w in the instantaneous depth of cut formula, h 

(equation 3.27). More modes bring in some local features and the pattern of 

dynamic response is also different. Adding more modes does not change w as 

much as v. 

 

 

5.2.1.2 Effect of Depth of Cut 

 

Figure 5.3 illustrates the dynamic responses of deflection, v in y 

direction for three different values of depth of cut which is 0.25 mm, 1.50 mm 

and 3.00 mm. Besides, the cutting speed, the rotational speed and the feed rate 

used are constant in which the cutting speed is 0.2228 m/s, the rotational speed 

is 1250 rev/min and the feed rate is 0.3 mm/rev. The graph shows that an 

increase in depth of cut increases the amplitudes and frequency of oscillation. 

The 3.00 mm depth of cut is prominent, as on top of nearly static deflection, 

high frequency oscillations begin to appear at the same time. Moreover, the 

magnitude shows almost double than 1.50 mm depth of cut. Figures 5.3 (b) 

indicates that the presence of chatter occurred at the beginning of pinned 

support. The deflection is not symmetrical due to the clamped pinned boundary 

condition as the fixed end is much stiffer than the other end. 

http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Rotations_per_minute
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   (a) hc = 0.25 mm                                    (b) hc = 1.50 mm      

 

 

 

 

 

 

 

 

 

 

(c) hc = 3.00 mm 

 

Figure 5.3: Dynamic response of deflection, v at different depths of cut with one 

mode (cutting speed = 0.2228 m/s, the rotational speed = 1250 rev/min and the 

feed rate = 0.3 mm/rev) 
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   (a) hc = 0.25 mm                                    (b) hc = 1.50 mm      

 

 

 

 

 

 

 

 

 

 

(c) hc = 3.00 mm 

 

Figure 5.4: Dynamic response of deflection, w at different depths of cut with one 

mode (cutting speed = 0.2228 m/s, the rotational speed = 1250 rev/min and the 

feed rate = 0.3 mm/rev) 
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By using the same parameters in Figure 5.3, the dynamic responses of 

deflection, v using two modes are shown in Figure 5.5. Apparently, higher 

frequency components seem to have appeared in comparison with one mode. 

The high amplitude of oscillation is increased with the increase of number of 

modes. 

 

 

 

 

 

 

 

 

 

 

 

(a) hc = 0.25 mm                                              (b) hc = 1.50 mm 

 

 

 

 

 

 

 

 

 

 

(c) hc = 3.00 mm 

 

Figure 5.5: Dynamic response of deflection, v at different depths of cut with two 

modes (cutting speed = 0.2228 m/s, the rotational speed = 1250 rev/min and the 

feed rate = 0.3 mm/rev) 
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                  (a) hc = 0.25 mm                                             (b) hc = 1.50 mm 

 

  

 

 

 

 

 

 

 

 

                                                        (c) hc = 3.00 mm 

 

Figure 5.6: Dynamic response of deflection, w at different depths of cut with 

two modes (cutting speed = 0.2228 m/s, the rotational speed = 1250 rev/min and 

the feed rate = 0.3 mm/rev) 

 

 

Furthermore, the dynamic response, v obtained using three modes has a similar 

pattern as depicted in Figure 5.8. Figure 5.8 (a), 5.8 (b) and 5.8 (c) generate a 

same pattern but difference in amplitude due to a higher depth of cut used. 

Figure 5.8 (c) appeared to have higher amplitude than Figure 5.8 (a) and 5.8 (b) 

since the biggest depth of cut is used. Notice that in the whole Figure 5.8, at half 

through time, t the response in Figure 5.8 (c) begins to illustrate a beating 
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phenomenon. Beating phenomenon is when two harmonic motions, with 

frequencies and amplitudes close to one another, are added, and then resulting 

motion exhibits a phenomenon known as beats. It is different from chatter which 

chatter is a harmonic imbalance that occurs between the tool and the work piece 

because they are bouncing against each other. Chatter can easily be recognized 

by the noise associated with self-excited vibrations. It also can be seen from the 

appearance of the chips according to Tlusty (2000). The phenomenon of beating 

is often observed in machines, structures and electric houses. For example in 

machine and structures, the beating phenomenon occurs when the forcing 

frequency is close to the natural frequency of the system (Rao, 1995). The 

examples of two harmonic motions are represented as below; 

 

𝑥1 𝑡 =  𝑋 cos 𝜔𝑡                                          (5.1)                                         

 

𝑥2 𝑡 =  𝑋 cos   𝜔 + 𝛿 𝑡                                          (5.2)          

 

where δ is a small quantity and the addition of these motions yields 

 

𝑥(𝑡) =  𝑥1 𝑡 + 𝑥2 𝑡 =  𝑋 [ cos 𝜔𝑡  +  cos  (𝜔 + 𝛿)𝑡 ]           (5.3) 

 

Using the relation 

 

cos 𝐴 + cos 𝐵 = 2 cos   
𝐴+𝐵

2
 cos   

𝐴−𝐵

2
                   (5.4) 

 

and equation 5.3 can be rewritten as  

 

𝑥 𝑡 = 2𝑋 cos
𝛿𝑡

2
cos  𝜔 +  

𝛿

2
 𝑡 

 

This equation is shown graphically in Figure 5.7. 
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Figure 5.7: Phenomenon of beats (Rao, 1995) 

 

 

 

 

 

 

 

 

 

 

               (a) hc = 0.25 mm                                             (b) hc = 1.50 mm 

 

 

 

 

 

 

 

 

 

 

                                                           (c) hc = 3.00 mm 

 

Figure 5.8: Dynamic response of deflection, v at different depths of cut with 

three modes (cutting speed = 0.2228 m/s, the rotational speed = 1250 rev/min 

and the feed rate = 0.3 mm/rev) 
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                     (a) hc = 0.25 mm                                             (b) hc = 1.50 mm 

 

 

 

 

 

 

 

 

 

 

 

                                                         (c) hc = 3.00 mm 

 

Figure 5.9: Dynamic response of deflection, w at different depths of cut with 

three modes (cutting speed = 0.2228 m/s, the rotational speed = 1250 rev/min 

and the feed rate = 0.3 mm/rev) 
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A slightly different pattern is produced when four modes are used. 

Again, Figure 5.10 (a), 5.10 (b) and 5.10 (c) generate a same pattern but 

difference in amplitude due to a higher depth of cut is used. Figure 5.10 (c) 

appeared to have higher amplitude than Figure 5.10 (a) and 5.10 (b). At half way 

through the time, t the mode shape in Figure 5.10 (c) begins to illustrate a 

beating phenomenon. 

 

 

 

 

 

 

 

 

 

 

 

                     (a) hc = 0.25 mm                                             (b) hc = 1.50 mm 

 

 

 

 

 

 

 

 

 

 

 

                                                         (c) hc = 3.00 mm 

 

Figure 5.10: Dynamic response of deflection, v at different depths of cut with 

four modes (cutting speed = 0.2228 m/s, the rotational speed = 1250 rev/min and 

the feed rate = 0.3 mm/rev) 
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                     (a) hc = 0.25 mm                                             (b) hc = 1.50 mm 

 

 

 

 

 

 

 

 

 

 

 

                                                         (c) hc = 3.00 mm 

 

Figure 5.11: Dynamic response of deflection, w at different depths of cut with 

four modes (cutting speed = 0.2228 m/s, the rotational speed = 1250 rev/min and 

the feed rate = 0.3 mm/rev) 
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5.2.2 Effect of Cutting Speed 

 

The next cutting parameter simulated in the dynamic model is the cutting 

speed. Figure 5.12 and Figure 5.13 show the dynamic response, v at two 

different cutting speeds in order to demonstrate its effect with one mode. The 

other cutting parameters are set to be constant which are the depth of cut of 3.00 

mm, the rotational speed of 1250 rev/min and the feed rate of 0.3 mm/rev. From 

Figure 5.12 (b), high frequency oscillation appeared on top of the nearly static 

deflection and the mode illustrates a beating phenomenon. By comparing Figure 

5.12 (a) and 5.12 (b), it can be seen that higher-frequency oscillation has bigger 

amplitude at a higher cutting speed. The finding is consistent with a conclusion 

by Tobias and Fishwick (1958) that a lower cutting speed would suppress 

chatter and therefore produce a better surface finish.  

 

 

 

 

 

 

 

 

 

 

 

 

          (a) cutting speed = 0.2228 m/s                      (b) cutting speed = 1.4353 m/s 

 

Figure 5.12: Dynamic response of deflection, v at different cutting speeds with 

one mode (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and the feed 

rate = 0.3 mm/rev) 
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          (a) cutting speed = 0.2228 m/s                      (b) cutting speed = 1.4353 m/s 

 

Figure 5.13: Dynamic response of deflection, w at different cutting speeds with 

one mode (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and the feed 

rate = 0.3 mm/rev) 

 

 

The same cutting conditions are simulated with two modes and the 

results are shown in Figure 5.14 and Figure 5.15. Higher amplitude vibration 

becomes more pronounced with more modes. The deflection is skewed to the 

weaker support, which is the tailstock. The beating phenomenon is even greater 

at a higher cutting speed which is 1.4353 m/s.  The results obtained with three 

and four modes are similar with two modes as illustrated in Figure 5.16 and 

Figure 5.17.    
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          (a) cutting speed = 0.2228 m/s                      (b) cutting speed = 1.4353 m/s 

 

Figure 5.14: Dynamic response of deflection, v at different cutting speeds with 

two modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and the 

feed rate = 0.3 mm/rev) 

 

 

 

 

 

 

 

 

 

 

 

 

          (a) cutting speed = 0.2228 m/s                      (b) cutting speed = 1.4353 m/s 

 

Figure 5.15: Dynamic response of deflection, w at different cutting speeds with 

two modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and the 

feed rate = 0.3 mm/rev) 
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          (a) cutting speed = 0.2228 m/s                      (b) cutting speed = 1.4353 m/s 

 

Figure 5.16: Dynamic response of deflection, v at different cutting speeds with 

three modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and the 

feed rate = 0.3 mm/rev) 

 

 

 

 

 

 

 

 

 

 

 

 

          (a) cutting speed = 0.2228 m/s                      (b) cutting speed = 1.4353 m/s 

 

Figure 5.17: Dynamic response of deflection, w at different cutting speeds with 

three modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and the 

feed rate = 0.3 mm/rev) 
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A slightly different pattern is produced when four modes (Figure 5.18 

and Figure 5.19) are used but the difference in amplitude is due to a high 

number of modes included in the simulation. Figure 5.18 (b) appeared to have 

higher amplitude with beating phenomenon than Figure 5.18 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

          (a) cutting speed = 0.2228 m/s                      (b) cutting speed = 1.4353 m/s 

 

Figure 5.18: Dynamic response of deflection, v at different cutting speeds with 

four modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and the 

feed rate = 0.3 mm/rev) 
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          (a) cutting speed = 0.2228 m/s                      (b) cutting speed = 1.4353 m/s 

 

Figure 5.19: Dynamic response of deflection, w at different cutting speeds with 

four modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and the 

feed rate = 0.3 mm/rev) 

 

 

5.2.3 Effect of Rotational Speed 

 

The last cutting parameter simulated in the dynamic model is the 

rotational speed. Figure 5.20 to Figure 5.25 illustrates the results of the effects of 

different rotational speeds on dynamic response, v and w, at three different 

rotational speeds in order to demonstrate its effect with one mode, two modes, 

three modes and four modes. Again, the other cutting parameters are set to be 

constant which are the depth of cut is 3.00 mm, the cutting speed is 0.2228 m/s 

and the feed rate is 3.00 mm. The results of the effects of different rotational 

speeds with one mode are illustrated in Figure 5.20. At lower rotational speed, 

the high oscillation only appears at the beginning of the mode shape. There is 

not much amplitude difference between the first, second and third modes. The 

rotational speed does not seem to have a big effect on the dynamic response 

especially on the amplitude of deflection.  
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     (a) rotational speed = 230 rev/min               (b) rotational speed = 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                            (c) rotational speed = 1250 rev/min 

 

Figure 5.20: Dynamic response of deflection, v at different rotational speeds 

with one mode (depth of cut = 3.00 mm, cutting speed = 0.2228 m/s and the feed 

rate = 0.3 mm/rev) 
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     (a) rotational speed = 230 rev/min               (b) rotational speed = 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                            (c) rotational speed = 1250 rev/min 

 

Figure 5.21: Dynamic response of deflection, w at different rotational speeds 

with one mode (depth of cut = 3 mm, cutting speed = 0.2228 m/s and the feed 

rate = 0.3 mm/rev) 

 

 

There are some differences in oscillation particularly in mode two. When 

two modes are used as shown in Figure 5.22, a higher rotational speed is seen to 

excite slightly greater high-frequency components. Therefore, increasing the 

rotational speed moderately promotes the occurrence of chatter. 
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     (a) rotational speed = 230 rev/min               (b) rotational speed = 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                            (c) rotational speed = 1250 rev/min 

 

Figure 5.22: Dynamic response of deflection, v at different rotational speeds 

with two modes (depth of cut = 3.00 mm, cutting speed = 0.2228 m/s and the 

feed rate = 0.3 mm/rev 
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     (a) rotational speed = 230 rev/min               (b) rotational speed = 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                            (c) rotational speed = 1250 rev/min 

 

Figure 5.23: Dynamic response of deflection, w at different rotational speeds 

with two modes (depth of cut = 3.00 mm, cutting speed = 0.2228 m/s and the 

feed rate = 0.3 mm/rev) 
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5.3 Elastic Boundary  

 

5.3.1 Introduction 

 

Initially, the assumed boundary conditions were a clamped and pinned to 

represent a chuck and a tailstock supports on lathe. Unfortunately, the dynamic 

responses, v and w illustrate a small magnitude of deflection which is not 

realistic to the actual lathe support (shown earlier in section 5.2). Thus, more 

suitable boundary conditions which replicate the actual lathe support should be 

adopted to ensure the accuracy of the dynamic response. This new boundary 

conditions employed are known as an elastic boundary condition since a chuck 

is more suitable to be represented by rotational spring and a tailstock as a linear 

spring. 

 

 

5.3.2 Convergence test 

 

The convergence test has also been performed for the elastic boundary 

condition to monitor the occurrence of chatter (up to five modes) and to 

determine the appropriate number of modes included in the simulation. The 

properties of the shaft (cylindrical metal work piece) used in this convergence 

test are length, l = 0.55 m, radius r = 18.5 mm, Young‟s Modulus E = 2.07 x 

10
11

 Pa, and density, 𝝆 = 7817.4 kg/m
3
 while the cutting parameters used are 

2.228 m/s for cutting speed, 1250 rev/min for rotational speed and 0.3 mm/rev 

for feed rate. By considering an elastic boundary, its normalized modes are 

 

𝜑𝑛 𝑥 = 𝐶1 cos(𝛽𝑛𝑥) +  𝐶2 sin(𝛽𝑛𝑥) + 𝐶3 cosh(𝛽𝑛𝑥) + 𝐶4 sinh(𝛽𝑛𝑥)   (5.1) 

 

where 𝛽𝑛  = [5.777 6.657 13.145 13.685] and 𝜔𝑛 = (𝜆𝑛)2 𝐸𝐼/𝜌𝐴 / 2𝜋𝑙2 (n = 1, 

2, 3...) is the natural frequency of the stationary shaft. 
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The dynamic responses of deflection, v in y direction and w in the z 

direction are shown in Figure 5.24 and Figure 5.25 respectively. It was found 

that as the higher modes are included in the simulation, higher oscillation 

(chatter) starts to appear on top of the deflection (dynamic response) curve in 

both v (y) and w (z) direction as depicted in Figure 5.24 (c) and Figure 5.25 (c). 

The amplitude of the deflection increased with the increase number of mode 

used. 

 

 It is also noticed that four modes are adequate for numerical simulation 

since it will excite high frequency oscillation. Sometimes, it is not essential to 

include more than four modes because it will increase the computational 

workloads and also lengthen the iteration process. However, the more modes 

considered, the more accurate the results 
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(b) One mode                                                 (b)  Two modes 

 

 

 

 

 

 

 

 

 

(d) Three modes                                           (d)  Four modes 

 

 

 

 

 

 

 

 

 

(e) Five modes 

Figure 5.24: Dynamic response of deflection, v (y direction) with (a) one mode 

(b) two modes (c) three modes (d) four modes (e) five modes. Note that the unit 

for x axis is time, t (s) and y axis is the dynamic response, m. 
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(c) One mode                                                 (b)  Two modes 

 

 

 

 

 

 

 

 

 

(e) Three modes                                           (d)  Four modes 

 

 

 

 

 

 

 

 

 

(e) Five modes 

Figure 5.25: Dynamic response of deflection, w (z direction) with (a) one mode 

(b) two modes (c) three modes (d) four modes (e) five modes. Note that the unit 

for x axis is time, t (s) and y axis is the dynamic response, m. 
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5.3.3 Effect of Depth of Cut 

 

Figure 5.26 illustrates the dynamic responses of deflection, v in y 

direction for three different values of depth of cut which is 0.25 mm, 1.50 mm 

and 3.00 mm. Besides, the cutting speed, the rotational speed and the feed rate 

are constant in which the cutting speed is 2.228 m/s, the rotational speed is 1250 

rev/min and the feed rate is 0.3 mm/rev. In elastic boundary conditions, the 

cutting speed used is slightly higher as compared with a clamped pinned 

boundary. This is done purposely to avoid any intensive computational works 

which somehow prolong and complicate the production of results. From the 

graph, it shows that an increase in depth of cut will increase the amplitudes and 

frequency of oscillation. The 3.00 mm depth of cut is prominent, as the 

magnitude of the oscillation becomes bigger. Figures 5.26 (c) and Figure 5.27 

(c) indicate that the amplitude of oscillation is the highest among the three 

values of depth of cut.  
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                 (a) hc = 0.25 mm                                               (b) hc = 1.50 mm     

 

 

 

 

 

 

 

 

 

 

 

                                                           (c) hc = 3.00 mm 

 

Figure 5.26: Dynamic response of deflection, v at different depths of cut with 

one mode (1250 rev/min, cutting speed = 2.228 m/s and feed rate is 0.3 mm/rev) 
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                 (a) hc = 0.25 mm                                               (b) hc = 1.50 mm     

 

 

 

 

 

 

 

 

 

 

 

                                                           (c) hc = 3.00 mm 

 

Figure 5.27: Dynamic response of deflection, w at different depths of cut with 

one mode (1250 rev/min, cutting speed = 2.228m/s and feed rate is 0.3 mm/rev) 
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By using the same parameters in Figure 5.26, the dynamic responses of 

deflection, v using two modes are shown in Figure 5.28. Apparently, a different 

shape of deflection curve was observed and higher frequency components seem 

to have appeared in comparison with one mode. The high amplitude of 

oscillation is increased with the increase of number of modes.  

 

 

 

 

 

 

 

 

 

 

 

 

                 (a) hc = 0.25 mm                                               (b) hc = 1.50 mm     

 

 

 

 

 

 

 

 

 

 

 

                                                           (c) hc = 3.00 mm 

 

Figure 5.28: Dynamic response of deflection, v at different depths of cut with 

two modes (1250 rev/min, cutting speed = 2.228 m/s and feed rate is 0.3 

mm/rev) 
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                 (a) hc = 0.25 mm                                               (b) hc = 1.50 mm     

 

 

 

 

 

 

 

 

 

 

 

                                                           (c) hc = 3.00 mm 

 

Figure 5.29: Dynamic response of deflection, w at different depths of cut with 

two modes (1250 rev/min, cutting speed = 2.228 m/s and feed rate is 0.3 

mm/rev) 

 

 

Furthermore, the dynamic response, v obtained using three modes and 

four modes have a similar pattern as depicted in Figure 5.30 to Figure 5.33. All 

of them generate the same pattern but slightly different in amplitude. For 
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example, Figure 5.30 (c) appeared to have higher amplitude than Figure 5.30 (a) 

and 5.30 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

                 (a) hc = 0.25 mm                                               (b) hc = 1.50 mm     

 

 

 

 

 

 

 

 

 

 

 

                                                           (c) hc = 3.00 mm 

 

Figure 5.30: Dynamic response of deflection, v at different depths of cut with 

three modes (1250 rev/min, cutting speed = 2.228 m/s and feed rate is 0.3 

mm/rev) 
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                 (a) hc = 0.25 mm                                               (b) hc = 1.50 mm     

 

 

 

 

 

 

 

 

 

 

 

                                                           (c) hc = 3.00 mm 

 

Figure 5.31: Dynamic response of deflection, w at different depths of cut with 

three modes (1250 rev/min, cutting speed = 2.228 m/s and feed rate is 0.3 

mm/rev) 
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                 (a) hc = 0.25 mm                                               (b) hc = 1.50 mm     

 

 

 

 

 

 

 

 

 

 

 

                                                           (c) hc = 3.00 mm 

 

Figure 5.32: Dynamic response of deflection, v at different depths of cut with 

four modes (1250 rev/min, cutting speed = 2.228 m/s and feed rate is 0.3 

mm/rev) 
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                 (a) hc = 0.25 mm                                               (b) hc = 1.50 mm     

 

 

 

 

 

 

 

 

 

 

 

                                                           (c) hc = 3.00 mm 

 

Figure 5.33: Dynamic response of deflection, w at different depths of cut with 

four modes (1250 rev/min, cutting speed = 2.228 m/s and feed rate is 0.3 

mm/rev) 
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5.3.4 Effect of Cutting Speed 

 

The next cutting parameter investigated is cutting speed. Figure 5.34 

shows the dynamic response, v at two different cutting speeds for one mode. The 

other cutting parameters are set to be constant which are the depth of cut is 3.00 

mm, the rotational speed is 1250 rev/min and the feed rate is 0.3 mm/rev. By 

comparing Figure 5.34 (a) and 5.34 (b), it can be seen that higher-frequency 

oscillation has bigger amplitude at higher cutting speed. 

 

 

 

 

 

 

 

 

 

 

 

 

          (a) cutting speed = 1.4353 m/s                        (b) cutting speed = 2.228 m/s     

 

Figure 5.34: Dynamic response of deflection, v at different cutting speed with 

one mode (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and feed 

rate is 0.3 mm/rev) 
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          (a) cutting speed = 1.4353 m/s                        (b) cutting speed = 2.228 m/s     

 

Figure 5.35: Dynamic response of deflection, w at different cutting speed with 

one mode (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and feed 

rate is 0.3 mm/rev) 

 

 

The same cutting conditions are simulated with two modes and the 

results are shown in Figure 5.36 and 5.37. The mode shapes have changed when 

a higher number of modes are used. Similar pattern and amplitude of vibration 

were produced for different cutting speeds. Higher amplitude vibration becomes 

more pronounced with more modes. The deflection is skewed to the weaker 

support, which is the tailstock. The beating phenomenon is even greater at a 

higher cutting speed which is 1.4353 m/s. The results obtained with three and 

four modes are similar with two modes as illustrated in Figure 5.38, 5.39, 5.40 

and 5.41. 
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          (a) cutting speed = 1.4353 m/s                        (b) cutting speed = 2.228 m/s     

 

Figure 5.36: Dynamic response of deflection, v at different cutting speed with 

two modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and feed 

rate is 0.3 mm/rev) 

 

 

 

 

 

 

 

 

 

 

 

 

          (a) cutting speed = 1.4353 m/s                        (b) cutting speed = 2.228 m/s     

 

Figure 5.37: Dynamic response of deflection, w at different cutting speed with 

two modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and feed 

rate is 0.3 mm/rev) 
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          (a) cutting speed = 1.4353 m/s                        (b) cutting speed = 2.228 m/s     

 

Figure 5.38: Dynamic response of deflection, v at different cutting speed with 

three modes (depth of cut = 3.00 mm and rotational speed = 1250 rev/min and 

feed rate is 0.3 mm/rev) 

 

 

 

 

 

 

 

 

 

 

 

 

          (a) cutting speed = 1.4353 m/s                        (b) cutting speed = 2.228 m/s     

 

Figure 5.39: Dynamic response of deflection, w at different cutting speed with 

three modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and feed 

rate is 0.3 mm/rev) 
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          (a) cutting speed = 1.4353 m/s                        (b) cutting speed = 2.228 m/s     

 

Figure 5.40: Dynamic response of deflection, v at different cutting speed with 

four modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and feed 

rate is 0.3 mm/rev) 

 

 

 

 

 

 

 

 

 

 

 

 

          (a) cutting speed = 1.4353 m/s                        (b) cutting speed = 2.228 m/s     

 

Figure 5.41: Dynamic response of deflection, w at different cutting speed with 

four modes (depth of cut = 3.00 mm, rotational speed = 1250 rev/min and feed 

rate is 0.3 mm/rev) 
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5.3.4 Effect of Rotational Speed 

 

The final cutting parameter examined is rotational speed. The results of 

the dynamic response, v at different rotational speeds are illustrated in Figure 

5.42. In the simulation works, the other cutting parameters are set to be constant 

which are the depth of cut is 3.00 mm, the cutting speed is 2.228 m/s and the 

feed rate is 0.3 mm/rev. It is observed that there is not much amplitude 

difference between the first, second and third modes. A similar pattern is also 

produced for all rotational speed. The rotational speed does not seem to have a 

big effect on the dynamic response especially on the amplitude of vibration.  

 

 

 

 

 

 

 

 

 

 

                    (a) 230 rev/min                                               (b) 480 rev/min     

 

 

 

 

 

 

 

 

 

                                                     (c) 1250 rev/min 

 

Figure 5.42: Dynamic response of deflection, v at different rotational speed with 

one mode (depth of cut = 3.00 mm, cutting speed = 2.228 m/s and feed rate = 

0.3 mm/rev) 
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                     (a) 230 rev/min                                             (b) 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                                        (c) 1250 rev/min 

 

Figure 5.43: Dynamic response of deflection, w at different rotational speed with 

one mode (depth of cut = 3.00 mm, cutting speed = 2.228 m/s and feed rate = 

0.3 mm/rev) 

 

 

A different deflection curve has been produced when a higher number of 

modes are used. Figures 5.44 to 5.49 illustrate the deflection, v at depth of cut, 

3.00 mm with two, three and four modes and these graphs demonstrate the effect 

of including more modes. There are some differences in amplitude of vibration 
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particularly in mode three and four. When three modes are used as shown in 

Figure 5.46, a higher number of modes used is seen to excite slightly greater 

amplitude of vibration. Therefore, increasing the number of modes moderately 

promotes the occurrence of chatter. The deflection, w obtained with three and 

four modes are shown in Figure 5.49 and 5.51 for comparison. Adding more 

modes does not change w as much as v. 

 

 

 

 

 

 

 

 

 

 

 

                     (a) 230 rev/min                                             (b) 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                                        (c) 1250 rev/min 

 

Figure 5.44: Dynamic response of deflection, v at different rotational speed with 

two modes (depth of cut = 3.00 mm, cutting speed = 2.228 m/s and feed rate = 

0.3 mm/rev) 
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                     (a) 230 rev/min                                             (b) 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                                        (c) 1250 rev/min 

 

Figure 5.45: Dynamic response of deflection, w at different rotational speed with 

two modes (depth of cut = 3.00 mm, cutting speed = 2.228 m/s and feed rate = 

0.3 mm/rev) 
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                     (a) 230 rev/min                                             (b) 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                                        (c) 1250 rev/min 

 

Figure 5.46: Dynamic response of deflection, v at different rotational speed with 

three modes (depth of cut = 3.00 mm, cutting speed = 2.228 m/s and feed rate = 

0.3 mm/rev) 
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                     (a) 230 rev/min                                             (b) 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                                        (c) 1250 rev/min 

 

Figure 5.47: Dynamic response of deflection, w at different rotational speed with 

three modes (depth of cut = 3.00 mm, cutting speed = 2.228 m/s and feed rate = 

0.3 mm/rev) 
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                     (a) 230 rev/min                                             (b) 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                                        (c) 1250 rev/min 

 

Figure 5.48: Dynamic response of deflection, v at different rotational speed with 

four modes (depth of cut = 3.00 mm, cutting speed = 2.228 m/s and feed rate = 

0.3 mm/rev) 
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                     (a) 230 rev/min                                             (b) 480 rev/min     

 

 

 

 

 

 

 

 

 

 

 

                                                        (c) 1250 rev/min 

 

Figure 5.49: Dynamic response of deflection, w at different rotational speed with 

four modes (depth of cut = 3.00 mm, cutting speed = 2.228 m/s and feed rate = 

0.3 mm/rev) 
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5.2.3 Clamped Pinned (Composite work piece) 

 

A simulation work has also been done for clamped pinned boundary 

condition on composite work piece. It is done as a preliminary study to 

investigate several cutting parameters such as cutting, depth of cut, rotational 

speed and the feed rate on turned composite. The geometric and material 

properties of the work piece are length, l = 0.5 m, radius r = 19 mm, Young‟s 

Modulus E = 36.75 x 10
9
 Pa, and density, 𝝆 = 882 kg/m

3
 while the cutting 

parameters used are 0.2228 m/s for cutting speed, 0.25 mm for the depth of cut, 

1250 rev/min for rotational speed and 0.3 mm/rev for the feed rate. The 

numerical results of the dynamic response of deflection, v and w in both y and z 

direction under these cutting parameters are shown in Figures 5.50 and 5.51 

below.  

 

It can be seen that a similar deflection curve pattern is formed. At 

smaller depth of cut (0.25 mm), low frequency oscillations begin to appear thus 

indication of chatter presence. Similar to the metal work piece, the simulated 

deflection is not symmetrical due to the clamped pinned boundary condition. If a 

different depth of cut is being used for example a bigger depth of cut (3.00 mm), 

the result obtained will be the same as with metal work piece simulated earlier 

where higher frequency oscillations will be generated on top of the static 

deflection. Notice that the amplitude of the dynamic response, v and w for both 

of the depth of cuts (0.25mm and 3.0mm) is slightly bigger than metal work 

piece. This is true because of the nature of composite material itself is 

inhomogeneous.   
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Figure 5.50: Dynamic response of deflection, v at one mode (depth of cut = 0.25 

mm, cutting speed = 0.2228 m/s, rotational speed = 1250 rev/min and feed 

rate = 0.3 mm/rev) 

 

 

 

Figure 5.51: Dynamic response of deflection, w at one mode (depth of cut = 0.25 

mm, cutting speed = 0.2228 m/s, rotational speed = 1250 rev/min and feed rate = 

0.3 mm/rev) 
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Figure 5.52: Dynamic response of deflection, v at one mode (depth of cut = 3.0 

mm, cutting speed = 0.2228 m/s, rotational speed = 1250 rev/min and feed 

rate = 0.3 mm/rev) 

 

 

 

Figure 5.53: Dynamic response of deflection, w at one mode (depth of cut = 3.0 

mm, cutting speed = 0.2228 m/s, rotational speed = 1250 rev/min and feed 

rate = 0.3 mm/rev) 
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5.3 Vibration Test During Turning Operation 

 

As mentioned earlier in Chapter 4, due to the limitation of the equipment 

in performing vibration testing during turning operation at the University of 

Liverpool, the results from the other collaborator group from Dalian University 

of Technology (DUT) in China are employed to validate the dynamic model 

established. 

 

The cutting parameters used during the turning operation are shown in 

Table 5.1. The rotating speed, feed rate and depth of cut are carefully chosen in 

different values consistent with the previous numerical simulations under 

different cutting conditions. The geometric and material properties of the work- 

piece are length, l = 0.5 m, Young‟s Modulus, E = 2.07 x 10
11

 Pa, and material 

density, 𝝆 =7850 kg/m
3
. 

 

Table 5.1: Cutting parameters and work piece characteristics used during turning 

operation (Han et al, 2012) 

 

Experiment 

Rotational 

speed 

(rev/min) 

Depth of cut, 

ap (mm) 

Feed rate, 

f (mm/rev) 

Diameter, 

D (mm) 

1 1250 1.5 0.3 36.5 

2 1000 3.0 0.2 35.0 

 

 

Figure 5.54 shows the photograph of the machined cylindrical metal work piece 

for experiment 1. The dynamic responses of the shaft (cylindrical metal work 

piece) in y and z directions are measured at the position being machined during 

the turning process as depicted in Figure 5.55.  
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Figure 5.54:  The being machined work piece of experiment 1 (Han et al, 2012) 

 

 

 

Figure 5.55: Deflections in time domain of experiment 1 (Han et al, 2012) 
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A higher depth of cut and a smaller feed rate are used in experiment 2 to 

observe the effect of varying the cutting parameters. The machined cylindrical 

metal work piece is shown in Figure 5.56, in which the phenomena of chatter 

can be clearly seen in the middle of the cylindrical metal work piece (marked as 

a dotted white line). Chatter is large amplitude irregular vibration, happening 

during machining shown in the large dynamic response. Moreover, higher 

oscillation appears in the dynamic response of the time domain as illustrated in 

Figure 5.57.  

 

 

  
 

Figure 5.56: The being machined work piece of experiment 2 shown chatter 

occurrence (Han et al, 2012). 
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Figure 5.57:  Deflections in time domain of experiment 2 (Han et al, 2012). 

 

 

In comparison of the dynamic responses, v and w of the work piece, it 

can be seen that the deformation patterns are fairly similar between the 

experiment and the developed model. However, the measured deflections are 

greater than the developed model. It is believed that the dynamic model 

developed is stiffer. Examining all the numerical results, it may be concluded 

that the predicted and measured patterns of time histories of work piece 

vibration agree fairly well but the magnitudes are not so close to each other, in 

particular when the large vibration (chatter) is excited during experiments. 

Further improvement to the model is likely to come from a more accurate 

representation of the chuck and tail stock boundaries. 
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5.6 Chapter Summary 

 

This chapter presents numerical simulation work of vibration of a metal 

work piece being turned. The work piece is modeled as a rotating Rayleigh 

beam and the cutting forces as three directional moving loads with regenerative 

chatter mechanism. The moving cutting forces with regenerative chatter 

introduce time delay in the dynamic model. The effects of depth of cut, cutting 

speed and rotational speed of the cutter on vibration and chatter occurrence are 

examined. The effect of using several numbers of modes is also investigated. 

 

The results for all three cutting parameters simulated when an elastic 

boundary is considered generate a slightly different oscillation compared with 

clamped pinned boundary assumed earlier. The oscillations are much higher 

when elastic boundary is considered. The results are in line with the actual work 

piece where the chuck and tailstock also deform. The amplitude of vibration as 

well increases when the number of modes used in the simulation increases. 

Similar to clamped pinned boundary, four modes are sufficient and hence used 

during the numerical simulation. It is necessary to include higher modes as it 

will cover high frequency oscillation. The more modes considered, the more 

accurate the results; but at certain points it is not necessary to include more than 

four modes.  

 

For both clamp pinned and elastic boundary conditions, an increase in 

depth of cut will increase the amplitudes and frequency of oscillation. The 

response at 3.00 mm depth of cut is significant as the magnitude of the 

oscillation becomes bigger. Most of the high amplitude of oscillation increases 

with the increase of number of modes. Moreover, higher cutting speed will 

generate a higher frequency oscillation hence bigger amplitude is obtained. On 

the other hand, for the effect of different rotational speed, it can be concluded 

that there is not much amplitude difference between the first, second and third 

modes. There are some differences in amplitude of vibration particularly in 

modes three and four. Therefore, increasing the number of modes moderately 

promotes the occurrence of greater response in simulation.  
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From the experiment done by the collaborating group in China, it can be 

seen that the deformation patterns are fairly similar between both the experiment 

and the developed model. However, the measured deflections are smaller than 

the developed dynamic model. It is believed that the theoretical model with 

clamped pinned boundary is much stiffer since the chuck is represented by a 

clamped boundary and the tail stock support is represented by a pinned 

boundary. In contrast, from the results gained when an elastic boundary is 

considered, the simulated deflection magnitude is bigger than the measured 

deflection during experiment. It can be concluded that the predicted and 

measured patterns of time histories of work piece vibration agree fairly well 

when an elastic boundary conditions are considered in the simulation works of 

the developed dynamic model. 

 

In conclusion a dynamic model for a rotating Rayleigh beam subjected to 

a three directional moving cutting forces with regenerative chatter effect is 

successfully established. 
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Chapter 6 

 

Analysis and Discussion 

 

6.1 Parametric Studies 

 

6.1.1 Clamped Pinned (Metal work piece) 

 

The first simulation work done is to monitor the occurrence of chatter 

(up to five modes) and to determine the appropriate number of modes used in 

the simulation. Initially the boundary condition used was a clamp-pinned 

boundary as the work piece is held in chuck at one end and the other end was 

pinned down by a tailstock. This is also the boundary condition considered in 

papers on vibration in turning operation by other researchers. From the results 

shown earlier (Figure 5.1 (d) and Figure 5.2 (d)), when higher modes are used in 

the simulation, higher oscillation (chatter) starts to appear on top of the 

deflection (dynamic response) curve in both v (y) and w (z) directions. It is 

necessary to simulate higher modes as they will cover high frequency oscillation 

and the dynamic responses settle at four modes. 

 

It is also observed that four modes are satisfactory to be used in the 

parametric studies since high frequency oscillation is present on the top of the 

deflection curve showing chatter occurrence. Furthermore, it also demonstrates 
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the effectiveness of the dynamic model developed in detecting chatter. It is 

necessary to include higher modes in the simulation as the more modes 

considered, the more accurate the results. However, at certain points more than 

four modes are not necessary as one of the aims of the numerical simulation is to 

define the appropriate number of modes and four modes are defined to be a 

starting point where the mode shape start to converge indicative of a stable 

system. Furthermore, more than four modes will produce similar results but if 

more than four modes are used, it will have more computational workloads. In 

addition, the deflection curve produced also shows the dynamic model 

developed works successfully at the initial stage since it truly represents the 

behaviour of the work piece during turning operation in which the deflection is 

generated as predicted. 

 

The developed dynamic model is also simulated to investigate the effects 

of three main cutting parameters; the depth of cut, the cutting speed and the 

rotational speed on the chatter occurrence. 

 

 

6.1.1.1 Effect of Depth of Cut 

 

From the results illustrated earlier (Figure 5.3), it is noticed that the increase of 

depth of cut used during simulation results in the increase of amplitudes and 

frequency of oscillation. This condition is in fact reflecting the actual turning 

process where an increase of depth of cut will increase the chance of the 

occurrence of chatter on turned work piece. The 3.00 mm depth of cut used 

shows two features, a nearly static deflection and high frequency oscillations 

start to appear at the same time. The presence of chatter appears at the beginning 

of pinned support. In addition, the deflection curves produced are not 

symmetrical due to the clamped pinned boundary assumption earlier.  The 

clamped support is much stiffer than the other pinned support. However, when 

the same parameters are used with a slightly higher mode; two, higher vibration 

magnitude appears. This is because higher modes will cover higher frequency 

oscillation during numerical simulation. As the number of modes increases, the 
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higher oscillation develops. A similar pattern is obtained for the dynamic 

response, v using three modes and four modes but with slightly higher vibration 

magnitude. The use of higher modes results in higher amplitude oscillation and a 

beating phenomenon also starts to develop. The beating phenomenon occurs 

when the forcing frequency is close to the natural frequency of the system. This 

phenomenon is often observed in machinery, structures and electric power 

houses. 

 

 

6.1.1.2 Effect of Cutting Speed       

 

The next cutting parameter simulated in the dynamic model is the cutting 

speed in which the effect of two different cutting speeds is examined with one 

mode. Only two values of cutting speeds are simulated because it took more 

than 24 hours to run for each mode shape before the analysis stops for the 

smallest cutting speed (0.0062 m/s). From the results shown (Figure 5.5 (b)), 

high frequency oscillation is observed on top of the nearly static deflection due 

to the use of high cutting speed. Since the depth of cut used is quite high (3.00 

mm), it promotes frequency oscillation to increase for higher cutting speed used. 

If the two graphs from Figure 5.5 (a) and 5.5 (b) are compared, it can be seen 

that higher-frequency oscillation has bigger amplitude at a higher cutting speed. 

A lower cutting speed would suppress chatter as mentioned by Tobias and 

Fishwick (1958) and this is true only if smaller values of depth of cut are used.   

 

           When the same cutting conditions are simulated with two modes (Figure 

5.6), higher amplitude vibration becomes more prominent with more modes. By 

simulating higher modes, higher frequency oscillation is found. Both of the 

dynamic response (v and w) should be in the middle of the work piece, but since 

the work piece has its own inertia, the deflection is skewed to the weaker 

support, which is the tailstock. The beating phenomenon is even greater at a 

higher cutting speed of 1.4353 m/s. It occurs when the excitation frequency is 

close to the natural frequency of the system and the cutting speed influences the 

excitation frequency. The results obtained with three and four modes are similar 
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to two modes since from two modes, it already shows convergence of 

displacement in both directions, y and z. 

 

 

6.1.1.3 Effect of Rotational Speed   

 

The rotational speed does not seem to have a big impact on the dynamic 

response of the shaft. At lower rotational speed, the high oscillation only appears 

at the beginning of the mode shape (Figure 5.20). Small difference of amplitude 

is noticed between the first, second and third mode but slight dissimilarity is 

observed in oscillation particularly in two modes. When higher modes are used 

(two modes), higher rotational speed excites slightly greater high-frequency 

components. It is because dynamic response starts to settle and converges and 

hence increasing the rotational speed moderately promotes the occurrence of 

chatter. 

 

Since there is no consideration of deflection, w in the instantaneous 

depth of cut formula, h, the deflection, w in the z direction has a very similar 

pattern for different depth of cut, cutting speed and rotational speed with one 

mode and two modes only. In addition, the use of higher modes (bigger than 

two) during numerical simulation brought in some local features but the pattern 

of dynamic response remains somewhat similar. It is because the dynamic 

response starts to settle and converges at four modes. In conclusion, for the 

effect of rotational speed at 3.00 mm depth of cut, including more modes does 

not change deflection, w in z direction as much as deflection, v in y direction.  

 

    

6.1.2 Elastic Boundary (Chuck tailstock – Metal work 

piece) 

 

Since there are some problems encountered using the clamped pinned 

boundary condition assumed earlier which led to some discrepancies in metal 

work piece natural frequencies and mode shapes, a suitable boundary should be 
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considered, in this case an elastic boundary condition because in practice both 

supports (chuck and tailstock) are actually flexible. This boundary condition is 

then employed in the developed dynamic model (Chapter 3) and the simulated 

numerical results (Chapter 5).   

 

The convergence test has been performed initially for the elastic 

boundary condition. It is done to monitor the occurrence of chatter (up to five 

modes) and to determine the appropriate number of modes included in the 

simulation. The properties of the shaft (cylindrical metal work piece) used is 

similar to the one that is being used for a clamp pinned boundary. The only 

difference is the cutting parameters used especially for cutting speed where a 

slightly higher value is used (2.228 m/s). A higher value is selected in order to 

avoid longer computational workloads. The classical normalizes modes are used 

for an elastic boundary (shown in Equation 3.61). 

 

From the results shown earlier, it can be seen that as the higher modes are 

included in the simulation, higher oscillation (chatter) starts to appear on top of 

the deflection (dynamic response) curve in both v (y) and w (z) direction. It is 

required to simulate higher modes as this will cover high frequency oscillation. 

The amplitude of the deflection as well increases when the number of modes 

used in the simulation increases. It is also observed that four modes of the shaft 

are adequate. It is necessary to include higher modes as it will stimulate high 

frequency oscillation. The more modes are considered, the more accurate the 

results are but it is also time consuming. 

 

 

6.1.2.1 Effect of Depth of Cut 

 

 Same values of depth of cut are used which are 0.25 mm, 1.50 mm and 

3.00 mm and a same constant value of the cutting speed and the rotational speed 

are employed. From the results it can be seen that an increase in depth of cut 

will increase the amplitudes and frequency of oscillation. The 3.00 mm depth of 

cut is significant as the magnitude of the oscillation becomes bigger. The same 
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parameters are simulated for two modes and it appears that a different shape of 

deflection curve is observed and higher frequency components seem to have 

appeared in comparison with one mode. Most of the high amplitude of 

oscillation is increased with the increase of number of modes. A similar pattern 

of deflection curve is also obtained but slightly different in amplitude for three 

and four modes. Higher amplitude was obtained when a higher depth of cut is 

used. 

 

 

6.1.2.2 Effect of Cutting Speed 

 

The two different cutting speeds are next simulated to demonstrate its 

effect with one mode. A constant value of depth of cut (3.00 mm) and rotational 

speed (1250 rev/min) were employed. From the results it appears that higher-

frequency oscillation has bigger amplitude at a higher cutting speed. The same 

cutting conditions are also simulated for two modes and it can be seen that the 

mode shapes have changed when a higher number of modes were used. Similar 

pattern and amplitude of vibration were produced for different cutting speed and 

higher amplitude vibration becomes more distinct with more modes. The 

deflection is slanted to the weaker support, which is the tailstock. The beating 

phenomenon is even greater at a higher cutting speed (1.4353 m/s).  The results 

obtained for three and four modes are similar with two modes. 

 

 

6.1.2.3 Effect of Rotational Speed 

 

 There are different rotational speeds simulated which are 230 rev/min, 

480 rev/min and 1250 rev/min. It is observed that a similar pattern is generated 

for all rotational speeds and there is not much amplitude difference between the 

first, second and third modes. It can be said that a variation of rotational speed 

does not seem to have a big effect on the dynamic response especially on the 

amplitude of vibration. However, a different pattern has been obtained when a 

higher number of modes are used. There are some differences in amplitude of 
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vibration particularly in modes three and four. A higher number of modes (three 

or more modes) are seen to stimulate slightly greater amplitude of vibration. 

Therefore, increasing the number of modes moderately promotes the occurrence 

of chatter. In addition, adding more modes does not change w as much as v. 

 

 

6.2 Validation Between Numerical and Experimental 

Results                                             

 

The experiments were conducted with a collaborator at Dailan University 

of Technology (DUT) in China and the results were employed to validate the 

dynamic model established. Variation of cutting parameters including the 

rotating speed, feed rate and depth of cut are carefully chosen in different values 

consistent with the previous numerical simulations under different cutting 

conditions in order to investigate the effect of varying the cutting parameters. 

The phenomena of chatter can be clearly seen at the middle of the cylindrical 

metal work piece. Moreover, higher oscillation appears in the dynamic response 

of the time domain.  

 

 It can be observed that the deformation patterns are fairly similar 

between both the experiments and the developed model of clamped pinned and 

elastic boundary conditions. In the beginning, the theoretical deflections of 

clamped pinned are greater from the experiment as compared with the 

developed clamped pinned dynamic model. It might be due to the fact that the 

initial boundary condition assumed earlier in the theoretical dynamic model is 

much stiffer at the chuck and more flexible at the tail stock support. In contrast, 

from the results gained when an elastic boundary is employed, the simulated 

theoretical deflection magnitude is slightly greater than the measured deflection 

during experiment. The results are more realistic since both the chuck and 

tailstock were assumed to be flexible support. Practically the work piece and 

cutting tool suffer from deflection. It can be concluded that the predicted and 

measured patterns of time histories of work piece vibration agree fairly well 

when an elastic boundary conditions are considered in the simulation works of 
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the developed dynamic model. Note that in Table 6.1 below both of the x-axis of 

theoretical and experiment graphs represent the moving cutting coordinates. For 

the theoretical x-axis, it can be calculated by dividing the length of the work 

piece over cutting speed while in the experiment x-axis, it is simply the length of 

the work piece subtracted with the product of cutting speed and time. 

 

Table 6.1: Comparison between theoretical and experimental of dynamic 

responses at both v and w  

 

Theoretical (Chuck-tailstock) Experimental 

 

 
 

Dynamic response at v in y direction 

 

 
 

Dynamic response at w in z direction 

 

 

 

 

 
 

Dynamic response at v in y direction 

 

 
 

Dynamic response at w in z direction 
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Chapter 7 

 

Conclusion and Future Work 

 

7.1 Summary of Findings of the Investigation 

 

This thesis presents a study of vibration of work pieces in turning 

operation modelled as a rotating beam with clamped pinned and elastic supports 

subjected to three directional moving loads with regenerative chatter 

mechanism. From the literature reviews done, some of the limitation of previous 

chatter models (manufacturing engineer models) are that none of them consider 

moving loads in their dynamics model. Moving loads (cutting forces) should be 

considered because they are variable in both space and time as the cutter moves 

along the work piece (a large number of the engineering structures are subjected 

to time and space varying loads). The moving cutting forces also consider the 

regenerative chatter effect.  

 

In addition, most studies of dynamic model of turning operation 

previously have generally assumed the work piece to be rigid and no 

deformation of work piece is considered. However, in practice the work piece 

does have deformation when there is an external force exerting on it. Such 

deformation will change the chip thickness and have an effect on the critical 

chip thickness and dynamic stability. Although work piece vibrations impact 
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both cutting instability and product quality including surface finish, most models 

developed for investigating surface roughness do not consider work piece 

vibrations at all. Therefore, in this project, the research is focussed on 

developing a new mathematical model considering both the work piece and 

cutting tools as flexible. Besides, it is also concluded that the most significant 

factors contributing to the surface finish quality are the cutting parameters which 

are the cutting speed, depth of cut and feed rate. One should be more careful in 

considering the cutting condition used is within recommended range to prevent 

unstable cutting condition.  

 

 The development of the dynamic models was initiated by identifying 

suitable boundary conditions. The energy method is then employed since the 

energy of a vibrating system of a turning process is partly potential and partly 

kinetic. The equation of motion of vibration of a rotating work piece in turning 

operations is then derived using Lagrange‟s equations. Three directional moving 

cutting forces with regenerative chatter mechanism is next included in the 

dynamic model developed. The improved dynamic model is later generated by 

adapting Insperger‟s cutting force model. Lastly, the cutting tool equation of 

motions for new improved dynamic model is also established and computed in 

Matlab software. A method to analyse chatter is also established by utilizing a 

dynamic transient response analysis. Runge-Kutta method has been used 

initially but since Runge-Kutta always depends on the initial conditions, a Delay 

Differential equation was selected to replace the Runge-Kutta method since it is 

a self generated algorithm where the time step will be automatically recognized.  

 

In order to investigate the effect of the cutting parameters, the numerical 

simulation work is performed to observe the influence of these cutting 

parameters on the chatter occurrence. Numerical results of the deflection of the 

beam for these three different cutting parameters (depth of cut, cutting speed and 

rotational speed) are obtained. It is found that the cutting force model of 

regenerative chatter which introduces time delay in a dynamic model leads to an 

interesting dynamic behaviour in the vibration of rotating beams and a sufficient 

number of modes must be included to sufficiently represent the dynamic 

behaviour. The effects of depth of cut, the cutting speed and rotational speed on 



192 
 

the vibration and chatter occurrence are examined and obtained. Simulated 

numerical examples are presented as well. 

 

 During the simulation work, two types of boundary conditions are 

considered; clamped pinned and chuck tailstock (elastic boundary). The results 

for all three cutting parameters are simulated when an elastic boundary is 

considered producing a slightly different oscillation as compared with a clamped 

pinned boundary assumed earlier. The oscillations are much higher when elastic 

boundary is considered. The results are in line with the actual practice where the 

work piece suffers from deformation. The amplitude of vibration increases as 

well when higher numbers of modes are used in the simulation. Similar to 

clamped pinned boundary, four modes are sufficient and hence used during 

numerical simulation.  It is necessary to include higher modes as it will excite 

high frequency oscillation. The more modes considered, the more accurate the 

results; but it is not necessary to include more than four modes. 

 

These three different cutting parameters are vital and definitely influence 

the dynamic responses of deflection in the y and z directions. The depth of cut is 

seen to be the most influential on the magnitude of the deflection. For both 

clamp pinned and elastic boundary conditions, an increase in depth of cut will 

increase the amplitudes and frequency of oscillation. The 3.00 mm depth of cut 

is significant as the magnitude of the oscillation becomes bigger. Most of the 

high amplitude of oscillation increased with the increase of number of modes. 

Moreover, higher cutting speed will generate a higher-frequency oscillation 

hence bigger amplitude is obtained. The mode shape pattern changes when a 

higher number of modes are used. Higher amplitude vibration becomes more 

pronounced with more modes. Besides, for the effect of different rotational 

speed, there is not much amplitude difference between the first, second and third 

modes. A similar pattern of mode shapes is gathered for all rotational speeds. 

The rotational speed does not seem to have a big influence on dynamic response 

especially on the amplitude of vibration. In addition, a different pattern has been 

produced when a higher number of modes are used. There are some differences 

in amplitude of vibration particularly in mode three and four. When three modes 

are used, a higher number of modes used are seen to excite slightly greater 
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amplitude of vibration. Therefore, increasing the number of modes moderately 

promotes the occurrence of chatter.  

 

Several turning experiments are conducted to demonstrate the existence 

of vibration and chatter during machining operations. The deformation patterns 

obtained are reasonably comparable between both the experiment and the 

developed model. However, the measured deflections are larger from the 

experiment. It is due to the theoretical model developed is stiffer since the chuck 

is represented by a clamped boundary and the tail stock support is represented 

by a simple support. On the contrary, the simulated deflection magnitude gained 

when an elastic boundary is considered produces a slightly greater magnitude of 

deflection to the measured deflection during experiment. It can be concluded 

that the predicted and measured patterns of time histories of work piece 

vibration agree fairly well when an elastic boundary conditions are considered in 

the simulation work of the developed dynamic model. These have been both 

theoretically predicted and experimentally validated. 

 

Lastly, a dynamic model for a rotating Rayleigh beam subjected to a 

three directional moving cutting forces with regenerative chatter effect is 

successfully established. The use of established information from the parametric 

studies on turning operation can be of assistance to the operators in choosing the 

optimum acceptable turning cutting conditions that will prevent instability and 

consequent deterioration of the quality of the turned components. 

 

 

7.2 Contribution to New Knowledge 

 

The main original contributions delivered by this research are listed as 

follows: 

 
 

7.2.1 The mathematical model developed considered work piece and cutting 

tools as a flexible work piece and flexible cutting tools. Without doubt, 

this dynamic model of vibration of work piece in turning operation is 
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more realistic than previous ones as the dynamic model has multiple-

degrees-of-freedom and considers the vibration of the cutter with 

regenerative chatter. In reality the work piece does have deformation 

when there is an external force exerting on it. Such deformation will 

change the chip thickness and have an effect on the critical chip 

thickness of stability.  

 

7.2.2 The work piece is modelled as a rotating Rayleigh beam and the cutter 

provides a three-dimensional moving load with time delay based on the 

introduction of regenerative chatter mechanism. 

 

7.3.3 Elastic boundary condition is employed in the developed mathematical 

model to mimic the actual chuck and tailstock support for the work piece 

on lathe machines.  

 

 

7.3 Recommendations for Further Investigation 

 

The following suggestions can be made for future research: 

 

7.3.1 Acquire better mechanism of sensing to capture deflection during turning 

process since the previous laser sensor used was too noisy to capture the 

expected natural frequencies and mode shapes. The used of laser 

displacement sensor is more practical to mount in measuring the 

vibration of the work piece during turning operation.  

 

7.3.2 Performing experimental modal analysis on composite work pieces since 

one of the initial aim of this research is to reduce vibration and chatter 

during turning operation by means of numerical and experimental 

studies. These can be achieved by pursuing several main objectives of 

this research. First is to understand what affect the vibration and noise 

during turned metal in a quantitative manner and then find ways of 

alleviating this problem by parametric studies.  
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7.3.3 Next is the development of the mathematical model which then will be 

validated against the experimental results. The validated model will be 

used to simulate structural modifications in order to identify means of 

design improvements and vibration reduction. 

 

7.3.4 Machine the composite work pieces using turning process as this 

research is emphasis on turning process. 
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Appendix A1 - Calculation of deflection, 

v and w for clamp-pinned boundary 
 

function ddeow 

  
l = 0.5 ;  

  
comega = 1250/60;%230/60;%480/60;%1200/60; %1250/60  % Rotation 

speed of the shaft(rev/s);  

  

  
h0 = 2 * pi / comega ;%mine 

  

  
speed = 0.2228; %86.12/60;  

  

  
tend = l/speed;  

  

  
sol = dde23(@ddeowde,h0,@ddeowhist,[0,tend]); 

  

  
t = sol.x; 

  
n2 = length(sol.x); 

  
for j = 1:n2 

     
    v(j) = 0;  
    w(j) = 0; 

     
    for i = 1: nm        

             
        v(j) = v(j) + phi(i,l,lambda,sgma,s(t(j)))*sol.y(i,j); 
        %w(j) = w(j) + 

phi(i,l,lambda,sgma,s(t(j)))*sol.y(i+2*nm,j); 
        %s(t) is the cutter location starting from the right 

hand side at t=0; 

         
    end 
end 

  
plot(sol.x,v) 

  
set(gca,'fontsize',12,'fontweight','b','FontName','Times 

Roman'); 
ylabel('v, deflection [m]'); 
xlabel('time, t [s]'); 
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Appendix A2 – Derivation of Delay 

Differential equation for clamp-pinned 

boundary 

 
function dydt = ddeowde(t,y,Z)% This is time integration as well 

and don't need Runga Kutta method  

  
% all of A,B, C, D B2,B3 should be inside this function. 

  
l = 0.5 ; E = 2.07 * 10^11 ; ro = 7850; % mine ro = 7700 ;  

steel 

  
r = 0.025; A = pi * r * r ; I = 0.25 * A * r * r ;  nm = 1;  

  
%hc = 0.00254 ; ac = 0.003 ; % intended cut depth or h(t) and 

width of cut 

  
hc = 0.003;%0.003;%0.00025;%0.0015 ;  

  
ac = 0.00025; % xiangou value 

  

  
Kx = 5.243175675e+6;  
Ky = 7.322206549e+6;  
Kz = 2.60201192e+8;  
f = 0.3/1000;  % Nominal Feed rate(m/rev); %exp1 % exp2 - 0.2, 

exp3 - 0.3 

  

  
Ax = Kx * f^0.37; % Xiangou cutting force coefficient 

  
Ay = Ky * f^0.4; % Xiangou cutting force coefficient 

  
Az = Kz * f^0.73; % Xiangou cutting force coefficient 

  
cx = Ax/ac; % to make the cutting force coefficient the same 

  
cy = Ay/ac; % to make the cutting force coefficient the same  

  
cz = Az/ac; % to make the cutting force coefficient the same 

  

  
sgma = [ 1.000777304 1.000001445 ] ; 

  
for i =3 : nm 
   sgma (i) = 1; 
end 

  
lambda = [3.92660231 7.06858275 10.21017612 13.35176878 

16.49336143 ] ;   
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for i = 6 : nm 
    lambda (i) = (4*i+1)*pi/4;   
end 

  

  
for i = 1 : nm 
    omega(i) = ((lambda(i)^2)/(2*pi*l^2)) * sqrt(( E * I) / (ro 

* A)); 
end 

  
comega = 1250/60;%230/60;%480/60%1200/60; %1250/60  % Rotation 

speed of the shaft(rev/s); xiangou 

  

  
a = 0; b = l; n = 20;   h = (b-a)/n ;   

  
h0 = 2 * pi / comega ; %mine 

  
B = zeros(nm,nm) ; C = B ; D = B; 

  
for i = 1: nm; 

         
        area_A = 0;    
        for m = 1 :n 
            xl = a + (m - 1)*h;     xu = xl + h; % i for 

phi(x)and i for phi(x)transpose 
            area_A = area_A + 0.5 * h * ( 

phi(i,l,lambda,sgma,xl)^2 + phi(i,l,lambda,sgma,xu)^2 ); 
        end 
        D(i,i) = ro*A*area_A ;  % diagonal elements for mass 

         
        for j = 1: nm; 

             
            area_B = 0;  area_C = 0;   
            for m = 1 :n 
                    xl = a + (m - 1)*h;     xu = xl + h; 

                 
%Trapezium Numerical Integration 
                area_B = area_B + 0.5* h 

*(phi_1d(i,l,lambda,sgma,xl)*... % i for phi(x)and j for 

phi(x)transpose 
                phi_1d(j,l,lambda,sgma,xl) + 

phi_1d(i,l,lambda,sgma,xu)*phi_1d(j,l,lambda,sgma,xu)); % the 

reason it has two term 1 for lower bound (xl) and 1 for upper 

bound (xu) 

                 

             
                area_C = area_C + 0.5* h 

*(phi_2d(i,l,lambda,sgma,xl)*... 
                phi_2d(j,l,lambda,sgma,xl) + 

phi_2d(i,l,lambda,sgma,xu)*phi_2d(j,l,lambda,sgma,xu)); 

             
            end 
         B(i,j) = area_B;   C(i,j) = area_C; % off-diagonal 

elements such as damping and stiffness 
         D(i,j) = D(i,j) + ro*I*B(i,j) ; 
        end 
end 
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B2 = 2 * comega * ro * I * B ; C1 = E * I * C ; D = 

D\eye(size(D)); %D = inv(D) ; 
  

 

for i=1:nm  
    for j=1:nm 

         
        sum_phi(i,j) = phi(i,l,lambda,sgma,s(t)) * 

phi(j,l,lambda,sgma,s(t)); %  
        sum_phi_1(i,j) = phi_1d(i,l,lambda,sgma,s(t)) * 

phi(j,l,lambda,sgma,s(t)); 
        sum_phi_2(i,j) = phi(i,l,lambda,sgma,s(t)) * 

phi(j,l,lambda,sgma,s(t-h0));%for ode23 
        sum_phi_3(i,j) = phi_1d(i,l,lambda,sgma,s(t)) * 

phi(j,l,lambda,sgma,s(t-h0));%for ode23 

         
    end 
        U4(i) = ac*hc*(cy*phi(i,l,lambda,sgma,s(t))-

cx*r*phi_1d(i,l,lambda,sgma,s(t))); 
        V4(i) = cz*ac*hc*phi(i,l,lambda,sgma,s(t)); 
end 

  

  
U1 = (-(C1)+ac*(-cy*sum_phi+cx*r*sum_phi_1)); % without the 

effect of Px 
U2 = -B2; 
U3 = ac*(cy*sum_phi_2-cx*r*sum_phi_3); 

  

  
V1 = -cz*ac*sum_phi;% without the effect of Px 
V2 = B2; 
V3 = cz*ac*sum_phi_2;   
V5 = -(C1);% without the effect of Px 

                                                                                           

  
M = [zeros(nm) eye(nm) zeros(nm) zeros(nm); D*U1 zeros(nm) 

zeros(nm) D*U2; 
     zeros(nm) zeros(nm) zeros(nm) eye(nm); D*V1 D*V2  D*V5 

zeros(nm)]; 

  
N = [zeros(nm) zeros(nm) zeros(nm) zeros(nm); D*U3 zeros(nm) 

zeros(nm) zeros(nm);  
     zeros(nm) zeros(nm) zeros(nm) zeros(nm); D*V3 zeros(nm) 

zeros(nm) zeros(nm)]; 

  
O = [zeros(nm, 1); D*U4'; zeros(nm, 1); D*V4'];  

                                                                     
ylag = Z(:,1); 

  
dydt = M*y + N*ylag + O; 
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Appendix A3 – Time delay function 

function z = ddeowhist(t) 

  
nm = 1; 

  
z = zeros(4*nm,1); 
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Appendix A4 – Determination of mode 

shape function for clamp-pinned 

boundary 
 

 

function [func] = phi(i, l, lambda, sgma, x)  

 
func = cosh(x * (lambda(i)/l)) - cos(x * (lambda(i)/l)) - ... 
       sgma(i) * ( sinh(x * (lambda(i)/l)) - sin(x * 

(lambda(i)/l))); 
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Appendix A5 – First derivation of mode 

shape function for clamp-pinned 

boundary 
 

 

function [func] = phi_1d (i, l, lambda, sgma, x)   

 
func = lambda (i)/l * ( sinh(x * (lambda (i)/l)) + ... 
       sin(x * (lambda (i)/l)) - sgma (i) * (cosh( x* (lambda 

(i)/l)) - ... 
       cos(x * (lambda (i)/l)))); 
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Appendix A6 – Second derivation of 

mode shape function for clamp-pinned 

boundary 

 
 

function [func] = phi_2d (i, l,lambda, sgma, x)  

  
func = (lambda (i)/l)^2 * ( cosh(x * (lambda (i)/l)) + ... 
       cos(x * (lambda (i)/l)) - sgma (i) * (sinh(x * (lambda 

(i)/l)) + ... 
       sin(x * (lambda (i)/l)))); 
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Appendix A7 – Calculation of cutting 

speed  

 
 

function [func] = s(t) 

         
    l = 0.5 ; 

     
    speed = 0.2228;  

     
func = l - speed * t ;    

 
    if t < 0 
        func = l ; 
    end 
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Appendix A8 - Calculation of deflection, 

v and w for elastic boundary 

 
 

function ddeowelastic 

 
clear all; clc; 

 
global  nm c1 c2 c3 c4 beta_n h0 ac hc cy cx r cz C1 B2 D l 

speed  

 
l = 0.5;  

 
E = 2.07 * 10^11 ; ro = 7817.4; % mine ro = 7700 ;  steel 

 
r = 0.0185; A = pi * r * r ; I = 0.25 * A * r * r ;  nm = 1;  

 
beta_n = [5.661 6.476 13.685 15.663 18.941]; 

 
c1 = [3.1915 -105.7214 3.0913 81.3933 108.5319]; 
c2 = [105.9489 165.8741 -78.8856 -802.2749 137.3669]; 
c3 = [58.5381 66.2404 -28.3929 -325.8367 55.932]; 
c4 = [-56.2174 -49.8974 28.2829 325.2055 -55.9587]; 
% x = 0:l/20:l; 
% plot(x, c1(1)*cos(beta_n(1)*x)+c2(1)*sin(beta_n(1)*x)+ ... 
%     c3(1)*cosh(beta_n(1)*x)+c4(1)*sinh(beta_n(1)*x)) 
% figure 
% plot(x, c1(2)*cos(beta_n(2)*x)+c2(2)*sin(beta_n(2)*x)+ ... 
%     c3(2)*cosh(beta_n(2)*x)+c4(2)*sinh(beta_n(2)*x)) 
% figure 
% plot(x, c1(3)*cos(beta_n(3)*x)+c2(3)*sin(beta_n(3)*x)+ ... 
%     c3(3)*cosh(beta_n(3)*x)+c4(3)*sinh(beta_n(3)*x)) 
% figure 
% plot(x, c1(4)*cos(beta_n(4)*x)+c2(4)*sin(beta_n(4)*x)+ ... 
%     c3(4)*cosh(beta_n(4)*x)+c4(4)*sinh(beta_n(4)*x)) 
% figure 
% plot(x, c1(5)*cos(beta_n(5)*x)+c2(5)*sin(beta_n(5)*x)+ ... 
%     c3(5)*cosh(beta_n(5)*x)+c4(5)*sinh(beta_n(5)*x)) 

 
%hc = 0.00254 ; ac = 0.003 ; % intended cut depth or h(t) and 

width of cut\ 

 
hc = 0.003;%0.003;%0.00025;%0.0015 ;  

 
ac = 0.0003; % xiangou value 

 

 
Kx = 5.243175675e+6;  
Ky = 7.322206549e+6;  
Kz = 2.60201192e+8;  
f = 0.3/1000;  % Nominal Feed rate(m/rev); %exp1 % exp2 - 0.2, 

exp3 - 0.3 

 
Ax = Kx * f^0.37; % Xiangou cutting force coefficient 
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Ay = Ky * f^0.4; % Xiangou cutting force coefficient 

 
Az = Kz * f^0.73; % Xiangou cutting force coefficient 

 
% Px = cx * hc * ac ;  

 
cx = Ax/ac; % to make the cutting force coefficient the same 

with Xiangou 

 
cy = Ay/ac; % to make the cutting force coefficient the same 

with Xiangou 

 
cz = Az/ac; % to make the cutting force coefficient the same 

with Xiangou 

 
comega = 1250/60;%230/60;%480/60%1200/60; %1250/60  % Rotation 

speed of the shaft(rev/s); xiangou 

 
speed = 2.228; %xiangou 

 
a = 0; b = l; n = 50;   h = (b-a)/n ;   

 
h0 = 2 * pi / comega ; %mine 

 

 
B = zeros(nm,nm) ; C = B ; D = B; 

 
for i = 1: nm; 

 
        area_A = 0;    
for m = 1 :n 
            xl = a + (m - 1)*h;     xu = xl + h; % i for 

phi(x)and i for phi(x)transpose 
            area_A = area_A + 0.5 * h * ( phi(i, c1, c2, c3, c4, 

beta_n, xl)^2 + phi(i, c1, c2, c3, c4, beta_n, xu)^2 ); 
end 
        D(i,i) = ro*A*area_A ;  % diagonal elements for mass 

 
for j = 1: nm; 

 
            area_B = 0;  area_C = 0;   
for m = 1 :n 
                    xl = a + (m - 1)*h;     xu = xl + h; 

 
%Trapezium Numerical Integration 
                area_B = area_B + 0.5* h *(phi_1d(i, c1, c2, c3, 

c4, beta_n, xl)*... % i for phi(x)and j for phi(x)transpose 
                phi_1d(j, c1, c2, c3, c4, beta_n, xl) + 

phi_1d(i, c1, c2, c3, c4, beta_n, xu)*phi_1d(j, c1, c2, c3, 

c4, beta_n, xu)); % the reason it has two term 1 for lower 

bound (xl) and 1 for upper bound (xu) 

 

 
                area_C = area_C + 0.5* h *(phi_2d(i, c1, c2, c3, 

c4, beta_n, xl)*... 
                phi_2d(j, c1, c2, c3, c4, beta_n, xl) + 

phi_2d(i, c1, c2, c3, c4, beta_n, xu)*phi_2d(j, c1, c2, c3, 

c4, beta_n, xu)); 
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end 
         B(i,j) = area_B;   C(i,j) = area_C; % off-diagonal 

elements such as damping and stiffness 
         D(i,j) = D(i,j) + ro*I*B(i,j) ; 
end 
end 

 
B2 = 2 * comega * ro * I * B ; C1 = E * I * C ; D = 

D\eye(size(D)); %D = inv(D) ; 

 
tend = l/speed;  

 
sol = dde23(@ddeowdeelastic,h0,@ddeowhist,[0,tend]); 

 
t = sol.x; 

 
n2 = length(sol.x); 

 

 
for j = 1:n2 

 
    v(j) = 0;  
    w(j) = 0; 

 
for i = 1: nm 

 
        v(j) = v(j) + phi(i, c1, c2, c3, c4, beta_n, 

s(t(j)))*sol.y(i,j); 
%w(j) = w(j) + phi(i, c1, c2, c3, c4, beta_n, 

s(t(j)))*sol.y(i+2*nm,j); 
%s(t) is the cutter location starting from the right hand side 

at t=0; 

 
end 
end 

 
plot(sol.x,v) 

 

 
set(gca,'fontsize',12,'fontweight','b','FontName','Times 

Roman'); 
ylabel('v, deflection [m]'); 
xlabel('time, t [s]'); 
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Appendix A9 - Derivation of Delay 

Differential equation for elastic 

boundary 

 
 

%the boundary condition is fixed end (chuck) and simply 

supported (tailstock) 

 
%function dydt = ddeowde(t,y) 

 
function dydt = ddeowdeelastic(t,y,Z)% This is time integration 

as well and don't need Runga Kutta method  

 
display(t) 

 
global nm c1 c2 c3 c4 beta_n h0 ac hc cy cx r cz C1 B2 D l speed  

 
sum_phi = zeros(nm,nm); 
sum_phi_1 = zeros(nm,nm); 
sum_phi_2 = zeros(nm,nm); 
sum_phi_3 = zeros(nm,nm); 
U4 = zeros(1,nm); 
V4 = zeros(1,nm); 

 
for i=1:nm % this is about mode size which is nm 
for j=1:nm 

 
        sum_phi(i,j) = phi(i, c1, c2, c3, c4, beta_n, s(t)) * 

phi(j, c1, c2, c3, c4, beta_n, s(t)); %  
        sum_phi_1(i,j) = phi_1d(i, c1, c2, c3, c4, beta_n, s(t)) 

* phi(j, c1, c2, c3, c4, beta_n, s(t)); 
        sum_phi_2(i,j) = phi(i, c1, c2, c3, c4, beta_n, s(t)) * 

phi(j, c1, c2, c3, c4, beta_n, s(t-h0));%for ode23 
        sum_phi_3(i,j) = phi_1d(i, c1, c2, c3, c4, beta_n, s(t)) 

* phi(j, c1, c2, c3, c4, beta_n, s(t-h0));%for ode23 

 
end 
        U4(i) = ac*hc*(cy*phi(i, c1, c2, c3, c4, beta_n, s(t))-

cx*r*phi_1d(i, c1, c2, c3, c4, beta_n, s(t)));% a row vectors 
        V4(i) = cz*ac*hc*phi(i, c1, c2, c3, c4, beta_n, s(t));% 

a row vectors 
end 

 

 
U1 = (-(C1)+ac*(-cy*sum_phi+cx*r*sum_phi_1)); % without the 

effect of Px 
%U1 = (-(C1-Px*B3)+ac*(-cy*sum_phi+cx*r*sum_phi_1)); 
U2 = -B2; 
U3 = ac*(cy*sum_phi_2-cx*r*sum_phi_3); 

 
% beta double dot with v(x,t)= phiT(x)* ALPHA(t) 
V1 = -cz*ac*sum_phi;% without the effect of Px 
%V1 = (-Px*B3)-cz*ac*sum_phi); % with the effect of Px 
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V2 = B2; 
V3 = cz*ac*sum_phi_2;   
V5 = -(C1);% without the effect of Px 
%V5 = -(C1-Px*B3)% with the effect of Px                                                                                           

 
% beta double dot with v(x,t)= phiT(x)* ALPHA(t) 
M = [zeros(nm) eye(nm) zeros(nm) zeros(nm); D*U1 zeros(nm) 

zeros(nm) D*U2; 
     zeros(nm) zeros(nm) zeros(nm) eye(nm); D*V1 D*V2  D*V5 

zeros(nm)]; 

 
N = [zeros(nm) zeros(nm) zeros(nm) zeros(nm); D*U3 zeros(nm) 

zeros(nm) zeros(nm);  
     zeros(nm) zeros(nm) zeros(nm) zeros(nm); D*V3 zeros(nm) 

zeros(nm) zeros(nm)]; 

 
O = [zeros(nm, 1); D*U4'; zeros(nm, 1); D*V4'];  

 
ylag = Z(:,1); 

 
dydt = M*y + N*ylag + O; 

 
%dydt = M*y + O; 
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Appendix A10 – Determination of mode 

shape function for elastic boundary 

 
 
function [func] = phi(i, c1, c2, c3, c4, beta_n, x) %any 

boundary from Rao's book - elastic boundary 

 
func = c1(i)*cos(beta_n(i)*x) + c2(i)*sin(beta_n(i)*x) + 

c3(i)*cosh(beta_n(i)*x) + c4(i)*sinh(beta_n(i)*x); 

 
func = 0.01 * func ; 
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Appendix A11 – First derivation of mode 

shape function for elastic boundary 
 

 
function [func] = phi_1d(i, c1, c2, c3, c4, beta_n, x) %any 

boundary from Rao's book - elastic boundary 

 
func = beta_n(i)*(-c1(i)*sin(beta_n(i)*x) + 

c2(i)*cos(beta_n(i)*x) + c3(i)*sinh(beta_n(i)*x) + 

c4(i)*cosh(beta_n(i)*x)); 

 
func = 0.01 * func ; 
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Appendix A12 – Second derivation of 

mode shape function for elastic 

boundary 

   
function [func] = phi_2d(i, c1, c2, c3, c4, beta_n, x) %any 

boundary from Rao's book - elastic boundary 

 
func = beta_n(i)^2*(-c1(i)*cos(beta_n(i)*x) - 

c2(i)*sin(beta_n(i)*x) + c3(i)*cosh(beta_n(i)*x) + 

c4(i)*sinh(beta_n(i)*x)); 

 
func = 0.01 * func ; 
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Appendix A13 – Calculation of C1, C2, C3 

and C4 variables 

 
 

clear all; clc; 

 
n = 11; 

 
beta_n = 5.777; %[ 5.661 5.777 6.476 6.657 13.145 13.685 15.149 

15.663 18.941 19.625 20.123 21.020 24.605 24.977 ];elastic 

boundary corresponding to each mode 

 

 
%y_n = [5.50E+01 7.14E+01 9.55E+01 1.16E+02 1.22E+02 1.23E+02 

1.20E+02 1.07E+02 9.53E+01 7.65E+01 6.23E+01];;%xiangou's test 

data - 1z 
y_n = [2.42E+01 2.67E+01 3.73E+01 4.52E+01 4.81E+01 4.89E+01 

4.40E+01 3.95E+01 3.00E+01 2.14E+01 1.74E+01];%xiangou's test 

data - 2z   
%y_n = [2.98E+02 2.99E+02 2.93E+02 2.69E+02 2.57E+02 2.26E+02 

1.86E+02 1.20E+02 5.91E+01 -1.34E+00 -3.47E+01];%xiangou's 

test data - 3z 
%y_n = [4.81E+01 3.09E+01 5.79E+01 6.06E+01 5.00E+01 2.10E+01 

1.92E+00 -8.99E+00 -2.02E+01 -1.39E+01 -4.87E+00];%xiangou's 

test data - 4z 
%y_n = [-4.89E+02 2.06E+02 7.19E+02 8.05E+02 5.45E+02 -1.10E+01 

-5.80E+02 -9.10E+02 -8.64E+02 -5.97E+02 -3.13E+02];%xiangou's 

test data - 5z 
%y_n = [-9.27E+01 -1.32E+01 5.04E+01 7.61E+01 6.19E+01 1.69E+01 

-3.65E+01 -7.47E+01 -7.73E+01 -5.66E+01 -2.99E+01];%xiangou's 

test data - 6z 
%y_n = [-2.75E+01 -5.85E+01 1.13E+01 5.97E+01 5.29E+01 3.29E+01 

-3.67E+01 -6.03E+01 -5.34E+01 -4.21E+01 -1.79E+01];%xiangou's 

test data - 7z 
%y_n = [-1.57E+03 -9.09E+02 -1.18E+02 6.32E+02 7.60E+02 4.63E+02 

-1.15E+02 -6.64E+02 -8.58E+02 -6.09E+02 -2.69E+02];%xiangou's 

test data - 8z 
%y_n = [-2.83E+02 -3.88E+01 1.36E+02 1.28E+02 1.61E+01 -1.40E+02 

-1.75E+02 -6.05E+01 1.14E+02 1.97E+02 1.63E+02];%xiangou's 

test data - 9z 
%y_n = [-8.93E+02 -1.58E+02 4.20E+02 4.18E+02 3.37E+01 -4.90E+02 

-5.60E+02 -1.01E+02 4.92E+02 6.62E+02 4.80E+02];%xiangou's 

test data - 10z 
%y_n = [-1.26E+03 -2.16E+01 7.41E+02 4.27E+02 -2.04E+02 -

8.06E+02 -6.23E+02 1.79E+02 8.58E+02 7.88E+02 

3.91E+02];%xiangou's test data - 11z 
%y_n = [-2.12E+03 -2.00E+02 1.06E+03 6.48E+02 -2.76E+02 -

1.20E+03 -8.56E+02 3.83E+02 1.26E+03 9.21E+02 

1.27E+02];%xiangou's test data - 12z 
%y_n = [3.24E+02 -1.12E+02 -1.97E+02 1.26E+02 2.82E+02 1.18E+02 

-1.76E+02 -1.99E+02 1.28E+02 3.03E+02 1.98E+02];%xiangou's 

test data - 13z 
%y_n = [3.30E+02 -1.64E+02 -2.28E+02 1.77E+02 3.01E+02 5.42E+01 

-2.81E+02 -1.83E+02 1.83E+02 3.35E+02 1.82E+02];%xiangou's 

test data - 14z 
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x_n = [0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0]; 

%length of the workpiece, 0.54995/11 to match xiangou's test 

data - 1 mode 
%x_n = [0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50];     

 

 
sum_A = zeros(4,4); sum_B = zeros(4,1); 

 
for j = 1 : n 

 
    A = [cos(beta_n*x_n(j))^2                       

sin(beta_n*x_n(j))*cos(beta_n*x_n(j))      

cosh(beta_n*x_n(j))*cos(beta_n*x_n(j))      

sinh(beta_n*x_n(j))*cos(beta_n*x_n(j)); 
         cos(beta_n*x_n(j))*sin(beta_n*x_n(j))      

sin(beta_n*x_n(j))^2                       

cosh(beta_n*x_n(j))*sin(beta_n*x_n(j))      

sinh(beta_n*x_n(j))*sin(beta_n*x_n(j)); 
         cos(beta_n*x_n(j))*cosh(beta_n*x_n(j))     

sin(beta_n*x_n(j))*cosh(beta_n*x_n(j))     

cosh(beta_n*x_n(j))^2                       

sinh(beta_n*x_n(j))*cosh(beta_n*x_n(j)); 
         cos(beta_n*x_n(j))*sinh(beta_n*x_n(j))     

sin(beta_n*x_n(j))*sinh(beta_n*x_n(j))     

cosh(beta_n*x_n(j))*sinh(beta_n*x_n(j))     

sinh(beta_n*x_n(j))^2]; 

 
    B = [y_n(j)*cos(beta_n*x_n(j)); y_n(j)*sin(beta_n*x_n(j)); 

y_n(j)*cosh(beta_n*x_n(j)); y_n(j)*sinh(beta_n*x_n(j))]; 

 
sum_A = sum_A+A;   sum_B = sum_B+B;   

 
end 
%x = [C1; C2; C3; C4]; 

 
x = sum_A\sum_B 

 

 

 


